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PREFACE

In its traditional sense, a modal logic is one whose logical vocabulary contains
the modal expressions “possibly”, “necessarily” and “contingently”, construed as
sentence operators. If the first half of the twentieth century can lay fair claim
to having produced the deep and definitive accounts of classical logic, perhaps
the dominant achievement in the next quarter century was the attainment of a
firm semantic grip on a hefty plurality of modal systems, marked by the seminal
works of Hintikka, Kanger and Kripke. The semanticizing of modal sentences
— apart from the importance intrinsic to such an achievement — opened up an
important tension between modal and classical logics. Perhaps the most significant
difference is that, whereas classical systems are extensional, modal setups are
intensional, a happenstance which various philosophers of logic have greeted with
suspicion and — in some cases — incredulity. Some of the skeptics — Quine and
Harman are two — raised doubts about whether a modal system could have the
bona fides of a genuine logic. This notwithstanding, the great burst of energy in
the modal research programmes since the 1950s has proved irresistible, and the
central semantic idea of accessibility relations on alternative possible worlds has
had a philosophical influence well beyond the confines of logic, especially in the
philosophy of language.

One of the byproducts of the modal groundswell is that there are a great many
more interpreted systems of the modals “possibly” and “necessarily” than there
are different meanings of these terms in ordinary English. It is easy to see that
they are ambiguous in English, that “possibly” encompasses the quite different
senses of logical, physical, causal, and practical possibility (ditto “necessarily”).
But the sheer plurality of logical systems in which these terms are centrally at issue
greatly exceeds this rather modest number of ordinary-language meanings. It is
not wholly clear how to understand this proliferation. One possibility is that logic
has a greater capacity to identify different concepts of possibility than do native
speakers of languages such as English. It is also possible that the multiplication
of heretofore unrecognized concepts of possibility is more a matter of the free
creation of the theoretical logician. Whatever is to be said for these and other
options, it is safe to say that, in having taken the modal turn, logic took on a
more experimental character than was evident in the classical heyday.1 Here, too,

1Intimations of the experimental proclivities of modal logicians are evident in Aristotle’s
modal logic, of which there are up to five distinct treatments of logical necessity. Then, too, the
stream of systems produced by C.I. Lewis from 1912 into the 1930s encompasses vastly different
axiomatizations.



viii

it is not entirely clear what to make of this. Of the golden age of classical logic
it can be said with some confidence that logicians took themselves to be doing
one of two things. Taking the implication relation as an example, either they
were formalizing the pre-existing concept of implication or they were originating
a concept designed to facilitate some larger purpose, such as the construction
of logically precise languages adequate for science or capable of supporting the
reductive burdens of logicism. Part of the answer may be that the model theoretic
apparatus needed for the interpretation of modal systems is more complex, and
admits of greater recombinations of its elements, than do the standard models
of classical logic. Accordingly, it may be more natural for the modal theorist to
reconfigure a possible worlds semantics and wait for the kind of, e.g., implication
relation it embeds to “fall out”.

We should take care not to over-press the contrast between analyzing pre-
existing concepts and fashioning new ones. The distinction is present in Kant’s
pre-critical writings, and persists in the works of his maturity. Kant saw analysis as
making concepts clear, a job for philosophy. Synthesis was the business of making
clear concepts, a task that falls to the mathematician. Since logic’s great classical
interlude arose from the contributions of philosophers and mathematicians alike,
we cannot say, especially in the aftermath of the paradox that dethroned intu-
itive (or “analytic”) set theory, that classical logic is synthesis-free. Far from it.
What is more, apart from the local disputes within classical logic itself, there were
early rivals, such as intuitionism. Even so, classical logic has not been especially
pluralistic, whereas modal logic is vigorously so. It is moreover a rather pacific
and non-antagonistic pluralism, which attests further to its readiness to view logic
as the exploration of mathematically interesting languages and model theoretic
structures, with a focus that is a good deal less analytical or philosophical than
most classical variations on classical semantics.

It also bears on this issue that the semantics of some of the 20th century’s earliest
axiom systems — Lewis’ S2 and S3 for example — must stretch themselves beyond
ordinary recognition in order to keep up with the axioms. S2 and S3 cannot be
semanticized in a normal worlds approach; so nonnormal worlds were postulated
(more experimentation still), giving inadvertent anticipation of somewhat later
paraconsistent developments. A further case in point is the attempt by relevance
logicians to impose relevance constraints on the implication relation, so as to evade
the classical theorem that everything whatever is implied by an inconsistency. In
most relevant approaches, the disjunctive syllogism rule is demoted from a valid
to a merely admissible rule. On its face a rather slight adjustment, this actually
strips these logics of the truth-functional character of their classical predecessors.
More intensionality still.

An attraction of the traditional alethic modals is the ease with which they bear
new interpretations in the breakthrough work of Hintikka, von Wright and others
in epistemic and deontic logic. These were significant developments twice-over.
On the one hand, the new logics of knowledge and belief, and of obligation and
permission, were able to retain much of the syntactic and semantic machinery of

Preface
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their alethic predecessors, showing that all these logics are to a degree variations of
each other. On the other hand, however, the logics of knowledge and obligation had
taken yet another step away from classical logic. Not only are these newer logics
intensional and more experimentally oriented than their classical vis-à-vis, but
there is now the looming presence of agents operating in time. We say “looming”
rather than “overt” inasmuch as neither agents nor times are much developed, if
at all, in the semantics of these particular systems.

The ephemeral presence of agents and times is important in another respect. It
indicates that logic was developing in ways that would satisfy a broader interpre-
tation of the adjective “modal”. If one were to consult The New Oxford Dictionary
of English, corrected reprint, 2001, it would be seen that in the entry for modal
logic the first reference is not to a logic of possibility and necessity, but rather to
a logic in which sentences are subject to “some qualification”. If, then, we were to
accept the trichotomy of the basic modes of language introduced by the linguist
C.W. Morris — the trichotomony between syntax, semantics and pragmatics —
we would be reminded that a pragmatic approach to language is one that takes
expressly into account the roles of language-users and the contexts in which they
operate. By these lights, the developments in the 1950s and 1960s within the
epistemic and deontic adaptations of alethic modal logic mark the transition of
logic from a purely syntacto-semantic enterprise, to a Morrisean” enterprise in
which agents, times and situations have a load-bearing role. This was the prag-
matic turn in logic.2 In the broad sense of “modal”, a pragmatic logic counts
as modal, a happenstance that the Editors have allowed themselves to be guided
by in organizing the present volume. In addition to chapters on the traditional
modal logics, their epistemic and deontic variations and relevant logic, there are
chapters on systems in which the times of utterance are taken note of, in which
temporal change is tracked, in which an utterer’s situation is taken into account,
in which interpersonal utterance is acknowledged, and in which agents compete
with one another in the furtherance of their interests. In each case, the sentences
of the logic are modified by these other factors — time, change, agents, situations,
dialogue roles, and procedural strategies. Modal logics in the broad sense reflect
another change in logic’s conception of itself. In the classical heyday, logicians
were preoccupied with the analysis of properties (such as implication and logical
truth) of abstractly linguistic constructions or of linguistic artifacts in relation to
abstractly set theoretic structures. If such logicians gave any thought to the ins-
and-outs of human reasoning in the here and now, it was much the received view
that the classical laws were also norms of reasoning, albeit in a highly idealized
form. Even so, the attention to reasoning was at best an afterthought.3

With the rise of modern modal logic, the emphasis began to shift. Under press

2The word “pragmatic” invites confusion. In its logico-epistemological sense, it is the Quinean
doctrine that no principle of logic is immune from overthrow. In its linguistic meaning, it is a
logic that takes express note of the role of linguistic agents. The second sense is intended here.

3The pretensions of so-called natural deduction systems to be more “natural” than axiomatic
systems reflected rather more a distrust of the epistemic privilege that logicians sought to extend
to their axioms than to a burning interest in getting reasoning on the ground right.

“
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of developments in computer science and argumentation theory (chiefly dialogue
logic), logic started a shift toward a greater emphasis on reasoning. What we
find in the chapters of this volume is an attempt, to the extent possible, to lodge
pragmatic developments affecting agents and situations in the methodology and
principal attainments of the classical analyses of implication and the like. No
one thinks that modalizing the implication relation either narrowly or broadly will
leave the classical analysis untouched. But, for the most part, there is a widespread
desire on the part of modal logicians to retain as much of classical logic as comports
with their modal ambitions. What we see in the proliferation of modal logics is
not, therefore, a revolution in logic but a development. It is a development very
much in progress as we write. But it is already wholly clear that it has broken
the research programme in logic wide-open, and has given rise to questions and
challenges that are not likely to be settled with any definiteness for some time to
come.

Once again the Editors are deeply and most gratefully in the debt of the vol-
ume’s able authors. The Editors also warmly thank the following persons: Profes-
sor Margaret Schabas, Head of the Philosophy Department, and Professor Nancy
Gallini, Dean of the Faculty of Arts, at the University of British Columbia; Profes-
sor Bryson Brown, Chair of the Philosophy Department and his successor Michael
Stingl, and Professor Christopher Nicol, Dean of the Faculty of Arts and Sci-
ence, at the University of Lethbridge; Professor Alan Gibbons, Head of the Com-
puter Science Department, and his successor Andrew Jones, at King’s College
London; Jane Spurr, Publications Administrator in London; Dawn Collins and
Carol Woods, Production Associates in Lethbridge and Vancouver, respectively;
and our colleagues at Elsevier, Senior Publisher, Arjen Sevenster, and Production
Associate, Andy Deelen.

Dov M. Gabbay
King’s College London

John Woods
University of British Columbia

and
King’s College London

and
University of Lethbridge
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MATHEMATICAL MODAL LOGIC:

A VIEW OF ITS EVOLUTION

Robert Goldblatt

. . . there is no one fundamental logical no-
tion of necessity, nor consequently of possi-

bility. If this conclusion is valid, the subject
of modality ought to be banished from logic,
since propositions are simply true or false . . .

[Russell, 1905]

1 INTRODUCTION

Modal logic was originally conceived as the logic of necessary and possible truths.
It is now viewed more broadly as the study of many linguistic constructions that
qualify the truth conditions of statements, including statements concerning knowl-
edge, belief, temporal discourse, and ethics. Most recently, modal symbolism and
model theory have been put to use in computer science, to formalise reasoning
about the way programs behave and to express dynamical properties of transi-
tions between states.

Over a period of three decades or so from the early 1930’s there evolved two
kinds of mathematical semantics for modal logic. Algebraic semantics interprets
modal connectives as operators on Boolean algebras. Relational semantics uses
relational structures, often called Kripke models, whose elements are thought of
variously as being possible worlds, moments of time, evidential situations, or states
of a computer. The two approaches are intimately related: the subsets of a re-
lational structure form a modal algebra (Boolean algebra with operators), while
conversely any modal algebra can be embedded into an algebra of subsets of a
relational structure via extensions of Stone’s Boolean representation theory. Tech-
niques from both kinds of semantics have been used to explore the nature of modal
logic and to clarify its relationship to other formalisms, particularly first and sec-
ond order monadic predicate logic.

The aim of this article is to review these developments in a way that provides
some insight into how the present came to be as it is. The pervading theme is
the mathematics underlying modal logic, and this has at least three dimensions.
To begin with there are the new mathematical ideas: when and why they were

Dov M. Gabbay and John Woods (Editors)
c
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2 Robert Goldblatt

introduced, and how they interacted and evolved. Then there is the use of methods
and results from other areas of mathematical logic, algebra and topology in the
analysis of modal systems. Finally, there is the application of modal syntax and
semantics to study notions of mathematical and computational interest.

There has been some mild controversy about priorities in the origin of relational
model theory, and space is devoted to this issue in section 4. An attempt is made
to record in one place a sufficiently full account of what was said and done by early
contributors to allow readers to make their own assessment (although the author
does give his).

Despite its length, the article does not purport to give an encyclopaedic coverage
of the field. For instance, there is much about temporal logic (see [Gabbay et al.,
1994]) and logics of knowledge (see [Fagin et al., 1995]) that is not reported here,
while the surface of modal predicate logic is barely scratched, and proof theory
is not discussed at all. I have not attempted to survey the work of the present
younger generation of modal logicians (see [Chagrov and Zakharyaschev, 1997],
[Kracht, 1999], and [Marx and Venema, 1997], for example). There has been little
by way of historical review of work on intensional semantics over the last century,
and no doubt there remains room for more.

Several people have provided information, comments and corrections, both his-
torical and editorial. For such assistance I am grateful to Wim Blok, Max Cress-
well, John Dawson, Allen Emerson, Saul Kripke, Neil Leslie, Ed Mares, Robin
Milner, Hiroakira Ono, Amir Pnueli, Lawrence Pedersen, Vaughan Pratt, Colin
Stirling and Paul van Ulsen.

This article originally appeared as [Goldblatt, 2003c]. As well as corrections
and minor adjustments, there are two significant additions to this version. The
last part of section 6.6 has been rewritten in the light of the discovery in 2003 of a
solution of what was described in the first version as a “perplexing open question”.
This was the question of whether a logic validated by its canonical frame must be
characterised by a first-order definable class of frames. Also, a new section 7.7
has been added to describe recent work in theoretical computer science on modal
logics for “coalgebras”.

2 BEGINNINGS

2.1 What is a Modality?

Modal logic began with Aristotle’s analysis of statements containing the words
“necessary” and “possible”.1 These are but two of a wide range of modal connec-
tives, or modalities that are abundant in natural and technical languages. Briefly,
a modality is any word or phrase that can be applied to a given statement S to
create a new statement that makes an assertion about the mode of truth of S:

1For the early history of modal logic, including the work of Greek and medieval scholars, see
[Bochenski, 1961] and [Kneale and Kneale, 1962]. The Historical Introduction to [Lemmon and
Scott, 1966] gives a brief but informative sketch.
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about when, where or how S is true, or about the circumstances under which S
may be true. Here are some examples, grouped according to the subject they are
naturally associated with

tense logic: henceforth, eventually, hitherto, previously, now,
tomorrow, yesterday, since, until, inevitably, finally,
ultimately, endlessly, it will have been, it is being . . .

deontic logic: it is obligatory/forbidden/permitted/unlawful that
epistemic logic: it is known to X that, it is common knowledge that
doxastic logic: it is believed that
dynamic logic: after the program/computation/action finishes,

the program enables, throughout the computation
geometric logic: it is locally the case that
metalogic: it is valid/satisfiable/provable/consistent that

The key to understanding the relational modal semantics is that many modalities
come in dual pairs, with one of the pair having an interpretation as a universal
quantifier (“in all. . . ”) and the other as an existential quantifier (“in some. . . ”).
This is illustrated by the following interpretations, the first being famously at-
tributed to Leibniz (see section 4).

necessarily in all possible worlds
possibly in some possible world
henceforth at all future times
eventually at some future time
it is valid that in all models
it is satisfiable that in some model
after the program finishes after all terminating executions
the program enables there is a terminating execution such that

It is now common to use the symbol � for a modality of universal character, and
� for its existential dual. In systems based on classical truth-functional logic, �

is equivalent to ¬�¬, and � to ¬�¬, where ¬ is the negation connective. Thus
“necessarily” means “not possibly not”, “eventually” means “not henceforth not”,
a statement is valid when its negation is not satisfiable, etc.

Notation

Rather than trying to accommodate all the notations used for truth-functional
connectives by different authors over the years, we will fix on the symbols ∧,
∨, ¬, → and ↔ for conjunction, disjunction, negation, (material) implication,
and (material) equivalence. The symbol ⊤ is used for a constant true formula,
equivalent to any tautology, while ⊥ is a constant false formula, equivalent to ¬⊤.
We also use ⊤ and ⊥ as symbols for truth values.
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The standard syntax for propositional modal logic is based on a countably
infinite list p0, p1, . . . of propositional variables, for which we typically use the
letters p, q, r. Formulas are generated from these variables by means of the above
connectives and the symbols � and �. There are of course a number of options
about which of these to take as primitive symbols, and which to define in terms of
primitives. When describing the work of different authors we will sometimes use
their original symbols for modalities, such as M for possibly, L or N for necessarily,
and other conventions for deontic and tense logics.

The symbol �
n stands for a sequence �� · · ·� of n copies of �, and likewise

�
n for �� · · ·� (n times).
A systematic notation will also be employed for Boolean algebras: the symbols

+ , · , − denote the operations of sum (join), product (meet), and complement
in a Boolean algebra, and 0 and 1 are the greatest and least elements under the
ordering ≤ given by x ≤ y iff x · y = x. The supremum (sum) and infimum
(product) of a set X of elements will be denoted

∑
X and

∏
X (when they exist).

2.2 MacColl’s Iterated Modalities

The first substantial algebraic analysis of modalised statements was carried out
by Hugh MacColl, in a series of papers that appeared in Mind between 1880 and
1906 under the title Symbolical Reasoning,2 as well as in other papers and his book
of [1906]. MacColl symbolised the conjunction of two statements a and b by their
concatenation ab, used a+b for their disjunction, and wrote a : b for the statement
“a implies b”, which he said could be read “if a is true, then b must be true”, or
“whenever a is true, b is also true”. The equation a = b was used for the assertion
that a and b are equivalent, meaning that each implies the other. Thus a = b is
itself equivalent to the “compound implication” (a : b)(b : a), an observation that
was rendered symbolically by the equation (a = b) = (a : b)(b : a).

MacColl wrote a′ for the “denial” or “negative” of statement a, and stated that
(a′ + b)′ is equivalent to ab′. However, while a′ + b is a “necessary consequence” of
a : b (written (a : b) : a′ + b ), he argued that the two formulas are not equivalent
because their denials are not equivalent, claiming that the denial of a : b “only
asserts the possibility of the combination ab′ ”, while the denial of a′ + b “asserts
the certainty of the same combination”.3

Boole had written a = 1 and a = 0 for “a is true” and “a is false”, giving a tem-
poral reading of these as always true and always false respectively [Boole, 1854, ch.
XI]. MacColl invoked the letters ǫ and η to stand for certainty and impossibility,
initially describing them as replacements for 1 and 0, and then introduced a third
letter θ to denote a statement that was neither certain nor impossible, and hence

2A listing of these papers is given in the Bibliography of [Lewis, 1918] and on p. 132 of Church’s
bibliography in volume 1 of The Journal of Symbolic Logic. A comprehensive bibliography of
MacColl’s works is given in [Astroh and Klüwer, 1998].

3This appears to conflict with his earlier claim that the denial of a′ + b is equivalent to ab′.
“Actuality” may be a better word than “certainty” to express what he meant here (see [MacColl,
1880, p. 54].
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was “a variable (neither always true nor always false)”. He wrote the equations
(a = ǫ), (b = η) and (c = θ) to express that a is a certainty, b is an impossibility,
and c is a variable. Then he changed these to the symbols aǫ, bη, cθ, and went
on to write aτ for “a is true” and aι for “a is false”, noting that a true statement
is “not necessarily a certainty” and a false one is “not necessarily impossible”. In
these terms he stated that a : b is equivalent both to (a.b′)η (“it is impossible that
a and not b”) and to (a′ + b)ǫ (“it is certain that either not a or b”).

Once the step to this superscript notation had been taken, it was evident that
it could be repeated, giving an easy notation for iterations of modalities. MacColl
gave the example of Aηιǫǫ as “it is certain that it is certain that it is false that it is
impossible that A”, abbreviated this to “it is certain that a is certainly possible”,
and observed that

Probably no reader—at least no English reader, born and brought up in
England—can go through the full unabbreviated translation of this symbolic
statement Aηιǫǫ into ordinary speech without being forcibly reminded of
a certain nursery composition, whose ever-increasing accumulation of thats

affords such pleasure to the infantile mind; I allude, of course, to “The House
that Jack Built”. But trivial matters in appearance often supply excellent
illustrations of important general principles.4

There has been a recent revival of interest in MacColl, with a special issue of the
Nordic Journal of Philosophical Logic5 devoted to studies of his work. In par-
ticular the article [Read, 1998] analyses the principles of modal algebra proposed
by MacColl and argues that together they correspond to the modal logic T, later
developed by Feys and von Wright, that is described at the end of section 2.4
below.

2.3 The Lewis Systems

MacColl’s papers are similar in style to earlier nineteenth century logicians. They
give a descriptive account of the meanings and properties of logical operations but,
in contrast to contemporary expectations, provide neither a formal definition of
the class of formulas dealt with nor an axiomatisation of operations in the sense of
a rigorous deduction of theorems from a given set of principles (axioms) by means
of explicitly stated rules of inference. The first truly modern formal axiom systems
for modal logic are due to C. I. Lewis, who defined five different ones, S1–S5, in
Appendix II of the book Symbolic Logic [1932] that he wrote with C. H. Langford.
Lewis had begun in [1912, p. 522] with a concern that

the expositors of the algebra of logic have not always taken pains to indicate
that there is a difference between the algebraic and ordinary meanings of
implication.

4Mind (New Series), vol. 9, 1900, p. 75.
5Volume 3, number 1, December 1998, available at

http://www.hf.uio.no/filosofi/njpl/vol3no1/index.html.
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He observed that the algebraic meaning, as used in the Principia Mathematica of
Russell and Whitehead, leads to the “startling theorems” that a false proposition
implies any proposition, and a true proposition is implied by any proposition.
These so-called paradoxes of material implication take the symbolic forms

¬α→ (α→ β)
α→ (β → α).

For Lewis the ordinary meaning of “α implies β” is that β can be validly inferred6

from α, or is deducible7 from α, an interpretation that he considered was not
subject to these paradoxes. Taking “α implies β” as synonymous with “either
not-α or β”, he distinguished extensional and intensional meanings of disjunction,
providing two meanings for “implies”. Extensional disjunction is the usual truth-
functional “or”, which gives the material (algebraic) implication synonymous with
“it is false that α is true and β is false”. Intensional disjunction

is such that at least one of the disjoined propositions is “necessarily”
true.8

That reading gives Lewis’ “ordinary” implication, which he also dubbed “strict”,
meaning that “it is impossible (or logically inconceivable9) that α is true and β is
false”.

The system of Lewis’s book A Survey of Symbolic Logic [1918] used a primitive
impossibility operator to define strict implication. This later became the system
S3 of [Lewis and Langford, 1932], which introduced instead the symbol � for
possibility, but Lewis decided that he wished S2 to be regarded as the correct
system for strict implication. The systems were defined with negation, conjunction,
and possibility as their primitive connectives, but he made no use of a symbol for
the dual combination ¬�¬.10 For strict implication the symbol 3 was used,
with α 3β being a definitional abbreviation for ¬�(α ∧ ¬β). Strict equivalence
(α = β) was defined as (α 3β) ∧ (β 3α).

Here now are definitions of S1–S5 in Lewis’s style, presented both to facili-
tate discussion of later developments and to convey some of the character of his

6[Lewis, 1912, p. 527]
7[Lewis and Langford, 1932, p. 122]
8[Lewis, 1912, p. 523]
9[Lewis and Langford, 1932, p. 161]

10The dual symbol � was later devised by F. B. Fitch and first appeared in print in 1946 in a
paper of R. Barcan. See footnote 425 of [Hughes and Cresswell, 1968, fn. 425].
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approach. System S1 has the axioms11

(p ∧ q) 3 (q ∧ p)
(p ∧ q) 3 p
p 3 (p ∧ p)
((p ∧ q) ∧ r) 3 (p ∧ (q ∧ r))
((p 3 q) ∧ (q 3 r)) 3 (p 3 r)
(p ∧ (p 3 q)) 3 q,

where p, q, r are propositional variables, and the following rules of inference.

• Uniform substitution of formulas for propositional variables.

• Substitution of strict equivalents: from (α = β) and γ infer any formula
obtained from γ by substituting β for some occurrence(s) of α.

• Adjunction: from α and β infer α ∧ β.

• Strict detachment : from α and α 3β infer β.12

System S2 is obtained by adding the axiom �(p ∧ q) 3 �p to the basis for S1.
S3 is S1 plus the axiom (p 3 q) 3 (¬�q 3¬�p). S4 is S1 plus ��p 3 �p, or
equivalently �p 3 ��p. S5 is S1 plus �p 3 ��p.

The axioms for S4 and S5 were first proposed for consideration as further pos-
tulates in a paper of Oskar Becker [1930]. His motivation was to find axioms
that reduced the number of logically non-equivalent combinations that could be
formed from the connectives “not” and “impossible”. He also considered the for-
mula p 3¬�¬�p, and called it the “Brouwersche axiom”. The connection with
Brouwer is remote: if “not” is translated to “impossible” (¬�), and “implies” to
its strict version, then the intuitionistically acceptable principle p→ ¬¬p becomes
the Brouwersche axiom.

2.4 Gödel on Provability as a Modality

Gödel in [1931] reviewed Becker’s 1930 article. In reference to Becker’s discussion
of connections between modal logic and intuitionistic logic he wrote

It seems doubtful, however, that the steps here taken to deal with this prob-
lem on a formal plane will lead to success.

He subsequently took up this problem himself with great success, and at the same
time simplified the way that modal logics are presented. The Lewis systems contain
all truth-functional tautologies as theorems, but it requires an extensive analysis

11Originally p 3¬¬p was included as an axiom, but this was shown to be redundant by
McKinsey in 1934.

12Lewis used the name “Inference” for the rule of strict detachment. He also used “assert”
rather than “infer” in these rules.
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to demonstrate this.13 Such effort would be unnecessary if the systems were de-
fined by directly extending a basis for the standard propositional calculus. That
approach was first used in the note “An interpretation of the intuitionistic propo-
sitional calculus” [Gödel, 1933], published in the proceedings of Karl Menger’s
mathematical colloquium at the University of Vienna for 1931–1932. Gödel for-
malised assertions of provability by a propositional connective B (from “beweis-
bar”), reading Bα as “α is provable”. He defined a system which has, in addition
to the axioms and rules of ordinary propositional calculus, the axioms

Bp→ p,
Bp→ (B(p→ q) → Bq),
Bp→ BBp,

and the inference rule: from α infer Bα. He stated that this system is equivalent
to Lewis’ S4 when Bα is translated as �α.14 Then he gave the following two
translations of propositional formulas

p p
¬α ¬Bα

α→ β Bα→ Bβ
α ∨ β Bα ∨Bβ
α ∧ β α ∧ β

p p
¬α B¬Bα

α→ β Bα→ Bβ
α ∨ β Bα ∨Bβ
α ∧ β Bα ∧Bβ

and asserted that in each case the translation of any theorem of Heyting’s intuition-
istic propositional calculus 15 is derivable in his system, adding that “presumably”
the converse is true as well. He also asserted that the translation of p ∨ ¬p is not
derivable, and that a formula of the form Bα ∨ Bβ is derivable only when one of
Bα and Bβ is derivable. Proofs of these claims first appeared in [McKinsey and
Tarski, 1948], as is discussed further in section 3.2.

Those familiar with later developments will recognise the pregnancy of this brief
note of scarcely more than a page. Its translations provided an important connec-
tion between intuitionistic and modal logic that contributed to the development
both of topological interpretations and of Kripke semantics for intuitionistic logic.
Its ideas also formed the precursor to the substantial branch of modal logic con-
cerned with the modality “it is provable in Peano arithmetic that”. We will return
to these matters below (see §3.2, 7.5, 7.6).

It is now standard practice to present modal logics in the axiomatic style of
Gödel. The notion of a logic refers to any set Λ of formulas that includes all
truth-functional tautologies and is closed under the rules of uniform substitution
for variables and detachment for material implication. The formulas belonging to
Λ are the Λ-theorems, and are also said to be Λ-provable. A logic is called normal

13See [Hughes and Cresswell, 1968, pp. 218–223]
14More precisely, he stated that it is equivalent to Lewis’s System of Strict Implication sup-

plemented by Becker’s axiom �p 3 ��p. It is unlikely that he was aware of the name “S4” at
that time.

15Heyting published this calculus in 1930.
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if it includes Gödel’s second axiom, which is usually presented (with � in place of
B) as

�(p→ q) → (�p→ �q),

and has the rule of Necessitation: from α infer �α. S5 can be defined as the
normal logic obtained by adding the axiom p → ��p to Gödel’s axiomatisation
of S4. Following [Becker, 1930], p → ��p is called the Brouwerian axiom. The
smallest normal logic is commonly called K, in honour of Kripke. The normal
logic obtained by adding the first Gödel axiom �p→ p to K is known as T. That
system was first defined by Feys16 in 1937 by dropping Gödel’s third axiom from
S4. T is equivalent to the system M of [von Wright, 1951]. TheBrouwerian System
B is the normal logic obtained by adding the Brouwerian axiom to T.

The first formulation of the non-normal systems S1–S3 in the Gödel style was
made in [Lemmon, 1957], which also introduced a series of systems E1–E5 designed
to be “epistemic” counterparts to S1–S5. These systems have no theorems of the
form �α, and in place of Necessitation they have the rule from α→ β infer �α→
�β. Lemmon suggests that they capture the reading of � as “it is scientifically
but not logically necessary that”.

3 MODAL ALGEBRAS

Modern propositional logic began as algebra, in the thought of Boole. We have
seen that the same was true for modern modal logic, in the thought of MacColl.
By the time that the Lewis systems appeared, algebra was well-established as
a postulational science, and the study of the very notion of an abstract algebra
was being pursued [Birkhoff, 1933; 1935]. Over the next few years, algebraic
techniques were applied to the study of modal systems, using modal algebras:
Boolean algebras with an additional operation to interpret �. During the same
period, representation theories for various lattices with operators were developed,
beginning with the Stone representation of Boolean algebras [1936], and these were
to have a significant impact on semantical studies of modal logic.

3.1 McKinsey and the Finite Model Property

J. C. C. McKinsey in [1941] showed that there is an algorithm for deciding whether
any given formula is a theorem of S2, and likewise for S4. His method was to
show that if a formula is not a theorem of the logic, then it is falsified by some
finite model which satisfies the logic. This property was dubbed the finite model
property by Ronald Harrop [1958], who proved the general result that any finitely
axiomatisable propositional logic Λ with the finite model property is decidable.
The gist of Harrop’s argument was that finite axiomatisability guarantees that Λ
is effectively enumerable, while the two properties together guarantee the same for
the complement of Λ. By enumerating the finite models and the formulas, and at

16Who called it “t”.
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the same time systematically testing formulas for satisfaction by these models, a
list can be effectively generated of those formulas that are falsifed by some finite
model which satisfies the axioms of Λ. By the finite model property this is just a
listing of all the non-theorems of Λ.

McKinsey actually showed something stronger: the size of a falsifying model for
a non-theorem α is bounded above by a number that depends computably on the
size of α. Thus to decide if α is a theorem it suffices to generate all finite models
up to a prescribed bound. However this did not yield a feasible algorithm: the
proof for S2 gave an upper bound of 22n+1

, doubly exponential in the number n
of subformulas of α.

McKinsey’s construction is worth outlining, since it was an important innova-
tion that has been adapted numerous times to other propositional logics (as he
suggested it might be), and has been generalised to other contexts, as we shall
see. He used models of the form (K,D, − , ∗ , ·), called matrices, where − , ∗ , ·

are operations on a set K for evaluating the connectives ¬, �, and ∧, while D is
a set of designated elements of K. A formula α is satisfied by such a matrix if
every assignment of elements of K to the variables of α results in α being evalu-
ated to a member of the subset D. These structures abstract from the tables of
values, with designated elements, used to define propositional logics and prove the
independence of axioms. Their use as a general method for constructing logical
systems is due to Alfred Tarski.17

A logic is characterised by a matrix if the matrix satisfies the theorems of the
logic and no other formulas. Structures of this kind had been developed for S2 by
E. V. Huntington [1937], who gave the concrete example of K being the class of
“propositions” and D the subclass of those that are “asserted” or “demonstrable”,
describing this subclass as “corresponding roughly to the Frege assertion sign”.

A matrix is normal if

x, y ∈ D implies x · y ∈ D,
x, (x⇒ y) ∈ D implies y ∈ D,

(x⇔ y) ∈ D implies x = y,

where (x⇒ y) = −∗(x · .− y) and (x⇔ y) = (x⇒ y) · (y ⇒ x) are the operations
interpreting strict implication and strict equivalence in K. These closure condi-
tions on D are intended to correspond to Lewis’ deduction rules of adjunction,
strict detachment, and substitution of strict equivalents. In a normal S2-matrix,
(K, − , ·) is a Boolean algebra in which D is a filter. Hence the greatest ele-
ment 1 is always designated. McKinsey showed that there exists an infinite18

normal matrix that characterises S2, using what he described as an unpublished
method due to Lindenbaum that was explained to him by Tarski and which applies
to any propositional calculus that has the rule of uniform substitution for vari-
ables. Taking (K, − , ∗ , ·) as the algebra of formulas, with −α = ¬α, ∗a = �α

17The historical origins of the “matrix method” are described in [�Lukasiewicz and Tarski, 1930].
See footnotes on pages 40 and 43 of the English translation of this article in [Tarski, 1956].

18Dugundji [1940] had proved that none of S1–S5 has a finite characteristic matrix.
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and α · β = α ∧ β, and with D as the set of S2-theorems, gives a characteristic
S2-matrix which satisfies all but the last normality condition on D. Since that
condition is needed to make the matrix into a Boolean algebra, it is imposed by
identifying formulas α, β whenever (α ⇔ β) ∈ D. The resulting quotient matrix
is the one desired, and is what is now widely known as the Lindenbaum algebra of
the logic. Its designated elements are the equivalence classes of the theorems.

Now if α is a formula that not an S2-theorem, then there is some evaluation
in this Lindenbaum algebra that fails to satisfy α. Let x1, . . . , xn be the values
of all the subformulas of α in this evaluation, and let K1 be the Boolean subalge-
bra generated by the n + 1 elements x1, . . . , xn,

∗0. Then K1 has at most 22n+1

members. Define an element of K1 to be designated iff it was designated in the
ambient Lindenbaum algebra. McKinsey showed how to define an operation ∗

1 on
K1 such that ∗

1 x = ∗x whenever x and ∗x are both in K1:

∗
1 x =

∏
{∗y ∈ K1 : x ≤ y ∈ K1}.

The upshot was to turn K1 into a finite S2-matrix in which the original falsifying
evaluation of α can be reproduced.

This same construction shows that S4 has the finite model property, with the
minor simplification that the element ∗0 does not have to be worried about, since
∗0 = 0 in any normal S4-matrix (so the computable upper bound becomes 22n

).
The Lindenbaum algebra for S4 has only its greatest element designated, i.e.
D={1}, because (α 3β)∧(β 3α) is an S4-theorem whenever α and β are, putting
all theorems into the same equivalence class. This is a fact that applies to any
logic that has the rule of Necessitation, and it allows algebraic models for normal
logics to be confined to those that just designate 1.

3.2 Topology for S4

Topological interpretations of modalities were given in a paper of Tang Tsao-
Chen [1938], which proposed that “the algebraic postulates for the Lewis calculus
of strict implication” be the axioms for a Boolean algebra with an additional
operation x∞ having x∞

· x = x∞ and (x · y)∞ = x∞
· y∞. The symbol � was

used for the dual operation �x = −(−x)∞. The notation ⊢ x was defined to mean
that 1∞ ≤ x, and it was shown that ⊢ x holds whenever x is any evaluation of
a theorem of S2. In effect this says that putting D = {x : 1∞ ≤ x} turns one of
these algebras into an S2-matrix. In fact if 1∞ = 1, or equivalently �0 = 0, it also
satisfies S4. But S4 was not mentioned in this paper.

A “geometric” meaning was proposed for the new operations by taking x∞ to be
the interior of a subset x of the Euclidean plane, in which case �x is the topological
closure of x, i.e. the smallest closed superset of x. If the greatest element 1 of the
algebra is the whole plane, or any open set, then in that case 1∞ = 1, but it is
evident that Tang did not intend this, since the paper has a footnote explaining
that another geometric meaning of x∞ can be obtained by letting 1∞ be some
subset of the plane, possibly even a one-element subset, and defining x∞ to be



12 Robert Goldblatt

x · 1∞. (This construction could be carried out in any Boolean algebra by fixing
1∞ arbitrarily.) It appears then that the best way to understand Tang’s first
geometric meaning is that the ambient Boolean algebra should be the powerset
algebra P(S) of all subsets of some subset S of the Euclidean plane, with “interior”
and “closure” being taken in the subspace topology on S.

Now a well-known method, due to Kuratowski, for defining a topology on an
arbitrary set S is to give a closure operation X → CX on subsets X of S, i.e.
an operation satisfying C∅ = ∅, C(X ∪ Y ) = CX ∪ CY and X ⊆ CX = CCX.
Then a set X is closed iff CX = X, and open iff its complement in S is closed.
Any topological space can be presented in this way, with CX being the topological
closure of X.

McKinsey and Tarski in [1944] undertook an abstract algebraic study of closure
operations by defining a closure algebra to be any Boolean algebra with a unary
operation C satisfying Kuratowski’s axioms. The operation ∗ on an S4-matrix
satisfies these axioms, and McKinsey had shown in his work [1941] on S4 that any
finite normal S4-matrix can be represented as the closure algebra of all subsets
of some topological space, using the representation of a finite Boolean algebra as
the powerset algebra of its set of atoms. McKinsey and Tarski now extended this
representation to arbitrary closure algebras. Combining the Stone representation
of Boolean algebras with the idea of the ∗

1-operation from McKinsey’s finite model
construction they showed that any closure algebra is isomorphic to a subalgebra
of the closure algebra of subsets of some topological space. They gave a deep
algebraic analysis of the class of closure algebras, including such results as the
following.

1. The closure algebra of any zero-dimensional dense-in-itself subspace of a
Euclidean space (e.g. Cantor’s discontinuum or the space of points with
rational coordinates) includes isomorphic copies of all finite closure algebras
as subalgebras.

2. Every finite closure algebra is isomorphic embeddable into the closure algebra
of subsets of some open subset of Euclidean space.

3. An equation that is satisfied by the closure algebra of any Euclidean space
is satisfied by every closure algebra.

4. An equation that is satisfied by all finite closure algebras is satisfied by every
closure algebra (this is an analogue of McKinsey’s finite model property for
S4).

5. If an equation of the form Cσ · Cτ = 0 is satisfied by all closure algebras,
then so is one of the equations σ = 0 and τ = 0.

The proof of result (5) involved taking the direct product of two closure algebras
that each reject one of the equations σ = 0 and τ = 0, and then embedding this
direct product into another closure algebra that is well-connected, meaning that if
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x and y are non-zero elements, then Cx · Cy �= 0. The result itself is equivalent to
the assertion that if the equation Iσ + Iτ = 1 is satisfied by all closure algebras,
then so is one of the equations σ = 1 and τ = 1, where I = −C− is the abstract
interior operator dual to C. This is an algebraic version of one of the facts about
S4 stated in [Gödel, 1933] (see later in this section).

In a sequel article [1946], McKinsey and Tarski studied the algebra of closed (i.e.
Cx = x) elements of a closure algebra. These form a sublattice with operations
x . y = C(x·−y) and ⊖x = 1 . x = C−x. An axiomatisation of these algebras was
given in the form of an equational definition of certain Brouwerian algebras of the
type (K, + , · , . , 1), and a proof that every Brouwerian algebra is isomorphic to
a subalgebra of the Brouwerian algebra of closed sets of some topological space.
Results were proven for Brouwerian algebras that are analogous to results (1)–(5)
above for closure algebras, with the analogue of (5) being:

1. If the equation σ · τ = 0 is satisfied by all Brouwerian algebras, then so is
one of the equations σ = 0 and τ = 0.

Brouwerian algebras are so named because they provide models of the intuitionistic
propositional calculus IPC. This works in a way that is dual to the method that has
been described for evaluating modal formulas, in that 0 is the unique designated
element; ∧ is interpreted as the lattice sum/join operation + ; ∨ is interpreted as
lattice product/meet · ;→ is interpreted as the operation÷ defined by x÷y = y . x;
and ¬ is interpreted as the unary operation x÷ 1 = ⊖x.

The algebra of open (i.e. Ix = x) elements of a closure algebra also form a
sublattice that is a model of intuitionistic logic. It relates more naturally to the
Boolean semantics in that 1 is designated and ∧ and ∨ are interpreted as · and
+. Implication is interpreted by the operation x ⇒ y = I(−x + y) = −C(x · −y)
and negation by −x = x ⇒ 0 = I−x. This topological interpretation had been
developed in the mid-1930’s by Tarski [1938] and Marshall Stone [1937–1938] who
independently observed that the lattice O(S) of open subsets of a topological space
S is a model of IPC under the operations just described. Tarski took this further
to identify a large class of spaces, including all Euclidean spaces, for which O(S)
exactly characterises IPC.

The abstract algebras (K, + , · , ⇒ , 0) that can be isomorphically embedded
into ones of the type O(S) form an equationally defined class. They are commonly
known as Heyting algebras, or pseudo-Boolean algebras. The relationship between
Brouwerian and Heyting algebras as models is further clarified by the description
of Kripke’s semantics for IPC given in section 7.6.

McKinsey and Tarski applied their work on the algebra of topology to S4 and
intuitionistic logic in their paper [1948], which uses closure algebras with just one
designated to model S4, and Brouwerian algebras in the manner just explained
to model Heyting’s calculus. Using various of the results (1)–(4) above, it follows
that S4 is characterised by the class of (finite) closure algebras, as well as the
closure algebra of any Euclidean space, or of any zero-dimensional dense-in-itself
subspace of Euclidean space. Hence in view of result (5), the claim of [Gödel,
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1933] follows: if �α ∨ �β is an S4-theorem, then so is one of α and β, therefore
so is one of �α and �β by the rule of Necessitation. Similarly, result (6) gives a
proof of the disjunction property for IPC: if α∨β is a theorem, then so is one of α
and β. The final section of the paper uses the relationships between Brouwerian
and closure algebras to verify the correctness of the two translations of IPC into
S4 conjectured in Godël’s paper, and introduced a new one:

p �p
¬α �¬α

α→ β �(α→ β) (i.e. α 3β)
α ∨ β α ∨ β
α ∧ β α ∧ β.

It is this translation that inspired Kripke [1965a] to derive his semantics for intu-
itionistic logic from his model theory for S4 (see section 7.6).

Another significant result of the 1948 paper is that S5 is characterised by the
class of all closure algebras in which each closed element is also open. Structures
of this kind were later dubbed monadic algebras by Halmos in his study of the
algebraic properties of quantifiers [Halmos, 1962]. The connection is natural: the
modalities � and � have the same formal properties in S5 as do the quantifiers
∀ and ∃ in classical logic. The polyadic algebras of Halmos and the cylindric
algebras of Tarski and his co-researchers [Henkin et al., 1971] have a family of
pairwise commuting closure operators for which each closed element is open.

Any Boolean algebra can be made into a monadic algebra by defining C0 = 0
and otherwise Cx = 1. These are the simple19 monadic algebras. Let An be
the simple monadic algebra defined on the finite Boolean algebra with n atoms,
viewed as a matrix with only 1 designated. Then S5 is characterised by the set of
all these An’s. This was shown by Schiller Joe Scroggs in his [1951], written as a
Masters thesis under McKinsey’s direction, whose analysis established that every
finite monadic algebra is a direct product of An’s. Scroggs used this to prove that
each proper extension of S5 is equal to the logic characterised by some An, and
so has a finite characteristic matrix. By “extension” here is meant any logic that
includes all S5-theorems and is closed under the rules of uniform substitution for
variables and detachment for material implication. Scroggs was able to show from
this characterisation that any such extension of S5 is closed under the Necessitation
rule as well, and so is a normal logic.

Another notable paper on S5 algebras from this era is [Davis, 1954], based on a
1950 doctoral thesis supervised by Garrett Birkhoff. This describes the correspon-
dence between equivalence relations on a set and S5 operations on its powerset
Boolean algebra; a correspondence between algebras with two S5 operations and
the projective algebras of Everett and Ulam [1946]; and the use of several S5
operators to provide a Boolean model of features of first-order logic.

19In the technical algebraic sense of having no non-trivial congruences.
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3.3 BAO’s: The Theory of Jónsson and Tarski

The notion of a Boolean algebra with operators (BAO) was introduced by Jónsson
and Tarski in their abstract [1948], with the details of their announced results being
presented in [1951]. That work contains representations of algebras that could
immediately have been applied to give new characterisations of modal systems.
But the paper was overlooked by modal logicians, who were still publishing re-
discoveries of some of its results fifteen years later.

A unary function f on a Boolean algebra is an operator if it is additive, i.e.
f(x + y) = f(x) + f(y). f is completely additive if f(

∑
X) =

∑
f(X) whenever∑

X exists, and is normal if f(0) = 0. A function of more than one argument
is an operator/is completely additive/is normal when it is has the corresponding
property separately in each argument. A BAO is an algebra A = (B, fi : i ∈ I),
where the fi’s are all operators on the Boolean algebra B.

The Extension Theorem of Jónsson and Tarski showed that any BAO A can be
embedded isomorphically into a complete and atomic BAO Aσ which they called a
perfect extension of A. The construction built on Stone’s embedding of a Boolean
algebra B into a complete and atomic one Bσ, with each operator fi of A being
extended to an operator fσ

i on Bσ that is completely additive, and is normal if fi

is normal. The notion of perfect extension was defined by three properties that
determine Aσ uniquely up to a unique isomorphism over A and give an algebraic
characterisation of the structures that arise from Stone’s topological representation
theory. These properties can be stated as follows.

(i) For any distinct atoms x, y of Aσ there exists an element a of A with x ≤ a
and y ≤ −a.

(ii) If a subset X of A has
∑

X = 1 in Aσ, then some finite subset X0 of X has∑
X0 = 1.

(iii) fσ
i (x) =

∏
{fi(y) : x ≤ y ∈ An} when fi is n-ary and the terms of the

n-tuple x are atoms or 0.

Property (i) corresponds to the Hausdorff separation property of the Stone space
of B, while (ii) is an algebraic formulation of the compactness of that space. The
meaning of (iii) will be explained below.

Jónsson and Tarski showed that any equation satisfied by A will also be satisfied
by Aσ if it does not involve Boolean complementation (i.e. refers only to +, ·, 0, 1
and the operators fi). More generally, perfect extensions were shown to preserve
any implication of the form (t = 0 → u = v) whose terms t, u, v do not involve
complementation. They then established a fundamental representation of normal
n-ary operators in terms of n+ 1-ary relations. This was based on a bijective cor-
respondence between normal completely additive n-ary operators f on a powerset
Boolean algebra P(S) and n + 1-ary relations Rf ⊆ Sn+1. Here

Rf (x0, . . . , xn−1, y) iff y ∈ f({x0}, . . . , {xn−1}).
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Under this bijection an arbitrary R ⊆ Sn+1 corresponds to the n-ary operator fR

on P(S), where

y ∈ fR(X0, . . . , Xn−1) iff R(x0, . . . , xn−1, y) for some elements xi ∈ Xi.

Thus any relational structure S = (S,Ri : i ∈ I) whatsoever gives rise to the
complete atomic BAO

CmS = (P(S), fRi
: i ∈ I)

of all subsets of S with the completely additive normal operators fRi
. Conversely,

any complete and atomic BAO whose operators are normal and completely additive
was shown to be isomorphic to CmS for some structure S [1951, theorem 3.9]. This
representation is relevant to an understanding of the incompleteness phenomenon
to be discussed later in section 6.1. When applied to the perfect extension Aσ of
a BAO A, it can be seen as defining a relational structure on the Stone space of
A. This is now known as the canonical structure of A, denoted CstA, and its role
will be explained further in section 6.5. The above property (iii) expresses the fact
that in CstA, if R is the relation corresponding to some n-ary operator fσ

i , then
for each point y the set

{〈x0, . . . , xn−1〉 : R(x0, . . . , xn−1, y)}

is closed in the n-fold product of the Stone space topology.
CmS is the complex algebra of S, and any subalgebra of CmS is a complex

algebra. This terminology derives from an old usage of the word “complex” intro-
duced into group theory by Frobenius in the (pre-set-theoretic) 1880’s to mean a
collection of elements in a group. The binary product

HK = {hk : h ∈ H and k ∈ K}

of subsets (complexes) H,K of a group G is precisely the operator fR on P(G)
corresponding to the ternary graph R = {(h, k, hk) : h, k ∈ G} of the group
operation.

Combining the Extension Theorem with the representation of a complete atomic
algebra (like Aσ) as one of the form CmS, Jónsson and Tarski established that

every BAO with normal operators is isomorphic to a subalgebra of the
complex algebra of a relational structure.

The case n = 1 of this analysis of operators is highly germane to modal logic:
the algebraic semantics discussed so far has been based on interpreting � as an
operator on a Boolean algebra, and a normal one in the case of S4 and S5. Jónsson
and Tarski observed that basic properties of a binary relation R ⊆ S2 correspond
to simple equational properties of the operator fR. Thus R is reflexive iff the
BAO (P(S), fR) satisfies x ≤ fx, and transitive iff it satisfies ffx ≤ x. Hence
Cm(S,R) is a closure algebra iff R is reflexive and transitive, i.e. a quasi-ordering.
Since these conditions x ≤ fx and ffx ≤ x are preserved by perfect extensions,
it followed [1951, Theorem 3.14] that
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every closure algebra is isomorphic to a subalgebra of the complex al-
gebra of a quasi-ordered set.

This result, along with the Extension Theorem and the representation of a normal
BAO as a complex algebra, were all stated in the abstract [1948].

A number of other properties of R were discussed in [1951], including symme-
try . This was shown to be characterised by self-conjugacy of fR, meaning that
Cm(S,R) satisfies the condition f(x)·y = 0 iff x·f(y) = 0, which can be expressed
equationally, for example by f0 = 0 and fx · y ≤ f(x · fy). The characterisation
was used to give a representation of certain two-dimensional cylindric algebras as
complex algebras over a pair of equivalence relations. Self-conjugacy of an operator
is also equivalent to the equation x · f−fx = 0, corresponding to the Brouwerian
modal axiom p → ��p. In closure algebras this is equivalent to every closed ele-
ment being open: a self-conjugate closure algebra is the same thing as a monadic
algebra.

As already mentioned, this study of BAO’s was later overlooked. [Dummett
and Lemmon, 1959] makes extensive use of complex algebras over quasi-orderings
in studying extensions of S4, but makes no mention of the Jónsson–Tarski article,
taking its lead instead from the McKinsey–Tarski papers and a construction in
[Birkhoff, 1948] that gives a correspondence between partial orderings (i.e. anti-
symmetric quasi-orderings) and closure operations of certain topologies on a set.
The same omission occurs in [Lemmon, 1966b], which re-proves the representation
of a unary operator on a Boolean algebra as a complex algebra over a binary rela-
tion, although it does extend the result by allowing the operator to be non-normal
(see section 5.1).

3.4 Could Tarski Have Invented Kripke Semantics?

A question like this can only remain a matter of speculation. But it is not just idle
speculation, given that Tarski had worked on modal logic during the same period,
and given his pioneering role in the development of model theory, including the
formalisation of the notions of truth and satisfaction in relational structures.

The Jónsson–Tarski work on closure algebras applies directly to the McKinsey–
Tarski results on modal logic to show that S4 is characterised by the class of
complex algebras of quasi-orderings. It can also be applied to show that S5 is
characterised by the class of complex algebras of equivalence relations. Now the
complex algebra of an equivalence relation R is a subdirect product of the com-
plex algebras of the equivalence classes of R, each of which is a set on which R
is universal. Moreover, the complex algebra of a universal relation is a simple
monadic algebra. These observations could have been used to give a more acces-
sible approach to the structural analysis of S5-algebras that appears in [Scroggs,
1951].

But the Jónsson–Tarski paper makes no mention of modal logic at all. Jónsson
[1993] has explained that their theory evolved from Tarski’s research on the algebra
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of binary relations, beginning with the finite axiom system in [Tarski, 1941] which
was designed to formalise the calculus of binary relations that had been developed
in the nineteenth century by De Morgan, Peirce and Schröder. The primitive
notions of that paper were those of Boolean algebra together with the binary
operation R1;R2 of relational composition, the unary operation R˘ of inversion,
and the distinguished constant 1’ for the identity relation. Tarski asked whether
any model of his axiom was representable as an algebra of actual binary relations.
He later gave an equational definition of a relation algebra as an abstract BAO
(B, ; , ,̆ 1’ ) that forms an involuted monoid under ; , ,̆ 1’ and satifies the condition
x ;̆−(x; y) ≤ −y. Concrete examples include the set P(S×S) of all binary relations
on a set S and, more generally, the set P(E) of subrelations of an equivalence
relation E on S. Any algebra isomorphic to a subalgebra of the normal BAO
(P(E), ; , ,̆ 1’ ) is called representable, and Tarski’s representation question became
the problem of whether every abstract relation algebra is representable in this
sense.20

Late in 1946 Tarski communicated to Jónsson a proof that every relation algebra
is embeddable in a complete and atomic one. That construction became the pro-
totype for the Jónsson–Tarski Extension Theorem for BAO’s (see [Jónsson, 1993,
§1.2]). The second part of their joint work [1952] is entirely devoted to relation
algebras and their representations.

It appears then that in developing his ideas on BAO’s Tarski was coming from
a different direction: modal logic was not on the agenda. According to [Copeland,
1996b, p. 13], Tarski told Kripke in 1962 that he was unable to see a connection
with what Kripke was then doing.

4 RELATIONAL SEMANTICS

Leibniz had a good deal to say about possible worlds, including that the actual
world is the best of all of them. Apparently he never literally described necessary
truths as being “true in all possible worlds”, but he did say of them that

Not only will they hold as long as the world exists, but also they would have
held if God had created the world according to a different plan.

He defined a truth as being necessary when its opposite implies a contradiction, and
also said that there are as many worlds as there are things that can be conceived
without contradiction (see [Mates, 1986, pp. 72–73, 106–107]).

This way of speaking has provided the motivation and intuitive explanation
for a mathematical semantics of modality using relational structures that are now
often called Kripke models. A formula is assigned a truth-value relative to each
point of a model, and these points are thought of as being possible worlds or states
of affairs.

20This was answered negatively by Lyndon [1950]. Work of Tarski, Monk and Jónsson eventu-
ally showed that the representable relation algebras form an equational class that is not finitely
axiomatisable, with any equational definition of it requiring infinitely many variables.
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An account will now be given of the contribution of Saul Kripke, followed by a
survey of some of its “anticipations”.

4.1 Kripke’s Relatively Possible Worlds

Kripke’s first paper [1959a] on modal logic gave a semantics for a quantificational
version of S5 that included propositional variables as the case n = 0 of n-ary
predicate variables. A complete assignment for a formula α in a non-empty set D
was defined to be any function that assigns an element of D to each free individual
variable in α, a subset of Dn to each n-ary predicate variable occurring in α, and a
truth-value (⊤ or ⊥) to each propositional variable of α. A model of α in D is a pair
(G,K), where K is a set of complete assignments that all agree on their treatment
of the free individual variables of α, and G is an element of K. Each member H
of K assigns a truth value to each subformula of α, by induction on the rules of
formation for formulas. The truth-functional connectives and the quantifiers ∀, ∃
behave as in standard predicate logic, and the key clause for modality is that

H assigns ⊤ to �β iff every member of K assigns ⊤ to β.

A formula α is true21 in a model (G,K) over D iff it is assigned ⊤ by G; valid over
D iff true in all of its models in D; and universally valid iff valid in all non-empty
sets D.

An axiomatisation of the class of universally valid formulas was given, with
the completeness proof employing the method of semantic tableaux introduced in
[Beth, 1955]. It was then observed that for purely propositional logic this could
be turned into a truth table semantics. A complete assignment becomes just an
assignment of truth values to the variables in α, i.e. a row of a truth table, and
a model (G,K) is just a classical truth table with some (but not all) of the rows
omitted and G some designated row. Formula �β is assigned ⊤ in every row
if β is assigned ⊤ in every row of the table; otherwise it is assigned ⊥ in every
row. The resulting notion of “S5-tautology” precisely characterises the theorems
of propositional S5, a result that Kripke had in fact obtained first, before, as he
explained in [1959a, fn. 4],

aquaintance with Beth’s paper led me to generalize the truth tables to se-
mantic tableaux and a completeness theorem.

Kripke’s informal motivation for these models was that the assignment G rep-
resents the “real” or “actual” world, and the other members of K represent worlds
that are “conceivable but not actual”. Thus �β is “evaluated as true when and
only when β holds in all conceivable worlds”. The lack of any further structure
on K reflects the assumption that “any combination of possible worlds may be
associated with the real world”.

The abstract [Kripke, 1959b] announced the availability of “appropriate model
theory” and completeness theorems for a raft of modal systems, including S2–S5,

21Actually “valid in a model” was used here, but changed to “true” in [Kripke, 1963a].
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the Feys–von Wright system T (or M), Lemmon’s E-systems, systems with the
Brouwerian axiom, deontic systems, and others. Various extensions to quantifi-
cational logic with identity were described, and it was stated that “the methods
for S4 yields a semantical apparatus for Heyting’s system which simplifies that
of Beth”. The details of this programme appeared in the papers [1963a; 1963b;
1965a; 1965b].

The normal propositional logics S4, S5, T and B are the main focus of [Kripke,
1963a], which defines a normal model structure as a triple (G,K,R) with G ∈ K
and R a reflexive binary relation on K. A model for a propositional formula α on
this structure is a function Φ(p,H) taking values in {⊤,⊥}, with p ranging over
variables in α and H ranging over K. This is extended to assign a truth value
Φ(β,H) to each subformula β of α and each H ∈ K, with

Φ(�β,H) = ⊤ iff Φ(β,H ′) = ⊤ for all H ′ ∈ K such that HRH ′.

α is true in the model if Φ(α,G) = ⊤.
In addition to the introduction of the relation R, the other crucial conceptual

advance here is that the set K of “possible worlds” is no longer a collection of
value assignments, but is permitted to be an arbitrary set. This allows that there
can be different worlds that assign the same truth values to atomic formulas. As
to the relation R, Kripke’s intuitive explanation is as follows [1963a, p. 70]:

we read “H1RH2” as H2 is “possible relative to H1”, “possible in H1” or
“related to H1”; that is to say, every proposition true in H2 is to be possible
in H1. Thus the “absolute” notion of possible world in [1959a] (where every
world was possible relative to every other) gives way to relative notion, of
one world being possible relative to another. It is clear that every world H

is possible relative to itself; for this simply says that every proposition true

in H is possible in H. In accordance with this modified view of “possible
worlds” we evaluate a formula A as necessary in a world H1 if it is true in
every world possible relative to H1. . . . Dually, A is possible in H1 iff there
exists H2, possible relative to H1, in which A is true.

Semantic tableaux methods are again used to prove completeness theorems: a
formula is true in all models iff it is a theorem of T; true in all transitive models
iff it is an S4-theorem, true in all symmetric models iff a B-theorem, and true in
all transitive and symmetric models iff an S5-theorem. The arguments also give
decision procedures, and show that attention can be restricted to models that are
connected in the sense that each H ∈ K has GR∗H, where R∗ is the ancestral or
reflexive-transitive closure of R. Kripke notes that

in a connected model in which R is an equivalence relation, any two worlds
are related. This accounts for the adequacy, for S5, of the model theory of
[1959a].

An illustration of the tractability of the new model theory is given by a new proof
of the deduction rule in S4 that if �α ∨ �β is deducible then so is one of α and
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β. If neither α nor β is derivable then each has a falsifying S4-model. Take the
disjoint union of these two models and add a new “real” world that is R-related to
everything. The result is an S4-model falsifying �α∨�β. This argument is much
easier to follow than the McKinsey–Tarski construction involving well-connected
algebras described in section 3.2., and it adapts readily to other systems.

Other topics discussed include the presentation of models in “tree-like” form,
and the association with each model structure of a matrix, essentially the modal
algebra of all functions ρ : K → {⊤,⊥}, which are called propositions, with the
ones having ρ(G) = ⊤ being designated. A model can then be viewed as a device
for associating a proposition H → Φ(p,H) to each propositional variable p. The
final section of the paper raises the possibility of defining new systems by imposing
various requirements on R, and concludes that

[i]f we were to drop the condition that R be reflexive, this would be equivalent
to abandoning the modal axiom �A → A. In this way we could obtain
systems of the type required for deontic logic.

Non-normal logics are the subject of [Kripke, 1965b], which focuses mainly on
Lewis’s S2 and S3 and the corresponding systems E2 and E3 of [Lemmon, 1957].
The E-systems have no theorems of the form �α, and this suggests to Kripke the
idea of allowing worlds in which any formula beginning with � is false, and hence
any beginning with �, even �(p∧¬p), is true. A model structure now becomes a
quadruple (G,K,R,N) with N a subset of K, to be thought of as a set of normal
worlds, and R a binary relation on K as before, but now required to be reflexive
on N only. The semantic clause for � in a model on such a structure is modified
by stipulating that

Φ(�β,H) = ⊤ iff H is normal, i.e. H ∈ N , and Φ(β,H ′) = ⊤ for all
H ′ ∈ K such that HRH ′;

and hence

Φ(�β,H) = ⊤ iff H is non-normal or else Φ(β,H ′) = ⊤ for some
H ′ ∈ K such that HRH ′.

This has the desired effect of ensuring Φ(�β,H) = ⊥ and Φ(�β,H) = ⊤ whenever
H is non-normal. Thus in a non-normal world, even a contradiction is possible.

These models characterise E2, and the ones in which R is transitive characterise
E3. Requiring that the “real” world G belongs to N gives models that characterise
S2 and S3 in each case.22 A number of other systems are discussed and applications
given, including a proof of a long-standing conjecture that the Feys–von Wright
system has no finite axiomatisation with detachment as its sole rule of inference.

Kripke’s semantics for quantificational modal logic is presented in his [1963b].
A model structure now has the added feature of a function assigning a set ψ(H)

22A semantics for S1 was devised in 1969 by Max Cresswell, modifying Kripke’s S2-models
to allow some formulas �β to be false in a non-normal world under certain restrictions, defined
with the help of a neighbourhood relation R′ ⊆ K × P(K). See [Cresswell, 1972; 1995].
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to each H ∈ K. Intuitively, ψ(H) is the set of all individuals existing in H, and
it provides the range of values for a variable x when a formula beginning with ∀x
is evaluated at H. A model now assigns to each n-ary predicate letter and each
H ∈ K an n-ary relation on the set

⋃
{ψ(H ′) : H ′ ∈ K} of individuals that exist

in any world. Axioms are given for quantificational versions of the basic modal
logics and it is stated that the completeness theorems of [1963a] can be extended
to them. An indication of how that would work can be obtained from Kripke’s
[1965b], which gives a tableaux completeness proof for his semantics for Heyting’s
intuitionistic predicate calculus.

4.2 So Who Invented Relational Models?

Kripke’s abstract [1959b] notes that “for systems based on S4, S5, and M, similar
work has been done independently and at an earlier date by K. J. J. Hintikka”.
This acknowledgement is repeated in [1963a, fn. 2] where he draws attention to
prior work by a number of researchers, including Bayart, Jónsson and Tarski, and
Kanger, explaining that his own work was done independently of all of them. He
states that the modelling of [Kanger, 1957b] “though more complex, is similar to
that in the present paper”, and also records that he discovered the Jónsson–Tarski
paper when his own was almost finished.

Key ideas surrounding relational interpretations of modality had occurred to
several people. In the next few sections we survey some of this background, before
expressing a view about the relative significance of Kripke’s work.

As mathematics progresses, notions that were obscure and perplexing become
clear and straightforward, sometimes even achieving the status of “obvious”. Then
hindsight can make us all wise after the event. But we are separated from the past
by our knowledge of the present, which may draw us into “seeing” more than was
really there at the time. This should be borne in mind in reading what follows.

4.3 Carnap and Bayart on S5

A state-description is defined by Rudolf Carnap in [1946; 1947] to be set of sen-
tences which consists of exactly one of α and ¬α for each atomic α. State-
descriptions are said to “represent Leibniz’s possible worlds or Wittgenstein’s
possible states of affairs”. A sentence is called L-true if it holds in every state-
description, this being “an explicatum for what Leibniz called necessary truth and
Kant analytic truth” [1947, p. 8].

Of course it needs to be explained what it is to hold in a state-description.
An atomic sentence holds in a state description iff it belongs to it, the conditions
for the connectives ¬, ∧, and ∨ are as expected, and the criterion for Carnap’s
necessity connective N is that

Nα holds in every state-description if α holds in every state-description;
otherwise, Nα holds in no state-description
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[1946, D9-5i], [1947, 41-1]. His list of L-truths ([1946, p. 42], [1947, p. 186]) includes
the axioms for S5, and he also notes the similarity between N and ∀, and between
� and ∃ under this semantics. The 1946 paper observes that there is a procedure
for deciding L-truth that is “theoretically effective”: if a sentence α has n atomic
components then there are 2n state-descriptions that have to be considered in
evaluating it, and therefore 22n

possibilities for the range of α, which is the set of
state-descriptions in which α holds. We can examine all possibilities to see if the
range includes all state-descriptions. Carnap defines a version of S5 which he calls
MPC and proves that it is complete with respect to his semantics, by a reduction
of formulas to a normal form23 which also gives a decision procedure that is

practicable, i.e. sufficently short for modal sentences of ordinary length.

He attributes the completeness result to a paper of Mordchaj Wajsberg from 1933.
Footnote 8 of [1946] gives a description of Wajsberg’s system and also contains the
information that Carnap constructed MPC independently in 1940 and later found
that it was equivalent to Lewis’s S5.

A contribution to possible worlds model theory that has been largely overlooked
is the work of the Belgian logician A. Bayart, whose papers of [1958] and [1959]

gave a semantics for a version of second order quantificational S5, and a complete
axiomatisation of it using a Gentzen-style sequent calculus. The models used al-
low a restricted range of interpretation of predicate variables. This idea had been
introduced in [Henkin, 1950] to give a completeness result for non-modal higher or-
der logic, and Bayart commented [1959, p. 100] that he had just adapted Henkin’s
theorem to S5.24 The other source of motivation he gives [1958, p. 28] is Leibniz’s
definition of necessity as truth in all possible worlds,25 and his bibliography cites
the items [Carnap, 1946; 1947].

In Bayart’s theory a universe U is defined to be a disjoint pair A,B of sets, with
members of A called individuals and members of B called worlds (“mondes”). An
n-place intensional predicate is a function of n + 1 arguments, taking the values
“true” or “false”, having a world as its first argument, and having individuals as
the remaining arguments when n �= 0. A value system relative to U is a function
S assigning a member of A to each individual variable, and an n-place intensional
predicate to each n-place predicate variable. The notion of a formula being true
or false for the universe U , the world M and the value system S — or more
briefly for UMS — is defined in the expected way for the non-modal connectives
and quantifiers, including quantifiers binding predicate variables. For modalized
formulas Lp and Mp it is declared that

Lp is true for UMS iff for every world M ′ of U , p is true for UM ′S;

23Called modal conjunctive normal form in [Hughes and Cresswell, 1968, p. 116], where a
variant of the proof is given.

24“En réalité notre exposé n’est qu’une adaptation du théorème de Henkin à la logique modale
S5.”

25“. . . en nous inspirant de la définition Leibnizienne du nécessaire, comme étant ce qui est vrai
dans tous les mondes possibles.”
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Mp is true for UMS iff for some world M ′ of U , p is true for UM ′S.

A formula is valid in the universe U if it is true for UMS for every world M and
value system S of U .

Bayart used the notation ä, I, ë for a Gentzen sequent, with ä (the antecedent)
and ë (the consequent) being finite sequences of formulas, and I a separating
symbol. The sequent is true in UMS if some member of ä is false or else some
member of ë is true. He adopted the axiom schema p̈, I, p̈ and a system of twenty-
five deduction rules, showing in [1958] that all deducible sequents are valid in all
universes. There are four modal rules, allowing the introduction of the modalities
L and M into antecedents and consequents:

p, ä, I, ë

Lp, ä, I, ë

p, ä, I, ë

Mp, ä, I, ë

ä, I, ë, p

ä, I, ë, Lp

ä, I, ë, p

ä, I, ë,Mp
.

The last two rules are subject to the restriction that any formula appearing in ä
or ë must be “couverte”, meaning that it is formed from formulas of the types Lq
and Mq using only the non-modal connectives and quantifiers. Such a formula has
the same truth value in UMS and UM ′S for all worlds M,M ′.

The [1959] paper proved the completeness of this sequent system for validity in
certain quasi-universes obtained by allowing predicate variables to take values in
a restricted class of intensional predicates. From this it was shown that the first
order fragment of the system is complete for validity in all universes. The method
used was subsequently generalised in [Cresswell, 1967] to obtain a completeness
theorem for the relational semantics of a first order version of the modal logic T
(see section 5.1).

It is worth recording Bayart’s explanation of why the set of worlds of a universe
U = A,B is essential to this theory. He considered the possibility of dispensing
with B, requiring a value system S to interpret an n-place predicate variable as
an extensional predicate (i.e. a truth-valued function on An), and modelling the
necessity modality by declaring that

Lp is true of US iff p is true of US′ for every value system S′.

He noted that this interpretation fails to validate the formula

∃y L(bx ∨ ¬by)

(where b is a unary predicate variable), a formula that is valid according to the
above semantics. His explanation of the flaw in this alternative approach is that
it gives Lp the same meaning as the universal closure of p (i.e. ∀v1 · · · ∀vnp, where
v1, . . . , vn are the free variables of p), and confuses necessity with validity.

4.4 Meredith, Prior and Geach

Arthur Prior [1967, p. 42] wrote that
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In some notes made in 1956, C. A. Meredith related modal logic to what he
called the ‘property calculus’.

This material was made available by Prior as a one-page departmental mimeo-
graph [Meredith, 1956] which was published much later in the collection [Copeland,
1996a]. Its basic idea was to express modal formulas in the first-order language of
a binary predicate symbol U , beginning with the following definitions, in which L
and M are connectives for necessity and possibility (but the other notation is that
of this paper rather than the original Polish):

(¬p)a = ¬(pa)

(p→ q)a = (pa) → (qa)

(Lp)a = ∀b(Uab→ pb)

(Mp)a = (¬L¬p)a = ∃b(Uab ∧ pb).

Possible axioms for U are then listed:

1. Uab ∨ Uba
2. Uab→ (Ubc→ Uac)
3. Uab→ (Ucb→ Uac)
4. Uaa
5. Uab→ Uba,

and it is noted that “1 gives 4”; “3, 4 give 5”; and “3, 5 give 2”. The notes
are written in this telegraphic style with no interpretation of the symbolism, but
presumably “pa” may be read “a has property p”.

It is stated that quantification theory alone allows the derivation of

(
L(p→ q) → (Lp→ Lq)

)
a,

and then formal deductions are given of (Lp→ p)a using 4; of (Lp→ LLp)a using
2; of (MLp → Lp)a using 2 and 5; and of ∀apa from (Lp)a using 1 and 5. The
conclusion is as follows:

Thus 1, or 4, gives T; 1, 2 or 4, 2 gives S4; 1, 3 or 4, 3 gives S5; and 1, 3 (but
not 4, 3) gives the equivalence of the above (Lp)a with the usual S5 (Lp)a,
i.e. ∀apa.

Prior’s article “Possible Worlds” [1962a, p. 37] gives a fuller exposition of this
U -calculus, saying “This whole symbolism I owe to C. A. Meredith”. He applies
an interpretation of the predicate U , suggested to him by P. T. Geach in 1960,26

as a relation of accessibility. Here is Prior’s account of that interpretation.

Suppose we define a ‘possible’ state of affairs or world as one which can be
reached from the world we are actually in. What is meant by reaching or

26This date is given in [Prior, 1962b, p. 140], where the acknowledgement of Meredith is
repeated once more.
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travelling to one world from another need not here be amplified; we might
reach one world from another merely in thought, or we might reach it more
concretely in some dimension-jumping vehicle dreamed up by science-fiction
(the case originally put by Geach), or we might reach it simply by the passage
of time (one important sense of ‘possible state of affairs’ is ‘possible outcome
of the present state of affairs’). What I want to amplify here is the idea
(the core of Geach’s suggestion) that we may obtain different modal systems,
different versions of the logic of necessity and possibility, by making different
assumptions about ‘world-jumping’.

Prior was the founder of tense logic (also known as temporal logic). He wanted to
analyse the arguments of the Stoic logician Diodorus Chronos, who had defined a
proposition to be possible if it either is true or will be true. Prior conceived the
idea of using a logical system with temporal operators analogous to those of modal
logic, and thus introduced the connectives

F it will be the case that
P it has been the case that
G it will always be the case that
H it has always been the case that.

Here F and P are “diamond” type modalities, with duals G and H respectively.
In the paper “The Syntax of Time-Distinctions” [Prior, 1958] a propositional logic
called the PF -calculus is defined.27 It is a normal logic with respect to G and H,
has the axioms Gp→ Fp, FFp→ Fp and Fp→ FFp, as well as an “interaction”
axiom p → GPp and a Rule of Analogy allowing that from any theorem another
may be deduced by replacing F by P and vice versa.

This system is then interpreted into what Prior calls the l-calculus, a first-order
language whose variables x, y, z range over dates, and which has a binary symbol
l taking dates as arguments, with the expression lxy being read “x is later than
y”.28 Variables p, q, r stand for propositions considered as functions of dates, with
the expression px being read “p at x”. The following interpretations are given
of propositional formulas, using an arbitrarily chosen date variable z to represent
“the date at which the proposition under consideration is uttered”.

Fp ∃x(lxz ∧ px)
Pp ∃x(lzx ∧ px)
Gp ∀x(lxz → px)
Hp ∀x(lzx→ px).

Prior observes that the interpretations of some theorems of the PF -calculus are
provable in the l-calculus just from the usual axioms and rules for quantificational
logic. This applies to any PF -theorem derivable from the basis for normal logics
together with the interaction axiom p → GPp and the rule of Analogy. He then

27The contents of this paper are reviewed on [Prior, 1967, pp. 34–41].
28Prior notes that the structure of the calculus would be unchanged if l were read “is earlier

than”.
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states that the interpretation of Gp→ Fp requires for its proof the axiom ∃x lxz
(“infinite extent of the future”), and that FFp → Fp depends similarly on tran-
sitivity : lxy → (lyz → lxz), while Fp → FFp depends on the density condition
lxz → ∃y(lxy ∧ lyz).

The modality M of possibility is given a temporal reading by defining Mp to be
an abbreviation for p∨Fp∨Pp, i.e. “p is true at some time, past present or future”.
This makes the dual Lp equivalent to p ∧Gp ∧ Fp, “at all times, p”. Prior notes
that to derive the S5-principle M¬Mp → ¬Mp, which is “clearly a law” under
this interpretation of M , requires trichotomy : x = y ∨ lxy ∨ lyx. His explorations
here are quite tentative. For instance he defines asymmetry : lxy → ¬lyx, but
makes no use of it, and he fails to note that the S4-principle MMp → Mp also
depends on trichotomy and not just transitivity.

Why did Prior give such unequivocal credit to Meredith for the 1956 U -calculus?
The puzzle about this is that his paper on the l-calculus, although published in
1958, was presented much earlier, on 27 August 1954, as his Presidential Address
to the New Zealand Philosophy Congress at the Victoria University of Wellington.
Perhaps he was crediting Meredith with the extension of the symbolism to modal
logic as he understood it, i.e. the logic of necessity and possibility, as distinct from
tense logic. The l-calculus was intended to describe a very specific situation: an
ordered system of dates or moments in time that forms an “infinite and continuous
linear series” [1958, p. 115]. In the absence of any corresponding interpretation of
the U -predicate, the purely formal application of the symbolism by Meredith may
have been seen by Prior as a significant advance.

Prior made much use of l and U calculi in his papers and books on tense logic.
He did not however pursue their implicit relational model theory, and would not
have thought it philosophically worthwhile to do so. Although he described the
l-calculus as “a device of considerable metalogical utility” [1958, p. 115], he went
on to deny that the interpretation of the PF -calculus within the l-calculus has
any metaphysical significance as an

explanation of what we mean by “is”, “has been” and “will be”.

On the contrary he proposed that what was needed was an interpretation in the
reverse direction [1958, p. 116]:

the l-calculus should be exhibited as a logical construction out of the PF -
calculus.

This proposal became a major programme for Prior. He used formulas like p ∧
¬Pp ∧ ¬Fp which can be true at only one point of the linear series of moments,
or instants. If M(p ∧ ¬Pp ∧ ¬Fp) is true at some time, the variable p must itself
be true at exactly one instant and may be identified with that instant. Then the
formula L(p → α) expresses that “it is the case at p that α”, and so if p and q
are both such instance-variables, L(p→ Pq) asserts that it is true at p that it has
been q, i.e. p is later than q, and q is earlier than p.
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Systems having variables identified with unique instants or worlds are developed
most fully in the book of [Prior and Fine, 1977, p. 37], where Prior gives an
emphatic statement of his metaphysical propensity:

. . . I find myself quite unable to take ‘instants’ seriously as individual entities;
I cannot understand ‘instants’, and the earlier-than relation that is supposed
to hold between them, except as logical constructions out of tensed facts.
Tense logic is for me, if I may use the phrase, metaphysically fundamental,
and not just an artificially torn-off fragment of the first-order theory of the
earlier-than relation.

4.5 Kanger

A semantics is given by Stig Kanger in [1957b] for a version of modal predicate
logic whose atomic formulas are propositional variables and expressions of the
form (x1, . . . , xn) ε y, where n ≥ 1 and the xi and y are individual variables or
constants. The language included a list of modal connectives M1, M2, . . . .

A notion of a system is introduced as a pair (r, V ) where r is a frame and
V a primary valuation. Here r is a certain kind of sequence of non-empty sets
whose elements provide values of individual symbols of various types. V is a
binary operation that assigns a truth value V (r, p), belonging to {0, 1}, to each
propositional variable p and frame r, as well as interpreting individual symbols
and the symbol ε in each frame in a manner that need not concern us. Then
a “secondary” truth valuation T (r, V, α) is inductively specified, allowing each
formula α to be defined to be true in system (r, V ) iff T (r, V, α) = 1. For this
purpose each modality Mi is assumed to be associated with a class Ri of quadruples
(r′, V ′, r, V ), and it is declared that

T (r, V,Miα) = 1 iff T (r′, V ′, α) = 1 for each r′ and V ′ such that
Ri(r

′, V ′, r, V )

(so Mi is a “box” type of modality).
Kanger states the following soundness results. The theorems of the Feys–von

Wright system T are valid (i.e. true in all systems) iff Ri(r, V, r, V ) always holds.
S4 is validated iff Ri(r, V, r, V ) always holds and so does the condition

Ri(r, V, r
′, V ′) and Ri(r

′′, V ′′, r, V ) implies Ri(r
′′, V ′′, r′, V ′).

S5 is validated iff the S4 conditions hold along with

Ri(r, V, r
′, V ′) and Ri(r

′′, V ′′, r′, V ′) implies Ri(r
′′, V ′′, r, V ).

Proofs of these assertions are not provided. (In fact it is readily seen that the
given conditions on Ri imply validity for the corresponding logics in each case,
but the converses are dubious.) A result is proved that equates the existence of
an Ri fulfilling the above definition of T (r, V,Miα) to the preservation of certain
inference rules involving Mi. Kanger says of this that
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[s]imilar results in the field of Boolean algebras with operators may be found
in [Jónsson and Tarski, 1951].

Completeness theorems are not proved, or even stated, for this modal semantics.
But there is a completeness proof for the non-modal fragment of the language
which has a remarkable aspect. Kanger wishes to have the symbol ε interpreted as
the genuine set membership relation, and he applies the (much-overused) adjective
normal to a primary valuation V which does give this interpretation to ε in every
frame. Since his language allows atomic formulas like x ε x, normal systems must
have non-well-founded sets. He introduces a new set-theoretical principle to ensure
that enough such sets exist to give the completeness theorem with respect to
normal structures.29

Different definitions of R allow the modelling of different notions of necessity.
Kanger [1957a, p. 35] defines set-theoretical necessity to be the modality given by
requiring

Ri(r
′, V ′, r, V ) iff V ′ is normal with respect to ε.

This means that Mi gets the reading “in all normal systems”. Analytic necessity
is modelled by the Ri having

Ri(r
′, V ′, r, V ) iff V ′ = V ,

and logical necessity arises when Ri(r
′, V ′, r, V ) always holds. Thus “logically

necessary” means “true in all systems”, which is reminiscent of the modelling of
the S5 necessity connective by Carnap and Bayart (section 4.3).

There is no doubt much scope for defining other modalities in this way, and
Kanger offers one other brief suggestion:

We may, for instance, define ‘geometrical necessity’ in the way we defined
set-theoretical necessity except that (roughly speaking) V ′ shall be normal
also with respect to the theoretical constants of geometry.

The paper [Kanger, 1957a] addresses difficulties raised by Quine (in [1947] and
other writings) about the possibility of satisfactorily interpreting quantificational
modal logic. One such obstacle concerns the principle of substitutivity of equals,
formalised by the schema

x ≈ y → (α→ α′)

where α′ is any formula differing from α only in having free occurrences of y in
some places where α has free occurrences of x. Taking α to be the valid �(x ≈ x),
this allows derivation of

x ≈ y → �(x ≈ y),

which is arguably invalid. For example, it is an astronomical fact that the Morning
Star and the Evening Star are the same object (Venus), but this equality is not a
necessary truth.

29This principle is discussed further in [Aczel, 1988, pp. 28–31 and 108].
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Kanger pointed out that his new semantics for quantification and modality made
it possible to “recognize and explain the error in the Morning Star paradox”: the
principle of substitutivity of equals is not valid without restriction, but only in the
weaker form

�(x ≈ y)→ (α→ α′).

Jaakko Hintikka [1969] later expressed the opinion that this discussion by Kanger
of the Morning Star paradox will

remain a historical landmark as the first philosophical application of an ex-
plicit semantical theory of quantified modal logic.

4.6 Montague

Kanger’s quaternary relation Ri might equally well be viewed as a binary relation
(r′, V ′)Ri (r, V ) between systems. Such a notion appears in a paper by Richard
Montague [1960] which was originally presented to a philosophy conference at the
University of California, Los Angeles, in May of 1955. Montague did not initially
plan to publish the paper because “it contains no results of any great technical
interest”, but eventually changed his mind after the appearance of Kanger’s and
Kripke’s ideas.

The aim of the paper is to interpret logical and physical necessity, and the de-
ontic modality “it is obligatory that”, and to relate these to the use of quantifiers.
Tarski’s model theory for first-order languages is employed for this purpose: a
model is taken to be a structure M = (D,R, f) where D is a domain of indi-
viduals, R a function fixing an interpretation of individual constants and finitary
predicates in D in the now-familiar way, and f is an assignment of values in
D to individual variables. Montague uses these models to provide a semantics
for formulas that are constructible from atomic first-order formulas by using the
propositional connectives and �, but not quantifiers.30 His approach is to take a
relation X between such models, and then inductively define

M satisfies �α iff for every model M′ such that MXM′, M′ satisfies α.

His first example shows that the Tarskian semantics for ∀ fits this definition.
Taking X to be the relation Qx specified by

MQxM
′ iff D = D′, R = R′ and f and f ′ agree except on x

gives � the interpretation “for all x”. Thus quantification could be handled by
associating a modality with each variable, and Montague suggests that this should
dispel Quine’s uneasiness about combining modality with quantification.

The relation

MLM′ iff D = D′ and f = f ′

30Montague uses several symbols for various kinds of modality, but � will suffice here.
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gives �α the interpretation “it is logically necessary that α”, meaning that α holds
no matter what its individual constants and predicates denote.

To interpret physical necessity, Montague uses the idea that a statement is
physically necessary if it is deducible from some set of physical laws specified in
advance. This is formalised by fixing a set K of first-order �-free sentences and
specifying a relation P by

MPM′ iff D = D′, f = f ′ and M′ is a model of K.

Similarly, “it is obligatory that α” is taken to mean that α is deducible from some
set of ethical laws specified in advance. This is formalised by fixing a class I of
ideal models, those in which the constants and predicates mean what they ought
to according to these laws. Montague suggests as an example that I could be

the class of models which, in Tarski’s sense, satisfy the ten commandments
formulated as declarative, rather than imperative, sentences.

The deontic modality then corresponds to the model-relation E such that

MEM′ iff D = D′, f = f ′ and M′ belongs to I.

If a model-relation X fulfills the conditions

for all M there exists M′ with MXM′,

MXM′ and M′ XM′′ implies MXM′′,

MXM′ and MXM′′ implies M′ XM′′,

(the last two mirror Kanger’s conditions) then every S5-theorem is valid, i.e. sat-
isfied by every model. Montague states that the converse is true, and that there
is a decision method for the class of formulas valid in this sense.

4.7 Hintikka

IfM is a model for predicate logic, of the kind used by Montague, let μM be the set
of all formulas that it satisfies. In Jaakko Hintikka’s approach to semantics, such
models M are in effect replaced by the sets μM. These sets can be characterised
by their syntactic closure properties, obtained by replacing “M satisfies α” by
“α ∈ μM” in the clauses of the inductive definition of satisfaction of formulas. A
model set is defined as a set μ of formulas that has certain closure properties, such
as

if α is atomic then not both α ∈ μ and ¬α ∈ μ,

if α ∧ β ∈ μ, then α ∈ μ and β ∈ μ,

if α ∨ β ∈ μ, then α ∈ μ or β ∈ μ,

if ∃xα ∈ μ, then α(y/x) ∈ μ for some variable y,
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that are sufficient to guarantee that μ can be extended to a maximal model set
which has all such closure properties corresponding to the conditions for satisfac-
tion for the truth-functional connectives and the quantifiers.31

Hintikka’s article [1957] gives a definition of satisfaction for formulas of quanti-
fied deontic logic using model sets whose conditions

may be thought of as expressing properties of the set of all statements that
are true under some particular state of affairs.

He notes [1957, p. 10] that his treatment derives from a

new general theory of modal logics I have developed.

This general modelling of modalities was published in [1961], where he views a
maximal model set as the set of all formulas that hold in some state-description
in the sense of Carnap, and says that

a model set is the formal counterpart to a partial description of a possible
state of affairs (of a ‘possible world’). (It is, however, large enough a de-
scription to make sure that the state of affairs in question is really possible.)

The point of the last sentence is that for non-modal quantificational logic, every
model set is included in μM for some actual model M. Hence a set of non-modal
formulas is satisfiable in the Tarskian sense if it is included in some model set.

The 1957 article deals with a system that has quantifiable variables ranging over
individual acts, and dual modalities for obligation and permission, with formulas
Oα and Pα being read “α is obligatory” and “α is permissible”, respectively.
The paper makes very interesting historical reading, especially on pages 11 and
12 where one can almost see the notion of a binary relation between model sets
quickening in the author’s mind as he grapples with the question of what we mean
by saying that α is permitted. His answer is that

we are saying that one could have done α without violating one’s obligations.
In other words, we are saying that a state of affairs different from the actual
one is consistently thinkable, viz. a state of affairs in which α is done but in
which all the obligations are nevertheless fulfilled.

Thus if the actual state is (partially) represented by a model set μ, then to represent
this different and consistently thinkable state we need

another set µ∗ related to µ in a certain way. This relation will be expressed
by saying that µ∗ is copermissible with µ.

Hintikka is thus led to formulate the following rules.

If Pα ∈ μ, then there a set μ∗ copermissible with μ such that α ∈ μ∗.

If Oα ∈ μ and if μ∗ is copermissible with μ, then α ∈ μ∗.

31In fact it is assumed that formulas are in a certain normal form, but we can overlook the
technicalities here.
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The second rule addresses the requirement that all actual obligations be fulfilled
in the state in which a permissible act is done. Then there are two more rules:

If Oα ∈ μ∗ and if μ∗ is copermissible with some other set μ, then
α ∈ μ∗.

If Oα ∈ μ and if μ∗ is copermissible with μ, then Oα ∈ μ∗.

Motivation for third rule is as follows.

But not only one must be thought of in µ∗ as fulfilling the obligations one
has now. Sometimes one is permitted to do something only at the cost of
new obligations. These must be thought of as being fulfilled in µ∗ in order to
be sure that all the obligations one has really are compatible with α’s being
done.

The fourth rule is justified because

there seems to be no reason why the actually existing obligations should
not also hold in the alternative state of affairs contemplated in µ∗. What is
thought of as obligatory in µ must hence also be obligatory in µ∗.

Hintikka is well aware that the relation between μ and μ∗ cannot be functional:
there may be different acts that are each permissible in μ but cannot or must not
be performed together, hence must be done in different states copermissible with
μ. Also, μ∗ may have its own formulas of the form Pα, requiring further model
sets μ∗∗ copermissible with μ∗, and so on. The upshot is that a set λ of formulas
is defined to be satisfiable iff it is included in some model set which itself belongs
to a collection of model sets that carries a binary relation (called the relation of
copermission) obeying the closure rules for P and O.32 A formula α is valid if
{¬α} is not satisfiable in this sense.

This approach gives a method for demonstrating satisfiability and validity, by
starting with a set λ and attempting to build a suitable collection of model sets by
repeatedly applying all the closure rules. New sets are added to the collection when
the rule for P is applied. The other rules enlarge existing sets. If at some point
a violation of the rule of consistency is produced, in the form of a contradictory
pair α, ¬α in some set, then the original λ is not satisfiable.

Hintikka gives a striking illustration of the effectiveness of this technique for
analysing the subtleties of denotic logic. He demonstrates the invalidity of the
principle

Oα ∧ (α→ Oβ) → Oβ,

which Prior had thought was a “quite plain truth”, by observing that its negation
is satisfied in the simple collection consisting of the two model sets

{Oα, ¬α ∨Oβ, P¬β, ¬α} {Oα, ¬β, α}.

32Note that the second rule is a consequence of the third and fourth.
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However the principle can be turned into a valid one by making it obligatory:

O[Oα ∧ (α→ Oβ) → Oβ].

Any attempt to build a satisfying structure for the negation of this formula leads
to violation of consistency. Several other applications like this are given, analysing
complex principles involving the interchange of quantifiers and deontic modalities.

With the advantage of hindsight we can see that the notion of a collection of
model sets with closure rules is reminiscent of the notion of a collection of semantic
tableaux used in Kripke’s completeness proofs. Hintikka did not however take up
an axiomatic development of his system.

The paper [1961] deals with the necessity (N) and possibility (M) modalities,
and here the description of satisfiability is essentially the same, but more crisply
presented. A model system is defined a pair (Ω,R) with R being a binary relation
of “alternativeness” on Ω, and Ω being a collection of model sets that satisfies the
following conditions.

If Mα ∈ μ ∈ Ω, then there is in Ω at least one alternative ν to μ such
that α ∈ ν.

If Nα ∈ μ ∈ Ω, and if ν ∈ Ω is an alternative to μ, then α ∈ ν.

If Nα ∈ μ ∈ Ω, then α ∈ Ω.

The first two of these are the same as the first two rules for P and O. The third
reflects the requirement that any necessary truth be actually true. Hintikka’s
description of the new alternativeness relation is that μRν when ν is a partial
description of

some other state of affairs that could have been realised instead of µ.

A set λ of formulas is satisfiable (as before) iff there is such a model system with
λ ⊆ μ for some μ ∈ Ω, and a formula α is valid if {¬α} is not satisfiable. Hintikka
states that the valid formulas are precisely the theorems of the logic T. Restrict-
ing to transitive model systems gives a characterisation of the theorems of S4,
while the symmetric systems determine B and the ones that are both transitive
and symmetric determine S5. These assertions apply to the propositional version
of the logics. To prove them would require showing in each case that a deduc-
tively consistent formula is a member of some model set that belongs to a model
system of the appropriate kind, but again the issue of axioms and proof theory
is not taken up. The paper is mainly devoted to a discussion of the problem of
combining modalities with quantifiers, and proposes various modifications on the
closure properties of Ω depending on whether it is required that whatever exists
in a particular state of affairs should do so necessarily.

4.8 The Place of Kripke

The earlier efforts to develop the seminal ideas of Kripke semantics have inevitably
raised questions of priority. In fact, as the above material is intended to show,
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the idea of using a binary relation to model modality occurred independently to a
number of people, and for different reasons, with Hintikka being the first to explain
it in terms of conceivable alternatives to a given state of affairs. Kanger was the
first to recognise the relevance of [Jónsson and Tarski, 1951] to modal logic,33 and
the first to apply this kind of semantical theory to the resolution of philosophical
questions about existence and identity.

But it is only in Kripke’s writings that we see such seminal ideas developed into
an attractive model theory of sufficent power to fully resolve the long-standing issue
of a satisfactory semantics for modality and of sufficient generality to advance the
field further. A fundamental point (mentioned in section 4.1) is that he was the first
to propose, and make effective use of, arbitrary set-theoretic structures as models.
The methods of Hintikka, Kanger and Montague are all variations on the theme
of a binary relation between models of the non-modal fragment of the predicate
languages they use. Also, they did not present complete axiomatisations of their
semantics. Kripke was the first to do this, and by allowing R to be any relation
on any set K, he opened the door to all kinds of model constructions, which were
rapidly provided by himself and then others. (His models for non-normal logics
appear to lack any historical antecedents.) It is due to his innovation that we now
have a model theory for intensional logics.

As already noted in section 4.2, Kripke developed his ideas independently. His
analysis of S5 was inititiated in 1956 when he was still at high-school (he turned
16 years old on November 13th of that year). From the paper [Prior, 1956] he
learned of the axioms for S5, and began to think of modelling that system by
truth tables with missing rows (see section 4.1). Early in 1957 E. W. Beth sent
him his papers on the method of semantic tableaux, which provided Kripke with
a technique for proving completeness theorems. By 1958 Kripke had worked out
his relational semantics for modal and intuitionistic systems, as announced in his
abstract [1959b] which was received by the editors on 25 August 1958. It was
through exploring different conditions connecting tableaux in order to model the
different subsystems of S5 that Kripke came to the idea of using a binary relation
between worlds as the basis of a model theory.

Kripke had been introduced to Beth by Haskell B. Curry, who wrote to Beth
on 24 January 1957 that

I have recently been in communication with a young man in Omaha Ne-
braska, named Saul Kripke. . . . This young man is a mere boy of 16 years;
yet he has read and mastered my Notre Dame Lectures and writes me let-
ters which would do credit to many a professional logician. I have suggested
to him that he write you for preprints of your papers which I have already
mentioned. These of course will be very difficult for him, but he appears to
be a person of extraordinary brilliance, and I have no doubt something will
come of it.34

33As Føllesdal [1994] emphasis.
34Quoted from [de Jongh and van Ulsen, 1998–1999, pp. 290–291].
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The Notre Dame Lectures of [Curry, 1950] presented a number of deductive sys-
tems of modal logic, including one equivalent to Lewis’s S4 for which a cut elimi-
nation theorem was demonstrated in [Curry, 1952]. Other such sources that were
influential for Kripke included the McKinsey–Tarski papers and the paper of Lem-
mon [1957] which showed how to axiomatize the Lewis systems in the style of
Gödel.

In late 1958 Kripke entered Harvard University as an undergraduate, and en-
countered a philosophical environment that was hostile to modal logic. He was
advised to abandon the subject and concentrate on majoring in mathematics.
This caused the evident delay in publication of his work until the appearance of
the major articles of 1963 and 1965.

Looking back over the intervening decades we see the strong influence of Kripke’s
ideas on many areas of mathematical logic, ranging across the foundations of
constructive logic and set theory, substructural logics (including relevance logic,
linear logic), provability logic, the Kripke-Joyal semantics in topos theory and
numerous logics of transition systems in theoretical computer science.

A proposition is defined in [Kripke, 1963a] to be a function from worlds to truth
values, while in [1963b] an n-ary predicate letter is modelled as a function from
worlds to n-ary relations. Those definitions formed a cornerstone of Montague’s
approach to intensional logic,35 and stimulated the substantial development of for-
mal semantics for natural languages in the theories of Montague [1974], Cresswell
[1973], Barwise [1989] and others. Kripke’s models, and his intuitive descriptions of
them, also stimulated many philosophical and formal investigations of the nature
of possible worlds, and the questions of existence and identity that they generate
(see [Loux, 1979]).

5 THE POST-KRIPKEAN BOOM OF THE SIXTIES

The 1960’s was an extraordinary time for the introduction of new model theories.
At the beginning of the decade Abraham Robinson created nonstandard analy-
sis by constructing models of the higher-order theory of the real numbers. Then
Paul Cohen’s invention of forcing revolutionized the study of models of set the-
ory, and freed up the log-jam of questions that had been building since the time
of Cantor. Kripke related forcing to his models of Heyting’s predicate calculus,
and Dana Scott and Robert Solovay re-formulated it as the technique of Boolean-
valued models. Scott then replaced “Boolean-valued” by “Heyting-valued” and
extended the topological interpretation from intuitionistic predicate logic to in-
tuitionistic real analysis. F. William Lawvere’s search for categorical axioms for
set theory and the foundations of mathematics and his collaboration with Miles
Tierney on axiomatic sheaf theory culminated at the end of the decade in the
development of elementary topos theory. This encompassed, in various ways, both
classical and intuitionistic higher order logic and set theory, including the models

35As acknowledged in several places, e.g. [Montague, 1970, fn. 5].



Mathematical Modal Logic: A View of its Evolution 37

of Kripke, Cohen, Scott, and Solovay, as well as incorporating the sheaf theory of
the Grothendieck school of algebraic geometry. Scott’s construction of models for
the untyped lambda calculus in 1969 was to open up the discipline of denotational
semantics for programming languages, as well as stimulating new investigations in
lattice theory and topology, and further links with categorical and intuitionistic
logic.

The introduction of Kripke models had a revolutionary impact on modal logic
itself. Binary relations are much easier to visualise, construct, and manipulate than
operators on Boolean algebras. They fall into many naturally definable classes that
can be used to define corresponding logics. Here then were the tools that would
enable an exhaustive investigation of the subject, and some important new ideas
were developed during this period.

5.1 The Lemmon and Scott Collaboration

Pioneers in this investigation were John Lemmon and Dana Scott, who conducted
an extensive collaboration. They planned to write a book called Intensional Logic,
for which Lemmon had drafted some inital chapters when he died in 1966. Scott
then made this material available in a mimeographed form [Lemmon and Scott,
1966] which was circulated informally for a number of years, becoming known
as the “Lemmon Notes”. Eventually it was edited by Scott’s student Krister
Segerberg, and published as [Lemmon, 1977]. Scott also investigated broad is-
sues of intensional logic (individuals and concepts, possible worlds and indices,
intensional relations and operators etc.) in discussion with Montague, Kaplan and
others. Some of his ideas were presented in [Scott, 1970]. His considerable influ-
ence on the subject has been disseminated through the publications of Lemmon
and Segerberg, and is also reported in [Prior, 1967] in relation to tense logic, and
in a number of Montague’s papers.

The relationship between modal algebras and model structures was first sys-
tematically explored in Lemmon’s two part article [1966a; 1966b]. Here a model
structure has the form S = (K,R,Q), with Q playing the role of the set of non-
normal (“queer”) worlds.36 Notably absent is Kripke’s real world G ∈ K. Instead
a formula α is said to be valid in S if in all models on S, α is true (i.e. assigned
the value ⊤) at all points of K.

Associated with S is the modal algebra S+ comprising the powerset Boolean
algebra P(K) with the additive operator

f(X) = {x ∈ K : x ∈ Q or ∃y ∈ X(xRy)}

to interpret �. Note that f(∅) = Q, so f is a normal operator iff K has only
normal members. Lemmon proved the result that a formula is valid in S iff it
is satisfied in the algebra S+ with just the element 1 (= K) designated. This
follows from the natural correspondence between models Φ on S and assignments

36At the time this work was done [Kripke, 1965b] had not appeared, but Lemmon had learned
about non-normal worlds in conversation with Kripke.
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to propositional variables in S+, under which a variable p is assigned the set
{x : Φ(p, x) = ⊤} ∈ S+. The result itself is an elaboration of the construction in
[Kripke, 1963a] of the matrix of propositions associated with any model structure.
It remains true for S2-like systems if validity in S is confined to truth at normal
worlds, and also all elements of S+ that include K −Q are designated.

Any finite modal algebra A = (B, f) is readily shown to be isomorphic to one
of the form S+, with S based on the set of atoms of B. Combining that observa-
tion with McKinsey’s finite algebra constructions enabled Lemmon to deduce the
completeness of a number of modal logics with respect to validity in their (finite)
model structures. For an arbitrary A he gave a representation theorem, “due in
essentials to Dana Scott”, that embeds A as a subalgebra of some S+. This was
done by an extension of Stone’s representation of Boolean algebras, basing S on
the set K of all ultrafilters of B, with uRt iff {fx : x ∈ t} ⊆ u for all ultrafilters
u, t, while Q = {x ∈ K : f0 ∈ x}. Each x ∈ A is represented in S+ by the set
{u ∈ K : x ∈ u} of ultrafilters containing x, as in Stone’s theory.

In the Lemmon Notes there is a model-theoretic analogue of this representation
of modal algebras that has played a pivotal role ever since. Out of any normal
logic Λ is constructed a model

MΛ = (KΛ, RΛ, ΦΛ)

in which KΛ is the set of all maximally Λ-consistent sets of formulas, with

uRΛt iff {�α : α ∈ t} ⊆ u iff {α : �α ∈ u} ⊆ t,

and ΦΛ(p, u) = ⊤ iff p ∈ u. The key property of this construction is that an
arbitrary formula α is true in MΛ at u iff α ∈ u. This implies that MΛ is
a model of α, i.e. α is true at all points of MΛ, iff α is an Λ-theorem. Thus
MΛ is a single characteristic model for Λ, now commonly called the canonical
Λ-model. Moreover, the properties of this model are intimately connected with
the proof-theory of Λ. For example, if (�α→ α) is an Λ-theorem for all α, then it
follows directly from properties of maximally consistent sets that RΛ is reflexive.
This gives a technique for proving that various logics are characterised by suitable
conditions on models, a technique that is explored extensively in [Lemmon and
Scott, 1966].

If Scott’s representation of modal algebras is applied to the Lindenbaum algebra
of Λ, the result is a model structure isomorphic to (KΛ, RΛ). The construction
can also be viewed as an adaptation of the method of completeness proof in-
troduced in [Henkin, 1949], and first used for modal logic in [Bayart, 1958] (see
section 4.3). There were others who independently applied this approach to the
relational semantics for modal logic, including David Makinson [1966] and Max
Cresswell [1967], their work being completed in 1965 in both cases. Makinson dealt
with propositional systems, while Cresswell’s appears to be the first Henkin-style
construction of relational models of quantificational modal logic. David Kaplan
outlined a proof of this kind in his review [1966] of [Kripke, 1963a], explaining that
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the idea of adapting Henkin’s technique to modal systems had been suggested to
him by Dana Scott.

Another construction of lasting importance from the Lemmon Notes is a tech-
nique for proving the finite model property by forming quotients of the modelML.
To calculate the truth-value of a formula α at points inMΛ we need only know the
truth-values of the finitely many subformulas of α. We can regard two members of
MΛ as equivalent if they assign the same truth-values to all subformulas of α. If
there are n such subformulas, then there will be at most 2n resulting equivalence
classes of elements ofMΛ, even thoughMΛ itself is uncountably large. Identifying
equivalent elements allows MΛ to be collapsed to a finite quotient model which
will falsify α if MΛ does. This process, which has become known as filtration,37

was first developed in a more set-theoretic way in [Lemmon, 1966b, p. 209] as an
alternative to McKinsey’s finite algebra construction. In its model-theoretic form
it has proven important for completeness proofs as well as for proofs of the finite
model property. Some eighteen modal logics were shown to be decidable by this
method in [Lemmon and Scott, 1966].

5.2 Bull’s Tense Algebra

A singular contribution from the 1960’s is the algebraic study by Robert Bull, a
student of Arthur Prior,38 of logics characterised by linearly ordered structures.
Prior had observed that the Diodorean temporal reading of �α as “α is and always
will be true” leads, on intuitive grounds, to a logic that includes S4 but not S5.
In his 1956 John Locke Lectures at Oxford on Time and Modality (published as
[Prior, 1957]) he attempted to give a mathematical precision to this reading by
interpreting formulas as sets of sequences of truth values. In effect he was dealing
with the complex closure algebra Cm(ω,≤), where ω = {0, 1, 2, . . .} is the set of
natural numbers viewed as a sequence of moments of time. The question became
one of identifying the logic that is characterised by this algebra, or equivalently
by the model structure (ω,≤). Prior called this logic D.39

In 1957 Lemmon observed that D includes the formula

�(�p→ �q) ∨�(�q → �p),

which arises from the intuitionistically invalid formula (p → q) ∨ (q → p) by
applying the translation of [McKinsey and Tarski, 1948]. Lemmon’s formula is
therefore not an S4-theorem, and when added as an axiom to S4 produces a system
called S4.3. In 1958 Michael Dummett showed that the formula

�(�(p→ �p) → �p) → (��p→ �p)

37This term was first used in [Segerberg, 1968a], where “canonical model” was also introduced.
38Initially at Christchurch, New Zealand, and then at Manchester, England. Bull was one of

two graduate students from New Zealand who studied with Prior at Manchester at the beginning
of the 1960’s. The other was Max Cresswell, who later became the supervisor of the present
author.

39The letter D later became a label for the system K+(�p → �p), or equivalently K+�⊤,
because of its connection with Deontic logic.
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also belongs to D, and then Prior [1962b] pointed out that this is due to the
discreteness of the ordering ≤ on ω: if time were a continuous ordering then
Dummett’s formula would not be valid, but Lemmon’s would. In fact the property
used by Prior to invalidate Dummett’s formula was density (between any two
moments there is a third) rather than continuity in the sense of Dedekind (no
“gaps”).

Kripke showed in 1963 that D is exactly the normal logic obtained by adding
Dummett’s formula as an axiom to S4.3. His proof, using semantic tableaux,
is unpublished. Dummett conjectured to Bull that taking time as “continuous”
would yield a characterisation of S4.3.40 Bull proved this in his paper [1965] which,
in addition to giving an algebraic proof of Kripke’s completeness theorem for D,
showed that S4.3 is characterised by the complex algebra of the ordering (R+,≤)
of the positive real numbers. He noted that R+ could be replaced here by the
positive rationals, or any linearly ordered set with a subset of order type ω2. In
particular this shows that propositional modal formulas are incapable of expressing
the distinction between dense and continuous time under the relational semantics.

Bull made effective use of Birkhoff’s fundamental decomposition [Birkhoff, 1944]

of an abstract algebra into a subdirect product of subdirectly irreducible alge-
bras. Birkhoff had observed that subdirectly irreducible closure algebras are well-
connected in the sense of [McKinsey and Tarski, 1944] (see section 3.2). Applying
this to Lindenbaum algebras shows that every normal extension of S4 is charac-
terised by well-connected closure algebras, and in the case of extensions of S4.3
the closed (Cx = x) elements of a well-connected algebra are linearly ordered.
Bull used this fact, together with the strategy of McKinsey’s finite algebra con-
struction, to build intricate embeddings of finite S4.3-algebras into Cm(R+,≤) or
Cm(ω,≤). He later refined this technique to establish in [Bull, 1966] one of the
more celebrated meta-theorems of modal logic:

every normal extension of S4.3 has the finite model property.

Proofs of this result using relational models were subsequently devised by Kit Fine
[1971] and H̊akan Franzén (see [Segerberg, 1973]). Fine gave a penetrating analysis
of finite S4.3 models to establish that there are exactly ℵ0 normal extension of
S4.3, all of which are finitely axiomatisable and hence decidable. Segerberg [1975]

proved that in fact every logic extending S4.3 is normal.

The indistinguishability of rational and real time is overcome by passing to the
more powerful language of Prior’s PF -calculus for tense logic (section 4.4). A
model structure for this language would in principle have the form (K,RP , RF ),
with RP and RF being binary relations on K interpreting the modalities P and
F . But for modelling tense logic, with its interaction principles p → GPp and
p→ HFp, the relations RP and RF should be mutually inverse. Thus we continue
to use structures (K,R) with the understanding that what we really intend is
(K,R−1, R). For linearly ordered structures, the ability of the two modalities

40See [Prior, 1967, ch. II] as well as [Bull, 1965] for this historical background.
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to capture properties “in each direction” of the ordering produces formulas that
express the Dedekind continuity of R, a fact that was first realised by Montague
and his student Nino Cocchiarella.41

Bull applied his algebraic methodology in the [1968] paper to give complete
axiomatisations of the tense logics characterised by each of the strictly linearly
ordered structures (Z, <), (Q, <) and (R, <). In addition to a common set of
axioms for linear orderings without first or last element, for integer time Z he used
the special axiom

�(Gp→ p) → �Gp ∨�¬Gp,

where � is the S5-modality defined by �α = α ∧ Gα ∧Hα. For rational time Q
this was replaced by the density axiom Fp → FFp. The axiomatisation of real
time required the density axiom as well as

�(Gp→ PGp)→ �Gp ∨�¬Gp.

(The reader may find it instructive to verify that validity of this last formula in
any model on (R, <) depends on the fact that there are no unfilled Dedekind cuts
in the real line.) Bull also established that the tense logics of rational and real
time have the finite model property, but that the logic of integer time does not.42

This is not quite the end of the story about Diodorean modality. Prior made
an interesting observation in [Prior, 1967, p. 203] about the (non-linear) tempo-
ral ordering of locations in relativistic spacetime. In the Minkowskian spacetime
of special relativity theory, this ordering is directed : for any two locations x, y
there is a third that is in the future of both x and y. This is because any two
future light-cones eventually intersect (but not so in general relativity, where the
effect of gravitation can prevent light-cones overlapping). Directedness causes the
Diodorean interpretation of � to validate the formula ��p → ��p, which is it-
self equivalent in the field of S4 to the formula �¬�p ∨ ���p that arises by the
McKinsey–Tarski translation of the intuitionistically invalid ¬p ∨ ¬¬p. Adding
��p → ��p to S4 gives the logic S4.2. Both S4.2 and S4.3 were introduced in
[Dummett and Lemmon, 1959], and shown to have the finite model property in
[Bull, 1964].

In [Goldblatt, 1980] a completeness proof is given to show that S4.2 is exactly
the Diodorean logic of n-dimensional Minkowski spacetime for all n ≥ 2, as well
as being the logic of the product structure (R,≤)× (R,≤).43 But the problem of
axiomatising the PF -calculi characterised by these spacetimes remains open.

5.3 Segerberg’s Essay

Krister Segerberg’s dissertation, An Essay in Classical Modal Logic [1971], pro-
vided a comprehensive semantic analysis of whole families of modal logics, as well

41See [Prior, 1967, pp. 57, 72].
42An error in the proof for rational time is corrected in [Bull, 1969].
43The latter result was obtained independently by V. B. Shehtman [1983].
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as developing important new concepts, some of which had been announced in his
papers of [1968a] and [1970]. These works established some notational and ter-
minological conventions that have been lasting. For instance the term frame44

was used in place of model structure, and the Lemmon–Scott satisfaction notation
|=M

x α was used throughout in place of Kripke’s Φ(α, x) = ⊤, where M = (S, Φ).
Later authors have tended to reduce the use of superscripts and write M |=x α
instead of |=M

x α. M |= α then means that α is true in M, i.e. true at all points
of M, and S |= α means that α is valid in the frame S.

The weakest system discussed in the Essay is E, the smallest logic that is closed
under the rule from α↔ β infer �α↔ �β. An algebraic semantics for this logic
would employ algebras A = (B, f) having f as a unary function on B satisfying no
particular conditions. The corresponding “relational” models use neighbourhood
semantics, the idea of which is attributed to Montague [1968] and Scott [1970].
Segerberg presents this by the device of a neighbourhood frame S = (K,N), where
N , the neighbourhood system, is a function assigning to each x ∈ K a collection
Nx of subsets of K, called neighbourhoods of x.45 Writing M(α) for the “truth
set” {y ∈ K : M |=y α} interpreting α in M, the satisfaction clause for � in a
model M on such a frame S is

M |=x �α iff M(α) ∈ Nx.

A topology on K has a naturally associated neighbourhood system in which X ∈
Nx iff x is interior to X, i.e. x ∈ U ⊆ X for some open set U . In this case
M(�α) is the topological interior of M(α), and the result is an S4-model. But
different logics can be characterised by validity in frames with weaker conditions
imposed on their neighbourhoods. A relational frame (K,R) is equivalent to the
neighbourhood frame (K,N) having U ∈ Nx iff {y : xRy} ⊆ U .

Any neighbourhood frame (K,N) has an associated algebra (P(K), fN ), where
the operation fN , interpreting � on the powerset algebra P(K), is given by

fN (X) = {x ∈ K : X ∈ Nx}.

Inversely, any function f : P(K) → P(K) induces the neighbourhood system Nf

on K, where

X ∈ Nf
x iff x ∈ f(X).

Thus, whereas Jónsson and Tarski’s analysis shows that relational semantics cor-
responds to completely additive and normal operators on powerset algebras (see
section 3.3), neighbourhood systems can be used to represent arbitrary operations
on such algebras. The relationship between neighbourhood frames and modal
algebras has been systematically investigated by Kosta Došen [1989].

Filtration (see section 5.1) was used extensively by Segerberg to prove com-
pleteness theorems. This technique can be effective in dealing with logics whose

44This term was suggested to Segerberg by Scott.
45Some authors use a relation R ⊆ K × P(K) in place of N , where xRU iff U ∈ Nx.
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canonical model does not satisfy some desired property, and comes into its own
when seeking to axiomatise logics defined by some condition on finite frames. For
example, Segerberg showed [1971, p. 68] that the normal logic K4W,46 with axioms

4 : �p→ ��p

W : �(�p→ p)→ �p,

is characterised by the class of finite frames (K,R) in which R is transitive and
irreflexive, i.e. a strict ordering. (This logic later proved important in studies of
the provability interpretation of modality. See section 7.5.) The basic method was
to obtain a falsifying model for a given non-theorem by filtration of the canonical
model, and then to “deform” this into a model of the desired kind without affecting
the truth value of the formula concerned. This involved an analysis of the way
a transitive relations presents itself as an ordered set of connected components,
called clusters. The method was applied in the Essay and the [1970] paper to
axiomatise a whole range of logics, including those characterised by the classes of
finite partial orderings, finite linear orderings (both irreflexive and reflexive), and
the modal and tense logics of the structures (K,R) where K is any of ω, Z, Q,
and R, while R is any of <, >, ≤, and ≥.

The logic characterised by the class of all finite partial orderings is particularly
significant. Segerberg proved [1971, p. 101] that it is S4Grz, the normal logic
axiomatised by adding to S4 the axiom

Grz : �(�(p→ �p) → p) → p.

He named this for Andrzej Grzegorczyk whose paper [1967] added a further insight
to the relationship between intuitionistic and modal logic. Grzegorczyk showed
that the formula

[((p 3 �q) 3 �q) ∧ ((¬p 3 �q) 3 �q)] 3 �q

is not a theorem of S4 (nor indeed of S5), and when added to S4 gives a system
into which the intuitionistic logic IPC can be translated by the Gödel–McKinsey–
Tarski procedures. The translation of a propositional formula is an S4-theorem iff
it is a theorem of Grzegorczyk’s stronger logic, which is deductively equivalent to
S4Grz.

Segerberg initiated the use of truth-preserving maps between relational models
and frames in [1968a]. Given models M and M′ on frames S = (K,R) and
S′ = (K ′, R′) respectively, a function ϕ from K onto K ′ was called a pseudo-
epimorphism from M to M′ if

(i) xRy implies ϕ(x)R′ϕ(y),

(ii) ϕ(x)R′ϕ(y) implies ∃z ∈ K(xRz & ϕ(z) = ϕ(y)), and

46K4W could be called KW, since the axiom 4: �p → ��p is deducible from W, as was shown
independently by several people, including de Jongh, Kripke and Sambin.
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(iii) M |=x p iff M′ |=ϕ(x) p.

For such a function every formula α has M |=x α iff M′ |=ϕ(x) α, so if M is a
model of α, then M′ will be also. From this it can be shown that if α is valid in
S, then the existence of a function from K onto K ′ satisfying (i) and (ii) implies
that α is valid in S′ as well.47

The name “pseudo-epimorphism” was shortened to “p-morphism” by Segerberg
in [1970; 1971] and this uninformative term has been very widely adopted, even
for functions that are not surjective but, in place of (ii), satisfy

(ii′) ϕ(x)R′w implies ∃z ∈ K(xRz & ϕ(z) = w).

The notion was generalised by Johan van Benthem [1976a] to that of a “p-relation”
between models, which is itself intimately related to the concept of a bisimulation
relation that has been fundamental to the study of computational processes (see
section 7.2).

There is another explanation of why functions of this type are natural and
important in the modal context. Any function ϕ : K → K ′ induces the function
ϕ+ : P(K ′) → P(K) in the reverse direction, taking each subset X of K ′ to its
inverse image {x ∈ K : ϕ(x) ∈ X}. This ϕ+ is a Boolean algebra homomorphism.
The conditions (i) and (ii’) are precisely what is required for it to preserve the
operators fR and fR′ , and hence be a homomorphism between the modal algebras
Cm(K ′, R′) and Cm(K,R). If ϕ is surjective, then ϕ+ is injective and so makes
CmS′ isomorphic to a subalgebra of CmS. Hence all modal-algebraic equations
satisfied by CmS will be satisfied by CmS′. But a propositional modal formula
α can be viewed as a term in the language of the algebra CmS, with α being
valid in the frame S precisely when the algebraic equation “α ≈ 1” is satisfied by
CmS. This gives another perspective on why validity is preserved by surjective
p-morphisms.

Of equal importance is the validity-preserving notion of subframe. This orig-
inated in Kripke’s definition in [1963a] of a model structure (G,K,R) as being
connected when K = {H : GR∗H}, where R∗ is the reflexive-transitive closure
of R. Lemmon adapted this in his [1966b] to the notion of the connected model
structure Sx generated from S by an element x, which is the substructure of S

based on {y : xR∗y}. He observed that a formula falsified by CmS must be falsi-
fied by CmSx for some x. Segerberg showed in [1971, p. 36] that a model M on
S can be restricted to a model Mx on Sx (the submodel of M generated by x)
in such a way that in general Mx |=y α iff M |=y α. From this it follows that any
formula valid in S will be valid in Sx, and conversely a formula valid in Sx for all
x in S will be valid in S itself (as essentially observed by Lemmon). This notion
of point-generated substructure turned out to be the relational analogue of the
notion of subdirectly irreducible algebra. Indeed the algebra CmS is subdirectly

47A surjection between partial orderings that satisfies (i) and (ii) was defined to be strongly
isotone in [de Jongh and Troelstra, 1966], where the notion was used to demonstrate connections
between partial orderings and certain algebraic models for intuitionistic propositional logic.
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irreducible iff S is equal to Sx for some x, a fact that was first demonstrated by
Wim Blok [1978b, p. 12], [1980, Lemma 4.1].

A frame S is a subframe of frame S′ if it is a substructure of S′ that is closed
under R′, i.e. if x ∈ K, then {y ∈ K ′ : xR′y} ⊆ K (some authors call this
a “generated” subframe even though there is no longer any generator involved).
Then the inclusion function ϕ : K →֒ K ′ is a p-morphism inducing ϕ+ as a
surjective homomorphism from CmS′ to CmS. Since equations are preserved by
surjective homomorphisms, modal-validity is preserved in passing from S′ to the
subframe S.

The disjoint union
∐

J Sj of a collection {Sj : j ∈ J} of frames also preserves
validity. The construction was first applied to modal model theory in [Goldblatt,
1974] and [Fine, 1975b].

∐
J Sj is simply the union of a collection of pairwise

disjoint copies of the Sj ’s. Each Sj is isomorphic to a subframe of
∐

J Sj , and
so the above properties of subframes guarantee that a formula is valid in

∐
J Sj

iff it is valid in every Sj .
These observations about morphisms, subframes and disjoint unions form the

basis of a theory of duality between frames and modal algebras that is discussed
in section 6.5.

6 METATHEORY OF THE SEVENTIES AND BEYOND

The semantic analysis of particular logics eventually gave way to investigations of
the nature of the relational semantics itself: the strengths and limitations of its
techniques, and its relationship to other formalisms, particularly first-order and
monadic second-order predicate logic. Some of the questions raised have yet to be
answered.

Throughout chapter 6 the term “logic” will always mean a normal logic.

6.1 Incompleteness

A logic Λ is sound with respect to a class C of frames if every member of C is a
Λ-frame, i.e. validates all Λ-theorems. By definition Λ is sound with respect to the
class Fr(Λ) of all Λ-frames. In the converse direction, Λ is complete with respect
to C if any formula that is valid in all members of C is a Λ-theorem. For example,
every normal logic is complete with respect to C = {SΛ}, where SΛ = (KΛ, RΛ)
is the canonical frame of Λ as defined in section 5.1. For if a formula is valid in
SΛ, then it is true in the canonical model MΛ on SΛ, and so is a Λ-theorem.
Whether or not Λ is sound with respect to SΛ is an important issue that will be
discussed in section 6.6.

A logic Λ is characterised by a class C if it is both sound and complete with
respect to C. Λ is complete per se if it is complete with respect to some class C of
Λ-frames, in which case it is characterised by that C, as well as by the class Fr(Λ)
of all Λ-frames. It is important to recognise that a given logic may be characterised
by many different classes. For example, S4 is characterised by each of the class of
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all quasi-orderings, the class of finite quasi-orderings, and the class of all partial-
orderings (but not the finite partial-orderings, which characterise S4Grz as we saw
in section 5.3).

Lemmon was sufficiently taken with the power of Kripke semantics to conjecture
that every normal logic is characterised by some class of relational frames [Lem-
mon, 1977, p. 74]. It turned out that this was as far from the truth as it could
be. Wim Blok showed that, in a manner which will be explained below, “most”
logics Λ are not characterised by any class of frames, and hence are incomplete
in the sense that there exist formulas that are valid in all Λ-frames but are not
Λ-theorems.

The first example of an incomplete logic was devised by Steven Thomason
[1972b], and is a readily described tense logic in Prior’s PF -language. In addition
to a set of postulates for linearly-ordered frames it has the axioms

Gp→ Fp

Pp→ P (p ∧ ¬Pp)

GFp→ FGp.

The first of these is valid in a frame (K,R) only if the “endless time” condition
∀x∃y(xRy) is satisfied. The second axiom is equivalent to H(Hp → p) → Hp,
which is Segerberg’s axiom W for the past modality H. Its validity entails that
R is irreflexive. Thus if x0 is a point in any frame validating the first two axioms,
{y : x0Ry} is an irreflexive linear ordering with no last element. Interpreting p
as a set such that both it and its complement are unbounded in {y : x0Ry} then
gives a model on the frame that falsifies the third axiom at x0. In this model the
truth-value of p alternates forever over time.

Thus Thomason’s logic is not valid on any frame whatsoever! In other words it
is indistinguishable in terms of frame-validity from the inconsistent logic in which
all formulas are theorems. But it is not itself inconsistent, because it is satisfied
by the algebra which consists of all the finite and cofinite subsets of the structure
(ω,<). In this algebra the interpretation of each formula is constrained to cease
changing with time.

It proved more difficult to devise incomplete �-logics, i.e. propositional logics
in a language with just one modality �. Unlike tense logic, any consistent normal
�-logic is validated by some frame, and in fact by some one-element frame. There
are two such structures: S◦ is the one consisting of a single reflexive point, while
S• consists of a single irreflexive point. S◦ characterises the normal logic Λ◦ =
K + (�p ↔ p) and S• characterises Λ• = K + �⊥, both of which are maximal
logics in the sense of having no proper consistent extensions. Makinson [1971]

proved that every consistent normal �-logic is either valid in S◦ or valid in S•

and so is a sublogic of one of Λ◦ and Λ•.
The first incomplete �-logics were found by Thomason [1974a] and Kit Fine

[1974], who independently constructed some rather complicated examples. Later
van Benthem [1978; 1979] found some simpler ones. The simplest unearthed to
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date is the normal logic with axiom

�(�p↔ p) → �p.

Lon Berk showed that any frame validating this formula also validates Segerberg’s
axiom W, while Roberto Magari showed that W is not a theorem of the logic.
Proofs of these results are presented in [Boolos and Sambin, 1985].

The degree of incompleteness of a logic Λ was defined by Fine [1974] as the
number of logics that are valid in exactly the same frames that Λ is. For any
class C, the set ΛC = {α : C |= α} of all formulas validated by C is, by definition,
characterised by C. If some other logic Λ is valid in all members of C and no
other frames, then Λ must be a proper sublogic of ΛC , with both having degree
of incompleteness ≥ 2. The logic K has degree 1: it is the only logic valid in all
frames whatsoever. Any Λ that has degree 1 must be complete, since it must be
equal to ΛC where C is the class of all Λ-frames. Fine asked which cardinals can
occur as the degree of incompleteness of some logic, and whether there are any
logics other than K that are “intrinsically complete” in the sense of having degree
1.

Those questions were resolved in a remarkable way by Blok, who proved that
any logic Λ containing the axiom �p→ p must have degree of incompleteness 2ℵ0 ,
so that there are uncountably many different logics which are indistinguishable
from Λ by the Kripke relational semantics. The same applies whenever Λ contains
the axiom �

np ↔ �
n+1p for some natural number n. As just one illustration of

this situation, consider the case of Λ◦ itself. The only connected Λ◦-frame is the
one-element reflexive frame S◦ (and any other Λ◦-frame is just a disjoint union of
copies of S◦). But there are uncountably many other (incomplete) logics whose
only connected validating frame is also S◦.

These results were obtained in 1979–1977, and published in [Blok, 1980]. The
report [Blok, 1978b] then gave the following complete answer to Fine’s two ques-
tions: every normal logic is either of degree 1 or of degree 2ℵ0 , and there are 2ℵ0

logics of degree 1. The degree 1 logics all have the finite model property. More-
over Blok provided a semantic characterisation of these degree 1 logics, using the
notion of a splitting logic. This is a logic Λs for which there is some other logic
Λ′

s such that every logic Λ has either Λs ⊆ Λ or Λ ⊆ Λ′
s, but not both. Thus the

collection of all normal logics is split into the two disjoint collections {Λ : Λs ⊆ Λ}
and {Λ : Λ ⊆ Λ′

s}. A simple example is given by putting Λs = K + �⊤ and
Λ′

s = Λ• = K + �⊥. If Λ � Λ•, then by the maximality of Λ•, �⊥ cannot be con-
sistently added to Λ, hence its negation �⊤ is a Λ-theorem, showing K+�⊤ ⊆ Λ.

Let Λ/S be the intersection of all logics that are not validated by frame S.
Then a logic is a splitting logic iff it is equal to the logic Λ/S for some finite
frame S that is generated from a point and has S |= �

n⊥ for some n. The last
condition holds for a finite S iff S is circuit-free, i.e. it includes no sequence of
the form x1Rx2 · · ·RxkRx1 for any k. If Λs = Λ/S is a splitting logic, then the
corresponding Λ′

s is the logic {α : S |= α} characterised by S.
Every splitting logic is of degree 1, and is finitely axiomatisable. A logic Λ is
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of degree 1 if and only if it is a join of splitting logics, i.e. is equal to the least
logic that includes the splitting logics Λ/S for all S in some collection C of finite
generated circuit-free frames. This is the same as requiring that Λ be the least
logic not validated by any member of C.

Blok used algebraic methods, studying varieties, or equationally defined classes,
of modal algebras rather than normal logics directly. He applied some powerful
new techniques, including the splitting notion that had been developed in lattice
theory by Ralph McKenzie [1972], and an important lemma of Jónsson [1967]

characterising subdirectly irreducible algebras in congruence distributive varieties.

Blok’s resolution of the issue of incompleteness for Kripke semantics was an-
nounced in his abstract [1978a], but his report [Blok, 1978b] giving the detailed
proofs was not published. Model-theoretic accounts of the results may be found
in [Chagrov and Zakharyaschev, 1997, ch. 10] and [Kracht, 1999, ch. 7].

The issue of the adequacy of neighbourhood semantics (see section 5.3) was
investigated in a series of papers by Martin Gerson [1975a; 1975b; 1976], who
showed that the two logics of [Thomason, 1974a] and [Fine, 1974], which are
not characterised by their relational frames, are also incomplete with respect to
their neighbourhood frames. He then gave examples of normal logics that are
complete under the neighbourhood semantics but not complete for any class of
relational frames. These possibilities can also be revealingly expressed in terms
of algebraic semantics, beginning with the observation that complete and atomic
Boolean algebras are, up to isomorphism, the same thing as powerset algebras.
As we observed in section 5.3, relational frames correspond to completely additive
and normal operators on powerset algebras, while neighbourhood frames represent
arbitrary operations on such algebras. Thus a logic that is incomplete for the
relational semantics is one that is not characterised by those of its complete and
atomic algebras whose operators are completely additive and normal; while a logic
that is incomplete for the neighbourhood semantics is one that is not characterised
by complete and atomic algebras at all.

6.2 Decidability and Complexity

The finite model property does not give a universal method for proving the decid-
ability of modal logics. Although every finitely axiomatisable logic with the finite
model property is decidable, the converse is not true. This was shown by Dov
Gabbay, building on some earlier work of Makinson [1969] which had exhibited
the first example of a normal logic that lacked the finite model property. Makin-
son’s example is a proper sublogic of S4, but all of its finite algebras satisfy S4 as
well.

Gabbay’s paper [1972] extended Makinson’s idea to produce finitely axiomatis-
able modal and tense logics that lacked the finite model property, but could still be
shown to be decidable by appealing to a powerful result of Michael Rabin [1969].
This concerns the decidability of monadic second-order theories of successor func-
tions, and has many applications. For each ordinal n with 2 ≤ n ≤ ω, consider
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the structure
Sn = (Tn, {sm : m < n}, ≤ , � ),

where Tn is the n-ary branching tree of all finite sequences of elements of the set
[n) = {m ∈ ω : m < n}, sm is the successor function x → xm on the tree, ≤ is
the “initial segment” ordering of sequences, and � is their lexicographical ordering
induced by the natural ordering < on [n). Rabin proved that the monadic second-
order theory SnS of the structure Sn is decidable. To do this he developed a
theory of finite-state automata that process infinite labelled trees, and established
the decidability of the emptiness problem of whether any given automaton accepts
at least one tree. The decidability of SnS was then reduced to this emptyness
problem. It was later shown that the decision problem for SnS is intractable:
Albert Meyer [1975] proved that no algorithm for deciding if a sentence is in
SnS can run in elementary time, i.e. time bounded by some fixed number of
compositions of exponential functions.

Gabbay developed a method of coding Kripke models into the structure Sω and
thereby reducing the decidability problem for certain logics to Rabin’s decidability
results for SωS. The technique is explained in Part 5 of the book [Gabbay, 1976],
where it is used to establish decidability results for many modal systems.

Gabbay’s method was later used by Cresswell [1984] in adapting an incomplete
logic from [van Benthem, 1979] to construct a decidable modal logic that is finitely
axiomatisable but incomplete with respect to Kripke frames (and hence lacks the
finite model property). Cresswell’s example is a proper sublogic of the logic charac-
terised by the class of finite strict linear orderings, but the two logics are validated
by exactly the same frames.

For any logic Λ, the problem of deciding if a given formula is Λ-provable is the
same as the Λ-validity problem of deciding if a given formula is true in all models
M such that M |= Λ. The Λ-satisfiability problem of whether a given formula is
true at some point of some Λ-model is equivalent to the validity problem in the
sense that α is Λ-satisfiable iff its negation ¬α is not Λ-valid. Thus a deterministic
algorithm that solved the validity problem could be used to solve the satisfiability
problem, and vice versa. But if nondeterministic algorithms are considered, the
two problems may differ as to their computational complexity. The classic example
of this concerns the set of non-modal propositional formulas. Satisfiability of any
of these can be tested in nondeterministic polynomial time. But the same is not
known for validity: to test the validity of a formula with n variables appears to
require examination of all 2n truth-value assignments to these variables.

To discuss this further, recall that NPTIME, or more briefly NP, is (informally)
the class of all problems that are solvable by a nondeterministic algorithm whose
running time for any execution is bounded above by some polynomial function of
the length of the input. Co-NP is the class of problems whose complement is in
NP. The Λ-satisfiability problem is in NP iff the Λ-validity problem is in co-NP.
The satisfiability of non-modal formulas is NP-hard, meaning that any problem
in NP has a polynomial-time reduction to this problem [Cook, 1971]. The Λ-
satisfiability problem for any consistent modal logic Λ is therefore also NP-hard.
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Since non-modal satisfiability itself belongs to NP, it is said to be an NP-complete
problem.

PSPACE is the class of problems solvable by a deterministic algorithm using
an amount of space that is polynomially bounded by the length of the input.
PSPACE includes NPTIME and is closed under complementation. It is also known
that any nondeterministic polynomially space-bounded algorithm is equivalent to
a deterministic one [Savitch, 1970]. Thus

NP ⊆ PSPACE = co-PSPACE = NPSPACE.

It is not known if the stated inclusion is proper, but it is widely believed that
PSPACE-complete problems are not in NP.

Richard Ladner [1977] applied these concepts to determine computational com-
plexities of some of the basic normal modal logics. He showed that the satisfiability
problem for each of the logics K, T, and S4 is in PSPACE, by optimising the space
requirements of the decision procedures from [Kripke, 1963a]. Hence the prov-
ability problems for these logics is in PSPACE as well. He proved further that
any problem in PSPACE has a polynomial time reduction48 to the provability
problem of any normal sublogic of S4. Thus provability for any of these logics is
PSPACE-hard, and for K, T, and S4 it is PSPACE-complete. The method used
was to reduce to Λ-provability a known PSPACE-complete problem, namely the
validity of quantified non-modal propositional formulas.

The logic S5 is more tractable than the sublogics of S4. Ladner showed that
S5-satisfiability is in NP, and therefore is NP-complete. The key to this result
is that S5 has the poly-size model property: poly-size model property any non-
theorem is falsifiable in a model whose size is a polynomial in the size of the
formula. Edith Spaan [1993] extended this to prove that every one of the (ℵ0

many) extensions of the logic S4.3 has the poly-size model property and has an
NP-complete satisfiability problem. On the other hand Joseph Halpern and Yoram
Moses [1985; 1992] showed that satisfiability for any logic having at least two S5-
modalities is PSPACE-hard.

As to undecidability, there must be undecidable logics because there are un-
countably many logics altogether but only countably many algorithms. In [Thoma-
son, 1975d] an undecidable modal logic is exhibited that is finitely axiomatisable,
and so cannot have the finite model property. This was produced by encoding a
presentation of a recursive function with undecidable range into a model of a logic
with a large number of temporal modalities, and then reducing this to a logic with
one modality by methods that are described below in section 6.4.

The question of how undecidable a logic can be was answered by Alasdair
Urquhart [1981] who showed that for any set X of natural numbers there ex-
ists a normal modal logic ΛX such that the decision problem for X is reducible to

48Actually he showed that these reductions are in “log-space”: they have a space requirement
bounded by a logarithmic function of the length of the input. This implies a polynomial time-
bound. Ladner originally proved the reduction result for T and for S4, and subsequently used
an argument of S. K. Thomason to extend it to all normal sublogics of S4.
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that of ΛX . Urquhart used this to construct a logic with the finite model property
that has a decidable set of axioms but is undecidable. Spaan [1993] showed that
there are (uncountably many) undecidable logics that have the poly-size model
property.

Undecidability of quantificational modal logic was considered by Kripke [1962]

in an early application of his model theory from [1959a]. Whereas the first-order
calculus of monadic predicates is decidable, the modal monadic calculus turns
out to be undecidable. Kripke showed that the decision problem for provability
of non-modal first-order formulas in a binary predicate R, which is known to be
undecidable, is reducible to that of modal formulas in two monadic predicates
P and Q, by replacing R(x, y) by �(P (x) ∧ Q(y)). This applies to any modal
system which is a sublogic of the quantificational version of S5 of [Kripke, 1959a]

and which obeys certain general rules satisfied by all then known systems and
“probably by the vast majority of those that will be proposed in the future”.

6.3 First-Order Definability

Validity of a modal formula α in a relational frame S = (K,R) is an intrinsically
second-order concept. α is valid when true at all points in all models on S. Since a
model interprets each propositional variable p in α as a subset of K, this amounts
to treating p as a set variable, or a monadic predicate variable. Meredith’s U -
calculus associates with α a formula (α)x in the first-order language of S, with x
as its sole free individual variable. If the propositional variables of α are p1, . . . , pk,
then regarding these as set variables we have that α is valid in S iff S is a model
of the sentence

∀p1 · · · ∀pk∀x (α)x

of the monadic second-order language of a binary predicate, i.e. the second-order
language in which all the second-order variables are monadic. This is a simple
kind of second-order sentence, technically known as Π1

1, with all its second-order
quantifiers being universal and at the front.

Some modal formulas express properties that are well-recognised as being second-
order in nature. For example, Segerberg’s axiom W is valid in S iff R−1 is tran-
sitive and well-founded (see [Boolos, 1979, p. 82]). However, a substantial reason
for the great success of the relational semantics is that many logics were shown to
be to be characterised by frames satisfying simple first-order conditions on R, like
reflexivity, transitivity, linearity etc. To consider this phenomenon, recall that a
class of relational frames is called elementary if it is definable in first-order logic,
i.e. if it is the class of all models of some set of sentences in the first-order language
of a binary predicate R. A basic elementary class is one that is defined by a single
first-order sentence.49 A modal logic is (basic) elementary if it is characterised by
some (basic) elementary class of frames.

49Some authors use “∆-elementary” in place of “elementary”, and “elementary” in place of
“basic elementary”.
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The Lemmon Notes provided many examples of basic elementary logics, and
formulated a conjecture about the situation, which will now be briefly described.
First we say that a modal formula is positive if it can be built from propositional
variables using only the connectives ∧, ∨, �, and �. If β is any positive formula
with variables p1, . . . , pk and m = (m1, . . . ,mk) and n = (n1, . . . , nk) are any
k-tuples of natural numbers, consider the formula

βm
n : �

m1�
n1p1 ∧ · · · ∧�

mk�
nkpk → β.

Associated with βm
n is a certain first-order condition Rβm

n on binary relations,
which can be read off from the formation of βm

n itself. The conjecture was that
the normal logic axiomatised by adding βm

n to K is characterised by the basic
elementary class of frames satisfying Rβm

n (see [Lemmon, 1977, p. 78]). This
was confirmed independently by the present author and Henrik Sahlqvist in 1973
[Goldblatt, 1974; 1975b; Sahlqvist, 1975], but Sahlqvist generalised the result con-
siderably to consider any formula of the type �

n(α → β) where n ≥ 0, β is
positive, and α is constructed from propositional variables and/or their negations
using only the connectives ∧, ∨, �, � in such a way that no positive occurrence of
a variable is in a subformula that has ∧, ∨, or � within the scope of a �. He proved
that the class of frames validating such a formula is definable by an explicit first-
order sentence, and that this basic elementary class characterises the normal logic
axiomatised by adding the formula to K. The result has been extensively analysed
and extended to “polymodal” logics and to equational classes of BAO’s in gen-
eral: see [Sambin and Vaccaro, 1989; Jónsson, 1994; de Rijke and Venema, 1995;
Givant and Venema, 1999].

The simplest formula not covered by Sahlqvist’s scheme is

M : ��p→ ��p,

commonly known as the McKinsey axiom.50 This is the �-version of the formula
GFp → FGp that figures as an axiom in Thomason’s incomplete tense logic. In
the Lemmon Notes a proof was given that the normal logic S4+M is characterised
by the elementary class of all quasi-ordered frames satisfying the condition

∀x∃y(xRy ∧ ∀z(yRz → y = z)).

Segerberg [1968a] then showed that this logic has the finite model property and is
characterised by the finite quasi-orders satisfying this condition. But the status of
the logic K+M remained unresolved.

It turned out that the class of all frames validating the McKinsey axiom is
not elementary, let alone basic elementary. This was proved in [Goldblatt, 1974,
§17], which showed further that no elementary class can characterise the logic
K+M, and indeed any class that does characterise this logic must fail to be closed

50This is something of a misnomer. The system S4+��p∧��q 3 �(p∧q) was investigated by
McKinsey [1945], who called it S4.1. Sobociński [1964] showed that it is the same as S4+(��p →
��p), and renamed it K1, since it is not a subsystem of S4.2.
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under ultraproducts. Van Benthem [1975] gave a Löwenheim-Skolem argument to
show that the class of all frames validating M is not even closed under elementary
equivalence.51 On the other hand Fine [1975a] proved that the logic K+M is in
some respects quite well-behaved: it has the finite model property, so is decidable
and is characterised by its (finite) validating frames.

From such examples the question naturally arises of when the collection Fr(α) =
{S : S |= α} of all frames validating the formula α is an elementary class. To
answer this, note first that the complement of Fr(α) is always closed under ul-
traproducts. That can be shown directly, or by observing that the complement of
Fr(α) is defined by an existential second-order sentence

∃p1 · · · ∃pk∃x¬(α)x

of the kind (Σ1
1) that is always preserved by ultraproducts.52 From this it follows by

the Keisler-Shelah characterisation of elementary classes53 that Fr(α) is elemen-
tary iff it is basic elementary iff it is closed under ultraproducts [Goldblatt, 1974;
1975a]. But then van Benthem discovered a striking strengthening of the result:

Fr(α) is basic elementary iff it is closed under elementary equivalence.

This means that any class of the form Fr(α) is quite special: if it is closed under
ultrapowers then it must be closed under ultraproducts. VanBenthem’s proof
was an interesting model-theoretic compactness argument,54 but in his published
version [van Benthem, 1976b] he used instead a subsequent argument of the present
author, namely that there is an injective p-morphism

(
∏

JSj) /F −→ (
∐

JSj)
J
/F

of any ultraproduct of frames Sj into the associated ultrapower of their disjoint
union

∐
J Sj , and this maps the ultraproduct isomorphically onto a subframe of

the ultrapower. Since Fr(α) is invariably closed under disjoint unions, subframes
and isomorphism, the desired result follows immediately from this embedding. But
the argument also works for the class Fr(Λ) of all frames validating a set Λ of
formulas, to show that

Fr(Λ) is elementary iff it is closed under elementary equivalence.

The study of the definability of modal formulas in predicate logic was dubbed
Correspondence Theory by van Benthem [1976a], who gave further expositions of
this theory in his works of [1983] and [1984].

51Two structures are elementarily equivalent when they satisfy the same first-order sentences.
52[Chang and Keisler, 1973, Corollary 4.1.14].
53[Chang and Keisler, 1973, Corollary 6.1.16].
54A discussion of van Benthem’s original proof is presented in [Goldblatt, 1999].
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6.4 Thomason’s Second-Order Reduction

A deep investigation of the expressive power of modal semantics was made by
Thomason in a series of papers [1974b; 1975b; 1975c; 1975d] reporting work, car-
ried out in 1973, that constitutes a tour de force of model-theoretical analysis in
combination with coding techniques of the kind used in recursion theory. This
confirmed his belief, expressed earlier in [1972a], that

propositional modal logic (with the usual relational semantics) must
be understood as a rather strong fragment of (classical) second-order
predicate logic.

A “logic” is taken to consist of a symbolic language together with a semantic
interpretation specifying when a formula is valid in a structure. M is the logic
given by the language of propositional modal logic with the semantics based on
frames (K,R) as structures, while T is the propositional tense logic of Prior’s PF -
language with structures (K,R−1, R). Each logic determines a logical consequence
relation Γ |= α between sets of formulas Γ and formulas α, meaning that α is
valid in every structure in which all members of Γ are valid. Thomason proved
in [1972a] that the Compactness Theorem fails in M for this relation: there is a
case of an α which is a logical consequence of some set Γ but not of any finite
subset of Γ . In the paper [1975b] he showed that there is a T-formula γ whose
set {α : γ |= α} of logical consequences is not effectively enumerable, and has a
high degree of undecidability—technically what is known as a complete Π1

1 set.
Moreover γ is categorical in the sense that all its connected validating structures
are isomorphic. In addition, for 0 ≤ m < ω + ω there is a categorical formula
γm whose unique validating structure has size �m, where �0 = ℵ0, �m+1 = 2�m ,
and �ω = lim{�m : m < ω}. The formula γ describes a structure which encodes
presentations of certain recursive functions that define a complete Π1

1 set. The
formulas γm describe structures that encode copies of the iterated powersets ω,
P(ω), P(P(ω)),. . . . The proofs of these facts are reminiscent of the arithmetisation
procedures and expressibility results involved in Gödel’s incompleteness theorems,
and graphically illustrate the expressive power of T. The facts themselves are
quite contrary to the situation in first-order logic, where the logical consequences
of a given sentence are effectively enumerable, and no sentence with an infinite
model is categorical.

A logic L1 is said to be reducible to a logic L2 if there exists an L2-formula
δ and an effective transformation ψ of L1-formulas to L2-formulas such that for
every collection Γ ∪ {α} of L1-formulas,

Γ |= α iff {δ} ∪ {ψ(γ) : γ ∈ Γ} |= ψ(α).

This definition captures the idea that L1 can be regarded as a fragment of the logic
L2, and is motivated by a notion of interpretation of one first-order theory in an-
other that appears in [Shoenfield, 1967]. Here δ may be thought of as describing a
certain structure, with ψ(γ) asserting that γ is valid in that structure. In [Thoma-
son, 1974b] it is shown that tense logic T is reducible to modal logic M. The
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formula δ used for this has the property that for any T-structure S = (K,R−1, R)
there is an M-structure S′ that contains within it definable copies of (K,R) and
(K,R−1) in such a way that “P” statements about S can be interpreted as “�”
statements about S′. Applying this reduction to the results about T from [1975b],
Thomason concludes that there is an M-formula whose set of logical consequences
is a complete Π1

1 set.
The full monadic second-order theory S of a binary predicate is shown to be

reducible to M in [Thomason, 1975c]. For this purpose the logic Tn of n temporal
orderings is introduced. It has n pairs of modalities P1, F1, . . . , Pn, Fn, and struc-
tures having n binary relations and their inverses to interpret these connectives. It
is shown that for n > 1, Tn is reducible to Tn−1. Since reducibility is a transitive
relation, it follows that each Tn is reducible to T (= T1), and hence reducible to
M. This is then applied to prove the reducibility of S. The argument involves
defining a T15-formula δ with the property that for each frame S = (K,R) there
is a model of δ with 15 temporal orderings that includes within it definable copies
of S; the powerset P(K); the membership relation from K to P(K); the set of all
(codes for) S-formulas, the set of all assignments in K and P(K) to the individ-
ual and set variables of S; and the satisfaction relation between S-formulas and
assignments in S as a second-order model. This leads to a reduction of S to T15,
which can then be combined with the reduction of T15 to M to give the desired
result. Thomason concludes that

the logical consequence relation of propositional modal logic (with the Kripke
relational semantics) is as complex as it could possibly be.

6.5 Duality and the Calculus of Class Operations

The keystone constructions in the general theory of algebras are homomorphic
images, subalgebras, and direct products. The famous Variety Theorem due to
Garrett Birkhoff [1935] states that a class of abstract algebras is a variety, i.e. is
definable by equations, iff it is closed under these three constructions. The stan-
dard convention in this subject is to use the letters H , S and P for the operations
that assign to each class of algebras its closure under homomorphic images, sub-
algebras, and direct products, respectively. Thus Birkhoff’s theorem states that a
class A of algebras is a variety if and only if HA ⊆ A and SA ⊆ A and PA ⊆ A. A
refinement due to Tarski [1946; 1955a] is that for each class A of algebras, HSPA
is the smallest variety that includes A. Hence HSPA is known as the variety
generated by A.

The corresponding constructions for relational modal semantics are subframes,
p-morphic images, and disjoint unions. As explained in section 5.3, a p-morphism
ϕ : S → S′ induces an algebraic homomorphism ϕ+ : CmS′ → CmS, allowing us
to show that if S is (isomorphic to) a subframe of S′ then CmS is a homomorphic
image of CmS′, and if S′ is a p-morphic image of S then CmS′ is (isomorphic
to) a subalgebra of CmS. Disjoint unions of structures correspond naturally to
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direct products of algebras via an isomorphism

Cm
∐

JSj
∼=

∏
JCmSj (1)

between the complex algebra of a disjoint union and the direct product of the
complex algebras of its factors.

The assignments S → CmS and ϕ → ϕ+ form a contravariant functor from the
category Frm of frames and p-morphisms to the category Malg of normal modal
algebras and homomorphisms. In the reverse direction there is a construction
that assigns to each normal BAO A a certain relational structure CstA, called
the canonical structure of A, whose points are the ultrafilters of A. The complex
algebra EmA = CmCstA of this structure is the canonical embedding algebra of
A, and is isomorphic to the perfect extension Aσ, as described in section 3.3. The
Jónsson–Tarski representation of A amounts to the fact that there is an injective
homomorphism A  EmA.

When applied to modal algebras, the assignment A → CstA gives rise to a
contravariant functor from Malg to Frm that takes each homomorphism θ : A →
A′ to a p-morphism CstA′ → CstA which maps each ultrafilter of A′ to its θ-
inverse image in A. These functors provide a duality between frames and modal
algebras. It is not however a dual equivalence, because we do not in general have S

isomorphic to CstCmS, or A isomorphic to CmCstA: the assignment S → CmS

increases cardinality, as does A → CstA for infinite A.
The category Frm is dually equivalent to the category of complete and atomic

modal algebras with
∑

-preserving homomorphisms [Thomason, 1975a]. To obtain
a category of structures equivalent to Malg it is necessary to modify the notion
of “frame”. A first attempt at this was made by Makinson [1970] who defined
a relational model as a structure (K,R,H), where H is a collection of truth-
valuations Φ on (K,R) in Kripke’s sense that satisfies certain closure properties.
That did not produce a full equivalence between algebras and models. A language
independent-approach was taken by Thomason [1972b] who defined a “first-order
semantics” using structures S = (K,R,P ), where P is a collection of subsets of K
that forms a subalgebra of the full complex algebra Cm(K,R). This subalgebra is
taken in place of Cm(K,R) as the algebra assigned to S. Validity in S is defined
as truth in all models M = (S, Φ) on S satisfying the constraint that the set
M(p) = {x : Φ(p, x) = ⊤} belongs to P for all variables p.

By imposing suitable restrictions on P , essentially set-theoretic versions of the
conditions (i)–(iii) of section 3.3 that defined the Jónsson-Tarski perfect extensions,
a notion of “descriptive” frame (K,R,P ) is arrived at. This theory was developed
in [Goldblatt, 1974], where the descriptive frames were shown to form a category
dually equivalent to Malg. A topological approach to duality for closure algebras
and quasi-orderings was independently investigated by Leo Èsakia [1974].

Connections between relational structures and algebras can be conveniently
expressed in the “calculus” of class operations. We use the symbols S , H , and
Ud for the operations of closing a class of structures under subframes, p-morphic
images, and disjoint unions, respectively. Pu and Pw are used for closure under
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ultraproducts and ultrapowers, while

CmC = {A : A ∼= CmS for some S ∈ C}

is the class of all (isomorphic copies of) complex algebras of structures in the class
C. Then the isomorphism (1) above implies that CmUdC = PCmC for any class C
of frames. Similarly, the representation

(
∏

JSj) /F −→ (
∐

JSj)
J
/F

from section 6.3 of an ultraproduct of frames as a subframe of an ultrapower of a
disjoint union yields the conclusion that in general

PuC ⊆ SPwUdC.

There are numerous properties that can be express in this way using class opera-
tions, for example

SHC ⊆ HSC, SCmHC = SCmC, SUdC = UdSC, PuSHC ⊆ HSPuC.

An inventory of such facts may be found in [Goldblatt, 1995; 2000].
Dual to the formation of the algebra EmA = CmCstA is the association with

any structure S of its canonical extension ExS = CstCmS, a structure whose
points are the ultrafilters on the underlying set of S (hence ExS is sometimes
called the ultrafilter extension of S). There is a p-morphism

SJ/F ։ ExS

from a suitably chosen ultrapower of any given frame S onto ExS, yielding the
observation that in general

ExC ⊆ HPwC. (2)

The proof of this requires the choice of a sufficiently saturated ultrapower of S

[Goldblatt, 1989, §3.6] and is motivated by a model construction of [Fine, 1975b]

that is discussed further in the next section.
Duality can be used to bring methods of universal algebra to bear on relational

semantics. A notable example is the problem of characterising classes of the form
Fr(Λ), the class of all frames validating a set Λ of modal formulas. The question
of when Fr(Λ) is elementary was discussed in section 6.3. It is natural to ask,
conversely, for conditions under which a given elementary class of frames is equal
to the class Fr(Λ) for some Λ. The following answer was given in [Goldblatt
and Thomason, 1975], where the Ex construction was first introduced (see also
[Goldblatt, 1993, 1.20.6], [Goldblatt, 1989, 3.7.6(2)]).

If C is an elementary class of frames, then C is equal to Fr(Λ) for some
set Λ of modal formulas if, and only if,

1. C is closed under disjoint unions, p-morphic images and sub-
frames; and
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2. the complement of C is closed under canonical extensions, i.e.
ExS ∈ C implies S ∈ C.

The proof applies the Birkhoff–Tarski analysis of varieties to the variety generated
by CmC, and uses the construction for (2) above to show that if C is elementary
and closed under p-morphic images then it is closed under canonical extensions.

Duality theory has been developed for arbitrary relational structures and BAO’s
by using suitable generalisations of p-morphisms and subframes, called “bounded”
morphisms and “inner” substructures (Goldblatt [1989; 1995]). This provides al-
gebraic and relational semantics for polymodal languages having n-ary connectives
which generate formulas �(α1, . . . , αn) for n > 1. Most of the ideas and results
we have discussed about completeness, canonicity, elementarity, class operations
etc. carry over to this broader context and apply to cylindric algebras, relation
algebras and other kinds of BAO’s in addition to modal algebras. This reveals
that, mathematically, much of modal semantics is just the case n = 1 of a broader
structural theory of finitary operators on lattices. A survey of this general theory
is given in [Goldblatt, 2000].

If Λ is a normal logic, then the class V (Λ) of modal algebras that satisfy all Λ-
theorems is a variety. Algebraic constructions in V (Λ) provide tools for studying
metalogical questions about Λ, such as whether it fulfills analogues of the Beth
Definability Theorem and the Craig Interpolation Theorem. This is related to
amalgamation properties of algebras in V (Λ), as has been shown by Larisa Maksi-
mova, whose article of [1992] gives an account of the subject and further references
to the literature.

6.6 Canonicity

A logic Λ is called canonical if it is valid in its canonical frame SΛ, in which case
it is characterised by this frame, and so is complete. Almost all proofs that a
particular logic is elementary have consisted of a demonstration that SΛ satisfies
some first-order conditions that imply validity of Λ. Such a proof establishes
also that Λ is canonical, a conclusion that is inescapable in view of the following
profound results of Kit Fine [1975b].

(i) If the class Fr(Λ) of all Λ-frames is closed under elementary equivalence and
characterises Λ (i.e. Λ is complete), then Λ is canonical.

(ii) If Λ is elementary (i.e. characterised by some elementary class), then Λ is
canonical.55

In fact something much stronger was proved. We have been using a language for
propositional modal logic that is based on a countably infinite set of variables, but

55At the time, (i) was not recognised as a consequence of (ii). However, as explained at the
end of section 6.3, it was later discovered that closure of Fr(Λ) under elementary equivalence
implies the ostensibly stronger assertion that Fr(Λ) is elementary. So (ii) does imply (i).
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we could consider larger languages by assuming we have available a variable pξ for
each ordinal ξ. Then for a given ordinal η we can generate the set Form(η) of
modal formulas having variables from the set {pξ : ξ < η}. A logic Λ as originally
conceived is a subset of Form(ω), but it has a manifestation Λη ⊆ Form(η) for
each η, obtained by closing Λ under uniform substitution in Form(η) when ω < η,
and by putting Λη = Λ ∩ Form(η) when η < ω. Then we can define a canonical
frame SΛ

η for each η, based on the maximally Λη-consistent subsets of Form(η).

SΛ
η is of cardinality 2cardη. If it validates Λη, we say that Λ is η-canonical.
Fine proved that under each of the hypotheses given in (i) and (ii), Λ is η-

canonical for all ordinals η. He also gave an example of a logic that is η-canonical
for all η, and is elementary, but for which Fr(Λ) is not closed under elementary
equivalence. Thus the converse of (i) is false.

The idea of the proof of (i) was to use disjoint unions to obtain a single model
M that characterised Λη and was based on a Λη-frame, then to view M as a first-
order model and take a saturated elementary extension of it that could be mapped
onto the canonical frame SΛ

η by a p-morphism. This was the first application of
saturated models to modal logic, and it motivated the construction for result (2) of
the previous section. The proof of (ii) combined it with an additional ultraproduct
construction.

Canonicity of a logic Λ is intimately connected with the question of whether
satisfaction of Λ is preserved by perfect extensions EmA = CmCstA of algebras or
canonical extensions ExS = CstCmS of frames. VanBenthem [1980] refined the
proof of Fine’s result (ii) above to show that

if a logic Λ is elementary, then the class Fr(Λ) of all Λ-frames is closed
under canonical extensions, i.e. S |= Λ implies ExS |= Λ.

Another way to describe this conclusion is to say that if Alg(Λ) is the variety
(equational class) of all modal algebras satisfying Λ, then in general CmS ∈ Alg(Λ)
implies CmExS ∈ Alg(Λ). But CmExS = EmCmS, so the conclusion says that
Alg(Λ) contains the canonical embedding algebras of all its full complex algebras.
This can then be strengthened, by applying duality theory, to show that Alg(Λ)
contains the algebra EmA for any of its members A [Goldblatt, 1989, Theorem
3.5.5]. Actually, to conclude that Alg(Λ) is closed under canonical embedding
algebras it is enough to know that Λ is valid in the canonical frame SΛ

κ for all
infinite cardinals κ. This follows by duality from the fact that SΛ

κ is isomorphic to
the canonical structure CstAκ, where Aκ is the free algebra in Alg(Λ) on κ-many
generators, together with the fact that each member of Alg(Λ) is a homomorphic
image of some such free algebra.

Ultimately this analysis can be generalised to any kind of Boolean algebra with
operators, to yield the following result:

if C is any class of relational structures of the same type that is closed
under ultraproducts, then the variety of BAO’s generated by the class
of algebras CmC is closed under canonical embedding algebras.
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This theorem was first formulated in [Goldblatt, 1989, Theorem 3.6.7], with a
proof that used the important result of [Jónsson, 1967] on subdirectly irreducible
algebras in congruence-distributive varieties and an obscure diagonal construction
on ultraproducts. An entirely different argument was given in [Goldblatt, 1991b]

and analysed further in [Goldblatt, 1995]. It used the fact (2) from the previous
section, i.e. ExC ⊆ HPwC, and another formula,

CstHSPCmC ⊆ SHUdPuC,

which shows how the canonical structures of algebras from the variety generated
by CmC can themselves be built from members of C. When C is closed under
ultraproducts, so that PuC = C, this takes the form

A ∈ HSPCmC implies CstA ∈ SHUdC,

showing how canonical structures mediate between the dual operations on algebras
and structures. This result in turn depends on another fundamental fact,

PuUbC ⊆ UbPuC,

which states that the ultraproduct operation commutes with bounded unions. A
structure S is the bounded union of a collection {Sj : j ∈ J} if the Sj ’s are all
inner substructures (subframes) of S and their union is S itself. This notion is
dual to that of subdirect product, and indeed in the situation just described there
is a subdirect product representation

CmS 
∏

JCmSj

of CmS induced by the surjections CmS ։ CmSj [Goldblatt, 2000, §4.5].

The first example of non-canonicity in the modal context occurs in [Kripke,
1967], where it is stated that Dummett’s Diodorean axiom

�(�(p→ �p) → �p) → (��p→ �p)

is not preserved by the Jónsson–Tarski representation of modal algebras. The
McKinsey axiom ��p→ ��p was shown not to be canonical in [Goldblatt, 1991a].

The formulas of Sahlqvist(see 6.3) define logics Λ for which the class Fr(Λ) is
elementary and includes all the canonical frames SΛ

η . These formulas have been

generalized by Maarten de Rijke and Yde Venema [1995], who defined Sahlqvist
equations for any type of BAO and showed that the structures S whose complex
algebras CmS satisfy such an equation form a basic elementary class. Jónsson
[1994] has refined the techniques of [Jónsson and Tarski, 1951] to develop an elegant
algebraic proof that varieties of BAO’s defined by Sahlqvist equations are closed
under canonical embedding algebras.

Fine’s theorem (ii) was strengthened by the present author to show that if Λ
is characterised by some elementary class then it is valid, not just in any canoni-
cal frame SΛ

η , but also in any frame that is elementarily equivalent to a canonical
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frame. In fact an even stronger generalization of (ii) can be obtained by restricting
attention to quasi-modal sentences. These are first-order sentences of the syntac-
tic form ∀vϕ, with ϕ being constructed from amongst atomic formulas and the
constants ⊥ (False) and ⊤ (True) using at most ∧ (conjunction), ∨ (disjunction),
and the bounded universal and existential quantifiers forms ∀z(yRz → ψ) and
∃z(yRz ∧ ψ) with y �= z. The relevance of quasi-modal sentences, and the reason
for the name, is that they are precisely those first-order sentences whose satisfac-
tion is preserved by the basic modal-validity preserving operations of S , H , and Ud

[van Benthem, 1983; Goldblatt, 1989]. By the quasi-modal theory of a structure
S we mean the set of all quasi-modal first-order sentences that are true in S.

It transpires that there is no quasi-modally-expressible property that can dif-
ferentiate the canonical frames of a logic Λ: the structures SΛ

η have exactly the
same quasi-modal first-order theory for all η. We will denote this unique quasi-
modal theory of the canonical Λ-frames by ΨΛ. Moreover, if Λ is not canonical,
then it always has a largest canonical proper sublogic Λc and a largest elementary
sublogic Λe (with Λe ⊆ Λc), and the quasi-modal theories ΨΛe

and ΨΛc

of these
other logics are identical to ΨΛ. These results are all proven in [Goldblatt, 2001a].
The strengthening of Fine’s result is as follows [Goldblatt, 1993, 11.4.2]:

If a modal logic Λ is characterized by some elementary class of frames,
then it is characterized by the elementary class of all models of the
quasi-modal first-order theory ΨΛ (which includes all the canonical
frames of Λ).

Fine asked if the converse of his (ii) was true: if a logic is canonical, must it be
characterised by an elementary class? The algebraic version of this question asks
whether a variety of BAO’s that is closed under canonical embedding algebras
must be generated by the complex algebras of some elementary class of relational
structures. This remained a perplexing open problem for three decades, during
which time a positive answer was found for all of the canonically closed varieties of
modal algebras, cylindric algebras and relation algebras that had been investigated.
Eventually however it was discovered that the converse of (ii) fails in general, and
does so as badly as it could. This is shown by Goldblatt, Hodkinson and Venema
[2004; 2003], exhibiting 2ℵ0 different canonical logics that are not characterised by
any elementary class. These examples all have the finite model property. They
include logics of every degree of unsolvability, and in particular undecidable logics
with decidable sets of axioms. Some of the examples are based on ideas from the
proof of the non-canonicity of the McKinsey axiom, while others use constructions
from the theory of graph colouring, and are related to the modal logic KMT studied
by George Hughes [1990]. The validating frames for KMT can be described as those
directed graphs satisfying the non-elementary condition that the set {y : xRy} of
children of any node x has no finite colouring. The logic has an infinite sequence
of axioms whose n-th member rules out colourings that use n colours. But KMT is
also characterised by the elementary class of graphs whose edge relation R satisfies



62 Robert Goldblatt

∀x∃y(xRyRy), meaning that every node has a reflexive child. The canonical KMT-
frame satisfies this condition.

Some of the logics that violate the converse of (ii) also have axioms that impose
reflexive points on canonical frames. But now a canonical frame is essentially the
disjoint union of a family of directed graphs, and it is only the infinite members
of the family that are required to have a reflexive point to ensure canonicity. This
is a non-elementary requirement. The proof that the logics are never elementarily
characterised involves a famous piece of graph theory of Paul Erdős [1959], who
showed that for each integer n there is a finite graph Gn whose chromatic number
and girth are both greater than n, the girth being the length of the shortest cycle
in the graph and the chromatic number being the smallest number of colours
needed to colour it. The essence of the application is that if a certain logic Λ were
characterised by an elementary class C, and infinitely many of the Gn’s validated
Λ, then by a compactness argument it would follow that C contained an infinite
graph that had no cycles of odd length. But such a graph can be coloured using
only two colours, a property that invalidates one of the axioms defining Λ. Hence
the existence of C is impossible.

7 SOME MATHEMATICAL MODALITIES

The seed of relational semantics sown in the 1950’s has grown into a tree with
many branches. The most notable new dimension of activity beyond that already
described has been the application of relational modal semantics to a range of
formalisms of computational and mathematical interest. This final section will
briefly survey some studies of this kind, providing a sketch of the key ideas and a
guide to the literature.

7.1 Dynamic Logic of Programs

Dynamic logic was invented by Vaughan Pratt, who described its origins in [1980a]

as follows.

In the spring of 1974 I was teaching a class on the semantics and axiomat-
ics of programming languages. At the suggestion of one of the students,
R. Moore, I considered applying modal logic to a formal treatment of a con-
struct due to C. A. R. Hoare, “p{a}q”, which expresses the notion that if p

holds before executing program a, then q holds afterwards. Although I was
skeptical at first, a weekend with Hughes and Cresswell convinced me that
a most harmonious union between modal logic and programs was possible.
The union promised to be of interest to computer scientists because of the
power and mathematical elegance of the treatment. It also seemed likely to
interest modal logicians because it made a well-motivated and potentially
very fruitful connection between modal logic and Tarski’s calculus of binary
relations.56

56The “weekend” reference is of course to the classic text of [Hughes and Cresswell, 1968].
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Pratt’s idea was to assign a box-modality [π] to each program π, with the formula
[π]α being read “after π, α”. Then Hoare’s construct57 p{π}q can be defined as
p→ [π]q, but more complex assertions about program correctness and termination
can be formalised by combining [π] with other connectives, including modalities
for other programs. The connective [π] is interpreted, not as an accessibility
relation between possible worlds, but as a transition relation Rπ between “possible
execution states”, with xRπy when there is an execution of π that starts in state
x and terminates in state y. The dual modality 〈π〉α, definable as ¬[π]¬α, asserts
that there is an execution of π that terminates with α true. In particular, 〈π〉⊤
asserts that there exists a terminating execution of program π.

Pratt’s first paper [1976] describes a predicate language with modalities for
a class of programs generated from basic assignments and tests by a number of
operations, including alternation π ∪ π′ and composition π;π′. The interpreting
relations for programs satisfy appropriate conditions, including Rπ∪π′ = Rπ ∪
Rπ′ and Rπ;π′ = Rπ ◦ Rπ′ . A complete axiomatisation was presented for the
language of these “loop-free” programs, and then the class of regular programs
was defined by adding the iteration construct π∗, with interpretation Rπ∗ =
reflexive transitive closure of Rπ. The universal quantifier ∀x was identified with
a modality [x← RANDOM] corresponding to a random assignment to the variable
x.

The purely propositional fragment of this language was isolated by Michael
Fisher and Richard Ladner [1977; 1979] who defined the system PDL of proposi-
tional dynamic logic of regular programs. Its programs are generated from some
set of atomic commands by the operations of alternation, composition and itera-
tion. A Kripke model for PDL assigns a binary relation to each atomic program,
and then interprets complex programs by the above conditions on Rπ∪π′ , Rπ;π′

and Rπ∗ . Fischer and Ladner proved that this semantically defined logic has the
finite model property by a version of the filtration construction. That method pro-
duces a falsifying model for a given non-theorem α whose size is exponential in the
length of α. The result was used to establish an upper bound of nondeterministic
exponential time for the complexity of the satisfiability problem: there is a nonde-
terministic algorithm for deciding PDL-satisfiability that runs in a time bounded
above by an exponential function cn of the length n of the formula concerned (for
some constant c). They also gave a lower bound of deterministic exponential time
for the complexity of this problem: there is a constant d > 1 such that no deter-
ministic algorithm can decide the satisfiability question for all formulas in time
less than dn. The technique used was to construct a PDL-formula that encodes
the computations of a certain kind of Turing machine that was known to require
exponential running time. The gap between these upper and lower bounds was
closed by Pratt [1980b], who used Hintikka’s model sets and tableaux methods to
give a deterministic exponential time algorithm for deciding satisfiability/validity
in PDL.

57[Hoare, 1969].
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A finite axiomatisation of PDL was proposed in [Segerberg, 1977], the most
notable feature being the induction axiom

p→ ([π∗](p→ [π]p) → [π∗]p).

The first proof of completeness for PDL was published by Rohit Parikh [1978a],
with other proofs being attributed to Gabbay, Segerberg [1982] and Pratt.58 The
first extensive study of quantificational dynamic logic was made in David Harel’s
1978 dissertation under Pratt’s supervision, published as [Harel, 1979].

Many variants of dynamic logic have been studied by varying the modelling,
the set of formulas, and the set of programs having associated modalities. De-
terministic programs are modelled by requiring Rπ to be a functional relation.
Program predicates may be used to express computational behaviour of particular
programs, such as loop(π), meaning that some execution of π fails to terminate,
and repeat(π), meaning that π can be repeatedly executed infinitely many times.
PDL programs can be viewed as regular sets of sequences of basic commands, but
allowing context-free sets of sequences as programs results in a stronger logic that
is Π1

1-complete and hence highly undecidable. This was shown by Harel, Pnueli
and Stavi [1983].

Dynamic algebras were introduced by Dexter Kozen and Pratt in 1979 and their
structure and representations investigated in a number of papers.59 They comprise
a “Kleene algebra” that abstracts the algebra of regular expressions and acts as
a collection of operators on a Boolean algebra. Concrete models are provided by
the complex algebras of Kripke models for PDL. But the relationship between the
operators interpreting π and π∗ in the algebra of a Kripke model is not equationally
expressible, and there are dynamic algebras that belong to the equational class
generated by the algebras of Kripke models but are not themselves representable
in such models.

Process logic was introduced in [Pratt, 1979] by interpreting a program, not
as a relation between states, but as the set of possible state-sequences that can
be generated by executing the program. In addition to “after”, he proposed the
following modalities

throughout π, α : α holds at every state of any sequence generated
in executing π.

during π, α : every π-computation has α true at some point.
π preserves α : in every π-computation, once α becomes true

it remains so thereafter.

Parikh [1978b] developed a decidable system of second-order process logic that sub-
sumed Pratt’s, and allowed quantification over states and state-sequences. Then
Nishimura [1980] combined PDL with some temporal connectives to devise a sys-
tem extending Parikh’s. All of these were subsumed by the powerful system of

58More background on the beginnings of dynamic logic is provided in [Goldblatt, 1986].
59See [Kozen and Tiuryn, 1990] for references.
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process logic of Harel, Kozen and Parikh [1982] which was shown to be decidable
by reduction to the second-order decidability results of [Rabin, 1969].

The article [Harel, 1984] surveys the first decade of dynamic logic, and there is
a further review in [Kozen and Tiuryn, 1990].

7.2 Hennessy–Milner Logic

Matthew Hennessy and Robin Milner [1980; 1985] applied modal logic to process
algebra in a manner that is reminiscent of the Kripke modelling of PDL. They
used a modal language to express assertions about transitions between processes
in such a way that two processes prove to be “observationally equivalent” just
when they satisfy the same modal properties.

A process is viewed as an agent that interacts with its environment by perform-
ing observable actions which cause it to change its state. Processes are identified
with their states, so an observation changes a process into a new process. The
notation 〈p, p′〉 ∈ Ri means that process p can become p′ by performing, or par-
ticipating in, the observation i. Thus Ri is a binary relation on a given set P of
processes, and we envisage a collection {Ri : i ∈ I} of such observation relations
corresponding to a set I of “types of observation”. A particular pair 〈p, p′〉 ∈ Ri

represents a single observation, and is also viewed as an “experiment” performed

by the observer on process p. (In subsequent literature the notation p
i
−→ p′ became

standard in place of 〈p, p′〉 ∈ Ri.)
The Hennessy–Milner modal language has no propositional variables, but con-

structs formulas from the constant ⊤ by the truth-functional connectives and the
modalities 〈 i 〉 for i ∈ I. The box modality [ i ] is defined to be ¬〈 i 〉¬. The relation
p |= α, meaning “process p satisfies formula α”, is defined inductively, with

p |= 〈 i 〉α iff for some i-experiment 〈p, p′〉, p′ |= α.

Two processes are regarded as equivalent if there is no observable action that either
can perform to distinguish them. Informally this means that to each observable
action that one can perform there is an action that the other can perform which
leads to an equivalent outcome, so each process can “simulate” the other. Spelling
this out,

p is equivalent to q if, and only if,

1. for every result p′ of an experiment on p, there is an equivalent result
q′ of an experiment on q; and

2. for every result q′ of an experiment on q, there is an equivalent result
p′ of an experiment on p

[Milner, 1980, p. 41]. As a definition of equivalence this appears to be circular,
since the word “equivalence” occurs on both sides of the “if and only if”. To
formalise the idea, a sequence of equivalence relations ∼n for n ≥ 0 is defined on
P . For each relation S ⊆ P × P , define a relation E(S) by putting 〈p, q〉 ∈ E(S)
if for every i ∈ I,
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1. 〈p, p′〉 ∈ Ri implies, for some q′, 〈q, q′〉 ∈ Ri and 〈p′, q′〉 ∈ S; and

2. 〈q, q′〉 ∈ Ri implies, for some p′, 〈p, p′〉 ∈ Ri and 〈p′, q′〉 ∈ S.

Put p ∼0 q for all p, q ∈ P , and inductively p ∼n+1 q if 〈p, q〉 ∈ E(∼n). Then
p and q are defined to be observationally equivalent, written p ∼ q, if p ∼n q for
every n.

Now a relation R ⊆ P ×P is image-finite if the set {p′ : 〈p, p′〉 ∈ R} is finite for
each p ∈ P . Hennessy and Milner gave a logical characterisation of observational
equivalence by showing that if each Ri is image-finite, two processes are equivalent
iff they satisfy the same formulas:

p ∼ q iff for all formulas α, p |= α iff q |= α. (∗)

Note that the operator E on relations is monotonic: R ⊆ S implies E(R) ⊆ E(S).
This property implies, by induction, that ∼n+1 ⊆ ∼n, and so iteration of E
generates a decreasing chain of relations

∼0 ⊇ ∼1 ⊇ ∼2 ⊇ · · · ⊇ ∼n ⊇ · · · · · ·

Let ∼ω=
⋂
{∼n: n ≥ 0} be the intersection of the chain. Then in the image-finite

case, ∼ω is the largest fixed point of the operator E, i.e. putting S =∼ω gives
the largest solution to the equation S = E(S) (see [Hennessy and Milner, 1985,
Theorem 2.1]). In that case 〈p, q〉 ∈ S iff 〈p, q〉 ∈ E(S), legitimizing the circular
definition of equivalence.

The monotonicity of E alone is enough to guarantee that E has a largest fixed
point (see section 7.4), but in the absence of image-finiteness this fixed point need
not be the relation ∼ω. It may be a proper subrelation of ∼ω that can only be
reached by iterating E transfinitely often. Consequently this largest fixed point
has become the general definition of the observational-equivalence relation ∼, and
it is only in the image-finite case that ∼ is identified with ∼ω.

This analysis indicates that standard induction on natural numbers n (applied
to the relations ∼n) may not be effective as a method for proving equivalence of
processes. Instead, as was first realised by David Park,60 a new kind of proof rule
is called for, based on the notion of a bisimulation. This is a relation S ⊆ P × P
satisfying S ⊆ E(S), i.e. 〈p, q〉 ∈ S implies (1) and (2) hold. The union of any
collection of bisimulations is a bisimulation, and so there is a largest bisimulation—
the union of all of them–which turns out to be the same as the largest fixed point of
E. In other words, the observational relation ∼ is the largest bisimulation on any
structure (P, {Ri : i ∈ I}). It is an equivalence relation in the mathematical sense
(reflexive, symmetric and transitive) and is known as bisimulation equivalence or
bisimilarity [Milner, 1989]. It

admits an elegant proof technique; to show p ∼ q, it is necessary and suffi-
cient to find some bisimulation containing the pair 〈p, q〉

60Information from Robin Milner, personal communication.
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[Milner, 1983, p. 283]. In the general setting, when ∼ is not equal to ∼ω, the
same modal-logical characterisation of bisimilarity as (∗) above can be obtained
by expanding the class of formulas to allow formation of the conjunction

∧
j∈J αj

for any set {αj : j ∈ J} (possibly infinite) of formulas.
The term “bisimulation” was first used in [Park, 1981] for a relation of mu-

tual simulation between states of two automata, with motivation from an earlier
notion of simulation of programs from [Milner, 1971]. Park showed that if two
deterministic automata are related by a bisimulation, then they accept the same
set of inputs. The concept and its use was systematically developed in [Milner,
1983]. It is closely related to the notion of “p-relation” of van Benthem [1976a]

mentioned in section 5.3. Segerberg’s p-morphisms are essentially bisimulations
(between Kripke models) that are total and functional.

Process algebra is now a substantial field, with many concepts and constructions
for building processes, and many important variations on the notion of observa-
tional equivalence or bisimilarity (see [Bergstra et al., 2001]). For any given family
of transition systems, i.e. systems of observation relations, we can seek to devise
modalities that generate formulas giving a logical characterisation of the bisimi-
larity relations for those systems in the manner of (∗). This programme has been
carried out for many cases. Logics for more recently developed theories of “mo-
bile” and “message-passing” processes are discussed in [Milner et al., 1993] and
[Hennessy and Liu, 1995]. They provide modalities that formalise complex struc-
tural assertions, for example the formula 〈c!x〉α expressing “it is possible to output
some value v on channel c and thereby evolve to a state in which α[v/x] is true”.

Axiomatisations of various modal process logics may be found, inter alia, in
[Stirling, 1987] and [Larsen, 1990]. Other work on modal aspects of process algebra
is collected in [Ponse et al., 1995].

7.3 Temporal Logic for Concurrency

In 1977 Amir Pnueli, motivated by a reading of [Rescher and Urquhart, 1971],61

proposed to use temporal logic to formalising reasoning about the behaviour of con-
current programs involving a number of processors acting in parallel and sharing
a memory environment, so that each can alter the values of variables used by the
others (see Pnueli [1977; 1981]). This is particularly relevant to the specification
and analysis of reactive programs, like operating systems and systems for airline
reservation or process control, that repeatedly interact with their environment
and are not expected to terminate. As such a program runs, each success state
is obtained by one processor being chosen to execute one instruction. Thus from
an initial state x0, many different sequences x0, x1,. . . of states may be generated
depending on which processors get chosen to act at each step.

Pnueli observed that temporal modalities could be used to formulate computa-
tionally significant properties of execution sequences, such as fair scheduling (no
processor is delayed forever), freedom from deadlock (when none can act), and

61See [Hasle and Øhrstrøm, 2004, p. 222].
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many others. He used Prior’s future-tense modality G (and its dual F ), but with
the Diodorean reading of “at all future states including the present”, as well as
a connective X with the reading “at the next state”. The latter had first been
introduced to tense logic for discrete time by Dana Scott (see [Prior, 1967, p. 66]).
Programs do not appear in the syntax in this approach. Instead, temporal formu-
las describe properties of a particular execution sequence of a single (concurrent)
program.

The paper of Gabbay, Pnueli, Shelah and Stavi [1980] added a binary connective
U to this formalism, with αUβ meaning “α until β”, i.e. “β will be true, and α
will be true at all times until β is”. This connective and its past-tense version
α since β had been studied by Hans Kamp [1968] who showed that they form
an expressively complete set of connectives in the sense that for models in which
time is a complete linear ordering, all tense-logical connectives can be defined in
terms of them. Gabbay et al. adapted this to show that U by itself plays a similar
role for the future-tense logic of state sequences. They gave an axiomatisation for
this extended logic, which they called DUX, and proved that it is decidable. By
way of illustration of the expressive completeness of U , they noted that Fα can be
defined as ⊤Uα, and then Gα as ¬F¬α, while Xα can be defined as ⊥Uα. DUX
is now more commonly known as PLTL (propositional linear temporal logic).

Since there are many different execution sequences with a given starting state
any particular sequence is just one “branch” or “path” of the “tree” of all possible
future states. Considering the tree as a whole gives rise to some interesting new
modalities that can formalise reasoning about future behaviour. This line was
pursued by Ben-Ari, Pnueli and Manna [Ben-Ari et al., 1983], defining a system
UB (the unified system of branching time), which combined G and X with the
symbols ∀, ∃ for quantification over paths to produce the following modal forms:

∀Gα : along all future paths, α is true at all states.
∃Gα : along some path, α is true at all states.
∀Xα : along all paths, α is true at the next state.

Dual modalities were defined by writing ∃F for ¬∀G¬, ∀F for ¬∃G¬, and ∃X for
¬∀X¬. The logic UB was shown to be finitely axiomatisable and have the finite
model property, using semantic tableaux methods. It was also stated that, in
contrast to PLTL, no temporal language for branching time with a finite number of
modalities could be expressively complete, this theorem being credited to Gabbay.

The until connective U was added to UB by Edmund Clarke and Allen Emer-
son [1981] to define the system CTL of Computation Tree Logic, which was ax-
iomatised and shown to have the finite model property by Emerson and Joseph
Halpern [1982; 1985]. CTL has the limitation that the path quantifiers ∀ and
∃ are tied to a single linear-time state quantifier (modality) as in the forms ∀G,
∃F , or a single instance of U as in ∃(αUβ) etc. It does not allow a combination
like ∃GFα, expressing “there is a path along which α is true infinitely often”, a
property of relevance to fair scheduling conditions. Emerson and Halpern [1983;
1986] devised a new system CTL* that allows such formations. It distinguishes
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between state formulas, which are true or false at each state, and path formulas,
which are true or false of each path. The path formulas include the state formulas
and both categories are closed under the truth-functional connectives. If α, β are
path formulas then αUβ, Gα and Xα are path formulas, while ∀α and ∃α are state
formulas. ∀α (respectively ∃α) is true at state s iff α is true of all (respectively
some) paths that start at s.

In addition to being more expressive than CTL, CTL* is more complex. Whereas
CTL and PDL are decidable by algorithms that run in deterministic exponential
time, the complexity of CTL* is that of deterministic doubly exponential time. The
lower bound here was established by Moshe Vardi and Larry Stockmeyer [1985],
and the upper bound by Emerson and Charanjit Jutla [1988; 1999]. Methods from
tree automata theory are used to prove decidability results in this context. Models
can be viewed as infinite branching trees, or at least can be “unravelled” into such
tree structures. Associated with each formula α is an automaton Aα that accepts
a tree model iff it it satisfies α at its root. Thus the satisfiability problem for many
logics can be reduced to the emptiness problem for automata on infinite trees that
was shown to be decidable in [Rabin, 1969] (see section 6.2). This technique was
first developed in the 1980 Masters thesis of Robert Streett (see [1982]) who used
it to prove the decidability of PDL with the repeat construct.

The logic CTL* was defined semantically, and a sound and complete axioma-
tisation of it was hard to find. Eventually one was provided by Mark Reynolds
[2001].

A property of paths not expressible in linear time logic, or even in CTL*, is
that a formula be true at every even state along the path (and possibly at others).
Sets of sequences that have this property can be generated by formal grammars, or
characterised by finite-state automata that process infinite strings. Pierre Wolper
[1983] showed that any regular grammar gives rise to a temporal connective cre-
ating formulas that are true just of paths generated by that grammar in a certain
way. He also showed that the linear time connectives G, F , X and U can each
be expressed by such a grammar, and dubbed this formalism ETL for “Extended
Temporal Logic”. The idea can be applied to branching time systems, and leads
to a logic ECTL* into which CTL* can be translated (see [Thomas, 1989]).

Surveys of computational temporal logic, and its various applications to reason-
ing about programs, are given in [Emerson, 1990] and [Stirling, 1992].

A different kind of use of modalities of the branching-time type was made by
Glynn Winskel [1985] in constructing powerdomains. These structures arise in the
denotational semantics of programs, and are intended to provide domain-theoretic
analogues of powersets. In dynamic logic a non-deterministic program is modelled
as a binary transition relation R on a set S of possible program states. Alterna-
tively this can be viewed as a function from S to its powerset P(S), taking each
state x ∈ S to the set {y : xRy} of states that can be reached by different possible
executions of the program. Analogously, given a domain D, a non-deterministic
program may be modelled as a function from D to its powerdomain.

There are several different powerdomain constructions, and Winskel shows how
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to build them out of formulas of some modal languages associated with D. This
involves tree-like models of the languages that represent certain computations.
For the “Smyth” powerdomain a modality � is used that it read “inevitably”. �α
has the same meaning in these models as the CTL-modality ∀Fα, i.e. along every
future path there is a state at which α holds. The construction of the “Hoare”
powerdomain uses �, for “possibly”, with �α meaning that there is a future path
with α true somewhere, i.e. ∃Fα. For the “Plotkin” powerdomain, both of these
modalities are involved.

7.4 The Modal µ-Calculus

Mathematics and computer science abound with concepts and objects that are
defined recursively, or self-referentially. Many of these have an elegant formulation
as special fixed points of certain operations. The μ-calculus Lµ of Kozen [1982;
1983] admits formulas that are interpreted as fixed points, and is expressively more
powerful than any of the modal program logics considered above.

Let Θ : P(S) → P(S) be an operation on the powerset of a set S. Tarski applied
the term “fixpoint” to any subset T of S such that Θ(T ) = T . If Θ is monotonic
in the sense that T ⊆ T ′ implies Θ(T ) ⊆ Θ(T ′), then Θ has a least fixpoint μΘ
and a greatest fixpoint νΘ, given by

μΘ =
⋂
{T ⊆ S : Θ(T ) ⊆ T},

νΘ =
⋃
{T ⊆ S : T ⊆ Θ(T )}.

The fact that Θ has a fixpoint was first shown by Tarski and B. Knaster in 1927.
In 1939 Tarski generalised this to any monotonic function on a complete lattice,
showing that its fixpoints also form a complete lattice, with greatest and least
elements specified by the lattice versions of the definitions just given (see [Tarski,
1955b] for this historical background).

Pratt [1981] introduced the idea of using a “minimisation” operator in a PDL-
like context, but interpreted μ as a least root operator rather than a least fixpoint
one. He developed a language of terms intended to denote elements of a Boolean
algebra, with a term of the form μQ.τ(Q) interpreted as the least solution of the
equation “τ(Q) = 0”. A syntactic restriction was imposed on τ to ensure that
at least one solution exists. A translation of PDL into the resulting calculus was
given, and the system was shown to have the finite model property by a refinement
of the McKinsey method. A deterministic exponential time algorithm was given
for the problem of deciding satsfiability terms.

Pratt’s work provided the inspiration for Kozen’s development of the calculus
Lμ, whose language is generated from some collection Π of atomic programs (or
action labels) π. Lμ-formulas are constructed from propositional variables using
the truth-functional connectives, the modalities [π] and 〈π〉 for π ∈ Π, and the
constructions μp.α and νp.α, where p is a propositional variable and α is a formula.
The operations μp and νp function like quantifiers, binding occurrences of p in α.
μp.α and νp.α are only allowed to be formed when α is positive in the sense that all
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free occurrences of p in α are within the scope of an even number of negations ¬.
This condition is satisfied for instance by any formula constructed from variables
using only ⊤, ⊥, ∧, ∨, [π], 〈π〉, μp and νp. The “binder” ν is definable in terms of
μ by taking νp.α as ¬μp.¬α(¬p/p). Vice versa, μ could be defined in terms of ν.

An Lμ model M = (S, {
π
−→: π ∈ Π}, Φ) is just like a Kripke model for dynamic

logic, or a labelled transition system for Hennessy–Milner logic augmented by a
valuation Φ to interpret the variables p. M gives each formula α the interpretation
M(α) = {x ∈ S : M |=x α}. If α contains the variable p, then varying the
interpretation of p causes the interpretation of α to vary, and in this way α induces
an operation on P(S). To make this precise, for T ⊆ S let Mp:=T be the model
that is identical to M except in interpreting p as T , i.e. Mp:=T (p) = T . Then the
operation induced by α on P(S) relative to M is the function

ΘM
α : T −→Mp:=T (α).

If α is positive, then Θα is monotonic. Assuming inductively that Θα has been
specified, M(μp.α) and M(νp.α) are defined to be the least and greatest fixpoints
μΘM

α and νΘM
α given by the Tarski–Knaster Theorem.

The meaning of μp.α and νp.α for particular α can be hard to fathom, but it
helps to think of them as solutions of the equation “p = α” and repeatedly replace
p by α in α itself. It turns out that μp.(α ∨ 〈π〉p) has the same interpretation in
a model as the PDL-formula 〈π∗〉α, while νp.(α ∧ [π]p) has the same meaning as

[π∗]α. Also μp.〈π〉p is true at x0 iff there is an infinite sequence x0
π
−→ x1

π
−→ · · ·

in M, which is the condition for truth of the formula repeat(π). Using these
observations it can be shown that the logic PDL with the repeat construct has a
simple translation into the μ-calculus.

A CTL-model can be viewed as an Lμ-model with a single transition relation
π
−→, and with a path being a sequence x0

π
−→ x1

π
−→ · · · in the model. CTL

translates into Lµ by translating ∃(αUβ) as μp.β ∨ (α ∧ 〈π〉p) and ∀(αUβ) as
μp.β ∨ (α∧ [π]p∧ 〈π〉⊤). The Lµ-formula νp.α∧ [π][π]p means “along all paths, α
is true at every even state”, a property expressible in ECTL* but not CTL*. Mads
Dam [1994] has constructed algorithms for translating both CTL* and ECTL* into
Lµ.

Kozen proposed a finite axiomatisation of Lµ which, for the binder μ, has the
axiom schema

α(μp.α/p) → μp.α

and the inference rule:

from α(β/p) → β infer (μp.α) → β if p is not free in β.

Validity of the axiom follows from the fact that T = μΘM
α is a solution of the

“inequality” Θ(T ) ⊆ T , and soundness of the rule is due to μΘM
α being the least

such solution. Kozen was able to prove the completeness of a limited fragment of
Lµ for which he also showed the finite model property and an exponential time
decision procedure. The full Lµ was proved decidable by Kozen and Parikh [1984]



72 Robert Goldblatt

by reduction to Rabin’s SnS. Streett and Emerson [1984; 1989] used tree automata
to improve this to a deterministic triple-exponential time decision algorithm and
establish the full finite model property. Emerson and Jutla [1988; 1999] sharpened
the complexity result further to a deterministic exponential time algorithm, which
is the best possible result since it is the lower bound for PDL and therefore for
the μ-calculus. Kozen [1988] gave a different proof of the finite model property
using techniques from the theory of well-quasi orders, and proved a completeness
theorem for Lµ using an infinitary rule of inference.

The problem of whether Lµ is complete for Kozen’s originally proposed axioma-
tisation proved challenging, and remained open for some time. It was eventually
solved in the affirmative by Igor Walukiewicz [1995; 2000].

The formalism of the μ-calculus originates in some unpublished notes of Jaco
de Bakker and Dana Scott from 1969. Kozen’s inference rule derives from the
Fixpoint Induction rule of [Park, 1969]. Another early independent formulation
of a modal program logic with a greatest and least fixpoint operators appears in
[Emerson and Clarke, 1980]. For a recent survey of the field of modal μ-calculi,
see [Bradfield and Stirling, 2001].

7.5 Solovay on Provability in Arithmetic as a Modality

Let PA be the first-order system of Peano Arithmetic that is the subject of Gödel’s
incompleteness theorems, and let PA ⊢ σ signify that sentence σ is provable in
PA. Gödel showed that this notion can be “arithmetised” and expressed in the
language of PA itself. There is a PA-formula Bew(v) with one free variable v such
that in general PA ⊢ σ iff the sentence Bew(�σ�) is true (i.e. true of the standard
PA-model (ω,+, ·, 0, 1) ). Here �σ� is the numeral for the Gödel number of σ. Now
all PA-provable sentences are true, so for every σ the sentence

Bew(�σ�) → σ

is true. But it is not always PA-provable, a fact which is a manifestation of
the first incompleteness theorem. Gödel gave an example of this in his [1933],
observing that if the modality “provable” is taken to mean provable in PA then
some principles of S4 do not hold:

For example, B(Bp → p) never holds for that notion, that is it holds for no
system S that contains arithmetic. For otherwise, for example, B(0 �= 0) →
0 �= 0 and therefore also ¬B(0 �= 0) would be provable in S, that is, the
consistency of S would be provable in S.

Provability in S of the consistency of S would contradict the second incompleteness
theorem.

The question therefore arises as to which modal principles do hold if � is read
as “PA-provable”. To make this precise, define a realisation to be a function φ
assigning to each propositional variable p some PA-sentence pφ. This extends
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inductively to all modal formulas by taking ⊤φ to be (0 = 0), realising the non-
modal connectives as themselves, and defining

(�α)φ := Bew(�αφ�).

A modal formula α is PA-valid if PA ⊢ αφ for every realisation φ. The question
becomes that of determining which modal formulas are PA-valid.

The set of all PA-valid formulas is a normal logic, known as G (for Gödel).62 To
show that it is normal it is necessary to verify that the following hold in general:

PA ⊢ Bew(�σ → σ′�) → (Bew(�σ�) → Bew(�σ′�);

If PA ⊢ σ, then PA ⊢ Bew(�σ�).

These results were distilled by Martin Löb [1955] from properties of Bew that were
established in [Hilbert and Bernays, 1939]. Löb then proved

PA ⊢ Bew(�σ�) → Bew(�Bew(�σ�)�),

which shows that �p → ��p is PA-valid and hence a G-theorem. However the
other S4-axiom �p→ p is not PA-valid, and indeed not even the formula �⊥ → ⊥
is a G-theorem, since (�⊥ → ⊥)φ is

Bew(�0 �= 0�) → 0 �= 0,

which is not PA-provable by Gödel’s reasoning above.
Robert Solovay [1976] demonstrated that G is identical to Segerberg’s logic

K4W, discussed in section 5.3, which is characterised by the class of finite strictly
ordered (i.e. transitive and irreflexive) Kripke frames. The validity of the axiom
W, i.e.

�(�p→ p) → �p,

follows from an answer given in [Löb, 1955] to a question raised by Leon Henkin
in 1952 about the status of sentences that assert their own provability. Any PA-
formula F (v) has fixed points : sentences σ for which

PA ⊢ σ ↔ F (�σ�)

(this is usually called the Diagonalisation Lemma). A fixed point of Bew(v) has

PA ⊢ σ ↔ Bew(�σ�)

so is equivalent to the assertion of its own provability. Must it in fact be provable?63

Löb answered this in the affirmative by proving that

if PA ⊢ Bew(�σ�) → σ, then PA ⊢ σ.

62Also known as GL for Gödel–Löb.
63This is a generalisation of Henkin’s question: see [Smoryński, 1991] for discussion.
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Equivalently, if Bew(�Bew(�σ�) → σ�) is true then so is Bew(�σ�), i.e. the sen-
tence

Bew(�Bew(�σ�) → σ�) → Bew(�σ�)

is true. But more strongly it can be shown that this sentence is PA-provable for
any σ, including σ = αφ, giving the PA-validity of W.

Solovay’s completeness theorem for G is a remarkable application of the ma-
chinery of arithmetisation and recursive functions to show that any finite strictly
ordered frame (K,R) can be “embedded into Peano Arithmetic”. A recursive
function h : ω → K is defined that is in fact constant, but which cannot be proven
to be constant in PA. Each element x of K is represented by a sentence σx ex-
pressing “limn→∞ h(n) = x”. This sentence is consistent with PA, i.e. PA � ¬σx.
The construction has a flavour of self-referential paradox similar to that of Gödel’s
incompleteness proof, because the sentences σx are used to define the function h
itself. But that is resolved by some version of diagonalisation.64 The structure of
the ordering R is represented in PA by the fact that if xRy then

PA ⊢ σx → ¬Bew(�¬σy�),

and if not xRy then
PA ⊢ σx → Bew(�¬σy�).

Any model M on this frame determines a realisation φ by putting

pφ =
∨
{σx : M |=x p}.

Then the truth conditions in M are PA-representable by the fact that for any
modal formula α,

if M |=x α then PA ⊢ σx → αφ; while

if M �|=x α then PA ⊢ σx → ¬αφ and so PA ⊢ αφ → ¬σx.

Since PA � ¬σx, the last case gives PA � αφ, showing α is not PA-valid. Therefore
any PA-valid formula must be true in all models on finite strictly ordered frames,
and therefore be a G-theorem.

A modal formula α is called ω-valid if αφ is true for all realisations φ. The
set G* of all ω-valid formulas is a logic that includes G, but also includes �p →
p, since Bew(�σ�) → σ is always true. However Gödel’s example shows that
Bew(�Bew(�⊥φ�) → ⊥φ �) is not true, so G* does not contain �(�p → p), and
therefore is not a normal logic. Solovay extended his analysis of G to prove that
G* can be axiomatised by taking all theorems of G and instances of �α → α as
axioms, and detachment as the only rule of inference.

Another natural reading of � in this context is “true and provable”, formalised
by modifying the definition of realisation to

(�α)φ := αφ ∧Bew(�αφ�).

64Solovay’s argument used Kleene’s Recursion Theorem on fixed points in the enumeration of
partial recursive functions.
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The fact that “provable” implies “true” might make it seem that “true and prov-
able” has the same status as “provable”, but this is not so because of the existence
of true but unprovable sentences of PA. In general, Bew(�σ�) is PA-provable iff
σ ∧Bew(�σ�) is PA-provable, and the two are equivalent in the sense that

Bew(�σ�) ↔ σ ∧Bew(�σ�)

is true, but this equivalence is not itself PA-provable unless σ is, by Löb’s theorem.
The modal logic of formulas PA-valid under this modified realisation turns out

to be the system S4Grz characterised by finite partial orderings (see section 5.3).
This was proved in [Goldblatt, 1978] by showing that replacing �α by α∧�α gives
a proof-invariant translation of S4Grz into G, and then applying Solovay’s theorem
for G.65 Since the intuitionistic propositional calculus IPC can be translated into
S4Grz (by the result of Grzegorczyk mentioned in section 5.3), these translations
can be composed to obtain a translation α → ατ of propositional formulas into
modal formulas such that α is provable in IPC iff ατ is PA-valid. In fact ατ is
PA-valid iff it is ω-valid [Goldblatt, 1978, theorem 5].

Research into the modal logic of provability since the 1970s has contributed
much to our understanding of the phenomena of self-reference and diagonalisation
that underly the incompleteness of PA and other systems. An account of the
origins of the subject has been given by George Boolos and Giovanni Sambin
[1991], and extensive expositions are provided in the books of Boolos [1979; 1993]

and Craig Smoryński [1985]. The most recent survey is that of Giorgi Japaridze
and Dick de Jongh [1998].

7.6 Grothendieck Topology as Intuitionistic Modality

By composing his semantic analysis of S4 with the McKinsey–Tarski translation of
IPC into S4, Kripke [1965a] derived a relational model theory for intuitionistic logic
based on structures S = (K,R) in which R is a quasi-ordering, i.e. reflexive and
transitive. He interpreted the members of K informally as “evidential situations”
temporally ordered by R. His paper presented a semantics for predicate logic,
proving completeness by the method of tableaux66. It also showed that attention
can be confined to structures that are partially ordered, i.e. antisymmetric as well.
By identifying elements x, y ∈ K whenever xRy and yRx we pass to a partially
ordered quotient S′ which validates the same intuitionistic formulas as S. More
strongly, any model on S has an equivalent model on S′. This contrasts with the
modal semantics on these structures: it can happen that S′ validates the modal
axiom Grz while S does not (see section 5.3).

Segerberg [1968b] studied the propositional fragment of this model theory, using
only partially ordered frames from the outset. He constructed canonical models

65The result was independently found by A. Kuznetsov and A. Muzavitski (Abstracts of Reports
of the Fourth All-Union Conference on Mathematical Logic, Kishiniev, 1976, p. 73, in Russian).

66An extension of intuitionistic predicate logic that is incomplete for Kripke’s semantics was
found by Hiroakira Ono [1973], and an incomplete extension of intuitionistic propositional logic
was obtained by Valentin Šehtman [1977].
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and applied the filtration method to prove the finite model property for a number
of logics, including some that are weaker than or independent of IPC. The fact that
IPC is characterised by the finite partially ordered frames, which also characterise
S4Grz under the modal semantics, provides a clear picture of why IPC translates
into S4Grz and not just S4.

Here is a brief description of the relational models for IPC. Given a partial
ordering S = (K,≤), a subset X of K will be called increasing if it is closed
“upwards” under the ordering, i.e. whenever x ∈ X and x ≤ y, then y ∈ X. The
definition of a model M = (S, Φ) requires that the set {x ∈ K : Φ(p, x) = ⊤} be
increasing for all propositional variables p. Formally this requirement is dictated
by the modal translation of p as �p, while informally it conveys the idea that once
p is established as true in a given evidential situation then it remains true in the
future. The truth conditions for implication and negation are

M |=x α→ β iff for all y ≥ x, if M |=y α then M |=y β,
M |=x ¬α iff for all y ≥ x, not M |=y α.

The modelling of ∧ and ∨ is as for classical logic. By induction it is demonstrable
that for each formula α the set M(α) = {x ∈ K : M |=x α} is increasing.

The topological and algebraic modellings of IPC from section 3.2 are in evidence
here. The increasing sets form a topology on K, and the associated Heyting algebra
of open sets satisfies a formula α iff α is valid in S, i.e. iffM(α) = K for all models
M on S. At the same time α is valid in S iff it is satisfied by the Brouwerian
algebra of closed subsets of this space, with the least element ∅ of the algebra
being designated. This follows from properties of the set

M(α) = {x ∈ K : not M |=x α}

of points at which α fails to hold in model M. M(α) is closed, being the comple-
ment of the open set M(α), and takes the designated value ∅ iff α is true in the
model M. These “falsity sets” can be reconstructed by applying the Brouwerian
operations that correspond to the propositional connectives:

M(α ∧ β) =M(α) ∪M(β)

M(α ∨ β) =M(α) ∩M(β)

M(α→ β) =M(α)÷M(β)

M(¬α) =M(α)÷K.

This analysis accounts for the dual nature of the Brouwerian algebraic semantics.

Modal systems based on intuitionistic logic typically take � and � as indepen-
dent connectives that are not interdefinable using ¬. Logics of this kind, using
one or both of � and �, have been studied by a number of authors, for a variety
of philosophical and technical motivations, beginning with a paper published by
F. B. Fitch in [1948]. The history of much of this work is reviewed in the disser-
tation of Alex Simpson [1994, §3.3]. Here we will consider another system which
has a particular mathematical significance associated with topos theory.
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A topos is a category E that may be thought of, roughly speaking, as a model
of intuitionistic higher order logic or set theory. It includes a special entity Ω, the
object of truth values, with morphisms

∩,∪, ⇒: Ω ×Ω → Ω, ¬ : Ω → Ω (3)

satisfying categorical formulations of the laws of Heyting algebra. A “global ele-
ment” of Ω is a morphism of the form 1 → Ω, where 1 is the terminal object of
E . In the category Set of all sets and functions 1 is a one-element set and mor-
phisms 1 → X correspond precisely to actual elements of the set X. Thus global
elements of Ω in a topos are also called truth values. The morphisms (3) induce
operations on the collection E(1, Ω) of truth values that make it into a Heyting
algebra, which is just the two-element Boolean algebra in the case of Set. But for
each topological space S there exists a topos in which E(1, Ω) is (isomorphic to)
the Heyting algebra O(S) of open subsets of S.

Grothendieck generalised the notion of a topology on a set to that of a topology
on a category, by generalising the notion of an open covering of a set. He used
this as a basis on which to formulate sheaf theory. F. William Lawvere and Miles
Tierney showed that the theory could be developed axiomatically by starting with
a topos E having a morphism j : Ω → Ω, called a topology on E , satisfying
properties that allow the construction of a certain sub-topos of “j-sheaves”. The
pair (E , j) will be called a site. The axioms for j are categorical versions of the
requirement that an operation on a lattice be

multiplicative : j(x · y) = jx · jy,
idempotent : j(jx) = jx, and
inflationary : x ≤ jx.

In the address at which he first announced this new theory Lawvere [1970] stated
that

A Grothendieck “topology” appears most naturally as a modal operator of
the nature “it is locally the case that”.

Intuitively, a property holds locally at a point x of a topological space if it holds
at all points “near” to x, or throughout some neighbourhood of x. Alternatively,
a property holds locally of an object if it is covered by open sets for each of which
the property holds. For example a locally constant function is one whose domain
is covered by open sets on each of which the function is constant.

Define a local operator67 on a Heyting algebra H to be any operation j that is
multiplicative, idempotent and inflationary, and call the pair A = (H, j) a local
algebra. The general theory of these algebras has been studied by Donald Macnab
[1976; 1981], who showed that local operators can be alternatively defined by the
single equation

(x⇒ jy) = (jx⇒ jy).

67Also known in the literature as a “nucleus”.
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Any local algebra is a candidate for modelling a modal logic based on the intu-
itionistic calculus IPC. Since j is multiplicative and has j1 = 1, this will be a
normal logic when � is interpreted as j, but there has been some uncertainty
as to whether a modality modelled by j is of universal or existential character.
Note that a local operator has a mixture of the properties of topological interior
and closure operators. It fulfills all of the axioms of an interior operator except
Ix ≤ x, satisfying instead the inflationary condition which is possessed by closure
operators. But topological closure operators are additive (C(x+ y) = Cx+ Cy), a
property not required of j.

Let J be the set of all modal propositional formulas satisfied by all local al-
gebras with 1 designated. The proof theory and semantics (algebraic, relational,
neighbourhood, topos-theoretic) of this logic was investigated in [Goldblatt, 1981]

where the symbol ∇ was used in place of � and interpreted as a “geometric”
modality. It was shown that J can be axiomatised by adding to the axioms and
rules for IPC the three axioms

∇(p→ q) → (∇p→ ∇q)

∇∇p→ ∇p

p→ ∇p.

The last axiom allows derivation of the rule from α infer ∇α. There are a number
of alternative axiomatisations of J, one of which is to add to IPC the axioms

(p→ q) → (∇p→ ∇q)

∇∇p→ ∇p

∇⊤.

As Macnab’s characterisation of local operators suggests, J can also be specified
by the single axiom

(p→ ∇q) ↔ (∇p→ ∇q).

In the presence of classical Boolean logic, the middle axiom ∇∇p → ∇p in the
first group is deducible from the other two, and the logic becomes the rather
uninteresting system K+(p → ∇p) whose only connected validating frames are
the two one-element frames S• and S◦ (see section 6.1). But in the absence of the
law of excluded middle we have a modal logic with many interesting models. In
particular it has relational models based on structures S = (K,≤,≺) which refine
the Kripke semantics for IPC. Here ≤ is a partial ordering of K and ≺ is a binary
relation interpreting ∇ as a universal quantifier in the familar way:

M |=x ∇α iff M |=y α for all y such that x ≺ y.

To ensure that M(∇α) is ≤-increasing it is required that x ≤ y ≺ z implies
x ≺ z. The logic J is characterised by the class of such frames in which ≺ is a
subrelation of ≤ that is dense in the sense that x ≺ y implies ∃z(x ≺ z ≺ y).
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There is a canonical frame SJ of this kind that characterises J, and the logic also
has the finite model property with respect to such frames. In addition there is a
characterisation of J by neighbourhood frames (K,≤, N) (see 5.3), where Nx is a
filter in the lattice of ≤-increasing subsets of K, and the following conditions hold:

x ≤ y implies Nx ⊆ Ny,

{y : x ≤ y} ∈ Nx,

{y : U ∈ Ny} ∈ Nx implies U ∈ Nx.

If ∇α is defined to be the formula ¬¬α, then the axioms of J become theorems of
IPC. Lawvere [1970] observed that

There is a standard Grothendieck topology on any topos, namely double
negation, which is more appropriately put into words as “it is cofinally the
case that”.

Now if Y and Z are subsets of a partially ordered set (K,≤), then Z is cofinal
with Y if every element of Y has an element of Z greater than it, i.e.

∀y ∈ Y ∃z ∈ Z y ≤ z.

The Kripke modelling of IPC has

M |=x ¬¬α iff M(α) is cofinal with {y : x ≤ y},

which explains Lawvere’s interpretation of double negation as a modality. On
the algebraic level, putting j(x) = −−x in a Heyting algebra H defines a local
operator whose set {x : −−x = x} of fixpoints is a Boolean subalgebra of H.
On the categorical level, putting j = ¬ ◦ ¬ defines a topology on any topos E
for which the associated subtopos E¬¬ of sheaves is a model of classical Boolean
logic. These constructions are mathematical manifestations of the double-negation
translation of classical propositional calculus into IPC, originating in a paper of
A. N. Kolmogorov [1925], which works by inserting ¬¬ in front of each subformula.

For any partially-ordered set S = (K,≤) there is a topos ES whose objects are
certain “set-valued functors” (P,≤) → Set, and whose algebra ES(1, Ω) of truth
values is isomorphic to the Heyting algebra of all increasing subsets of S. In the
case that S is an appropriate set of “forcing conditions”, the topos (ES)¬¬ of
“double-negation sheaves” becomes a model showing that the continuum hypoth-
esis (for example) is independent of the axioms for topos theory including classical
logic (see [Tierney, 1972]).

If j : Ω → Ω is a Lawvere–Tierney topology on topos E , then the site (E , j) can
be used to interpret modal formulas as truth values 1→ Ω in E . The morphism j
induces a local operator f → j ◦ f on the Heyting algebra E(1, Ω) of truth values
in E . If a formula is satisfied by the resulting local algebra then it is said to be
valid in the site (E , j).

The modal formulas that are valid in all sites are precisely the J-theorems. This
is shown in [Goldblatt, 1981] by the construction out of any J-frame S = (P,≤,≺)
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of a particular site (ES, jS) that validates exactly the same modal formulas as does
S. ES is the topos of functors (P,≤) → Set as above. The relation ≺ is used

to define jS. Applying this construction to the canonical frame SJ produces a
canonical site that characterises the logic J.

It is possible to study topoi from a logical perspective, building these categories
out of the syntactic and proof-theoretic machinery of formal languages of types.
By including a J-style modality in these languages the Lawvere–Tierney sheaf
categories can be constructed in such a way. This approach to the theory of
sheaves and topoi has been developed by John Bell [1988].

There have been several independently motivated introductions of versions of
the system J. A Gentzen-style calculus studied by Haskell Curry [1952] for proof-
theoretic purposes has rules for a possibility modality � that gives a variant of J

when � is identified with ∇. Recently the logic has re-emerged in a different guise
as the Propositional Lax Logic (PLL) of Matt Fairtlough and Michael Mendler
[1995; 1997]. This is a system based on intuitionistic logic that is intended to
formalise reasoning about the behaviour of hardware devices, like circuits, subject
to certain “constraints”. A modality © is used, with ©α having the intuitive
interpretation “ for some constraint c, α holds under c”. This appears to be an
existential reading of the modality, but the authors suggest that © “has a flavour
both of possibility and necessity”. Their proposed axioms are

(p→ q) → (©p→©q)

©©p→©p

p→©p,

showing that the system is indeed a version of J with © in place of ∇. They
give a relational semantics for PLL using structures (K,≤, R) with R being a
quasi-ordered subrelation of ≤. The connective © is interpreted by the universal-
existential clause

M |=x ©α iff for all y ≥ x there exists z such that yRz and M |=z α.

It is shown that (K,≤, R) validates the same formulas as the neighbourhood J-
frame (K,≤ N) of the above kind, where a ≤-increasing set U is a neighbourhood
of x (i.e. U ∈ Nx) iff

for all y ≥ x there exists z such that yRz and z ∈ U .

In other words, U ∈ Nx iff U is R-cofinal with {y : x ≤ y}.
Yet another manifestation of J is the CL-logic of Nick Benton, Gavin Bierman

and Valeria de Paiva [1998]. This is designed to analyse a typed lambda calculus,
due to Eugenio Moggi [1991], which gives a denotational semantics for programs
using a constructor T that produces a type of computations. The denotation
of a program computing values of type A is itself an element of the type TA.
The CL-logic is an intuitionistic propositional calculus corresponding to this type
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system, and has a “curious possibility-like modality �” corresponding to the type
constructor T . The axioms given for � are

�p→ ((p→ �q) → �q)

p→ �p,

again equivalent to the axiomatisation of J when � is identified with ∇.
Double negation constitutes just one way of combining non-modal connectives

to define a modality fulfilling the J axioms. Other possibilities are to define ∇α
to be any of β ∨α, β → α, or (β → α) → α, where β is some fixed (but arbitrary)
formula. Peter Aczel [2001] has studied the interpretation of ∇α as the second-
order formula ∀p((α→ p) → p), where the variable p ranges over all propositions.
He calls this the “Russell–Prawitz modality” because of its relevance to certain
definitions of the connectives ∧, ∨, ¬, ∃ in terms of → and ∀ that were introduced
by Bertrand Russell and later shown by Dag Prawitz to be derivable as equivalences
in second-order intuitionistic logic.

7.7 Modal Logic for Coalgebras

The mathematics of modality has recently been applied in theoretical computer
science to the category-theoretic notion of a coalgebra. This application is still
“under construction” but can already be seen as a natural evolution of some of
the trends that have been described in this article.

If T : C → C is a functor on a category C, then an algebra for T is defined
to be a pair (A, τA) comprising a C-object A and a C-arrow τA from TA to A.

A morphism from T -algebra TA
τA−−→ A to T -algebra TB

τB−−→ B is a C-arrow

A
f
−→ B such that f ◦ τA = τB ◦Tf . This is a categorization of the classical notion

of a homomorphism of abstract algebras. To explain that properly is beyond
our scope, and the interested reader should consult such sources as [Mac Lane,
1971, especially §VI.8] and [Manes, 1976] for enlightenment. But the idea can
be illustrated by considering the category Malg of (normal) modal algebras and
their homomorphisms (section 6.5), which is the category of algebraic models of
the smallest normal modal logic K. There is a functor TK : Set → Set on the
category of sets and functions such that TKA is the underlying set of the free modal
algebra FA generated by the set A. If A is itself the underlying set of some modal
algebra A, then there is a unique function TKA

τA−−→ A that is a homomorphism
from FA onto A leaving members of A fixed. The map A → (A, τA) then gives an
isomorphism between Malg and the category of TK-algebras and their morphisms.

Note that free modal algebras can be constructed as Lindenbaum algebras: if
a set A is viewed as a collection of propositional variables, then TKA is the set
of equivalence classes of propositional modal formulas in these variables, with
formulas α and β being equivalent when α↔ β is a K-theorem. This construction
is important even when A = ∅, for there are infinitely many variable-free formulas
constructible from the constants ⊤ and ⊥ by the truth-functional connectives and
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the modalities � and �. The free algebra F∅ is an initial object in the category
Malg, because for each modal algebra A there a unique homomorphism from F∅

to A, since each constant formula has a uniquely determined value in A. The
TK-algebra corresponding to F∅ is an initial object in the category of TK-algebras.

Now category theory has a principle of duality that creates a new concept out
of a given one by “reversing the arrows”, with the new concept being named by
attaching the prefix “co” to the name of the old one. This leads to the notion of a
T -coalgebra as an arrow of the form A

τA−−→ TA, with a coalgebraic morphism from

coalgebra A
τA−−→ TA to coalgebra B

τB−−→ TB being an arrow A
f
−→ B such that

τB ◦ f = Tf ◦ τA, as in

A
f
−→ B

τA ↓ ↓ τB

TA
Tf
−→ TB

Any modal frame can be viewed as a coalgebra for the powerset functor P : Set→
Set. A P-coalgebra A

τA−−→ PA defines a binary relation R on the set A by

xRy if and only if y ∈ τA(x),

giving the frame (A,R), with τA(x) = {y : xRy} ∈ PA. But this last equation
can also be read as a definition of τA given R, so there is an exact correspondence
between frames and P-coalgebras. Moreover, a function f : A→ B is a coalgebraic
morphism from A

τA−−→ PA to coalgebra B
τB−−→ PB precisely when it is a p-

morphism (section 5.3) between the corresponding frames.
Refining this analysis shows that models on frames can be identified with coal-

gebras for a functor TΠ on Set that has TΠA = PA × PΠ, where Π is the set
of propositional variables. A model M = (A,R,Φ) corresponds to the coalgebra

A
τM−−→ PA× PΠ having

τM(x) =
〈
{y : xRy}, {p : Φ(p, x) = ⊤}

〉
.

Similar coalgebraic presentations can be given for a range of structures that arise
in the theory of computation. These include state-based systems from automata
theory and process algebra; various data structures like lists, trees and streams;
and classes in object-oriented programming languages. Many such examples can
be found in the papers of [Reichel, 1995; Jacobs, 1996; Jacobs and Rutten, 1997;
Rutten, 1995; 2000; Jacobs, 2002]. Here we illustrate with the case of a collection
{Ri : i ∈ I} of observation relations associated with the Hennessy–Milner logic
described in section 7.2. This can be viewed as a coalgebra for a functor (P−)I

that takes each set A to the set (PA)I of all functions from I to PA. Using the

notation x
i
−→ y in place of 〈x, y〉 ∈ Ri, we find that a system {Ri : i ∈ I} of

relations on a set A corresponds to the coalgebra A
τI−→ (PA)I for which τI(x)

is the function i → {y : x
i
−→ y}. A coalgebra for (P−)I can also be regarded

as providing the state-transition relation for a non-deterministic automaton with
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input set I and state set A. For each state x in A, τI(x)(i) is the set of possible
next states that can be reached by making a transition from x on input i. For this
reason, the τ -arrow of any kind of coalgebra is often called a transition structure,
and its domain is thought of as a state set. (We can identify (A, τA) with its
transition structure, since A is determined as the domain of τA.)

Examples such as these have spurred the establishment of a general theory of
Set-based coalgebras, by analogy with the classical theory of universal algebras,
This “universal coalgebra” was initiated and developed extensively by Jan Rutten
[1996; 2000]. Another valuable source of material is the lecture notes of Peter
Gumm [1999]. The theory makes significant use of a definition of bisimulation for
coalgebras that was introduced in [Aczel and Mendler, 1989]. A relation R ⊆ A×B
is a bisimulation from A

τA−−→ TA to B
τB−−→ TB when there exists a transition

structure R
τR−−→ TR on R such that the projection functions from (R, τR) to

(A, τA) and (B, τB) are coalgebraic morphisms. There is always a largest such
bisimulation ∼AB , known as the bisimilarity relation from (A, τA) to (B, τB).
This abstracts the relation of observational equivalence of processes discussed in
section 7.2.

Another fundamental notion is that of a final, or terminal, coalgebra, categor-
ically dual to the notion of initial algebra discussed for modal algebras above. A
T -coalgebra (F, τF ) is called final if for each T -coalgebra (A, τA) there is a unique

coalgebraic morphism (A, τA)
fA
−−→ (F, τF ). In the process algebra context the

states of a final coalgebra are thought of as representing all possible “observable
behaviours” of processes, because observationally equivalent processes are identi-
fied by the unique morphism to a final coalgebra. More precisely, for any states x
and y of coalgebra (A, τA), if x ∼ y then fA(x) = fA(y), and the converse is also
true under a mild restriction on T [Rutten and Turi, 1993, Corollary 2.9].

It is a well known observation of Joachim Lambek that the transition structure
τF of a final T -coalgebra is an isomorphism between F and TF . So it follows
from Cantor’s Theorem that there cannot exist any final P-coalgebra, since there
is no bijection from any set A onto its powerset PA. Thus the category of modal
frames and p-morphisms has no final object. More generally there is no final
coalgebra for the functor (P−)I whose coalgebras are non-deterministic transition
systems with input set I. On the other hand, we can model finitely branching
non-determinism by using the finitary powerset functor Pω, where PωA is the set
of all finite subsets of A. A (Pω−)I -coalgebra is an image-finite transition system

in the sense, described in section 7.2, that the set {y : x
i
−→ y} of possible next

states is finite for each state x and each input i. There does exist a final (Pω−)I -
coalgebra: this follows from general results about the existence of final coalgebras
[Aczel and Mendler, 1989; Barr, 1993; Kawahara and Mori, 2000; Rutten, 2000].
In particular, a final T -coalgebra exists whenever T is bounded, which means that
there is some cardinal number κ such that any state of a T -coalgebra belongs to
some subcoalgebra with no more than κ states. The functor Pω is bounded with
κ = ℵ0, and for each set I, (Pω−)I is bounded with κ = max{ℵ0, card I}.
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Devising a suitable syntax and semantics for T -coalgebras is a matter that
depends on the nature of the functor T involved. A natural desideratum is a
satisfaction relation τA, x |= α, expressing “formula α is true/satisfied at state
x in coalgebra τA”, that provides a logical characterisation of bisimilarity in the
following form:

x ∼AB y iff for all formulas α, τA, x |= α iff τB , y |= α.

If this holds we will say that the logic, or the functor T , has the Hennessy–Milner
(HM) property (see (∗) in section 7.2).

The first explicit coalgebraic logic with this property was introduced by Lawrence
Moss [1999] for a broad class of functors that have final coalgebras. The language
involved was infinitary, allowing formation of the conjunction of any set of formu-
las. For certain functors it was shown that this language has sufficient expressive
power to characterise each state of the final coalgebra uniquely by a single formula.

Finitary modal languages with the HM-property were developed by Alexan-
der Kurz [1998; 2001], Martin Rößiger [1998; 2001] and Bart Jacobs [2000] for
coalgebras of polynomial functors. A functor is polynomial if it can be induc-
tively constructed from the identity functor A → A and functors A → C with
some constant value C, by forming products A → T1A × T2A, disjoint unions
A → T1A + T2A, and “exponential” functors A → (TA)I with fixed exponent
I. The value C of a constant functor can be thought of as a set of “outputs” or
“observable values” and an exponent I as an “input” set. For example, consider
the functor having TA = (C × A)I with fixed sets C and I. The corresponding
modal language has a modality [i] for each i ∈ I. Given a state x in a T -coalgebra
(A, τA), and an “input” i ∈ I, we obtain a pair τA(x)(i) ∈ C × A whose second
projection π2(τA(x)(i)) is a new state from A. We declare a modal formula [i]α to
be true at x when α is true at this next state:

τA, x |= [i]α iff τA, π2(τA(x)(i)) |= α.

Note that the first projection π1(τA(x)(i)) here is an output value from C. The
language for T -coalgebras in this case has formulas (i)c for each c ∈ C with the
semantics

τA, x |= (i)c iff π1(τA(x)(i)) = c.

Similarly, the logic for a general polynomial functor T has modal formulas [p]α and
“observational” formulas (p)c built from certain path expressions p that syntacti-
cally reflect the internal structure and inductive formation of T . The Lemmon–
Scott canonical model construction (section 5.1) can be adapted to such logics,
and Kurz and Rößiger proved that the canonical model is a final T -coalgebra in
the case that the constant sets C occurring in the definition of T are all finite.
Jacobs showed that under this same restriction a contravariant duality of the kind
considered in section 6.5 can be constructed between the category of T -coalgebras
and a certain category of Boolean algebras with operators corresponding to the
path-modalities [p].
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Another approach to polynomial coalgebraic logic was introduced in [Goldblatt,
2001b; 2003b] by working with terms for algebraic expressions, like π1(τA(x)(i)),
that have a single state-valued variable x. Boolean combinations of equations
between observable-valued terms were shown to give a class of formulas that has
the Hennessy–Milner property. Bisimilar states were also characterised as those
that assign the same values to all observable-valued terms. Equations with the
same semantics as the above formulas [p]α and (p)c can be defined in this language.

Of course the idea of a formula or term having a single state-valued variable
is an implicitly modal one, and goes all the way back to Meredith’s U -calculus
interpretation of propositional modal formulas as formulas of first-order logic that
have a single free variable (Sections 4.4 and 6.3). At the same time this equational
approach is closer to classical universal algebra and model theory, and leads to nat-
ural coalgebraic constructions of ultraproducts [Goldblatt, 2003d] and ultrafilter
extensions [Goldblatt, 2003a].

Coalgebras for polynomial functors can be thought of as generalised determinis-
tic automata. Non-determinism can also be accommodated by using the powerset
functor P along with the polynomial operations to form the so-called Kripke poly-
nomial functors of [Rößiger, 2000]. There are finitary modal logics for these as
well, but the HM-property now only holds for coalgebras that are imagine-finite,
which essentially means that the finitary powerset functor Pω is used in place of
P in their construction.

The original modal language and semantics of Hennessy and Milner (section
7.2) provides any functor of the form (Pω−)I with a finitary logic having the
HM-property. Its syntax can be extended by allowing formation of conjunctions
of sets of fewer than κ formulas, for some fixed infinite cardinal number κ. The
result is a logic with the HM-property for the functor (Pκ−)I , where PκA is the
set of all subsets of A with fewer than κ elements. (Pκ−)I is bounded and has a
final coalgebra, for any infinite κ. By going further and forming conjunctions of
arbitrary sets of formulas [Milner, 1989], an HM-logic is obtained for the functor
(P−)I . But now the collection of formulas becomes a proper class, rather than a
set. Also, there is no longer any final coalgebra. These two facts are connected: it
can be shown [Goldblatt, 2004] that if a functor T has an HM-logic whose class of
formulas is small (i.e. a set), then there must be a final T -coalgebra. Consequently,
there is no such small HM-logic for a functor of the form (P−)I .

The formulation and analysis of logics for various categories of coalgebras is the
subject of current research. The assessment of the impact of these investigations
on the evolution of modal logic is a task for the historians of the future.

BIBLIOGRAPHY

[Aczel and Mendler, 1989] Peter Aczel and Nax Mendler. A final coalgebra theorem. In D. H.
Pitt et al., editors, Category Theory and Computer Science. Proceedings 1989, volume 389 of
Lecture Notes in Computer Science, pages 357–365. Springer-Verlag, 1989.

[Aczel, 1988] Peter Aczel. Non-Well-Founded Sets. CSLI Lecture Notes No. 14. CSLI Publica-
tions, Stanford University, 1988.



86 Robert Goldblatt

[Aczel, 2001] Peter Aczel. The Russell-Prawitz modality. Mathematical Structures in Computer
Science, 11(4):541–554, 2001.
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[Gödel, 1933] Kurt Gödel. Eine interpretation des intuitionistischen aussagenkalküls. Ergebnisse
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July 2000. Electronically available at: www3.oup.co.uk/igpl.

[Goldblatt, 2001a] Robert Goldblatt. Quasi-modal equivalence of canonical structures. The
Journal of Symbolic Logic, 66:497–508, 2001.

[Goldblatt, 2001b] Robert Goldblatt. What is the coalgebraic analogue of Birkhoff’s variety
theorem? Theoretical Computer Science, 266:853–886, 2001.

[Goldblatt, 2003a] Robert Goldblatt. Enlargements of polynomial coalgebras. In Rod Downey
et al., editor, Proceedings of the 7th and 8th Asian Logic Conferences, pages 152–192. World
Scientific, 2003.

[Goldblatt, 2003b] Robert Goldblatt. Equational logic of polynomial coalgebras. In Philippe
Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, Advances in
Modal Logic, Volume 4, pages 149–184. King’s College Publications, King’s College London,
2003. www.aiml.net.

[Goldblatt, 2003c] Robert Goldblatt. Mathematical modal logic: A view of its evolution. Jour-
nal of Applied Logic, 1(5–6):309–392, 2003.

[Goldblatt, 2003d] Robert Goldblatt. Observational ultraproducts of polynomial coalgebras.
Annals of Pure and Applied Logic, 123:235–290, 2003.

[Goldblatt, 2004] Robert Goldblatt. Final coalgebras and the Hennessy-Milner property. Annals
of Pure and Applied Logic, 2004. To appear.

[Grzegorczyk, 1967] Andrzej Grzegorczyk. Some relational systems and the associated topolog-
ical spaces. Fundamenta Mathematicae, 60:223–231, 1967.

[Gumm, 1999] H. Peter Gumm. Elements of the general theory of coalgebras. LUATCS’99, Rand
Africaans University, Johannesburg, South Africa, 60 pp. www.Mathematik.uni-marburg.de/
~gumm/Papers/publ.html, 1999.

[Halmos, 1962] P. R. Halmos. Algebraic Logic. Chelsea, New York, 1962.
[Halpern and Moses, 1985] Joseph Y. Halpern and Yoram Moses. A guide to the modal logics

of knowledge and belief: Preliminary draft. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 480–490, 1985.

[Halpern and Moses, 1992] Joseph Y. Halpern and Yoram Moses. A guide to completeness and
complexity for modal logics of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.

[Harel et al., 1982] David Harel, Dexter Kozen, and Rohit Parikh. Process logic: Expressiveness,
decidability, completeness. Journal of Computer and Systems Sciences, 25:144–170, 1982.

[Harel et al., 1983] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular
programs. Journal of Computer and Systems Sciences, 26:222–243, 1983.

[Harel, 1979] David Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Computer
Science. Springer-Verlag, 1979.

[Harel, 1984] David Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, Volume II: Extensions of Classical Logic, pages 497–604. D. Reidel,
1984.

[Harrop, 1958] R. Harrop. On the existence of finite models and decision procedures for propo-
sitional calculi. Proceedings of the Cambridge Philosophical Society, 54:1–13, 1958.

[Hasle and Øhrstrøm, 2004] Peter Hasle and Peter Øhrstrøm. The flow of time into logic – and
computer science. Bulletin of the European Association for Theoretical Computer Science,
82:191–226, February 2004.

[Henkin et al., 1971] Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric Algebras I.
North-Holland, Amsterdam, 1971.

[Henkin, 1949] Leon Henkin. The completeness of the first-order functional calculus. The Jour-
nal of Symbolic Logic, 14:159–166, 1949.

[Henkin, 1950] Leon Henkin. Completeness in the theory of types. The Journal of Symbolic
Logic, 15:81–91, 1950.

[Hennessy and Liu, 1995] M. Hennessy and X. Liu. A modal logic for message passing processes.
Acta Informatica, 32:375–393, 1995.



Mathematical Modal Logic: A View of its Evolution 91

[Hennessy and Milner, 1980] Matthew Hennessy and Robin Milner. On observing nondetermin-
ism and concurrency. In J. W. de Bakker and J. van Leeuwen, editors, Automata, Languages
and Programming. Proceedings 1980, volume 85 of Lecture Notes in Computer Science, pages
299–309. Springer-Verlag, 1980.

[Hennessy and Milner, 1985] Matthew Hennessy and Robin Milner. Algebraic laws for nondeter-
minism and concurrency. Journal of the Association for Computing Machinery, 32:137–161,
1985.

[Hilbert and Bernays, 1939] David Hilbert and Paul Bernays. Grundlagen der Mathematik.
Springer, 1939.

[Hintikka, 1957] K. J. J. Hintikka. Quantifiers in deontic logic. Societas Scientiarum Fennica,
Commentationes Humanarum Litterarum, 23(4), 1957.

[Hintikka, 1961] K. J. J. Hintikka. Modality and quantification. Theoria, 27:119–128, 1961.
[Hintikka, 1969] K. J. J. Hintikka. Review of “The morning star paradox” by Stig Kanger. The

Journal of Symbolic Logic, 34:305–306, 1969.
[Hoare, 1969] C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the Association for Computing Machinery, 12:576–580, 583, 1969.
[Hughes and Cresswell, 1968] G. E. Hughes and M. J. Cresswell. An Introduction to Modal

Logic. Methuen, 1968.
[Hughes, 1990] G. E. Hughes. Every world can see a reflexive world. Studia Logica, 49:175–181,

1990.
[Huntington, 1937] Edward V. Huntington. Postulates for assertion, conjunction, negation, and

equality. Proceedings of the American Academy of Arts and Sciences, 72:1–44, 1937.
[Jacobs and Rutten, 1997] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and

(co)induction. Bulletin of the European Association for Theoretical Computer Science,
62:222–259, 1997.

[Jacobs, 1996] Bart Jacobs. Objects and classes, coalgebraically. In B. Freitag, C. B. Jones,
C. Lengauer, and H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence,
pages 83–103. Kluwer Academic Publishers, 1996.

[Jacobs, 2000] Bart Jacobs. Towards a duality result in coalgebraic modal logic. Electronic
Notes in Theoretical Computer Science, 33, 2000.

[Jacobs, 2002] Bart Jacobs. Exercises in coalgebraic specification. In R. Backhouse, R. Crole,
and J. Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathematics of Program
Construction, volume 2297 of Lecture Notes in Computer Science, pages 237–280. Springer,
2002.

[Japaridze and de Jongh, 1998] Giorgi Japaridze and Dick de Jongh. The logic of provability.
In Samuel R. Buss, editor, Handbook of Proof Theory, volume 137 of Studies in Logic, pages
475–546. Elsevier, 1998.

[Jónsson and Tarski, 1948] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators.
Bulletin of the American Mathematical Society, 54:79–80, January 1948.

[Jónsson and Tarski, 1951] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators,
part I. American Journal of Mathematics, 73:891–939, 1951.

[Jónsson and Tarski, 1952] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators,
part II. American Journal of Mathematics, 74:127–162, 1952.

[Jónsson, 1967] Bjarni Jónsson. Algebras whose congruence lattices are distributive. Math.
Scand., 21:110–121, 1967.

[Jónsson, 1993] Bjarni Jónsson. A survey of Boolean algebras with operators. In Algebras and
Orders, volume 389 of NATO ASI Series, pages 239–286. Kluwer Academic Publishers, 1993.

[Jónsson, 1994] Bjarni Jónsson. On the canonicity of Sahlqvist identities. Studia Logica, 53:473–
491, 1994.

[Kamp, 1968] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California at Los Angeles, 1968.

[Kanger, 1957a] Stig Kanger. The morning star paradox. Theoria, 23:1–11, 1957.
[Kanger, 1957b] Stig Kanger. Provability in Logic. University of Stockholm–Almqvist & Wiksell,

1957.
[Kaplan, 1966] David Kaplan. Review of “Semantical analysis of modal logic I. Normal modal

propositional calculi”, by Saul A. Kripke. The Journal of Symbolic Logic, 31:120–122, 1966.
[Kawahara and Mori, 2000] Yasuo Kawahara and Masao Mori. A small final coalgebra theorem.

Theoretical Computer Science, 233:129–145, 2000.



92 Robert Goldblatt

[Kneale and Kneale, 1962] William Kneale and Martha Kneale. The Development of Logic.
Oxford University Press, 1962.

[Kolmogorov, 1925] A. N. Kolmogorov. On the principle of excluded middle (Russian). Matem-
aticheskii Sbornik, 32:646–667, 1925. English translation by Jean van Heijenoort in van
Heijenhoort 1967, pages 414–437.

[Kozen and Parikh, 1984] Dexter Kozen and Rohit Parikh. A decision procedure for the propo-
sitional µ-calculus. In E. Clarke and D. Kozen, editors, Logics of Programs. Proceedings 1983,
volume 164 of Lecture Notes in Computer Science, pages 313–325. Springer-Verlag, 1984.

[Kozen and Tiuryn, 1990] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and
Semantics, pages 789–840. Elsevier, 1990.

[Kozen, 1982] Dexter Kozen. Results on the propositional µ-calculus. In M. Nielsen and E. M.
Schmidt, editors, Automata, Languages and Programming. Ninth Colloquium 1982, volume
140 of Lecture Notes in Computer Science, pages 348–359. Springer-Verlag, 1982.

[Kozen, 1983] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[Kozen, 1988] Dexter Kozen. A finite model theorem for the propositional µ-calculus. Studia
Logica, 47:233–241, 1988.

[Kracht, 1999] Marcus Kracht. Tools and Techniques in Modal Logic, volume 142 of Studies in
Logic. Elsevier, 1999.

[Kripke, 1959a] Saul A. Kripke. A completeness theorem in modal logic. The Journal of Sym-
bolic Logic, 24:1–14, 1959.

[Kripke, 1959b] Saul A. Kripke. Semantic analysis of modal logic (abstract). The Journal of
Symbolic Logic, 24:323–324, 1959.

[Kripke, 1962] Saul A. Kripke. The undecidability of monadic modal quantification theory.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 8:113–116, 1962.

[Kripke, 1963a] Saul A. Kripke. Semantical analysis of modal logic I. Normal modal proposi-
tional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96,
1963.

[Kripke, 1963b] Saul A. Kripke. Semantical considerations on modal logic. Acta Philosophica
Fennica, 16:83–94, 1963.

[Kripke, 1965a] Saul A. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Crossley
and M. A. E. Dummett, editors, Formal Systems and Recursive Functions, pages 92–130.
North-Holland, Amsterdam, 1965.

[Kripke, 1965b] Saul A. Kripke. Semantical analysis of modal logic II. Non-normal modal propo-
sitional calculi. In J. W. Addison, L. Henkin, and A. Tarski, editors, The Theory of Models,
pages 206–220. North-Holland, Amsterdam, 1965.

[Kripke, 1967] Saul A. Kripke. Review of [Lemmon, 1966b]. Mathematical Reviews, 34:1021–
1022, 1967. MR 34 #5661.

[Kurz, 1998] Alexander Kurz. Specifying coalgebras with modal logic. Electronic Notes in
Theoretical Computer Science, 11, 1998.

[Kurz, 2001] Alexander Kurz. Specifying coalgebras with modal logic. Theoretical Computer
Science, 260:119–138, 2001.

[Ladner, 1977] Richard E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on Computing, 6:467–480, 1977.

[Larsen, 1990] Kim G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with
recursion. Theoretical Computer Science, 72:265–288, 1990.

[Lawvere, 1970] F. W. Lawvere. Quantifiers and sheaves. Actes des Congrès International des
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Thomas Drucker, editor, Perspectives on the History of Mathematical Logic, pages 110–133.
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[Sobociński, 1964] Boleslaw Sobociński. Remarks about axiomatizations of certain modal sys-
tems. Notre Dame Journal of Formal Logic, 5:71–80, 1964.

[Solovay, 1976] R. Solovay. Provability interpretations of modal logic. Israel Journal of Mathe-
matics, 25:287–304, 1976.

[Spaan, 1993] Edith Spaan. Complexity of Modal Logics. PhD thesis, University of Amsterdam,
1993.

[Stirling, 1987] Colin Stirling. Modal logics for communicating systems. Theoretical Computer
Science, 49:311–347, 1987.

[Stirling, 1992] Colin Stirling. Modal and temporal logics. In S. Abramsky, Dov M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, Volume 2, pages
477–563. Oxford University Press, 1992.

[Stone, 1936] M. H. Stone. The theory of representations for Boolean algebras. Transactions of
the American Mathematical Society, 40:37–111, 1936.

[Stone, 1937–1938] M. H. Stone. Topological representations of distributive lattices and Brouw-
erian logics. Casopis pro Pestovani Matematiky a Fysiky, 67:1–25, 1937–1938.

[Streett and Emerson, 1984] Robert S. Streett and E. Allen Emerson. The propositional mu-
calculus is elementary. In J. Paradaens, editor, Automata, Languages and Programming.
Proceedings 1984, volume 172 of Lecture Notes in Computer Science, pages 465–472. Springer-
Verlag, 1984.

[Streett and Emerson, 1989] Robert S. Streett and E. Allen Emerson. An automata theoretic
decision procedure for the propositional mu-calculus. Information and Computation, 81:249–
264, 1989.

[Streett, 1982] Robert S. Streett. Propositional dynamic logic of looping and converse is ele-
mentarily decidable. Information and Control, 54:121–141, 1982.

[Tang, 1938] Tsao-Chen Tang. Algebraic postulates and a geometric interpretation for the Lewis
calculus of strict implication. Bulletin of the American Mathematical Society, 44:737–744,
1938.

[Tarski, 1938] Alfred Tarski. Der aussagenkalkül und die topologie. Fundamenta Mathematicae,
31:103–134, 1938. English translation by J. H. Woodger as Sentential Calculus and Topology
in Tarski 1956, 421–454.



Mathematical Modal Logic: A View of its Evolution 97

[Tarski, 1941] Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73–89,
1941.

[Tarski, 1946] Alfred Tarski. A remark on functionally free algebras. Annals of Mathematics,
47:163–165, 1946.

[Tarski, 1955a] Alfred Tarski. Contributions to the theory of models III. Koninklijkle Neder-
landse Akademie van Wetenschappen, Proceedings, Series A, 58:56–64, 1955. Indagationes
Mathematicae, vol. 17.

[Tarski, 1955b] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

[Tarski, 1956] Alfred Tarski. Logic, Semantics, Metamathematics: Papers from 1923 to 1938.
Oxford University Press, 1956. Translated into English and edited by J. H. Woodger.

[Thomas, 1989] Wolfgang Thomas. Computation tree logic and regular ω-languages. In W. P.
de Roever J. W. de Bakker and G. Rozenberg, editors, Linear Time, Branching Time, and
Partial Order in Logics and Models for Concurrency, volume 354 of Lecture Notes in Com-
puter Science, pages 690–713. Springer-Verlag, 1989.

[Thomason, 1972a] S. K. Thomason. Noncompactness in propositional modal logic. The Journal
of Symbolic Logic, 37:716–720, 1972.

[Thomason, 1972b] S. K. Thomason. Semantic analysis of tense logic. The Journal of Symbolic
Logic, 37:150–158, 1972.

[Thomason, 1974a] S. K. Thomason. An incompleteness theorem in modal logic. Theoria,
40:30–34, 1974.

[Thomason, 1974b] S. K. Thomason. Reduction of tense logic to modal logic, I. The Journal of
Symbolic Logic, 39:549–551, 1974.

[Thomason, 1975a] S. K. Thomason. Categories of frames for modal logic. The Journal of
Symbolic Logic, 40:439–442, 1975.

[Thomason, 1975b] S. K. Thomason. The logical consequence relation of propositional tense
logic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 21:29–40, 1975.

[Thomason, 1975c] S. K. Thomason. Reduction of second-order logic to modal logic. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 21:107–114, 1975.

[Thomason, 1975d] S. K. Thomason. Reduction of tense logic to modal logic II. Theoria,
41:154–169, 1975.

[Tierney, 1972] Myles Tierney. Sheaf theory and the continuum hypothesis. In F. W. Lawvere,
editor, Toposes, Algebraic Geometry and Logic, volume 274 of Lecture Notes in Mathematics,
pages 13–42. Springer-Verlag, 1972.

[Urquhart, 1981] Alasdair Urquhart. Decidability and the finite model property. Journal of
Philosophical Logic, 10:367–370, 1981.

[van Benthem, 1975] J. F. A. K. van Benthem. A note on modal formulas and relational prop-
erties. Journal of Symbolic Logic, 40(1):55–58, 1975.

[van Benthem, 1976a] J. F. A. K. van Benthem. Modal Correspondence Theory. PhD thesis,
University of Amsterdam, 1976.

[van Benthem, 1976b] J. F. A. K. van Benthem. Modal formulas are either elementary or not
Σ∆-elementary. The Journal of Symbolic Logic, 41:436–438, 1976.

[van Benthem, 1978] J. F. A. K. van Benthem. Two simple incomplete modal logics. Theoria,
44:25–37, 1978.

[van Benthem, 1979] J. F. A. K. van Benthem. Syntactic aspects of modal incompleteness
theorems. Theoria, 45:67–81, 1979.

[van Benthem, 1980] J. F. A. K. van Benthem. Some kinds of modal completeness. Studia
Logica, 39:125–141, 1980.

[van Benthem, 1983] J. F. A. K. van Benthem. Modal Logic and Classical Logic. Bibliopolis,
Naples, 1983.

[van Benthem, 1984] J. F. A. K. van Benthem. Correspondence theory. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, Volume II: Extensions of Classical
Logic, pages 167–247. D. Reidel, 1984.

[Vardi and Stockmeyer, 1985] Moshe Y. Vardi and Larry Stockmeyer. Improved upper and lower
bounds for modal logics of programs. In Proceedings of the 17th Annual ACM Symposium
on the Theory of Computing, pages 240–251. ACM, 1985.

[von Wright, 1951] G. H. von Wright. An Essay in Modal Logic. North-Holland, Amsterdam,
1951.



98 Robert Goldblatt

[Walukiewicz, 1995] Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the proposi-
tional µ-calculus. In D. Kozen, editor, Proceedings of the Tenth Annual IEEE Symposium on
Logic in Computer Science, pages 14–24. IEEE Computer Society Press, 1995.

[Walukiewicz, 2000] Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the proposi-
tional µ-calculus. Information and Computation, 157:142–182, 2000.

[Winskel, 1985] Glynn Winskel. On powerdomains and modality. Theoretical Computer Science,
36:127–137, 1985.

[Wolper, 1983] Pierre Wolper. Temporal logic can be more expressive. Information and Control,
56:72–99, 1983.



EPISTEMIC LOGIC

Paul Gochet and Pascal Gribomont

INTRODUCTION

Epistemic logic grew in the Middle Ages. As early as the mid-twelfth century Gar-
landus and Abelard attempted to formulate an epistemic conception of entailment-
propositions. Inspired by the efforts of Burley and Ockham, epistemic logic then
blossomed during the first two decades of the fourteenth century. Intense research
into epistemic logic is known to have been pursued at Oxford in about 1330; the
second half of the fourteenth century witnessed the formulation of general rules
for epistemic entailment-propositions by men like Strode and Peter of Mantua.

Medieval scholars conducted research into the relationship of truth to know-
ing, believing, and having faith. They discovered the de dicto-de re constructions
anticipated by Aristotle and recognized inferences whose validity depends on epis-
temic/doxastic modalities. Even problems connected with iterated modalities or
substitutivity in intentional contexts were given due consideration. The most ac-
tive period of epistemic logic in the Middle Ages was during the fifteenth century.
The main figures, Paul of Venice, Paul of Pergula, Gaetanus of Thiene, Frachantian
of Vicenza, were affiliated with northern Italian universities. Readers interested
in learning more about this period are encouraged to study Ivan Boh’s classic
monograph entitled Epistemic Logic in the Later Middle Ages [1993].

Jaakko Hintikka inaugurated contemporary research into epistemic logic with
his book Knowledge and Belief, an Introduction to the Logic of the Two Notions. A
thorough survey of epistemic logic from 1962 to 1978 has been provided by Lenzen
[Lenzen, 1978]. Three major contributions to epistemic logic deserve particular
attention: Glauben, Wissen und Wahrscheinlichkeit. Systeme der epistemischen
Logik [Lenzen, 1980]; Reasoning About Knowledge [Fagin et al., 1995] (the main
source of our first and last sections); and Epistemic Logic for AI and Computer
Science [Meyer and van der Hoek, 1995]. Section 1 of the present monograph
is meant to be a general introduction to the subject for the newcomer. Only
knowledge of first-order logic and modal propositional logic is presumed.

Sections 2 to 7 deal with special issues that have been intensively discussed over
the last twenty years by logicians, philosophers, computer scientists, AI researchers
and economists. These five sections follow the same pattern. We first state a major
problem, or puzzle, which has prompted intense research in the field. We then
describe the logical formalism which has been developed to solve this problem
or puzzle. As semantics is more intuitive than axiomatics, we start our formal
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presentation by spelling out the model theory. We then turn to proof theory.
Detailed examples are provided when needed to facilitate comprehension.

Over the last twenty years logic (modal, temporal and epistemic) has become
an efficient tool in the hands of computer scientists. The last section of the present
work focuses on some important applications of epistemic logic to computer sci-
ence. It shows how epistemic logic supplements temporal and other formal systems
designed to specify and verify concurrent programs.

1 INTRODUCTION TO FORMAL EPISTEMIC LOGIC

1.1 Epistemic Interpretation Of Propositional Modal Logic

The modal operator �, sometimes also denoted by L, has received various inter-
pretations, such as “It is necessary that . . . ” or “It is mandatory that . . . ”. Most
of these are compatible with the semantics of Kripke structures. The simplest ap-
proach to epistemic logic is probably to view it as a modal logic and to interpret �

as “It is known that . . . ”. With Kripke semantics, this leads to the Possible-Worlds
Model of epistemic logic.

The propositional “modal-epistemic” logic has several variants, all based on the
system K of modal logic [Hughes and Cresswell, 1984; 1996]. Formulas are built
with a set of (elementary) propositions, usually denoted by p, q, r, . . ., the Boolean
connectives ¬,∧,∨,⊃,≡ and the modal operator �. More precisely,

• Propositions are formulas.

• If A and B are formulas, then ¬A, (A∧B), (A∨B), (A ⊃ B), (A ≡ B) and
�A are formulas.

• Nothing else is a formula.

Formulas are interpreted on Kripke structures. A Kripke structure M , also
called a model, is made up of

1. a frame, that is, a directed graph; the nodes are named states or worlds and
the arrows determine an accessibility relation, or possibility relation;

2. an assignment function πs attached to each state s, that maps every atomic
proposition on a truth value.

Comment. Some authors use the word “model” instead of “structure”; other use
“model” for a structure (frame cum interpretation) which assigns the value true
to some formula(s) or theory.

The interpretation rules assign truth values to formulas, for every state of the
structure. The notations (M, s) |= ϕ, i.e. “(M, s) satisfies ϕ” (resp. (M, s) �|= ϕ)
mean that formula ϕ is true (resp. is false) at state s of structure M . Interpretation
rules are
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• If p is a proposition, (M, s) |= p if and only if πs(p) = T. [Basic rule]

• If ϕ and ψ are formulas, (M, s) |= ¬ϕ if and only if (M, s) �|= ϕ; (M, s) |=
ϕ∧ψ if and only if (M, s) |= ϕ and (M, s) |= ψ; the other Boolean connectives
are handled in a similar way. [Classical rule]

• If ϕ is a formula, (M, s) |= �ϕ if and only if (M, s′) |= ϕ for each state s′

accessible from s. [Modal rule]

Kripke semantics has long proved to be a convenient approach to assigning
meaning to formulas in various logics. This is probably because the principle of
Kripke structure is elementary but nevertheless versatile enough to account for
many subtle distinctions in interpretation. Besides, in many cases, the modal rule
has an intuitive meaning. For instance, when the modal operator is interpreted as
a necessity operator, possible states from state s truly appear as the set of states
which seem “possible” when looking from the “real” state s and, quite naturally,
a formula ϕ is classified as possible when true in at least one of these states. It is
classified as necessary when true in all these states.

Whether such an intuitive meaning applies to the knowledge operator is a matter
of opinion. Let us assume that some state t is accessible from state s in some
structure M . This could mean that, on the basis of the information available to
the “epistemic agent” at state s, he or she cannot rule out state t as being the
“real” state. So, if the agent knows p from state s, then p must be true at state t
and at every state accessible from s (probably including s itself). On the contrary,
the agent does not know p from state s if p happens to be false in some state
accessible from state s, for instance t or s.

A more promising way to investigate whether Kripke semantics is appropriate
for epistemic logic is to determine which formulas are valid, i.e. always true, and
which are not. If the partition is intuitively acceptable, then the semantics will
be acceptable too. We first introduce the notions of validity and satisfiability in a
more formal way.

A formula is satisfiable in structure M if it is true at some state of M . A formula
is satisfiable if it is satisfiable in some Kripke structure.

A formula is valid in structure M if it is true at all states of M . It is valid if it
is valid in all Kripke structures. The symbol |= is classically used to denote truth
at a state, validity in some structure, and full validity:

• M |= ϕ if and only if (M, s) |= ϕ for each state s ∈M .

• |= ϕ if and only if M |= ϕ for each Kripke structure M .

The knowledge operator is usually noted K instead of �, so “ϕ is known” is
formalized into Kϕ. Note that the formula ¬K¬ϕ means “ϕ is not ruled out”, that
is, ¬ϕ is not known.
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Figure 1 contains seven axioms1 and two inference rules, each listed with its
usual abbreviation and name. These axioms and rules have interesting intuitive
meanings and therefore have been used as “benchmarks” for formal epistemic
logics. Some of them are widely accepted as intuitively valid, and so must be valid
in any appropriate formal system, whereas others are a bit more controversial.
The latter will be valid in some formal systems and simply satisfiable in other
systems.

P : Classical tautologies are valid Tautology property
K : [Kϕ ∧ K(ϕ ⊃ ψ)] ⊃ Kψ Distribution property
T : Kϕ ⊃ ϕ , ϕ ⊃ ¬K¬ϕ Knowledge property
B : ϕ ⊃ K¬K¬ϕ Brouwerian property
4 : Kϕ ⊃ KKϕ Positive introspection property
5 : ¬Kϕ ⊃ K¬Kϕ Negative introspection property
D : ¬K false Consistency property

MP :
ϕ , ϕ ⊃ ψ

ψ
Modus ponens

KG :
ϕ

Kϕ
Knowledge generalization

Figure 1. Some typical epistemic statements

A first point is that it seems desirable for epistemic logic to be an extension of
classical logic. Axiom P and rule MP are respected by Kripke semantics. So there
is no problem here. The substitution property also holds, so the validity of, say,
formula Kp ⊃ (Kp ∨ ¬K¬q) is a consequence of the validity of ϕ ⊃ (ϕ ∨ ψ).

A second important point is that Kripke semantics also enforces axiom K and
rule KG. Axiom K provides an epistemic variant of Modus ponens: if ϕ and
ϕ ⊃ ψ are known, then ψ is known too. Besides, if ϕ is valid, then ϕ is known.
The epistemic agent can be described by Kripke semantics only if assumed to be
logically omniscient, meaning all logical consequences of known formulas are also
known, in particular that all valid formulas are known (rule KG). That might be
a non-realistic assumption as far as human reasoning is considered, but it is a
natural assumption in computer science and in every application where knowledge
is externally ascribed to the agent.

Axioms T , B, 4, 5 and D are valid in some Kripke structures but not in all. As
a first example, let us consider M with states s and t and the accessibility relation
RM = {(s, t)} with πs(p) = F and πt(p) = T (see Fig. 2). We have (M, t) |= p
but (M, t) |= Kfalse and (M, t) |= K¬p since no state is accessible from t. So
axiom D and T are not valid in this structure. Axiom B is not valid either since

1More precisely, these formulas are axiom schemes, and become axioms when specific formulas
are used in place of ϕ and ψ.
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(M, t) |= Kp, so (M, s) |= ¬K¬Kp, but (M, s) �|= p. Axiom 4 and 5 are valid
in M . As a second example, assume structure N with states s, t and u and the
accessibility relation such that every state is accessible from all states, except that
s is not accessible from t and t is not accessible from s; the state function is such
that πs(p) = πu(p) = T and πt(p) = F. Axioms T , B and D are valid in N but
axioms 4 and 5 are not: (N, s) �|= Kp ⊃ KKp and (N,u) �|= ¬Kp ⊃ K¬Kp.

M

�s ¬p

�t p
�

N

�s p

�

��u p

�

��t ¬p

Figure 2. Two Kripke structures

It is possible to turn some or all of these axioms into valid formulas if specific
constraints are imposed upon the accessibility relation, for stronger constraints
lead to stronger systems with more valid formulas. For instance, it is quite clear
that axiom T is valid in all reflexive structures, that is, in structures where the
accessibility relation is reflexive. In fact, axiom T expresses the reflexivity of the
accessibility relation. This knowledge property is usually desirable, but sometime
only the weaker consistency property is assumed. Indeed, (M, s) |= ¬K¬true
simply means that at least one state t is accessible from s (where true is satisfied);
s is not necessarily accessible from itself. Otherwise stated, axiom D expresses
that the accessibility relation K is serial: for each s there exists t such that (s, t) ∈
K. Similarly, axiom B expresses symmetry and axiom 4 expresses transitivity
of the accessibility relation; axiom 5 expresses that the relation is Euclidean: if
(s, t) and (s, u) belong to the relation, then (t, u) also belongs to the relation.2

These axioms are not independent. For instance, as all reflexive relations are also
serial, D is a logical consequence of T . Similarly, sets {T,B, 4} and {T, 5} are
logically equivalent since a relation is reflexive and Euclidean if and only if it is an
equivalence relation.

2If an axiom expresses a relational property, then all structures where the accessibility relation
enjoys this property satisfy all instances of the axiom. The converse is not true, but every
“offending” model can be converted in an equivalent model where the accessibility relation enjoys
the property; see [Fagin et al., 1995] for more details.
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Axioms T , B, 4, 5 and D, or some of them, together with axioms P and K
and rules MP and KG, provide a family of sound and complete axiomatic systems
for interesting epistemic logics. A ‘5’ is usually used to designate the foremost
member of this family. A formula is S5-valid if it is valid in all structures where
the accessibility relation is an equivalence, that is, a reflexive, symmetric and
transitive relation. All axioms of figure 1 are S5-valid. So, in some sense, system
S5 is the strongest epistemic system based on Kripke semantics. The weakest
system is usually named K; the accessibility relation is not constrained so none of
the five axioms is K-valid. Some useful systems are listed in Fig. 3. Recall that
all systems are based on axioms P and K, and rules MP and KG.

name basic axioms also valid invalid constraints
K T,B, 4, 5, D
D D T,B, 4, 5 serial

K45 4, 5 D,T,B transitive, Euclidean
KD45 D, 4, 5 T,B serial, transitive, Euclidean
T T D B, 4, 5 reflexive
B T,B D 4, 5 reflexive, symmetric
S4 T, 4 D B, 5 reflexive, transitive
S5 T, 5 D,B, 4 reflexive, symmetric, transitive

Figure 3. Some Propositional Epistemic Systems

All these systems are sound and complete, that is, the set of theorems is exactly
the set of valid formulas. For instance, a formula is a T -theorem, that is, can
be produced from axioms P , K and T and rules MP and KG , if and only if
this formula is valid in every Kripke structure where the accessibility relation is
reflexive.

Another desirable property inherited by these systems is decidability. In clas-
sical propositional logic, it is easy to obtain a model of any consistent formula.
For instance, one can use the truth table method. All the epistemic systems listed
in Fig. 3 enjoy that property, since any consistent formula admits a finite model,
i.e. a Kripke model with finitely many states. However, the complexity of the
satisfiability problem is likely to get worse when the epistemic operator is intro-
duced into the propositional logic. Indeed, pure propositional logic can be seen
as epistemic logic with one-state reflexive Kripke structures, for which Kϕ and
¬K¬ϕ both reduce to ϕ. It can be proved that the satisfiability problem for most
epistemic systems is PSPACE-complete, but for K45, KD45 and S5, it remains
NP-complete, just as for classical propositional logic.3 It is due to the fact that

3These classical notions of complexity theory will not be commented here. Just recall that,
roughly speaking, NP-complete and PSPACE-complete decision problems are challenging cases
for automated theorem proving. Reasonably efficient theorem provers may exist for the cor-
responding theories, but “unfavourable cases”, that is, formulas which are not handled in a
moderate amount of time (and space, for the PSPACE-complete case) seem unavoidable. The
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for these systems, if a formula has a model, it has a small model. We refer the
reader to [Fagin et al., 1995] for details, and simply mention an interesting fact
about S5. An equivalence relation on a set determines a partition of this set. So
an S5-Kripke model is partitioned into smaller Kripke structures, which are also
models. In these submodels the accessibility relation is universal, that is, every
state is accessible from all states. As a result, a formula is S5-satisfiable if and
only if it has a universal Kripke model. Furthermore, the search for a universal
Kripke model for ϕ can be restricted to structures with at most |ϕ| states, where
|ϕ| denotes the size of ϕ, that is, the number of symbol occurrences (propositions,
connectives, epistemic operators) in ϕ.

1.2 Multi-Agent Epistemic Logics

The epistemic version of modal logic introduced in the first section allows one to
reason about the knowledge of a single agent. In many applications, especially in
computer science, artificial intelligence and game theory, it is also useful to reason
about the knowledge of several agents.4 A simple way to do that is to use a specific
epistemic operator for every agent. For instance,

K1¬K2p

intuitively means “Agent 1 knows that agent 2 does not know p”.
Useful multi-agent epistemic logics can be obtained easily by extending the

notion of Kripke structure. An n-agent Kripke structure M is simply a set SM of
states with n accessibility relations. These relations share the same domain SM but
are otherwise independent. An n-agent Kripke structure is reflexive (symmetric,
serial, . . . ) if all its accessibility relations are reflexive (symmetric, serial, . . . ).
Sound and complete axiomatizations for the n-agent case are obtained from the
single-agent case in a straightforward way. For instance, the system Tn is the
system T where the axiom T , that is, Kϕ ⊃ ϕ is replaced by the axiom set
{Kiϕ ⊃ ϕ : i = 1, . . . , n}, where Ki denotes the epistemic operator associated with
agent i. A formula is a Tn-theorem if and only if it is Tn-valid, that is, valid in all
reflexive n-agent Kripke structures. Similar soundness and completeness results
hold for the other systems listed in Fig. 3.

The satisfiability problem remains decidable in the multi-agent case, and all
consistent formulas have finite models. However, the satisfiability problem is
PSPACE-complete for all the multi-agent versions of the systems listed in Fig. 3,
including S5n, K45n and KD45n, as soon as n ≥ 2. This is a small price to pay for
a definite increase in expressive power and a wider class of application problems.
Nevertheless, it is often necessary in most problems to distinguish between two
kinds of knowledge, and therefore to increase the expressive power of our systems

more complex EXPTIME-complete case will be encountered later; reasonably efficient theorem
provers do not exist in this case.

4As pointed out by W. van der Hoek, the issue in many games is to act as to maximize your
own knowledge, but at the same time, to maximize your opponent’s ignorance.
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somewhat further. The “particular knowledge” of an agent, say 1, can increase
when the agent observes something, or is told something by another (reliable)
agent, say 2. The former case is adequately modelled by the formula

K1p

that, in most systems used in practice, can be extended into

p ∧ K1p ∧ K1K1p ∧ K1K1K1p ∧ . . .

whereas the second should be modelled by

p ∧ K1p ∧ K2p ∧ K1K1p ∧ K1K2p ∧ K2K1p ∧ . . .

However, our systems rightly forbid us to deduce, say, K1K2p from K1p ∧ K2p.
It is indeed possible for some fact to be known by two agents, each of them
thinking that he or she alone knows it. So, in the multi-agent case, we need to
model explicitly that knowledge acquired by agent 1 from agent 2 is “common
knowledge” between them, when this is the case. Note that, if the knowledge of p
had been acquired by undetected eavesdropping on agent 2, it will not be common
knowledge between agent 1 and agent 2 since, for instance, K2K1p would not be
true. Before introducing the notion of common knowledge in a formal way, let
us mention another use of common knowledge in practical application. In most
problems about knowledge, not only the “clues” specific to the problem are to
be used in reasoning, but more general ground rules are to be used as well. For
instance, it is implicitly admitted that, if agent 1 says something to agent 2, then
agent 2 will reliably hear and record it, and therefore know it. Ground rules are
typically pieces of knowledge common to whole sets of agents.

Let S be a subset of the set {1, 2, . . . , n} of agents. We introduce the new formula
CSϕ to express that ϕ is common knowledge among the members of S. Let S∗

be the (infinite) set of finite sequences of S-elements.5 The length of a sequence
σ ∈ S∗ is the number ℓ(σ) of its elements. These are denoted by σ1, σ2, . . . , σℓ(σ).
From the semantic point of view, the following definition is rather clear:

CSϕ =def

∧

σ∈S∗

Kσ1
. . .Kσℓ(σ)

ϕ

but infinite conjunctions are not syntactically acceptable, so the operator CS will
be defined axiomatically. The appropriate axioms are easily obtained from the
semantic description. We first observe that the formula

CSϕ ≡ (ϕ ∧
∧

i∈S

KiCSϕ)

5For instance, an element of {1, 3}∗ is (1, 1, 3, 1, 3).
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must be valid for each formula ϕ. This is, therefore, a sound axiom scheme CK
(Common Knowledge).6 Furthermore, let us assume that, for some formulas ϕ
and ψ, the formula

ϕ ⊃
∧

i∈S

Ki(ψ ∧ ϕ)

is valid in some structure M . It clearly follows that, for each natural number p,
the formulas

ϕ ⊃
∧

i1∈S

Ki1 . . .
∧

ip∈S

Kip
(ψ ∧ ϕ)

and therefore
ϕ ⊃

∧

i1∈S

Ki1 . . .
∧

ip∈S

Kip
ψ

will also be valid in M . As a result, the formula

ϕ ⊃ CSψ

is valid in M too. This leads to a sound rule of inference, called the induction rule
(IR):

ϕ ⊃
∧

i∈S Ki(ψ ∧ ϕ)
ϕ ⊃ CSψ

It can be proved that the addition of Axiom CK and Rule IR are enough to turn
the formal systems listed in Fig. 3 into (sound and) complete axiomatic systems
for epistemic logic with common knowledge. Extended thus, System Kn is denoted
by KC

n . Similar notation is used for the other systems.

Common knowledge within a group could be interpreted as the knowledge that
“any fool” in the group will have. It is sometimes interesting to define the dis-
tributed knowledge within a group. That would be the knowledge that a “wise
person”, capable of making all the group’s implicit knowledge explicit, in turn
identified with the knowledge possessed by at least one member of the group. In-
cluding distributed knowledge in formal systems is easy. First, the distributed
knowledge within a group of one member reduces to this member’s knowledge.7

So, in self-explanatory notation,

D{i}ϕ ≡ Kiϕ

is a valid formula. Moreover, the larger the group, the greater the knowledge that
this group possesses:

DSϕ ⊃ DS′ϕ

if S ⊂ S′. Lastly, the operator DS inherits from the properties of the knowledge
operator. So new axioms are obtained from those of Fig. 1, by replacing K with DS .

6Observe that the conjunction is now finite and thus acceptable here.
7For common knowledge, this is true only if axiom S4 is valid.
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With these additions, the formal systems are extended in a sound and complete
way for distributed knowledge.8

The introduction of common knowledge increases the complexity of the sat-
isfiability problem, which becomes EXPTIME-complete for all systems.9 The
introduction of distributed knowledge does not increase the complexity of the sat-
isfiability problem.

1.3 Epistemic Logic As First-order Logic

Classical first-order logic can be used to model nearly anything in an elementary
way, and the propositional epistemic systems introduced above are no exception.
Propositional formulas of an n-agent epistemic logic can be converted into first-
order formulas in a straightforward way. If the set of elementary propositions is
p1, . . . , pr, the monadic predicate symbols will be P1, . . . , Pr. Furthermore, if the
agents are 1, . . . , n, the dyadic predicate symbols will be R1, . . . , Rn. No other
predicate symbols or function symbols are needed. A proposition pi is translated
into the first-order formula Pi(x). Translation respects Boolean connectives. For
instance, if propositional epistemic formulas ϕ and ψ are translated into first-order
formulas ϕ∗ and ψ∗, then the formula ϕ ∧ ¬ψ will be translated into ϕ∗ ∧ ¬ψ∗.
Lastly, the formula Kjϕ will be translated into ∀ y [Rj(x, y) ⊃ ϕ∗[x/y]].10 The
rules inductively define the so-called standard translation process, which leads to
first-order formulas containing the single free variable x. This syntactic correspon-
dence is supplemented with a semantic correspondence. More specifically, if ϕ is
interpreted on a Kripke structure M , a corresponding first-order structure M∗ for
ϕ∗ is obtained as follows. The domain of the structure M∗ is the set of states SM ;
Pi(x) is interpreted as T for a valuation V (x) = s if and only if πs(pi) = T.
Similarly, Rj(x, y) is interpreted as T for a valuation V (x) = s, V (y) = t if and
only if (s, t) belongs to the accessibility relation associated with agent j in struc-
ture M . The idea behind this correspondence is to obtain (M, s) |= ϕ if and only
if (M∗, V ) |= ϕ∗ where V (x) = s, with the consequence that ϕ∗ (and therefore
∀xϕ∗) will be valid if and only if ϕ is valid. It is possible to take into account
usual restrictions about the accessibility relations. For instance, if they are reflex-
ive, formula ϕ∗ is replaced by (

∧n
j=1 ∀ y Rj(y, y)) ⊃ ϕ∗.

This elementary translation technique does not extend to the common knowl-
edge operator CS . To see this, we define the notion of S-reachability. A state t
is S-reachable from state s in structure M if a finite sequence of states s0, . . . , sk

exists such that s0 = s, sk = t and, for each ℓ = 1, . . . , k, there exists j ∈ S
such that (sℓ−1, sℓ) is an ordered pair of the accessibility relation RM

j . It is clear
that (M, s) |= CSϕ holds if and only if (M, t) |= ϕ holds for each state t that is

8To prove this, a more formal semantics of distributed knowledge would be needed.
9Recall that, for systems including axiom S4, common knowledge reduces to knowledge if

n = 1, so, say, S4C
1 reduces to S41.

10If A is a formula, then A[x/y] denotes the formula obtained by replacing all free occurrences
of x by y.
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S-reachable from state s. It is also clear that S-reachability is a binary relation,
which is easily described in terms of the accessibility relations associated with the
members of S. Indeed, it is the smallest relation X such that, first, if (a, b) ∈ Rj

with j ∈ S, then (a, b) ∈ X and, second, if (a, b) ∈ Rj with j ∈ S and if (b, c) ∈ X,
then (a, c) ∈ X. The problem is that we can specify in a few axioms that a bi-
nary relation does satisfy these requirements, but we cannot specify that a binary
relation is the smallest one that satisfies these requirements.

It is theoretically interesting to determine that the (ordinary) knowledge op-
erators can be eliminated by switching to first-order logic, but it is more useful
to combine these operators in order to obtain a first-order epistemic logic with
both quantification and knowledge operators. From the syntactic point of view,
the combination is straightforward. From the semantic point of view, the natural
idea is to extend classical first-order logic to modal or epistemic first-order logic
just as classical propositional logic has already been extended to modal or epis-
temic propositional logic. In the propositional case, the extension has been easy.
The attachment of a propositional interpretation to each node of a graph whose
arcs are labelled with agents provides a propositional Kripke structure. In order
to get a first-order Kripke structure, the propositional interpretation has to be
replaced by a first-order interpretation. Observe that, in the propositional case,
the lexicon, that is, the set of elementary propositions, is the same for all states,
although the truth values associated with the propositions at distinct states may
be distinct. A (classical) first-order interpretation contains a domain, a valuation
function that assigns values to predicate symbols and function symbols (including
individual constants) and a valuation that assigns a value to the variables. Just
as in the propositional case, we assume that the set of symbols is the same for all
states, but the interpretation of these symbols can be distinct in distinct states.

We assume an important restriction: the interpretation domain will be com-
mon to all states and so will be the valuation. This restriction is introduced to
avoid problems in the interpretation of formulas like KiP (x) and, on the whole, at-
tempts to relax this “common-domain, rigid variables” (CDRV) assumption have
raised more problems than they have solved. Nevertheless, the CDRV assumption
has some unforeseen consequences, mainly due to the fact that quantifiers and
knowledge operators do not always commute. For instance,

KiP (t) ⊃ Ki∃xP (x)

is valid, but
KiP (t) ⊃ ∃xKiP (x)

is not. Indeed, the term t might be nonrigid, that is, be interpreted as distinct
elements of the interpretation domain in distinct states, whereas the variable x,
as any variable, is a rigid term, interpreted as the same element of the domain in
all states. Equality also raises a problem. Formula

(t = u) ⊃ Ki(t = u)
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is valid if t and u are rigid terms (this is the knowledge of equality axiom), but
not otherwise.11 This contradicts the feeling that all instances of

(t = u) ⊃ (ϕ(t) ≡ ϕ(u))

are valid. Indeed, the former is equivalent to an instance of the latter, where ϕ(u)
is Ki(t = u) and ϕ(t) is therefore Ki(t = t), that is, true.

This suggests that the axiomatization of first-order epistemic logic is not straight-
forward. However, a fairly simple axiomatic system can be proved sound and
complete. For the first-order version of Kn, such an axiomatic system comprises:

• The axioms and rules of the propositional system Kn;

• All instances of
ϕ(t) ⊃ ∃xϕ(x)

and of
(t1 = t2) ⊃ (ϕ(t1) ≡ ϕ(t2))

such that, if ϕ(x) contains a knowledge operator, then t, t1, t2 are variables;

• The Generalization rule
ϕ ⊃ ψ(x)

ϕ ⊃ ∀xψ(x)

where x has no free occurrence in ϕ;

• The knowledge of inequality axiom:

(x1 �= x2) ⊃ Ki(x1 �= x2) ;

• All instances of the Barcan formula:

∀xKiϕ ⊃ Ki∀xϕ .

Similar results hold for the other systems listed in Fig. 3.12

2 MULTI-MODAL EPISTEMIC LOGIC

2.1 The Relationship Between Knowledge And Belief

The relationship between knowledge and belief has been of concern for philosophers
at least since the time of Plato. Towards the end of the Meno Plato draws a

11Two constants, like “The president of the United States” and “George Bush”, may denote
the same man in the real world, but not in some other possible world.

12For system S5n, the knowledge of the inequality axiom and the Barcan axiom are not needed
since they can be derived from the other axioms. The converse of the Barcan axiom is derivable
in all systems.
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distinction between true opinion (doxa) and knowledge, writing that the “guide
who only thinks that this is the road to Larissa but is quite right gets us to
Larissa as effectively as if he actually does know it. The defect of opinion, even
when correct, is that, unlike knowledge, it can be shaken by criticism, conflicting
evidence, authority, etc. [Ryle, 1967, pp. 325–326]”. In the Theaetetus Plato
resumed his inquiry into knowledge and belief. He came to the conclusion that
knowledge is true belief plus something else, i.e. plus a logos.

A. J. Ayer is more precise than Plato was about what kind of thing it is that
must be added to true belief in order to make it into knowledge. His definition of
knowledge reads as follows: “the necessary and sufficient conditions for knowing
that something is the case are first that what one is said to know be true, secondly
that one be sure of it, and thirdly that one should have the right to be sure [Ayer,
1956, p. 34]”.13 By Ayer’s definition, “X knows that ϕ” implies “X believes that
ϕ”. Seven years later E. Gettier [1963] laid down a counter-example to the above-
mentioned definition of knowledge. Consider a man X who mistakes a dog for a
sheep when he looks at a field. (The dog has been astutely disguised as a sheep
by the farmer.) Suppose that there happens to be a sheep in the field that X does
not see. Then X believes the proposition stating that there is a sheep in the field.
That proposition is true and moreover it is justified. Yet we are not ready to say
that X knows that there is a sheep in the field.

Counter-examples to Ayer’s definition à la Gettier show that one cannot equate
“X justifiably knows ϕ” with “X justifiably believes ϕ and ϕ is true” where “and”
is truth-functional. The following case set up by F. Voorbraak [1992, p. 220] brings
that out clearly. Imagine a situation in which an agent justifiably believes that
p but not q. Suppose that ¬p ∧ q is true. The agent believes p ∨ q and, under
some reasonable assumptions, justifiably believes p∨q. Moreover p∨q is true. Yet
we cannot say that this agent knows that p ∨ q since it is believed for the wrong
reason.

To circumvent this objection, one might be inclined to define “X justifiably
knows ϕ” as “X justifiably believes ϕ and ϕ is true for the same reason that ϕ
is justifiably believed”. But if this definition is adopted, the first conjunct is no
longer independent of the second and we cannot construe “X justifiably knows ϕ”
as a truth-functional conjunction of “X justifiably believes ϕ” and “ϕ is true”.

In view of the interdependence of the two conjuncts defining “X justifiably
knows ϕ”, the question as to whether justified knowledge implies justified belief
ceases to be trivial. Conceptual analysis of notions like knowledge and belief taken
in isolation is not likely to lead us very far. A study of the whole network of propo-
sitional attitudes with the techniques of logic seems to be more promising. The
formal approach was launched with Hintikka’s seminal book Knowledge and Belief
[1962]. The subject was taken over by computer scientists and people working in
the area of artificial intelligence. In “A guide to the modal logics of knowledge and
belief” [Halpern and Moses, 1992 first version in 1985], questions of complexity
were raised [Spaan, 1993a; 1993b]. A precise methodology for a systematic exam-

13The quote from [Ayer, 1956] has been reprinted with the permission of Palgrave Macmillan.
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ination of possible combinations of epistemic operators was developed by W. van
der Hoek in “Systems of Knowledge and Belief” [1993].

2.2 Knowledge And Belief, How To Capture The Distinction

In the first section we followed current practice and used S5 (i.e. KT45) to capture
the knowledge operator K axiomatically. We have seen that this amounts to taking
the accessibility relation K to be an equivalence relation. This way of conceiving
knowledge is in keeping with the practice of economists whose model of knowledge
is based on partitions [Aumann, 1976].

As it is generally held that what distinguishes knowledge from belief is that the
former as opposed to the latter must be true, it appears that we could obtain an
axiomatic system for belief by substituting the operator B for K and replacing the
T axiom by the weaker axiom D : (Bϕ ⊃ ¬B¬ϕ) or D′ : (¬B ⊥) which require
that beliefs be merely consistent rather than true.

To capture belief we introduce into the model a new accessibility relation, B,
which serves to interpret the belief operator semantically when we spell out the
recursive definition of truth for the bimodal language containing both K and B.
Axiom T imposes reflexivity on the accessibility relation K. It requires that every
world be accessible from itself. Axiom D requires that each world be such that
a world is accessible by B from it. That means that in whatever state the agent
may be, there is always at least one state to which he or she has access.

To distinguish belief from knowledge in the case of several agents, drastic
changes are required. Besides introducing a designated world w0, we should also
drop symmetry and impose only seriality and Euclideanity on the accessibility
relation. We can, however, retain something of the equivalence relations which
captured our intuition of indistinguishability between worlds. If R is Euclidean,
then restricting R to the set of the relata w′ of R, i.e. to {w′ : (w,w′) ∈ R},
amounts to turning its restricted part into an equivalence relation. Hence worlds
which are considered to be possible by the agent still form an equivalence relation,
but the real world need not be among them. Seriality, as we saw before, guarantees
that the agent thinks that some worlds are possible.

2.3 Kraus And Lehmann’s Bimodal System KBCD

S. Kraus and D. Lehmann [1988, p. 157] took over Halpern’s and Moses’ enterprise
and set up a model involving a separate accessibility relation for each knower
and a separate accessibility relation for each believer. Two states s, t are in the
equivalence relation ≡i if the knowledge of person i cannot enable him or her
to distinguish between s and u. The relation ≡i of indistinguishability is an
equivalence relation which divides the set of states into equivalence classes of states.
Another relation ≈i is introduced to capture belief. Relation ≈i is Euclidean and
serial, but it is not necessarily symmetric and reflexive. S. Kraus and D. Lehmann
compare the size of the set of propositions that an agent knows with the size of
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the set of propositions that he believes: “It is easier to believe something than to
know it, because one knows only true things, so one’s beliefs can enable him to
distinguish between more states than one’s knowledge and therefore there could
be some states s, u such that s ≡i u but not s ≈i u” [Kraus and Lehmann, 1988,
p. 157]. In other words, if two states cannot be distinguished on the basis of an
agent’s beliefs, a fortiori they cannot be distinguished on the basis of this agent’s
knowledge. Formally this can be expressed by s ≈i u ⊃ s ≡i u. Yet the concept
of knowledge is richer than the concept of belief as Plato’s and Ayer’s definitions
show. The idea that the concept of knowledge contains the concept of belief plus
something else is reflected by the axiom Kiϕ ⊃ Biϕ.

How are the two formulas related? The axiom, which has been rejected by some
authors, can be derived from Kraus’ and Lehmann’s unquestionable observation
that belief is more fine-grained than knowledge.

Let Bxy stand for ‘world x is indistinguishable by belief from world y’. Let
Kxy stand for ‘world x is indistinguishable by knowledge from world y’. Let Sxϕ
stand for ‘world x forces (makes true) formula ϕ’. Kraus-Lehmann observation
can be written

∀x∀ y (Bxy ⊃ Kxy) .

From this we derive

∀x∀ y [(Kxy ⊃ α) ⊃ (Bxy ⊃ α)] , for each statement α,

and, in particular,

∀x∀ y [(Kxy ⊃ Syϕ) ⊃ (Bxy ⊃ Syϕ)] , for each formula ϕ.

Standard quantification calculus leads to

∀x∀ y (Kxy ⊃ Syϕ) ⊃ ∀x∀ y (Bxy ⊃ Syϕ) , for each formula ϕ,

which reduces to

Kϕ ⊃ Bϕ , for each formula ϕ.

The axiomatic system set up by Kraus and Lehmann will be denoted by KBCD .
It is designed to axiomatically capture the relationship between individual knowl-
edge (Ki), individual belief (Bi), common knowledge (C) and common belief (D).14

Following in W. van der Hoek’s footsteps, we shall restrict ourselves to the exam-
ination of the KB subsystem. The latter consists of any axiomatic system of the
standard propositional calculus to which the following axioms are added:

14Most authors use D for distributed knowledge, not for common belief. Kaneko et al. intro-
duced CB for common belief.
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Ki(ϕ ⊃ ψ) ⊃ (Kiϕ ⊃ Kiψ) Axiom K for knowledge
Kiϕ ⊃ ϕ Axiom T for knowledge
¬Kiϕ ⊃ Ki¬Kiϕ Axiom 5 (negative introspection)
Bi(ϕ ⊃ ψ) ⊃ (Biϕ ⊃ Biψ) Axiom K for belief
¬Bi ⊥ Axiom D for belief
Kiϕ ⊃ Biϕ Axiom KB 1
Biϕ ⊃ KiBiϕ Axiom KB 2

The inference rules are Modus Ponens, Necessitation for K, and Uniform Sub-
stitution in axioms and theorems.

The “bridge axioms” KB1 and KB2 relating belief to knowledge fit in with
our intuition very well. Unfortunately, as F. Voorbraak observes, they license the
theorem BiKiϕ ⊃ Kiϕ which states that whoever believes to know some proposition
ϕ does know it. Since in virtue of axiom T , which holds for KT45, one can only
know the truth, ϕ must be true. Hence BiKiϕ ⊃ Kiϕ commits us to saying
that “one cannot believe to know a false proposition” and this is counterintuitive
[Voorbraak, 1993, p. 8]. We are not perfect believers. A problem of the same kind
arises in one of B. van Linder’s Logics for rational agents (1996). This was shown
by L. Simon who worked out an axiomatic system of epistemic-doxastic logic free
of the unwanted formula BiKiϕ ⊃ Kiϕ [Simon, 1998].

2.4 The Derivation Of The Paradox Of The Perfect Believer

Before looking for a remedy, we shall spell out the proof of the unwanted theorem
and identify the axioms it rests upon. The proof reads as follows:

1. Kiϕ ⊃ Biϕ Axiom KB
2. Ki¬Kiϕ ⊃ Bi¬Kiϕ KB1 : ¬Kiϕ/ϕ
3. Biϕ ⊃ ¬Bi¬ϕ Axiom D
4. Bi¬ϕ ⊃ ¬Biϕ 3, contraposition
5. Bi¬Kiϕ ⊃ ¬BiKiϕ 4 : Kiϕ/ϕ
6. ¬Kiϕ ⊃ Ki¬Kiϕ Axiom 5
7. ¬Kiϕ ⊃ Bi¬Kiϕ 6, 2, hypothetical syllogism
8. ¬Kiϕ ⊃ ¬BiKiϕ 7, 5, hypothetical syllogism
9. BiKiϕ ⊃ Kiϕ 8, contraposition

The proof rests upon three modal axioms: KB1, D and 5. If we wish to make
the derivation of the unwanted conclusion impossible, we have to remove one of
them.15

15Another way would be to restrict the use of the Substitution rule.



Epistemic logic 115

2.5 Voorbraak’s System OK & RIB

Voorbraak chose the first option. He removed the axiom Kiϕ ⊃ Biϕ (KB1). His
axiom system uses the axioms of S5 to capture K and those of KD45 to capture
B. As bridge axioms between K and B, he puts forward:

KB2 : Biϕ ⊃ KiBiϕ
KB3 : Biϕ ⊃ BiKiϕ

F. Voorbraak is well aware that he breaks up with a long philosophical tradition
in abandoning Kiϕ ⊃ Biϕ. He concedes that the notion of knowledge that he has
axiomatized, let us call it “objective knowledge”, is unusual in so far as “it applies
to any agent which is capable of processing information” irrespective of whether
conscious belief states can be ascribed to it. Hence it applies to a device like a
thermostat or a television receiver.

F. Voorbraak’s notion of knowledge may be unusual but it is by no means a
metaphoric notion. The notion of knowledge analyzed by Dretske comes very
close to Voorbraak’s objective knowledge [Dretske, 1981]. F. Voorbraak’s axiom
KB3 could also evince some misgivings. If Goldbach believed in the truth of his
conjecture, does it follow, as Voorbraak’s axiom would have it, that Goldbach also
believed that he knew its truth? Presumably not since he called it a conjecture.
F. Voorbraak will answer quite rightly that he aims at formalizing “believing” in
a sense close to that of “being convinced of” (“überzeugt sein” in [Lenzen, 1980,
p. 28]).

To sum up, the system of objective knowledge and rational introspective belief
(OK & RIB) is “the normal modal system in the language LKB which is obtained
by adding the schemes Bϕ ⊃ BKϕ and Bϕ ⊃ KBϕ to the S5 principles for K and
KD45 principles for B [Voorbraak, 1993, p. 62]”. F. Voorbraak also succeeded in
providing a sound and complete axiomatization for the notion of “justified belief”
which plays an important role in epistemology. The system that he proposes
for that purpose is a system intermediary between S4 and S5, namely S4.2, i.e.
S4+¬B¬Bϕ ⊃ B¬B¬ϕ in which the accessibility relation is confluent, i.e. satisfies
the condition: ∀ s∀ t∀u((sRt ∧ sRu) ⊃ ∃ v(tRv ∧ uRv)). The axiom ¬B¬Bϕ ⊃
B¬B¬ϕ is called axiom of convergence or axiom G in [Hughes and Cresswell,
1996, p. 134], where it is written ¬�¬�ϕ ⊃ �¬�¬ϕ . Lenzen said that “[t]here is
strong evidence in favor of the assumption that S4.2 is the logic of knowledge [1979,
p. 33]”.

2.6 Can Beliefs Be Inconsistent ?

The second option we can take to block the derivation of BiKiϕ ⊃ Kiϕ consists
of removing axiom D, i.e. Bϕ ⊃ ¬B¬ϕ, and allowing ¬(Bϕ ⊃ ¬B¬ϕ) which is
equivalent to (Bϕ ∧ B¬ϕ). By factorization, the latter implies B(ϕ ∧ ¬ϕ). The
second option forces us to admit that we can believe the impossible. Can we?
In Principles of Human Knowledge, Berkeley replies negatively: “Believing that
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which involves a contradiction is impossible (Berkeley, 1710), [Marcus, 1993])”.
Berkeley’s claim, however, can be disproved by the following structure: take a
model M and a possible world w which has no world accessible from it. In that
structure Bϕ ∧ B¬ϕ trivially holds (as G. Sandu pointed out to us). One can
however drop axiom D, i.e. accept (Bϕ∧B¬ϕ) and side with Berkeley nevertheless,
i.e. one can accept Bϕ ∧ B¬ϕ, but reject B(ϕ ∧ ¬ϕ). This is actually R. Barcan
Marcus’ position. She is willing to renounce the principle of factorization (Bϕ ∧
Bψ) ⊃ B(ϕ∧ψ).This means that doxastic logic ceases to be a regular modal system
(see [Chellas, 1980, p. 235]).

R. Fagin and J. Y. Halpern have set up a cluster semantics for which it is
possible to model the frame of mind of an agent who believes ϕ and believes ψ
without believing ϕ ∧ ψ [Fagin and Halpern, 1988, pp. 58-59]. As E. Thijsse puts
it, on their view, “an agent is similar to a community in which different persons
may have different opinions, yet no one will defend contradictions. In a nutshell,
beliefs stemming from various frames of mind need not be combined by the agent”
[Thijsse, 1992, p. 170]. As an alternative to the semantic compartmentalization
just described, J. Dubucs advocates a proof-theoretic approach of the problem.
We have to explain why the inference (1) “Infer ϕ∧ψ from the justifiable presence
of ϕ and ψ in the same context” is performable while the inference (2) “Infer ϕ∧ψ
from the justifiable presence of ϕ in a context, and the justifiable presence of ψ in
another context” is not. He argues that the difference rests upon a difference in
the conjunctions used in (1) and (2). The first one is context-sensitive, the second
is context-free. To capture the difference, he spells out the inferences under con-
sideration in the formalism of Gentzen’s Calculus of Sequents and takes advantage
of the possibility to tamper with structural rules: “[. . . ] the very possibility to
model the context-sensitivity of the inferences rests on the (partial) removing of
the structural rules: in order to prevent dissonant cognizers from admitting bla-
tant inconsistencies, we have to restrict the scope of these rules” [Dubucs, 1991,
p. 54].

Let us now turn to the third way of stopping the unwanted derivation, i.e.
renouncing negative introspection.

2.7 Negative Introspection And The Paradox Of Infallibility

Negative introspection, i.e. axiom 5: ¬Kiϕ ⊃ Ki¬Kiϕ, has been under attack
for some time. W. Lenzen raised the following objection: “[i]f an individual a is
completely sure of p’s truth but nevertheless goes wrong about p, then he evidently
does not know that p, although he believes to know that p; and hence he is far
from knowing that he does not know that p. Unlike belief, knowledge is not
purely subjective in character but requires at least one objective mark, viz. truth.
Hence we cannot — by mere introspection — ascertain whether we know that p.”
[Lenzen, 1978, p. 79]. T. Williamson observes that there are familiar situations
which disprove negative introspection. It happens that, when an agent does not
know p, it does not know that it does not know p and he adds: “That is because
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it cannot survey the totality of its knowledge. It is a failure of self-knowledge, not
of rationality in any ordinary sense” [Williamson, 2000, p. 317].16

If we cease to consider knowledge in isolation, but relate it to belief, a new and
powerful objection crops up. Combined with other principles that we are not will-
ing to abandon, negative introspection entails the agent’s infallibility [Williamson,
2001]. More precisely, from 1 to 5 below, we can derive 6,

1. Biϕ ⊃ BiKiϕ (KB3)
2. Bϕ ⊃ ¬B¬ϕ (D)
3. Kiϕ ⊃ Biϕ (KB1)
4. ¬Kiϕ ⊃ Ki¬Kiϕ (5)
5. Kiϕ ⊃ ϕ (T )
6. Biϕ ⊃ ϕ (Ω)

i.e. whatever agent i believes is true. Since this is clearly untenable, one of the
five premises has to yield. Williamson and Simon chose to sacrifice the fourth,
i.e. axiom 5. Voorbraak sacrificed the third, i.e. axiom KB1. The proof (due to
Williamson) that Ω follows from the premises is left as an exercise. It is made
easier if we avail ourselves of axiom B: ¬ϕ ⊃ Ki¬Kiϕ, an instance of Brouwer’s
principle which is derivable from axioms T and 5. We shall return to KB3 in the
next section.

Yet, were it not for the unwanted consequence (infallibility ascribed to the
agent), we have very good reasons to take up S5 as a formal system for knowledge
and KD45 as a formal system for belief while adopting Kϕ ⊃ Bϕ and Bϕ ⊃ BKϕ
as bridge laws between knowledge and belief. J. Halpern has shown that we can
do so without falling prey to the infallibility predicament; what we have to do is to
restrict axiom KB1 to objective, i.e. non modal formulas. This means, e.g., that
K¬Kp ⊃ B¬Kp is not eligible as a substituend for Kϕ ⊃ Bϕ. The weakened system
spelled out to capture this restriction is sound and complete [Halpern, 1996].

Several sets of axioms for multi-modal logic have been presented. Some of those
sets contain members which look quite acceptable as long as they are taken in
isolation but produce unexpected and unacceptable results when they are brought
together. At this stage we need a general method to make a systematic exploration
of all possible combinations of epistemic operators. Such a method has been
worked out by W. van der Hoek who applied correspondence theory to multi-modal
systems. Correspondence theory was independently created by H. Sahlqvist [1975]

and J. van Benthem [1976; 1983].

2.8 Correspondence Theory For Comparing Multi-modal Logics

The problem that W. van der Hoek addresses can be stated in this way: given
some epistemic logic KB* which we have proved sound and complete with respect
to a class of canonical frames, we want to know whether adding a new axiom ϕ1

16The quote from [Williamson, 2000] has been reprinted with the permission of Oxford Uni-
versity Press, Oxford, UK.
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will make an unwanted theorem ϕ2 derivable or not. W. van der Hoek shows
that under some proviso the problem can be reformulated as the question whether
the first-order property Φ1 which corresponds to modal formula ϕ1 implies the
first-order property Φ2 which corresponds to modal formula ϕ2. Two definitions
[van der Hoek, 1993, p. 181] are needed. We presume the definitions of canonical
model and canonical frame [Hughes and Cresswell, 1984].

1. An axiom scheme ϕ belonging to the language of a normal modal logic L is
canonical if and only if ϕ is satisfied by the canonical frame for L.

2. If Φ is a (first-order) property of the class D of canonical frames Fc, ϕ
corresponds with Φ [formally: ϕ ∼D Φ] if Fc makes the formula ϕ true if
and only if it satisfies Φ.

With this apparatus, a canonical frame Fc = 〈Wc,Kc,Bc〉 can be constructed
for KB* such that

• Fc makes the axioms of KB* true (hence “canonical”) and

• the following equivalences are obtained with respect to the canonical frames
of KB*:

(a) ∀x∀ y ∀ z [(xBy ∧ yKz) ⊃ xBz] ∼KB∗c [Biϕ ⊃ BiKiϕ] ;

(b) ∀x∀ y (xBy ⊃ xKy) ∼KB∗c [Kiϕ ⊃ Biϕ] ;

(c) ∀x∃ y [xBy] ∼KB∗c [¬B ⊥] ;

(d) ∀x∀ y ∀ z [(xKy ∧ xKz) ⊃ yKz] ∼KB∗c [¬Kiϕ ⊃ Ki¬Kiϕ] .

As an example we shall prove the first one in the left to right direction. We want
to demonstrate that ∀x∀ y∀ z((xBy∧yKz) ⊃ xBz) implies Biϕ ⊃ BiKiϕ. Assume
to the contrary that the consequent is false, i.e. that we have both w0 |= Biϕ and
w0 �|= BiKiϕ. The first conjunct can be rewritten ∀ y(w0By ⊃ y |= ϕ) and the
second: ¬∀ y∀ z((w0By ∧ yKz) ⊃ z |= ϕ). Pushing the negation inside we get
∃ y∃ z((w0By ∧ yKz) ∧ z �|= ϕ). By instantiation we obtain ((w0Bw1 ∧w1Kw2)∧
w2 �|= ϕ). But in virtue of the left side, we have ((w0Bw1 ∧ w1Kw2) ⊃ w0Bw2).
By modus ponens we get w0Bw2, which, together with ∀ y(w0By ⊃ y |= ϕ), gives
us w2 |= ϕ by trivial transformations. We have arrived at our contradiction as
expected.

W. van der Hoek states this startling result: when taken together, the four
axioms mentioned on the right side of the equivalences (a) - (d) entail the theorem
Biϕ ⊃ Kiϕ, which, when combined with its converse, i.e. axiom (b), produces
the collapse of the distinction between knowledge and belief. Thanks to the cor-
respondence theory the proof of W. van der Hoek’s theorem is an easy exercise in
first-order logic. It is outlined below.
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Assume the negation of the first-order formula corresponding to Biϕ ⊃ Kiϕ, i.e.

(e) ¬∀x∀ y(xKy ⊃ xBy)

and add them to the four first-order formulas corresponding to the axioms; a
contradiction is easily obtained:

1. ∀x∀ y ∀ z (xBy ∧ yKz ⊃ xBz) (a)
2. ∀x∀ y (xBy ⊃ xKy) (b)
3. ∀x∃ y xBy (c)
4. ∀x∀ y ∀ z (xKy ∧ xKz ⊃ yKz) (d)
5. ∃x∃ y (xKy ∧ ¬xBy) (e), trivial transformation
6. aKb ∧ ¬aBb 5, existential instantiation
7. ∃ y aBy 3,universal instantiation
8. aBc 7, existential instantiation
9. aBc ⊃ aKc 2,universal instantiation

10. aKc ∧ aKb ⊃ cKb 4,universal instantiation
11. aBc ∧ cKb ⊃ aBb 1,universal instantiation
12. aBb 6, 8-11, trivial transformation
13. aBb ∧ ¬aBb 6, 12

After splitting (6) into two conjuncts we get a contradiction with (12).
The second part of W. van der Hoek’s theorem reads as follows: for each proper

subset of {a, b, c, d}, counter-models can be built which show that none of those
sets of axioms entails the collapse of the distinction between knowledge and belief
[van der Hoek, 1993, pp. 187-188]. Since everybody wants to retain (a) and (c), the
number of viable alternatives between which we have to choose has been drastically
reduced. This significant advance was made possible by applying correspondence
theory.

2.9 Implicit Versus Explicit Beliefs

In 1984, H. J. Levesque [1984] developed a logic which distinguishes between
implicit and explicit belief. The enterprise was taken over by R. Fagin and
J. Y. Halpern who extended Levesque’s logic and spelled out two distinct ac-
counts of awareness. We shall restrict ourselves to the second one: general aware-
ness. They define a Kripke structure for general awareness as a tuple M =
(S, π,A1, . . . ,An,B1, . . . ,Bn). S is a set of states, π is a truth assignment to
primitive propositions for each state member of S, and Bi is the accessibility re-
lation for the interpretation of implicit beliefs of agent i, Ai is an arbitrary set of
formulas, the formulas of which agent i is aware. We can also view it as a function
which assigns to agent i the set of formulas of which he is aware.

The set of formulas of which the agent is aware may contain contradictory
formulas without the agent entertaining inconsistent beliefs: being aware is not
believing. To complete the semantics, a recursive definition of truth in model M



120 Paul Gochet and Pascal Gribomont

is provided. The following clauses interpret the operator of awareness (A), that of
implicit belief (L) and that of explicit belief (B):

M, s |= Aiϕ iff ϕ ∈ Ai.
M, s |= Liϕ iff M, t |= ϕ for all t such that sBt.
M, s |= Biϕ iff ϕ ∈ Ai and M, t |= ϕ for all t such that sBt.

R. Fagin and J. Y. Halpern observe that a complete axiomatization of the logic of
awareness can be obtained by adding the axiom Biϕ ≡ (Liϕ∧Aiϕ) to the axioms
of KD45. The distinction between explicit and implicit beliefs was introduced
to solve the problem of logical omniscience which will be examined in detail in
section 6. The idea is that the agent is a perfect logician only at the level of his
or her implicit beliefs, not of his or her explicit beliefs. This view strikes us as
too optimistic. Could we not instead claim that we are sometimes illogical and
irrational in what we implicitly believe? What about prejudices and beliefs to
which we stick against factual evidence? To handle these, W. van der Hoek and
J.-J.Ch. Meyer suggested to supplement the awareness function introduced by R.
Fagin and J. Y. Halpern by a prejudice function P that gives a set of formulas for
each world representing the beliefs the agent wants to stick to. With this utility,
we can formalize the behaviour of an agent who reasons against the facts [van der
Hoek and Meyer, 1989, pp. 186].

2.10 Implicit Contradictions Becoming Explicit

If we agree, as we think we should, that far from being implicitly logically omni-
scient we can be implicitly illogical, we have to reconcile this with the fact that
we do not believe explicit contradictions. To tackle this problem successfully we
first need to get a firm hold on the notion of belief itself.

Let us consider R. Barcan Marcus’ account of knowledge and belief. On her
view, knowledge is a relation between an agent and a real state of affairs. When
we discover that some proposition p we held to be true is false, we do not say “we
knew p”. Instead we withdraw our previous claim and say “we thought we knew
but we only believed p”. Belief, R. Barcan Marcus says, is a relation between an
agent and a possible state of affairs [Marcus, 1993, p. 145]. When we are shown
that the content of a belief is an impossible state of affairs, we withdraw our
claim to believe. We do not say “we believed p”. We rather say “we thought we
believed”.

On the account of belief just presented, we cannot believe things which we
know to be inconsistent, but we can believe propositions which, unknown to us,
are inconsistent. A full treatment of the logic of belief cannot ignore the process
of becoming aware of an inconsistency and the revision of belief which it triggers.
To handle that question we need a dynamic approach to epistemic logic. This will
be the topic of the next section.
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2.11 Implicit Contradictions In The Language

Up to this point, we have considered contradictions hidden in theories. There
is, however, a more pervasive, hidden contradiction to be taken care of. Tarski
showed that the antinomy of the liar can be obtained in any language which makes
four assumptions [Tarski, 1949, pp. 58-59], [Haack, 1978]:

1. The language is universal in the sense that it contains its own metalanguage.

2. The ordinary laws of logic hold.

3. An empirical premise such as “The sentence printed in this paper on page n,
line m, is not true” can be formulated and asserted.

4. For any sentence p, a sentence of the form “‘p’ is true if and only if p” belongs
to the language.

Ordinary language fulfills these four conditions. Hence, we seem to be committed
to the contradictory statement “s is true if, and only if, s is not true”, even before
adopting a particular theory. F. Orilia came to grips with this problem and showed
how we can reason in spite of the fact that we use a universal and thus possibly
inconsistent language [2000, p. 292]. F. Orilia reconsiders assumption 2 and puts
forward the idea that logical rules can be construed as default rules which can
admit exceptions.

Although Orilia’s approach bears some resemblance to Priest’s proposal of a
nonmonotonic version of his paraconsistent logic [Batens et al., 2000], it differs
from it insofar as for Orilia “there is no a priori decision regarding which inference
rules [. . . ] may have exceptions. It all depends on the entrenchment ordering”
[Orilia, 2000, 19, p. 295]. Orilia supplies an algorithm for belief revision which
enables us to remove both the alethic paradoxes and the inconsistencies which
come to the surface as dispositional beliefs acquire the status of active beliefs.
The algorithm takes due account of the entrenchment.

3 MULTI-AGENT SYSTEMS

3.1 The Modeling Of Knowledge Change Via Interpreted Systems

The muddy children puzzle involves several agents, the father and the children,
interacting over time. If we want to describe such a multi-agent system, Kripke’s
possible world semantics can be used. There is however an alternative semantic
framework designed to model interactions which occur in time, namely interpreted
systems, which we shall briefly describe here [Fagin et al., 1995].

Fagin et al. assume that if we look at the system at any point of time each agent
is in some state, called local state, which encodes all the information to which the
agent has access. Once it is granted that each agent is in some state, it becomes
quite natural to consider that the whole system itself is in some state. If we allow
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for the role of the environment, we can define the notion of the global state of a
system in this way: a global state of a system with n agents is an (n + 1)-tuple
of the form (se, s1, . . . , sn) where se is the state of the environment and si is the
local state of each agent i.

If Li is used to denote a set of possible local states for agent i, we can take
G = Le × L1 × · · · × Ln to be the set of global states. If we want to represent the
temporal evolution of the system, we have to complicate the picture a little bit
and introduce the notion of a run over G where “run” denotes a function from the
time domain (the natural numbers if we use discrete time) to G.

A non-interpreted system S is a subset of the Cartesian product of global states
S ⊆ Le × L1 × · · · × Ln. An interpreted system is a system S together with an
interpretation function (π : P → 2S) which assigns a subset of S to every atomic
sentence. The difference between a non-interpreted system and an interpreted
system is very much the same as the difference between a Kripke frame and a
Kripke model.

Accessibility relations are an essential ingredient of Kripke frames and models.
There are no relations of that kind in systems. To bring together systems and
frames we need something in systems which corresponds to the accessibility rela-
tions in frames. Consider two global states L and L′ in systems. When can we
say that they are epistemically indistinguishable for agent i, i.e. when can we say
that they are related to one another by the equivalence relation ∼? The answer
is provided by the following definition: two global states L and L′ are epistemi-
cally indistinguishable whenever their respective local states ℓ and ℓ′ are identical.
Formally: L ∼ L′ iff ℓ = ℓ′.

3.2 Hypercubes As A Proper Subset Of Equivalence Frames

Between standard Kripke models and interpreted systems made up of runs de-
signed to describe temporal evolution, there is an intermediate class of systems
which has been scrutinized at depth [Lomuscio, 1999]. It turns out that the sys-
tems of that intermediate class are ideally suited for the logical exploration of static
epistemic properties which can only be ascribed to a network of several interacting
agents such as the property of sharing knowledge.

That intermediate class H is dubbed the class of hypercube systems. Hypercube
systems are a variety of interpreted systems in which the full Cartesian product
of non-empty sets of local states is considered. Formally, H = L1 × · · · × Ln; the
environment states are ignored. We are facing two ways of modeling knowledge:

1. The standard way provided by S5 Kripke models whose frames consist of
〈W,∼1,∼2, · · · ,∼n〉 where ∼i is an equivalence relation which serves to cap-
ture the intuition that “agent i considers t possible in world s if . . . the two
worlds are indistinguishable to the agent” [Fagin et al., 1995, p. 18].



Epistemic logic 123

2. The new way provided by hypercube systems in which the identity relation
between local states belonging to global states plays the role of the equiva-
lence relations between worlds.

The question arises whether it is possible to characterize the relationship be-
tween hypercubes and frames in a rigorous way. As a preliminary step, Lo-
muscio defines a map f from hypercubes H to Kripke frames F as follows. If
H = L1 × · · · × Ln, then f(H) = (L1 × · · · × Ln,∼1,∼2, · · · ,∼n) where ∼i

is defined as (ℓ1, . . . , ℓn) ∼i (ℓ′1, . . . , ℓ
′
n) if and only if ℓi = ℓ′i. Applying the

map f just defined to a hypercube H, we obtain an equivalence frame, namely
F = (W,∼1,∼2, · · · ,∼n). The frame thus obtained however is not any arbitrary
equivalence frame. It is, as Lomuscio stresses, a very peculiar equivalence frame,
i.e. a frame which can be proved to have these two properties:

1. The identity-intersection property. The intersection of the equivalences rela-
tions boils down to the identity between worlds:

⋂
i∈A ∼i = idW .

2. The n-directedness of the frame. For any world wi ∈ W , there is a world w
such that w ∼i wi for i = 1, . . . , n.

It follows that the Kripke frames obtained up to now from hypercubes are a
proper subset of the set of Kripke equivalence frames.

On the basis of further theorems about the relationship between hypercubes
and Kripke equivalence frames, Lomuscio succeeds in isolating a class of Kripke
equivalence frames G which is semantically equivalent to the class of hypercubes,
i.e. which verifies (respectively falsifies) the same formulas, namely the class of
ID-equivalence frames which enjoy the identity-intersection and the n-directedness
properties. This result shows that the task of axiomatizing the set of hypercubes
boils down to that of axiomatizing the G class of Kripke equivalence frames.

3.3 The Axiomatization Of Hypercubes

Equivalence frames are axiomatized by S5. As hypercubes can be seen as equiv-
alence frames of a special sort (ID-frames) which satisfy two special conditions
(identity-intersection and directedness), we expect that for the axiomatization of
hypercubes the axioms of S5 will not suffice. This is actually the case: ID-frames
validate more formulae than S5. They validate a generalized form of the conver-
gence axiom which reads

�i�jϕ ⊃ �j�i, where i, j ∈ A, A = {1, . . . , n}, i �= j, j, n ≥ 2 .

If we interpret the convergence axiom in epistemic terms, it states that “if agent
1 considers possible that agent 2 knows the fact p, then agent 2 knows that agent 1
considers p possible”. The epistemic meaning of the axiom is even better grasped
by thinking out the situations it excludes, indeed the situations in which agent 1
considers possible that agent 2 knows p, while agent 2 considers possible that agent
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1 knows not p. Hence the axiom of convergence, read epistemically, “imposes a sort
of homogeneity on the knowledge considered possible by other agents” [Lomuscio,
1999] and makes up one of the background assumptions which underlie dialogues
between peers.

3.4 A Survey Of Knowledge Sharing Among Ideal Agents

To capture the logical properties of knowledge sharing among ideal agents, the
best policy is to take the standard epistemic logic S52 (S5 for two agents) as our
starting point and to add new axioms. The scope of the task can be easily defined
from the start.

If we restrict ourselves to the language of propositional logic enriched with two
symbols denoting agents, ‘1’ and ‘2’, and two epistemic operators, ‘agent x knows’
(�x) and ‘agent x considers possible’ (�x), an exhaustive survey of the interaction
axioms which can be built with these four terms, together with the implication
symbol and propositional atoms, involves 16 axioms of the form △ ⊃ △, where △
stands for one of the operators �1,�2,�1,�2, 64 axioms of the form △△ ⊃ △, or
of the form △ ⊃ △△, and 256 axioms of the form △△ ⊃ △△.

For all possible extensions of S52 except two of them, obtained in the way
described in the first paragraph, the resulting system remains sound, complete
and decidable. We need however, in most cases, to impose additional constraints
on the accessibility relations.

The first axiom we shall comment on characterizes the multi-agent logic that
forces the knowledge of an agent, say agent 1, to be a subset of the knowledge of
another agent, say agent 2. In other words, whatever is known by 1 is also known
by 2 but not conversely. That logic captures the real life situation in which agent 2
is a central processing unit which receives messages sent from independent sources
represented here by agent 1. The axiom reads as follows:

�1p ⊃ �2p . (1)

System S52 extended with axiom 1 is proven to be sound and complete if and
only if the equivalence relation which is the model-theoretic counterpart of �2 is
a subset of the equivalence relation which is the model-theoretic counterpart of
�1. Adding axiom 1 to S52 is a genuine extension. It validates frames which are
richer in this sense: it is not enough to require of the accessibility relations that
they be equivalence relations. An additional condition has to be fulfilled, namely
∼2⊆∼1 .

This correspondence result (in the Sahlqvist-van Benthem sense of “correspon-
dence”) is easy to understand if we bear in mind the epistemic meaning of the ac-
cessibility relation. Intuitively, agent 2 knows more than agent 1 if fewer worlds are
compatible with what he knows, or to say the same thing in a different way, if the
worlds he considers to be indistinguishable are members of smaller classes (smaller
equivalence classes) than those held indistinguishable by agent 1. To switch back
to the formal terminology again, this amounts to saying that [w]∼2

⊆ [w]∼1
.
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The next formula we shall be considering is:

�1p ⊃ �2p . (2)

This formula says that if agent 1 knows that p then agent 2 thinks p possible. As
opposed to axiom 1, formula 2 is not an extension but merely a theorem of system
S52. It follows from �1p ⊃ p in conjunction with p ⊃ �2p.

In the third category (△ ⊃ △△), axiom 3 is of special interest:

�1 ⊃ �1�2p (3)

It says “if agent 1 knows p, he considers possible that agent 2 also knows p”. Like
axiom 1, axiom 3 is a proper extension of S52. It generates a new class of frames.
A new constaint is imposed upon the accessibility relations. They must satisfy the
following requirement: ∀w∃w′ : [w]∼2

⊆ [w′]∼1
.

Axiom 3 formally captures a principle of prudence. In situations in which
agents have similar characteristics, it is reasonable to assume that the other agent
could reach the same conclusions by acquiring the same information from the
environment and by reasoning in the same way [Lomuscio, 1999].

3.5 A Dynamic Approach To Knowledge Sharing

However successful the static approach to knowledge sharing can be, it will not
suffice to handle problems like the Muddy children puzzle. To handle this problem
we are forced to take up a dynamic approach to knowledge sharing.

The setting is well known. Imagine that n children are sitting in a circle and
that k of them have mud on their foreheads. Each can see the spot on the others,
but not the one on his or her own forehead. The teacher comes along and says:
“At least one of you has mud on your head”, telling something known to each of
the children before he or she spoke (if k > 1). The teacher then asks the following
question over and over again: “Can any of you prove you have mud on your head?”
It can be proved that the first k − 1 times that the teacher asks the question, the
children will all say “no” but then the kth time the children with mud will say
“yes” [Barwise, 1981, p. 382].

J. Barwise gave the following informal proof by induction on k: “For k = 1 the
result is obvious: the dirty child sees that no one else is muddy, so he or she must
be the muddy one. Let us do k = 2. So there are just two dirty children a and
b. Each answers “no” the first time, because of the mud on the other. But when
b says “no”, a realizes that he or she must be muddy, for otherwise b would have
known the mud was on his or her head and answered “yes” the first time. Thus
a answers “yes” the second time. But b goes through the same reasoning [. . . ]”
[Barwise, 1981, pp. 382-383].

This is a brand of reasoning that typically belongs to epistemic logic. The
language of epistemic logic is indispensable to stating the premises and the con-
clusion. The proof system of epistemic logic is needed to derive the conclusion
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from the premises, namely axiom K and axiom T together with the monotonicity
rule ϕ ⊃ ψ ⊢ Kϕ ⊃ Kψ.

As J. Geanakoplos observes, “the story is surprising because aside from the
apparently innocuous remark of the teacher, the students appear to learn from
nothing except their own ignorance” [Geanakoplos, 1992, p. 257]. The teacher’s
remark appears innocuous insofar as k > 1, it seems to convey no new information
to the children. Yet it is crucial. It turns knowledge into common knowledge. Be-
fore the teacher spoke, every student knew that at least one of them was muddy,
but this was not yet common knowledge, i.e. they did not know that everybody
knew. A second crucial feature emphasized by Geanakoplos is that the pronounce-
ments of ignorance of the children are public: “[e]ach time a student maintains
his ignorance, he knows that everyone else knows he said he didn’t know, etc.”
[Geanakoplos, 1992, 257-258]. Thirdly everyone knows the reasoning of the other.

To fully appreciate the dynamic nature of the reasoning which enables the chil-
dren to solve the puzzle, we have to look at the reconstruction of that reasoning
offered by the model checking method [Halpern and Vardi, 1991; Fagin et al.,
1995]. Roughly speaking the method consists in this. Instead of describing the
puzzle by a set of formulae and using the proof theory of epistemic logic to derive
the statement which is the solution of the puzzle (in this case the statement “every
agent who has mud on his or her forehead knows it”), a single Kripke model M
is constructed in which the situation is codified in such a way that one can check
whether M verifies the above-mentioned statement. Consider the case with 3 chil-
dren (a, b, c). There are eight possible combinations: three children have mud,
two of them, one of them and finally none has. We can construct a cube whose
eight vertices are marked with one of the triples 〈111〉, 〈110〉, . . . , 〈000〉. The n-th
position in the triple represents the n-th agent; “1” means that agent n has mud
on his or her forehead, “0” means that he or she has a clean forehead. We have
a structure with 2n nodes, each marked with a triple of 0 and 1, such that two
adjacent nodes differ in one component. Before the father speaks, child a knows
whether b and c have a spot on their foreheads since he or she sees them. He or
she is only ignorant about his or her own forehead. Take for instance the following
case: agent b is clean and agent c is dirty. In that case, child a who sees agents b
and c considers two situations possible: namely 〈1, 0, 1〉 (the actual situation) and
〈0, 0, 1〉.

In general child i has the same information in two possible worlds exactly if
these two worlds agree in all components except possibly the i component. To
capture this we define an accessibility relation Ki such that (s, k) ∈ Ki if and only
if the worlds s and t agree in all components except possibly the ith component.
The formal expression (s, k) ∈ Ki can be read as: “agent i considers worlds s and
k possible” or “agent i takes s and k to be indistinguishable”. The definition of
Ki makes it an equivalence relation.

Before the father says “at least one of you has a dirty forehead”, child a in
the world 〈101〉 considers the situation 〈001〉 possible and in that world child c
considers 〈000〉 possible. More accurately, child a thinks it possible that child
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c thinks it possible that 〈000〉 even if child c does not. These nested epistemic
operators are represented by a sequence of edges on the cube: 〈101〉—a— 〈001〉—
c— 〈000〉. This sequence is not possible any longer after the father’s announcement
“at least one of you is muddy”. The children do not acquire first-order knowledge
by listening to the father’s announcement. The effect of the later is to change the
nature of their knowledge that there is at least one child having a muddy forehead.
It turns this piece of information into common knowledge. An information update
takes place. From now on, no child can think that another child thinks that nobody
is muddy.

There is a very intuitive way of representing the information update effected
by the father’s announcement. One should simply remove the node marked with
〈000〉 and, by the same token, remove the edges leading to it, namely: 〈100〉 —
a— 〈000〉, 〈010〉 —b— 〈000〉 and 〈001〉 —c— 〈000〉. Removing links amounts to
removing epistemic possibilities. Hence truncating the cube is a way of depicting
the increase of knowledge. Lomuscio calls that operation “model refinement”. Let
us now examine the role of the first public reply of the children to the father’s
question “can any of you prove that you have mud on your forehead?”. If child
1 saw two clean foreheads, he would reply “Yes”. But he replies “No”. The
same applies to children 2 and 3. From the public announcement “No” made
by all of them at the same time, the three children can conclude that all the
worlds containing two occurrences of “0” have to be removed. The utterrance of
“No” produces a mutual update, it becomes common knowledge that at least two
children are muddy. Having heard the unanimous “No”, each child who would see
one clean forehead could conclude that he belongs to the pair of muddy children
and reply “Yes” to the father. If they unanimously reply “No” for the second time,
a new mutual update occurs to the effect that none of the three children sees a
clean forehead. Let us now turn to the proof-theoretical approach to the Muddy
children puzzle.

3.6 Dynamic Epistemic Logic And The Muddy Children Puzzle

A proof-theoretic treatment can be found in several places [Konolige, 1986; Gene-
sereth and Nilsson, 1988; Thayse, 1989]. Genesereth and Nilsson gave a very
elegant proof of the statement that answers the puzzle limited to two agents. The
proof which uses a variant of the resolution method rests on these three premises:

1. �a(¬Whitea ⊃ �b¬Whitea) ,

2. �a�b(Whitea ∨ Whiteb) ,

3. �a¬�bWhiteb .

The set of premises 1–3, however, lies open to a serious objection. Premise 2 hap-
pens to be false when evaluated before the father’s announcement. As Gerbrandy
observes, “[i]f there are two children that are dirty, it is indeed the case that each
of them knows that at least one of them is dirty (they can see the other child).
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But they do not know of each other that they know this. For example, child a, not
knowing whether she herself is dirty, cannot be sure that b can see a dirty child (if
a is clean, b sees only clear foreheads) [Gerbrandy, 1999, p. 155]”. In other words,
formula �a�b∃xWhitex is false, hence premise 2 is false.

The standard formalization offered by static epistemic logic cannot do justice
to the role of the father’s announcement, nor for that matter, to the role of the
denial uttered by the children. Each of these announcements performs a crucial
change. It turns private knowledge into common knowledge. Standard epistemic
logic however has no operators designed to handle change.

This deficiency was observed more than thirty years ago: “[h]ere is what I
consider one of the biggest mistakes of all in modal logic: concentration on a
system with just one modal operator. The only way to have any philosophically
significant results in deontic logic or epistemic logic is to combine those operators
with tense operators (otherwise how can you formulate principles of change?) . . . ”
[Scott, 1970, p. 161].17

Many reasonings can be analyzed without taking time into account. The deriva-
tion of the law of associativity of addition from Peano’s axioms is a case in point.
Here the only order that matters is logical order: some propositions logically de-
pend upon others. This order can be contemplated sub specie aeterni. Temporal
order does not play any logical role. In the Muddy children puzzle however, time
plays a role which is obfuscated in the formalization presented above.

A more refined account of the puzzle which formally represents time and com-
mon knowledge and meets Scott’s demands appears in [Gochet et al., 2000, pp. 97-
101], but the new formalization describes the progression of the reasoning in a
staccato way. The question naturally arises whether it would not be possible to
formalize the dynamic character of the information flow itself. This problem has
been addressed in [Gerbrandy and Groeneveld, 1997; Gerbrandy, 1999]. Building
upon the update semantics [1996], Gerbrandy and Groeneveld spelled out a for-
mal language, an axiomatic system and a new semantics which formally represent
the epistemic operation of information updating which takes place when the father
makes his announcement and when the children publicly reply “No” to the father’s
question.

3.7 An Axiomatic System For The Update Operator

As a first step towards a formalization of information updating, a new operator is
introduced into the language of epistemic logic: [ϕ]aψ, which can be rendered in
natural language by “an update of the agent a’s information with ϕ results in a
situation where ψ is true”. There is an operator [ϕ]a for each agent a and each
sentence ϕ in the language. This reflects the idea that any sentence can be learned
by any agent [Gerbrandy and Groeneveld, 1997, p. 150].

17The quote from [Scott, 1970] has been reprinted with the permission of Springer, The Nether-
lands.
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If we replace the index referring to a single agent a by an index referring to
a group of agents B, and write [ϕ]Bψ, we obtain an operator which represents
updates turning private knowledge into common knowledge. An operator such as
[ϕ]B can be added for each group which is a subset of the group of agents (B ⊆ A).
The logical force of the new operator is given by five new axioms which are added
to standard epistemic logic:

(a) Axiom (a) is the analogue of the familiar normality axiom.
[χ]B(ϕ ⊃ ψ) ⊃ ([χ]Bϕ ⊃ [χ]Bψ).

(b) Axiom (b) says that if it is not the case that a certain sentence is true after
an update with a certain sentence, then, since the update operation always
returns a unique result (it is a function), then it must be the case that the
negation of that sentence is true in the updated possibility [Gerbrandy and
Groeneveld, 1997, p. 156].
¬[ϕ]Bψ ≡ [ϕ]B¬ψ.

(c) Epistemic actions do not change the world, i.e. the current state p.
p ≡ [ϕ]Bp, if p is an atom.

(d) Axiom (d) says that if a knows ψ after the announcement of ϕ to the group B,
then he must have already known that if ϕ were true then ψ would be true
after the announcement of ϕ to B and conversely.
[ϕ]B�aψ ≡ �a(ϕ ⊃ [ϕ]Bψ), if a ∈ B.

(e) Axiom (e) says that a public update does not increase the information of the
outsiders who do not hear the announcement.
�aϕ ≡ [ψ]B�aϕ, if a �∈ B.

The necessitation rule ϕ ⊢ [ψ]Bϕ is also used.
From the premises

1. Every child is muddy;

2. Every child sees all the other children (Vision);

3. It is common knowledge that every child sees all the other children (Common
vision).

the new axiom system of dynamic epistemic logic allows to derive the conclusion
that each child knows he or she is muddy [Gerbrandy and Groeneveld, 1997,
pp. 161–162].

At this point it is worth examining how the new logic can show that the father’s
announcement provides the second premise of Genesereth’s and Nilsson’s proof.
From the premise Vision, we obtain:

Whitea ∨ Whiteb .
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The public announcement made by the father turns the above mentioned statement
into common knowledge, formally:

[Whitea ∨ Whiteb]B ⊢ CB(Whitea ∨ Whiteb) .

In virtue of the definition of the common knowledge operator CB , knowing that
B = {a, b}, we get:

CB(Whitea ∨ Whiteb) ⊢ �a�b(Whitea ∨ Whiteb) .

Hence we can formally derive the second premise whose use was not warranted in
the formalization provided by static epistemic logic.

Similar considerations can be abduced concerning the utterance of “No” (i.e.
“I do not know whether I am muddy”) made by the children [Gerbrandy, 1999,
p. 155]. It can be shown that just as the father’s announcement, the children’s ut-
terance formally represented by the update operator [No]B , serves to turn private
knowledge into common knowledge. We have just seen that update with the fa-
ther’s announcement and update by the children’s denial provide missing premises
that are necessary to solve the Muddy children puzzle for n children; the number
of times we have to update with “No” is n− 1.

3.8 A Formal Semantics For Epistemic Actions

In “The Logic of Public Announcements, Common Knowledge and Private Sus-
picion”, A. Baltag, L. Moss and S. Solecki embarked upon the challenging task
of providing a formal representation for epistemic updates of various kinds [1998].
Plaza, Gerbrandy and Groeneveld had already addressed this issue for public or
semi-public announcements to mutually isolated groups. Baltag et al. broadened
the field of inquiry and covered information-updating actions of various types:

(1) information-gathering (such a learning),

(2) information-exchange (such as making public or semi-public announcement),

(3) information-hiding (lying, sending encrypted messages)

(4) losing information or misinforming.

A major innovation of these authors lies in the use of a special kind of Kripke
structures for modeling actions. Two reasons may be adduced for adopting that
policy: (1) actions can be seen as transitions leading from an input state to an
output state. Hence it is natural to construe actions as relations, (2) epistemic
actions involve a belief component, the agent’s views of beliefs about the very
action that is taking place. Just as Kripke accessibility relations can profitably
be used to capture the uncertainty of each agent concerning the current state of
a distributed system, other accessibility relations can be used to represent each
agent’s uncertainty concerning the current action taking place [Baltag, 2002, p. 3].
This insight leads to the idea that epistemic update can be modeled by combining
two Kripke structures [Baltag, 2002; Moss, 2002]:
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(a) an epistemic model W = 〈W, (→W
a )a∈Ag, V

W 〉 where W is a set of worlds,
(→W

a )a∈Ag are finitely many accessibility relations and V W is a valuation
function which assigns a set of possible worlds to each propositional atom
(the set of the worlds in which it is true).

(b) an action structure K = 〈K, (→K
a )a∈Ag,PREK〉 where K is a set of possible

action tokens, (→K
a )a∈Ag are finitely many accessibility relations and PRE

is a function which assigns presuppositions or preconditions to each action
token.

We shall first illustrate the notion of epistemic model and action structure. We
avail ourselves of an example due to L. Moss. Consider the following scenario. A
box which is closed contains a coin which either lies Heads up (H) or Tails up (T).
Let us denote these two possible states by “s: H”, and “t: T” respectively. Two
agents A and B are present and neither of them knows which of the two states is
the real one. We represent the agent’s uncertainty about which of the two states
is the real one by an arrow (↔ ). Let us assume that the coin is lying Heads up,
i.e. that the truth value of the atomic sentence “H” evaluated at state s is 1. The
epistemic situation can be depicted by the following epistemic model W1, where
the real world is inserted between double parentheses:

A, B � ((s: H))
A,B
←→ (t: T) 	 A, B.

Let us now suppose that agent A, unknown to B, learns that H is the case.
Learning is an epistemic action which does not change the state of the world, i.e.
the position of the coin lying Head up. This action will be represented by “σ: H” .
While A performs this secrete action, which can be described as a kind of cheating,
B does nothing, or, to use a term borrowed from [Baltag, 1999], he performed a
trivial action which can happen anywhere. The trivial action’s happening will
be denoted by “τ : true”. Agent B believes that nothing but the trivial action
is taking place, belief which is expressed by an arrow (→). The epistemic action
which takes place (A’s learning that H is the case) and B’s belief that no action is
taking place can be depicted by the following action structure K:

A � ((σ: H))
B
−→ (τ : true)A,B

The epistemic model W1 is the input of the action described by the action
structure K. The output is the epistemic model W2 which results from combining
W1 with K. How should the combination of W1 with K be conceived? The
combination is conceived by A. Baltag, L. Moss and S. Solecki as a kind of product.
As the structures W1 and K involve three components, we expect to have three
operations to perform. First we have to multiply the domains of the two structures.
Next we have to multiply their respective accessibility relations. Finally we have
to consider the valuation function and bear in mind that we are dealing with
epistemic actions which do not change the world.
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Let us first consider the first operation, i.e. the product of the domains W1

of W1 with the domain K of K. In the 1998 paper, Baltag et al. spoke of a
“restricted product”. Later on both A. Baltag and L. Moss conceived of this
restricted product as a subset of the Cartesian product of the set of states W1

with the set of actions K.

The Cartesian product under consideration is a set of pairs whose first mem-
ber is a state and whose second member is an action. Actions have precondi-
tions. For instance one cannot perform the epistemic action of learning (getting
to know) p unless p is true. A pair of a state s and an action σ is an impossi-
ble pair if s violates a precondition of σ. In the Cartesian product W1 × K =
{(s, σ), (s, τ), (t, σ), (t, τ)}, the third pair is an “impossible pair” since perform-
ing action σ, i.e. learning that H is the case, is impossible in state t as “H” is
false at t. Hence we have first to remove the impossible pair from the Cartesian
product we started with. This gives us the subset we want, namely W1 ⊗ K
= {(s, σ), (s, τ), (t, τ)}. Achieving this is only the first step toward forming the
update product W1 ⊗ K.

Next we have to multiply the second components of the structures under con-
sideration, i.e. the accessibility relations. Such a multiplication of accessibility
relations amounts to turning a pair of arrows (such as s→ s′ and σ → σ′) into an
arrow linking pairs together (such as s, s′ → σ, σ′). This is permitted only if the
two accessibility relations are independent from one another. In L. Moss’ example,
the condition is fulfilled. The uncertainty about which epistemic action is going
on (learning that H is the case or performing the trivial action τ) is independent of
the uncertainty about which of the two atomic propositions “H” or “T” describes
the real world.

The relational statement “s, s′ → σ, σ′” is true if and only if “s → s′” and

“σ → σ′” are true. In the example under consideration “s
B
−→ s” is true (i.e. the

state s is indistinguishable from itself by agent B) and the statement “σ
B
−→ τ” is

true. As the action σ (learning) is performed by A secretly, B does not distinguish

it from the trivial action τ . Hence the following statement is true: “(s, σ)
B
−→

(s, τ)”.

The third change has to do with the valuation function. Initially sentences “H”
and “T” were evaluated with respect to the set of world W1. The set of states
in which “H” is true was the singleton {s} and that in which “T” is true was the
singleton {t}. Now we have to evaluate “H” and “T” with respect to W1 ⊗ K.
The interpretation is no longer made up of states. It is made up of pairs of states.
The interpretation of “H” is {(s, σ), (s, τ)}. That of “T” is (t, τ).

With this model-theoretic apparatus at our disposal we can construct the update
product W1 ⊗K. After agent A has performed his hidden act of learning that H is
the case, the epistemic state resulting from his epistemic action can be represented
by:

a = (( (s, σ) : H ))
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Agent B who, unknown to him, is in the same state of affairs as A takes two other
states of affairs (b and c) as possible and as mutually indistinguishable, namely
the states b = ((s, τ) : H) and c = ((t, τ) : H).

The absence of B under the loop starting from vertex a is worth noting. It
expresses that the action of cheating induces B to have false beliefs about the world
(beliefs falsifying axiom T ). The philosophical lesson that these examples teach
us is that, as Ladrière contends, formalization gives access to areas of meaning to
which no other access is available [Ladrière, 1975, p. 241].

A. Baltag [1999; 2002] has used this kind of setting to study modified versions
of the Muddy Children puzzle in which some children cheat by sending messages
to tell their friends that they are dirty. He also points out that in addition to its
philosophical importance the product-semantics for update has simplified his own
work on the completeness and decidability of various logics proposed by authors
such as J. Gerbrandy and H. van Ditmarsch [2002]. These important technical
developments cannot be described here.

4 DYNAMIC DOXASTIC LOGIC

4.1 Problems Connected With The Dynamics Of Belief

V. McGee found a baffling counter-example to modus ponens [1985] which has
been reported in [Segerberg, 1998, p. 293]. The story takes place in California on
the eve of the 1980 election. We are invited to consider the following sentences,
bearing in mind that Anderson and Reagan are Republicans and that Carter is a
Democrat:

(a) Anderson will win.

(b) Carter will win.

(c) Reagan will win.

(d) A Republican will win.

As K. Segerberg observes, it would have been rational for a well-informed, rational
agent to believe (1) and (2):

(1) A Republican will win,

(2) If a Republican will win, then if Reagan does not win, then Anderson will
win,

but not to believe the conclusion:

(3) If Reagan will not win, then Anderson will win.
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This failure of modus ponens with respect to the conditional is intriguing. K.
Segerberg has worked out both a proof theory and a model theory for belief revision
which we shall survey in this section. Without going into details here, let us
say that when we recast McGee’s example into the formalism of K. Segerberg’s
dynamic doxastic logic, the syllogism also fails in its new guise, and the cause of
its failure is displayed. There is however an interpretation of the conditional (3)
as a counterfactual. Under this interpretation Mc Gee’s example ceases to be a
genuine counterexample to modus ponens.18

Moore’s sentence is another and more familiar puzzle which can serve as a
test for the explanatory power of dynamic doxastic logic. Consider the following
sentence: “p but I do not believe that p”[Moore, 1912 ed 1976, p. 125] which has the
form “p∧¬Bap”. It is clearly logically odd, but several features distinguish it from
typical contradictions of the form p∧¬p. Moore’s sentence can be true as opposed
to sentences of the form p ∧ ¬p, which cannot. Moreover, as Hintikka observed, a
change of speaker removes the absurdity from Moore’s sentence. The sentence “p
but he does not believe that p” is a perfectly natural sentence. Similarly, a change
of tense removes the absurdity as shown by the sentence “He was at home but I did
not believe it” [Hintikka, 1962, p. 65]. According to Hintikka, Moore’s sentence
does not violate consistency. Rather it violates the general presumption that the
speaker believes what he or she says. Yet there is something logically wrong in
it. Though Moore’s sentence is not necessarily false in virtue of its logical form,
as standard inconsistent sentences are, it is nevertheless “necessarily unbelievable
by the speaker” [Hintikka, 1962, p. 67]. In other words, “p ∧ ¬Bap”, as such, is
not inconsistent, but it suddenly becomes inconsistent when its presumptions are
made explicit i.e. when p ∧ ¬Bap is put within the scope of Ba: “Ba(p ∧ ¬Bap)”.
This latter sentence is genuinely inconsistent. A plain contradiction, p ∧ ¬p, can
be derived from it with the help of doxastic logic.

Hintikka’s (static) doxastic logic can account for the effect of the change of
speaker in Moore’s sentence. If, however, our goal is to explain the logical effect
of a shift in the tense of the belief verbs, static doxastic logic does not suffice.
We need dynamic doxastic logic. Before presenting the basics of dynamic doxastic
logic, let us first show what can be achieved with static doxastic logic.

4.2 A Formalization Of Moore’s Paradox In Static Doxastic Logic

We shall write down an axiomatic proof showing that Ba(p∧¬Bap) is inconsistent.
It is carried out within the modal calculus KD4. We shall use the standard box and
diamond operators of modal logic for ease of reading and switch to the doxastic
operator only at the last line. Whenever a formula is obtained in applying a
principle of the propositional calculus (such as, for instance, syllogism), we write
PC on the right of the formula together with the number(s) of the lines from
which the formula is derived. The principles used are familiar and we leave the
task of identifying them to the reader. It will be clear that besides principles of

18We owe this observation to J. Halpern. See also [Levi, 1996, pp. 109–111].
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the propositional calculus, we also make essential use of principles of the modal
calculus K and of axiom 4 and axiom D.

1. �(ϕ ∧ ψ) ⊃ (�ϕ ∧�ψ) K
2. �(p ∧ ¬�p) ⊃ (�p ∧�¬�p) 1,Subst.
3. �(p ∧ ¬�p) ⊃ �p 2,PC
4. �(p ∧ ¬�p) ⊃ �¬�p 2,PC
5. �ϕ ⊃ ��ϕ Ax. 4
6. �p ⊃ ��p 5,Subst.
7. �(p ∧ ¬�p) ⊃ ��p 3, 6,PC
8. �ϕ ⊃ �ϕ Ax. D
9. ��p ⊃ ��p 8,Subst.

10. �(p ∧ ¬�p) ⊃ ��p 7, 9,PC
11. �(p ∧ ¬�p) ⊃ ¬��p 4,Df. �

12. �(p ∧ ¬�p) ⊃ (��p ∧ ¬��p) 10, 11,PC
13. (ϕ ∧ ¬ϕ) ⊃ (ψ ∧ ¬ψ) PC
14. (��p ∧ ¬��p) ⊃ (p ∧ ¬p) 13,Subst.
15. �(p ∧ ¬�p) ⊃ (p ∧ ¬p) 12, 14,PC
16. Ba(p ∧ ¬Bap) ⊃ ⊥ 15

4.3 From The Theory Of Belief Revision To Dynamic Doxastic Logic

In 1985, Alchourrón, Gärdenfors and Makinson developed a theory of belief re-
vision (“AGM”) which has become classic [1985]; it investigates the rationality
constraints that can be imposed upon belief changes. They describe belief changes
with three basic operations performed on belief sets: expansion, contraction and
revision. Expansion with formula ϕ consists in forming the union of the prior belief
set X with {ϕ} and taking the closure of X ∪ {ϕ} under the operation of classical
consequence Cn. Contraction consists in deleting ϕ in X together with all formu-
las that imply ϕ so that the result is logically closed. Revision consists in adding
ϕ to X in such a way that the resulting set X ∗ϕ is consistent [Wassermann, 1999,
p. 429]. In 1994, M. de Rijke showed that the axioms of expansion and revision
of AGM can be translated into the object language of dynamic modal logic and
be proved valid in well-founded DML-models [1994]. The same year, K. Segerberg
showed how to recast the theory of belief change in terms of modal logic.

In 1995, B. van Linder, W. van der Hoek and J.-J. Ch. Meyer initiated a new
approach to belief change. They focused on the actions which an agent performs
to bring about belief changes. A new way of distinguishing knowledge and belief
emerges: what distinguishes knowledge from belief is not only the static property
of veridicality, but also the dynamic property of non-defeasibility. The knowledge
of agents concerning propositional formulas is immune to change: “it persists
under the execution of belief-changing actions [such as expansion, contraction and
revision]” [1995, p. 111].

Also in 1995, K. Segerberg undertook to bridge the gap between Hintikka’s style
of (static) doxastic logic and the AGM style of belief revision theory by creating
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a new kind of logic which he dubbed “dynamic doxastic logic”(DDL). The latter
was meant to serve the interest both of logic, whose coverage was increased, and
of belief revision itself. As Segerberg puts it, “[t]he great advantage of recasting
belief revision theory as dynamic doxastic logic is that it puts at our disposal
the rich meta-theory developed in the study of modal and dynamic logic” [1999,
p. 142].19 We shall first examine how K. Segerberg brought together the language
of standard doxastic logic and that of [Alchourrón et al., 1985] into the unified
language of DDL.

4.4 The Language Of Dynamic Doxastic Logic

Standard doxastic logic using Hintikka’s operator B distinguishes between the
following statements:

Bϕ the agent believes that ϕ
¬Bϕ the agent does not believe that ϕ
B¬ϕ the agent believes that not ϕ
¬B¬ϕ the agent does not believe that not ϕ

As K. Segerberg observes, AGM is able to capture the above combinations of belief
operators and negations. It does it however in a different way:

ϕ ∈ T ϕ is in the agent’s belief-set T ,
ϕ �∈ T ϕ is not in the agent’s belief-set T ,
¬ϕ ∈ T ¬ϕ is in the agent’s belief-set T ,
¬ϕ �∈ T ¬ϕ is not in the agent’s belief-set T .

The AGM language can also express operations on beliefs which have no equivalent
in standard doxastic logic: expansion, revision, contraction, respectively expressed
by the terms ‘+’, ‘∗’ and ‘−’:

χ ∈ T + ϕ χ is in the agent’s belief set expanded by ϕ,
χ ∈ T ∗ ϕ χ is in the agent’s belief set revised by ϕ,
χ ∈ T − ϕ χ is in the agent’s belief set contracted by ϕ.

If we aim at representing doxastic actions such as expansion, revision and con-
traction in doxastic logic, we need new operators. K. Segerberg borrows operators
[α] and 〈α〉, familiar in dynamic logic, but he gives them a new interpretation.
Generally speaking, when a formula ϕ is prefixed by [α] or 〈α〉, it means “after
every way (respectively some way) of performing α, it is the case that ϕ”.

These dynamic operators can be turned into dynamic doxastic operators if we
restrict actions to doxastic actions (actions on our beliefs as opposed to actions
on the world). Three new operators (and their duals) are obtained. The “box-
operators” capture the three basic operations of belief change: [+], [∗] and [−].

19The quote from [Segerberg, 1999] has been reprinted with the permission of Springer, The
Netherlands.
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With these new dynamic operators available, the three basic statements of the
theory of belief revision are rendered in this way:

[+ϕ]Bχ ; [∗ϕ]Bχ ; [−ϕ]Bχ .

To sum up, the language of doxastic dynamic logic contains three sets of logical
constants:

1. Boolean connectives;

2. the static doxastic operator B;

3. the dynamic doxastic operators [+], [∗], [−].

B is a box-operator which takes Boolean formulas only as arguments. Its dual, the
diamond operator b, can be introduced by definition:

bχ =def ¬B¬χ .

4.5 A New Account Of Belief Change

Whoever intends to recast belief revision theory as dynamic doxastic logic is ex-
pected to begin by translating the axioms of belief revision theory into doxastic
logic and then to build up an appropriate model for the interpretation of the new
logic. K. Segerberg did not make that move immediately. The reason was that he
wanted first to modify classical theory of belief revision on several crucial points.

Classical theory of belief revision describes belief changes (expansion, contrac-
tion, revision) as transitions between theories. The latter are conceived as belief
sets closed under logical consequences. K. Segerberg objects that such a view can
never do full justice to the agent’s doxastic dispositions.

An agent confronted with a piece of information which clashes with his current
beliefs usually has several ways of modifying his belief set (i.e. theory), or, to use
Lindström’s and Rabinowicz’s terminology, several “fall back positions” to retreat
back to by revising the initial theory. Knowing the doxastic state of an agent
requires more than knowing his or her current belief set, it also requires knowing
how he or she would respond to new information about the world.

What emerges out of this is a conception according to which belief changes are
not moves taking us from one belief set to another, but moves taking us from
one belief state to another. A belief state is a “belief set cum dispositions for
belief change”. If we want to accommodate doxastic dispositions, we have to
complicate our conceptual apparatus. For that purpose, Segerberg introduces the
technical concept of hypertheories into the semantics of doxastic logic. The word
“hypertheory” was first used by Grove [1988]. Let us notice that the word is used
in a set-theoretic sense.

Adopting Grove’s picture, Segerberg sees hypertheories as concentric spheres.
The central sphere represents the initial hypertheory, namely the current belief
state of the agent. Each of the successive shells that we go through when we
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move away from the central sphere toward the periphery represents a theory (a
“fallback” in Lindström’s and Rabinowicz’s terminology) back to which the agent
may retreat when forced to revise his or her initial theory by deleting propositions.
Deletion is not a random process. We should first delete propositions which are
less “entrenched”.

Entrenchment is an epistemic notion which was initially defined for propositions:
“Intuitively, a proposition α is at least as entrenched in the agent’s belief set as
another proposition β if and only if the following holds: provided the agent would
have to revise his beliefs so as to falsify the conjunction α ∧ β, he should do it
in such a way as to allow for the falsity of β” [Lindström and Rabinowicz, 1999,
p. 356]. It is important to keep in mind that the spheres are “nested”. They are
linearly ordered by the relation of inclusion. The ordering of spheres represents the
entrenchment ordering of theories. The successive shells around the initial sphere
represent fallbacks containing propositions which are less and less entrenched as
we move away from the central sphere toward the periphery.

The first difference between AGM and Segerberg’s account of belief revision
lies in this: in AGM, doxastic actions are defined on theories. In Segerberg’s
formulation, they are defined on hypertheories.

A second difference between AGM and Segerberg’s account of belief revision
is that Segerberg, as opposed to Lewis and Grove, does not require the spheres
to be linearly ordered by set inclusion. This important change in belief revision
was first proposed by S. Lindström and W. Rabinowicz to account for the fact
that there may be several equally reasonable revisions of a theory. A third differ-
ence between AGM and Segerberg’s treatment, connected with the previous one,
lies in the nature of contraction. In AGM, contraction, like expansion, is func-
tional. Segerberg’s model theory (like that of Lindström and Rabinowicz) allows
contraction to be merely relational.

4.6 A Semantics For Dynamic Doxastic Logic

• ‖p‖ = V(p): the intension of p is the set of possible worlds at which atom p
is true;

• ‖¬P‖ = ‖U− P‖;

• ‖P ∨Q‖ = ‖P‖ ∪ ‖Q‖ and so on for the remaining connectives.

Next we list all the clauses of a recursive definition of truth in a model M for a
given hypertheory H, a given belief set X, at a given state u.

• H,X, u |= ϕ iff u ∈ ‖ϕ‖, if ϕ is a purely Boolean formula.

• H,X, u |= ϕ ∧ ψ iff H,X, u |= ϕ and H,X, u |= ψ.

• H,X, u |= ¬ϕ iff not H,X, u |= ϕ.

• H,X, u |= Bϕ iff X ⊆ ‖ϕ‖.
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The more interesting clause deals with doxastic actions (expansion, contraction):

• H,X, u |= [α]ϕ iff ∀H′∀X′∀u′(〈H,X, u〉Rα〈H′,X′, u′〉 ⊃ H′,X′, u′ |= φ),
where [α] can be either [+] or [−] and Rα can be either R+ or R− respectively.

Expansion and contraction by a proposition P may be identified with the relations
[Segerberg, 1997, p. 189]:

R+P = {(H,H ′) : H ′\P}
R−P = {(H,H ′) : ∃Z (Z is minimal in H ∩ (U− P ) & H ′ = H | Z}

R+P is the augmentation of hypertheory H by proposition P (i.e. by a set of
possible worlds). Augmentation is functional. R−P is restriction of hypertheory
H by proposition P . Restriction is relational. A formula is valid in a frame
for dynamic doxastic logic if it is true in all models on the frame relative to all
hypertheories (H), to all belief-sets (X) and states (u) in the universe U.

As we have seen, K. Segerberg disagrees with the identification of belief sets with
belief states on the ground that two agents may hold identical beliefs about what
the actual state of the world is like and yet react differently to new information.
To drive the point home, it is worth examining a law of doxastic dynamic logic,
namely the law of recovery, whose validity conditions differ depending on whether
it applies to belief-sets or to belief-states. The conditions for the law of recovery
to hold are more demanding in the second case.

Consider a given belief-set to which we successively apply the restriction (R−)
and augmentation (R+). This amounts to taking the relative product of those
two relations. Do we recover the initial belief set at the end of the process? The
answer is “yes”, if the belief sets (X) to which we successively apply contraction
([−]) and expansion ([+]) are the same. Next consider a given belief-state to
which we successively apply restriction and augmentation. To recover the initial
belief state, two conditions instead of one must be fulfilled: the belief-sets(X) and
also the hypertheories (H) must be the same. There are cases, however, in which
the first condition is fulfilled and the second is not. The following example is a
case in point: We start with hyper-theory H and apply restriction. We get H′.
The fact that the result of restriction is not uniquely defined (restriction is not
functional) does not prevent us from forming the relative product of restriction
HR−H′ and augmentation H′R+H. The formal schema of relative product, i.e.
∃ z(xR−z ∧ zR+y) can be instantiated even if there are two z i.e. H′

1 and H′
2.

What is ruled out when there are two H′, however, is the possibility of recovery.
With HR−H′

1 and H′
2R

+H′′, there is no possibility of recovery since there is no
“common middle term”, due to our choice of different H′.

4.7 Axiomatic Systems Of Dynamic Doxastic Logic

K. Segerberg spelled out several axiom systems [1995; 1998; 1999] and proved that
they are sound and complete for the class of intended models. We shall restrict
ourselves to presenting and commenting upon the most fundamental axioms of
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the first axiomatic system of DDL [Segerberg, 1995], just hinting at what can be
found in the others.

The language of the system presented in 1995 contains:

1. Boolean connectives;

2. the operator B which can take as arguments Boolean formulas only;

3. the operators [+] and [−].

The system of axioms contains nine fundamental axiom schemata and rules:

1. Three K− schemas of the form ©(ϕ ⊃ ψ) ⊃ (©ϕ ⊃ ©ψ) in which © can
be B, [+] and [−];

2. the rule of modus ponens;

3. Three necessitation rules: If ⊢ ϕ then ⊢ ©ϕ in which again © can be B, [+]
and [−];

4. Two rules of congruence:
If ⊢ ϕ ≡ ψ then ⊢ [+ϕ]χ ≡ [+ψ]χ,
If ⊢ ϕ ≡ ψ then ⊢ [−ϕ]χ ≡ [−ψ]χ;

5. The replacement rule which states that the set of valid formulas is closed
under replacement of provably equivalent valid formulas.

There are, however, restrictions to the law of uniform substitution. To the nine
rules and axioms described above, sixteen others are added, most of which char-
acterize the interplay between the static doxastic operator B and the dynamic
doxastic operators [+] and [−]. Let us mention these two examples:

1. ⊢ Bϕ ⊃ (χ ≡ [+ϕ]χ),
which says that if you already believe something, accepting it changes noth-
ing;

2. ⊢ ¬Bϕ ⊃ (χ ≡ [−ϕ]χ),
which says that if you do not believe something, removing it changes nothing.

4.8 From Basic To Full Dynamic Doxastic Logic

In basic DDL,

1. the belief operator B only takes Boolean operators as formulas;

2. the formulas which can be substituted for ϕ in the doxastic dynamic opera-
tors, [+ϕ], [−ϕ] and [∗ϕ], must also be Boolean.
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These limitations have been removed by S. Lindström and W. Rabinowicz in the
so-called “full dynamic doxastic logic”. In this logic, no restriction is imposed
upon the substituends of ϕ and ψ in formulas of the form [αϕ]Bψ. From now on,
we are allowed to apply doxastic actions (expansion, contraction and revision) not
only to propositions about the world, but also to introspective propositions.

This increase in expressive power has unexpected consequences which are worth
examining. Consider the success lemma

[∗(ϕ)]Bϕ

which says that after revising his belief set with ϕ the agent believes ϕ.
If we substitute an atomic proposition or a Boolean proposition for ϕ nothing

strange happens. Let us however substitute Moore’s sentence for ϕ. We get a
sentence which has the logical form of formula F .

F : [∗(ϕ ∧ ¬Bϕ)]B(ϕ ∧ ¬Bϕ)].

This says that after revising my beliefs with ϕ ∧ ¬Bϕ which is a consistent propo-
sition, I obtain B(ϕ ∧ ¬Bϕ) which is not. Does this mean that the success lemma
is not sound? Lindström and Rabinowicz suggest another answer. Formula F is
ambiguous. It allows two readings:

1. After revising my beliefs with “p is the case and I do not believe it”, I believe
that (before the revision), p was the case and that I did not believe it.

2. After revising my beliefs with “p is the case and I do not believe it”, I believe
that (after the revision), p is the case and that I do not believe it.

To capture these two readings we have to draw a distinction familiar to tense
logicians [Reichenbach, 1947; Gabbay, 1974; Cresswell, 1991], i.e. the distinction
between the time at which a sentence is evaluated (evaluation time) and the time
at which the event reported took place (reference time).

That important distinction should be expressed in our symbolism. This requires
that we enrich the formal language of dynamic doxastic logic with an appropriate
tense operator and that we work out a more refined semantics. Without going
into details, let us note that a tensed dynamic doxastic logic is precisely what we
need to account for the fact that a shift of tense — just as a shift of speaker —
in Moore’s sentence removes its paradoxicality. As opposed to “I believe that my
neighbour is at home and that I do not believe it”, the sentence “I believe that
my neighbour was at home and that I did not believe it” is immune to the charge
of inconsistency [Gochet, 2004].

5 FIRST ORDER EPISTEMIC LOGIC

5.1 Problems Raised By Quine About Quantified Modal Logic

The invention of formal systems of quantified modal logic goes back to 1946. Two
foundational papers appeared in succession in the Journal of Symbolic Logic: “A
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Functional Calculus of First order Based on Strict Implication” by Ruth C. Barcan
[1946] and “Modalities and Quantification” by Rudolf Carnap [1946]. As G. Corsi
notes [2001], even before functional calculi were born, in “Notes on existence and
necessity” of 1943, W. V. O. Quine pointed out that modal contexts resist two
classical laws of first-order logic with identity:

(a) the principle of substitutivity which states that “given a true statement of
identity, one of its two terms may be substituted for the other in any true
statement and the result will be true”;

(b) the law of existential generalization which licenses the derivation of ‘There
is an x such that x is ϕ’ from ‘t is ϕ’.

Quine pursued his criticism in “The problem of interpreting modal logic”. His
“Reference and Modality” grew out of these two papers and was published in his
From a Logical Point of View in [1953; 2nd ed. 1961].

Consider the following inference, which is a modified version of a puzzle raised
by Aristotle in De Sophisticis Elenchis 24 (179b 1–3) [Føllesdal, 1967, p. 4]:

Philip is unaware that Tully denounced Catiline,
Tully = Cicero,
Therefore Philip is unaware that Cicero denounced Catiline.

A state of affairs in which Philip has only a moderate acquaintance with Roman
history would make the premises true and the conclusion false and shows that, in
the scope of epistemic terms like ‘is unaware’, ‘knows’, ‘believes’, the principle of
substitutivity breaks down.

Consider this application of existential generalization:

Philip is unaware that Tully denounced Catiline,
Therefore something is such that Philip is unaware that it denounced
Catiline.

Here again there is a problem. As Quine asks: “[w]hat is this object, that de-
nounced Catiline without Philip’s having become aware of the fact? Tully, that is,
Cicero? To suppose this would conflict with the fact that ‘Philip is unaware that
Cicero denounced Catiline’ is false” [Quine, 1953; 2nd ed. 1961, p. 147].

5.2 Hintikka’s Solution

Knowledge and Belief [1962] was the first systematic effort to provide both a proof
theory and a semantics for the verbs of propositional attitudes ‘a knows’ and ‘a
believes’ taken as logical operators on a par with the necessity operator familiar
since C.I. Lewis’ work. Hintikka introduced the notions of model sets, model
systems and alternativeness relations.

A model set is a formal counterpart of the informal idea of a partial description of
a possible state of affairs. It is incumbent upon the logician to lay down conditions
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that sentences must fulfill to be admitted into any such a set. Consider a model
set μ containing the sentence “Pap” which says that it is possible, for all that the
person referred to by the term “a” knows, that p. The last statement “can be true
only if there is a possible state of affairs in which p would be true: but this state
of affairs need not be identical with the one in which the statement was made. A
description of such a state of affairs will be called an alternative to μ with respect
to a” [Hintikka, 1962, p. 42]. In order to show that a given set of sentences is true
in at least one world in which the agent follows the consequences of what he or
she knows, we have to consider a set of model sets. Such sets of model sets are
called “model systems”.

In Knowledge and Belief and more extensively in subsequent works, Hintikka
came to grips with Quine’s objections. He agrees that the two inferences mentioned
in section 5.1 are invalid as they stand. But he claims that validity can be restored.
He sees those inferences as enthymemes.

To turn the inference:

Philip knows (believes) that Cicero denounced Catiline.
Cicero = Tully.
Therefore Philip knows (believes) that Tully denounced Catiline.

into a valid inference we have to supply the auxiliary premise: Philip knows (be-
lieves) that (Cicero = Tully).

Let us now consider the problem of existential generalization across modal op-
erators. Here again Hintikka has a solution to offer to Quine’s problem. If one
of the occurrences of a singular term is buried under ni layers of modal opera-
tors, we are speaking of its several references in the possible worlds described by
all the different alternatives, ni times removed, to the description of the actual
one. Taking this into account we should ceased to be puzzled by our inability to
generalize with respect to such a singular term. To restore the laws of first-order
logic, it suffices to bring in auxiliary premises: if there are no iterations of modal
operators and if only one modal operator is present, then simple statements can be
found to express explicitly that a term specifies a well-defined individual, namely:
(∃x)Kb(a = x), (∃x)Bb(a = x), etc. [Hintikka, 1972, p. 403].

5.3 The Problem Of Hybrid Contexts And Nested Operators

To appreciate the explanatory power of Hintikka’s auxiliary premises fully, we have
to revisit the solution offered by Frege to the problem raised by the failure of the
substitutivity principle in belief contexts and to examine a difficulty which passed
unnoticed, but which can be solved with the help of Hintikka’s techniques.

In Über Sinn und Bedeutung, Frege explained the semantic difference between
the informative identity statement ‘The morning star is the evening star’ and the
trivial identity statement ‘The morning star is the morning star’. For that pur-
pose he distinguished between sense and reference (or nominatum). The definite
description (to use Russell’s term) ‘the morning star’ has the same reference as,
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but a different sense than, ‘the evening star’ and this is true also of the sentences
which contain them.

Having firmly established the sense-reference distinction, Frege brought it to
bear on a quite different issue: the problem raised by the failure of the principle
of substitutivity of identity in belief contexts and indirect discourse. He claimed
that when we move from direct to indirect discourse, a shift of reference and sense
occurs. “In indirect (oblique) discourse”, Frege says, “we speak of the sense, e.g. of
the words of someone else. From this it becomes clear that also in indirect discourse
words do not have their customary nominata; they name what customarily would
be their sense” [1949, p. 87].

Frege’s account of the sense and reference in indirect discourse (and belief con-
texts) aroused strong opposition. “If we could recover our pre-Fregean semantic
innocence” Davidson writes, “it would seem to us plainly incredible that the words
‘The earth moves’, uttered after the words ‘Galileo said that’, mean anything dif-
ferent, or refer to anything else, than is their wont when they come in different
environments” [Davidson, 1968 9, p. 144].20

Davidson’s objection to Frege strikes us as well taken. In indirect discourse, the
words of a reported speech do not differ in meaning from the same words in direct
speech. Clearly the difference lies elsewhere. The speaker who reports somebody
else’s speech may not endorse the truth of the proposition he reports. He may
refrain from accepting the existence presuppositions that the proposition carries.
But as far as the meaning and reference are concerned, they are the same in both
direct and indirect speech. That was not so clear for Frege because he conceived
of sentences as names, an issue that does not concern us here.

We shall drive this point home by examining a kind of inference which cannot
be accounted for at all if we adopt Frege’s semantics of indirect discourse, but
which raises no difficulty if we stick to the received view about indirect speech
recalled by Davidson.

Consider the following inference:

The morning star is a planet
and it is known (believed, said) that the morning star is a planet.
Hence there is an x such that x is a planet
and it is known (believed, said) that x is a planet.

On Frege’s construal, the use of two occurrences of the same variable x is illegiti-
mate. In the first occurrence after ‘such that’, the variable x takes individuals as
values, in the second, it takes individual concepts, i.e. senses, as values. There is
a kind of equivocation here.

On Hintikka’s construal, no hidden equivocation is in the offing. In the two
occurrences, the variable takes individuals as values. Yet the inference is not
unconditionally valid. It is valid with the proviso that the appropriate auxiliary
premise be true. Taking a as proxy for the definite description ‘the morning star’,

20The quote from [Davidson, 1968 9] has been reprinted with the permission of Springer, The
Netherlands.
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the inference, strengthened by the appropriate auxiliary premise, can be formalized
in this way:

Premise: P (a) ∧ Bb(P (a))
Auxiliary premise: ∃x (x = a ∧ Bb(x = a))
Conclusion: ∃x (P (x) ∧ Bb(P (x))

The technique of auxiliary premises can be extended to specify the precise con-
ditions under which a singular term a obeys the usual laws of instantiation and
generalization. If we are considering (1) the actual world, (2) what b believes,
(3) that a knows, we are considering not only the real world but also “epistemic
d-alternatives to doxastic b-alternatives” and the requisite auxiliary premise for
this complex case of nested modal operators is [Hintikka, 1972, p. 407]21:

∃x [(a = x) ∧ (b believes that (a = x)) ∧ (b believes that d knows that (a = x))] .

5.4 Føllesdal’s Defense Of Quantified Epistemic Logic

Quine has criticized first-order epistemic logic on two scores:

1. the law of substitutivity of identity fails;

2. the law of existential generalization fails.

J. Hintikka has shown how to vindicate first-order epistemic logic. He made some
concessions however. The pure law of substitutivity of identity is abandoned and
existential generalization is sound only under the proviso that auxiliary premises
are introduced.

D. Føllesdal addressed the same issues but solves Quine’s problems in a different
manner. As opposed to Hintikka, Føllesdal leaves the core of quantification theory
unaffected but (a) he imposes strong restrictions on the vocabulary of singular
terms which can be used when we apply the principle of substitutivity of identity
or the law of existential generalization, and (b), he modifies the modal part of
the axiom system. We shall deal with (a) only. For (b) the reader is referred to
[Føllesdal, 1967].

Føllesdal considers the situation in which to one and the same individual b in
the actual world, there are two individuals b′ and b′′ which correspond in the world
w′ compatible with the agent’s knowledge as shown in the diagram below:

w (Non actual world compatible with the agent’s knowledge):

w′ (Actual world):

b′ b′′

b

Such a situation, Føllesdal finds intolerable. He agrees with Quine that the
existential quantifier cannot be used meaningfully in the situation just described
where the bound variable does not refer to a unique individual in the actual world

21The quotes from [Hintikka, 1972] are reprinted with the permission of Springer, The Nether-
lands.
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w and in its epistemic alternative w′. But, contrary to Quine, he does not disallow
quantification into epistemic contexts once and for all. What he does instead is
to restrict quantifying into epistemic contexts. Quantifying into epistemic context
is permitted only when “the variables keep their reference as we pass from one
epistemically possible world to the next [Føllesdal, 1967, p. 11]”. In the same way,
to insure substitutivity of identity, we have to restrict our vocabulary of singular
terms to “genuine singular terms”, i.e. to singular terms which keep their reference
in all epistemically possible worlds [Føllesdal, 1967, p. 17]. Føllesdal’s concept
of genuine singular term is identical with the concept of rigid designator which
occupies a central position in the causal theory of naming spelled out by Kripke in
his essay Naming and Necessity [1980]. Føllesdal’s policy is sufficient to remove the
unwanted inferences. It may be objected however that it is too restrictive. Rigid
designators pick up the same individuals across all possible worlds, including the
actual one, but, as P. Jackson and H. Reichgelt observe, we wish to be able to
apply the rules of quantified modal logic also to individuals that do not exist in
the real world [1989, p. 197].

Rules of inference for quantified modal logic operating with non rigid designators
(designators indexed on world’s names) can be found in several proof systems such
as the method of suffixed tableaux [Ramsay, 1988, pp. 140–143], the method of
resolution and unification [Jackson and Reichgelt, 1989, pp. 197–208] and the
method of prefixed tableaux [Fitting and Mendelsohn, 1998, pp. 118–121].

5.5 The Epistemic Readings Of The Barcan Formula And Its Con-
verse

The distinction between de re and de dicto constructions in epistemic contexts
goes back to Aristotle. In Analytica Priora (II, 21, 67 a 16ff), Aristotle observes
that to know of every triangle that it has its angles equal to two right angles
is ambiguous between two senses. These two senses can be captured in natural
language by constructions (1) and (2):

(1) Agent a knows that every triangle has angles equal to two right angles.

(2) Of every triangle agent a knows that it has angles equal to two right angles.

Føllesdal renders these two senses in the formal language by (3) and (4):

(3) Ka∀xϕ(x);

(4) ∀xKaϕ(x).

If we insert the connective of implication between (4) and (3) we obtain the epis-
temic reading of the Barcan formula:

(5) ∀xKaϕ(x) ⊃ Ka∀xϕ(x).

If we insert the connective of implication between (3) and (4) we obtain the con-
verse of the Barcan formula already mentioned in section 1.2:
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(6) Ka∀xϕ(x) ⊃ ∀xKaϕ(x).

On Føllesdal’s reading, which is the most natural one, both are invalid.
On Hintikka’s reading, the epistemic reading of the converse of Barcan’s formula,

far from being invalid, is a truism. The reason for this is given by Føllesdal. On
Hintikka’s approach (4) does not read ‘of each object’ agent a knows that it is ϕ’
but ‘of each object which a knows’, a knows that it is ϕ [Føllesdal, 1967, p. 23].

The question whether we should accept or dismiss the Barcan formula and its
converse cannot be settled simply by considering natural language. Deeper issues
are involved which come to the foreground only if we take the trouble of building
a fully fledged formal semantics for modal and epistemic logic.

5.6 A Kripke’s Semantics For Epistemic Logic

In 1963, Kripke developed a semantics for quantified modal logic of necessity which
has become standard. We shall first sum it up and then recast Hintikka’s semantics
of first-order epistemic logic into the terminology of Kripke’s semantics.

A quantificational model structure (today we say “frame”) is a quadruple:

〈W,w0,R, ψ(wi)〉

in which W is a set of possible worlds, w0 is a designated world (the real world),
R is the accessibility relation defined on W×W, ψ(wi) is a function which assigns
a domain to each world.

We obtain a quantificational model by adding a valuation function V(Pn, wi)
to the quantificational model structure. A technical point should be stressed here.
In Kripke’s quantificational model, the domain of variation of the free variables
differs from that of the bound variables. Free individual variables take their values
in the union of the domains (U). On the contrary, the bound variables take their
values in the domain of the particular world wi at which the formula is evaluated.
Hence V(∀xA(x, y1, . . . , yn), wi) = T relative to an assignment of b1, . . . ,bn to
y1, . . . , yn (where the bi are elements of U) if V(A(x, y1, . . . , yn), wi) = T for
every assignment of a,b1, . . . ,bn to x, y1, . . . , yn respectively, where a ∈ ψ(wi);
otherwise we have V(∀xA(x, y1, . . . , yn), wi) = F [Kripke, 1963, p. 85]. Further-
more, V(Kϕ,wi) = T if and only if V(ϕ,wj) = T in all worlds wj accessible from
wi. Reading “the possible world wj is accessible from the possible world wi” as
“the model set μj is an epistemic alternative to the model set μi”, one recovers
Hintikka’s terminology.

One should notice that Kripke’s semantics does not only accommodate possible
worlds, it also allows domains of possible worlds to include possible individuals.
Kripke writes: “We must associate with each world a domain of individuals, the
individuals that exist in that world. . . [i]n worlds other than the real one, some
actually existing individuals may be absent, while new individuals like Pegasus may
appear” [Kripke, 1963, p. 85]. This will raise problems which will be investigated
in section 6.
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Four kinds of Kripkean semantics are usually distinguished: semantics with
constant domains, semantics with decreasing domains, semantics with increasing
domains and semantics with variable domains. The first kind is too restrictive for
it does not permit non existent individuals to inhabit possible worlds [Pietarinen,
2003]. The last ones are the more general and less committal. This fourfold
distinction matters when we are concerned with the validity conditions of the
Barcan formula (BF) and its converse (CBF). For the Barcan formula to be valid
in a Kripke model, a special condition has to be fulfilled: the domains of the world
related by the accessibility relation have to be decreasing. Formally: wiRwj ⊃
(Dwj ⊆ Dwi).

A. Nerode and R. Shore are wary of this constraint. The limit of the decreasing
domain is the empty domain. If all objects cease to exist, “we have entirely left the
realm of classical predicate logic which is formulated only for nonempty domains”
[Nerode and Shore, 1993, p. 211]. They are willing to subscribe however to the
converse of the Barcan formula (CBF): �∀xPx ⊃ ∀x�Px.

Nevertheless CBF, however uncontroversial it may look, is not valid in Kripke’s
semantics unless we assume that the domains are increasing: wiRwj ⊃ Dwi ⊆
Dwj . This interaction between properties of the domains and properties of the
accessibility relations is an undesirable feature of Kripke’s semantics which deprives
it of full generality. An analogous complaint can be expressed concerning the
failure of CBF in Kripke’s semantics when no constraint is made on the accessibility
relation. This failure is not intrinsic to CBF itself. As G. Corsi shows, it is due to
a peculiar feature of Kripke’s possible world semantics. In Kripke’s semantics, the
domain of variation of the quantifiers is, in general, a proper subset of the domain
of variation of the free variables. Alternative semantics have been put forward to
remove these unwanted interactions between domains and accessibility relations
[Gillet, 2000; Corsi, 2001].

The universal quantifiers occurring in the Barcan formula and its converse can
be understood as free of existential assumption. Let us call free quantified BF and
CBF the Barcan formulas interpreted in this way.

5.7 Ghilardi’s And Routley’s Formulas

Besides Barcan formula and its converse, two very similar formulas have attracted
the attention of modal logicians, namely Ghilardi’s formula (GF) and its converse
(CGF):

∃x�Px ⊃ �∃xPx ,
�∃xPx ⊃ ∃x�Px .

In his book of 1962, but not in later work, Hintikka [1966] upholds the epistemic
version of the first formula:

∃xKPx ⊃ K∃xPx ,

and supplies a formal proof of it within his system. Commenting on it he says:



Epistemic logic 149

“[i]ntuitively, the self sustenance of

∃xKPx ⊃ K∃xPx

is not surprising. What it says is that if you know who does something you ipso
facto know that someone does it” [Hintikka, 1962, p. 160]. R. Moore argues that
the difference between ∃xKaPx and Ka∃xPx amounts “to a difference in the rela-
tive scopes of an existential and a universal quantifier [the ‘every’ in ‘every possible
world compatible with . . . ’]” [Moore, 1995, p. 41]. The difference, he claims, can
be expressed as the difference between ∃x∀wS(x,w) and ∀w∃xS(x,w). As the
first formula entails the second (but not conversely) in first-order logic, Moore
concludes that “[t]he possible world analysis [. . . ] implies that we should be able
to infer ‘Ralph knows that there is a spy’ from ‘There is someone Ralph knows
to be a spy’ as indeed we can (Moore, Ibid.)”. W. Lenzen, however, derived the
unacceptable consequence (4) from sentences (1–3) where (2) is an instance of
∃xKaPx ⊃ Ka∃xPx [Lenzen, 1976, p. 59]:

(1) ∃xKa(x = Pegasus)
(2) ∃xKa(x = Pegasus) ⊃ Ka(∃x (x = Pegasus)
(3) Ka∃x (x = Pegasus) ⊃ ∃x (x = Pegasus)
(4) Therefore ∃x (x = Pegasus).

If we share Hintikka’s later view that “there seems to be a perfectly good sense
of knowing who a certain person is which does not commit one to holding that
the person in question is known to exist” ([Hintikka, 1966, p. 4] quoted by Lenzen
[Lenzen, 1976, p. 59]), premise (1) in the above inference causes no problem. Ap-
plying the epistemic version of GF together with axiom T , we derive the false
statement ∃x (x = Pegasus). Since T cannot be disallowed, the culprit must be
(2), i.e. the principle GF. Lenzen’s objection nothwistanding, the GF principle
continues to be upheld by many authors, even in its doxastic version. There is an
account of quantifying-in for which, assuming that a can do existential generaliza-
tion, this is valid: “[i]f a believes there is some particular object satisfying ϕ, then
it certainly believes there is some object satisfying ϕ” [Genesereth and Nilsson,
1988, p. 218]. How can we settle the issue?

New light is shed on this problem by counterpart semantics as introduced by
[Corsi, 2001]. Within the framework of that semantics, which is briefly described
in section 7, the GF formula is shown to follow from a formula which syntactically
captures the semantic assumption that the counterpart relation (see section 10) is
everywhere defined. The only logical axioms and rules used in the proof belong to
classical first-order logic and to modal propositional logic K [Corsi, 2001, pp. 21,
26]. The very need for this hidden extra-premise, which is revealed by counter-
part semantics, highlights the richness of first-order modal logic and shows that
the interplay between quantifiers and modal operators brings about something
radically new, which cannot be found either in non modal first-order logic or in
propositional modal logic.
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As opposed to GF formula which, as we have seen, is still defended by sev-
eral authors, its converse — called “Routley’s formula” by Slater — is generally
discarded as invalid. Yet, as we shall see, it can be vindicated under particular
conditions. Consider this instance of Routley formula (‘[HP]’ stands for ‘Hercule
Poirot knows’ and ‘M’ for ‘is a murderer’): [HP]∃xMx ⊃ ∃x[HP]Mx.

Slater holds that in so far as verbs of attitude (“to know”, “to believe”, “to
think of”) are construed as relations, the validity of the Routley’s formula can
be defended under some proviso. If the antecedent is true, there is an object of
Hercule Poirot’s knowledge, belief or thought, but the object can only be captured
by a purely referential term such as “εxMx” [Slater, 1994, pp. 40–43]. The idea
is this: if I know that there is a spy, whoever he or she may be, there is an entity
which I apprehend under the highly neutral predicate “known to be a spy by me”.
The truth conditions of the two sentences are the same.

5.8 The Necessity Of Identity And Its Epistemic Analogue

In quantified modal logic, it is easy to prove: ∀x∀ y (x = y ⊃ �x = y). The
proof rests upon the two axioms of identity and the rules of uniform substitu-
tion, necessitation and modus ponens. (See the details in section 5.10.) No move
seems questionable. If, however, we instantiate the bound variables by definite
descriptions we obtain blatant counter examples:

The morning star = the evening star ⊃ �(The morning star = the evening star),
The morning star = the evening star ⊃ K(The morning star = the evening star).

Even if we prohibit instantiation, the conclusion that all identities are necessary
as such might be felt unacceptable. It is certainly so if we identify “necessary”
with “logically true”, but we need not do that. All we have to accept at this
stage is that (1) x = x is logically true, (2) �x = x is merely true (but not
logically true), (3) that if x = y is true, it is necessarily so, but (3) is not a logical
truth [Fitting and Mendelsohn, 1998, p. 146]. What emerges from this is that the
necessity at stake when we say that identities are necessary identities (formally
that: ∀x∀ y (x = y ⊃ �x = y)) is not logical necessity.

A technical characterization of the crucial difference between truth, logical truth
and necessary truth in the metaphysical sense of necessity has been given by
[Cocchiarella, 1984] and [Rivenc and de Rouilhan, 1997]. The truth of a wff in a
model (indexed by a language suitable to that wff) is, as usual, the satisfaction
of the wff by every assignment in the universe of the model. Logical truth is
then truth in every model (indexed by any appropriate language) [Cocchiarella,
1984, p. 312]. Logical necessity captured by Carnap in the 1946 paper should be
carefully distinguished from the kind of necessity captured by Kripke semantics in
1963.

Kripke’s semantics, as opposed to Carnap’s semantics, allows the quantifica-
tional interpretation of necessity in the metalanguage to refer not to all the possi-
ble worlds (models) of a given logical space but only to those in a given non-empty
set of such worlds [Cocchiarella, 1984, p. 315]. This restriction enabled Kripke to
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succeed where Carnap had failed. Kripke managed to prove the completeness
of his system of quantified modal logic, but this result was obtained at a price.
Kripke succeeded in capturing various forms of metaphysical necessity, but not
logical necessity as Carnap did in the incomplete (and incompletable) system that
he laid down in his paper of [1946].

The formula ∀x∀ y(x = y ⊃ �x = y) is a theorem of one of the first two
systems of quantified modal logic [Marcus, 1946]. Does it hold for epistemic logic?
The laws of epistemic modalities (such as K or B) sometimes diverge from those
of metaphysical modalities like �. An example due to L. Carlson brings out
the specificity of epistemic logic very well. As L. Carlson observes, the following
informal sentence sounds like a description of a possible epistemic situation [1988,
p. 237]: “There is someone who might be two different people as far as the police
knows”. Its simplest natural formalization is ∃x∃ y (x = y ∧ ¬Kx = y) which
is the negation of ∀x∀ y (x = y ⊃ Kx = y), i.e. the negation of the epistemic
reading of ∀x∀ y (x = y ⊃ �x = y). To understand what is going on here, it is not
enough to paraphrase sentences into logical formulas. We need a rigorous formal
semantics. The latter, however, cannot get off the ground if we do not first remove
some difficulties connected with the notion of possible individuals.

5.9 Possible Individuals

In a paper first published in 1948, Quine put forward a famous argument against
the postulation of possible individuals: “Take, for instance, the possible fat man
in that doorway; and, again, the possible bald man in that doorway. Are they the
same possible man, or two possible men? How do we decide? How many possible
men are there in that doorway? (...) How many of them are alike?” [1953; 2nd ed.
1961, p. 4]. What Quine finds objectionable is that possible men lack a criterion
of identification. This concern for identity criteria would later give rise to Quine’s
famous slogan “No entity without identity”.

One might try to meet Quine’s demands for identification criteria by affirming
that the identification of individuals across the boundaries of possible worlds rests
upon continuity properties similar to those enabling us to trace the continuous
world lines of an individual in space-time.

Quine does not accept this reply: “These considerations cannot”, Quine main-
tained, “be extended across the worlds, because you can change anything to any-
thing by easy stages through some connecting series of possible worlds. The dev-
astating difference is that the series of momentary cross-sections of our real world
is uniquely imposed on us, for better or for worse, whereas all manner of paths of
continuous gradation from one possible world to another are free for the thinking
up” [1981, p. 127].

There is however another answer to Quine’s objection. One might say that
the denizens of possible worlds which we need to bring in for making sense of
quantified modal logic are not possible individuals but real individuals considered
in a possible scenario. For instance we could imagine a world in which Richard
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Nixon existed, but never won presidential elections. If we take that line, the
problem of providing criteria of identification does not arise. We have already
identified our man and we hold him constant across alternative scenarii.

This way of tracing an individual across possible worlds requires that we “tag”
— to use R. Barcan Marcus’ word — the individual with a proper name, not
with a definite description. Proper names (like “Franklin”) as opposed to definite
descriptions (like “the inventor of bifocals”) designate the same object in all the
worlds in which this object exists. Using a terminology introduced by Kripke we
can say that the former are rigid designators and the latter accidental designators.

Kripke’s solution is suitable for the counterfactuals. It does not seem to suit
the situation of the police who mistakes one person for two different persons. Here
it seems that we have to work with two worlds: the real world containing the
individual sought by the police and a possible world compatible with what the
police knows in which there are two different individuals that correspond to the
same individual in the real world [See Føllesdal’s diagram in section 5.4]. An
alternative account of possible worlds is called for.

Hintikka has developed a conception of individual as a function or, to use his
favorite metaphor, “a world-line” that picks out from several possible worlds a
member of their respective domains as the referent of a singular term. Such a
function may be partial. This happens when a well-defined individual existing in
one world fails to exist in another. A partial individuating function may fail to
have a value in the actual world. A function of that kind is what counts as a
possible individual for Hintikka [1972, p. 403]. An individuating function can also
be ill-defined. This happens when different individuals in different possible worlds
are associated with the same singular term. Here we are getting close to a solution
to Carlson’s puzzle.

It remains to recast Hintikka’s insights in formal terms. This has been done
by Carlson [1988, pp. 244–245]. A Kripkean model M for Hintikka’s epistemic
logic is a quintuple 〈W,D,F,R,V〉 such that W is a set of epistemic alternatives
(“possible worlds”), D is a set of individuals belonging to the union of the domains,
Dw of each world w, F is a set of partial individuating functions f defined on W
such that f(w) is in Dw whenever f is defined at w and these conditions are
fulfilled: if the individual d is member of the domain D, then d = f(w) (a) for at
least and (b) for at most one f in F, i.e. the individuals that can be named are
possible values of bound variables and neither split nor merge. Rd is a subset of
W×W. V is a valuation function.

With that semantical apparatus, it is possible to model the predicament of the
police in the example given above. The interpretation of ∃x∃ y (x = y∧¬Kx = y)
reads as follows: x is the same individual as y in the real world, but for some worlds
compatible with what the police knows, x and y have different values. Formally
speaking V(x,w0) =V(y, w0), but for some w1 such that w0Rw1, V(x,w1) �=
V(y, w1). In other words, the function f is ill-defined since it takes as a value an
individual which splits when we move from the actual world to at least one of its
epistemic alternatives.
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We can also explain the role of the auxiliary premise ∃xKa(x = b), i.e. ‘The
agent knows who b is’ inserted in the rule of existential generalization for epistemic
logics mentioned in sections 5.2 and 5.3. These premises are added to guarantee
that the individuals that are possible values of our bound variables are well-defined.

5.10 Counterpart Semantics

Quine criticized the notion of possible individuals from an epistemological point of
view. They lack criteria of identification. R. Barcan Marcus criticized them from
an ontological point of view. Possible individuals cannot be related by a relation,
be the relation that of identity or another relation. The question as to whether a
possible individual is identical or not to another one, she claims, does not make
sense for in that case there are no individual objects, which are what is needed for
an identity relation [Marcus, 1993]. She adds that the converse of Quine’s slogan
“No entity without identity” also holds: “No identity, no entity” [1993, p. 208].

A way out would be to renounce talking about cross-world identity and to
embrace some version of counterpart theory. Counterpart theory was invented by
D. Lewis in 1968. A. Hazen showed that a model theory could be extracted out of
it [Hazen, 1979]. In a counterpart semantics the domains of the different worlds
are disjoint, but an individual of one world may have a counterpart in the domain
of another.

The definition of the counterpart relation reads as follows: “an individual a
existing at world w satisfies at w the formula �P (x) iff every counterpart a∗ of a in
any accessible world v, satisfies P (x)” [Corsi, 2001, p. 11]. Counterpart relations
as opposed to the identity relation allow individuals to split or to merge when
we move from one world to another. Hence counterparthood is more general that
identity, although the former contains the latter as a particular case. Now we have
a very natural solution to Carlson’s puzzle which does not force us to have recourse
to possible individuals. We can say that a real individual has two counterparts
in the police’s thought. The main achievement of counterpart semantics however
lies elsewhere. It lies in its ability to get to the roots of the problem raised by the
formula ∀x∀ y (x = y ⊃ �x = y). Before we substantiate our claim, a distinction
drawn by Ghilardi and Meloni has to be introduced. Ghilardi and Meloni have
refined the syntax of modal language by introducing a distinction between the
arity of predicates and the arity of formulas (which they call “type”). In the
formula ∀x∀ y ∀ z ((xRy∧ yRz) ⊃ xRz), each predicate has arity 2, but the whole
formula has type 3. Observe that a sequence which satisfies (xRy ∧ yRz) ⊃ xRz
needs three individuals at least. (Sequences with only one or two individuals also
satisfy it, but make it trivial.) Their aim is to control the free variables which
occur in the formulas and to bring to the fore the combination of the operation
of substitution and modality which are responsible for the anomalies in first-order
modal logic. Relying on their findings which were expressed in the language of
category theory and developing their insights further, G. Corsi reformulated their
diagnosis of the faulty step in the standard proof of ∀x∀ y (x = y ⊃ �x = y). In
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accordance with a common practice in logic for computer science, the following
conventions are adopted. Let 〈m : t1, . . . , tn〉 be a term of type m and A be a
formula. By 〈m : t1, . . . , tn〉A, we denote “the formula of type m obtained by
applying the operation of substitution to the formula A of type n and the complex
term 〈m : t1, . . . , tn〉 of type m→ n” [Corsi, 2001, p. 15].

To start with, we take Leibniz’ law

(1) x = y ⊃ ϕx ⊃ ϕy,

and we substitute �(x = û) for ϕ where û designates the free variable to the right
of ϕ in (1), i.e. respectively x and y. We obtain:

(2) x = y ⊃ [�(x = x) ⊃ �(x = y)];

Applying the law [A ⊃ (B ⊃ C)] ⊃ [B ⊃ (A ⊃ C)], we get:

(3) �(x = x) ⊃ [(x = y) ⊃ �(x = y)];

(4) x = x; (Axiom of identity)

(5) �(x = x); (Necessitation applied to (4))

The theorem follows by modus ponens on (3) and (5). Let us adopt G. Corsi’s
notation and redo the proof. We obtain (2′) by substituting 〈2 : x, x〉�(x = y) for
ϕx and 〈2 : x, y〉�(x = y) for ϕy:

(2′) x = y ⊃ 〈2 : x, x〉�(x = y) ⊃ 〈2 : x, y〉�(x = y).

By the law of permutation of the antecedents, we get:

(3′) 〈2 : x, x〉�(x = y) ⊃ (x = y ⊃ 〈2 : x, y〉�(x = y)).

Now using the axiom of identity, and then necessitation, we obtain:

(4′) 〈2 : x, x〉x = y.

(5′) �〈2 : x, x〉x = y.

We try to build a modus ponens with (3′) and (5′) as premises, but we fail. In (3′)
the necessity operator was there before substituting x for y in �(x = y). In (5′) the
necessity operator was applied after the substitution of x to y. The two premises
instantiate the forms p′ and p ⊃ q instead of p and p ⊃ q. Hence, as G. Corsi
observes, we do not have a modus ponens. Can we remove the p/p′ equivocation?
We cannot. As G. Corsi shows, substitution and modal operators do not commute
as opposed to substitution and connectives or substitution and quantifiers. Here
again we see that there is more to quantified modal logic than what can be found
in first-order logic alone, or in propositional logic alone.

From G. Corsi’s proof (implicit in Ghilardi and Meloni) that the derivation of
formula ∀x∀ y (x = y ⊃ �x = y) is faulty we cannot, however, conclude that the
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formula itself should be discarded. Although it has to be given up as a theorem,
it is still eligible as an axiom. In the last but one section of this chapter we shall
argue that there are independent reasons for taking that line. The recognition
that identity statements between proper names are necessary is the key to the
solution of several recalcitrant puzzles. Hence we have good grounds for accepting
the controverted formula as an axiom with the proviso that only proper names be
allowed as substituends.

5.11 Kripke’s Puzzle About Belief

In 1979, S. Kripke examined afresh the problem raised by the apparent failure
of co-designative names (like ‘Cicero’ and ‘Tully’) to be interchangeable in belief
contexts. He spelled out a puzzle about co-designative terms in a belief context,
which arises even if no principle of substitutivity is invoked.

Kripke imagines a young monolingual Frenchman, Pierre, who has heard and
read about London’s being pretty and who assents to the sentence “Londres est
jolie”. Later he emigrates to England, settles down in an unattractive part of
London with uneducated inhabitants. As none of his neighbours know any French,
he has to learn English by exposure. In particular everyone speaks of the city
‘London’ as being where they live. Pierre’s surroundings being unattractive, he is
inclined to assent to the English sentence: “London is not pretty”.

It looks as though Pierre has contradictory beliefs. But, Kripke observes, “it
is clear that Pierre, as long as he is unaware that the cities he calls ‘London’ and
‘Londres’ are one and the same, is in no position to see, by logic alone, that at
least one of his beliefs must be false. He lacks information, not logical acumen.
He cannot be convicted of inconsistency” [1979, p. 257].22

A candid reader would say that though Pierre’s beliefs are implicitly inconsis-
tent, they can be made consistent on the proviso that they become explicit and
undergo revision. The problem is that we need a formal semantics which accounts
for these many-sided facts. R. Parikh’s approach satisfies these requirements.

As we have to deal with an impossible state of affairs (described by the bilingual
sentence ‘Londres est jolie ∧ London is not pretty’), the standard possible world
semantics does not suffice. Parikh introduces the word ‘scenario’ “to mean a
complete theory in Pierre’s new language, consistent with his beliefs, but which
[. . . ] might not be a possible world in our sense” [Parikh, 2001, p. 386]. Possible
worlds are a special kind of scenarii, namely scenarii held possible by what R.
Parikh calls “the community theory” or “our theory”.23

The contrast between scenarii and possible worlds hinges on a difference of sta-
tus between our beliefs and Pierre’s beliefs. The reason why we call our scenarii

22The quote from [Kripke, 1979] has been reprinted with the permission of Springer, The
Netherlands.

23The quote from [Parikh, 2001] appears with permission from CSLI Publications. Copyright
2001 by CSLI Publications, Stanford University, Stanford, CA 94305-4101.
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possible worlds is that we are in a Moore’s paradox situation: we cannot say that
something is true, but that we do not believe it.

Taking advantage of the distinction between scenarii and possible worlds, R.
Parikh distinguishes between two kinds of inconsistencies which he calls 1-incon-
sistency and 2-inconsistency. The terms “1-inconsistency” and “2-inconsistency”
apply to theories, more precisely to “complete theories”, and only derivatively to
beliefs. A complete theory T is defined as a theory which for any closed formula
A contains either A or its negation. Moreover T contains the axiom of first-order
modal logic S5 and is closed under modus ponens, universal generalization and
necessitation. It also contains a = b ⊃ �(a = b) as an axiom.

An individual theory Ti is defined as 1-inconsistent if there are no scenarii among
its complete extensions. This happens whenever all formulas are theorems of Ti,
namely whenever the distinction between formulas and theorems collapses. The
occurrence of ϕ ∧ ¬ϕ in the theory is a sufficient (but not a necessary) condition
to produce this effect in virtue of the theorem ϕ ∧ ¬ϕ ⊃ ψ (ex falso sequitur
quodlibet).

An individual theory Ti is defined as 2-inconsistent if there are no possible
worlds among the extensions of Ti ∪ T�

c where T�

c is the set of all formulas which
are considered in the community theory Tc to be necessary.

The notions of 1-belief and 2-belief are introduced next. They denote respec-
tively (1) somebody’s belief seen from his or her own standpoint and (2) his or
her belief seen from our standpoint. R. Parikh defines them in this way: Pierre
1-believes A if A ∈ Tp. Pierre 2-believes A if A can be proved in Tp together with
appropriate formulae in T�

c , where T�

c = {A : �A ∈ Tc}. Applying these defini-
tions we shall see that Pierre’s beliefs are 2-inconsistent but 1-consistent. Pierre’s
complete theory Tp contains four scenarii described by the following sentences:

(1) Jolie(Londres) ∧ ¬Pretty(London) ,
(2) Jolie(Londres) ∧ Pretty(London) ,
(3) ¬Jolie (Londres) ∧ Pretty(London) ,
(4) ¬Jolie (Londres) ∧ ¬Pretty(London) .

Theory Tp is 1-consistent since some of its scenarii are possible worlds, namely
(2) and (4). But at the same time it is 2-inconsistent. To show this we have
first to consider what Pierre 2-believes. For that purpose we look at the necessary
statements of the community theory Tc. It contains the statement ‘London =
Londres’ from which we derive ‘� (London = Londres)’ by applying axiom a = b ⊃
�(a = b), which encapsulates R. Barcan Marcus’ and Kripke’s idea that identities
between names are necessary. ‘� (London = Londres)’ qualifies for membership in
T�

c . Hence to know what Pierre 2-believes we have to include ‘London = Londres’
in theory Tp. Since Tp is logically closed, we easily get the blatant inconsistency
‘Jolie(Londres) ∧¬ Jolie(Londres)’ modulo the translation of ‘pretty’ into ‘jolie’.

R. Parikh’s semantics explains how Pierre is inconsistent from our point of view
but consistent from his. It also does something which other solutions of Kripke’s
puzzle fail to do, i.e. it provides a unified account of the puzzles about proper
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names. For instance it can also deal with the problem raised by Philip’s ignorance
that Tully is Cicero. Quine’s early puzzle about Philip differs from Kripke’s puzzle
about Pierre. The concepts defined in the theory of belief revision enable us to
bring out the difference. To perform the inference on which he is stuck Philip has
to expand his knowledge of Roman history. To circumvent the contradiction which
threatens him, Pierre has to revise his beliefs about geography.

6 LOGICAL OMNISCIENCE AND EPISTEMIC LOGIC

6.1 Various Forms Of Logical Omniscience

The concepts of knowledge and belief analyzed in Hintikka’s foundational book are
highly idealized. Logical omniscience is built into his logic of the two notions. This
immediately prompted the criticism that his “senses of ‘knowledge’ and ‘belief’ are
much too strong [. . . ] since most people do not know every proposition entailed
by what they know; indeed many people do not even understand all deductions
from premises they know to be true” [Castañeda, 1964, p. 134].

Castañeda’s criticism notwithstanding, [Fagin et al., 1995] still maintain that
the system KT45, which is open to the same criticisms as Hintikka’s logic, is
one of the very best formalisms for epistemic logic, at least if the applications of
epistemic logic are our main concern. System KT45 however displays the seven
forms of logical omniscience listed below:

(1) If ⊢ ϕ then ⊢ Kϕ (closure under theoremhood);
(2) If ⊢ ϕ ⊃ ψ then ⊢ Kϕ ⊃ Kψ (closure under logical implication);
(3) If ⊢ ϕ ≡ ψ then ⊢ Kϕ ≡ Kψ (closure under logical equivalence);
(4) ⊢ K(ϕ ⊃ ψ) ⊃ (Kϕ ⊃ Kψ) (closure under material implication);
(5) ⊢ K(ϕ ≡ ψ) ⊃ (Kϕ ≡ Kψ) (closure under material equivalence);
(6) ⊢ (Kϕ ∧ Kψ) ⊃ K(ϕ ∧ ψ) (closure under conjunction);
(7) ⊢ K(ϕ ∧ ψ) ⊃ (Kϕ ∧ Kψ) (closure under simplification).

It is worth stressing that what is at stake in (1) is not factual omniscience, but
logical omniscience. The necessitation rule does not say that from a proposition’s
being true we are entitled to derive that it is known. It says that from a proposi-
tion’s being a theorem, or being valid, we are entitled to derive that it is known.

6.2 Belief, A Borderline Concept Between Logic And Psychology

Hintikka fully recognizes the idealized nature of his account of knowledge and
belief, but he questions the very possibility of giving a characterization of human
logical competence in purely logical terms. Considering the rules (2) and (3) he
writes that what “causes the breakdown of these rules is broadly speaking the
fact that one cannot usually see all the logical consequences of what one knows
or believes”. Hintikka adds that “it may seem completely impossible to draw
a line between the implications one sees and those one does not see by means
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of general logical considerations alone. A genius might readily see quite distant
consequences while another man may almost literally ‘fail to put two and two
together’” [Hintikka, 1970, p. 36].

As Hintikka observes, the extent to which one follows the logical consequences
of what one believes varies with one’s mood, training and degree of concentration.
But these limits of our logical insights are both ephemeral and idiosyncratic.They
seem to fall outside of logic.

Later on, Levesque turned the distinction between a logical and a psychological
account of knowledge into a distinction between implicit and explicit knowledge
and addressed the issue raised by Hintikka in logical terms. Fagin and Halpern
took a further step forward and developed a logic of awareness which was briefly
described in section 2.9. (For other uses of the concept of awareness in connection
with the problem of logical omniscience, see [Huang and Kwast, 1991; Thijsse,
1991; 1992].)

The conception of explicit knowledge proposed by Halpern and Fagin is open
to at least three criticisms. First, it rests upon a “sentence storage model” of
awareness which ignores the process of getting access to knowledge. Second, it is
too fine-grained. It is possible for an agent to be aware of ϕ ∨ ψ without being
aware of ψ ∨ϕ, i.e. he might have explicit knowledge of the first formula and lack
explicit knowledge of the second. Hence we have a formalization of logical blindness
rather than a logic of limited logical competence. Third, the system contains the
following version of the necessitation law: “From ⊢ ϕ infer ⊢ Aϕ ⊃ Bϕ” which
formally captures the idea that as soon as an agent is aware of a tautology he or
she believes it explicitly.

This is again unrealistic. We may be aware of a complicated tautology without
knowing that it is a tautology. This leads Fagin et al. to admit that the axioms of
the system under consideration “do not give us much insight into the properties of
explicit knowledge” [Fagin et al., 1995, p. 340]. Meanwhile E. Gillet put forward
a characterization of the logical competence of rational agents in terms of their
ability to uncover several layers in the logical structure of an argument. In his
account, “analysis functions”, as he calls them, play the role played by awareness
in Fagin’s and Halpern’s formalism. They enable E. Gillet to circumvent the
various forms of logical omniscience without attributing logical blindness to the
agent [Gillet and Gochet, 1993].

6.3 A Logic For Occurrent Beliefs Free Of Logical Omniscience

Not all of the seven forms of logical omniscience listed in the first section are
equally unacceptable. Three of them are really unwanted: closure under theo-
remhood, closure under logical implication and closure under logical equivalence.
They are unacceptable insofar as they impute an infinite capacity to the agent.
The other forms of logical omniscience, however, might be defended. Closure un-
der conjunction captures the ability to put two things together. Closure under
material implication captures the ability of an agent to practice modus ponens.
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What we are after is a logic which avoids the unacceptable forms of logical
omniscience, but which also accounts for the agent’s rationality in a principled way.
Not only modus ponens, conjunction and simplification should be safeguarded, but
also other familiar rules and principles such as hypothetical syllogism, disjunctive
syllogism, modus tollens etc. A. Wísniewski tackled this problem in “Two logics
for occurrent belief” [1998]. The first of these logics, called S.0, is a weak modal
logic containing only one rule of inference: modus ponens. Necessitation cannot be
used and the rule of extensionality (law of exchange of equivalents) is not allowed
within the scope of the doxastic operator B. Although the author axiomatizes
two doxastic concepts (believing and admitting), we shall restrict ourselves to
examining the first one. For that purpose we shall slightly change the axiom
system. The change is inconsequential. Axioms of S.0 are tautologies of the
classical propositional language enriched with the following forms:

Ax. 1 : B(ϕ ⊃ ψ) ⊃ (Bϕ ⊃ Bψ)
Ax. 2 : B(ϕ ∧ ψ) ⊃ (Bϕ ∧ Bϕ)
Ax. 3 : (Bϕ ∧ Bψ) ⊃ B(ϕ ∧ ψ)
Ax. 4 : Bϕ ⊃ ¬B¬ϕ

A four-valued matrix is provided by A. Wísniewski. It has been borrowed from
Lukasiewicz’s modal system L. Its values are 1, 2, 3, 0. The designated value is
1. The truth-functions that correspond to the operators ¬,∧,∨,⊃,B are spelled
out in tables. We only give the table for the doxastic operator B:

α Bα
1 2
2 2
3 0
0 0

Every axiom of the system receives the designated value 1 and modus ponens
carries it from the premises to the conclusion. Hence every thesis of the system
has value 1. From the truth-function associated with the operator B, it is clear
that no formula of the form Bϕ has the value 1. We cannot infer ⊢ Bϕ from ⊢ ϕ.
Hence the analogue of the rule of necessitation is not derivable in S.0 [Wísniewski,
1998, p. 117].

To see the point of S.0, it is worth comparing the following two versions of the
principle of hypothetical syllogism:

(1) [(Bϕ ⊃ Bψ) ∧ (Bψ ⊃ Bχ)] ⊃ (Bϕ ⊃ Bχ).
(2) [B(ϕ ⊃ ψ) ∧ B(ψ ⊃ χ)] ⊃ (Bϕ ⊃ Bχ).

Theorem (1) is a trivial instance of hypothetical syllogism. It is external in so far
as no analytic power is ascribed to the believer. We reason about the believer’s
beliefs but we do not capture the believer’s own reasoning. Theorem (2), on the
contrary, is not trivial. It is internal. We impersonate the believer and reconstruct
his or her reasoning from within.
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The derivation of (2) from (1) in S.0 is easy:

(1) B(ϕ ⊃ ψ) ⊃ (Bϕ ⊃ Bψ) Ax. 4
(2) B(ψ ⊃ χ) ⊃ (Bψ ⊃ Bχ) Ax. 4
(3) [(p ⊃ q) ∧ (r ⊃ s)] ⊃ [(p ∧ r) ⊃ (q ∧ s)] Classical prop. calculus
(4) [B(ϕ ⊃ ψ) ∧ B(ψ ⊃ χ)] ⊃ [(Bϕ ⊃ Bψ) ∧ (Bψ ⊃ Bχ)]

Subst. in (3): B(ϕ ⊃ ψ)/p . . .Bψ ⊃ Bχ/s; modus ponens (1)∧ (2), (3).
(5) [(Bϕ ⊃ Bψ) ∧ (Bψ ⊃ Bχ)] ⊃ (Bϕ ⊃ Bχ) Classical hyp. syl.
(6) [B(ϕ ⊃ ψ) ∧ B(ψ ⊃ χ)] ⊃ (Bϕ ⊃ Bχ) (4) ∧ (5) hyp. syl.

The agent’s rationality also manifests itself in not believing patent contradictions.
This is captured in S.0 by the theorem ¬B(ϕ ∧ ¬ϕ). The proof based on ax. 2,
ax. 4 and the principle of non-contradiction is trivial. Observe that from the agent
refraining from believing a contradiction, it does not follow that he believes the
principle of contradiction itself. Formally ¬B(ϕ ∧ ¬ϕ) �⊢ B¬(ϕ ∧ ¬ϕ).

The idea of distinguishing between the agent’s reasoning and the observer’s
reasoning was systematically used for the first time in Konolige’s Deduction Model
of Belief [1986, p. 55]. Konolige presents a tableau system which allows nested
auxiliary tableaux to occur inside main tableaux. An auxiliary tableau represents
the internal proof process of the agent, as opposed to the original tableau (the
main tableau) which is the external observer’s view of the agent.

Wísniewski’s system S.1 shares its axioms with S.0. It differs from it in so far
as it contains the following rule of definitional replacement (R):

Rule R: From ϕ =def ψ and context C, derive C[ϕ/ψ] .

The definitions of ∧ and ∨ are:

ϕ ∧ ψ =def 1 ¬(ϕ ⊃ ¬ψ) ,
ϕ ∨ ψ =def 2 ¬ϕ ⊃ ψ .

Observe that the adoption of R does not commit us to closure under material
equivalence. Replacement of materially equivalent formulas in the scope of belief
operator remains prohibited.

System S.1 captures the agent’s ability to use disjunctive syllogism:

(1) B(¬ϕ ⊃ ψ) ⊃ (B¬ϕ ⊃ Bψ) Ax. 1
(2) [B(¬ϕ ⊃ ψ) ∧ B¬ϕ] ⊃ Bψ (1), Importation
(3) [B(ϕ ∨ ψ) ∧ B¬ϕ] ⊃ Bψ (2), Df. 2, Rule R

Systems S.0 and S.1 succeed in eradicating logical omniscience and in doing
justice to the agent’s limited rationality at the same time. The limited rationality
is reflected by the incompleteness of the rules granted to the agents. One might,
however, want to account for another kind of limitation. Consider an agent who
has learned a complete set of rules of natural deduction (a set of rules powerful
enough to secure the derivability of all validities). This agent may be said to
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be potentially logically omniscient, but actually not logically omniscient due to
limitation of time and memory. We shall describe a new epistemic logic which
addresses this issue. Before we spell it out, we shall show that logicians who take
computation time into account should not be blamed for committing some form
of “psychologistic fallacy”.

6.4 The Role Of Time In Logical Computation

As Lewis Carroll’s paradox of inference shows, we cannot derive proposition q from
p and p ⊃ q by applying the proposition [p∧ (p ⊃ q)] ⊃ q on pain of generating an
infinite regress [Toms, 1962, p. 44]. What is missing is the operation of detachment
licensed by the inference rule of modus ponens. The drawback of the awareness
system is its failure to take into account the procedural nature of inference.

The necessity of performing an operation cannot be bypassed by the recourse
to truth-tables. Being aware of all the values of truth-functions expressed by the
connectives in p ∧ (p ⊃ q) does not provide an answer to the question: “What
follows from p and p ⊃ q?” unless we cross out the lines in which either p or p ⊃ q
or both are assigned the value 0.

If we reckon with that operation of erasing lines, we free ourselves from the
perspicuous criticism formulated by F. Lepage and S. Lapierre in this passage:
“The notion of interpretation, from its Tarskian origins until to-day, is spoiled by
a major original sin: the values of the expressions retain no trace of the way they
have been computed or assigned” [2000, p. 179].

We shall now examine a new treatment of the problem of logical omniscience
which duly takes computation into account. To understand the full significance of
this new treatment and to show that it is immune to the criticism levelled against
psychologism, one should bear in mind this well known truth about derivation: if
(1) every formula has a finite length, (2) every proof is finite, and (3) the proposi-
tional calculus adopted is decidable, then every formula of the chosen propositional
calculus which is derivable will be derived “in the long run”. We have to enumer-
ate longer and longer sequences of formulas and periodically check whether they
are proofs of ϕ or of ¬ϕ. Two notions emerge in this uncontroversial statement:
the notion of “after” and the notion of “proof”.

6.5 A New Dynamic Epistemic Logic

Bringing together the two above-mentioned notions, Dr. Ho Ngoc Duc has worked
out a new epistemic logic in which the tense operator � understood as “sometimes
after using rule R” and its dual � understood as “always after using rule R” are
added to the logical constants of standard epistemic logic. The knowledge operator
K is given its usual interpretation which goes back to Hintikka: “Kiϕ” means “in
all states compatible with (or accessible from) what agent i knows, it is the case
that ϕ”.
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This new system called DEKN (and its variants) is to be found in a Ph.D.
dissertation defended in [2001] at the University of Leipzig .

The basic system DEKN contains five sets of axioms:

(1) Lukasiewicz’s axioms for propositional logic;
(2) Axioms K and 4 for the box operator (�) of temporal logic;
(3) A weakened version of axiom K for the K-operator of epistemic logic:

Ki(ϕ ⊃ ψ) ⊃ (Kiϕ ⊃ �Kiϕ);
(4) A dynamic epistemic version of Lukasiewicz’s axioms obtained

by prefixing them with �Ki;
(5) The persistence axiom: Kiϕ ⊃ �Kiϕ,

which states that premises that are true at a time remain true.

and two rules of inference: modus ponens and necessitation restricted to the box
operator of tense logic. The necessitation rule for K is not admitted.

None of the seven forms of logical omniscience listed in § 1 is a theorem. As an
example we shall show that K(ϕ ⊃ ψ) ⊃ (Kϕ ⊃ Kψ) is not a theorem. For that
purpose we have to build a model in which K(ϕ ⊃ ψ)∧Kϕ∧¬Kψ is satisfied. The
following concrete model, inspired by J. van Benthem [private communication] will
do. Fix a rule system. Let states be all finite sets of formulas, and let temporal
steps add conclusions via the rules, but one by one.

Let K be a knowledge base, i.e. a finite set of formulas containing either Boolean
formulas or epistemic formulas. Kϕ is interpreted as ϕ ∈ K. Hence K¬ϕ is inter-
preted as ¬ϕ ∈ K and ¬Kψ is interpreted as ψ �∈ K; �Kϕ is read as “Sometimes
after using rule R, the agent knows ϕ”. The application of a rule leads the agent
from knowledge base K to knowledge base K′. The move can be depicted by an
arrow. In virtue of the persistence axiom, if ϕ ∈ K and if K′ is directly reachable
from K by an arrow, then ϕ ∈ K′. In this structure, formula K(ϕ ⊃ ψ)∧Kϕ∧¬Kψ
is satisfiable. It says that ϕ ⊃ ψ ∈ K , ϕ ∈ K and ψ �∈ K. This state of affairs is
realizable. On the contrary K(ϕ ⊃ ψ) ∧ Kϕ ∧ ¬�Kψ is not satisfiable. The third
conjunct ¬�Kψ is equivalent to �¬Kψ, which means “after all applications of a
rule, ψ is still not a member of K′”. A counter-example is easy to find. Take K′

as obtained from K by applying modus ponens.

6.6 Interaction Between B And R

Most systems of epistemic logic which succeed in avoiding all the forms of logical
omniscience in propositional logic fail to give rise to new non trivial theorems. This
is a serious defect if our goal is to give a formal account of the limited rationality
of human or artificial agents. The system DEKN and its variants are free from
this objection. For all its simplicity the bimodal system DEKN fits its intended
interpretation remarkably well. Consider the formula [�Kϕ∧�K(ϕ ⊃ ψ)] ⊃ �Kψ.
It means: if after some course of thought the first premise ϕ is known, and if after
some other course of thought the second premise ϕ ⊃ ψ is known, then after some
course of thought the conclusion ψ will be known.
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The formula, as the author observes, is not a theorem and this is as it should
be for the intended interpretation. The agent may fail to place side by side the
two premises. If this happens we can say that the two premises diverge. The
relation later than corresponding to the box operator allows for such a divergence.
The only property imposed on time by the system K4 is transitivity. Linearity
is not required. Hence time may be branching. Branching time captures the
situation in which our courses of thought split off in such a way that we never
reach the conclusion of our premises. To bring that out, we shall construct a
model which invalidates the formula (�Kϕ ∧ �K(ϕ ⊃ ψ)) ⊃ �Kψ and satisfies
its negation, i.e. �Kiϕ ∧ �Ki(ϕ ⊃ ψ) ∧ �¬Kiψ. This amounts to producing
a structure fulfilling the following requirements : from the same point 0, two
diverging arrows lead to two distinct knowledge bases K1 and K2 . The first one
only contains ϕ ⊃ ψ and the second one only contains ϕ. Neither of them can
lead to K3 by modus ponens. Hence formula �Kiϕ ∧ �Ki(ϕ ⊃ ψ) ∧ �¬Kiψ is
satisfied. If, however, we adopt the axiom of convergence which forces K1 and K2

to coalesce, then we can apply modus ponens and it is no longer possible to satisfy
�Kiϕ ∧�Ki(ϕ ⊃ ψ) ∧�¬Kiψ. In other words, if time is assumed to be confluent
we recover the validity of (�Kϕ ∧�K(ϕ ⊃ ψ)) ⊃ �Kψ. Dr. Ho Ngoc Duc showed
indeed how (�Kϕ∧�K(ϕ ⊃ ψ)) ⊃ �Kψ can be derived from the axioms of DEKN

augmented with the well known axiom of convergence G, namely ��ϕ ⊃ ��ϕ.
This is as it should be since, as we saw in Section 2.5, this modal axiom corresponds
to the first-order property of confluence.

6.7 Substructural Logic As A Remedy To Logical Omniscience

M. Cozic approached the problem of logical omniscience in a new way. According
to the received view, perfect rationality in epistemic reasoning represented by S5
should be limited from outside by limitations added a posteriori (such as limited
awareness, limited analytic power, absent-mindedness, memory shortage). M. Co-
zic holds that this view is misguided. It does not do justice to a crucial difference
between alethic logic and epistemic logic.

In alethic logic we require the preservation of truth only. In epistemic logic
we expect that the rules of logic carry truth from the premises ϕ1, . . . , ϕn to the
conclusion ψ. But we also expect that they carry epistemic access over and above
truth. More precisely, rules of epistemic logic must comply with the following
principle of epistemic preservation: the justification of the premises ϕ1, . . . , ϕn

must imply that of the conclusion ψ.

This principle (due to J. Dubucs, [1997]) acquires a new content when we cease
to look at logic as a set of truths of logic and look at it as a set of inference meth-
ods, especially if we adopt the format of Gentzen’s Sequent Calculus in which a
distinction is drawn between operational rules which govern the use of connectives,
quantifiers and operators on one side and structural rules on the other. Let us
consider the structural law of contraction which reads as follows (ϕ and ψ stand
for formulas, Γ and ∆ stand for sets of formulas):
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Γ, ϕ, ϕ,∆ ⊢ ψ
Γ, ϕ,∆ ⊢ ψ

Epistemically interpreted the rule of contraction allows us to infer from an agent’s
being able to construct a justification of ψ on the basis of several justifications
of ϕi that the same agent can spare some justifications of ϕi in constructing a
justification of ψ. Treating premises like “resources” in the proof process helps us
see that the rule is questionable. As M. Cozic observes, our ability to generate ψ
by using the resource ϕi twice does not prove that we could do it by using it only
once. Hence a realistic epistemic logic should be wary of granting structural rules
like the rule of contraction too liberally. The law of contraction is one of the hidden
roots of logical omniscience hence if we drop it we reduce logical omniscience.

Dropping structural rules in the sequent calculus is a well-known policy which
is an essential ingredient of Substructural logics such as Lambek calculus, relevant
logic and linear logic. Linear logic which does without contraction rule provides a
formalism which is sensitive to resources. M. Cozic suggests that it could be used
to build an epistemic logic which captures the bounded character of the agent’s
reasoning from within, i.e. without bringing extraneous and psychological consid-
erations into the picture. More precisely M. Cozic proposes a sequent calculus for
the implicational fragment of epistemic logic which takes the form of a sequent
calculus made up of three components:

(1) Structural rules: exchange in the antecedent of the sequent, cut and the
identity axiom ϕ ⊢ ϕ,

(2) The standard sequent rule of introduction and elimination of ⊃, namely:

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⊃ ψ

and
Γ ⊢ ϕ ⊃ ψ
Γ, ϕ ⊢ ψ

(3) A doxastic monotony rule for ‘B’ which is the box operator of doxastic logic:

ϕ ⊢ ψ
Bϕ ⊢ Bψ

A doxastic monotony rule for ‘P’ which is its diamond operator:

ϕ ⊢ ψ
Pϕ ⊢ Pψ

The D axiom: Bϕ ⊢ Pϕ.

The rules of doxastic monotony mentioned under the heading (3) generate om-
niscience but the withdrawal of some structural rules (let us just mention the
contraction rule) imposes inner bounds to the inferential apparatus and to that
extent it accounts for the lack of logical omniscience of the agent.
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6.8 How To Provide Linear Doxastic Logic With A Unified Formal
Semantics

Whoever intends to combine linear with epistemic logic has to face a major chal-
lenge. He has to provide a unified semantics for a system which combines linear
implication with doxastic modalities. The challenge was taken up in 1997 by M.
D’Agostino, D. Gabbay and A. Russo. A striking innovation of their semantics
lies in the crucial role played by the concept of information in the new semantics.

In standard semantics for modal logic, the modal formulas �ϕ or �ϕ are verified
in world wi if ϕ is verified in all, respectively some, worlds wj accessible from wi.
The intuitive idea which underlies the new semantics is that the verification of a
proposition of the form �ϕ or �ϕ by means of a given information token or resource
x, depends on what is verified by other information tokens or resources accessible
from x. That emphasis put on the notion of information is characteristic of the
“move away from still reflection of abstract truth to a concern with the structure
of information and the mechanism of its processing”, a tendency of recent logical
research to which J. van Benthem drew attention in [1991, p. 185].

The formal semantics needed to interpret substructural logic rests upon frames
which have an algebraic structure richer than the frames used in the usual Kripke
semantics for modal logic. Information frames, called “quantale frames”, are in-
troduced. A quantale frame is a structure F = 〈Q, ◦, 1,⊑〉 such that:

1. Q is a non-empty set of elements called information tokens.

2. ⊑ is a partial ordering which makes Q into a complete lattice; “x ⊑ y” can
be read as “y contains at least the same information as x”.

3. ◦ is a binary operation on Q which is associative and distributive over the
lattice join.

4. 1 ∈ Q is a unit element for Q.

Different classes of quantale frames can be defined by imposing additional con-
ditions on the ordering relation ⊑. Let us just mention the contractive constraint:
x ◦ x ⊑ x. A quantale frame validates the structural rule of contraction iff it
satisfies the contractive constraint.

To get a fully-fledged semantics which enables us to map information tokens
onto formulas of the language L of our substructural logic, we need to turn our
quantale frame into a model, i.e. we have to define , as expected, a valuation
function. Here again, the construction becomes a little harder. The valuation
has to satisfy additional conditions (one of them is the heredity condition which
says that if a formula evaluated with respect to an information token x is true, it
remains true when evaluated with respect to an information token y which contains
at least the same information as x). To turn a quantale frame for substructural
logic into a modal quantale frame for substructural modal logic, we have to enrich
the quantale frame with an accessibility relation which captures the meaning of
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the modal (doxastic) operator. Here again a few refinements are needed. Firstly
we have to require that the accessibility relation be closed under arbitrary join and
meet of the lattice under consideration. Secondly we have to impose conditions
which ensure that the hereditary property of valuation are preserved when we add
the accessibility relation to the quantale frame. As shown by M. D’Agostino, D.
Gabbay and A. Russo [1997] this amounts to satisfying the following conditions:

1. If x ⊑ y and xRz then ∃ z′(yRz′ ∧ z ⊑ z′).

2. If x ⊑ y and yRz then ∃ z′(xRz′ ∧ z′ ⊑ z).

Moreover the definition of what it means for a formula ϕ to be satisfied in a modal
implication model differs from the classical definition: a formula ϕ is verified in
a modal implication model M if it is verified at the identity point 1 of M. It is
verified in a frame F if it is verified in all modal implication models based on F.

M. Cozic’s linear doxastic logic couched in the formalism of Sequent Calculus
can be proved to be sound and complete for the semantics sketched above. In the
1997 paper M. D’Agostino et al. provided a detailed soundness and completeness
proof for several modal substrutural logics built on the pattern of the labelled
tableau proof method described in [1994; 2000].

6.9 Logical Omniscience And Belief Revision

We have just described a very innovative set up that eliminates all the forms of
logical omniscience and takes into account the dynamic character of inference. We
shall now examine another approach which also brings into focus the dynamics
of inference, i.e. a new version of the AGM theory of belief revision described in
section 4.

As we have seen, classical AGM theory of belief revision describes belief states
as belief sets S upon which three basic operations are defined, namely expansion,
contraction and revision. R. Wassermann observes that the AGM paradigm is a
theory of highly idealized reasoners. The closure of beliefs under logical inference
is built into the very definition of the basic operations in the terms of which belief
change is described [Wassermann, 1999, p. 429]. Moreover one of the postulates
characterizing contraction stipulates that contraction is closed under logical equiv-
alence. The sixth postulate reads as follows: If ⊢ ϕ ≡ ψ then K \ ϕ = K \ ψ
[Wassermann, 2000, p. 20]. The question arises whether the theory of belief revi-
sion could be freed of this idealization.

R. Wassermann has worked out a theory of belief revision for resource bounded
agents that precisely achieves that goal. Her new theory is expressive enough to
distinguish different statuses of beliefs according as they are implicit, explicit, pro-
visional or active and to represent the agent as a reasoner operating with bounded
resources and finite memory. Instead of defining belief states in terms of belief
sets as it is the case in the standard AGM theory, Fuhrmann and others define
them in terms of belief bases. As opposed to belief sets, belief bases are finite sets
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of formulas which are not closed under logical consequence. Moreover, as belief
bases are sensitive to syntactic differences, they provide us with the possibility to
treat hidden inconsistencies and patent inconsistencies in a different way.

However significant the replacement of belief sets by belief bases may be, it does
not suffice to eliminate the shortcomings of the classical theory of belief revision.
The source of the trouble lies in the operations of belief change defined for belief
bases. As R. Wassermann observes, generally they “still make use of the operation
of logical closure” [2000, p. 35]. An additional innovation is needed to get around
the logical closure predicament. Such an innovation will now be described.

6.10 Compartments And Local Inference

Psychologists have drawn a distinction between long-term and short-term memory.
R. Wassermann’s formalism captures this distinction. In her framework, an agent’s
long-term memory is represented as a belief base, i.e. as a set of formulas which
is not closed under logical consequence. Short-term memory is the place where
belief changes occur. The operations of expansion, contraction and revision are no
longer defined over the whole belief base but only over compartments of the belief
base. The compartment of the belief base B around the formula ϕ is the set of
formulas of B that are logically relevant to ϕ, namely that contribute to prove or
disprove ϕ (where ϕ is neither a tautology nor a contradiction).

Using the notion of compartment c(ϕ,B), R. Wassermann defines a localized
consequence operation. It turns out that the consequence of B localized to formula
ϕ (or to the set of formulas R) = the classical consequence of the compartment
of B around ϕ (or around R). Hence the consequence operator Cnϕ (respectively
CnR) behaves classically inside the compartment around ϕ, but not outside. For
instance if an inconsistency occurs inside the compartment around ϕ, the whole
compartment is spoiled in virtue of the principle ex falso sequitur quodlibet. An
inconsistency located outside the compartment however does not trivialize the
whole belief base. This captures the difference between inconsistencies which fly
in your face and inconsistencies which remain hidden.

At a later stage, the local consequence operation is used to define local versions
of the standard operations of belief revision. This is a striking result. Given that
the local notion of consequence only shares a few properties with the standard
consequence operation (compactness and monotony) one would not expect to ob-
tain local versions of the operation of revision that are very similar to the standard
ones. The local partial meet contraction offers a good illustration of how this can
be done. Let B ⊥ ϕ denote the maximal subsets of belief base B that fail to imply
ϕ (⊥ is here the remainder operator, not the symbol falsum). Let γ be a function
that selects some elements of B ⊥ ϕ. Take the intersection

⋂
γ(B ⊥ ϕ), you get

partial meet contraction: B \ ϕ. If you want to contract a belief base B by the
formula ϕ with respect to a set of formulas R, all you have to do is to take the
compartment c(R,B) rather than B as first argument of the operator ⊥. This
amounts to saying that if you want to construct the local partial meet contraction
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B \R ϕ, the beliefs to be discarded are those in the R-compartment of B that are
not contained in all the selected ϕ-remainders of the compartment [Wassermann,
1999, p. 439].

6.11 The Dynamics Of Inference

A belief state is a triple of the form 〈E, Inf ,A〉; E represents the set of the agent’s
explicit beliefs, Inf represents the functions which return the agent’s inferred be-
liefs when they are applied to a set of beliefs of an agent; A represents the agent’s
set of active beliefs. An inference can be seen as a sequence of steps from an initial
belief state to a terminal belief state. Each of these steps are micro-operations
(observation retrieval, deletion and so on) which underlie the macro-operations of
expansion, contraction and revision.

R. Wassermann’s formalism succeeds in capturing not only the reasoning struc-
ture, but also the reasoning process. It should be stressed that she achieves this
goal without falling prey to psychologism, i.e. without blurring the distinction be-
tween logic and psychology. Let E = {¬a,¬b, a ∨ b, q, q ⊃ p} be the set of explicit
beliefs of an agent contained in his or her long-term memory. Let A = {¬p} be
the set of active beliefs contained in his or her short-term memory. The occurrence
of ¬p will lead the agent to retrieve q and q ⊃ p and to infer p. The set of active
beliefs is enlarged. We now have A′ = {q, q ⊃ p,¬q, p}. An inconsistency has
occurred which can be eliminated by local partial meet consolidation (a variant
of contraction in which falsum plays the role of ϕ in A ⊥ ϕ) [Wassermann, 1999,
p. 442].

Let us observe that the inconsistency contained in E\A is innocuous, as opposed
to the new inconsistency which arose in A′. This difference of treatment is by no
means arbitrary. The inconsistency of {¬a,¬b, a ∨ b} is innocuous in so far as it
does not belong to the active part of the belief base. Is E closed under modus
ponens? R. Wassermann realizes that the question should not be given a Yes-No
answer. As long as q and q ⊃ p remain in E ∩A, the answer is negative. As soon
as the premises enter into Inf(E∩A), the answer is positive. This twofold answer
does justice to the dynamic character of inference: some of the explicit beliefs of
an agent (but not all) are retrieved in the set of active sentences. This change
however is not a merely psychological event. It is rationally motivated in so far as
the construction of compartments which shows which beliefs should move from E
to A rests upon logical considerations. (See the definition of “compartment around
ϕ”.) The logical character of compartments distinguishes them from clusters which
also serve to accommodate local reasoning (see section 2.6 ). Even considerations
of computational efficiency have been taken into account in the study of how to
structure belief bases [Wassermann, 2001].
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7 COMMON KNOWLEDGE AND COMMON BELIEF

7.1 A Challenging Combination Of Infinity And Effectivity

Formula Eϕ is true if every agent i knows ϕ. Hence it is quite natural to take as
an axiom:

⊢ Eϕ ≡
∧

i

Kiϕ .

To capture common knowledge Cϕ, Fagin et al. used the fixed point axiom:

⊢ Cϕ ≡ E(ϕ ∧ Cϕ) .

In their account of common belief (also represented by the symbol C), L. Lismont
and Ph. Mongin use the definition:

Eϕ =def

∧

i

Biϕ ,

and the fixed point axiom (FP):

⊢ Cϕ ⊃ E(ϕ ∧ Cϕ) .

The fixed point axiom is needed because “the commonsense definition of C through
an infinite conjunction of higher-order belief sentences could not be expressed
directly in the formal language [of classical, i.e. finitary, logic]” [Lismont and
Mongin, 1994b, p. 79]. Moreover the fixed point axiom in conjunction with suitable
monotonicity requirements on E and C generate Cϕ ⊃ E

kϕ for any finite number
k larger than 1. We shall see later that the fixed point axiom can be replaced by
an infinite conjunction in an infinitary logic.

Independently, Fagin et al., on the one hand, and L. Lismont and Ph. Mon-
gin, on the other, managed to prove the soundness and completeness of a finite
axiomatization of common knowledge and common belief and to establish an even
more startling result: the decidability of propositional logic of common knowledge
and common belief. This came as a surprise: “given the semantic force of the CB
operator [Common Belief Operator] [. . . ] one would have expected that properties
of this operator could not be falsified by referring to finite models only” [Lismont
and Mongin, 1994b, p. 99].

7.2 A Weak Axiomatization Of Common Belief

As we saw in section 5, standard epistemic and doxastic logic such as KT45 and
KD45 respectively are affected by the problem of logical omniscience. This is true
also of the logic of common belief. Three axioms or rules are specially damaging:
(1) the necessitation rule which discards models in which agents do not believe
anything at all; (2) the axiom of closure under conjunction which is incompatible
with probabilistic belief except for the limiting case of events having probability 1;
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(3) the monotonicity rule for doxastic logic ϕ ⊃ ψ ⊢ Bϕ ⊃ Bψ which involves
a questionable commitment to logical omniscience. L. Lismont and Ph. Mongin
built an axiomatic system with two components, called (1) the Individual Belief
Axiom Block and (2) the Common Belief Axiom Block respectively, in which ne-
cessitation and conjunctiveness are dropped while a restricted monotonicity rule is
added to the standard one. They proved that this axiomatic system for individual
and common belief is sound and complete for a special class of neighbourhood
structures, the C-restricted Monotonic Structures.

The new monotonicity rule for individual belief (B) is: ϕ ⊃ ψ ⊢ Cϕ ⊃ Bψ which
can be rendered in this way: if a statement implies another then if the former is
common belief then the latter is private belief. This captures the idea that we
believe the consequences of commonplaces (Aristotelian topoi) that everybody
believes. The first block contains the standard monotonicity rule for individual
beliefs, the innocuous definition of “everybody believes” for a finite number of
agents and the new rule of restricted monotonicity. The second block contains the
fixed point axiom for common belief, the standard monotonicity rule for common
belief, i.e. ϕ ⊃ ψ ⊢ Cϕ ⊃ Cψ and the induction rule ϕ ⊃ Eϕ ⊢ Eϕ ⊃ Cϕ.

The induction rule establishes a connection between public and common belief
which has been highlighted in economic literature. It says that if a statement ϕ is
inherently public — if it is a theorem that ϕ cannot happen without everybody’s
believing it — then ϕ is inherently common belief [Lismont and Mongin, 1994a,
p. 367].

As far as decidability is concerned, Halpern and Moses proved that the language
of common knowledge (or common belief) is decidable [1985; 1992 first version
in 1985] by extending the completeness and complexity results for PDL due to
Fischer and Ladner (for complexity) and those due to Kozen and Parikh (for
completeness).

Cognitive philosophers have complained that the epistemic states of common
knowledge or common belief can only be reached after the agent has performed
infinitely many steps. If this were the case, the efforts deployed to get rid of
necessitation and conjunctiveness would have little significance. L. Lismont and
Ph. Mongin reply that the sort of infinity they are concerned with here is merely
potential infinity. For reasons of elegance, the iteration of the knowledge operator
allowed by the FP axiom is unbounded, but real iteration involved in particular
application is always finite. A case in point is the muddy children puzzle. The
actual inference steps which the children must perform to answer the query of their
teacher is finite. Hence “[a]ny particular model should involve a finite sequence of
shared belief operators E

1, . . . ,Ek, but it is easier and more elegant to encompass
all particular models at once by introducing C” [Lismont and Mongin, 1994b,
p. 100].
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7.3 A Neighbourhood Semantics For The Logic Of Common Beliefs

As we saw in section 4, standard Kripke semantics for modal logic involves rela-
tional structures (“frames”) of this form: F = 〈W,R1, . . . ,Rn〉. There is, however,
a more general kind of structures used for the interpretation of modal logics, the
neighbourhood structures, also called Scott-Montague structures. In these struc-
tures, instead of working with a point to point relation R ⊆ W ×W , we work
with a function F→ 2W or point to set relation [Gabbay, 1976, p. 2] and [Chellas,
1980, ch. 7].

Those structures are closed under logical equivalence, but free of the other forms
of logical omniscience [Fagin et al., 1995, p. 318]. This is one of the reasons why
L. Lismont and Ph. Mongin find them philosophically more appealing when an
epistemic interpretation of the formal system is intended.

The C-restricted Monotonic Structures introduced by L. Lismont and Ph. Mon-
gin are a variant of the neighbourhood structures described by B. Chellas under
the name of “minimal models”. Let A denote a finite set of agents and |A| its
cardinality. A C-Restricted Monotonic Structure is any (|A|+ 2)-tuple:

m = 〈W, (Na)a∈A,v〉

where:

• W is a nonempty set (the set of possible worlds),

• For all a ∈ A, Na is a mapping from the set W into the power set of the
power set of W . The elements of Na(w) are the neighbourhoods of world w
for agent a. We also define NE(w) as

⋂
a∈A Na(w). By P ∈ NE(w) we mean

that P is a neighbourhood of w for all agents.
For each subset P of W , let i(P ) denote the set of all worlds for which P is
a neighbourhood for all agents, i.e. i(P ) =def {w ∈W : P ∈ NE(w)}.
The following C-Restricted Monotonic Closure condition must be satisfied:

If w ∈ i(P ) and if P ⊂ i(P ),
then every superset of P is a neighbourhood of world w for all
agents.

This rather involved condition replaces the simpler (and stronger) condition
of Monotonic Closure which reads as follows:

If w ∈ i(P )
then every superset of P is a neighbourhood of world w for all
agents.

• v is a mapping such that v(w, p) is the truth-value of propositional variable p
at world w.



172 Paul Gochet and Pascal Gribomont

What comes next is a recursive definition of truth at world w in the model
structure m. Before stating the clauses for modal formulas Baψ, Eψ and Cψ, it
is useful to give the intuitive interpretation of the key notions. If ψ is a formula,
‖ψ‖m is the set of worlds which “forces” ψ (i.e. which supports the truth of ψ) at
world w. This set of worlds is often called the proposition expressed by ψ. The
class Na(w) of subsets of W , called a neighbourhood system for a at w, is just
a system of beliefs for agent a at world w. The pair 〈m,w〉 forces Baψ iff the
proposition ‖ψ‖m is a neighbourhood of w for a, formally:

• 〈m,w〉 |= Baψ iff ‖ψ‖m ∈ Na(w).

The clause for Eaψ is the same, except that the system of beliefs considered is that
of everybody, rather than that of a single agent a, formally:

• 〈m,w〉 |= Eψ iff ‖ψ‖m ∈ NE(w).

The clause for common belief is as follows:

• 〈m,w〉 |= Cψ iff there is a subset P of W such that

– P ⊆ ‖ψ‖m ;

– P ∈ NE(w) ;

– P ⊆ i(P ) .

Observe that L. Lismont and Ph. Mongin allow the minimal amount of monotonic-
ity and logical omniscience required by the semantics of the operator of common
belief C [Lismont and Mongin, 1994a].

7.4 Two Styles Of Logic For Common Knowledge

We surveyed papers in the literature of epistemic logic in which the concept of
common knowledge is treated as a part of logic and in which a fixed point operator
is employed. This is not the only way of handling the problem. M. Kaneko and
T. Nagashima advocate another approach. As common knowledge is an infinitary
concept, they chose “a framework in which infinitary conjunctions and disjunctions
are allowed to express common knowledge explicitly as a logical formula” [Kaneko
and Nagashima, 1996, p. 326]. This new framework enabled them to treat common
knowledge as an object instead of a part of their logic.

However different they might be, the two approaches are not unrelated. M. Kaneko
constructed a faithful embedding of the propositional common knowledge logics
into infinitary ones [1999]. Both approaches have the same power in propositional
logic of common knowledge. But we need first-order logic of common knowledge
whenever the application domain is infinite, or when we want to represent individ-
ual or common knowledge about a finite domain whose cardinality is not known in
advance. In first-order logic, however, an important difference between the fixed
point approach and the infinitary approach was discovered in 2000 which forces
us to reconsider the matter. F. Wolter has proved that finitary first-order logic of
common knowledge is incomplete [2000].
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7.5 Finitary First-Order Logic Of Common Knowledge

As J. H. Halpern and Y. Moses have shown, propositional logics for common
knowledge which are very close to the standard epistemic logic for n agent logic can
be obtained by extending the familiar system KD4n with one axiom, i.e. the axiom
CA designed to capture the fixed point property, and one rule of inference, i.e. the
induction rule CI . Below we review the propositional logic of common knowledge
presented by Kaneko et al. under the name HM (Halpern Moses) and we focus
on the transition from propositional to first-order logic of common knowledge
[Kaneko et al., 2002]. The language of HM logic contains: (1) free variables
a0, a1, . . .; (2) bound variables x0, x1, . . .; (3) the usual connectives; (4) the usual
quantifiers; (5) function symbols: f0, f1, . . .; (6) predicate symbols P0, P1, . . .; (7)
unary belief operator symbols: B1, . . . ,Bn; (8) Unary common knowledge symbol
C; (9) parentheses.

The axioms are those of KD4n and

CA : CA ⊃ (A ∧ B1CA ∧ . . . ∧ BnCA) ;
CI : D ⊃ (A ∧ B1D ∧ . . . ∧ BnD) ⊢ D ⊃ CA .

A predicate logic of common knowledge called QHM by [Kaneko et al., 2002] can
be obtained by adding CA and CI to QKD4n which is the quantified version of
KD4n. QKD4n contains KD4n axioms and rules together with these new axioms:

∀xA(x) ⊃ A(t) ,
A(t) ⊃ ∃xA(x) ,

and these new rules:
A ⊃ B(a) ⊢ A ⊃ ∀xB(x) ,
A(a) ⊃ B ⊢ ∃xA(x) ⊃ B ,

and the Barcan formula (BF ):

∀xBiA(x) ⊃ Bi ∀xA(x) .

7.6 A Semantics for First-order Epistemic Logic
With Common Knowledge And Common Belief

A Kripke frame F for the logic under consideration is a tuple (W ;R1, . . . ,Rn;D).
The domain of individuals D is the same for all worlds (a sufficient condition for
satisfying the Barcan formula).

We turn the frame F into a model M by adding an interpretation I, namely
a function that assigns a function from Dk to D to each k-ary function symbol.
The interpretation of each function symbol remains constant over W. Hence proper
names, i.e. function symbols with arity 0, are rigid designators. The interpretation
function I also assigns to each k-ary predicate a subset of Dk which may vary from
world to world.
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The accessibility relations are serial and transitive (to satisfy D and 4). Free
variable are interpreted independently of possible worlds. For that purpose an
assignment function is used: σ : V → D.

Next the notion of reachability is introduced: u ∈ W is 1-reachable from w in
the Kripke frame F iff (u,w) ∈

⋃n
i=1 Ri; the reachability relation is the transitive

closure of the 1-reachability relation.
The recursive definition of truth relative to model M, assignment function σ and

world w is standard except for the clause concerning common knowledge which
reads as follows:

(M, σ, w) |= CA iff (M, σ, w) |= A for all u reachable from w.

Kaneko et al. state a lemma that allows us to replace the above-mentioned clause
for Common knowledge by the following one:

(M, σ, w) |= CA iff (M, σ, w) |= A ∧ Bi1 . . .Bin
A

for each sequence i1, . . . , in of agents.

This second version captures the intuitive meaning of common knowledge of for-
mula A, i.e. that A is true, that each player believes A, that each player believes
that each player believes A and so on. Common belief of A is defined as follows:

(M, σ, w) |= CA iff (M, σ, w) |= Bi1 . . .Bin
A

for each sequence i1, . . . , in of agents.

Completeness proofs of KD4n and QKD4n are available [Hughes and Cresswell,
1984].

7.7 The Incompleteness Of First-order Epistemic Logic
With Common Knowledge And Common Belief

In Sections 1.2, 3.5–3.7, the concept of common knowledge was formally repre-
sented by a special operator and put to use in the treatment of the Muddy Chil-
dren puzzle. In this section it will be studied for itself, from the standpoint of
proof theory and from that of model theory.

In 2000, F. Wolter showed that weak fragments of first-order common knowledge
are not recursively axiomatizable. This is the case, for instance, for fragments the
first-order part of which involves names and the equality symbol only.

As H. Sturm et al. observe, the status of first-order logic of common knowledge
is similar to that of arithmetic and second-order logic. It is impossible to charac-
terize a semantically defined first-order logic of common knowledge by means of
an effective proof system [Sturm et al., 2002].

After establishing his negative results, F. Wolter raised the question as to
whether there are well-behaved fragments of first-order logic of common knowl-
edge and came to a positive conclusion. He defined the fragment of “monodic”
(not to be confused with “monadic”) formulas which can be shown to have good
properties. The program was systematically carried out in a later work [Sturm et
al., 2002] examined in the next section.
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7.8 A Logically Well-Behaved Fragment Of First-Order Logic
Of Common Knowledge And Common Belief

By QCL1, Sturm et al. [2002] denote the set of all formulas ϕ belonging to first-
order common knowledge logic such that any subformula of ϕ of the form Kiψ or
Cψ has at most one free variable. Such formulas are called monodic.

The monodic fragment is more expressive than propositional logic. Any closed
wff of first-order logic can occur within the scope of epistemic operators. Monodic
formulas can formalize the de re – de dicto contrast between “It is commonly
known that someone is taller than John” (C∃xL(x, j)) and “there is someone of
whom it is commonly known that he or she is taller than John” (∃xCL(x, j)) .

In the monodic fragment, we cannot formalize the difference between common
knowledge that a Nash-Equilibrium for a game of n > 1 players exists and com-
mon knowledge of a specific Nash-Equilibrium. The reason is that in the formula
∃x1 . . . ∃xn CNash(x1, . . . , xn), the sub-formula Nash(x1, . . . , xn), which falls in
the scope of C, contains more than one free variable. Hence the monodic fragment
is less expressive than full first-order logic of common knowledge.

There is an unavoidable trade-off between expressivity and other good logi-
cal properties such as axiomatizability and decidability. H. Sturm et al. [2002]

have proved that the monodic fragments of first-order logics of common knowledge
(QKTC

n) and common belief (QKDC

n) defined by the standard Kripke structures
can be axiomatized. All the valid formulas are provable from the following ax-
ioms and rules: the axioms and inference rules of the propositional part, those of
classical first-order logic and the Barcan formula.

The logic of common knowledge is not compact. There are infinite sets of
formulas of that logic that are not satisfiable although all their finite subsets are.
This is the case of the set ζ = {Enp : n ≥ 0} ∪ {¬Cp}. Hence the method of
canonical models does not work for proving completeness here. New concepts had
to be built (such as the concept of quasi-model) to come over this obstacle [Sturm
et al., 2002].

7.9 How To Recover The Completeness Of
The Full First-Order Logic Of Common Knowledge

The first kind of logic to restore the completeness of the first-order logic of common
knowledge admits infinitary proofs, but no infinitary formulas. It is called QCY
[Kaneko et al., 2002, p. 73]. The proper part of QCY , designed to handle the
operator C, involves two axiom schemata (CA∗ and CB) and one inference rule
(CI ∗) which is a strengthened version of rule CI ∗

0.

CA∗ : CA ⊃ Bi1 . . .Bin
A ,

for each sequence i1, . . . , in of agents;

CB : CA ⊃ BiCA ,
for each agent i.
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The second axiom schema captures the Barcan properties of common knowledge,
i.e. |= CA ⊃ BiCA [Kaneko et al., 2002, p. 11]. Remember that at this stage
infinitary proofs are allowed, but infinitary formulas are not. Kaneko et al. solved
the problem by strengthening the rule CI ∗

0 into the rule CI ∗. Both rules have
an infinite set of premises, one for each finite sequence (i1, . . . , in) of agents. The
former is

CI ∗
0 : {D ⊃ Bi1 . . .Bin

A} ⊢ D ⊃ CA.

The latter, which provides completeness, is

CI ∗
1 : {D ⊃ T (Bi1 . . .Bin

A)} ⊢ D ⊃ T (CA).

The operator T is any substitution which maps a formula ϕ onto a formula of the
kind Bjk

(Dk ⊃ . . .Bj2(D2 ⊃ Bj1(D1 ⊃ ϕ)) . . .), where (j1, . . . , jk) is any finite
sequence of agents and D1, . . . , Dk are arbitrary formulas.

An alternative to QCY is the infinitary epistemic logic QGLω, which does not
use the C operator at all, but brings in infinite conjunctions and infinite disjunc-
tions [Kaneko and Nagashima, 1996; 1997].

An infinitary logic for common belief (as opposed to common knowledge) can
be obtained in this way:

• The common belief operator CB is introduced as a primitive;

• Axiom CBA and rule CBI replace CA and CI stated above:

CBA : CB(A) ⊃ B1(A ∧ CB(A)) ∧ . . . ∧ Bn(A ∧ CB(A)) ,
CBI : D ⊃ B1(A ∧D) ∧ . . . ∧ Bn(A ∧D) ⊢ D ⊂ CB(A) .

A general method for proving the completeness of both minimum predicate and
infinitary extensions of modal propositional logic was invented by Y. Tanaka and
H. Ono [2001]. It sits in the algebraic approach initiated by Jónsson and Tarski
in 1951 [Blackburn et al., 2001]. The method has been applied later to infinitary
first-order logic of common knowledge by Kaneko et al. [2002] Taking stock of
what has been achieved so far, the following statement made by F. Wolter is
an appropriate mot de la fin: there is no finite (alias effective) way to axiomatize
first-order common knowledge logics, so a non-effective axiomatization in infinitary
logic is an interesting alternative [1999].

8 SOME APPLICATIONS TO SOFTWARE ENGINEERING

8.1 Knowledge In Concurrent Programs

Increased software reliability has been one of the most important and elusive goals
of the computer scientists for more than thirty years. Testing has always been,
and still is, an appealing way to assess the reliability of a program. It is based on
the idea that computers themselves usually are far more reliable than programs
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functioning in a deterministic way. If a program has provided correct results for
some given data at a given time, it will do so again at a later time, for the same
data. An obvious problem is that it is usually not possible to test a program for
all possible data sets, but nevertheless it is usual to assume that, if the program
behaves correctly for a (well-chosen) sample of data sets, it will behave correctly
for all.

The optimistic view of the matter is at best doubtful, and at times not ac-
ceptable at all. The most important illustration of this is to be found in con-
current programming. First, concurrent programs are usually non-deterministic.
Full knowledge of the initial conditions of a computation is not enough to pre-
dict the whole computation, which may depend on external factors, including the
variable speed of the processes involved in the computation. As a result, a con-
current system cannot in principle be fully tested, even for some fixed set of initial
data. Secondly, the behaviour of distant concurrent processes depends not only
on the reliability of the computers used by these processes, but also on commu-
nication devices between computers, which are usually less reliable, or at least
less deterministic, and might confuse the testing procedure. Thirdly, concurrent
programming frequently occurs in critical applications, for instance the kernel of
the computer operating system, or the network operating system, where a strong
reliability assessment is needed.

For these reasons and for some others, formal, mostly logic-based methods, have
been devised to deal with the reliability problem in concurrent programming. We
outline one of them in this section and show how epistemic logic can be used to
improve on it. First, we show how a specific view of knowledge underlies the
design of a concurrent system. An elementary but important problem in concur-
rent programming is the reliable transmission of a stream X of messages through
an unreliable transmission medium. Let X = X[1], X[2], . . . be the sequence of
messages to be transmitted from a Sender to a (distant) Receiver (i is the rank
of message X[i]). The Receiver collects incoming messages and, in spite of pos-
sible loss, corruption, duplication and delay, has to reconstruct the stream. If
Y = Y [1], Y [2], . . . is the reconstructed stream, the concurrent system comprising
the Sender and the Receiver behaves correctly if Y = X.

At a rather abstract level, the transmission process is modelled by the following
transition:

((HS, Y [HS + 1]) := (HS + 1, X[HS + 1])) (4)

This transition reduces to an assignment. Assignments are used to specify a mod-
ification of the values of one or more variables. For instance, the assignment
(x, y) := (x + y, y + 2) leads from a system state24 where x = 5 and y = 4 to a
state where x = 9 and y = 6. This fact is formalized into a Hoare triple:

{x = 5 ∧ y = 4} (x, y) := (x + y, y + 2) {x = 9 ∧ y = 6} .

24A (concurrent) system state is a function that assigns values to (computer) variables.
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A transition is a binary relation on the set of all accessible system states. A
concurrent system can be represented as a set of transitions. Transition t1 rep-
resents the successful transmission of a single message. The variable HS records
the rank of the highest sent message. The transmission system behaves correctly
if the computation consists in repeatedly executing the transition, which can be
described by a Hoare triple:

{HS = n ∧ Y [1 : n] = X[1 : n]} τ {HS = n + 1 ∧ Y [1 : n + 1] = X[1 : n + 1]} .

This specification has an operational look but is not a realistic implementation
of the system, since no provision has been made for dealing with possible loss
or corruption of the transmitted message. To keep the problem quite elementary
we assume that any corruption or duplication is detected and discarded by the
Receiver. So, no distinction is needed between loss, corruption and duplication
of a message. We introduce a new variable LR (for last received); if the highest
sent message has been correctly received, then the equality HS = LR holds and
the next message can be transmitted. Otherwise, the current message has to be
transmitted again. This simple transmission policy is formalized into a set of four
transitions:

1 : (LR = HS −→ (HS,LR, Y [HS + 1]) := (HS + 1,LR + 1, X[HS + 1])) ,
2 : (LR = HS −→ HS := HS + 1) ,
3 : (LR < HS −→ (LR, Y [HS]) := (LR + 1, X[HS])) ,
4 : (LR < HS −→ skip) .

(5)

Transition 5.1 models the correct transmission of a new message and transition 5.2
models the failed transmission of a new message; transition 5.3 models the correct
retransmission of a message and transition 5.4 models a failed retransmission. A
computation of the system consists of a sequence of transition executions. At a
system state where the identity LR = HS holds, the next transition to be executed
is 5.1 or 5.2; at a state when the equality does not hold, it is 5.3 or 5.4. The
choice is made non-deterministically, which means that from a given initial state
(say, a state satisfying HS = LR = 0), several computations are possible.25 A
trace is a finite or infinite sequence (σ0, τ1, σ1, τ2, . . .) where (σi−1, σi) ∈ τi, i.e.
transition τi leads from system state σi−1 to state σi. If the trace is finite, then
its last element is a terminal state, that is, a state that does not have a successor
for any transition of the system. The sequence (σ0, σ1, . . .) of states occurring in
a trace is a computation, or a run.26 The set of computations of a system can be
viewed as its semantics.

Now we have a correct operational specification of the system. This can be
proved with an invariant I, that is an inductive assertion. If some system state σ
satisfies I, then all its successors also satisfy I. In the formalism of Hoare triples,

25In fact, infinitely many.
26In practice, the distinction between “computation” and “trace” is not respected and both

words are taken as synonyms.
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this can be stated as

{I} τ {I} for each transition τ of the system.

An appropriate invariant here is

LR ≤ HS ≤ LR + 1 ∧ Y [1 : LR] = X[1 : LR] .

It is easy to check that, for each transition τ listed in (5), a τ -successor of a state
satisfying I also satisfies I. A state where LR = HS = 0 satisfies I. So all states
of all computations whose initial state is σ0 also satisfy I. As HS and LR are
increasing, this guarantees the correctness of the system.27

Classical logic, either propositional or first-order, is adequate for expressing
properties of system states, but not for whole computations. A temporal logic
can be used for this purpose. It is convenient to adopt a discrete time, so that
time steps are computation steps. Temporal logic can be viewed as a modal
logic, where the accessibility relation between worlds is in fact the time relation
between states. This relation is an ordering, that is, a reflexive, anti-symmetric
and transitive relation. Time can be seen as branching, in order to reflect the fact
that, due to nondeterminism, some state may have several successors. It is often
more convenient to adopt linearly ordered time, which models the fact that, in any
computation, every state has one successor. Statements in linear temporal logic
should be true for every possible computation. The temporal operator � (without
subscript; read “always” or “henceforth”) is similar to the knowledge operator Ki:
(Σ, n) |= �p means (Σ, n + i) |= p for all i = 0, 1, 2, . . ., that is, p is true and
remains true forever. The dual operator � (read “sometimes” or “eventually”)
is often used: (Σ, n) |= �p means (Σ, n + i) |= p for some i = 0, 1, 2, . . ., that
is, p will become true at least once, sooner or later; �p is equivalent to ¬�¬p.
Another useful operator is © (read “next”): (Σ, n) |= ©p means (Σ, n + 1) |= p.
There is also the binary operator U (read “until”): (Σ, n) |= p Uq means that
i ≥ 0 exists such that (Σ, n + i) |= q and (Σ, n + j) |= p for all j such that
0 ≤ j < i. Observe that �p is equivalent to true Up. It is easy to see that ��p
means “infinitely often p”, that is, (Σ, n) |= ��p means that infinitely many i ≥ 0
exist such that (Σ, n+ i) |= p. Similarly ��p means “almost everywhere p”, that
is, (Σ, n) |= ��p means that (Σ, n + i) |= p holds for all but finitely many i ≥ 0.
The formula ��p ⊃ ��p is valid.28

We do not comment further about the correctness of system 5, since it cannot
be implemented as such. Transitions represent shared actions between the Sender
and the Receiver. For instance, the values of both HS and LR are needed to
decide which transition can be the next to be executed but, obviously, only the

27If transmissions often fail, that is, if transitions 2 and 4 are executed more often than
transitions 1 and 3, progress will be slow and may even stop. We assume that this will not
happen (fairness hypothesis).

28This is for linear time temporal logic; branching time temporal logic is rather different,
although it is also used to specify and verify concurrent systems in a formal way.
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Sender knows HS and only the receiver knows LR. Epistemic logic can be used
first to formalize what is known by each process taking part in the computation
and secondly to express formal requirements about the whole system and prove
whether they are respected or not.

From the epistemic point of view, a Kripke structure can be attached to a
concurrent system. The agents are the processes, and also the environment when,
as is usually the case, it plays a role in the computation. The states of the structure
are the states of the system but it is sometimes necessary to consider not only
the system state itself, but also the corresponding computation. Many useful
properties of concurrent systems are about computations instead of isolated states.
For instance, a statement like “Every message sent by the Sender is correctly
received by the Receiver, sooner or later” means that, in every computation Σ =
(σ0, σ1, . . .), if at some state σi message m has been sent, then there exists j ≥ i
such that, at state σj , the message has been received. States are noted (Σ, i)
instead of σi or Σ(i) when some computation Σ is considered.

Comment. It is not mandatory for Kripke states and system states to be exactly
the same. Kripke states can be viewed as valuations for a set of propositions,
whose truth values are determined by system states. In this example, the set of
propositions could be

{HS = n , LR = n , Y [n] = X[n] : n = 0, 1, 2, . . .} .

This set is infinite. Another possibility is to use first-order Kripke structures.

The accessibility relations formalize the fact that each process has access to
the value of some variables, but (usually) not to all of them. The local state
of a process is the part of the system state known to the process. If p is an
agent, that is, a process,29 the ordered pair of states ((Σ, j), (Σ′, j′)) belongs to
the accessibility relation Kp if the local state of process p is the same in both
states. This means that, from the point of view of process p, it is not possible to
distinguish between these two states. With this definition accessibility relations
are equivalence relations, so the appropriate logic here is S5n.

Let us again consider system (5). It cannot be implemented as such since neither
the Sender nor the Receiver can evaluate the truth value of the guard; this can be
stated formally:

¬∃n∃m[�S(HS = n ∧ LR = m) ∨ �R(HS = n ∧ LR = m)] .

From the intuitive point of view, the Sender has to be able to know which message
to send next, so the Receiver has to tell it which message it received last, that
is, messages should be acknowledged by the Receiver. Another, equivalent way to
state this is, the Sender has to maintain at least an approximate copy of variable
LR, say LA (for last acknowledged message). A first attempt to use this idea leads
to System (6)

29It is not always necessary to associate an accessibility relation with the environment.
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1 : (LA = HS −→ (HS, Y [HS + 1]) := (HS + 1, X[HS + 1])) ,
2 : (LA = HS −→ HS := HS + 1) ,
3 : (LA < HS −→ Y [HS] := X[HS]) ,
4 : (LA < HS −→ skip) ,
5 : (Y [LR + 1] �= NIL −→ (LA,LR) := (LR + 1,LR + 1)) ,
6 : (Y [LR + 1] �= NIL −→ LR := LR + 1) ,
7 : (Y [LR + 1] = NIL −→ LA := LR) ,
8 : (Y [LR + 1] = NIL −→ skip)) .

(6)

Variable LR has been replaced by the Sender’s “local copy” LA in transitions 6.1–
4. So the guard can now be evaluated by the Sender. Transitions 6.5–8 deal with
reception and acknowledgment. The guard Y [LR + 1] �= NIL indicates correct
reception of message number LR+1, whereas its negation indicates bad reception
or loss of the same message. In case of correct reception, LR is updated. In any
case, an acknowledgment has to be sent by the Receiver, but this acknowledgment
may be (correctly) received by the Sender (transitions 6.5 and 7) or be corrupted
or lost (transitions 6.6 and 8). The invariant of the system is updated into

I : (LA ≤ LR ≤ HS ≤ LA + 1) ∧
∀ s (1 ≤ s ≤ LR ⊃ Y [s] = X[s]) ∧
(Y [HS] = X[HS] ∨ Y [HS] = NIL) ∧
∀ s (HS < s ⊃ Y [s] = NIL]) .

This formula has to be satisfied by every reachable state, that is, by every state
of every computation starting from an acceptable initial state. An initial state is
acceptable if it satisfies LA = LR = HS = 0. Furthermore, X denotes an arbitrary
stream of messages and Y an empty stream of messages, that is, Y [n] = NIL for
all n. Besides, formula I is inductive, that is, the formula �(I ⊃ ©I) is true for
all states. The temporal inference rule

I �(I ⊃ ©I)
�I

can be used to conclude that I is a safety property of the system, that is, I is
true in all reachable states of all computations. This safety property is not enough
to ensure a satisfactory behaviour of the system. A liveness property is needed
too. Safety properties guarantee that nothing wrong (such as assigning Y [n] an
incorrect value) ever happens, whereas liveness properties assert that something
good (such as assigning the correct value to Y [n]) eventually happens. Insofar
as the invariant already expresses that the value of Y [1 : LR] is correct, the only
liveness requirement is that LR reach its final value (or grow forever if the stream
of messages is not bounded). The proof graph represented in Fig. 4 allows us
to analyze the liveness requirement. The nodes of the graph are sets of states.
Each set is defined by an assertion (in classical logic). The arcs represent moves
between sets, which occur when transitions labelling the arcs are executed. A
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computation is simply a path in the proof graph, and computations satisfying
the liveness requirement correspond exactly to paths leading from An to An+1

in finitely many steps, for all n. Otherwise stated, any incorrect computation is
stuck forever at some node. For instance, a computation may stay forever in Cn if
endless repeated execution of transitions 3 and 4 prevents execution of transition 5
or 6 and therefore prevents further progress in the transmission.
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Figure 4. A proof graph

The system is now correct but assumes that successful message transmission
from the Sender to the Receiver (transitions 6.1 and 6.3) is synchronous, that is,
induces no delay, which is not quite realistic. The same is true for acknowledgment
transmission (transitions 6.5 and 6.7). In fact, in order to model asynchronous
transmission, these transitions should be broken into a sending part and a receiving
part. This leads to a new version of the system:

1(S) : LA = HS −→ (HS,MB) := (HS + 1, (HS + 1, X[HS + 1])) ,
2(S) : LA �= HS −→ MB := (HS, X[HS]) ,
3(S) : AB �= NIL −→ (LA,AB) := (AB,NIL) ,
4(R) : MB �= NIL −→ (Y [MB.1],MB) := (MB.2,NIL) ,
5(R) : Y [LR + 1] �= NIL −→ (AB,LR) := (LR + 1,LR + 1) ,
6(R) : Y [LR + 1] = NIL −→ AB := LR ,
7(E) : MB := NIL ,
8(E) : AB := NIL .

(7)

It is now possible to assign each transition to the Sender (S), to the Receiver (R)
or to the Environment (E). Writing MB (Message Buffer) means transmitting
a message (transitions 7.1 and 7.2) and reading it means receiving the message
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(transition 7.4). Transition 7.7 models message corruption or loss, by the environ-
ment. Acknowledgment is modelled in a similar way (AB is the Acknowledgment
Buffer). The invariant is updated into:

(LA ≤ LR ≤ HS ≤ LA + 1) ∧
∀ s (1 ≤ s ≤ LR ⊃ Y [s] = X[s]) ∧
(Y [HS] = X[HS] ∨ Y [HS] = NIL) ∧
(MB = NIL ∨ MB = (HS, X[HS])) ∧
(AB = NIL ∨ AB = LR) ∧
∀ s (HS < s ⊃ Y [s] = NIL]) .

Knowledge formulas can be used to express that the local state of each process
allows transition execution:

�S(LA = HS) ∨ �S(LA �= HS) ,
�S(AB = NIL) ∨ �S(AB �= NIL) ,
�R(Y [LR + 1] = NIL) ∨ �R(Y [LR + 1] �= NIL) ,
�R(MB = (HS, X[HS])) ∨ �R(MB = NIL) .

Comment. System variables, like LA, MB and Y , are not (rigid) logical variables,
but (nonrigid) logical constants or functions, so the values attributed to them by
state interpretation may vary.

Comment. This program is a variant of the alternating bit protocol. Indeed,
as only equality or inequality between LA, LR and HS is tested, it is sufficient to
record only the last bit of these variables.

Comment. The accessibility relations are now easily characterized. Two states
are S-equivalent if they assign the same value to the tuple (LA,HS,AB); they are
R-equivalent if they assign the same value to the tuple (MB,LR, Y ).

8.2 Knowledge In Asynchronous Message Passing Systems

The epistemic point of view can usefully supplement temporal logic and other for-
mal systems to specify and verify concurrent systems, but it can also give rise to
more general results about whole classes of concurrent systems, like those com-
municating by asynchronous messages. Such a system consists of a finite set of
processes.30 Each process performs three kinds of action: internal actions, that
alter only their local state, message sending to another process, message receiving
from another process. The local state of a process will be its history, that is, the
initial state of the process followed by the list of all actions performed by this pro-
cess. A process performs at most one action at a time, and it is not a restriction
to suppose that only one process at a time actually performs an action. We may
also assume that, in every computation, all actions are distinct.31 There is also a

30The results to be presented here about knowledge change in asynchronous systems are due
to Chandy and Misra [1986].

31Internal actions to be repeated become distinct if their occurrences are numbered; for in-
stance, int(k,a, i) would denote the kth occurrence of internal action a by process i. Similarly,
messages from process j to process i can be numbered.
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consistency requirement: if process i receives message μ from process j at time k,
that is, if state (Σ, k) is (Σ, k − 1)(i).receive(μ, j, i),32 then for some ℓ < k the
performed action was the corresponding message transmission from j to i, that is,
send(μ, i, j). The converse is assumed only for reliable message passing system,
for which every sent message is eventually received.

Processes perform actions according to their own local state, but through com-
munications receive partial knowledge of the state of the other processes. So an
action performed by one process may be the cause of a (later) action performed by
another process, provided that these actions are separated by a “message chain”.
We can speak here of potential causality, borrowing the notion from a well known
paper due to Lamport [1978]. This induces a partial ordering relation between the
actions of any computation c. This potential causality relation is defined in an
inductive way. The basic cases are

• a
c
−→ a;

• a
c
−→ a′ if a precedes a′ in the history of some process;

• a
c
−→ a′ if a is send(μ, j, i) and a′ is the corresponding receive(μ, i, j).

The inductive case is just transitive closure, that is

• a
c
−→ a′ if a

c
−→ a′′ and a′′

c
−→ a′ for some a′′.

As actions occur at most once in a trace c, this relation is antisymmetric. A list
of actions (a1, . . . , an) is an action chain for computation c if ai

c
−→ ai+1 holds

for all i = 1, . . . , n − 1. If action ai is performed by process pi, then the list
(p1, . . . , pn) is a process chain for computation c; it is a proper process chain if
pi �= pi+1 for all i = 1, . . . , n − 1. Observe the message chain theorem: a proper
process chain of length ℓ indicates a message chain whose length is at least ℓ− 1;
indeed, . . . , pi, pi+1, . . . indicates either a direct communication from process pi to
process pi+1, or an indirect one, involving one or more intermediate processes.

It is quite clear that messages convey knowledge and induce state change. Sup-
pose that a computation (or trace) c involves the action chain (a1, . . . , an), leading
from state ck0

to state ckn
. If a process p is not involved in the transition from

ck0
to ckn

, then both states are equivalent for this process and the ordered pair
(ck0

, ckn
) will be a member of the accessibility relation of process p. In fact, process

chains and message transmission are the only means to cut paths in the Kripke
structure. If (p1, . . . , pn) is not a process chain, it is always possible to find inter-
mediate states such that the ordered pair (cki−1

, cki
) belongs to the accessibility

relation associated with process pi. Knowledge is the ability to distinguish be-
tween system states, and processes gain knowledge only by receiving messages. In
a dual way, they lose knowledge by sending message.33 This knowledge theorem

32The dot denotes concatenation.
33This point might seem counter-intuitive, but we already observed it with the alternating

bit protocol. For instance, suppose the Sender is in a state where LA = HS = n, and therefore
LR = n; it can send message X[n+1], which leads to a state where LA = n, HS = n+1 and LR is
either n or n+1, the Sender will not know the exact value before receiving the acknowledgment.
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for asynchronous message passing systems can be stated as follows:

• If (c, k) |= ¬Kpn
ϕ and (c, k′) |= Kp1

. . .Kpn
ϕ, with k < k′, then (pk, . . . , p1)

is a process chain in computation c.

• If (c, k) |= Kp1
. . .Kpn

ϕ and (c, k′) |= ¬Kpn
ϕ, with k < k′, then (p1, . . . , pk)

is a process chain in computation c.

It can also be proved that common knowledge cannot be gained or lost in a system
communicating by asynchronous message passing, which leads to interesting im-
possibility results. One of them is about mutual exclusion algorithms, which are
of most prominent importance in concurrent programming. The mutual exclusion
problem among a family of processes p1, p2, . . . occurs when these processes have
to share a common resource that can be used by only one process at a time.34 If
we assume that csi holds when process pi is in its critical section, that is, owns the
shared resource, the mutual exclusion property is formalized into the assertion

�∀ i∀ j [(csi ∧ csj) ⊃ i = j] .

A process knows when it is is in its critical section, so

csi ⊃ Kpi
csi and ¬csi ⊃ Kpi

¬csi

are valid formulas. Let us suppose, in some computation c, that process pi enters
its critical section at time τi and that process pj (j �= i) enters its critical section
at time τj , with τj > τi. We have

(c, τi) |= csi ∧ Kpi
Kpj
¬csj

since process pi enters its critical section only when it knows no other process is
in its own. Furthermore,

(c, τj) |= csj ∧ ¬Kpj
¬csj

since csj holds and ¬Kpj
¬csj is a logical consequence of csj . Due to the knowledge

theorem for asynchronous message passing systems, pi, pj is a process chain. This
generalizes to sequences of n processes accessing their critical section; the message
chain theorem shows that such sequences involve at least n− 1 messages.

8.3 Some Applications Of Common Knowledge

The fact that common knowledge cannot be obtained or increased with asyn-
chronous message passing seems paradoxical, especially since examples such as
the alternating bit protocol suggests otherwise. However, hypotheses about com-
munication reliability are needed to obtain positive results. In the case of the

34A classical example is a printer used by the user processes in a computer network.
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alternating bit protocol, the proof graph indicates how transmission unreliabil-
ity might prevent progress. It should be emphasized that, when communication
happens to have been reliable whereas such reliability was not known (i.e. guar-
anteed) beforehand, no common knowledge has been obtained. This is illustrated
by the example of two generals who know that only a simultaneous attack of the
enemy will win the battle. We assume that a general will attack if and only if
he knows the other general will attack at the same time, and also that generals
do not lie to each other. General A might send a message to general B saying “I
will attack at dawn if you do the same”; both generals know that messages can
fail to be delivered, so general A will not attack without acknowledgment. But
if and when general A receives acknowledgment, general B does not know that
his acknowledgment has been delivered, so he does not know that general A will
attack, and he will not attack either. Further messages will also fail to provide
an agreement based on common knowledge, so a coordinated attack is impossible,
unless the generals accept to take some risk, or if some communication reliability
is assumed.

The “coordinated attack” problem is mainly concerned with the reliability of
communication; in particular, the processes (the generals) are supposed to be
reliable. It is also useful to consider the case where communication is reliable
(each message sent is received within a finite delay, say one computation step, or
even immediately), but processes may fail. Upon failure, a process may omit some
or all actions it is supposed to take; in case of “Byzantine” failure, a process may
omit actions but also take arbitrary actions.

A standard problem is the agreement problem. All processes have a bit of
information, 0 or 1, which is not necessarily the same for all processes. Reliable
synchronous communication is available between any pair of processes. A protocol
has to be found such that, after finitely many steps, all processes that have not
failed decide simultaneously to adopt a common bit, with the restriction that the
choice cannot be 1 (resp. 0) if the initial bit of all processes was 0 (resp. 1). This
prevents the trivial protocol which would make all processes take an immediate
decision, independent from the initial condition.

Suppose first the favourable case, where the initial bit is the same (say 0) for all
processes. At the first step of the computation, each process transmits “0” to all
other processes. Now, if process p receives “0” from all other processes, it knows
that “0” will be the decision. Process p also knows that no process has failed . . .
before sending its message to p. However, process p cannot exclude the possibility
that, say, process q has failed, after sending its message to p, but before sending
it to process r. Therefore, process r would not know that the decision should
be “0” and would not commit itself (at that time) to a decision. So, process p
(nor any other process) will not decide immediately. In the previous problem,
guaranteed reliability of communication was needed, otherwise, coordinated attack
was impossible, even if, in some computation, all communications succeed. This
is the same situation here: even though all processes have correctly sent and
received all messages, they do not know it for sure. More specifically, the fact that
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all processes have sent and received the bit “0” from each other is not common
knowledge between them. In fact, it can be proved that, if the number of failing
processes is bounded by t, protocols for agreement require t + 1 “communication
rounds”; if Byzantine failure is possible, a further limitation is that the number
of reliable processes must be more than double of the number of unreliable ones,
otherwise no solution may exist.

8.4 Knowledge Bases

A knowledge base is a set of facts about the external world. Queries can be asked
to the knowledge base; the answer to the query is “yes” if the query is a logical
consequence. Knowledge bases can be used for several purposes and give rise to
various interesting questions. An important kind of knowledge base is the logic
program. Let us consider briefly the classical example of list concatenation. The
notion of list can be defined in an inductive way: first, [ ] is a list (the empty
list) and, second, if X is an object and Xs is a list, then [X|Xs] is the list whose
first element is X and the other elements are those of Xs. For instance, the list
whose elements are a, b and c is [a|[b|[c|[]]]] which is more conveniently
written as [a,b,c]. List concatenation can also be defined in an inductive way.
First, the concatenation of the empty list and any list Xs is Xs and, second, if
the concatenation of Xs and Ys is Zs, then the concatenation of [X|Xs] and Ys

is [X|Zs]. This can be formalized as (the universal closure of) two Horn clauses,
which will be written in Prolog as the following program:

append([],Xs,Xs).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

The predicate append(Xs,Ys,Zs) is intended to be true when Xs and Ys are lists
whose concatenation is Zs. A specific procedure allows queries to be answered
automatically, in a rather efficient way:

append([a],[b,c],[a,b,c]) ? yes.

append([a],[b,c],[b,a,c]) ? no.

append([a],[b,c],Xs) ? Xs = [a,b,c].

append(Xs,Ys,[a,b,c]) ? Xs = [], Ys = [a,b,c] ;

Xs = [a], Ys = [b,c] ;

Xs = [a,b], Ys = [c] ;

Xs = [a,b,c], Ys = [] .

“Logic programming” and its implementation Prolog are mainly an application of
classical first-order logic, but more epistemic questions do arise. For instance, it
is clear that Prolog has to answer “yes” and give appropriate values to the vari-
ables of the query (if any), if this query is a logical consequence of the program.
For instance, the query append(Xs,Ys,[a,b,c]) is a logical consequence of the
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program if and only if the variables Xs and Ys are instantiated with appropri-
ate values; exactly four suitable valuations exist, which are the answers given by
Prolog. However, it is not easy to decide when Prolog should answer “no”. In
classical databases, the “Closed World Assumption” (CWA) is frequently used:
facts recorded in the database are true, all other facts are false. It is not always
desirable to assume that a knowledge base knows everything. Besides, the CWA
policy cannot be implemented since first-order logic is undecidable; a weaker policy
(the “negation as failure” rule) is implemented instead.

From the epistemic point of view, a logic program is an elementary kind of
knowledge base, since it satisfies several restrictions:

1. The language for recording facts is (a fragment of) classical logic;

2. Facts (Prolog clauses) recorded in the knowledge base are about a stable
world, that does not change with time;

3. The writer of a logic program knows all the relevant facts;

4. Logic programs contain nothing about their own knowledge; the knowledge
operator does not occur in the program, nor in the queries;

5. Only true facts are included in a logic program;

6. No implicit knowledge is assumed about a logic program.

Using epistemic logic (system S5) becomes natural when some of these restric-
tions are relaxed. Let us assume that a knowledge base KB contains propositional
facts only, but that the queries may contain the operator KKB . It is easy to as-
sociate semantics with this kind of knowledge base such that the answer to the
propositional35 query ϕ is “yes” if and only if KKBϕ holds; otherwise stated,
KB |= ϕ, that is, ϕ is the logical consequence of the set of facts contained in KB ,
if and only if KKBϕ holds. The answer to the propositional query ϕ is “yes” if
KB |= KKBϕ, “no” if KB |= KKB¬ϕ and “I don’t know” otherwise. So, the se-
mantics tells us when formulas such as KKBϕ, where ϕ is propositional, are true or
not. An interesting fact about system S51 is that every formula is logically equiv-
alent to a Boolean combination of formulas of this form, with the consequence
that the knowledge base will also handle arbitrary queries, including those about
its own knowledge.

Suppose that the (conjunctive) set of facts contained in KB is logically equiva-
lent to the propositional formula ϕ. It is possible to define a specific S51-Kripke
structure Mϕ such that the answer to an arbitrary query is “yes” if and only if
this query is true in this structure.

In the field of knowledge representation it is of central importance to have a
logic which can express “it is only known that ϕ”. Constructing such a logic is

35In this paragraph, arbitrary queries may contain the operator KKB , propositional queries
may not.
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less easy than it might seem. Combining “it is only known that ϕ” with the axiom
of negative introspection leads to counter-inuitive results. Consider the inference
below:

(1) Only p is known;

(4) hence q is not known;

(5) hence it is known that q is not known [in virtue of the negative introspection
axiom].

There is a problem here. We cannot derive K¬Kq from only knowing p∧ q though
the latter conjunction intuitively represents more knowledge than only knowing p
[van der Hoek et al., 1999, p. 26]. The first formalization of “only knows” is due to
J. Halpern and Y. Moses [1985]. The formalization was designed for system S5. It
takes the notion of minimal model as a primitive notion. In 1999, W. van der Hoek
et al. offered a general approach to the representation of minimal information for
arbitrary normal modal logic which only uses concepts borrowed from standard
Kripke possible world semantics. They start by introducing a structural informa-
tion order over possible worlds and use it to define the notion of minimal model.
The counter-intuitive result mentioned above is avoided by excluding formulas
which represent ignorance [formulas of the form ¬Kϕ]. This is not however an ad
hoc prohibition. A formal and independent justification is given for preferring a
positive information order which preserves positive knowledge [Ibid. , pp. 40–45].

8.5 Knowledge-based Programming

Problems in concurrent programming often originate from the need to transmit
information from a process to another. In the case of the alternating bit protocol,
delays and possible corruption or loss of messages induce a lack of knowledge for
the Sender and the Receiver and, quite obviously, they use their partial knowledge
in order to select the action to be executed next. This can be expressed in a rather
direct way; for instance, the “sending policy” of the Sender is summarized into:

1(S) : KSY [HS] = X[HS] −→ (HS,MB) := (HS + 1, (HS + 1, X[HS + 1])) ,
2(S) : ¬KSY [HS] = X[HS] −→ MB := (HS, X[HS]) ,

(8)
Either the Sender knows that the last sent message has been received or it does
not. In the first case, it sends the next message; otherwise, it sends the latest
message again. This description of the Sender’s behaviour is rather abstract since
there is no indication about the way the Sender might gain knowledge. The whole
development of the alternating bit protocol consists in specifying knowledge gain,
with a policy of acknowledgment of the Receiver. The implementation of this
policy induces the introduction of LR, which can be seen as a copy of HS, local
to the Receiver; similarly, LA is a copy of LR, local to the Sender. It is easy to
get an intuitive idea of the meaning of such knowledge-based programs, in which
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the guards of the transitions executed by process p may involve the operator Kp.
36

However, the definition of a formal semantics is more difficult. Knowledge-based
programs may be ambiguous or inconsistent, even in the case of a single process.
For instance, suppose that process p repeatedly executes the transitions

1. Kp(init ∨ r) −→ (init , r) := (false, true) ,
2. ¬Kp(init ∨ r) −→ init := false .

If the initial state satisfies init ∧ ¬r, then the program may exhibit two very
different behaviours; either transition 1 is executed first, and then every subsequent
state satisfies r, or transition 2 is executed first, and then every subsequent state
satisfies ¬r. As far as the guards are mutually exclusive, this nondeterministic
behaviour seems puzzling and probably indesirable. The program

1. Kp�¬r −→ r := true ,
2. ¬Kp�¬r −→ r := r,

is even worse, since it cannot be executed from an initial state where r is false.
Knowledge-based programs are not really programs, but specifications, which can
be ambiguous or inconsistent.
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1997.

[Duc, 2001] Ho Ngoc Duc. Resource-Bounded Reasoning about Knowledge. PhD thesis, 2001.
[Fagin and Halpern, 1988] Ronald Fagin and Joseph Y. Halpern. Belief, awareness, and limited

reasoning. Artificial Intelligence, 34:39–76, 1988.
[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Rea-

soning about Knowledge. The MIT Press, Cambridge, Mass., 1995.
[Fitting and Mendelsohn, 1998] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal

Logic. Kluwer Academic Publishers, Dordrecht, 1998.
[Føllesdal, 1967] Dagfinn Føllesdal. Knowledge, identity and existence. Theoria, XXXIII:1–27,

1967.
[Frege, 1949] Gottlob Frege. Sense and nominatum. In Herbert Feigl and Wilfrid Sellars, editors,

Readings in Philosophical Analysis, pages 85–102. Appleton-Century-Crofts, New York, 1949.
Translated from “Ueber Sinn and Bedeutung”, Zeitschrift für Philos. und Philos. Kritik,
vol. 100, 1892.



192 Paul Gochet and Pascal Gribomont

[Gabbay, 1974] Dov M. Gabbay. Tense logics and the tenses of english. In J.M.E. Moravcsik,
editor, Logic and Philosophy for Linguists: A Book of Readings, pages 177–186. Mouton, The
Hague, 1974.

[Gabbay, 1976] Dov Gabbay. Investigations in Modal and Tense Logics with Applications to
Problems in Philosophy and Linguistics. D. Reidel Publishing Company, Dordrecht, 1976.

[Geanakoplos, 1992] John Geanakoplos. Common knowledge (paper covering tutorial given in
tark 1990). In Yoram Moses, editor, Proceedings of the fourth conference TARK 1992, pages
254–315, San Mateo, 1992. Morgan Kaufmann Publishers.

[Genesereth and Nilsson, 1988] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations
of Artificial Intelligence. Morgan Kaufmann Publishers, Palo Alto, 1988.

[Gerbrandy and Groeneveld, 1997] J. Gerbrandy and W. Groeneveld. Reasoning about infor-
mation change. Journal of Logic, Language and Information, 6:147–169, 1997.

[Gerbrandy, 1999] J. Gerbrandy. Bisimulations on Planet Kripke. 1999.
[Gettier, 1963] Edmund L. Gettier. Is justified true belief knowledge? Analysis, XXV:121–123,

1963.
[Gillet and Gochet, 1993] Eric Gillet and Paul Gochet. La logique de la connaissance. le

problème de l’omniscience logique. Dialectica, 47:143–171, 1993.
[Gillet, 2000] Eric Gillet. Essentialisme et identité contingente. In François Beets and Eric
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DEONTIC LOGIC∗

Paul McNamara

INTRODUCTION

Introductory Note: Items boxed off in the text can be skipped without loss
of continuity. Similarly for the four appendices to which the reader is optionally
directed at appropriate places in the main essay.

Deontic logic1 is that branch of symbolic logic that has been the most concerned
with the contribution that the following notions make to what follows from what:

permissible (permitted) must
impermissible (forbidden, prohibited) supererogatory (beyond the call of duty)
obligatory (duty, required) indifferent / significant
gratuitous (non-obligatory) the least one can do
optional better than / best / good / bad
ought claim / liberty / power / immunity.

indexobligatory

To be sure, some of these notions have received more attention in deontic logic
than others. However, virtually everyone working in this area would see systems
designed to model the logical contributions of these notions as part of deontic logic
proper.

As a branch of symbolic logic, deontic logic is of theoretical interest for some of
the same reasons that modal logic is of theoretical interest. However, despite the
fact that we need to be cautious about making too easy a link between deontic logic
and practicality, many of the notions listed are typically employed in attempting
to regulate and coordinate our lives together (but also to evaluate states of affairs).
For these reasons, deontic logics often directly involve topics of considerable prac-
tical significance such as morality, law, social and business organizations (their

* At the invitation of the editors of this series, this essay is a minor adaptation of McNamara
[2005]. Thus it is primarily systematic, but with historical information weaved in throughout,
especially in notes on the literature associated with a problem or a development.

1The term “deontic logic” appears to have arisen in English as the result of C. D. Broad’s
suggestion to von Wright [1951]; Mally used “Deontik” earlier to describe his work [Mally, 1926].
Both terms derive from the Greek term, δεoν, for ‘that which is binding’, and ικ, a common
Greek adjective-forming suffix for ‘after the manner of’, ‘of the nature of’, ‘pertaining to’, ‘of’,
thus suggesting roughly the idea of a logic of duty. (The intervening τ in δεoντικ is inserted for
phonetic reasons.)

Handbook of the History of Logic. Volume 7
Dov M. Gabbay and John Woods (Editors)
c .© 2006 Elsevier B V.Published by 
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norms, as well as their normative constitution), and security systems. To that
extent, studying the logic of notions with such practical significance perhaps adds
some practical significance to deontic logic itself.

On Defining Deontic Logic: Defining a discipline or area within one is often
difficult. Deontic logic is no exception. Standard characterizations of deontic
logic are arguably either too narrow or too wide. Deontic logic is often glossed as
the logic of obligation, permission, and prohibition, but this is too narrow. For
example, it would exclude a logic of supererogation as well as any non-reductive
logic for legal notions like claims, liberties, powers, and immunities from falling
within deontic logic. On the other hand, we might say that deontic logic is that
branch of symbolic logic concerned with the logic of normative expressions: a
systematic study of the contribution these expressions make to what follows
from what. This is better in that it does not appear to be too exclusive, but it
is arguably too broad, since deontic logic is not traditionally concerned with the
contribution of every sort of normative expression. For example, “credible” and
“dubious” are normative expressions, as are “rational” and “prudent” but these
two pairs are not normally construed as within the purview of deontic logic (as
opposed to say epistemic logic, and rational choice theory, respectively). Nor
would it be enough to simply say that the normative notions of deontic logic
are always practical, since the operator “it ought to be the case that”, perhaps
the most studied operator in deontic logic, appears to have no greater intrinsic
link to practicality than does “credible” or “dubious”. The following seem to be
without practical import: “It ought to be the case that early humans did not
exterminate Neanderthals.”2 Perhaps a more refined link to practicality is what
separates deontic logic from epistemic logic, but this doesn’t help distinguish it
from rational choice theory, the latter being concerned with collective practical
issues as well as individual ones. Perhaps there is no non-ad hoc or principled
division between deontic logic and distinct formal disciplines focused on the
logic of other normative expressions, such as epistemic logic and rational choice
theory. These are interesting and largely unstudied meta-philosophical issues
that we cannot settle here. Instead we have defined deontic logic contextually
and provisionally.

This essay is divided into four main parts. The first provides preliminary back-
ground. The next two parts provide an introduction to the most standard monadic
systems of deontic logic The fourth, and by far the largest, section is dedicated to

2Although this example has no practical significance for us, it is still true that without such
capacities for counterfactual evaluation, we would have no capacity for such deeply human traits
as a sense of tragedy and misfortune, and of course some judgments about what ought to be the
case do and should guide our actions, but the link is not simple, and it is not clear that such
evaluations of states of affairs are any less a part of deontic logic than evaluations of the future
courses of action of agents.
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various problems and challenges faced by the standard systems. This reflects the
fact that the challenges posed to these standard systems are numerous.

1 INFORMAL PRELIMINARIES AND BACKGROUND

Deontic logic has been strongly influenced by ideas in modal logic. Analogies
with alethic modal notions and deontic notions were noticed as far back as the
fourteenth century, where we might say that the rudiments of modern deontic
logic began [Knuuttila, 1981]. Although informal interest in what can be arguably
called aspects of deontic logic continued, the trend toward studying logic using the
symbolic and exact techniques of mathematics became dominant in the twentieth
century, and logic became largely, symbolic logic. Work in twentieth century sym-
bolic modal logic provided the explicit impetus for von Wright [1951], the central
early figure in the emergence of deontic logic as a full-fledged branch of symbolic
logic in the twentieth century. So we will begin by gently noting a few folk-logical
features of alethic modal notions, and giving an impressionistic sense of how nat-
ural it was for early developments of deontic logic to mimic those of modal logic.
We will then turn to a more direct exploration of deontic logic as a branch of
symbolic logic.

However, before turning to von Wright, and the launching of deontic logic as an
on-going active academic area of study, we need to note that there was a significant
earlier episode, Mally [1926], that did not have the influence on symbolic deontic
logic that it might have, due at least in part, to serious technical problems. The
most notable of these problems was the provable equivalence of what ought to
be the case (his main deontic notion) with what is the case, which is plainly self-
defeating for a deontic logic. Despite the problems with the system he found, Mally
was an impressive pioneer of deontic logic. He was apparently uninfluenced by, and
thus did not benefit from, early developments of alethic modal logic. This is quite
opposed to the later trend in the 1950s when deontic logic reemerged, this time as a
full-fledged discipline, deeply influenced by earlier developments in alethic modal
logic. Mally was the first to found deontic logic on the syntax of propositional
calculus explicitly, a strategy that others quickly returned to after a deviation
from this strategy in the very first work of von Wright. Mally was the first to
employ deontic constants in deontic logic (reminiscent of Kanger and Anderson’s
later use of deontic constants, but without their “reduction”; more below). He was
also the first to attempt to provide an integrated account of non-conditional and
conditional ought statements, one that provided an analysis of conditional ‘ought’s
via a monadic deontic operator coupled with a material conditional (reminiscent
of similar failed attempts in von Wright [1951] to analyze the dyadic notion of
commitment), and that allowed for a form of factual detachment (more below).
All in all, this seems to be a remarkable achievement in retrospect. For more
information on Mally’s system, including a diagnosis of the source of his main
technical problem, and a sketch of one way he might have avoided it, see the easily
accessible Lokhorst [2004].
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1.1 Some Informal Rudiments of Alethic Modal Logic

Alethic modal logic is roughly the logic of necessary truth and related notions.
Consider five basic alethic modal statuses, expressed as sentential operators —
constructions that, when applied to a sentence, yield a sentence (as does “it is not
the case that”):

it is necessary (necessarily true) that (�)
it is possible that (♦)
it is impossible that
it is non-necessary that
it is contingent that.3

Although all of the above operators are generally deemed definable in terms of
any one of the first four, the necessity operator is typically taken as basic and the
rest defined accordingly:

It is possible that p(♦p) =df∼� ∼p
It is impossible that p =df � ∼p
It is non-necessary that p =df∼�p
It is contingent that p =df∼�p& ∼� ∼p.

It is routinely assumed that the following threefold partition of propositions
holds:

The three rectangular cells are jointly exhaustive and mutually exclusive: every
proposition is either necessary, contingent, or impossible, but no proposition is
more than one of these. The possible propositions are those that are either nec-
essary or contingent, and the non-necessary propositions are those that are either
impossible or contingent.

Another piece of folk logic for these notions is the following modal square of
opposition:

3In keeping with very wide trends in logic over the past century or so, we will treat both
modal notions and deontic notions as sentential (or propositional) operators unless otherwise
stated. Although it is controversial whether the most fundamental (if there are such) modal and
deontic notions have the logical form of propositional operators, focusing on these forms allowed
for essentially seamless integration of these logics with propositional logics.
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Arrowed Lines: represent implications Dotted Line: connects sub-contraries.
Dashed Line: connects contraries. Dotted-Dashed Lines: connect contradictories.4

Furthermore it is generally assumed that the following hold:

If �p then p (if it is necessary that p, then p is true).
If p then ♦p (if p is true, then p is possible).

These reflect the idea that we are interested here in alethic (and thus truth-
implicating) necessity and its siblings.

We now turn to some of the analogies involved in what is a corresponding bit
of deontic folk logic: “The Traditional Scheme” [McNamara, 1990; 1996a]. This is
a minor elaboration of what can be found in [von Wright, 1953] and [Prior, 1962,
[1955]].

1.2 The Traditional Scheme and the Modal Analogies

The five normative statuses of the Traditional Scheme are:5

4This key will be relied on throughout for similar diagrams. Recall that propositions are
contraries if they can’t both be true, sub-contraries if they can’t both be false, and contradictories
if they always have opposing truth-values. The square can be easily augmented as a hexagon by
including nodes for contingency [McNamara, 1996a]. Cf. the deontic hexagon below.

5Only deontic operators will appear in boldface. These abbreviations are not standard. O is
routinely used instead of OB, and O is often read as “It ought to be the case that”. P is used
instead of PE, and if used at all, F (for “forbidden”) instead of IM and I (for “indifference”)
instead of OP. Deontic non-necessity, here denoted by GR is seldom ever named, and even
in English it is hard to find a term for this condition. The double letter choices used here are
easy mnemonics expressing all five basic conditions (which, from a logical standpoint, are on
a par), and they will facilitate later discussion involving just what notions to take SDL and
kin to be modeling, and how it might be enriched to handle other related normative notions.
Both deontic logic and ethical theory is fraught with difficulties when it comes to interchanging
allegedly equivalent expressions for one another. Here we choose to read the basic operator as
“it is obligatory that” so that all continuity with permissibility, impermissibility, and optionality
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it is obligatory that (OB)
it is permissible that (PE)
it is impermissible that (IM)
it is gratuitous that (GR)
it is optional that (OP).

The first three are familiar, but the fourth is widely ignored, and the fifth
has regularly been conflated with “it is a matter of indifference that p” (by being
defined in terms of one of the first three), which is not really part of the traditional
scheme (more below). Typically, one of the first two is taken as basic, and the
others defined in terms of it, but any of the first four can play the same sort of
purported defining role. The most prevalent approach is to take the first as basic,
and define the rest as follows:

PEp↔ ∼OB ∼p
IMp↔ OB ∼p
GRp↔ ∼OBp
OPp↔ (∼OBp& ∼OB ∼p).6

These assert that something is permissible iff (if and only if) its negation is
not obligatory, impermissible iff its negation is obligatory, gratuitous iff it is not
obligatory, and optional iff neither it nor its negation is obligatory. Call this
“The Traditional Definitional Scheme (TDS)”. If one began with OB alone and
considered the formulas on the right of the equivalences above, one could easily
be led to consider them as at least candidate defining conditions for those on the
left. Although not uncontestable, they are natural, and this scheme is still widely
employed. Now if the reader looks back at our use of the necessity operator in
defining the remaining four alethic modal operators, it will be clear that that
definitional scheme is perfectly analogous to the deontic one above. From the
formal standpoint, the one is merely a syntactic variant of the other: just replace
OB with �, PE with ♦, etc.

In addition to the TDS, it was traditionally assumed that the following, call it
“The Traditional Threefold Classification (TTC)” holds:

is not lost, as it would be with the “it ought to be the case that” reading [McNamara, 1996c]. A
choice must be made. “It is obligatory that” may also be read personally, but non-agentially as
“it is obligatory for Jones that” [Krogh and Herrestad, 1996; McNamara, 2004a]. We will return
to these issues again below.

6In this essay we will generally call such equivalences “definitions”, sloughing over the dis-
tinction between abbreviatory definitions of operators not officially in the formal language, and
axiom systems with languages containing these operators, and axioms directly encoding the force
of such definitions as equivalences.
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Here too, all propositions are divided into three jointly exhaustive and mutually
exclusive deontic classes: every proposition is obligatory, optional, or impermissi-
ble, but no proposition falls into more than one of these three categories. Further-
more, the permissible propositions are those that are either obligatory or optional,
and the gratuitous propositions are those that are impermissible or optional. The
reader can easily confirm that this natural scheme is also perfectly analogous to
the threefold classification we gave above for the alethic modal notions.

Furthermore, “The Deontic Square (DS)” is part of the Traditional Scheme:

The logical operators at the corners are to be interpreted as in the modal square
of opposition. The two squares are plainly perfectly analogous as well. If we weave
in nodes for optionality, and shift to formuli, we get a deontic hexagon:

Given these correspondences, it is unsurprising that our basic operator, read
here as “it is obligatory that”, is often referred to as “deontic necessity”. However,
there are also obvious dis-analogies. Before, we saw that these two principles are
part of the traditional conception of alethic modality:

If �p then p (if it is necessary that p, then p is true).
If p, then ♦p (if p is true, then it is possible).

But their deontic analogs are:
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If OBp then p (if it is obligatory that p, then p is true).
If p, then PEp (if p is true, then it is permissible).

The latter two are transparently false, for obligations can be violated, and
impermissible things do happen.7 However, as researchers turned to generaliza-
tions of alethic modal logic, they began considering wider classes of modal logics,
including ones where the necessity operator was not truth-implicating. This too
encouraged seeing deontic necessity, and thus deontic logic, as falling within modal
logic so-generalized, and in fact recognizing possibilities like this helped to fuel the
generalizations of what began with a focus on alethic modal logic [Lemmon, 1957;
Lemmon and Scott, 1997].

1.3 Toward Deontic Logic Proper

It will be convenient at this point to introduce a bit more regimentation. Let’s
assume that we have a simple propositional language with the usual suspects,
an infinite set of propositional variables (say, P1, . . . , Pn, . . . ) and complete set
of truth-functional operators (say, ∼ and →), as well as the one-place deontic
operator, OB.

Deontic Wffs : Here is a more formal definition. Suppose that we have:

A set of Propositional Variables (PV): P1, . . . , Pi, . . . — where “i” is a numerical
subscript; three propositional operators: ∼,→, OB; and a pair of parentheses:
(,).

The set of D-wffs (deontic well-formed formuli) is then the smallest set satisfying
the following conditions (lower case “p” and “q” are metavariables):

FR1. PV is a subset of D-wffs.
FR2. For any p, p is in D-wffs only if ∼p and OBp are also in D-wffs.
FR3. For any p and q, p and q are in D-wffs only if (p→ q) is in D-wffs.

We then assume the following abbreviatory definitions:

DF1-3. &,∨,→ as usual.
DF4. PEp =df∼OB ∼p.
DF5. IMp =df OB ∼p.
DF6. GRp =df∼OBp.
DF7. OP =df (∼OBp & ∼OB ∼p).

7The logic of [Mally, 1926] was saddled with the T -analog above. Mally reluctantly embraced
it since it seemed to follow from premises he could find no fault with. See [Lokhorst, 2004].
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Unless otherwise stated, we will only be interested in deontic logics that contain
classical propositional calculus (PC). So let’s assume we add that as the first
ingredient in specifying any deontic logic, so that, for example, OBp→ ∼∼OBp,
can be derived in any system to be considered here.

Above, in identifying the Traditional Definitional Scheme, we noted that we
could have taken any of the first four of the five primary normative statuses listed
as basic and defined the rest in terms of that one. So we want to be able to generate
the corresponding equivalences derivatively from the scheme we did settle on,
where OB is basic. But thus far we cannot. For example, it is obviously desirable
to have OBp →∼PE ∼p as a theorem from the traditional standpoint. After
all, this wff merely expresses one half of the equivalence between what would have
been definiens and definiendum had we chosen the alternate scheme of definition
in which “PE” was taken as basic instead of “OB”. However, OBp →∼PE ∼p
is not thus far derivable. For OBp → ∼PE ∼p is definitionally equivalent to
OBp → ∼∼OB ∼∼p, which reduces by PC to OBp → OB ∼∼p, but the latter
formula is not tautological, so we cannot complete the proof. So far we have
deontic wffs and propositional logic, but no deontic logic. For that we need some
distinctive principles governing our deontic operator, and in particular, to generate
the alternative equivalences that reflect the alternative definitional schemes alluded
to above, we need what is perhaps the most fundamental and least controversial
rule of inference in deontic logic, and the one characteristic of “classical modal
logics” [Chellas, 1980]:

OB-RE: If p↔ q is a theorem, then so is OBp↔ OBq.

This rule tells us that if two formulas are provably equivalent, then so are the
results of prefacing them with our basic operator, OB. With its aid (and the
Traditional Definitional Scheme’s), it now easy to prove the equivalences corre-
sponding to the alternative definitional schemes. For example, since ⊢ p ↔∼∼p,
by OB-RE, we get ⊢ OBp ↔ OB ∼∼p, i.e. ⊢ OBp ↔ ∼∼OB ∼∼p, which
generates ⊢ OBp ↔ ∼PE ∼p, given our definitional scheme. To the extent that
the alternative definitional equivalences are supposed to be derivable, we can see
RE as presupposed in the Traditional Scheme.

All systems we consider here will contain RE (whether as basic or derived). They
will also contain, unless stated otherwise, one other principle, a thesis asserting
that a logical contradiction (conventionally denoted by “⊥”) is always gratuitous:

OD : ∼OB ⊥ .

So, for example, OD implies that it is a logical truth that it is not obligatory that
my taxes are paid and not paid. Although OD is not completely uncontestable,8

8If Romeo solemnly promised Juliet to square the circle did it thereby become obligatory that
he do so?
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it is plausible, and like RE, has been pervasively presupposed in work on deontic
logic. In this essay, we will focus on systems that endorse both RE and OD.

Before turning to our first full-fledged system of deontic logic, let us note one
very important principle that is not contained in all deontic logics, and about which
a great deal of controversy in deontic logic and in ethical theory has transpired.

1.4 The Fundamental Presupposition of the Traditional Scheme

Returning to the Traditional Scheme for a moment, its Threefold Classification,
and Deontic Square of Opposition can be expressed formally as follows:

DS: (OBp↔ ∼GRp) & (IMp↔ ∼PEp) & ∼(OBp& IMp) &
∼(∼PEp& ∼GRp) & (OBp→ PEp) & (IMp→ GRp).

TTC: (OBp ∨OPp ∨ IMp) & [∼(OBp& IMp) & ∼(OBp&OPp) &
∼(OPp& IMp)].

Given the Traditional Definitional Scheme, it turns out that DS and TTC are
each tautologically equivalent to the principle that obligations cannot conflict (and
thus to one another):

NC: ∼(OBp&OB ∼p).9

So the Traditional Scheme rests squarely on the soundness of NC (and the
traditional definitions of the operators). Indeed, the Traditional Scheme is nothing
other than a disguised version of NC, given the definitional component of that
scheme.

NC is not to be confused in content with the previously mentioned principle,
OD(∼OB ⊥). OD asserts that no single logical contradiction can be obligatory,
whereas NC asserts that there can never be two things that are each separately
obligatory, where the one obligatory thing is the negation of the other. The pres-
ence or absence of NC arguably represents one of the most fundamental divi-
sions among deontic schemes. As, until recently, in modern normative ethics (see
[Gowans, 1987]), early deontic logics presupposed this thesis. Before turning to
challenges to NC, we will consider a number of systems that endorse it, begin-
ning with what has come to be routinely called “Standard Deontic Logic”, the
benchmark system of deontic logic.

9For DS becomes (OBp ↔ ∼∼OBp)& (OB ∼p ↔ ∼∼OB ∼p)& ∼(OBp & OB ∼p)&
∼(∼∼OB ∼p & ∼∼OBp)& (OBp →∼OB ∼p)& (OB ∼p →∼OBp), and although the first
two conjuncts are tautologies, the remaining four are each tautologically equivalent to NC above.
Similarly, TTC becomes (OBp ∨ (∼OBp & ∼OB ∼p) ∨ OB ∼p)& [∼(OBp &OB ∼p)& ∼
(OBp &(∼OBp & ∼OB ∼p))& ∼((∼OBp & ∼OB ∼p)&OB ∼p)], and the exhaustiveness
clause is tautological, as are the last two conjuncts of the exclusiveness clause, but the first
conjunct of that clause is just NC again. Likewise for the assumptions that the gratuitous is the
disjunction of the permissible and the obligatory and that the permissible is the disjunction of
the obligatory and the optional. (See [McNamara, 1996a, pp. 422–46].)
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2 STANDARD DEONTIC LOGIC

2.1 Standard Syntax

Standard Deontic Logic (SDL) is the most cited and studied system of deontic
logic, and one of the first deontic logics axiomatically specified. It builds upon
propositional logic, and is in fact essentially just a distinguished member of the
most studied class of modal logics, “normal modal logics”. It is a monadic deontic
logic, since its basic deontic operator is a one-place operator (like ∼, and unlike
→): syntactically, it applies to a single sentence to yield a compound sentence.10

Assume again that we have a language of classical propositional logic with an
infinite set of propositional variables, the operators ∼and →, and the operator,
OB. SDL is then often axiomatized as follows:

SDL: A1. All tautologous wffs of the language (TAUT)
A2. OB(p→ q) → (OBp→ OBq) (OB-K)
A3. OBp→∼OB ∼p (OB-D)
MP. If ⊢ p and ⊢ p→ q then ⊢ q (MP)
R2. If ⊢ p then ⊢ OBp (OB-NEC).11

SDL is just the normal modal logic “D” or “KD”, with a suggestive notation
expressing the intended interpretation.12 TAUT is standard for normal modal
systems. OB-K, which is the K axiom present in all normal modal logics, tells us
that if a material conditional is obligatory, and its antecedent is obligatory, then
so is its consequent.13 OB-D tells us that p is obligatory only if its negation isn’t.
It is just “No Conflicts” again, but it is also called “D” (for “Deontic”) in normal
modal logics. MP is just Modus Ponens, telling us that if a material conditional
and its antecedent are theorems, then so is the consequent. TAUT combined with
MP gives us the full inferential power of the Propositional Calculus (often referred
to, including here, as “PC”). As noted earlier, PC has no distinctive deontic
import. OB-NEC tells us that if anything is a theorem, then the claim that that
thing is obligatory is also a theorem. Note that this guarantees that something is
always obligatory (even if only logical truths).14 Each of the distinctively deontic
principles, OB-K, OB-D, and OB-NEC are contestable, and we will consider
criticisms of them shortly. However, to avoid immediate confusion for those new
to deontic logic, it is perhaps worth noting that OB-NEC is generally deemed a

10In a monadic system one can easily define dyadic deontic operators of sorts [Hintikka, 1971].
For example, we might define “deontic implication” as follows: p d→ q =df OB(p → q). We will
consider non-monadic systems later on.

11“⊢” before a formula indicates it is a theorem of the relevant system.
12Note that this axiomatization, and all others here, use “axiom schema”: schematic specifi-

cations by syntactic pattern of classes of axioms (rather than particular axioms generalized via
a substitution rule). We will nonetheless slough over the distinction here.

13It is also justifies a version of Deontic Detachment, from OBp and OB(p → q) derive OBq,
an inference pattern to be discussed later.

14Compare the rule that contradictions are not permissible: if ⊢∼p then ⊢∼PEp. R2 is often
said to be equivalent to “not everything is permissible”, and thus to rule out only “normative
systems” that have no normative force at all.
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convenience that, among other things, assures that SDL is in fact just one of the
well-studied normal modal logics with a deontic interpretation. Few have spilled
blood to defend its cogency substantively, and these practical compromises can be
strategic, especially in early stages of research.

Regarding SDL’s expressive powers, advocates typically endorse the Traditional
Definitional Scheme noted earlier. Below we list some theorems and two important
derived rules of SDL.15

OB⊤ (OB-N)
∼OB⊥16 (OB-OD)
OB(p & q) → (OBp & OBq) (OB-OD)
(OBp & OPq) → OB(p & q) (OB-C / Aggregation)
OBp ∨OPp ∨ IMp (OB-Exhaustion)
OBp→∼OB ∼p (OB-NC or OB-D)

If ⊢ p→ q then ⊢ OBp→ OBq (OB-RM)
If ⊢ p↔ q then ⊢ OBp↔ OBq (OB-RE)

We will be discussing a number of these subsequently. For now, let’s briefly
show that RM is a derived rule of SDL. We note some simple corollaries as well.

Show
If ⊢ p→ q, then ⊢ OBp→ OBq. (OB-RM)

Proof
Suppose ⊢ p → q. Then by OB-NEC, ⊢ OB(p → q), and then by K,⊢ OBp →
OBq.

Corollary 1
⊢ OBp→ OB(p ∨ q). (Weakening)

Corollary 2
If ⊢ p↔ q then ⊢ OBp↔ OBq. (OB-RE)17

Although the above axiomatization is standard, alternative axiomatizations do
have certain advantages. One such axiomatization is given in Appendix A2 and
shown to be equivalent to the one above.

15We ignore most of the simple definitional equivalences mentioned above, as well as DS and
TTC.

16Compare OB-N and OB-D with OB(p ∨ ∼p) and ∼OB(p & ∼p), respectively.
17RE is the fundamental rule for “Classical Systems of modal logic”, a class that includes

normal modal logics as a proper subset. See [Chellas 1980].
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von Wright’s 1951 System and SDL: A quick comparison of SDL with the famous
system in the seminal piece [von Wright, 1951] is in order. It is fair to say that
von Wright [1951] launched deontic logic as an area of active research. There was
a flurry of responses, and not a year has gone by since without published work in
this area. von Wright’s 1951 system is an important predecessor of SDL, but the
variables there ranged over act types not propositions. As a result, the deontic
operator symbols (e.g. OB) were interpreted as applying not to sentences, but
to names of act types (cf. “to attend” or “attending”) to yield a sentence (e.g.
“it is obligatory to attend” or “attending is obligatory”). So iterated deontic
sequences (e.g. OBOBA) were not well-formed formulas and shouldn’t have
been on his intended interpretation, since OBA (unlike A) is a sentence, not
an act description, so not suitable for having OB as a preface to it (cf. “it
is obligatory it is obligatory to run” or “running is obligatory is obligatory”).
However, von Wright did think that there can be negations, disjunctions and
conjunctions of act types, and so he used standard connectives to generate
not only complex normative sentences (e.g. OBA&PEA), but complex act
descriptions (e.g. A& ∼B), and thus complex normative sentences involving
them (e.g. OB(A& ∼B) → PE(A& ∼B)). The standard connectives of PC
are thus used in a systematically ambiguous way in von Wright’s initial system
with the hope of no confusion, but a more refined approach (as he recognized)
would call for the usual truth-functional operators and a second set of act-type-
compounding analogues to these.18 Mixed formulas (e.g. A → OBA) were
not well-formed in his 1951 system and shouldn’t have been on his intended
interpretation, since if OBA is well-formed, then A must be a name of an act
type not a sentence, but then it can’t suitably be a preface to →, when the
latter is followed by an item of the sentence category (e.g. OBA). (Cf. “If to
run then it is obligatory to run”.) However, this also means that the standard
violation condition for an obligation (e.g. OBp& ∼p) is not expressible in his
system. von Wright also rejected NEC, but otherwise accepts analogues to the
basic principles of SDL.
Researchers quickly opted for a syntactic approach where the variables and
operators are interpreted propositionally as they are in PC (Prior 1962 [1955],
Anderson [1956], Kanger 1971 [1957] and Hintikka [1957]), and von Wright soon
adopted this course himself in his key early revisions of his “old system” (e.g.
von Wright [1968; 1971] (originally published in 1964 and 1965). Note that this
is essentially a return to the approach in Mally’s deontic logic of a few decades
before.

SDL can be strengthened in various ways, in particular, we might consider
adding axioms where deontic operators are embedded within one another. For

18Compare the deontic logic in [Meyer, 1988], where a set of operators for action (drawn from
dynamic logic) are used along with a separate set of propositional operators.
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example, suppose we added the following formula as an axiom to SDL. Call the
result “SDL+” for easy reference here:

A4. OB(OBp→ p)

This says (roughly) that it is required that obligations are fulfilled.19 This is
not a theorem of SDL (as we will see in the next section), so SDL+ is a genuine
strengthening of SDL. Furthermore, it makes a logically contingent proposition
(i.e. that OBp → p) obligatory as a matter of deontic logic. SDL does not have
this substantive feature. With this addition to SDL, it is easy to prove OBOBp→
OBp, a formula involving an iterated occurrence of our main operator.20 This
formula asserts that if it is obligatory that p be obligatory, then p is obligatory.
(Cf. “the only things that are required to be obligatory are those that actually
are”).21

2.2 Standard Semantics

The reader familiar with elementary textbook logic will have perhaps noticed that
the deontic square and the modal square both have even better-known analogs for
the quantifiers as interpreted in classical predicate logic (“all x : p” is read as all
objects x satisfy condition p; similarly for “no x : p” and “some x : p”):

19Equivalently, OB(p → PEp), it is required that only permissible things are true.
20For OB(OBp → p) → (OBOBp → OBp) is just a special instance of OB-K. So using A4

above, and MP, we get OBOBp → OBp directly.
21See Chellas [1980, pp. 193–194] for a concise critical discussion of the comparative plausibility

of these two formula. (Note that Chellas’ chapters on deontic logic in this exceptional textbook
are gems generally.) However, where Chellas states that if there are any unfulfilled obligations
(i.e. OBp and ∼p both hold), then “ours in one of the worst of all possible worlds”, this is
misleading, since the semantics does not rank worlds other than to sort them into acceptable
and unacceptable ones (relative to a world). The illuminating underlying point is that for any
world j whose alternatives are all p-worlds, but where p is false, it follows that not only can’t
j be an acceptable alternative to itself, but it can’t be an acceptable alternative to any other
world, i, either. Put simply, A4 implies that any (OBp & ∼p)-world is universally unacceptable.
However, though indeed significant, this does not express a degree or extent of badness: given
some ranking principle allowing for indefinitely better and worse worlds relative to some world
i (such as in preference semantics for dyadic versions of SDL and kin — see below), j might be
among the absolute best of the i-unacceptable worlds (i.e. ranked second only to those that are
simply i-acceptable through and through), for all A4 implies.
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Though less widely noted in textbooks, there is also a threefold classification
for classical quantifiers:

Here all conditions are divided into three jointly exhaustive and mutually ex-
clusive classes: those that hold for all objects, those that hold for none, and those
that hold for some and not for others, where no condition falls into more than
one of these three categories. These deep quantificational analogies reflect much
of the inspiration behind what is most often called “possible worlds semantics” for
alethic modal and deontic logics, to which we now turn.22 Once the analogies are
noticed, this sort of semantics seems all but inevitable.

We now give a standard “Kripke-style” possible world semantics for SDL. In-
formally, we assume that we have a set of possible worlds, W , and a relation, A,
relating worlds to worlds, with the intention that Aij iff j is a world where every-
thing obligatory in i holds (i.e. no violations of the obligations holding in i occur
in j). For brevity, we will call all such worlds so related to i, “i-Acceptable” worlds
and denote them by Ai.23 We then add that the acceptability relation is “serial”:
for every world, i, there is at least one i-acceptable world. Finally, propositions
are either true or false at a world, never both, and when a proposition, p, is true
at a world, we will often indicate this by referring to that world as a “p-world”.
The truth-functional operators have their usual behavior at each world. Our focus
will be on the contribution deontic operators are taken to make.

The fundamental idea here is that the normative status of a proposition from
the standpoint of a world i can be assessed by looking at how that proposition
fairs at the i-acceptable worlds. Let’s see how. For any given world, i, we can
easily picture the i-accessible worlds as all corralled together in logical space as
follows (where seriality is reflected by a small dot representing the presence of at
least one world):

22[von Wright, 1953] and Prior 1962 [1955] (already noted in the 1st ed., [1955]).
23The worlds related to i by A are also often called “ideal worlds”. This language is not

innocent [McNamara, 1996c].
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The intended truth-conditions, relative to i, for our five deontic operators can
now be pictured as follows:

Thus, p is obligatory iff it holds in all the i-acceptable worlds, permissible iff it
holds in some such world, impermissible iff it holds in no such world, gratuitous iff
its negation holds in some such world, and optional iff p holds in some such world,
and so does ∼p. When a formula must be true at any world in any such model of
serially-related worlds, then the formula is valid.

Kripke-Style Semantics for SDL: A more formal characterization of this seman-
tic framework follows

We define the frames (structures) for modeling SDL as follows.
F is a Kripke-SDL (or KD) Frame: F = 〈W,A〉 such that:

1. W is a non-empty set

2. A is a subset of W ×W

3. A is serial: ∀i∃jAij.

A model can be defined in the usual way, allowing us to then define truth at a
world in a model for all sentences of SDL (and SDL+):

M is an Kripke-SDL Model : M = 〈F, V 〉, where F is an SDL Frame,
〈W,A〉, and V is an assignment on F : V is a function from the
propositional variables to various subsets of W (the truth sets for
the variables — the worlds where the variables are true for this
assignment).

Let “M �i p” denote p’s truth at a world, i, in a model, M .
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Basic Truth-Conditions at a world, i, in a Model, M

[PC]: (Standard Clauses for the operators of Propositional Logic.)

[OB]: M �i OBp : ∀j [if Aij then M �j p].

Derivative Truth-Conditions

[PE]: M �i PEp : ∃j(Aij &M �j p)

[IM]: M �i IMp :∼∃j(Aij &M �j p)

[GR]: M �i GRp : ∃j(Aij &M �j∼p)

[OP]: M �i OPp : ∃j(Aij &M �j p) &∃j(Aij &M �j∼p).

p is true in the model, M(M � p) : p is true at every world in M .

p is valid (� p) : p is true in every model.

Metatheorem:
SDL is sound and complete for the class of all Kripke-SDL models.24

To illustrate the workings of this framework, consider NC (OB-D), OBp→ ∼
OB ∼p. This is valid in this framework. For suppose that OBp holds at any
world i in any model. Then each i-accessible world is one where p holds, and by
the seriality of accessibility, there must be at least one such world. Call it j. Now
we can see that ∼OB ∼p must hold at i as well, for otherwise, OB∼p would hold
at i, in which case, ∼p would have to hold at all the i-accessible worlds, including
j. But then p as well as ∼p would hold at j itself, which is impossible (by the
semantics for “∼”). The other axioms and rules of SDL can be similarly shown to
be valid, as can all the principles listed above as derivable in SDL

However, A4, the axiom we added to SDL above to get SDL+, is not valid in
the standard serial models. In order to validate A4, OB(OBp→ p), we need the
further requirement of “secondary seriality”: that any i-acceptable world, j, must
be in turn acceptable to itself. We can illustrate such an i and j as follows:

Here we imagine that the arrow connectors indicate relative acceptability, thus
here, j (and only j) is acceptable to i, and j (and only j) is acceptable to j.

24That is, any theorem of SDL is valid per this semantics (soundness), and any formula valid
per this semantics is a theorem of SDL (completeness).
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If all worlds that are acceptable to any given world have this property of self-
acceptability, then our axiom is valid. For suppose this property holds throughout
our models, and that for some arbitrary world i, OB(OBp→ p) is false at i. Then
not all i-acceptable worlds are worlds where OBp→ p is true. So, there must be
an i-acceptable world, say j, where OBp is true, but p is false. Since OBp is
true at j, then p must be true at all j-acceptable worlds. But by stipulation, j is
acceptable to itself, so p must be true at j, but this contradicts our assumption
that p was false at j. Thus OB(OBp→ p) must be true at all worlds, after all.

Two Counter-Models Regarding Additions to SDL
Here we show that A4, OB(OBp → p), is not derivable in SDL and that
SDL + OBOBp→ OBp does not imply A4.

We first provide a counter-model to show that A4 is indeed a genuine (non-
derivable) addition to SDL:

Here, seriality holds, since each of the three worlds has at least one
world acceptable to it (in fact, exactly one), but secondary seriality
fails, since although j is acceptable to i, j is not acceptable to itself.
Now look at the top annotations regarding the assignment of truth
or falsity to p at j and k. The lower deontic formuli derive from this
assignment and the accessibility relations. (The value of p at i won’t
matter.) Since p holds at k, which exhausts the worlds acceptable to
j,OBp must hold at j, but then, since p itself is false at j, (OBp→ p)
must be false at j. But j is acceptable to i, so not all i-acceptable
worlds are ones where (OBp → p) holds, so OB(OBp → p) must
be false at i.25 We have already proven that seriality, which holds in
this model, automatically validates OB-D. It is easy to show that
the remaining ingredients of SDL hold here as well.26

25Note that this is in contrast to j itself, where the latter formula does hold, for the reader can
easily verify that (OBp → p) holds at k in this model, and k is the only world acceptable to j.

26The remaining items hold independently of seriality. Completing the proof amounts to both
a proof of SDL’s soundness with respect to our semantics, and of A4’s independence (non-
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We proved above that (OBOBp → OBp) is derivable from A4. Here is a
model that shows that the converse fails. It is left to the reader to verify
that given the accessibility relations and indicated assignments to p at j and
k,OBOBp → OBp must be (vacuously) true at i, while OB(OBp → p) must
be false at i.

We should also note that one alternative semantic picture for SDL is where we
have a set of world-relative ordering relations, one for each world i in W , where
j ≥i k iff j is as good as k (and perhaps better) relative to i, where not all worlds in
W need be in the purview (technically, the field) of the ordering relation associated
with i. We then assume that from the standpoint of any world i, (a) each world
in its purview is as good as itself, (b) if one is as good as a second, and the second
is as good as a third, then the first is as good as the third, (c) and for any two
worlds in its purview, either the first is as good as the second or vice versa (i.e.
respectively, each such ≥ i is reflexive, transitive, and connected in the field of ≥i).
OBp is then true at a world i iff there is some world k that is first of all as good
as itself relative to i, and all worlds ranked as good as k from the standpoint of i
are p-worlds. Thus, roughly, OBp is true at i iff p is true from somewhere on up
in the subset of worlds in W ordered relative to i. It is widely recognized that this
approach will also determine SDL, but proofs of this are not widely available.27

However, if we add “The Limit Assumption”, that for each world i, there is
always at least one world as good (relative to i) as all worlds in i’s purview (i.e.
one i-best world), we can easily generate our earlier semantics for SDL derivatively.
We need only derive the natural analogue to our prior truth-conditions for OB:
OBp is true at a world i iff p is true at all the i-best worlds.

derivability from) SDL.
27But see [Goble, Forthcoming-b].
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Essentially, the ordering relation coupled with the Limit Assumption just gives
us a way to generate the set of i-acceptable worlds instead of taking them as
primitive in the semantics: j is i-acceptable iff j is i-best. Once generated, we
look only at what is going on in the i-acceptable worlds to interpret the truth-
conditions for the various deontic operators, just as with our simpler Kripke-Style
semantics. The analogue to the seriality of our earlier i-acceptability relation is
also assured by the Limit Assumption, since it entails that for each world i, there
is always some i-acceptable (now i-best) world. Although this ordering semantics
approach appears to be a bit of overkill here, it became quite important later on
in the endeavor to develop expressively richer deontic logics (ones going beyond
the linguistic resources of SDL). We will return to this later.

For now, we turn to the second-most well known approach to monadic deontic
logic, one in which SDL will emerge derivatively.

3 THE ANDERSONIAN–KANGERIAN REDUCTION

The Andersonian–Kangerian reduction is dually-named in acknowledgement of
Kanger’s and Anderson’s independent formulation of it around the same time.28

As [Hilpinen, 2001a] points out, the approach is adumbrated much earlier in Leib-
niz. We follow Kanger’s development here, noting Anderson’s toward the end.

3.1 Standard Syntax

Assume that we have a language of classical modal propositional logic, with a
distinguished (deontic) propositional constant:

“d ” for “all (relevant) normative demands are met”.

Now consider the following axiom system, “Kd ”:

28Kanger [1971 [1957]] (circulating in 1950 as a typescript) and Anderson [1967 [1956]] and
[Anderson, 1958].
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Kd: A1 All Tautologies (TAUT)
A2: �(p→ q) → (�p→ �q) (K)
A3: ♦d (♦d)
R1: If ⊢ p and ⊢ p→ q then ⊢ q (MP)
R2: If ⊢ p then ⊢ �q (NEC).

Kd is just the normal modal logic K with A3 added.29 A3 is interpreted as telling
us that it is possible that all normative demands are met. In import when added
to system K, it is similar to (though stronger than) the “No Conflicts” axiom, A3,
of SDL. All of the Traditional Scheme’s deontic operators are defined operators in
Kd:

OBp =df �(d→ p)
PEp =df ♦(d&p)
IMp =df �(p→∼ d)
GRp =df ♦(d& ∼ p)
OPp =df ♦(d&p)&♦(d& ∼ p).

So in Kd, p is obligatory iff p is necessitated by all normative demands being met,
permissible iff p is compatible with all normative demands being met, impermissible
iff p is incompatible with all normative demands, gratuitous iff p’s negation is
compatible with all normative demands, and optional iff p is compatible with all
normative demands, and so is ∼p. Since none of the operators of the Traditional
Scheme are taken as primitive, and the basic logic is a modal logic with necessity
and possibility as the basic modal operators, this is referred to as “a reduction”
(of deontic logic to modal logic).

Proofs of SDL-ish wffs are then just K-proofs of the corresponding modal for-
mulae involving “d ”.

29K is the basic (weakest) normal modal logic. (See the entry in this volume on modal logics by
Rob Goldblatt.) Traditionally, and in keeping with the intended interpretation, the underlying
modal logic had T as a theorem, indicating that necessity was truth-implicating. We begin with
K instead because T generates a system stronger than SDL. We will look at the addition of T
shortly. Åqvist 2002 [1984] is an excellent source on the meta-theory of the relationship between
SDL-ish deontic logics and corresponding Andersonian–Kangerian modal logics, as well as the
main dyadic (primitive conditional operator) versions of these logics. Smiley [1963] is a landmark
in the comparative study of such deontic systems. McNamara [1999] gives determination results
for various deontic logics that employ three deontic constants allowing for a “reduction” of other
common sense normative concepts.
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Two Simple Proofs in Kd:
First consider the very simple proof of OBd:

By PC, we have d → d as a theorem. Then by R2, it follows that
�(d→ d), that is, OBd.

Next consider a proof of NC, OBp → ∼OB ∼∼p. As usual, in proofs of wffs
with deontic operators, we make free use of the rules and theorems that carry
over from the normal modal logic K. Here it is more perspicuous to lay the
proof out in a numbered-lined stack:
1. Assume ∼(OBp→ ∼OB ∼p). (For reductio)
2. That is, assume

∼(�(d→ p) → ∼�(d→ ∼p)). (Def of “OB”)
3. So �(d→ p) &�(d→ ∼p). (2, by PC)
4. So �(d→ (p& ∼p)). (3, derived rule of modal logic, K)
5. But ♦d (A3)
6. So ♦(p& ∼p). (4 and 5, derived rule of modal logic, K)
7. But ∼♦(p& ∼p). (a theorem of modal logic, K)
8. So OBp→ ∼OB ∼p. (1–7, PC)

Part of the point of the Andersonian–Kangerian reduction is to find a way to
generate SDL from non-SDL resources, which can be easily done in Kd (as the
next box shows).

SDL Containment Proof
We give a proof that SDL is indeed contained in Kd.
Recall SDL:
A1: All tautologous wffs of the language (TAUT)
A2: OB(p→ q) → (OBp→ OBq) (OB-K)
A3: OBp→ ∼OB ∼p (OB-NC)
R1: If ⊢ p and ⊢ p→ q then ⊢ q (MP)
R2: If ⊢ p then ⊢ OBp (OB-NEC)

We have already shown OB-NC is derivable in Kd above, and TAUT and MP
are given, since they hold for all formulas of Kd. So we need only derive OB-K
and OB-NEC of SDL, which we will do in reverse order. Note that RM, if
⊢ r → s, then ⊢ �r → �s, is derivable in Kd, and so we rely on it in the second
proof.30

30An examination of our earlier proof that RM for OB was one of the derived rules within
SDL reveals that for any system with NEC and K governing a necessity operator, the rule RM
is derivable. Here it is again adapted for 2:

Show: If ⊢ p → q then ⊢ �p → q. (RM)
Proof: Suppose ⊢ p → q. Then by NEC, ⊢ �(p → q), and then by K ⊢ �p → �q.
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Show: If ⊢ p then ⊢ OBp. (OB-NEC)
Proof: Assume ⊢ p. It follows by PC that ⊢ d → p. So by NEC for �, we get
⊢ �(d→ p), that is, OBp.

Show: ⊢ OB(p→ q)→ (OBp→ OBq). (K of SDL)
Proof: Assume OB(p → q) and OBp. From PC alone, ⊢ (d → (p → q)) →
[(d → p) → (d → q)]. So by RM for �, we have ⊢ �(d → (p → q)) → �[(d →
p) → (d → q)]. But the antecedent of this is just OB(→ q) in disguise, which
is our first assumption. So we have �[(d→ p) → (d→ q)] by MP. Applying K
for � to this, we get �(d→ p) → �(d→ q). But the antecedent to this is just
our second assumption, OBp. So by MP, we get �(d→ q), that is, OBq.

Metatheorem: SDL is derivable in Kd.

Note that showing that the pure deontic fragment of Kd contains no more than
SDL is a more complex matter. The proof relies on already having semantic
metatheorems available. An excellent source for this is Åqvist 2002 [1984].31

In addition to containing all theorems of SDL, we note a few theorems specific
to Kd because of the non-overlapping syntactic ingredients, d,�, and ♦:

⊢ OBd
⊢ �(p→ q)→ (OBp→ OBq) (RM′)
⊢ �p→ OBp (Nec′)
⊢ OBp→ ♦p (Kant’s Law)
⊢∼♦(OBp&OB ∼p) (NC′).

These are easily proven.32

Although our underlying modal system is just K, adding further non-deontic
axiom schemata (i.e. those neither abbreviate-able via SDL wffs, nor involving
d specifically) can nonetheless have a deontic impact. To illustrate, suppose we
added a fourth axiom, one to the effect that necessity is here truth-implicating,
called axiom “T”:

T : �p→ p.

Call the system that results from adding this formula to our current system
“KTd ”. Axiom T is certainly plausible enough here, since, as mentioned above,
this approach to deontic logic is more sensible if necessity is interpreted as truth-
implicating, since it takes obligations to be things necessitated by all normative
demands being met, but in what sense, if not a truth-implicating sense of neces-
sity?

31The “pure deontic fragment” is the set of theorems of Kd that can be abbreviated using only
the truth-functions and the five standard deontic operators.

32We proved the first above, and given our definition of OB, RM′ and NEC′ follow from
standard features of the modal logic K alone, but Kant’s Law and NC′ also depend on the
distinctive deontic axiom, ♦d.
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Now with T added to Kd, we have gone beyond SDL, since we can now prove
things expressible in SDL’s language that we have already shown are not theorems
of SDL. The addition of T makes derivable our previously mentioned axiom A4 of
SDL+, which we have shown is not derivable in SDL itself:

⊢ OB(OBp→ p).33

So, reflecting on the fact that SDL+ is derivable in KTd, we see that the
Andersonian–Kangerian reduction must either rely on a non-truth-implicating con-
ception of necessity in order for its pure deontic fragment to match SDL, or SDL
itself is not susceptible to the Andersonian–Kangerian reduction. Put another way,
the most plausible version of the Andersonian–Kangerian reduction can’t help but
view “Standard Deontic Logic” as too weak.

Determinism and Deontic Collapse in the Classic A-K-Framework :
Note that adding T,�p → p, allows us to explore a classical issue connected
with determinism and deontic notions. Given axiom T is now naturally taken to
encode a truth-implicating notion of necessity in systems containing it. For this
reason, we can now easily augment KTd with an axiom expressing determinism:

⊢ p→ �p. (Determinism)

It is obvious on a moments reflection that, along with T , Determinism (as an
axiom schemata), yields a collapse of modal distinctions, since p ↔ �p, and
p ↔ ♦p would then be provable. However, we can also explore, the classical
question of what happens to moral distinctions if determinism holds. This
question is also settled from the perspective of KTd, since the following is a
derivable rule of that system:

If ⊢ p→ �p, then ⊢ p↔ OBp.

To prove this, assume Determinism, ⊢ p→ �p.

a) We first show ⊢ p→ OBp. Assume p. Then by Determinism, �p. So by
NEC′, namely �p→ OBp, we get OBp, and thus ⊢ p→ OBp.

33Proof: By T,⊢ �(d → p) → (d → p). Then by PC we can get ⊢ d → [�(d → p) → p]. From
this in turn, by NEC, we have ⊢ �(d → [�(d → p) → p]), that is OB(OBp → p).
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b) Next, we show ⊢ OBp → p. Assume OBp and ∼ p for reductio. By
Determinism, we have ∼p → � ∼p. So � ∼p. This yields OB ∼p,
by NEC′. But then we have OBp&OB ∼p, which contradicts a prior
demonstrated theorem, NC. So ⊢ OBp→ p.

So, from the standpoint of the classic Andersonian–Kangerian reduction, where
the notion of necessity is truth-implicating (and thus axiom T is intended),
the addition of the most natural expression of determinism entails that truth
and deontic distinctions collapse. This in turn is easily seen to imply these
corollaries:

If ⊢ p→ �p, then ⊢ p↔ PEp
If ⊢ p→ �p, then ⊢ OBp↔ PEp
If ⊢ p→ �p, then ⊢∼p↔ IMp
If ⊢ p→ �p, then ⊢ ∼OPp.

For example, consider the last corollary. By definition, p is optional iff neither
p nor ∼p is obligatory. But given determinism, this would entail that neither
p nor ∼p is true, which is not possible. So nothing can be morally optional if
determinism is true.

Anderson’s approach is practically equivalent to Kanger’s. First, consider the
fact that we can easily define another constant in Kd, as follows:

s =df ∼d,

where this new constant would now be derivatively read as follows:

“some (relevant) normative demands has been violated”.

Clearly our current axiom, ♦d, could be replaced with ∼�s, asserting that it is
not necessary that some normative demand is violated. We could then define OB
as:

OBp =df �(∼p→ s),

and similarly for the other four operators.
Essentially, Anderson took this equivalent course with “s” being his primitive,

and initially interpreted as standing for something like “the sanction has been
invoked” or “there is a liability to sanction”, and then ∼�s was the axiom added
to some modal system (at least as strong as modal system KT ) to generate SDL
and kin.

We should also note that Anderson was famous as a founding figure in relevant
logic. (See the entry in this volume on relevant logics by Greg Restall.) Instead
of using strict implication, �(p → q), he explored the use of a relevant (and
thus neither a material nor strict) conditional, ⇒, to express the reduction as:
OBp =df ∼p ⇒ s. (A bit more on this can be found in [Lokhorst, 2004]. See
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references there, but also see [Mares, 1992].) This alternative reflects the fact that
there is an issue in both Kanger’s and Anderson’s strict necessitation approaches
of just what notion of “necessity” we can say is involved in claiming that meetings
all normative demands (or avoiding the sanction) necessitates p?

As a substantive matter, how should we think of these “reductions”? For exam-
ple, should we view them as giving us an analysis of what it is for something to be
obligatory? Well, taking Kanger’s course first, it would seem that d must be read
as a distinctive deontic ingredient, if we are to get the derivative deontic reading
for the “reduced” deontic operators. Also, as our reading suggests, it is not clear
that d does not, at least by intention, express a complex quantificational notion
involving the very concept of obligation (demand) as a proper part, namely that all
obligations have been fulfilled, so that the “reduction”, presented as an analysis,
would appear to be circular. If we read d instead as “ideal circumstances obtain”,
the claim of a substantive reduction or analysis appears more promising, until we
ask, “Are the circumstances ideal only with respect to meeting normative demands
or obligations, or are they ideal in other (for example supererogatory) ways that go
beyond merely satisfying normative demands?” Anderson’s “liability to sanction”
approach may appear more promising, since the idea that something is obligatory
if (and only if) and because non-compliance necessitates (in some sense) liability to
(or perhaps desert of) punishment does not appear to be circular (unless the notion
of “liability” itself ultimately involves the idea of permissibility of punishment),
but it is still controversial (e.g. imperfect obligations are often thought to include
obligations where no one has a right to sanction you for violations). Alternatively,
perhaps a norm that is merely an ideal cannot be violated, in which case perhaps
norms that have been violated can be distinguished (as a subset) from norms that
have not been complied with, and then the notion of an obligation as something
that must obtain unless some norm is violated will not be obviously circular. The
point here is that there is a substantive philosophical question lingering here that
the language of a “reduction” brings naturally to the surface. The formal utility
of the reduction does not hinge of this, but its philosophical significance does.

3.2 Standard Semantics

The semantic elements here are in large part analogous to those for SDL. We have
a binary relation again, but this time instead of a relation interpreted as relating
worlds acceptable to a given world, here we will have a relation, R, relating worlds
“accessible” to a given world (e.g. possible relative to the given world). The only
novelties are two: (1) we add a simple semantic element to match our syntactic
constant “d”, and (2) we add a slightly more complex analog to seriality, one that
links the accessibility relation to the semantic element added in order to model d.
We introduce the elements in stages.

Once again, assume that we have a set of possible worlds, W , and assume that
we have a relation, R, relating worlds to worlds, with the intention that Rij iff j
is accessible to i (e.g. j is a world where everything true in j is possible relative
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to i).34 For brevity, we will call all worlds possible relative to i, “i-accessible
worlds” and denote them by Ri. For the moment, no restrictions are placed on
the relation R. We can illustrate these truth-conditions for our modal operators
with a set of diagrams analogous to those used for giving the truth-conditions for
SDL’s deontic operators. We use obvious abbreviations for necessity, possibility,
impossibility, non-necessity, and contingency:

Here we imagine that for any given world, i, we have corralled all the i-accessible
worlds together. We then simply look at the quantificational status of p (and/or
∼p) in these i-accessible worlds to determine p’s modal status back at i: at a given
world i, p is necessary if p holds throughout Ri, possible if p holds somewhere in
Ri, impossible if p holds nowhere in Ri, non-necessary if ∼p holds somewhere in
Ri, and contingent if p holds somewhere in Ri, and so does ∼p.

The only deontic element in the syntax of Kd is our distinguished constant,
d, intended to express the fact that all normative demands are met. To model
that feature, we simply assume that the worlds are divided into those where all
normative demands are met and those that are not. We denote the former subset
of worlds by “DEM” in a model. Then d is true at a world j iff j belongs to DEM.
Here is a picture where d is true at an arbitrary world j:

34Note that this means that, for generality, we assume that what is possible may vary from
one world to another. This is standard in this sort of semantics for modal logics. For example, if
we wanted to model physical possibility and necessity, what is physically possible for our world,
may not be so for some other logically possible world with different fundamental physical laws
than ours. By adding certain constraints, we can generate a picture where what is possible does
not vary at all from one world to another. (See the entry in this volume on modal logics by Rob
Goldblatt.)
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Since j is contained in DEM, that means all normative demands are met at j.35

Corresponding to simple seriality for SDL (that there is always an i-acceptable
world), we assume what I will call “strong seriality” for Kd: for every world i,
there is an i-accessible world that is among those where all normative demands are
met. In other words, for every world i, the intersection of the i-accessible worlds
with those where all normative demands are met is non-empty. Given the truth
conditions for d, strong seriality validates ♦d, ensuring that for any world i, there
is always some i-accessible world where d is true:

Given these semantic elements, if you apply them to the definitions of the five
deontic operators of Kd, you will see that in each case, the normative status of p
at i depends on p’s relationship to this intersection of the i-accessible worlds and
the worlds where all normative demands are met:

If that inter-section is permeated by p-worlds, p is obligatory, if it contains some
p-world, p is permissible, if it contains no p-world, p is impermissible, if it contains
some ∼p-world, p is gratuitous, and if it contains some p-world as well as some
∼p-world, then p is optional.36

35Note that we could add an ordering-relation semantics like that described at the end of our
section on SDL in order to generate the DEM component of these models. The main difference
would be that instead of a set of world-relative ordering relations, one for each world (e.g. ≥i)
there would be just one ordering relation, ≥, whereby all worlds in W (in a given model) would
be ranked just once. This relation would be reflexive, transitive, and connected, while satisfying
the Limit Assumption in W . DEM would then be the set of all the best worlds in W , and then
the truth conditions for d and the five deontic operators would be cast via DEM so generated.

36More explicitly, since OBp =df �(d → p), we need only look at �(d → p). The latter will be
true at a world i, iff (d → p) is true at all the i-accessible worlds. But given the truth-conditions
for the material conditional “→”, that just amounts to saying p is true at all those i-accessible
worlds (if any) where d is true, which in turn holds iff p is true at all the i-accessible worlds
falling within DEM, i.e. at there intersection (which is non-empty by strong seriality). Similarly
for the other four deontic operators.
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Kripke-Style Semantics for Kd:

A more formal characterization of this semantic picture is given here. We define
the frames for modeling Kd as follows:

F is a Kd frame: F = 〈W,R,DEM〉 such that

1. W is a non-empty set

2. R is a subset of W ×W

3. DEM is a subset of W

4. ∀i∃j(Rij & j ∈ DEM).

A model can be defined in the usual way, allowing us to then define truth at a
world in a model for all sentences of Kd (as well as for KTd).

M is a Kd Model

M = 〈F, V 〉, where F is a Kd Frame, 〈W,R,DEM〉, and V is an
assignment on F : V is a function from the propositional variables
to various subsets of W .

Basic Truth-Conditions at a world, i, in a Model, M :

[PC]: (Standard Clauses for the operators of Propositional Logic.)

[�]: M �i �p iff ∀j (if Rij then M �j p).

[d]: M �i d iff i is in DEM.

Derivative Truth-Conditions:

[♦]: M �i ♦p: ∃j(Rij &M �j p)

[OB]: M �i OBp : ∀j[if Rij & j ∈ DEM then M �j p].

[PE]: M �i PEp: ∃j(Rij & j ∈ DEM &M �j p)

[IM]: M �i IMp : ∀j[ifRij & j ∈ DEM then M �j∼p]

[GR]: M �i GRp: ∃j(Rij & j ∈ DEM &M �j∼p)

[OP]: M �i OPp : ∃j(Rij & j ∈ DEM &M �j p) &∃j(Rij & j ∈
DEM &M �j∼p).

(Truth in a model and validity are defined just as for SDL.)

Metatheorem: Kd is sound and complete for the class of all Kd models.
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If we wish to validate T,�p → p (and derivatively, A4, OB(OBp → p)), we
need only stipulate that the accessibility relation, R, is reflexive: that each world
i is i-accessible (possible relative to itself):

For then �p → p must be true at any world i, for if �p is true at i, then p is
true at each i-accessible world, which includes i, which is self-accessible. This will
indirectly yield the result that OB(OBp→ p) is true in all such models as well.

We turn now to a large variety of problems attributed to the preceding closely
related systems.

4 CHALLENGES TO STANDARD DEONTIC LOGICS

Here we consider some of the “paradoxes” attributed to “Standard Deontic Logics”
like those above (SDLs). Although the use of “paradox” is widespread within
deontic logic and it does conform to a technical use in philosophical logic, namely
the distinction between “paradox” and “antinomy” stemming from Quine’s seminal
“The Ways of Paradox” [Quine 1976 [1962]], I will also use “puzzle”, “problem”
and “dilemma” below.

To paraphrase von Wright, the number of outstanding problems in deontic logic
is large, and most of these can be framed as problems or limitations attributed
to SDLs. In this section we will list and briefly describe most of them, trying to
group them where feasible under crucial principles of SDL or more general themes.

4.1 A Puzzle Centering Around the Very Idea of a Deontic Logic

Jorgensen’s Dilemma [Jorgensen, 1937]

A view still held by many researchers within deontic logic and metaethics, and
particularly popular in the first few decades following the emergence of positivism,
was that evaluative sentences are not the sort of sentences that can be either true
or false. But then how can there be a logic of normative sentences, since logic is
the study of what follows from what, and one thing can follow from another only if
the things in question are the sort that can be either true or false? So there can be
no deontic logic. On the other hand, some normative sentences do seem to follow
from others, so deontic logic must be possible. What to do? That’s Jorgesson’s
dilemma.
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A widespread distinction is that between a norm and a normative proposition.37

The idea is that a normative sentence such as “You may park here for one hour”
may be used by an authority to provide permission on the spot or it may be used
by a passerby to report on an already existing norm (e.g. a standing municipal
regulation). The activity of using a normative sentence as in the first example is
sometimes referred to as “norming” — it creates a norm by granting permission
by the very use. The second use is often said to be descriptive, since the sentence
is then not used to grant permission, but to report that permission to do so is a
standing state. It is often maintained that the two uses are mutually exclusive,
and only the latter use allows for truth or falsity. Some have challenged the exclu-
siveness of the division, by blending semantics and speech-act theory (especially
regarding performatives), thereby suggesting that it may be that one who is in
authority to grant a permission not only grants it in performing a speech act by
uttering the relevant sentence (as in the first example), but also thereby makes
what it said true (that the person is permitted to park).38,39

4.2 A Problem Centering Around NEC

The Logical Necessity of Obligations Problem

Consider

1. Nothing is obligatory.

A natural representation of this in the language of SDL would be:

1′. ∼OBq, for all q.

We noted above that OB-NEC entails OB-N (i.e. ⊢ OB⊤); but given 1′), we
get ∼OB⊤, and thus a contradiction. SDL seems to imply that it is a truth of
logic that something is always obligatory. But it seems that what 1) expresses, an
absence of obligations, is possible. For example, consider a time when no rational
agents existed in the universe. Why should we think that any obligations existed
then?

37von Wright [1963]; Hedenius [1963 [1941]]; Alchourron and Bulygin [1971; 1981]; Makinson
[1999]. von Wright [1963] attributes the distinction to Ingemar Hedenius [1963 [1941]]. See
[Makinson and van der Torre, 2003] for a recent attempt to provide a logic of norms.

38See [Lemmon 1962a; Kamp 1974; 1979]. It is often thought that performative utterances
generally work this way [Kempson, 1977]. For example, if a marriage ceremony conducted by a
legitimate authority requires that authority to end the ceremony with the proverbial (but dated)
“You are now man and wife” in order to complete an act of marriage, the speech act utilizing this
sentence not only marries the couple (in the context), but it appears to also be a true description
of their state as of that moment.

39Perhaps this is as good a place as any to direct the interested reader to a problem much
discussed in metaethics since Hume: the so-called “Is-Ought Problem”: [Schurz, 1997] is an
excellent full length study employing the techniques of deontic and modal logic in investigating
this problem.
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von Wright [1951] notes that since the denial of ∼OB⊤ is provably equivalent
to PE⊥ (given the traditional definitional scheme and OB-RE), and since both
OB⊤ and PE⊥ are odd, we should opt for a “principle of contingency”, which
says that OB⊤ and ∼PE⊥ are both logically contingent. von Wright [1963, pp.
152–154] argues that OB⊤ (and PE⊥) do not express real prescriptions. Føllesdal
and Hilpinen [1971, p. 13] suggests that excluding OB-N only excludes “empty
normative systems” (i.e. normative systems with no obligations), and perhaps
not even that, since no one can fail to fulfill OB⊤ anyway, so why worry?40

However, since it is dubious that anyone can bring it about that ⊤, it would seem
to be equally dubious that anyone can “fulfill” OB⊤, and thus matters are not so
simple. al-Hibri [1978] discusses various early takes on this problem, rejects OB-
N , and later develops a deontic logic without it. Jones and Porn [1985] explicitly
rejects OB-N for “ought” in the system developed there, where the concern is
with what people ought to do. If we are reading OB as simply “it ought to be
the case that”, it is not clear that there is anything counterintuitive about OB⊤
(now read as, essentially, “it ought to be that contradictions are false”), but there
is also no longer any obvious connection to what is obligatory or permissible for
that reading, or to what people ought to do.

4.3 Puzzles Centering Around RM

Free Choice Permission Paradox [Ross, 1941]

Consider:

1. You may either sleep on the sofa-bed or sleep on the guest room bed.41

2. You may sleep on the sofa-bed and you may sleep on the guest room bed.

The most straightforward symbolization of these in SDL appears to be:

1′. PE(s ∨ g)

2′. PEs&PEg

Now it is also natural to see 2) as following from 1): if you permit me to sleep
in either bed, it would seem that I am permitted to sleep in the first, and I am
permitted to sleep in the second (though perhaps not to sleep in both, straddling
the two, as it were). But 2′) does not follow from 1′) and the following is not a
theorem of SDL:

∗. PE(p ∨ q) → (PEp&PEq).

40Cf. [Prior, 1958].
41I will underline key letters to serve as cues for symbolization schemes left implicit, but

hopefully clear enough.



Deontic Logic 229

Furthermore, suppose ∗ were added to a system that contained SDL. Disaster
would result. For it follows from OB−RM that PEp→ PE(p ∨ q).42 So with ∗
it would follow that PEp→ (PEp&PEq), for any q, so we would get

∗∗. PEp→ PEq,

that if anything is permissible, then everything is, and thus it would also be a
theorem that nothing is obligatory, ⊢ ∼OBp.43

Some have argued for two senses of “permissibility” here.44

The Violability Puzzle:45 Here is another puzzle centering around RM. It would
seem that it is of the very nature of obligations that they are violable in principle,
unlike simple assertions, so that the following seems to be a conceptual truth:

1. If it is logically impossible that p is false, then it is logically impossible
that p is obligatory.

But in SDL, this would naturally be expressed as a rule of inference:

If ⊢ p then ⊢∼OBp (Violability)

But since ⊤ is a logical truth, Violability would yield ∼OB⊤, which directly
contradicts theorem OB-N. Thus, SDL seems to make it a logical truth that
there are inviolable obligations. But the idea that it is obligatory that it is either
raining or not raining, something that couldn’t be otherwise on logical grounds,
seems counterintuitive. Furthermore, even in a system that lacked the force of
OB-NEC and OB-N, if it has the force of just the rule RM (if ⊢ p → q then
⊢ OBp→ OBq), then were we to also countenance the Violability rule in such a
system, we would be immediately forced to conclude that nothing is obligatory,

42This follows from RM and the definition of PE: Suppose ⊢ p → q. Then ⊢ ∼q → ∼p. So by
RM , ⊢ OB ∼q → OB ∼p, and thus ⊢ ∼OB ∼p → ∼OB ∼q, i.e. ⊢ PEp → PEq. Now just let q
be (p ∨ q).

43For suppose something was obligatory, say OBp. Then by NC, it follows that PEp. One
instance of ∗∗ above is PEp → PE ∼p. So we would then have PE ∼p, which by RE, PC and
the definition of PE amounts to ∼OBp, contradicting our assumption. Thus nothing could be
obligatory.

44For example, one sense would be as in SDL (the simple absence of a prohibition), the other
being a stronger sense of permission [von Wright, 1968] with a distinct logic that would, for
example, ratify ∗, but not ∗∗, above. Another approach was to say that this is a pseudo-
problem, since the conjunctive use of “or” in the context of a permission word can be expressed
as a conjunction of permitting conjuncts, PEp &PEq [Føllesdal and Hilpinen, 1971]. Kamp
[1974; 1979] contain detailed analyses of these issues, one sensitive to both the semantics and
pragmatics of permission.

45von Wright [1963, p. 154] comes very close to stating this objection.
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⊢∼OBp, thus rendering the system inapplicable.46 von Wright [1963, p. 154]
comes close to endorsing Violability, but the context there is more complex and
less straightforward than that above. Jones and Porn [1985] provides a system
designed explicitly to accommodate violability (among other things) for their
analysis of “ought”.

Ross’s Paradox [Ross, 1941]

Consider:

1. It is obligatory that the letter is mailed.

2. It is obligatory that the letter is mailed or the letter is burned.

In SDLs, these seem naturally expressible as:

1′. OBm

2′. OB(m ∨ b)

But ⊢ OBp → OB(p ∨ q) follows by RM from ⊢ p → (p ∨ q). So 2′ follows from
1′, but it seems rather odd to say that an obligation to mail the letter entails
an obligation that can be fulfilled by burning the letter (something presumably
forbidden), and one that would appear to be violated by not burning it if I don’t
mail the letter.

The Good Samaritan Paradox [Prior, 1958] 47

Consider

1. It ought to be the case that Jones helps Smith who has been robbed.

2. It ought to be the case that Smith has been robbed.

Now it seems that the following must be true:

Jones helps Smith who has been robbed if and only if Jones helps Smith
and Smith has been robbed.

But then it would appear that a correct way to symbolize 1) and 2) in SDLs is:

1′. OB(h& r)

46For suppose OBp. Then since by PC, ⊢ p → ⊤, it follows by OB-RM that ⊢ OBp → OB⊤.
But since by PC, ⊢ ⊤, by Violability, it follows that ⊢∼OB⊤. So by PC, ⊢∼OBp, for any p.

47Prior cast it using this variant of RM: If ⊢ p → q then ⊢ IMq → IMp (the impermissibility
of Smith being robbed then appears to wrongly imply the impermissibility of helping him who
has been robbed). See also [Åqvist, 1967], which has been very influential.
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2′. OBr.

But it is a thesis of PC that (h& r) → r, so by RM, it follows that OB(h& r) →
OBr, and then we can derive 2′ from 1′ by MP. But it hardly seems that if
helping the robbed man is obligatory it follows that his being robbed is likewise
obligatory.48

The Paradox of Epistemic Obligation [Åqvist, 1967]

This is a much-discussed variant of the preceeding paradox. Consider:

1. The bank is being robbed.

2. It ought to be the case that Jones (the guard) knows that the bank is being
robbed.

3. It ought to be the case that the bank is being robbed.

Let us symbolize “Jones knows that the bank is being robbed” by “Kjr”. Then
it would appear that a correct way to symbolize (1)–(3) in SDLs (augmented with
a “K” operator) is:

1′. r

2′. OBKjr

3′. OBr.

But it is a logical truth that if one knows that p then p is the case (surely Jones
knows that the bank is being robbed only if the bank is in fact being robbed). So
⊢ Kjr → r would hold in any system augmented with a faithful logic of knowledge.
So in such a system, it would follow by RM that ⊢ OBKjr → OBr, but then we
can derive 3′ from this conditional and 2′ by MP.49 But it hardly seems to follow
from the fact that it is obligatory that the guard knows that the bank is being
robbed, that it is likewise obligatory that the bank is being robbed. It seems that
SDL countenances inferences from patently impermissible states of affairs that

48This paradox can also be cast equivalently with just one agent, and via IM as easily as
OB: “The Victims Paradox” notes that the victim of the crime helps herself only if there was
a crime. If it is impermissible that there be a crime, it will follow under similar symbolization
that it is impermissible for the victim of the crime to help herself, which hardly sounds right.
Similarly for “The Robber’s (Repenter’s) Paradox”, where now we focus on the robber making
amends (or repenting) for his crime, and again we seem to get the result that it is impermissible
for the robber to make amends for his crime, suggesting a rather convenient argument against
all obligations to ever make amends for one’s crimes. These early variations were used to show
that certain initially proposed solutions to the Good Samaritan Paradox didn’t really solve the
problem. Both versions are found in [Nowell Smith and Lemmon, 1960].

49(1′) is not really essential here, it just helps to clarify that (2) does not express some strange
standing obligation but a transient one that emerges as a result of the de facto robbery.
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someone is obliged to know hold when they hold to the conclusion that the same
impermissible states of affairs are obligatory.50

Some RM-Related Literature: One standard response to Ross’s Paradox, the
Good Samaritan Paradox (and the Paradox of Epistemic Obligation) is to try
to explain them away. For example, Ross’s Paradox is often quickly rejected
as elementary confusion [Føllesdal and Hilpinen, 1971] or it is rejected on the
grounds that the inference is only pragmatically odd in ways that are indepen-
dently predictable by any adequate theory of the pragmatics of deontic language
[Castañeda, 1981]. Similarly, it has been argued that the Good Samaritan Para-
dox is really a conditional obligation paradox, and so RM is not the real source of
the paradox [Castañeda, 1981; Tomberlin 1981]. However, since these paradoxes
all at least appear to depend on OB-RM, a natural solution to the problems
is to undercut the paradoxes by rejecting OB-RM itself. Two accessible and
closely related examples of approaches to deontic logic that reject OB-RM from
a principled philosophical perspective are [Jackson, 1985] and [Goble, 1990a].
Jackson [1985] argues for an approach to “ought to be” that links it to coun-
terfactuals, and he informally explores its semantics and logic; Goble [1990a]
makes a similar case for “good” and “bad” (as well as “ought”), formally tying
these to logical features of counterfactuals explicitly. ([Goble, 1990b] contains
the main technical details.) Interestingly, their approaches also intersect with
the issue of “actualism” and “possibilism” as these terms are used in ethical
theory. Roughly, possibilism is the view that I ought to bring about p if p is
part of the best overall outcome I could bring about, even if the goodness of
this overall outcome, depends on all sorts of other things that I would not in
fact bring about were I to bring about p. In contrast, actualism is the view that
I ought to bring about p if doing so would in fact be better than not doing so,
and this, of course, can crucially depend on what else I would do (ideal or not)
were I to bring about p. (See [Jackson and Pargetter, 1986; Jackson, 1988], and
for early discussions of this issue, see [Goldman, 1976] and [Thomason, 1981a].)
In [Hansson, 1990], and more elaborately in [Hansson, 2001], S. O. Hansson
develops systems of deontic logic where he analyzes prohibitive and prescriptive
deontic notions in terms of abstract properties of various preference orderings
(e.g. a normative status is prohibitive whenever anything worse than something
that has that status also has it). He also sees OB-RM as the main culprit
in the paradoxes of standard deontic logic, and thus he methodically explores
non-standard frameworks where OB-RM is not sound. Hansson [2001] is also
important for its extensive and original work on preference logic and preference
structures, which, as we have already noted, are used regularly in deontic logic
(and elsewhere). A very useful general source that covers some of the issues
surrounding OB-RM, along with many others, is [van der Torre, 1997].

50Theoretically one could claim that we have a conflict of obligations here, but this seems quite
implausible. The banks’ being robbed appears to be definitely non-obligatory.
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4.4 Puzzles Centering Around NC, OD and Analogues

Sartre’s Dilemma and Conflicting Obligations [Lemmon, 1962b]51

A conflict of obligations is a situation where there are two obligations and it is
not possible for both to be fulfilled.

Consider the following conflict:

1. It is obligatory that I now meet Jones (say, as promised to Jones, my friend).

2. It is obligatory that I now do not meet Jones (say, as promised to Smith,
another friend).

Here it would seem that I have a conflict of obligations, in fact a quite direct
one, since what I promised one person would happen, I promised another would
not happen. People do (e.g. under pressure or distraction) make such conflicting
promises, and it appears that they incur conflicting obligations as a result.52 But
consider the natural representation of these in SDLs:

1′. OBj

2′. OB ∼j

But since NC, OBp → ∼OB ∼p, is a theorem of all SDLs, we can quickly
derive a contradiction from (1) and (2), which means that (1′) conjoined with
(2′) represents a logically inconsistent situation. Yet, the original hardly seems
logically incoherent.53

Kant’s Law and Unpayable Debts54 Here is a simple puzzle about OBp → ♦p.
Consider:

1. I’m obligated to pay you back $10 tonight.

2. I can’t pay you back $10 tonight (e.g. I just gambled away my last dime).

Since this puzzle typically involves some notion of possibility, let us represent
the above sentences in KTd, which includes SDL, but also has a possibility
operator:

51I change the example to have the conflict be direct and explicit. Sartre’s much cited example
is of a man obligated to join the resistance (to avenge his brother’s death and fight the Nazi
occupation) and obligated to stay home and aid his ailing mother (devastated by the loss of the
man’s brother, her son, and deeply attached to the one son still alive).

52Whether or not these obligations are both all-things-considered-obligations is a further issue.
For our purposes here, the point is that they appear to be obligations. See the upcoming puzzle,
Plato’s Dilemma, for further issues.

53von Wright [1968] refers to a conflict of obligations as a “predicament” and illustrates with
the much-cited example of Jephthah (from the Book of Judges), who promises God to sacrifice
the first living being he meets upon returning home from war, if God gives him victory, which
wish is granted, but his daughter is the first living being he meets upon his return.



234 Paul McNamara

1′. OBp

2′. ∼♦p.

(1) and (2) appear to be consistent. It seems to be a sad fact that often, people
are unable to fulfill their financial obligations, just as it seems to be a truism
that financial obligations are obligations. But in KTd, it is a theorem that
OBp → ♦p. So we derive a contradiction from this symbolization and the
assumption that 1′ and 2′ are true.
A variant example is:

1. I owe you ten dollars, but I can’t pay you back.

2. I’m obligated to pay you ten dollars, but I can’t.

(2) seems to follow from (1), and (1) hardly seems contradictory, since owing
money clearly does not entail being able to pay the money owed. Thomason
[1981b] suggests a distinction between deliberative contexts of evaluation and
judgmental contexts, where in the latter context evaluations such as 1) above
need not satisfy Kant’s law since, roughly, we go back in time and evaluate the
present in terms of where things would now be relative to optimal past options
that were accessible but no longer are.

54Kant’s law is more accurately rendered as involving agency (if Doe is obligated to bring
something about then Doe is able to do so), but the label is often used in deontic logic for
almost any implication from something’s being obligatory to something’s being possible, roughly
whatever formula comes closest to Kant’s in the system.
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Conflation of Conflicts with Impossible Obligations: Here is another puzzle as-
sociated with NC and OD, one showing that SDL conflates logically distinct
situations.

We saw above that Kant’s Law, when represented as OBp→ ♦p, is a theorem
of KTd. If we interpret possibility here as practical possibility, then as the
indebtedness example above suggests, it is far from evident that it is in fact
true. However, a stronger claim than that of Kant’s Law is that something
cannot be obligatory unless it is at least logically possible. In SDL, this might
be expressed by the rule:

If ⊢∼p then ⊢∼OBp.

This is derivable in SDL, since if ⊢∼p, then ⊢ OB ∼p by OB-NEC, and then
by OB-NC, we get ⊢∼OBp. Claiming that Romeo is obligated to square the
circle because he solemnly promised Juliet to do so is less convincing as an
objection than the earlier financial indebtedness case. So SDL is somewhat
better insulated from this sort of objection, and, as we noted earlier, we are
confining ourselves here to theories that endorse OB-OD (i.e. ⊢∼OB⊥).55

However, this points to another puzzle for SDL. The rule above is equivalent
to ⊢ OB-OD in any system with OB-RE, and in fact, in the context of SDL,
these are both equivalent to OB-NC. That is, we could replace the latter axiom
with either the former rule above or OB-OD to get a system equivalent to SDL.
In particular, in any system with K and RE, (OBp&OB ∼p) ↔ OB⊥ is a
theorem.56 But it seems odd that there is no distinction between a contradiction
being obligatory, and having two distinct conflicting obligations. It seems that
one can have a conflict of obligations without it being obligatory that some
logically impossible state of affairs obtains. A distinction seems to be lost here.
Separating OB-NC from OB-D is now quite routine in conflict-allowing deontic
logics.

Some early discussions and attempted solutions to the last two problems can
be found in [Chellas, 1980] and [Schotch and Jennings, 1981], both of whom
use non-normal modal logics for deontic logic.57 Brown [1996b] uses a similar
approach to Chellas’ for modeling conflicting obligations, but with the addition
of an ordering relation on obligations to model the relative stringency of obli-
gations, thus moving in the direction of a model addressing Plato’s Dilemma as
well.

55However see [Da Costa and Carnielli, 1986] which develops a deontic logic in the context of
paraconsistent logic.

56For first suppose OBp &OB ∼p holds. Then one instance of K is OB(∼p → ⊥) → (OB ∼
p → OB⊥). But OB-RE,OB(∼p → ⊥) is equivalent to just OBp, so we get OBp → (OB ∼
p → OB⊥) by PC. So given OBp &OB ∼p, we get OB⊥ by PC. Second assume OB⊥. By
PC,⊢ ⊥ → p. So by RM, we get OB⊥ → OBp, and then OBp. We can then generate OB ∼p
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Let me note that a long-ignored and challenging further puzzle for conflicting
obligations, called “van Fraassen’s Puzzle” [van Fraassen, 1973], has deservedly
received increasing attention of late: [Horty, 1994; 2003; van der Torre and Tan,
2000; McNamara, 2004a; Hansen, 2004] and [Goble, Forthcoming-a].

The Limit Assumption Problem: Recall our earlier mention of an ordering se-
mantics approach to SDL, and our mention there of the Limit Assumption:

that for each world i, there is always at least one world as good
(relative to i) as all worlds in i’s purview (i.e. one i-best world).

Although some in deontic logic have operated as if the Limit Assumption is
true, it is a questionable assumption to make, especially as a matter of logic. It
seems that there are possible scenarios in which the ordering of worlds in the
purview of some world i have no upper bound on their goodness. Blake Barley
gave a nice example in an unpublished paper, “The Deontic Dial”, circulated
at the University of Massachusetts-Amherst in the early 1980s: you have a dial
that you can turn anywhere from 0 to 1, where both 0 and 1 yield disaster,
but all the numbers in between yield better and better value, increasing with
the natural order of the numbers (cf. [McMichael, 1978]). In such a case, there
seems to be no real sense to the old maxim: “Do the best you can!”. This rules
out the most natural simple clause for OB per optimizing theories:

OBp is true at i iff p holds in all the i-best worlds,

for plainly in scenarios where there are no i-best worlds, everything is obligatory
and nothing is permissible by this clause, but this seems wrong: even in the dial
case, it seems clearly not obligatory to turn the dial to 1.

Lewis [1973] famously argued that the Limit Assumption (as used here or as
used for modeling counterfactuals) is an unjustified assumption, and that our
clauses for deontic (and counterfactual) operators must reflect this fact. Most
logicians agreed. This led to more complex clauses such as the one used earlier:

OBp is true at i iff p is true from somewhere on up
in the subset of worlds in W ordered relative to i,

the same way.
57Normal modal logics won’t do since K and RE hold in all such logics. Chellas uses minimal

models and Schotch and Jennings generalize Kripke models.
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and this in turn leads to greater complexity in the metatheory for such logics.
The new clause has some odd features, for example, in the case of the dial,
for each number between 0 and 1, you are obligated to turn the dial past that
number, but in the scenario, the set of such obligatory things together entail
that you turn the dial to 1, which is also forbidden. Although no conflict
will show up in the system (no formula of the form OBp and OB ∼ p will
be validated), you nonetheless have an infinite set of obligations which cannot
be jointly fulfilled, and thus a conflict of sorts, for which you can hardly be
faulted. Lewis [1978] argues contra [McMichael, 1978], that the related problem
McMichael there refers to (called “The Confinement Problem” in [McNamara,
1995]) is a problem for utilitarianism, not for deontic logic; but see [Fehige, 1994;
p. 42], who suggests that there are still choices a logician must make and that
“...When the best options are lacking, then so are flawless accounts of the lack”.
Fehige provides a systematic critical discussion of deontic logicians approaches
to the Limit Assumption.

Plato’s Dilemma and Defeasible Obligations [Lemmon, 1962b] 58

1. I’m obligated to meet you for a light lunch meeting at the restaurant.

2. I’m obligated to rush my choking child to the hospital.

Here we seem to have an indirect conflict of obligations, if we assume that sat-
isfying both obligations is practically impossible. Yet here, unlike in our prior
example, where the two promises might naturally have been on a par, we would
all agree that the obligation to help my child overrides my obligation to meet
you for lunch, and that the first obligation is defeated by the second obligation,
which takes precedence. Ordinarily, we would also assume that no other obligation
overrides my obligation to rush my son to the hospital, so that this obligation is
an all things considered obligation, but not so for the obligation to meet you for
lunch. Furthermore, we are also prone to say that the situation is one where the
general obligation we have to keep our appointments (or to keep our promises, still
more generally) has an exception — the circumstances are extenuating. Once we
acknowledge conflicts of obligation, there is the further issue of representing the
logic of reasoning about conflicting obligations where some override others, some
are defeated, some are all things considered obligations, some are not, some hold
generally, but not unexceptionally, etc. So the issue here is one of conflicting obli-
gations of different weight and the defeasibility of one of two obligations. Clearly,
there is no mechanism in SDL for this, since SDL does not allow for conflicts to
begin with, yet this is an issue that goes well beyond that of merely having a logic

58Here too I change the example. Plato’s case involves returning weapons as promised to
someone who now in a rage intends to unjustly kill someone with the weapon. Lemmon interprets
the issues raised by Sartre’s dilemma a bit differently than I do here.
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that allows for conflicts. There have been a variety of approaches to this dilemma,
and to defeasibility among conflicting obligations.

Some Literature on Defeasible Obligations: von Wright [1968] suggested that
minimizing evil is a natural approach to conflict resolution, thereby suggesting
that a sort of minimizing (and thus reliance on an ordering) is apt. Alchour-
ron and Makinson [1981] provide an early formal analysis of conflict resolution
via partial orderings of regulations and regulation sets. Chisholm [1964] has
been very influential conceptually, as witnessed, for example, by [Loewer and
Belzer, 1983]. In ethical theory, the informal conceptual landmark is [Ross,
1939]. Horty [1994] is a very influential discussion forging a link between Re-
iter’s default logic developed in AI (see [Brewka, 1989]), and an early influential
approach to conflicts of obligation, [van Fraassen, 1973], which combines a pref-
erence ordering with an imperatival approach to deontic logic. Prakken [1996]
discusses Horty’s approach and an alternative that strictly separates the defea-
sible component from the deontic component, arguing that handling conflicts
should be left to the former component only. See also [Makinson, 1993] for a
sweeping discussion of defeasiblity and the place of deontic conditionals in this
context. Other approaches to defeasibility in deontic logic that have affinities
to semantic techniques developed in artificial intelligence for modeling defeasi-
ble reasoning about defeasible conditionals generally are [Asher and Bonevac,
1996] and [Morreau, 1996], both of which attempt to represent W. D. Ross-
like notions of prima facia obligation, etc. Also notable are the discussions of
defeasibility and conditionality in [Alchourron, 1993; 1996], where a revision op-
erator (operating on antecedents of conditionals) is relied on in conjunction with
a strict implication operator and a strictly monadic deontic operator. Note that
[Alchourron, 1996; Prakken, 1996; Asher and Bonevac, 1996; Morreau, 1996]
and [Prakken, 1996] are all found in Studia Logica 57, 1996 (guest edited by
A. I. J. Jones and M. Sergot). Nute [1997] is dedicated to defeasibility in de-
ontic logic and is the best single source on the topic, with articles by many of
the key players, including Nute himself. See [Bartha, 1999] for an approach
to contrary-to-duty conditionals and to defeasible conditionals layered over a
branching time framework with an agency operator. Smith [1994] contains an
interesting informal discussion of conflicting obligations, defeasibility, violability
and contrary-to-duty conditionals. Since it is very much a subject of contro-
versy and doubt as to whether deontic notions contribute anything special to
defeasible inference relations (as opposed to defeasible conditionals), we leave
this issue aside here, and turn to conditionals, and the problem in deontic logic
that has received the most concerted attention.
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4.5 Puzzles Centering Around Deontic Conditionals

The Paradox of Derived Obligation/Commitment [Prior, 1954]

Consider the following statements:

1. (a) Bob’s promising to meet you commits him to meeting you.

(b) It is obligatory that Bob meets you if he promises to do so.

It was suggested that these might be represented in either of two ways in SDL:

1′. p→ OBm59

1′′. OB(p→ m).60

Consider (1′) first. The following are both simply tautologies: ∼r → (r → OBs)
and OBs → (r → OBs). So if 1′ reflected a proper analysis of 1a/b), anything
false would commit us to anything whatsoever (e.g. since I am not now standing
on my head, it would follow that my standing on my head commits me to giving
you all my money) and everything commits us to anything obligatory (e.g. if I’m
obligated to call you, then my standing on my head commits me to doing so).
What of 1′′ then? The following are theorems of SDL: OB ∼r → OB(r → s)
and OBs → OB(r → s). So if 1′′ reflected an apt analysis of commitment, it
would follow from SDL that anything impermissible commits us to everything,
and once again, everything commits us to anything obligatory. So, these seem
to be troublesome candidates for symbolizing 1a) or 1b) in SDL. The problems
are reminiscent of paradoxes about material implication (reading 1′), and strict
implication (reading 1′′), respectively.61 So the question arose, are there any special
problems associated with the interaction of deontic notions and conditionality?
The next paradox (Chisholm’s), increased the perception that there might very
well be. Many consider it to be the most challenging and distinctive puzzle of
deontic logic.

Contrary-to-Duty (or Chisholm’s) Paradox [Chisholm, 1963a]

Consider the following:

1. It ought to be that Jones goes to the assistance of his neighbors.

2. It ought to be that if Jones does go then he tells them he is coming.

3. If Jones doesn’t go, then he ought not tell them he is coming.

59In the 1st edition of Prior [1962 [1955]].
60In [von Wright, 1951].
61In the case of symbolization 1′′, since (r → s) is logically equivalent to (∼r∨ s), and the two

troublesome formulas associated with this symbolization reduce to OB ∼r → OB(∼r ∨ s) and
OBs → OB(∼r ∨ s), these are also instances of Ross’ Paradox given this SDL interpretation of
the sentences.
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4. Jones doesn’t go.

This certainly appears to describe a possible situation. It is widely thought that
(1)–(4) constitute a mutually consistent and logically independent set of sentences.
We treat these two conditions as desiderata. Note that (1) is a primary obligation,
saying what Jones ought to do unconditionally.62 (2) is a compatible-with-duty
obligation, appearing to say (in the context of (1)) what else Jones ought to do
on the condition that Jones fulfills his primary obligation. In contrast, (3) is a
contrary-to-duty obligation or “imperative” (a “CTD”) appearing to say (in the
context of (1)) what Jones ought to do conditional on his violating his primary
obligation. (4) is a factual claim, which conjoined with (1), implies that Jones
violates his primary obligation. Thus this puzzle also places not only deontic
conditional constructions, but the violability of obligations, at center stage. It
raises the challenging question: what constitutes proper reasoning about what to
do in the face of violations of obligations?

How might we represent this quartet in SDL? The most straightforward sym-
bolization is;

1′. OBg.

2′. OB(g → t).

3′. ∼g → OB ∼t.

4′. ∼g.

But Chisholm points out that from (2′) by principle OB-K we get OBg → OBt,
and then from (1′) by MP, we get OBt; but by MP alone we get OB ∼t from
(3′) and (4′). From these two conclusions, by PC, we get ∼(OBt →∼ OB∼t),
contradicting NC of SDL. Thus (1′)–(4′) leads to inconsistency per SDL. But (1)–
(4) do not seem inconsistent at all, so the representation cannot be a faithful
one. Various less plausible representations in SDL are similarly unfaithful. For
example, we might try reading the second and third premises uniformly, either on
the model of (2′) or on the model of (3′). Suppose that instead of (3′) above, we
use (3′′) OB(∼g → ∼t). The trouble with this is (3′′) is derivable from (1′) in
SDL, but there is no reason to think (3) in fact follows from (1), so we have an
unfaithful representation again. Alternatively, suppose that instead of (2′) above,
we use (2′′) g → OB ∼t. This is derivable from (4′) in PC (and thus in SDL). But
there is no reason to think (2) follows from (4). So again, we have an unfaithful
representation.

The following displays in tabular form the difficulties trying to interpret the
quartet in SDL:63

62Here we follow tradition (albeit self-consciously) in sloughing over the differences between
what ought to be, what one ought to do, and what is obligatory.

63The remaining truly strained combination would replace 2′ with 2′′ and 3′ with 3′′, but that
just doubles the trouble with the second and third readings, so it is routinely ignored.
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First Try : Second Try: Third Try:

1′. OBg 1′. OBg 1′. OBg
2′. OB(g → t) 2′. OB(g → t) 2′′. g → OBt
3′. ∼g → OB ∼t 3′′. OB(∼g →∼t) 3′. ∼g → OB ∼t
4′. ∼g 4′. ∼g 4′. ∼g

From 1′, 2′, OBt. 3′′ follows from 1′. 2′′ follows from 4′.
From 3′, 4′, OB ∼t. So independence is lost. So independence is lost.
By NC, OBt→ ∼OB ∼t.
So ⊥; consistency is lost.

Each reading of the original violates one of our desiderata: mutual consistency
or joint independence.

If von Wright launched deontic logic as an academic specialization, Chisholm’s
Paradox was the booster rocket that provided the escape velocity deontic logic
needed from subsumption under normal modal logics, thus solidifying deontic
logic’s status as a distinct specialization. It is now virtually universally acknowl-
edged that Chisholm was right: the sort of conditional deontic claim expressed in
3) can’t be faithfully represented in SDL, nor more generally by a composite of
some sort of unary deontic operator and a material conditional. This is one of the
few areas where there is nearly universal agreement in deontic logic. Whether or
not this is because some special primitive dyadic deontic conditional is operating or
because it is just that some non-material conditional is essential to understanding
important deontic reasoning is still a hotly contested issue.

Some Literature on Contrary-to-Duty Obligations: von Wright [1956; 1971] take
the now-classic non-componential dyadic operator approach to the syntax of
CTDs. Danielsson [1968], Hansson [1969], Lewis [1973; 1974], and Feldman
[1986] provide samples of a “next best thing” approach: the interpretation
of conditional obligations via a primitive non-componential dyadic operator,
in turn interpreted via a preference ordering of the possible worlds where the
(perhaps obligation-violating) antecedent holds; see also [Åqvist, 2002 [1984]]
for an extensive systematic presentation of this sort of approach (among other
things), and [al-Hibri, 1978] for an early widely-read systematic discussion of
a number of approaches to CTDs (among other things). van Fraassen [1972],
Loewer and Belzer [1983], and Jones and Porn [1985] also offer influential dis-
cussions of CTDs and propose distinct formal solutions, each also employing
orderings of outcomes, but offering some twists on the former more standard
pictures. An important forthcoming source on the metatheory of classical and
near-classical logics via classic and near-classic ordering structures for the dyadic
operator is [Goble, Forthcoming-b]. Mott [1973] and [Chellas, 1974] (and [Chel-
las, 1980]) offer influential analyses of the puzzle by combining a non-material
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conditional and a unary deontic operator to form a genuine componential com-
pound, p⇒ OBq, for representing conditionals like (3) above; [DeCew, 1981] is
an important early critical response to this sort of approach. Tomberlin [1983]
contains a very influential informal discussion of various approaches. Bonevac
[1998] is a recent argument against taking conditional obligation to be a prim-
itive non-componential operator, suggesting roughly that techniques like those
developed in AI (see [Brewka, 1989]) for defeasible reasoning suffice for handling
woes with CTDs. Smith [1993; 1994] contain important discussions stressing
the difference between violability and defeasibility, and the relevance of the for-
mer rather than the latter to CTDs. Åqvist and Hoepelman [1981], and van
Eck [1982] (and again, [Loewer and Belzer, 1983]) are classic representatives
of attempts to solve the puzzle by incorporating temporal notions into deontic
logic. Jones [1990] contains an influential argument against any temporal-based
general solution to the puzzle. Castañeda [1981] argued that by carefully dis-
tinguishing between (roughly) propositions and actions in the scope of deontic
operators, Chisholm’s puzzle, as well as most puzzles for deontic logic, can be
resolved; Meyer [1988] offers a version of this general approach using dynamic
logic. Prakken and Sergot [1996] contains an influential argument against any
such action-based general solution to the puzzle. For recent work on CTDs in
the context of a branching time framework with agency represented a la Horty–
Belnap, see [Horty, 1996; 2001; Bartha, 1999], and Bartha’s contribution to
[Belnap, 2001; Chapter 11]. A recent source that reviews a good deal of the
literature on CTDs and proposes its own solution is [Carmo and Jones, 2002];
but see also material on this problem in [Nute, 1997] (especially [van der Torre
and Tan, 1997], and [Prakken and Sergot, 1997]).

Appendix A2 contains additional discussion of this very important paradox.
One newer puzzle often discussed in either the context of OB-RM or in the context
of discussing conditional obligations is the following.

The Paradox of the Gentle Murderer [Forrester, 1984] 64

Consider:

1. It is obligatory that John Doe does not kill his mother.

2. If Doe does kill his mother, then it is obligatory that Doe kills her gently.

3. Doe does kill his mother (say for an inheritance).

Then it would appear that a correct way to symbolize (1) and (2) in SDLs is:

1′. OB ∼k

2′. k → OBg

64Also called “Forrester’s Paradox”.
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3′. k.

First, from 2′ and 3′, it follows that OBg by MP. But now add the following
unexceptionable claim:

Doe kills his mother gently only if Doe kills his mother.

Assuming this, symbolized as g → k, is a logical truth in an expanded system,
by OB-RM it follows that OBg → OBk, and so by MP again we get OBk. This
seems bad enough, for it hardly seems that from the fact that if I kill my mother
then I must kill her gently and that I will kill her (scoundrel that I am), we can
conclude that I am actually obligated to kill my mother. Add to this that from
OBk in turn, we get ∼OB ∼k by NC of SDL, and thus we have a contradiction
as well. So we must either construe (2) so that it does not satisfy modus ponens
or we must reject OB-RM.65

4.6 Problems Surrounding (Normative) Expressive Inadequacies of
SDL

Here we look at some monadic normative notions that appear to be inexpressible
in SDL.

The Normative Gaps Puzzle [von Wright, 1968] 66

In some normative systems, permissions, prohibitions and obligations are explicitly
given. So it would seem to be possible for there to be normative systems with gaps:
where something is neither obligatory, impermissible, nor permissible. Yet OBp∨
(PEp&PE ∼p) ∨ IMp is a thesis (“exhaustion”) of SDL (given the Traditional
Definitional Scheme), which makes any such gaps impossible.

Urmson’s Puzzle — Indifference versus Optionality [1958]

Consider:

1. It is optional that you attend the meeting, but not a matter of indifference
that you do so.

65Some have suggested this is a problem stemming from scope difficulties, others have argued
that the problem is that OB-RM is in fact invalid, and rejecting it solves the problem. ([Sinnott-
Armstrong, 1985] argues for a scope solution; [Goble, 1991] criticizes the scope solution approach,
and argues instead for rejecting OB-RM.) We have listed this puzzle here rather than under
the Good Samaritan Puzzle (in turn under puzzles associated with OB-RM) since, unlike the
Standard Good Samaritan, this puzzle seems to crucially involve a contrary-to-duty conditional,
and so it is often assumed that a solution to the Chisholm Paradox should be a solution to this
puzzle as well (and vice versa). Alternatively, one might see the puzzle as one where we end up
obligated to kill our mother gently because of our decision to kill her (via factual detachment),
and then by OB-RM, we would appear obligated to kill her, which has no plausibility by anyone’s
lights, and thus calls for rejecting OB-RM. However, this would still include a stance on contrary-
to-duty conditionals and detachment.

66See also [Alchourron and Bulygin, 1971].
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This seems to describe something quite familiar: optional matters that are
nonetheless not matters of indifference. But when deontic logicians and ethicists
gave an operator label for the condition (∼OBp& ∼OB ∼p), it was almost in-
variably “It is indifferent that p”, “INp”. But then it would seem to follow from
the theorem OBp∨(∼OBp& ∼OB ∼p)∨IM ∼p, that (∼OBp& ∼IMp) → INp,
that is, everything that is neither obligatory nor prohibited is a matter of indif-
ference. But many actions, including some heroic actions, are neither obligatory
nor prohibited, yet they are hardly matters of indifference. We might put this by
saying that SDL can represent optionality, but not indifference, despite the fact
that the latter concept has been a purported target for representation since nearly
its beginning (see also [Chisholm, 1963b] and [McNamara, 1996a]).

The Supererogation Problem [Urmson, 1958]

Some things are beyond the call of duty or supererogatory (e.g. volunteering for a
costly or risky good endeavor where others are equally qualified and no one person
is obligated). SDL has no capacity to represent this complex concept.67

The Must versus Ought Dilemma [McNamara, 1990; 1996c]

Consider:

1. Although you can skip the meeting, you ought to attend.68

This seems perfectly possible, even in a situation where no conflicting obligations
are present, as we will suppose here. 1) appears to imply that it is optional that
you attend — that you can attend and that you can fail to attend. It seems clear
that the latter two uses of “can” express permissibility. Yet “ought” is routinely
the reading given for deontic necessity in deontic logic (and in ethical theory), and
then “permissibility” is routinely presented as its dual. But then if we symbolize
1) above accordingly, we get,

1′. PE ∼p&OBp

which is just ∼OBp&OBp in disguise (given OB-RE and the Traditional Defi-
nitional Scheme). So (1′), given OB-NC, yields a contradiction. Another way to
put this is that the “can” of permissibility is much more plausibly construed as the
dual of “must” than as the dual of “ought”. This yields a dilemma for standard
deontic logic (really for most work in deontic logic):

Either deontic necessity represents “ought”, in which case, its dual
does not represent permissibility (and neither does any other construc-
tion in SDL), or permissibility is represented in SDL, but “ought” is
inexpressible in it despite the ubiquitous assumption otherwise.

67For some attempts to accommodate supererogation in deontic logic, see [Chisholm, 1963b;
Chisholm and Sosa, 1966; Humberstone, 1974; Forrester, 1975; Sajama, 1985; Hrushka and
Joerden, 1987; McNamara, 1990; 1996a; 1996b; 1999].

68Cf. [Chisholm, 1963b].
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That “ought” is the dual of permissibility is really a largely overlooked pervasive
bipartisan presupposition in both ethical theory and deontic logic.69

The Least You Can Do Problem [McNamara, 1990]

1. You should have come home on time; the least you could have done was
called, and you didn’t do even that.

The expression in the second clause has been completely ignored in the literature
on deontic logic and ethical theory both. 1) appears to express the idea that
there is some minimal but acceptable alternative (and the criticism suggested in
the emphatic third clause is that not even that minimal acceptable option was
taken, much less the preferable option identified in the first clause using “ought”).
This notion of what is minimally acceptable among the permissible options is not
expressible in SDL.

Regarding the last four problems, McNamara [1990; 1996a; 1996c; 1996b] and
Mares and McNamara [1997] attempt to devise logics distinguishing “must” from
“ought”, indifference from optionality, as well as distinctly representing “the least
you can do” idiom, and using this unstudied idiom to analyze one central sense of
“supererogation”. Appendix A3 contains a sketch of this framework for common
sense morality.

4.7 Agency in Deontic Contexts

We routinely talk about both what ought to be and what people ought to do. These
hardly look like the same things (for example, the latter notion calls for an agent,
the former does not). This issue, and the general issue of representing agency
in deontic logic has been much discussed, and continues to be an area of active
concern.

The Jurisdictional Problem and the Need for Agency70

69Jones and Porn [1986] gives an early attempt to distinguish the two, although “must” ends
up looking more like practical necessity in their framework (that which holds in all scenarios
— permissible or not) than deontic necessity. McNamara [1990; 1996c] provide cumulative case
arguments that “must” not “ought” is the dual of permissibility, and thus that it is this almost
universally ignored term “must”, not “ought”, that tracks the traditional concern in ethical
theory and deontic logic with permissibility. Forrester [1975] is an early attempt to sketch an
operator scheme distinguishing “ought” from “obligatory”.

70The following formulation of the problem has the status of reconstructed deontic folklore
in the form of an argument or problem explicitly showing the inability of SDL to be taken
to represent agential obligations. The need to eventually represent agency in order to represent
agential obligations was so widely recognized early on that arguments for it are hard to find. The
earliest reference I have found that comes close to formulating the problem in just the following
way is [Lindahl, 1977, p. 94], which explicitly uses the “none of your business” terminology.
However, it was surely known to Kanger, and fair to say it was presupposed by him in his
attempted analysis of rights-related notions as far back as his seminal paper, Kanger [1971
[1957]]. Cf. also [von Wright, 1968].
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Consider the following:

1. Jane Doe is obligated to not bring it about that your child is disciplined.

2. Jane Doe is obligated to not bring it about that your child is not disciplined.

Suppose you have a child. For almost any Jane Doe, (1) is then true: she is
obligated to not bring it about that your child is disciplined, since that is none
of her business. Similarly, for 2): she also is obligated to not bring it about that
your child is not disciplined, since bringing that about is also none of her business.
How might we represent these in SDL? Suppose we try to read the OB of SDL as
“Jane Doe is obligated to bring it about that ”;71 then how do we express (1)
and (2)? The closest we appear to be able to come is:

1′. ∼OBp.

2′. ∼OB ∼p.

But these won’t do. Collectively, (1′) and (2′) amount to saying that two
obligations are absent, that it is neither obligatory that Jane Doe brings it about
that your child is disciplined nor obligatory that she brings it about that your
child is not disciplined. But this is compatible with its being the case that both
(1) and (2) above are false. After all, suppose now that you are Jane Doe, the
single parent of your child. Then in a given situation, it may be that you, the
child’s sole parent and guardian, are both permitted to bring it about that the
child is disciplined and permitted to bring it about that the child is not disciplined,
in which case both (1) and (2) are false. (These permissions in fact appear to be
equivalent to the negations of (1) and (2).) But the falsity of (1) (and the first
permission) implies the truth of (2′) on the current reading, and the falsity of (2)
(and the second permission) implies the truth of (1′) on the current reading. So
clearly (1) and (1′) are not equivalent, nor are (2) and (2′).

Alternatively, on the proposed reading of OB, shifting the outer negation signs
to the right of the operators in (1′) and (2′) will just get us this conflicting pair:

1′′. OB ∼p

2′′. OB ∼∼p

which are hopeless candidates for symbolizing (1) and (2), which do not conflict
with one another.

Also, consider this traditional equivalence:

IMp↔ OB ∼p.

If we are going to read “OB” as having agency built into it, presumably we want
to do the same for the other operators, and so IMp above will be read as “it is

71Cf. “Jane Doe is obligated to see to it that ”, [von Wright, 1971].
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impermissible for Jane Doe to bring it about that p”. However, this renders the
left to right implication in the equivalence above unsound, for it may be true that
it is impermissible for me to discipline your child, but false that it is obligatory
for me to see to it that your child is positively not disciplined. The matter must
be left up to you.

On the face of it, the “not”s in (1) and (2) are not external to the deontic
operators, as it were, nor are they directly operating on p; rather they pertain to
Jane Doe’s agency with respect to p. They come “between” the deontic element
and the agential element, so reading OB as an amalgamation of a deontic and
agential operator does not allow for the “insertion” of any such negation. So,
unsurprisingly, it looks like we simply must have some explicit representation of
agency if we are to represent agential obligations like those in (1) and (2) above.

A Simple Kangerian Agency Framework

So let us introduce a standard operator for this missing element,

BA: Jane Doe brings it about that .72

Then clearly the following relations expressing an agent’s simple position with
respect to a proposition, p, are to be distinguished:

BAp: Jane Doe brings it about that p
BA ∼p: Jane Doe brings it about that ∼p
∼BAp: Jane Doe does not bring it about that p
∼BA ∼p: Jane Doe does not bring it about that ∼p.

Plainly, if neither of the first two hold, then the conjunction of the last two
holds. In such a case we might say that Jane Doe is passive with respect to p, or
more adequately, passive with respect to herself bringing about p or its negation.73

Let’s introduce such an operator:

PV p =df∼BAp& ∼BA ∼p.

Clearly we have here another potential set of modal operators, and we can in-
troduce rough analogues to our traditional definitional schemes for alethic modal
operators and deontic operators as follows:

ROp =df BA ∼p
NRp =df∼BA ∼p
NBp =df∼BAp
PV p =df∼BAp& ∼BA ∼p.

72“E” is often used for this operator. With two or more agents, we would need to represent
agents explicitly: BAsp, BAs′p, etc.

73This “passivity” terminology, although used elsewhere, is perhaps not ideal and can’t se-
riously be viewed as an analysis of “passivity” per se, since one might bring about neither a
proposition nor its negation, and yet be quite influential regarding it (e.g. intentionally and
actively increasing its probability without making it happen), thus the longer and more cumber-
some expression.
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The first says that it is ruled out by what our agent does that p if and only if our
agent brings it about that ∼p. Note that this notion does not apply to all things
that are ruled out per se, but only to those that are specifically ruled out by our
agent’s exercise of her agency. So contradictions, the negations of laws of nature
and of past events, are not ruled out by what our agent now does. The second
says it is not ruled out by anything our agent does that p if and only if our agent
does not bring it about that ∼p. Laws of logic (which are necessarily ruled in)
as well as contradictions (which are necessarily ruled out) are not things that are
ruled out by our agent. The third says our agent does not bring it about that p (p
is not ruled in by anything our agent does) if and only if it is false that our agent
brings it about that p. This is, of course, compatible with p’s holding for some
other reason, such as that it is a law of logic or nature, or because it holds due to
another person’s exercise of her own agency. The fourth says our agent is passive
regarding p (does nothing herself that determines the status of p) if and only if our
agent neither brings about p nor rules p out by what she does do (if anything).
Again, it does not follow from the fact that our agent leaves something open that
it is open per se. PV p is consistent with its being fixed that p and consistent with
its being fixed that ∼p, as long as neither is fixed by anything our agent has done.
These notions are all intended to have a strong agential reading.

It is quite plausible to think that the first five agential operators satisfy the
conditions of the traditional square and the traditional threefold classification
scheme:

For example, in the latter case, for every agent Jane Doe, and any proposition,
p, either Doe brings about p, or Doe brings about ∼ p, or Doe brings about
neither, and furthermore, no more than one of these three can hold (i.e. the three
are mutually exclusive and jointly exhaustive). We will come back to this in a
moment.
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Virtually all accounts of this operator take it to satisfy the rule,

If p↔ q is a theorem, so is BAp↔ BAq (BA-RE),

as well as the scheme,

BAp→ p (BA− T )

(if an agent brings about p, then p holds — “success” clause), and the schema,

(BAp&BAq) → BA(p& q) (BA-C)74

It is also the majority opinion that this operator satisfies this scheme:

∼BA⊤(BA-NO).

Consider again:

1. BAp 1′) ∼BAp

2. BA ∼p, 2′) ∼BA ∼p,

and consider pairing these with one another. Pruning because of the commutativ-
ity of conjunction, we get six combinations:

a. BAp&BA ∼p. (Contradiction given BA-T axiom)
b. BAp& ∼BAp. (PC contradiction)
c. BAp& ∼BA ∼p. (The second clause is implied by the first)
d. BA ∼p& ∼BAp. (The second clause is implied by the first)
e. BA ∼p& ∼BA ∼p. (PC contradiction)
f. ∼BAp& ∼BA ∼p. (i.e. PV p).

Recall that because of the BA-T axiom, (1) above implies (2′), and (2) implies
(1′). So the following three pruned down statuses for a proposition, p, and an
agent, s, are the only pairs that remain of the six above (redundancies are also
eliminated):

BAp,
BA ∼p,
PV p.

For the reasons alluded to already, it is easy to prove (using the above principles)
that these three statuses (regarding an agent) and a proposition, p, are indeed
mutually exclusive and jointly exhaustive, as anticipated.

74Where here we read the antecedent as implying that BAp and BAq both now hold.
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Inaction versus Refraining/Forebearing : Another operator of considerable pre-
theoretic interest is briefly discussed here. It can be defined via a condition
involving embedding of “BA”:

RFp =df BA ∼BAp.

This expresses a widely endorsed analysis of refraining (or “forbearing”).75 In
quasi-English, it is a case of Refraining by our agent that p if and only if our
agent brings it about that she does not bring it about that p. The importance
of this in agency theory is based on the assumption that refraining from doing
something is distinct from simply not doing something. In the current agential
framework, the importance of the above is reflected in the denial of this claim:

∗ : ∼BAp→ RFp.

No agent brings about logical truths, but neither does an agent bring it about
by what she does do that she doesn’t bring about such truths. It has nothing to
do with what she does. That ∗ can’t hold is easily proven given any consistent
system with BA-RE and BA-NO.76 So refraining from p is not equivalent to
merely not bringing about p. Whether or not it is of great importance in deontic
logic itself is a more controversial matter. It would hinge on matters like whether
or not there is a difference between being obligated to not bring it about that
p and being obligated to bring it about that you don’t bring it about that p.
For example, if it is true that the only things it can be obligatory for me to not
bring about are things I can only not bring about by what I do bring about
instead, then it would seem that I am obligated to not bring about p iff I am
obligated to bring it about by what I do do that I do not bring it about that p.
In this case, I would be obligated to not bring p about iff I am also obligated
to bring it about that I don’t bring it about that p. An alternative account
sometimes given of refraining is that of inaction coupled with ability: to refrain
from bringing it about that p is to be able to bring it about that p and to not
bring it about that p ([von Wright, 1963], on “forbearance”). This might be
expressed as follows:

RFp =df ∼BAp&ABp,

where “AB” is interpreted as an agential ability operator, perhaps a compound
operator of the broad form “♦BAp”, with “♦” suitably constrained (e.g. as
what is now still possible or still possible relative to our agent). In some frame-
works, the two proposed analysans of RF are provably equivalent (e.g. [Horty,
2001]).77 Informally one might argue that if I am able to bring it about that p
and don’t, then I don’t bring it about that p by whatever it is that I do bring
about, and so I refrain per the first analysis; and if I truly bring it about by
what I do that I don’t bring it about that p, then I must have been able to bring
it about that p even though I didn’t, so I refrain per the second analysis.

75It has been most utilized by Belnap and coworkers. See [Belnap, 2001], and its references to
prior papers.
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It is beyond the scope of this essay to delve non-superficially into the logic of
agency,78 and here we can only barely touch on the more complex interaction
of such logics with deontic logics by keeping the agency component exceedingly
simple. Appendix A4 contains a brief sketch of a less abstract and more detailed
influential framework for agency, STIT theory.

The Meinong–Chisholm Reduction for Agential Obligations [Chisholm, 1964] 79

Let us set aside the jurisdictional problem as having established the need to go be-
yond SDL in order to represent agential obligations. Returning to deontic matters,
the question arises: how do we represent not just agency, but agential obligation?
With an agency operator in hand, we might now invoke the famous “Meinong–
Chisholm Reduction”: the idea that Jane Doe’s obligation to do some thing is
equivalent to what it is obligatory that Jane do (cf. what Jane ought to do is
what it ought to be that Jane does). If we regiment this a bit using our operator
for agency, we get the following version of the “reduction”:

Meinong–Chisholm Reduction: Jane Doe is obligated to bring it about
that p iff it is obligatory that Jane Doe brings it about that p.

This is sometimes taken to be a reduction of personal obligation to impersonal
obligation and agency (or it is sometimes rephrased as a reduction of the personal
“ought to do” to the impersonal “ought to be” and agency).80 Although not
uncontested (e.g. see [Horty, 2001]), by relying on this analysis we appear to have
a way to represent the troublesome sentences, (1) and (2) of the jurisdictional
problem:

1′′. OB ∼BAp,

2′′. OB ∼BA ∼p.

These might be taken to assert that Jane Doe is positively obligated to not bring
it about that p and that she is also positively obligated to not bring it about
that ∼p. Here we can properly express the fact that she is positively obligated
to be non-agential with respect to the status of both p and ∼p. These are easily
distinguished from the claims that Jane Doe is not obligated to bring about p (i.e.

76Suppose S is any consistent system with BA-NO, BA-RE and PC: For reductio assume
⊢ ∼BAp → RFp. By BA-NO,⊢ ∼BA⊤. So by our assumption, ⊢ RF⊤. Now by PC,
⊢ ∼BA⊤ ↔ ⊤. So by BA-RE, ⊢ ∼BA ∼BA⊤. So by definition of RF , we have ⊢ ∼RF⊤, and
hence an inconsistent set of theorems.

77But not so for the “achievement” agency operator in [Belnap, 2001].
78See the following sources, and the references therein: [Segerberg, 1982; Elgesem, 1993; 1997;

Hilpinen, 1997a; 1997b; Segerberg 1997; Belnap, 2001].
79Meinong 1972 [1917]; Chisholm [1964] attributes the idea’s endorsement to Nicolai Hartmann

as well.
80More generally, it can be seen as a reduction of an agential deontic operator to a non-agential

deontic operator (but not necessarily an impersonal one) and a non-deontic agency operator
([Krogh and Herrestad, 1996] and [McNamara, 2004a]).
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∼OBBAp) and that she is not obligated to bring about ∼p (i.e. ∼OBBA ∼p).
Similar remarks hold for our earlier equivalence IMp↔ OB ∼p.

Generally, if we substitute “BAp” for p in the traditional definitional scheme’s
equivalences, we get:

IMBAp↔ OB ∼BAp
PEBAp↔ ∼OB ∼BAp
GRBAp↔ ∼OBBAp
OPBAp↔ ∼OBBAp& ∼OB ∼BAp.

If we now read each deontic operator as “it is for Jane Doe that”, so that
it is impersonal but not agential,81 the earlier problem with IMp ↔ OB ∼p,
coupled with trying to read the agency into the deontic operators, disappears. For
the deontic-agential compound above gets things right: it is impermissible that
Jane Doe brings it about that your child is disciplined iff it is obligatory that she
does not bring it about that your child is disciplined. We can now clearly and
distinctly express the idea that something is simply out of Jane Doe’s jurisdiction.

This general approach to obligations to do things has been very widely employed
in deontic logic.82 Recently, [Krogh and Herrestad, 1996] and [McNamara, 2004a]
reinterpret the analysis so that the deontic operator is personal, yet not agential.
This is arguably a more plausible way to preserve a componential analysis of
agential obligation. [McNamara, 2004a] also makes the case that a person’s being
obligated to be such that a certain condition holds (e.g. being obligated to be at
home at noon, as promised) is the more basic idiom, and being obligated to bring
about something is just being obligated to be such that you do bring it about.

Appendix A4 contains a brief discussion of the Meinong–Chisholm Analysis in
the context of STIT theory.

A Glimpse at the Theory of Normative Positions [Kanger, 1971; 1957]

One way in which the Meinong–Chisholm analysis has been fruitfully employed
is in the study of what are called “normative positions”. A set of normative
positions is intended to describe the set of all possible mutually exclusive and

81McNamara [2004a].
82For example, see [Kanger, 1971 [1957]; Lindahl, 1977; Porn, 1970; 1977; 1989; Horty, 1996;

Jones and Sergot, 1996; Santos and Carmo, 1996; Belnap, 2001]. As indicated earlier, [Horty,
1996] and [Horty, 2001] is of interest for (among other things) its argument against the Meinong–
Chisholm reduction (see Appendix), and for providing an alternative non-componential analysis
of agential obligation in the context of a branching-time analysis of agency. McNamara [2004b]
provides a critical exposition of the basic framework. This is in contrast to the branching-time
approach to deontic contexts in [Belnap and Bartha, 2001], where agential obligation is a com-
ponential compound of an agency operator and an obligation operator (one in turn analyzed via
an Andersonian–Kangerian reduction). Another alternative to the major trend above, one that
would unfortunately also take us too far afield, is the adaptation of modal logics for representing
computer programs (e.g. dynamic logic) to represent actions in deontic logic. A classic source
here is [Meyer, 1988] which combines a dynamic logic approach to action with an adaptation of
the Andersonian–Kangerian reduction to generate deontic notions. See also [Segerberg, 1982].
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jointly exhaustive positions that a person or set of persons may be in regarding a
proposition and with respect to a set of selected primitive normative statuses and
a set of agency operators. For a given proposition, p, recall the partition regarding
how Jane Doe may be positioned agentially with respect to p:

(BAp ∨ROp ∨ PV p) & ∼(BAp&ROp) & ∼(BAp&PV p) & ∼(ROp&PV p).

Now also recall our partition with respect to obligations:

(OBp ∨ IMp ∨OPp) & ∼(OBp& IMp) & ∼(OBp&OPp) & ∼(IMp&OPp).

We might consider “merging” these two partitions, as it were, and try to get a
representation of the possible ways Jane Doe may be positioned normatively with
respect to her agency regarding p. Given certain choices of logic for BA and for
OB, we might get a set of mutually exclusive and exhaustive “normative positions”
for Jane Doe regarding p, the basic normative status, OB, and the basic agency
operator, BA, such as that pictured below:

As usual, the partition above is intended to assert that the following seven
classes are mutually exclusive and jointly exhaustive:

OBBA ∼p

OBBAp

PEBAp&PEROp &PEPV p (∼OB ∼BAp & ∼OB ∼BA ∼p & ∼OB ∼PV p)
PEBAp&PEROp &OB ∼PV p (∼OB ∼BAp & ∼OB ∼BA ∼p &OB ∼PV p)
PEBAp&OB ∼ROp &PEPV p (∼OB ∼BAp &OB ∼BA ∼p & ∼OB ∼PV p)
OBNBp&PEROp &PEPV p (OB ∼BAp& ∼OB ∼BA ∼p & ∼OB ∼PV p)
OBPV p (i.e. OBNBp&OBNRp, given OB-C &OB-M)

The respective cases where it is permissible, impermissible, optional or gratuitous
to bring about p are indicated as well.
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Some Literature on the Theory of Normative Positions: The theory of norma-
tive positions has been a dynamic area of research that we have barely touched
on here. It has been an important and active area since its inception in Stig
Kanger’s seminal work [Kanger, 1971; [1957]; 1972], developed in a book-length
study in [Lindahl, 1977], and thus sometimes referred to as “the Kanger–Lindahl
theory”. It has been used in attempts to analyze legal relations, like those made
famous by [Hohfeld, 1919], among other things. The Kanger–Lindahl theory has
been further developed by [Jones and Sergot, 1993; Sergot, 1999; Herrestad and
Krogh, 1995] and [Lindahl, 2001]. See also [Allen, 1996] for a somewhat different
approach to Hohfeldian legal relations, and Porn [1970; 1977] for a framework
employed to analyze various normatively laden social positions and relations.
Lindahl [2001] provides an excellent overview and orientation on Kanger’s work
in this area, and various problems informing subsequent research. (Other stun-
ning contributions of Kanger to deontic logic are discussed in [Hilpinen, 2001b]
in the same volume.) Sergot [1999] takes the formal work of normative positions
to a new level of abstraction and precision, and the later work mentioned above
by Lindahl, and Herrestad and Krogh continue the exploration of refinements
of the earlier Kanger–Lindahl conceptual framework to adapt it better to the
analysis of legal notions.

Deontic Compliments: One current issue in dispute is whether or not deontic
operators call for agential complements or not. We outline the issue loosely
here. Consider:

Libertarian Deontic Compliment Thesis (LDCT): Any of the funda-
mental five deontic operators followed by any sentential compliment
is well-formed.

Let an LDCT system be any classical sentential modal logic containing any of
the above deontic operators (but at least OB) that satisfies LDCT. In contrast,
consider the

Strict Deontic Compliment Thesis (SDCT): Each fundamental de-
ontic status must be followed immediately by an operator ascribing
agency to an agent (here, by “BA”) to be well-formed.

A strict omission is now a wff of the form RFp (i.e. BA ∼BAp). “∼BAp” is
just a non-action. Strict deontic omissions are deontic operators immediately
followed by strict omissions.
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Recall that if we substitute “BAp” for “p” in the equivalences associated with
the Traditional Definitional Scheme, we get:

IMBAp↔ OB ∼BAp
PEBAp↔ ∼OB ∼BAp
GRBAp↔ ∼OBBAp
OPBAp↔ ∼OBBAp& ∼OB ∼BAp.

The instances above are all consistent with LDCT, but not SDCT. Essen-
tially, non-action statements would have to be replaced by strict omissions.
The needed replacements are given below with underlining stressing the trouble
spots from the perspective of SDCT:

IMBAp ↔ OB∼BAp IMBAp ↔ OBBA ∼BAp

PEBAp ↔ ∼OB∼BAp PEBAp ↔ ∼OBBA ∼BAp

GRBAp ↔ ∼OBBAp (original is fine per SDCT)
OPBAp ↔ ∼OBBAp& ∼OB∼BAp OPBAp ↔ ∼OBBAp& ∼OBBA ∼BAp.

Belnap [2001] provisionally endorses SDCT. McNamara [2004a] raises doubts
about SDCT. He notes that we are sometimes obligated to be a certain way
(e.g. to be in our office), and furthermore, it is plausible to think that agential
obligations reduce to this form — to obligations to be the agents of states of
affairs, so that obligations to be a certain way are analytically prior to agential
obligations.

An Obligation Fulfillment Dilemma [McNamara, 2004a]83

Obligations can be fulfilled and violated. These are among the most charac-
teristic features of obligations. It is often thought that fulfillment and violation
conditions for what is obligatory are easily represented in SDL as follows:

OBp& p (fulfillment)
OBp& ∼p (violation).

Call this the “Standard Analysis”. Now consider cases where p is itself some
agential sentence, say BAq, where we continue to read this as saying that Jane
Doe brings it about that q. The Standard Analysis then implies:

OBBAq&BAq (fulfillment?)
OBBAq& ∼BAq (violation?).

83This puzzle/dilemma is made explicit as such in [McNamara, 2004a], and one solution is
there explored. However, the issue derives from [Krogh and Herrestad, 1996], who note that
obligations can be yours yet fulfilled by someone else, and they use this distinction to offer a
solution to the Leakage Problem below.
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These suggest that Doe’s obligation to bring it about that q is fulfilled iff she
brings it about that q and is violated iff she doesn’t. But if this is the proper
analysis of obligation fulfillment, then it is hard to see how someone else could
ever fulfill our obligations when we don’t fulfill ours, for then our obligation would
be unfulfilled and violated according to the Standard Analysis. Yet surely people
can fulfill other people’s obligations, and when they do so, it certainly seems to
follow that our obligation is fulfilled. So the question then becomes, just what is
obligatory? It would seem that it can’t be that what is obligatory is that Jane
Doe brings it about that p, for it is incoherent to say that someone else does that
unless we mean that someone else gets Jane Doe to bring it about that p; but that
is hardly the usual way in which we fulfill other’s obligations. I might bring your
book back to the library for you, thereby fulfilling one of your obligations without
getting you to return the book yourself, at gunpoint say. So we face a dilemma:

Since others can sometimes discharge our obligations, either our obli-
gations are not always obligations for us to do things, and thus personal
obligations need not be agential or obligation fulfillment is more com-
plex than has been previously realized, and perhaps both [McNamara,
2004a].

The Leakage Problem [Krogh and Herrestad, 1996] 84 This is a problem closely
related to the preceding one. As noted previously, when discussing two or more
agents, subscripts are usually introduced to identify and distinguish the agents,
for example BAip&BAjq would indicate that i brings it about that p and j
brings it about that q. Now let’s assume that one agent can sometimes bring
it about by what she does that another agent brings some thing about. For
example, let’s suppose that a parent can sometimes bring it about that a child
brings it about that the child’s room is cleaned (however rare this may in fact
be). Carmo notes the following problem for the Meinong–Chisholm analysis.
Consider:

1. BAiBAjp→ BAjp

2. OBBAiBAjp→ OBBAjp

(1) follows from BA−T , the virtually universally endorsed “success” condition
for the intended agency operator. (1) is a logical truth. But then, in any system
containing OB-RM, (2) will be derivable from (1), and so if (1) is a theorem in
that system, (2) will be as well. But given the Meinong–Chisholm analysis, this
will imply that if I am obligated to bring it about that someone else does some
thing, then she is obligated to do that thing as well. However, this is surely

84Krogh and Herrestad [1996] attributes the identification of this problem to Jose Carmo.
They offer a solution there by distinguishing between personal and agential obligations.
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false. If I am obligated to get my very young child to feed herself, it does not
follow that she is herself, at her young age, obligated to feed herself, even if she
is just becoming capable of doing so.
So it appears that the natural augmentation of SDL with an agency opera-
tor allows my obligation to implausibly “leak” beyond its proper domain and
generate an obligation for her.

4.8 Challenges regarding Obligation, Change and Time

Although we have seen that obligations can be obligations to be (i.e. to satisfy
a condition) as well as obligations to do, and that the former may be a special
case of the latter, nonetheless, it is plausible to think that one is obligated to
do something only if that thing is in the future. Thus even if attempts to solve
Chisholm’s contrary to duty paradox by invoking time do not look very plausible,
this does not mean that there is no interesting work needed to forge relationships
between time and obligations. For example, consider the system Kd. If we read
d atemporally as all obligations past, present, and future are met, then the only
relevant worlds are those so ideal that in them there has never been a single
violation of a mandatory norm. But as a parent, I may be obligated to lock the
front door at night even though this would not be a norm unless there had been
past violations of other norms (e.g. against theft and murder). People also acquire
obligations over time, create them for themselves and for others by their actions,
discharge them, etc.85

CONCLUSION

Plainly, there are a number of outstanding problems for deontic logic. Some see this
as a serious defect; others see it merely as a serious challenge, even an attractive
one. There is some antecedent reason to expect that the challenges will be great in
this area. Normativity is challenging generally, not just in deontic logic. Normative
notions appear to have strong semantic and pragmatic features. Normative notions
must combine with notions for agency and with temporal notions to be of maximal
interest — which introduces considerable logical complexity. There is also reason

85Two classics on time and deontic logic are [Thomason, 1981b] and [Thomason, 1981a],
where temporal and deontic interactions are discussed, including an often invoked distinc-
tion between deliberative ‘ought’s (future-oriented/decision-oriented ‘ought’s) versus judgmental
‘ought’s (past, present or future oriented ‘ought’s from a purely evaluative, rather than action-
oriented perspective). (Cf. the notion of “cues” for action in [van Eck, 1982].) Some other
important earlier entries are [Loewer and Belzer, 1983; van Eck, 1982; Åqvist and Hoepelman,
1981], and [Chellas, 1969]. For a sample of some recent work, see [Bailhache, 1998] and her refer-
ences to her earlier work and that of others, as well as [Brown, 1996a] for an attempt to develop
a diachronic logic of obligations, representing obligations coming to be, and being discharged
over time, where, for example, someone can now have an obligation to bring about p only if p is
(now) false.
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to think that there are hidden complexities in the interaction of normative notions
and conditionals. Finally, there appears to be a wide array of normative notions
with interesting interactions, some easily conflated with others (by ethicists as
much as deontic logicians). Clearly, there is a lot of work to be done.
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[Åqvist, 1967] L. Åqvist. Good Samaritans, Contrary-to-Duty Imperatives, and Epistemic Obli-
gations. Nous, 1: 361–379, 1967.
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APPENDICES

A.1 Alternative Axiomatization of SDL

The following alternative axiom system, which is provably equivalent to SDL,
“breaks up” SDL into a larger number of “weaker parts” (SDL a la carte, as it
were). This has the advantage of facilitating comparisons with other systems that
reject one or more of SDL’s theses in response to one or more of the problems
discussed above.86

SDL′: A1. All tautologous wffs of the language (TAUT)
A2′. OB(p& q) → (OBp&OBq) (OB-M)
A3′. (OBp&OBq) → OB(p& q) (OB-C)
A4′. ∼OB⊥ (OB-OD)
A5′. OB⊤ (OB-N)
R1. If ⊢ p and ⊢ p→ q, then ⊢ q (MP)
R2′. If ⊢ p↔ q, then OBp↔ OBq (OB-RE).

We recall SDL for easy comparison:

SDL: A1. All tautologous wffs of the language (TAUT)
A2. OB(p→ q) → (OBp→ OBq) (OB-K)
A3. OBp→ ∼OB ∼p (OB-D)
MP. If ⊢ p and ⊢ p→ q then ⊢ q (MP)
R2. If ⊢ p then ⊢ OBp (OB-NEC).

Below is a proof that these two system are “equipollent”: any formula derivable
in the one is derivable in the other.

I. First, we need to prove that each axiom (scheme) and rule of SDL′ can be
derived in SDL. A1 and R1 are common to both systems, so we need only
show that A2′–A5′ and R2′ are derivable.

Recall that OB-RM, and OB-RE (i.e. R2′ are derivable in SDL:

Show: If ⊢ p→ q, then ⊢ OBp→ OBq. (OB-RM)
Proof: Assume ⊢ p→ q. By OB-NEC, ⊢ OB(p→ q), and then by OB-K,
⊢ OBp→ OBq.
Corollary: If ⊢ p↔ q then ⊢ OBp↔ OBq (R2′ or OB-RE)

So it remains to be shown that A2′–A5′ are derivable in SDL, and to do so
we make free use of our already derived rules, OB-RM and OB-RE.

Show: ⊢ OB(p& q) → (OBp&OBq) (A2′ or OB-M)
Proof: By PC,⊢ (p& q) → p. So by OB-RM ⊢ OB(p& q) → OBp. In the
same manner, we can derive ⊢ OB(p& q) → OBq. From these two, by PC,
we then get OB(p& q) → (OBp&OBq).

Show: ⊢ (OBp&OBq) → OB(p& q) (A3′ or OB-C)

86The interrelationships between the rules and axioms which constitute the equivalence be-
tween these systems is taken for granted in work on deontic logic, and is thus useful to know.
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Proof: By PC,⊢ p → (q → (p& q)). So by OB-RM ⊢ OBp → OB(q →
(p& q)). But by OB-K, we have ⊢ OB(q → (p& q)) → (OBq → OB(p& q)).
So from these two, by PC, ⊢ OBp→ (OBq → OB(p& q)), which is equiv-
alent by PC to ⊢ (OBp&OBq)→ OB(p& q).

Show: ⊢ ∼OB⊥ (A4′ or OB−OD)
Proof: (By reductio) Assume OB⊥. Since by PC,⊢ ⊥ ↔ (p& ∼p), by
OB-RE, we get ⊢ OB⊥ ↔ OB(p& ∼p). So from this and our assumption,
we get OB(p& ∼p). Given OB-M , this yields OBp&OB ∼p, and then
from A3 of SDL, we get OBp& ∼OB ∼p, a contradiction. So ⊢ ∼OB⊥.

Show: ⊢ OB⊤ (A5′ or OB-N)
Proof: By PC,⊢ ⊤. So By OB−NEC, we have ⊢ OB⊤.

II. It remains for us to show that each axiom (scheme) and rule of SDL can
be derived in SDL′. Again, A1 and R1 are common to both systems, so we
need only show that A2, A3 and R2 are derivable in SDL′. It will be useful
(but not necessary) to first show that OB-RM is derivable in SDL′, and then
show the remaining items.

Show: If ⊢ p→ q, then ⊢ OBp→ OBq. (OB-RM)
Proof: Assume ⊢ p → q. By PC, it follows that ⊢ p ↔ (p& q). So
by R2′, ⊢ OBp ↔ OB(p& q), and so by PC,⊢ OBp → OB(p& q). But
by A2′, ⊢ OB(p& q) → (OBp&OBq). So from the last two results, by
PC,⊢ OBp→ (OBp&OBq), and thus ⊢ OBp→ OBq.

Corollary: OB−RM is inter-derivable with OB-RE + OB-M .

This follows from the preceding proof and the earlier proof of OB-M show-
ing that SDL contains SDL′.

Show: ⊢ OB(p→ q) → (OBp→ OBq) (A2 or OB-K)
Proof: By PC,⊢ ((p→ q) & p) → q. So by OB-RM, ⊢ OB((p→ q) & p) →
OBq. But by A2′ conjoined with A3′, we get ⊢ OB((p → q) & p) ↔
(OB(p → q) &OBp). So from the last two results, by PC, we get ⊢
(OB(p→ q) &OBp)→ OBq, and thus ⊢ (OB(p→ q) → (OBp→ OBq).87

Show: ⊢ OBp→ ∼OB ∼p (A3 or OB-D)
Proof: (Reductio) Assume ∼(OBp→ ∼OB ∼p). By PC, (OBp&OB ∼p).
So by A3′, OB(p& ∼p), which is equivalent, by R2′ to OB⊥, which con-
tradicts A4′.

Show: If ⊢ p then ⊢ OBp (R2 or OB-NEC)

87A direct proof of A2 without first proving RM is:

Show: ⊢ OB(p → q) → (OBp → OBq) (A2 or OB-K)
Proof: By PC,⊢ ((p → q)& p) ↔ (p & q). So by R2′, ⊢ OB((p → q)& p) ↔ OB(p & q).
But by A2′ conjoined with A3′, we get ⊢ OB((p → q)& p) ↔ (OB(p → q)&OBp). So
from the last two results, by PC, we get ⊢ (OB(p → q)&OBp) ↔ OB(p & q), and thus
⊢ (OB(p → q)&OBp) → OB(p & q). But by A2′, we have ⊢ OB(p & q) → (OBp &OBq). So
from the last two results, by PC, we get ⊢ (OB(p → q)&OBp) → (OBp & OBq), and thus
⊢ (OB(p → q) → (OBp → OBq).
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Proof: Assume ⊢ p. From this by PC, it follows that ⊢ p↔ ⊤. So by R2′,
⊢ OBp↔ OB⊤. But then from A5′, we get ⊢ OBp. So if ⊢ p then ⊢ OBp.

A.2 A Bit More on Chisholm’s Paradox

Recall the quartet and its most natural symbolization in SDL:

1. It ought to be that Jones goes to assist his neighbors. 1′) OBg.

2. It ought to be that if Jones goes, then he tells them he is
coming. 2′) OB(g → t).

3. If Jones doesn’t go, then he ought not tell them he is
coming. 3′) ∼g → OB ∼t.

4. Jones doesn’t go. 4′) ∼g.

There is a general point to be made regarding the key inferences that generate
the paradox per the above symbolization. There is a sense in which the inference
from (1′) and (2′) to OBt and the inference from (3′) & (4′) to OB ∼t involve
“detachment” of an obligation from a pair of premises, one of which involves a
deontic conditional in some way. Let us introduce a bit of regimentation. Let

“OB(q/p)”

represent a shorthand for a conditional obligation or ought statement like that in
the natural language sentence, (3), above.88 So we will read OB(q/p) as “if p, then
it ought to be (or it is obligatory) that q”, in the manner of (3) above. Suppose we
also assume, as almost all have,89 that monadic obligations are disguised dyadic
obligations, per the following analysis:

OBp =df OB(p/⊤).

With this in mind we distinguish between two relevant types of “detachment prin-
ciples”90 that we might ascribe to these iffy-ought’s:

Factual Detachment (FD): p&OB(q/p).→ OBq
Deontic Detachment (DD): OBp&OB(q/p).→ OBq

Factual detachment tells us that from the fact that p, and the deontic conditional
to the effect that if p then it ought to be that q, we can conclude that it ought
to be that q. Deontic Detachment in contrast tells us that from the fact that it
ought to be that p and that if p, then it ought to be that q, we can conclude
that it ought to be that q. If we interpret a deontic conditional as a material

88We continue to ignore the differences between “obligation” and “ought” for simplicity.
89Alchourron [1993] is a salient exception.
90Greenspan [1975].
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conditional with an obligatory consequent (as in (3′) above), FD, but not DD is
supported in SDL. Conversely, if we interpret deontic conditionals as obligatory
material conditionals (as in (2′) above), DD, but not FD is supported in SDL.91

Although we have shown earlier that neither of these interpretations is acceptable,
the contrast reveals a general problem. Carte blanche endorsement of both types
of detachment (without some restriction) is not tenable, since it leads implausibly
to the conclusion that we are both obligated to tell (the neighbor we are coming)
and obligated to not tell. Thus researchers tended to divide up over which principle
of the two they endorse [Loewer and Belzer, 1983]. The Factual Detachment camp
typically endorse the view that the conditional in 3) in the Chisholm Quartet
needs to be interpreted as a non-material conditional, but otherwise things are as
they seem in 3): we have a conditional obligation that is a simple composite of a
non-deontic conditional and a pure unary deontic operator in the consequent:

OB(q/p) =df p ⇒ OBq, for some independent non-material condi-
tional.92

Typically, the conditional was a non-classical conditional of the sort made fa-
mous by Stalnaker and Lewis.93 It is then generally maintained that deontic
detachment is flawed, since the conditional obligations like those in (2) tell us only
what to do in ideal circumstances, but they do not necessarily provide “cues”94

91As already noted, some reject both analyses and think deontic conditionals are sui generis.
Note also that 2) above has the conditional explicitly in the scope of the English “ought to be”
operator, and this is not explicitly a deontic conditional as just characterized unless we add that
it should be read as at least necessarily equivalent to “if Jones does go, then he ought to tell
them he is coming”. There is no uniform agreement about this, although often the Chisholm
Paradox is characterized so that both (2) and (3) above would have the same superficial form
(“if . . . , then it ought to be that. . . ”), with the deontic term appearing in the second clause. We
have instead followed Chisholm’s original formulation. In either event, the inference from (1)
and (2) to “it ought to be that Jones tells” is also called “deontic detachment” as is that from
their formal analogues in SDL, where OB-K validates the inference from (1′) and (2′) to OBt.

92Ignoring the Chisholm quartet, Smith [1994] notes that adding factual detachment to SDL
with OB(q/p) interpreted as OB(p → q), yields Mally’s problem: ⊢ OBp ↔ p. That SDL yields
the first half, p → OBp, given factual detachment, is easily seen. Just substitute p for q in FD
to yield ⊢ p &OB(p → p). → OBp. Then, since ⊢ OB(p → p) by OB-N , it can fall out and
we get ⊢ p → OBp. Note that the proof depends crucially on the highly controversial rule of
necessitation. However, Smith, crediting Andrew Jones, pointed out that even a very minimal
deontic logic entails the second half of the equivalence in question, OBp → p, which is still
enough to make Voltaire grin.

Thm: For any system with PL, OB-D &OB-RE, FD yields ⊢ OBp → p.
Proof: Assume PL, OB-D,OB-RE and FD. By substitution of ⊥ for q in FD, we get
⊢ p &OB(p → ⊥) → OB⊥. So from that and OB-D, we get ⊢∼(p &OB(p → ⊥)), that is
⊢∼p∨ ∼OB(p → ⊥). From the latter by OB-RE we get ⊢∼p∨ ∼OB ∼p, that is ⊢ OB ∼p →∼p,
which by substitution of ∼p for p, along with OB-RE, yields ⊢ OBp → p.

Given how minimal OB−RE and OB−D are, the friend of factual detachment with conditionals
so interpreted cannot shrug this off.

93See [Mott, 1973; Chellas, 1974; 1980] for examples, and [DeCew, 1981] for an influential
critical evaluation, arguing that although such conditionals are indeed important, there is still a
special conditional they overlook at the heart of the Chisholm puzzle.

94van Eck [1982].
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for action in the actual world, where things are often typically quite sub-ideal, as
(4) combined with (1) indicates. Thus from the fact that Jones ought to go and
he ought to tell if he goes, it doesn’t follow that what he ought to actually do is
tell — that would be so only if it was also a fact that he goes to their aid. At best,
we can only say that he ought ideally to go.

This suggestion seems a bit more difficult when we change the conditional to
something like “If Doe does kill his mother, then it is obligatory that Doe kills
her gently”. The idea that my obligation to not kill my mother gently (say for an
inheritance) merely expresses an “ideal” obligation, but not an actual obligation,
given that I will kill her, seems hard to swallow. So this case makes matters a
bit harder for those favoring a factual detachment approach for generating actual
obligations. Similarly, it would seem that if it is impermissible for me to kill
my mother, then it is impermissible for me to do so gently, or to do so while
dancing.95 So carte blanche factual detachment seems to allow the mere fact that
I will take an action in the future (killing my mother) that is horribly wrong and
completely avoidable now to render obligatory another horrible (but slightly less
horrible) action in the future (killing my mother gently). The latter action must
be completely avoidable if the former is, and the latter action is one that I would
seem to be equally obligated to not make intuitively.

The main alternative camp represented conditional obligations via dyadic non-
composite obligation operators modeled syntactically on conditional probability.
They rejected the idea that OB(q/p) =df p ⇒ OBq, for some independent con-
ditional. In a sense, on this view, deontic conditionals are viewed as idioms: the
meaning of the compound is not a straightforward function of the meaning of the
parts. The underlying intuition regarding the Chisholm example is that even if it
might be true that we will violate some obligation, that doesn’t get us off the hook
from obligations that derive from the original one that we will violate. If I must go
help and I must inform my neighbors that I’m coming, if I do go help, then I must
inform them, and the fact that I will in fact violate the primary obligation does
not block the derivative obligation anymore than it does the primary one itself.

One early semantic picture for the latter camp was that a sentence of the form
OB(q/p) is true at a world i iff the i-best p-worlds are all q-worlds. OBq is then
true iff OB(q/⊤), and so iff all the unqualifiedly i-best worlds are q-worlds [Hans-
son, 1969]. Note that this weds preference-based semantic orderings with dyadic
conditional obligations.96 This reflects a widespread trend. Factual detachment
does not work in this case, since even if our world is an I-don’t-go-help-world,
and the best among the I-don’t-go-help-worlds are I-don’t-call-worlds, it does not
follow that the unqualifiedly best worlds are I-don’t-call-worlds. In fact, in this
example, these folks would maintain, the unqualifiedly best worlds are both I-go

95In Chisholm’s example it is easier to accept that telling is merely ideal, but not required,
since it is easy to interpret Chisholm’s example as one where giving advanced notice is what the
agent perhaps ought to do, but not something the agent must do (even assuming the neighborly
help is itself a must).

96As Makinson [1993] notes, it was also a forerunner of semantics for defeasible conditionals
generally (cf. “if p, normally q”).
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worlds and I-call worlds, and the fact that I won’t do what I’m supposed to do
won’t change that.

But one is compelled to ask those in the Deontic Detachment Camp: what
then is the point of such apparent conditionals if we can’t ever detach them from
their apparent antecedents, and how are these conditionals related to regular ones?
This seems to be the central challenge for this camp. Thus they often endorse a
restricted form of factual detachment, of which the following is a representative
instance:

Restricted Factual Detachment : �p&OB(q/p).→ OBq.

Here �p might mean various things, for example that p is physically unalterable
or necessary as of this moment in history.97 Only if p is settled true in some sense,
can we conclude from OB(q/p) that OBq. This certainly helps, but it still leaves
us with a bit of a puzzle about why this apparent composite of a conditional and
a deontic operator is actually some sort of primitive idiom involving a non-stated
alethic modal operator.

So it seems like we are left with a dilemma: either (1) you allow factual de-
tachment and get the consequences earlier noted to the effect that simply because
someone will act like a louse, he is obligated to do slightly mitigating louse-like
things, or (2) instead you claim that “if p, then ought q” is really an idiom, and
the meaning of the whole is not a function of the meaning of its conditional and
deontic parts. Each seems to be a conclusion one would otherwise prefer to avoid.

There have been many attempts to try to solve Chisholm’s problem by carefully
distinguishing the times of the obligations.98 This was fueled in part by shifts in
the examples, in particular to examples where the candidate “derived” obligations
were clearly things to be done after the primary obligation was either fulfilled or
violated (called “forward” versions of CTDs). This made the ploy of differentiating
the times and doing careful bookkeeping about just which things were obligatory
at which times promising. However, Chisholm’s own example is most plausibly
interpreted as either a case where the obligation to go help and the perhaps-
derivable obligation to tell are simultaneous (called “parallel” versions), or where
telling is even something to be done before you go (called “backward” versions).99

It is easy to imagine that the way to tell the neighbors that you will help might
be to phone, and that would typically take place before you left to actually help.
(For younger readers: there were no cell phones back in 1964, and phones were
attached to boxes in houses by yard-length coiled chords.) Concerns to coordinate

97The idea is perhaps implicit in [Hansson, 1969]; it is argued for explicitly in [Greenspan,
1975], and adopted by many since.

98Thomason [1981b; 1981a] are classics arguing for the general importance of layering deontic
logic on top of temporal logic. [Åqvist and Hoepelman, 1981, Thomason, 1981b, van Eck, 1982,
Loewer and Belzer, 1983, Feldman, 1986] argue that attention to time is crucial (or at least
helpful) in handling the Chisholm puzzle, among other puzzles.

99[DeCew, 1981]. [Smith, 1994] contains an illuminating discussion of the three different ver-
sions (backward, parallel, and forward) in evaluating different approaches to solving the Chisholm
paradox.
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aid, or to assure those stressed that aid is coming, often favor giving advanced
notice.

Alternatively, it was suggested that carefully attending to the action or agential
components of the example and distinguishing those from the circumstances or
propositional components would dissolve the puzzle.100 However, the phenomena
invoked in the Chisholm example appear to be too general for that. Consider the
following non-agential minor variant of an example (say of possible norms for a
residential neighborhood) introduced in [Prakken and Sergot, 1996]:

1. It ought to be the case that there are no dogs.

2. It ought to be the case that if there are no dogs, then there are no warning
signs.

3. If there are dogs, then it ought to be the case that there are warning signs.

4. There are dogs.

Here we seem to have the same essentially puzzling phenomena present in
Chisholm’s original example, yet there is no apparent reference to actions above
at all; instead the reference seems to be to states of affairs only. (Notice also that
there is no issue of different times either for the presence/absence of dogs and the
presence/absence of signs.)

Thus, it looks like tinkering with the temporal or action aspects of the Chisholm-
style examples (however much time and action are important elsewhere to deontic
logic) merely postpones the inevitable. So far, this problem appears to be not easy
to convincingly solve.

A formal sketch of a sample system favoring factual detachment can be easily
found in [Chellas, 1980; Chapter 10], which is widely available. A system that
favors deontic detachment over factual detachment is quickly sketched in the fol-
lowing box (see [Goble, Forthcoming-b], and [van Fraassen, 1972] for a similar
system).

Here, we assume a classical propositional language now extended with a dyadic
construction, OB(/), taken as primitive. A monadic OB operator is then de-
fined in the manner mentioned above:

OBp =df OB(p/⊤).

We can define an ordering relation between propositions as follows:

p ≥ q =df∼OB(∼p/p ∨ q).

100[Castañeda, 1981; Meyer, 1988].
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This says that p is ranked as at least as high as q iff it is not obligatory that ∼p
on the condition that either p or q.101

An axiom system that is a natural dyadic correlate to SDL follows:

A1: All instances of PC tautologies (TAUT)
A2: OB(p→ q/r) → (OB(p/r) → OB(q/r) (OB-CK)
A3: OB(p/q) →∼OB(∼p/q) (OB-CNC)
A4: OB(⊤/⊤) (OB-CN)
A5: OB(q/p) → OB(q& p/p) (OB-CO & )
A6: (p ≥ q & q ≥ q)→ p ≥ q (Trans)
R1: If ⊢ p and ⊢ p→ q then ⊢ q (MP)
R2: If ⊢ p↔ q then ⊢ OB(r/p) ↔ OB(r/q) (OB-CRE)
R3: If ⊢ p→ q then ⊢ OB(p/r) → OB(q/r) (OB-CRM)

A1–A4 and R1–R3 are conditional analogues of formulas or rules we have seen
before in discussing axiomatizations of SDL itself. A5 and A6 are needed to
generate a complete system relative to an ordering semantics of the following
sort (merely sketched here).

Assume we have a set of worlds and a set of ordering relations, Pi, for each
world, i, where jPik is to be interpreted as saying that relative to i’s normative
standards, j is at least as good as k. Assume also that all of the ordering
relations are non-empty: for each world i, there is a world k and a world m
such that mPik. Call this structure a “preference frame”. For any preference
relation in a preference frame, let F (Pi) represent the field of that relation: the
set of all worlds that appear in some ordered pair constituting the relation, Pi.
As usual, a model on a frame is an assignment to each propositional variable of
a set of worlds, (those where it will be deemed true). We then define the basic
dyadic operators truth-condition as follows:

M �i OB(q/p) iff there is a j in F (Pi) such that M �j p& q and for
each k such that kPij, if M �k p, then M �k q.

That is, at i, it is obligatory that q given p iff there is some world j in the field of
i’s preference relation where both p and q are true, and for every world ranked
at least as high as j, if p is true at that world, then so is q.
Call a preference frame standard iff all the preference relations in it are con-
nected (and thus reflexive), and transitive relative to their fields:

For each i-relative preference relation, Pi,

1. if j and k are in F (Pi), then either jPik or kPij (connected-
ness).

2. if j, k, and m are in F (Pi), then if jPik and kPim, then jPim
(transitivity).

101Compare p is permissible given p ∨ q, where PE(p/q) =df ∼OB(∼p/q).



272 Paul McNamara

Goble [Forthcoming-b] shows that the axiom system for dyadic obligation above
is sound and complete for the set of standard preference frames. It is also easy
to derive SDL using the above dyadic axiom system and the definition given
for the monadic obligation operator. Goble’s paper contains a number of other
such results, for both monadic and dyadic systems, including generalizations
that allow for conflicting obligations.

A.3 Doing Well Enough (DWE)102

A.3.1 DWE Syntax

Assume that we have a language of classical propositional logic with these addi-
tional (personal but non-agential) primitive unary operators:

OBp: It is Obligatory (for S) that p
MAp: The Maximum (for S) involves p
MIp: The Minimum (for S) involves p
INp: It is Indifferent (for S) that p

We might then tentatively analyze some other agential deontic notions as fol-
lows:

“S must bring it about that p”: OBBAp
“S ought to bring it about that p”: MABAp
“The least S can do involves bringing it about that p”: MIBAp
“It is a matter of indifference for S to bring it about that p”: INBAp.

Suppose that I am obligated to contact you to conduct some business, and that I
can do so by emailing you, calling you, or stopping by. Add that these are the only
ways to conduct the business.103 Now imagine that the morally relevant value of
these actions matches the extent to which the response is personal. Assuming you
would not let me conduct our business twice, the three alternatives are exclusive.
Then it is obligatory for me that I contact you in one of the three ways, but no one
in particular, since any one of the three will discharge my obligation to contact
you. Now if I choose to discharge my obligation in the minimally acceptable way,
I will do so by email rather than by telephone or in person. So doing the minimum
involves emailing you. On the other hand, if I conduct the business in person,
I will have discharged my obligation in the optimal way. Doing the maximum
(what morality recommends) involves stopping by your place. Finally, we can
easily imagine that nothing of moral worth hinges on whether I wear my black
socks when I contact you. So wearing them is a matter of moral indifference. This
illustrates one application of the four primitive operators.

We introduce some defined operators, and their intended readings:

102We presuppose a simple no-conflicts atmosphere.
103To minimize complications, we will assume no one else can do these things on my behalf.
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PEp =df ∼OB ∼p. (It is Permissible for S that p.)
IMp =df OB ∼p. (It is Impermissible for S that p.)
GRp =df ∼OBp. (It is Gratuitous for S that p.)
OPp =df ∼OBp& ∼OB ∼p. (It is Optional for S that p.)
SIp =df ∼INp. (It is Significant for S that p.)
SUp =df PEp&MI ∼p. (It is Supererogatory for S that p.)
PSp =df PEp&MA ∼p. (It is Permissibly Suboptimal for S that p.)

Continuing with our example, note that although the three alternatives, con-
ducting the business by email, phone, or in person, are not on a par morally
speaking, each is still morally optional. For each, the agent is permitted to do it
or to refrain from doing it. Now we saw that doing the minimum involves emailing
you. But suppose that rather than e-mailing you, I either call or stop by. Both
of the latter alternatives are supererogatory. In each case, I will have done more
than I had to do — more good than I would have if I had done the minimum
permitted.104 On the other hand, if I do not stop by, I will have done something
sup-optimal, but, since emailing you and calling you are each nonetheless permis-
sible, each is permissibly suboptimal. Finally, although each of the three ways of
contacting you is optional, none is without moral significance. For whatever op-
tion I take of the three, I will have done something supererogatory or I will have
done only the minimum; in either case, I will have done something with moral
significance.

Where “∗” ranges over OB, MA, MI, the associated DWE Logic is:

A0. All tautologous DWE-wffs;
A1. *(p→ q)→ (*p→ *q)
A2. OBp→ (MIp&MAp)
A3. (MIp ∨MAp) → PEp
A4. INp→ IN ∼p
A5. INp→ (∼MIp& ∼MAp)
A6. (OB(p→ q) &OB(q → r) & INp& INr) → INq

R1. If ⊢ p and ⊢ p→ q then ⊢ q
R2. If ⊢ p, then ⊢ OBp.

It is easily shown that SDL logics for OB, MA, and MI are derivable from
DWE [McNamara, 1996c].

The increased complexity brought on by the enriched expressive power is graph-
ically reflected in analogues to SDL’s deontic hexagon and threefold partitions.105

104I slough over subtleties here about different senses of the philosopher’s term “supereroga-
tory”.
105Recall our prior scheme for diagrams:

Arrowed Lines represent implications Dotted Lines: connects sub-contraries
Dashed Lines: connects contraries Dotted-Dashed Lines: connect contradictories
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THE DEONTIC OCTODECAGON — PART I

Grayed Plain Border Lines: added for purely aesthetic reasons.

Operator Key:
OBp: it is obligatory that p (cf. “must”).
PEp: it is permissible that p (cf. “can”).
IMp: it is impermissible that p (cf. “can’t”).
GRp: it is gratuitous that p.
OPp: it is optional that p.
MAp: doing the maximum involves p (cf. “ought”).
MIp: doing the minimum involves p (cf. “the least one can do involves”).
SUp: it is supererogatory that p (cf. “exceeding the minimum”).
PSp: it is permissibly suboptimal that p (cf. “you can, but ought not”).
INp: it is indifferent that p.
SIp: it is significant that p.
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THE DEONTIC OCTODECAGON — PART II

The Deontic Octodecagon is the result of the superimposition of Part II on Part
I.106

106Roderick Chisholm brought my attention to the similarity between these diagrams, and those
in [Hrushka and Joerden, 1987]. I began creating a series of diagrams expanding on the deontic
square in the early 1980s prompted by remarks from Fred Feldman in an ethical theory class
with him at the University of Massachusetts.
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THE TWELVEFOLD PARTITION

The partition is drawn with the black lines. As with the Traditional Threefold
Classification, the twelve cells are mutually exclusive and jointly exhaustive. Par-
enthetical operators, as well as those tagged to grayed curly brackets outside the
partition, highlight the location of various nonfinest classes within the partition.
Below, the twelve classes are defined via schemata, using only primitives, without
redundancies.

THE TWELVE FINEST CLASSES EXPRESSED VIA SCHEMATA

OB MA ∼& ∼MI& ∼MI ∼
MA&MI ∼ ∼MA& ∼MA ∼&MI ∼
MA&MI& ∼OB ∼MA& ∼MA ∼&MI
MA& ∼MI& ∼MI ∼ ∼MA& ∼MA ∼& ∼MI& ∼MI ∼& ∼IN
MA ∼&MI ∼& ∼OB ∼ IN
MA ∼&MI OB ∼

We turn now to one semantic framework for this logic.

A.3.2 DWE Semantics

To get the semantic structures we need, we simply combine and interpret two
familiar ingredients in a convenient way: an accessibility relation and an ordering
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relation. We imagine that we have a set of worlds, and an accessibility relation
— interpreted here as relating worlds to their morally acceptable alternatives.
We assume that seriality holds: for each world, there is a morally acceptable
alternative. Note that we do not think of these acceptable worlds as morally
ideal or optimal alternatives. Rather, we assume that for any world i, there is
a morally relevant i-relative weak ordering of the i-acceptable worlds (i.e. the
i-relative ordering relation is reflexive, connected, and transitive with respect to
the i-acceptable worlds). Thus, although all the acceptable alternatives to a given
world are just that — acceptable, they needn’t be on a par morally speaking.
Some may be ranked higher than others, some may be ranked highest or lowest
among the acceptable worlds, and there may be ties throughout (and thus there
may be genuine levels of acceptable worlds). We can represent the i-acceptable
worlds and their i-relative ordering as follows:

The vertical arrowed bar represents the weakly ordered i-acceptable worlds.
The horizontal line through the bar is a reminder that there can be levels of i-
acceptable worlds (each an equivalence class with respect to equi-rank), as is the
fact that we choose vertical figures with width. The dot indicates there is always
at least one i-acceptable world in these structures.

We can informally represent the truth-conditions (relative to a world i) for the
traditional SDL operators as follows (where a “̂ ” under an operator indicates that
it is primitive in DWE).

For these operators, the interpretation does not depend on the ordering and
matches that for SDL: p is obligatory (for agent S) iff p occurs in all of the i-
acceptable alternatives; p is permissible iff it occurs in some, etc. However, the
interpretation of the remaining operators depends crucially on the ordering of the
i-acceptable worlds:
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The minimum (for S) involves p iff p holds in all the lowest ranked acceptable
alternatives; whereas the maximum (optimum) involves p iff it holds in all the
highest ranked acceptable alternatives.107 Thus as cast here, the minimum and
the maximum are linked to the respective poles of the ranked acceptable alterna-
tives and are mirror images of one another, which effects various symmetries in the
logic [McNamara, 1996a]. p will be supererogatory if it holds in some acceptable
alternative, but fails to hold in any of the lowest ranked acceptable alternatives.
Similarly, p will be permissibly suboptimal if it holds in some acceptable alternative,
but fails to hold in any of the highest ranked acceptable alternatives. Regarding
moral indifference and moral significance, since we allow for ties, the ranked ac-
ceptable alternatives can be divided into “levels” (equivalence classes with respect
to equal rank). An “all |p|” indicates that both p-worlds and ∼p-worlds occur
at each of the associated levels. p will then be a matter of moral indifference if
at every such level its performance and its non-performance occurs somewhere
therein. Conversely, p will be morally significant if there is some level of value
that uniformly includes it or uniformly excludes it.

107These are informally cast assuming lower and upper limit assumptions hold. The informal
glosses can be easily adapted to discharge these assumptions, and the formal clauses below do
not depend on any such boundedness.
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DWE Formal Semantics: The following formal semantics is generalized in
[Mares and McNamara, 1997].
Frames are defined as follows:

F = 〈W,A,≤ j〉 is a DWE-Frame:

1. W is non-empty

2. A is a subset of W 2 and A is serial: (Aij: j is an i-acceptable world)

3. ≤ is a subset of W 3:

(a) (k ≤i j or j ≤i k) iff (Aij &Aik), for any i, j, k in W

(b) if j ≤i k and k ≤i l then j ≤i l, for any i, j, k, l in W .

The notions of an assignment and a model are then easily defined:

P is an Assignment on F : F = 〈W,A,≤〉 is a DWE-Frame and P is a function
from PV to Power(W ), defined on PV (Propositional Variables).

M = 〈F, P 〉 is a DWE-Model: F = 〈W,A,≤〉 is a DWE-frame and P is an
assignment on F .

Truth at an Index in a Model: Let M = 〈F, P 〉 be a DWE-model, where F =
〈W,A,≤〉 and j =i k =df j ≤i k& k ≤i j; then truth at a world in a model
(M �i), truth in a model, and validity are easily defined:

Basic Truth-Conditions at a world, i, in a Model, M :

0. (Conditions for variables and truth functional connectives)

1. M �i OBp : ∀j (if Aij then M �j p).

2. M �i MAp : ∃j(Aij &∀k (if j≤ik then M �k p)).

3. M �i MIp : ∃j(Aij &∀k (if k≤ij then M �k p)).

4. M �i INp : ∀j [if Aij then ∃k(k =i j &M �k p) &∃k(k =i j &M �k∼p)]

Derivative Truth Conditions:

5. M �i PEp : ∃j(Aij &M �j p).

6. M �i IMp : ∀j(if Aij then M �j∼p).

7. M �i GRp : ∃j(Aij &M �j∼p).

8. M �i OPp : ∃j(Aij &M �j p) and ∃j(Aij &M �j∼p).
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9. M �i SIp : ∃j[Aij & either ∀k(ifk =i j then M �k p) or ∀k(ifk =i j
then M �k∼p)].

10. M �i SUp : ∃j(Aij &M �j p) &∃j[Aij & (k)(if k ≤i j then M �k∼p)].

11. M �i PSp : ∃j(Aij &M �j p) &∃j[Aij & (k)(if j ≤i k then M �k∼p)].

Truth in a DWE-Model: M � p iff M �i p, for every i in W of M .

Validity: � p iff M � p, for all M .

In [Mares and McNamara, 1997], the metatheorem below is proven as a special
case:
Metatheorem: The DWE-logic is determined by the class of DWE-models.

A.4 A Glimpse at STIT Theory and Deontic Logic

“STIT Theory” is so-called because it is a particular approach to constructions like
“Jones sees to it that ”. The following exposition draws from [Horty, 2001] and
[McNamara, 2004b]. STIT theory builds on a formal indeterministic “branching
time” framework initiated by A. Prior, championed by R. Thomason, and now
the basis of a robust research program anchored by N. Belnap, and summarized
in [Belnap, 2001].108 Here I concentrate on only a few elementary aspects of this
sort of account of agency and provide just a glimpse of its employment in deontic
logic. The reader is encouraged to consult the above two works, which are rich in
details we can hardly touch on here. See also the works mentioned in the main
essay under agency, especially those by Hilpinen, for further critical exposition of
this approach to agency.

A.4.1 The Indeterministic Framework

The basic primitives are a set of ‘moments’, Tree, and a two-place ordering relation,
after, defined on Tree. A moment (represented as a node below) is thought of as
momentary world state (cf. instantaneous possible world slice). Moments are not
to be confused with seconds or instants. One moment is (possibly) after a second
iff the first is some still possible future moment of the second. Moments can branch
forward (upward in the diagrams), toward the future, but not backward. (There
can be more than one possible future, but only one past, at a moment.)

108This is the quintessential tome on STIT theory per se, and itself contains chapters on deontic
logic in the context of STIT theory.
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Upper moments are ones that can occur after line-connected lower moments. A
history (cf. possible world) is construed as a maximal path or branch on a tree
(e.g. each of the three-noded paths tracing from h1–h4 back to m above). In
models with two or more histories, some moment (e.g. each top moment above) is
not comparable to another (neither is a possible future moment of the other), and
some moment is common to distinct histories (e.g. all but the top moments above).
A history passes through a moment when that moment is part of that history. The
past at a moment (in a history) is the ordered set of moments before the moment
in question. The future at a moment in a history: the ordered moments in the
history after the moment in question. (There is no actual future at a moment per
se, since there are many possible such futures, unless determinism is true.)

Since the future is open, contingent future tensed statements, and thus all
statements for uniformity, are assigned truth values at a moment-history pair,
m-h. (I will sometimes ignore histories in formulations where uniformity is the
only reason to mention them.) Here is a simple illustration, where “P” is the past
tense operator “it was the case that”, and “F” is the future tense operator “it will
be the case that”:

It will be the case that s at a moment in a history iff at some later moment in
that history, s is true; and it was the case that s at a moment in a history iff that
moment is after one where s is true in that history. Because the past is closed,
simple past truths are true at a moment per se. The only case where we can say
at a moment simpliciter that a statement will be true is where its future truth
is historically necessary. More generally, possibility and necessity are handled as



282 Paul McNamara

follows: it is (still) possible (POSS) that s is true at a moment iff there is a history
passing through that moment where s is true. It is (now) necessary/settled (NEC)
that s at a moment iff s is true at every history passing through that moment.
We can illustrate via the sea battle again, which is completely open as of m, but
settled false in h3 and h4 just after m.

A.4.2 Agency

Next, a set of Agents, and a Choice function are introduced. The Choice function
partitions the histories passing through a moment relative to each agent. Thus the
agent’s possible choices or basic actions (the cells) constitute a mutually exclusive
and exhaustive division of the histories passing through that moment. Choices at
a moment place instantaneous constraints on the possible futures. Intentions are
not represented.109 Where there is more than one cell, no particular basic action
is determined at that moment. If a history is part of a choice cell, then that is
the choice the agent makes at that moment in that history. Below Choice 1 is the
set containing just h1 and h2; it rules out all that depends on either h3 or h4
unfolding. Choice 1 is the basic action the agent takes in h1 and in h2 at m.

We can now easily distinguish two simple accounts of agency in terms of these
basic actions or choices. The first is close to one Chellas gave in his seminal

109Thus “basic action” is perhaps better than “choice”.
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[Chellas, 1969]. Jane Doe c-sees to it that (c-stit) p at a moment-history pair
iff p is guaranteed by the choice Jane takes at that moment in that history (i.e.
that choice cell contains only p-histories). Jane Doe is able to c-see to it that p
at a moment-history pair iff it is possible that she c-stit p at that pair. In the
illustration below, Jane c-stit p at m in h1 and h2. However, she does not c-stit p
at m in h3 and h4 (since p’s truth value varies independently of choice 2), nor is
she able to c-stit ∼p at m (since no history passing through m involves a choice
at m that guarantees ∼p).

An obvious rub with c-stit is illustrated above: Jane c-stit q at m in h1–h4.
The upshot is that agents see to everything that is historically necessary (e.g.
that the sun will rise and that 2 + 2 = 4). Enter: d-stit, which just adds the
exclusion of necessary things for agency. Jane Doe d-sees to it that (d-stit) p at
a moment-history pair iff she c-stit p at that pair and it is not necessary that p
(i.e. ∼p is consistent with some other choice open to her at m). This is called the
‘deliberative stit’ because the second condition, is meant to assure a real choice.
Then, Jane Doe is able to d-see to it that p at a moment-history pair iff it is
possible that she d-stit p at that pair. In the illustration above Jane d-sees to it
that p at m only in h1–h2, but Jane does not d-see to it that q at m in any of
h1–h4. Jane is able to d-see to it that p at m (for at a history passing through m
she does see to it that p) but Jane is not able to d-see to it that ∼p or that q at
m.
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Belnap’s Achievement stit :
Belnap has a more complex alternative formal account of agency, which we can
only briefly allude to here. The basic idea is that Jane sees to it that p now iff p
now holds and was guaranteed by a prior choice of Jane’s. Above, with c-stit and
d-stit, one sees to it that something is the case at the moment of the choice or
basic action; in Belnap’s alternative the focus is on something’s now holding as
a result of a past action, so that the result and the initial instrumentality on the
part of the agent that triggers the result are separated in time in this account of
agency. Roughly, Belnap introduces the notion of instants as equivalence classes
of contemporaneous moments. Intuitively, on a full tree-display, moments on
the same level are contemporaneous with one another, and the time or instant is
taken to be the set of these moments. Then, Jane Doe a-stit that p at moment
m1 in a history, h iff 1) there is a moment in h, m0, that is earlier than m1,
and p holds at the instant of m1 in all histories consistent with the choice Jane
makes at m0 in h, but 2) there is also a moment that is after m0 (and thus was
still possible then), that is contemporaneous with m1, and at which p is false.

Above, in h1–h3, Jane a-stit p at m1 (but not at m0 where the choice resulting
in p is made), but not in h4–h6 at any moment in i(m1), since at m2, ∼p holds.

A.4.3 Two Deontic Operators

Let’s assume that histories have a rank-reflecting numerical value that does not
vary from moment to moment (so histories are weakly ordered and thus mutually
comparable). For simplicity, I will assume we always have best histories. Im-
personal ought’s may then be analyzed as follows: it ought to be that p holds at
moment-history pair iff the best histories passing through m are histories where p
holds. In the model below, since h1 and h2 are the highest ranked histories still
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possible as of m, and it rains at each of these at the last moments listed in those
histories, it follows that at m, it ought to be the case that it will rain.

All the principles of Standard Deontic Logic (SDL), including no ought-conflicts,
follow. A non-agential version of Kant’s Law (it ought to be that p only if p is
historically possible) also follows [Horty, 2001].

If we endorse the ‘Meinong–Chisholm reduction’, then recast in the c-stit frame-
work (for simplicity), this becomes an agent ought to see to p iff it ought to be the
case that the agent c-sees to it that p. Given the previously proposed semantics, an
agent ought to c-see it that p holds at a moment-history pair iff that agent chooses
a p-guaranteeing action at the best histories passing through that moment. In the
diagram below, Jane ought to see to it that p at m (in h1–h4) whether we recast
the Meinong–Chisholm reduction via c-stit or d-stit, since Choice 1 guarantees p,
and Choice 2 is consistent with ∼p, and the best worlds are ones where Jane makes
choice 1 and thus sees to it that p.

Relativized to c-stit (but not to d-stit) this analysis of agential ought’s yields
a normal modal operator satisfying the principles of SDL. An agential version of
Kant’s Law follows: an agent ought to see to p only if she is able to. It also follows
that what an agent ought to do, ought to be, but that the converse does not hold
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is illustrated by the next diagram. Here, although it ought to be that Jane makes
Choice 1 and that p comes about, since both these things hold throughout the
best histories (namely h1), it is not true that she ought to bring it about that p,
since it is not true that it ought to be the case that she does. In the best world,
h1, Jane does not make a choice that guarantees p’s occurrence.

Refraining Again: Following a view championed by Belnap, if we analyze Jane’s
refraining from seeing to it that p as her d-seeing to it that she does not d-see to
it that p (Jane d-stit ∼(Jane d-stit p)), and distinguish this from Jane’s omitting
p (∼Jane d-stit p) then we can in fact say that it ought to be that Jane refrains
from seeing to it that p above. She does d-see to it that p at m in h3 and h4,
but these are suboptimal histories. So by making Choice 1 instead of Choice 2,
she d-sees to it that she does not d-see to it that p, and this is what happens
in the best history. Roughly, the best history is one where p occurs by luck or
by some other agency than Jane’s. Recall von Wright’s alternative analysis of
refraining: Jane refrains from seeing to it that p iff Jane is able to see to it that
p, but she doesn’t. Recast via d-stit this becomes Jane refrains from seeing to
it that p iff ∼Jane d-stit p and it is possible that Jane d-stit p. It can be shown
about Belnap’s and von Wright’s glosses, when recast via d-stit as indicated,
that Jane Belnap-refrains from p iff S von-Wright refrains from p, and that Jane
refrains from p iff Jane refrains from refraining from p. For c-stit, omitting and
refraining are indistinguishable. (See [Horty, 2001].)

Horty considers some previous objections to the Meinong–Chisholm reduction,
and argues that from the standpoint of his framework, these objections are un-
sound. He then introduces his own objection to the analysis, via the ‘Gambling
Problem’.110 Suppose I have two options available to me, gamble $5 (g) or not.

110Cf. [Feldman, 1986, pp.194–195].
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Now suppose that if I gamble and win, I get $10; and if I gamble and lose, I get
$0. Suppose the only values at stake are the dollar values, and thus the value of
not gambling is $5 saved. Ignore probabilities. To illustrate:

Since I cannot determine whether or not I win (this happens only in h1, which
I can’t guarantee), it is not true in fact that what I ought to do is gamble (or not
gamble for that matter). But in the best histories (h1), I win, and my gambling is
entailed by my winning, so it ought to be that I see to it that I gamble, and hence
the Meinong–Chisholm reduction implies that I ought to gamble after all. Horty
takes this to decisively defeat the Meinong–Chisholm reduction, arguing that we
need an independent analysis, one where we can rank actions, not just whole
histories. Horty goes on to develop an alternative analysis of agential ought’s,
one in which, among other things, he uses the ranking of histories to generate a
decision-theoretic dominance ordering account of agential ought’s. Here we must
pass over this fascinating work, and simply raise a few quick questions about a
few elementary matters.

A.4.4 Some Challenges

We saw that in the case of c-stit, an agent sees to all necessary truths. Few who
work on agency accept this. D-stit is intended to get around this, but here seeing
to it that p requires that it still might be that ∼p, thus making agency depend
logically on the falsity of compatibilism [Elgesem, 1997]. Thus nothing inevitable
can be the result of my agency. But compatibilism is a widely endorsed live option
in philosophy. It does not seem that a logic for agency ought to presuppose the
falsity of this widely endorsed philosophical view.

Furthermore, the stit framework seems to make it too easy to undermine genuine
agency by making the conditions for agent causation too strong. Consider the
following “Windy Day Assassin” scenario:
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Suppose I pull the trigger of a gun aiming at you intending to kill you, and
you are hit by the bullet and die as a result of being hit by that bullet, just as
planned. Now add that when I pulled the trigger a random gust of wind could
have occurred and knocked the bullet off target, though it didn’t occur. On the
current analyses, it follows that I did not see to it that you were hit, because no
choice I made guaranteed that you were hit. The mere fact that the wind could
have interfered with the course of the bullet is enough to undermine the claim
that I was the agent of your being hit. Even if I aim, pull the trigger, and the
wind doesn’t blow, as in h3 and h4, I still don’t see to it that the target is hit
on stit theory. This smacks of getting away with murder. (This problem applies
to c-stit (the Chellas-inspired stit operator), d-stit (the Horty–Belnap deliberative
stit operator), and a-stit (Belnap’s achievement stit operator).

Finally, there is a general problem with the analysis of impersonal ought’s in
terms of what is still possible. It is now tragically settled that some children will
die of starvation tomorrow, but that ought to not now be the case. It seems false
that everything that ought to be the case still could be the case. Talk of what
would be ideal is not constrained by what is still possible, so why should talk of
what ought to be the case, which involves, after all, just the evaluation of states
of affairs, not of agent’s actions, be any different?



RELEVANT AND SUBSTRUCTURAL LOGICS

Greg Restall

1 INTRODUCTION

Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye

to models.1 Relevant and substructural logics are no different: you can focus on notions

of proof, inference rules and structural features of deduction in these logics, or you can

focus on interpretations of the language in other structures.

This essay is structured around the bifurcation between proofs and models: The first

section discusses Proof Theory of relevant and substructural logics, and the second cov-

ers the Model Theory of these logics. This order is a natural one for a history of rel-

evant and substructural logics, because much of the initial work — especially in the

Anderson–Belnap tradition of relevant logics — started by developing proof theory. The

model theory of relevant logic came some time later. As we will see, Dunn’s algebraic

models [1970; 1971] Urquhart’s operational semantics [1972c; 1972d] and Routley and

Meyer’s relational semantics [1972a; 1972b; 1973] arrived many years after the initial

burst of activity from Alan Anderson and Nuel Belnap. The same goes for work on the

Lambek calculus: although inspired by a very particular application in linguistic typing, it

was developed first proof-theoretically, and only later did model theory come to the fore.

Girard’s linear logic is a different story: it was discovered through considerations of the

categorical models of coherence spaces. However, as linear logic appears on the scene

much later than relevant logic or the Lambek calculus, starting with proof theory does not

result in too much temporal reversal.

I will end with one smaller section Loose Ends, sketching avenues for further work.

The major sections, then, are structured thematically, and inside these sections I will

endeavour to sketch the core historical lines of development in substructural logics. This,

then, will be a conceptual history, indicating the linkages, dependencies and development

of the content itself. I will be less concerned with identifying who did what and when.2

I take it that logic is best learned by doing it, and so, I have taken the liberty to sketch

the proofs of major results when the techniques used in the proofs tells us something

distinctive about the field. The proofs can be skipped or skimmed without any threat to

1Sometimes you see this described as the distinction between an emphasis on syntax or semantics. But this
is to cut against the grain. On the face of it, rules of proof have as much to do with the meaning of connectives
as do model-theoretic conditions. The rules interpreting a formal language in a model pay just as much attention
to syntax as does any proof theory.

2In particular, I will say little about the intellectual ancestry of different results. I will not trace the degree to
which researchers in one tradition were influenced by those in another.

Handbook of the History of Logic. Volume 7
Dov M. Gabbay and John Woods (Editors)
c© 2006 Elsevier B.V. All rights reserved.
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the continuity of the story. However, to get the full flavour of the history, you should

attempt to savour the proofs at leisure.

Let me end this introduction by situating this essay in its larger context and explaining

how it differs from other similar introductory books and essays. Other comprehensive

introductions such as Dunn’s “Relevance Logic and Entailment” [1986] and its descen-

dant “Relevance Logic” [2001], Read’s Relevant Logic [1988] and Troelstra’s Lectures on

Linear Logic [1992] are more narrowly focussed than this essay, concentrating on one or

other of the many relevant and substructural logics.3 The Anderson–Belnap two-volume

Entailment [1975; 1992] is a gold mine of historical detail in the tradition of relevance

logic, but it contains little about other important traditions in substructural logics.

My Introduction to Substructural Logics [2000a] has a similar scope to this chapter, in

that it covers the broad sweep of substructural logics: however, that book is more technical

than this essay, as it features many formal results stated and proved in generality. It is also

written to introduce the subject purely thematically instead of historically.

2 PROOFS

The discipline of relevant logic grew out of an attempt to understand notions of conse-

quence and conditionality where the conclusion of a valid argument is relevant to the

premises, and where the consequent of a true conditional is relevant to the antecedent.

“Substructural” is a newer term, due to Schröder-Heister and Došen. They write:

Our proposal is to call logics that can be obtained . . . by restricting structural

rules, substructural logics [Schröder-Heister and Došen, 1993, p. 6].

The structural rules mentioned here dictate admissible forms of transformations of premises

contained in proofs. Later in this section, we will see how relevant logics are naturally

counted as substructural logics, as certain commonly admitted structural rules are respon-

sible for introducing irrelevant consequences into proofs.

Historical priority in the field belongs to the tradition of relevant logic, and it is to the

early stirrings of considerations of relevance that we will turn.

2.1 Relevant Implication: Orlov, Moh and Church

Došen has shown us [1992b] that substructural logic dates back at least to 1928 with

I. E. Orlov’s axiomatisation of a propositional logic weaker than classical logic [1928].4

3You have now been introduced to the geographical bifurcation of terminology. Americans call our topic
“relevance” logic and people of Commonwealth countries (primarily Australia and Scotland) call it “relevant”
logic. The split comes down to a disagreement between Nuel Belnap and Robert Meyer. Meyer brought his
favoured terminology “relevant” to Australia with him, where it has stuck. I have been taught in this tradition,
so I also call what I study relevant logic, though nothing of substance hangs on the issue.

4Allen Hazen has shown that in Russell’s 1906 paper “The Theory of Implication” his propositional logic
(without negation) is free of the structural rule of contraction [Hazen, 1997; Russel, 1906]. Only after negation
is introduced can contraction be proved. However, there seems to be no real sense in which Russell could be
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Orlov axiomatised this logic in order to “represent relevance between propositions in sym-

bolic form” [Došen, 1992b, p. 341]. Orlov’s propositional logic has this axiomatisation.5

� A � ��A double negation introduction

� ��A � A double negation elimination

� A � ��A � �A� contraposed reductio

� �A � B� � ��B � �A� contraposition

� �A � �B � C�� � �B � �A � C�� permutation

� �A � B� � ��C � A� � �C � B�� prefixing

� A, A � B � B modus ponens

The axioms and rule here form a traditional Hilbert system. The rule modus ponens is

written in the form using a bold arrow to echo the general definition of logical conse-

quence in a Hilbert system. Given a set X of formulas, and a single formula A, we say

that A can be proved from X (which I write “X � A”) if and only if there is a proof in the

Hilbert system with A as the conclusion, and with hypotheses from among the set X. A

proof from hypotheses is simply a list of formulas, each of which is either a hypothesis,

an axiom, or one which follows from earlier formulas in the list by means of a rule. In

Orlov’s system, the only rule is modus ponens. We will see later that this is not necessar-

ily the most useful notion of logical consequence applicable to relevant and substructural

logics. In particular, more interesting results can be proven with consequence relations

which do not merely relate sets of formulas as premises to a conclusion, but rather relate

lists, or other forms of structured collections as premises, to a conclusion. This is because

lists or other structures can distinguish the order or quantity of individual premises, while

sets cannot. However, this is all that can simply be done to define consequence relations

within the confines of a Hilbert system, so here is where our definition of consequence

will start.

These axioms and the rule do not explicitly represent any notion of relevance — after

all, there is no “relevantly” or “is relevant to” operator. Instead, we have an axiomatic

system governing the behaviour of implication and negation. The system tells us about

relevance in virtue of what it leaves out, rather than what it includes. Neither of the

following formulas are provable in Orlov’s system:

A � �B � B� ��B � B� � A.

This distinguishes his logic from both classical and intuitionistic propositional logic.6 If

the “�” is read as either the material conditional or the conditional of intuitionistic logic,

those formulas are provable. However, both of these formulas commit an obvious failure

of relevance. The consequent of the main conditional need not have anything to do with

pressed in to favour as a proponent of substructural logics, as his aim was not to do without contraction, but to
give an axiomatic account of material implication.

5The names are mine, and not Orlov’s. I have attempted to give each axiom or rule its common name
(see for example Anderson and Belnap’s Entailment [1975] for a list of axioms and their names). In this
case, “contraposed reductio” is my name, as the axiom A � ��A � �A� is a rarely seen axiom, but it is a
contraposed form of �A ��A� � �A, which is commonly known as reductio.

6Heyting’s original text is still a classic introduction to intuitionistic logic, dating from this era [1956].
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the antecedent. If when we say “if A then B” we mean that B follows from A, then it seems

that we have lied when we say that “if A then B � B”, for B � B (though true enough)

need not follow from A, if A has nothing to do with B � B. Similarly, A need not follow

from ��B � B� (though ��B � B� is false enough) for again, A need not have anything

to do with ��B � B�. If “following from” is to respect these intuitions, we need to look

further afield than classical or intuitionistic propositional logic, for these logics contain

those formulas as tautologies. Excising these fallacies of relevance is no straightforward

job, for once they go, so must other tautologies, such as these

� A � �B � A� weakening

� B � ��B � A� ex contradictione quodlibet

from which they can be derived.7 To do without obvious fallacies of relevance, we must

do without these formulas too. And this is exactly what Orlov’s system manages to do.

His system contains none of these “fallacies of relevance”, and this makes his system a

relevant logic. In Orlov’s system, a formula A � B is provable only when A and B share

a propositional atom. There is no way to prove a conditional in which the antecedent

and the consequent have nothing to do with one another. Orlov did not prove this result

in his paper. It only came to light more than 30 years later, with more recent work in

relevant logic. This more recent work is applicable to Orlov’s system, because Orlov

has axiomatised the implication and negation fragment of the now well-known relevant

logic R.

Orlov’s work didn’t end with the implication and negation fragment of a relevant

propositional logic. He looked at the behaviour of other connectives definable in terms of

conjunction and negation. In particular, he showed that defining a conjunction connective

A � B �df ��A � �B�

gives you a connective you can prove to be associative, commutative and square increas-

ing8

�A � B� �C � A � �B �C�
A � �B �C� � �A � B� �C

A � B � B � A

A � A � A.

However, the converse of the “square increasing” postulate

A � A � A

7Using substitution and modus ponens, and identity. If weakening is an axiom then �A � A� � �B �
A � A�� is an instance, and hence, by modus ponens, with A � A, we get B � �A � A�.

8Here, and elsewhere, brackets are minimised by use of binding conventions. The general rules are simple:
conditional-like connectives such as � bind less tightly than other two-place operators such as conjunction
and disjunction (and fusion � and fission �) which in turn bind less tightly than one place operators. So,
�A� B � C � D is the conditional whose antecedent is the disjunction of �A with B and whose consequent
is the conjunction of C with D.

�



Relevant and Substructural Logics 293

is not provable, and neither are the stronger versions A � B � A or B � A � A. However,

for all of that, the connective Orlov defined is quite like a conjunction, because it satisfies

the following condition:

� A � �B � C� if and only if � A � B � C.

You can prove a nested conditional if and only if you can prove the corresponding condi-

tional with the two antecedents combined together as one. This is a residuation property.9

It renders the connective � with properties of conjunction, for it stands with the implica-

tion � in the same way that extensional conjunction and the conditional of intuitionistic

or classical logic stand together.10 Residuation properties such as these will feature a great

deal in what follows.

It follows from this residuation property that � cannot have all of the properties of

extensional conjunction. A�B � A is not provable because if it were, then the weakening

axiom A � �B � A� would also be provable. B � A � A is not provable, because if it

were, B � �A � A� would be.

In the same vein, Orlov defined a disjunction connective

A� B �df �A � B

which can be proved to be associative, symmetric and square decreasing (A � A � A)

but not square increasing. It follows that these defined connectives do not have the full

force of the lattice disjunction and conjunction present in classical and intuitionistic logic.

At the very first example of the study of substructural logics we are that the doorstep of

one of the profound insights made clear in this area: the splitting of notions identified in

stronger logical systems. Had Orlov noticed that one could define conjunction explicitly

following the lattice definitions (as is done in intuitionistic logic, where the definitions in

terms of negation and implication also fail) then he would have noticed the split between

the intensional notions of conjunction and disjunction, which he defined so clearly, and

the extensional notions which are distinct. We will see this distinction in more detail and

in different contexts as we continue our story through the decades. In what follows, we

will refer to � and� so much that we need to give them names. I will follow the literature

of relevant logic and call them fusion and fission.

Good ideas have a feature of being independently discovered and rediscovered. The

logic R is no different. Moh [1950] and Church [1951b], independently formulated the

implication fragment of R in the early 1950’s. Moh formulated an axiom system

� A � A identity

� �A � �A � B�� � �A � B� contraction

� A � ��A � B� � B� assertion

� �A � B� � ��B � C� � �A � C�� suffixing.

9It ought to remind you of simple arithmetic results: x 	 z
y if and only if x� y 	 z; x 	 z� y if and only
if x� y 	 z.

10Namely, that A� B  C is provable if and only if A  �B  C�.
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Whereas Church’s axiom system replaces the assertion and suffixing with permutation

and prefixing

� �A � �B � C�� � �B � �A � C�� permutation

� �A � B� � ��C � A� � �C � B�� prefixing.

Showing that these two axiomatisations are equivalent is an enjoyable (but lengthy) exer-

cise in axiom chopping. It is a well-known result that in the presence of either prefixing

or suffixing, permutation is equivalent to assertion. Similarly, in the presence of either

permutation or assertion, prefixing is equivalent to suffixing. (These facts will be more

perspicuous when we show how the presence of these axioms correspond to particular

structural rules. But this is to get ahead of the story by a number of decades.)

Note that each of the axioms in either Church’s or Moh’s presentation of R are tau-

tologies of intuitionistic logic. Orlov’s logic of relevant implication extends intuitionistic

logic when it comes to negation (as double negation elimination is present), but when it

comes to implication alone, the logic R is weaker than intuitionistic logic. As a corollary,

Peirce’s law

� ��A � B� � A� � A Peirce’s law

is not provable in R, even though it is a classical tautology. The fallacies of relevance are

examples of intuitionistic tautologies which are not present in relevant logic. Nothing so

far has shown us that adding negation conservatively extends the implication fragment of

R (in the sense that there is no implicational formula which can be proved with negation

which cannot also be proved without it). However, as we will see later, this is indeed the

case. Adding negation does not lead to new implicational theorems.

Church’s work on his weak implication system closely paralleled his work on the

lambda calculus. (As we will see later, the tautologies of this system are exactly the

types of the terms in his λI calculus.)11 Church’s work extends that of Orlov by proving a

deduction theorem. Church showed that if there is a proof with hypotheses A1 to An with

conclusion B, then there is either a proof of B from hypotheses A1 to An�1 (in which case

An was irrelevant as a hypothesis) or there is a proof of An � B from A1, . . . , An�1.

FACT 1 (Church’s Deduction Theorem). In the implicational fragment of the relevant

logic R, if A1, . . . , An � B can be proved in the Hilbert system then at least one of the

following two consequences can also be proved in that system.

� A1, . . . , An�1 � B,

� A1, . . . , An�1 � An � B.

Proof. The proof follows the traditional proof of the Deduction Theorem for the impli-

cational fragment of either classical or intuitionistic logic. A proof for A1, . . . , An � B

is transformed into a proof for A1, . . . , An�1 � An � B by prefixing each step of the

11In which λx can abstract a variable from only those terms in which the variable x occurs. As a result, the
λ-term λx.λy.x, of type A � �B � A�, is a term of the traditional λ-calculus, but not of the λI calculus.
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proof by “An �”. The weakening axiom A � �B � A� is needed in the traditional result

for the step showing that if a hypothesis is not used in the proof, it can be introduced as

an antecedent anyway. Weakening is not present in R, and this step is not needed in the

proof of Church’s result, because he allows a special clause, exempting us from proving

An � B when An is not actually used in the proof. �

We will see other forms of the deduction theorem later on in our story. This deduction

theorem lays some claim to helping explain the way in which the logic R can be said to be

relevant. The conditional of R respects use in proof. To say that A � B is true is to say

not merely that B is true whenever A is true (keeping open the option that A might have

nothing to do with B): To say that A � B is true is to say that B follows from A. This is

not the only kind of deduction theorem applicable to relevant logics. In fact, it is probably

not the most satisfactory one, as it fails once the logic is extended to include extensional

conjunction. After all, we would like A, B � A 	 B but we can have neither A � B �
A 	 B (since that would give the fallacy of relevance A � B � A, in the presence of

A 	 B � A) nor A � A 	 B (which is classically invalid, and so, relevantly invalid).

So, another characterisation of relevance must be found in the presence of conjunction.

In just the same way, combining conjunction-like pairing operations in the λI calculus

has proved quite difficult [Pottinger, 1979]. Avron has argued that this difficulty should

make us conclude that relevance and extensional connectives cannot live together [1986;

1992].

Meredith and Prior were also aware of the possibility of looking for logics weaker than

classical propositional logic, and that different axioms corresponded to different princi-

ples of the λ-calculus (or in Meredith and Prior’s case, combinatory logic). Following on

from work of Curry and Feys [1958; 1972], they formalised subsystems of classical logic

including what they called BCK (logic without contraction) and BCI (logic without con-

traction or weakening: which is now known as linear logic) [Meredith and Prior, 1963].

They, with Curry, are the first to explicitly chart the correspondence of propositional ax-

ioms with the behaviour of combinators which allow the rearrangement of premises or

antecedents.12

For a number of years following their pioneering work, Anderson and Belnap contin-

ued in this vein, using techniques from other branches of proof theory to explain how the

logic R and its cousins respected conditions of relevance and necessity. We will shift our

attention now to another of the precursors of Anderson and Belnap’s work, one which

pays attention to conditions of necessity as well as relevance.

2.2 Entailment: Ackermann

Ackermann formulated a logic of entailment in the late 1950s [1956]. He extended

C. I. Lewis’ work on systems of entailment to respect relevance and to avoid the para-

doxes of strict implication. Ackermann’s favoured system of entailment is a weakening

12It is in their honour that I use Curry’s original terminology for the structural rules we will see later: W for
contraction, K for weakening, C for commutativity, etc.
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of the system S4 of strict implication designed to avoid the paradoxes. Unlike earlier work

on relevant implication, Ackermann’s system includes the full complement of sentential

connectives.

To motivate the departures that Ackermann’s system takes from R, note that the arrow

of R cannot be used to model entailment. If we want to say that A entails that B, the arrow

of R is significantly too strong. Specifically, axioms such as permutation and assertion

must be rejected for the arrow of entailment. To take an example, suppose that A is

contingently true. It is an instance of assertion that

A � ��A � A� � A�.

However, even if A is true, it ought not be true that A � A entails A. For A � A

is presumably necessarily true. We cannot not have this necessity transferring to the

contingent claim A.13 Permutation must go too, as assertion follows from permuting the

identity �A � B� � �A � B�. So, a logic of entailment must be weaker than R. However,

it need not be too much weaker. It is clear that prefixing, suffixing and contraction are

not prone to any sort of counterexample along these lines: they can survive into a logic of

entailment.

Ackermann’s original paper features two different presentations of the system of en-

tailment. The first, Σ�, is an ingenious consecution calculus, which is unlike any proof

theory which has survived into common use, so unfortunately, I must skim over it here

in one paragraph.14 The system manipulates consecutions of the form A, B 
 C (to be

understood as A 	 B � C) and A�, B 
 C (to be understood as as A � �B � C�). Note

that the comma in the antecedent place has no uniform interpretation: In effect, there are

two different premise combining operations. This is, in embryonic form at least, the first

explicit case of a dual treatment of both intensional and extensional conjunction in a proof

theory that I have found.

Ackermann’s other presentation of the logic of entailment is a Hilbert system. The ax-

ioms and rules are presented in Figure 1. You can see that many of the axioms considered

have already occurred in the study of relevant implication. The innovations appear in both

what is omitted (assertion and permutation, as we have seen) and in the full complement

of rules for conjunction and disjunction.15

To make up for the absence of assertion and permutation, Ackermann adds restricted

permutation. This rule is not a permutation rule (it doesn’t permute anything) but it is a

restriction of the permutation rule to infer B � �A � C� from A � �B � C�. For the

restricted rule we conclude A � C from A � �B � C� and B. Clearly this follows from

permutation. This restriction allows a restricted form of assertion too.

� �A � A�� � ���A � A�� � B� � B� restricted assertion

13If something is entailed by a necessity, it too is necessary. If A entails B then if we cannot have A false, we
cannot have B false either.

14The interested reader is referred to Ackermann’s paper (in German) [1956] or to Anderson, Belnap and
Dunn’s sympathetic summary [1992, §44–46] (in English).

15The choice of counterexample as a thesis connecting implication and negation in place of reductio (as in
Orlov [1928]) is of no matter. The two are equivalent in the presence of contraposition and double negation
rules. Showing this is a gentle exercise in axiom-chopping.
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A

� A � A identity

� �A � B� � ��C � B� � �C � A�� prefixing

� �A � B� � ��B � C� � �A � C�� suffixing

� �A � �A � B�� � �A � B� contraction

� A	 B � A, A	 B � B conjunction elimination

� �A � B� 	 �A � C� � �A � B	C� conjunction introduction

� A � A� B, B � A� B disjunction introduction

� �A � C� 	 �B � C� � �A� B � C� disjunction elimination

� A	 �B�C� � B� �A	C� distribution

� �A � B� � ��B � �A� contraposition

� A	�B � ��A � B� counterexample

� A � ��A double negation introduction

� ��A � A double negation elimination

R

�α� A, A � B � B modus ponens

�β� A, B � A	 B adjunction

�γ� A,�A� B � B disjunctive syllogism

�δ� A � �B � C�, B � A � C restricted permutation rule

Figure 1. Ackermann’s axiomatisation Π�

This is an instance of the assertion where the first position A is replaced by the entailment

A � A�. While assertion might not be valid for the logic of entailment, it is valid when

the proposition in the first position is itself an entailment.

As Anderson and Belnap point out [1992, §8.2], (δ) is not a particularly satisfactory

rule. Its status is akin to that of the rule of necessitation in modal logic (from� A to infer

� �A). It does not extend to an entailment (A � �A). If it is possible to do without a rule

like this, it seems preferable, as it licences transitions in proofs which do not correspond

to valid entailments. Anderson and Belnap showed that you can indeed do without (δ)

to no ill effect. The system is unchanged when you replace restricted permutation by

restricted assertion.

This is not the only rule of Ackermann’s entailment which provokes comment. The

rule (γ) (called disjunctive syllogism) has had more than its fair share of ink spilled. It

suffers the same failing in this system of entailment as does (δ): it does not correspond to

a valid entailment. The corresponding entailment A 	 ��A � B� � B is not provable.

I will defer its discussion to Section 2.4, by which time I will be able to prove theorems

about disjunctive syllogism as well as arguing about its significance.
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Ackermann’s remaining innovations with this system are at least twofold. First, we

have a thorough treatment of extensional disjunction and conjunction. Ackermann no-

ticed that you need to add distribution of conjunction over disjunction as a separate ax-

iom.16 The conjunction and disjunction elimination and introduction rules are sufficient

to show that conjunction and disjunction are lattice join and meet on propositions ordered

by provable entailment. (It is a useful exercise to show that in this system of entailment,

you can prove A � �A, ��A 	 �A�, and that all De Morgan laws connecting negation,

conjunction and disjunction hold.)

The second innovation is the treatment of modality. Ackermann notes that as in other

systems of modal logic which take entailment as primary, it is possible to define the

one-place modal operators of necessity, possibility and others in terms of entailment.

A traditional choice is to take impossibility “U”17 defined by setting UA to be A �
B 	 �B for some choice of a contradiction. Clearly this will not do in the case of a

relevant logic as even though it makes sense to say that if A entails the contradictory

B 	 �B then A is impossible, we might have A entailing some contradiction (and so,

being impossible) without entailing that contradiction. It is a fallacy of relevance to take

all contradictions to be provably equivalent. Instead, Ackermann takes another tack, by

introducing a new constant f , with some special properties.18 The intent is to take f

to mean “some contradiction is true”. Ackermann then posits the following axioms and

rules.

� A	�A � f

� �A � f � � �A

�ǫ� A � B, �A � B� 	C � f � C � f

Clearly the first two are true, if we interpret f as the disjunction of all contradictions. The

last we will not tarry with. It is an idiosyncratic rule, distinctive to Ackermann. More

important for our concern is the definition of f . It is a new constant, with new properties

which open up once we enter the substructural context. Classically (or intuitionistically)

f would behave as�, a proposition which entails all others. In a substructural logic like R

or Ackermann’s entailment, f does no such thing. It is true that f is provably false (we can

prove� f , from the axiom � f � f � � � f ) but it does not follow that f entails everything.

Again, a classical notion splits: there are two different kinds of falsehood. There is the

Ackermann false constant f , which is the weakest provably false proposition, and there

is the Church false constant �, which is the falsest false proposition, which entails every

proposition whatsoever. Classically and intuitionistically, both are equivalent. Here, they

come apart.

The two false constants are mirrored by their negations: two true constants. The Ack-

ermann true constant t (which is � f ) is the conjunction of all tautologies. The Church

true constant  (which is ��) is the weakest proposition of all, such that A �  is true

for each A. If we are to define necessity by means of a propositional constant, then t � A

16If we have the residuation of conjunction by  (intuitionistic or classical material implication) then distri-
bution follows. The algebraic analogue of this result is the thesis that a residuated lattice is distributive.

17For unmöglich.
18Actually, Ackermann uses the symbol “Λ”, but it now appears in the literature as “ f ”.
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is the appropriate choice. For t � A will be provable whenever A is provable. Choosing

 � A would be much too restrictive, as we would only allow as “necessary” proposi-

tions which were entailed by all others. Since we do not have A��A � B��B, if we

want both to be necessary, we must be happy with the weaker condition, of being entailed

by t.

This choice of true constant to define necessity motivates the choice that Anderson and

Belnap used. t must entail each proposition of the form A � A (as each is a tautology).

Anderson and Belnap showed that t � A in Ackermann’s system is equivalent to �A �
A� � A, and so they use �A � A� � A as a definition of �A, and in this way, they showed

that it was possible to define the one-place modal operators in the original language alone,

without the use of propositional constants at all.19 It is instructive to work out the details

of the behaviour of � as we have defined it. Necessity here has properties roughly of S4.

In particular, you can prove �A � ��A but not ♦A � �♦A in Ackermann’s system.20

(You will note that using this definition of necessity and without �δ� you need to add an

axiom to the effect that �A	 �B � ��A	 B�,21 as it cannot be proved from the system

as it stands. Defining �A as t � A does not have this problem.)

2.3 Anderson and Belnap

We have well-and-truly reached beyond Ackermann’s work on entailment to that of Alan

Anderson and Nuel Belnap. Anderson and Belnap started their exploration of relevance

and entailment with Ackermann’s work [1959; 1962], but very soon it became an inde-

pendent enterprise with a wealth of innovations and techniques from their own hands,

and from their student, colleagues and collaborators (chiefly J. Michael Dunn, Robert

K. Meyer, Alasdair Urquhart, Richard Routley (later known as Richard Sylvan) and Kit

Fine). Much of this research is reported in the two-volume Entailment [Anderson and

Belnap, 1975; 1992], and in the papers cited therein. There is no way that I can ade-

quately summarise this work in a few pages. However, I can sketch what I take to be

some of the most important and enduring themes of this tradition.

Fitch Systems

Hilbert systems are not the only way to present proofs. Other proof theories give us

us different insights into a logical system by isolating rules relevant to each different

connective. Hilbert systems, with many axioms and few rules, are not so suited to a project

of understanding the internal structure of a family of logical systems. It is no surprise that

in the relevant logic tradition, a great deal of work was invested toward providing different

proof theories which model directly the relationship between premises and conclusions.

The first natural deduction system for R and E (Anderson and Belnap’s system of

entailment) was inspired by Fitch’s natural deduction system, in widespread use in un-

dergraduate and postgraduate logic instruction in the 1950s in the United States [Fitch,

19Impossibility UA is then A ���A � A�.
20Defining ♦A as ���A, i. e., as ����A ��A� � �A�.
21The axiom is ungainly when it is written out in full: ��A � A� � A� � ��B � B� � B� � ��A � B �

A� B� � A� B�.
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1952].22 A Fitch system is a linear presentation of a natural deduction proof, with intro-

duction and elimination rules for each connective, and the use of vertical lines to present

subproofs — parts of proofs under hypotheses. Here, for example, is a proof of the rel-

evantly unacceptable weakening axiom in a Fitch system for classical (or intuitionistic)

logic:

1 A hyp

2 B hyp

3 A 1 reit

4 B � A 2–3 �I

5 A � �B � A� 1–4 �I

Each line is numbered to the left, and the annotation to the right indicates the provenance

of each formula. A line marked with “hyp” is a hypothesis, and its introduction increases

the level of nesting of the proof. In line 4 we have the application of conditional proof,

or as it is indicated here, implication introduction (�I). Since A has been proved under

the hypothesis of B, we deduce B � A, discharging that hypothesis. The other distinctive

feature of Fitch proofs is the necessity to reiterate formulas. If a formula appears outside

a nested subproof, it is possible to reiterate it under the assumption, for use inside the

subproof.

Now, this proof is defective, if we take � to indicate relevant implication. There are

two possible points of disagreement. One is to question the proof at the point of line 3:

perhaps something has gone wrong at the point of reiterating A in the subproof. This is

not where Anderson and Belnap modify Fitch’s system in order to model R.23 As you can

see in the proof of the (relevantly acceptable) assertion axiom, reiteration of a formula

from outside a subproof is unproblematic.

1 A hyp

2 A � B hyp

3 A 1 reit

4 B 2–3 �E

5 �A � B� � B 2–4 �I

6 A � ��A � B� � B� 1–5 �I

The difference between the two proofs indicates what has gone wrong in the proof of the

weakening axiom. In this proof, we have indeed used A � B in the proof of B from

lines 1 to 4. In the earlier “proof ”, we indeed proved A under the assumption of B but

22That Fitch systems would be used by Anderson and Belnap is to be expected. It is also to be expected that
Read [1988] and Slaney [1990] (from the U. K.) use Lemmon-style natural deduction [1965], modelled after
Lemmon’s textbook, used in the U. K. for many years. Logicians on continental Europe are much more likely
to use Prawitz [1965] or Gentzen-style [1934; 1969] natural deduction systems. This geographic distribution
of pedagogical techniques (and its resulting influence on the way research is directed, as well as teaching) is
remarkably resilient across the decades. The recent publication of Barwise and Etchemendy’s popular textbook
introducing logic still uses a Fitch system [2000]. As far as I am aware, instruction in logic in none of the major
centres in Europe or Australia centres on Fitch-style presentation of natural deduction.

23Restricting reiteration is the way to give hypothesis generation and conditional introduction modal force, as
we shall see soon.
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we did not use B in that proof. The implication introduction in line 4 is fallacious. If I

am to pay attention to use in proof, I must keep track of it in some way. Anderson and

Belnap’s innovation is to add labels to formulas in proofs. The label is a set of indices,

indicating the hypotheses upon which the formula depends. If I introduce a hypothesis A

in a proof, I add a new label, a singleton of a new index standing for that hypothesis. The

implication introduction and elimination rules must be amended to take account of labels.

For implication elimination, given Aa and A � Bb, I conclude Ba�b, for this instance of

B in the proof depends upon everything we needed for A and for A � B. For implication

introduction, given a proof of Ba under the hypothesis A�i�, I can conclude A � Ba��i�,

provided that i � a. With these amended rules, we can annotate the original proof of

assertion with labels, as follows.

1 A�1� hyp

2 A � B�2� hyp

3 A�1� 1 reit

4 B�1,2� 2–3 �E

5 �A � B� � B�1� 2– 4 �I

6 A � ��A � B� � B� 1–5 �I

The proof of weakening, on the other hand, cannot be annotated with labels satisfying the

rules for implication.
1 A�1� hyp

2 B�2� hyp

3 A�1� 1 reit

4 B � A??? 2–3 �I

5 A � �B � A�??? 1–4 �I

Modifying the system to model entailment is straightforward. As I hinted earlier, if the

arrow has a modal force, we do not want unrestricted reiteration. Instead of allowing

an arbitrary formula to be reiterated into a subproof, since entertaining a hypothesis now

has the force of considering an alternate possibility, we must only allow for reiteration

formulas which might indeed hold in those alternate possibilities. Here, the requisite

formulas are entailments. Entailments are not only true, but true of necessity, and so,

we can reiterate an entailment under the context of a hypothesis, but we cannot reiterate

atomic formulas. So, the proof above of assertion breaks down at the point at which

we wished to reiterate A into the second subproof. The proof of restricted assertion will

succeed.
1 A � A�

�1� hyp

2 �A � A�� � B�2� hyp

3 A � A�
�1�

1 reit

4 B�1,2� 2–3 �E

5 ��A � A�� � B� � B�1� 2–4 �I

6 �A � A�� � ���A � A�� � B� � B� 1–5 �I

This is a permissible proof because we are entitled to reiterate A � A� at line 3. Even

given the assumption that �A � A�� � B, the prior assumption of A � A� holds in the

new context.
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Here is a slightly more complex proof in this Fitch system for entailment. (Recall that

�A is shorthand for �A � A� � A, for Anderson and Belnap’s system of entailment.)

This proof shows that in E, the truth of an entailment (here B � C) entails that anything

entailed by that entailment (here A) is itself necessary too. The reiterations on lines 4 and

5 are permissible, because B � C and �B � C� � A are both entailments.

1 B � C�1� hyp

2 �B � C� � A�2� hyp

3 A � A�3� hyp

4 B � C�1� 1 reit

5 �B � C� � A�2� 2 reit

6 A�1,2� 4, 5 �E

7 A�1,2,3� 3, 6 �E

8 �A � A� � A�1,2� 3–7 �I

9 ��B � C� � A� � �A�1� 2–8 �I

10 �B � C� � ���B � C� � A� � �A� 1–9 �I

We say that A follows relevantly from B when a proof with hypothesis A�i� concludes in

B�i�. This is written “A 
 B”. We say that A is provable by itself when there is a proof of

A with no label at all. Then the Hilbert system and the natural deduction system match in

the following two senses.

FACT 2 (Hilbert and Fitch Equivalence). � A � B if and only if A 
 B. � A if and

only if 
 A.

(Note that this fact claims equivalence only between the Hilbert and Fitch systems

for the implicational fragment of R and not any fuller language, as we have considered

natural deduction rules for implication only, thus far.)

Proof. The proof is by an induction on the complexity of proofs in both directions. To

convert a Fitch proof to a Hilbert proof, we replace the hypotheses A�i� by the identity

A � A, and the arbitrary formula B�i1,i2,...,in� by A1 � �A2 � � � � � �An � B� � � � �
(where A j is the formula introduced with label A j). Then you show that the steps between

these formulas can be justified in the Hilbert system. Conversely, you simply need to show

that each Hilbert axiom is provable in the Fitch system, and that modus ponens preserves

provability. Neither proof is difficult. �

Other restrictions on reiteration can be made in this Fitch system in order to model weaker

logics. In particular, Anderson and Belnap examine a system T of ticket entailment, with

the underlying idea that statements of the form A � B are rules but not facts. They

are to be used as major premises of implication eliminations, but not as minor premises.

The restriction on reiteration to get this effect allows you to conclude Ba�b from Aa and

A � Bb, provided that max�b� � max�a�. The effect of this is to render restricted

assertion unprovable, while identity, prefixing, suffixing and contraction remain provable
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(and these axiomatise the calculus T of ticket entailment).24 (It is an open problem to this

day whether the implicational fragment of T is decidable.)

Before considering the extension of this proof theory to deal with the extensional con-

nectives, let me note one curious result in the vicinity of T. The logic TW you get by

removing contraction from T has a surprising property. Errol Martin has shown that if

A � B and B � A are provable in TW, then A and B must be the same formula [Martin

and Meyer, 1982].25

First Degree Entailment

It is one thing to provide a proof theory for implication or entailment. It is another to com-

bine it with a theory of the other propositional connectives: conjunction, disjunction and

negation. Anderson and Belnap’s strategy was to first decide the behaviour of conjunc-

tion, disjunction and negation, and then combine this theory with the theory of entailment

or implication. This gives the structure of the first volume of Entailment [Anderson and

Belnap, 1975]. The first 100 pages deals with implication alone, the next 50 with im-

plication and negation, the next 80 with the first degree fragment (entailments between

formulas not including implication) and only at page 231 do we find the formulation of

the full system E of entailment.

Anderson and Belnap’s work on entailments between truth functions (or what they call

first degree entailment) dates back to a paper in [1962]. There are many different ways

to carve out first degree entailments which are relevant from those which are not. For

example, filter techniques due to von Wright [1957], Lewy [1958], Geach [1958] and

Smiley [1959] tell us that statements like

A � B��B A	�A � B

fail as entailments because there is no atom shared between antecedent and consequent.

So far, so good, and their account follows Anderson and Belnap’s. However, if this is the

only criterion to add to classical entailment, we allow their analogues

A � A	 �B��B� �A	�A� � B � B

for the propositional atom A is shared in the first case, and B in the second. Since both of

the following classical entailments

A	 �B��B� � B��B A	�A � �A	�A� � B

24This is as good a place as any to note that the axiom of self distribution �A � �B � C�� � ��A � B� �
A � C�� will do instead of contraction in any of these axiomatisations.

25Martin’s proof proceeds via a result showing that the logic given by prefixing and suffixing (without identity)
has no instances of identity provable at all. This is required, for �A � B� � ��B � A� � �A � A��
is an instance of suffixing. The system S (for syllogism) has interesting properties in its own right, modelling
noncircular (non “question begging”) logic [Martin, 1984].

�
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also satisfy the atom-sharing requirement, using variable sharing as the only criterion

makes us reject the transitivity of entailment. After all, given A � A 	 �B � �B� and

given A	 �B��B� � B��B, if � is transitive, we get A � B��B.26

Anderson and Belnap respond by noting that if A � B � �B is problematic because

of relevance, then A � A	�B��B� is at least 50% problematic [Anderson and Belnap,

1975, p. 155]. Putting things another way, if to say that A entails B 	 C is at least to

say that A entails B and that A entails C, then we cannot just add a blanket atom-sharing

criterion to filter out failures of relevance, for it might apply to one conjunct and not the

other. Filter techniques do not work.

Anderson and Belnap characterise valid first degree entailments in a number of ways.

The simplest way which does not use any model theory is a normal form theorem for first

degree entailments. We will use a process of reduction to transform arbitrary entailments

into primitive entailments, which we can determine on sight. The first part of the process

is to drive negations inside other operators, leaving them only on atoms. We use the De

Morgan equivalences and the double negation equivalence to do this.27

��A� B� � �A	�B ��A	 B� � �A��B ��A � A

(I write “A � B” here a shorthand for “both A � B and B � A”.)

The next process involves pushing conjunctions and disjunctions around. The aim is

to make the antecedent of our putative entailment a disjunction of conjunctions, and the

consequent a conjunction of disjunctions. We use these distribution facts to this effect.28

�A� B� 	C � �A	C� � �B	C� �A	 B� �C � �A�C� 	 �B�C�

With that transformation done, we break the entailment up into primitive entailments in

these two kinds of steps:

A� B � C if and only if A � C and B � C

A � B	C if and only if A � B and A � C.

All of the transformation rules in this process are intended to be unproblematically valid

when it comes to relevant entailment. The first batch (the negation conditions) seem un-

problematic if negation is truth functional. The second batch (the distribution conditions,

together with the associativity, commutativity and idempotence of both disjunction and

26Nontransitive accounts of entailment have survived to this day, with more sophistication. Neil Tennant
has an idiosyncratic approach to normalisation in logics, arguing for a “relevant logic” which differs from our
substructural logics by allowing the validity of A�B,�A � B and A � A�B, while rejecting A,�A � B [1992;
1994]. Tennant’s system rejects the unrestricted transitivity of proofs: the ‘Cut’ which would allow A,�A � B

from the proofs of A� B,�A � B and A � A� B is not admissible. Tennant uses normalisation to motivate
this system.

27We also lean on the fact that we can replace provable equivalents ad libitum in formulas. Formally, if we
can prove A� B and B� A then we can prove C � C� and C� � C, where C� results from C by changing as
many instances of A to B in C as you please. All substructural logics satisfy this condition.

28Together with the associativity, commutativity and idempotence of both disjunction and conjunction, which
I will not bother to write out formally.
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conjunction) are sometimes questioned29 but we have been given no reason yet to quib-

ble with these as relevant entailments. Finally, the steps to break down entailments from

disjunctions and entailments to conjunctions are fundamental to the behaviour of conjunc-

tion and disjunction as lattice connectives. They are also fundamental to the inferential

properties of these connectives. A � B licences an inference to C (and a relevant one,

presumably!) if and only if A and B both licence that inference. B 	 C follows from A

(and relevantly presumably!) if and only if B and C both follow from A.

The result of the completed transformation will then be a collection of primitive entail-

ments: each of which is a conjunction of atoms and negated atoms in the antecedent, and

a disjunction of atoms and negated atoms in the consequent. Here are some examples of

primitive entailments:

p	�p � q��q p � p��p p	�p	�q	 r � s��s� q��r.

Anderson and Belnap’s criterion for deciding a primitive entailment is simple. A primitive

entailment A � B is valid if and only if one of the conjuncts in the antecedent also

features as a disjunct in the consequent. If there is such an atom, clearly the consequent

follows from the antecedent. If there is no such atom, the consequent may well be true

(and perhaps even necessarily so, if an atom and its negation both appear as disjuncts) but

its truth does not follow from the truth of the antecedent. This makes some kind of sense:

what is it for the consequent to be true? It’s for at least one of B1, B2, B3 . . . to be true.

(And that’s all, as that’s all that the consequent says.) If none of these things are given

by the antecedent, then the consequent as a whole doesn’t follow from the antecedent

either.30

We can then decide an arbitrary first degree entailment by this reduction process.

Given an entailment, reduce it to a collection of primitive entailments, and then the orig-

inal entailment is valid if and only if each of the primitive entailments is valid. Let’s

apply this to the inference of disjunctive syllogism: �A� B� 	�A � B. Distributing the

disjunction over the conjunction in the antecedent, we get �A 	 �A� � �B 	 �A� � B.

This is a valid entailment if and only if A 	 �A � B and B 	 �A � B both are. The

second is, but the first is not. Disjunctive syllogism is therefore rejected by Anderson and

Belnap. To accept it as a valid entailment is to accept A	�A � B as valid. Since this is

a fallacy of relevance, so is disjunctive syllogism.

This is one simple characterisation of first degree entailments. Once we start looking at

models we will see some different models for first degree entailment which give us other

straightforward characterisations of the first-degree fragment of R and E. Now, however,

29We will see later that linear logic rejects the distribution of conjunction over disjunction.
30I am not here applying the fallacious condition that B1 � B2 follows from A if and only if B1 follows from

A or B2 follows from A, which is invalid in general. Let A be B1 � B2, for example. But in that case we note
that B1 follows from some disjunct of A and B2 also follows from other disjunct of A. In the atomic case, A can
no longer be split up.

To demonstrate the entailment p � q��q classically, the idea would be to import the tautologous q��q

into the antecedent, to get p��q��q� � q��q, distribute to get �p� q� � �p��q� � q��q, and split
to get both p� q � q��q (which is valid, by means of q) and p��q � q��q (which is valid, by means
of �q). With eyes of relevance there’s no reason to see the appeal for importing q��q in the first place.
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we must consider how to graft this account together with the account of implicational

logics we have already seen.

Putting Them Together

To add the truth functional connectives to a Hilbert system for R or E, Anderson and

Belnap used the axioms due to Ackermann for his system Π�. The conjunction intro-

duction and elimination, disjunction introduction and elimination axioms, together with

distribution and the rule of adjunction is sufficient to add the distributive lattice con-

nectives. To add negation, you add the double negation axioms and contraposition, and

counterexample (or equivalently, reductio). Adding the truth functions to a Hilbert system

is straightforward.

It is more interesting to see how to add the connectives to the natural deduction system,

because these systems usually afford a degree of separation between different connectives,

and they provide a context in which you can see the distinctive behaviour of those con-

nectives. Let’s start with negation. Here are the negation rules proposed by Anderson and

Belnap:

� (�I) From �Aa proved under the hypothesis A�k�, deduce �Aa��k� (if k � a). (This

discharges the hypothesis.)

� (Contraposition) From Ba and�Bb proved under the hypothesis A�k�, deduce�Aa�b��k�

(if k � b). (This discharges the hypothesis.)

� (��E) From ��Aa to deduce Aa.

These rules follow directly the axioms of reductio, contraposition and double negation

elimination. They are sufficient to derive all of the desired negation properties of E and

R. Here, for example, is a proof of the reductio axiom.

1 A � �A�1� hyp

2 A�2� hyp

3 A � �A�1� 1 reit

4 �A�1,2� 2–3 �E

5 �A�1� 2–4 �I

6 �A � �A� � �A 1–5 �I

The rules for conjunction are also straightforward.

� (	E1) From A 	 Ba to deduce Aa.

� (	E2) From A 	 Ba to deduce Ba.

� (	I) From Aa and Ba to deduce A 	 Ba.

These rules mirror the Hilbert axiom conditions (which make 	 a lattice join). The con-

junction entails both conjuncts, and the conjunction is the weakest thing which entails

both conjuncts.

We do not have a rule which says that if A depends on something and B depends on

something else then A	 B depends on those things together, because that would allow us
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to do too much. If we did have a connective (use “&” for this connective for the moment)

which satisfied the same elimination clause as conjunction, and which satisfied that liberal

introduction rule, it would allow us to prove the positive paradox in the following way.

1 A�1� hyp

2 B�2� hyp

3 A�1� 1 reit

4 A&B�1,2� 2, 3 &I

5 A�1,2� 4 &E

6 B � A�1� 2–5 �I

7 A � �B � A� 1–6 �I

If we have a connective with the elimination rules of conjunction (which we surely re-

quire, if that connective is to be “and” in the traditional sense) then the liberal rules are

too strong. They would allow us to take vacuous excursions through conjunction intro-

ductions and elimination, picking up irrelevant indices along the way.

No, the appropriate introduction rule for a conjunction is the restricted one which re-

quires that both conjuncts already have the same relevance label. This, somewhat sur-

prisingly, suffices to prove everything we can prove in the Hilbert system. Here, for an

example, is the proof of the conjunction introduction Hilbert axiom.

1 �A � B� 	 �A � C��1� hyp

2 A � B�1� 1 	E

3 A � C�1� 1 	E

4 A�2� hyp

5 A � B�1� 2 reit

6 B�1,2� 4, 5 �E

7 A � C�1� 3 reit

8 C�1,2� 4, 7 �E

9 B	C�1,2� 6, 8 	I

10 A � B	C�1� 4–9 �I

11 �A � B� 	 �A � C� � �A � B	C� 1–10 �I

From these rules, using the De Morgan equivalence between A � B and ���A 	 �B�,
it is possible to derive the following two rules for disjunction.31 Unfortunately, these

rules essentially involve the conditional. There seems to be no way to isolate rules which

involve disjunction alone.

� (�I1) From Aa to deduce A� Ba.

� (�I2) From Ba to deduce A� Ba.

� (�E) From A � Ca and B � Ca and from A� Bb to deduce Ca�b.

The most disheartening thing about these rules for disjunction (and about the natural

deduction system itself) is that they do not suffice. They do not prove the distribution of

conjunction over disjunction. Anderson and Belnap had to posit an extra rule.

31See Anderson and Belnap’s Entailment [1975, §23.2] for the details.
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� (Dist) From A 	 �B �C�a to deduce �A 	 B� �Ca

It follows that this Fitch-style proof theory, while useful for proving things in R or E,

and while giving some separation of the distinct behaviours of the logical connectives,

does not provide pure introduction and elimination rules for each connective. For a proof

theory which does that, the world would have to wait until the 1970s, and for some inde-

pendent work of Grigori Minc [1972; 1977]32 and J. Michael Dunn [1973].33

The fusion connective � plays a minor role in early work in the Anderson–Belnap tra-

dition.34 They noted that it has some interesting properties in R, but that the residuation

connection fails in E if we take A � B to be defined as ��A � �B�. Residuation fails be-

cause ��A � �B� � C does not entail A � �B � C� if we cannot permute antecedents

of arbitrary conditionals. Since E was their focus, fusion played a little role in their early

work. Later, with Dunn’s development of natural algebraic semantics, and with the shift

of focus to R, fusion began to play a more central role.

The topic of finding a natural proof theory for relevant implication — and in particular,

the place of distribution in such a proof theory — was a recurring theme in logical research

in this tradition. The problem is not restricted to Fitch-style systems. Dag Prawitz’s
[1965] monograph Natural Deduction, launched Gentzen-style natural deduction systems

on to centre stage. At the end of the book, Prawitz remarked that modifying the rules of

his system would give you a system of relevant implication. Indeed they do. Almost.

Rules in Prawitz’s system are simple. Proofs take the form of a tree. Some rules simply

extend trees downward, from one conclusion to another. Others, take two trees and join

them into a new tree with a single conclusion.

A 	 B

A

A 	 B

B

A B

A 	 B

A � B A

B

These rules have as assumptions any undischarged premises at the top of the tree. To

prove things on the basis of no assumptions, you need to use rules which discharge them.

For example, the implication introduction rule is of this form:

�A�
...
B

A � B.

This indicates that at the node for B there is a collection of open assumptions A, and we

can derive A � B, closing those assumptions. Prawitz hypothesised that if you mod-

ified his rules to only allow the discharge of assumptions which were actually used in

a proof, as opposed to allowing vacuous discharge (which is required in the proof of

A � �B � A�, for example), you would get a system of relevant logic in the style of

32Then in Russia, and now at Stanford. He publishes now under the name “Grigori Mints”.
33A graduate student of Nuel Belnap’s.
34They call � “fusion” after trying out names such as “cotenability” or “compossibility”, connected with the

definition as ��A ��B�.
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Anderson and Belnap. Keeping our attention to implication alone, the answer is correct.

His rule modification gives us a simple natural deduction system for R.

However, Prawitz’s rules for relevant logic are less straightforward once we attempt

to add conjunction. If we keep the rules as stated, then the conjunction rules allow us

to prove the positive paradox in exactly the same way as in the case with & in the Fitch

system.35

A2 B1

��I�
A	 B

��E�
A

�1,� I�
B � A

�2,� I�
A � �B � A�

We must do something to the rule for conjunction introduction to ban this proof. The

required amendment is to only allow conjunction introduction when the two subproofs

have exactly the same open assumptions. A similar amendment is required for disjunction

elimination. And then, once those patches are applied, it turns out that distribution is no

longer provable in the system. (The intuitionistic or classical proof of distribution in

Prawitz’s system requires either a weakening in or an irrelevant assumption or a banned

conjunction or disjunction move.) Prawitz’s system is no friendlier to distribution than is

Fitch’s.

Logics without distribution, such as linear logic, are popular, in part, because of the

difficulty of presenting straightforward proof systems for logics with distribution. In gen-

eral, proof theories seem more natural or straightforward doing without it. The absence

of distribution has also sparked debate. The naturalness or otherwise of a proof theory

is no argument in and of itself for the failure of distribution. See Belnap’s “Life in the

Undistributed Middle” [1993] for more on this point.

Embeddings

One of the most beautiful results of early work on relevant logic is the embedding results

showing how intuitionistic logic, classical logic and S4 find their home inside R and

E [Anderson and Belnap, 1961; Meyer, 1970a; 1973b]. The idea is that we can move

to an irrelevant conditional by recognising that such conditionals might be enthymemes.

When I say that A � B holds (� is the intuitionistic conditional), I am not saying that B

follows from A, I am saying that B follows from A together perhaps with some truth or

other. One simple way to say this is to lean on the addition of the Ackermann constant t.

We can easily add t to R by way of the following equivalences

A � �t � A� �t � A� � A.

35The superscripts and the line numbers pair together assumptions and the points in the proof at which they
were discharged.
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These state that a claim is true just in case it follows from t.36 Given t we can define the

enthymematic conditional A � B as follows. A � B is

A	 t � B

which states that B follows from A together with some truth or other. Now, A � �B � A�
is provable: in fact, the stronger claim A � �B � A� is provable, since it follows directly

from the axiom A � �t � A�. But this is no longer paradoxical, since B � A does not

state that A follows from B. (The proof that you get precisely intuitionistic logic through

this embedding is a little trickier than it might seem. You need to revisit the definition of

intuitionistic negation (write it “�” for the moment) in order to show that A 	 �A � B

holds.37 The subtleties are to be found in a paper by Meyer [1973b].

The same kind of process will help us embed the strict conditional of S4 into E. In E, t

is not only true but necessary (as the necessary propositions are those entailed by t) so the

effect of the enthymematic definition in E is to get a strict conditional. If we define A � B

as A 	 t � B in E, then the 	,�,� fragment of E is exactly the 	,�,� fragment of

S4 [Anderson and Belnap, 1992, §35].

We can extend the modelling of intuitionistic logic into E if we step further afield. We

require not only the propositional atom t, but some more machinery: the machinery of

propositional quantification. If we add propositional quantifiers �p and �p to E38 then

intuitionistic and strict implication are defined as follows:

A � B �df �p�p	 �p	 A � B��
A � B �df �p��p	 �p	 A � B��.

An intuitionistic conditional asserts that there is some truth, such that it conjoined with

A entails B. A strict conditional asserts that there is some necessary truth, such that it

conjoined with A entails B.

Embedding the classical conditional into relevant logic is also possible. The amend-

ment is that not only do we need to show that weakening is possible, but contradictions

must entail everything: and we want to attempt this without introducing a new negation.

The innovation comes from noticing that we can dualise the enthymematic construction.

Instead of just requiring an extra truth as a conjunct in the antecedent, we can admit an

extra falsehood as a disjunct in the consequent. The classical conditional (also written

“A � B”) can be defined like this

A	 t � B� f

where f � �t. Now we will get A 	 �A � B since A 	 �A � f .39 Anderson and

Belnap make some sport of material “implication” on the basis of this definition. Note

36The first axiom here is too strong to govern t in the logic E, in which case we replace it by the permuted
form t � �A � A�. The claim t doesn’t entail all truths. (If it did, then all truths would be provable, since t is
provable.) Instead, t entails all identities.

37You can’t just use the negation of relevant logic, because of course we get A  B��B, since t � B��B.
38And the proof theory for propositional quantifiers is not difficult [Anderson and Belnap, 1992, §30–32].
39The result can be extended to embed the whole of S4 into E (rather than only its positive fragment of S4)

by setting A � B 	df �p��p� �p� A � B��p��.
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that constructive implication is still genuinely an implication with the consequent being

what we expect to conclude. A “material” implication is genuinely an implication, but

you cannot conclude the consequent of the original conditional by modus ponens with the

antecedent. No, you can only conclude the consequent with a disjoined � f .40

Arguments about disjoined f s lead quite well into arguments over the law of disjunctive

syllogism, and these are the focus of our next section.

2.4 Disjunctive Syllogism

We have already seen that Ackermann’s system Π� differs from Anderson and Belnap’s

system E by the presence of the rule �γ�. In Ackermann’s Π�, we can directly infer B from

the premises A�B and�A. In E, this is not possible: for E a rule of inference from X to B

is admitted only when there is some corresponding entailment from X (or the conjunction

of formulas in X ) to B. As disjunctive syllogism in an entailment

�A� B� 	 �A � B

is not present, Anderson and Belnap decided to do without the rule too. This motivates a

question. Does dropping the rule �γ� change the set of theorems? Is there anything you

can prove with �γ� that you cannot prove without it? Of course there are things you can

prove from hypotheses, using �γ� which cannot be proved without it. In Ackermann’s

system Π� there is a straightforward proof for A,�A � B. In Anderson and Belnap’s E

there is no such proof. However, this leaves the special case of proofs from no hypotheses.

Is it the case that in E, if 
 A � B and 
 �A that 
 B too? This is the question of the

admissibility of disjunctive syllogism. If disjunctive syllogism is admissible in E then its

theorems do not differ from the theorems of Ackermann’s Π�.

A Proof of the Admissibility of Disjunctive Syllogism

There are four different proofs of the admissibility of disjunctive syllogism for logics

such as E and R. The first three proofs are due to Meyer [1973](with help from Dunn

on the first [1969], and help from Routley on the second [1976a]). They all depend on

the same first step, which we will describe here as the way up lemma. The last proof

was obtained by Kripke in 1978. In this section I will sketch the third of Meyer’s proofs,

because it will illustrate two techniques which have proved fruitful in the study of relevant

and substructural logics. It is worth examining this result in some detail because it shows

some of the distinctive techniques in the metatheory of relevant logics.

FACT 3 (Disjunctive Syllogism is Admissible in E and R). In both E and R, if 
 A� B

and 
 �A then 
 B.

40I suspect that the situation is not quite so bad for material implication. If one treats acceptance and rejection,
assertion and denial with equal priority, and if you take the role of implication as not only warranting the
acceptance of the consequent, given the acceptance of the antecedent but also the rejection of the antecedent on
the basis of the rejection of the consequent, then the enthymematic definition of the material conditional seems
not so bad [Restall, 2000c].
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To present the bare bones of the proof of this result, we need some definitions.

DEFINITION 4 (Theories). A set T of formulas is a theory if whenever A, B � T then

A 	 B � T , and if A 
 B then if A � T we also have B � T . Theories are closed under

conjunction and provable consequence.

Note that theories in relevant logics are rather special. Nonempty theories in irrelevant

logics contain all theorems, since if A � T and if B is a theorem then so is A � B in

an irrelevant logic. In relevant logics this is not the case, so theories need not contain all

theorems.

Furthermore, since A 	 �A � B is not a theorem of relevant logics, theories may

be inconsistent without being trivial. A theory might contain an inconsistent pair A and

�A, and contain its logical consequences, without the theory containing any formula

whatsoever.

Finally, consistent and complete theories in classical propositional logic respect all

logical connectives. In particular, if A � B is a member of a consistent and complete

theory, then one of A and B is a member of that theory. For if neither are, then �A and

�B are members of the theory, and so is��A�B� (by logical consequence) contradicting

A � B’s membership of the theory. In a logic like R or E it is quite possible for A �
B and ��A � B� to be members of our theory without the theory becoming trivial. A

theory can be complete without respecting disjunction. It turns out that theories which

respect disjunction play a very important role, not only in our proof of the admissibility

of disjunctive syllogism, but also in the theory of models for substructural logics. So, they

deserve their own definition.

DEFINITION 5 (Special Theories). A theory T is said to be prime if whenever A�B � T

then either A � T or B � T . A theory T is said to be regular (with respect to a particular

logic) whenever it contains all of the theorems of that logic.

Now we can sketch the proof of the admissibility of �γ�.

Proof. We will argue by reductio, showing that there cannot be a case where A � B and

�A are provable but B is not. Focus on B first. If B is not provable, we will show first that

there is a prime theory containing all of the theorems of the logic but which still avoids

B. This stage is the Way Up. We may have overshot our mark on the Way Up, as a prime

theory containing all theorems will certainly be complete (as C��C is a theorem in E or

R so one of C and �C will be present in our theory) but it may not be consistent. If we

can have a consistent complete prime theory containing all theorems but still missing out

B we will have found our contradiction, for since this new theory contains all theorems, it

contains A�B and�A. By primeness it contains either A or it contains B. Containing A is

ruled out since it already contains �A, so containing B is the remaining option.41 So, the

Way Down cuts down our original theory into a consistent and complete one. Given the

way up and the way down, we will have our result. Disjunctive syllogism is admissible.

�

41Note here that disjunctive syllogism was used in the language used to present the proof. Much has been
made of this in the literature on the significance of disjunctive syllogism [Belnap and Dunn, 1981; Meyer, 1978].
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All that remains is to prove both Way Up and Way Down lemmas.

FACT 6 (Way Up Lemma). If � A, then there is a regular prime theory T such that A � T .

This is a special case of the general pair extension theorem, which is so useful in

relevant and substructural logics that it deserves a separate statement and a sketch of its

proof. To introduce this proof, we need a new definition to keep track of formulas which

are to appear in our theory, and those which are to be kept out.

DEFINITION 7 (
-pairs). An ordered pair �L,R� of sets of formulae is said to be a


-pair if and only if there are no formulas A1, . . . , An � L and B1, . . . , Bm � R where

A1 	 � � � 	 An 
 B1 � � � � � Bm.

A helpful shorthand will be to write ‘
�

Ai 

�

B j’ for the extended conjunctions and

disjunctions. A 
-pair is represents a set of formulas we wish to take to be true (those

in the left) and those we wish to take to be false (those in the right). The process of

constructing a prime theory will involve enumerating the entire language and building up

a pair, taking as many formulas as possible to be true, but adding some as false whenever

we need to. So, we say that a 
-pair �L�,R�� extends �L,R� if and only if L � L� and

R � R�. We write this as “�L,R� � �L�,R��.” The end point of this process will be a full

pair.

DEFINITION 8 (Full 
-Pairs). A 
-pair �L,R� is a full 
-pair if and only if L � R is

the entire language.

Full 
-pairs are important, as they give us prime theories.

FACT 9 (Prime Theories from Full
-Pairs). If �L,R� is a full
-pair, L is a prime theory.

Proof. We need to verify that L is closed under consequence and conjunction, and that it

is prime. First, consequence. Suppose A � L and that A 
 B. If B � L, then since �L,R�
is full, B � R. But then A 
 B contradicts the condition that �L,R� is a 
-pair.

Second, conjunction. If A1, A2 � x, then since A1 	 A2 
 A1 	 A2, and �L,R� is a


-pair, we must have A1 	 A2 � y, and since �L,R� is full, A1 	 A2 � L as desired.

Third, primeness. If A1 � A2 � L, then if A1 and A2 are both not in L, by fullness, they

are both in R, and since A1 � A2 
 A1 � A2, we have another contradiction to the claim

that �L,R� is a 
-pair. Hence, one of A1 and A2 is in L, as we wished. �

FACT 10 (Pair Extension Theorem). If 
 is the logical consequence relation of a logic

including all distributive lattice properties, then any 
-pair �L,R� is extended by some

full 
-pair �L�,R��.

To prove this theorem, we will assume that we have enumerated the language so that every

formula in the language is in the list C1,C2, . . . ,Cn, . . . We will consider each formula

one by one, to check to see whether we should throw it in L or in R instead. We assume,

in doing this, that our language is countable.42

Proof. First we show that if �L,R� is a 
-pair, then so is at least one of �L � �C�,R� and

�L,R��C��, for any formula C. Equivalently, we show that if �L��C�,R� is not a
-pair,

42The general kind of proof works for well-ordered languages as well as countable languages.



314 Greg Restall

then the alternative, �L,R � �C��, is. If this were not a 
-pair either, then there would

be some A �
�

L (the set of all conjunctions of formulae from L) and B �
�

R where

A 
 B�C. Since �L��C�,R� is not a 
-pair, there are also A� �
�

L and B� �
�

R such

that A�	C 
 B�. But then, A	A� 
 B�C. But this means that A	A� 
 �B�C�	A�. Now

by distributive lattice properties, we then get A	A� 
 B��A�	C�. But A�	C 
 B�, so

disjunction properties, and the transitivity of 
 together give us A	A� 
 B�B�, contrary

to the fact that �L,R� is a 
-pair.

With that fact in hand, we can create our full pair. Define the series of 
-pairs �Ln,Rn�
as follows. Let �L0,R0� � �L,R�, and given �Ln,Rn� define �Ln�1,Rn�1� in this way.

�Ln�1,Rn�1� �

�
�Ln � �Cn�,Rn� if �Ln � �Cn�,Rn� is a 
-pair,

�Ln,Rn � �Cn�� otherwise.

Each �Ln�1,Rn�1� is a 
-pair if its predecessor �Ln,Rn� is, for there is always a choice

for placing Cn while keeping the result a 
-pair. So, by induction on n, each �Ln,Rn� is a


-pair. It follow then that �
�

n�ω Ln,
�

n�ω Rn�, the limit of this process, is also a 
-pair,

and it covers the whole language. (If �
�

n�ω Ln,
�

n�ω Rn� is not a 
-pair, then we have

some Ai �
�

Ln and some B j �
�

Rn such that A1 	 � � � 	 Al 
 B1 � � � � � Bm, but if this

is the case, then there is some number n where each Ai is in Ln and each B j is in Rn. It

would follow that �Ln,Rn� is not a 
-pair.) So, we are done. �

Belnap proved the Pair Extension Theorem in the early 1970s. Dunn circulated a write-up

of it in about 1975, and cited it in some detail in 1976 [1976b]. Gabbay independently

used the result for first-order intuitionistic logic, also in 1976 [1976]. The theorem gives

us the Way Up Lemma, because if � B, then �Th, �B�� is a 
-pair, where Th is the set

of theorems. Then this pair is extended by a full pair, the left part of which is a regular

prime theory, avoiding B.

Now we can complete our story with the proof of the Way Down Lemma.

Proof. We must move from our regular prime theory T to a consistent regular prime

theory T� � T . We need the concept of a “metavaluation.” The concept and its use

in proving the admissibility �γ� is first found in Meyer’s paper from 1976 [1976a]. A

metavaluation is a set of formulas T� on formulas defined inductively on the construction

of formulas as follows:

� For a propositional atom p, p � T� if and only if p � T ;

� �A � T� iff () A � T�, and () �A � T ;

� A 	 B � T� iff both A � T� and B � T�;

� A � B � T� iff either A � T� or B � T�;

� A � B � T� iff () if A � T� then B � T� and () A � B � T .

Note the difference between the clauses for the extensional connectives 	 and � and the

intensional connectives � and �. The extensional connectives have “one-punch” rules

which match their evaluation with respect to truth tables. The intensional connectives are

more complicated. They require both that the formula is in the original theory and that

the extensional condition holds in the new set T�.
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We will prove that T� is a regular theory. Its primeness and consistency are already

delivered by fiat, from the clauses for � and �. The first step on the way is a simple

lemma.

FACT 11 (Completeness Lemma). If A � T� then A � T , and if A � T� then �A � T .

It is simplest to prove both parts together by induction on the construction of A. As

an example, consider the case for implication. The positive part is straightforward: if

A � B � T� then A � B � T by fiat. Now suppose A � B � T�. Then it follows

that either A � B � T or A � T� and B � T�. In the first case, by the completeness

of T , ��A � B� � T follows immediately. In the second case, A � T� (so by the

induction hypothesis, A � T ) and B � T� (so by the induction hypothesis, �B � T ).

Since A,�B 
 ��A � B� in both R and E, we have ��A � B� � T , as desired.

It is also not too difficult to check that T� is a regular theory. First, T� is closed under

conjunction (by the conjunction clause) and it is detached (closed under modus ponens,

by the implication clause). To show that it is a regular theory, then, it suffices to show that

every axiom of the Hilbert system for R is a member. To give you an idea of how it goes,

I shall consider two typical cases.

First we check suffixing: �A � B� � ��B � C� � �A � C��. Suppose it isn’t in

T�. Since it is a theorem of the logic and thus a member of T , it satisfies the intensional

condition and so must fail to satisfy the extensional condition. So A � B � T� and

�B � C� � �A � C� � T�. By the Completeness Lemma, then A � B � T , and so by

modus ponens from the suffixing axiom itself, we have that �B � C� � �A � C� � T .

So �B � C� � �A � C� satisfies the intensional condition, and so must fail to satisfy the

extensional condition: B � C � T� and A � C � T�. By similar reasoning we derive

that A � C must finally fail to satisfy the extensional condition, i.e. A � T� and C � T�.

But since of A � B � T�, B � C � T�, A � T�, by the extensional condition, C � T�,

and we have a contradiction.

Second, check double negation elimination: ��A � A. Suppose it isn’t in T�. Again,

since it’s a theorem of the logic and thus a member of T , if it fails it must fail the exten-

sional condition. So, ��A � T� but A � T�. Since ��A � T�, by the negation clause,

we have both �A � T� and ��A � T . From ��A � T , using double negation elimina-

tion, we get A � T . Using the negation clause again, unpacking �A � T�, we have either

A � T� or �A � T . The first possibility clashes with our assumption that A � T�. The

second possibility, �A � T clashes again with A � T�, using the Completeness Lemma.

The same techniques show that each of the other axioms are also present in T�. Finally

T� is closed under modus ponens, and as a result, T� is a complete, consistent regular

theory, and a subset of T . This completes our proof of the Way Down Lemma. �

Meyer pioneered the use of metavaluations in relevant logic [1971; 1976]. Metavalu-

ations were also used by Kleene in his study of intuitionistic theories [1962; 1963], who

was in turn inspired by Harrop, who used the technique in the 1950s to prove primeness

for intuitionistic logic [1956].

There are many different proofs of the admissibility of disjunctive syllogism. Meyer
[1998] pioneered the technique using metavaluations, and Meyer and Dunn [1969] have
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used other techniques . Friedman and Meyer [1992] showed that disjunctive syllogism

fails in first-order relevant Peano arithmetic, but that it holds when you add an infinitary

“omega” rule. Meyer and I have used a different style of metavaluation argument to con-

struct a complete “true” relevant arithmetic [1996]. This metavaluation argument treats

negation with a “one-punch” clause: �A � T� if and only if A � T�. In this arithmetic,

0 � 1 � 0 � 2 is a theorem, as you can deduce 0 � 2 from 0 � 1 by arithmetic means,

while ��0 � 2 � 0 � 1� is a theorem, as there is no way, by using multiplication,

addition and identity, to deduce 0 � 1 from 0 � 2.

Interpretation

A great deal of the literature interpreting relevant logics has focussed on the status of

disjunctive syllogism. The relevantist of Belnap and Dunn’s essay “Entailment and Dis-

junctive Syllogism” [1981] is a stout-hearted person who rejects all use of disjunctive

syllogism. Belnap and Dunn explain how difficult it is to maintain this line. Once you

learn A�B and you learn�A, it is indeed difficult to admit that you have no reason at all to

conclude B. Stephen Read is perhaps the most prominent relevantist active today [1981;

1988]. Read’s way of resisting disjunctive syllogism is to argue that in any circumstance

in which there is pressure to conclude B from A � B and �A, we have pressure to admit

more than A� B: we have reason to admit �A � B, which will licence the conclusion to

B.

Some proponents of relevantism reject disjunctive syllogism not merely because it

leads to fallacies of relevance, but because it renders non-trivial but inconsistent theo-

ries impossible [Meyer and Martin, 1986; Routley, 1984]. The strong version of this view

is that inconsistencies are not only items of non-trivial theories, they are genuine possibil-

ities [Priest, 2000]. Such a view is dialetheism, the thesis that contradictions are possible.

Not all proponents of relevant logics are dialetheists, but dialetheism has provided a strong

motivation for research into relevant logics, especially in Australia.43

My view on this issue differs from each of the relevantist, the dialetheist and the clas-

sicalist (who accepts disjunctive syllogism, and hence rejects relevant logic) by being

pluralistic [Beall and Restall, 2000; Restall, 1999]. Disjunctive syllogism is indeed inap-

propriate to apply to the content of inconsistent theories. However, it is impossible that the

premises of an instance of disjunctive syllogism be true if at the very same time the con-

clusion is not true. Relevant entailment is not the only constraint under which truth may

be regulated. Relevant entailment is one useful criterion for evaluating reasoning, but it is

not the only one. If we are given reason to believe A � B and reason to believe �A, then

(provided that these reasons do not conflict with one another) we have reason to believe

B. This reason is not one licensed by relevant consequence, but relevant consequence is

not the only sort of licence to which a good inference might aspire.

43See the Australian entries in the volume “Paraconsistent Logic: Essays on the Inconsistent” [Priest et al.,
1989], for example [Brady, 1989; Brady and Routley, 1989; Meyer and Slaney, 1989; Priest and Sylvan, 1989;
Slaney, 1989].
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Debate over disjunctive syllogism has motivated important formal work in relevant

logics. If you take the lack of disjunctive syllogism to be a fault in relevant logics, you

can always add a new negation (say, Boolean negation, written ‘�’) which satisfies the

axioms A	�A� B and A� B��B. Then relevant logics are truly systems of modal

logic extending classical propositional logic with two modal or intensional operators, �
(a one-place operator) and� (a two-place operator). Meyer and Routley have presented

alternative axiomatisations of relevant logics which contain Boolean negation ‘�’, and

the material conditional A � B �d f �A� B, as the primary connective [1973a; 1973b].

2.5 Lambek Calculus

Lambek worked on his calculus to model the behaviour of syntactic and semantic types

in natural languages. He used technique from proof theory [1958; 1961] (as well as

techniques from category theory which we will see later [Lambek, 1969]). His techniques

built on work of Bar-Hillel [1953] and Ajdukiewicz [1935] who in turn formalised some

insights of Husserl.

The logical systems Lambek studied contain implication connectives and a fusion con-

nective. Fusion in this language is not commutative, so it naturally motivates two impli-

cation connectives� and�.44 We get two arrow connectives because we may residuate

A � B 
 C by isolating A on the antecedent, or equally, by isolating B.

A 
 B� C
���������
A � B 
 C
���������
B 
 C � A

If fusion is commutative — that is, if A�B is equivalent to B�A — then B� C will have

the same effect as C � B. If B � A differs from A � B then so� and� will also differ.

One way to view Lambek’s innovation is to see him as motivating and developing

a substructural logic in which two implications have a natural home. To introduce this

system, consider the problem of assigning types to strings in some language. We might

assign types to primitive expressions in the language, and explain how these could be

combined to form complex expressions. The result of such a task is a typing judgement of

the form x � A, indicating that the string x has the type A. Here are some example typing

judgements.

44Lambek wrote the two implication connectives as “
” for � and “�” for �, and fusion as concatenation,
but to keep continuity with other sections I will use the notation of arrows and the circle for fusion.
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John � n

poor � n� n

John works � s

works � s� n

must work � s� n

work � i

must � i� �s� n�
John work � n � i

Types can be atomic or complex: they form an algebra of formulas just like those in a

propositional logic. Here, the judgement “John � n” says that the string John has the

type n (for name, or noun). The next judgement says that poor has a special compound

type n � n: it converts names to names. It does this by composition. The string poor

has the property that when you prefix it to a string of type n you get another (compound)

string of type n. So, poor John has type n. So does poor Jean, and poor Joan of

Arc (if Jean and Joan of Arc have the requisite types).45 Strings can, of course, be

concatenated at the end of other strings too. The string works has type s � n because

whenever you suffix a string of type n with works you get a string of type s (a sen-

tence). John works, poor Joan works and poor poor Joan of Arc works are all

sentences, according to this grammar.

Typing can be nested arbitrarily. We see that must work has type s � n (it acts like

works). The word work has type i (intransitive infinitive) so must has type i� �s� n�.
When you concatenate it in front of any string of type i you get a string of type s� n. So

must play and must subscribe to New Scientist also have type s � n, as play

and subscribe to New Scientist have type i.

Finally, compositions have types even if the results do not have a predefined simple

type. John work at least has the type n � i, as it is a concatenation of a string of type n

with a string of type i. The string must work also has type �i� �s� n�� � i, because it is

a composition of a string of type i� �s� n� with a string of type i. Clearly here fusion

is not commutative. John work has type n � i, but work John does not. As a corollary,

� and� differ. Given the associativity of concatenation of strings, fusion is associative

too. Any string of type A � �B �C� is of type �A � B� �C. We can associate freely in any

direction.46

Once we have a simple type system like this, it is possible to make inferences about

type assigments, on the basis of the interactions of the type-constructors�,� and �. One

of Lambek’s innovations was to notice that this type system can be manipulated using a

simple Gentzen-style consecution calculus. This calculus manipulates consecutions of

the form A1, A2, . . . , An 
 B. We read this consecution as asserting that any string which

45According to this definition, poor poor John and poor poor poor poor Joan of Arc are also
strings of type n.

46We can associate fusion freely, not the conditionals. A � �B � C� is not the same type as �A � B� � C,
as you can check.
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is a concatenation of strings of type A1, A2, . . . , An also has type B.47 A list of types will

be treated as a type in my explanations below.48

The system is made up of one axiom and a collection of rules. The elementary type

axiom is the identity.

A 
 A

Any string of type A is of type A. The rules introduce type constructors on the left and the

right of the turnstile. Here are the rules for the left-to-right arrow.

X, A 
 B
�� R�

X 
 A� B

X 
 A Y, B,Z 
 C
�� L�

Y, A� B, X,Z 
 C

If you know that any string of type X concatenated with a string of type A is also a string

of type B, then this means that any string of type X is also of type A� B. Conversely, if

any string of type X is also of type A, and strings of type Y, B,Z are also of type C, then

strings of type Y, A� B, X,Z are also of type C. Why is this? It is because strings of type

A� B, X are also of type B, because they are concatenations of a string of type A� B to

the left of a string of type X (which also has type A). The mirror image of this reasoning

motivates the right-to-left conditional rules:

A, X 
 B
�� R�

X 
 B� A

X 
 A Y, B,Z 
 C
�� L�

Y, X, B� A,Z 
 C

The next rules make fusion the direct object language correlate of the comma in the met-

alanguage.
X 
 A Y 
 B

��R�
X,Y 
 A � B

X, A, B,Y 
 C
�� L�

X, A � B,Y 
 C

Proofs in this system are trees with consecutions at the nodes, and whose leaves are ax-

ioms of identity. Each step in the tree is an instance of one or other of the rules. Here is a

proof, showing that the prefixing axiom holds in rule form.49

C 
 C

A 
 A B 
 B
�� L�

A� B, A 
 B
�� L�

A� B,C � A,C 
 B
�� R�

A� B,C � A 
 C � B
�� R�

A� B 
 �C � A� � �C � B�

47Lambek used the same notation (an arrow) to stand ambiguously for the two relations we mark with � and
� respectively.

48The list constructor is the metalinguistic analogue of the fusion connective. Note too that “metalinguistic”
here means the metalanguage of the type language, which itself is a kind of metalanguage of the language of
strings which it types.

49There is no sense at this point in which some type is a theorem of the calculus, so we focus on the consecu-

tion forms of axioms, in which the main arrow is converted into a turnstile.
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Here is another proof, which combines both implication connectives.

C 
 C

A 
 A B 
 B
�� L�

A� B, A 
 B
�� L�

C, �A� B� � C, A 
 B
�� R�

�A� B� � C, A 
 B� C
�� R�

�A� B� � C 
 A� �B� C�

A proof system like this has a number of admirable properties. Most obvious is the clean

division of labour in the rules for each connective. Each rule features only the connective

being introduced, whether in antecedent (left) or consequent (right) position. Another

admirable property is the way that formulas appearing in the premises also appear in the

conclusion of a rule (either as entire formulas or as subformulas of other formulas). In

proof search, there is no need to go looking for other intermediate formulas in the proof

of a consecution. These two facts prove simple conservative extension results. Adding �
to the logic of � and � would result in no more provable consecutions in the original

language, because a proof of a consecution involving no fusions could not involve any

fusions at all.

All of this would be for naught if the deduction system were incomplete. If it didn’t

match its intended interpretation, these beautiful properties would be useless. One impor-

tant step toward proving that the deduction system is complete is proving that the cut rule

is admissible. (Recall that a rule is admissible if whenever you can prove the premises

you can prove the conclusion: adding it as an extra rule does not increase the stock of

provable things.)
X 
 A Y, A,Z 
 B

�CutA�
Y, X,Z 
 B

This is not a primitive rule in our calculus, because adding it would destroy the subformula

property, and make proof search intolerably unbounded. It ought to be admissible because

of the intended interpretation of 
. If X 
 A, every string of type X is also of type A. If

Y, A,Z 
 B, then every string which is a concatenation of a Y an A and a Z has type B.

So, given a concatenation of a Y and an X and a Z, this is also a type B since the string of

type X is a string of type A. The cut rule expresses the transitivity of the “every string of

type x is of type y” relation.

FACT 12 (Cut is admissible in the Lambek calculus). If X 
 A is provable in the Lambek

calculus with the aid of the cut rule, it can also be proved without it.

Proof. Lambek’s proof of the cut admissibility theorem parallels Gentzen’s own [1934;

1969]. You take a proof featuring a cut and you push that cut upwards to the top of the

tree, where it evaporates. So, given an instance of the cut rule, if the formula featured in

the cut is not introduced in the rules above the cut, you permute the cut with the other

rules. (You show that you could have done the cut before applying the other rule, instead

of after.) Once that is done as much as possible, you have a cut where the cut formula
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was introduced in both premises of the cut. If the formula is atomic, then the only way it

was introduced was in an axiom, and the instance of cut is irrelevant (it has evaporated:

cutting Y, A,Z 
 B with A 
 A gives us just Y, A,Z 
 B). If the formula is not atomic,

you show that you could trade in the cut on that formula with cuts on smaller formulas.

Here is an example cut on the implication formula A � B introduced in both left and

right branches.

W, A 
 B
�� R�

W 
 A� B

X 
 A Y, B,Z 
 C
�� L�

Y, A� B, X,Z 
 C
�CutA�B�

Y,W, X,Z 
 C

We can transform it so that cuts occur on the subformulas of A� B.

X 
 A W, A 
 B
�CutA�

W, X 
 B Y, B,Z 
 C
�CutB�

Y,W, X,Z 
 C

The cases for the other formulas are just as straightforward. As formulas have only finite

complexity, and trees have only finite height, this process terminates. �

The result that cut is admissible gives us a decision procedure for the calculus.

FACT 13 (Decidability of the Lambek Calculus). The issue of whether or not a consecu-

tion X 
 A has a proof is decidable.

Proof. To check if X 
 A is provable, consider its possible ancestors in the Gentzen proof

system. There are only finitely many ancestors, each corresponding to the decomposition

of one of the formulas inside the consecution. (The complex cases are the implication

left rules, which give you the option of many different possible places to split the Y in the

antecedent X, A � B,Y or Y, B � A, X, and the fusion right rule, which gives you the

choice of locations to split X in X 
 A�B.) The possible ancestors themselves are simpler

consecutions, with fewer connectives. Decision of consecutions with no connectives is

trivial (X 
 p is provable if and only if X is p) so we have our algorithm by a recursion.

�

This decision procedure for the calculus is exceedingly simple. Gentzen’s procedure for

classical and intuitionistic logic has to deal with the structural rule of contraction:50

X�Y,Y� 
 A
�WI�

X�Y� 
 A

50You’ll see that the structural rule is stated in generality: contraction operates on arbitrary structures, in
arbitrary contexts. This is needed for the cut elimination process. If we could contract only whole formulas,
then if we wanted to push a cut past the move from X�A, A� � B to X�A� � B, where we are cutting with
C,D � A, the result would require us to somehow get from X��C,D�, �C,D�� � B to X�C,D� � B. We cannot
do this if cut operates only on formulas, and if associativity or commutativity is absent.
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which states that if a formula is used twice in a proof, it may as well have been used once.

This makes proof search chronically more difficult, as some kind of limit must be found

on how many consecutions might have appeared as the premises of the consecution we

are trying to prove.

Sometimes people refer to the Lambek calculus as a logic without structural rules, but

this is not the case. The Lambek calculus presumes the associativity of concatenation.

A proper generalisation of the calculus treats antecedent structures not as lists of for-

mulas but as more general bunches for which the comma is a genuine ordered-pairing

operation. In this case, the antecedent structure A, �B,C� is not the same structure as

�A, B�,C.51 Lambek’s original calculus is properly called Lambek’s associative calculus.

The non-associative calculus can no longer prove the prefixing consecution. (Try to fol-

low through the proof in the absence of associativity. It doesn’t work.) Of course, given

a non-associative calculus, you must modify the rules for the connectives. Instead of the

rules with antecedent X, A,Y 
 B we can have X�A� 
 B, where “X�A�” indicates a

structure with a designated instance of A. The rule for implication on the left becomes,

for example
X 
 A Y�B� 
 C

�� L�
Y�A � B, X� 
 C.

Absence of structural rules also makes other things fail. The structural rule of contraction

(W) is required for the contraction consecution.52

X��Y,Z�,Z�� 
 A
�W�

X�Y,Z� 
 C

A 
 A

A 
 A B 
 B
�� L�

A � B, A 
 B
�� L�

��A � �A � B�, A�, A� 
 B
�W�

A � �A � B�, A 
 B
�� R�

A � �A � B� 
 A � B

The structural rule of weakening (K) is required for the weakening axiom,

X�Y� 
 C
�K�

X�Y,Z� 
 C

A 
 A
�K�

A, B 
 A
�� R�

A 
 B � A

51Non-associative combination plays an important role in general grammars, according to Lambek [1961].
The role of some conversions such as wh- constructions (replacing names by “who”, to construct questions,
etc.) seem to require a finer analysis of the phrase structure of sentences, and seem to motivate a rejection of
associativity.

Commutative composition may also have a place in linguistic analysis. Composition of different gestures in
sign language may run in parallel, with no natural ordering. This kind of composition might be best modelled
as distinct from the temporal ordered composition of different sign units. In this case, we have reason to admit
two forms of composition, a situation we will see more of later.

52Sometimes you see it claimed that (WI) is required for the contraction consecution, this is true in the
presence of associativity, but can fail outside that context. The rule (WI) corresponds to the validity of A��A �
B� � B. It does not correspond to the validity of any consecution in the � only fragment of the language.
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and the structural rule of permutation (C) gives the permutation axiom.

X�Y1, �Y2,Z�� 
 D
�C�

X�Y2, �Y1,Z�� 
 D

A 
 A

B 
 B C 
 C
�� L�

B � C, B 
 C
�� L�

�A � �B � C�, A�, B 
 C
�C�

�A � �B � C�, B�, A 
 C
�� R�

A � �B � C�, B 
 A � C
�� R�

A � �B � C� 
 B � �A � C�

Finally (for this brief excursus into the effect of structural rules) the mingle rule (M) has

been of interest to the relevant logic community. It is the converse of WI contraction, and a

special instance of weakening (K). It corresponds to the mingle consecution A 
 A � A,

whose addition to R results in the well-behaved system RM. We will consider models of

RM in the next section.

X�Y� 
 C
�M�

X�Y,Y� 
 C

A 
 A
�M�

A, A 
 A
�� R�

A 
 A � A

There are many different structural rules which feature in different logics for different

purposes. Table 1 contains some prominent structural rules. I use the notation X ! Y to

stand for the structural rule
Z�X� 
 A

Z�Y� 
 A

You can replace Y by X (reading the proof upwards) in any context in an antecedent.

This proliferation of options concerning structural rules leaves us with the issue of how

to choose between them. In some cases, such as Lambek’s analysis of typing regimes on

languages, the domain is explicit enough for the appropriate structural rules to be “read

off” the objects being modelled. In the case of finding an appropriate logic of entailment,

the question is more fraught. Anderson and Belnap’s considerations in favour of the logic

E are by no means the only choices available for a relevantist. Richard Sylvan’s depth

relevant program [2000; 1982] and Brady’s constraints of concept containment [1988;

1996] motivate logics much weaker than E. They motivate logics without weakening,

commutativity, associativity and contraction.

Let’s return to Lambek, after that excursus on structural rules. In one of his early

papers, Lambek considered adding conjunction to his calculus with these rules [Lambek,

1961].

X 
 A X 
 B
��R�

X 
 A	 B

X�A� 
 C
��L1�

X�A	 B� 
 C

X�B� 
 C
��L2�

X�A	 B� 
 C

Adding disjunction with dual rules is also straightforward.

X 
 A
��R1�

X 
 A� B

X 
 B
��R2�

X 
 A� B

X�A� 
 C X�B� 
 C
��R�

X�A� B� 
 C
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N L R

Associativity B X, �Y,Z� ! �X,Y�,Z

Twisted Associativity B� X, �Y,Z� ! �Y, X�,Z

Converse Associativity Bc �X,Y�,Z ! X, �Y,Z�

Strong Commutativity C �X,Y�,Z ! �X,Z�,Y

Weak Commutativity CI X,Y ! Y, X

Strong Contraction W �X,Y�,Y ! X,Y

Weak Contraction WI X, X ! X

Mingle M X ! X, X

Weakening K X ! X,Y

Commuted Weakening K� X ! Y, X

Table 1. Structural Rules

Conjunctive and disjunctive types have clear interpretations in the calculus of syntactic

types. In English, and is promiscuous. It conjoins sentences, names, verbs, and other

things. It makes sense to say that it has a conjunctive type

and � ��a1 � a1� � a1� 	 � � � 	 ��an � an� � an�

for n types ai.
53 Disjunctive types also have a simple interpretation. Conjunction and

disjunction motivate the following type-assignment clauses:

� x � A	 B if and only if x � A and x � B.

� x � A� B if and only if x � A or x � B.

Lambek’s rules for conjunction and disjunction are satisfied under this interpretation of

their behaviour. Lambek’s rules are sound for this interpretation.

Cut is still admissible with the addition of these rules. It is straightforward to permute

cuts past these rules, and to eliminate conjunctions introduced simultaneously by both.

However, the addition results in the failure of distribution. The traditional proof of distri-

bution (in Figure 2) requires both contraction and weakening. This means that the simple

rules for conjunction and disjunction (in the context of this proof theory, including its

structural rules) are incomplete for the intended interpretation.

53Actually it makes sense to think of and as having type �p��p � p� � p�. However, propositionally
quantified Lambek calculus is a wide-open field. No-one that I know of has explored this topic, at the time of
writing.
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A 
 A
(K)

A, B 
 B

B 
 B
(K)

A, B 
 B
��R�

A, B 
 A 	 B
��R�

A, B 
 �A 	 B� � �A 	C�

A 
 A
(K)

A,C 
 C

C 
 C
(K)

A,C 
 C
��R�

A,C 
 A 	C
��R�

A,C 
 �A 	 B� � �A 	C�
��L�

A, B�C 
 �A 	 B� � �A 	C�
��L�

A, A 	 �B �C� 
 �A 	 B� � �A 	C�
��L�

A 	 �B �C�, A 	 �B �C� 
 �A 	 B� � �A 	C�
(WI)

A 	 �B �C� 
 �A 	 B� � �A 	C�

Figure 2. Proof of Distribution of 	 over �

2.6 Kripke’s Decidability Technique for R��,��

Lambek’s proof theory for the calculus of syntactic types has a close cousin, for the rele-

vant logic R. Within a year of Lambek’s publication of his calculus of types, Saul Kripke

published a decidability result using a similar Gentzen system for the implication frag-

ments of the relevant logics R and E [1959]. Kripke’s results extend without much mod-

ification to the implication and conjunction fragments of these logics, and less straight-

forwardly to the implication, negation fragment [1961; 1967; 1975] or to the whole logic

without distribution [Meyer, 1966] (Meyer christened the resulting logic LR for lattice

R). I will sketch the decidability argument for the implication and conjunction fragment

R��,	�, and then show how LR can be embedded within R��,	�, rendering it decid-

able as well.

The technique uses the Gentzen proof system for R��,	�, which is a version of the

Gentzen systems seen in the previous section. It uses the same rules for � and 	, and

it is modified to make it model the logic R. We have the structural rules of associativity

and commutativity (which we henceforth ignore, taking antecedents of consecutions to

be multisets of formulas54). We add also the structural rule WI of contraction. Cut is

eliminable from this system, using standard techniques. However, the decidability of the

system is not straightforward, given the presence of the rule WI. WI makes proof-search

fiendishly difficult. The main strategy of the decision procedure for R��,	� is to limit

applications WI in order to prevent a proof search from running on forever in the following

way: “Is p 
 q derivable? Well it is if p, p 
 q is derivable. Is p, p 
 q derivable? Well

it is if p, p, p 
 q is . . . ”

We need one simple notion before this strategy can be explained. We will say that the

consecution X� 
 A is a contraction of X 
 A just in case X� 
 A can be derived from

X 
 A by (repeated) applications of the structural rules. (This means contraction, in ef-

54A multiset is a set-like structure, in which entities may appear more than once. A multiset of formulas may
represented by a function f from the set of all formulas to the set of natural numbers, f �A� is the number of
times A is a member of the multiset represented by f .
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fect, if you take the structures X and X� to be multisets, identifying different permutations

and associations of the formulas therein.) Kripke’s plan is to drop the WI, replacing it by

building into the connective rules a limited amount of contraction.

More precisely, the idea is to allow a contraction of the conclusion of an connective rule

only in so far as the same result could not be obtained by first contracting the premises. A

little thought shows that this means no change for the rules �� R�, �	L� and �	R�, and

that the following is what is needed to modify �� L�.

X 
 A Y, B 
 C
�� L��

�X,Y, A � B� 
 C

where �X,Y, A � B� is any contraction of X,Y, A � B such that

� A � B occurs only 0, 1, or 2 times fewer than in X,Y, A � B;

� Any formula other than A � B occurs only 0 or 1 time fewer.

It is clear that after modifying the system R��,	� by building some limited contraction

into �� L�� in the manner just discussed, the following lemma is provable by an induction

on length of derivations:

LEMMA 14 (Curry’s Lemma). If a consecution X� 
 A is a contraction of a consecution

X 
 A, and X 
 A has a derivation of length n, then X� 
 A has a derivation of length

no greater than n.55

This shows that the modification of the system leaves the same consecutions derivable

(since the lemma shows that the effect of contraction is retained). For the rest of this

section we will work in the modified proof system.

Curry’s Lemma also has the corollary that every derivable consecution has an irredun-

dant derivation: that is, a proof containing no branch with a consecution X� 
 A below a

sequent X 
 A of which it is a contraction.

Now we can describe the decision procedure. Given a consecution X 
 A, you test for

provability by building a proof search tree: you place above X 
 A all possible premises

or pairs of premises from which X 
 A follows by one of the rules. Even though we have

built some contraction into one rule, this will be only a finite number of consecutions.

This gives a tree. If a proof of the consecution exists, it will be formed as a subtree of

this proof search tree. By Curry’s Lemma, the proof search tree can be made irredundant.

The tree is also finite, by the following lemma.

LEMMA 15 (König’s Lemma). A tree with finitely branching tree with branches of finite

length is itself finite.

We have already proved that the tree is finitely branching (each consecution can have

only finitely many possible ancestors). The question of the length of the branches remains

open, and this is where Kripke proved an important lemma. To state it we need an idea

from Kleene. Two consecutions X 
 A and X� 
 A are cognate just when exactly the

55The name comes from Anderson and Belnap [1975], who note that it is a modification of a lemma due to
Curry [1950], applicable to classical and intuitionistic Gentzen systems.
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same formulas X are in X�. The class of all consecutions cognate to a given consecution

is called a cognation class. Now we can state and prove Kripke’s lemma.

LEMMA 16 (Kripke’s Lemma). There is no infinite sequence of cognate consecutions

such that no earlier consecution is a contraction of a later consecution in the sequence.

This means that the number of cognation classes occurring in any derivation (and hence

in each branch) is finite. But Kripke’s Lemma also shows that only a finite number of

members of each cognation class occur in a branch (this is because we have constructed

the complete proof search tree to be irredundant). So every branch is finite, and so both

conditions of König’s Lemma hold. It follows that the complete proof search tree is finite

and so there is a decision procedure. So, a proof of Kripke’s Lemma concludes our search

for a decision procedure for R�	,��.

Proof. This is not a complete proof of Kripke’s Lemma. (The literature contains some

clear expositions [Anderson and Belnap, 1975; Belnap and Wallace, 1961].) As Dunn

showed [1986] kernel idea can be seen in a picture. As a special case, consider consecu-

tions cognate to X,Y 
 A. Each such consecution can be depicted as a point in the upper

right-hand quadrant of the plane, marked with the origin at �1, 1� rather than �0, 0� since

X,Y 
 A is the minimal consecution in the cognation class. So, X, X,Y,Y,Y,Y 
 A is

represented as �2, 4�: ‘2 X units’ and ‘4 Y units’. Now given any initial consecution, for

example

�Γ0� X, X, X,Y,Y 
 A

you might try to build an irredundant sequence by first inflating the number of Ys (for

purposes of keeping on the page we let this be to 5 rather than 3088). But then, you have

to decrement number of Xs at least by one. The result is depicted in Figure 3 for the first

two members of the sequence Γ0,Γ1.

The purpose of the intersecting lines at each point is to mark off areas (shaded in the

diagram) into which no further points of the sequence may be placed. If Γ2 were placed

at the point �6, 5�, it would reduce to Γ0. This means that each new point must proceed

either one unit closer to the X axis or one unit closer to the Y axis. After a finite number

of choices the consecutions will arrive at one or other of the two axes, and then after a

time, you will arrive at the other. At that time, no more additions can be made, keeping

the sequence irredundant.

This proof sketch generalises to n-dimensional space, corresponding to an initial con-

secution with n different antecedent parts. The only difficulty is in drawing the pictures.56

�

Extending this result to the whole of R (without distribution) is not difficult. You can

amend the proof system to manipulate consecutions with structure on the right as well

as on the left. (I won’t present the modification of the rules here because they are the

same as the rules for those connectives in linear logic which we will see in a few sections

56Meyer discovered that Kripke’s Lemma is equivalent to Dickson’s Theorem about primes: Given any set
of natural numbers all of which are composed out of the first m primes (that is, every member has the form
p

n1
1

p
n2
2
. . . p

nk

k
) if no member of this set has a proper divisor in the set, then the set is finite.
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Figure 3. Descending Regions

time.) The system will not prove the distribution of conjunction over disjunction, but an

explicit decision procedure for the whole logic can be found. This result is due to Meyer,

and can be first found in his dissertation from [1966]. Meyer also showed how LR can

be embedded in R��,	� by translation. Meyer’s translation is fairly straightforward, but

I will not go through the details here.57 I will sketch a simpler translation which comes

from the Vincent Danos’ more recent work on linear logic [1990; 1995], and which is

a simple consequence of the soundness and completeness of phase space models. We

translate formulas in the language of LR into the language of implication and negation by

picking a particular distinguished proposition in the target language and designating that

as f . Then we define � in the language of R��,	� by setting �A to be A � f . Then the

rest of the translation goes as follows:

pt � ��p

�A 	 B�t � ���At 	 Bt�
�A � B�t � ���At 	�Bt�
�A � B�t � ��At � �Bt�

�A � B�t � At � Bt

��A�t � �At.

57The details of the translation can be found elsewhere [Dunn, 1986; Dunn and Restall, 2001]. The point
which makes the translation a little more complex than the translation I use here is the treatment of f and its
negation t.

Γ0

Γ1

1

2

3

4

5

6

7

2 3 4 5 6 7
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I will not go through the proof of the adequacy of this translation, as we will see it when

we come to look at phase spaces. However, a direct demonstration of its adequacy (with-

out an argument taking a detour through models) is possible.58 Given this translation,

any decision procedure for R��,	� transforms into a decision procedure for the whole

of LR.

McRobbie and Belnap [1979] have translated the implication negation fragment of

the proof theory in an analytic tableau style, and Meyer has extended this to give analytic

tableau for linear logic and other systems in the vicinity of R [Meyer et al., 1995]. Neither

time nor space allows me to consider tableaux for substructural logics, except for this

reference.

Some recent work of Alasdair Urquhart has shown that although R��,	� is decidable,

it has great complexity [1990; 1997]: There is no primitive recursive bound on either the

time or the space taken by a computation deciding any formula. Urquhart follows some

work in linear logic [1992] by using the logic to encode the behaviour of a branching

counter machines. A counter machine has a finite number of registers (say, ri for suitable

i) which each hold one non-negative integer, and some finite set of possible states (say,

q j for suitable j). Machines are coded with a list of instructions, which enable you to

increment or decrement registers, and test for registers’ being zero. A branching counter

machine dispenses with the test instructions and allows instead for machines to take mul-

tiple execution paths, by way of forking instructions. The instruction qi � r jqk means

“when in qi, add 1 to register r j and enter stage qk,” and qi � r jqk means “when in qi,

subtract 1 from register r j (if it is non-empty) and enter stage qk,” and qi f q jqk is “when

in qi, fork into two paths, one taking state q j and the other taking qk.”

A machine configuration is a state, together with the values of each register. Urquhart

uses the logic LR to simulate the behaviour of a machine. For each register ri, choose

a distinct variable Ri, for each state q j choose a distinct variable Q j. The configuration

�qi; n1, . . . , nl�, where ni is the value of ri is the formula

Qi � R
n1

1
� � � � � R

nl

l

(where An is the n-fold self-fusion of A) and the instructions are modelled by sequents in

the Gentzen system, as follows:

Instruction Sequent

qi � r jqk Qi 
 Qk � R j

qi � r jqk Qi,R j 
 Qk

qi f q jqk Qi 
 Q j � Qk.

Given a machine program (a set of instructions) we can consider what is provable from

the sequents which code up those instructions. This set of sequents we can call the theory

of the machine. Qi � R
n1

1
� � � � � R

nl

l

 Q j � R

m1

1
� � � � � R

ml

l
is intended to mean that from

58The nicest is due to Danos. Take a proof of X � Y in the calculus for LR and translate it step by step into
a proof of Xt ,�Y t � f . (Here �Y t is the collection of the negations of the translations of each of the elements
of Y .) The translation here is exactly what you need to make the rules correspond (modulo a few applications of
Cut).
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state configuration �qi; n1, . . . , nl� all paths will go through configuration �q j; m1, . . . ,ml�
after some number of steps.

A branching counter machine accepts an initial configuration if when run on that con-

figuration, all branches terminate at the final state q f , with all registers taking the value

zero. The corresponding condition in LR will be the provability of

Qi � R
n1

1
� � � � � R

nl

l

 Qm.

This will nearly simulate branching counter machines, except for the fact that in LR we

have A 
 A �A. This means that each of our registers can be incremented as much as you

like, provided that they are non-zero to start with. This means that each of our machines

need to be equipped with every instruction of the form qi"0 � r jqi, meaning “if in state

qi, add 1 to r j, provided that it is already nonzero, and remain in state qi.”

Urquhart is able to prove that a configuration is accepted in a branching counter ma-

chine, if and only if the corresponding sequent is provable from the theory of that machine.

But this is equivalent to a formula�
Theory�M� 	 t � �Q1 � Qm�

in the language of LR. It is then a short step to our complexity result, given the fact that

there is no primitive recursive bound on determining acceptability for these machines.

Once this is done, the translation of LR into the conjunction and implication fragment of

R gives us our complexity result.

Despite this complexity result, Kripke’s algorithm has been implemented with quite

some success. The theorem prover Kripke, written by McRobbie, Thistlewaite and

Meyer, implements Kripke’s decision procedure, together with some quite intelligent

proof-search pruning, by means of finite models. This implementation works in many

cases [Thistlewaite et al., 1988]. Clearly, work must be done to see whether the horrific

complexity of this problem in general can be transferred to results about average case

complexity.

2.7 Richer Structures: Gentzen Systems for Distribution

Grigori Minc [1972; 1977] and J. Michael Dunn [1973] independently developed a Gentzen-

style consecution calculus for relevant logics in the vicinity of R. As we have seen in the

Gentzen calculus for R���, the distinctive behaviour of implication arises out of the pres-

ence or absence of structural rules governing the combination of premises. To find a logic

without the paradoxes of implication, we are led to reject the structural rule of weaken-

ing. However, the structural rule of weakening is required to prove distribution.59 Dunn

and Minc’s innovations were to see a way around this apparent impasse. One way to

think of the problem is this: consider the proof of distribution in Figure 2 on page 325.

Focus on the point at which ��L� is applied. The proof moves from A, B 
 � � � and

59At least, it is required if the proof is going to be anything like the proof of distribution in standard Gentzen
systems.
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A,C 
 � � � to A, B � C 
 � � � . It is this point at which some form of distribution has

just been used: we have used the disjunction rule inside a comma context. This makes

disjunction distribute over whatever the comma represents. In the case where comma

is the metalinguistic analogue of fusion (as it is in these proof systems) we can prove

A��B�C� 
 �A�B���A�C�. We cannot prove the distribution of extensional conjunc-

tion over disjunction simply because there is no structure able to represent conjunction

in this proof system.60 The solution to provide distribution is then to allow a structure

to represent extensional conjunction, just as there is a structural analogue for intensional

conjunction.

In a proof system like this, we define structures recursively, allowing both intensional

and extensional conjunction.

� A formula is a structure.

� If X and Y are structures, so is �X; Y�. This is the intensional combination of X and Y .

� If X and Y are structures, so is �X,Y�. This is the extensional combination of X and Y .

Then all of the traditional structural rules (B, C, K, W) are admitted for extensional com-

bination, and only a weaker complement (say, omitting K, for relevant logic, or all but

associativity, for the Lambek calculus, or some other menu of choices for some other

substructural logic) are admitted for intensional combination.

The rules for the connectives may remain unchanged (apart from the notational vari-

ation “;” for intensional combination, instead of “,” which was used up until this point).

However, the rules for conjunction may be varied to match those for fusion: we can in-

stead take extensional conjunction to be explicitly paired with extensional combination.

X�A, B� 
 C
[�L�]

X�A 	 B� 
 C

X 
 A Y 
 B
[�R�]

X,Y 
 A 	 B

These rules are admissible, given the original structure-free rules, as these demonstrations

show.61

X�A, B� 
 C
(�L)

X�A 	 B, B� 
 C
(�L)

X�A 	 B, A 	 B� 
 C
(WI)

X�A 	 B� 
 C

X 
 A
(K)

X,Y 
 A

Y 
 B
(K)

Y, X 
 B
(C)

X,Y 
 B
(�R)

X,Y 
 A 	 B

The modified proof theory is sound and complete for the relevant logic R and its neigh-

bours. The cut elimination proof works as before — even with richer structures, the

60That is a simplification. The proof could be dualised, and work in a proof system with single antecedent
and multiple consequents, for a dual intuitionistic logic. In this case it is the structure for extensional disjunction
which would distribute over the conjunction rule. The relevant part of a proof would be the move from � � � �
A, B and � � � � A,C to � � � � A, B�C, distributing a conjunction over a disjunction again.

61The converse proofs, to the effect that (�L) and (�R) are admissible in the presence of (�L�) and (�R�)
are just as simple.
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conditions of the cut elimination proof (permutability of cut with other rules, eliminabil-

ity of matching principal formulas) are still satisfied. The subformula property is also

satisfied (formulas appearing in a proof of a consecution must be subformulas of those in

the consecution proved) and the proof theory is well-behaved.

However, the beneficial consequences of a cut-free Gentzen system for a logic — its

decidability — is not always available. The difficulty is the presence of contraction for

extensional combination. This is not surprising, because as we will see later, R is unde-

cidable. You cannot extract a decision procedure from its Gentzen calculus. However,

in the absence of expansive rules such as W and WI, a decision procedure can be found,

as Steve Giambrone found in the early 1980s (see [1985]). Giambrone’s decidability ar-

gument for the negation-free fragment of R without contraction (which, we will see, is

equivalent to linear logic with distribution added) and also for positive TW. Ross Brady

extended this argument in the early 1990s to show that RW and TW are decidable [1991].

Brady’s technique involved extending the Gentzen system with signed formulas, to give

straightforward rules for negation without resorting to a multiple consequent calculus.

Other extensions to this proof theory are possible for different applications. Belnap,

Dunn and Gupta extended Dunn’s original work to model R with an S4-style neces-

sity [Belnap et al., 1980]. I have shown how a system like this one can be used to mo-

tivate an extension of the Lambek calculus which is sound and complete for its intended

interpretation of conjunction and disjunction on frame models [Restall, 1994] (unlike the

structure-free rules which Lambek originally proposed).

The natural deduction analogue of the Gentzen system has been the focus of much

attention, too. Read uses the natural deduction system as the basis of his presentation of

R in his Relevant Logic [1988]. Slaney, in an influential article from 1990 [1990] gives

a philosophical defence of the two different sorts of bunching operators, characterising

extensional combination of bodies of information as a monotonic lumping of information

together, while taking intensional combination of X with Y (that’s X; Y) as the application

of X to Y . This distinction motivates the rules for implication (X 
 A � B iff X; A 
 B:

A � B follows from X just when whenever you apply X to A, the resulting information

gives B).

O’Hearn and Pym call this kind of proof theory the logic of bunched implications
[1999], and they use it to model computation.

2.8 Display Logic

Nuel Belnap’s Display Logic [1982] is a neat, uniform method for providing a cut-free

consecution calculus for a wide range of formal systems. The central ideas of Belnap’s

Display Logic are simple and elegant. Like other consecution proof theories, the calculus

deals with structured collections of formulas, consecutions. In display logic, consecutions

are of the form X 
 Y , where X and Y are structures, made up from formulas. Structures

are made up of structure-connectives operating on structures, building up structures from

smaller structures, in much the same way as formulas are built up by formula-connectives.

The base level of structures are the formulas. So far, display logic is of a piece with
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standard Gentzen systems — in traditional systems structures are simply lists, and in the

more avant garde systems of Dunn and Minc, structures can be made up of two bunching

operators — but in Belnap’s work, structures can be even richer. This richness is present

so that consecutions can support the display property: any substructure of a consecution

can be displayed to be the entire antecedent or consequent of an equivalent consecution.

In general, what is wanted is a way to “unravel” a context like so that we can perform

equivalences such as this:

X�Y� 
 Z is equivalent to Y 
 X�1�Z�

where the Y inside the structure X�Y� is exposed to view, and the surrounding X�—�
context is unravelled. Once you can do this, connective rules are simple, because you

can assume that each formula is displayed to be the entire antecedent or consequent of a

consecution.

Belnap’s original work on display logic was motivated by the problem for finding a

natural proof theory for relevant logics and their neighbours. As a result, it is illustrative

to see the choices he made in constructing rules to allow the display of substructures.

Here are some equivalences present in R and weaker relevant logics.

A � B 
 C
���������
A 
 �B�C

A 
 B�C
���������
A � �B 
 C
���������
A 
 C � B

A 
 B
�������
�B 
 �A
�������
��A 
 B

These equivalences allow us to “get under” the connectives in formulas. Here, the equiv-

alences govern fusion, fission and negation. In traditional Gentzen systems, the “comma”

is an overloaded operator, signifying conjunction in antecedent position and disjunction

in consequent position. That is, a consecution of the form X 
 Y is interpreted as saying

something like: “if everything in X is true, something in Y must be true.” In substructural

logics, this comma (the one which also governs the behaviour of implication) is inter-

preted as fusion on the left, and if it appears on the right at all, as fission. Belnap noted

that we could get the display property if you add a structural connective for negation.

If you write this connective with an asterisk, you get the following display postulates to

parallel the facts we have already seen, governing fusion and fission.

X � Y 
 Z
��������
X 
 #Y � Z

X 
 Y � Z
��������
X � #Y 
 Z
��������
X 
 Z � Y

X 
 Y
������
#Y 
 #X
�������
# # X 
 Y

(Belnap uses “�” for the structure connective which is fusion- and fission-like, and I will

follow him in this notation.) As before, structures can be interpreted in “antecedent” po-

sition or in “consequent” position. However, now we can have “�” representing fusion on

the right of the turnstile, or fission on the left, because the negation operator flips struc-

tures from one position to another. Consider the equivalence of X�Y 
 Z with X 
 #Y�Z.

In the first consecution, the structure Y is on the left of the turnstile, but on the second
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it is on the right. It must have the same content in both cases62 which means that the

structure connectives inside Y must be interpreted in the same way. With this caveat, the

display calculus is a straightforward Gentzen-system with structure connectives allowing

both positive and negative information. The rules governing the connectives are straight-

forward analogs of the traditional rules, with the simplification that we can now assume

that principal formulas are the entire antecedent or consequent of the consecutions which

introduce them. Here are the conditional rules:

X � A 
 B

X 
 A � B

X 
 A B 
 Y

A � B 
 #X � Y.

The display postulates mean that the cut rule appropriate for a display calculus can be

stated exceedingly simply:
X 
 A A 
 Y

�Cut�
X 
 Y.

There is no need for a stronger rule placing the cut-formula in a context, because we

can always assume that the cut formula has been displayed. This is an advance in the

proof theories of substructural logics because some of the various strengthenings of the

cut rule, required to prove the cut-elimination theorem, are not valid in some substructural

systems.63 In his original paper, Belnap provides a list of eight easily checked conditions.

If a display proof theory satisfies these conditions, then Cut is admissible in the system.

We need explore the detail of these conditions here.64

Belnap shows that different logical systems can be given by adding different structural

rules governing the display connectives — and that furthermore, the one proof system

can have more than one family of display connectives. This parallels the Dunn-Minc

Gentzen system for logics with distribution. Belnap shows how you can construct proof

theories for relevant logics, modal logics, intuitionistic logic, and logics which combine

connectives from different families.

The idea of using display postulates to provide proof theories for different connectives

is not restricted to Belnap’s original family featuring a binary operator � and a unary #.

Wansing [1994] extended Belnap’s original work showing that a unary structure � with

display rules
�X 
 Y
�����
X 
 �Y

would suffice to model normal modal logics. The corresponding connective rules for �

62It is justified by the equivalence of A�B � C with A � �B�C, and in this case B “means the same thing”
in both cases.

63The most generous case of Mix — from X � Y�A� and X��A� � Y� to some conclusion, where both Y�A�
and X��A� involve multiple occurrences of A to be eliminated — seems to have no appropriate valid conclusion
in general substructural logics.

64I have generalised Belnap’s conditions for the admissibility of cut in such a way as to include traditional
consecution systems as well as display logics. It remains unclear if this generalisation will prove useful in
practice, but it does seem to be an advantage to not have to prove the cut elimination theorem again and again
for each proof system you construct [Restall, 2000a, ch. 6].
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are
X 
 �A

��R�
X 
 �A

A 
 X
��L�

�A 
 �X

This shows that � is the object-language correlate of � in consequent position.65 As a

result, display logic has been used outside its original substructural setting. Wansing

has shown that display logic is a natural home for proof theory for classical modal log-

ics [1994; 1998], Belnap has extended his calculus to model Girard’s linear logic [1990],66

Goré and I have used the display calculus to model substructural logics other than those

considered by Belnap [1998; 1995], and I have extracted some decidability results in the

vein of Giambrone and Brady [1998].67

2.9 Linear Logic

Girard, in 1987, introduced linear logic, a particular substructural system that allows com-

muting and reassociating of premises, but no contraction or weakening [Girard, 1987a].

Perhaps Girard’s major innovation in linear logic is the introduction of the modalities —

the exponentials68 which allow the recovery of these structural rules in a limited, con-

trolled fashion. Linear logic has a straightforward resource interpretation: when premises

and conclusions are taken to be resources to be used in proof, then the absence of contrac-

tion indicates that resources cannot be duplicated, and the absence of weakening indicates

that resources cannot be simply thrown away. Only particular kinds of resources — those

marked off by the exponentials — can be treated in this manner. Linear logic has received

a great deal of attention in the literature in theoretical computer science.

Gentzen Systems

The most straightforward proof theory for linear logic is a consecution system where

consecutions feature structure in the antecedent and the consequent:

A 
 A
X 
 Y, A X�, A 
 Y �

[Cut]
X�, X 
 Y,Y �

X 
 A,Y
[�L]

X,�A 
 Y

X, A 
 Y
[�R]

X 
 �A,Y

X, A 
 Y
[�L1]

X, A	 B 
 Y

X, B 
 Y
[�L2]

X, A	 B 
 Y

X 
 Y, A X 
 Y, B
[�R]

X 
 Y, A	 B

65Its partner in antecedent position is a possibility operator, but the dual possibility operator which looks
backwards down the accessibility relation for necessity. It is tied together with � by the display postulates
A � �B if and only if �A � B.

66The issue is the treatment of the exponentials.
67However, Kracht has shown that in general, decidability results from a display calculus are not to be ex-

pected. He has shown that it is undecidable whether a given displayed modal logic is decidable [1996].
68So called because of the equivalence between !�A � B� and !A � !B, and dually, between ?�A � B� and

?A � ?B. This also explains why � and � are the additives and � and � are the multiplicatives in the parlance
of linear logic: in numbers, xy�z 	 xy � xz.
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X, A, B 
 Y
[�L]

X, A � B 
 Y

X 
 Y, A X� 
 B,Y �

[�R]
X, X� 
 Y, A � B,Y �

X, A 
 Y X, B 
 Y
[�L]

X, A� B 
 Y

X 
 Y, A
[�R1]

X 
 Y, A� B

X 
 Y, B
[�R2]

X 
 Y, A� B

X, A 
 Y B, X� 
 Y �

[�L]
X, A� B, X� 
 Y,Y �

X 
 Y, A, B
[�R]

X 
 Y, A� B

X 
 Y, A X�, B 
 Y �

[�L]
X�, X, A� B 
 Y,Y �

X, A 
 B,Y
[�R]

X 
 A� B,Y

X 
 Y
[tL]

X, t 
 Y

 t [tR]

f 
 [ f L]
X 
 Y

[ f R]
X 
 Y, f

X,� 
 Y [�L] X 
 Y, [R]

X 
 Y
[K!]

X, !A 
 Y

X, A 
 Y
[L!]

X, !A 
 Y

!X 
 A, ?Y
[R!]

!X 
 !A, ?Y

X, !A, !A 
 Y
[WI!]

X, !A 
 Y

X 
 Y
[K?]

X 
 ?A,Y

X 
 Y, A
[R?]

X 
 Y, ?A

!X, A 
 ?Y
[L?]

!X, ?A 
 ?Y

X 
 Y, ?A, ?A
[WI?].

X 
 Y, ?A

Girard’s notation for the connectives differs from the one we have chosen here. Figure 4

contains a translation manual between the three traditions we have seen so far.

C H L G

Implication A� B A $ B A⊸ B

Converse Implication B� A B % A

Fusion A � B A & B A ' B

Fission A� B A

&

B

Conjunction A	 B A & B

Disjunction A� B A ( B

Negation �A A	

Ackermann Truth t 1

Ackermann Falsehood f �
Church Truth  

Church Falsehood � 0

Of course ! !

Why not ? ?

Figure 4. Translation between notations
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Linear logic has two distinctive features. First, the exponentials, which allow the re-

covery of structural rules. Girard in fact discovered linear logic as a decomposition of the

intuitionistic conditional A � B into !A � B in the models of coherence spaces, which

we shall see in the next part of this essay. For now, it is enough to get a taste of this

decomposition. The linear implication A � B indicates that one use of A is sufficient

to get one instance of B. The exponential is the operator which licences arbitrary re-use

of resources. So, an intuitionistic conditional says that the consequent B can be found,

using as many instances of A as we need. Here are the proofs of the equivalence between

!�A	 B� and !A � !B.

A 
 A
�L��

A	 B 
 A
�L!�

!�A	 B� 
 A
�R!�

!�A	 B� 
 !A

B 
 B
�L��

A	 B 
 A
�L!�

!�A	 B� 
 B
�R!�

!�A	 B� 
 !B
��R�

!�A	 B�, !�A	 B� 
 !A � !B
�WI!�

!�A	 B� 
 !A � !B

A 
 A
�L!�

!A 
 A
�K!�

!A, !B 
 A

B 
 B
�L!�

!B 
 B
�K!�

!A, !B 
 B
��R�

!A, !B 
 A	 B
�R!�

!A, !B 
 !�A	 B�
�L��.

!A � !B 
 !�A	 B�

Vincent Danos has shown that this modelling of intuitionistic logic can be made very

intimate [1990; 1995]. It is possible to translate intuitionistic logic into linear logic in

such a way that all intuitionistic Gentzen proofs have step-by-step equivalent linear logic

proofs of their translations.

Another distinctive feature of linear logic is the pervasive presence of duality in the

system. The presence of negation means that other connectives can be easily defined in

terms of their duals. On the other hand, it is also possible to take negation as the defined

connective in the following way: for each atomic formula p pick out a distinguished

atomic formula to be �p. Then define �A for complex formulas as follows:

��A is A

��A	 B� is �A��B ��A� B� is �A	�B

� is � �� is 
��A � B� is �A��B ��A� B� is �A � �B

�t is f � f is t

�!A is ?�A �?A is !�A.

We also take A � B to be defined as �A � B (or if you like, ��A � �B�, which is

literally the same formula under this new regime). Together with this aspect of duality,

we can also transpose consecutions from the multiple left-right variety, to a conclusion

only system. We replace the consecution X 
 Y with the consecution 
 �X,Y , where

�X is the structure containing the negations of all of the formulas in X. Then formulas are

introduced only in the right, and we get a much simpler system, with one rule for every

connective, as opposed to two.


 A,�A

 X, A 
 �A,Y

[Cut]

 X,Y



338 Greg Restall


 X, A 
 X, B
[�]


 X, A	 B


 X, A
[�1]


 X, A� B


 X, B
[�2]


 X, A� B


 X, A 
 B,Y
[�]


 X, A � B,Y


 X, A, B
[�]


 X, A� B


 t [t]

 X

[ f ]

 X, f


 X, []


 ?X, A
[!]


 ?X, !A


 X, A
[?]


 X, ?A


 X
[K?]


 X, ?A


 X, ?A, ?A
[WI?]


 X, ?A

Proof Nets

Consider the following two single-sided Gentzen proofs of 
 �A � B� �C,�A��B,�C.

[]
A,�A

[]
B,�B

[�]
A � B,�A,�B

[�]
A � B,�A ��B

[]
C,�C

[�]
�A � B� � C,�A ��B,�C

[]
A,�A

[]
B,�B

[�]
A � B,�A,�B

[]
C,�C

[�]
�A � B� � C,�A,�B,�C

[�]
�A � B� � C,�A ��B,�C

(I elide the leading “
” on each sequent to save space.) Notice that the two proofs here

involve three axioms, two applications of the fusion rule and one application of a fission

rule. They differ merely in the ordering of the rules in use. Reading the proofs from

conclusion upward to the axioms, it is clear that one could decompose the fusion in �A �
B� � C first, as in the proof on the left; or one could decompose the fission in �A �

B first, as in the proof on the right. The two steps are completely independent of one
another, and it is an artefact of the Gentzen system that one must do one “before” the

other. We can think of a Gentzen proof as a serialisation of what could be a parallel

process. Girard invented proof nets as a way to characterise a parallel notion of proof, in

which redundancies like these do not occur.

We will focus on the single-sided sequent calculus for the fragment of linear logic with

fusion and fission. So, our rules are [], [�], [�], and []. We can think of each of these

rules as telling us how to to construct a proof. Different ways to order these instructions

may well end in the same target.

Consider the axiom sequent A,�A. We can think of this as a proof with two output

formulas A and�A. One way to represent this is by the graph A—�A with two nodes and

one arc. This graph, and the corresponding graph B—�B are combined (with an applica-

tion of [�]) to form a proof with the conclusion A � B,�A,�B. One way to represent this

is by connecting the A in the first graph and the B in the second to the newly introduced

A � B. We construct, then, the following graph:

∼A A ∼B B

A ◦ B

�
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where the conclusions are �A, �B and A � B. We will call these nodes the ports of this

graph. The remaining formulas are intermediaries, utilised in the deduction in much the

same way that the B in inference from A	B to B�C via B in a familiar natural deduction

system is an intermediary between premise and conclusion.

Considering the first proof of 
 �A � B� �C,�A��B,�C, we see that we next apply

a fission rule to conclude 
 A�B,�A��B. This can be represented by taking our graph

and connecting the two ports �A and �B (closing them) to form a new port �A � �B.

So we have

∼A +∼B

∼A A ∼B B

A ◦ B

where this graph has the ports A � B and �A � �B. Continuing with our Gentzen proof

we have an axiom 
 C,�C (represented by the graph C—�C with two ports) and we

combine them with the application of a fusion rule, joining up the A � B from the first

graph and the C from the second, to form a new port �A � B� �C. The result is the graph

∼A +∼B

∼A A ∼B B

A ◦ B

C ∼C

(A ◦ B) ◦ C

Notice that this graph does not bear the marks of the application of the last fusion rule

occuring after the application of the fission rule. It could just as well have been con-

structed using the recipe of the second Gentzen proof. This proof takes the sequent


 A � B,�A,�B and introduces the fission �A,�B next. This intermediate step is the

graph:
∼A A ∼B B

A ◦ B

C ∼C

(A ◦ B) ◦ C

with ports �A,�B, �A � B� � C,�C, which is then completed with the final fission step,

to construct

∼A +∼B

∼A A ∼B B

A ◦ B

C ∼C

(A ◦ B) ◦ C

which is exactly the graph constructed by way of the other Gentzen proof. These graphs,

or proof nets are “parallel” representation of proofs.
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We have seen an example of the following definition of proof nets, the inductive defi-

nition.

• [] A graph A—�A is an inductive proof net with ports A and �A.

• [�] If π is an inductive proof net with ports that include A and B, then the graph

constructed by adding a node A� B, together with links between A and A� B and

B and A�B is an inductive proof net whose ports are A�B and the ports of π other

than the indicated A and B.

• [�] If π and σ are inductive proof nets, which include ports A and B respectively,

then the graph constructed by adding a node A � B, connecting the indicated A to

A � B by one arc, and B to A � B by another, is an inductive proof net with the ports

A � B together with those of π and those of σ except for the indicated A and B.

• [] If π is an inductive proof net with a port A and σ is an inductive proof net

with a port �A, then the graph found by adding a link from the indicated A to the

indicated �A is an inductive proof net whose ports are those of π, except for the

indicated A and those of σ, except for the indicated �A.

Clearly, for each Gentzen proof (in the vocabulary �,�) of a sequent, there is a corre-

sponding inductive proof net whose ports are exactly the formulas occuring in that se-

quent.

Proof nets are graphs with distinctive restrictions on links: cut links and axiom links

always connect a formula with its negation. Fission links (and fusion links) always come

in pairs: an A to an A� B and a B to an A � B. However, not every graph whose links are

structured in this way is an inductive proof net. For example, the graph

A ◦ B

A B

∼A ∼B

∼A ◦ ∼B

with ports A � B and �A � �B is not an inductive proof net, while the graph with the

�A � �B replaced by the fission �A��B is an inductive proof net.

The central theorem in the characterisation of proof nets gives an account of which

graphs (of the type loosely characterised above) are genuine proof nets. An elegant crite-

rion, provided by Danos and Regnier [1989] is the switching criterion. It can be simply

explained. Notice that any proof net generated using the inductive definition — without

using the [�] condition — is a tree. That is, proof nets generated using [], [] and

[�] are connected, but they contain no loops. (This shows that the graph with ports A � B

and �A � �B with a loop is not an inductive proof net.) The only way loops may be
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introduced in an inductive proof net is by way of the [�] rule. Given a pair A—A� B—B

of links in a graph, we will call two different configurations

A—A � B B

A A � B—B

the two different switchings of this pair of fission links. Given a graph with pairs of fission

links, a switching of a graph is found by replacing each pair of fission links by one of its

switchings. Danos and Regnier’s theorem is that a graph (of this structure) is an inductive

proof net if and only if each switching of that graph is a tree. (As an example, you can

see that our example proof net

∼A +∼B

∼A A ∼B B

A ◦ B

C ∼C

(A ◦ B) ◦ C

is not a tree, but its two switchings (selecting one link from �A—�A � �B—�B) are

both trees.) The proof of the general fact is simple in one direction and difficult in the

other. It is straightforward that every switching of an inductive proof net is a tree. This is

a straightforward proof by induction on its construction. (The interesting case is [�]. If

every switching of π (with ports A and B) is a tree, then so is every switching of the graph

found by linking A and B in π to A � B. Each switching of this new graph is a switching

of π together with a single link from either A or B to the new node A � B. This is also a

tree.)

For the converse, we must show that every graph (of the right kind) for which every

switching is a tree is an inductive proof net. This theorem has a number of different proofs

(see Danos and Reginer [1989] for details), each of which use the switching criterion to

show how a proof net may be “unwound” into a Gentzen proof.

The literature on proof nets for linear logic and related systems is growing. See the

references for details [Bellin, 1991; Blute et al., 1996; Cockett and Seely, 1997; Galmiche,

2000; Girard, 1987a; 1995].

2.10 Curry-Howard

Some logicians have found that it is possible to analyse proofs more closely by giving

them names. After all, if proofs are first-class entities, we will be better-off if we can dis-

tinguish different proofs. I can illustrate this by looking at an example from intuitionistic

logic. The language for describing proofs in the intuitionistic logic of the conditional and

conjunction is given by the λ-calculus with pairing. A term of this calculus is built up

from variables x, y, . . . using the constructors ��,��, fst ���, snd ���, λx.M and appli-

cation (which we write as juxtaposition). A judgement is a pair M:A of a term M and a

formula A. Then in proofs in this system we keep tabs on what is going on by building
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terms up to represent the ongoing proof. We start with the identity rule x:A 
 x:A. Then

for conjunction, we reason as follows:

Γ 
 M:A Γ 
 N:B

Γ 
 �M,N�:A 	 B

Γ 
 M:A 	 B

Γ 
 fst �M�:A

Γ 
 M:A 	 B

Γ 
 snd �M�:B.

If M is the proof of A from Γ, and N is the proof of B from Γ, then the pair �M,N� is the

proof of A	 B from Γ. Similarly, if M is a proof of A	 B (from Γ) then fst �M� (the “first

part” of M) is the proof of A from Γ. Similarly, snd �M� is the proof of B from Γ. For

implication, we have these rules:

Γ 
 M:A � B ∆ 
 N:A

Γ,∆ 
 �MN�:B

Γ, x:A 
 M:B

Γ 
 λx.M:A � B.

If M is a proof of A � B, and N is a proof of A, then you get a proof of B by applying M

to N. So, this proof is �MN�. Similarly, if M is a proof of B from Γ, x:A, then a proof of

A � B is a function from proofs of A to the proof of B. It is of type λx.M. We put these

together to get names for more complex proofs

x:A � B 
 x:A � B y:A 
 y:A

x:A � B, y:A 
 �xy�:B

y:A 
 λx.�xy�:�A � B� � B

0 
 λy.λx.�xy�:A � ��A � B� � B�.

The term λy.λx.�xy� encodes the shape of the proof. The first step was an application of

one assumption on another (the term �xy�). The second was the abstraction of the first

assumption (λx), and the last step was the abstraction of the second assumption (λy). The

term encodes the proof. There are a number of important features of these terms.

� Terms encoding proofs with no premises are closed. They have no free variables.

� More generally, if Γ 
 M:A is provable and x is free in M then x appears free in Γ too.

� Proofs encode connective steps, not structural rules. For example, the rule CI or C was

used in the proof of A � ��A � B� � B. It is not encoded in the term explicitly. Its

presence can be seen implicitly by noting that the variables x and y are bound in the

opposite order to their appearance.

Once we have a term system, we have contracting rules, which give us the behaviour of

proof reduction.
fst �M,N� � M

snd �M,N� � N

�λx.M�N � M�x :� N�

These correspond to cutting the detours out of proofs. For example, consider the reduction

Γ 
 M:A Γ 
 N:B

Γ 
 �M,N�:A 	 B

Γ 
 fst �M,N�:A

� Γ 
 M:A.



Relevant and Substructural Logics 343

Or a slightly more complex case:

Γ, x:A 
 M:B

Γ 
 λx.M:A � B ∆ 
 N:A

Γ,∆ 
 �λx.M�N:B

� Γ,∆ 
 M�x :� N�:B.

The term M�x :� N� indicates that the assumption(s) marked x in M are replaced by N.

This matches the assumption(s) A marked x in Γ, x:A which are replaced by the ∆ in the

transformation.

An explanation of the Curry–Howard isomorphism between intuitionistic logic and the

types of terms in the λ-calculus is found in Howard’s original paper [1980]. As we’ve

already heard, Church’s original calculus, the λI-calculus, was actually a model for the

implicational fragment of R and not intuitionistic logic, as Church’s calculus did not allow

the binding of variables which were not free in the term in question [1941]. You eliminate

contraction if you do not allow a λ term to bind more than one instance of a variable at

once. Similarly, you eliminate C if you allow variables to be bound only in the order

in which they are introduced. Structural rules correspond to restrictions on binding. A

helpful account of more recent general work in types and logic is found in Girard, Lafont

and Taylor’s Proofs and Types [1989], and Girard’s monograph Proof Theory and Logical

Complexity [1987b].

Work on the application of the term calculus to substructural logics, focuses on three

aspects. First, on encoding the normalisation results (that cutting detours out of proofs

ends, and ends in a canonical “normal” proof). Second, on the appropriate term en-

coding of the exponentials of linear logic. Work in this area has not yet reached sta-

bility. The work of Benton, Bierman, Hyland and de Paiva [Benton et al., 1992; 1992;

1993] shows the difficulty present in the area. Third, on showing that the restrictions on

λ-abstraction in substructural logics has useful parallels in computation where resources

may be consumed by computation. Wadler and colleagues show that this kind of term

system has connections with functional programming [Maraist et al., 1995] and [1990;

1991; 1992b; 1992a; 1993a; 1993b].

2.11 Structurally Free Logic

A very recent innovation in the proof theory of substructural logics is the advent of

structurally free logic. The idea is not new — it comes from a 1976 essay by Bob

Meyer [1976b]. However, the detailed exposition is new, dating from 1997 [Bimbó and

Dunn, 1998; Bimbó, 2001; Dunn and Meyer, 1997]. The motivating idea is simple. Just as

free logic is free from existential commitments and any existence claims can be explicitly

examined and questioned, so in a structurally free logic, no structural rules are present

in and of themselves, but structural rules, if applied, are marked in a proof as explicit

premises. So, structural rules are tagged with a combinator, such as these examples:

W�X, �Y,Z�� 
 A
�B�

W���B, X�,Y�,Z� 
 A

W��X,Z�,Y�� 
 A
�C�

W���C, X�,Y�,Z� 
 A

W��X,Y�,Y�� 
 A
�W�

W��W, X�,Y� 
 A.
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These are the combinator versions of the structural rules B (association) C (commuta-

tivity) and W (contraction). Now the conclusions not only feature the structures as rear-

ranged: they also feature a combinator marking the action of the structural rule. Proofs

in this kind of system then come with “tickets” indicating which kinds of structural rules

licence the conclusion:

B 
 B A 
 A
�� L�

�A � B�, A 
 B C 
 C
�� L�

�A � B�, �C � A,C� 
 B
�B�

��B, A � B�,C � A�,C 
 B
�� R�

�B, A � B�,C � A 
 C � B
�� R�.

B, A � B 
 �C � A� � �C � B�
�� R�

B 
 �A � B� � ��C � A� � �C � B��

Any further explanation the workings of this proof system for structurally free logic brings

us perilously close to looking at models for combinatory logic and the λ-calculus [Baren-

dregt et al., 1983; Meyer, 1991]. I will defer this discussion to the next section, where we

broach the question in a broader setting. What on earth counts as a model of a substruc-

tural logic?

3 MODELS

Our focus so far has been syntax and proof. Now we turn our gaze to interpretation.

Clearly we have not been unconcerned with matters of interpretation thus far. We have

paid some attention to the meanings of the connectives when we have examined the kinds

of inferential steps appropriate for sentences formed out of these connectives. Accord-

ing to some views, in giving these rules for a connective we have thereby explicated

their meanings. According to other views, we have merely cashed out a consequence of

the meanings of the connectives, meanings which are to be found in some other way.69

Thankfully, we have no need to adjudicate such a debate here. It is not our place to clarify

the ultimate source of meaning. It is, however, our place to consider some of the different

kinds of interpretations open to logical systems, and particular, substructural logics.

An interpretation of a language is a map from the sentences of the language into some

kind of structure. There are many possible kinds of interpretations. Some propositions

are true and others are not true. We can interpret a language in the structure �t, f� of truth

values by setting the interpretation ��A�� of A to be t if A is true, and f otherwise.70 This

interpretation is helpful in the study of logical consequence because of the way it interacts

69This debate is between truth conditional [Tarski, 1956] versus inferentialist [Brandom, 1994] accounts of
meaning in philosophy of language, proof theorists [Girard, 1987b; Dragalin, 1987] and model theorists [Bell
and Slomson, 1969; Hodges, 1993] in mathematical logic, and operational and denotational semantics in com-
puter science [Mitchell, 1996].

70Note: �t and f� are the two truth values true and false: not necessarily the Ackermann constants t and f .
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with the traditional propositional connectives. A conjunction is true if and only if both of

the conjuncts are true. A disjunction is true if and only if one of the disjuncts is true. A

negation is true if and only if the negand is not true. It follows that ��A 	 B��, ��A � B�� are

functions of ��A�� and ��B��, in the sense that once the values ��A�� and ��B�� are fixed, the

values ��A 	 B��, ��A � B�� are also fixed. The behaviour of the operations of conjunction,

disjunction and negation on the set �t, f� of truth values goes some way towards telling us

the meanings of those connectives. More than that, it gives us an account of the behaviour

of logical consequence, as the set of truth values has a natural order. We can order the set

by saying that f ) t, in the sense that t is “more true” than f. An argument is �t, f�-valid if

no matter how you interpret the propositions in the argument, the conclusion is never any

less true than the premises. Or in this case, you never can interpret the premises as true

and the conclusion as false. This is the traditional truth-table conception of validity.

The simple set �t, f� of truth values is not the only domain in which a language can

be interpreted. For example, we might think that not all propositions or sentences in the

language are truth-valued. We might interpret the language in the structure �t, n, f�, where

the true claims are interpreted as t, the false ones as f, and the non-truth-valued sentences

are interpreted as n. This path leads one to many valued logics [Dunn and Epstein, 1977;

Urquhart, 1986].

However, one need not interpret the domain of values as truth values. For one early

example of an alternative sort of domain in which sentences can be interpreted, consider

Frege’s later philosophy of language. For the Frege of the Grundgesetze [1993] declara-

tive sentences had a reference (Bedeutung) and a sense (Sinn). We can interpret sentences

by mapping them onto a domain of senses and by interpreting the connectives as functions

on senses. This is another “denotational” semantics for declarative sentences.71

Different applications will motivate different sorts of models and domains of semantic

values. In the Lambek calculus for syntactic types, the formulas can be mapped onto sets

of syntactic strings. In this interpretation, a sentence will be modelled by the set of strings

(in the analysed language) which have the type denoted by the sentence.

These last two examples — of possible worlds and of syntactic strings — have similar

structures. Formulas are interpreted as sets of objects of one kind or other. These are

especially interesting models, which we will discuss in detail soon. For now, however, I

will focus on the general idea of interpreting logics in structures, for simple algebras are

the first port of call when it comes to models of substructural logics.

3.1 Algebras

The most direct way to interpret a logic is by a map from the language of the logic into

some structure. Such structures are usually equipped with operations to match the connec-

71For a modern interpretation of Frege’s ideas, one could consider a sense of a claim to be the set of possible
worlds in which it is true. Now for each sentence you have its interpretation as some set of possible worlds. For
an account of how this approach might be philosophically productive, see Robert Stalnaker’s Inquiry [1984],
David Lewis’ On the Plurality of Worlds [1986].

For recent work which takes Frege’s talk of senses at face value (and which motivates a weak substructural
logic, to boot) consider the paper “Sense, Entailment and Modus Ponens” by Graham Priest [1980].
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tives in the language. The interpretation of a complex formula is then defined recursively

in terms of the operations on the interpretations of the atomic subformulas. All of this is

standard. In this section, I will examine a few structures which have proved to be useful

in the study of substructural logics. Then in the next section, I will explain just a few of

the theorems which can be proved about substructural logics by using these structures.

Example Algebras

EXAMPLE 17 (BN4). Perhaps the most simple, yet rich, finite structure used to interpret

substructural logics is the four-valued lattice BN4 [Dunn, 1976a; Belnap, 1977a; 1977b].

It first came to fame as a simple lattice sufficient to interpret first degree entailments. Any

valid first degree entailment is valid in this structure (in a sense to be explained soon)

and any invalid first degree entailment is invalid in this structure. It is also the source of

intuitions in its own right. The behaviour of BN4 is presented in the diagram and tables

in Figure 5. The diagram can present the behaviour of conjunction, disjunction,  and

�. The conjunction of two elements is their greatest lower bound, their disjunction, the

least upper bound,  is the top element and � is the bottom element. The operations of

negation and implication and fusion are read off the tables.

f

b

t

n

�
t f

b b

n n

f t

� t b n f

t t f n f

b t b n f

n t n t n

f t t t t

� t b n f

t t t n f

b t b n f

n n n f f

f f f f f

Figure 5. The Algebra BN4

If you think of the values t, b, n, f as the values “true only”, “both true and false”,

“neither true nor false” and “false only” then the negation of a set values is simply the set

of the negations of values in that set. Implication is similarly defined. The value “true”

is in the set a � b just when if a is at least “true” then b is at least “true”, and if b is at

least “false” then so is a. On the other hand, a conditional a � b is at least “false” if a is

at least “true” and b is at least “false.” This gives the implication table. The values in the

fusion table are given by setting a � b to be ��a � �b�.

Given this definition, fusion is commutative and associative, with an identity b. Nega-

tion is definable in terms of implication by setting �a to be a � b. So in this algebra, the

false constant f is modelled by b, as is the true constant t. Fusion is residuated by�, and

the lattice is distributive.

In this algebra, the order in the diagram (read from bottom to top, and written “�”)

models entailment. You can see that a 	 b always entails a, as the greatest lower bound

of a and b (whatever a and b might be) is always lower than, or equal to, a. In just the

same way, you can show that all of the entailments of a distributive lattice hold for 	 and

�, that a � ��a (and so, double negation elimination and introduction hold) and that the

De Morgan laws, such as ��a� b� � �a	�b also hold in this structure.
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⊥

∼b a ∼c

b ∼a c

⊤ � � �c �b �a a b c 
� � � � � � � � �
�c � �c   �c  �c 
�b �  �b  �b �b  
�a �    �a   

a � �c �b �a a b c 
b �  �b  b b  
c � �c   c  c 
 �       

Figure 6. An Eight-Point Lattice for R

In this lattice, some structural rules fail: WI is not satisfied, as n �� n � n. The K rule

also fails, as t�b � b, and hence we do not have b � t � b. So BN4 is a model for linear

logic (with the addition of distribution), in the sense that if A 
 B holds in linear logic

plus distribution, then for any interpretation ����� into BN4, we must have ��A�� � ��B��.

However, BN4 is not a model of R, for some contraction related principles fail in BN4.

For example, there is an interpretation in which ��A	 �A � B��� �� ��B��.72

This lattice has also been used in the semantics of programming [Fitting, 1989]. In-

terpreting the four values as epistemic states of no information, positive and negative

information, and conflicting information, may be of some help in modelling states of

information-bearing devices.

EXAMPLE 18 (An Eight Point Model). Consider the structure with the order and fusion

table shown in Figure 6. This is a model of R: Fusion is commutative (the table is sym-

metric about the diagonal), and associative. We have x � x � x, so WI holds. The element

a is an identity for fusion. Negation is defined by the names of the elements and the fact

that � is a De Morgan negation. Setting x � y � ��x � �y� makes � residuate fusion.

We can use this structure to show that R has the relevance property. Suppose we have

two propositions A and B, in the language 	, �, �, � and �, such that there is no atom

shared between A and B. Construct an evaluation �����, such that ��p�� is either b or �b for

any atom p in A, and it is either c or �c for any atom p in B.

By induction, we can verify that the value ��A�� is one of b and �b, and similarly, the

value ��B�� is one of c or �c. Therefore, ��A�� �� ��B��, and since this is a model of R, we

have A � B in R, and hence, A � B in any sublogic of R.

EXAMPLE 19 (Sugihara Models). One can modify BN4 in a number of ways. You can

leave out the value b, and get Łukasiewicz’s three-valued logic. Extensions to Łukasie-

wicz’s n-valued, and infinitary logics are straightforward too. These systems all invali-

date contraction, but validate weakening and the other common contraction-free structural

72Hint: set ��A�� 	 n and ��B�� 	 f. Check for yourself that this is a counterexample.
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rules. Another way of modifying BN4 is to leave out the value n. This gives us the struc-

ture known as RM3, a three-valued algebra useful in the study of relevant logics, because

this is a model of R. This simple three-valued model can be generalised to RM2n�1 for

any n as follows by setting the domain of propositions to be the numbers

��n,��n� 1�, . . . ,�1, 0, 1, . . . , n� 1, n�

where we set �a to be �a, and � and fusion are defined as follows:

a � b �

�
�a� b if a � b

�a	 b if a " b
a � b �

�
a	 b if a � �b

a� b if a " �b.

Fusion is commutative (verify by eye) and associative (verify by checking case by case),

with identity 0. Note that a � a � a, so the logic satisfies both W and M — this is a model

for the logic RM discussed earlier.

This model can also be extended by not stopping at �n or n but by including all of Z,

the positive and negative integers. This infinite model captures exactly the logic RM in

the language 	,�,�, �,�, t. The infinite model has no members fit for either  or �,

but they can be added as * and �* without disturbing the logic of the model.

EXAMPLE 20 (The Integers). The integers feature in the RM algebra above. The choice

of the interpretation of implication in that model is only one of many different ways you

could go in this structure. Another is to consider addition as a model for fusion. The

residual for addition is obvious: it is subtraction. X � Y is Y � X. This structure is

unlike the RM algebra in a number of ways. First, W fails, as a �� a � a whenever a is

negative. Second, M fails (and so, K and K� do too) as a � a �� a whenever a is positive.

However, C and B are satisfied in this structure, so we have a structure fit for linear logic.

In particular, since the structure is totally ordered, we have the distribution of conjunction

over disjunction, so we have a model for distributive linear logic.

More interestingly, �x � y� � y � x for each x and y. This does not hold in any

boolean algebra or in any other non-trivial structure with . If  were present, then

�a � � �  � a but  � b �  for each b (including a � ) so  � a.

It is possible to define the negation �a as a � 0 � �a. However, other choices are

possible. Taking b an arbitrary proposition, we can define�ba as a � b, and the condition

�x � y� � y � x states, in effect, that �b�ba � a. Double negation introduction and

elimination holds for any negation �b we choose.

This model is a way to invalidate simple consecutions in distributive linear logic. For

example, can we prove A � �B � C� 
 �A � B� � �A � C�? If this holds

in our structure we must have �z � y� � x � �z � x� � �y � x�, but this simplifies to

z � �z� x� � 2x � z� x (add x� y to both sides). And when x + 0 we have z � z� x,

but if x ) 0 this fails. Similar manipulations can be used to invalidate other consecutions.

However, some consecutions invalid in distributive linear logic do hold in the integers.

We have seen that �A � B� � B 
 A already. Another case is t 
 �A � B� � �B � A�.
So the integers do not give an exact fit for distributive linear logic.

(Others have been aware that simple “counting” mechanisms can provide a useful fil-

ter for issues of validity in substructural logics [van Benthem, 1991; Kurtonina, 1995;

Roorda, 1991; Pentus, 1995].)
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The logic here is known as abelian logic: It was introduced by Meyer and Slaney, who

show that it is the logic of ordered abelian groups [1989].

EXAMPLE 21 (ω Under Division). Using number systems as structures gives us rich

mathematical tradition upon which we can build. However, the structures we have seen

so far are all totally ordered: for any x and y either x � y or y � x. This is not always

desirable — it leads to the truth of �A � B� � �B � A�. Now some “natural” orderings

of numbers are total orders, but others are not. For example, take the positive integers,

ordered by divisibility. This is a partial ordering — indeed, a lattice ordering — in which

join is the lowest common multiple (lcm) and meet is the greatest common divisor (gcd).

Fusion has a natural model in multiplication.

The lattice is distributive, as gcd�a, lcm�b, c�� , lcm�gcd�a, b�, gcd�b, c��. With fusion

modelled as multiplication, 1 is the identity of fusion and we have a distributive lattice-

ordered commutative monoid with a unit. Furthermore, the monoid is square-increasing

(as a , a2), so it models the behaviour of the 	,�, �, t part of the logic R.

How can you model a conditional residuating fusion? We want

xy , z if and only if x , y � z.

If y divides z, then we can set y � z to be z$y. For any x you choose, xy , z if and only

if x , z$y. However, if y does not divide z, we do not have anything to choose, as 1 is the

bottom of the order we have thus far. To get a residual in every instance, we need to add

another element to the ordering. It will be the lowest element in the ordering, so we will

call it 0 (for reasons which will become more obvious later). We can by fiat determine

that 0 , x for every x in the structure, and that x , 0 only when x � 0. Conjunction and

disjunction are as before, with the addition that 0 	 x � 0 and 0 � x � x for each x. The

rule for implication is then:

x � y �

�
y$x if x , y,

0 otherwise.

Given 0 we need to extend the interpretation of fusion. But this is simple

0x � x0 � 0

for every x. So defined, the operation is still order-preserving, commutative, square-

increasing and with 1 as the identity. This structure is a model for the positive part of

R. To model the whole of R we need to model a De Morgan negation. That requires an

order-inverting involution on the structure. To do this, we need to introduce many more

elements in the structure, as no order-inverting involution can be found on what we have

here before us: consider the infinite ascending chain

0 , 1 , 2 , 4 , � � � , 2n , � � � .

To negate each element in the series you must get an infinite descending chain. Why?

Because we need an involution: x , y if and only if�y , �x, and in particular, if�x � �y,

then we must have x � y. Each element in the inverted chain must be distinct. Alas, there



350 Greg Restall

are no such chains in our structure, as every number has only finitely many divisors. So,

we need to add more elements to do the job. As our notation has suggested, we will add

the negative integers and*. The order is given by setting

0 , x , �y , *

for every positive x and y, and in particular, �x , �y if and only if y , x. So you can read

‘,’ as divides only when it holds between positive integers. Otherwise, it is defined by

these clauses. The infinite ascending chain is then mapped onto the infinite descending

chain above it as follows:

0 , 1 , 2 , 4 , � � � , 2n , � � � , �2n , � � � , �4 , �2 , �1 , *.

The result is still a distributive lattice order, and conjunction and disjunction are obvi-

ously definable as greatest lower bound and least upper bound, respectively. Implication

between all pairs of elements is defined as follows:

� If x is negative and y is positive, x� y � 0.

� If x is positive and y is negative, then x� y � ��x�y

� If x and y are both negative, then x� y � �y� �x

Fusion is then defined by setting xy � ��x � �y�, and you can show that this is com-

mutative, square-increasing and with 1 as the identity.

The lattice is not complete, in that not every subset has a least upper or a greatest lower

bound: The chain 0 , 1 , 2 , � � � , 2n , � � � has an upper bound (any negative number will

do) but no least upper bound.

This structure was first constructed by Meyer [1970b] in 1970 who used it to establish

some formal properties of R. The technique of expanding an algebra to model negation is

one we shall see again as an important technique in the metatheory of these logics.

EXAMPLE 22 (Algebras of Relations). A generalisation of Boolean algebras due to De

Morgan [1964] and Peirce [1970] and later developed, for example, by Schröder [1995],

was to consider algebras of binary relations. A concrete relation algebra is the set of all

subsets of some set D - D of pairs of elements from a set D under not only the Boolean

operations of intersection, union and complementation but also under new operations

which exploit the relational structure.

For any two relations R and S their composition is also a relation: R � S is defined by

setting x�R � S �y if and only if ��z � D��xRz 	 zRy�. This is a model for fusion. Fusion

has a left and right identity, 1, the identity relation on D. Furthermore, for any relation R

we have its converse, given by setting xR̆y if and only if yRx. Note that��R � S � � S̆ � R̆.

We can define left and right residuals for composition directly by the residuation con-

ditions, or we can note that they are definable in terms of the Boolean connectives, fusion

and converse. R� S � ���S � R̆� and S � R � ��R̆ � �S �.

It is possible to modify the behaviour of these algebras by considering restricted classes

of relations. For example, we could look at algebras of reflexive relations. These are odd,
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in that 1 � R for each R, so the bottom element of the algebra is also the identity for

fusion. These algebras are closed under some of the operations at issue, but not all.

The Boolean complement of a reflexive relation is not reflexive, but the conjunction or

disjunction of two reflexive relations is.

Another possibility is to consider, for example, equivalence relations [Finberg et al.,

1996]. When is the composition of two equivalence relations an equivalence relation? It

turns out that R � S is also commutative when R � S � S � R. And if this obtains, then

their composition is the least upper bound of the two relations (in the set of equivalence

relations). Therefore, a class of commuting equivalence relations forms a lattice, in which

fusion is least upper bound. And it is not too hard to show that this lattice generally fails

to be distributive, but it is modular. It satisfies the modular law

a 	 �b � �a 	 c�� � �a 	 b� � �a 	 c�

but not the more general distributive law.

Tarski [1941] helped bring relation algebras back to prominence in modern logic, and

there is much contemporary research in the area, particularly in Hungary [Andéka et

al., 1988]. Vaughan Pratt has also considered them (and dynamic algebras, a tractable

fragment of relation algebras) as a useful model of computation [1990].

General Structures

The algebraic study of models of substructural logics was first explicitly and comprehen-

sively tackled by J. Michael Dunn in his doctoral dissertation from the middle 1960s [Dunn,

1966]. The techniques he used are mostly standard ones, adapted to the new context of

relevant logics. There had been a long tradition of using finite algebras (also called ‘ma-

trices’ for obvious reasons) to prove syntactic results about logics, such as the relevance

property for R, as we have seen. Section 22 of Entailment Volume 1 [Anderson and Bel-

nap, 1975] contains a good discussion of results of this sort. However, it was Dunn’s work

that first took such structures as a fit object of study in their own right.

For a helpful guide to the state of the art in the 1970s, Helena Rasiowa’s An Algebraic

Approach to Non-classical Logics [1974] is a compendium of results in the field. Meyer

and Routley’s groundbreaking paper “An Algebraic Analysis of Entailment” [1972] did a

great deal of work showing how a whole host of logics fit together, all with the theme of

residuation or the connection of fusion with implication. They showed that not only in

R but also in other relevant logics, fusion is connected together with implication by the

residuation postulate

a � b � c iff a � b � c

and that the natural way to ring the changes in the logic is to vary the postulates governing

fusion. Here is a summary of Dunn’s and Meyer and Routley’s work on the general theory

of algebras for substructural logics.

DEFINITION 23 (Posets). A poset (a partially ordered set) is a set equipped with a binary

relation � which is reflexive, transitive, and asymmetric. That is, a � a for each a, if

a � b and b � c then a � c, and if both a � b and b � a, then a � b.
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Posets are the basic structure of an algebra for a logic. The order is entailment between

propositions in structure. Entailment is asymmetric as we assume that co-entailing propo-

sitions are identical. This is what makes propositions in this kind of structure differ from

sentences in a formal language.

Extensional conjunction and disjunction enrich the poset into a familiar algebraic struc-

ture:

DEFINITION 24 (Lattices). A lattice is a partially ordered set equipped with least upper

bound � and a greatest lower bound 	.

A lattice is distributive if and only if a	 �b� c� � �a	 b� � �a	 c� holds for each a, b

and c.

A lattice is bounded if it has greatest and least elements,  and � respectively.

For traditional substructural logics, two more additions are required to this kind of

structure. First, negation, and second, fusion and implication. Let’s tackle negation first.

DEFINITION 25 (Negations). A negation on a poset is an order inverting operation �:

that is, if a � b then �b � �a.

A negation on a lattice is De Morgan if��a � a and it satisfies the De Morgan identities

��a	 b� � �a��b and ��a� b� � �a	�b.

A De Morgan negation in a bounded lattice is an ortho-negation if a 	 �a � � and

a��a � .

Note that a De Morgan negation need not be an ortho-negation. (The negations in each

of the structures in the previous section are De Morgan but not ortho-negation.) An ortho-

negation operation in a distributive lattice is the Boolean negation in that structure.73

Some very recent work of Dunn has charted even more possibilities for the behaviour

of negation. In particular, he has shown that a basic structure in a substructural logic is a

split negation satisfying the following residuation-like clauses

a � �b iff b � �a.

Given this equivalence, both � and � are negations, and both satisfy some of the De

Morgan inequalities but not others [Dunn, 1994].74

The most interesting operations in algebras for substructural logics are fusion and im-

plication. The simplest way to define them is by residuation.

DEFINITION 26 (Residuated Pairs and Triples). ��,�� is a residuated pair in a poset if

and only if a � b � c if and only if a � b � c.

73There may be more than one ortho-negation in a lattice, but there is only one ortho-negation in a distributive
lattice.

74In particular, �a��b 	 ��a � b� and �a ��b � ��a � b� (this latter inequality is satisfied by any

negation) but the converse can fail: ��a�b� �� �a��b. The negation� differs from intuitionistic or minimal
negation, however, by not necessarily satisfying a � ��a. We do have, however, a � �� a and a � ��a.
For an example of a split negation, let �A be A � f and let �A be f � A in the Lambek calculus extended
with a false constant f .
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��,�,�� is a residuated triple in a poset if and only if a�b � c if and only if a � b� c

if and only if b � c� a.

If ��,�� is a residuated pair then it immediately follows that � is isotonic in both

places with respect to the entailment ordering. That is

if a � a� and b � b� then a � b � a� � b�.

Implication, on the other hand, is not isotonic in both places. It is isotonic in the conse-

quent place and antitonic in the antecedent place. That is we have

if a� � a and b � b� then a� b � a� � b�.

All of this was noticed by Meyer and Routley in the 1970s and made rigorous (and gener-

alised to arbitrary n-place operations and residuated families) by Dunn in the 1980s and

1990s in his work on gaggle theory (from “ggl” for “Generalised Galois Logic”: a Galois

connection is the general phenomenon of which a residuated pair or triple is a special

case) [1991; 1993].75

Tonicity is not the only behaviour of fusion and implication present in these models.

If the poset is a lattice ordering, then tonicity generalises to distribution. It is also an

elementary consequence of the residuation clause that fusion distributes over disjunction

in both places

�a� a�� � b � �a � b� � �a� � b� and a � �b� b�� � �a � b� � �a � b��

and implication distributes over the extensional connectives in a more complicated fash-

ion.

�a� a�� � b � �a� b� 	 �a� � b� and a� �b	 b�� � �a� b� 	 �a� b��.

These sorts of structures are well known, and they appear independently in different dis-

ciplines. Quantales [Mulvey, 1986] are but one example. These are lattice-ordered semi-

groups (so, � is associative) with arbitrary disjunctions but only finite conjunctions. They

appear in both pure mathematics and theoretical computer science. They are discussed a

little in Vickers’ Topology via Logic [1990], which is a useful source book of other alge-

braic constructions and their use in modelling processes and observation. The existence

of arbitrary disjunctions means that in a quantale, implication is definable from fusion. If

you set a� b as follows

a� b �
�
�x : x � a � b�

then� satisfies the residuating condition for fusion.76 The same definition is possible in

the other direction too. If you have a lattice with arbitrary conjunctions (and implication

75And I have begun to sketch the obvious parallels between gaggle theory and display logic. Residuation is
displaying, and isotonicity and antitonicity have connections to antecedent and consequent positions in the proof
rules for a connective. When you process a fusion, the subformulas remain on the same side of the turnstile as
the original formula. On the other hand, when you process an implication, the antecedent swaps sides and the
consequent stays put.

76The distribution of � over the infinitary disjunction is essential here.
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distributes over conjunction in the right way) then you can define fusion from implication

a � b �
�

�x : a � b � x�.

This definition is key to one of the important techniques in understanding the behaviour

of fusion and the connections between fusion and implication. For fusion plays no part in

the Hilbert systems introducing some substructural logics. Yet it is present in the Gentzen

systems (at least in the guise of the comma, if not explicitly) and in these algebras. Does

the addition of fusion add anything new to the system in the language of implication? Or is

the addition of fusion conservative? In the next section I will sketch Meyer’s techniques

for proving conservative extensions for many substructural logics, by way of algebraic

models.

Before that, I must say a little about truth in these algebras. In Boolean algebras (for

classical logic) and Heyting lattices (for intuitionistic logic) the truths in a structure are

the formulas which are interpreted as the top element. There is no need for this to be the

case in our structures. In the absence of K�, we might have b �� a � a. That means that

a true conditional (as every identity a � a is true) need not be the top element of the

ordering. So, instead of picking out true propositions as those at the top of the ordering,

substructural logics need to be more subtle.

DEFINITION 27 (A Truth Set). Given an algebra with �, the truth set T is the set of all

x where a � b � x for some a, b where a � b.77

The truth set is the set of all conditionals true on the basis of logic alone, and anything

entailed by those conditionals. A truth set has some nice properties.

FACT 28 (A Truth Set in a Lattice is a Filter). Any truth set T in a lattice is a filter. (A

filter is a set which is closed under �, and closed under conjunction.78) If x, y � T then

x 	 y � T . If x � x� then x� � T too.

Proof. That T is closed upwards is immediate. That T is closed under conjunction, note

that if x, y � T then a � b � x and a� � b� � y where a � b and a� � b�. Then a	 a� �
b�b�, and �a � b�	�a� � b�� � a	a� � b�b�, so since �a � b�	�a� � b�� � x	y,

we have x 	 y � T too. �

If the logic contains t, then the truth set is the filter generated by t: T � �x : t � x�.
The presence of truth sets in models shows that a logic without t can be conservatively

extended by it. Both conservative extension constructions — due to Meyer in the 1970s —

are the topic of the next section.

Conservative Extension Theorems

Meyer’s conservative extension results follow the one technique [1973a]. Suppose we

have consecution invalid in a logic with a restricted language A � B. Then (by the sound-

ness and completeness results for propositional structures) there is an algebra A and an

77Equivalently, it is the set generated by all identities a� a, since a� a � a� b if a � b.
78It is the algebraic analogue of a theory, which we have already seen.
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interpretation ����� intoA where ��A�� �� ��B��. Then, we manipulateA into a new structure

A�, appropriate for the larger language, and in which we have a new interpretation which

is still a counterexample to ��A�� �� ��B��. There are two separate techniques Meyer pio-

neered. One, injecting a structureA into it’s completionA� (giving us a way to interpret

t, �, and conjunction and disjunction if those are not present), and then, taking a structure

A and pasting on an inverted duplicateAop, in order to model negation.

EXAMPLE 29 (Mapping A into A�). The map from a propositional structure into its

completion is given in the following way. A� is defined in a number of alternative

ways.

� If A is only a poset or a semilattice (with 	 but not �), then A� is the set of all

downwardly closed sets of A. That is, I is an element of A� if and only if whenever

a � I and b � a then b � I.

� If A contains disjunction, then A� is the set of all ideals in A. (Ideals are dual to

filters. They are closed downward, and closed under disjunction: if a, b � I then

a � b � I.)

� IfA contains disjunction and �, thenA� is the set of nonempty ideals inA— every

ideal must contain �, the least element ofA.

A� is a complete lattice — order is subsethood, the conjunction of a class of elements

is their intersection, and the disjunction of a class of elements is the intersection of all

elements above each element in that class. It is not difficult to show that it is completely

distributive if the original lattice contains no counterexample to distributivity. If fusion is

present inA then it is present inA� too.

I � J � �z : �x � I, y � J�z � x � y��

and other connectives lift in a similar way. The structural rules of A are preserved in

A�.79 This shows thatA� has the nice logical properties ofA.

However, since A� is a complete lattice, we can do interesting things with it. If A

doesn’t contain a truth element t as a left identity for fusion, A� still does. Since A� is

complete, you can set t to be
�
�I � J : I � J�. Then t � I � J if and only if t � I � J

if and only if I � J, and so, t is a left identity for fusion.

Furthermore, the map from A to A� which sends a to .a � �x : x � a� injects one

structure into the other, preserving all of the operations in A. Any consecution with a

counterexample in A will have a counterexample in A� too. It shows that linear logic

without the additives is conservatively extended by additives which distribute, for exam-

ple.

EXAMPLE 30 (Pasting A and Aop together). Modifying a structure in such a way as

to add negation is more difficult. To add a De Morgan negation to a structure, we need

an upside down copy Aop of A so that negation can be an order inverting map of period

two. Following the details of this construction will be a great deal easier if we take A to

include top and bottom elements, so from now I will do so.

79The proof is tedious but straightforward [Restall, 2000a, ch. 9].
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Conjunction and disjunction inAop can be defined as the De Morgan dual of that inA.

So, if a, b � Aop then a	 b � ���a��b�, where � is the natural map fromA toAop

and back, sending an A object to its shadow in the copy Aop and vice versa. Defining

conjunctions and disjunctions of elements between A and Aop depends on another deci-

sion we need take. If a � A and b � Aop, then we need decide on what we take a	 b and

a�b to be. There are three options for this, each depending on the relevant positioning of

A andAop. Meyer’s original choice [1973a] was to putAop aboveA. Then the disjunc-

tion of an element form A with an element from Aop will be the element from Aop and

the conjunction will be the element from A. This choice (rather than putting Aop under

A) is the one to take if you wish to end up with a model for the relevant logic R, for we

wish to end up with t 
 A��A. The element t is inA, and we wish it to be under each

a ��a. But a ��a can be any element in the top half of the model, so t must be under

each element in the top half, so it is either the bottom element of the top half of the model

(not likely, if any conditional is untrue at all in the original model) or it is in the bottom

half.

The other choice for ordering the two components — putting Aop below A — is

required if you wish the original model to satisfy K. Then, t must be , and since t is in

the original model, it must be at the top of the new model, soAop can go underneath.

There is one other natural choice for the ordering of A and Aop, and that is to take

them in parallel. You can paste together the top elements of both models and the bottom

elements of both models (or add new top and bottom elements if you prefer) and then take

the disjunction of a pair, one fromA andAop, to be the  element of the whole structure,

and the conjunction of that pair to be the � element. This is another natural option, but

the resulting lattice is not distributive ifA is not trivial.

To make the resulting structure a model for a logic, you must define � and � in the

whole structure. Most choices are fixed in advance, if fusion is commutative inA. Since

we want a � b to be ��a � �b�, and a � b to be �b � �a, we take a � b when a � A
and b � Aop to be ��a � �b� (and the dual choice when a � Aop and b � A). The

remaining choice is for a � b where a, b � Aop. Here, it depends on the relative position

of A and Aop. If we add the new structure on top, take a � b to be . If we add the

new structure below, or alongside, take a � b to be �. The new structure satisfies many of

the structural rules of the old structure, and as a result, a conservative extension result for

logics in the vicinity of R follows [Meyer, 1970b; 1973a; Restall, 2000a].

There is one substructural logic for which a conservative extension by negation fails:

RM. RM is given by extending R with the mingle rule A � A � A (or equivalently,

A 
 A � A). If you add mingle to positive R then the result is still a sublogic of

intuitionistic logic, and as a result, total ordering t 
 �A � B� � �B � A� is not

provable. This logic is called RM0. In the presence of negation, however, the addition of

mingle brings along with itself the total ordering principle. (This result is due to Meyer

and Parks, from 1972 [1972].)
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3.2 Categories

In propositional structures, we abstract away from the particulars of the languages in

which our propositions are expressed to focus on the propositions themselves, ordered

under entailment. In propositional structures, propositions are first-class citizens, and

proofs between propositions fade into the background. If there is a proof from A to B,

then ��A�� � ��B��. The differences between proofs from A to B are not registered in this

algebraic semantics.

Models do not have to be like this. We can consider not only propositions as objects

but also proofs as “arrows” between objects. If we have one proof from A to B, we

might indicate this as ‘ f : A/�B,’ where f is the proof. We might have another proof

g : B/�C, and then we could compose them to construct another proof g f : A/�C,

which runs though f and then g.

Logicians did not have to go to the trouble of inventing structures like this. It turns out

that mathematical objects with just these properties have been widely studied for many

decades. Categories are important mathematical structures. Category theory is a helpful

language for describing constructions which appear in disparate parts of mathematics.

This means that category theory is, by its nature, very abstract. This also means that

category theory is rich in examples, interesting categories are models of substructural

logics. In particular, I will look at one example categorical model of a logic, Girard’s

model of coherence spaces, for linear logic.80

To understand the role of categories as models of logic, you need to focus on one

particular part of categorical technology: the adjoint pair. An adjoint pair is a relationship

between two functors, and functors are structure preserving maps between categories.

Thinking of a category as a model of a logic generalising an algebra, the operators such

as fusion, implication and so on are all functors from the category to itself (or perhaps,

from the category to its opposite, which is found by swapping arrows from a to b to

go from b to a instead). Operators like fusion, which are isotonic, are really two-place

maps from a category to itself, not only sending a pair of category objects to another

object (their fusion) but also sending arrows f : a/�a� and g : b/�b� to an arrow

f � g : a � b/�a � b�.

EXAMPLE 31 (Adjunction between Fusion and Implication). In cartesian closed cate-

gories,81 product: — - B is a functor C/�C. Similarly �B � —� is a functor C/�C.

These functors form an adjunction. If f : A - B/�C, then λ f : A/��B � C�.
Conversely, if g : A/��B � C�, then ev�g - idB� : A - B/�C. This is a bijection

Hom�A - B,C� � Hom�A, �B � C��.

80In a history like this I can only assume some category theory, and not introduce it myself. Here are some
standard references: Mac Lane’s Categories for the Working Mathematician is a very good introduction to the
area [1971], readable even by those who are not working mathematicians. Barr and Wells’ Category Theory

for Computing Science is also clear, from a perspective of the theory of computation [1990]. Chapter 10 of An

Introduction to Substructural Logics [Restall, 2000a] contains just the category theory you need to go through
the detail of this model. Došen’s paper “Deductive Completeness” is a clear introduction focussing on the use
of categories in logic [1996].

81I can’t tell you what these are, for lack of space.
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This is the categorical equivalent of the residuation between extensional conjunction

and intuitionistic implication. Cartesian closed categories are models of intuitionistic

logic [Lambek and Scott, 1986].

Coherence Spaces

Coherence spaces arise as a model of the λ-calculus, and intuitionistic logic. They pro-

vided the first model which gave Girard an insight into the decomposition of intuitionistic

implication in terms of linear implication and the exponential ! [1987a; 1989].

DEFINITION 32 (Coherence Spaces). A coherence space is a set A of sets, satisfying

the following two conditions.

� If a � A and b � a then b � A, and

� If for each x, y � a, �x, y� � A, then a � A.

But coherence spaces are much better thought of as undirected graphs. We say a coheres

with b (in A) if �x, y� � A. We write this: ‘x��y�mod A�.’ The coherence relation

determines the coherence space completely. Coherent sets (a � A) are cliques in the

graph. The coherence relation is reflexive and symmetric, but not, in general, transitive.82

Given a coherence spaceA, we define coherence relations as follows:

� x��y�mod A� iff x��y�mod A� and x � y.

� x�y�mod A� iff �x, y� � A.

� x��y�mod A� iff it is not the case that x��y�mod A�.

DEFINITION 33 (Product, Sum and Negation Spaces). Given spaces A and B, the co-

herence spacesA	 B andA� B are defined on the disjoint union of the points x of the

graph ofA and y of the graph of B, as follows:

�0, x����0, x
���mod A	 B� iff x��x��mod A�

�1, y����1, y
���mod A	 B� iff y��y��mod B�

�0, x����1, y��mod A	 B� always

�0, x����0, x
���mod A� B� iff x��x��mod A�

�1, y����1, y
���mod A� B� iff y��y��mod B�

�0, x����1, y��mod A� B� never

Given a coherence spaceA, the coherence space�A is defined by setting x��y�mod �A�
if and only if x��y�mod A�. Note that ��A � A. Sgl � �0, �#��, an arbitrary one-

point coherence space. Emp � �0�, the empty coherence space. Note that �Sgl � Sgl

and �Emp � Emp.

82Erhard’s hypercoherences are a generalisation of coherence spaces which are richer than a graph repre-
sents [1993]. In hypercoherences, a might be a coherent set without a� � a also being coherent. The category
of hypercoherences is also a model of linear logic.
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Note that here ��A 	 B� � �A � �B, and ��A � B� � �A 	 �B. Furthermore,

A	 Emp � Emp	A � A � A� Emp � Emp�A. Emp does the job of both  and

� in the category of coherence spaces.83

The class of all coherence spaces can be made into a cartesian closed category, if we

take the arrows to be continuous functions.

DEFINITION 34 (Continuous Functions). F : A/�B is continuous if and only if

� If a � b then F�a� � F�b�.

� If S � A is directed (that is, if a, b � S , then a�b � S too) then F�
�

S � �
�
�F�a� :

a � S �.

FACT 35 (Minimal Representatives). If F : A/�B is continuous, and if a � A and

y � F�a�, then there is a minimal finite a� � A where y � F�a��.

Proof. If y � F�a� then y � F�a�� for some finite a�. Pick some smallest subset a� of a�

with this property. (This is possible, as a� is finite.) �

We want to construct a coherence space representing F : A/�B. We start by defining

the trace of a function.

Trace�F� � ��a, y� � Afin - ,B, : y � F�a� and a is minimal�

Note that Trace�F� � Afin - ,B, has the following properties.

� If �a, y�, �a, y�� � Trace�F� then y��y��mod B�.

� If a� � a, �a, y�, �a�, y� � Trace�F�, then a � a�.

Conversely, if F is any set with these two properties, then define FF by setting

FF�a� � �y � ,B, : �a� � a where �a�, y� � F�.

We can represent continuous functions by their traces. In fact, if F is continuous, then

F � FTrace
F�. Can we define a coherence relation on traces? Consider the special case

where there are two minimal representatives, that is, �a, y�, �a�, y� � Trace�F�. Under

what circumstances are they coherent? Unfortunately, we need more information in order

to define a coherence relation — we need a relationship between a and a�. We can show

that in a particular class of continuous functions, there is always a unique minimal a.

DEFINITION 36 (Stable Functions). F : A/�B is stable if it is continuous, and in

addition, whenever a, a�, a� a� � A, then F�a1 a�� � F�a� 1 F�a��.

With stable functions, we can choose a unique minimal representative a.

FACT 37 (Unique Minimal Representatives). F : A/�B is stable if and only if for each

a � A, where y � F�a�, there is a unique minimal a� � Afin such that y � F�a��.

83This shows how categories have a kind of flexibility unavailable to posets. In a poset, � 	 � only if the
poset is trivial. In a category, � and � might be identical or isomorphic, without the category structure being
trivial. Yes, there will be arrows from every object to every other object, but it is not the case that all objects are
isomorphic.



360 Greg Restall

Proof. For left to right, it is straightforward to check that a� �
�
�a� � A : a� �

a, where y � F�a��� is the required a�. For right to left, monotonicity tells us that F�a 1
a�� � F�a� and F�a 1 a�� � F�a��, so F�a 1 a�� � F�a� 1 F�a��. Conversely, if

a, a�, a � a� � A, then if y � F�a� and y � F�a��, then y is in F�a�� for a unique minimal

a�. Therefore a� � a and a� � a�, so a� � a 1 a�, and hence y � F�a�� � F�a 1 a��, as

desired. �

The next result is simple to verify.

FACT 38 (Characterising Stable Functions). If F is stable, then whenever �a, y�, �a�, y�� �
Trace�F�

� If a� a� � A then y��y��mod B�.

� If a� a� � A then y � y��mod B�.

Conversely, if the set F satisfies these conditions, then FF is stable. �

Given this, we can define A � B. ,A � B, � Afin - ,B, as follows: �a, y����a
�, y��

�mod A � B� if and only if

� If a� a� � A then y��y��mod B�.

� If a� a� � A then y � y��mod B�.

That is,A � B � �Trace�F� , F : A/�B is stable�.

The category of coherent spaces and stable functions between them is cartesian closed.

This construction is obviously a two-stage process. It begs to be decomposed. We should

define a coherence space !A on the set of finite coherent sets ofAfin as follows:

a��a��mod !A� iff a� a� � A

and define linear implicationA� B by setting �x, y����x
�, y���mod A� B� if and only

if

� If x��x��mod A� then y��y��mod B�.

� If x��x��mod A� and y � y� then x � x�.

Note that A � B is (isomorphic to) �B � �A. Furthermore, Sgl � A is (isomorphic

to)A andA� Sgl is (isomorphic to) �A. The operation � stands to stable functions as

� stands to a new kind of function: the linear functions.

DEFINITION 39 (Linear Maps). F is a linear map if and only if whenever A � A is

linked (that is, if a, b � A then a� b � A) then F�
�

A� �
�
�F�a� : a � A�.

If F is linear then F is stable (this is straightforward) and in addition, if x � F�a�
then the minimal b where x � F�b� is a singleton. It follows that the trace of F can be

simplified. The linear trace of a linear map F is defined as follows:

Trlin�F� � ��x, y� : y � F��x���.

Therefore,A� B � �Trlin�F� , F : A/�B is linear�.
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Given �, we can see that it is connected by an adjunction to a natural fusion operation.

We can define A � B as follows: ,A � B, � ,A, - ,B,, and �x, y����x
�, y�� if and only if

x��x��mod A� and y��y��mod B�.

FACT 40 (The Adjunction between Fusion and Implication). In the category of coher-

ence spaces with linear maps

Hom�A � B,C� � Hom�A,B� C�

is an adjunction for allA, B and C.

This, with the associativity and commutativity of �, together with the behaviour of !,

shows that the category of coherence spaces and linear maps is a model of linear logic.

Some very recent work of Schalk and de Paiva’s on poset-valued sets [2004] gener-

alises coherence spaces in an interesting direction. They show that coherence spaces and

hypercoherences can be seen as maps from Set- Set to the algebra RM3.84 If x��y then

f �x, y� � t, if x�y then f �x, y� � f, if x � y then f �x, y� � b. The logical operators

of negation, fusion and implication then lift from the algebra to the coherence spaces.

(In other words, if A : Set - Set � RM3 is a coherence space, then �A is the map

composingA with � : RM3 � RM3. The same goes for the other operations.) Different

categorical models in the style of coherence spaces can then be given by varying the tar-

get algebra. I suspect that using some of the algebras known in the substructural literature

will lead to interesting categorical models of linear logic and related systems.

Girard has shown that Banach spaces can be used in place of coherent spaces to model

linear logic [1996]. The norm in a Banach space takes the place of the coherence relation.

As we shall see later, it is not the only point at which geometric intuitions have come to

play a role in substructural logic.

3.3 Frames

The study of modal logic found new depth and vigour with the advent of possible worlds

semantics. As we have seen, algebras are useful models of substructural logics. However,

they are so close to the proof theory of these logics that they do not provide a great

deal of new information, either about the intrinsic properties of the logic in question, or

about how it is to be applied. Models in terms of frames are one way to extract more

information. Perhaps this is because frames are a further step removed from the logic in

an important sense. In algebras, each formula in the language is interpreted as an element

in the algebra. In frames, each formula is not interpreted as an element in the frame —

the elements in the frame lie underneath the interpretation of formulas. Formulas are

interpreted as collections of frame elements. Therefore the interpretations of connectives

on a frame are themselves decomposed. They are no longer simply functions on algebras

satisfying specified conditions. Their action on sets of frame elements is factored through

their action on individual frame elements. As a result, frame interpretations of logics

can be thought to carry more information than algebras. In addition, frame semantics is

84They do not recognise that the algebra is already quite studied in the relevant logic literature.
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suggestive of applications of logics. Just as the idea of the interpretation of a proposition

as a set of possible worlds, or a set of times or a set of locations has driven the application

of different models of modal or temporal logics, so the interpretation of frame semantics

for substructural logics has led to their use in diverse applications. But enough of scene-

setting. Let’s start with the first attempts to give precise frame semantics for substructural

logics. As before, our story starts with the relevant logic R.

Operational Frames

The idea of frame semantics for relevant logics occurred independently to Routley and to

Urquhart in the late 1960s and early 1970s. Routley’s techniques are more general than

Urquhart’s, but Urquhart’s were published first, and are the simplest to introduce, so we

will start with them.

Consider the constraints for developing a frame semantics for a relevant logic. The

bare bones of any frame semantics are as follows. A frame is a set of objects (call them

points, though “worlds”, “situations”, “set-ups” and other names have all been used), and

a model on that frame is a relation �which indicates what formulas are true at what points.

We read “x � A” as “A is true at x.” Typically, the relation � is constrained by inductive

clauses that indicate how the truth (or otherwise) of a complex formula at each point is

determined by the truth (or otherwise) of its subformulas. Given a particular model, then,

we say that A entails B on that model if and only if for every point x, if x � A then x � B.

Entailment is preservation of truth at all points in a model.

This is the bare bones of a frame semantics for a logic. Consider how this determines

what we can do to interpret relevant implication. It is axiomatic for a relevant logic that

the entailment from A to B � B can fail. In frame terms this means that we must have

points in our models in which B � B can fail. This means that the interpretation of

implication must differ from any kind of frame interpretation of conditionals seen before.

For a strict conditional A � B to be true at a world, we need to check all accessible

worlds, to see if B is true whenever A is true. As a result, B � B is true at every world.

Similarly, for counterfactual conditionals A � B, we check the nearby worlds where

A is true, to see if B is true there too. Again, B � B is true, because we check the

consequent at the very same points in the model where we have taken the antecedent to

be true. Something different must be done for a relevant conditional. At the very least we

need to check the value of the consequent somewhere at places other than simply where

we have checked the antecedent.

Urquhart’s innovation was a natural way to do just this [1972a; 1972b; 1972c; 1972d].

Consider again what an implication A � B says. To be committed to A � B is to be

committed to B whenever we gain the information that A. To put it another way, a body

of information warrants A � B if and only if whenever you update that information

with new information which warrants A, the resulting (perhaps new) body of information

warrants B. Putting this idea in technical garb, we get a familiar-looking inductive clause

from a frame semantics:

� x � A � B if and only if for each y, if y � A then x2 y � B.
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But this inductive clause has a new twist. Unlike the clauses for strict or counterfactual

conditionals, in this clause we check the consequent and antecedent at different points in

the model structure. The way is open for B � B to fail.

Let’s take some time to examine the detail of this clause. We have a class of points

(over which “x” and “y” vary), and a function 2 which gives us new points from old. The

point x2 y is supposed, on Urquhart’s interpretation, to be the body of information given

by combining x with y. The properties we take combination to have will influence the

properties of the conditional. First up, let’s consider our old enemy, A 
 B � B. For this

to fail, we need to have a point x where x �� B � B, and for this, we need just some y

where y � B and x2 y �� B. This means that combination of bodies of information cannot

satisfy this hereditary condition:

� If x � A then x2 y � A left hereditary condition.

Similarly, if we are to have A 
 B � A to fail, then combination cannot satisfy the dual

hereditary condition.

� If x � A then y2 x � A right hereditary condition.

This means that combination is sometimes nonmonotonic in a natural sense. Sometimes

when a body of information is combined with another body of information, some of the

original body of information might be lost. This is simplest to see in the case motivating

the failure of A 
 B � A. A body of information might tell us that A. However, when

we combine it with something which tells us B, the resulting body of information might

no longer warrant A (as A might conflict with B). Combination might not simply result in

the addition of information. It may well warrant its revision.

To model the logic R, combination must satisfy a number of properties:

� x2 y � y2 x commutativity

� �x 2 y� 2 z � x2 �y2 z� associativity

� x2 x � x idempotence.

Commutativity gives us assertion, associativity gives us prefixing and suffixing, and idem-

potence gives us contraction, as is easily verified. For example, consider assertion: to

verify that A 
 �A � B� � B, suppose that x � A. To show that x � �A � B� � B, take

a y where y � A � B. We wish to show that x2 y � B. By commutativity, x2 y � y2 x,

and since y � A � B and x � A, we can apply the conditional clause at y to give y2x � B.

So, x2 y � B as desired.

These frame properties, governing the behaviour of 2 are very similar in scope to the

structural rules governing fusion and intensional combination in different proof theories.

This is no surprise, as 2 is the frame analogue of fusion. It comes as no surprise, then,

that as you vary conditions on 2 you can model different substructural logics.

Keeping the analogy afloat, then, we can see how these models might interpret the-

oremhood in our logics. In analogy with the proof theory and algebraic models of our

logics, we can see that there are two different grades of truth. It is one thing for a formula
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to be true everywhere in a model — this corresponds to being entailed by the Church true

constant . It is another thing for it to be a tautology, for it to be entailed by the Acker-

mann true constant t. Identities are entailed by t. What corresponds to being a tautology

in this sense in our models? Clearly being true at every point is ruled out, as identities

can fail at different points in a model. Continuing the interpretation of points as bodies

of information, if we can have bodies of information which do not warrant all of the tau-

tologies of logic, then we need some way of talking about which bodies of information

do. The simplest approach (and the one which Urquhart took) is to take a special body

of information 0 to stand for “logic.” A natural condition to take on 0 is that it is a left

identity for composition

� 02 x � x left identity

In this way, 0 � A � B if and only if for each x, if x � A then x � B — so the conditionals

warranted by logic correspond to exactly the entailments valid in the frame. The identity

point 0 does a good job of modelling logic.

The interpretation of points as bodies of information warrants a simple interpretation

of conjunction as well. The usual clause

� x � A	 B if and only if x � A and x � B

is uncontroversial. If a body of information warrants A	 B, it warrants A and it warrants

B, and conversely. Adding this clause to the semantics gives us the conjunction and

implication fragment of R (and its neighbours, varying the behaviour of of 2).

Intensional conjunction is also straightforward. We can add fusion as the object-

language witness of composition:

� x � A � B if and only if for some y, z where x � y2 z, y � A and z � B.

It is instructive to verify that in these models, that A � B 
 C if and only if A 
 B � C.

Residuation between � and � corresponds to the universal clause modelling � interact-

ing with the existential clause modelling �.

Let’s now turn to soundness and completeness with respect to these models. To prove

soundness of a proof theory with respect to these models, it is required only to show that

everything provable in the proof theory holds in the model (either holds at 0 for a Hilbert

system, or holds over the entire frame for a proof theory which delivers consecutions). As

usual, verifying soundness is a straightforward matter of checking axioms and rules.

There are two different ways to prove the completeness of a proof theory with Urquhart’s

operational models. Again, as usual, the common technique is to provide a counterexam-

ple for an unprovable formula (or consecution). Both techniques use a canonical model

construction, familiar from the worlds semantics for modal logics. Where these construc-

tions differ is in the stuff out of which the points in the model are made. The first, and

most general kind of canonical model we can provide for an operational semantics is the

theory model, in which the points are all of the theories of the logic in question.

DEFINITION 41 (The Theory Canonical Model). The set of points is the set T of theo-

ries. The identity theory is the set L of all of the tautologies of the logic. The composition
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relation 2 is defined as follows:

S 2 T � �B : ��A��A � B � S and A � T ��

and S � A if and only if A � S .

To verify that the theory canonical model is indeed a canonical model we must show

that 2 so defined satisfies all of the conditions of a composition relation, and that �

satisfies the recursive conditions of an evaluation relation.

To show that 2 satisfies the conditions of composition, you need first show that 2 is

indeed a function on the class of theories: that if S and T are theories, so is S 2 T . The

verification of this fact is elementary. The frame conditions on 2 correspond quite neatly

to axioms or structural rules.

To show that � satisfies the recursive conditions, you need show that A 	 B � T if and

only if A, B � T (which is an immediate consequence of the definition of a theory) and

that A � B � S if and only if for each T where A � T , B � S 2 T . The verification from

left to right is an immediate consequence of the definition of 2. The verification from

right to left is simplest to prove in the contrapositive: that if A � B � S then there is a

T where A � T and B � S 2 T . Finding such a T is easy here: let T � �C : A 
 C�. If

B � S 2 T then there is some C � T where C � B � S . Since A 
 C, it follows that

C � B 
 A � B (by monotonicity of �) and A � B � S contrary to what we have

assumed.

It is possible to extend this kind of completeness proof to show that the condition for

fusion models this connective correctly too.

DEFINITION 42 (The Finite Set Canonical Model). The points are the finite sets of

formulas. Composition 2 is set union. �A1, . . . , An� � B if and only if


 A1 � �� � � � �An � B��.

(The permutation axiom shows that the order of presentation in the set is irrelevant in this

definition.)

It is not difficult to show that this is indeed a model — that the recursive clause defining

� is satisfied.

This is a simple model which gives a straightforward counterexample to any invalid

argument. If A � B then �A� is the point in the model invalidating the argument: �A� � A

and �A� �� B.

Operational frames are important models of other substructural logics too.

EXAMPLE 43 (Language frames). A language frame on alphabetA is the collection of

all strings on that alphabet, with 2 defined as concatenation.

Language frames are a model of the Lambek calculus. The composition operation

2 is associative but not commutative (except in the case where A is a singleton). It

was an open question for many years whether or not the Lambek calculus is complete

for Language frames. Mati Pentus showed that it is, using an ingenious (and difficult!)

model construction argument pasting chains of partial models together to form a string
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model [1995; 1998]. Different frames for the Lambek calculus feature prominently in

some recent work on the system and its linguistic applications [Moortgat, 1988; Morrill,

1994].

EXAMPLE 44 (Domain Spaces). Models of the λ-calculus [Abramsky and Jung, 1994;

Gunter and Scott, 1990; Scott, 1973; 1980] are models for substructural logics too. Scott’s

famous model construction involves a topological space D such that D is isomorphic to

the space �D � D� of continuous functions from D to itself. Each element of D is

paired with a function in �D � D�, so can think of the objects equally well as functions.

Therefore, there is a two-place operation of application on the domain. Consider x�y� —

the application of x to y. We can assign types to functions in this model by “reading” the

model as a frame for a logic. If we set x 2 y to be x�y�, then this is an operational frame:

x � A � B if and only if for each y, where y � A, x�y� � B.

In other words, x is of type A � B if and only if whenever given an input of type x, the

output is of type B. This gives us a plausible notion of function typing. For example,

λx.�x � 1� will have type Even � Odd and Odd � Even. The function λx.λy.�2x � y�
has type N � �Odd � Odd� (whatever number x is, if y is odd, so is 2x � y) but it does

not have type Odd � �N � Odd� (if y is even, the output will be even, not odd). This is

an example demonstrating the failure of the permutation-related rule: A � �B � C� 

B � �A � B�.85

This is an important model because it motivates the failure of not only commutativity

of2 but also associativity. There is no sense in which x�y�z�� ought be equal to �x�y���z�.
Function typing models a very weak substructural logic.

Urquhart considered adding disjunction to operational frames, with the natural clause:

� x � A � B if and only if x � A or x � B.

However, this is not as satisfactory as its cousin for conjunction. For one thing, R models

extended with this clause validate the following formula

(1) �A � B�C� 	 �B � C� � �A � C�

which is not valid in R.86 Secondly, and more importantly, the interpretation in terms of

pieces of information simply doesn’t motivate the straightforward clause for disjunction.

Pieces of information may well warrant disjunctions without warranting either disjunct.

To interpret disjunction in operational models (and to get a logic in the vicinity of R or

any of the other logics we are interested in) you can do one of two things. One approach,

taken by Ono [1985; 1992], Došen [1988; 1989] and Wansing [1993], is to admit some

kind of closure operator on the frame: A � B is true not only at points where A is true

85We can use other connectives to expand the type analysis of terms. Conjunction clearly makes sense in this
interpretation: x � A�B if and only if x � A and x � B. In this way, we have models not only for typing functions
with � but also with intersection. These are models for the Torino type system λ� [Barendregt et al., 1983;
Coppo et al., 1981; Hindley, 1983; Venneri, 1994].

86This is not to say that the operational semantics with this disjunction clause hasn’t been investigated. See
some interesting papers of Charlewood: [1978; 1981], following on from a result of Fine [1976].



Relevant and Substructural Logics 367

and where B is true, but also at some more points, found by closing the original set under

some operation. Doing this will almost invariably invalidate distribution, and we will look

at one example of this kind of semantics in a couple of section’s time, when we come to

phase space models for linear logic.

A related method, and one which validates distribution, was discovered by Kit Fine in

the mid 1970s [1974; 1988]. He showed that if you have a two tiered collection of points,

the whole class S with a special subset P of prime points (in analogy with prime theories)

which respect disjunction. For points in P, a disjunction is true if and only if at least one

disjunct is. For arbitrary points in S this may fail. For an arbitrary point in S , however,

you have a guarantee that it can be covered by a point in P. For each s � S there is at

least one s� � P where s � s�. This means that disjunctions are at least promissory notes:

although a disjunct may not be true given this body of information, it is possible for the

information to be filled out so that you get one or other disjunct. Then, a disjunction, in a

Fine model, is evaluated like this:

� x � A� B if and only if for each y � T where x � y, y � A or y � B.

Fine’s models will satisfy distribution, and model the positive fragment of R nicely. They

do so at the cost of requiring special bodies of information, those which are prime. They

also have the cost of requiring a new notion�, of informational inclusion. This requires a

new condition on frames, the hereditary condition, familiar from models for intuitionistic

logic:

DEFINITION 45 (Hereditary Condition). If x � p and x � y then y � p too.

To show that the hereditary condition extends from atomic propositions to all propo-

sitions, a further model condition is required to validate the inductive step for the condi-

tional. You need to assume that

If x � x� and y � y� then x2 y � x� 2 y�.

Given this clause, we indeed have a model for positive R. The cost has been a complication

of the clause for disjunction, the requirement that we have a two-tiered universe of points,

and a hereditary condition on points. This is not the only way to model the whole of R.

Routley and Meyer, independently of Fine, came to an equally powerful semantics, with a

slightly smaller set of primitive notions. Before looking at the Routley–Meyer semantics

in the next section, I must say a little about negation in the operational semantics.

How one interprets negation depends to a great extent on the intended interpretation.

The Boolean clause for negation

� x � �A if and only if x �� A

is marvellously appropriate in string models of the Lambek calculus (a string is of type

“not a noun” just when it is not of type “noun”) and in function typing (a function like

λx.x2 has type �Even � �Even: it sends inputs which are not even to outputs which are

also not even) but it is terrible when it comes to taking points as bodies of information.

There is little reason to think that a body of information x warrants the negation of A just

when it fails to warrant A. Bodies of information can be incomplete (warranting neither
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a claim nor its negation) and they can be inconsistent (warranting — you might think

misleadingly — a claim and its negation). Something else too must be done to model

negation. Fine had a treatment of negation in his models, but it too appeals essentially to

the two-tiered nature of a model, and it is simpler in the Routley–Meyer incarnation.

Routley–Meyer Frames

Routley and Meyer [1972a; 1972b; 1973; 1982] chose to keep the interpretation for dis-

junction simple, and to generalise the interpretation for implication. The central feature of

a Routley–Meyer frame is the ternary relation R. The clause for implication then is:

� x � A � B if and only if for each y, z where Rxyz, if y � A then z � B.

This is a generalisation of the operational semantics. An operational frame is a Routley–

Meyer frame where Rxyz holds if and only if x2y � z. The interpretation of R is similarly

a generalisation of that for 2. Reading the implication clause “in reverse” (as assigning

meaning to R and not to �)87 we have that Rxyz if and only if the laws (or conditionals)

in x, applied to the facts (antecedents) in y give outcomes (consequents) true in z. Or more

shortly, applying x to y gives an outcome included in z. That this is a genuine relation

means that applying x to y might give no outcome at all. On the other hand, we might

have Rxyz and Rxyz� for different z and z�. The result of applying x and y is no doubt a

body of information, but it might not be a prime body of information. For example we

might have x � A � B � C and y � A. Applying the information in x to that in y will

give B � C, without giving us any guidance on which of B or C it is to be. And this

is possible even if x is prime — for in R we don’t have the counterintuitive entailment

A � B� C 
 �A � B� � �A � C�, so we have no reason to think that x might contain

either A � B or A � C. So, in this case, we’d have two points z and z� where Rxyz and

Rxyz�. At z we can have B and at z� we can have C. In this way, we verify A � B�C at

x, all the time using prime points.

We only have a semantics for the positive part of the logic R when endow the ternary

relation R with some more properties. Routley and Meyer’s original properties are best

stated with the use of some shorthand.

� “R2abcd” is shorthand for ��x��Rabx 	 Rxcd�.

� Given the distinguished point 0, we let “a � b” be shorthand for R0ab.

These abbreviations make sense, given the interpretations of the concepts at hand. R2abcd

conjoins application. You apply a to b and get a result in x (for some x) which we then

apply to c to get a result in d. One way of thinking of this is applying a to b and applying

all of this to c. The inclusion relation is defined by looking at what happens when you

apply logic to a state. Applying logic to a ought to result in nothing more than a. So, if

R0ab if and only if a is included in b.

87Which, frankly, is exactly what is done in cases of interpreting the accessibility relation in a modal logic as
“relative possibility”.
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Fine has suggested writing Rabc as “b �a c”, and reading it as: according to a, b is

contained in c [1974].88 In this case,� is�0, containment from the point of view of logic.

Here are the postulates Routley and Meyer gave to make their semantics model the

logic R.

� (Identity) R0aa for each a.

� (Commutativity) If Rabc then Rbac.

� (Pasch’s Postulate) If R2abcd then R2acbd.

� (Idempotence) Raaa for each a.

� (Heredity) If Rabc and a�
� a then Ra�bc.

These postulates parallel the postulates for 2. Identity and heredity govern the behaviour

of 0, making it fit to do the job of t, and to be a place to witness logical truths. Commuta-

tivity corresponds to the commutativity of fusion, Pasch’s postulate corresponds to B�: an

equivalent postulate, given commutativity, would be

� (Associativity) If R2abcd then R2a�bc�d.

Where “R2a�bc�d” is read as ��x��Rbcx 	 Raxd�.
Idempotence does the job of WI. So, we have a match with the postulates for an op-

erational frame. And as with operational frames, ringing the changes with regard to the

behaviour of R will result in different logical systems.

Soundness of Routley–Meyer models is a straightforward matter of showing that each

provable consecution is valid on each model. (A valid consecution is, as usual, one which

is preserved at every point.) To interpret consecutions, you must have an interpretation of

fusion, but that is as you would expect.

� x � A � B iff there are y, z where Ryzx, y � A and z � B.

A fusion is true at a point in a model when it is the composition of two points, at which

the “fusejuncts” are, respectively, true. Logically true formulas are then always true at 0

in a Routley–Meyer model.

Demonstrating completeness, as always for a semantics like this, is much more in-

volved. As usual, it is a canonical model construction. To construct a canonical model

for a logic like R, instead of dealing with all theories, as we could with operational mod-

els, we must deal in prime theories.89 But here, not just any prime theories will do. In

these models, each point is closed under consequence as defined at the point 0. This is a

fundamental fact about Routley–Meyer models:

FACT 46 (Semantic Entailment). A entails B in a Routley–Meyer model (that is, for all

x, if x � A then x � B) if and only if 0 � A � B.

This means that these points are not only prime theories, they are prime 0-theories.

They are closed under the “logic of 0.” And here, what is going on at 0 may be more

88This is a plausible proposal, provided that you are aware that in models for R, �a may fail to be reflexive,
as is needed to form a counterexample to A � B� B.

89Defined at Definition 5 on page 312.
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than what amounts to “logic” according to the logic in question. In particular, this is the

case at R, at least if negation is around. (Bear with the fact that I haven’t told you how

to interpret negation yet.) For R proves A � �A, and so, by the primeness of the point

0, we will have either 0 � A or 0 � �A. In any particular model, 0 will validate more

than “logic alone”. So, to construct a model, we will first construct a prime theory T for

the base point 0, and then the other points in the model will be prime T -theories: theories

closed under the inferences licensed by T .

DEFINITION 47 (The Prime Theory Canonical Model on T ). Given a prime, regular

theory T , prime theory canonical model on T is populated by prime T -theories. The

identity point is T itself. The ternary relation R is defined as follows:

RUVW if and only if �B : ��A��A � B � U and A � V�� � W

and U � A if and only if A � U.

Note the similarity of the definition of R here to the definition of 2 on the canonical

theory model on page 364. Here, R is defined by composition of theories, but the compo-

sition of two prime T -theories may not itself be a prime theory, so we resort to the ternary

relation.

Proving that this is indeed a model is a matter of checking all of the clauses. The

difficult conditions are the existential ones, according to which there is a point in the

model with certain properties. An example is one half of the implication clause: if A �
B � U, we need to find V,W where RUVW, A � V and B � W. This is a matter of

using Belnap’s Pair Extension Theorem90 twice. First, to construct V you use the pair

��A�, �C : C � B � U��, and extend it to get a prime V . Then, for W you use the pair

�U 2 V, �B��. The result will be the two prime theories you wish. The same techniques

work for the other difficult clauses. The canonical prime theory model is indeed a model.

This shows the ubiquity of the pair extension theorem in the metatheory of distributive

substructural logics. Prime theories play the part here of consistent and complete theories

in the metatheory of classical intensional logics.

I have said nothing about the treatment of negation. The Routleys’ innovation is to

understand that negation can be modelled by another operator which takes us away from

the current point of evaluation. The Boolean clause will not do. The alternative is this:

� x � �A if and only if x� �� A

where � is a map of period two on the set of points in a model. That is, x�� � x. This

indeed suffices to make � a De Morgan negation on the model. Adding the following

condition

� (Contraposition) If Rxyz then Rxz�y�

results in the model validating the contraposition axiom.

There has been a great deal of debate centred around the interpretation of the � op-

erator [Copeland, 1979; 1986; Meyer and Martin, 1986].91 There is no doubt that the �

90Fact 10 on p. 313.
91Not to be confused with the � of display logic, which simply means “not” in the metatheory of structures.
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operation is not particularly perspicuous in and of itself. (Being told that it turns set-ups

“inside out” is not particularly enlightening.) Instead of pursuing that debate here (which

largely burned out), I will merely quote an insight from Belnap and Dunn:

. . . we are convinced of the high probability that a mathematical apparatus of

such proven formal power will eventually find its concrete applications and

its resting place in intuition (think of tensors) [1992, p. 164].

This, I think, has been borne out in the later development of the Routley–Meyer semantics,

and its applications. But to find a plausible interpretation of �, and to understand the

semantics more fully, we need to work with it some more. As it stands so far, the Routley–

Meyer construction might seem ad hoc and fit simply for R and its neighbours. For

although you can ring the changes with some of the rules (commutativity, associativity,

contraction) others seem hopelessly fixed. The models, as they stand, do not appear

natural in the way that Kripke models for modal logic do.

This is merely an appearance. Recent work (dating from the 1990s, and chiefly due

to Dunn, on gaggle theory) has shown that ternary frames are completely natural models

for substructural logics in just the same way as Kripke models interpret normal modal

logics [Dunn, 1991; 1993; 1994; 1995; Restall, 2000a].

DEFINITION 48 (Ternary Frames). A ternary frame is a set with a ternary relation R

on that set. The connectives 	, �, , �, �, �,� can be defined on a ternary frame as

follows:

� x � A	 B if and only if x � A and x � B

� x � A� B if and only if x � A or x � B

� x � � never

� x �  always

� x � A� B if and only if for each y, z where Rxyz, if y � A then z � B.

� x � A� B if and only if for each y, z where Ryxz, if y � A then z � B.

� x � A � B iff there are y, z where Ryzx, y � A and z � B.

Many structural rules come with a corresponding conditions on R.92

There are no restrictions on R in such an interpretation. It models distributive lattice

operations, together with the residuated triple ��,�,��. A soundness and completeness

result, using standard techniques, works for this frame semantics.

Interpreting R is a tricky business, as we have seen. Probably no non-circular definition

(one which doesn’t appeal to conditionality) will be possible. However, some interesting

explications of R have been tried in the applied semantics of relevant logics. One answer

which has some cachet at present explains R in terms of situation theory. If the points

in a model are circumstances or situations of some kind, then R indicates the degree to

which situations can carry information about other situations. In particular, Rabc holds

just when circumstance a acts as a information channel from b to c. There is a significant

92Some, however, require an inclusion relation �, to be defined below.
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growing recent literature on the connections between traditional situation theory and the

semantics of relevant logics [Barwise and Seligman, 1993; Barwise et al., 1996; Mares,

1997; Restall, 1994; 1995].

Some conditions (such as the condition for double negation elimination, which is too

complex to discuss here [Restall, 2000b]) require talk of a relation of inclusion between

points in models. This is not surprising, if in the intended interpretation, points are pos-

sibly incomplete (think of models for intuitionistic logic) then sometimes the relation of

extension or inclusion might play a role.

DEFINITION 49 (Inclusion). � is an inclusion relation on a ternary frame if and only if

it is reflexive, transitive and asymmetric, and in addition

� For all x, y, z if Rxyz and x�
� x, y�

� y and z � z� then Rx�y�z�.93

A model on a ternary frame with an inclusion relation must satisfy the hereditary condition

on atomic formulas

� If x � p and x � x� then x�
� p

The clause linking � and R suffices to prove the hereditary lemma: complex formulas

involving�, �,� satisfy the hereditary lemma if their constituents do.

Inclusion, as a relation between points in a model, is simple to explain given an inter-

pretation of these points. If points are situations, then a � b just when a is a “subsitua-

tion” of b. The situation of my bedroom is a subsituation of the situation of my house.

An inconsistent circumstance described by the first chapter of some fiction may well be

a substitution of an inconsistent circumstance described by the whole book. Given these

explications of inclusion, the connection between it and R is plausible. As x shrinks to x�,

it connects more pairs of circumstances, as for a given antecedent circumstance there are

more possible consequent circumstances. Given x, as y shrinks to y�, again, there are more

possible consequent circumstances, as y� gives us less information to constrain possible

consequents. These explications are probably not reductions of the notion, but they go

some way to explain their appeal and their use.

Another significant role in models is played by the distinguished point 0 in Routley–

Meyer models. This point plays the part of modelling t,

DEFINITION 50 (Truth Set). T is a truth set in a ternary model with inclusion if and

only if.

� RTab if and only if a � b.

where “RTab” stands for ��x��x � T 	 Rxab�. A truth set is reduced if it has the form

�x : 0 � x� for some point 0.

A truth set does the job of recording frame consequence. The � formulas true at

every point in T are exactly the entailments witnessed by the entire model. For some

applications (in particular, using frames to prove the admissibility of disjunctive syllo-

gism [Routley and Meyer, 1972a]) reduced truth sets are desirable. A great deal of work

93This is quite a defensible condition as it stands, but it’s more general than it needs to be to prove the
hereditary lemma for all formulas [Restall, 2000a, ch. 11].
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has gone into showing the circumstances in which a logic has a semantics with a reduced

truth set [Slaney, 1987; Priest and Sylvan, 1992; Restall, 1993; 1995]. On the other hand,

in our intended interpretation, it is by no means obvious.

Most contentious is the interpretation of negation. Some of Dunn’s recent work, how-

ever, has served to take the sting out of � [Dunn, 1994; Restall, 1999]. Dunn notes that �

is a particular case of a more understandable clause for negation:94

DEFINITION 51 (Compatibility). A compatibility relation C on a frame is an arbitrary

two-place relation. Negation is interpreted using C as follows:

� x � �A if and only if for all y, if xCy then y �� A.

If the frame uses an inclusion relation, compatibility is related to inclusion as follows:

� If xCy, x� � x and y� � y then x�Cy�.

If you think of x and y as compatible just when there are no clashes between them, then

these clauses are defensible. A circumstance warrants �A just when there’s no compat-

ible circumstance in which A holds. So, �A’s holding in a circumstance just when A is

ruled out by that circumstance: there is no compatible circumstance in which A. If cir-

cumstances are possibly incomplete (they might be compatible with more than just them-

selves) and if they are possibly inconsistent (not compatible with themselves: containing

an internal contradiction) then we have counterexamples to the paradoxes of implication

from before. We may have x � A	�A (when it is not the case that xCx) or we may have

x �� A��A (when x �� A, but xCy where y � A).95

But what of the dreaded �? It can be seen to be a special case of C. The behaviour

of C is wrapped up by � just if a� is the unique �-maximum of the set �x : aCx� of all

points compatible with a. If this set has a unique �-maximum, a�, then indeed a � �A

just when a� �� A [Restall, 1999].

So, the ternary frame semantics can be “deconstructed” into individual components,

each of which may be explained and applied in different circumstances. Here are some

other examples of ternary frames which have been useful in the study of substructural

logics.

EXAMPLE 52 (Two-Dimensional Frames). Given a set D, we can define a frame on the

set D - D of pairs of D elements, by defining the ternary relation R on D - D, setting

R�a, b��c, d��e, f � if and only if b � c, e � a and b � f . In other words, �a, b� composes

with �b, c� to result in �a, c�, and no other relations hold between pairs. So, the evaluation

conditions on these two-dimensional frames reduce as follows:

� �a, b� � A � B if and only if for some c � D, �a, c� � A and �c, b� � B.

� �a, b� � A � B if and only if for each c � D if �b, c� � A then �a, c� � B.

94The expression in terms of compatibility is mine. Dunn uses a relation of incompatibility, expressed by the
symbol “�”, which is already overloaded here.

95If we impose no constraints on compatibility at all, negation still satisfies a range of logical properties: it
is order inverting (if A � B then �B � �A) and so it automatically satisfies two of the De Morgan inferences
(��A� B� � �A��B and�A��B � ��A� B�). In addition, since it is a universal operator, we have one
more De Morgan inference (�A��B � ��A� B�, and its degenerate case � � ��).



374 Greg Restall

� �a, b� � B� A if and only if for each c � D if �c, a� � A then �c, b� � B.

In this frame, the ternary R reduces to a partial function on pairs. This function is asso-

ciative but not symmetric, where defined. The point set is flat — there is no natural notion

of inclusion to be imposed. This frame has a truth set, but in this case it is not reduced: it

is the set ��a, a� : a � D�.

These models are studied by van Benthem, Došen and Orłowska [van Benthem, 1991;

Došen, 1992a; Orłowska, 1988] in the context of substructural logics, and they have

blossomed into their own industry, under the suggestive name ‘arrow logics’ [Marx and

Mausch, 1996]. In these logics, we think of the points �a, b� as transitions, or arrows,

from a to b.

These are important frames for they are closely related to language frames in a number

of respects — the relation R is functional: if Rxyz and Rxyz� then z � z�. However, in this

case the relation is partial. For some x, y there is no z such that Rxyz.

EXAMPLE 53 (Mitchell’s IE models). Mitchell’s IE models, are models of linear logic

with distribution of 	 over � [1997]. In these models, points are pairs �m, n� whose

elements are taken from a commutative monoid R of resources. As R is a commutative

monoid, there is an operation � on R, such that m� n � n� m, with an identity 0, such

that m � 0 � m � 0 � m. We evaluate propositions at points as follows: �m, n� � A � B

if and only if for some n1, n2 where n � n1 � n2, �m� n1, n2� � A and �m� n2, n1� � B.

�m, n� � �A if and only if �n,m� �� A. �m, n� � A � B if and only if for each m1,m2

where m � m1�m2, if �n�m2,m1� � A then �m2, n�m1� � B. Conjunction, disjunction,

 and � are defined in the usual way.

Early antecedents of the frame semantics for substructural logics can be found in

Jónnson and Tarski’s work on the representation of Boolean algebras with operators [1951;

1952]. This work presents what amounts to a soundness and completeness result for

frames of substructural logics (with Boolean negation), though it takes a certain amount

of hindsight to see it as such. The papers are written very much from the perspective of

algebra and representation theory.

An extensive study of the properties of ternary frames is given in Routley, Meyer,

Brady and Plumwood’s Relevant Logics and their Rivals [1982]. Gabbay [1972] also gave

a ternary relational semantics for implication, independently of the tradition of Routley

and Meyer. Frames can be viewed from an algebraic point of view. The class of propo-

sitions of the frame is a completely distributive lattice under intersection and union, and

it is equipped with the appropriate operators, defined by the clauses in the evaluation

conditions. For example, the implication clause gives us

α� β � �x : ��y, z � F ��Rxyz� �y � α� z � β���

Similarly, �α � �x : ��y � F ��xCy � y � α��, and so on. We will call the resulting

propositional structure ‘Alg�F �’ the algebra of the frame F . Furthermore, any interpre-

tation � on a frame gives you an evaluation v� given by setting v��A� to be ��A��. The

connections with algebra run even deeper. Our canonical model is constructed out of



Relevant and Substructural Logics 375

prime theories in a language. A similar construction can work with the prime filters of

a propositional structure. Dunn’s work on gaggles [1991; 1993; 1994; 1995] generalises

the results here to operators with arbitrary arity. An n-ary operator is modelled with an

n� 1-place relation.

Duality theory is the study of the relationship between algebras and their representa-

tions in terms of frames. There is an important strand of recent work in the semantics

of substructural logic exploring duality theory in this context [Hartonas, 1996; 1997a;

Hartonas and Dunn, 1997; Sambin and Vaccaro, 1988; Urquhart, 1996].

Meyer and Mares have done important work on the particular case of adding an S4-

type necessity for R [1993], and they have shown that disjunctive syllogism is admissible

in this case, using the frame semantics to prove it. Meyer and Mares have also studied the

extensions of these logics with Boolean negation [1992; 1993].

Study of the frame conditions corresponding to rules brings forward questions of

canonicity and correspondence. When is the canonical frame for a logic itself a model of

the logic? This is not always the case in modal logics, and also, not always the case in

substructural logics. There has been some work in attempting to pin down the class of sub-

structural logics for which canonicity holds [Ghilardi and Meloni, 1997; Kurtonina, 1995;

Restall, 2000a].

Not all logics have connectives which are amenable to the treatment of accessibility

relations. We will see this when we consider ! from linear logic. Another case is the

counterfactual conditional. These are more aptly modelled by neighbourhood frames.

There has been, as yet, only a little work considering how neighbourhood frames can be

used in a substructural setting [Akama, 1997; Fuhrmann and Edwin, 1994; Mares and

Fuhrmann, 1995].

Projective Frames and Undecidability

R is undecidable. Alasdair Urquhart proved this in his ground-breaking papers [1983;

1984]. The general idea is a straightforward one: encode a known undecidable problem

into the language of R. Meyer showed how to do this in the 1960s, by constructing a

simple substructural logic, such that deciding what was a theorem in that logic would

enable you to solve the word problem for free semigroups [Meyer, 1968; Meyer and

Routley, 1973c]. That logic was not particularly natural. (It was the Lambek calculus

together with just enough contraction to enable you to represent the deducibility problem

as a conditional.) The logic was not particularly like R. The insights that helped decide

the issue for R came from an unexpected quarter — projective geometry. To see why

projective geometry gave the necessary insights, we will first consider a simple case, the

undecidability of the system KR. KR is given by adding A	�A � B to R. A KR frame

is one satisfying the following conditions (given by adding the clause that a � a� to the

conditions for an R frame).96

96My presentation of these results is indebted to many discussions with Pragati Jain [1997].
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R0ab iff a � b Rabc iff Rbac iff Racb (total permutation)

Raaa for each a R2abcd only if R2acbd

The clauses for the connectives are standard, with the proviso that a � �A iff a �� A, since

a � a�.

Urquhart’s first important insight was that KR frames are surprisingly similar to pro-

jective spaces. A projective space P is a set P of points, and a collection L of subsets of P

called lines, such that any two distinct points are on exactly one line, and any two distinct

lines intersect in exactly one point. But we can define projective spaces instead through

the ternary relation of collinearity. Given a projective space P, its collinearity relation C

is a ternary relation satisfying the condition:

Cabc iff a � b � c, or a, b and c are distinct and they lie on a common line.

If P is a projective space, then its collinearity relation C satisfies the following conditions,

Caaa for each a. Cabc iff Cbac iff Cacb. C2abcd only if C2acbd.

provided that every line has at least four points (this last requirement is necessary to verify

the last condition). Conversely, if we have a set with a ternary relation C satisfying these

conditions, then the space defined with the original set as points and the sets lab � �c :

Cabc� � �a, b� where a � b as lines is a projective space.

Now the similarity with KR frames becomes obvious. If P is a projective space, the

frame F �P� generated by P is given by adjoining a new point 0, adding the conditions

C0aa, Ca0a, and Caa0, and by taking the extended relation C to be the accessibility

relation of the frame.

Projective spaces have a naturally associated undecidable problem. The problem arises

when considering the linear subspaces of projective spaces. A subspace of a projective

space is a subset which is also a projective space under its inherited collinearity relation.

Given any two linear subspaces X and Y, the subspace X � Y is the set of all points on

lines through points in X and points in Y.

In KR frames there are propositions which play the role of linear subspaces in projec-

tive spaces. We need a convention to deal with the extra point 0, and we simply decree

that 0 should be in every “subspace.” Then linear subspaces are equivalent to the positive

idempotents in a frame. That is, they are the propositions X which are positive (so 0 � X)

and idempotent (so X � X � X). Clearly, for any formula A and any KR modelM, the

extension of A, ,,A,, inM is a positive idempotent iff 0 � A	 �A � A � A�. It is then not

too difficult to show that if A and B are positive idempotents, so are A � B and A	 B, and

that t and  are positive idempotents.

Given a projective space P, the lattice algebra �L,1,�� of all linear subspaces of the

projective space, under intersection and � is a modular geometric lattice. That is, it is a

complete lattice, satisfying these conditions:

Modularity a + c � ��b�
	
a1 �b � c� � �a 1 b� � c



Geometricity Every lattice element is a join of atoms, and if a is an atom and X is a set

where a � ΣX then there’s some finite Y � X, where a � ΣY .
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The lattice of linear subspaces of a projective space satisfies these conditions, and in fact,

any modular geometric lattice is isomorphic to the lattice of linear subspaces of some

projective space. Furthermore the lattice of positive idempotents of any KR frame is also

a modular geometric lattice.

The undecidable problem which Urquhart uses to prove the undecidability of KR is

now simple to state. Hutchinson [1973] and Lipshitz [1974] proved this result:

FACT 54 (Modular Lattice Word Problem). The word problem for a class of modular

lattices which includes the subspace lattice of an infinite dimensional projective space is

undecidable.

That is, given any class of modular lattices, the word problem is the problem for de-

ciding for any problem in the language of lattices (of the form “if v1 � w1 � � � vn � wn

then vn�1 � wn�1” where each vi and wi are terms in the language of lattices, on variables

x1, . . . , xm) whether or not it holds in this class of lattices.

Now, given an infinite dimensional projective space in which every line includes at least

four points P, the logic of the frame �P� is said to be a strong logic. Our undecidability

theorem then goes like this:

FACT 55 (Undecidability for KR). Any logic between KR and a strong logic is undecid-

able.

Proof. Consider a modular lattice problem

If v1 � w1 � � � vn � wn then v � w

stated in a language with variables xi (i � 1, 2, . . .) constants 1 and 0, and the lattice

connectives 1 and �. Fix a map into the language of KR by setting xr
i
� pi for variables,

0r � t, 1r � , �v1w�r � vr	wr and �v�w�r � vr �wr. The translation of our modular

lattice problem is then the KR formula	
B	 �vr

1 � wr
1� 	 � � � 	 �v

r
n � wr

n� 	 t


� �vr � wr�

where the formula B is the conjunction of all formulas pi 	 �pi � pi � pi� for each pi

appearing in the formulae vr
j
or wr

j
.

We will show that given a particular infinite dimensional projective space (with every

line containing at least four points)P, then the word problem is valid in the lattice of linear

subspaces of P if and only if its translation is provable in L, for any logic L intermediate

between KR and the logic of the frame F �P�.
If the translation of the word problem is valid in L, then it holds in the frame F �P�.

Consider the word problem. If it were invalid, then there would be linear subspaces

x1, x2, . . . in the space P such that each vi � wi would be true while v � w. Construct

a model on the frame F �P� as follows. Let the extension of pi be the space xi together

with the point 0. It is then simple to show that 0 � B, as each pi is a positive idempotent.

In addition, 0 � t, and 0 � vr
i
� wr

i
, for the extension of each vr

i
and wr

i
will be the

spaces picked out by vi and wi (both with the obligatory 0 added). However, we would

have 0 �� vr � wr, since the extensions of vr and wr were picked out to differ. This would



378 Greg Restall

amount to a counterexample to the translation of the word problem, which we said was

valid. As a result, the word problem is valid in the space P. The converse reasoning is

straightforward. Deciding the logic would give us a decision for the word problem. �

Unfortunately, these techniques do not work for systems weaker than KR. The proof that

positive idempotents are modular uses essentially the special properties of KR. Not every

positive idempotent in R is modular. Nonetheless, the techniques of the proof can be

extended to apply to a much wider range of systems. You do not need to restrict your

attention to modular lattices to construct an undecidable word problem. But to do that,

you need to examine Lipshitz and Hutchinson’s proof more carefully. In the rest of this

section, I will hint at the structure of Urquhart’s undecidability proof for R and other

logics. For detail, the reader is urged to consult Urquhart’s original paper [1984] or my

retelling of the proof [Restall, 2000a, ch. 15]

Lipshitz and Hutchinson proved that the word problem for modular lattices was un-

decidable by embedding into that problem the already known undecidable word problem

for semigroups. It is enough to show that a structure can define a free associative binary

operation, for then you will have the tools for representing arbitrary semigroup problems.

Urquhart showed that this could be done without resorting to the full power of a modular

lattice.

It suffices to have an 0-structure, and a modular 4-frame defined within that 0-structure.

An 0-structure is a set equipped with the following structure

� It has a semilattice join operator 3, defining an order �;

� It has a commutative and associative binary operator �;

� x � y � x� z � y� z;

� 0� x � x;

� y + 0 � x3 �x� y� � x;

A 4-frame in a 0-structure is a set �a1, a2, a3, a4� � �ci j : i � j, i, j � 1, . . . , 4� such

that

� The ais are independent. If G,H � �a1, . . . , a4� then �ΣG� 3 �ΣH� � Σ�G 1 H�
(where Σ0 � 0)

� If G � �a1, . . . , a4� then ΣG is modular

� ai � ai � ai

� ci j � c ji

� ai � a j � ai � cik; ci j 3 a j � 0, if i � j

� �ai � ak� 3 �ci j � c jk� � cik for distinct i, j, k

Given the 4-frame, we can define a semigroup structure. For each distinct i, j, we define

the set Li j to be �x : x � a j � ai � a j and x 3 a j � 0�. Then if b � Li j and d � L jk

where i, j, k are distinct, we set b ' d � �b � d� 3 �ai � ak�. It follows (through some

manipulation) that b ' d � Lik. Then, we can define a semigroup operation ‘.’ on L12 by:

x.y � �x ' c23� ' �c31 ' y�
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It is quite an involved operation to show that this is associative. Furthermore, in certain

circumstances, the operation is freely associative. Given a countably infinite-dimensional

vector spaceV, its lattice of subspaces is a 0-structure, and it is possible to define a mod-

ular 4-frame in this lattice of subspaces, such that any countable semigroup is isomorphic

to a subsemigroup of L12 under the defined associative operation.

The rest of the work of the undecidability proof involves showing that this construction

can be modelled in a logic. Perhaps surprisingly, it can all be done in a weak logic

like TW�	,�,�,,��. We can do without negation by defining it implicationally as

usual: Pick a distinguished propositional atom f , and by defining �A to be A � f , t

to be � f , and A : B to be ��A � �B�. A is a regular proposition iff � � A � A

is provable. The regular propositions form an 0-structure, under the assumption of the

formula Θ � �R�t, f ,,��,N�t, f ,,��,� � ��. where R�A� is � � A � A, N�A�
is �t � A� � A, and R�A, B, . . .� is R�A� 	 R�B� 	 � � � and similarly for N. So, we

can show that the conditions for an 0-structure hold in the regular propositions, assuming

Θ as a premise. To interpret the 0-structure conditions we model 3 by 	, � by : and

0 by t. To model a 4-frame in the 0-structure, Define K�A� to be R�A� 	 �A 	 �A �
	�A��A � �	 �A :� A ��A�	 �A � A : A�. Then we can show the following

K�A�,R�B,C�,C � A � A	 �B : C� � �A	 B� : C.

Then the conditions for a 4-frame go as follows: Choose distinct atomic formulas A1, . . . , A4

and C12, . . . ,C34 to match a1, . . . , a4 and c12, . . . , c34. One independence axiom is then

�A1 : A2 : A3� 	 �A2 : A3 : A4� � �A2 : A3�

and one modularity condition is

K�A1 : A3 : A4�.

LetΠ be the conjunction of the statements expressing that the propositions Ai and Ci j form

a 4-frame in the 0-structure of regular propositions. In any algebra in which Θ�Π is true,

the lattice of regular propositions is a 0-structure, and the denotations of the propositions

Ai and Ci j form a 4-frame. Finally, when coding up a semigroup problem with variables

x1, x2, . . . , xm, we will need formulas doing duty for these variables: We need a condition

to pick out the fact that pi (standing for xi) is in L12. We define L�p� to be �p : A2 �
A1 : A2�	 �p	A2 � t�. Then the semigroup operation on elements of L12 can be defined

in terms of 	 and : and the formulas Ai and Ci j. We assume that done, and we will take

it that there is an operation � on formulas which picks out the operation on L12. Then we

have the following:

FACT 56 (Deducibility from TW to KR is undecidable). For any logic between TW�	,�,�
,,�� and KR, the Hilbert deducibility problem is undecidable.

Proof. Take a semigroup problem which is known to be undecidable. It may be presented

in the following way

If v1 � w1 . . . vn � wn then v � w

��
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where each term vi,wi is a term in the language of semigroups, constructed out of the

variables x1, x2, . . . , xm for some m. The translation of that problem into the language of

TW�	,�,�,,�� is the deducibility problem

Θ,Π, L�p1, . . . , pm�, v
r
1 � wr

1, . . . , v
r
n � wr

n � vr � wr

where each translation ur of each term u is defined recursively by setting xr
i

to be pi, and

�u1.u2�
r to be ur

1 � ur
2.

For any logic between TW and KR the word problem in semigroups is valid if and

only if its translation is valid in that logic. If the word problem is valid in the theory of

semigroups, its translation must be valid, for given the truth ofΘ andΠ and L�p1, . . . , pm�,
the operator � is provably a semigroup operation on the propositions in L12 in the algebra

of the logic, and the terms vi and wi satisfy the semigroup conditions. As a result, vr and

wr pick out the same propositions, and we have a proof of vr � wr.

Conversely, if the word problem is invalid, then it has an interpretation in the semigroup

S defined on L12 in the lattice of subspaces of an infinite dimensional vector space. The

lattice of subspaces of this vector space is the 0-structure in our countermodel. Consider

the argument for KR. There, the subspaces were the positive idempotents in the frame.

The other propositions in the frame were arbitrary subsets of points. Something similar

can work here. On the vector space, consider the subsets of points which are closed under

multiplication (that is, if x � α, so is kx, where k is taken from the field of the vector

space). This is a De Morgan algebra, defining conjunction and disjunction by means of

intersection and union as is usual. Negation is modelled by set difference. The fusion α�β
of two sets of points is the set �x� y : x � α and y � β�. It is not too difficult to show that

this is commutative and associative, and square increasing, when the vector space is in a

field of characteristic other than 2, since if x � α then x � 1
2

x� 1
2

x � α�α. Then α� β is

simply ��α ��β�. This is an algebraic model for KR, and the regular propositions in this

model are exactly the subspaces of the vector space. It follows that our counterexample

in the 0-structure is a counterexample in a model of KR to the translation of the word

problem. As a result, the translation is not provable in KR or in any weaker logic. �

This result applies to systems between TW and KR, and it shows that the deducibility

problem is undecidable for any of these systems. In the presence of the modus ponens ax-

iom A	�A � B�	 t � B, this immediately yields the undecidability of the theoremhood

problem, as the deducibility problem can be rewritten as a single formula.	
Θ	 Π	 L�p1, . . . , pm� 	 �vr

1 � wr
1� 	 � � � 	 �vr

n � wr
n� 	 t



� �vr � wr�

As a result, the theoremhood problem for logics between T and KR is undecidable. In

particular, R, E and T are all undecidable.

The restriction to TW is necessary in the theorem. Without the prefixing and suffix-

ing axioms, you cannot show that the lattice of regular propositions is closed under the

‘fusion-like’ connective ‘ : ’.

Before moving on to our next section, let us mention that these geometric methods

have been useful not only in proving the undecidability of logics, but also in showing that

interpolation fails in R and related logics [Urquhart, 1993].



Relevant and Substructural Logics 381

Phase Spaces

Not all substructural logics are distributive, and not all point models validate distribution.

In this section, we will look at phase spaces for linear logic as an example of a frame

invalidating distribution. Before launching into the definition (due to Girard [1987a]) I

will set the scene with some historical precedents.

An important idea germane to the representation of non-distributive lattices is that

of a Dedekind–MacNeille closure [Davey and Priestley, 1990; Grätzer, 1978; Hartonas,

1997a; MacNeille, 1937; Troelstra, 1992].

EXAMPLE 57 (Dedekind–MacNeille Frames). Consider a poset with order �. Define

‘y � α’ for a set α to mean y � x for each x � α. Then the closure Γα of a set α of points

can be given as follows:

Γα � �z : �y�y � α� y � z��.

Consider the closure operation on the class of all theories of some logic. If α is a set of

theories, then suppose that y � α. This is equivalent to saying that y �
�
α: y is no

bigger than the intersection of the set of the theories in α, which is itself a theory. So, if

y � z, then we must have
�
α � z too. If x � Γα, then anything true in all of α must also

be true in x. So in these frames, to model disjunction we require x � A � B if and only if

x � Γ���A�� � ��B���.

Sambin and others have used the notion of a “pretopology” (in our language, a set

with a closure operator) not only as a model of substructural logics but also as a con-

structive generalisation of a topological space [Hartonas, 1997b; Sambin, 1989; 1993;

1995]. Došen [1988; 1989], Ono and Komori [1985], and Ono [1992] have also given

semantics involving a closure operation

This is not the only way to avoid distribution. In a model without a notion of inclusion,

we can get by with a negation to define a closure operator:

EXAMPLE 58 (Goldblatt Frames). Consider orthologic: an ortho-negation combined

lattice logic. Here a frame will most likely appeal to a two-place compatibility relation C

to deal with negation. The compatibility relation is reflexive (so A 	�A 
 �) and sym-

metric (so A 
 ��A). Robert Goldblatt showed (in [1974]) how to deal with disjunction

by considering a simple compatibility frame �P,C�, where P is a set of points (unordered

by any inclusion relation) and C is a symmetric, reflexive compatibility relation on P.97

Conjunction and negation are modelled in the standard way:

� x � A 	 B iff x � A and x � B

� x � �A iff for each y where xCy, y �� A.

However, as it stands, this semantics does not validate ��A 
 A. To add an extra

condition on C to validate double negation elimination would result in C being the identity

relation and the logic would collapse into classical propositional logic. Goldblatt’s insight

97J. L. Bell presents an interesting philosophical analysis of Goldblatt’s semantics, in which C is understood
as proximity [Bell, 1986].
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was to instead restrict the evaluation of propositions on the frame to those propositions

for which ��A 
 A is valid. In the process, you reject distribution.

Given a set α � P, let α � �y : �x�x � α� �yCx��, or equivalently, �y : �x�yCx �
x � α��. Therefore, for any evaluation, ��A�� � ���A��. A set α � P is said to be C-

closed if and only if α � α. The C-closed sets will model our propositions. Since C is

symmetric, α � α.

A disjunction is true not only at the points at which either disjunct is true but also at

the closure of that set of points. Here, however, it is C-closure at work.

� x � A � B iff x � ���A�� � ��B���

Girard’s phase spaces (1987) are a generalisation of Goldblatt’s compatibility frames (dis-

covered independently of Goldblatt’s work, despite being 10 years later).

EXAMPLE 59 (Phase Spaces). A phase space is a quadruple �P, �, 1, 0� in which �P, �, 1�
is a commutative monoid, and in which 0 is a distinguished subset of P. The elements of

P are phases, and 0 is the set of orthogonal phases of P.98 In a phase space, the binary

operator � is used for the ternary relation for implication. Here, Rxyz if and only if x�y � z.

For any subset G � P, the dual G of G is defined as follows:

G � �x � P : for all y � G�x � y � 0��.

In other words, G is the set of all objects which send each element of G (by the monoid

operation) to 0. For any set G of phases, G is the closure of G. It is not too hard to

verify that this is indeed a closure operation, by showing the following:

� G � G.

� G � G.

� If G � H then H � G.

� G � G iff G � H for some H � P.

The closed sets are called facts. The set of facts can be equipped with a natural monoid

operation, �G�H�, where G�H is defined in the obvious way as �x�y : x � G and y � H�.
This operation is residuated by the operation � defined by setting G � H � �x : �y �
G�x � y � H��, which can be shown to equal �GH�.

For negation, we define xCy to hold if and only if x � y � 0. C is symmetric, given the

commutativity composition, and the negation of a fact G is G. The negation of a fact is

itself a fact.

It follows that this is a model for linear logic without exponentials. R satisfies the

conditions for C and B, as composition is associative and commutative. The set 1 �
1� is the identity (both left and right) for fusion.

Phase spaces are a particular kind of closure frame. They are special in a number

of ways. Not only is the closure operation defined by negation, and not only are the

structural rules B and C satisfied, but the accessibility relation underlying the frame is

98In the linear logic literature, ‘�’ is used instead of ‘0’ for the set of orthogonal phases. We use � for the
bottom element of a lattice, so we will use 0 for the set of orthogonal phases.

�
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functional. Nevertheless, phase spaces are still a faithful model for linear logic. We have

the following theorem.

FACT 60 (Soundness and Completeness in Phase Spaces). X 
 A is provable in linear

logic if and only if X 
 A holds in all phase spaces.

Proof. The soundness result is straightforward as usual. For completeness, we construct

the canonical phase space out of formulas. The operator � on this frame is fusion. If you

wish to think of a ternary relation, think of RABC iff A � B �C. Then for 0, we have �A :

0 
 �A�. The false elements are the set of all formulae whose negations are provable,

as you would expect. This is the correct choice, as G � �A : �B � G�B 
 �A��, and

so, G � �A : �B � G�B 
 �A�� � �A : �B��C � G where C 
 �B�B 
 �A�.
Verifying the details is no more difficult in this case than in Urquhart’s operational models

for the conjunction/implication fragment of R. �

The definition of a phase space gives us a nice result. It motivates an embedding of the

whole of multiplicative additive linear logic into its ��,	, t� fragment. You choose f to

be some arbitrary proposition, a translation as follows (where we set �A � A � f ).

pt � ��p

�A 	 B�t � ���At 	 Bt�
�A � B�t � ���At 	�Bt�
�A � B�t � ��At � �Bt�

�A � B�t � At � Bt

tt � ��t

FACT 61 (Embedding using 	, � and t). A 
 B holds in multiplicative, additive linear

logic if and only if At 
 Bt in the ��,	, t� fragment.

Proof. First, if At 
 Bt is provable then At 
 Bt is provable in linear logic, and in

particular, it is provable when we choose �t for f . In this case, At is equivalent to A in

linear logic, and therefore, A 
 B is provable.

Conversely, if At 
 Bt does not hold in the ��,	, t� fragment then in the canonical

model (constructed simply out of theories) we have a counterexample to At 
 Bt. Con-

struct a phase space out of this model. The phases are the theories in the canonical model.

The monoid operation is theory fusion, and the set 0 is �x : f � x�. It is straightforward to

check that any set of the form ����A�� in the original canonical model is a fact in the phase

space we are constructing. Construct an interpretation of the language of linear logic by

setting ��A�� in the phase space to be ��At�� in the canonical model. As the definition of the

translation t mimics the evaluation clauses in a phase space, this is an acceptable phase

space evaluation, and it is one which invalidates A 
 B, so this consecution fails in linear

logic. �

Note that this construction works in logics other than linear logic. For example, it will

work to embed the whole of R without distribution into R��,	, t�, for if the original

model satisfies W, so will the phase model for R without distribution.
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We will end this section by sketching how to cope with non-normal modal operators,

such as ! and ? of linear logic. The difficulty with operators like these is the way the

distribution properties of normal operators fail. We do not have !A 	 !B 
 !�A 	 B�. So,

we cannot use standard accessibility relations. However, something is possible.

DEFINITION 62 (Topolinear Spaces). A phase space with a set F of facts satisfying the

following conditions:

� If X � F then
�

X � F.

� If F,G � F then F �G � F.

� If F � F then F � F � F.

�
�
F � 0.

is called a topolinear space. G is a closed fact iff G � F, and G is a open fact iff G � F.

Now, given any fact G, the consideration of G, ?G, is

?G �
�
�F : G � F and F � F�

It is simply the smallest element of F containing G. Its dual, the affirmation of G, !G is

!G � �
�
�H : H � G and H � F��

These are duals, as you can readily check.

LEMMA 63 (Duality of ! and ?). For any fact G, !�G� � �?G�, and dually, ?�G� �
!G�. �

This definition gives us a semantics for the exponentials. The semantics does as we

would expect: by construction G � ?G, for any fact G, so by duality, !G � G. Further-

more, ?G is itself a closed fact, so ?G � ??G, and dually, !G � !!G. Similarly, all of the

closed facts are fixed points for fission, ?G � ?G � ?G, and by duality, !G � !G � !G.

Finally, 0 � ?G by construction, so by duality !G � t, and by the behaviour of t, G � t � t

gives F � !G � F.

Each of these simple verifications shows that the construction of ! and ? satisfies the

rules for the exponentials in linear logic. This gives us the first part of the following

fact.

FACT 64 (Soundness and Completeness in Topolinear Spaces). X 
 A is provable in LL

if and only if X 
 A holds in all topolinear spaces.

Proof. As we have seen, the rules for the exponentials hold in topolinear spaces. For

the converse, we must verify that the canonical topolinear space satisfies the conditions

required for a topolinear space. So how should we construct the canonical topolinear

space?

We will use the canonical phase space we have seen to construct a set of closed facts.

Obviously, each �A : ?B 
 A� ought to be a closed fact for any choice of B. This cannot

be the whole thing, as the intersection of a class of closed facts is not necessarily a set of

the form �A : ?B 
 A�. So we add these intersections. For any class of formulae Bi, we

�
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will let
�

i�A : ?Bi 
 A� be a closed fact. Once we do this, it is straightforward to check

that ?��A�� �
�
�F : ��A�� � F and F � F� for any formula A in the canonical model

structure. The duality of ? and !, together with the duality of their defining conditions,

ensures that the result for ! holds too. �

This kind of closure operation works well to model the exponentials in phase spaces.

4 LOOSE ENDS

Let me end this whirlwind tour through the history of substructural logic by indicating

what I take to be some interesting directions for further research.

4.1 Paradox

Untutored intuitions about collections might lead you to believe that for any property,

there is a collection of all and only those things which have that property. Formally, you

might try this:

a � �x : φ�x�� 4
 φ�a�

An object a is in the collection �x : φ�x�� of all of the φs if and only if a has property

φ. This is the naı̈ve membership scheme. Russell has shown that from naı̈ve membership

scheme, paradox follows. Consider the Russell set �x : x � x�. As an instance of the

general scheme of membership, we have Russell’s paradox:

�x : x � x� � �x : x � x� � �x : x � x� � �x : x � x�

The Russell set is a member of itself if and only if it is not a member of itself. In many

traditional logics (classical or intuitionistic propositional logic, for example) from p �
p 
 p 	�p, and from this, anything at all.

The mainstream response to Russell’s paradox is to calm our enthusiasm for the naïve

membership scheme and to hunt around for weaker theories of set membership which are

not so extravagant.99

However, this is not the only possibility. There is a motivation to consider logics in

which we can retain the naı̈ve membership scheme. Clearly, something must be done

with the logic of negation, as we wish to retain propositions p such that p � �p, without

everything following from this. There are generally two options, logics with “gaps” or

“gluts,” corresponding to the point in the inference from p � �p to p 	�p to � which

is taken to fail. A logic allows “gaps” if it the first inference fails, for p could then

be “neither true nor false.” A logic allows “gluts” if the second inference fails. Plenty

of work has been done on both options for a number of years [Gilmore, 1974; 1986;

Priest, 1987; Restall, 1992]

99There is some interesting work in this area, attempting to admit sets which are self-membered, without
paradox [Aczel, 1988; Barwise and Moss, 1997].

�
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However, it is not just the logic of negation which must be non-classical in order to

retain the naı̈ve membership scheme. Curry’s paradox [Geach, 1955; Meyer and Routley,

1979]. Curry’s paradox shows that more must be done, if the logic is to contain implica-

tion. Consider �x : x � x � F�, for some false proposition F.

�x : x � x � F� � �x : x � x � F� � ��x : x � x � F� � �x : x � x � F� � F�

This paradox reveals that there is a proposition p such that p � �p � F�, and as the

following deduction shows, it is hard to avoid the inference to F:

p 
 p � F p 
 p
��E�

p; p 
 F
[WI]

p 
 F
��I�

0 
 p � F p � F 
 p
[Cut]


 p

p 
 p � F p 
 p
��E�

p; p 
 F
[WI]

p 
 F
[Cut.]


 F

As the choice of F is arbitrary, we must attempt to stop this somewhere. A number

of people have taken the step of contraction as the one to blame [Brady, 1983; Brady

and Routley, 1989; Brady, 1989; Bunder, 1985; White, 1979]. However, contraction is

a useful inferential move. It is required in mathematical induction. The step to, say, F5

from F0 	 ��x��Fx � Fx � 1� requires the use of the premise no less than six times.

Doing without contraction seems a little like cutting off one’s nose to spite one’s face.

Can better be done here?

4.2 Relevant Predication

Dunn’s Relevant Predication program is an interesting application of relevant logic to the

clarification of philosophical issues [1987; 1990a; 1990b; 1996b; 1996a] and [Kremer,

1997]. A theory of relevant implication is used to attempt to mark out the distinction

between genuine properties — say, my height, which is a genuine property of me — and

fake properties — say, my height, as a fake property of you. I am indeed such that I am

under 1.8 metres tall, and you are such that I am under 1.8 metres tall. But in the first case

I have described how I am, and in the second, I haven’t described any genuine property

of you.

Classical logic is not good at marking out such a distinction, for if Hx stands for ‘x is

under 1.8 metres tall’, and g stands for Greg, and h stands for you, then Hx is true of x

iff it is under 1.8 metres tall, and �Hg 	 x � x� � Hg is true of something iff I am under

1.8 metres tall. Why is one a ‘real’ property and the other not? If we can reason using

relevant implication, we can make the following distinction: It is true that if x is Greg then

x is under 1.8 metres. However, it is not true that if x is you then Greg is under 1.8 metres.

At least, it is plausible that this conditional fail, when read as a relevant conditional. This

can be cashed out as follows.
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DEFINITION 65 (Relevant Predication). F is a relevant property of a (written �ρxFx�a)

if and only if ��x��x � a � Fx�.

If F is a relevant property of a then Fa holds (quite clearly) and if F and G are relevant

properties of a then so is their conjunction, and the disjunction of any relevant property

with anything at all is still a relevant property.

Relevant logics excel at telling you what follows from what as a matter of logic — this

gives us an interesting picture of the logical structure of relevant predication. However,

that is only half the story. Applying the semantics of relevant logics ought to give us

insight into what it is for a relevant implication to be true. That task is as yet, incomplete.

Monism and Pluralism

One debate in philosophical logic has been inspired by work in relevance and substruc-

tural logic, and we have already seen a hint of it in the discussion of disjunctive syl-

logism in Section 2.4. This is a debate between pluralists [Beall and Restall, 2000;

2001] and monists [Priest, 1999; Read, 1995] with respect to logical consequence. Is

there one relation of deductive logical consequence (relative, say, to a particular choice

of language, if this is a concern), or are there more than one? To make the discussion

particular, given a particular instance of the inference of disjunctive syllogism

A� B,�A 
? B

should the reasoner accept the inference as valid, reject it as invalid, or is there more to be

said? In an interpretation which gives a counterexample to this inference, we may have a

“point” x such that x � A, x � �A and x �� B. What are we to say about this?

Monists will say that if the choice of interpretations is correct, then this provides a

counterexample to the inference. If the choice of interpretations is not a good one (if the

interpretations are a model of a logic but not of the One True Logic) then the argument

may well still be valid. For example, Priest [1999] argues that for an argument to be valid,

it must be that in every circumstance in which the premises are true so is the conclusion,

and the One True Logic is one which is sound and complete for the intended interpretation

on the actual class of circumstances. Any logical consequence relation other than this ei-

ther undergenerates by adding extra circumstances (which are alleged counterexamples to

really valid arguments) or overgenerates by missing some out (which are counterexamples

to invalid arguments missed out by the logic which is too strong).

Pluralists about logical consequence, on the other hand will say that a logic (and its

attendant interpretations) may give us some information about the inference, but that this

may not be the whole story about its validity or otherwise. For example, a pluralist may

agree that there are indeed circumstances in which the premises of a disjunctive syllogism

are true and the conclusion untrue. However, this choice of circumstances may include

special circumstances not always considered: it includes impossible circumstances, as

one would expect, if we are taking relevance seriously. It is natural too, to consider

only possible circumstances, and if these are the only circumstances to consider, then
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disjunctive syllogism ought be considered valid in this new, restricted sense. It is a lesson

of relevant logic and its semantics that these are choices which can be made. For a monist,

there is one definitive best answer to this choice. For a pluralist, both sides may have

competing merits.

Pluralism extends beyond our interpretation of the semantics into our interpretation of

proof theory too. Substructural logics have shown us that there is remarkable robustness

in the interpretation of a conditional by means of the residuation clause:

X, A 
 B
���������
X 
 A � B.

However, the introduction and elimination rules for a conditional laid down by this clause,

does not determine the meaning of the conditional.100 These rules only pick out a fixed

interpretation in combination with some account of the behaviour of the structural feature

of the comma.

At the very least, relevant and substructural logics have provided so many new tools

for understanding logical consequence that they have put the issue of pluralism on the

agenda. Clarifying these options will deepen our understanding of logical consequence.
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A.N. PRIOR’S LOGIC

Peter Øhrstrøm and Per Hasle

INTRODUCTION

The greatest achievement of A.N. Prior (1914–1969) was without doubt his devel-
opment of modern temporal logic. From the mid-1950s and onwards, he almost
singlehandedly laid out the foundation for this important discipline of modern
logic. In the first decades after his death, Prior was remembered almost exclu-
sively for this undeniably great achievement. His work was regarded as a milestone,
but also as superseded by later developments, and his works were not much re-
ferred to in the 1970s and 1980s. However, since the early 1990s we have witnessed
a strong resurgence of interest in Prior’s work. Thus, for instance, he is the direct
source of important recent developments such as ‘hybrid logic’. Moreover, it has
become clear that his work in logic had a scope much broader than “merely” tem-
poral logic: Prior made important contributions to deontic logic, modal logic, the
theory of quantification, theories of truth, and the history of logic. In his work
he also discussed questions of ethics, free will, and theological problems. Clearly,
any important researcher will to some degree be led from subject to subject, and
will receive inspiration from the reaction of colleagues. Certainly this was the case
with Prior too — as forcefully witnessed by the huge correspondence now kept in
the Bodleian Library — but the breadth of Prior’s interests was not just a case of
“one thing leading to another”, as observed already in Anthony Kenny’s memorial
paper on Prior: “[Prior] constantly returned to the same central and unchanging
themes. Throughout his life, for instance, he worked away at the knot of problems
surrounding determinism: first as a predestinarian theologian, then as a moral
philosopher, finally as a metaphysician and logician” [Kenny, 1970, p. 348]. In
this article we shall explore not only Prior’s major contributions to logic, but also
the central interests underlying this work in general. Even though the focus of
interest will be the systematic character of Prior’s logic, the central themes within
his work can only be discussed in a satisfactory manner while also considering
Prior’s background and motivations. We hence begin with a sketch of the main
stages in Prior’s life and their relation to his work.

Arthur Norman Prior was born on December 4th, 1914 in Masterton in the
North Island of New Zealand. His mother died a few weeks after his birth. His
father was a doctor and a medical officer during the First World War, and Arthur
was brought up by his aunts and grandparents. Both of his grandfathers were
Methodist ministers. It is obvious that Prior’s upbringing in a Christian family
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formed an important background for his later works in philosophy and logic. In
his works he often referred to theological problems and concepts, and he frequently
quoted the church fathers and other religious writers.

Prior went to Otago University at Dunedin in 1932. He set out to study
medicine, but after a short time he instead went into philosophy and psychol-
ogy. In 1934 he attended Findlay’s courses on ethics and logic. Through Findlay,
Prior became interested in the history of logic and was introduced to Prantl’s
textbooks. His M.A. thesis was devoted to this subject.

In the introduction to Logic and the Basis of Ethics, Prior wrote about Findlay:
“I owe to his teaching, directly or indirectly, all that I know of either Logic or
Ethics” [1949, p. xi]. Of course, this statement would not have been true if
uttered somewhat later in Prior’s career, but it reflects Findlay’s great importance
for its early stages. It also reflects on Prior’s great willingness to credit others, a
characteristic which permeates his entire work.

Prior was brought up as a Methodist. However, during his first year as a Philos-
ophy student at Otago University, 18–19 of age, he instead joined the Presbyterian
denomination. The reason for this shift was dissatisfaction with the lack of sys-
tematicity in Methodist theology and especially its emphasis on the importance
of having a personal conversion experience. Prior had not had, and never was
to have, any such experience himself. During his B.A. studies in Philosophy, he
attended courses at the Presbyterian Knox Hall with a view to entering the Pres-
byterian ministry. This intention was never realised, but he was for many years
to come a practising member of the Presbyterian community. In particular, he
became a very active member of the Student Christian Movement (SCM), and
wrote a considerable number of papers for the movements magazine The Student.
His latest contribution to this magazine was written as late as 1955 and it was
entitled ‘Speaking about God’ [1955c].

As a young man Prior was also very much influenced by socialism as well as
pacifism. Prior was to remain a socialist for his entire life, whereas he gave up paci-
fism (around 1942) as well as Presbyterianism (in the 1950s, see later discussion).
To Prior, there was no contradiction between socialism and Christianity, a position
not unknown yet unusual in his day. Major theological thinkers who influenced him
included Karl Barth, Emil Brunner, and to some extent Søren Kierkegaard [1940a;
1940b; 1940c].

In the years about 1940 Prior, however, found himself in a crisis of belief.
Around this time, and for a few years to follow, Prior had become interested in
Freudian psychoanalysis. While he saw no difficulty in reconciling socialism and
Christianity, he saw the latter as shattered by the insights gained from psychoana-
lytical thought. During these years he wrote the article Can religion be discussed?
[1942], in which he advocated an almost atheistic position. This view, however,
does not seem to have lasted very long. Prior was still an active Presbyterian, and
later in the 1940s he again wrote papers in defence of predestinarian theology. In
the long run, the decisive challenge to Prior’s Christian beliefs proved to come,
neither from Freudianism (in which he entirely lost interest), nor from socialism,
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but from the very centre of Presbyterian theology, namely its teaching of predes-
tination and its rejection of free will — an important theme, to which we shall
return.

Although ‘conservative’ in his theological outlook as a Christian, he was never
a ‘fundamentalist’. This is made quite clear already in the unpublished A Mod-
ernist Stocktaking [Prior, Unpublished e], which warns against taking for granted
the gains of ‘Modernism’, especially the right to free and critical inquiry. The
paper deals with the position of Christianity in the face of Modernism. It re-
jects fundamentalism, but otherwise embraces Christianity — warning, however,
against a ‘bringing-up-to-date’ of Christianity such as the one taking place in Nazi
Germany at the time.

In 1943 Arthur Prior married Mary Wilkinson. From 1943 until the end of World
War Two, he served in the Royal New Zealand Air Force. In view of Nazism and
the World War, Prior had given up his pacifist leanings.

Prior’s first employment at Canterbury University College was in 1946, where
he continued his writings on philosophical and religious questions (see for instance
[1946; 1947; 1948a; 1948b]. A vacancy had been made when Karl Popper left, and
Prior — at least technically speaking — took over Popper’s position. In 1949 Prior
was appointed a Senior Lecturer. At this time, Prior was still strongly committed
to theological studies, and he was working on a book on the history and thought of
Scottish (Presbyterian) Theology. Unfortunately, the Priors’ house burned down
in March 1949. After the fire, in which some of his drafts perished, he gave up the
project on Scottish Theology. His main intellectual interests from then on veered
toward philosophy, ethics, and logic.

Prior became an elder of the Presbyterian Church in 1951. Clearly, by then he
must have been revising his former attempts to defend the doctrine of predesti-
nation, but apparently this did not at the time shake his fundamental Christian
belief.

In 1949, Prior’s first book, Logic and the Basis of Ethics, was published by
Oxford University Press. The book was very well received. It was also a turning
point in the sense that after this publication, logical approaches to philosophical
problems — as well as logic in its own right — came to dominate Prior’s work. In
1953 he became a professor of philosophy.

During 1950 and 1951 Prior wrote a manuscript for a book with the working
title The Craft of Logic. This book was, however, never published as a whole, but
P.T. Geach and A.J.P. Kenny edited parts of it, which were published as “The
Doctrine of Propositions and Terms” [1976a]. In the first chapter of the book,
Propositions and Sentences (originally written ca. 1950) the author among other
things analysed Aristotle’s view on some of the problems concerning time and
tense. Prior found that, according to the ancient as well as the medieval view, a
proposition may be true at one time and false at another. He described this view
in the following way:

. . . the statement or opinion that someone is sitting will be true so
long as the person in question is in fact seated, and will become false
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— if it is persisted in — as soon as he rises [Prior, 1976a, p. 38].

Even though Prior did not begin the development of temporal logic proper
before 1953, the above remark makes it clear that already around 1950 he realised
that there must be some relation between time and logic. In December 1951
Prior sent his manuscript to Clarendon Press. In the beginning of 1953 Clarendon
accepted to publish The Craft of Logic on the condition that Prior made a number
of rather substantial changes. As a result, Prior wrote a completely different book,
Formal Logic, which was published in 1955 with a second edition in 1962.

In Formal Logic, Prior wanted to use neither Hilbert and Ackermann’s notation
(in which, for instance, the conjunction is represented as p & q) nor the notation
suggested by Russell and Whitehead (in which conjunction is represented as p.q).
Instead he adopted �Lukasiewicz’s so-called Polish notation, in which conjunction
is represented as Kpq. He used Polish notation in most of his writings throughout
his life. He emphasised that this prefix notation “obviates the necessity of using
brackets”, so that “no special rules about bracketing and rebracketing need to
be included among the rules for proving one formula from another” [1955b, p.
6]. Polish notation was rather common during Prior’s lifetime. Apart from its
theoretical appeal it also had the significant practical advantage that proofs etc.
could be written directly on a typewriter. (In personal communication with the
authors, Mary Prior has told us how Arthur Prior would time and again express
his appreciation of this practical gain.) Nevertheless, there is no doubt that Prior
also was quite convinced about the syntactical superiority of Polish notation, for
which he campaigned throughout his career as a logician. But — as Dr. Mary
Prior has put it — the battle between Polish and Russellian notation is over, and
Russellian notation has clearly won. She has therefore approved that the notation
be changed in new editions of her husband’s works. This will no doubt make
Prior’s work accessible to a larger audience.

Prior not only preferred to use Polish notion for his works within symbolic
logic. In fact he highly valued various parts of Polish logic, and he corresponded
with several Polish logicians. In 1961 he even went to Poland to give a lecture
(see [Prior, 1962b]) and to take part in the 1961 ‘International Colloquium on
Methodology of Science’, Warsaw. In particular, Prior found �Lukasiewicz’s three-
valued logic very interesting [1920; 1930], and he carried out some careful studies
of this logic (see [Prior, 1952]).

Prior had a strong belief in the value of formal logic. On the other hand, he
also emphasised that logic has to do with real life. He wanted a logic that would
take full advantage of formal methods, while also being sensitive to the reality of
human experience. In an unpublished paper, he described this view:

Perhaps you could call my logic a mixture of Frege and Kolakowski. —
I want to join the formal rigorism of the one with the vitalism of the
other. Perhaps you regard this as a bastard mixture — a mesalliance.
— I think it is a higher synthesis. And I think it important that people
who care for rigorism and formalism should not leave the basic flux and
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flow of things in the hands of existentialists and Bergsonians and others
who love darkness rather than light, but we should enter this realm of
life and time, not to destroy it, but to master it with our techniques
[Prior, Unpublished f].

A remarkable and pervasive feature of Prior’s work is an unusually strong in-
terest in — and huge knowledge of — the history of logic. Indeed, Prior took
an interest in the history of logic not only as a subject in its own right, but also
because he saw the works of ancient and medieval logicians as a significant contri-
bution to the contemporary development of logic. From 1952 to 1955 he had seven
articles published on the history of logic. Four of these were concerned with me-
dieval logic and one with Diodorean logic. His interest in the history of logic is also
evident in Formal Logic. Prior was particularly interested in Aristotle, Diodorus,
and the Scholastics, but his interest also extended to more recent logicians such
as Boole and Peirce, the latter of which he called “the greatest of all symbolic
logicians” [1957a].

In 1954, Gilbert Ryle visited Christchurch. He brought with him an invitation
to Prior to give the ‘John Locke Lectures’ in Oxford. (Cf. [Hasle, 2003, p. 299].)
In 1956 the Priors went to Oxford for this purpose.

In Oxford, Prior made some important and lasting friendships and professional
associations, especially with John Lemmon, Ivo Thomas, P.T. Geach, Elizabeth
Anscombe, Carew Meredith, David Meredith, and C. Lejewski.

The John Locke lectures gave Prior an excellent opportunity to present his new
findings regarding time and modality. The lectures were held on Mondays. Among
the participants were John Lemmon, Ivo Thomas, and Peter Geach [Kenny, 1970,
p. 337]. The lectures were later published as the book Time and Modality [1957b].
It was this work which made Prior internationally known. After the publication
of Time and Modality, he received a number of important and interesting letters
from various logicians. One of these logicians was Saul Kripke. In two letters
to Prior in September and October 1958, Kripke put forth some very stimulating
ideas regarding temporal logic. In particular, this correspondence led Prior to the
development of the idea of branching time.

In December 1958, the Priors left New Zealand, Arthur Prior taking up a profes-
sorship at the University of Manchester. This transition brought with it another
change, namely Prior’s abandonment of religion. While in Oxford in 1956, he
had continued to be an active member of the Presbyterian community, but during
the last few years in New Zealand, he had become an ever more reluctant mem-
ber. After coming back to England in late 1958, he refrained from joining the
local Presbyterian community. Prior had become agnostic. There were probably
several reasons for this development, but the main thing was without doubt (cf.
[Hasle, 1999]) the tension between the idea of predestination and those ideas of
free will which Prior constantly associated with the development of temporal logic.
However, he continued to treasure his theological library and to study problems
related to theology [Kenny, 1970, p. 326].
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In the early winter of 1962 Prior was visiting professor at the University of
Chicago. During this stay he made some thorough studies of parts of Charles
Sanders Peirce’s logic. He became aware of Peirce’s attempt at developing a
graphical logic, the so-called existential graphs (see [1967a]), but it seems that
this graphical approach had almost no appeal to Prior’s intuition. He seemingly
wanted to maintain a traditional algebraic approach to logical formalism. Never-
theless, his admiration for Peirce was enhanced by his realisation that Peirce had
had an idea of a tempo-modal logic, embodied in a rudimentary manner in the so-
called Gamma graphs. In Chicago, Prior introduced Jay Zeman to the existential
graphs of C.S. Peirce and suggested the topic to Zeman for his doctoral thesis.

From September 1965 to January 1966 Prior was a visiting Flint professor at
the University of California. In addition to lecturing there, he read papers in
various Californian universities including Berkeley. During his stay in California,
Prior made some important professional associations, especially with Dana Scott,
Davidson, David Lewis, and Richard Montague. In this period, the later book
Past, Present, and Future — often regard as Prior’s most important book — was
drafted. Apparently Prior’s California lectures contributed significantly to the
flourishing development in logic there at that time, and especially it seems to have
sparked off a great interest in tense logic in the USA.

The Priors stayed in Manchester for seven years. In 1966 Anthony Kenny
recommended Prior for a fellowship at Balliol College. Prior was offered this
position. He accepted and the family moved to Oxford, where Prior worked until
his death in 1969.

In 1967 Prior published the aforementioned major work, Past, Present and
Future, in which his approach to tense logic had reached a very convincing form.
The decade of intense work in the field since the John Locke lectures had brought
him a lot further. Also, he had been able to benefit greatly from the correspondence
with logicians like Saul Kripke and Charles Hamblin.

As a teacher, Prior was very inspiring, and the style in his books and papers is
often very entertaining. One example could be taken from the acknowledgements
in Logic and the Basis of Ethics :

It needs also to be said that the logic of ethics owes much to those who
have put forward the fallacious arguments which it is its business to
expose . . . Of those who have performed this negative service for the
logic of ethics, the two who seem to me to be most deserving of our
gratitude are William Wollaston and Adam Smith [1949, p. xi].

It seems clear that he very much liked teaching and lecturing. Prior was not
‘the Oxford type,’ but it appears that he almost immediately built up a reputation
as one of the best lecturers in Oxford.

Prior died on October 6th, 1969, whilst on a lecture tour in Scandinavia. On
the day of his death he was visiting Trondheim in Norway. Prior had by then
accomplished an impressive production. The bibliographical overview of Prior’s
philosophical works comprises about 200 titles [Prior, 2003, pp. 311–328]. In this
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overview one can follow how Prior’s interests developed during the course of his
work.

Prior’s work on philosophical logic includes an analytical and modern compo-
nent as well as a historical component. Nevertheless, there is no sharp distinction
between Prior’s analytical and historical concerns on the one hand and his work
as a formal logician on the other.

Summarising the main trends of Prior’s works, it can be said that his work
until the middle of the 1950s was characterised by a preoccupation with a logical
approach to theology. After the war, the investigations into the logic of ethics
caught his interest. He kept his interest of theology and ethics throughout his
life, but, from the mid-1950s onwards, he mainly devoted himself to the study of
the relation between time, modality, and logic. This should be seen as a natural
consequence of his endeavour to develop a formal calculus of tense logic, a task
which he took up in the early 1950s. He demonstrated that temporal logic can in
fact be a very powerful tool in philosophical analysis — also in relation to many
of the questions to which his earlier studies in theology and ethics had given rise.
During the 1960s, Prior demonstrated that some very important contributions
to the understanding of the concept of time can be obtained from the study of
temporal logic.

In the following sections we intend to concentrate on these main trends in Prior’s
philosophical logic: (1) The logic of ethics; (2) How temporal logic began: Human
Freedom and Divine Foreknowledge; (3) The logic of existence; (4) The syntax of
tempo-modal logic; (5) The semantics of tempo-modal logic; and (6) Four grades
of tense-logical involvement.

1 THE LOGIC OF ETHICS

In the introduction to his book Logic and the Basis of Ethics [1949], Prior pointed
out that Aristotle divides the possible subjects of inquiry and dispute into three
broad sorts — ‘natural’, ‘ethical’, and ‘logical’ [Topics, 105b19–29]. This is a
worldview which Prior accepted. In his view, it is important to distinguish be-
tween natural, ethical, and logical statements. In accordance with this view, Prior
rejected ethical naturalism i.e. the view that ethical propositions are just a sub-
species of natural propositions. He agreed with G.E. Moore, who had criticised
the deduction of ‘ought’ from ‘is’ (i.e. the so-called naturalistic fallacy), but Prior
maintained that it would be a larger error to deny the autonomy of ethics [1949,
p. 107]. Any of the fundamental Aristotelian sorts of inquiry can stand alone and
none of them can be reduced to the others. However, this does not mean that the
three sorts of inquiry are completely independent. In fact, the inquiry into any
of them can benefit from the studies of the two others. Being a logician, Prior
wanted to demonstrate that logic can be used in the study of ethics as well as in
the study of nature.

Prior pointed out that the ‘logic of ethics’ is not a special kind of logic, nor
a special branch of logic, but an application of it [1949, p. ix]. He maintained
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that categorical obligations must lie on particular persons at particular moments.
However, such (particular) obligations can be derived from general rules by adding
a categorical premise, as it is done in the following argument: “If any debt falls
due at any time, it ought to be paid at that time, And this debt falls due now;
Therefore, this debt ought to be paid now” [1949, p. 41].

Prior is obviously not suggesting that we normally come to learn about our
moral obligations by making this kind of inferences, but he maintains that we
are sometimes led to a mistaken view of our present obligation because of mak-
ing a mistake regarding the kind of situation we are in, or because of a mistake
concerning a general moral rule.

For Prior, as for many other working with ethics, the notion of ‘duty’ is rather
basic. In the 1950s G.E. Moore’s definition of ‘duty’ in Principia Ethica was very
influential. In this work Moore repeatedly affirms that our duty is that action
which, of all the alternatives open to us, will have the best total consequences. In
his paper, ‘The Consequences of Actions’ [Prior, 2003, pp. 65–72], which was orig-
inally presented at the “Joint Session of the Mind Association and the Aristotelian
Society at Aberystwyth” in 1956, Prior argued that this definition turns out to
be very problematic. Moore was clearly aware of the fact that in many cases it
might turn out to be very difficult and perhaps even practically impossible to find
out with any certainty what our duty is, given his definition of ‘duty’. Obviously,
these practical problems do not qualify as a logically compelling argument against
the use of Moore’s definition in ethical discourse. However, Prior’s criticism of
Moore’s position was much more fundamental. Prior maintained that the very
uncertainty of the future necessarily gives rise to a serious criticism of a utilitarian
theory such as Moore’s. Prior analysed the problems of the idea of consequences
in a very entertaining manner referring to Mother Goose [2003, p. 68 ff.]:

For want of a nail the shoe was lost;
For want of a shoe the horse was lost;
For want of a horse the rider was lost;
For want of a rider the battle was lost;
For want of a battle the kingdom was lost;
And all for the want of a horse-shoe nail.

According to this text, the fate of the kingdom depended on a ‘decisive’ battle.
If the cavalryman Bayard Bloggs had been in the field, the army would not have
lost the battle. He would have been there if his horse hadn’t been crippled through
the loss of a shoe. The shoe would not have been lost if it had had one more nail
in it. So the lost kingdom was the consequence of the missing nail.

This example is a very clear illustration of the fact that it is not always very
clear what should be accepted as a consequence of a given act or behaviour. Maybe
a defender of Moore’s definition could answer that we should only take necessary
consequences into account and that there is no necessary connection between the
missing nail and the lost kingdom. But then it is not very clear what Moore
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would want to take into account when we want to establish the totality of the
consequences.

However, Prior’s criticism of Moore’s definition goes much deeper than to an
analysis of the idea of a consequence. In fact Prior argued that there is a logical
impossibility in there being such a thing as a duty in Moore’s sense. Supposing
that determinism is not true, Prior formulated his main criticism in the following
way:

Then there may indeed be a number of alternative actions which we
could perform on a given occasion, but none of these actions can be
said to have any ‘total consequences’, or to bring about a definite state
of the world which is better than any other that might be brought
about by other choices. For we may presume that other agents are free
beside the one who is on the given occasion deciding what he ought to
do, and the total future state of the world depends on how these others
choose as well as on how the given person chooses . . . [Prior, 2003, p.
65].

This is a very interesting argument. Although it was formulated already in 1956,
Prior seems to be aware of the importance of the future choices of individuals in
the future. It seems that he dealt with this problem when his analysis of the
unstatability of the future (i.e. his system Q, which Prior introduced in Time
and Modality) was still immature. Later he would probably have put even more
emphasis on this way of criticism. Although one can spoil one’s calculations of
the future consequences alone with one’s own future choices, it seems even more
problematic when the influence of future individuals has to be taken into account.
Because of the uncertainty related to the unstatability of the future, it will not
be possible, even in principle, to calculate the totality of future consequences of a
certain choice. From Prior’s (Peircean) position this simply means that there is
no such totality. For this reason he rejects Moore’s idea of ‘duty’ as incoherent.

According to Prior, the only way out this problem which is open for the utilitar-
ian involves another definition of ‘duty’. Following this alternative definition, the
‘duty’ is to do what will probably have the best total consequences of all the actions
open to us. Maybe there is no need to take the actual consequences of various
possible choices into account, i.e. maybe there is no need to refer to what is in fact
going to be case under various assumptions. Instead we might do the calculation
based on probabilities. This means, however, that we have to be prepared to talk
about objective probabilities, if we want ‘duty’ to be objectively defined. Prior
suggests that ‘p is probable’ may mean something like ‘p is not yet either going to
be the case or not going to be the case, but is more like going to be the case than
not’.

Prior’s criticism of utilitarian theory should also be seen in the light of the fact
that he wanted ethics to be treated theoretically in another way. His own contri-
bution to ethical theory was mainly the formulation of a deontic logic involving
operators corresponding to obligation and permissibility.
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Figure 1. Mutual relations between some basic notions in deontic reasoning

In his Formal Logic [1955b], he made a number of interesting suggestions as
to how the logic of ethics can be formalised. In fact the book contained a short
chapter entitled ‘deontic logic’ — a name suggested by Henrik von Wright [1951].
Prior defended von Wright’s view that the logic of obligation can be handled very
much like the logic of necessity. He was, however, aware of the fact that many
philosophers would resist this very much, insisting that moral philosophy has very
little to do with logical deduction. In the interesting but still unpublished paper,
The Logic of Obligation and The Obligation of the Logician, Prior wrote;

To the moralist, the logician — especially when he talks about obliga-
tion — is irresponsible; to the logician, the moralist is puritanical. I am
frankly on the logician’s party, and am anxious that moralists should
understand a little better what our standards are [Prior, Unpublished
c].

Prior’s point was that although ethics cannot be deduced from logic, ethical
argumentation has to live up to certain formal standards, which are certainly
worth studying for their own sake.

Prior constructed the diagram in Figure 1, corresponding to the usual Aris-
totelian logical square for syllogisms, explaining the mutual relations between some
basic notions in deontic reasoning:

In his deontic logic Prior used P for ‘it is permissible that (such-and-such an
act be done)’. From this operator we may construct the operator O = ∼ P ∼
corresponding to ‘it is obligatory that . . . ’. A deontic logic can be constructed by
adding the following two axioms to propositional logic:

AD1: Oa ⊃ Pa
AD2: P (a ∨ b) ≡ (Pa ∨ Pb)
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together with the rule
RD1: ⊢ α ≡ β −→ ⊢ Pα ≡ Pβ

Prior demonstrated that in this axiomatic system it is possible to derive the
following rule:

RD2: ⊢ α −→ ⊢ Pα
Proof:

(1) ⊢ α [assumption]
(2) ⊢ Oa ⊃ Pa [AD1]
(3) ⊢ ∼P ∼a ⊃ Pa [from 2 and def.]
(4) ⊢ P ∼a ∨ Pa [from 3 and propositional logic]
(5) ⊢ P (∼a ∨ a) [from 4 and AD2]
(6) ⊢ α ≡ (∼a ∨ a) [from 1 and propositional logic]
(7) ⊢ Pα ≡ P (∼a ∨ a) [from 6 by RD1]
(8) ⊢ Pα [from 5 and 7]

Q.E.D.
RD2 means that if α expresses a logical law, then it is a law that α is permissible.

Prior renders this more freely as ‘what I cannot but do, I am permitted to do’. This
also amounts to ‘what I cannot but omit, I am permitted to omit’ and consequently
also to the Kantian principle ‘what I ought, I can’. A number of other interesting
theorems can be proved in Prior’s system, for instance:

(Oa ∧O(a ⊃ b)) ⊃ Ob

(If doing what we ought commits us to doing something else, then we
ought to do this something else.)

∼Pa ⊃ O(a ⊃ b)

(Doing what is not permitted commits us to doing anything whatever.)

The latter example corresponds to one of the paradoxes of the strict implication.
In an appendix in his book Time and Modality [1957b], Prior discussed a dif-

ferent approach to deontic logic based on an idea from Alan Ross Anderson. Ac-
cording to this idea, a deontic logic can be established from modal logic by the
addition of a propositional constant ℜ corresponding to the reading ‘the world
will be worse off’, ‘punishment ought to follow’ or something of that sort. Given
a modal propositional logic with a possibility operator � and the propositional
constant ℜ, we may define ‘permissible’ in the following way:

Pa = �(a ∧ ∼ℜ)
In accordance with this definition Oa should be seen as an abbreviation of

�(∼ a ⊃ ℜ), where � is the necessity operator defined as ∼�∼. In short this
means that a is permissible if it is possible that a is the case without ‘the bad
thing’ (ℜ) being the case. Similarly, a is obligatory if ℜ necessarily follows from
its negation.

Using these definitions, (AD2) can be immediately derived in most modal sys-
tems. Prior demonstrates that �a ⊃ Pa is equivalent to ∼�ℜ. Since it cannot
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be accepted that all possible acts are permissible, Alan Ross Anderson suggested
the assumption of �ℜ. In fact, he proposed the axiom

�ℜ ∧�∼ℜ
which simply states that ℜ is contingent. Prior showed that the second part of

the axiom is deductively equivalent in most modal systems to AD1, ie. Oa ⊃ Pa.
He also demonstrated that in most modal systems it is possible to derive the
Kantian principle Oa ⊃ �a as well as the principle (Oa ∧ O(a ⊃ b)) ⊃ Ob.
Furthermore, he discussed the question of validity in various systems of more
complicated theorems such as O(Oa ⊃ a) as well as the paradoxical ∼ Pa ⊃
O(a ⊃ b).

One of the few modal systems that may cause problems for the development of
deontic logic in Anderson’s style is in fact Prior’s own systemQ, in which proper
becoming is taken into account. For instance, we may imagine that ℜ is true in all
possible states of affairs in which A.N. Prior exists and false in all other possible
states. In this example ℜ is obviously contingent, i.e. Anderson’s axiom holds.
However, it means that according to Anderson’s definitions whatever Prior does
will be forbidden, and yet it will be obligatory also — even impossible acts will be
obligatory! Prior calls this possible scenario “rather sombre and hyper-Calvinistic”
[1957b, p. 143]. It should be admitted that this example is odd, but the very fact
that Prior discussed how deontic logic could be treated in the context of Q, shows
that he was aware of the importance of integrating deontic and temporal notions.

Prior wanted to study the logical machinery involved in the theoretical deriva-
tion of obligation. He claimed that this study involves

(a) the description of the actual situation, and
(b) relevant general moral rules.

Prior stated his fundamental creed regarding deontic logic in the following way:

. . . our true present obligation could be automatically inferred from
(a) and (b) if complete knowledge of these were ever attainable [1949,
p. 42].

Obviously, Prior wanted to present ethical argumentation as an axiomatic sys-
tem. But in doing so he obviously understood that something extra-logically has
to be taken for granted. In his unpublished draft Logical Criticisms of the Theory
Identifying Duty with Self-interest [Prior, Unpublished d], which he apparently
wrote from a lecture on ethics in 1947, he quoted C.S. Lewis, in “The Abolition of
Man” [1943, p. 21]: “If nothing is self-evident, nothing can be proved. Similarly
if nothing is obligatory for its own sake, nothing is obligatory at all.” [Prior’s
emphasis.] It seems to have been Prior’s position that the axioms of deontic logic
have to be given extra-logically since they obviously cannot be deduced as long as
they are viewed as axioms.

It evident that Prior’s long term ambition was to incorporate the logic of ethics
into a broader context of time and modality. Unfortunately, he was never able
to pursue this goal in detail, but he certainly managed to establish the broader
context of time and modality into which the logic of obligation has to fit.
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2 HOW TEMPORAL LOGIC BEGAN: HUMAN FREEDOM AND DIVINE
FOREKNOWLEDGE

Prior made a great and lasting contribution to philosophical logic; however, noth-
ing similar can be said about his early work as “a predestinarian theologian”, to
use Kenny’s term. This is one obvious reason why Prior’s theological starting point
as a thinker was ignored for many years. Moreover, in the course of the second half
of the 1950s he himself gave up his religious beliefs and became agnostic. It should
be noted, though, that also after this change he considered theological problems
to be worthy of intellectual treatment, a point which can be seen not least in his
paper ‘The Formalities of Omniscience’ from 1962.

The theological starting point is, however, of significance for Prior’s work. First,
his huge knowledge of theology, and in particular Medieval theologians, remained
a source of inspiration for him throughout his career — many are the references
to Ockham, Aquinas, Buridan and others even in his mature work. Second, his
preoccupation with free will and human choice was evidently motivated by his
struggle with the Presbyterian doctrine of predestination. Thus, an adequate
understanding of Prior’s philosophical logic is only possible if his background in
Presbyterian theology is kept in mind.

As a Christian philosopher Prior was very much in favour of the use of logical
argumentation in theology. This approach was consistent with his preference for
Presbyterianism over Methodism, on account of the better systematicity of the
former. Clearly, Prior held that the same standards of rationality must be applied
to all realms of life. In this way theology is challenged — as well as enriched.
Prior’s position on the classical proofs of the existence of God was in line with
these convictions. He was not against the very idea of trying to make proofs of
God’s existence, but he did emphasise that for a valid argument to constitute a
proof, “it is requisite that those to whom it is addressed should be convinced of
the truth of its premises . . . ” [1976b, p. 56]. He gave the following example as an
illustration of the possible function of a proof of God’s existence:

A man may be absolutely convinced that only if God exists would he
be obliged to live in a certain way — for example, to respect certain
freedoms in other people even when violation of these freedoms seems
the only way to avoid some grave social disaster — and may also be
absolutely convinced that he is obliged to live in this way; and a man
in this state of mind would surely be not only rational in drawing the
conclusion that God exists, but positively irrational in not drawing it
[1976b, p. 58].

However, the discussion of proofs of God’s existence was not Prior’s primary
concern in theological argumentation. Rather, he concentrated on other parts of
Presbyterian theology mainly related to ethics, predestination and time.

The roots of the Presbyterian denomination are Calvinist. The central tenet of
the Reformation was that man could not save himself through his deeds. Rather,
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salvation was pure grace, a gift from God, demanding only faith. However, this
immediately raises the question whether faith is something man is free to accept
or reject, or whether some are ‘elected’ to be believers — receiving passively the
gift of faith — while others are not accorded that gift. The reformers differed on
this point, but Calvin, at any rate, took a firm stand: indeed that there is no such
thing as a free choice with respect to faith. Every person is predestined either to
belief or disbelief, and thus to salvation or damnation. The most marked feature
of Presbyterianism was, therefore, its teaching concerning predestination.

One remarkable defence of predestination, in effect determinism, is given in
Prior’s paper Determinism in Philosophy and Theology [Prior, Unpublished a].
The paper is kept in the Bodleian Library, and we have not been able to deter-
mine whether it has ever been published. The paper is difficult to date, but it was
probably written in the mid-1940s. As the title suggests, the paper thematically
compares the doctrine of predestination with philosophical determinism, respec-
tively, indeterminism. The paper opens by observing that in ‘modern discussions’,
determinism is often seen as a ‘scientific creed’ as opposed to the idea of free will,
which is considered to be religious. But this perception is immediately countered
[Prior, Unpublished a, p. 1]:

It is exceedingly rare for philosophers to pay any great attention to the
fact that a whole line of Christian thinkers, running from Augustine
(to trace it back no further) through Luther and Calvin and Pascal to
Barth and Brunner in our own day, have attacked freewill in the name
of religion.

The paper then proceeds in four major steps:
First, it is emphasised that philosophical or scientific determinism is in part

different from the idea of predestination: the Calvinism expounded by Barth and
Brunner is not pure determinism, but a paradoxical mixture of determinism and
free will [Prior, Unpublished a, p. 1]. They wish to replace the ‘secular mystery of
determinism’, respectively, indeterminism, by the ‘holy and real mystery of Jesus
Christ.’ Man is seen as unable to perform by himself an act of faith, but when, by
the grace of God, he does perform it, that is an act of real freedom, ‘free will for
the first time’.

Second, it is argued that the ordinary ideas of free will, when understood as
moral accountability and general indeterminism, are at least as absurd as the idea
of predestination:

We are guilty of that which we are totally helpless to alter; and to
God alone belongs the glory of what we do when we are truly free.
— Absurd as these doctrines appear, they are in the end no more so
than the ordinary non-Augustinian concept of ‘moral accountability’
. . . [Prior, Unpublished a, p. 2].

Third, Prior goes on to describe how certain human experiences actually are
compatible with the notion of predestination, observing that
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Even those of us who accept a straightforward determinism have to
give some account of men’s feeling of freedom, and their feeling of guilt;
and it is at least conceivable that the ‘absurdities’ of Augustinianism
contain a more accurate psychological description of the state of mind
concerned, than does the ‘absurdity’ of the ordinary non-Augustinian
concept of ‘moral accountability’ [Prior, Unpublished a, p. 3].

Prior argues the plausibility of Augustinianism, that is, his doctrine of predes-
tination, in the face of human experience. Up to this point, the paper — even
if brief in its analysis — is a vivid and convincing defence of predestination, or
determinism in an Augustinian sense. But this perception is modified in the final
step of the analysis. In the fourth and concluding part, Freudian psychoanalysis is
brought into the picture. It is argued that religious determinism is concerned with
“particular inward compulsions and dependences”, from which we can be released
through (psycho)analysis [Prior, Unpublished a, p. 4].

The doctrine of sin and salvation in St. Paul and Augustine is seen as a partial
psychoanalysis, leading to the conclusion that “The theological doctrine of pre-
destination is a ‘Theory of Obsessions’, prefaced to the analysis of a particular
case” [Prior, Unpublished a, p. 4]. Nevertheless, it is not quite clear whether this
means that Christianity, and especially the doctrine of predestination, are ‘sub-
jected’ to a psychoanalytical viewpoint, or whether it rather implies that evidence
from psychoanalysis corroborates the idea of predestination within (Presbyterian)
Christianity. The final remarks point in the former direction, the overall context
rather points in the latter direction. We are not here dealing with a case of out-
right inconsistency, but there is a tension which may well reflect Prior’s own state
of mind at the time of writing.

Prior’s logical studies increasingly led him away from what he regarded as indis-
pensable parts of the Christian faith. In 1959, when he took up the professorship
at the University of Manchester, he had become agnostic. He never declared him-
self an atheist, though. He remained respectful in his treatment of Christian belief
as an intellectual possibility, but at least one unusually sharp remark in Creation
in science and theology on Karl Barth reveals how Barth’s theology, acknowledged
as a pinnacle of theological thought in the Twentieth Century, had ceased to be
of any value for him:

One silly thing it’s only too easy to do . . . is to talk as if ‘nothing’
were the name of some kind of stuff out of which the world was made.
I’ve even read a theologian (Barth) who [in his Dogmatics in Outline,
1949] talks as if ‘nothing’ were a sort of hostile power from which God
rescued the world in giving it being [1959a, p. 89].

Even so, a modernist-liberal Christianity was not an option which lay open to
Prior. He obviously saw such an approach as an almost dishonest and at any
rate inconsistent way of thinking (very much the same spirit as his insistence on
applying the full rigour of formal logic to theology, that is, that religion should
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be rational if it were to be believed in at all). It is perhaps not too difficult to
follow Prior in this on a general level, but maybe there is also a paradox here.
Prior gave up Methodism in favour of Presbyterianism, finding the former ‘un-
ruly’, but the latter consistent and well worked out. As mentioned in the previous
section, an even more important reason for this shift had been his lack of any
‘conversion experience’, an ingredient of Christian faith which is strongly empha-
sised in Methodist theology. But at least as regards that troublesome point of
predestination, Methodism is more congenial with the spirit of Prior’s later inde-
terminist conviction. Methodism traces its roots to Jacob Arminius (1560–1609),
who sought to modify the reformed faith exactly on the points appertaining to
predestination: in particular, he taught that men were free to choose to believe.

At any rate, the founder of Methodism, John Wesley (1703–1791), was strongly
influenced by Arminius, not least on this point. Thus, in a sense, Prior of his own
accord left one interpretation of Christianity in favour of another one, whose most
distinctive feature was that doctrine of predestination, which appears to have been
a main motive for his later becoming agnostic.

Such observations can, of course, in no way detract from A.N. Prior’s argu-
ments. He has, perhaps more clearly than any other thinker, pointed out the
logical limitations of foreknowledge. Likewise, he has shown and developed the
logical possibilities for indeterminism.

Prior’s stance on determinism was to change from the early fifties and on-
wards. Throughout the 1940s, he was interested in logic — mainly classical and
non-symbolic logic — but apparently even more interested in philosophical and
historical issues within theology. His first interest in modal logic was aroused in
[1951], leading to the publication of The Ethical Copula. At this time he also
developed into an adherent of indeterminism, and indeed, of free will.

Around 1953, Prior began to work on the development of a formal calculus of
tenses. Mary Prior has described the first occurrence of this idea: “I remember
his waking me one night, coming and sitting on my bed, and reading a footnote
from John Findlay’s article on Time, and saying he thought one could make a
formalised tense logic.” This must have been some time in 1953. The footnote
which Prior studied that night was the following:

And our conventions with regard to tenses are so well worked out
that we have practically the materials in them for a formal calculus
. . . The calculus of tenses should have been included in the modern
development of modal logics. It includes such obvious propositions as
that

x present = (x present) present;

x future = (x future) present = (x present) future;

also such comparatively recondite propositions as that
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(x).(x past) future; i.e. all events, past and future will be
past [Findlay, 1941].

Findlay’s considerations on the relation between time and logic in this footnote
were not exactly elaborated, but it apparently gave the final impulse to Prior’s
idea of developing a formal calculus which would capture this relation in detail.
For this reason Prior called Findlay “the founding father of modern tense logic”.
But there are, in our opinion, certainly not sufficient reasons for viewing Findlay
as the founder of tense logic. The honour of being the founder must without doubt
be ascribed to Prior himself. With his many articles and books on questions in
tense logic he presented a very extensive and thorough corpus, which still forms
the basis of tense logic as a discipline. Findlay’s major merit in tense logic is to
have had the luck of inspiring Prior to initiate the development of formal tense
logic.

It seems that a short article by Benson Mates in particular made Prior even
more aware of the interesting relation between time and logic. The paper in
question was ‘Diodorean Implication’ [Mates, 1949]. The paper was concerned
with Diodorean logic, primarily Diodorus’ definition of implication. Prior realised
that it might be possible to relate Diodorus’ ideas to contemporary works on
modality by developing a calculus which included temporal operators analogous
to the operators of modal logic.

Prior believed that the problems of future contingents can be analysed and
much better understood by the use of temporal logic. In his earliest attempt to
deal with these problems he used �Lukasiewicz’s three-valued logic, in which the
third value, 1

2 , was supposed to represent ‘indeterminate’ (see [Prior, 1953]). He
suggested that this is the case for contingent statements such as the Aristotelian
‘there is a sea-fight tomorrow’ i.e. contingent statements of the form F (1)p.

Prior realised, however, that there is a serious problem with this approach. In
fact, the usual truth-functional technique breaks down for these theories. For
instance, if F (1)p and ∼ F (1)p are both ‘indeterminate’ (1

2 ), it is very hard
to explain how statements like the conjunction F (1)p ∧ ∼ F (1)p and the dis-
junction F (1)p ∨ ∼F (1)p could come out as anything else than ‘indeterminate’,
when treated according to �Lukasiewicz’s three-valued logic [Prior, 1967b, p. 135].
Such results are, however, highly counter-intuitive, and they give rise to serious
formal problems too. It turns out that the introduction of this kind of ‘indeter-
minate’ statements is an unnecessary complication. Evidently, Prior realised that
�Lukasiewicz’s three-valued logic could not provide a satisfactory solution of the
problem of future contingents.

Prior’s early work on the logic of time also led to the paper Diodoran Modalities
[1955a]. (Prior later changed his spelling into ‘Diodorean’, in accordance with
Mates.) From the very outset of Prior’s development of tense logic, the problem
of determinism was dealt with in parallel with the logic of time. It is clear that
the determinism-issue has roots in the problem of predestination, and that Prior’s
dealing with this issue was a natural continuation of his earlier preoccupation with
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predestination. As Jack Copeland has argued “there can be no doubt that Prior’s
interest in tense logic was bound up with his belief in the existence of real freedom”
[1996, p. 16]. In fact, his paper on Diodorean modalities, which was his very first
proper study of tense logic, was an analysis of an ancient argument in favour of
determinism, the Master Argument of Diodorus [1955a]. Interpreted with respect
to its theological implications, this argument calls into question whether the idea
of free will can ever be reconciled with the doctrine of divine foreknowledge, and
hence, with the doctrine of divine omniscience. Accordingly, and in order to
preserve the possibility of real freedom, Prior rejected the traditional version of
the doctrine of God’s foreknowledge. Prior concluded from his analysis of the
Diodorean argument that for some (contingent) p, which is assumed to be true
now, God has never known that p would be the case. It is obvious that this position
is very far from Presbyterian theology. In section 4, we shall study Prior’s work
on the Master Argument in somewhat greater detail.

In The Formalities of Omniscience [1962a] he further investigated the problems
of determinism and foreknowledge. The paper examines the idea of omniscience,
especially in the form of the statement “God is omniscient”, and some putative
consequences of it, such as:

(7) It is, always has been, and always will be the case that for
all p, if p then God knows that p [2003, p. 43]

and

(8) For all p, if (it is the case that) p, God has always known
that it would be the case that p [2003, p. 43].

Various interpretations of such statements are discussed, especially with refer-
ence to St. Thomas Aquinas. It is argued that for logical reasons future contin-
gents cannot be ‘known’ at all, leading to the observation: “I don’t think we get
my proposition ‘8’ . . . except in the weak sense that He [God] knows whatever
is knowable, this being no longer co-extensive with what is true” [1962a, p. 122].
(This is inconsistent with Prior’s former remark that future contingents are not
“strictly speaking true”, but the point that a truth value for such propositions can-
not be known is clear in any case). Prior concludes with the following statement
(which may be indicating not an atheist, but rather an agnostic position):

I agree also with the negative admission of Thomas . . . that God
doesn’t know future contingencies literally . . . But (and this is what
Thomas himself says) this is only because there is not then any truth
of the form ‘It will be the case that p’ (or ‘It will be the case that not
p’) with respect to this future contingency p, for Him to know; and
nihil potest sciri nisi verum [nothing can be known except (what is)
true] [2003, p. 58].

To be true, Prior argued against Thomas’ view that God’s knowledge is in
some way beyond time, but otherwise he consented to most of what Thomas had
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said about tense-logical reasoning. According to Prior’s interpretation of Thomas’
philosophy, Thomas would even agree on the rejection of the following Diodorean
assumption:

necessarily, if p, then it has always been the case that in the future p
would be the case.

On the basis of his studies of medieval logic Prior developed an argument re-
garding the contingent future and divine foreknowledge. This argument was often
formulated in terms of metric tense logic, i.e. by the use of the following to oper-
ators:

F (x) “in x time units it will be the case that . . . ”
P (x) “x time units ago it was the case that . . . ”.

In the argument two other operators are also needed, namely
� “it is necessary that . . . ”
D “God knows that . . . ”.

In The Formalities of Omniscience [1962a] as well as other writings Prior pre-
sented several versions of the argument. The most interesting version can be
rephrased by using the following 5 principles:

(P1) F (y)A ⊃ P (x)DF (x)F (y)A (Divine Foreknowledge)
(P2) �(P (x)DF (x)A ⊃ A) (Infallibility of God’s knowledge)
(P3) P (x)A ⊃ �P (x)A (The fixity of the past)
(P4) (�(A ⊃ B) ∧�(A)) ⊃ �B (Basic assumption about modality)
(P5) F (x)A ∨ F (x)∼A (Principle of the excluded middle)

Here A and B represent arbitrary well-formed statements within the logic. Let q
stand for some atomic statement so that F (y)q is a statement about the contingent
future.

(P1) states that if something is going to happen, God has already known for
some time that it is going to happen. According to (P2), if it was the case x
time units ago that God knew that A would be the case x time units later, then
it necessarily follows that A is the case now. The principle (P3) means that if A
was the case x time units ago, then it is necessary that it was the case x time
units ago. (P4) is a basic assumption in modal logic, and (P5), which is about
the determinateness of the future, states that either A is going to be the case in x
time units or ∼A is going to be the case in x time units.

The argument proceeds in two phases: first from divine foreknowledge to ne-
cessity of the future, and from that argument to the conclusion that there can be
no real human freedom of choice. Formally, the argument goes as follows:

(l) F (y)q (assumption)
(2) P (x)DF (x)F (y)q (from 1 & P1)
(3) �P (x)DF (x)F (y)q (from 2 & P3)
(4) �(P (x)DF (x)F (y)q ⊃ F (y)q) (from P2)
(5) �F (y)q (from 3, 4, P4)
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In this way it is proved that

(6) F (y)q ⊃ �F (y)q

and similarly it is possible to prove

(7) F (y)∼q ⊃ �F (y)∼q

The second part of the main proof is carried out in the following way:

(8) F (y)q ∨ F (y)∼q (from P5)
(9) �F (y)q ∨�F (y)∼q (from 6, 7, 8)

Here (9) is equivalent to a denial of the dogma of human freedom. Therefore,
if one wants to save this dogma (and escape fatalism) at least one of the above
principles (P1–5) has to be rejected. Prior realised that this can be obtained in
several ways. He argued, however, that two of them are particularly important, i.e.
the denials of (P3) and (P5). The solution based in the denial of (P3) is called the
Ockhamistic solution. According to this view, not all propositions formulated in
the past tense should be treated as statements properly about the past, and (P3)
should only be accepted if P (x)A is a statement about the proper past. Obviously,
this would rule out the use of (P3) to deduce (3) from (2), since P (x)DF (x)F (y)q
is clearly not a statement about the proper past.

Prior’s own position was that (P3) should in fact be accepted, whereas (P5)
should be rejected. His view on future contingents was that their truth value
cannot be known now, not even by God, that is, there are no true statements
about future contingents. On this view, the statement ‘there will be a sea-battle
tomorrow’ (this example being taken from Aristotle’s classical discussion of future
contingent in Prior Analytics) cannot be true today, and the same is the case
for the statement ‘there will be no sea-battle tomorrow’. Prior would maintain
that both of these statements are in fact false today, and suggested the following
condition of truth with respect to future statements:

. . . nothing can be said to be truly ‘going-to-happen’ (futurum) until
it is so ‘present in its causes’ as to be beyond stopping; until that
happens neither ‘It will be the case that p’ nor ‘It will not be the case
that p’ is strictly speaking true [2003, p. 52].

Prior held that the proposition F (x)p can only be true if it is in principle possible
to verify it from facts known at the time of utterance. Obviously, the same can
be said about F (x)∼p. According to his view, future tense propositions are false
if they cannot be verified. As a consequence, the proposition F (x)p ∨ F (x)∼p is
false according to this view, if F (x)p is a statement about the contingent future.

As indicated above it was Prior’s conviction that St. Thomas Aquinas also held
these ideas. Prior also pointed out that this position regarding the contingent
future is quite essential in Peirce’s philosophy. In fact, Prior called the way of
answering the problems of arguments like the one presented above the Peircean
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solution. This view means that he had to reject q ⊃ P (x)F (x)q as a thesis. If
q is true now, but not something which had to be true (by necessity), then the
Peircean solutions implies that F (x)q was false x time units ago, for some x.

The view that statements about the contingent future are false was expressed
rather early in Prior’s writings. For instance, in Some Free Thinking About Time
[Prior, 1996a], which is written sometime during the 1950s, he stated his belief in
indeterminism as well as the limitations of divine foreknowledge very clearly:

I would go further than Duns Scotus and say that there are things
about the future that God doesn’t yet know because they’re not yet to
be known, and to talk about knowing them is like saying that we can
know falsehoods [Copeland, 1996, p. 48].

So even God cannot know the contingent future for the simple reason that know-
ing the contingent future would turn out to be the same as knowing a falsehood.
This view was obviously in conflict with his former Presbyterian belief, but he saw
this position as a necessary consequence of his belief in human freedom of choice.
He explained this belief in the following way:

I believe that what we see as a progress of events is a progress of events,
a coming to pass of one thing after another, and not just a timeless
tapestry with everything stuck there for good and all . . . This belief
of mine . . . is bound up with a belief in real freedom. One of the big
differences between the past and the future is that once something has
become past, it is, as it were, out of our reach — once a thing has
happened, nothing we can do can make it not to have happened. But
the future is to some extent, even though it is only to a very small
extent, something we can make for ourselves . . . if something is the
work of a free agent, then it wasn’t going to be the case until that
agent decided that it was [Copeland, 1996, p. 47–48].

For many years, Prior saw no conflict between his faith and his insistence on
the freedom of inquiry and criticism. But as we have seen, he gradually came to
doubt the dogmas of Christianity. One is tempted to formulate a ‘trilemma’:

• the doctrines of predestination and foreknowledge are integral parts of the
Christian faith,

• the doctrine of foreknowledge is untenable for intrinsic logical reasons, and
the doctrine of predestination is incompatible with a belief in indeterminism
and free will,

• any convenient ‘abbreviation’ of Christianity is dishonest and untrustworthy.

The last paper, wherein Prior seems to be endorsing Christian faith, if only
vaguely, is The good life and religious faith [1958]. This is a discussion between
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Prior and a few other philosophers on religion — among them John Mackie. Prior
seems at this point to be still ‘defending’ religion (Christianity) in replies to Das
and Mackie. However, one statement by Mackie seems to anticipate an essential
reason why Prior became agnostic. The statement Mackie makes is this:

In fact I think it [religion] hostile to the good life, because of the value it
always puts upon firm belief for inadequate reasons. It blocks inquiry,
which is a principal ingredient of the good life [Prior, 1958, p. 10].

Prior became agnostic because he came to see Christianity as an obstacle to the
freedom of inquiry — in particular with respect to the doctrine of predestination,
but also at a general level. According to Mary Prior [Hasle, 2003, p. 301–302],
he was preoccupied by the problem of free will, and he was certainly aware of the
dilemmas Calvinism posed. Mary Prior has suggested that his failure to resolve
them was a reason why despite so much preparation the book on Scottish Theology
never came to anything. His logic led him to the conclusion that the future must
be open to choice. The idea of free choice also seems to have been very important
for him emotionally.

Prior’s commitment to a genuine freedom of choice clearly had an ethical di-
mension, too. Freedom of choice is often seen as a precondition of human moral
accountability. Even if freedom of choice is not a necessary condition of moral
accountability — as it is asserted in so-called compatibilism regarding determin-
ism and human freedom — it is clearly a sufficient condition (at least if taken
together with the condition that one is not by force prevented from exerting it).
This observation establishes a connection between Prior’s work on tense logic and
his investigations into the logic of ethics.

3 THE LOGIC OF EXISTENCE

As is obvious from his studies of the logic of foreknowledge and divine omniscience,
Prior wanted to see the future as open and certainly not as completely determined
and settled. Some things are evidently the works of free agents. In fact, by such
works things can come into existence. In dealing with this view, Prior often con-
sidered fundamental questions concerning the logic of quantification. He wanted
a deeper understanding of how quantification and modality can be combined. In
particular, he wanted to describe the relation between existence in time and quan-
tification.

In their interesting essay on Prior’s philosophy, Philip Hugly and Charles Say-
ward [1996, p. 240] have argued that according to Prior there are non-eliminable,
non-substitutional, non-objectual, non-referential kinds of quantification. They
have suggested that following Prior’s ideas, quantification can be presented as “a
method for constructing general sentences applicable to virtually any type or cat-
egory of term” [1996, p. 265]. This is very well put. Prior’s view on quantification
was obviously different from that of Quine. Prior explained the difference in the
following way:
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Quine says in effect that non-existents cannot figure as the values of
bound variable. I would suggest that, on the contrary, this is the only
way in which non-existents of this sort can figure. I cannot directly
refer to what does not exist but is merely imagined to exist, or is
merely going to exist; but I can make purely general (i.c. quantified)
statements about the imaginary or future denizens of the world. The
quantification, however, must occur within a ‘modality’ [Prior, 2003,
p. 220].

Prior’s intuition seems rather convincing. He wanted to maintain a clear logical
difference, which he illustrated using the following example [1957b, p. 26]:

(a) It will be the case that someone is flying to the moon.
(b) There is someone who will fly to the moon.

Here Prior obviously understands (b) as “There is someone presently existing
who is going to fly to the moon”. If F stands for the future operator, the structure
of (a) is obviously F (∃x : p) (i.e. a quantification “within a modality”), whereas
the formal structure of (b) is ∃x : Fp. — The relation between statements like (a)
and (b) had been studied by Ruth Barcan Marcus already in 1946 in an attempt
to combine modal logic with quantification theory. In particular Ruth Barcan
Marcus [Barcan, 1946] had studied systems in which the following formula holds:

F (∃x : p) ⊃ ∃x : Fp
This formula is now known as Barcan’s formula and it can of course be discussed

for all kinds of modal operators. Prior maintained that Barcan’s formula should
not hold in general for the future operator. He wanted a clear logical distinction
between quantification “within a modality” and quantification outside the scope
of a modality.

However, Prior realised that for formal reasons it is rather difficult to keep
the quantification within a modality. With just a few seemingly quite straight
forward axioms of tense logic and Prior’s own general theory of quantification,
Barcan’s formula for the future operator becomes provable. In dealing with this
logical problem, Prior found that he needed a logical system, in which the notion
of statability is taken into account. The reasoning is that because new things
have been brought into existence today, there are some statements which can be
stated today, but which could not be stated yesterday. This was probably Prior’s
main motivation for his proposal in 1957 of the modal system Q wherein it is
assumed that in certain possible worlds, some propositions simply cannot occur.
An obvious example could be propositions directly concerned with individuals,
which are absent from those worlds. According to Prior, no facts can be stated
about an individual x except when x exists.

In 1959 Prior described the basic idea of the system Q in the following way:

Nothing can be surer than that whereof we cannot speak, thereof we
must be silent, though it does not follow from this that whereof we
could not speak yesterday, thereof we must be silent today [Prior,
1959b].
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When translated into tense logical terms, the system Q offers an interesting
example of a logical system which is among other things designed to solve problems
associated with non-permanent or contingent existents.

It is interesting to study the problem of statability and its implications for the
philosophy of time. It turns out to be a very difficult task to establish a tense logical
formalism within which we can deal with the temporal aspects of statability in a
satisfactory way (see for instance [Wegener and Øhrstrøm, 1997]). However, the
basic idea is rather obvious. In particular, it becomes evident when we are dealing
with identifiable individuals. The very fact that individuals come into being makes
it impossible for us to formulate crucial statements about such individuals in a
satisfactory way before they have actually been brought into being. As Prior has
pointed out, the statement ‘It is not the case that Julius Caesar existed in 200 bc’
makes sense, but here it is important that the main verb is in the past and not in
the present tense [Prior, 2003, p. 92]. In 200 bc a statement like ‘Julius Caesar
does not exist’ would not make any sense. It was simply not statable then.

It may be argued that many future tense statements are not about particulars,
but rather about types. However, this observation certainly does not solve the
problem of statability. Prior’s claim regarding non-statability is not only about
the non-existence of subjects of predication. It is also a question about other parts
of the vocabulary. The point is that new concepts, i.e. new predicates, may arise.
This means that the language of specification may be growing in a very radical
manner.

Reflecting on the temporal aspects of statability, Prior maintained that the
passage of time not only means that more and more possibilities are lost. It also
gives rise to new possibilities for us as new individuals come into being. In his
own words:

Hence, while the passage of time may eliminate ‘possibilities’ in the
sense of alternative outcomes of actual states of affairs, and cause that
to be no longer alterable which once might have been otherwise, with
‘logical’ possibilities the opposite change occurs. For as new distin-
guishable individuals come into being, there is a multiplication of the
number of different subjects to which our predications can be con-
sistently attached, and so a multiplication of distinguishable logical
possibilities [Prior, 2003, p. 91].

This means that we have no way of dealing with all future possibilities — not
even in principle. Some states of affairs, which we may in fact later regard as very
important, cannot be incorporated in a satisfactory way in the present scope of
possibilities. The problem is that these states of affairs simply cannot be described
in a sufficiently precise manner. For this reason they cannot be taken into serious
account today. This means that we cannot even discuss the probabilities of such
non-statable possibilities.

However, even if we do not take the question of statability into account there
will still be serious problems regarding time and existence. In particular, Prior
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was interested in the questions concerning identity of things over time. How can
one thing at one time be the same as another thing at another time? How can a
thing keep its identity over time? How can we be sure that individual things never
split up into two (or more) identical individual things?

In a quite entertaining story called “The Fable of the Four Preachers” [Prior,
Unpublished b] Prior illustrated the problems regarding identity over time. The
story is about four churches (sects) and their preachers in a fictive city in Mas-
sachusetts and the beliefs in these sects regarding life after death. In what Prior
called Sect A it is believed that “when this life is over we go to another place,
where our happiness and misery depend on whether we have behaved well or ill
down here”. However, the adherents of Sect A also believe “that in the other
world we have no memories at all of the present one”. Sect B is more modernistic,
since its adherents hold that death is in fact the end, although they do believe in
the existence of the other world and that we can in fact in this life influence life
in the other world. They believe “that as soon as anyone in our own world dies,
another — quite different person — comes into being in the other world; and that
Providence has so arranged it that the happiness or misery of this other person
depends on whether the person who has just died has behaved well or ill during
his life (his only life, of course)”.

The adherents of Sects C and D agreed in holding, “not only that there is a life
after death, but also that in the other world we do remember a great deal about
what we did and experienced here below”. According to Sect C, however, “the
other world is a much vaster place than this one, with many wide open spaces
to be filled up, so that God has decreed that when each person moves from this
world to the next, he turns up there not as one but as several, each of whom
clearly remembers having been the person who died, and each of whom indeed
was the person who died. And all of them suffer for his sins — and justly, for
as they very well know, they were their sins”. The adherents of Sect D argued
that such claims of the preacher of Sect C were rather absurd. They believed
their preacher, on the contrary, who explained that “the other world is bothered
with a population problem — generation after generation keep pouring into it, as
they die, from here, and if steps were not taken it would soon be quite intolerably
crowded. Steps are taken, however; what God has arranged is that when several
people down here die simultaneously, they all become a single individual in the
other world, who remembers perfectly well having been all of them, and who indeed
was all of them”.

Prior writes in the fable that the local sceptics in Massachusetts were inclined
to regard the tenets of Sects C and D as logical impossibilities. However, they “for
reasons which they found it very difficult to make clear even to themselves, found
the ‘fusion’ doctrine of Sect D appreciably more impossible to stomach (if there
can be degrees of impossibility) than the ‘fission’ doctrine of Sect C”.

The fable at the same time raises questions concerning ‘temporal identity’ and
theology. It is clear that the idea of (temporal) trans-world identity is at stake
here. What is the moral implication, for instance, of Sect A’s view that a person
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without memories of his previous existence is nevertheless punished or rewarded for
things of which he has no knowledge? (Indeed, what sense does it make to say that
it is the same person?) What does the multiplication of an individual according
to Sect C mean? (And does this idea suggest a branching-time-like picture?) As
for Sect D, their conception can seem unintelligible. It has, however, a possible
affinity to some interpretations of Calvinism, wherein the Elect are elected only in
Christ — and not at all in themselves — and in a sense, live on only in Christ. If
that is what is here hinted at, the paper may be seen as a very interesting holding-
together of some classical Christian ideas and the (temporal study of) questions
concerning time and identity. A limitation to this interpretation is that the sects
— at least A, B, and C — all hold that the states in the “after-world” somehow
depend on deeds, as opposed to the Protestant and Calvinist emphasis on salvation
as dependent on faith and the sheer “grace of God”. But it may be at telling fact
that Sect D is the one which keeps silent on the question of how life may be in the
other world.

“The Fable of the Four Preachers” may be seen as a nice illustration of the
logical problems Prior was trying to solve in his search for a logic of identity. This
turned out to be a rather complicated matter, among other things because it seems
to be almost impossible to explain how the meaning of what the preacher of Sect
A is saying differs from the meaning of what the preacher of Sect B is saying.
However, Prior was in particular interested in the problems to which a position
like that of Sect C can give rise. In the paper Time, Existence, and Identity [1965
1966] (republished in [Prior, 2003]) he analysed the crucial question: ‘Can one
thing become two?’. He stated:

There do seem to be at least approximations to this in nature, e.g. the
‘multiplication by division’ of unicellular organisms, and still closer
approximations to it seem to be easily imaginable, e.g. conscious or-
ganisms which divide in two and retain after division a clear memory
of their undivided state [2003, p. 96].

Suppose that x and y are two different individuals which were identical n time
units ago, i.e. P (n)(x = y). Prior assumed that the following propositions hold:

(1) q ⊃ P (n)F (n)q
(2) P (n)F (n)q ⊃ q
(3) (x = y) ⊃ (φx ⊃ φy).

Prior showed that (3) is in fact equivalent with Leibniz’ principle (‘the identity
of the indiscernibles’). From this principle we can prove:

(4) P (n)(x = y) ⊃ (P (n)φx ⊃ P (n)φy).
Let us assume that the object x has the property φx, i.e. φx holds now. From

(1) follows that P (n)F (n)φx also holds. Substituting F (n)φx for φx (4), this leads
to P (n)F (n)φy. Using (2) we deduce that φy also holds now. This means that
x and y have exactly the same properties now. But how can x and y then be
different now given Leibniz’ principle? It appears that this deduction has led us
to a contradiction.
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Prior suggested that we have to drop (1) which, as we saw in the previous
sections is also dubious for other reasons. However, he also realised that this move
is not enough to prevent us from encountering other troubles. In fact Leibniz’
principle itself can also be questioned, since it may easily be seen that it leads to
the principle of transitive identity:

(5) (x = y) ⊃ (z = x ⊃ z = y).
Prior argued that (5) gives rise to a contradiction, if one can become two. He

wrote:

Let us suppose that the single individual x has become the two indi-
viduals y and z. If x has really become these two individuals, and has
not simply ceased to exist and been in some sense replaced by them,
then if anyone were to ask ‘Where is x now?’, one correct answer would
be to say ‘Here he is’ and point to y. In other words, x is now y, and
it would perhaps also be true to say that it is y who is now x, i.e. y is
now x. But it would be equally correct to answer the question ‘Where
is x now?’ by saying, ‘Here he is’, and pointing to z. In other words,
x is now z . . . [Prior, 2003, p. 98].

From this it can obviously be concluded that ‘y is now z’, which clearly contra-
dicts the assumption. The only satisfactory way out seems to be denial of Leibniz’
principle. Prior suggested that we at least have to weaken (5) to the following,
where ‘I’ stands for a general identity relation [Prior, 2003, p. 100]:

Ixy ⊃ (Ixz ⊃ (Iyz ∨ PIyz ∨ FIyz).
Regarding the ‘fusion’ doctrine of Sect D Prior was like the sceptics in Mas-

sachusett inclined to regard it as even more problematic and unlikely than the
‘fission’ doctrine of Sect C’.

4 THE SYNTAX OF TEMPO-MODAL LOGIC

A persistent feature throughout his works is a clear interest in the history of logic.
Indeed, Prior took an interest in the history of logic not only as a subject in its
own right, but also because he saw the works of ancient and medieval logicians
as a significant contribution to the contemporary development of logic. In fact,
Prior revived the medieval attempt at formulating a temporal logic for natural
language. In a short but thought-provoking sketch of the history of logic with a
special emphasis on tense-logic, Prior has argued that the central tenets of medieval
logic with respect to time and tense can be summarised in the following way:

(i) tense distinctions are a proper subject of logical reflection,
(ii) what is true at one time is in many cases false at another time,

and vice versa [1957b, p. 104].
Prior observed that ancient and medieval logicians took these assumptions for

granted, but that they were eventually denied (or simply ignored) after the Re-
naissance. In fact the waning of tense logic began with a gradual loss of interest in
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temporal structures, that is, it was (i) which was first abandoned by the different
schools of logic, and (ii) came to be rejected only afterwards.

Prior can be said to have realised the possibility of (re)formulating a logic
based on these old assumptions. His first hint at the possibility of a logic of time-
distinctions is found in the unpublished manuscript The Craft of Logic 1951 (cf.
[Copeland, 1996, p. 15]). In 1953, when he was reading a paper of Findlay titled
“Time: A Treatment of Some Puzzles” [1941], he decided to take up Findlay’s
challenge of working out a calculus of tenses. Major sources for him were also
�Lukasiewicz’ discussion of future contingents [1920], which was inspired by Aristo-
tle’s De Interpretatione, and the Diodorean Master Argument, which he came to
study via a paper by Benson Mates on Diodorean Implication [1949]. As we have
seen, he very early demonstrated that tense logic can be used as a powerful tool
in the analysis and reconstruction of the Master Argument.

In fact, one of his very first proper studies in tense logic was an analysis of
an ancient argument in favour of determinism, the Master Argument of Diodorus
[1955a]. This argument was constructed by Diodorus Cronus (ca. 340–280 bc),
who was a philosopher of the Megarian school, and who achieved wide fame as a
logician and a formulator of philosophical paradoxes [Sedley, 1977]. Unfortunately,
only the premises and the conclusion of the Master Argument are known. We know
almost nothing about the way in which Diodorus used his premises in order to reach
the conclusion. It is, however, known that the Master Argument was presented
as a trilemma. According to Epictetus, Diodorus argued that the following three
propositions cannot all be true [Mates, 1961, p. 38]:

(Dl) Every proposition true about the past is necessary.
(D2) An impossible proposition cannot follow from (or after) a possible

one.
(D3) There is a proposition which is possible, but which neither is nor

will be true.

Diodorus used this incompatibility combined with the plausibility of (D1) and
(D2) to justify that (D3) is false. Assuming (D1) and (D2) he went on to define
possibility and necessity as follows:

(D�) The possible is that which either is or will be true.
(D�) The necessary is that which, being true, will not be false.

The reconstruction of the Master Argument certainly constitutes a genuine
problem within the history of logic. It should, however, be noted that the ar-
gument has been studied for reasons other than historical. First of all, the Master
Argument has been read as an argument for determinism. Secondly, the Mas-
ter Argument can be regarded as an attempt to clarify the conceptual relations
between time and modality.

Prior’s reconstruction [1967b] of the Master Argument is based on the assump-
tion that the statements in question are in fact propositional functions whose
truth-values can vary from time to time. Thus it basically adopts the same un-
derstanding of ‘proposition’ and consequence as we have been arguing for above.
Prior uses his tense- and modal operators in the reconstruction:
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P : “it has been the case that . . . ”
F : “it is going to be the case that . . . ”

H(= ∼P ∼): “it has always been the case that . . . ”
G(= ∼F ∼): “it will always be the case that . . . ”

�: “it is possible that . . . ”
�(= ∼�∼): “it is necessary that . . . ”.

On these assumptions it is possible to restate the reconstruction problem. Using
symbols, (D1–3) can be formulated in the following way:

(D1′) Pq ⊃ �Pq
(D2′) ((p→ q) ∧�p) ⊃ �q
(D3′) (∃r)(�r ∧ ∼r ∧ ∼Fr)

where → is the strict implication defined as
p→ q ≡ �(p ⊃ q).

We are now ready to reformulate Prior’s reconstruction. It is, however, clear
that Prior is not able to reconstruct the argument only using (D1), (D2) and (D3).
In addition to these, he needs two extra premises. He must assume the thesis

(∼q ∧ ∼Fq) ⊃ P ∼Fq
or, to put it in a general form:

(D4) (p ∧Gp) ⊃ PGp
where G ≡ ∼ F ∼ (‘it will always be the case that . . . ’). Furthermore, he must
assume that

(D5) �(p ⊃ HFp)
is valid in general.

Prior’s proof that the three Diodorean premises (D1′, D2′, D3′) are inconsistent
given (D4) and (D5) can be summarised as a reductio ad absurdum proof in the
following way:

(1) �r ∧ ∼r ∧ ∼Fr (from D3′)
(2) �r (from 1)
(3) �(r ⊃ HFr) (from D5)
(4) �HFr (from D2′, 2 & 3)
(5) ∼r ∧G∼r (from 1)
(6) PG∼r (from 5 & D4)
(7) �PG∼r (from 6 & D1′)
(8) ∼�HFr (from 7; contradicts 4)

Q.E.D.

O. Becker [1960] has shown that the extra premises (D4) and (D5) can be
found in the writings of Aristotle. For that reason Becker concludes that it seems
reasonable to assume that the extra premises were generally accepted in antiquity.

However, for historical reasons Prior’s addition of (D4) and (D5) is nevertheless
problematic. (D4) is in fact a rather complicated statement and not so innocuous
as it may seem at first glance — observations which will indeed become clear
when we are going to discuss the Ockhamist and Peircean systems. It is not very
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likely that Diodorus would involve such an argument without making it an explicit
premise in the Master Argument. As regards (D5), we know that Diodorus used
the Master Argument as a case for the definitions (D�) and (D�). That is, in the
argument itself � (or �) should in a sense be regarded as primitive. It is hard to
believe that Diodorus would involve a premise about � without stating it explicitly.
As we have demonstrated elsewhere [Øhrstrøm and Hasle, 1995, pp. 23–8], there
is another possible reconstruction of the Master Argument, which for historical
reasons should be considered to be more likely than Prior’s. But obviously Prior’s
suggested reconstruction is interesting in its own right as an argument in favour
of determinism. Being an indeterminist, Prior obviously could not accept the
deterministic conclusion of the argument he had reconstructed. Since he accepted
the derivation of the conclusion from the premises he had to reject at least one of
the premises. In fact, he questioned the validity of (D5) i.e.

(D5) �(p ⊃ HFp).

If we understand ‘will be’ as ‘determinately will be’, then according to Prior
(D5) should certainly be denied. As explained in section 1 Prior based this denial
on metaphysical reasoning. He claimed that the conjunction p ∧ ∼HFp is in fact
possible i.e. something may be the case right now (p) although it was not always
true to say that it would be the case (∼HFp).

During the 1950s and the 1960s Prior developed his calculus of tenses into a
rather sophisticated formalism. In particular he was interested in a system as
weak as possible, i.e. a system in which no assumptions are made regarding the
structure of time. He formulated this minimal tense logic Kt, which was also
studied by John Lemmon, in the following way [1967b, p. 176]:

Axioms:

(A1) p, where p is a tautology of the propositional calculus
(A2) G(p ⊃ q) ⊃ (Gp ⊃ Gq)
(A3) H(p ⊃ q) ⊃ (Hp ⊃ Hq)
(A4) p ⊃ HFp
(A5) p ⊃ GPp.

Rules:

(RMP) If ⊢ p and ⊢ p ⊃ q, then ⊢ q.
(RG) If ⊢ p, then ⊢ Gp.
(RH) If ⊢ p, then ⊢ Hp.

In 1958 he entered into a very interesting correspondence with Charles Hamblin
of The New South Wales University of Technology in Australia. Their correspon-
dence led to important results, especially on implication relations among tensed
propositions. Prior and Hamblin discussed two central issues in tense logic: the
number of non-equivalent tenses, and the implicative structure of the tense op-
erators. In 1958 Hamblin suggested a set of axioms with P and F as monadic
operators, corresponding to “a simple interpretation in terms of a two-way infinite
continuous time-scale”. Hamblin’s axioms are:

Ax1: F (p ∨ q) ≡ (Fp ∨ Fq)
Ax2: ∼F ∼p ⊃ Fp
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Figure 2. Hamblin’s and Prior’s implicative structure for the non-metrical tense-
operators

Ax3: FFp ≡ Fp
Ax4: FPp ≡ (p ∨ Fp ∨ Pp)
Ax5: ∼F ∼Pq ≡ (q ∨ Pq).

Hamblin also assumed 3 rules of inference:

R1: If A is a thesis, then ∼F ∼A is also a thesis.
R2: If A ≡ B is a thesis, then FA ≡ FB is also a thesis.
R3: If A is a thesis, and A′ is the result of simultaneously replacing

each occurrence of F in A by P and each occurrence of P in A
by F , then A′ is also a thesis. (A′ is the so-called mirror-image of
A.)

When these axioms and rules are added to the usual propositional calculus a
number of interesting theorems can be proved. In fact, Hamblin could prove that
“there are just 30 distinct tenses”, which can be formed using only P , F and
negation.

Prior defined G (‘is always going to be’) as ∼F ∼, and H (‘has always been’) as
∼P ∼. Using this formalism Hamblin and Prior studied the implicative structure
of the tenses given Hamblin’s axiomatic system. In 1965 they ended up with
the nice implicative structure for the tense-operators shown in Figure 2, which
according to Hamblin is “a bit like a bird’s nest” (see [Øhrstrøm and Hasle, 1995,
p. 178]).
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This system is obviously much stronger than the minimal tense logic Kt. It
may be said to correspond to an intuitive idea of the structure of time. Prior and
his followers in tense logic presented several other axiomatic systems. We shall
comment on some of them in our paper on the history and philosophy of temporal
logic after Prior (elsewhere in this volume).

In addition to the four basic tense operators, Prior also found it useful to in-
troduce metrical tense operators, F (x) (corresponding to ‘in x time units it will
be the case that’) and P (x) (corresponding to ‘x time units ago it was the case
that’).

In 1967 Prior published his major work, Past, Present and Future, in which his
approach to tense logic had reached a very convincing form. It turned out that sev-
eral interesting tense logical systems could be established. Some of these systems
incorporate not only tense operators but also an independent modal operator, �

(corresponding to ‘possibility’). Later, Prior even considered a logic integrating
an operator, I, standing for ‘the present’ (now see [Prior, 2003, pp. 171–93]).

5 THE SEMANTICS OF TEMPO-MODAL LOGIC

According to Peter Geach, Prior regarded his own research into the logic of ordi-
nary language constructions as a continuation of the medieval tradition [Geach,
1970, p. 188]. His attitude was congenial to that of the young Russell in Principles
of Mathematics: ordinary language is not a logician’s master, but it must be his
guide [Geach, 1970, p. 187]. After all logic in Prior’s opinion “is not primarily
about language, but about the real world” [Prior, 1996b, TR]. For this reason he
strongly opposed the formalistic view on logic:

Formalism, i.e. the theory that logic is just about symbols and not
about things, is false [Copeland, 1996, p. 45].

I cannot see how any statement whatever can be made true simply by
using language in a particular way, except, of course, the statement
that we are using language in the way in question, and nobody would
contend that a statement to this effect would be logically true — it is
not logically necessary that we should speak in such and such a way
[Prior, 1976c, p. 123].

Prior adopted the Stoic view of logic according to which the logic of propositions
is basic, and according to which “the rest of logic is built upon it” [1955b, p. 3].
In short, his own answer to the question about the nature of logic ran as follows:

Logic deals, at bottom, with statements — it enquires into what state-
ments follow from what — but logicians aren’t entirely agreed as to
what a statement is. Ancient and medieval logicians thought of a state-
ment as something that can be true at one time and false at another
[Copeland, 1996, p. 47].
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But what does it mean that a statement is true (or false)? In other to answer
this question Prior worked out important theories of truth. In their excellent
analysis of some of Prior’s fundamental ideas of ‘truth’, Hugly and Sayward have
distinguished between four categories of sentences in which the word ‘true’ is used
[1996, p. 333]:

C1: Sentences of the form ‘It is true that S’,
C2: Sentences of the form ‘The proposition (statement, belief) that S

is true’,
C3: Sentences in which ‘true’ is applied independently of sentences

specifying what is true, and not as a predicate of sentences or
utterances, e.g. ‘Some of Bill’s beliefs are true’,

C4: Sentences in which ‘true’ is predicated of linguistic items, e.g.
‘Bill’s utterance is true’.

According to Hugly and Sayward, four theses corresponding to these four cat-
egories comprehend Prior’s theory of truth [Hugly and Sayward, 1996, p. 389].
The first one says that in category 1 sentences, ‘true’ functions as a connective
and not as a predicate. The second thesis says that the connective is null. The
third thesis says that ‘true’ is analysable in terms of that connective in category
2 sentences and in category 3 sentences. According to the fourth thesis, ‘true’ is
not analysable in terms of ‘it is true that’ in category 4 sentences.

In particular, Prior was interested in modal logic, and in consequence he wanted
to explain what it means for a proposition in modal logic to be true. This interest
led him to the very first formulation of the answer which is now normally given,
i.e. the answer in terms of accessibility between possible worlds. In fact, already
in 1951 he had suggested to deal with modal logic using ‘state-descriptions’ (see
[Copeland, 1996, p. 11]). A few years later, he showed how tense logic can be
studied using instants as state-descriptions, which are ordered by an earlier-later
relation. Together with Carew Meredith, these ideas were later further developed,
and they were thereby led to the significant invention of the possible world seman-
tics (see [Copeland, 1996, p. 8 ff.]. In 1956 Prior and Meredith wrote up a brief
joint paper entitled “Interpretations of Different Modal Logics in the ‘Property
Calculus’ ” [Meredith and Prior, 1956]. The paper was circulated in mimeograph
form, and it contained the essential elements of the possible worlds semantics for
propositional modal logic. It seems that Jack Copeland [2002] is right in holding
that in this paper a binary relation appeared for the first time as an accessibility-
like interpretation of the relation in an explicitly modal context. In this paper the
authors do not suggest any philosophical explanation of the relation or of the re-
lated object. Nevertheless, there can be no doubt that they had a relation between
possible worlds in mind. As Jack Copeland has pointed out, Meredith in a letter
to Prior dated 10 October 1956 in fact uses the term ‘possible world’ and Prior in
‘Computations and Speculations’ [Meredith and Prior, Unpublished, p. 119] used
the same term. Later Prior wrote:

I remember . . . C.A. Meredith remarking in 1956 that he thought the
only genuine individuals were ‘worlds’, i.e. propositions expressing
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total world-states, as in the opening of Wittgenstein’s Tractatus (‘The
world is everything that is the case’) [Prior, 2003, p. 219].

In order to introduce a logic of instants or dates, we need a set TIME of
instants (or dates) with a relation, <, which attributes to TIME some structure.
The relation ‘<’ is called the before-after-relation. For any temporal instant t and
any statement p, T (t, p) is a new statement, which can be read ‘p is true at t’. It
is assumed that

(T1) T (t, p ∧ q) ≡ (T (t, p) ∧ T (t, q))
(T2) T (t, ∼p) ≡ ∼T (t, p).

Note that in principle we should make a distinction between two kinds of con-
junction (and also between two kinds of negation) in (T1–2). The reason is that p
and q are treated as propositional functions rather than full-fledged propositions
such as T (t, p). This means that the two kinds of expressions would be of different
types. On the other hand, it is also possible to put both types of expressions
syntactically on a par, as we shall see in the next section. So we shall neglect this
complication, since it is after all rather clear how the conjunctions, negations etc.
should be read in each case.

Now, the definitions

(DF) T (t, Fp) ≡def ∃t1 : (t < t1 ∧ T (t1, p))
(DP) T (t, Pp) ≡def ∃t1 : (t1 < t ∧ T (t1, p))

would allow us to evaluate any tense logical formula p, in terms of T (t, p). From
the definitions Hp ≡def ∼P ∼p and Gp ≡def ∼F ∼p it immediately follows

(DG) T (t, Gp) ≡def ∀t1 : (t < t1 ⊃ T (t1, p))
(DH) T (t,Hp) ≡def ∀t1 : (t1 < t ⊃ T (t1, p)).

We shall say that a structure (TIME,<, T ) is an instant-logical structure, if T
satisfies (T1–2) and the definitions (DF), (DP), (DG), and (DH). T is called the
T -operator (or the valuation operator) of the structure.

Using an idea communicated to him from Saul Kripke in 1958 (see [Øhrstrøm
and Hasle, 1995, p. 189], Prior showed that important differences between some
of the systems can be illustrated graphically. Hamblin’s system corresponds to
a linear notion of time, whereas other systems presuppose a notion of branching
time.

Prior discussed three different models of branching time. The main difference
between these models has to do with the status of the future. The models fall into
a small number of groups, where the basic ideas can be shown in a very intuitive
way: consider once again the old Aristotelian example about the possible sea-fight
tomorrow. How should we define truth for statements like F (1)p?

One particular line of answer to this question can be based on a simple but rad-
ical assumption, namely the rejection of the principle of bivalence. This may give
rise to some serious formal problems as well as some highly counter-intuitive fea-
tures. For instance, if F (1)p and ∼F (1)p are both ‘indeterminate’ (or ‘undefined’),
it is very hard to explain how statements like the conjunction F (1)p ∧ ∼ F (1)p
and the disjunction F (1)p∨ ∼F (1)p can be anything else than ‘indeterminate’ (or
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Figure 3. Branching time in the Kb system

‘undefined’) [Prior, 1967b, p. 135]. Prior came to believe that the introduction
of ‘indeterminate’ or ‘undefined’ statements is an unnecessary complication. For
this reason he in his later writings left aside solutions based on the rejection of
bivalence and concentrated on bivalent answers. For the sake of simplicity, we
shall use metrical time in our examples; but the results can be generalised into
non-metrical tense-logic.

Let us consider three ways (a, b, and c below) of defining truth for statements
like F (1)p:

(a) The first answer is that the two possibilities, sea-fight and no sea-
fight, are both part of the future, and that none of them has any
superior status relative to the other. This answer can be represented
graphically as in Figure 3.

The arrows on the ends of the two future branches indicate that the statements
‘there is going to be a sea-battle (tomorrow)’ and ‘there is not going to be a sea-
battle (tomorrow)’ are both true in this picture of branching time. That is, if we
let p stand for ‘there is a sea-battle going on’, and F (1)p stand for ‘there is going
to be a sea-battle tomorrow’, then

F (1)p ∧ F (1)∼p
is true. The corresponding tense-logical system is called Kb after Saul Kripke. We
shall comment on this systems in more details in our paper on the history and
philosophy of temporal logic after Prior (elsewhere in this volume).

(b) Prior named the Ockham-model named after William of Ockham
(c. 1285–1349), who in his logic had insisted that God knows the truth-
value of every future contingent statement. According to this model
only one possible future is the true one, although we as human beings
do not know which of them it is. Let us assume that there is in fact
going to be no sea-fight tomorrow. In this case the future should be
represented graphically in the following way, where a line not ending in
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Figure 4. Branching time in the Ockham model

Figure 5. Branching time in the Peirce model

an arrow indicates that it will be false to assert that the corresponding
state-of-affairs will be the case tomorrow (see Figure 4).

So, ∼ F (1)p ∧ F (1) ∼ p is the true description of this situation, even though
we may be unable to know this at the present moment (p etc. being defined as
above).

(c) Prior named the Peirce-model after Charles Sanders Peirce (1839–
1914). According to this model — which Prior himself adopted as
covering his own view — it makes no sense to speak about the true
future as one of the possible futures. There is no future yet, just a
number of possibilities. Hence, the future — or perhaps rather, the
‘hypothetical future’ — should be represented graphically as in Figure
5.

Neither F (1)p nor F (1)∼p are true on this picture. However, if some proposi-
tion q holds tomorrow in all possible futures — that is, if the truth of q tomorrow
is regarded as necessary — then F (1)q is true. In order to describe the semantics
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Figure 6. Branching time with chronicles

for these tempo-modal systems Prior [1967b, p. 126 ff.] needs a notion of tempo-
ral ‘routes’ or ‘temporal branches’ i.e. maximally ordered (i.e. linear) subsets in
(TIME,C,<,=). We prefer the term ‘chronicle’. The set of all such chronicles
will be called C (see Figure 6).

An Ockhamistic valuation operator, Ock, can be defined in the structure
(TIME,C,<,=), where < is transitive and backwards linear. Given a truth-
value for any propositional constant at any moment in TIME, Ock(t, c, p) can be
defined recursively for any moment in any chronicle, t ∈ c:

(a) Ock(t, c, p ∧ q) iff both Ock(t, c, p) and Ock(t, c, q)
(b) Ock(t, c, ∼p) iff not Ock(t, c, p)
(c) Ock(t, c, Fp) iff Ock(t′, c, p) for some t′ ∈ c with t < t′

(d) Ock(t, c, Pp) iff Ock(t′, c, p) for some t′ ∈ c with t′ < t
(e) Ock(t, c,�p) iff Ock(t, c′, p) for all c′ with t ∈ c′.

Ock(t, c, p) can be read ‘p is true at t in the chronicle c’. A formula p is said to
be Ockham-valid if and only if Ock(t, c, p) for any t in any c in a branching time
structure, (TIME,C,<,=).

It may be doubted whether Prior’s Ockhamistic system is in fact an adequate
representation of the tense logical ideas propagated by William of Ockham. Ac-
cording to Ockham, God knows the contingent future, so it seems that he would
accept an idea of absolute truth, also when regarding a statement Fq about the
contingent future — and not only what Prior has called “prima-facie assignments”
[1967b, p. 126] like Ock(t, c, Fq). That is, such a proposition can be made true ‘by
fiat’ simply by constructing a concrete structure which satisfies it. But Ockham
would accept that Fq could be true at t without being relativised to any chron-
icle. And that actually brings us back to a two-place T -operator, like the ones
we have previously discussed. In [Øhrstrøm and Hasle, 1995] we have shown that
it is possible to establish a system which seems to be a bit closer to Ockham’s
original ideas. On the other hand, it should be noted that the question concerning
the notion of truth is mainly philosophical. Prior’s Ockhamistic system appears
to comprehend at least all the theorems which should be accepted according to
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Ockham’s original ideas. Let us, for instance, consider one tense logical formula:
q ⊃ HFq.

It is obvious from the above definitions that Ock(t, c, q ⊃ HFq) for any t and
any c with t ∈ c. Therefore q ⊃ HFq is a theorem in Prior’s Ockhamistic system.

Now, let us turn to the Peirce system. In this system the truth-operator differs
from the Ockhamistic operator when it comes to the evaluation of propositions
on the form, Fp. In this case the Peircean truth-operator can be defined in the
following way:

Peirce(t, Fp) iff
for all c′ with t ∈ c′:
Peirce(t′, p) for some t′ ∈ c′ with t < t′.

Prior put forward this tense logical system on the basis of his studies of Peirce’s
philosophy. He described the system in the following way:

. . . C.S. Peirce’s description of the past (with, of course the present)
as the region of the ‘actual’, the area of ‘brute fact’, and the future as
the region of the necessary and the possible. That is why I call this
system ‘Peircean’ [Prior, 1967b, p. 132].

There is hardly any doubt that Prior’s rendition of Peirce’s ambitions as regards
the logic of time and modality is correct. By analysing Peirce’s way of thinking and
transferring this into the modern logic of time, Prior found that in the Peircean
system the following formula must hold for any proposition p:

∼(F (x)p ∧ F (x)∼p),
whereas its ‘excluded middle’ analogue

F (x)p ∨ F (x)∼p
does not hold in general. — This is due to the fact that both assertions, F (x)p and
F (x)∼p, can be false, if they represent a pair of statements about the contingent
future. It turns out that in the Peircean system F (x)p and �F (x)p are equivalent.
It is also obvious that in this system, q ⊃ HFq does not hold in general.

The discussion regarding the Ockhamistic versus the Peircean system was cru-
cial for Prior in his attempts to deal with philosophical arguments in favour of
determinism. His careful analyses of these systems were, however, not his only
contribution to the further development of tense-logic. In fact, he studied a num-
ber of tense-logical systems corresponding to various notions of time (for instance,
dense time, circular time, discrete time). He dealt with many of his findings in
the paper, “Recent Advances in Tense Logic”, which was published shortly after
his death in 1969 [Prior, 1969].

6 A- AND B-SERIES: FOUR GRADES OF TENSE-LOGICAL
INVOLVEMENT

It was Peter Geach who sometime in the early 1960s made Prior aware of the
importance and relevance of McTaggart’s distinction between the so-called A-
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and B-series conceptions of time [1967b, p. vi]. Since then, the notions and
arguments in McTaggart’s paper, “The Unreality of Time”, [1908], have become a
necessary ingredient of all major treatments of the philosophical problems related
to temporal logic.

McTaggart’s A-series conception is based on the notions of past, present, and
future, as opposed to a ‘tapestry’ view of time, as embodied by the B-series concep-
tion of time. Prior later formally elaborated McTaggart’s distinction, and showed
that we can discuss time using either a tense logic, corresponding to the A-series
conception, or using an earlier-later calculus, corresponding to the B-series con-
ception. Prior’s interest in McTaggarts observations was first aroused when he
realised that McTaggart had offered an argument to the effect that the B-series
presupposes the A-series rather than vice versa [1967b, p. 2]. Prior was particu-
larly concerned with McTaggart’s argument against the reality of tenses. Prior’s
studies brought renewed fame to this argument. In consequence, it has been very
important in the philosophical debate about various kinds of temporal logic and
their mutual relations. In our chapter on modern temporal logic (in this volume)
we discuss the structure of McTaggart’s argument and the philosophical debate to
which it has given rise.

As we shall see in the chapter on modern temporal logic (in this volume) Prior
rejected McTaggart’s conclusion, and he held that the temporal world should in
fact be described in terms of tenses (i.e. McTaggart’s A-series). In his view, the
alternative description of temporality in terms of earlier-later (i.e. McTaggart’s
B-series) was secondary. Prior clearly considered this tense-logical view (i.e. the
A-series) to be the fundamental one when it comes to the study of time. On the
other hand, Prior clearly found that the relations between the A-series and the
B-series are crucial when it comes to a deeper understanding of logic and time. In
his studies of the relations between the A-series and the B-series, Prior introduced
four grades of ‘tense logical involvement’.

The first grade defines tenses entirely in terms of objective instants and an
earlier-later relation. For instance, a sentence such as Fp, ‘it will be the case that
p’, is defined as a short-hand for ‘there exists some instant t which is later than
now, and p is true at t’, and similarly for the past tense; these definitions are, of
course,

(DF) T (t, Fp) ≡def ∃t1 : t < t1 ∧ T (t1, p)
(DP) T (t, Pp) ≡def ∃t1 : t1 < t ∧ T (t1, p).

Tenses, then, can be considered as mere meta-linguistic abbreviations, so this is
the lowest grade of tense logical involvement. Prior succinctly described the first
grade as follows:

. . . there is a nice economy about it . . . it reduces the minimal tense
logic to a by-product of the introduction of four definitions into an
ordinary first-order theory, and richer [tense logical] systems to by-
products of conditions imposed on a relation in that theory [Prior,
2003, p. 119–20].
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In the first grade, tense operators are simply a handy way of summarizing the
properties of the before-after relations, which constitute the B-theory. Hence, in
the first grade B-theory concepts are seen to be determining for a proper under-
standing of time and reality; tenses are deemed to have no independent epistemo-
logical status. The basic idea is a definition of truth relative to temporal instants:

(T1) T (t, p ∧ q) ≡ (T (t, p) ∧ T (t, q))
(T2) T (t, ∼p) ≡ ∼T (t, p).

In addition, there may be some specified properties of the before-after relation,
like for instance transitivity:

(B1) (t1 < t2 ∧ t2 < t3) ⊃ t1 < t3.

In this way, instants acquire an independent ontological status. As we have seen,
Prior rejected the idea of temporal instants as something primitive and objective.

In the second grade of tense logical involvement, tenses are not reduced into
B-series notions. Rather, they are treated on a par with the earlier-later relation.
Specifically, a bare proposition p is treated as a syntactically full-fledged propo-
sition, on a par with propositions such as T (t, p) (‘it is true at time t that p’).
The point of the second grade is that a bare proposition with no explicit temporal
reference is not to be viewed as an incomplete proposition. One consequence of
this is that an expression such as T (t, T (t′, p)) is also well-formed, and of the same
type as T (t, p) and p. Prior showed how such a system leads to a number of theses,
which relates tense logic to the earlier-later calculus and vice versa [Prior, 2003, p.
121]. The following crucial rule of inference makes this relation within the second
grade especially obvious:

(RT) If ⊢ p, then ⊢ T (t, p) for any t and any truth-operator T .

He also stated the following basic assumptions regarding the truth-operator:

(TX1) (∀t : T (t, p)) ⊃ p
(TX2) (∀t1 : T (t1, p)) ⊃ T (t2,∀t3 : T (t3, p))
(TX3) T (t1, p) ⊃ T (t2, T (t1, p)).

The philosophical implication of this second grade of tense logical involvement
is that one must regard the basic A- and B-theory concepts as being on the same
conceptual level. Neither set of concepts is conditioned by the other.

The B-theory is sometimes considered as the semantics of the corresponding
A-theory. This is not surprising if we again consider the first-grade formulation
of Fp, ‘it will be the case that p’, as a short-hand for ‘there exists some instant t
which is later than now, and p is true at t’ (cf. (DF)).

This is tantamount to stating a truth condition for Fp. On this view of the
relationship between the A- and B-theories, it may be a bit puzzling that p and
T (t, p) can be treated as being on the same logical level — the former apparently
belonging to the logical language (or object language) and the latter to the seman-
tics (or meta-language). In Prior’s opinion, however, this is not at all surprising.
In a paper on some problems of self-reference he stated:

In other words, a language can contain its own semantics, that is to
say its own theory of meaning, provided that this semantics contains
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the law that for any sentence x, x means that x is true [Prior, 1976b,
p. 141].

It seems that this statement is exemplified exactly by the relation of the logic
of tenses (the A-theory) to the logic of earlier and later (the B-theory), provided
that we are willing to take the step of the second grade: syntactically conflating
‘bare’ p with T (t, p).

The relation becomes even clearer in the third grade, a system which has crucial
implications for the status of the indication of time. Prior introduced the third
grade in the following way:

What I shall call the third grade of tense logical involvement consists in
treating the instant-variables a, b, c, etc. as representing propositions
[Prior, 2003, p. 124].

Such instant-propositions describe the world uniquely at any given instant, and
are for this reason also called world-state propositions. Like Prior we shall use a,
b, c, . . . as instant-propositions instead of t1, t2, t3, . . . In fact, Prior assumed
that such propositions are what ought to be meant by ‘instants’:

A world-state proposition in the tense-logical sense is simply an index
of an instant; indeed, I would like to say that it is an instant, in the
only sense in which ‘instants’ are not highly fictitious entities [Prior,
1967b, p. 188–189].

The traditional distinction between the description of the content and the indi-
cation of time for an event is thereby dissolved. From the properties of the logical
language which embodies the third grade of tense logical involvement, Prior also
showed that T (a, p) can be defined in terms of a primitive necessity-operator.
Then tense logic, and indeed, all of temporal logic can be developed from the
purely ‘modal notions’ of past, present, future, and necessity.

In order to present the formalism of the third grade, Prior assumes the standard
definitions of propositional and predicate logic, including the definition of ∃a : φ
as ∼∀a : ∼φ. In the following, ‘p’ stands for an arbitrary well-formed formula in
the system, whereas ‘a’ stands for an arbitrary instant proposition. The axioms
of the system are the axioms of Kt together with the axiom

(I1) ∃a : a
and the rule:

(RI) For any instant proposition a and any well-formed formula p: Ex-
actly one of ⊢ a ⊃ p and ⊢ a ⊃ ∼p holds.

To this are added the rules included in Prior’s quantification theory [Prior, 1955b,
p. 76 ff.]:

(Π1) If ⊢ φ(x) ⊃ β, then ⊢ (∀x : φ(x)) ⊃ β.
(Π2) If ⊢ α ⊃ φ(x), then ⊢ α ⊃ ∀x : φ(x), for x not free in α.

From (Π1–2) it is easy to deduce [1955b, p. 82] that
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(Σ1) If ⊢ φ(x) ⊃ β then ⊢ (∃x : φ(x)) ⊃ β, for x not free in β.
(Σ2) If ⊢ α ⊃ φ(x) then ⊢ α ⊃ ∃x : φ(x).

It should be noted that (RI) is natural in the light of what it means to be a
maximal consistent set. Intuitively, an instant proposition a may be viewed as
the conjunction of the elements in the maximal consistent set. (I1) is also rather
natural since it simply states that some instant proposition holds now. In addition,
we assume the standard definitions from propositional and predicate modal logic,
especially the definition of � as ∼�∼. The axiomatic system consists of the basic
tense-logical system and the following axioms:

(L1) �(p ⊃ q) ⊃ (�p ⊃ �q)
(L2) �p ⊃ p
(L3) �p ⊃ ��p
(I2) ∼�∼a
(I3) �(a ⊃ p) ∨�(a ⊃ ∼p)

(BF) �(∀a : φ(a)) ≡ ∀a : �(φ(a))
(�G) �p ⊃ Gp
(�H) �p ⊃ Hp

along with the rule
(R�) If ⊢ p, then ⊢ �p.

(L1), (L2), and (L3) are the Gödel postulates for (S5).
It is obvious that (RG) and (RH) follow from (R�), (�G), and (�H). (I2)

means that any instant proposition should be regarded as possible. (I3) is in
fact a consequence of (RI) together with the consistency and the maximality of
a. (BF) is known as the Barcan formula after Ruth C. Barcan [1946], who was
able to demonstrate it for modal logics which satisfy a few basic conditions. Now
we want to construct a T -operator based on the full logic of instant propositions.
That is, we wish to show how an entire earlier-later calculus can be developed —
one might say boot-strapped — from definitions in the tense-logical theory.

Let W denote the set of instant propositions. For arbitrary elements a and b in
W we introduce the following definitions:

(DB) a < b ≡def �(a ⊃ Fb)
corresponding to ‘the instant a is earlier than the instant b’, and

(DT) T (a, p) ≡def �(a ⊃ p)
corresponding to ‘it is true at time a that p’. Using these assumptions and def-
initions we can prove the theorems (T1–2), as well as (DG) and (DH). In turn,
this means that (W,<, T ) is a B-logical structure (with T defined as above). The
following theses can also be proved in the system:

(DL) ∀a : T (a, p) ≡ �p
(DB) �(b ⊃ Pa) ≡ a < b

(TX1) (∀a : T (a, p)) ⊃ p
(TX2) (∀a : T (a, p)) ⊃ T (b,∀c : T (c, p))
(TX3) T (a, p) ⊃ T (b, T (a, p)).

Taken together, these results show that the T defined above is a suitable T -
operator. In this way formulae of the T -calculus are mixed with well-formed
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formulae from the original tense-logical system. Everything is included in one
single language comprising the T -calculus as well as ordinary tense logic. This
extended language obviously includes a logic of instant propositions. This way of
seeing things is far from the ‘main-stream’ tradition within formal logic, where the
axiomatics of the tense logic is kept strictly separated from semantics (in this case
the T -calculus). But as Prior pointed out there is nothing semantically wrong with
it, if the T -calculus is given an interpretation within tense logic. He also pointed
out that such an interpretation could be ‘metalogically useful’, since in many cases
T (a, p) turns out to be easier to prove than the ‘bare’ tense-logical formula p itself
[Prior, 1967b, p. 89].

Prior has thus shown how we can in fact interpret B-logic within A-logic, namely
in a given modal context in which we can interpret instants as propositions and
quantify over them. In this sense B-logical semantics is absorbed within an entirely
A-logical axiomatics. In Prior’s own words, this means “to treat the first order
theory of the earlier-later relation as a mere by-product of tense logic” [Prior,
2003, p. 273].

He developed this view even further in his fourth grade, in which he suggested
a tense logical definition of the necessity-operator such that the only primitive
operators in the theory are the two tense logical ones: P and F . Prior himself
favoured this fourth grade. It appears that his reasons for wanting to reduce
modality to tenses were mainly metaphysical, since it has to do with his rejection
of the concept of the (one) true (but still unknown) future. If one accepts the
fourth grade of tense-logical involvement, it will turn out that something like the
Peirce solution will be natural, and that we have to reject solutions which involve
crucially the idea of a true or simple future — like the Ockhamistic theory.

In our opinion this idea of treating instants as some kind of world propositions
was one of Prior’s most interesting constructions. We believe that the full strength
of this view has not yet been demonstrated. It is very interesting that all the
basic ideas and ingredients of modern hybrid logic are in fact present in Prior’s
logic. Hybrid logic is currently being further developed and also applied to still
new problem domains. A bit more needs to be said on the idea of hybrid logic.
In 1977, a post-humous Prior-volume titled Worlds, Times and Selves appeared,
edited and completed by Kit Fine. Herein Prior’s ideas on hybrid logic (even
though the term itself was not used) were elaborated in various ways. Then work
on the subject apparently ceased. However, attention was drawn to Prior’s third
grade in 1988 by Peter Øhrstrøm in [1988] and in 1991 by Per Hasle in [1991].
It must be admitted, however, that the potential of Prior’s third grade was still
not fully realised. Although Prior was the first logician who developed the idea
that formulas can be used as terms, it should be noted that the idea of hybrid
languages was explored independently by the Sofia School in the mid-1980s (see
http://www.hylo.net/). However, a good deal of the honour for the last decade’s
development of hybrid logic must be accorded to Patrick Blackburn, who in no
small part gave a spark to its development in [1993] and [1994]. We ourselves
further analysed Prior’s ideas in [Øhrstrøm and Hasle, 1995], whereas Blackburn



442 Peter Øhrstrøm and Per Hasle

and others worked independently on hybrid logic at the same time, and since.
Efforts in the field seem now to converge.

7 CONCLUSION

Prior dealt with many problems within philosophical logic, and it was very im-
portant for him to view logic as strongly related to reality. He firmly rejected
formalism, i.e. the theory that logic is just about symbols and not about things.
He held that logic “is not primarily about language, but about the real world”
[Copeland, 1996, p. 45]. In his opinion only the present exists [Prior, 1972]. In
the same way as only one possible world is real (“the actual world”), Prior main-
tained that only one instant is real (“the present”). In this way, the tenses (past,
present, and future) are essential for the understanding of reality. Prior stated:

So far, then, as I have anything that you could call a philosophical
creed, its first article is this: I believe in the reality of the distinction
between past, present, and future. I believe that what we see as a
progress of events is a progress of events, a coming to pass of one thing
after another, and not just a timeless tapestry with everything stuck
there for good and all [Copeland, 1996, p. 47].

Following this view, Prior stressed that “the tense of a statement must be taken
seriously” [Copeland, 1996, p. 48]. He insisted that this idea should be taken into
account in any attempt to understand reality. In fact, he held that tense logic
is important not only in philosophy, but also in metaphysics and in physics (see
[Øhrstrøm and Hasle, 1995, p. 197 ff.]). As is evident from Past, Present and
Future and several of his other writings, Prior was very interested in the tense-
logical formulation of relativistic physics. He argued that the physicist should
understand that tense-logical questions ought to be taken into serious consideration
in the development of relativistic physics and other parts of the natural sciences
dealing with time. However, he never claimed that questions within physics can
be answered only using tense logic, but he maintained that logic, in fact, can be
applied to the study of nature. He said:

The logician must be rather like a lawyer — not in Toulmin’s sense,
that of reasoning less rigorously than a mathematician — but in the
sense that he is there to give the metaphysician, perhaps even the
physicist, the tense logic that he wants, provided that it be consistent.
He must tell his client what the consequences of a given choice will be
. . . and what alternatives are open to him; but I doubt whether he
can, qua logician, do more [1967b, p. 59].

During the last years of his life Prior became very interesting in the logical
aspect of the notion of the ‘self’ and in what he called ‘Egocentric Logic’. In fact,
a significant formal part of the book Worlds, Times and Selves (which Kit Fine
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edited and completed in 1976) consists in developing the egocentric counterpart to
ordinary tense or modal logic, whose crucial feature is the operator Q “that picks
out those propositions that correspond to instants, worlds or selves, as the case
may be” [Prior and Fine, 1977, p. 8].

Prior’s most important achievement was his establishment of temporal logic as
a research field within philosophical logic. He was indeed the founding father of
modern temporal logic.

In Prior’s view temporal logic should be conceived of as an important tool for
anyone who wants to study the concept of time. In fact, the choice between the
four grades is a choice between four different theories of time.

After a lecture which was in fact just one in a series of lectures on temporal
logic, probably held somewhere in USA, Prior wrote the following addition to the
paper which he was going to read at the next lecture in the series:

A [a person present at the lecture] wants me to relativise my tenses to
dates. It seems to me that behind this request there is a metaphysics.
Behind this request there is the idea that the whole of time is absolutely
there with all these dates, and all events and processes just are, located
in various parts of this giant fixed frame. I do not believe this. I think
this way is to treat all time as if it were already past. I don’t believe
this. I don’t believe that events and processes are; rather events happen
(and then come to have happened) and processes go on (and then come
to have gone on), and even this is an abstraction — the basic reality is
things acting. But even in this flux there is a pattern, and this pattern
I try to trace with my tense-logic; and it is because this pattern exists
that men have been able to construct their seemingly timeless frame
of dates. Dates, like classes, are a wonderful and tremendously useful
invention, but they are an invention; the reality is things acting [Prior,
Unpublished a, p. 1].

Prior expressed his own theory in the following way:

Time is not an object, but whatever is real exists and acts in time . . .
But this earlier-later calculus is only a convenient but indirect way of
expressing truths that are not really about ‘events’ but about things
. . . [Copeland, 1996, p. 45].

He initiated a number of interesting studies within this new field and he clearly
demonstrated that temporal logic can be understood as having fundamental rela-
tions to essential problems in physics, philosophy, and theology. He even seems to
have realised that temporal logic could turn out to be very useful within computer
science. In the chapter on modern temporal logic (in this volume) we shall discuss
the further development in the field, which Prior founded in the 1950s and the
1960s.
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MODERN TEMPORAL LOGIC:

THE PHILOSOPHICAL BACKGROUND

Peter Øhrstrøm and Per Hasle

1 INTRODUCTION

Inspired by Kantian thinking, the Irish mathematician William Rowan Hamilton
found that just as geometry can be understood as a pure mathematical study of
space, a similar pure mathematical study of time ought to exist. The research pro-
gramme emerging from this conviction can be described as an attempt to establish
algebra as the ‘science of pure time’. Hamilton encountered many difficulties in
that endeavour. In fact, there are several indications that he actually gave up the
fundamental idea himself [Øhrstrøm, 1985].

Another kind of algebraic approach to the study of time was carried out by
George Boole (1815–1864). He was probably the first 19th century logician to in-
clude the concept of time explicitly in his theories of logic and reasoning (although
only in a few passages). Some of his interesting considerations regarding the re-
lation between time and logic can be found in the manuscript entitled Sketch of
a Theory and Method of Probabilities Founded upon the Calculus of Logic, which
Boole seems to have written between 1848 and 1854. Boole here used symbols
x, y, z corresponding to elementary propositions such as ‘The Thermometer falls’
and ‘It will rain’. In fact he regarded “the symbols as representing the times in
which the elementary propositions to which they refer are true” [Boole, 1953, p.
146]. Boole obviously held that a proposition refers to one or more durations. If
two propositions refer to the duration x and the duration y, then the conjunction
between two propositions, xy, corresponds to the intersection between the two
durations. Boole regarded the numerical constant 0 as “the representative of the
nothing of time or never” and the constant 1 as representing “the Universal of
time” [Boole, 1953, p. 146].

Charles Sanders Peirce (1839–1914) found the algebraic approach to time insuf-
ficient. In his New Elements of Mathematics, he specifically rejected Hamilton’s
programme making the following observation:

Hamilton called algebra the Science of Time. But the most remarkable
characteristic of time, namely that the passage from the past to the
future is qualitatively different from the passage from the future to the
past is not represented in algebra [Peirce, 1976, p. 9].
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But how can we find an appropriate alternative to the algebraic approach? In
particular: How can the temporal asymmetry between the past and the future be
incorporated in a system of symbolic logic in a satisfactory manner? Peirce was
certainly aware of the difficulties to which the incorporation of time within logic
would give rise. He was, however, certain that such difficulties could in principle
be overcome although the problem is difficult to solve. Peirce wrote:

Time has usually been considered by logicians to be what is called
‘extra-logical’ matter. I have never shared this opinion. But I have
thought that logic had not yet reached the state of development at
which the introduction of temporal modifications of its forms would
not result in great confusion; and I am much of that way of thinking
yet [1931 1958, 4.523].

As it is described in another chapter in this volume, modern temporal logic was
first shaped by A.N. Prior (1914–1969) as a detailed construction within philosoph-
ical and symbolic logic. Since Prior, logicians in general have considered ‘temporal
logic’ to be a rather well established notion. However, we may as well realise from
the beginning that the term ‘temporal logic’ is not so easily delimited. Firstly,
‘temporal logic’ is inseparable from a study of the modalities possibility and neces-
sity, as was indeed signalled by the very title of the work which founded modern
‘temporal logic’, namely A.N. Prior’s Time and Modality from [1957]. Moreover,
the philosophical issues of free will and determinism versus indeterminism are obvi-
ously and inevitably related to questions concerning time and modality. Secondly,
‘temporal logic’ also can be seen as a position within the Philosophy of Logic. It
was Prior’s view that, properly understood, all of logic is really temporal, and that
logical languages without some kind of temporal operators were really devoted just
to a proper subset of logic. Thirdly, ‘temporal logic’ is studied as well as applied
within other fields, especially within Computer Science and Logical Linguistics.
Such studies also bring and have brought some results of direct importance in
philosophical logic. With these caveats in mind, we shall now look at ‘temporal
logic’ as a branch of philosophical logic.

Prior primarily wanted to clarify a number of conceptual relations regarding
temporal notions and to contribute to the solution of some important philosoph-
ical problems concerning the nature of time (including some rather existential
questions regarding human life). In so doing, Prior formulated a number of log-
ical systems which were later studied in more detail and also further elaborated
by several mathematicians and computer scientists who in many cases apparently
did not know very much about the philosophical background of their enterprise.
However, some writers in modern temporal logic obviously have been aware of
the philosophical background of temporal logic, and they have in many cases con-
tributed significantly to further clarifying the philosophical problems in question.
The aim of this chapter is neither to describe the mathematical development of
modern temporal logic, nor to describe the study of temporal logic in relation to
computer science. For presentations of such technical issues we refer to [Gabbay et
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al., 2000]. Rather, it is our intention in this chapter to discuss the continuous work
in modern temporal logic focusing on the philosophical problems which originally
inspired A.N. Prior in his pioneering work within temporal logic. This does not
mean that the technical results are irrelevant for the philosophical investigation.
On the contrary, many technical results turn out to be very important and in-
deed essential for the work with the philosophical problems which temporal logic
was originally designed to treat. However, our focus will be on the philosophi-
cal motivation and the various conceptual aspects of the formalisms of modern
temporal logic. Construed in this manner, temporal logic turns out to be a very
nice illustration of how philosophy and mathematical logic can both benefit from
a constructive symbiosis.

The strength of philosophical logic lies in its self-imposed obligation to take
everyday language and common sense reasoning into serious consideration. For
this reason it is natural that the first detailed theory of tenses developed in philo-
sophical logic was based on a study of the grammatical tenses of natural language
(see [Reichenbach, 1947]). However, neither everyday language nor common sense
reasoning are unambiguous quantities. They certainly greatly depend on physical
and metaphysical assumptions.

In his theory Hans Reichenbach (1891–1953) suggested a three-point structure
for tenses [Reichenbach, 1947]. However, as we shall see in section 2, A.N. Prior
clearly demonstrated that Reichenbach’s theory fails to solve important problems
concerning temporal notions in a satisfactory manner. On the other hand, it is
also clear that Prior’s work with Reichenbach’s and other early contributions to
the study of tenses was useful in the development of his own theory of time and
tense.

Reichenbach’s theory of a three-point structure for tenses was not the first
contribution to analysis of time and tense in the 20th century. In his famous paper,
The Unreality of Time, from [1908] J.M.E. McTaggart (1866–1925) offered an early
discussion of time and tense. However, McTaggart’s ideas had no significant role to
play before Prior published his analysis of the paradox, and it would be misleading
to see these early ideas as a proper theory of tenses. As we shall see in section
3, the analysis of McTaggart’s so-called paradox became very important in the
philosophical debate about time in the 1970s and later. In particular, the debate
has turned out to be crucial when it comes to an understanding of the relations
between time and tense.

In section 4 we shall discuss some of the tense logical systems which Prior
and his followers suggested. Some of the systems will be presented as axiomatic
systems and others will be introduced referring to semantical models. The relations
between these two approaches will also be discussed.

In section 5 we are going to discuss the logic of future contingency. There can be
little doubt that this theme is the most famous problem within the philosophical
logic of time and tense.
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During the 1960s, tense logic became a well established subject. However,
some very interesting results obtained by Hans Kamp questioned the conceptual
foundation of tense logic. According to Kamp’s results the notions of ‘since’ and
‘until’ might be seen as even more fundamental than Prior’s tense operators (past,
present, and future). Prior was nevertheless able to defend his view. In section 6
we shall consider the some of the essential points in this debate.

Some of the critics of the Priorean approach to temporal logic maintained that
the notion of instants conceived as durationless instants has to be rejected as far
from reality and truth. On the contrary, they have held that temporal logic should
be constructed as a durational logic according to which propositions are not true or
false at instants but according to which propositions are true or false over various
durations in time. In section 7 we shall present some basic ideas in such durational
logics.

In section 8 we shall turn to the relation between temporal logic and physics.
One very common criticism of Priorean tense-logic has been based on various
interpretations of the special and the general theories of relativity. Several writers
have argued that Priorean tense-logic contradicts the findings of these physical
theories, and that the basic tense-logical position for this reason has to be rejected.
Others have maintained that a real contradiction does not necessarily arise.

In the section 9 we are going to discuss various ideas regarding the incorporation
of the notions of agency and time. We shall discuss some modern attempts at
creating a theoretical integration of the notions of knowledge, obligation, and
time.

2 AN EARLY THEORY OF TENSES

In his Elements of Symbolic Logic [1947], Hans Reichenbach suggested a description
of tenses which was to have a significant impact. Reichenbach advocated the view
that in order to understand how tenses work we must consider not only the time
of utterance, and the time of the event in question, but also a ‘point of reference’.
It would be fair to say that this is the first detailed theory of tenses formulated
in modern logic and philosophy. It should be added, however, that according to
Reichenbach himself, [1947, p. 290] the idea of a three-point structure for tenses
had already been suggested by the great Danish linguist Otto Jespersen (1860–
1943). But Reichenbach certainly elaborated the idea in much detail, and as we
have argued elsewhere there are significant differences between Jespersen’s ideas
and Reichenbach’s detailed theory of tenses [Øhrstrøm and Hasle, 1995, pp. 158
ff.].

To understand the idea of this three-fold distinction, it is probably best first to
consider the future perfect, as in ‘I shall have seen John’. This sentence clearly
speaks of a certain event, namely ‘my seeing John’; but it is also clear that it directs
us to a future time different from the time of the (expected) event — namely a time
prior to which the event has already occurred. Thus, we must distinguish between
the time of the event and the time to which the sentence refers. Reichenbach called
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the former ‘point of the event’ and the latter ‘point of reference’, symbolised by E
and R, respectively. Furthermore, both must of course be determined with respect
to the time of utterance, the ‘point of speech’ S.

Armed with these distinctions Reichenbach could give the following diagram for
the future perfect:

A quite similar analysis can be given for the past perfect ‘I had seen John’.
These two tenses, then — the past perfect and the future perfect — establish
the prima facie case for distinguishing between E, S, and R in the description of
tenses. However, if the difference between E and R is crucial in explaining the past
perfect and the future perfect, it is precisely the coincidence between one or more
of E, R, and S, which is crucial in explaining some of the other tenses. Indeed,
what particularly impressed linguists was the elegant and concise account of the
difference between the simple past and the present perfect which Reichenbach
could give on the basis of the three-fold distinction.

In grammars of English, six tenses are standardly recognised; the diagrams for
each of these can be seen in this figure (cf. [Reichenbach, 1947, p. 290]):

On this account, the crucial difference between the simple past and the present
perfect is determined by the relative ‘position’ of the reference point. In the case of
the simple past, the diagram clearly suggests that the point of reference coincides
with the point of the event. Thus the sentence ‘I saw John’ clearly refers to the
past, but it makes no discernible distinction between the time of the event — E —
and the time from which this event is seen, i.e. the reference time R. In the case
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of the present perfect, the event is also situated in the past, but here, the point of
reference coincides with the point of speech.

Reichenbach’s system makes a rather strong prediction about the notion of
tenses, logically as well as grammatically. If tenses are in general to be construed
as a three-point structure, the possible arrangements of this kind of structure must
exhaust the set of possible tenses. In principle, Reichenbach’s systematisation
allows for 13 different tenses; he only regarded nine of these as significantly different
(see [Reichenbach, 1947, p. 296]).

The fact that Reichenbach considered the relative positions of E and S as basi-
cally irrelevant explains a slight oddity about his diagram for the future perfect.
The sentence ‘I shall have seen John’ would also seem to be true even if the speaker
has in mind an event which has already occurred — that is, the structure would
be E—S—R (this is perhaps a less natural reading, but quite possible). However,
according to Reichenbach there is no important difference between E—S—R and
S—E—R. Indeed, in summing up the possible tenses he explicitly aligns

S—E—R
S, E—R
E—S—R

under the common heading of ‘future perfect’. A similar account is given for
R—E—S, R—S—E, and R—S, E, which he collects under the heading ‘posterior
past’. None of the six traditional tenses corresponds to posterior past, but it can
be stated by some transcription, as in ‘I was to see John once more’ or ‘the letter
was to cause her great anxiety’.

For all its intuitive elegance, it is clear that Reichenbach’s formalism is very
limited. It is certainly not a complete calculus, but at best it could be seen as
a suggestion of some guidelines along which such a system could be constructed.
However, even when measured on its own terms the system harbours severe diffi-
culties.

Reichenbach makes a sharp distinction between ‘point of reference’ and ‘point of
event’. This is the fundamental idea on which the general viability of Reichenbach’s
systematisation rests — as well as its accounts of the individual tenses. One who
clearly saw this was Prior, who in [1967] discussed the precursors of tense logic.
Herein he gave Reichenbach some credit for his observations, but then went on to
state that “Reichenbach’s scheme, however, will not do as it stands; it is at once
too simple and too complicated” [1967, p. 13]. The main target of Prior’s attack
was exactly the sharp distinction between ‘point of reference’ and ‘point of event’.
Consider a complicated future tense like this one:

‘I shall have been going to see John’.

This sentence is perhaps not very natural, but it is grammatically correct, and
it does express a tense-relation for which we must be able to account. It is not
too hard to see that to describe this tense, we in fact need two points of reference.
Prior’s ‘Reichenbachian’ diagram for this case looks like this:



Modern Temporal Logic: The Philosophical Background 453

So, for such a tense the Reichenbachian framework would have to be extended to
allow for two points of reference; and in general, an arbitrary number of ‘reference
points’ might be needed. Prior could therefore observe that

. . . once this possibility is seen, it becomes unnecessary and misleading
to make such a sharp distinction between the point or points of refer-
ence and the point of speech; the point of speech is just the first point
of reference. (This, no doubt, destroys Reichenbach’s way of distin-
guishing the simple past and the present perfect; but that distinction
needs more subtle machinery in any case.) [1967, p. 13]

It is crucial for Reichenbach’s system that three points of time should always be
taken into consideration. But we have just seen that this may sometimes be too
little; and, as the quotation also suggests, it is sometimes too much. For in the
account of, say, the simple past — in terms of an R, E—S diagram, where R = E
— why should we accept that there is really more than two temporal indicators
involved? And even more so, why should we accept such a thing for the present
S, R, E (where S=R=E)? Only cogent logico-linguistic reasons should make one
accept that there are three temporal indicators at play in these cases. But referring
to the fact that Reichenbach’s account apparently explains the difference between
the simple past and the present perfect is at best circumstantial evidence; for it
explains this difference only if the distinctions are valid beforehand.

Incidentally, these observations also show that the Reichenbach framework re-
ally ought to distinguish between on one hand the temporal indicators — or con-
cepts — of ‘event’, ‘reference’ and ‘speech’, and on the other hand the points of
time which they ‘indicate’. Thus for instance, if the event E occurs at t, we might
say that τ(E) = t. Only thus can a diagram like

τ(R),τ(E)—τ(S)

make a meaningful distinction between more than two indicators. Here, R and E
are co-extensive with respect to their time-parameter, but they must be assumed
to be intensionally different (i.e. τ(R) = τ(E), but E �=R).

Reichenbach was a brilliant mind, and many of his results — also on the philos-
ophy of time — have had lasting value. Fairness demands that this be acknowl-
edged, and in the case of his ‘three-point structure’ it must at least be admitted
that for its day it was an elegant and advanced proposal. But its real deficiencies
together with its very success made it counter-productive — Prior considered Re-
ichenbach’s work in this respect to be an impediment rather than a help in the
development of tense logic.
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3 MC TAGGART’S PARADOX (A- AND B-SERIES)

The distinction between the logic of tenses and the logic of earlier and later (in
terms of instants or in terms of durations) is essential for the understanding of
modern temporal logic. This distinction was introduced by J.M.E. McTaggart
in his famous paper, The Unreality of Time [1908]. In this paper McTaggart
suggested the distinction between the so-called A- and B-series conceptions of
time. According to the A-series conception, the tenses (past, present, and future)
are the key notions for a proper understanding of time, whereas the earlier-later
calculus is secondary. According to the B-series conception time is understood
as a set of instants organized by the earlier-later relation, whereas the tenses are
secondary.

As mentioned in our chapter on A.N. Prior’s logic elsewhere in this volume, the
founder of temporal logic became very interested in the writings of McTaggart,
in particular when he realised that McTaggart had offered an argument to the
effect that the B-series presupposes the A-series rather than vice versa. Prior was
particularly concerned with McTaggart’s argument against the reality of tenses.

McTaggart’s A-series conception is based on the notions of past, present, and
future, as opposed to a ‘tapestry’ view on time, as embodied by the B-series con-
ception of time. He explicitly identified the dichotomy between the A-series and
the B-series. He himself arrived at the conclusion that A-concepts are more fun-
damental than B-concepts. He did not, however, use this analysis as an argument
in favour of A-theory. On the contrary, he used it for a refutation of the reality of
time! He argued that A-concepts give rise to a contradiction — which has become
known as ‘McTaggart’s Paradox’. Due to this putative contradiction within the
fundamental conceptualisation of time, he went on to claim that time is not real.

The core of McTaggart’s argument is that the notions of ‘past’, ‘present’ and
‘future’ are predicates applicable to events. The three predicates are supposed to
be mutually exclusive — any concrete event happens just once (even though a
type of event may be repeated). On the other hand, any of the three predicates
can be applied to any event. In a book on history, it makes sense to speak of ‘the
death of Queen Anne’ as a past event — call it e1 — but in a document written
in the lifetime of Queen Anne, it could well make sense to speak about her death
as a future event. Apparently this gives rise to an inconsistency, since how can
e1 be both past and future — and present as well, by a similar argument? The
answer must be that there is another event e2, relative to which for instance e1 has
been present and future, and is going to be past. Now, the same kind of apparent
inconsistency can be established with respect to e2, and the problem can only be
solved by introducing a new event e3, for which a new apparent inconsistency will
arise etc. — which seems to mean that we have to go ad infinitum in order to
solve the inconsistency. The consequence appears to be that the inconsistency can
never be resolved.

Prior, however, pointed out a basic flaw in McTaggart’s argument. According to
his view, the contradictions arise from an attempt at forcing the A-series notions
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into a B-series framework [1967, p. 6]. Prior argued that events may be described
in terms of instant-propositions, of which it also holds that they ‘happen’, i.e. are
true, exactly once. Using a as an arbitrary instant proposition, the claim that the
three tense-logical predicates are mutually exclusive can be formulated as:

a ⊃ (∼Pa ∧ ∼Fa)
Pa ⊃ (∼a ∧ ∼Fa)
Fa ⊃ (∼a ∧ ∼Pa).

Here Pa stands for ‘it has been the case that a’, whereas Fa stands for ‘it will
be the case that a’. The fact that any event can be past, present, and future, can
be expressed in the following way, where the I-operator stands for ‘the present’:

Ia ⊃ (PFa ∧ FPa)
Pa ⊃ (PIa ∧ PFa)
Fa ⊃ (FPa ∧ FIa).

But no contradiction follows from these 6 theses. It is thus revealed that Mc-
Taggart’s paradox is in no way a cogent argument against the A-series notions, let
alone the reality of time. Prior concluded that McTaggart’s argument could not
shake his fundamental belief in the ontological status of the tenses. Prior main-
tained that tense logic embodied a crucial ontological and epistemological point of
view according to which “the tenses (it will be, it was the case) are primitive; only
present objects exist” [Prior and Fine, 1977, p. 116]. To Prior, the present and
the real were one and the same concept. Shortly before he died, he formulated his
view in the following way:

. . . the present simply is the real considered in relation to two par-
ticular species of unreality, namely past and future [Prior, 1972, p.
320].

During the 20th century there has been much debate concerning the validity of
McTaggart’s argument and various reformulations of it. Some authors like David
Mellor have maintained that there is a valid version of the argument, which should
in fact force us to reject the tense-logical view of time, i.e. the A-series conception.
According to Mellor, nothing in reality has tenses and “the A-series is disproved
by a contradiction inherent in the idea that tenses change” [Mellor, 1981, p. 89].
Others have followed Prior in holding that all versions of McTaggart’s argument
are flawed. In his careful analysis of McTaggart’s Paradox, William Lane Craig
[2000, p. 169 ff.] has argued that no contradiction need be involved in a proper
formalization of the A-series, and it may be concluded that McTaggart’s argument
is simply misdirected as a refutation of the tensed theory of time [Craig, 2000, p.
207].

As mentioned above, McTaggart’s paradox can be solved if iterated tenses like
PF and FP are introduced. It may be seen as part of McTaggart’s argument that
in this way we shall need still longer iterated tenses (like PPF , FFPF , PPFFP ,
. . . ) in order to solve the apparent contradiction, and we thereby have to deal with
the problems of an infinite regress of this kind. It is, however, not obvious that
any serious logical problem would follow from such an infinite regress. In addition,
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as Richard Sylvan [1996, p. 122] has argued, the construction of iterated tenses in
response to McTaggart’s argument will probably not give rise to a proper infinite
regress since “expressivewise the regress stops” as a consequence of the logical
properties of the tense logic in question. The point is, that it is likely to be the
case in all relevant systems that the number of non-equivalent (iterated) tenses
is finite. This statement may be seen as an generalisation of Hamblin’s famous
fifteen-theorem for dense time (see [Øhrstrøm and Hasle, 1995, p. 176 ff.]).

It should be mentioned that the A-series versus B-series discussion has been
somewhat “de-dramatised” within ‘temporal logic’ over the past few decades, prob-
ably because the development within ‘temporal logic’ and so-called hybrid logic
(see [Blackburn et al., 2001]) has made it perfectly possible for the two basic sets
of notions to co-exist within one and the same language (as already suggested).
Nevertheless, from a philosophical point of view this question concerning the “na-
ture” of time is equally important today. Moreover, since we approach ‘temporal
logic’ as a branch of philosophical logic, it is of paramount importance to identify
the underlying assumptions, respectively the possible philosophical import of our
formalisms — and these two ways of expressing temporal relations are what consti-
tutes ‘temporal logic’. In this context it is worth noting that the very development
which has de-dramatised the difference between the two approaches — and in par-
ticular the development of hybrid logic — was in fact initiated and founded by
A.N. Prior in [1968] and [2003, ch. XI] (and anticipated in [1967]) in order to show
that a B-theory could be embedded within an A-theoretical language and hence
that it was possible to maintain the primacy of A-theory, should one so wish (as
Prior indeed did).

It seems clear from the extensive debate that a valid version of McTaggart’s ar-
gument can only be established if some extra-philosophical assumptions are made.
These additional assumption can all be questioned, but none of them represent a
priori impossible positions. For this reason, it may be concluded that it is still log-
ically possible to hold any of the two main positions. In fact, as Prior has argued,
various relevant variations of the positions should be taken into consideration. As
explained in the chapter on Prior’s logic, he suggested a distinction between four
possible grades of tense-logical involvement corresponding to four different views
of how to relate the A-notions (past, present and future) to the B-notions (‘earlier
than’, ‘later than’, ‘simultaneous with’):

1. The B-notions are more fundamental than the A-notions. Therefore, in
principle the A-notions have to be defined in terms of the B-notions.

2. The B-notions are just as fundamental as the A-notions. The A-notions
cannot be defined in a satisfactory manner in terms of the B-notions (and
vice versa). The two sets of notions have to be treated on a par.

3. The A-notions are more fundamental than the B-notions. There is also a
primitive and fundamental notion of (temporal) possibility. In principle the
B-notions have to be defined in terms of the A-notions and the primitive
notion of temporal possibility.
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4. The A-notions are more fundamental than the B-notions. In principle the
B-notions have to be defined in terms of the A-notions. Even the notion of
temporal possibility can be defined on terms of the A-notions.

Understood in this way, it is obvious that Prior’s four grades of tense-logical in-
volvement (see [Øhrstrøm and Hasle, 1995, p. 176 ff.]) represent four different
views of time and also four different foundations of temporal logic.

The problem we address in the debate rooted in McTaggart’s paradox and the
relation between the A- and B-notions is clearly related to the problem of truth in
temporal logic. What makes a statement like, ‘It is now four o’clock’, true or false?
As Poidevin and MacBeath [1993, p. 2] have clearly described in their account of
modern philosophy of time, this question can be answered in two different ways.
The A-theorists say that the statement “It is now four o’clock” is true if and
only if the time we have given the name “four o’clock”, is in fact present. The
B-theorists, on the other hand, claim that there are no tensed facts. According
to their view the statement “It is now four o’clock” is true if and only if it is the
case that the utterance is made at four o’clock. Similarly, the A-theorists claim
that the statement “Julius Caesar was killed” is true because Julius Caesar was
in fact killed, whereas the B-theorists say that this statement is true because the
time of utterance is after the death of Julius Caesar. In this way the A-theorists
hold that tensed statements have tensed truth-conditions, while the B-theorist find
that tensed sentences are made true or false by tenseless truth-conditions. In their
book, Poidevin and MacBeath [1993] have presented A.N. Prior and D.H. Mellor
as prominent representatives of respectively the A- and the B-view.

It may be useful to consider the formal aspects of the A- and B-notions a little
closer. In order to do so we first of all have to deal with the general features of
the tense-logical formulae which are essential for the formulation of the A-series
conception. These formulae can be introduced inductively by the following rules
of well formed formulae (wff):

(i) any propositional variable is a wff
(ii) if φ is a wff, then ∼φ is also a wff
(iii) if φ and ϕ are wffs, then (φ ∧ ϕ) is also a wff
(iv) if φ is a wff, then Fφ is also a wff
(v) if φ is a wff, then Pφ is also a wff
(vi) nothing else is a wff.

From here an A-theorist would probably like to add a formalism of instant propo-
sitions. The B-theorists, on the other hand, would probably emphasise the need
for truth-conditions established in terms of a model M = (TIME,<, v), where
TIME is a set of temporal elements like instants or durations, < is a binary re-
lation on TIME (corresponding to ‘before’), and v is a valuation function from
the cross product of TIME and the set of propositional variables to {0, 1}. The
expression v(t, p) is said to be the truth-value of the propositional variable p at t.
Given such a model the notion of truth for any tense-logical formula can be given
by the following inductive definition:

M, t |= p if v(t, p) = 1
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M, t |= ∼φ if not M, t |= φ
M, t |= (φ ∧ ϕ) if M, t |= φ and M, t |= ϕ
M, t |= Fφ if M, t ′ |= φ for some t ′ with t < t ′

M, t |= Pφ if M, t ′ |= φ for some t ′ with t ′ < t.
If M, t |= φ the proposition φ is true at t according to the model M . The

B-theorist will emphasise that in this way truth of the tense-logical formulae of
the object language is defined in terms of a tenseless metalanguage. For this
reason, the B-theorist will point out that the A-language clearly depends on the
B-language.

Obviously, the A-theorist has to follow another line of argumentation. It seems
that at least two options are open for him. The first possibility was explicitly for-
mulated by A.N. Prior, according to whom there is no sharp distinction between
an object language and a metalanguage. Using what is now called a hybrid logic in
which the instants are just a special kind of propositions Prior was able to define
T (t, φ) (standing for ‘φ is true at t’) for any tenselogical formula, φ, in terms of
the tenselogical language itself (see [Braüner, 2002a]). The second possibility for
the A-theorist is the use of so-called homophonic theories of truth in which the
constructions of the object language are interpreted in terms of analogous con-
structions of the metalanguage. Torben Braüner [2002a] has demonstrated that
tense logics permit the existence of such a homophonic theory of truth, provided
that they are stronger than the rather basic tense-logical system Kb (one of the sys-
tems with which we shall deal in next section). As pointed out by Torben Braüner
[2002b], A.N. Prior himself was clearly aware of the possibility of a homophonic
theory of truth as it is evident from the following quotation:

The function of the operator F , in short, is that of forming a future-
tense statement from the corresponding present-tense one, and the
future-tense statement is not about the present tense one, but is about
whatever the present-tense statement is about. . . . But although the
statement ‘It will be the case that Professor Carnap is flying to the
moon’, that is, ‘Professor Carnap will be flying to the moon’, is not
exactly a statement about the statement ‘Professor Carnap is flying to
the moon’, we may say that the future-tense statement is true if and
only if the present-tense statement will be true [Prior, 1957, pp. 8–9].

However, it seems that Prior never attempted to work out the details of a homo-
phonic theory of truth.

In addition to the various logical approaches to McTaggart’s argument, there
may be alternative perspectives which may give rise to other kinds of considerations
involving new ideas of time and reality. Thus Kit Fine [2005] has suggested a
modernised approach to McTaggarts argument. According to Fine the argument
can be reconstructed as being based on the following four assumptions:

Realism: Reality is constituted (at least, in part) by tensed
facts.
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Neutrality: No time is privileged, the tensed facts that consti-
tute reality are not oriented towards one time as
opposed to another.

Absolutism: The constitution of reality is an absolute matter,
i.e. not relative to a time or other form of temporal
standpoint.

Coherence: Reality is not contradictory, it is not constituted by
facts with incompatible content.

The argument states that these assumptions, when taken together, lead to in-
consistency. The B-theorist will of course have no problems in rejecting the above
version of realism (i.e. the idea of reality constituted by tensed facts). The stan-
dard A-theorist will following Prior reject the neutrality assumption. In his paper
Kit Fine [2005] has explored the possibilities of giving up either ‘absolutism’ or
‘coherence’. In both cases we will be left with a rather complicated temporal logic.
For this reason, it seems obvious to investigate Kit Fine’s reasons for saying that
the A-theorist should accept ‘neutrality’. It appears that the main reason has to
do with problems formulated on the basis of the special theory of relativity. We
are going to deal with these problems in section 8.

4 THE LOGIC OF TIME AND TENSE

Many logicians and philosophers dealing with the concept of time have concen-
trated on the study of the features of time conceived as linear structure. They
have understood time as an ordered set of instants, and, as we shall see in sec-
tion 7, sometimes also as a corresponding set of partially ordered durations (or
intervals). Conceived as a system of instants time is viewed as an ordered set
(TIME,=, <), where TIME is a set of instants, and where = and < are bi-
nary relations on TIME corresponding to identity and before/after. A number of
interesting properties of this structure may be considered:

(Z1) ∀x ∈ TIME : ∼(x < x) (irreflexivity)
(Z2) ∀x, y ∈ TIME : x < y ⊃ ∼(y < x) (asymmetry)
(Z3) ∀x, y, z ∈ TIME : (x < y ∧ y < z) ⊃ x < z (transitivity)
(Z4) ∀x ∈ TIME : ∃y ∈ TIME : x < y (non-ending)
(Z5) ∀x ∈ TIME : ∃y ∈ TIME : y < x (non-beginning)
(Z6) ∀x, y ∈ TIME : ∃z ∈ TIME : x < y ⊃ (x < z ∧ z < y)

(density)
(Z7) ∀x, y, z ∈ TIME : (x < z∧y < z) ⊃ (x < y∨y = x∨y < x)

(backwards linearity)
(Z8) ∀x, y, z ∈ TIME : (z < x∧ z < y) ⊃ (x < y∨y = x∨y < x)

(forwards linearity)
(Z9) ∀x, y ∈ TIME : (x < y ∨ y = x ∨ y < x) (connectedness).

It is possible to formulate many other possible properties of this kind (see [Burgess,
1984; Benthem, 1991; Rescher and Urquhart, 1971]). It is an open question which
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of these many properties we should actually accept in our description of the struc-
ture of time. It is in fact very likely that this question cannot be answered defini-
tively, since the answer may depend on the context and the purpose of the de-
scription.

Based on such a structure of instants (TIME,=, <) we may introduce the idea
of truth at an instant, T (t, p) (read: p is true at t), where t is an instant in TIME,
and p is a proposition from ordinary propositional logic.

(T1) T (t, ∼p) iff not T (t, p)
(T2) T (t, p ∧ q) iff T (t, p) & T (t, q)

Here we have made a distinction between two kinds of conjunction i.e. ‘∧’ in
the object language and ‘&’ in the meta-language. Similarly, there is a difference
between two kinds of negations, ‘∼ ’ and ‘not’. In the following we shall ignore this
difference, since it will always be obvious how the formulae should be understood.

In order to introduce tenses, we use Prior’s symbols and define Pq (i.e. ‘it has
been the case that q’) and Fq (i.e. ‘it will be the case that q’) as

(T3) T (t, P q) iff ∃s ∈ TIME : s < t ∧ T (s, q)
(T4) T (t, F q) iff ∃s ∈ TIME : t < s ∧ T (s, q).

Defining Gq (i.e. ‘it will always be the case that q’) as ∼F ∼q and Hq (i.e. ‘it has
always been the case that q’) as ∼P ∼q we find

(T5) T (t, Gq) iff ∀s ∈ TIME : t < s ⊃ T (s, q)
(T6) T (t,Hq) iff ∀s ∈ TIME : s < t ⊃ T (s, q).

With these definitions and a number of properties valid for the structure of instants
we may study the logic of tenses as a by-product of the logic of ‘truth at an instant’.

However, all this presentation is mainly a B-logical approach to temporal logic.
A proper A-logical approach would start with the study of tenses. For this reason
Prior in many of his writings concentrated on the study of tense-logical systems.

Any A-logic, i.e. tense logic, is based on the primitive tense-operators P and
F ; its axiomatisation is often formulated in terms of the derived operators H and
G (as we have pointed out earlier, H and G are inter-definable with P and F ,
respectively, so either pair of operators can in fact be chosen as primitives). A
very fundamental system has been named Kt (where the ‘K’ is probably in honour
of Saul Kripke). This tense logic can be presented as an axiomatic system with
the following axiom schemes [Prior, 1967, p. 176]; [McArthur, 1976, p. 17 ff.]:

(A1) p, where p is a tautology of the propositional calculus
(A2) G(p ⊃ q) ⊃ (Gp ⊃ Gq)
(A3) H(p ⊃ q) ⊃ (Hp ⊃ Hq)
(A4) p ⊃ HFp
(A5) p ⊃ GPp.

In (A2)–(A5), p and q are arbitrary, well-formed formulas. All axioms are said
to be immediately provable, while other theses can be proved by inference. In Kt,
Modus Ponens is the basic rule of inference:
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(RMP) If ⊢ p and ⊢ p ⊃ q, then ⊢ q.

In addition we have two rules, which introduce tense-operators:

(RG) If ⊢ p, then ⊢ Gp.
(RH) If ⊢ p, then ⊢ Hp.

From Kt, other tense logical systems can be defined by adding more axioms to
the above list, (A1–A5), as we shall see in the following.

It is easy to verify that the axioms (A1–A5) are true at any t for any model
M = (TIME,<, v), and that the same holds for all wff’s which can be proved in
Kt. This means that the system is sound. However, it can be demonstrated that
the opposite (i.e. that the system is complete) also holds i.e. if a wff is true at any
t for any model M = (TIME,<, v), then it is also provable in Kt (see [Benthem,
1991, p. 165 ff.]. Soundness and completeness of the system Kt can be summarised
in the following way:

Kt ⊢ φ if and only if M, t ′ |= φ for any model M = (TIME,<, v),
and any t ∈ TIME.

Several other tense-logical systems have been studied (see [Rescher and Urqu-
hart, 1971], [McArthur, 1976], [Benthem, 1991], [Øhrstrøm and Hasle, 1995]). If
we to Kt add the axioms

(A6) FFp ⊃ Fp
(A7) FPp ⊃ (Pp ∨ p ∨ Fp)

we obtain the system Kb. It is interesting that it possible to prove the ‘mirror
image’ of (A6) within this system (see [McArthur, 1976, p. 26]) i.e.

Kb ⊢ PPp ⊃ Pp.
It can be demonstrated to be sound and complete with respect to all models
(TIME,=, <, v) with transitivity (Z3) and backwards linearity (Z7) (see [Rescher
and Urquhart, 1971, p. 74 ff.]). For this reason Kb is understood as a system of
branching time i.e. the systems allows for alternative futures, but not for alterna-
tive pasts.

Normally, the axioms of Kb are presented with the following axiom instead of
(A7) which is more directly than (A7) appealing to the idea of backwards linearity
(i.e. no ‘alternative pasts’):

(A7x) (Pp ∧ Pq) ⊃ (P (p ∧ q) ∨ P (p ∧ Pq) ∨ P (Pp ∧ q)).

It is easy to prove (A7) from (A1–A6)+(A7x). However, it is also possible to
demonstrate (A7x) from (A1–A7). The proof can be found in [Øhrstrøm and
Hasle, 1995, p. 207 ff.] and its essential ideas in fact can be traced back to A.N.
Prior’s pioneering work in tense logic.

The system, Kl which corresponds to linear time can be obtain by the addition
of the following axiom to Kb:

(A8) PFp ⊃ (Pp ∨ p ∨ Fp).
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Similar to what is said about (A7) above, it should be mentioned that (A8) works
just as well as a system with the following axiom in its place:

(A8x) (Fp ∧ Fq) ⊃ (F (p ∧ q) ∨ F (p ∧ Fq) ∨ F (Fp ∧ q)).

In order to obtain a tense logical system, Kld∞, corresponding to non-beginning,
non-ending, dense linear time, we need the following axioms:

(A9) Gp ⊃ Fp
(A10) Hp ⊃ Pp
(A11) Fp ⊃ FFp.

Obviously, (A11) corresponds to the denseness, and it can be demonstrated that
this property could just as well have been obtained by the axiom:

(A11x) Pp ⊃ PPp.

Often logicians have wanted to extend the tense logical language introducing
the metrical tenses, P (x) and F (x), which stand for expressions like ‘it has been
the case x time units ago that . . . ’ and ‘in x units it will be the case that . . . ’,
respectively. It is obvious that systems like Kb, Kl, and Kld∞ can be extended in
this way.

Given the metric extension of tense logic we can express the basic problems
related to the understanding of branching time in a very straightforward manner.
For instance, we may consider the proposition F (x)p ∧ F (x)∼ p, where p stands
for a contingent statement. This conjunction turns out to be true in Kb for any
contingent statement p. Such a result clearly fits badly with the idea of alternative
futures in a branching time system. For this reason the metric extension of Kb

obviously does not qualify as a satisfactory representation of the idea of alternative
future possibilities related to the notion of future contingency. In order to deal
with this problem we have to look for other kinds of tempo-modal systems.

5 THE LOGIC OF FUTURE CONTINGENCY

As we have seen in the chapter on Prior’s logic, A.N. Prior found much inspiration
for the development of modern temporal logic from his study of medieval philos-
ophy and logic. Clearly, he did not see the medieval findings as interesting only
from a historical point of view. He also held that the medieval writings on tem-
poral logic may in fact be useful in the practical development of modern temporal
logic provided that the medieval contributions are transformed and translated into
the formal language used in modern logic. In particular this turns out to be the
case with respect to the development of the logic of future contingency. After all,
this problem was given high priority during several centuries of academic life of
scholasticism. Realising the relevance of such studies, several writers interested in
the philosophical perspectives of temporal logic have since Prior’s death in 1969



Modern Temporal Logic: The Philosophical Background 463

continued his search in scholastic philosophy and logic looking for further con-
ceptual clarification in the study of future contingency. (See for instance [Craig,
1988].)

During the Middle Ages logicians related their science to theology. Clearly they
felt that they had something important to offer with regard to solving fundamental
logical questions in theology. One of the most important questions of that kind
was the problem of the contingent future, which may be stated in the following
way: According to Christian tradition, divine foreknowledge is assumed to also
comprise knowledge of the future choices to be made by men. But this apparently
gives rise to a straightforward argument from divine foreknowledge to necessity of
the future: if God already now knows the decision we will make tomorrow, then
a now-unpreventable truth about our choices tomorrow is already given! Hence,
there seems to be no basis for the claim that we have a free choice, a conclusion
which violates the dogma of human freedom.

There exists a very extensive literature about the problem of the contingent
future, and any attempt to produce a detailed exposition of the subject seems
hopeless. However, an overview over the basic approaches to the problem within
scholasticism can be found in the writings of the medieval logician and philosopher
Richard Lavenham (c. 1380) in his treatise De eventu futurorum. (See [Øhrstrøm,
1983], [Tuggy, 1999].) Lavenham’s central idea is quite clear: If two dogmas
are seemingly contradictory, then one can solve the problem either by accepting
or by rejecting the reality of the contradiction. If the contradiction is accepted
then solving the problem will mean to deny at least one of the dogmas. If the
contradiction is rejected it must be demonstrated that the contradiction is only
apparent and not real.

Denial of the dogma of human freedom leads to fatalism (1st possibility). Denial
of the dogma of God’s perfect foreknowledge can either be based on the claim that
God does not know the truth about the future (2nd possibility), or the assumption
that no truth about the contingent future has yet been decided (3rd possibility).
Rejection of the reality of the contradiction between the two dogmas must be
based on the formulation of a system according to which the two dogmas, rightly
understood, can be united in a consistent way (4th possibility).

Lavenham rejected the 1st and the 2nd possibility as contrary to the Christian
faith. It should, however, be mentioned that the opinion of St. Thomas Aquinas
can be read as a version of the 2nd possibility. Thomas claimed that the knowledge
of God abstracts from the difference between past, present and future. According
to this view it might be said that all events are ‘always’ present to God — in an
atemporal sense of ‘always’ ! For this reason one may say that God’s knowledge
is not a foreknowledge! The problem obviously bears on the theological task of
clarifying questions such as ‘In which way can God know the future?’

It seems that Lavenham, like Ockham, regarded the Aristotelian approach to
propositions concerning the contingent future as being equivalent with the 3rd

possibility. A number of Ockham’s contemporaries favoured this possibility. Peter
Aureole (c. 1280–1322), for instance, claimed that neither the statement ‘Antichrist
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will come’ nor the statement ‘Antichrist will not come’ is true, whereas the dis-
junction of the two statements is actually true. From that point of view, one can
naturally claim that the dogma of divine foreknowledge is still tenable, even if God
does not know if Antichrist will come or not. God knows all the truths given, and
cannot know if Antichrist will come due to the simple reason that no truth value
for the statement ‘Antichrist will come’ yet exists.

Lavenham maintained that on Aristotle’s account some propositions about fu-
ture contingent facts are neither determinately true nor determinately false. It
is, however, unclear whether he had in mind a third truth-value corresponding
to “indeterminate”, or simply held that no truth-value is defined for such future
contingent propositions. Nevertheless Lavenham also rejected the 3rd possibility
as contrary to the Christian faith.

Lavenham, like Ockham, preferred the 4th possibility. This solution was origi-
nally formulated by William of Ockham (d. 1349), although some of its elements
can already be found in Anselm of Canterbury (d. 1109). It is also interesting
that Leibniz (1646–1711) much later worked with a similar system as a part of his
metaphysical considerations. (See [Øhrstrøm, 1984].)

The most characteristic feature of their theories is the concept of ‘the true fu-
ture’. The Christian faith says that God possesses certain knowledge not only of
the necessary future, but also of the contingent future. This means that among the
possible contingent futures there must be one which has a special status, simply
because it corresponds to the actual course of events in the future. This line of
thinking may be called ‘the medieval solution’, even though other approaches cer-
tainly existed. The justification for this is partly that the notion of ‘the true future’
is the specifically medieval contribution to this problem, and partly that leading
medieval logicians regarded this solution as the best one. Lavenham himself called
it ‘opinio modernorum’, i.e. the opinion of the modern people.

Lavenham obviously knew that William of Ockham had discussed the problem
of divine foreknowledge and human freedom in his work Tractatus de praedesti-
natione et de futuris contingentibus. Ockham asserted that God knows all future
contingents, but he also maintained that human beings can choose between al-
ternative possibilities. In his Tractatus he argued that the doctrines of divine
foreknowledge and human freedom are compatible. Richard of Lavenham made a
remarkable effort to capture and clearly present the logical features of Ockham’s
system as opposed to Aristotle’s solution (i.e. the 3rd possibility).

Lavenham considered an argument from God’s foreknowledge to the necessity
of the future and the lack of human freedom. The main structure of this argument
is very close to what is believed to have been the Master Argument of Diodorus
Kronos (cf. the chapter on Prior’s logic). It is clear from Lavenham’s text that he
had some knowledge of this old Stoic or Megaric argument through his reading of
Cicero’s De Fato. It is not necessary to view the problem as a theological problem.
In fact, reformulated in a general philosophical setting, it has now come to be
regarded as one of the most central problems in the logic of time and modality.
Using a Priorean formalism the problem can easily be presented in terms of the
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following operators from modal logic and metric tense logic:

F (x) “in x time units it will be the case that . . . ”
P (x) “x time units ago it was the case that . . . ”

� “it is necessary that . . . ”.

The argument may be understood as based in the following five principles, where
A and B represent arbitrary well-formed statements within the logic:

(P1) F (y)A ⊃ P (x)F (x)F (y)A
(P2) �(P (x)F (x)A ⊃ A)
(P3) P (x)A ⊃ �P (x)A
(P4) (�(A ⊃ B) ∧�A) ⊃ �B
(P5) F (x)A ∨ F (x)∼A.

Using a deduction very similar to the one used in the chapter on Prior’s logic, it
can easily be demonstrated that (P1–P5) taken together lead to

(D) �F (y)q ∨�F (y)∼q.

Here (D) is equivalent to a denial of the dogma of human freedom. Therefore,
if one wants to save this dogma (and escape fatalism) at least one of the above
principles (P1–P5) has to be rejected. Showing how that can be done Prior con-
structed the Peircean system (in which P1 and P5 are rejected) as well as the
Ockhamistic system (in which P3 is rejected). It is well known that each of these
systems provides a solution to the future contingency problem. Since Prior, sev-
eral philosophers have discussed which one of Prior’s systems should be accepted,
or whether other, and more attractive, systems dealing with the problem may be
constructed.

As we have seen in the chapter on Prior’s logic, Prior himself favoured the
Peircean solution, which in fact corresponds to Lavenham’s third solution. We
may present this solution semantically in the following way: A Peircean model,
(TIME,<,=, C, Peirce), is a structure, where (TIME,<,=) is a set of partially
ordered instants, C is the set of all maximally ordered (i.e. linear) subsets in
(TIME,<,=) (i.e. the so-called ‘histories’ or ‘chronicles’). The before/after re-
lation is supposed to be irreflexive, asymmetric, transitive, and backwards linear.
The valuation function, Peirce(t, c, A), for any wff A at any time t and for any
chronicle c with t ∈ c, can be defined recursively given a truth-value for any
propositional constant at any moment in TIME:

(a) Peirce(t, c, p ∧ q) iff both Peirce(t, c, p) and Peirce(t, c, q)
(b) Peirce(t, c, ∼p) iff not Peirce(t, c, p)
(c) Peirce(t, c, Fp) iff Peirce(t ′, c ′, p) for all c ′ with t ∈ c ′ and

some t ′ ∈ c ′ with t < t ′.
(d) Peirce(t, c, Pp) iff Peirce(t ′, c, p) for some t ′ ∈ c with t ′ < t
(e) Peirce(t, c,�p) iff Peirce(t, c ′, p) for all c ′ with t ∈ c ′.
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Peirce(t, c, A) can be read ‘A is true at t in the chronicle c’. A formula A is said
to be Peirce-valid if and only if Peirce(t, c, A) for any t in any c in any branching
time structure, (TIME,<,=, C).

In the Peircean system we may also define another future operator f corre-
sponding to the notion of ‘possible future’ i.e.

(f) Peirce(t, c, fp) iff Peirce(t ′, c ′, p) for some c ′ with t ∈ c ′

and some t ′ ∈ c ′ with t < t ′.

In addition, we may define G as ∼ f ∼ and the operator g as ∼F ∼. In this way
the Peircean system includes four different future-like operators.

If we want a metric version of the Peirce system we have to add a duration
function, dur(t1, t2, x), standing for the statement ‘t2 is x time units after t1’.
Using this function (c) and (d) are replaced by:

(c ′) Peirce(t, c, F (x)p) iff Peirce(t ′, c ′, p) for all c ′ with t ∈ c ′

and some t ′ ∈ c ′ with dur(t, t ′, x)
(d ′) Peirce(t, c, P (x)p) iff Peirce(t ′, c, p) for some t ′ ∈ c with

dur(t ′, t, x)

According to this system it obviously follows that

F (x)q ⊃ �F (x)q

is a Peirce-valid formula. This means that a statement about the contingent
future is only true in the Peircean sense if it is true in all possible futures i.e. if
it has to be the case. It should also be noted that in the Peircean system the
so-called ‘determinateness of the future’ is rejected. This means that the following
expression is not a thesis in the system:

∼F (x)q ⊃ F (x)∼q.

According to the Peircean system the future should simply be identified with
the necessary future. This position has many modern advocates. Although the
denial of the determinateness of the future and the collapse of the future and the
necessary future make the position rather counter-intuitive from a common sense
point of view, A.N. Prior and many of his followers favoured this possibility.

The Peircean position also means that a statement like F (z)p is true if p is true
after z time units for any future development. According to the following model
this means that F (x)q is true at the event E2, whereas F (x + y)q is false at E1:
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For this reason the Peircean system also includes the view that the expression

q ⊃ P (z)F (z)q

cannot hold in general i.e. it does not represent a thesis in the system.

Many writers have studied the formalities of the Peircean system. Axiomati-
zations of the non-metrical version of the system can be found in [Burgess, 1980]

and in [Zanardo, 1990].

However, as argued in [Gabbay et al., 2000, p. 65] the Peircean system has some
obvious weaknesses which in fact make the system problematic as a satisfactory
candidate to a theory for future contingency. First of all, the system fails to
represent many everyday ways of reasoning when it comes to the notions of time.
This is due to the fact that the idea of a plain future between possible future and
necessary future is not taken into serious consideration. In addition, the handling
of operators is very difficult in this Peircean system. For instance, we may notice
the crucial feature of the system according to which the expressions F (x)∼q and
∼F (x)q are non-equivalent.

The Ockhamistic system, on the other hand, leads to the denial of (P3). It is
a rather attractive system, although it is certainly also possible to criticise the
Ockhamistic position in various respects — as we shall see in the following.

An Ockhamistic model, (TIME,<,=, C,Ock), is a structure, where (TIME,<
,=) is a set of partially ordered instants, C is the set of all maximally ordered
(i.e. linear) subsets in (TIME,<,=) (i.e. the so-called ‘histories’ or ‘chronicles’).
The before/after relation is like in the Peircean case supposed to be irreflexive,
asymmetric, transitive, and backwards linear. The valuation function, Ock(t, c, A),
for any wff A at any time t and for any chronicle c with t ∈ c, can be defined
recursively given a truth-value for any propositional constant at any moment in
TIME:

(a) Ock(t, c, p ∧ q) iff both Ock(t, c, p) and Ock(t, c, q)
(b) Ock(t, c, ∼p) iff not Ock(t, c, p)
(c) Ock(t, c, Fp) iff Ock(t ′, c, p) for some t ′ ∈ c with t < t ′

(d) Ock(t, c, Pp) iff Ock(t ′, c, p) for some t ′ ∈ c with t ′ < t
(e) Ock(t, c,�p) iff Ock(t, c ′, p) for all c ′ with t ∈ c ′.



468 Peter Øhrstrøm and Per Hasle

Ock(t, c, A) can be read ‘A is true at t in the chronicle c’. A formula A is said
to be Ockham-valid if and only if Ock(t, c, A) for any t in any c in any branching
time structure, (TIME,<,=, C).

If we want a metric version of the Ockhamistic system we have to have a duration
function, dur(t1, t2, x), standing for the statement ‘t2 is x time units after t1’.
Using this function (c) and (d) are replaced by:

(c ′) Ock(t, c, F (x)p) iff Ock(t ′, c, p) for some t ′ ∈ c with dur(t, t ′, x)
(d ′) Ock(t, c, P (x)p) iff Ock(t ′, c, p) for some t ′ ∈ c with dur(t ′, t, x)

It is easy to verify that neither P (x)A ⊃ �P (x)A nor PA ⊃ �PA (i.e. (P3) in
the above argument) are Ockham-valid for any A, although it will be if A does
not contain any reference to the future.

For a long time the problem of axiomatising the non-metric version of the Ock-
hamist system was open. However, recently Mark Reynolds [2003] has presented
a complete and finite axiomatization of this system. In addition to the system Kb

for the tense operators, S5 for the modal operator, the ordinary rules of inference,
the characteristic new elements in Reynolds’ axiom system is the inference rule:

(IRR) If ⊢ (p ∧H∼p) ⊃ α then ⊢ α (if p does not appear in α)

and the axioms

(Rey1) Pα ⊃ �P♦α
(Rey2) G⊥⊃ �G⊥

where ♦ is defined as ∼ � ∼, and where ⊥ stands for the contradiction. It is
interesting that (Rey1) is a weaker version of the principle (P3) mentioned above
(i.e. a weaker version of the critical premises in the Diodoeran Master Argument),
whereas the full (P3) is denied in the Ockhamist system. (Rey2) obviously corre-
sponds to an intuition of the maximality of histories.

If the full (P3) is denied in general one may reject the inference from (2) to (3)
in the above argument. According to Ockham (P3) should only be accepted for
statements which are genuinely about the past i.e. which do not depend on the
future. According to this view (P3) may be denied, precisely because the truth of
statements like P (x)F (x)F (y)q has not been settled yet since they depend on the
future.

In this way, one can make a distinction between soft and hard facts regarding the
past. Following the Ockhamistic position a statement like P (x)q would correspond
to a hard fact, whereas P (x)F (x)F (y)q and P (x)F (x)F (y)q would represent soft
facts.

John Martin Fischer [1994] has questioned the Ockhamistic model. He has
suggested a subdivision of the set of soft facts. He has introduced hard-core
soft facts as well as hard-type soft facts and soft-type soft facts. His position
is just that some soft facts are so hard that “they cannot be falsified without
affecting some genuine feature of the past” [Fischer, 1994, p. 127]. We agree with
William Lane Craig who has argued that this analysis of soft facts “has gone
out of control” [Craig, 1989, p. 236–237]. Fischer’s analysis does not provide a
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strong argument against the view that the Ockham theory is a fairly accurate
representation of our intuitions concerning valid temporal reasoning with regard
to the future contingency problem.

It may be argued that Prior’s Ockhamistic system does not fit the ideas for-
mulated by William of Ockham completely. Although many of Ockham’s original
ideas are in fact satisfactorily modelled in Prior’s Ockhamistic system, this system
lacks a proper representation of the notion of ‘the true future’, which was in fact
one of the most basic ideas in Ockham’s world view. Ockham certainly believed
that there is truth about the contingent future, which we as human beings cannot
know, but which God knows. This assumption of a true future will in terms of
modern logic mean that in a branching time model there is a privileged branch at
any past, present or future branching point in the model. In consequence, F (x)q
is true at E2 and F (x + y)q is true at E1.

In an interesting paper Nuel Belnap and Mitchell Green [1994] have concen-
trated on another problem related to this Ockhamistic vision. They have argued
that the model not only has to specify a preferred branch corresponding to the
true history (past, present, and future). If we want to insist on a concept of fu-
ture which is different from the possible future as well as the necessary future, it
must be assumed that there is a preferred branch at every counterfactual moment.
Belnap and Green have based their argument of the following statement:

The coin will come up heads. It is possible, though that it will come up
tails, and then later it will come up tails again (though at this moment
it could come up heads), and then, inevitably, still later it will come
up tails yet again [Belnap and Green, 1994, p. 379].

This statement may be represented in terms of tense logic
F1h ∧ ♦F1(t ∧ ♦F1h ∧ F1(t ∧�F1t))
t: tails
h: heads
F1 ≡def F (1)



470 Peter Øhrstrøm and Per Hasle

and in terms of the following branching time structure

The example shows that if the model is taken seriously, then there must be a
function TRL, which gives the true future (extended to a maximal set; Belnap
and Green call it “the thin red line”) corresponding to a given moment, m. But
how can TRL(m) be specified? Belnap and Green have argued that

(TRL1) m ∈ TRL(m)
should hold in general, and that in addition the following

(TRL2) m1 < m2 ⊃ TRL(m1) = TRL(m2)
may be considered. However, they argue that (TRL2) is inconsistent with

the very idea of branching time. Therefore (TRL2) seems to be too strong a
requirement. Rather than (TRL2), we propose the weaker condition:

(TRL2 ′) (m1 < m2 ∧m2 ∈ TRL(m1)) ⊃ TRL(m1) = TRL(m2)
This seems to be much more natural in relation to the notion of an Ockhamistic

branching time logic. Belnap has later accepted the relevance of (TRL2 ′) (see
[Belnap et al., 2001, p. 166]).

Belnap and Green have argued that any such TRL-function should give rise to
a logic in which the following theorems hold:

(T1) FFA ⊃ FA
(T2) PPA ⊃ PA
(T3) A ⊃ P (x)F (x)A

No formal semantics is given by Belnap and Green; however, they seem to
assume that the tense operators are interpreted only relative to an instant. This
amounts to interpreting tenses using a two-place valuation operator:

T (m,PA) iff ∃m ′ : m ′ < m ∧ T (m ′, A)
T (m,FA) iff ∃m ′ : m < m ′ ∧m ′ ∈ TRL(m) ∧ T (m ′, A)
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Given such a semantics it is straightforward to check that (T1) is valid without
(TRL2 ′). However, (T2) is not valid without (TRL2 ′), but it is if this assumption
is made. The formula (T3) is not valid even if (TRL2 ′) is assumed. To see why
this is the case, consider a situation with an instant t such that m �∈ TRL(m ′) for
any m ′ < m. Assume that t is the only instant at which A is true. Then PFA,
hence also A ⊃ PFA, will be false at m.

Even the formula (T3 ′)

(T3 ′) A ⊃ P1F1A

is false when evaluated with the following semantics:
T (m,P (x)A) iff ∃m ′ : before(m ′,m, x) ∧ T (m ′, A)
T (m,F (x)A) iff ∃m ′ : before(m,m ′, x) ∧m ′ ∈ TRL(m) ∧ T (m ′, A)

With this interpretation of the tenses (T3 ′) becomes invalid as illustrated above.
If somebody were to want to defend such a view, such a person would have to

say something like: The counterfactual assumption of A does not invalidate the
truth of the past prediction P1F1∼A. If a person is writing now, it certainly was
true yesterday that he was going to write after one day. That prediction was true
(but of course not necessary) even if he now — while writing — imagines himself
asleep. For this reason one may say, that the truth of A ∧ P1F1 ∼ A, where A
stands for ‘The person (the writer) is asleep’, is in fact conceivable.

In our opinion, however, Prior’s Ockhamist theory is indeed satisfactory for
most cases. But as demonstrated by Hirokazu Nishimura [1979], there are some
rare examples in which the Ockham theory is not sufficient. Such an example
is given in [Gabbay et al., 2000, p. 67]. We consider this example in a slightly
modified form. The claim is that it is consistent to believe both of the following
assumptions:

A1: There is life on earth now, but it will necessarily come to an
end.

A2: It is necessarily always the case that if there is life on earth
then it is possible for there to be life on earth in a succeeding
period also.

A1 means that whatever anyone is doing, life on earth will some day come to
an end. However, A2 implies that there is hope (and possibilities) for tomorrow
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as long as there is life! Many people believe both A1 and A2. It is our claim that
people with this belief should not be seen as inconsistent for this reason.

We think that a tense logical system corresponding to everyday reasoning should
allow for the simultaneous belief in both assumptions, (A1–A2). It turns out,
however, that this is not the case in an Ockhamistic structure, (TIME,<,=
, C,Ock), in which TIME is discrete and each chronicle is isomorphic to the set
of integers. We may think of the elements in TIME as possible days, although
the choice of time units is of course secondary. The discreteness of the model
just means that the possible states in the (past and future) history of life on
earth can be modelled using a discrete branching time structure. Given such a
model, (TIME,<,=, C,Ock), we shall in the following argue that (A1–A2) turns
out to be an inconsistent pair of assumptions. Letting q stand for the statement
‘there is life on earth’, the two assumptions are represented by the following two
expressions:

A1: Ock(t0, c0, q ∧�F (q ∧G∼q)), where t0 stands for the ‘now’
and where c0 stands for ‘the true future’ right now.

A2: Ock(t, c, q ⊃ ♦Fq) for any t and any c.

We shall show that the assumption that A1 and A2 can be true simultaneously
is in conflict with the Ockhamistic theory. On the other hand, we shall argue
that a person would not necessarily be inconsistent in holding the conjunction of
A1 and A2 given another (and perhaps intuitively more satisfactory) theory. —
Assume that A1 and A2 are both true now i.e. at t0 ∈ c0. It follows from A1 that
q is true at t0 i.e. Ock(t0, c0, q). Because of A2, this means that Ock(t0, c0,♦Fq)
i.e. there is a chronicle c1 with t0 ∈ c1 and a t1 ∈ c1 with t0 < t1 such that
Ock(t1, c1, q). Using A2 again in a similar way we find a chronicle c2 with t1 ∈ c2
and a t2 ∈ c2 with t1 < t2 such that Ock(t2, c2, q). This procedure can be carried
out ad infinitum using A2 repeatedly, and in this way we construct the time series:
t0 < t1 < t2 < . . . < ti < ti+1 < . . . . For all ti in this series we have Ock(ti, ci, q).
It should also be noted that the series t0 < t1 < t2 < . . . < ti < ti+1 < . . . can
be completed with segments of c1, c2, c3, . . . since for each i = 0,1,2,. . . we have
ti ∈ ci+1 as well as ti+1 ∈ ci+1. Since the time structure is discrete, this means
that the series t0 < t1 < t2 < . . . < ti < ti+1 < . . . gives rise to a chronicle, c,
within the Ockhamistic model. Obviously, ti ∈ c for i = 0,1,2,. . . Because of A1

we have Ock(t0, c, F (q∧G∼q)) i.e. there is an instant t after which Ock(t ′, c, ∼q)
for all t ′. However, this would contradict the fact that the series t0 < t1 < t2 < . . .
< ti < ti+1 < . . . is infinite and unlimited in c. This shows that the assumption
of the conjunction of A1 and A2 in the context of an Ockhamistic model leads to
a contradiction.

The construction procedure mentioned in the above argument can be illustrated
by the following figure:
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If, on the other hand, we assume another tense logic different from the Ock-
hamistic system, in which the construction of the chronicle c from the series of
t0 < t1 < t2 < . . . < ti < ti+1 < . . . and c1, c2, . . . is forbidden, then the
conjunction of A1 and A2 might be accepted without any inconsistency. In such
a tense logic the set of possible chronicles is not necessarily closed under the kind
of construction just mentioned. We must assume that not all linear subsets in
(TIME,<,=) are possible chronicles. An Ockhamistic system revised in this
manner has an interesting affinity to Lebniz’ philosophy. For this reason we shall
call such a modified Ockhamistic system a Leibniz system (see [Øhrstrøm and
Hasle, 1995, p. 270 ff.]). It may also be called a bundled logic (see [Gabbay et al.,
1994, p. 299 ff.], [Gabbay et al., 2000, p. 67 ff.]). The idea is that when evaluating
a formula of the form �A we should take certain (but not all) linear subsets in
(TIME,<,=) passing through t into account i.e.

T (t, c,�A) iff T (t, c ′, A) for all c ′ ∈ C(t)
where C(t) is set of chronicles which should be taken into account in the evaluation
of modal formulae.

Following a similar idea, it is possible to obtain the validity of (T3) even if
we want to insist on the assumption of the ‘thin red line’. In [Braüner et al.,
1998] we have proposed the following semantics of tenses: As usual we need a
set, TIME, equipped with a transitive and backwards linear relation, <, together
with a function T which assigns a truth value to each pair consisting of an instant
and a propositional letter. Furthermore, adopting Belnap and Green’s idea, we
assume the presence of a function TRL which to each instant assigns a branch
such that the conditions (TRL1) and (TRL2 ′) are satisfied. A novel feature of the
semantics we give here is the notion of a (counterfactual) branch with the property
that at any future instant it coincides with the corresponding thin red line. Given
an instant t, the set C(t) of such branches is defined as follows:

C(t) = {c|t ∈ c ∧ TRL(t ′) = c for any t ′ ∈ c with t < t ′}
Note that (TRL1) and (TRL2 ′) together say exactly that TRL(t) ∈ C(t). Also
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note that C(t) may contain more branches that just TRL(t). This allows for
counterfactuality. In this semantical model truth is relative to an instant, t, as
well as to a branch belonging to C(t). By induction, we define the valuation
operator T as follows:

T (t, c, p) iff T (t, p) where p is a propositional letter
T (t, c, p ∧ q) iff T (t, c, p) and T (t, c, q)
T (t, c, ∼p) iff not T (t, c, p)
T (t, c, FA) iff T (t ′, c, A) for some t ′ ∈ c with t < t ′

T (t, c, PA) iff T (t ′, c, A) for some t ′ ∈ c with t ′ < t
T (t, c,�A) iff T (t, c ′, A) for all c ′ ∈ C(t)

A formula A is said to be valid if and only if A is true in any structure (TIME,<
, T, TRL) for any instant t and branch c such that c ′ ∈ C(t). The tense operators
P and F are interpreted as usual in Ockhamistic semantics. It is straightforward
to introduce metrical tense operators.

This semantics makes all of the formulas (T1), (T2), (T3), and (T3 ′) valid.
On the other hand, the necessity operator is interpreted differently in the sense
that fewer (counterfactual) branches are taken into account. This invalidates the
formula

(T4) F (x)♦F (y)p ⊃ ♦F (x)F (y)p

which is valid in the usual in Ockhamistic semantics. If the rejection has to be
defended we have to accept something like the following: Tomorrow we may have
some possibilities regarding the following day which today are not available as
possibilities regarding the day after tomorrow. That is, new possibilities may
show up. — However, this view can be questioned. Some would in fact insist that
(T4) is valid.

Alternatively, one may define a moment as a pair, (t, c), consisting of an in-
stant, t, and a branch c ∈ C(t). It turns out that this semantics is equivalent to
the Leibnizian semantics (see [Øhrstrøm and Hasle, 1995]) and it also fits with
models defined in terms of so-called bundled trees (see [Zanardo, 2003a; 2003b;
2003c]). According to this model the branches in the branching time system have
to be viewed as ‘parallel lines’ construed as sets on which a relation is defined
corresponding to indiscernibility up to a certain moment. In such a model made
up of ‘parallel lines’ the TRL-function will be trivial.
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Evaluated on the basis of this Leibnizian view A ⊃ P1F1A, (T3 ′) clearly holds,
whereas A ⊃ P1�F1A does not hold.

Let us return to Lavenham’s indeterministic possibilities corresponding to the
denials of (P1), (P5), and (P3), respectively. Of course, one may also consider
denials of (P2) and (P4). But it is very hard to see how such denials may be
defended. The same can be said about rejections of other ingredients of the appa-
ratus involved in Lavenham’s argument.

It is obviously possible to deny more than one of the principles (P1–P5). But
accepting the basic nature of the above principles, Lavenham’s analysis leaves
us at the basic level with exactly 4 possible positions relative to the underlying
argument. In our opinion, this analysis is rather convincing and the result is
certainly interesting, also in a modern context. Moreover, we have argued that
if one wants to defend the idea of ‘the true future’, then this idea should be
understood in terms of a Leibnizian model. We agree with the point made in
[Gabbay et al., 2000], where it is argued that the Peircean system is unsatisfactory
in some respects, and that we, for this reason, should turn to the Ockhamistic logic
or perhaps even to the Leibnizian (or bundled) logic.

6 THE CONCEPTUAL BASIS OF TENSE LOGIC QUESTIONED

As a young graduate student Hans Kamp attended A.N. Prior’s lectures on tense
logic at University of California (UCLA) from September 1965 to January 1966.
He became deeply interested in the field and Prior’s lectures very much inspired
him in his further PhD-studies (see [Copeland, 1996, p. 24]). In the following years
Hans Kamp found some very influential results, which in certain respects may be
seen as challenging the basic ideas of tense logic. Until his death in 1969 Prior
often referred to Kamp’s results trying to solve the problems to which they gave
rise.

In Kamp’s PhD thesis, On Tense Logic and the Theory of Order, [1968], which
he wrote under the supervision of Richard Montague, Hans Kamp discussed the
two-place operators Spq, “q since p”, and Upq, “q until p”, which semantically can
be introduced in the following way:

T (t, Spq) ≡ ∃t ′ : (t ′ < t ∧ T (t ′, p) ∧ ∀t ′′ : (t ′ < t ′′ < t ⊃ T (q, t ′′))
T (t, Upq) ≡ ∃t ′ : (t < t ′ ∧ T (t ′, p) ∧ ∀t ′′ : (t < t ′′ < t ′ ⊃ T (q, t ′′))

Spq may be read “it has been the case that p, and between then and now it has
been the case that q”. Upq may be read “it will be the case that p, and between
now and then it will be the case that q”.

Kamp was able to demonstrate that given a linear, dense and infinite temporal
order, S and U cannot be defined of truth-functions and 1-place tenses like P and
F . For this reason the language to which the Priorean tenses can give rise will
not be rich enough to describe the full temporal language. Kamp was, however,
also able to show that given the temporal structure satisfying so-called Dedekind
continuity, any temporal relation can in fact be defined in terms of the two-place
operators S and U ; (see [Benthem, 1991, p. 152]). In consequence, it might seem
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that we should view S and U (and not P and F ) as the cornerstones of tense
logic. In this way, Kamp’s results may be understood as a strong argument against
Priorean tense logic conceived as the logic based on the two operators P and F .

Kamp communicated early versions of his work to Prior, who in his Past,
Present and Future [Prior, 1967, p. 107 ff.] responded in defence of a tense logic
based on P and F . Firstly, Prior pointed out that ‘since’ and ‘until’ can in fact be
defined in terms of the metric operators, P (n) and F (n). Secondly, he explained
that ‘since’ and ‘until’ may be defined in terms of P and F provided that we al-
low the use of propositional quantifiers and accept the idea of instant propositions.
The latter solution is obviously very relevant in the modern context of hybrid logic
(see the chapter on Prior’s logic in this volume).

Kamp also located another problem related to tense logic pointing out that
some sentences involving a reference to ‘now’ cannot be expressed in the Priorean
language. One example could be the sentence ‘A child was born which will be
king’ (see [Benthem, 1991, p. 130]). Here three instants (including ‘the point of
speech’) are obviously needed for a proper understanding of the meaning of the
sentence. Examples like this may suggest that Reichenbach’s threefold distinc-
tion (mentioned in section 2 above) is needed after all. Kamp himself, however,
suggested another solution involving a Now-operator. In fact he even managed
to convince Prior of the usability of the extra tense-logical operator. In a paper
published in 1968 Prior wrote: “. . . until recently I would have . . . said that the
formalist not only can do without the idiomatic ‘now’ but must do without it —
that our ordinary use of ‘now’ has a certain disorderliness about it which makes it
unamenable to formalisation . . . Recently, however, I have been convinced to the
contrary by Hans Kamp . . . , and have now myself produced an extension of tense
logic with a symbol corresponding fairly closely to the idiomatic ‘now’ ” [Prior,
2003, p. 174]. In addition, Prior has pointed out that an alternative approach may
be based on the incorporation of a propositional constant, n, standing for ‘the
world’ or ‘everything that is the case’. Given this constant, we may define “it is
now that case that p” as �(n ⊃ p). Again this solution turns out to be based on
what is now called hybrid logic.

Whereas Kamp’s criticism of the Priorean approach is not really a criticism of
the basic idea of tense logic but more an identification of some problems which
have to be dealt with in tense logic. Other writers, however, have argued that
the tense-logical approach as such has to be rejected either because it is based
on some unacceptable internal conceptual weaknesses or because it contradicts
fundamental features of the external reality.

Robin Le Poidevin [Poidevin, 1996, p. 472] is one of the writers who have
argued that the tense-logical approach is unacceptable because it is conceptually
inconsistent. The reason is that the A-theorist has to explain the meaning of the
B-concept, and for that purpose he will need propositional connectives such as
‘and’. However, according to Poidevin it turns out that he would have to say that
‘and’ means ‘and simultaneously’, which means that he would have to refer to a B-
concept (simultaneity) as something basic. Such arguments are, however, normally
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very weak, since the very existence of a well established tense-logical system is a
very strong argument against internal inconsistencies in the conceptual framework
of tense logic. It is very unlikely that there should be such internal and unnoticed
inconsistencies without fatal consequences for the systems as such.

7 THE LOGIC OF DURATIONS

Early in the history modern tense logic it was argued that the idea of a proposition
being true at an instant may be rather problematic, at least if the instant is
understood as durationless. Some have even argued that very few things can
be said to be at an instant without duration. What is, for instance, a tone at
an instant? This kind of criticism of early versions of tense logic and temporal
logic based on durationless instants has led to the development of various kinds
of durational logic. In this section we are going to deal with some of these logical
systems.

Given a structure of instants we can easily construct a set D of durations (some-
times also called periods or intervals). A duration is defined as a pair of instants
(x, y) with x < y. Obviously, the order of the instants gives rise to an ordering
relation, ‘∠’ on the set of durations using the following definition:
(Def. ∠) (x, y)∠(u, v) iff y < u ∨ y = u.

It is easy to deduce various properties of ‘∠’ from the properties of ‘<’. For
instance, if ‘<’ is irreflexive and transitive, then it follows that ‘∠’ will also be
irreflexive and transitive.

Several authors have found the relation between (T,<) and (D,∠) interesting.
It has been pointed out that (D,∠) does not have to be seen as derived from
(T,<). In fact, it has been demonstrated that the opposite derivation would also
be possible i.e. given (D,∠) with certain basic properties we may define instants
and construct the structure (T,<).

In his book Our Knowledge of the External World [1914] Bertrand Russell pre-
sented a way of constructing instants from durations (events). He further elabo-
rated this idea in the paper ‘On order in time’ [1936]. According to Russell an
instant can be defined as “a group of events having the following two properties:

(1) Any two members of the group overlap in time, i.e. neither
is wholly before the other.

(2) No event outside the group overlaps with all of them”.

A decade later A.G. Walker [1947] suggested a similar and more elaborated
construction. He considered a structure, which we may term (D,∠), where D
is a non-empty set of periods. This set is ordered by a partial ordering relation
‘∠’, analogous to the before-after-relation among instants. Two interesting and
related aspects of this model should be mentioned right away: first, it does not
seem counterintuitive to call one period ‘earlier’ than another one, even if they
‘overlap’. Thus ‘Mary opened the door before John rushed in’ seems quite right,
even if John begins his rushing in before Mary concludes her opening the door.
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Nevertheless, the ‘a∠b’-relation is to be considered as ‘strict’ in the sense that
no overlap between a and b is permitted. Second, since the ordering relation is
only partial, and since the notion of overlap has already made itself manifest, it is
interesting to consider also the latter relation, defined as

a|b ≡def ∼(a∠b ∨ b∠a).
This obviously corresponds to the idea of two periods a and b overlapping each

other. — Walker formulated an axiomatic system using the following two axioms:

(W1) a|a
(W2) (a∠b ∧ b|c ∧ c∠d) ⊃ a∠d

In relation to these axioms Walker was able to construct a set-theoretic structure
of triplets (A,B,C), where A, B, and C are all sets of durations such that

1. A and B are non-empty

2. the union of A, B and C is the set of all durations

3. every element in A is before every element in B

4. every element in C is overlapping some element in A as well as some element
in B.

Walker demonstrated that the structure of these triplets has all the algebraic
properties which we would intuitively expect the structure of temporal instants to
have. For this reason it may be reasonable to view a temporal instant as such a
‘secondary’ construct from the logic of durations.

Given the right conditions on the partially ordered structure of events, (D,∠),
we may show that the structure of instants has the mathematical properties which
we intuitively expect it to have.

S.K. Thomason [1984] has compared Walker’s construction with Russell’s and
he has argued that Walker’s construction should be preferred. In his opinion
Walker’s theory — much better than Russell’s — offers a plausible explanation of
time as a continuum.

More than two decades later than A.G. Walker, C.L. Hamblin [1972] also put
forth a theory of the logic of durations. Hamblin was not aware of Walker’s
work when he developed his theory [Hamblin, 1972, p. 331], but he achieved some
similar results using a different technique. Hamblin also considered a fundamental
structure consisting of a set of durations with a partial ordering relation (D,∠). In
addition he defined the following relations for arbitrary durations, where (a ⊲⊳ b)
may be read ‘b follows immediately after a’, and a ⊆ b may be read ‘a is contained
in b’:

a ⊲⊳ b ≡def (a∠b ∧ ∼(∃c : a∠c ∧ c∠b))
a ⊆ b ≡def ∀c : (c|a ⊃ c|b)

Using the definition of a ⊲⊳ b, Hamblin could also offer a derived notion of an
instant:
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Any pair of durations (a, b) uniquely defines an instant if and only if
a ⊲⊳ b.

We shall use expressions like a ⊲⊳ b ⊲⊳ c for the conjunction of a ⊲⊳ b and b ⊲⊳ c.
Hamblin’s axioms can be formulated in the following way using our notation (and
omitting external universal quantification):

(Hamblin 1): ∼(a∠a)
(Hamblin 2): (a∠b ∧ c∠d) ⊃ (a∠d ∨ c∠b)
(Hamblin 3): a∠b ⊃ (a ⊲⊳ b ∨ ∃c : a ⊲⊳ c ⊲⊳ b)
(Hamblin 4): (a ⊲⊳ c ∧ a ⊲⊳ d ∧ b ⊲⊳ c) ⊃ b ⊲⊳ d
(Hamblin 5): (a ⊲⊳ b ⊲⊳ d ∧ a ⊲⊳ c ⊲⊳ d) ⊃ b = c
(Hamblin 6): ∃b : a∠b
(Hamblin 7): ∃b : b∠a
(Hamblin 8): ∃b : (b ⊆ a ∧ ∼(b = a))
(Hamblin 9): b ⊆ a ⊃ (T (a, p) ⊃ T (b, p))
(Hamblin 10): ∀b : (b ⊆ a ⊃ (∃c : c ⊆ b ∧ T (c, p))) ⊃ T (a, p))

(Hamblin 9) states a kind of dissectiveness: if some proposition p ‘is true with
respect to’ some interval a, and b is contained in a, then p is true also with respect
to b. We might also say that this expresses ‘downwards inheritance’. In a dual
manner, (Hamblin 10) expresses a sort of cumulativity. However, it is well known,
at least from later literature on durations, that not all ‘properties’ of durations
behave like this: thus for instance, an ‘accomplishment’ like ‘Mary baked a cake’
(say, from 1 p.m. to 4 p.m.) does not entail that Mary baked a cake during
the sub-periods, say, from 2 p.m. to 3 p.m. (Note that even though it may be
tempting to say that Mary was ‘engaged in the process’ also during all sub-periods,
she certainly did not accomplish it during any of those). It is therefore clear that
Hamblin’s theory is confined to certain subsets of (properties of) durations.

During the last decade various kinds of durational logic have been studied and
applied within artificial intelligence research and natural language understanding
(usually under the heading ‘interval semantics’, which seems more popular in this
scientific community). Two researchers in this field who have contributed signifi-
cantly to the development of durational logic are James Allen and Patrick J. Hayes
[1985; 1989]. Like Walker and Hamblin, Allen and Hayes have taken as their start-
ing point the study of the structure of the partially ordered set of durations. They
have suggested an axiomatic system, which we reformulate in the following way,
where ‘∨’ stands for the exclusive disjunction:

(AH1) (a ⊲⊳ c ∧ a ⊲⊳ d ∧ b ⊲⊳ c) ⊃ b ⊲⊳ d
(AH2) (a ⊲⊳ b∧ c ⊲⊳ d) ⊃ (a ⊲⊳ d ∨ ∃e : a ⊲⊳ e ⊲⊳ d ∨ ∃f : c ⊲⊳ f ⊲⊳ b)
(AH3) ∃b, c : b ⊲⊳ a ⊲⊳ c
(AH4) (a ⊲⊳ b ⊲⊳ d ∧ a ⊲⊳ c ⊲⊳ d) ⊃ b = c
(AH5) a ⊲⊳ b ⊃ ∃e∀c, d : (c ⊲⊳ a ⊲⊳ b ⊲⊳ d ⊃ c ⊲⊳ e ⊲⊳ d)

This axiomatic system obviously takes the ⊲⊳-relation as the primitive. However,
this does not constitute any essential step away from Hamblin’s system, in which
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the opposite implication of (Hamblin 3) can easily be proved. We therefore have
as a theorem

(Hamblin3 ′): a∠b ≡ (a ⊲⊳ b ∨ ∃c : a ⊲⊳ c ⊲⊳ b)

which may obviously be used as a definition of the ∠-relation in the AH-system.
With this definition (Hamblin 2) is provable in the AH-system. (AH1) and (AH4)
are just (Hamblin 4) and (Hamblin 5), and (Hamblin 6–7) are immediate conse-
quences of (AH3). Because of the exclusive disjunctions in (AH2), we can derive
∼(a ⊲⊳ a), i.e. (Hamblin 1). So it seems that (Hamblin 8) is the only difference be-
tween the systems (if we disregard Hamblin’s special requirements of cumulativity
and dissectiveness, cf. Hamblin 9–10).

It follows from (AH4) that the e in (AH5) is uniquely determined by the du-
rations a and b. Following Allen and Hayes, we shall call this resulting duration
the sum of a and b, i.e. e = a + b. However, we point out that this sum-operator
is not commutative and is in effect a kind of concatenation rather than a ‘usual’
sum-operator.

Allen and Hayes have shown that two arbitrary durations can be related in
exactly 13 different ways, which can all be expressed solely in terms of the ⊲⊳-
relation and equality:

a meets b ≡def a ⊲⊳ b
a is met by b ≡def b ⊲⊳ a
a is before b ≡def ∃c : a ⊲⊳ c ⊲⊳ b
a is after b ≡def ∃c : b ⊲⊳ c ⊲⊳ a
a starts b ≡def ∃c : b = a + c
a is started by b ≡def ∃c : a = b + c
a finishes b ≡def ∃c : b = c + a
a is finished by b ≡def ∃c : a = c + b
a overlaps b ≡def ∃c, d, e : (a = c + d ∧ b = d + e)
a is overlapped by b ≡def ∃c, d, e : (b = c + d ∧ a = d + e)
a during b ≡def ∃c, d : b = c + a + d
a contains b ≡def ∃c, d : a = c + b + d
a equals b ≡def a = b

It is very illuminating to study various combinations among these 13 relations.
Using Allen’s and Hayes’ axiomatisation, it is possible to implement a reasoning
system, by means of which statements like

If a overlaps b and b is started by c, then a overlaps c;
If a finishes b and b starts c, then a during c;
If a during b and b overlaps c, then a is not met by c;

can be proved. This kind of reasoning will be important in any system, which
should be able to perform or simulate common-sense reasoning involving time
periods.

We have already pointed out that for some durations, or perhaps rather, certain
types of events, there are no sub-parts; for instance, if ‘John opened the door’
during some period a, it will not be true to say that John opened the door during
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any sub-interval b contained in a. In this case, dissectiveness does not obtain
(cf. Hamblin 9). When reasoning about durations we often come across durations
without parts corresponding to for example opening a door. Allen’s and Hayes’
reason for excluding in general the axiom (Hamblin 8) is precisely that they want
to study these so-called ‘moments’, which can be understood as durations without
any internal structure (not to be confused with ‘instants’). It appears that nothing
is contained in a moment, and that two moments cannot overlap each other.

Hamblin’s (as well as Allen’s and Hayes’) durational logic is based on a concep-
tion of durations as something similar to real intervals. A number of interesting
theorems can be proved from Hamblin’s axioms, but the system is not sufficient
to establish that linear intuition about time on which it is obviously based. The
reason for this is that there is nothing in (Hamblin 1–8) to exclude a genuine
branching time model. On the other hand, if time should in fact be conceived
as branching, then the ‘containment’-relation ⊆ in the above axioms will yield
some very strange results, and will be rather far from the inclusion relation that
Hamblin probably had in mind.

Peter Röper [1980] has developed a more fine-grained logic from very much the
same intuition as Hamblin’s. Röper starts from a non-empty set S of durations
and a relation ⊆ defined on S, which should express the ‘inclusion’ relation among
durations. Röper defines a P-frame as a structure (S,⊆,∠) satisfying:

(A1) If x∠y, x ′ ⊆ x and y ′ ⊆ y, then x ′∠y ′.
(A2) If for every x ′ ⊆ x and y ′ ⊆ y there are x ′′ ⊆ x ′ and

y ′′ ⊆ y ′ such that x ′′∠y ′′, then x∠y.
(A3) If x∠y and y∠z, then x∠z.
(A4.1) For any x, there exists x ′ ⊆ x and y such that x ′∠y.
(A4.2) For any x, there exists x′ ⊆ x and y such that y∠x ′.
(A5.1) For any x, y and z, if x∠y and x∠z, then there exists y ′ ⊆ y

and z ′ ⊆ z such that z ′∠y ′ or y ′∠z ′.
(A5.2) For any x, y and z, if y∠x and z∠x, then there exists y ′ ⊆ y

and z ′ ⊆ z such that z ′∠y ′ or y ′∠z ′.

Obviously, (A5.1) corresponds to forwards linearity, whereas (A5.2) ensures back-
wards linearity. On the other hand, there is nothing in Röper’s system to ensure
the irreflexivity of the ordering relation.

Some of the further details of Röper’s system are mainly concerned with that
distinction between dissective and non-dissective ‘events’, which we have already
suggested. We shall recapitulate the main problem by considering the following
two propositions:

p: ‘Percival drinks a pint of bitter’
q: ‘Araminta is in Oxford’.

Let us assume that both propositions are true for a duration a, and let b be an
arbitrary sub-duration, i.e. b ⊆ a. Then a proposition such as q will also be true for
the duration b. Following Röper, we shall say that q is persistent (i.e. dissective).
This can be symbolically expressed as:
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(T (a, q) ∧ b ⊆ a) ⊃ T (b, q).
A persistent proposition denotes ‘a property’ in Allen and Hayes’ terminology. On
the other hand, a proposition such as p may be false for some or all sub-durations.
That is, it is in general conceivable that for some sub-duration b, the following
formula holds:

T (a, p) ∧ b ⊆ a ∧ ∼T (b, p).
Without doubt, this is true for our present example. Suppose that Percival drank
one pint of bitter, beginning at 11:30 a.m. and finishing at 11:40 a.m. Then it is
false that he drank one pint of bitter during the subinterval from 11:35 to 11:36.
— Allen and Hayes reserve the term ‘an event’ for propositions of this type. The
distinction between these two types of propositions is central for any attempt at
establishing an adequate durational logic.

It is evident that Hamblin’s theory (cf. Hamblin 9–10) is about what Allen and
Hayes have called properties, that is, persistent propositions. Röper, however,
makes a distinction between the logic of what he has called homogeneous sentences
and the logic of ‘other sentences’. According to Röper a sentence p is homogeneous
if and only if it is 1) persistent (dissective) and 2) cumulative (i.e. for any a, if p
is true for all sub-durations of a, then p is true for a).

Röper’s way of assigning truth-values to homogeneous sentences closely fol-
lows the intuitions embodied by (Hamblin 9–10). A semantical model for the
logic of non-homogeneous sentences has to be constructed slightly differently (see
[Øhrstrøm and Hasle, 1995, pp. 313 ff.]).

8 TENSE LOGIC AND RELATIVITY

A very common criticism of Priorean tense-logic has been based on various inter-
pretations of the special theory of relativity (STR) and sometimes also interpre-
tations of the general theory of relativity. Prior himself became early aware of the
potential conflict between tense logic and STR. In fact, Saul Kripke mentioned
the problem in a letter to Prior as early as 1958 (see [Hasle and Øhrstrøm, 1998]).
According to Prior many philosophers and scientists who accept what he called
the tapestry view of time (i.e. the A-theory of time) have claimed that “they have
on their side a very august scientific theory, the theory of relativity, and of course
it wouldn’t do for mere philosophers to question august scientific theories” [Prior,
1996, p. 49]. Several writers have argued that Priorean tense-logic (i.e. the A-
theory of time) contradicts the findings of STR and related physical theories, and
that the basic tense-logical position for this reason has to be rejected. Others have
maintained that there is not necessarily any contradiction here. Prior himself was
aware of the fact that there is a problem here, which should be discussed. He
described the conflict in a very clear way:

The trouble arises when we come to compare another’s experiences,
when, for example, I want to know whether I saw a certain flash of
light before you did, or you saw it before I did. . . . It could happen
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that if I assumed myself to be stationary and you moving, I’d get one
result — say that I saw the flash first — and if you assumed that you
were stationary and I moving, you’d get a different result . . . And the
conclusion drawn in the theory of relativity is that this question —
the question as to which of us is right, which of us really saw it first
— is a meaningless question . . . Now I don’t want to be disrespectful
to people whose researches lie in other fields than my own, but I feel
compelled to say that this just won’t do [Prior, 1996, p. 49].

It is easy to understand what Prior means. Suppose that two observers, A and B,
are moving with velocities v and −v, from an emitter E, both leaving E when the
E-clock reads t = 0.

Now, consider an event with the co-ordinates (tE , xE) measured from E’s inertial
system. According to STR we may calculate the time co-ordinates relative to A
and B using the following transformations:

tA = L(tE + vxE

c2 )
tB = L(tE −

vxE

c2 )
where c is the speed of light, and where L = 1√

1− v2

c2

. A flash is emitted from E and

received simultaneously by A and B, yielding same readings, tE , on the E-clocks.
The time co-ordinates for seeing the flash on A (xE = −vtE) and B (xE = vtE)
can be calculated in A’s system in the following way:

tA,A = L(1− v2

c2 )tE

tA,B = L(1 + v2

c2 )tE
Clearly according to this A is the first to see the flash. The arrivals of the light
signals can also be calculated in the B-system:

tB,A = L(1 + v2

c2 )tE

tB,B = L(1− v2

c2 )tE
According to this calculation B sees the flash before A. For this reason some
physicists would say that the question as to which of the two observers really saw
a certain flash first can only make sense if an inertial frame is specified relative to
which the calculation should be carried out.

However, Prior thought that the question as to which of the two observers
really saw a certain flash first is indeed a meaningful one. He stated that what
it means is simply this: “When I was seeing the flash, had you already seen it,
or had you not?” [Prior, 1996, p. 50]. Of course, it might be doubted that a
physicist committed to the ordinary interpretation of STR would be convinced
by that definition. He would probably say that this is begging the question. As
a precondition for accepting the question as a meaningful one he would probably
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instead demand some experimental procedure, by means of which the question can
be settled.

Prior insisted that there is a basic ontological difference between past, present
and future. He admitted, however, that we cannot in all cases know whether a
given event is present or not, i.e. whether it is really taking place ‘now’ or not,
but he maintained that this epistemological question is very different from the
corresponding ontological question. He wanted to make it clear that all what
physics could show would be that “in some cases we can never know, we can never
physically find out [our italics], whether something is actually happening or merely
has happened or will happen” [Prior, 1972, p. 323]. Nevertheless, many modern
physicists want to go even further, and claim with Albert Einstein:

There is no irreversibility in the basic laws of physics. You have to
accept the idea that subjective time with its emphasis on the now
has no objective meaning [Prigogine, 1980, p. 203, Letter to Michele
Besso.].

On the other hand, Prior could also note — without doubt with some pleasure
— that not even Einstein was quite content with this view. Einstein once said
to Carnap that the problem of the Now worried him seriously, explaining that
“the experience of the Now means something special for men, something different
from the past and the future, but that this important difference does not and
cannot occur within physics” [Prior, 2003, pp. 136–137]. Following this kind of
reasoning, Prior maintained that questions concerning the human Now make sense,
even though we cannot be sure that such questions can ever be decided by physical
means. On logical and philosophical grounds Prior maintained that when an event
X is happening, another event Y either has happened or has not happened. He
strongly rejected the idea of treating ‘having happened’ as a property that can
attach to an event from one point of view whilst not from some other point of
view:

So it seems to me that there’s a strong case for just digging our heels in
here and saying that, relativity or no relativity, if I say I saw a certain
flash before you, and you say you saw it first, one of us is just wrong —
is misled it may be, by the effect of speed on his instruments — even
if there is just no physical means whatever of deciding which of us it
is [Prior, 1996, p. 50].

David Mellor [1998, p. 56 f.] has put forward an interesting argument against an
A-theoretical position like Prior’s. Mellor’s argument has been carefully analysed
by Thomas Müller [2000, p. 175]. Following Müller’s analysis the crucial conclusion
follows from four premises, which can be presented in the following way:

(1) According to the A-theoretical position there is an ontological difference
between past, present, and future.
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(2) An absolute Now cannot be defined in any reasonable manner in terms of the
STR concepts of being past, present or future relative to an inertial system.
The point is that on the premises of STR no inertial system is preferred.

(3) The A-theoretical ontological difference between past, present and future
must be defined in terms of the STR concepts of being past, present or
future relative to an inertial system.

(4) The A-theoretical ontological difference between past, present and future
must include the notion of an absolute Now (i.e. a transitive simultaneity
relation which does not differ from system to system) as an essential feature.

Given these 4 premises it obviously follows that the A-theoretical position con-
tradicts STR. Premise (1) is a matter of definition, and premise (2) is a crucial
and well established belief, which we have no reason to doubt. This means that
if the above argument is to be questioned we have to concentrate on the premises
(3) and (4). However, as Thomas Müller has convincingly argued, we may in fact
reject either of these two premises. This gives rise to at least two different ways
of solving the apparent conflict between tense logic and STR without in any way
denying the empirical (or measurable) consequences of STR. After the death of
A.N. Prior in 1969, Prior’s former student, W.H. Newton-Smith, seems to have
supported the possibility of rejecting premise (4). Arguing about the possible
tension between tense logic and relativity theory he concluded as follows:

If there is such a tension (between the STR and our ordinary concep-
tions of past, present and future) I would argue that it is to be resolved
through a modification of our ordinary conceptions of past, present and
future [Newton-Smith, 1980, p. 187].

This solution involves the idea that ontological judgements may depend on the
perspective or the point of view. However, it turns out to be possible to formulate
a relativistic tense logic. In fact, Prior himself had pointed out that there is a logic
of such functors as ‘It appears from a certain point of view that —’. Hence, it is
possible to make good sense out of talk about an infinity of different ‘apparent’
time-series. Prior suspected that the infinity of ‘local proper times’, which figure in
relativistic physics, amounts simply to what appears from various points of view,
or what appears to be the course of events in various ‘frames of reference’. If the
physicist wants to obtain a more general picture, he can “indicate what features
of the course of events (what temporal orderings of those events) will be common
to all points of view, and one can work out a tense logic for that too” [Prior,
2003, p. 136]. Prior himself made some contributions to the development of such a
relativistic tense logic [Prior, 1967, p. 203 ff.] even though he felt that the project
of a relativistic tense logic was on the whole a bit strange. In his analysis Thomas
Müller [2000, p. 200 ff.] has demonstrated in more details what it would mean to
extend traditional tense logic with a logic of perspectives.
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Although he accepted that a tense logic without an absolute Now may be formu-
lated, Prior clearly preferred solving the apparent conflict between STR and tense
logic in a way which involves a denial of premise 3). If the difference between past,
present, and future does not have to be defined in terms of the STR concepts of
being past, present or future relative to an inertial system, then premise 2) cannot
be used to rule out the possibility of an absolute Now. Having an absolute Now
was essential to Prior, since he wanted the difference between past, present, and
future to be ontological and independent of the actual choice of perspective. In
this way he found it easier to support his general belief that only the present is
real. However, Prior himself did not do much to analyse what it would mean in
physics if his views were to be accepted. But after Prior’s death in 1969 several
writers have discussed the problem. In [Øhrstrøm, 1988] and [Øhrstrøm, 2000] a
number of conceptual possibilities for upholding at the same time the assumptions
of STR and Prior’s equating reality with the present are analysed. One of the most
obvious ways presupposes the selection of a privileged inertial system, to whose
time-coordinates special meanings are attributed. If such a selection is not to be
made ad hoc, then it must be possible to list the reasons (preferably cosmological
ones) for it. It should be pointed out that the principle of relativity does not ex-
clude a cosmological time (that is, a ‘natural’ inertial system, which distinguishes
itself through the distribution and movement of matter in the universe). Following
the British tradition of relativistic cosmology a notion of cosmic time has in many
cases been established as an essential component of the models (see [Wegener,
2004]). However, even on the assumption of a homogeneous universe it can be
doubted that cosmic time can actually be viewed as an ontological feature of the
universe; Whitrow, sharing the assumption of a homogeneous universe, stated:

It is doubtful whether there exists a precise definition which has so
great merits that there would be sufficient reason to consider the time
thus obtained as the true one [Whitrow, 1980, p. 304].

This point of view is not shared by all researchers. As Mogens Wegener has
pointed out [Wegener, 1999b] some scientists think that the cosmological evidence
supports the existence of a universal substratum relative to which a cosmic and
absolute simultaneity can be introduced. As pointed out by Thomas Müller [2000,
p. 186–187] most cosmological models do in fact at least allow for the definition of
an absolute cosmic time. In fact, many writers have like S.J. Prokhovnik [1985, chs.
4–6] and W.L. Craig [2001; 2002] have argued that the very idea of an expanding
universe in a very natural manner gives rise to the idea of a cosmic time. Craig
has formulated this point in the following way:

. . . the universe contains a privileged class of fundamental observers
whose individual planes of simultaneity mutually combine to align with
the hypersurface which demarcates the cosmic time. These hypothet-
ical observers are conceived to be moving along with the cosmological
fluid so that, although space is expanding and they are therefore mu-
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tually receding from each other, each is in fact at rest with respect to
space itself [Craig, 2002, p. 117].

At least, it is clear that it is possible to hold Prior’s very strong tense-logical
position without violating any of the empirical consequences of special relativity, as
long as we conceive the tenses as relative to one privileged observer. Arguing from a
theological point of view, J.R. Lucas [1989, p. 220] has come to the same conclusion.
Lucas points out that “the canon of simultaneity implicit in the instantaneous
acquisition of knowledge by an omniscient being” is not incompatible with the
STR, since there may be “a divinely preferred frame of reference”. As Lucas
[1999, p. 104] later argued STR has no bearings on the ontological status of the
tenses. He maintained that although STR itself certainly does not include the idea
of a preferred inertial system, the theory cannot rule out that a certain inertial
system should be preferred for other reasons. In a similar way W.L. Craig sees no
strong arguments based on current physics against the idea of a cosmic time as an
essential component of his A-theoretical and theological world view:

In God’s temporal experience, there is a moment, which is present in
metaphysical time, wholly independently of physical clock times. Thus
God would know, without any dependence on clock synchronization
procedures, or on any physical operations at all, which events were
simultaneously present in metaphysical time — and He would know
this simply in virtue of His knowing at every such moment the unique
set of present-tense propositions true at that moment, without any
need of a sensorium or any physical observation of the universe [Craig,
2002, p. 109–110].

If there is some privileged frame of reference, then the temporal co-ordinates
relative other inertial systems as they appear in the equations of STR do not
strictly speaking represent proper time. For this reason Prior claimed:

we may say that the theory of relativity isn’t about real space and time
. . . the time which enters into the so-called space-time of relativity
theory . . . is just part of an artificial framework which the scientists
have constructed to link together observed facts in the simplest way
possible. . . [Prior, 1996, p. 50–51].

Prior did not mind playing that parlour game, too. He realised that the non-
linear structure of space-time points, ordered with absolute before-after relations,
possibly of a causal nature, constitutes an interesting object of study for the tense
logician. The structure branches both forwards and backwards, so it is not imme-
diately clear how the corresponding tense logic is to be axiomatised. He argued
[Prior, 1967, p. 203 ff.] that the characteristic axioms for relativistic space-time
are:

FGq ⊃ GFq
PHq ⊃ HPq.
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The following diagram is an illustration of the first of these two theorems:

The antecedent of this theorem, FGq, means that there is an event E1 in the
absolute future, at which Gq holds. Given that this is the case, the diagram
illustrates that Fq will be the case at any future event, E2, i.e. that GFq is also
the case now. — The other theorem, PHq ⊃ HPq, can be illustrated in a similar
way.

Prior’s argumentation was thorough and detailed, although a more systematic
investigation of the relation between special relativity and tense logic was not
carried out until 1980 (see [Goldblatt, 1980]). A decade earlier on, Gerald Massey
had directed a frontal attack on tense logic as a new discipline. He had specifically
referred to results from the STR, accusing Prior of promoting “bad physics and
indefensible metaphysics” [Massey, 1969]. However, in the light of the analysis
above and the later results like Goldblatt’s, Massey’s attack turned out to be
misconceived.

Although some results regarding relativistic tense logic have been obtained by
Prior and his followers, J.P. Burgess [1984] in his overview of tense logic had to ob-
serve that a tense logic for special relativity had not yet been worked out fully. In
our opinion this is still the case, although some important results within the field
have been produced over the last two decades. One of the most remarkable works
in the period is Nuel Belnap’s work on branching space-time [1992]. In this work
the ambition is to develop an indeterministic tense logic based on the traditional
relativistic view that events in general should be conceived as local rather than
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global. Where Prior’s notion of branching time may be seen as basicly Newto-
nian, Belnap’s branching space-time is Einsteinian. Whereas Priorean branching
time may be seen as a system of the histories (or chronicles), Belnap’s branching
space-time should be conceived as a system of four-dimensional space-time units.
Belnap’s work on branching space-time has later been continued by others (see
e.g. [Rakić, 1997], [Xu, 1997], [Müller, 2002]).

We have seen that Priorean tense logic is not consistent with the consequences
of STR. As argued by Müller two different formulations of tense logic consistent
with STR were in fact suggested by Prior himself, although he did not work out
these theories in details. The first of these may when combined with the idea
of branching time be seen as corresponding to Belnap’s branching space-time,
whereas the other approach to relativistic tense logic presupposes the additional
idea of a preferred inertial system.

It may be concluded that although some interpretations of STR may seem
to be in conflict with the Priorean view of the tense logic (i.e. the A-theory)
there is basicly no contradiction between the A-theoretical view of the tense logic
and the empirical results of modern physics. On the contrary, as pointed out
by Lucas [1999, p. 105] “it looks as if a tensed view of time is in fact required
by physics. . . ”. It should also be mentioned that Storrs McCall in his ‘A Model
of the Universe’ [McCall, 1994] has convincingly demonstrated how the study of
physics and temporal logic can be integrated in a very fruitful and useful manner.

9 AGENCY AND TEMPORAL LOGIC

In recent works, Vincent F. Hendricks [2003a; 2003b] has argued that since knowl-
edge is in principle acquired over time, a theory of knowledge should be based on a
temporal logic. This is required not only for a proper treatment of knowledge, but
also with reference to other notions which presuppose the involvement of agents,
for instance obligation and belief. For this reason, the development of a temporal
logic taking agency specifically into account will be worthwhile. In fact agency is
an implicit background assumption of branching time itself, since the very idea of
branching is related to free choices of agents — or at the very least some kind of
indeterministic behaviour.

In response to the standard claim that modern academic society is divided into
a scientist and a humanist culture, Nuel Belnap [1996, p. 241] has suggested that
branching time with agents and choices should be seen as “a high-level, broadly
empirical theory of our world that counts equally as proto-physical and proto-
humanist”. This means that the crucial features of our world may be integrated
on the basis of a temporal logic incorporating essential notions related to a proper
understanding of agency.

Prior himself was well aware of the importance of the notion of agency and its
relations to ‘decision’ and ‘contemplation’ (see e.g. [Prior, 2003, p. 59 ff.]). He
was particularly interested in the relations between ‘knowledge’ and ‘free action’.
Although Prior did not seek to establish any essential definition of knowledge,
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he did presuppose that if a statement can be known now, it must be true now.
At the same time, Prior maintained that no free action, and no decision in the
precise sense of the word, can be known beforehand by anybody. In his view the
freedom of choice presupposes some incompleteness of knowledge regarding the
future. When it comes to free choices there is “nothing to be known beforehand”
[Prior, 2003, p. 62]. As Prior saw it, a statement like “A is going to perform the
act X tomorrow” cannot be true now, if the act in question is to be free in the
proper sense of the word, that is, if A has a genuine choice between doing X and
not doing X tomorrow. Prior’s view is closely related to his Peircean approach to
the semantics for future tense statements. Belnap [1996, p. 265 ff] has followed
this Priorean line. He has stated the position as being based on a trilemma, which
can be paraphrased in the following way:

(K1) Knowledge entails truth.
(K2) A future tense statement can only be true now if it is neces-

sarily true now.
(K3) Knowledge of free future actions cannot be ruled out.

It is easy to see that the conjunction of (K1-3) gives rise to a contradiction: Let
us following (K3) assume that the person A knows that the person B is going to
perform the action X freely. According to (K1) the proposition ‘A knows that B is
going to perform the action X’ entails that ‘B is going to perform the action X’ is
true now. According to (K2) this means that it is necessary that B is going to do
X. But then B will have no alternative to performing the action X, and therefore
the action X will not be free, which is contrary to the assumption.

As we have seen, Prior and Belnap have maintained that this problem should
be solved by denying (K3), i.e. by claiming that nobody (not even God) can know
beforehand what anybody is going to do freely. This analysis is obviously closely
related to the problems regarding future contingency, and already in section 5 it
was made clear that such a Peircean understanding of future tense statements
can indeed be denied with reference to the Ockhamistic position. In other words,
logical models exist which allow for the simultaneous truth of (K1), (K2) and (K3).

The works already mentioned by Vincent F. Hendricks [2003a; 2003b] in fact
suggest an analysis of knowledge based on Ockhamistic branching time semantics.
Following some interesting ideas proposed by K. Kelly [1996], Hendricks has stud-
ied a model in which possible worlds are represented as pairs of the form (ǫ, n),
where n is a natural number, and where ǫ = (a0, a1, . . . , an, . . . ) is a so-called
evidence stream (i.e. an ω-sequence of natural numbers). The model also includes
so-called ‘handles’ and ‘fans’:

ǫ = (a0, a1, . . . , an, . . . ) (evidence stream)
(ǫ, n) (possible world)
ǫ|n = a0, a1, . . . , an−1 (handle)
[ǫ|n] = {(τ , k)|k ∈ ω and τ |n = ǫ|n} (fan)
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Given this formalism we may speak of the set M of all triples of the form
(ǫ, n, an). Obviously, all truths about the model follow from the information in-
cluded in M . On top of the model Hendricks has introduced a formal language
that includes epistemic modalities. The key notion is a so-called discovery method,
δ, which is a function taking a handle τ |n as input and producing as output a hy-
pothesis, construed as a set of possible worlds. In fact δ(τ |n) can be read as “the
hypothesis (i.e. the suggested knowledge) obtained by the method δ on the basis of
the evidence τ |n”. Hendricks has defined knowledge as limiting convergence such
that δ is said to know the hypothesis h at (ǫ, n), if h corresponds with M , and
if after a certain time the hypothesis produced by δ will remain unchanged as h.
Thus, a person adhering to this discovery method may thereby acquire knowledge.
In short we shall say that the method knows something! On the basis of this defi-
nition, we can introduce an epistemic operator Kδ corresponding to the discovery
method δ. Whether a contingent hypothesis h can be known by a method δ will
obviously depend on the properties of δ, but it is not in principle ruled out. It
might be that δ at (ǫ, n) knows that h is the case at (ǫ, n ′), where n ′ ≥ n, although
there is some (τ , n ′) in [ǫ|n] such that (τ , n ′) does not belong to h.

With the semantics sketched here it is possible to establish a tense-logical system
extended with the epistemic operator Kδ. In this system it turns out that for
instance the implication Kδh ⊃ GKδh is a valid theorem. Theorems like this
one, which involve temporal as well as epistemic operators, nicely illustrate the
interesting formal features of the kind of modal operator epistemology suggested
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by Hendricks.
Hendricks’ framework for dealing with agency and epistemic logic in the context

of a temporal logic thus has some most interesting features, but it is by no means
the only attempt in this direction. As indicated above, crucial aspects of the
discussion can be traced back to the works of A.N. Prior. Moreover, a proper
theory of agency has to incorporate several aspects in addition to knowledge. It
also has to deal with notions such a belief, desire, and obligation.

As for the notion of obligation, Georg Henrik von Wright [1951] was the first
philosopher to study the formalities of what is known as deontic operators, which
are introduced in order to formulate the basic logic of obligation. As can be seen
in the chapter on Prior’s Logic in this volume, Prior was already in the 1950s quite
preoccupied with the potentials of deontic logic as a new branch of logic. He also
realized already then that the logic of obligation should be conceived in a broader
context, namely as an integrated part within a tempo-modal framework. He never
got around to working out the details of such a system, though. After the death
of Prior one of the important milestones in this respect was the work of Richmond
H. Thomason [1981a; 1981b], who demonstrated how a logic of obligation (i.e. a
deontic logic) can be constructed within the framework of a branching time logic.

Since the beginning of the 1990s, considerable progress has been made with
respect to integrating theories of agency, obligation and temporal logic. This work,
commonly known as ‘stit-theory’, has pivoted around expressions of the form ‘α
sees to it that Q’, which is formally represented as [α stit : Q]. Much important
work on these ‘stit-theories’ has been carried out (see e.g. [Belnap and Perloff,
1988], [Perloff, 1991], [Perloff, 1995], [Horty, 2001], [Horty and Belnap, 1995], and
[Belnap et al., 2001]). Normally a distinction is made between achievement stits,
represented as ‘astit’, and deliberative stits, represented as ‘dstit’ (see [Belnap et
al., 2001, p. 29]). For our purposes here the logic of “dstit” will be sufficient.

It is not obvious how the stit-grammar should be extended into a deontic logic.
John F. Horty has developed a theory, which he has described as “a deontic logic
designed to represent what agents ought to do within a framework that allows,
also, for the formulation of a particular variant of act utilitarianism, the dominance
theory” [Horty, 2001, p. 78]. However, Horty’s approach is by no means the only
possible way to establish a logic of obligation on the basis of the fundamental
stit-grammar.

While progress has been made it has also become evident that there are consid-
erable complications involved with the formulation of a satisfactory model for the
syntax and logic of the various forms of stit-expressions. Let us give an example
of the kind of problems encountered when studying the logic of agency and time.
Consider as an example assuming the following scenario, which is an elaborated
version of the ‘Good Samaritan example’ given in [Belnap et al., 2001, p. 309 ff.].
(In the following, to be obliged to means the same as being under an obligation to.)

(1) Arthur is not obliged to kill Joe a week from now (i.e. Arthur
is not obliged to do the act K), although he is in fact going
to do so.



Modern Temporal Logic: The Philosophical Background 493

(2) Joe is wounded now, and Arthur is obligated to help him
surviving (i.e. Arthur is obligated to do the act H).

(3) Arthur’s doing H now, entails his doing the act K.
(4) If “α performs X entails that α performs Y ”, then “α is

obligated to do X entails that α is obligated to do Y ”.

Since it may in fact be the case that Arthur is going to kill Joe a week from now,
these assumptions appear to constitute a perfectly consistent scenario. However,
it turns out that (1–4) taken together may easily lead to a contradiction. — At
least it appears obvious that (3) and (4) imply:

(5) The fact that Arthur is obliged to do H entails that he is
obliged to do the act K.

Because of (2) this implies:

(6) Arthur is obliged to do the act K, i.e. Arthur is obliged to
kill Joe a week from now.

But (6) evidently contradicts (1).
One may try to find a way out of this paradox through a careful use of the

stit-formalism. The above assumptions may be represented in the following way,
where Oblg stands for an operator corresponding to ‘it is obligatory that’:

(S1) ∼Oblg : [Arthur dstit : K]
(S2) Oblg : [Arthur dstit : H]
(S3) [Arthur dstit : H] ⊃ [Arthur dstit : K]
(S4) ([α dstit : X] ⊃ [α dstit : Y ]) ⊃ (Oblg : [α dstit : X] ⊃ Oblg :

[α dstit : Y ])

When represented in this way it becomes obvious why we are seemingly led into
a contradiction. The catch is, however, that (S4) is invalid even though it seems
intuitively correct. The consequent only follows if the antecedent is settled (i.e.
holds universally). This means that we have:

(S4′ ) (Sett : ([α dstit : X] ⊃ [α dstit : Y ])) ⊃ (Oblg : [α dstit :
X] ⊃ Oblg :
[α dstit : Y ])

Here the operator ‘Sett’ corresponds to the necessity operator, �, which we have
used in earlier sections. However, if we assume that Arthur for some reason must
kill Joe a week from now, given that he helps him surviving to-day, we have:

(S3′ ) Sett : ([Arthur dstit : H] ⊃ [Arthur dstit : K])

But rewritten in this way, the contradiction will occur again. As pointed out in
[Belnap et al., 2001, p. 309 ff.], we should however take the temporal aspect into
account in the representation, since the killing-act described in this example is in
fact something to be carried out in the future.
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(S1′ ) ∼Oblg : Will : [Arthur dstit : K]
(S2) Oblg : [Arthur dstit : H]

(S3′′) Sett : ([Arthur dstit : H] ⊃Will : [Arthur dstit : K])
(S4′ ) Sett : ([α dstit : X] ⊃ [α dstit : Y ]) ⊃ (Oblg : [α dstit : X] ⊃

Oblg :
[α dstit : Y ])

This set of assumptions does not lead to any contradiction, but a contradiction
will appear again if (S4′) is replaced by:

(S4′′) Sett : ([α dstit : X] ⊃ Will : [α dstit : Y ]) ⊃ (Oblg : [α
dstit : X] ⊃ Oblg : Will : [α dstit : Y ])

Here “Will” is in fact a tense operator. In this way the analysis nicely illustrates
the benefits of a proper integration of tense logic and the logic of obligation.

It may be argued that (S4′′) is reasonable. However, according to [Belnap et
al., 2001, p. 309 ff.] the answer to this new version of the argument is that the
general validity of (S3′′) should be rejected. It is, however, evident that a denial of
(S3′′) being true in some possible cases may also be seen as somewhat problematic.
Given that Arthur is acting freely, (S3′′) is obviously false if “Will” is interpreted
in the Peircean manner. This is however not the case if “Will” is interpreted in
the Ockhamistic manner. For this reason the solution given by [Belnap et al.,
2001] is far from self-evident. In our opinion further discussion is needed.

The above example clearly illustrates that a number of rather complicated prob-
lems appear when we try to incorporate problems from real life in the context of an
integrated theory of time and agency. The researchers who are working with the
stit-theory have actually located a number of other problems concerning agency in
the context of a temporal logic. Among other things it turns out that the problems
regarding quantification and the grammar of nested stit-expressions with deontic
modalities are rather challenging, as pointed out in [Belnap et al., 2001, p. 318 ff.].

10 TOWARDS A NEW TEMPO-MODAL FRAMEWORK

Temporal logic is a huge field, philosophically as well as technically. Only the core
of its philosophical background has been covered here, according to the evident
selection of those issues and definitions which the authors of this chapter have
deemed to be the vital ones.

The considerations in section 9 have taken us to the boundaries of temporal
logic, and possibly beyond. But they do illustrate, partly how temporal issues
come to touch on other issues such as obligation and agency, and partly how
complicated it can be to obtain a conceptually acceptable representation, when one
tries to incorporate these notions into a tempo-modal framework. The solutions
certainly do not appear to be straightforward. Although the works of Belnap,
Perloff, Horty, Xu, and Hendricks undoubtedly represent significant steps forward
in theory development, and although these researchers have in fact solved some
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important problems, there is obviously still a lot to be done in order to establish
a satisfactory theory dealing with time and agency. On the other hand, we have
no reason to doubt that it will be possible to formulate a general logical theory
for time and agency, and that it can be done in a Priorean spirit. As argued by
Nuel Belnap [1996, p. 241], such a theory may qualify as a fundamental theory
on the basis of which a number of important scientific and humanistic studies
can be carried out. In fact, this new tempo-modal framework presupposes a new
world-view, a new cosmology, very far from the so-called “block-universe” which
is an attempt to represent reality as a multi-dimensional and timelessly existing
unity. As argued by Mogens Wegener, “nothing less than the full acceptance of a
temporal flow will do” [2000, p. 258].
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THE GAMUT OF DYNAMIC LOGICS

Jan van Eijck and Martin Stokhof

1 INTRODUCTION

Notions involving change often have a dual character, an interplay between process
and product. While travelling from one place to another, one can either focus on
the process of ‘being on the road’ or on the result of this process, ‘being somewhere
else’. Intellectual activities also have this dual nature: scientific discovery denotes
a process of reaching for new insights but also the resulting insights, judgement
denotes both the process of reaching a rational decision and the decision that
results from that process, computation involves a process of stepwise changes, and
the outcome of such a process, and so on.

The logical study of the interplay between process and product is called dynamic
logic. This paper gives an overview of various systems of dynamic logic, with
illustrations drawn from various application areas: programming, communicative
action and interaction, cognitive processing, natural language understanding. It is
aimed at researchers who have an interest in the formal analysis of computational
and communicative processes. A more extended textbook introduction to dynamic
logic that is explicitly geared to computer science is the informative [Harel et al.,
2000]. An earlier overview is [Harel, 1984]. Cf. also [van Benthem, 1996] for an
introduction that focuses on cognitive applications.

Dynamic logic can be viewed as dealing with the logic of action and the result
of action, and it can be used to model various kinds of actions and their results. A
rough classification might be the following. First of all there are computations, i.e.
actions performed on computers. Examples are computing the factorial function,
computing square roots, etc. Such actions typically involve changing the memory
state of a machine. Another type of action is that of communicative actions, such
as reading an English sentence and updating one’s state of knowledge accordingly,
engaging in a conversation, sending an email with cc’s, telling one’s husband a
secret. These actions typically change the cognitive states of the agents involved.
And then there are actions in the world, such as building churches, destroying
bridges, spilling milk. Such actions change the state of the world. Of course
there are connections between these categories and actions of a mixed nature: a
communicative action will usually involve some computation involving memory,
and the utterance of an imperative is a communicative action that aims at an
action in the world.

Dov M. Gabbay and John Woods (Editors)
c
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For a researcher who is interested in the formal analysis of actions of various
kinds dynamic logic can be viewed as a tool box: it provides concepts and methods
for description of actions and means to characterise the properties of the resulting
systems. Using these tools the researcher can then develop specialised, tailored
systems for dealing with specific kinds of actions: logics of computation, logics
of communication, logics of action. Inasmuch as they are geared toward specific
applications such systems may differ quite widely, but in many cases their core can
nevertheless be characterised formally in a uniform way: many of these logics can
be related to some variety of modal logic, taken in a suitably broad sense, viz., as
the logic of ‘labelled transition systems’.

A labelled transition system (or LTS, or multi-modal Kripke model) over sig-
nature 〈P,A〉, with P a set of propositions and A a set of actions, is a triple
〈S, V,R〉 where S is a set of states, V : S → P(P ) is a valuation function, and

R = {
a
→⊆ S×S | a ∈ A} is a set of labelled transitions, i.e. binary relations on S,

one for each label a. Let us illustrate the idea of an LTS by a few simple examples.
If one interprets the labelled transitions as the changes in the memory state of

a computer, LTSs model computations, for example the simple assignment x := y:

The command to put the value of register y in register x makes the contents
of registers x and y equal. Pioneer papers in the logic of computation are [Floyd,
1967; Hoare, 1969].

If one interprets the labelled transitions as accessibility relations on the cognitive
state space of a group of agents, LTSs can be used to model the information that
such agents have about the world, about each other’s information about the world,
each other’s information about each other’s information about the world, and so
on. And it can be used to describe changes in such information states:
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On the left is an epistemic situation where p is in fact the case (indicated by
a double circle), but a and b cannot distinguish between p and ¬p. If in such
a situation a receives the message that p is the case, while b is not informed of
this, the epistemic situation changes to what is pictured on the right. In the new
situation, a knows that p, and a also is aware of the fact that b does not know,
while b still does not not know, and b still assumes that a does not know. See
[Hintikka, 1962] for one of the earliest treatments of epistemic logic along these
lines. An overview of the development of epistemic logic is given in [Gochet and
Gribomont, 2005]. Cf., also [van Benthem, 1996].

Communicative actions may provide more detailed information about the world
than the information that a certain state of affairs is realised. In a discourse (text,
conversation), information is (often) conveyed piecemeal, and languages contains
various means for keeping track of what has been said about what. Anaphoric
pronouns are a case in point. Their role can be modelled by interpreting states
as consisting of discourse items to which information is added in an incremental
fashion. The following illustrates the action on such a state that is triggered by
the use of an anaphoric pronoun:

In a discourse where a man and a woman have been mentioned recently, an
utterance of ‘He is angry’ receives a natural interpretation by linking the pro-
noun to the most salient appropriate discourse item, viz., the man that was
just mentioned. Early work in this area is in [Karttunen, 1976; Heim, 1982;
Kamp, 1981]. See [Gochet, 2002] for an overview.

Yet another illustration of how LTSs can be used to model action is when one
interprets labelled transitions as actions on the state of the world. In that case
LTSs model changes in the world itself:

The action of window-opening changes a state in which the window is closed
into one in which it is open. More complex actions call for more complex models,
of course, in particular when we are interested in a more fine grained analysis of
the causality involved in bringing about changes. An early overview of the logic
of action is in [Wright, 1983]. For a more recent survey, cf., [Segerberg, 1992]. A
different approach is the stit-logic of Belnap, cf. [Belnap et al., 2001].
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These examples illustrate that it is possible to approach a wide variety of kinds
of actions from a unified perspective. What follows is intended to show that this
is not only possible, but also fruitful. Note that the diversity of applications of
dynamic logic also indicates that it is difficult to trace the various systems and
application to a single historic root. In fact, some of what appears uniform now,
as a matter of historical fact had quite diverse origins. For this reason we have
opted for a mainly systematic treatment, with occasional historical side remarks
where relevant.

*

The larger part of the survey of dynamic logic that follows is devoted to an ex-
position of two core systems of dynamic logic, viz., propositional dynamic logic
and quantificational dynamic logic, and three illustrative areas of application, viz.,
programming, communicative action and dynamic semantics of natural language.

One of the seminal papers in computer science is Hoare’s [Hoare, 1969]. where
the following notation is introduced for specifying what an imperative program
does:

{P} C {Q}.

Here C is a program from a formally defined programming language for imperative
programming, and P and Q are conditions on the programming variables used in
C. Statement {P} C {Q} is true if whenever C is executed in a state satisfying
P and if the execution of C terminates, then the state in which execution of C
terminates satisfies Q. The ‘Hoare-triple’ {P} C {Q} is called a partial correctness
specification; P is called its precondition and Q its postcondition. Floyd-Hoare
logic, as the logic of reasoning with such correctness specifications is called, is the
precursor of all the dynamic logics known today. We will demonstrate Floyd-Hoare
logic in Section 2.4, for the toy language specified in Section 2.1. The specification
of a toy programming language has the additional benefit that it will allow us to
demonstrate various approaches to the semantics of programming. We will present
example programs, formulate questions about their behaviour, and show how some
of these questions are answered with Floyd-Hoare logic. After that, we turn to
dynamic logic proper as a more general means of tackling such questions.

In section 3 we present what is perhaps the most basic system of dynamic logic,
propositional dynamic logic (PDL), a logic in which basic actions are primitives.
This feature makes PDL applicable in a wide variety of cases. For example, if one
interprets the basic actions as communicative actions that affect cognitive states of
sets of interacting agents, then dynamic logic takes the shape of dynamic epistemic
logic. This important area of application is treated in detail in section 4.

When one takes memory change as the basic action, one gets quantified dynamic
logic (QDL), the system that is introduced and discussed in section 5. QDL has
its origin in correctness reasoning based on annotating programs with pre- and
postconditions. These historical connections are briefly traced. It is possible to
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interpret QDL programs also in a different way, viz., as changing the cognitive
state of a language user. This potential relevance of QDL for an understanding
of natural language was actualised in what has been called the ‘dynamic turn’
in natural language semantics. In section 6 we focus on dynamic predicate logic
(DPL) as a subsystem of QDL. A more detailed treatment of the application of
dynamic concepts in natural language semantics is given in section 7.

2 DESCRIBING CHANGE AND REASONING ABOUT CHANGE

Consider the following problem concerning the outcome of a pebble drawing action.

A vase contains 35 white pebbles and 35 black pebbles. Proceed as
follows to draw pebbles from the vase, as long as this is possible. Ev-
ery round, draw two pebbles from the vase. If they have the same
colour, then put a black pebble back into the vase, if they have dif-
ferent colours, then put the white pebble back. You may assume that
there are enough additional black pebbles. In every round one pebble
is removed from the vase, so after 69 rounds there is a single pebble
left. What is the colour of this pebble?

Here is an implementation of this procedure, where the vase is represented as a
list of integers, the white pebbles are the occurrences of 0, and the black pebbles
the occurrences of 1. The draw function is coded in the programming language
Haskell [Jones, 2003]:

draw :: [Integer] -> [Integer]

draw [x] = [x]

draw (0:0:xs) = draw (1:xs)

draw (1:1:xs) = draw (1:xs)

draw (0:1:xs) = draw (0:xs)

draw (1:0:xs) = draw (0:xs)

The question: if this function is called with a list of thirty-five 0’s and thirty-five
1’s, in unknown order, will the outcome of the function be [0] or [1]?

The key to the solution is finding an invariant of the procedure, i.e. finding
a condition that does not change when a single pebble is removed from the vase.
It is not hard to see that when a pebble is drawn, the number of white pebbles
always remains odd. It follows that the last pebble is white. So the draw function
will return [0] on any permutation of the list of thirty-five 0’s and thirty-five 1’s.

With this piece of reasoning we are in the realm of dynamic logic. Rather
than encode examples in an existing programming language like Haskell or Java,
it will turn out to be useful to introduce our own toy language for illustrations.
As dynamic logic describes the interplay between actions and resulting states, the
action description language is part and parcel of the dynamic logic language.
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2.1 The WHILE Language

In what follows we define a simple programming language for programming over
the data type of the natural numbers, i.e. the set N = {0, 1, 2, 3, . . .}, with func-
tions + for addition, ∗ for product, and −̇ for cut-off subtraction.

First, we distinguish between numbers and their names. Numbers are objects
in the mathematical realm, names are syntactic objects. A numeral is a name
for a natural number. E.g., ‘5’ is a name for the natural number 5. Assume N
is a set of numerals. Assume V is a set of variables. The sets N and V may
have further internal structure, but we will not bother to spell this out. Given
sets N,V , arithmetic expressions can be defined by means of +, ∗, −̇, as follows
(assume n ranges over the numerals and v over the variables):

a ::= n | v | a1 + a2 | a1 ∗ a2 | a1−̇a2.

This says that 345 ∗ (67 + 8) and (345 ∗ 67) + 8 are arithmetic expressions. (The
brackets indicate the manner of construction).

In terms of these arithmetic expressions we will now fix a small programming
language for programming with the natural numbers. We assume two further
primitive relation symbols ‘=’ for ‘equal’, and ‘≤’ for ‘less than or equal’. This
allows us to define Boolean expressions (named after [Boole, 1854]), as follows:

B ::= ⊤ | a1 = a2 | a1 ≤ a2 | ¬B | B1 ∨B2

Note that instead of listing equalities a1 = a2 explicitly, we might have introduced
them by way of abbreviation, as shorthand for a1 ≤ a2 ∧ a2 ≤ a1. Arithmetic
expressions and Boolean expressions figure in programming commands, as follows:

C ::= SKIP | v := a | C1 ; C2 | IF B THEN C1 ELSE C2 | WHILE B DO C.

The basic programming constructs of the WHILE language are SKIP for the pro-
gram that does nothing, and v := a for the program that assigns the value of a
to the variable v. Programs or commands can be composed by means of sequenc-
ing, by means of conditionalisation, and by means of guarded repetition. Further
programming constructs can now be defined, e.g., REPEAT:

REPEAT C UNTIL B := C ; WHILE ¬B DO C.

The WHILE language looks deceptively simple, but it is extremely expressive. In
fact, this little language is Turing complete, i.e. one can specify the behaviour of
any Turing machine in it ([Turing, 1936]). This means that anything that can be
computed on the natural numbers can (in principle) be computed by means of a
WHILE program.

2.2 Semantics

To specify the semantics, we take the natural numbers N with the operations
+, ∗, −̇ and the relation ≤ as given. We also assume that every numeral n in N
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has an interpretation I(n) ∈ N. Let g be a mapping from V to N (an assignment
of natural numbers to the variables). The arithmetic expressions of the language
are now interpreted relative to assignment g, as follows:

[[n]]g := I(n)

[[v]]g := g(v)

[[a1 + a2]]g := [[a1]]g + [[a2]]g

[[a1 ∗ a2]]g := [[a1]]g ∗ [[a2]]g

[[a1−̇a2]]g := [[a1]]g−̇[[a2]]g

The semantics of the Boolean expressions (or ‘Booleans’) of the language is
defined as follows:

[[⊤]]g := T

[[a1 = a2]]g :=

{
T if [[a1]]g = [[a2]]g
F otherwise

[[a1 ≤ a2]]g :=

{
T if [[a1]]g ≤ [[a2]]g
F otherwise

[[¬B]]g :=

{
T if [[B]]g = F
F otherwise

[[B1 ∨B2]]g :=

{
T if [[B1]]g = T or [[B2]]g = T
F otherwise

Natural Semantics for Commands

The semantics of the commands can be given in various styles. First we give the
so-called natural semantics, in the form of a specification of a transition system.

For any valuation g, any variable v and any natural number d, let g[v → d]
be the valuation g′ that differs from g at most in the fact that g′(v) = d. This
notion is familiar from the semantics of first order logic. Then the transition for
assignment commands is given by:

g v:=a−−−−−→ g[v → [[a]]g]

The SKIP command does nothing:

g SKIP−−−−−−→ g

Sequential composition combines two transition arrows:

g C1−−−−→ g′ g′ C2−−−−→ g′′

g C1 ; C2
−−−−−−−→ g′′
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Conditional action makes a choice from two transition relations, depending on the
evaluation of the condition.

g C1−−−−→ g′

g IF B THEN C1 ELSE C2−−−−−−−−−−−−−−−−−−−→ g′
[[B]]g = T

g C2−−−−→ g′

g IF B THEN C1 ELSE C2−−−−−−−−−−−−−−−−−−−→ g′
[[B]]g = F

Guarded iteration does nothing if the guard fails to hold:

g WHILE B DO C−−−−−−−−−−−−−→ g
[[B]]g = F

Otherwise the guarded action is performed and the WHILE command is executed
again in the result state.

g C−−−→ g′ g′ WHILE B DO C−−−−−−−−−−−−−→ g′′

g WHILE B DO C−−−−−−−−−−−−−→ g′′
[[B]]g = T

These rules define a transition relation
C
−→ on the set of all valuations, for every

command C. In order to derive a transition g C−−→ g′, construct a finite derivation
tree with g C−−→ g′ at the root, with axioms at the leaves and each internal nodes
licensed by a transition rule. Here is an example, for the command z := x ; x :=
y ; y := z, executed in the state g = {x → 3, y → 2, z → 5}. We use g1 as
shorthand for {x → 3, y → 2, z → 3}, g2 as shorthand for {x → 2, y → 2, z → 3},
g3 as shorthand for {x → 2, y → 3, z → 3}.

g z:=x−−−−→ g1

g1
x:=y
−−−−→ g2 g2

y:=z
−−−−→ g3

g1
x:=y ; y:=z
−−−−−−−−−→ g3

g z:=x ; x:=y ; y:=z
−−−−−−−−−−−−−−→ g3

This command computes the remainder upon division of x by y in x:

WHILE y ≤ x DO x := x−̇y.

The following variant computes the result of the division of x by y in z, and the
remainder in x:

z := 0 ; WHILE y ≤ x DO (x := x−̇y ; z := z + 1).

Abbreviate ¬a1 = a2 as a1 �= a2, ¬a1 ≤ a2 as a1 > a2 and ¬a1 ≥ a2 as a1 < a2.
Euclid’s well known Greatest Common Divisor algorithm is now readily expressed
as a WHILE command. The following program computes the GCD of x and y in
x (and in y).

(1) WHILE x �= y DO IF x > y THEN x := x−̇y ELSE y := y−̇x.
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For state g = {x → 24, y → 9}, program (1) leads to the following execution:

{x → 24, y → 9} x := x−̇y {x → 15, y → 9}

x := x−̇y {x → 6, y → 9}

y := y−̇x {x → 6, y → 3}

x := x−̇y {x → 3, y → 3}.

Consider the following command:

(2) y := 1 ; WHILE x �= 1 DO (y := y ∗ x ; x := x−̇1).

Let g be a valuation with g(x) = 3. Then one can use the transition rules to show:

g y:=1 ; WHILE x =1 DO (y:=y∗x ; x:=x−̇1)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ g[x → 1, y → 6].

When executed in a state g, command (2) computes the factorial of g(x) in y.

We say that a command C terminates in state g if there is a state g′ with

g
C
−→ g′, and that C loops in state g if C does not terminate in state g. It can

be shown by induction that it holds for all C that if g
C
−→ g′ and g

C
−→ g′′ then

g′ = g′′ (WHILE programs are deterministic).

In simple cases it is easy to say whether a command terminates in a given state.
For example, the factorial command terminates for all states g, and the command

WHILE x > 0 DO x := x + 1

loops for all states g with g(x) �= 0. In general, however, termination of WHILE
programs for infinite state sets is undecidable. As an example of a difficult deci-
sion problem about program termination, take the question whether the following
program terminates for all states with positive x:

WHILE x �= 1 DO IF even (x) THEN x := x/2 ELSE x := (3 ∗ x) + 1

Note that this example uses an operator / for integer division and a predicate for
evenness, but this is not crucial, for these extensions are definable in the WHILE
language. Here is an example run of the program:
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x0 = 7

x := (3 ∗ x) + 1 → x1 = 22

x := x/2 → x2 = 11

x := (3 ∗ x) + 1 → x3 = 34

x := x/2 → x4 = 17

x := (3 ∗ x) + 1 → x5 = 52

x := x/2 → x6 = 26

x := x/2 → x7 = 13

x := (3 ∗ x) + 1 → x8 = 40

x := x/2 → x9 = 20

x := x/2 → x10 = 10

x := x/2 → x11 = 5

x := (3 ∗ x) + 1 → x12 = 16

x := x/2 → x13 = 8

x := x/2 → x14 = 4

x := x/2 → x15 = 2

x := x/2 → x16 = 1

Counterexamples against termination have never been found, but a proof of termi-
nation has not been found either. This termination problem was posed by Lothar
Collatz in 1937, and it is still open [Guy, 1981, Problem E 16].

Structural Operational Semantics for Commands

An alternative fashion of specifying the semantics of an imperative programming
language, due to Plotkin [Plotkin, 1981], specifies the transition system for a pro-
gram in a slightly different way, focusing on the smallest steps that a computation
can take. Here are the rules of what is called ‘structural operational semantics’,
or ‘small step semantics’. The transitions are now from pairs of a state and a
command to a state (such a transition expresses that the command finishes in a
single step), and from pairs of a state and a command to a new state and a new
command (such a transition expresses that the first step of the command causes a
shift to the new state, where the remainder of the command is left to be executed).

Assignment commands finish in one step:

(g, v := a) =⇒ g[v → [[a]]g].

The SKIP command also finishes in a single step, and it does not change the state.

(g,SKIP) =⇒ g.
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If the first command of a command sequence finishes in a single step, then the
second command of the sequence is all that is left:

(g, C1) =⇒ g′

(g, C1 ; C2) =⇒ (g′, C2)

If the first command of a command sequence does not finish in a single step, we
get:

(g, C1) =⇒ (g′, C1
′)

(g, C1 ; C2) =⇒ (g′, C1
′ ; C2)

Rules for conditional action: the action depends on the outcome of the test.

(g, IF B THEN C1 ELSE C2) =⇒ (g, C1)
[[B]]g = T

(g, IF B THEN C1 ELSE C2) =⇒ (g, C2)
[[B]]g = F

Finally, the guarded iteration command. If the guard is not satisfied, the command
finishes in a single step, and it does not change the state:

(g,WHILE B DO C) =⇒ g
[[B]]g = F

Otherwise the first step of the guarded action is performed, and in the result state
the remainder of the action plus the conditional iteration command are put on the
to-do list:

(g, C) =⇒ (g′, C ′)

(g, WHILE B DO C) =⇒ (g′, C ′; WHILE B DO C)
[[B]]g = T

To see how this works, consider the command z := x ; x := y ; y := z, executed
in the state g = {x → 3, y → 2, z → 5}. The structural operational semantics
rules yield the following:

({x → 3, y → 2, z → 5}, z := x ; x := y ; y := z)

=⇒ ({x → 3, y → 2, z → 3}, x := y ; y := z)

=⇒ ({x → 2, y → 2, z → 3}, y := z)

=⇒ {x → 2, y → 3, z → 3}

It can now be proved by induction that these rules define the same ‘extensional’
behaviour as the original rules, in the sense that g C−−−→ g′ iff (g, C) =⇒∗ g′.

The difference between natural semantics (large step semantics) and struc-
tural operational semantics (small step semantics) shows up as soon as we add
a construct for error abortion to the language. Suppose ABORT is a program
that in any state g stops execution without yielding a new output state. Then
the difference between SKIP and ABORT is that we have (g,SKIP) =⇒ g and
g SKIP−−−−−→ g, while from (g,ABORT) there are no =⇒ arrows, and there are no
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states g′ with g ABORT−−−−−−−→ g′. It turns out that in natural semantics there is no
way to distinguish between abnormal termination and looping behaviour, while
in structural operational semantics there is. In natural semantics, ABORT and
WHILE ⊤ DO SKIP are equivalent, but in structural operational semantics they
are not, for the first has no derivation sequence at all, while the second has an
infinite one:

(g,WHILE ⊤ DO SKIP) =⇒ (g,WHILE ⊤ DO SKIP)

=⇒ (g,WHILE ⊤ DO SKIP)

=⇒ . . .

The natural semantics can be made more expressive by adding a special er-
ror state • different from all the regular states, and adding the transition rules
g ABORT−−−−−−−→ •, and • C−−−→ • for all commands C. Under this modification
ABORT and WHILE ⊤ DO SKIP become distinguishable again in natural se-
mantics, for the first has a transition to • from anywhere, and the second has no
transitions from anywhere.

Interpreted versus Uninterpreted Semantics

The WHILE language over N is an example of an interpreted language. We can
also choose to interpret WHILE over different data structures. To see that this
makes a difference, consider the following program:

WHILE x �= 0 DO x := p(x)

If p is interpreted as predecessor, this program will always terminate when executed
on N, but it will only terminate for states with a non-negative value for x when
executed on Z (the domain of integers). As another example, let T be the infinite
binary tree given by:

T ::= 〈〉 | T 0 | T 1

with a unary function ↑:: T → T defined by means of

↑〈〉 = 〈〉, ↑T 0 =↑T 1 = T .

This specifies the following infinite binary tree:

〈〉

��� ���

0
����

00

...

11

...

1
����

10

...

11

...
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Then the following WHILE program over T

WHILE x �= 〈〉 ∧ y �= 〈〉 DO (x :=↑x ; y :=↑y)

will always terminate in a state where x = 〈〉 or y = 〈〉, depending on which of
x, y is closer to the root 〈〉 in the initial state.

WHILE programs can also be studied under the aspect of uninterpreted com-
putation. Given a first order signature σ, we may be interested in equivalence of
WHILE programs for arbitrary σ models. E.g., the commands

IF B THEN C1 ELSE C2

and
IF ¬B THEN C2 ELSE C1

are equivalent for any choice of B,C1, C2 and any model M for the predicate and
function symbols that occur in B,C1, C2. Uninterpreted reasoning is the right
level for comparing expressive power of programming language constructs, for on
the fixed domain N with zero, successor, addition and multiplication all reasonable
programming language have the same expressive power: they all compute exactly
the partial recursive functions. At the uninterpreted level, extending the WHILE
language with a construct for non-deterministic choice C1 OR C2 strictly increases
expressive power.

2.3 Non-determinism

Non-deterministic WHILE is the extension of WHILE with a construct for choice
C1 OR C2, with semantics given by the following transition rules:

g C1−−−−→ g′

g C1 OR C2−−−−−−−−−→ g′

g C2−−−−→ g′

g C1 OR C2−−−−−−−−−→ g′

What this says is that a program like x := x+ 1 OR x := x+ 2, when executed in
a state {x → 3} will produce two output states {x → 4} and {x → 5}.

The structural operational semantics rules for choice are as follows:

(g, C1 OR C2) =⇒ (g, C1)

(g, C1 OR C2) =⇒ (g, C2)

Now consider program (3).

(3) (WHILE ⊤ DO SKIP) OR x := x + 2.
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According to the natural semantics, for no input state g is there an output state g′

with g WHILE ⊤ DO SKIP−−−−−−−−−−−−−−−→ g′. Therefore, program (3) will only get one derivation
tree, namely that for:

g (WHILE ⊤ DO SKIP) OR x:=x+2
−−−−−−−−−−−−−−−−−−−−−−−−−→ g{x → x + 2}.

According to the structural operational semantics, we get two derivation sequences,
one infinite

(g, (WHILE ⊤ DO SKIP) OR x := x + 2)
=⇒ (g, (WHILE ⊤ DO SKIP)
=⇒ (g, (WHILE ⊤ DO SKIP)
=⇒ . . .

and the other finite

(g, (WHILE ⊤ DO SKIP) OR x := x + 2)
=⇒ (g, x := x + 2)
=⇒ g{x → x + 2}.

This illustrates that the structural operational semantics is more ‘fine-grained’
than the natural semantics. It also shows that the presence of non-determinism
may make looping behaviour more difficult to detect.

Programming language semantics in various styles for WHILE and its extensions
are discussed in [Nielson and Nielson, 1992]. Classics on denotational semantics
for programming are [Stoy, 1977] and [Schmidt, 1986].

2.4 Floyd-Hoare Logic

One way of reasoning about WHILE commands (or about imperative programs
in general) is by using first order predicate logic for making assertions about com-
mand execution. Floyd [Floyd, 1967] and Hoare [Hoare, 1969] proposed to use
correctness statements of the following form:

{ϕ} C {ψ}

This expresses that command C takes us from a precondition ϕ, true at the state
where the command gets executed (the input state), to a postcondition ψ, true
immediately after execution of the command. Since we are programming over the
natural numbers, we interpret the pre- and postconditions in N. This gives the
following formal interpretation of Floyd-Hoare correctness triples:

N |= {ϕ} C {ψ} iff

for all g, h, if N |=g ϕ and g C−−−→ h, then N |=h ψ.

An example of a true correctness statement is the following:

{x! = Z} y := 1 ; WHILE x �= 1 DO (y := y ∗ x ; x := x−̇1) {y = Z}
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Figure 1. Floyd-Hoare Calculus for WHILE

assignment {ϕv
a} v := a {ϕ}

skip {ϕ} SKIP {ϕ}

sequence

{ϕ} C1 {ψ} {ψ} C2 {χ}

{ϕ} C1 ; C2 {χ}

conditional choice

{ϕ ∧B} C1 {ψ} {ϕ ∧ ¬B} C2 {ψ}

{ϕ} if B then C1 else C2 {ψ}

guarded iteration

{ϕ ∧B} C {ϕ}

{ϕ} while B do C {ϕ ∧ ¬B}

precondition strengthening

N |= ϕ′ → ϕ {ϕ} C {ψ}

{ϕ′} C {ψ}

postcondition weakening

{ϕ} C {ψ} N |= ψ → ψ′

{ϕ} C {ψ′}
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In connection with Floyd-Hoare style correctness assertions, the notions of
strongest postcondition and weakest liberal precondition arise in a natural way.

The strongest postcondition SP(ϕ,C) of a predicate logical formula ϕ and a
command C is the condition that holds in a state g if there is a state h satisfying
ϕ that has a C transition to g. Formally:

N |=g SP(ϕ,C) iff there is an h with N |=h ϕ and h C−−−→ g.

The weakest liberal precondition WLP(C,ϕ) of a predicate logical formula ϕ and
a command C has the following interpretation:

N |=g WLP(C,ϕ) iff there is an h with N |=h ϕ and g C−−−→ h.

The connection with Floyd-Hoare correctness statements is as follows:

N |= {ϕ} C {SP(ϕ,C)},

if N |= {ϕ} C {ψ} then N |= SP(ϕ,C) → ψ,

N |= {WLP(C,ϕ)} C {ϕ},

if N |= {ϕ} C {ψ} then N |= ϕ→ WLP(C,ψ).

This illustrates the view of WHILE programs as predicate transformers, mapping
weakest precondition predicates on the natural numbers into strongest postcondi-
tion predicates on the natural numbers.

A Floyd-Hoare calculus
for WHILE programs is given in Figure 1. In the rule for assignment, ϕv

a denotes
the result of substitution of a for v in ϕ. At first sight, one might think that the
assignment axiom should run {ϕ} v := a {ϕv

a} instead of {ϕv
a} v := a {ϕ}. This

would be a mistake, for consider the example where ϕ equals the statement v = 0,
and a equals v + 1. Then the rule {ϕ} v := a {ϕv

a} yields the incorrect statement
{v = 0} v := v + 1 {v + 1 = 0}, while the correct rule {ϕv

a} v := a {ϕ} yields the
correct statement {v + 1 = 0} v := v + 1 {v = 0}.

Note that the rules of precondition strengthening and postcondition weakening
in N are a kind of oracle rules, for implications ψ → ψ′ on the natural numbers

may be undecidable.

Illustration To illustrate the use of the calculus, consider the factorial program
(2) again. Here are the correctness statements that prove the fact that this program
actually computes the factorial function:

1. {x! = Z} y := 1 {y ∗ x! = Z}

2. {y ∗ x! = Z ∧ x �= 0} y := y ∗ x {y ∗ x! = Z ∗ x}

3. {y ∗ x! = Z ∗ x ∧ x �= 0} x := x−̇1 {y ∗ x! = Z}

4. {y ∗ x! = Z ∧ x �= 0} y := y ∗ x ; x := x−̇1 {y ∗ x! = Z}
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5. {y ∗x! = Z} WHILE x �= 0 DO (y := y ∗x ; x := x−̇1) {y ∗x! = Z ∧x = 0}.

6. {x! = Z}
y := 1 ; WHILE x �= 0 DO (y := y ∗ x ; x := x−̇1)
{y ∗ x! = Z ∧ x = 0}.

7. {x! = Z}
y := 1 ; WHILE x �= 0 DO (y := y ∗ x ; x := x−̇1)
{y = Z}.

Properties

The Floyd-Hoare calculus for WHILE programs is sound, in the following sense:
if {ϕ} C {ψ} is derivable, using the rules for precondition strengthening and
postcondition weakening in N, then N |= {ϕ} C {ψ}. Soundness is easily shown
by induction on the length of Floyd-Hoare derivations.

The presence of the precondition strengthening and postcondition weakening
introduce an element of model checking into the Floyd-Hoare calculus, making it
into a hybrid tool for deduction and evaluation in N.

Since arithmetical truth is not effectively axiomatisable, the true correctness
statements for WHILE programs over N are not effectively axiomatisable either.
Indeed, we have, for every arithmetical formula ϕ:

N |= ϕ iff N |= {⊤} SKIP {ϕ}.

However, because strongest postconditions can be expressed in the language of N
by means of encoding, we can get around this by allowing members of Th(N) (the
set of all predicate logical statements that are true on the natural numbers) in
correctness proofs [Cook, 1978]:

THEOREM 1 (Cook, Relative Completeness). N |= {ϕ} C {ψ} implies that
{ϕ} C {ψ} is derivable using Floyd-Hoare rules together with Th(N).

Proof. An induction on the structure of programs works. We just give the case
of guarded iterations. Let N |= {ϕ} WHILE B DO C {ψ}. Now use the fact that
strongest postconditions are encodable in N to define

χ = ∃y1 · · · yn(SP(ϕ, WHILE B ∧ (x1 �= y1 ∨ · · · ∨ xn �= yn) DO C))

where x1, . . . , xn are all the variables occurring in C, and y1, . . . , yn are new.
Then χ defines the states that can be reached from a ϕ state by means of a finite
number of C transitions through B states. Thus, N |= {χ ∧ B} C {χ}. This
formula is derivable by the induction hypothesis. By the Floyd-Hoare rule for
guarded iteration, it follows from this that

{χ} WHILE B DO C {χ ∧ ¬B}
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is derivable too. Since ϕ→ χ and χ∧¬B → ψ are both true in N (the latter because
χ ∧ ¬B is equivalent to SP(ϕ, WHILE B DO C)), by the rules for precondition
strengthening and postcondition weakening we get that

{ϕ} WHILE B DO C {ψ}

must be derivable too. �

It is important to note that Floyd-Hoare correctness statements if this sim-
ple form are not expressive enough to reason about termination. The following
correctness statement is true:

{x ≥ 1}
WHILE x �= 1 DO IF even (x) THEN x := x/2 ELSE x := (3 ∗ x) + 1
{x = 1}

This expresses that if the command is executed in a state where x has a positive
value, after termination x will have value 1. It does not express that the command
will terminate for all states with x positive. This is the reason that Floyd-Hoare
correctness statements are sometimes called partial correctness statements.

To remedy this, calculi have been proposed with a stronger interpretation, for
reasoning about Floyd-Hoare triples expressing total correctness:

{ϕ} C {⇓ ψ}

Such a total correctness statement expresses that if precondition ϕ is fulfilled then
C is guaranteed to terminate in a state satisfying ψ. To make this work, the rule for
guarded iteration has to be reformulated in terms of a decreasing measure function
M on the natural numbers, as follows (it is assumed that N |= (ϕ∧M = i+1) → B
and N |= (ϕ ∧M = 0)→ ¬B):

{ϕ ∧M = i + 1} C {⇓ ϕ ∧M = i}

{∃i(ϕ ∧M = i)} WHILE B DO C {⇓ ϕ ∧M = 0}

An overview of the development of Floyd-Hoare reasoning can be found in [Apt,
1981]. Floyd-Hoare reasoning is still a dominant tradition in program verification;
pre- and postcondition annotations can be used as formal specifications with re-
spect to which a program can be verified, where the verification process can be
partially automated [Gordon, 1988; Huth and Ryan, 2000].

Floyd-Hoare reasoning, the original flavour of dynamic logic for the analysis of
programming, is applicable to sequential transformational programs. Sequential
programs run on a single processor without involving concurrency. Transforma-
tional programs are programs that are expected to terminate with an output after
a finite number of steps. Sequential transformational programs are in the realm
of dynamic logic in the sense of the present paper.
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Reactive systems are systems that are expected to ‘run forever’; examples are
text editors, operating systems. Concurrent reactive systems also involve interac-
tion between processes; examples can be found in hardware systems, and embed-
ded systems like the software that controls ignition and fuel injection of cars. The
analysis and verification of (concurrent) reactive systems calls for model checking
methods using temporal computation tree logics such as CTL, LTL and CTL∗

[Pnueli, 1981; Clarke and Emerson, 1982; Clarke et al., 1993], and is outside the
scope of our survey (but see Section 3.6 below).

3 PROPOSITIONAL DYNAMIC LOGIC

The language of propositional dynamic logic was defined by Pratt in [Pratt, 1976;
1980] as a generic language for reasoning about computation. Axiomatisations
were given independently by Segerberg [Segerberg, 1982], Fisher/Ladner [Fischer
and Ladner, 1979], and Parikh [Parikh, 1978]. These axiomatisations make the
connection between propositional dynamic logic and modal logic very clear.

3.1 Language

Propositional dynamic logic can be viewed as a basic logic of change. Propositional
dynamic logic abstracts over the set of basic actions, in the sense that basic actions
are atoms. This means that its range of applicability is vast. In the WHILE
language, the basic actions are definite assignments v := a and the trivial action
SKIP. Now the basic actions can be anything. The only thing that matters about
a basic action a is that it is interpreted by some binary relation on a state set.

Dynamic logics have two basic syntactic categories: formulae and programs.
Formulae are used for talking about states, programs for classifying transitions
between states.

The same distinction can be found in all imperative programming languages, by
the way. Imperative programming languages have programs (often called ‘state-
ments’) versus formulae (often called ‘Boolean expressions’). In the case of the
WHILE language, the booleans appeared as conditions in conditional statements
and as guards in guarded iterations.

Propositional dynamic logic is an extension of propositional logic with programs,
just like basic modal logic is an extension of propositional logic with modalities.
Let a set of basic propositions P be given. Appropriate states will contain valua-
tions for these propositions. Assume a set of basic actions A. Every basic action
corresponds to a binary relation on the state set.

Let p range over the set of basic propositions P , and let a range over a set of
basic actions A. Then the formulae ϕ and programs α of propositional dynamic
logic are given by:

ϕ ::= ⊤ | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ

α ::= a |?ϕ | α1 ; α2 | α1 ∪ α2 | α
∗
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We employ the usual abbreviations: ⊥ is shorthand for ¬⊤, ϕ1 ∧ ϕ2 is shorthand
for ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 is shorthand for
(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), and [α]ϕ is shorthand for ¬〈α〉¬ϕ. Also, we will use αn

for the program consisting of a sequence of n copies of α, i.e. we define αn by
means of α0 :=?⊤, αn+1 := α ; αn.

Taking the basic actions to be computations, we can use PDL to talk about
programming: for any program α, 〈α〉⊤ expresses that the program has at least
one successful computation, and [α]⊥ expresses that the program fails (does not
produce any output). If the basic actions are communicative actions, e.g., public
announcements, then 〈α〉ϕ expresses that a public announcement of α may have
the effect that ϕ holds. If the basic actions are changes in the world, such as
spilling milk S or cleaning C, then [C ; S]d expresses that cleaning up followed
by spilling milk always results in a dirty state, while [S ; C]¬d expresses that the
occurrence of these events in the reverse order always results in a clean state.

Nor does this exhaust the application areas of PDL. In [Blackburn et al., 1993]

and [Kracht, 1995], variants of PDL are used for defining a variety of structural
relations in syntax trees for natural language, and in [Marx, 2004] PDL is used to
analyse XPath, a node addressing language of XML documents.

3.2 Semantics

If R1, R2 are binary relations on a state set S, then the relational composition
R1 ◦R2 of R1 and R2 is given by:

R1 ◦R2 = {(t1, t2) ∈ S × S | ∃t3 ∈ S ((t1, t3) ∈ R1 ∧ (t3, t2) ∈ R2)}.

Let I be the identity relation on S. Then the n-fold composition of a binary
relation R on S with itself is defined by recursion, as follows:

R0 = I

Rn = R ◦Rn−1

The reflexive transitive closure of R is given by:

R∗ =
⋃

n∈N

Rn.

The semantics of PDL over P,A is given relative to a labelled transition system
M = 〈S, V,R〉 for signature P,A. The formulae of PDL are interpreted as subsets
of SM, the actions a of PDL as binary relations on SM (with the interpretation of

basic actions a given as
a
→), as follows:
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[[⊤]]M = SM

[[p]]M = {s ∈ SM | p ∈ VM(s)}

[[¬ϕ]]M = SM − [[ϕ]]M

[[ϕ1 ∨ ϕ2]]
M = [[ϕ1]]

M ∪ [[ϕ2]]
M

[[〈α〉ϕ]]M = {s ∈ SM | ∃t (s, t) ∈ [[α]]M and t ∈ [[ϕ]]M}

[[a]]M =
a
→M

[[?ϕ]]M = {(s, s) ∈ SM × SM | s ∈ [[ϕ]]M}

[[α1 ; α2]]
M = [[α1]]

M ◦ [[α2]]
M

[[α1 ∪ α2]]
M = [[α1]]

M ∪ [[α2]]
M

[[α∗]]M = ([[α]]M)∗

If s ∈ SM then we use M |=s ϕ for s ∈ [[ϕ]]M.
These definitions specify how formulae of PDL can be used to make assertions

about PDL models. The formula 〈a〉⊤, when interpreted at some state in a PDL

model, expresses that that state has a successor in the
a
→ relation in that model.

A PDL formula ϕ is true in a model if it holds at every state in that model, i.e.
if [[ϕ]]M = SM. Truth of the formula 〈a〉⊤ in a model expresses that

a
→ is serial in

that model.
A PDL formula ϕ is valid if it holds for all PDL models M that ϕ is true in that

model, i.e. that [[ϕ]]M = SM. An example of a valid formula is 〈a ; b〉⊤ ↔ 〈a〉〈b〉⊤.
Note that ? is an operation for mapping formulae to programs. Programs of the

form ?ϕ are called tests; they are interpreted as the identity relation, restricted to
the states satisfying the formula.

Programming Constructs The following abbreviations illustrate how PDL
expresses the key constructs of imperative programming:

SKIP := ?⊤

ABORT := ?⊥

IF ϕ THEN α1 ELSE α2 := (?ϕ ; α1) ∪ (?¬ϕ ; α2)

WHILE ϕ DO α := (?ϕ ; α)∗ ; ?¬ϕ

REPEAT α UNTIL ϕ := α ; (?¬ϕ ; α)∗ ; ?ϕ.

3.3 PDL Equivalences

The two PDL programs β ; WHILE ϕ DO β and REPEAT β UNTIL ¬ϕ are
equivalent, in the sense that they will receive the same interpretations in all PDL
models, for any choice of PDL formula ϕ and PDL program β. What this means
is that for any formula ψ, the formula
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〈β ; WHILE ϕ DO β〉ψ ↔ 〈REPEAT β UNTIL ¬ϕ〉ψ

will be true in all PDL models.
Similarly, the formula

〈 IF ϕ THEN β ELSE γ〉ψ ↔ 〈 IF ¬ϕ THEN γ ELSE β〉ψ

will be true in all PDL models, for all choices of β, γ, ϕ, ψ.
The regular expressions over a finite alphabet Σ are given by (σ ranges over Σ):

E ::= ǫ | σ | E1 ; E2 | E1 ∪ E2 | E
∗

The denotations of regular expressions over Σ are precisely the regular languages
over Σ. Two regular expressions are equivalent if they denote the same language.
It is clear that if the basic actions are taken as the alphabet Σ, regular expressions
correspond to PDL programs (take ?⊤ for the empty string ǫ).

Regular expression equivalence can be expressed in PDL, as follows. The regular
expressions (A∪B)∗ and (A∗ ; B∗)∗ are equivalent. This law translates into PDL
as the equivalence of the programs (α∪ β)∗ and (α∗ ; β∗)∗ (or the equivalence of
the formulae 〈(α ∪ β)∗〉ϕ and 〈(α∗ ; β∗)∗〉ϕ). And so on.

3.4 Axiomatisation

The logic of PDL is axiomatised as follows. Axioms are all propositional tautolo-
gies, plus the following axioms (we give box ([α])versions here, but every axiom
has an equivalent diamond (〈α〉) version):

(K) ⊢ [α](ϕ→ ψ) → ([α]ϕ→ [α]ψ)

(test) ⊢ [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) ⊢ [α1 ; α2]ϕ↔ [α1][α2]ϕ

(choice) ⊢ [α1 ∪ α2]ϕ↔ [α1]ϕ ∧ [α2]ϕ

(mix) ⊢ [α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ

(induction) ⊢ (ϕ ∧ [α∗](ϕ→ [α]ϕ)) → [α∗]ϕ

and the following rules of inference:

(modus ponens) From ⊢ ϕ1 and ⊢ ϕ1 → ϕ2, infer ⊢ ϕ2.

(modal generalisation) From ⊢ ϕ, infer ⊢ [α]ϕ.

The first axiom is the familiar K axiom from modal logic. The second captures
the effect of testing, the third captures concatenation, the fourth choice. These
axioms together reduce PDL formulae without ∗ to formulae of multi-modal logic.
The fifth axiom, the so-called mix axiom, expresses the fact that α∗ is a reflexive
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and transitive relation containing α, and the sixth axiom, the axiom of induction,
captures the fact that α∗ is the least reflexive and transitive relation containing α.

All axioms have dual forms in terms of 〈α〉, derivable by propositional reasoning.
For example, the dual form of the test axiom reads

⊢ 〈?ϕ1〉ϕ2 ↔ (ϕ1 ∧ ϕ2).

The dual form of the induction axiom reads

⊢ 〈α∗〉ϕ→ ϕ ∨ 〈α∗〉(¬ϕ ∨ 〈α〉ϕ).

Use Γ ⊢ ϕ to express that ϕ is derivable using hypotheses from Γ by means of the
axioms and inference rules of PDL. By induction on the length of proofs it can be
shown that PDL satisfies the deduction theorem:

Γ ∪ {ϕ} ⊢ ψ iff Γ ⊢ ϕ→ ψ.

The deduction theorem will be used to facilitate PDL reasoning in what follows.
The following theorem shows that in the presence of the other axioms, the

induction axiom is equivalent to the so-called loop invariance rule:

ϕ→ [α]ϕ

ϕ→ [α∗]ϕ

THEOREM 2. In PDL without the induction axiom, the induction axiom and the
loop invariance rule are interderivable.

Proof. For deriving the loop invariance rule from the induction axiom, assume
the induction axiom. Suppose

⊢ ϕ→ [α]ϕ.

Then by modal generalisation:

⊢ [α∗](ϕ→ [α]ϕ).

Now assume ϕ. Then:
ϕ ⊢ ϕ ∧ [α∗](ϕ→ [α]ϕ).

From this by the induction axiom and propositional reasoning:

ϕ ⊢ [α∗]ϕ.

From this by conditionalisation (the left-to-right direction of the deduction theo-
rem):

⊢ ϕ→ [α∗]ϕ.

Now assume the loop invariance rule. We have to establish the induction axiom.
Assume ϕ and [α∗](ϕ→ [α]ϕ). Then by the mix axiom:

ϕ, [α∗](ϕ→ [α]ϕ) ⊢ ϕ→ [α]ϕ.
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From this, by propositional reasoning:

ϕ, [α∗](ϕ→ [α]ϕ) ⊢ [α]ϕ.

Conditionalisation:
⊢ (ϕ ∧ [α∗](ϕ→ [α]ϕ)) → [α]ϕ.

Applying the loop invariance rule to this yields the induction axiom:

⊢ (ϕ ∧ [α∗](ϕ→ [α]ϕ)) → [α∗]ϕ.

�

3.5 PDL and Floyd-Hoare Reasoning

Floyd-Hoare correctness assertions are expressible in PDL, as follows. If ϕ,ψ are
PDL formulae and α is a PDL program, then

{ϕ} α {ψ}

translates into
ϕ→ [α]ψ.

Clearly, {ϕ} α {ψ} holds in a state in a model iff ϕ→ [α]ψ is true in that state in
that model.

The Floyd-Hoare inference rules can now be derived in PDL. As an example we
derive the rule for guarded iteration:

{ϕ ∧ ψ} α {ψ}

{ψ} WHILE ϕ DO α {¬ϕ ∧ ψ}

Let the premise {ϕ ∧ ψ} α {ψ} be given, i.e. assume (4).

(4) ⊢ (ϕ ∧ ψ) → [α]ψ.

We wish to derive the conclusion

⊢ {ψ} WHILE ϕ DO α {¬ϕ ∧ ψ},

i.e. we wish to derive (5).

(5) ⊢ ψ → [(?ϕ;α)∗ ; ?¬ϕ](¬ϕ ∧ ψ).

From (4) by means of propositional reasoning:

⊢ ψ → (ϕ→ [α]ψ).

From this, by means of the test and sequence axioms:

⊢ ψ → [ϕ ; α]ψ.
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Applying the loop invariance rule gives:

⊢ ψ → [(ϕ ; α)∗]ψ.

Since ψ is propositionally equivalent with ¬ϕ → (¬ϕ ∧ ψ), we get from this by
propositional reasoning:

⊢ ψ → [(ϕ ; α)∗](¬ϕ→ (¬ϕ ∧ ψ)).

The test axiom and the sequencing axiom yield the desired result (5).

3.6 Properties

Failure of Compactness

The presence of the ∗ (Kleene star) operator causes true infinitary behaviour.
In particular, the compactness theorem, which says that finite satisfiability of
an infinite set of formulae Γ implies satisfiability of Γ, fails for PDL. Here is an
example of a set of PDL formulae that is finitely satisfiable but not satisfiable:

{〈a∗〉p〉} ∪ {¬p,¬〈a〉p,¬〈a2〉p, . . .}.

Finite Model Property

A logic has the finite model property (fmp) if every non-theorem of the logic has
a finite counterexample. Having the fmp implies decidability, but not conversely
(there are decidable logics without the fmp). We will now show that PDL has the
fmp.

For normal modal logic, the fmp can be shown by means of the so-called filtra-
tion method [Blackburn et al., 2001, Ch 2], using subformula closed sets of formu-
lae. Because of the presence of the star operator, in the case of PDL closure under
subformulae is not enough. We also need to make sure that program modalities
are decomposed in an appropriate way. For this, we use so-called Fisher-Ladner
closures [Fischer and Ladner, 1979].

Define FL(ϕ), the Fisher-Ladner closure of a PDL formula ϕ, as follows. FL(ϕ)
is the smallest set of formulae X containing ϕ that is closed under the following
operations (the definition assumes diamond modalities here; an equivalent formu-
lation in terms of box modalities is also possible):

• if ¬ψ ∈ X then ψ ∈ X,

• if (ψ1 ∨ ψ2) ∈ X then ψ1 ∈ X,ψ2 ∈ X,

• if 〈α〉ψ ∈ X then ψ ∈ X,

• if 〈α1 ; α2〉ψ ∈ X then 〈α1〉〈α2〉ψ ∈ X,

• if 〈α1 ∪ α2〉ψ ∈ X then 〈α1〉ψ ∨ 〈α2〉ψ ∈ X,
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• if 〈?ψ1〉ψ2 ∈ X then ψ1 ∈ X,ψ2 ∈ X,

• if 〈α∗〉ψ ∈ X then 〈α〉〈α∗〉ψ ∈ X.

Note that FL(ϕ) is always finite. E.g., FL(〈(a ; b)∗〉(p ∨ q)) equals

{〈(a ; b)∗〉(p ∨ q), p ∨ q, p, q,
〈(a ; b)〉〈(a ; b)∗〉(p ∨ q), 〈a〉〈b〉〈(a ; b)∗〉(p ∨ q), 〈b〉〈(a ; b)∗〉(p ∨ q)}.

Using FL(ϕ), define filtrations of LTSs, as follows. Let M = (S, V,R) be an
LTS. For every s, let s̄ = {ψ ∈ FL(ϕ) |M |=s ψ}.

Set s̄R̄at̄ if ∃u, v ∈ S such that uRav and ū = s̄ and v̄ = t̄. Finally, put
V̄ (s̄) = {p ∈ P | p ∈ s̄}. Let M = (S̄, V̄ , R̄). Then one can prove:

LEMMA 3 (Filtration Lemma). For all ψ ∈ FL(ϕ), all s ∈ S:

M |=s ψ iff M |=s̄ ψ.

Proof. One shows with induction on the complexity of formulae and programs
occurring in FL(ϕ) that:

• M |=s ψ iff M |=s̄ ψ.

• if sRαt then s̄R̄αt̄.

The crucial step is the following. Suppose that 〈α〉ψ is true in M on s̄. Then
there exists a computation path for α consisting of a finite sequence of atomic
transitions

s̄→ s̄1 → · · · → s̄n = t̄,

with appropriate atomic R̄a links between s̄i and s̄i+1, and possible appropriate
tests ?χi at s̄i, and with ψ true at t̄.

By the definition of R̄a, there has to be a corresponding ‘pseudo computation
path’

s ∼ u→ s1 ∼ u1 → · · · → un ∼ t,

where x ∼ y expresses that x̄ = ȳ. Moreover, we have by the induction hypothesis
that the same test conditions ?χi hold at si and ui, and that ψ holds at un and t.

Next, prove by induction on α:

If 〈α〉ψ ∈ FL(ϕ) and there is pseudo computation path for α from s to
t with M |=t ψ then M |=s 〈α〉ψ.

This clinches the argument. �
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Decidability

Decidability follows from the filtration lemma:

THEOREM 4. Universal validity for PDL is decidable

Proof. By the filtration lemma, counterexamples for a formula ϕ must already
show up in models with at most 2|FL(ϕ)| states. It is possible, in principle, to
inspect all of these. �

It follows immediately that satisfiability for PDL is decidable too: to check that
ϕ is satisfiable, just find a satisfying model with at most 2|FL(ϕ)| states.

Converse

Let ˘ (converse) be an operator on PDL programs with the following interpretation:

[[α ]̆]M = {(s, t) | (t, s) ∈ [[α]]M}.

It is easy to see that the following equations hold:

(α ; β)̆ = β˘ ; α˘

(α ∪ β)̆ = α˘∪ β˘

(α∗)̆ = (α )̆∗

This means that it is enough to add converse to the PDL language for atomic
programs only. To see that adding converse in this way increases expressive power,
observe that in state 0 in the following picture 〈ă 〉⊤ is true, while in state 2 in the
picture 〈ă 〉⊤ is false. On the assumption that 0 and 2 have the same valuation,
no PDL formula without converse can distinguish the two states.

Suitable axioms to enforce that ă behaves as the converse of a are well known
from temporal logic (read 〈a〉 as F ‘once in the future’, [a] as G ‘always in the
future’, 〈ă 〉 as P ‘once in the past’, [ă ] as H ‘always in the past’, [Prior, 1957;
1967]):

ϕ → [a]〈ă 〉ϕ

ϕ → [ă ]〈a〉ϕ
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Wellfoundedness, Halting

For deterministic programs α, formula 〈α〉⊤ expresses that α does not loop. For
non-deterministic programs α, however, there turns out to be no PDL way to
express non-looping behaviour. If α is non-deterministic, 〈α〉⊤ merely says that
in the current state there exists a terminating run for α, it does not preclude the
existence of diverging runs. For example, formula 〈(?⊤)∗〉⊤ will be true at any
state, while (?⊤)∗ has diverging runs from every state.

One way to deal with this situation is to add a predicate to PDL to express
wellfoundedness. A relation R is wellfounded in s0 if there does not exist an
infinite sequence s0, s1, . . . with

s0Rs1, s1Rs2, . . .

Let wellfounded be a predicate for this. Then its interpretation is:

[[wellfounded(α)]]M = {s0 ∈ SM | ¬∃s1, s2, . . . ∀i ≥ 0(si, si+1) ∈ [[α]]M}.

In terms of wellfounded, a predicate halt for program termination can be defined
as follows:

halt(a) :≡ ⊤

halt(?ϕ) :≡ ⊤

halt(α ; β) :≡ halt(α) ∧ [α]halt(β)

halt(α ∪ β) :≡ halt(α) ∧ halt(β)

halt(α∗) :≡ wellfounded(α) ∧ [α∗]halt(α)

What the definition of halt for programs of the form α∗ says is that for α∗ to
halt it has to be the case that α is wellfounded at the present state (so that its
execution can not be repeated without end), and also α has to halt at all states
that can be reached in a finite number of α steps from the present state. This
expresses that α∗ can loop for two reasons: (i) because α can be repeated without
end, or (ii) because after repeated execution of α there is a state where α itself
does not terminate.

Applying this to the example program (?⊤)∗, we get:

halt((?⊤)∗) ≡ wellfounded(?⊤) ∧ [(?⊤)∗]halt(?⊤)

≡ wellfounded(?⊤) ∧ [(?⊤)∗]⊤

≡ wellfounded(?⊤) ∧ ⊤

≡ ⊥

What this says is that (?⊤)∗ does not halt because the test ?⊤ is not wellfounded
(for ?⊤ can be repeated an arbitrary number of times).

Floyd-Hoare total correctness statements for PDL programs α,

{ϕ} α {⇓ ψ}
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can now be expressed as:

ϕ→ [α]ψ ∧ ϕ→ halt(α).

Every state in the infinite model of the following picture satisfies halt(a), but
clearly, any filtration of this model must collapse some of the states, and in these
collapsed states halt(a) will fail. This shows that extending PDL with a halt
predicate (and, a fortiori, extending PDL with a wellfounded predicate) increases
expressive power.

Further Extensions and Variations

Other possible extensions of PDL are with intersection and nominals [Passy and
Tinchev, 1991]. The extension with nominals turns PDL into a kind of hybrid logic
[Areces et al., 2001]. Replacing the regular programs of PDL by finite automata
yields a formalism with the same expressive power but allowing more succinct
descriptions: see [Harel et al., 2000]. Replacing the regular programs of PDL with
another data structure such as pushdown automata or context free grammars or
flowcharts yields more expressive (but also more complex) formalisms.
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Complexity

Although satisfiability checking in individual LTSs can be done quite efficiently
(i.e. in polynomial time), the above algorithm for checking satisfiability is highly
inefficient, because the size of the models to check is exponential in the size of the
formula, and the number of these models is doubly exponential in the size of the
formula. So the naive satisfiability checking algorithm is doubly exponential in
the size of the formula.

Time complexity of the satisfiability problem for PDL is singly exponential: an
exponential algorithm is given in [Pratt, 1978]. One cannot do better than this:
[Fischer and Ladner, 1979]establishes an exponential-time lower bound for PDL
satisfiability, by showing how PDL formulae can encode computations of linear-
space-bounded alternating Turing machines. An exponential time satisfiability
algorithm for PDL with converse is given in [Streett, 1982]. Intuitively, adding
converse does not increase complexity, for converses of atomic programs a can be
taken as atoms, and the definition of converse for complex programs is linear in
the size of the programs.

Modal μ calculus

For a proper perspective on PDL, it is useful to contrast it with a much more
expressive dynamic logic, the modal μ calculus.

Let a set of proposition letters P = {p0, p1, . . .}, a set of actions A = {a0, a1, . . .},
and a set of variables V = {X0, X1, . . .} be given. Assume p ranges over P , a ranges
over A, and X ranges over V . Then the set of μ formulae is given by the following
definition:

ϕ ::= ⊤ | p | X | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ | μX.ϕ,

with the syntactic restriction on μX.ϕ that occurrences of X in ϕ are positive. An
occurrence of X in a formula ϕ is positive if the occurrence is in the scope of an
even number of negation signs.

Interpretation is in LTSs M, relative to an assignment g : V → P(SM). If T is
a subset of SM, g[X → T ] is the assignment that is like g except for the fact that
it maps X to T .

[[⊤]]Mg = SM

[[p]]Mg := {s ∈ SM | p ∈ VM(s)}

[[X]]Mg := g(X)

[[¬ϕ]]Mg = SM − [[ϕ]]Mg

[[ϕ1 ∨ ϕ2]]
M

g = [[ϕ1]]
M

g ∪ [[ϕ2]]
M

g

[[〈a〉ϕ]]Mg = {s ∈ SM | ∃t s
a
→ t and t ∈ [[ϕ]]Mg }

[[μX.ϕ]]g =
⋂
{T ⊆ SM | [[ϕ]]Mg[X �→T ] ⊆ T}
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The clause for μX.ϕ expresses that the interpretation of this formula is the
least fixed point of the operation T → [[ϕ]]Mg[T �→S]. Thanks to the fact that X only
occurs positively in ϕ, this operation is monotone:

if T ⊆ S then [[ϕ]]Mg[X �→T ] ⊆ [[ϕ]]Mg[X �→S].

It follows, by a theorem of Knaster and Tarski (see, e.g., [Davey and Priestley,
2002]), that the operation has a least fixed point, and that this least fixed point
is given by the semantic clause for μX.ϕ. The proof of this fact is instructive.

For simplicity we use [ϕ]T for [[ϕ]]Mg[X �→T ], and [ϕ] for T → [ϕ]T . Let

W :=
⋂
{T ⊆ SM | [ϕ]T ⊆ T}

F := {T ⊆ SM | [ϕ]T ⊆ T}.

We have to show that W is the least fixed point of [ϕ].
First we show [ϕ]W ⊆ W . Observe that for all U ∈ F we have W ⊆ U and

[ϕ]U ⊆ U . By monotonicity of [ϕ], [ϕ]W ⊆ [ϕ]U , and therefore, by [ϕ]U ⊆ U ,
[ϕ]W ⊆ U . From the fact that for all U ∈ F it holds that [ϕ]W ⊆ U we get the
desired result [ϕ]W ⊆W .

Next we show W ⊆ [ϕ]W . We start out from the previous result [ϕ]W ⊆ W .
By monotonicity of [ϕ] we get from this that [ϕ][ϕ]W ⊆ [ϕ]W . This shows that
[ϕ]W ∈ F , whence W ⊆ [ϕ]W .

Finally, to show that W is the least fixpoint, observe that any fixpoint U of [ϕ]
is in F , so that W ⊆ U .

The modal μ calculus translates into second order predicate logic as follows:

X◦ := X(x)

(μX.ϕ)◦ := ∀X(∀x(ϕ◦ → X(x))→ X(x)).

This translation is called the standard translation into monadic second order logic,
monadic because the predicate variables X quantified over in the translation are
unary.

The μ calculus can be presented in PDL format by distinguishing between
formulae and programs, as follows:

ϕ ::= ⊤ | p | X | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ | μX.ϕ

α ::= a |?ϕ | α1 ∪ α2 | α1;α2 | α
∗

again with the syntactic restriction on μX.ϕ formulae that X occurs only positively
in ϕ.

This PDL version of the μ calculus does not have greater expressive power than
the original, for we have the following equivalences:

〈?ϕ1〉ϕ2 ≡ ϕ1 ∧ ϕ2

〈α1 ∪ α2〉ϕ ≡ 〈α1〉ϕ ∨ 〈α2〉ϕ

〈α1;α2〉ϕ ≡ 〈α1〉〈α2〉ϕ

〈α∗〉ϕ ≡ μX.(ϕ ∨ 〈α〉X).
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To see that 〈α∗〉ϕ and μX.(ϕ∨〈α〉X) are equivalent, observe that the least fixpoint
of the operation

T → [[ϕ]]M ∪ {s ∈ SM | ∃t ∈ T.s
α
→ t}

is equal to the set

{s ∈ SM | ∃t ∈ [[ϕ]]M.s
α∗

→ t}.

We will now show that the μ calculus has greater expressive power than PDL. In
PDL, there is no way to express that a program is wellfounded. The following
formula expresses wellfoundedness of α in the μ calculus:

μX.[α]X.

The meaning of this may not be immediately obvious, so let us analyse this a bit
further. Let

W := {s ∈ SM | there is no infinite α path from s}.

Then clearly, {s ∈ SM | if s
α
→ t then t ∈ W} = W . If there is no infinite α path

starting form s, then there is no infinite α path from any α successor of α, and if
at no α successor of s an infinite α path starts, then no infinite α path starts from
s. In other words, W is a fixpoint of the operation

T → {s ∈ SM | if s
α
→ t then t ∈ T}.

We still have to show that W is also the least fixpoint of the operation. So suppose
U is another solution:

{s ∈ SM | if s
α
→ t then t ∈ U} = U. (∗)

We have to show that W ⊆ U . Assume, for a contradiction, that there is some
s ∈W with s /∈ U . From (*),

s /∈ {s ∈ SM | if s
α
→ t then t ∈ U}.

It follows that for some t ∈ SM we have s
α
→ t and t /∈ U . Continuing like this, we

find t
α
→ t′ with t′ /∈ U , t′

α
→ t′′ with t′′ /∈ U , and so on, an infinite α path starting

from s, which contradicts the assumption that s ∈W .
To define a greatest fixpoint operator dual to μ, use

νX.ϕ := ¬μX.(ϕ[X → ¬X]),

where ϕ[X → ¬X] denotes the result of replacing every occurrence of X in ϕ by
¬X.

The μ calculus originates in [Kozen, 1983]. It has great expressive power (it
subsumes PDL, CTL, LTL and CTL∗), it is decidable and has the finite model
property [Streett and E.A, 1989], but it has greater complexity than PDL: known
decision procedures use doubly exponential time.
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Kozen [Kozen, 1983] proposed an elegant proof system: the axioms and rules
of multi-modal logic together with the axiom

μX.ϕ↔ ϕ[X → μX.ϕ]

and the following rule of inference:

ϕ[X → ψ] → ψ

μX.ϕ→ ψ

This axiomatisation is sound and complete.
Alternatively, PDL style μ calculus is axiomatised by the axioms and rules of

PDL plus the μ axiom and the μ rule of inference.

Bisimulation

PDL and modal μ calculus are both interpreted in LTSs. But the correspondence
between LTSs and processes is not one-to-one. The process that produces an
infinite number of a transitions and nothing else can be represented as an LTS in
lots of different ways. The following representations are all equivalent:

The notion of bisimulation is intended to capture such process equivalences. A
bisimulation C between LTSs M and N is a relation on SM×SN such that if sCt
then the following hold:

Invariance VM(s) = VN(t) (the two states have the same valuation),

Zig if for some a ∈ S1 s
a
→ s′ ∈ RM then there is a t′ ∈ S2 with t

a
→ t′ ∈ RN and

s′Ct′.

Zag same requirement in the other direction.
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One uses M, s ↔ N, t to indicate that there is a bisimulation that connects s
and t. In such a case one says that s and t are bisimilar.

In the LTSs of the picture, 0↔ 2 ↔ 4 and 1↔ 3 ↔ 5.
Bisimulation is intimately connected to modal logic, as follows. Modal logic is a

sublogic of PDL. It is given by restricting the set of programs to atomic programs.
Usually, one writes �a for 〈a〉:

ϕ ::= ⊤ | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ

Bisimulations can be viewed as a motivation for modal logic. A global property of
LTSs is a function P that assigns to any LTS M over a given signature a property
PM ⊆ SM. A global property P is invariant for bisimulation if whenever C is a
bisimulation between M and N with sCt, then s ∈ PM iff t ∈ PN.

Modal formulae may be viewed as global properties, for if ϕ is a modal formula,
then λM.[[ϕ]]M is a global property. Similarly for formulae of first order logic.

An example of a first order logic formula that is not invariant for bisimulation
is the formula Ra(x, x). This formula is true in state 0, but false in bisimilar state
1 in the following picture:
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Another example of a first order logic formula that is not invariant for bisimu-
lation:

ϕ(x) = ∃y(Ra(x, y) ∧Rb(x, y)).

The picture below indicates that ϕ(x) is not invariant for the example bisimulation
that links 0 to 2 and 1 to 3 and 4. The state 0 satisfies ϕ(x) while 2 does not, and
the two states are bisimilar.

Clearly, all modal formulae are invariant for bisimulation: If ϕ is a modal for-
mula that is true of a state s, and s is bisimilar to t, then an easy induction on
the structure of ϕ establishes that ϕ is true of t as well.

More surprisingly, it turns out that all first order formulae that are invariant
for bisimulation are translations of modal formulae. If first order logic is given and
bisimulation is given, modal logic results from the following theorem:

THEOREM 5 (Van Benthem, [Van Benthem, 1976]). A first order formula ϕ(x)
is invariant for bisimulation iff ϕ(x) is equivalent to a modal formula.

One direction of this can easily be verified by the reader: if ϕ is a modal formula,
it can be proved by induction on formula structure that ϕ cannot distinguish
between bisimilar points.

The argument for the other direction is more involved. We give a sketch of the
proof. Define Ψ as the set of modal formulae that are implied by ϕ(x), as follows:

Ψ := {ψ | ψ is a modal formula and ϕ(x) |= ψ}.

Next, if we can prove that Ψ |= ϕ(x), then the compactness theorem for FOL gives
us {ψ1, . . . , ψn} ⊆ Ψ with ψ1, . . . , ψn |= ϕ(x), and we see that ϕ(x) is equivalent
to the modal formula ψ1 ∧ · · · ∧ ψn.

So suppose M |=s Ψ. We are done if we can show that M |=s ϕ(x). For this,
consider the modal theory of s, i.e. the set of modal formulae true at s:

Φ := {ϕ | ϕ is a modal formula and M |=s ϕ}.

Now Φ ∪ {ϕ(x)} must be finitely satisfiable (i.e. any finite subset must be satisfi-
able), for if not then there are ϕ1, . . . , ϕn ∈ Φ with ϕ(x) |= ¬ϕ1 ∨ · · · ∨¬ϕn, which
contradicts the fact that ¬ϕ1 ∨ · · · ∨ ¬ϕn is false at s. Using the compactness
theorem for FOL again, we see that there must be some node t in an LTS N with
N |=t Φ ∪ {ϕ(x)}.
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There is one given that we haven’t used yet: ϕ(x) is invariant for bisimulation.
To use that given, we replace M and N by so-called ω saturated elementary
extensions M• and N•.

A FOL model M is ω saturated if whenever Φ(x, y1, . . . , yn) is a set of first order
formulae, and d1, . . . , dn are elements of the domain of M, then Φ[x, d1, . . . , dn]
is finitely satisfiable, i.e. for every finite subset Φ0 of Φ we can find a d in the
domain of M with M |= Φ[d, d1, . . . , dn].

Every FO model has a an ω saturated elementary extension (see Chang and
Keisler [Chang and Keisler, 1973, Ch 6] for a proof), so the replacement of M,N
by M•,N• is warranted. Moreover, N• |= ϕ(x), for truth of ϕ(x) is preserved
under the extension.

Lemma: If M,N are ω saturated, then the relation of modal equivalence is a
bisimulation between them.

Proof of the lemma: Let M,N be ω saturated. Let ≡ be the relation of being
modally equivalent. Let M, s ≡ N, t. We show that s↔ t, by checking the clauses
for bisimulation:

Invariance Clearly, s and t have the same valuation.

Zig Suppose s
a
→ s′. Let Φ be the set of modal formulae that are true at s′. Then

for every finite subset Φ0 of Φ, M |=s 〈a〉
∧

Φ0. Since s ≡ t, M |=t 〈a〉
∧

Φ0,

so there is a t′ with t
a
→ t′ and M |=t′ Φ0. Thus, Φ is finitely satisfiable in a

successors of t. By the fact that N is ω saturated, it follows that there is a
t′ with t

a
→ t′ and N |=t′ Φ.

Zag Same argument in the other direction.

Back to the main proof. N• |=t Φ ∧ ϕ(x) and M• |=s Φ, where Φ is the modal
theory of s. Thus, s, t have the same modal theory, and invoking the lemma we
see that s ↔ t. Since ϕ(x) is invariant for bisimulation, M• |=s ϕ(x), hence
M |=s ϕ(x).

Bisimulations are also intimately connected to PDL, as follows.
A global relation is a function R that assigns to any LTS M over a given

signature a relation RM ⊆ SM × SM. A global relation R is safe for bisimulation
if whenever C is a bisimulation between M and N with sCt, then:

Zig: if sRMs′ then there is a t′ with tRNt′ and s′Ct′,

Zag: vice versa: if tRNt′ then there is an s′ with sRMs′ and s′Ct′.

An example of a relation that is not safe for bisimulation is the relation given
by the following first order formula:

ϕ(x, y) = Ra(x, y) ∧ x = y.

Look at the counterexample picture for invariance of Ra(x, x) again. Formula
ϕ(x, y) is true of state pair (0, 0) and false of the state pair (1, 2) in that picture,
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but 0 and 1 are bisimilar, and (0, 0) satisfies the zig, and (1, 2) the zag condition
for bisimulation.

Another counterexample for safety for bisimulation is provided by the following
formula:

ψ(x, y) = Ra(x, y) ∧Rb(x, y).

Look at the counterexample picture for invariance of ∃y(Ra(x, y)∧Rb(x, y)) again.
Formula ψ(x, y) is true of state pair (0, 1) and false of state pairs (2, 3) and (2, 4),
while 0 and 2 are bisimilar, (0, 1) satisfies the zig condition, and both (2, 3) and
(2, 4) satisfy the zag condition for bisimulation.

In fact, invariance for bisimulation and safety for bisimulation are closely con-
nected. If ϕ(x) is invariant for bisimulation then ϕ(x)∧x = y is safe for bisimula-
tion. Conversely, if ϕ(x, y) is safe for bisimulation, and P is some unary predicate
that does not occur in ϕ then ∃y(ϕ(x, y) ∧ P (y)) is invariant for bisimulation.

Note that the notion of safety for bisimulation generalises the zig and zag condi-
tions of bisimulations, while invariance for bisimulation generalises the invariance
condition of bisimulations.

A modal program is a PDL program that does not contain ∗. Modal programs
can be viewed as global relations, for if α is a modal program, then λM.[[α]]M is a
global relation.

It is not difficult to see that all modal programs are safe for bisimulation. The
surprising thing is the converse: all first order relations that are safe for bisimula-
tion turn out to be translations of modal programs.

THEOREM 6 (Van Benthem [van Benthem, 1994]). A first order formula ϕ(x, y)
is safe for bisimulation iff ϕ(x, y) is equivalent to a modal program.

Proofs of this can be found in [van Benthem, 1994; Hollenberg, 1998]. The
perspective on Van Benthem’s characterisations of modal logic and PDL is from
[Hollenberg, 1998]. In fact, Van Benthem gives a slightly different characterisation.
He proves that any bisimulation safe first order formula can be generated from
atomic tests ?p, atomic actions a, sequential composition ; , choice ∪ and dynamic
negation ∼, where ∼α is interpreted by:

[[∼α]]M = {(s, s) ∈ SM × SM | ¬∃t(s, t) ∈ [[α]]M}

The two characterisations are equivalent, for ∼α is definable as the PDL program
?([α]⊥), while any modal PDL test ?ϕ can be expressed in terms of dynamic
negation using the following translation:

(?⊤)◦ = ∼⊥

(?(ϕ1 ∨ ϕ2))
◦ = (?ϕ1)

◦ ∨ (?ϕ2)
◦

(?¬ϕ)◦ = ∼(?ϕ)◦

(?〈α〉ϕ)◦ = ∼∼(α ; (?ϕ)◦)

Looking at PDL programs from an algebraic perspective, the obvious notion
to be axiomatised is that of PDL program equivalence. A calculus that produces
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precisely the equations of the form α1 = α2 for those α1, α2 that have the same
interpretation in any PDL model is given in [Hollenberg, 1996] (see also [Hol-
lenberg, 1997], where equivalence of modal PDL programs is axiomatised). The
axiomatisation has the following quasi-equations between programs:

associativity of ; α ; (β ; γ) = (α ; β) ; γ
associativity for ∪ α ∪ (β ∪ γ) = (α ∪ β) ∪ γ
commutativity of ∪ α ∪ β = β ∪ α
idempotency of ∪ α ∪ α = α
left distributivity (α ∪ β) ; γ = ((α ; γ) ∪ (β ; γ))
right distributivity α ; (β ∪ γ) = ((α ; β) ∪ (α ; γ))
left identity ?⊤ ; α = α
right identity α ; ?⊤ = α
left zero ?⊥ ; α =?⊥
right zero α ; ?⊥ =?⊥
zero sum α∪?⊥ = α
∗ expansion α∗ =?⊤ ∪ (α ; α∗)
left induction α ; β ≤ β ⇒ α∗ ; β ≤ β
right induction β ; α ≤ β ⇒ β ; α∗ ≤ β
test choice ?(ϕ ∨ ψ) =?ϕ∪?ψ
test sequence ?(ϕ ∧ ψ) =?ϕ ; ?ψ
domain test ?〈α〉⊤ ; α = α

where α ≤ β is defined as α∪β = β, and the following equations between booleans
hold:

equations of boolean algebra
choice 〈α ∪ β〉ϕ = 〈α〉ϕ ∨ 〈β〉ϕ
sequence 〈α ; β〉ϕ = 〈α〉〈β〉ϕ
iteration 〈α∗〉ϕ = ϕ ∨ 〈α〉〈α∗〉ϕ
induction 〈α∗〉ϕ = ϕ ∨ 〈α∗〉(¬ϕ ∧ 〈α〉ϕ)
test diamond 〈?ϕ〉ψ = ϕ ∧ ψ

If one restricts attention to the modal part of PDL (PDL without ∗, for this
is equivalent to multi-modal logic), the quasi-equations for ∗ drop out, and an
equational axiomatisation of modal PDL results.

We end with mentioning an intimate connection between modal μ calculus and
bisimulation:

THEOREM 7 (Janin and Walukiewicz [Janin and Walukiewicz, 1996]). A monadic
second order formula ϕ(x) is invariant for bisimulation iff it is equivalent to the
standard translation in monadic second order logic of a μ sentence.

4 ANALYSING THE DYNAMICS OF COMMUNICATION

Dynamic logic is the logic of action and the results of action, but it is also a branch
of modal logic, and it enjoys the same breadth of applications as modal logic.
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What happens if we reinterpret the atomic action modalities as something else? In
epistemic logic, atomic accessibilities denote epistemic similarity relations of agents
in a multi-agent epistemic setting. Epistemic PDL is the result of reinterpreting
the basic action modalities as epistemic relations. Now [a; b]ϕ means that agent
a knows that agent b knows that ϕ. This is more expressive than multi-agent
epistemic logic. E.g., [(a ∪ b)∗]ϕ expresses that ϕ is common knowledge among a
and b, and it is well known that common knowledge for a, b cannot be expressed
in terms of basic modalities [a], [b] alone.

As an aside, expressing implicit knowledge would require extending epistemic
PDL with an intersection operation. Implicit knowledge among a, b that ϕ can
be expressed in this extended language as [a ∩ b]ϕ. This extension results in a
logic that is still decidable, but the invariance for bisimulation gets lost. Implicit
knowledge will not concern us in what follows.

Interestingly, the shift of application from computation to epistemics turns PDL
into a description tool for static situations, for under this interpretation LTSs
denote multi-agent epistemic situations instead of sets of computations within a
set of states. Still, at a higher level, there is again a dynamic turn. We can study
how multi-agent epistemic situations evolve as a result of communicative actions.
An important example of such actions is public announcement. What happens to
the knowledge of a set of participating agents if it is suddenly announced to all that
ϕ is the case? On the assumption that none of the agents takes ϕ to be impossible,
this should result in a new epistemic state of affairs where it is common knowledge
among the agents that ϕ. In this section we will see that epistemic PDL (PDL,
with the basic modalities interpreted as epistemic relations) is eminently suited
for the analysis of the dynamics of communication.

Dynamic epistemic logic (cf., e.g., [Baltag, 2002; Baltag and Moss, 2004; Baltag
et al., 1999; 2003]) analyses the changes in epistemic information among sets of
agents that result from various communicative actions, such as public announce-
ments, group messages and individual messages. The logics studied in [Baltag et
al., 2003] add information update operations to epistemic description languages
with a common knowledge operator, in such a way that the addition increases ex-
pressive power. This makes axiomatisations complicated and completeness proofs
hard. In [Kooi and van Benthem, 2004] it is demonstrated how update axioms
can be made susceptible to reduction axioms, by the simple means of switching
to more expressive epistemic description languages. In particular, it is shown in
[Kooi and van Benthem, 2004] how generic updates with epistemic actions can be
axiomatised in automata PDL [Harel et al., 2000, Chapter 10.3].

We will follow [van Eijck, 2004] in giving a direct reduction of the logic of generic
updates with epistemic actions in the style of [Baltag et al., 1999; 2003] to PDL.

4.1 System

Let L be a language that can be interpreted in labelled transition systems. Then
action models for L look like this:
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DEFINITION 8 (Action models for L, Ag). Let a set of agents Ag and an LTS
language L with label set Ag be given. An action model for L,Ag is a triple

A = ([s0, . . . , sn−1],pre, T )

where [s0, . . . , sn−1] is a finite list of action states, pre : {s0, . . . , sn−1} → L assigns
a precondition to each action state, and T : Ag → P({s0, . . . , sn−1}

2) assigns an

accessibility relation
a
→ to each agent a ∈ Ag.

L actions can be executed in labelled transition systems for L, by means of the
following product construction:

DEFINITION 9 (Action Update). Let an LTS M = (W,V,R), a world w ∈ W ,
and a pointed action model (A, s), with A = ([s0, . . . , sn−1],pre, T ), be given.
Then the result of executing (A, s) in (M, w) is the model (M ⊗ A, (w, s)), with
M⊗A = (W ′, V ′, R′), where

W ′ = {(w, s) | s ∈ {s0, . . . , sn−1}, w ∈ [[pre(s)]]M}

V ′(w, s) = V (w)

R′(a) = {((w, s), (w′, s′)) | (w,w′) ∈ R(a), (s, s′) ∈ T (a)}.

For the set of basic propositions P and the set of agents Ag, the language of
PDLDEL (which we will call ‘update PDL’) over P,Ag is like that for standard
PDL over P,Ag, but with a construct for action update added: if ϕ is an update
PDL formula, and [A, s] is a single pointed action model, then [A, s]ϕ is an update
PDL formula. If B is a set of agents {b1, . . . , bn}, then we abbreviate b1 ∪ · · · ∪ bn

as B. Now [B]ϕ expresses that ϕ is general knowledge among B (they all know
ϕ, but they need not know that the others know ϕ) and [B∗]ϕ expresses that ϕ is
common knowledge among B (they all know ϕ and they all know that the others
know ϕ).

The semantics of PDLDEL is given by the standard PDL clauses, with the
following clause for update added:

[[[A, s]ϕ]]M = {w ∈WM | if M |=w pre(s) then (w, s) ∈ [[ϕ]]M⊗A}.

Using 〈A, s〉ϕ as shorthand for ¬[A, s]¬ϕ, we see that the interpretation for 〈A, s〉ϕ
turns out as:

[[〈A, s〉ϕ]]M = {w ∈WM |M |=w pre(s) and (w, s) ∈ [[ϕ]]M⊗A}.

Updating with multiple pointed update actions is also possible. A multiple pointed
action is a pair (A,S), with A an action model, and S a subset of the state set of
A. Extend the language with updates [A,S]ϕ, and interpret this as follows:

[[[A,S]ϕ]]M = {w ∈WM | ∀s ∈ S( if M |=w pre(s) then M⊗A |=(w,s) ϕ)}.

The reason to employ multiple pointed models for updating is that it allows us to
handle choice. Suppose we want to model the action of testing whether ϕ followed
by a public announcement of the result. More precisely:
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A test is performed to check whether ϕ holds in the actual world. If
the outcome of the test is affirmative, then ϕ gets announced. If the
test reveals that ϕ does not hold, then ¬ϕ gets announced.

Single pointed update models do not allow us to model this.

THEOREM 10 (Preservation of bisimulation; Baltag, Moss, Solecki). The action
update operation ⊗ preserves bisimulation on epistemic models:

if M↔ N then M⊗A↔ N⊗A.

We can also look at the update models modulo action bisimulation. An action
bisimulation is like an ordinary bisimulation, with the clause for ‘same valuations’
replaced by a clause for ‘equivalent preconditions’.

THEOREM 11 (Preservation of action bisimulation). The action update operation
preserves action bisimulation:

if A↔ B then M⊗A↔M⊗B.

Proof. Let Z be a bisimulation between A and B. Define a relation relation on
M⊗A×M⊗B by means of

(u, s)C(v, t) iff u = v and sZt.

It is easily shown that this is a bisimulation. �

4.2 Logics of Communication

In terms of the system just defined a variety of types of communicative actions
can be described. The two most important ones are public announcements and
group announcements.

Public Announcements

The language of public announcements is the language that one gets if one
allows action models for public announcement. The action model for public an-
nouncement that ϕ consists of a single state s0 with precondition ϕ and epistemic
relation {s0

a
→ s0 | a ∈ Ag}. Call this model Pϕ.

The following equivalence shows how public announcement relates to common
knowledge among set of agents B:

(6) [Pϕ, s0][B
∗]ψ ↔ [(?ϕ;B)∗][Pϕ, s0]ψ.

What this says is that after public announcement with ϕ it is common knowledge
among B that ψ if and only if before the update it holds at the end of every
(?ϕ ; B)∗ path through the model that a public update with ϕ will result in
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ψ. Axiomatisations of public announcement logic are given in [Plaza, 1989] and
[Gerbrandy, 1999b; 1999a], for a language that cannot express common knowledge.
An axiomatisation for a language with a common knowledge operator is given in
[Kooi and van Benthem, 2004]. Below we will show how this equivalence emerges
in the axiomatisation of PDLDEL from [van Eijck, 2004].

Group Announcements

The language of group announcements is the result of allowing action models
for group messages. These will be defined below. Similarly, we can define the lan-
guages of secret group communications, of individual messages, of tests,
of lies, and so on [Baltag, 2002]. All these languages are comprised in the lan-
guage of PDLDEL, because all these communicative actions can be characterised
by appropriate action models.

4.3 Program Transformation

We will now show how PDLDEL formulae can be reduced to PDL formulae. For
every action model A with states s0, . . . , sn−1 we define a set of n2 program trans-
formers TA

i,j (0 ≤ i < n, 0 ≤ j < n), as follows:

TA
ij (a) =

{
?pre(si) ; a if si

a
→ sj ,

?⊥ otherwise

TA
ij (?ϕ) =

{
?ϕ if i = j,
?⊥ otherwise

TA
ij (π1;π2) =

n−1⋃

k=0

(TA
ik(π1) ; TA

kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2)

TA
ij (π∗) = KA

ijn(π)

where KA
ijk(π) is a (transformed) program for all the π∗ paths from si to sj that

can be traced through A while avoiding a pass through intermediate states sk and
higher. Thus, KA

ijn(π) is a program for all the π∗ paths from si to sj that can be
traced through A, period.
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KA
ijk(π) is defined by recursion on k, as follows:

KA
ij0(π) =

{
?⊤ ∪ TA

ij (π) if i = j,

TA
ij (π) otherwise

KA
ij(k+1)(π) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(KA
kkk(π))∗ if i = k = j,

(KA
kkk(π))∗;KA

kjk(π) if i = k �= j,

KA
ikk(π) ; (KA

kkk(π))∗ if i �= k = j,

KA
ijk(π) ∪ (KA

ikk(π) ; (KA
kkk(π))∗ ; KA

kjk(π)) otherwise

(i �= k �= j).

For some runs through example applications of these definitions, see section 4.5
below.

LEMMA 12 (Kleene Path). Suppose (w,w′) ∈ [[TA
ij (π)]]M iff there is a π path from

(w, si) to (w′, sj) in M ⊗ A. Then (w,w′) ∈ [[KA
ijn(π)]]M iff there is a π∗ path

from (w, si) to (w′, sj) in M⊗A.

Proof. Use the definition of KA
ijk to prove by induction on k that (w,w′) ∈

[[KA
ijk(π)]]M iff there is a π∗ path from (w, si) to (w′, sj) in M⊗ A that does not

pass through any pairs (v, s) with s ∈ {sk, . . . , sn−1}.
Base case, i = j: A π∗ path from (w, si) to (w′, sj) that does not visit any

intermediate states is either the empty path or a single π step from (w, si) to
(w′, sj). Such a path exists iff (w,w′) ∈ [[?⊤ ∪ TA

ij ]]M iff (w,w′) ∈ [[KA
ij0(π)]]M.

Base case, i �= j: A π∗ path from (w, si) to (w′, sj) that does not visit any
intermediate states is a single π step from (w, si) to (w′, sj). Such a path exists
iff (w,w′) ∈ [[TA

ij ]]M iff (w,w′) ∈ [[KA
ij0(π)]]M.

Induction step. Assume that (w,w′) ∈ [[KA
ijk(π)]]M iff there is a π∗ path from

(w, si) to (w′, sj) in M ⊗ A that does not pass through any pairs (v, s) with
s ∈ {sk, . . . , sn−1}.

Case i = k = j. A path from (w, si) to (w′, sj) in M ⊗ A that does not pass
through any pairs (v, s) with s ∈ {sk+1, . . . , sn−1} now consists of an arbitrary
number of π∗ paths from sk to sk that do not visit any intermediate states with
action component sk or higher. By the induction hypothesis, such a path exists
iff (w,w′) ∈ [[(KA

kkk(π))∗]]M iff (w,w′) ∈ [[KA
ij(k+1)(π)]]M.

Case i = k �= j. A path from (w, si) to (w′, sj) in M ⊗ A that does not
pass through any pairs (v, s) with s ∈ {sk+1, . . . , sn−1} now consists of a π∗ path
starting in (w, sk) visiting states of the form (u, sk) an arbitrary number of times,
but never touching on states with action component sk or higher in between, and
ending in (v, sk), followed by a π∗ path from (v, sk) to (w′, sj) that does not pass
through any pairs (v, s) with s ∈ {sk, . . . , sn−1}. By the induction hypothesis,
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a path from (w, sk) to (v, sk) of the first kind exists iff (w, v) ∈ [[(KA
kkk(π))∗]]M.

Again by the induction hypothesis, a path from (v, sk) to (w′, sj) of the second
kind exists iff (v, w′) ∈ [[KA

kjk]]M. Thus, the required path from (w, si) to (w′, sj)

in M⊗A exists iff (w,w′) ∈ [[(KA
kkk(π))∗;KA

kjk(π)]]M iff (w,w′) ∈ [[KA
ij(k+1)(π)]]M.

The other two cases are similar. �

The Kleene path lemma is the key ingredient in the following program trans-
formation lemma.

LEMMA 13 (Program Transformation). Assume A has n states s0, . . . , sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧

j=0

[TA
ij (π)][A, sj ]ϕ.

Proof. Induction on the complexity of π.
Basis, epistemic link case:

M |=w [A, si][a]ϕ

iff M |=w pre(si) implies M⊗A |=(w,si) [a]ϕ

iff M |=w pre(si) implies for all sj ∈ A, all w′ ∈M :

if si
a
→ sj , w

a
→ w′, then M |=w′ [A, sj ]ϕ

iff for all sj ∈ A : if si
a
→ sj then M |=w [pre(si) ; a][A, sj ]ϕ

iff M |=w

n−1∧

j=0

[TA
ij (a)][A, sj ]ϕ.

Basis, test case:

M |=w [A, si][?ψ]ϕ

iff M |=w pre(si) implies M⊗A |=(w,si) [?ψ]ϕ

iff M |=w pre(si) implies M |=w [?ψ][A, si]ϕ

iff M |=w

n−1∧

j=0

[TA
ij (?ψ)][A, sj ]ϕ.

Induction step, cases π1 ; π2 and π1 ∪ π2 are straightforward. The case of π∗ is
settled with the help of the Kleene path lemma. �

4.4 Reduction Axioms for Update PDL

The program transformations can be used to translate PDLDEL to PDL by means
of the following mutually recursive definitions of translations t for formulae and r
for programs:
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t(⊤) = ⊤

t(p) = p

t(¬ϕ) = ¬t(ϕ)

t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)

t([π]ϕ) = [r(π)]t(ϕ)

t([A, s]⊤) = ⊤

t([A, s]p) = t(pre(s)) → p

t([A, s]¬ϕ) = t(pre(s)) → ¬t([A, s]ϕ)

t([A, s](ϕ1 ∧ ϕ2)) = t([A, s]ϕ1) ∧ t([A, s]ϕ2)

t([A, si][π]ϕ) =

n−1∧

j=0

[TA
ij (r(π))]t([A, sj ]ϕ)

t([A, s][A′, s′]ϕ) = t([A, s]t([A′, s′]ϕ))

r(a) = a

r(?ϕ) = ?t(ϕ)

r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2)

r(π∗) = (r(π))∗.

The correctness of this translation follows from direct semantic inspection, using
the program transformation lemma for the translation of [A, si][π]ϕ formulae. The
translation points the way to appropriate reduction axioms, as follows.

Take all axioms and rules of PDL [Segerberg, 1982; Fischer and Ladner, 1979;
Parikh, 1978], plus the following reduction axioms:

[A, s]p ↔ (pre(s) ⇒ p)

[A, s]¬ϕ ↔ (pre(s) ⇒ ¬[A, s]ϕ)

[A, s](ϕ1 ∧ ϕ2) ↔ ([A, s]ϕ1 ∧ [A, s]ϕ2)

[A, si][π]ϕ ↔
n−1∧

j=0

[TA
ij (π)][A, sj ]ϕ

and necessitation for action model modalities. The reduction axioms for [A, s]p,
[A, s]¬ϕ and [A, s](ϕ1 ∧ ϕ2) are as in [Kooi and van Benthem, 2004]. The final
reduction axiom is based on program transformation and is new. Note that if we
allow multiple action models, we need the following reduction axiom for those:

[A,S]ϕ ↔
∧

s∈S

[A, s]ϕ
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If updates with multiple pointed action models are also in the language, we
need the following additional reduction axiom:

[A,S]ϕ ↔
∧

s∈S

[A, s]ϕ

THEOREM 14 (Completeness). If |= ϕ then ⊢ ϕ.

Proof. The proof system for PDL is complete, and every formula in the language
of PDLDEL is provably equivalent to a PDL formula. �

4.5 Special Cases

Public Announcement and Common Knowledge

As introduced above, in section 4.2.1, the action model for public announcement
that ϕ consists of a single state s0 with precondition ϕ and epistemic relation
{s0

a
→ s0 | a ∈ Ag}. We call this model Pϕ.

We are interested in how public announcement that ϕ brings about common
knowledge of ψ among group of agents B, i.e. we want to compute [Pϕ, s0][B

∗]ψ.

For this, we need T
Pϕ

00 (B∗), which is defined as K
Pϕ

001(B).

To work out K
Pϕ

001(B), we need K
Pϕ

000(B), and for K
Pϕ

000(B), we need T
Pϕ

00 (B),
which turns out to be

⋃
b∈B(?ϕ ; b), or equivalently, ?ϕ;B. Working upward from

this, we get:

K
Pϕ

000(B) =?⊤ ∪ T
Pϕ

00 (B) =?⊤ ∪ (?ϕ;B),

and therefore:

K
Pϕ

001(B) = (K
Pϕ

000(B))∗

= (?⊤ ∪ (?ϕ;B))∗

= (?ϕ;B)∗.

Thus, the reduction axiom for the public announcement action Pϕ with respect to
the program for common knowledge among agents B, works out as follows:

[Pϕ, s0][B
∗]ψ ↔ [Pϕ, s0][B

∗]ψ

↔ [T
Pϕ

00 (B∗)][Pϕ, s0]ψ

↔ [K
Pϕ

001(B)][Pϕ, s0]ψ

↔ [(?ϕ;B)∗][Pϕ, s0]ψ.
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This expresses that every B path consisting of ϕ worlds ends in a [Pϕ, s0]ψ world,
i.e. it expresses exactly what is captured by the special purpose operator CB(ϕ,ψ)
introduced in [Kooi and van Benthem, 2004]. Indeed, the authors remark in a
footnote that their proof system for CB(ϕ,ψ) essentially follows the usual PDL
treatment for the PDL transcription of this formula.

Secret Group Communication and Common Belief

The logic of secret group communication is the logic of email CCs. The action
model for a secret group message to B that ϕ consists of two states s0, s1, where
s0 has precondition ϕ and s1 has precondition ⊤, and where the accessibilities T
are given by:

T = {s0
b
→ s0 | b ∈ B}

∪{s0
a
→ s1 | a ∈ Ag−B}

∪{s1
a
→ s1 | a ∈ Ag}.

The actual world is s0. The members of B are aware that action ϕ takes place;
the others think that nothing happens. In this they are mistaken, which is why
CC updates generate KD45 models: i.e. CC updates make knowledge degenerate
into belief.

We work out the program transformations that this update engenders for com-
mon knowledge among some group of agents D. Call the action model CCB

ϕ .

We will have to work out K
CCB

ϕ

002 D, K
CCB

ϕ

012 D, K
CCB

ϕ

112 D, K
CCB

ϕ

102 D.

For these, we need K
CCB

ϕ

001 D, K
CCB

ϕ

011 D, K
CCB

ϕ

111 D, K
CCB

ϕ

101 D.

For these in turn, we need K
CCB

ϕ

000 D, K
CCB

ϕ

010 D, K
CCB

ϕ

110 D, K
CCB

ϕ

100 D.
For these, we need:

T
CCB

ϕ

00 D =
⋃

d∈B∩D

(?ϕ ; d) = ?ϕ ; (B ∩D)

T
CCB

ϕ

01 D =
⋃

d∈D−B

(?ϕ ; d) = ?ϕ ; (D −B)

T
CCB

ϕ

11 D = D

T
CCB

ϕ

10 D = ?⊥
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It follows that:

K
CCB

ϕ

000 D = ?⊤ ∪ (?ϕ ; (B ∩D))

K
CCB

ϕ

010 D = ?ϕ ; (D −B)

K
CCB

ϕ

110 D = ?⊤ ∪D,

K
CCB

ϕ

100 D = ?⊥

From this we can work out the Kij1, as follows:

K
CCB

ϕ

001 D = (?ϕ ; (B ∩D))∗

K
CCB

ϕ

011 D = (?ϕ ; (B ∩D))∗ ; (D −B)

K
CCB

ϕ

111 D = ?⊤ ∪D

K
CCB

ϕ

101 D = ?⊥.

Finally, we get K002 and K012 from this:

K
CCB

ϕ

002 D = K
CCB

ϕ

001 D ∪K
CCB

ϕ

011 D ; (K
CCB

ϕ

111 D)∗ ; K
CCB

ϕ

101 D

= K
CCB

ϕ

001 D (since the right-hand expression evaluates to ?⊥)

= (?ϕ ; (B ∩D))∗

K
CCB

ϕ

012 D = K
CCB

ϕ

011 D ∪K
CCB

ϕ

011 D ; (K
CCB

ϕ

111 D)∗

= K
CCB

ϕ

011 D ; (K
CCB

ϕ

111 D)∗

= (?ϕ ; (B ∩D))∗ ; (D −B) ; D∗.

Thus, the program transformation for common belief among D works out as
follows:

[CCB
ϕ , s0][D

∗]ψ

↔ [(?ϕ ; (B ∩D))∗][CCB
ϕ , s0]ψ ∧ [(?ϕ ; (B ∩D))∗ ; (D −B) ; D∗][CCB

ϕ , s1]ψ.

Compare [Ruan, 2004] for a direct axiomatisation of the logic of CCs.

Group Messages and Common Knowledge

The action model for a group message to B that ϕ consists of two states s0, s1,
where s0 has precondition ϕ and s1 has precondition ⊤, and where the accessibil-
ities T are given by:

T = {s0
b
→ s0 | b ∈ B}

∪{s1
b
→ s1 | b ∈ B}

∪{s0
a
→ s1 | a ∈ Ag−B}

∪{s1
a
→ s0 | a ∈ Ag−B}.
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This captures the fact that the members of B can distinguish the ϕ update from
the ⊤ update, while the other agents (the members of Ag−B) cannot. The actual
action is s0. Call this model GB

ϕ .

A difference with the CC case is that group messages are S5 models. Since
updates of S5 models with S5 models are S5, group messages engender common
knowledge (as opposed to mere common belief). Let us work out the program
transformation that this update engenders for common knowledge among some
group of agents D.

We will have to work out K
GB

ϕ

002D, K
GB

ϕ

012D, K
GB

ϕ

112D, K
GB

ϕ

102D.

For these, we need K
GB

ϕ

001D, K
GB

ϕ

011D, K
GB

ϕ

111D, K
GB

ϕ

101D.

For these in turn, we need K
GB

ϕ

000D, K
GB

ϕ

010D, K
GB

ϕ

110D, K
GB

ϕ

100D.
For these, we need:

T
GB

ϕ

00 D =
⋃

d∈D

(?ϕ ; d) =?ϕ ; D,

T
GB

ϕ

01 D =
⋃

d∈D−B

(?ϕ ; d) =?ϕ ; (D −B),

T
GB

ϕ

11 D = D,

T
GB

ϕ

10 D = D −B.

It follows that:

K
GB

ϕ

000D = ?⊤ ∪ (?ϕ ; D),

K
GB

ϕ

010D = ?ϕ ; (D −B),

K
GB

ϕ

110D = ?⊤ ∪D,

K
GB

ϕ

100D = D −B.

From this we can work out the Kij1, as follows:

K
GB

ϕ

001D = (?ϕ ; D)∗,

K
GB

ϕ

011D = (?ϕ ; D)∗ ; ?ϕ ; D −B,

K
GB

ϕ

111D = ?⊤ ∪D ∪ (D −B; (?ϕ ; D)∗; ?ϕ ; D −B),

K
GB

ϕ

101D = D −B ; (?ϕ;D)∗.
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Finally, we get K002 and K012 from this:

K
GB

ϕ

002D = K
GB

ϕ

001D ∪K
GB

ϕ

011D ; (K
GB

ϕ

111D)∗ ; K
GB

ϕ

101D
= (?ϕ ; D)∗∪

(?ϕ ; D)∗ ; ?ϕ ; D −B;
(D ∪ (D −B; (?ϕ ; D)∗ ; ?ϕ ; D −B))

∗
; D −B ; (?ϕ ; D)∗,

K
GB

ϕ

012D = K
GB

ϕ

011D ; (K
GB

ϕ

111D)∗

= (?ϕ ; D)∗ ; ?ϕ ; D −B ; (D ∪ (D −B ; (?ϕ;D)∗ ; ?ϕ ; D −B))∗.

Abbreviating D∪ (D−B ; (?ϕ ; D)∗ ; ?ϕ ; D−B) as π, we get the following
transformation for common knowledge among D after a group message to B that
ϕ:

[GB
ϕ , s0][D

∗]ψ
↔
[(?ϕ ; D)∗ ∪ ((?ϕ ; D)∗ ; ?ϕ ; D −B ; π∗ ; D −B ; (?ϕ ; D)∗)][GB

ϕ , s0]ψ
∧
[(?ϕ ; D)∗ ; ?ϕ ; D −B ; π∗][GB

ϕ , s1]ψ.

This equivalence gives a precise characterisation of two path requirements that
have to hold in the original model in order for common knowledge among D to
result from the group message to B. The formula may look complicated, but
mechanical verification of the requirement is quite easy.

5 QUANTIFIED DYNAMIC LOGIC

The second core system of dynamic logic that will be discussed in detail is that of
quantified dynamic logic (QDL). QDL was developed by Harel [1979] and Gold-
blatt [1982]. Both monographs were inspired by Pratt [1976]. Further information
about the development of QDL can be found in [Harel, 1984; Harel et al., 2000;
Goldblatt, 1992/1987].

Quantified dynamic logic can be viewed as the first order version of propositional
dynamic logic. It is less abstract than PDL, for program atoms now get further
analysed as assignments of values to program variables or as relational tests, and
states take the concrete shape of mappings from program variables to appropriate
values. At the background is a first order structure M consisting of a domain plus
interpretations of relation and function symbols.

Recall that the assignment programs of WHILE looked like v := t, with v a
program variable and t a term of the WHILE language. In QDL, the basic actions
are:

• assigning a random value to a variable:

v :=?,
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• assigning a definite value to a variable:

v := t,

• and testing for the truth of a formula:

?ϕ.

Various versions of QDL result from imposing further restrictions on testing, e.g.,
by only allowing tests on boolean combinations of relational and equational atoms.

Consider a state where x has value 3 and y value 2. Assuming we are computing
on the natural numbers, random assignment of a new value to x causes infinite
branching to the states with

{x → 0, y → 2}, {x → 1, y → 2}, {x → 2, y → 2}, {x → 3, y → 2},

and so on. The subsequent test x = y only succeeds for the state with {x → 2, y →
2}. The nett effect of x :=? ; ?(x = y) is a transition from {x → 3, y → 2} to
{x → 2, y → 2}.

5.1 Language

Take a signature for first order logic. Define terms, formulae and programs, as
follows:

t ::= v | ft1 · · · tn

ϕ ::= ⊤ | Rt1 · · · tn | t1 = t2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∃vϕ | 〈π〉ϕ

π ::= v :=? | v := t |?ϕ | π1 ; π2 | π1 ∪ π2 | π
∗

Abbreviations are as in the case of PDL. In particular, the SKIP, ABORT, WHILE,
REPEAT, IF-THEN-ELSE constructs are also defined as in the case of PDL.
What Quantified Dynamic Logic gives us is a fleshed out version of PDL, with
assignments (random and definite) and tests as basic actions. The assignments
change relational structures, and therefore the appropriate assertion language is
built from first order predicate logic rather than propositional logic, as in PDL.
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Floyd-Hoare correctness statements
for WHILE programs can be expressed directly in QDL. Recall the example of

the correctness statement for the factorial program from section 2.4:

x! = Z → [y := 1 ; WHILE x �= 1 DO (y := y ∗ x ; x := x−̇1)]y = Z.

This expresses partial correctness of the factorial program. Total correctness of
the factorial program can be expressed in QDL as the conjunction of the above
with the following:

〈y := 1 ; WHILE x �= 1 DO (y := y ∗ x ; x := x−̇1)〉⊤.

5.2 Semantics

A first order signature is a pair (f ,R) where f is a list of function symbols with
their arities and R is a list of relation symbols with their arities. Nullary func-
tion symbols are individual constants, nullary relation symbols are propositional
constants, unary relation symbols are predicates.

A model for a signature (f ,R) is a structure of the form

M = (EM, fM, . . . , RM, . . .),

where E is a non-empty set, the fM are interpretations in E for the members of
f (i.e. if f is an n-ary function symbol, then fM : En → E), and the RM are
interpretations in E for the members of R (i.e. if R is an n-ary relation symbol,
then RM ⊆ En).

Let V be the set of variables of the language. As usual g ∼v h expresses that
state h differs at most from state g on v. Interpretation of terms in M is defined
relative to a variable assignment g : V → EM, as follows:

[[v]]Mg = g(v)

[[ft1 · · · tn]]Mg = fM([[t1]]
M

g , . . . , [[tn]]Mg )

Truth in M for formulae and relational meaning in M for programs are defined
by simultaneous recursion:

M |=g ⊤ always

M |=g Rt1 · · · tn iff ([[t1]]
M

g , . . . , [[tn]]Mg ) ∈ RM

M |= t1 = t2 iff [[t1]]
M

g is the same as [[t2]]
M

g

M |=g ¬ϕ iff not M |=g ϕ

M |=g ϕ1 ∨ ϕ2 iff M |=g ϕ1 or M |=g ϕ2

M |=g ∃vϕ iff for some h with g ∼v h,M |=h ϕ

M |=g 〈π〉ϕ iff for some h with g[[π]]Mh ,M |=h ϕ



The Gamut of Dynamic Logics 551

g[[v :=?]]Mh iff g ∼v h

g[[v := t]]Mh iff h equals g[v → [[t]]Mg ]

g[[?ϕ]]Mh iff g = h and M |=g ϕ

g[[π1 ; π2]]
M

h iff there is an assignment f with

g[[π1]]
M

f and f [[π2]]
M

h

g[[π1 ∪ π2]]
M

h iff g[[π1]]
M

h or g[[π2]]
M

h

g[[π
∗]]Mh iff (g, h) ∈ ([[π]]M)∗

Validity of QDL formulae over a given signature is defined in terms of truth in
all models for the signature. A QDL formula ϕ over a given signature is satisfiable
if there is model M for that signature together with a variable assignment g in the
domain of that model, such that M |=g ϕ.

Note that the presence of v :=? does not increase the expressive power of the
language. Indeed, we have the following validities:

∃vϕ ↔ 〈v :=?〉ϕ

∀vϕ ↔ [v :=?]ϕ

Next, if v does not occur in t, definite assignment of t to v is equivalent to random
assignment to v followed by a test of the equality v = t. In other words, if v does
not occur in t we have the following validities:

〈v := t〉ϕ ↔ 〈v :=? ; ?v = t〉ϕ

[v := t]ϕ ↔ [v :=? ; ?v = t]ϕ.

Substitution and Assignment

The computational process of assigning a value to a variable is intimately linked
to the syntactic process of making a substitution of a term for a variable.

Recall the situation in first order logic. There, the basic truth definition is
phrased in terms of a first order model M, a variable assignment g, and a formula
ϕ: M |=g ϕ means that variable assignment g makes ϕ true in M. Let tvs be the
result of replacing variable v everywhere in term t by term s. Then the following
term substitution lemma holds for FOL and for QDL:

LEMMA 15 (Term substitution). [[tvs ]]Mg = [[t]]Mg[v �→[[s]]Mg ].

This is easily proved with induction on the structure of t.
Using this, one can prove the substitution lemma for FOL. Recall that a term t

is substitutable for v in ϕ (or: free for v in ϕ) if the substitution process does not
cause accidental capture of variables in t. Use ϕv

t for the result of substituting t
for all free occurrences of v in ϕ. The following holds for FOL:
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LEMMA 16 (Substitution). If t is free for v in ϕ then

M |=g ϕv
t iff M |=g[v �→[[t]]Mg ] ϕ.

The proof uses induction on the structure of ϕ, using the term substitution
lemma for the atomic case. In the case of QDL, we can rephrase this as follows:

LEMMA 17 (Assignment).

M |=g [v := t]ϕ iff M |=g[v �→[[t]]Mg ] ϕ.

What this means is that in QDL we can replace syntactic substitutions ϕv
t by

[v := t]ϕ.
Below we will be interested in the subsystem of QDL defined by

π ::= ?Rt1 · · · t2 |?t1 = t2 | v :=? | ∼π | π1 ; π2.

where ∼π is an abbreviation of ?[π]⊥.
It turns out that this subsystem, baptised DPL in [Groenendijk and Stokhof,

1991], has the same expressive power as first order logic, but its quantifier v :=? has
different binding behaviour from the quantifiers of first order logic. [Groenendijk
and Stokhof, 1991] proposes to employ the dynamic binding behaviour of the
DPL quantifiers for analysing anaphoric linking (establishing the links between
pronouns and their antecedents) in natural language.

Expressiveness

We can immediately see that the expressive power of QDL is greater than that of
FOL. The following formula in the language of natural number arithmetic expresses
induction on the natural numbers:

(7) ∀y〈x := 0 ; WHILE x �= y DO x := x + 1〉⊤.

This asserts that for all y the program x := 0 ; WHILE x �= y DO x := x+1 has
a terminating execution. That is, every y can be reached by starting from 0 and
repeatedly applying the successor function. This defines the natural numbers up
to isomorphism, and no first order formula can do that. Let ϕN be the conjunction
of formula (7) with the Peano axioms for arithmetic except the induction axiom.
Then the valid QDL sentences of the form ϕN → ψ, with ψ a first order sentence,
specify the first order sentences ψ that are true on N. But we know from Gödel’s
incompleteness theorem and Church’s Thesis that this set of sentences cannot be
effectively enumerated.

5.3 Interpreted versus Uninterpreted Reasoning

As was the case with the WHILE-language and other systems, we are often inter-
ested in computation with respect to some standard structure, such as the natural
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numbers. In such cases, we evaluate QDL formulae and programs in this structure,
and talk, e.g., about N-validity: truth for all variable assignments in N, and so on.

Note that all WHILE programs over a given signature are QDL programs over
that same signature. Thus, we can use QDL for making assertions about the
behaviour of WHILE programs. When interpreting with respect to N, we can
specify Euclid’s GCD algorithm as the following QDL program:

π = WHILE x �= y DO IF x > y THEN x := x− y ELSE y := y − x.

Clearly, Floyd-Hoare correctness statements about WHILE programs can be ex-
pressed in QDL. E.g., the following QDL statements about the GCD program,
expressing the total correctness of the program, are valid in N:

(x = x′ ∧ y = y′ ∧ x× y > 0) → [π] x = gcd(x′, y′).

x× y > 0 → 〈π〉⊤

The first of these says that if program π over N terminates then in the output
state x holds the value of the GCD of x′ and y′. The second of these expresses
that the program does indeed terminate for all states with x × y > 0, for 〈π〉⊤
expresses termination for all deterministic programs.

In the case of uninterpreted reasoning we are interested in truth in all structures.
The following is valid in all models:

(x = x′ ∧ y = y′) → [z := x ; x := y ; y := z](x = y′ ∧ y = x′).

5.4 Undecidability and Completeness

QDL is a proper extension of classical FOL, and, as we have seen, its validity
problem is not effectively enumerable. This means that there can be no proof
theory for QDL based on an enumerable set of axioms and an enumerable set of
decidable inference rules. A proof theory will have to be based on infinitary (hence
undecidable) inference rules.

The following axioms relate random assignment to quantification and definite
assignment to substitution:

∀vϕ↔ [v :=?]ϕ
∀vϕ→ [v := t]ϕ
∀w[v := w]ϕ→ ∀vϕ w /∈ {v} ∪ var(ϕ)
∀vϕ→ [v := t]∀vϕ
∀w[v := t]ϕ→ [v := t]∀wϕ w /∈ {v} ∪ var(t)
〈v := t〉ϕ↔ [v := t]ϕ
[v := t]Rt1 · · · tn ↔ Rt1

v
t · · · tn

v
t

[v := t]t1 = t2 ↔ t1
v
t = t2

v
t

[v := t][v := s]ϕ→ [v := sv
t ]ϕ

[v := t][w := s]ϕ→ [w := sv
t ][v := t]ϕ w /∈ {v} ∪ var(t)

s = t→ ([v := t]ϕ↔ [v := s]ϕ)

Now take as axiom schemes the following:
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• All instances of valid FOL formulae,

• all instances of valid PDL formulae,

• the assignment axiom schemes above,

and as rules of inference:

• modus ponens

• quantifier generalisation
ϕ

∀vϕ

• program generalisation
ϕ

[π]ϕ

• and infinitary convergence:

ϕ→ [πn]ψ, n ∈ N

ϕ→ [π∗]ψ

where πn is given by π0 =?⊤, πn+1 = π ; πn

A proof in this calculus may have infinitely many premises. This infinitary proof
system is sound and complete (Harel [1984] or Goldblatt [1992/1987]):

THEOREM 18. For any QDL formula ϕ,

|= ϕ iff ⊢ ϕ.

6 DPL AS A FRAGMENT OF QDL

In the introduction we mentioned that dynamic logic is also used in linguistics,
in particular in the analysis of various phenomena involving information flow in
discourse (text, conversation). In this section we turn to the study of a particular
formalism, that of Dynamic Predicate Logic (DPL), that has played a prominent
role in the development of dynamic semantic theories for natural language.

The DPL system is a representative instance of a whole variety of systems that
have been developed in formal semantics of natural language to deal with dynamic
aspects of meaning and information flow: the contribution of declaratives to the
‘common ground’, presuppositional phenomena, anaphoric links across sentence
boundaries, the temporal structure of discourse, the semantic effects of impera-
tives, and so on. DPL is an illustrative example in the present context because
of its obvious affinities with systems developed in other areas, in particular with
PDL and QDL. The formal properties of the DPL system have been studied quite
extensively (cf., e.g., [van Benthem, 1996] and the references below). Also, DPL
provides a nice illustration of some of the central concepts of QDL. A more elebo-
rate discussion of the specific linguistic issues involved can be found in section 7.
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6.1 System

DPL is the subsystem of QDL that is given by the following syntax:

DEFINITION 19 (DPL syntax).

t ::= v | c | ft1 · · · tn

π ::= ?Rt1 · · · t2 |?t1 = t2 | v :=? | ∼π | π1 ; π2.

Semantics: as in the definition of QDL. The meaning of ∼π is given by:

g[[∼π]]h iff g equals h and for no g′ it holds that g[[π]]Mg′ .

As was noted earlier, ∼π can be taken as an abbreviation of ?[π]⊥.
FOL can be interpreted in DPL, as follows:

(Rt1 · · · tn)• = ?Rt1 · · · tn

(t1 = t2)
• = ?t1 = t2

(¬ϕ)• = ∼ϕ•

(ϕ1 ∨ ϕ2)
• = ∼(∼ϕ•

1 ; ∼ϕ•
2)

(∃vϕ)• = ∼∼(v :=? ; ϕ•)

DPL and FOL

An inspection of the DPL semantics yields:

LEMMA 20 (Embedding). For all FOL formulae ϕ, all models M for the signature
of ϕ, all assignments g, h in M:

M |=g ϕ and g = h iff g[[ϕ
•]]Mh .

DPL programs can be reversed, as follows:

(?Rt1 · · · tn)̆ = ?Rt1 · · · tn

(?t1 = t2)̆ = ?t1 = t2

(v :=?)̆ = v :=?

(∼π)̆ = ∼π

(π1 ; π2)̆ = π2˘ ; π1˘

This definition shows that ˘ is definable in DPL, because ?Rt1 · · · tn, ?t1 = t2,
∼π, v :=? and ∼π are all symmetric and hence self-converse. What this means is
that adding a converse operator to DPL does not increase expressive power. The
following reversal lemma is proved by induction on DPL program structure:

LEMMA 21 (Reversal). For all DPL programs π, all models M, all assignments
g, h in M:

g[[π]]Mh iff h[[π ]̆]Mg .
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DPL and DPL′

One of the features of DPL is that it does not have the distinction between pro-
grams (interpreted as binary relations on a set of appropriate valuations) and
formulae (interpreted as predicates on a set of appropriate valuations). Still, it is
sometimes useful to be able to make statements about DPL programs. For this,
we define DPL′ formulae as follows (π ranges over DPL programs):

ϕ ::= ⊤ | Rt1 · · · tn | t1 = t2 | ¬ϕ | ϕ1 ∨ ϕ2 | ∃vϕ | 〈π〉ϕ.

Statements about DPL programs can now be made in DPL′. The formula 〈π〉⊤
characterises the assignments where π succeeds. In [Groenendijk and Stokhof,
1991] this is called the satisfaction set of π. The set of possible output assignments
for π (the production set of π) is characterised by 〈π 〉̆⊤. The following formula
expresses that π1 and π2 have the same satisfaction and production sets:

(8) (〈π1〉⊤ ↔ 〈π2〉⊤) ∧ (〈π1 〉̆⊤ ↔ 〈π2 〉̆⊤).

Note that it does not follow from (8) that π1 and π2 are equivalent. Let π1 be
?x = x and let π2 be x :=?. Then 〈π1〉⊤ ↔ ⊤ ↔ 〈π1〉⊤ and 〈π1 〉̆⊤ ↔ ⊤ ↔ 〈π1 〉̆⊤,
but the two programs are not equivalent. The interpretation of π1 is the identity
relation on the set of assignments, that of π2 is the set of all pairs g, h such that
g ∼x h.

6.2 Proof theory

Reduction to FOL

There are various proof systems for DPL or closely related logics. An early example
is the Floyd-Hoare-type system of Van Eijck and De Vries [van Eijck and de Vries,
1992]. Basically, this calculus uses Floyd-Hoare rules to reduce DPL to FOL. We
can also use QDL to reduce DPL to FOL. Here is a translation function from DPL′

to FOL:

(⊤)◦ = ⊤

(Rt1 · · · tn)◦ = Rt1 · · · tn

(t1 = t2)
◦ = t1 = t2

(¬ϕ)◦ = ¬ϕ◦

(ϕ1 ∨ ϕ2)
◦ = ϕ◦

1 ∨ ϕ◦
2

(∃vϕ)◦ = ∃vϕ◦

(〈?Rt1 · · · tn〉ϕ)◦ = Rt1 · · · tn ∧ ϕ◦

(〈?t1 = t2〉ϕ)◦ = t1 = t2 ∧ ϕ◦

(〈v :=?〉ϕ)◦ = ∃vϕ◦

(〈∼π〉ϕ)◦ = ¬(〈π〉⊤)◦ ∧ ϕ◦

(〈π1 ; π2〉ϕ)◦ = (〈π1〉〈π2〉ϕ)◦.
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Direct inspection of the semantics reveals that this translation is correct, in the
following sense:

LEMMA 22 (Translation Correctness). For all DPL′ formulae ϕ, all FO models
M for the signature of ϕ, all variable assignments g in M:

M |=g ϕ iff M |=g (ϕ)◦.

It follows from this that the following reduction axioms for DPL are sound:

test relation 〈?Rt1 · · · tn〉ϕ↔ Rt1 · · · tn ∧ ϕ
test equality 〈?t1 = t2〉ϕ↔ t1 = t2 ∧ ϕ
random assignment 〈v :=?〉ϕ↔ ∃vϕ
dynamic negation 〈∼π〉ϕ↔ ¬〈π〉⊤ ∧ ϕ
sequence 〈π1 ; π2〉ϕ↔ 〈π1〉〈π2〉ϕ.

The boxed counterparts of these axioms can be derived by propositional rea-
soning:

test relation [?Rt1 · · · tn]ϕ↔ (Rt1 · · · tn → ϕ)
test equality [?t1 = t2]ϕ↔ (t1 = t2 → ϕ)
random assignment [v :=?]ϕ↔ ∀vϕ
dynamic negation [∼π]ϕ↔ ([π]⊥ → ϕ)
sequence [π1 ; π2]ϕ↔ [π1][π2]ϕ.

The calculus for DPL′ can now consist of the axioms for FOL, the axioms for
test relation, test equality, dynamic negation and sequence (either in their box or
in their diamond versions), and the inference rules of FOL: modus ponens and
generalisation. It follows from the translation lemma that this axiomatisation is
sound. The axiomatisation is also complete.

THEOREM 23 (DPL′ completeness).
For all DPL′ formulae ϕ: if |= ϕ then ⊢ ϕ.

Proof. The proof system for FOL is complete, and every DPL′ formula ϕ is
provably equivalent to some FOL formula. �

By way of example of the application of the calculus we give the derivation of
the FOL counterpart to the DPL rendering of so-called ‘donkey sentences’ (cf.,
section 7.2 below for more extensive discussion of this type of phenomenon):

1. If a farmer owns a donkey then he beats it.

DPL translates this using a defined operator for dynamic implication, given by:

ϕ⇒ ψ :≡ ∼(ϕ ; ∼ψ).

The DPL rendering of (1) looks like this:

(x :=? ; ?Fx ; y :=? ; ?Dy ; ?Oxy)⇒?Bxy.
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Here is the reduction to FOL using the reduction axioms:

〈∼(x :=? ; ?Fx ; y :=? ; ?Dy ; ?Oxy ; ∼?Bxy)〉⊤

↔ [x :=? ; ?Fx ; y :=? ; ?Dy ; ?Oxy ; ∼?Bxy]⊥

↔ ∀x[?Fx ; y :=? ; ?Dy ; ?Oxy ; ∼?Bxy]⊥

↔ ∀x(Fx→ [y :=? ; ?Dy ; ?Oxy ; ∼?Bxy]⊥)

↔ ∀x(Fx→ ∀y[?Dy ; ?Oxy ; ∼?Bxy]⊥)

↔ ∀x(Fx→ ∀y([?Dy ; ?Oxy ; ∼?Bxy]⊥))

↔ ∀x(Fx→ ∀y(Dy → [?Oxy ; ∼?Bxy]⊥))

↔ ∀x(Fx→ ∀y(Dy → (Oxy → [∼?Bxy]⊥)))

↔ ∀x(Fx→ ∀y(Dy → (Oxy → ([?Bxy]⊥ → ⊥))))

↔ ∀x(Fx→ ∀y(Dy → (Oxy → Bxy))).

Clearly, this is the desired universal reading of the example.

Axiomatisation

Axiomatising DPL becomes more of a challenge if one is after an axiomatisation
at the level of programs, without recourse to a static assertion language like FOL.
Such a direct axiomatisation is provided in Van Eijck [van Eijck, 1999]. Key
element of the calculus is an appropriate treatment of substitution in DPL.

For readability, it is useful to slightly rephrase the DPL language, by leaving
out the spurious test operators and by using quantifier notation for random as-
signment:

DEFINITION 24 (DPL syntax again).

π ::= ⊤ | Rt1 · · · t2 | t1 = t2 | ∃v | ∼π | π1 ; π2.

Types of Variable Occurrences Let V be the variables of the DPL language.
The set of variables which have a fixed occurrence in a DPL program π is given by
a function free : DPL→ PV , the set of variables which are introduced in a formula
is given by a function intro : DPL → PV , and the set of variables which have a
classically bound occurrence in a formula is given by a function cbnd : DPL→ PV .

The introduced variables of π (called ‘blocked’ variables in [Visser, 1998]) are
the variables y such that π contains an ∃y not in the scope of a negation. The free
variables of π are the variables on which input valuations have to agree on output
valuations. The classically bound variables of π are the variables that behave like
the bound variables of FOL. Let var(Pt1 · · · tn) be the set of all variables among
t1 · · · tn.

DEFINITION 25 (free, intro, cbnd).

• free(⊤) := ∅, intro(⊤) := ∅, cbnd(⊤) := ∅.
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• free(∃v ; π) := free(π)− {v},
intro(∃v ; π) := {v} ∪ intro(π),
cbnd(∃v ; π) := cbnd(π).

• free(Pt1 · · · tn ; π) := var(Pt1 · · · tn) ∪ free(π),
intro(Pt1 · · · tn ; π) := intro(π),
cbnd(Pt1 · · · tn ; π) := cbnd(π).

• free(∼(π1) ; π2) := free(π1) ∪ free(π2),
intro(∼(π1) ; π2) := intro(π2),
cbnd(∼(π1) ; π2) := intro(π1) ∪ cbnd(π1) ∪ cbnd(π2).

• free((π1π2) ; π3) := free(π1 ; (π2 ; π3)),
intro((π1π2) ; π3) := intro(π1 ; (π2 ; π3)),
cbnd((π1π2) ; π3) := cbnd(π1 ; (π2 ; π3)).

Some examples may clarify this definition. Let

π := ∃v ; ∃w ; Ruvw.

Then intro(π) = {v, w}, free(π) = {u}, cbnd(π) = ∅. The occurrence of u in Ruvw
is free.

Variables introduced within the scope of negation become classically bound.
Let

π := ∼(∃v ; ∃w ; Ruvw).

Then intro(π) = ∅, free(π) = {u}, cbnd(π) = {v, w}. The occurrence of u in Ruvw
is still free.

A variable can have fixed, bound and introduced occurrences in an expression.
Let

π := Px ; ∃x ; ∼Px ; ∼(∃x ; Qx).

Then intro(π) = {x}, free(π) = {x}, cbnd(π) = {x}. The leftmost occurrence of x
is free, the other occurrences are not.

Binding Note that for all DPL programs π, intro(π) ∩ free(π) = ∅. Let g ∼X h
if variable assignments g and h differ at most in the values of variables among X.
Let g[X]h if g ∼V −X h, where V is the set of all variables. Thus, g[X]h expresses
that g and h agree on the values of variables in X.

LEMMA 26 (DPL binding). If g[[ϕ]]Mh then g ∼intro(ϕ) h and g[free(ϕ)]h.

Thus, the leftmost occurrence of x in Px ; ∃x ; ∼Px ; ∼(∃x ; Qx) is free,
the other occurrences are not. Use πv

t for the result of substituting t for all free
occurrences of v in π:
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DEFINITION 27 (πv
t ).

⊤v
t := ⊤

(Rt1 · · · tn ; π)v
t := Rt1

v
t · · · tn

v
t ; πv

t

(t1 = t2 ; π)v
t := t1

v
t = tn

v
t ; πv

t

(∃v ; π)v
t := ∃v ; π

(∃w ; π)v
t := ∃w ; πv

t

(∼(π1) ; π2)
v
t := ∼(π1

v
t ) ; π2

v
t

((π1 ; π2) ; π3)
v
t := (π1 ; (π2 ; π3))

v
t

Note that this definition of substitution takes the dynamic binding force of ∃v
over the text that follows into account (cf. the clause for (∃v ; π)v

t , where the
occurrence of ∃v blocks off the π that follows). Visser [Visser, 1998] calls this
substitution ‘left’ substitution.

Sequent Deduction Rules Figure 2 gives a set of sequent deduction rules
for DPL, using the format ϕ =⇒ ψ, where =⇒ is the sequent separator. Note
that ϕ =⇒ ⊥ expresses that ϕ is inconsistent. The calculus defines a relation
=⇒⊆ DPL2 by means of: ϕ =⇒ ψ iff ϕ =⇒ ψ is at the root of a finite tree with
sequents at its nodes, such that the sequents at a leaf node are axioms of the
calculus, and the sequents at the internal nodes follow by means of a rule of the
calculus from the sequent(s) at the daughter node(s) of that internal node.

In the calculus, C, with and without subscripts, is used as a variable over
contexts, where a context is a formula or the empty list ǫ. Substitution and
evaluation are extended to contexts in the obvious way. If C is a context and ϕ a
formula, then we use Cϕ for the formula given by: Cϕ := ϕ if C = ǫ, Cϕ := ψ;ϕ
if C = ψ. Similarly for ϕC, and for C1ϕC2.

It is convenient to extend the definition of substitution to sequents.

DEFINITION 28 ((C =⇒ ϕ)v
t ). Induction on the structure of C:

(ǫ =⇒ ϕ)v
t := ǫ =⇒ ϕv

t

(ψ =⇒ ϕ)v
t :=

{
ψv

t =⇒ ϕ if v ∈ intro(ψ)
ψv

t =⇒ ϕv
t otherwise.

Substitution for sequents carries in its wake a notion of being free for a variable
in a sequent:

DEFINITION 29 (t is free for v in C =⇒ ψ).

1. t is free for v in ǫ =⇒ ψ if t is free for v in ψ.

2. t is free for v in ϕ =⇒ ψ if t is free for v in ϕ, and either v ∈ intro(ϕ) or t is
free for v in ψ.



The Gamut of Dynamic Logics 561

Figure 2. The Calculus for DPL

test axiom T =⇒ T

transitivity
ϕ =⇒ ψ ψ =⇒ χ

ϕ =⇒ χ intro(ψ) ∩ free(χ) = ∅

test swap

C1T1 ; T2C2 =⇒ ϕ

C1T2 ; T1C2 =⇒ ϕ

quantifier move

C1T ; ∃v C2 =⇒ ϕ

C1∃v ; TC2 =⇒ ϕ
v /∈ free(T )

C1∃v ; TC2 =⇒ ϕ

C1T ; ∃v C2 =⇒ ϕ
v /∈ free(T )

quantifier intro

ϕ =⇒ ψv
t

ϕ =⇒ ∃v ; ψ
t free for v in ψ

var refreshment

C1∃v C2 =⇒ ϕ

C1∃w(C2 =⇒ ϕ)v
w

w /∈ intro(C1) ∪ free(C1)

sequencing

ψ =⇒ χ

ϕ ; ψ =⇒ χ

ϕ =⇒ ψ ϕ =⇒ χ

ϕ =⇒ ψ ; χ
intro(ψ) ∩ free(χ) = ∅

negation

ϕ =⇒ ψ

ϕ ; ∼ψ =⇒ ⊥

ϕ ; ψ =⇒ ⊥

ϕ =⇒ ∼ψ

double negation

ϕ =⇒ ∼∼ψ

ϕ =⇒ ψ

ϕ ; ∼∼ψ =⇒ ⊥

ϕ ; ψ =⇒ ⊥
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When a rule mentions a substitution ϕv
t in the consequent of a sequent then the

standard assumption is made that t is free for v in ϕ. When a rule mentions a
substitution C1(C2 =⇒ ϕ)v

t then it is assumed that t is free for v in C2 =⇒ ϕ.
In the rules of Figure 2 T is used as an abbreviation of formulae ϕ with

intro(ϕ) = ∅ (T for Test formula).
Here is an example application of the quantifier intro rule.

Rxx =⇒ Rxx
Rxx =⇒ ∃y ; Rxy

Rxx equals (Rxy)y
x, so this is indeed a correct application of the rule.

Variable refreshment allows the liberation of a captured variable, e.g., of the
first two occurrences of x in ∃x ; Px ; ∃x ; Qx, by means of replacement by
a variable that does not occur as an introduced or free variable in the left context
in the given sequent:

∃x ; Px ; ∃x ; Qx =⇒ Qx

∃y ; Py ; ∃x ; Qx =⇒ Qx

It is also possible to change the other occurrences of x in the same example.
The following is also a correct application of the rule:

∃x ; Px ; ∃x ; Qx =⇒ Qx

∃x ; Px ; ∃y ; Qy =⇒ Qy

Note that the rule can also be used to recycle a variable:

∃y ; Py ; ∃x ; Qx =⇒ Qx

∃x ; Px ; ∃x ; Qx =⇒ Qx

This application is also correct, for

(∃x ; Px ; ∃x ; Qx =⇒ Qx) = (∃x ; (Py ; ∃x ; Qx =⇒ Qx)y
x).

An example application of the rule for ; right is:

Rxx =⇒ ∃y ; Ryx Rxx =⇒ ∃z ; Rxz

Rxx =⇒ ∃y ; Ryx ; ∃z ; Rxz
; right

In case the condition on the rule for ; right is not satisfied, e.g. for the two
sequents ∼Px ; ∃x ; Px =⇒ ∃x ; ∼Px and ∼Px ; ∃x ; Px =⇒ Px, this can
always be remedied by one or more applications of ∃ Right to the second premise.

It is not hard to see that the rules of the calculus are sound. The calculus
is also complete. For the proof — a modification of the standard Henkin style
completeness proof for classical first order logic — we refer to [van Eijck, 1999].
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6.3 Computational DPL

In [Apt and Bezem, 1999] a computational interpretation of standard first order
logic is proposed, with as key ingredient a new interpretation of identity statements
(in suitable contexts) as assignment actions. Computation states are partial maps
of variables to values. The gist of the proposal is this: in a state α that is defined
for a term t but undefined for a variable v, an identity statement v = t or t = v is
interpreted as an instruction to assign the value tα to the variable v.

Let M = (M, I) be a FO model, and let V be a set of variables. Let A := {α ∈
MX | X ⊆ V }. If α ∈ MX , then call X the domain of α; a term t is α-closed if
all variables in t are in X, an atom Pt1 · · · tn is α-closed if all ti are α-closed, and
an identity t1 = t2 is α-closed if both of t1, t2 are. Use ↑ for ‘undefined’ and ↓ for
‘defined’. Term interpretation in model M = (M, I) with respect to valuation α
now has to take the possibility into account that the value of the term under α is
undefined.

vα :=

{
α(v) if v is α-closed
↑ otherwise

(ft1 · · · tn)α :=

{
I(f)tα1 · · · t

α
n if t1, . . . , tn α-closed

↑ otherwise

An identity t1 = t2 is an α-assignment if either t1 ≡ v, tα1 =↑, tα2 =↓, or t2 ≡
v, tα1 =↓, tα2 =↑. An α-assignment can be used as a statement that extends a
valuation α with a new value.

A first order predicate with its arguments Pt1 · · · tn is interpreted as a test that
can either fail or succeed, provided that all of the ti are defined for the input state
α; otherwise an error is generated. The empty conjunction is interpreted as the
instruction to succeed in any state α, with output α.

This is then extended to finite conjunctions of implications, negations, disjunc-
tions and existential quantifications, according to the following rule set: [[ϕ]]α
denotes the computation tree for ϕ on input α. A tree is successful if it contains
at least one leaf consisting of just a variable map, it fails if all its leafs equal fail.

[[ϕ ∧ ψ]]α

∃vϕ ∧ ψ, α

if v /∈ dom (a), v not free in ψ.

[[ψ]]α

¬ϕ ∧ ψ, α

if ϕ α-closed, [[ϕ]]α failed.

fail

¬ϕ ∧ ψ, α

if ϕ α-closed, [[ϕ]]α successful.
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[[ψ]]α

(ϕ1 → ϕ2) ∧ ψ, α

if ϕ1 α-closed, [[ϕ1]]α failed.

[[ϕ2 ∧ ψ]]α

(ϕ1 → ϕ2) ∧ ψ, α

if ϕ1 α-closed,[[ϕ1]]α successful.

[[ϕ1 ∧ ψ]]α [[ϕ2 ∧ ψ]]α

���
			

(ϕ1 ∨ ϕ2) ∧ ψ, α

All cases not listed generate an error.

This computation procedure has the property that for any ϕ and any input
valuation α, the valuations at success nodes in [[ϕ]]α are extensions of α. Com-
putations never change the input valuations. In particular, ∃xϕ ∧ ψ is treated as
equivalent with ϕ ∧ ψ provided the variable conditions hold. Thus, the quantifier
has no computational effect, but acts as a prohibition sign: its only function is to
rule out occurrences of x in the outside context of ∃xϕ.

The computational engine can be adapted to a setting where quantifiers are read
dynamically, by giving assignments v :=? an appropriate computational meaning.
The relational interpretation of v :=? is computationally infeasible, for the instruc-
tion to replace the value of register v by an arbitrary new value is awkward if one
is computing over an infinite domain, say the domain of natural numbers. As a
statement on N, v :=? is an instruction to pick an arbitrary natural number and
assign it to v. Since this can be done in an infinite number of ways, this does not
represent any finite computational procedure.

In the computational interpretation of DPL one therefore changes the quantifier
action as follows. Instead of letting the quantifier action v :=? perform its full duty,
the action v :=? is split into two tasks:

1. throwing away the old value of v, and

2. identifying appropriate new values for v.

On infinite domains any attempt to perform task (2) immediately will cause an
infinite branching transition, and therefore this task is postponed. The duty of
finding an appropriate new value for v is relegated to an appropriate identifying
statement for v further on. This move is inspired by the computational interpre-
tation of identity statements from [Apt and Bezem, 1999]. See [van Eijck et al.,
2001] and [Heguiabehere, 2001] for more information on computing with DPL.
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6.4 Extensions of DPL

DPL can be viewed as the most basic of a hierarchy of formulae-as-programs
languages. We will now look at extensions of DPL with the six operations ∪,
,̆ σ, σ̆, ∩, ∃∃. Extensions of DPL with ∩ (relation intersection) and ∃∃ (local

variable declaration) are studied in [Visser, 1998], while in [van Eijck et al., 2001],
an extension of DPL with ∪ (relation union) and σ (simultaneous substitution)
is axiomatised, and ω-completeness is proved for the extension of DPL with ∪, σ
and Kleene star.

Extended Semantics

A substitution is a finite set of bindings x → t, with the usual conditions that no
binding is trivial (of the form x → x) and that every x in the set has at most one
binding (substitutions are functional). Examples of substitutions are {x → f(x)}
(“set new x equal to f -value of old x”), {x → y, y → x} (“swap values of x and
y”). If a substitution contains just a single binding we omit the curly brackets
and write just the assignment statement x := t. Note that if x occurs in t, the
assignment x := t is not expressible in DPL. Similarly , there is no DPL program
that is equivalent to {x → y, y → x}.

Left-to-right substitutions σ have right-to-left counterparts σ̆ (converse substi-
tutions). For pre- and postcondition reasoning with extensions of DPL, converse
substitution and relation converse ˘ are attractive.

A converse substitution is a finite set of converse bindings (x → t)̆ , with the
same conditions as those for substitutions. An example is (x → f(x))̆ (“set old x
equal to f -value of new x”, i.e. “look at all inputs g that differ from the output h
only in x, and that satisfy f(g(x)) = h(x)”).

The semantics definition for the new operators runs:

[[σ]]M = {(g, gx1···xn

d1···dn
) | {x1, . . . , xn} = dom(σ) and di = σ(xi)

M,g

[[σ̆]]M = {(gx1···xn

d1···dn
, g) | {x1, . . . , xn} = dom(σ) and di = σ(xi)

M,g

[[∃∃x(π)]]M = {(g, kx
g(x)) | for some d : (gx

d , k) ∈ [[π]]M}

[[π1 ∩ π2]]
M = [[π1]]

M ∩ [[π2]]
M

[[π ]̆]M = {(g, h) | (h, g) ∈ [[π]]M}

The ∃∃ operator allows for the declaration of local variables. Simultaneous
substitution permits performing certain computations without the use of auxiliary
variables. Converse and converse simultaneous substitution are useful for pre- and
postcondition reasoning, as they allow us to define the inverses of programs under
certain conditions [Gries, 1981, Chapter 21].

Left-to-Right and Right-to-Left Substitution

Because the semantics of DPL programs is completely symmetric, performing a
substitution in a DPL program can be done in two directions: left-to-right and
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right-to-left [Visser, 1998] (see also [Vermeulen, 2001], where substitutions for DPL
with a stack semantics are studied). Left-to-right substitutions affect the left-free
variable occurrences, right-to-left substitutions the right-free (or ‘actively bound’)
variable occurrences.

DPL has two directional analogues to the substitution lemma from FOL: one
for left-to-right substitution and one for right-to-left substitution. For left-to-right
substitution we get that g[[σ(π)]]Mh iff gσ[[π]]Mh. Viewing the substitution itself
as a state change, we can decompose this into g[[σ]]Mg′[[π]]Mh. This uses g[[σ]]Mk
iff k = gσ.

The right-to-left substitution lemma for DPL says that g[[σ̆(π)]]Mh iff g[[π]]Mhσ.
Viewing the right-to-left substitution itself as a state change, we can decompose
this into g[[π]]Mh′[[σ̆]]Mh. This uses k[[σ̆]]Mh iff k = hσ. Again, since in general
σ̆ is not expressible in DPL, we have a motivation to extend the language with
converse substitutions.

Use ◦ for relational composition of substitution expressions, defined as fol-
lows:

DEFINITION 30 (Composition of substitutions). Let

σ = {v1 → t1, . . . , vn → tn} and ρ = {w1 → r1, . . . , wm → rm}

be substitutions. Then σ ◦ ρ is the result of removing from the set

{w1 → σ(r1), . . . , wm → σ(rm), v1 → t1, . . . , vn → tn}

the bindings w1 → σ(ri) for which σ(ri) = wi, and the bindings vj → tj for which
vj ∈ {w1, . . . , wm}.

It is easily proved now that σ ; ρ is equivalent to σ◦ρ. E.g., x := x+1 ; y := x
is equivalent to {x → x + 1, y → x + 1}, and x := y ; x := x + 1 is equivalent to
x := y + 1.

Every DPL(∪, σ) formula can be written with ; associating to the right, as a
list of predicates, quantifications, negations, choices and substitutions, with a sub-
stitution ρ at the end (possibly the empty substitution). Left-to-right substitution
in DPL(∪, σ) is defined by:

σ(ρ) := σ ◦ ρ

σ(ρ ; π) := σ ◦ ρ ; π

σ(∃v ; π) := ∃v ; σ′π where σ′ = σ\{v → t | t ∈ T}

σ(P t̄ ; π) := Pσt̄;σπ

σ(t1 = t2 ; π) := σt1 = σt2 ; σπ

σ(∼(π1) ; π2) := ¬(σπ1) ; σπ2

σ((π1 ∪ π2);π3) := σ(π1;π3) ∪ σ(π2;π3)
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A term t is left-to-right free for v in π if all variables in t are input-constrained in
all positions of the left-free occurrences of v in π. A substitution σ is safe for π if
all bindings v → t of σ are such that t is left-to-right free for v in π. This allows
us to prove:

LEMMA 31 (Left-to-Right Substitution). If σ is safe for π then g[[σ(π)]]h iff
gσ[[π]]h.

Right-to-left substitution is defined in a symmetric fashion, now reading the
formulae in a left-associative manner, with a converse substitution at the front,
and overloading the notation by also using ◦ for the relational composition of
converse substitutions (defined as one would expect, to get σ̆ ◦ ρ̆ = (ρ ◦ σ)̆ ):

σ̆(ρ̆) := σ̆ ◦ ρ̆

σ̆(π ; ρ̆) := π ; σ̆ ◦ ρ̆

σ̆(π;∃v) := σ̆′π ; ∃v where σ̆′ = σ̆\{(v → t)̆ | t ∈ T}

σ̆(π ; P t̄) := σ̆π ; Pσt̄

σ̆(π ; t1 = t2) := σ̆π ; σt1 = σt2

σ̆(π1 ; ∼(π2)) := σ̆π1 ; ∼(σ̆π2)

σ̆(π1 ; (π2 ∪ π3)) := σ̆(π1;π2) ∪ σ̆(π1;π3)

A term t is right-to-left free for v in π if all variables in t are output-constrained
in all positions of the right-free (actively bound) occurrences of v in π. A converse
substitution σ̆ is safe for π if all converse bindings (v → t)̆ of σ̆ are such that t is
right-to-left free for v in π. This allows us to prove:

LEMMA 32 (Right-to-Left Substitution). If σ̆ is safe for π then g[[σ̆(π)]]h iff
g[[π]]hσ.

Expressive Power

The following results are from [ten Cate et al., 2001];indexHeguiabehere, J. many
of the proofs are adapted from proofs given in [Visser, 1998].

THEOREM 33. DPL(∃∃ ) is equally expressive as DPL(∪,∩, ,̆ σ, σ̆,∃∃ ).

Proof. Let a formula π be given, and let V be the set of variables occurring in π.
Furthermore, let V ′ and V ′′ be sets of variables, such that V, V ′ and V ′′ are mu-
tually disjoint and of equal cardinality. Let V = {x1, . . . , xn}, V

′ = {x′
1, . . . , x

′
n},

and V ′′ = {x′′
1 , . . . x

′′
n}. The following function C translates a formula from

DPL(∪,∩, ,̆ σ, σ̆,∃∃ ) into a test from DPL.
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C(∃y) =
∧

x∈V \{y} x
′ = x

C(Rt1 . . . tn) =
∧

x∈V x′ = x ; Rt1 . . . tn
C(t1 = t2) =

∧
x∈V x′ = x ; t1 = t2

C(∼π) =
∧

x∈V x′ = x ; ∼(∃x′
1; . . . ;∃x

′
n ; C(π))

C(π1;π2) = ∼∼(∃x′′
1 ; . . . ;∃x′′

n;C(π1)
[x′

1/x′′

1 ,...,x′

n/x′′

n] ; C(π2)
[x1/x′′

1 ,...,xn/x′′

n])
C(π1 ∩ π2) = C(π1);C(π2)
C(π1 ∪ π2) = ∼(∼C(π1);∼C(π2))

C(π )̆ = C(π)[x1/x′

1,...,xn/x′

n,x′

1/x1,...,x′

n/xn]

C(σ) =
∧

x∈dom(σ) x
′ = σ(x);

∧
x∈V \dom(σ) x

′ = x

C(σ̆) =
∧

x∈dom(σ) x = σ(x)[x1/x′

1,...,xn/x′

n];
∧

x∈V \dom(σ) x
′ = x

C(∃∃x.π) = ∼∼(∃x;∃x′;C(π));x′ = x

Here,
∧

is used as a shorthand for a long composition, which is non-ambiguous
because the order of the particular sentences involved doesn’t matter. By induc-
tion, it can be shown that every π containing only variables in V , is equivalent to
∃∃x′

1 . . . x
′
n(C(π);x1 := x′

1; . . . ;xn := x′
n). �

THEOREM 34. DPL(∗,∃∃ ) is equally expressive as DPL(∗,∪,∩, ,̆ σ, σ̆,∃∃ )

Proof. As the proof of Theorem 33, now adding the following clause to the
definition of C.

C(π∗) = ¬¬(∃x′′
1 ; . . . ; ∃x′′

n; (C(π)[x
′

i/x′′

i ] ;
∧

x∈V x := x′′)∗ ;
∧

x∈V x = x′)

�

It follows immediately that every formula π ∈ DPL(∪,∩, ,̆ σ, σ̆,∃∃ ) is equivalent
to a first order logic formula, in the sense that π can be executed in M with input
assignment g iff the first order translation of π is true in M under g.

THEOREM 35 (Visser). DPL(∃∃ ) can be embedded into DPL(∩).

Proof. Let π be of the form ∃∃x(ψ), and let {y1, . . . , yn} = I(π)\{x}, where I(π)
are the introduced variables of π, i.e. the variables in intro(π), i.e. the variables
y such that π contains an ∃y not in the scope of a negation. Then π is equivalent
to (∃x;ψ;∃x) ∩ (∃y1; . . . ;∃yn) �

In a similar way, the following can be proved:

THEOREM 36. DPL(∗,∃∃ ) can be embedded into DPL(∗,∩).

It is also easy to show that ∗ gets us beyond first order expressive power:

THEOREM 37. The formula

¬(∃y ; y = 0 ; (∃z ; z = f(y) ; ∃y ; y = f(z))∗ ; x = y)

cannot be expressed in DPL(∪,∩, ,̆ σ, σ̆, ∃∃ ).
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Proof. On the natural numbers (interpreting f as the successor relation), this
formula defines the odd numbers. Oddness on the natural numbers cannot be
captured in a first order formula with only successor. �

DEFINITION 38. A substitution {x1 → t1, . . . , xn → tn} is full if every xi occurs
in some tj and every ti contains some xj .

Examples of full substitutions are x := f(x) and {x → y, y → x}, while the
substitution x := y is not full. It is easy to see that full substitutions are closed
under composition. Note that a substitution without function symbols is full iff it is
a renaming. Also, note that any formula of DPL(σ) or any of its extensions can be
transformed into a formula in the same language containing only full substitutions,
by replacing bindings of the form x → t, where t does not contain variables, by
∃x ; x = t.

LEMMA 39. Every formula π ∈ DPL(σ) is equivalent to a formula of one of the
following forms (for some ψ, x, χ, σ, where σ is full):

1. ¬¬χ;σ.

2. ψ;∃x;¬¬χ;σ.

Proof. First rewrite π into a formula that contains only full substitutions. After
that, the only non-trivial case in the translation instruction is the case of τ ; ψ,
where τ is full and ψ is of the first form, i.e. where ψ is equivalent to ¬¬χ;σ, for
some χ, σ, with σ full. In this case, τ ; ψ is equivalent to ¬¬(τ ;χ) ; τ ◦σ, where
τ ◦ σ is full because σ and τ are. �

THEOREM 40. (∃x ∪ ∃y) cannot be expressed in DPL(σ).

Proof. Suppose π ∈ DPL(σ) is equivalent to (∃x ∪ ∃y). Take a model with as
domain the natural numbers, and let R be the interpretation of π. By Lemma
39, it follows that π is equivalent to ψ;∃z;¬¬χ;σ, for some formulae ψ, χ, some
variable z and some full substitution σ (otherwise, π would be deterministic). Two
cases can be distinguished.

1. z does not occur in σ. Without loss of generality, assume that z �= x. Take
any pair of assignments g, h such that g �= h and g ∼x h. Then gRh. Take
any k �= h such that k ∼z h. Then gRk, but g and k differ with respect
to two variables (x and z), which is in contradiction with the fact that π is
equivalent to (∃x ∪ ∃y).

2. z occurs in σ. By the fact that there are no function symbols involved, and
by the fact that σ is full, there must be exactly one binding in σ of the form
u → z. We can apply the same argument as before, now using u instead of
z, and again we arrive at a contradiction.

�
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Every substitution is equivalent to a DPL formula containing only full substitu-
tions, and since every full substitution without function symbols is a renaming,
and therefore has a converse that is also a renaming, we get:

LEMMA 41. Every converse substitution containing no function symbols is equiv-
alent to a formula in DPL(σ).

This immediately gives:

THEOREM 42. (∃x ∪ ∃y) cannot be expressed in DPL(σ, )̆.

LEMMA 43. Every formula in DPL(σ,∪) is equivalent to a formula of the form
π1 ∪ . . . ∪ πn (n ≥ 1) where each πi ∈ DPL(σ).

THEOREM 44. (x → f(x))̆ cannot be expressed in DPL(σ,∪).

Proof. Suppose π ∈ DPL(σ,∪) is equivalent to (x → f(x))̆ . By Lemma 43, we
can assume that π is of the form π1∪ . . .∪πn, where each πi ∈ DPL(σ). Consider
the model with as domain {0, . . . , n}, and where f is interpreted as the “successor
modulo n + 1” function.

Let us say that a relation R fixes a variable x if for ∀gh ∈ cod(R): g ∼x h
implies that h = g. Analysing each πi, we can distinguish the following two cases.

• πi is equivalent to ¬¬χ;σ, with σ full. Then [[πi]] fixes x.

• πi is equivalent to ψ;∃y;¬¬χ;σ, again with σ full. If y occurs in σ, then
let zi be the (unique) variable such that σ contains a binding of the form
zi → fk(y). If σ does not contain y then let zi = y. Then it must be the
case that [[πi]] fixes zi, for otherwise [[πi]] is not injective.

Thus, we have that every πi fixes some variable zi. Let {z1, . . . , zm} be all variables
that are fixed by some πi (where m ≤ n).

Consider all possible ways of assigning objects from the domain to the variables
z1, . . . zm (assigning 0 to all other variables). This gives us (n + 1)m assignments,
each of which is in the co-domain of π. Now, of this space of assignments, each πi

can cover only a small part: at most (n + 1)m−1 (since one variable is fixed). So,
together, π1, . . . , πn can cover at most n ∗ (n+ 1)m−1 = (n+ 1)m − (n+ 1)m−1 <
(n+1)m assignments, which means that some assignments are not in the co-domain
of π. This is in contradiction with the fact that π is equivalent to (x → f(x))̆ . �

By symmetry, we get the following

THEOREM 45. x → f(x) cannot be expressed in DPL(σ̆,∪).

Finally we have

THEOREM 46. ∃∃ y(y = x;∃x ; Rxy) cannot be expressed in DPL(∪, σ, )̆.

Proof. The same proof as for Theorem 44 can be used. Assume a signature
without function symbols. Let the domain of the model be the set {0, . . . , n}. Let
R be interpreted as “successor modulo n + 1”. Then R is interpreted in the same
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way as f was in the proof of Theorem 44. Notice that, under this interpretation,
∃∃ y(y = x ; ∃x ; Rxy) means the same as (x → f(x))̆ did in the proof of Theorem
44. It follows that ∃∃ y(y = x;∃x ; Rxy) cannot be expressed in DPL(∪, σ). Since
the signature contains no function symbols, it follows by Lemma 41 that this
formula cannot be expressed in DPL(∪, σ, )̆ either. �

DPL and Dynamic Relational Algebra

Yet another way in which the logic of DPL and sundry systems has been studied
is by looking at the connection with dynamic relational algebra.

A dynamic relation algebra is an algebra for the signature {⊥,∼, ; }, i.e. it
consists of all binary relations on a set B (all members of P(B × B)), with ⊥
interpreted as the empty relation , ; as relation composition, and ∼ as dynamic
negation. A dynamic relation algebra is completely determined by its carrier set B.

Note that this is different from the usual relational algebra in the sense of
[Tarski, 1941], where the signature consists of the Boolean operations {−,∩,∪,
⊥,⊤} and the order operations plus the identity relation {◦, ,̆ id}. In fact, dynamic
relation algebra can be viewed as a small non-Boolean fragment of relation algebra.
Dynamic negation can be defined in ordinary relation algebra by means of:

∼R := id ∩ −(R;⊤)

Hollenberg [Hollenberg, 1997] gives the following axiomatisation of dynamic rela-
tion algebra:

∼R;R = ⊥ (falsum definition)

R;⊥ = ⊥ (falsum right)

id;R = R (identity left)

R; (S;T ) = (R;S);T (associativity)

∼R;∼S = ∼S;∼R (test permutation)

R = (∼∼R);R (domain test)

∼∼(∼R;∼S) = ∼R;∼S (test composition)

∼(R;S);R = (∼(R;S);R);∼S (modus ponens)

∼(R; (S ∨ T )) = ∼((R;S) ∨ (R;T )) (distribution),

where R ∨ S is an abbreviation of ∼(∼R;∼S).
Note that ∼R;R = ⊥ can be viewed as a definition of ⊥. Order is important,

for R;∼R does not always denote the empty relation.
Tests are subsets of the identity relation. ∼R is always a test, and R is a test

iff ∼∼R = R, so ∼∼(∼R;∼S) = ∼R;∼S expresses that the composition of two
tests is again a test.

The fact that ∼(R;S);R = (∼(R;S);R);∼S is called modus ponens is explained
by defining R⇒ S as ∼(R;∼S) and substituting ∼S for S. This gives:

(R⇒ S);R = (R⇒ S);R;∼∼S.
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Hollenberg [Hollenberg, 1997] has a proof that this axiomatisation is sound and
complete for dynamic relation algebra. In [Hollenberg and Visser, 1997] it is
proved that in any model (M,⊥,∼, ; ) of this axiom system, dynamic negation is
fully determined by the underlying monoid (M, ; ).

In [van Benthem and Cepparello, 1994] it was shown that DPL-negation ∼ is
the only permutation-invariant operator in dynamic relational algebra that satifies
the following conditions:

∼⊥ = id

∼(∪iRi) = ∪i(∼Ri)

∼∼R ∪ (R;⊤) = R;⊤

∼R;R = R.

Permutation-invariant operators are operators O satisfying

π(O(R,S)) = O(π(R), π(S))

for every permutation π on the state set on which the relations are defined.
This result about DPL-negation led [van Benthem and Cepparello, 1994] to

conjecture that DPL is complete for dynamic relational algebra, in the sense that
counterexamples to relational identities in the vocabulary {⊥,∼, ; } are expressible
in DPL. This conjecture was proved in [Visser, 1997].

THEOREM 47 (Visser). Schematic validity in DPL is complete for dynamic re-
lational algebra.

Proof. Suppose some relational equation E in the vocabulary {⊥,∼, ; } is refuted
by a family of binary relations {Ra | a ∈ A} over some carrier set B, where A is
the set of atomic relation symbols occurring in the equation E.

We will consider DPL formulae over the variables x, y. Consider the space
B{x,y} of all assignments in B to x and y.

DPL formulae in x, y denote relations between input and output assignments
to {x, y}. For each Ra we define a new relation R̂a on B{x,y}, by setting

R̂a = {({x → s1, y → s2}, {x → s3, y → s4}) | Ras1s3}.

The crucial insight is that the function g → g(x) is a functional bisimulation (also

known as: a p-morphism) from the transition system of the R̂a on B{x,y} to the
transition system of the Ra on B, since ∼ and ; are safe for bisimulation.

Let the new relation symbol I denote identity in (B, {Ra | a ∈ A}). Then the

relations R̂a can be defined in DPL by means of:

∃y;Raxy;∃x; Ixy;∃y.

If the relations at the lefthand and the righthand side of E are different, their
originals under g are different too. Thus, an inequality defined in terms of ∼ and
; on (B, {Ra | a ∈ A}) corresponds to an inequality on
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(B{x,y}, {R̂a | a ∈ A}).

This shows that the left- and righthand sides of the equation E yield a pair of
non-equivalent DPL formulae. �

7 DYNAMIC LOGIC AND NATURAL LANGUAGE SEMANTICS

7.1 Introduction

As we saw in Section 6 the difference between dynamic predicate logic (DPL) and
quantified dynamic logic (QDL) is that whereas the latter makes a distinction,
both in the syntax and in the semantics, between static formulae and dynamic
programs, the former has basically only one kind of construct: programs. All for-
mulae are programs, so there is no distinction either in syntactic category or in
semantic type, between different kinds of linguistic constructions: all constructs
are given a dynamic interpretation. The motivation for this is not a matter of
expressive power, but one of ‘ideology’. The difference can be characterised as fol-
lows: whereas QDL acknowledges two different notions of meaning: one descriptive
and one imperative, DPL embodies a unified conception: all meanings are rela-
tions between states. By doing so, DPL instantiates a conception of meaning that
has become prominent in natural language semantics from the early eighties on-
ward and that sometimes is summarised in the slogan ‘Meaning is context change
potential’.

This view on meaning is often referred to as ‘dynamic semantics’. Various
people have contributed to it, motivated by various concerns. Broadly speak-
ing we may discern two main trends. First of all there is work that focuses
on epistemic and pragmatic issues that arise in connection with presuppositions,
the structure of information exchange, but also with conditionals and modal ex-
pressions. Very influential in this trend is the early work by Stalnaker on as-
sertion and presuppositions [Stalnaker, 1974; 1979]. Other early work is that
of Veltman [Veltman, 1984]. A second influx of ideas derives from issues con-
cerning semantics, in particular pronominal reference and quantification. This
is exemplified by work of Heim [Heim, 1982; 1983] and Kamp [Kamp, 1981;
Kamp and Reyle, 1993]. Somewhat orthogonal to these two trends is the work
on game-theoretical semantics for natural language explored by Hintikka and oth-
ers [Hintikka, 1983]. Another approach that has clear affinities with a dynamic
approach is that of situation semantics [Barwise and Perry, 1983].

The variety of empirical subjects that prompted the use of dynamic concepts
have resulted in an analogous variety of systems. Also, different authors entertain
different views on how the use of these concepts affect the notion of meaning as
it applies to natural language. Some maintain a truth conditional, propositional
notion of meaning and relegate dynamics to the realm of language use, i.e. prag-
matics, whereas others argue that the notion of meaning as such needs to be viewed
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as a dynamic concept. Yet others take a middle position and locate the dynamic
aspects in the construction of representations that themselves have a static inter-
pretation. Cf., [Stalnaker, 1998; Kamp, 1990; Groenendijk and Stokhof, 2000] for
discussion. In what follows we focus on those systems in which the use of dynamic
concepts directly interacts with the concept of meaning that is modelled.

The general characteristic of dynamic systems is that formulae are interpreted
as entities that change the context. In natural language semantics and pragmat-
ics, ‘context’ is an umbrella concept, that covers a wide variety of elements that
are somehow tied to the use and the interpretation of expressions. Speaker and
addressee, time and place, elements from preceding discourse, objects and prop-
erties introduced in conversation, information of speech participants about the
world, themselves, each other, and so on, — all these factors may be involved in
linguistic exchanges.

Within a particular system the relevant aspects of the context are represented
in the system as states. Which aspects counts as relevant depends on the specific
application and/or the expressive resources of the system. For example, in DPL
states are simply assignments of values to variables, and this reflects that DPL
is focused on those aspects of context that concern binding relationships between
antecedents, i.e. quantified noun phrases and proper names, and anaphoric ex-
pressions, i.e. pronouns. When one extends or alters the scope of application, the
notion of a state changes as well, resulting in a modification or extension of the
original system. In this type of system states consist of objects and their prop-
erties and relationships and dynamic interpretation changes them by adding new
objects, establishing new relationships, and so on.

As we noted, another important aspect of the context is the information of
the speech participants. On a dynamic view the utterance of a sentence is to be
regarded as an instruction to the speech participants to update their information
with the content of the utterance. (Hence the name ‘update semantics’.) A system
modelling this will have states that represent the informational states of speech
participants, e.g., as sets of propositions, sets of worlds, possibilities, or situations.
Utterances then are interpreted as updates of such states. For example, a dynamic
(‘update’) semantics for a conditional ϕ → ψ would (roughly) be defined as an
operation that checks whether every update of a given set of possibilities with the
antecedent satisfies satisfy the consequent.

Actually, these points of view are not incompatible. For example, we can look
upon DRT- and DPL-like systems as concerned with information as well, viz.,
with information about the discourse: the entities that have been introduced,
their properties and relationships, and the various possibilities that are available
for anaphoric reference. Information in the update sense is then information about
the world : information about the actual state of things as well as possibilities that
are still open. As a matter of fact, combining these two perspectives is a more
interesting exercise than just putting two orthogonal systems together: there are
interesting interactions between the two.
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In the remainder of this section we start with the use of dynamic logic in account-
ing for certain problems in semantics . Then we will turn to systems motivated by
epistemic-pragmatics concerns. Finally, we will briefly look at combined systems.

7.2 Dynamic Semantics

Dynamic Phenomena

Discourse Representation Theory (DRT,[Kamp, 1981; Kamp and Reyle, 1993;
van Eijck and Kamp, 1997]), File Change Semantics (FCS, [Heim, 1983]), dy-
namic predicate logic (DPL, [Groenendijk and Stokhof, 1991]) are systems that
originated in the late eighties, early nineties of the last century. Their initial moti-
vation was linguistic. They grew out of attempts to deal with certain facts concern-
ing anaphora and binding that had resisted adequate treatment in the Montague
framework that dominated natural language semantics at the time. Other impor-
tant areas of application are tense and aspect, presupposition, plurality. For more
extensive discussion of the linguistic applications of these systems, cf., [Chierchia,
1995], [van Benthem et al., 1997], and the references given above. Here it suffices
to give just a brief illustration of one example of the kind of phenomena these sys-
tems were intended to deal with: scope and binding. Basically, in this area there
are two groups of problems: cross-sentential anaphoric relationships and so-called
‘donkey’-constructions, which present a particular form of intra-sentential binding.

Cross-sentential anaphora refers to constructions such as:

A man entered the pub. He wore a black hat.

The pronoun ’He’ in the second sentence is most naturally taken to refer back to,
i.e. as an anaphoric reference to, the referent of ‘a man’ in the first sentence. At the
time there was a preference for dealing with anaphora – antecedents relationships
in terms of variable binding: the antecedent ‘a man’ semantically operates as a
quantifier, binding the variable that corresponds to the pronoun. The problem
with this type of cross-sentential antecedent – anaphora relationships is, of course,
that the binding can be established only when the discourse is finished. And even
then, one must take care with such antecedents as ‘One man’, so as not to end up
with the wrong interpretation (‘One man ϕ. He ψ’ is not the same as ‘One man
ϕ and ψ’)

Donkey anaphora is connected with intra-sentential binding, e.g., between an-
tecedent and consequent in conditional constructions:

If John spots a good investment opportunity, he grasps it.

The fact to be accounted for here is the binding of the anaphoric pronoun in the
consequent by the indefinite noun phrase in the antecedent in such a way that the
indefinite gets ‘universal’ force: the sentence is most naturally taken to express
that John grasps every opportunity he sees. (Not all sentences with this structure
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have a universal (also called ‘strong’) reading: ‘If I have a quarter, I’ll put it in the
parking meter’. Cf., [Kanazawa, 1994] for extensive discussion of so-called ‘weak’
and ‘strong’ readings of these kinds of constructions.)

Note that in each case the problem is not finding an adequate representation of
the meanings of these sentences in (first) order logic. Rather, the problem is coming
up with such a representation while using the standard meanings of the expressions
involved, and deriving the representation in an ‘on line’, i.e. incremental fashion,
without delayed interpretation or after the fact re-analysis.

DPL again

Although it was not the first system to be developed, we focus on DPL because it
is the most ‘pure’ instantiation of a dynamic view on meaning. It was developed
because of a certain dissatisfaction with the representational, non-compositional
nature of, e.g., DRT. It intends to do away with dynamically constructed repre-
sentations as part of the semantics and wants to locate the dynamics purely in the
meanings themselves.

The system The standard reference is [Groenendijk and Stokhof, 1991], earlier
similar views were developed in [Barwise, 1987] and [Staudacher, 1987]. The orig-
inal DPL-system stayed as close as possible to standard first order logic FOL: it
employed the same language and only changed the semantics. In section 6 the
system was given in a form that stayed close to that of QDL. What follows is the
original formulation, i.e. with the syntax of FOL and an adapted semantics.

t ::= v | c

ϕ ::= Rt1 . . . tn | t1 = t2 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃vϕ

The other connectives and the universal quantifier can be defined in the usual
fashion. (But note that compared to FOL the choice of base logical constants is
limited.)

The semantics uses the same ingredients as that of FOL. A model M is a pair
〈E,F 〉, where E is a non-empty set and FM(c) ∈ E and FM(Rn) ⊆ En. States
g ∈ S are assignments V → E. As usual g ∼v h denotes the state h that differs
from g at most on v.

Interpretation of terms is given by: [[t]]Mg = g(t), FM(t) for variables and con-
stants respectively. Formulae denote subsets of S × S:

g[[Rt1 . . . tn]]Mh iff g = h & 〈[[t1]]
M

g . . . [[tn]]Mg 〉 ∈ FM(R)

g[[ti = tj ]]
M

h iff g = h & [[ti]]
M

g = [[tj ]]
M

g

g[[¬ϕ]]Mh iff g = h & there exists no g′ : g[[ϕ]]Mg′

g[[ϕ1 ∧ ϕ2]]
M

h iff there exists a g′ : g[[ϕ1]]
M

g′ & g′ [[ϕ2]]
M

h

g[[∃vϕ]]Mh iff there exists a g′ : g ∼v g′ & g′[[ϕ]]Mh
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Note that although all formulae denotes relations between states (assignments),
only conjunction and existentially quantified formulae actually change states, the
others are tests. Conjunction is effectively re-interpreted as program composition,
and an existential quantified formula has the cumulative effect of re-setting the
state with respect to the variable and feeding the result into the formulae. It is
easy to see that

for all M, g, h : g[[∃xϕ]]Mh iff g[[x :=? ; ϕ]]Mh

The definitions of truth and validity as given in section 6 carry over, as do the
notions of production set and satisfaction set. Equivalence as identity of interpre-
tation transcends identity of input (satisfaction set) and output (production set).
Cf. section 6 for an example in DPL′. ¬(Px ∧ ¬Px) and ∃x¬(Px ∧ ¬Px) both
have S as their satisfaction set and as their production set. But their meanings
are different: the identity relation on S, and the set of all pairs g, h such that
g ∼x h, respectively. Note the meaning of a test can be completely characterised
in terms of its satisfaction set and its production set and that all valid tests denote
the identity relation on S.

Some characteristic examples The following two examples exhibit character-
istic properties of the semantics of DPL. Both concern the extended binding force
of the existential quantifier.

The first one concerns the interaction of the existential quantifier and conjunc-
tion. In ∃xPx ∧ Qx the existential quantifier ∃x randomly assigns a value to x
that is passed on to Px, and tested. If it succeeds, conjunction, which is relational
composition, passes it on to Qx, to be tested again. (We leave out reference to
the model M whenever this does not lead to confusion.)

g[[∃xPx ∧Qx]]h iff there exists a g′ : g[[∃xPx]]g′ & g′ [[Qx]]h

iff there exists a g′ : g ∼x g′ & g′(x) ∈ F (P ) & g′(x) ∈ F (Q)

This allows DPL to deal with cross-sentential anaphora of the kind: ‘A man . . . .
He . . . ’

Note that extended binding can also occur across other quantifiers, as e.g., in
∃xPx ∧ ∃yRxy, where the occurrence of x in Rxy is bound by ∃x; and across
negation: in ∃xPx ∧ ¬Qx the x in ¬Qx is also bound by ∃x. Note that since
we do not prohibit the same quantifier to occur more than once we have to be
careful which occurrence of a quantifier binds a particular variable occurrence: in
∃xPx ∧Qx ∧ ∃xHx the occurrence of x in Hx is bound by the last occurrence of
∃x.

The second example of extended binding concerns the behaviour of the exis-
tential quantifier in conditional constructions. Consider the formula ∃xPx→ Qx,
which is shorthand for ¬(∃xPx ∧ ¬Qx). Here we have an existential quantifier in
the antecedent of a conditional and an occurrence of x in the consequent that in
FOL would be free. However, if we compute its meaning, we see that the second
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occurrence is bound by the existential quantifier, and, moreover, that the latter
gets universal force:

g[[∃xPx→ Qx]]h iff g[[¬(∃xPx ∧ ¬Qx)]]h

iff there exists no g′ : g[[∃xPx]]g′ &g′ [[¬Qx]]h

iff for all g′ : if g[[∃xPx]]g′ then g′ [[Qx]]h

So, every way of re-setting the value of x to one that satisfies P is one that satisfies
Q.

Note that the extended binding force of the existential quantifier is blocked by
negation: in ¬∃xPx ∧ Qx the occurrence of x in Qx is free. This is because the
negation turns ∃xPx into a test: the value assigned by ∃x to x remains local to
Px, and is not passed on to Qx. Thus in ∃xPx→ Qx the binding of the existential
quantifier in the antecedent extends to the consequent, but not beyond the formula
as a whole.

Thus we can distinguish between formulae that are internally dynamic, i.e.
in which an existential quantifier binds variables outside its scope, but only in
the formula itself; and those that are externally dynamic, in which existential
quantifiers have the power to bind variables in additional formulae that are added
to its right. The latter are responsible for DPL’s treatment of extra-sentential,
i.,e., discourse binding; the former deal with internal binding from antecedent to
consequent.

Other properties Other characteristic properties of the DPL-logic follow in
a straightforward manner from the semantics. Double negation fails in view of
negation blocking dynamic binding; conjunction and the existential quantifier can
not be defined in terms of, e.g., negation, disjunction and the universal quantifier,
because of the asymmetry of the respective expressions w.r.t. binding; conjunction
is not unconditionally commutative and idempotent; the existential and universal
quantifiers are not fully interdefinable; and finally, we can not take alphabetic
variants of existentially quantified formulae.

As for entailment, neither inclusion of truth conditions, nor meaning inclusion,
provide a suitable definition. The reason is that we want existential quantifiers in
the premises of an argument to be able to bind variables in the conclusion, in view
of the possibilities of antecedent – anaphora links in natural language reasoning:
from ‘A man came in carrying a stick’ we want to be able to conclude ‘So, he was
carrying a stick’. So ψ follows from ϕ1 . . . ϕn iff in all models every interpretation
of the premises (in sequential order, of course) leads to a successful interpretation
of the conclusion:

ϕ1, . . . , ϕn |= ψ iff

for all M, g, h : if g[[ϕ1 ∧ · · · ∧ ϕn]]Mh , then there exists an h′ : h[[ψ]]Mh′
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In terms of DPL′ (see section 6):

ϕ1, . . . , ϕn |= ψ iff for all M : [[[ϕ1 ; · · · ; ϕn]〈ψ〉⊤]]M

equals the set of all assignments.

It is easily checked that, e.g., ∃xPx |= Px, as required. Further we have:

ϕ1, . . . , ϕn |= ψ iff |= (ϕ1 ∧ · · · ∧ ϕn) → ψ

Notice that if no binding occurs from premises to conclusion, the notion of en-
tailment defined boils down to the truth-conditional one. It is easily checked that
entailment is not reflexive and also not transitive.

DPL being a first order language, it differs from FOL in its non-standard binding
behaviour. As we saw in section 6, FOL can be embedded in DPL in a straightfor-
ward way. Since DPL′ can be translated into FOL (cf., section 6), the same holds
for DPL.

Context As was noted above, contexts in DPL are assignments of values to
variables, satisfying certain descriptive conditions. What they represent are the
individuals and their properties that have been introduced in a discourse (a text,
a conversation), e.g., by proper names or descriptions, or by indefinite NPs. Other
expressions, such as pronouns, may draw from this pool of available referents. In
DPL this is accounted for via the use of (indexed) variables. Context-change is
represented through operations on assignments, as, for example, by the existential
quantifier, which ‘resets’ the context with regard to a particular variable. (Cf., the
formulation of DPL in section 6, that brings this out more explicitly, by regarding
the existential quantifier as a construct of its own.)

Discourse Representation Theory

Now we briefly introduce a very streamlined and basic version of Discourse Rep-
resentation Theory (DRT). For an extensive introduction, the reader is referred
to the standard [Kamp and Reyle, 1993]. The differences between DPL and DRT
are quite like those between DPL and DPL′ or DPL and QDL: whereas DPL is a
‘pure’ language in which no distinction is made between programs and statements,
DRT, like DPL′ and QDL, does make such a distinction, between what are called
‘conditions’ and what are called ‘discourse representation structures’ (DRSs). This
syntactic distinction is reflected in the semantics, and is motivated by what Kamp
in his seminal paper on DRT [Kamp, 1981] claims is essential for a proper account
of natural language meaning, viz., that it ‘combines a definition of truth with a
systematic account of semantic representations’ (op.cit., p.1). Thus, the dynamics
in DRT takes place in the building of semantic representations.

The system The canonical format of DRT uses so-called box-notation (see be-
low for some examples). In order to facilitate comparison, however, we recast the
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syntax and semantics of DRT in a linear format. The non-logical vocabulary con-
sists of n-place predicates, individual constants, and variables. Logical constants
are negation ¬, implication →, and identity =.

DRT terms are constants and variables:

t ::= x | c

Conditions ϕ and DRSs Φ are defined as follows:

ϕ ::= Rt1 . . . tn | t1 = t2 | ¬Φ | Φ1 ⇒ Φ2

Φ ::= [x1 . . . xk][ϕ1 . . . ϕn]

Disjunction of DRSs can be defined in the usual way.

In the box notation, a DRS looks like this:

x1 . . .xk

ϕ1

...
ϕn

where the ϕi are conditions and the xi introduced variables. An example of a
conditional DRS built from two other DRSs in box notation looks like this:

x, y

Px, Qy, Rxy
⇒

Sxy

The language of DRT resembles that of QDL and DPL′ in its ‘mixed mode’
nature. This carries over to the semantics.

Models for the DRS-language are the same as those for DPL, as are assignments
and the interpretation of terms. Conditions are interpreted as FOL-formulae,
whereas DRSs get a relational meaning. Thus, like in the case of QDL (cf., sec-
tion 6)), the semantics is defined by simultaneous recursion. Note that we use
total assignments instead of partial ones, as is customarily the case in DRT. For
present purposes, the difference can be neglected.

M |=g Rt1 . . . tn iff 〈[[t1]]
M

g . . . [[tn]]Mg 〉 ∈ FM(R)

M |=g t1 = t2 iff [[t1]]
M

g = [[t2]]
M

g }

M |=g ¬Φ iff there exists no h : g[[Φ]]Mh

M |=g Φ1 ⇒ Φ2 iff for all h : if g[[Φ]]
M

h there exists a k : h[[Φ2]]
M

k

g[[[x1 . . . xk][ϕ1 . . . ϕn]]]Mh iff g ∼x1...xk
h & M |=h ϕ1 . . .M |=h ϕn
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DRT and DPL The close link between DRT and DPL is illustrated by the
following embedding of DRT into DPL:

(Rt1 . . . tn)† = Rt1 . . . tn

(ti = tj)† = ti = tj

(¬Ψ)† = ¬(Ψ†)

(Φ1 ⇒ Φ2)† = Φ1† → Φ2 †

([x1 . . . xk][ϕ1 . . . ϕn])† = ∃x1 . . . ∃xn[ϕ1 † ∧ . . . ∧ ϕn†]

The embedding is meaning-preserving in the following sense:

M |=g ϕ iff there exists an h : g[[ϕ†]]
M

h

g[[Φ]]Mh iff g[[Φ†]]
M

h

Context As it turns out, the notion of a context in DRT does not differ all
that much from the one DPL is concerned with: both model basically the same
features of a discourse context. But the two systems model context in different
ways: DPL uses only assignments and operations on them, DRT uses special types
of expressions in its syntax.

Variations and extensions

A number of variations on DRT, DPL and other systems have been proposed in the
literature. Some are motivated by reasons of formal simplicity and elegance, others
by conceptual and descriptive reasons. It is beyond the scope of this article to
discuss them extensively; here it suffices to point to a number of issues motivating
these alternatives.

Partial assignments One difference between DPL and DRT is the use that the
former makes of total assignment functions, instead of the partial ones used by
DRT. The choice for partial assignments, that interpret only the variables that
are explicitly introduced in a discourse, is a natural one from the perspective of a
procedural interpretation, which was one of the motivations of the original DRT-
system (cf. above). The use of total assignments in the original DPL system was
mainly motivated by a wish to stay as close as possible to the semantics of standard
first order logic. Reformulating the DPL-semantics using partial assignments is
an easy exercise. We simply let the interpretation be undefined in case a formula
contains occurrences of variables that are not in the domain of the assignment
function. The only interesting case is the existential quantifier. Here we should let
the quantifier extend the domain of the assignment function, if necessary, and let
it assign an arbitrary value to the new element in its domain. Cf., e.g., [Vermeulen,
1995] and the system in section 7.4 below.
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Fresh variables One of the advantages of using partial assignments is that it
becomes more natural to constrain the use of variables in the syntax. Recall some
of the more awkward logical properties of DPL, such as the failure of reflexivity
of entailment:

Px ∧ ∃xPx �|= Px ∧ ∃xPx

This essential depends on the possibility of a variable occurring in the same formula
first free and then bound by an existential quantifier. One way of preventing this
(and similar) issues, is to require the existential quantifier to always use a ‘fresh’
variable. Cf., also the discussion below, on incremental semantics.

Compositionality As the preceding discussion will have made clear, the dis-
cussion between DPL and DRT centres on compositionality. In DRT the repre-
sentational level of DRSs plays an essential role, and the cognitive plausibility of
the resulting system depends on their presence (cf., the discussion in [Kamp, 1981,
section 1]). Other formulations of a compositional alternative for DRT have been
proposed by, among others, Zeevat [Zeevat, 1989], Muskens [Muskens, 1996], and
Van Eijck and Kamp [van Eijck and Kamp, 1997]. DPL’s reliance on an indexing
mechanism on variables to account for anaphoric binding has been criticised since
it diminishes the plausibility of the appeal to compositionality considerations, and
has spurred a number of alternative approaches, such as Dekker’s ‘predicate logic
with anaphora’ [Dekker, 2002], [Butler and Mathieu, 2004]. Cf., also the incremen-
tal system discussed below in section 7.2, and the combination of update semantics
and dynamic semantics in section 7.4.

Stacks and registers The use of DPL as a theory of testing and resetting
registers was explored by Visser [Visser, 1998] and Vermeulen [Vermeulen, 1995;
2000]. The basic idea of a stack semantics for DPL is developed in [Vermeulen,
2001]. The idea is to replace the destructive assignment of ordinary DPL, which
throws away old values when resetting, by a stack valued one, that allows old values
to be re-used. Stack valued assignments assign to each variable a stack of values,
the top of the stack being the current value. Existential quantification pushes a
new value on the stack, but there is also the possibility of popping the stack, to
re-use a previously assigned value. Adding explicit ‘push’ and ‘pop’-operators to
the language, has some interesting consequences. An illustrative example concerns
its efficiency in expressing mixed scopes.The idea is as follows. We add [x and x]
as two new programs and define their semantics as follows:

g[[ [x ]]h iff g[x〉h

g[[ x] ]]h iff h[x〉g

where g[x〉h holds by definition iff there is a d in the domain with h(x) = d : g(x),
(i.e. h(x) equals the result of pushing d on top of the x-stack of g), and h(y) = g(y)
for all y with y �= x. Clearly, the programs [x and x] then function as pop and
push for the x-stack.
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Now consider the FOL-statement:

∃x∃y∃z∃u(Rxy ∧Ryz ∧Rzu ∧Rux)

This can be expressed in DPL more succinctly as:

∃x∃y(∃zRxy ∧ ∃x(Ryx ∧Rxz) ∧Rzx)

But using the push and pop programs we can express the same in terms of only
two variables.

[x [yRxy[xRyx[yRxyx]Ryxy] x] y]

The variable free indexing of [van Eijck, 2001] is a special case of the Vermeulen
method, where there is just a single variable. Below we take a variation on DPL
with variable free indexing as point of departure for the development of a fragment
of dynamic Montague grammar.

Incremental Semantics

Destructive assignment is the main weakness of DPL as a basis for a compositional
semantics of natural language: in DPL, the semantic effect of a quantifier action
∃x is such that the previous value of x gets lost. In what follows we first replace
DPL by the strictly incremental system from [van Eijck, 2001]. Subsequently, we
develop its type theoretic version. This will allow us to give of a fully compositional
and incremental semantics that is without the destructive assignment flaw. Similar
ideas were developed in [Dekker, 1994; 1996].

We start with a slight variation of the DPL language, in which ∃ is a separate
expression and ; is used for dynamic conjunction. Assume a first order model
M = (D,F ). We will use contexts c ∈ D∗, and replace variables by indices into
contexts. The set of terms of the language is N. We use |c| for the length of
context c.

Given a model M = (D,F ) and a context c = c[0] · · · c[n−1], where n = |c| (the
length of the context), we interpret terms of the language by means of [[i]]c = c[i].
Note that [[i]]c is undefined for i ≥ |c|; we will therefore have to make sure that
indices are only evaluated in appropriate contexts. ↑ will be used for ‘undefined’.
This allows us to define the two relations

M |=c Ri1 · · · in and M =| cRi1 · · · in

by means of:

M |=c Ri1 · · · in :⇔ ∀j(1 ≤ j ≤ n→ [[ij ]]c �= ↑) and 〈[[i1]]c, . . . , [[in]]c〉 ∈ F (R),

M =| cRi1 · · · in :⇔ ∀j(1 ≤ j ≤ n→ [[ij ]]c �= ↑) and 〈[[i1]]c, . . . , [[in]]c〉 /∈ F (R),

and similarly for the relations:

M |=c i1 = i2, M =| ci1 = i2
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If c ∈ Dn and d ∈ D we use ĉ d for the context c′ ∈ Dn+1 that is the result of
appending d at the end of c.

The interpretation of formulae can now be given as a map in D∗ →֒ P(D∗) (a
partial function, because of the possibility of undefinedness):

[[∃]](c) := {ĉ d | d ∈ D}

[[Ri1 · · · in]](c) :=

⎧
⎪⎨

⎪⎩

↑ if ∃j(1 ≤ j ≤ n and [[ij ]]c = ↑)

{c} if M |=c Pi1 · · · in

∅ if M =| cPi1 · · · in

[[i1 = i2]](c) :=

⎧
⎪⎨

⎪⎩

↑ if [[i1]]c = ↑ or [[i1]]c = ↑

{c} if M |=c i1 = i2

∅ if M =| ci1 = i2

[[¬ϕ]](c) :=

⎧
⎪⎨

⎪⎩

↑ if [[ϕ]](c) = ↑

{c} if [[ϕ]](c) = ∅

∅ otherwise

[[ϕ1 ; ϕ2]](c) :=

⎧
⎪⎨

⎪⎩

↑ if [[ϕ1]](c) = ↑

or ∃c′ ∈ [[ϕ1]](c) with [[ϕ2]](c
′) = ↑

⋃
{[[ϕ2]](c

′) | c′ ∈ [[ϕ1]](c)} otherwise.

The definition of [[ϕ1 ; ϕ2]] employs the fact that all contexts in [[ϕ]](c) have the
same length This property follows by an easy induction on formula structure from
the definition of the relational semantics. Thus, if one element c′ ∈ [[ϕ1]](c) is such
that [[ϕ2]](c

′) = ↑, then all c′ ∈ [[ϕ1]](c) have this property.
Dynamic implication ϕ1 → ϕ2 is defined in terms of ¬ and ; by means of

¬(ϕ1 ; ¬ϕ2). Universal quantification ∀ϕ is defined in terms of ∃,¬ and ; as
¬(∃ ; ¬ϕ), or alternatively as ∃ → ϕ.

One advantage of the use of contexts is that indefinite NPs do not have to
carry index information anymore. Thus a sentence such as ‘Some man loved some
woman’ can be analysed as:

∃ ; Mi ; ∃ ; Wi + 1 ; Li(i + 1)

where i denotes the length of the input context. On the empty input context, this
gets interpreted as the set of all contexts [e0, e1] that satisfy the relation ‘love’ in
the model under consideration. The result of this is that a subsequent sentence
‘He0 kissed her1.’ can use this contextual discourse information to pick up the
references. Thus we assume that pronouns carry index information. But if a
procedure for reference resolution of pronouns in context is added we can do away
with that assumption.

Extension to Type Logic

Compositionality has always been an important concern in the use of logical sys-
tems in natural language semantics. And it is through the use of higher order
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logics (such as type theory) that a thoroughly compositional account of, e.g., the
quantificational system of natural language could be achieved. The prime exam-
ple of this development is that of classical Montague Grammar [Montague, 1974;
1970; 1973]. Cf., [Partee, 1997] for an overview. It is only natural, therefore that
the dynamic approach was extended to higher order systems.

However, the various proposals that have been made, such as [Groenendijk
and Stokhof, 1990; Chierchia, 1992; Jansche, 1998; Muskens, 1995; 1996; 1994;
van Eijck, 1997; van Eijck and Kamp, 1997; Kohlhase et al., 1996; Kuschert,
2000], all share a problem with the DPL-system, viz., that of making re-assignment
destructive. Interestingly, DRT does not suffer from this problem: the discourse
representation construction algorithms of [Kamp, 1981] and [Kamp and Reyle,
1993] are stated in terms of functions with finite domains, and carefully talk about
‘taking a fresh discourse referent’ to extend the domain of a verifying function, for
each new noun phrase to be processed.

Here we present the extension to typed logic of incremental dynamics that
is based on variable free indexing and that avoids the destructive assignment
problem. The resulting system is called Incremental Type Logic (ITL) [van Ei-
jck, 2000]. Exploiting techniques from polymorphic type theory [Hindley, 1997;
Milner, 1978] it uses type specifications of contexts that carry information about
the length of the context. E.g., the type of a context is given as [e]i, where i is
a type variable. Here, we will cavalierly use [e] for the type of any context, and
ι for the type of any index, thus relying on meta-context to make clear what the
current constraints on context and indexing into context are. In types such as
ι → [e], we will tacitly assume that the index fits the size of the context. Thus,
ι→ [e] is really a type scheme rather than a type, although the type polymorphism
remains hidden from view. Since ι → [e] generalises over the size of the context,
it is shorthand for the types 0→ [e]0, 1→ [e]1, 2→ [e]2, and so on.

Let us illustrate this by considering how this applies to the ordinary static higher
order translation of an indefinite noun phrase. In extensional Montague grammar
‘a man’ translates as:

λP∃x(man x ∧ Px).

In ITL this becomes:

λPλcλc′.∃x(man x ∧ P |c|(ĉ x)c′).

Here P is a variable of type ι→ [e] → [e] → t, while c, c′ are variables of type [e]
(variables ranging over contexts). The translation as a whole has type (ι→ [e] →
[e]) → [e] → [e] → t. The P variable marks the slot for the VP interpretation. |c|
gives the length of the input context, i.e. the position of the next available slot.
Note that ĉ x[|c|] = x.

Note that the translation of the indefinite NP does not introduce an anaphoric
index, as would be the case for example in DMG [Groenendijk and Stokhof, 1990].
Instead, an anaphoric index i is picked up from the input context. Also, the
context is not reset but incremented: context update is not destructive, whereas
it is in DPL and DMG.
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In order to obtain a proper dynamic higher order system we first define the
appropriate dynamic operations in typed logic. Assume ϕ and ψ have the type of
context transitions, i.e. type [e] → [e] → t, and that c, c′, c′′ have type [e]. Note
that ˆ is an operation of type [e] → e→ [e].

E := λcc′.∃x(ĉ x = c′)

∼ϕ := λcc′.(c = c′ ∧ ¬∃c′′ϕcc′′)

ϕ ; ψ := λcc′.∃c′′(ϕcc′′ ∧ ψc′′c′)

These operations encode the semantics for incremental quantification, dynamic
incremental negation and dynamic incremental conjunction in typed logic. Dy-
namic implication, ⇒, is defined in the usual way.

We have to assume that the lexical meanings of CNs, VPs are given as one-
place predicates (type e → t) and those of TVs as two place predicates (type
e → e → t). We therefore define blow-up operations for lifting one-placed and
two-placed predicates to the dynamic level. Let A be an expression of type e→ t,
and B an expression of type e→ e→ t; we use c, c′ as variables of type [e], and j, j′

as variables of type ι, and we employ postfix notation for the lifting operations:

A◦ := λjcc′.(c = c′ ∧Ac[j])

B• := λjj′cc′.(c = c′ ∧Bc[j]c[j′])

The encodings of the dynamic operations in typed logic and the blow-up opera-
tions for one- and two-placed predicates are employed in the semantic specification
of the following simple fragment. The semantic specifications employ variables
P,Q of type ι → [e] → [e] → t, variables j, j′ of type ι, and variables c, c′ of type
[e].

We also define an operation ! : (ι→ [e] → [e] → t) → [e] → [e] → t (from lifted
one-place predicates to context transformers), to express that a lifted predicate
applies to a single individual in a given context. Assuming P to be an expression
of type (ι→ [e] → [e] → t) (a lifted predicate), and c, c′ to be of type [e] (contexts),
we define ! as follows:

!P := λcc′.∃x∀y(P |c|(ĉ y)c′ ↔ x = y).

This expresses that P is the lift of a predicate that applies to a single individual.
As said above, we assume that pronouns are the only NPs that carry indices;

pronoun reference resolution is not treated. Appropriate indices for proper names
are extracted from the current context. In the rules, X refers to the semantics
of the left-hand side of the syntax rule, to be defined in terms of the semantic
translations of the members of the right-hand side of the syntax rule. Xi refers to
the semantics of the i-th member of the right-hand side of the syntax rule.
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S ::= NP VP X ::= (X1X2)
S ::= if S S X ::= X2 ⇒ X3

S ::= S . S X ::= X1 ; X3

NP ::= Mary X ::= λPcc′.∃j(c[j] = m ∧ Pjcc′)

NP ::= PROk X ::= λPcc′.(Pkcc′)
NP ::= DET CN X ::= (X1X2)
NP ::= DET RCN X ::= (X1X2)
DET ::= every X ::= λPQc.(∼(E ; P |c| ; ∼Q|c|))c
DET ::= some X ::= λPQc.(E ; P |c| ; Q|c|)c
DET ::= no X ::= λPQc.(∼(E ; P |c| ; Q|c|))c
DET ::= the X ::= λPQc.(!P ; E ; P |c| ; Q|c|)c
CN ::= man X ::= M◦

CN ::= woman X ::= W ◦

CN ::= boy X ::= B◦

RCN ::= CN that VP X ::= λj.((X1 j) ; (X3 j))
RCN ::= CN that NP TV X ::= λj.((X1 j) ; (X3(λj

′.((X4 j′)j))))
VP ::= laughed X ::= L◦

VP ::= smiled X ::= S◦

VP ::= TV NP X ::= λj.(X2 ; λj′.((X1 j′)j))
TV ::= loved X ::= L′•

TV ::= respected X ::= R•

Note that determiners do not carry indices, the appropriate index is provided
by the length of the input context. It is assumed that all proper names are linked
to anchored elements in context. In fact, the anchoring mechanism has been
greatly improved by the switch to the incremental, non-destructive approach, for
the incremental nature of the context update mechanism ensures that no anchored
elements can ever be overwritten.

The following very simple example illustrates how the system deals with cross-
sentential anaphora:

2. Some man smiled. He laughed.

The structures assigned to the sentences making up this sequence by the system
are the following:

(2) a. S

���
���

NP
�� ��

DET

some

CN

man

VP

smiled

b. S

�� ��
NP

He

VP

laughed

Note that the tree for the second sentence in sequence 2 actually can not be
produced by the rules given above: those rules assume that surface pronouns are
generated as indexed abstract PRO-elements, as in:
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(2) b′. S

��� ���

NP

PRO5

VP

laughed

Translations of the two sentences are derived in a compositional fashion. For
example, the NP ‘Some man’ translates as:

(λPQc.(E ; P |c| ; Q|c|)c)(M◦)

With S◦ as the translation of the VP ‘smile’, the sentence, ‘Some man smiled’
then receives the following translation:

E ; M◦|c| ; S◦|c|

This is an expression of type [e] → [e] → t and denotes a relation between contexts.
It takes a context and extends it with an object that is both a man and that
smiles, as is evident if we reduce it as follows, using the definitions of the dynamic
existential quantifier, the dynamic conjunction and the lift operation.

We first rewrite E :

(λcc′.∃x(ĉ x = c′) ; M◦|c| ; S◦|c|

and next the lifted predicates:

(λcc′.∃x(ĉ x = c′) ; (λcc′(c = c′ ∧Mc[|c|]) ; (λcc′(c = c′ ∧ Sc[|c|])

The indefinite determiner extends the context with a new object. The other clauses
test the last element of the current context for the properties M and S, respectively.

Rewriting the dynamic conjunction shows how the element introduced by the
indefinite determiner is passed on to the other clauses. The first two clauses
become:

λcc′.∃c′′((λcc′.∃x(ĉ x = c′)cc′′ ∧ (λcc′(c = c′ ∧Mc[|c|])c′′c′)

which after some reduction becomes:

λcc′.∃x(ĉ x = c′ ∧Mx)

Rewriting the second occurrence of the dynamic conjunction gives the following
reduced translation for the first sentence:

λcc′.∃x(ĉ x = c′ ∧Mx ∧ Sx)

For the second sentence we get:

λcc′.(L◦5cc′)



The Gamut of Dynamic Logics 589

which reduces to

λcc′.(c = c′ ∧ Lc[5])

and for the sequence as a whole we get:

λcc′.∃x(ĉ x = c′ ∧Mx ∧ Sx) ; λcc′.(c = c′ ∧ Lc[5])

which reduces to:

λcc′.∃x(ĉ x = c′ ∧Mx ∧ Sx ∧ Lc[5])

Note that we obtain the reading in which the pronoun in the second sentence
of 2 refers back to the man introduced in the first sentence only if the index of
the PRO-element is suitably chosen. This means that this approach relies on a
separate pronoun resolution component in the grammar.

7.3 Update Semantics

In section we illustrate the use of dynamic logic in another area of natural language
semantics, one that is concerned with epistemic concerns, modal expressions and
with the interaction between issues that are strictly semantic and phenomena that
are of a pragmatic nature, i.e. that pertain to the use of language in information
exchange.

The gist of the dynamic approach to natural language meaning is captured in
the slogan ‘Meaning is context-change potential’. In the case of a theory such as
DPL, the context consists of assignments of objects satisfying certain properties
to variables. In that case, context-change means change of assignments. Such
changes are brought about typically by referring expressions such as proper names
or temporal expressions and by quantificational expressions such as noun phrases
or tense operators. All other expressions are tests. In the case of DRT a different
notion of context is used, viz. that of a discourse representation that contains
discourse referents satisfying certain properties that point to objects satisfying
corresponding properties: here context change is change of the discourse represen-
tation. With respect to empirical coverage that does not make a difference, again
it is referential and quantificational expressions that change the context, other
expressions are treated as parts of conditions.

In epistemic systems, context is yet another type of object, viz., information,
modelled by a set of possible worlds or possible situations or propositions. The
pioneering work in this area is that of Stalnaker (cf., among others, [Stalnaker,
1979; 1974]). Stalnaker focused on the context as the ‘common ground’, i.e. the
information that is available by all speech participants and that is maintained as it
gets updated during a linguistic information exchange. This common ground can
be characterised as a set of worlds, viz., those worlds which are compatible with the
shared information, or, alternatively, as a set of propositions. A linguistic exchange
then consists of utterances that shift the context, by updating the common ground,
or that test whether something holds in the context. Each utterance represents
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a particular way of updating or testing the common ground, and this update is
conceived as the meaning of the utterance in question.

Within such an approach, sentences that are tests in DPL or conditions in DRT
in most cases do have an effect on the context, and thus are treated dynamically.
A simple subject-predicate sentence such as ‘John is at home’ updates the com-
mon ground with the information that John has the property of walking, and
conjunctions are ordered updates. Examples of exceptions, i.e., sentences that
do not update the context but test it, are modal sentences, such as ‘John might
be at home’, and ‘John must be at home’. These do not add new information,
but check whether the existing common ground satisfies a requirement: that it is
possible that John is at home, and that it not possible that John is not at home,
respectively.

Another type of linguistic construction that can be treated in this fashion con-
cerns presuppositions. A sentence carrying a presupposition typically tests the
common ground for the presence of the presupposed information, besides updat-
ing it with new information And yet another example is presented by conditionals:
the sentence ‘If John is at home, Mary is there, too’ tests the context by check-
ing whether updating with the antecedent ‘John is at home’ leads to a context in
which ‘Mary is at home’ holds.

Of particular interest is what consequences obtain if a test or an update fails.
In the case of a presupposition failing because the information is not present,
but is consistent with the common ground, the presupposition is often said to be
‘accommodated’, i.e. an implicit update takes place [Beaver, 1997]. In other cases,
e.g., the failure of a test such as ‘John might be at home’, or of a straightforward
update such as ‘John is at home’, the context needs to be down-dated, i.e. revised.
This is the area of belief revision [Gärdenfors, 1984] another aspect of the dynamics
of information exchange.

System

Update semantics was originally devised as a way of dealing with the semantics of
modal expressions such as ‘might’ and ‘must’ [Veltman, 1984]. These expressions
have a specifically epistemic meaning, which makes implicit reference to the infor-
mation states of speaker and hearer. Other uses of update semantics are, among
others, in accounts of conditionals [Veltman, 1986], defaults [Veltman, 1996], pre-
suppositions [Beaver, 1997], [Zeevat, 1992], and other issues involving information
exchange.

Here we present a core system that forms the basis of many variations in the
literature.

Let P be a set of atomic formulae. The language is that of propositional logic,
with an additional operator �. Assume p ranges over P .

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | �ϕ

ϕ′ ::= �ϕ
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The other connectives are defined in the usual fashion.
A model M consists of a set of possible worlds W and in interpretation function

V : P → P(W ). Information states s are subsets of W , with ∅ the absurd
information state, W the state of no information, and singletons {wi} states of
maximal information.

The semantics takes the form of a definition of ‘s[ϕ]M’, i.e. the result of updating
an information state s in M with (the information conveyed by) ϕ:

s[p]M = s ∩ {s ∈ S | s ∈ VM(p)}

s[¬ϕ]M = s \ s[ϕ]M

s[ϕ1 ∧ ϕ2]M = s[ϕ1]M[ϕ2]M

s[�ϕ]M =

{
s if s[ϕ]M �= ∅

∅ otherwise

An atomic formula updates s with the information it conveys; a negation ¬ϕ
deletes those worlds in which the information conveyed by ϕ holds from s; con-
junction is a sequential update with the conjuncts. The modal �ϕ is a test: it
returns the original state if an update with ϕ is possible, the absurd state other-
wise.

This system analyses a special case of public announcement logic [Plaza, 1989;
Gerbrandy, 1999b], where the knowledge of a single agent is modelled. The model
M above can be viewed as an S5 model with a universal accessibility relation
[van Eijck and de Vries, 1995]. Updating with a propositional formula F has the
effect of announcing F to the agent, i.e. updating with action model

F

in the sense of [Baltag and Moss, 2004].Updating with a modal formula �F boils
down to updating with the following action model:

<>F

The notion of ‘acceptance in M, s’ is defined as follows:

s |=M ϕ iff s ⊆ s[ϕ]M

Validity can be defined in a number of ways; the most common one is as follows:

ϕ1 . . . ϕn |= ψ iff for all M, s : s[ϕ1]Mψ . . . [ϕn]M |= ψ
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i.e. every state that accepts the premises, accepts the conclusion.
This system is eliminative (s[ϕ]M ⊆ ϕ); not distributive (s ⊆ s′ �⇒ s[ϕ] ⊆ s′[ϕ]);

neither right- nor left-monotone; and conjunction is not commutative. A complete
sequent calculus can be found in [Groeneveld, 1995, chapter 3].

Characteristic examples

A characteristic example, that illustrates the non-commutativity of conjunction,
involves the �-operator. If we read it as the formal counterpart of the modal
expression ‘might’ (in its epistemic meaning), and represent discourse sequencing
as conjunction, we can explain the difference between the following two sentences:

a. Somebody is knocking at the door . . . It might be John . . . It is Mary

b. Somebody is knocking at the door . . . It is Mary . . . ∗It might be John

In the first sequence the second sentence ‘It might be John’ tests the state (that
contains the information that somebody is at the door, due to the update with
the first sentence) for the possibility that the person knocking is John. If that
succeeds, it is only confirmed that this is a possibility. The subsequent update
with the information that in fact it is Mary, is consistent with that. In the second
sequence the information that it is Mary is added before the test takes place,
resulting in its failure, which explains the odd status of this sequence.

The failure of right- en left-monotonicity is also due to the �-operator:

�¬ϕ |= �¬ϕ but �¬ϕ,ϕ �|= �¬ϕ

|= �ϕ but ¬ϕ �|= �ϕ

Another instantiation of the ideas behind update semantics is provided by con-
ditionals. Many aspects of conditionals in natural language can be captured in
an update framework, by keeping in mind the ‘modal’ nature of the conditional
construction:

s[ϕ1 → ϕ2]M = {i ∈ s | if i ∈ s[ϕ1]M then i ∈ s[ϕ1]M[ϕ2]M}

The update effect of a condition thus is to retain those possibilities in a given state
s such that updating them with the antecedent allows a subsequent update with
the consequent.

Applications of update semantics can be found in a variety of areas, such as
deontic modality [van der Torre and Tan, 1998]; interrogatives [Groenendijk, 1999];
imperatives [Zarnic, 2002; Lascarides and Asher, 2003]; counterfactuals and other
irrealis-constructions [Veltman, 2005].

7.4 Combining dynamic and update semantics

The dynamic semantics used in systems such as DPL and DRT can be combined
with an update type of semantics as just defined. Various proposals exists (cf.,
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e.g., [Groenendijk et al., 1995; Dekker, 1996]). The idea is to put the semantics
for quantified formulae in an update format. In [Groenendijk et al., 1996] this is
done as follows.

Existential quantifiers introduce new kind of objects, so-called ‘pegs’, modelled
by the natural numbers. This notion was first introduced by Vermeulen, cf., [Ver-
meulen, 1995]. A referent system r is a function from a finite set of variables to
pegs. An existential quantifier ∃x add its variable x, introduces the next peg and
associates x with that peg. So, if r is a referent system with domain v and range of
pegs n, then r[x/n] is the referent system r′ which is like r except that its domain
is v ∪ {x} its range is N + 1 and r′(x) = n. Let r and r′ be two referent systems
with domain v and v′, and range n and n′, respectively. Then we say that r′ is an
extension of r, r ≤ r′, iff v ⊆ v′; n ≤ n′; if x ∈ v then r(x) = r′(x) or n ≤ r′(x); if
x �∈ v and x ∈ v′ then n ≤ r′(x).

States s are sets of triples i consisting of the same referent system r, an assign-
ment g and a world w. So states contain information about both the world (via
the possible world parameter) as well as the discourse (via the referent system).
Growth of information is then twofold as well: via the elimination of possibilities,
and via extension of the referent system. First we introduce:

i[x/d] = 〈r[x/n], g[n/d], w〉

s[x/d] = {i[x/d] | i ∈ s}

and then we define these two notions of information growth as follows. Let i, i′ ∈
I, i = 〈r, g, w〉 and i′ = 〈r′, g′, w′〉, and s, s′ ∈ S:

i′ ≤ i′ iff r ≤ r′, g ⊆ g′, w = w′

s ≤ s′ iff for all i′ ∈ s′ : there exists an i ∈ s : i ≤ i′

Finally, we define the update semantics for existentially quantified formulae ∃xϕ
as follows (the other clauses are merely repetitions of the above):

s[∃xϕ]M = ∪d∈DM
(s[x/d][ϕ]M)

This defines the update effect of ∃xϕ point-wise on the objects in the domain: the
referent system of the state s is updated by adding a peg, the variable is associated
with the peg, and an object d is selected and assigned to the peg; then the resulting
state s[x/d] is updated with ϕ; this procedure is repeated for every object in the
domain; the results are collected and together make up the new state s[∃xϕ].

The resulting system is capable of treating complex cases concerning the in-
teraction of quantifiers and modalities. For example it can be used to show that
whereas ∃xPx ∧�∀y¬Py is not consistent, ∃xPx ∧ ∀y�¬Py is: if we know that
something has the property P this ipso facto rules out the possibility that no-one
has that property, but it does not rule out the possibility that we are uninformed
about the identity of this P . For other examples, involving also identity we refer
the reader to [Groenendijk et al., 1996] and [Aloni, 2002].
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8 CONCLUDING REMARKS

The overview of dynamic logics and their applications presented in this paper
has focused on a number of core systems (Floyd/Hoare logic, PDL, epistemic
PDL, QDL, DPL), and a number of central applications: program analysis, tree
description, analysis of communication, semantics of natural language. References
to other applications were thrown in as an incentive to the reader for further
exploration.

The field of dynamic logic, including its applications in various domains, is still
developing. Dynamic logic started out as a way of studying various aspects of com-
putation, mainly in traditional computational settings, with a focus on sequential
transformational programs. When theoretical computer science broadened to en-
compass the theory of reactive systems and concurrency, dynamic logic evolved
by developing systems that could handle these too (branching time logics and μ
calculus). Thus, the core concepts of dynamic logic have proved to be applicable
in a wide range of settings, allowing formalisation of a great diversity of concepts
and phenomena.

In certain areas, such as natural language semantics, the use of dynamic con-
cepts initially arose independently, and it was only subsequently that these notions
were embedded in dynamic logic. This have given rise to interesting interactions,
that are still being actively pursued.

The application to communicative action stays somewhat closer to the original
motivation for the development of dynamic logic. Here the use of dynamic logic ties
in with an existing tradition of using modal logic in the analysis of communication
protocols [Halpern et al., 1995]. Also in the analysis of various other phenomena
that are concerned with interactions between individuals and with properties of
the collectives (groups, societies) that they form, concepts of dynamic logic play a
role, as is testified by work done on, for example, collective decisions (cf., [Pauly
and Parikh, 2003] on game logic as an extension of propositional dynamic logic).

As more aspects of the ways in which human beings interact are brought into
the picture, concepts like perception, causality, justification and intention appear.
Here insights from the philosophy of action and from game theory must augment
the tool set from dynamic logic, thus creating an exciting amalgam of logic, theo-
retical computer science, philosophy and game theory. Whatever the future holds
in store for this area, it seems more than likely that concepts and results from
dynamic logic will continue to play a major role in its development.
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In L. Kálmán and L. Pólos, editors, pages 3–48. Papers from The Second Symposium on Logic
and Language. Akadémiai Kiadó, Budapest, 1990.
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SITUATION THEORY AND

SITUATION SEMANTICS

Keith Devlin

1 INTRODUCTION

Situation semantics is a mathematically based theory of natural language seman-
tics introduced by the mathematician Jon Barwise in 1980, and developed jointly
by Barwise and the philosopher John Perry (and subsequently several others)
throughout the 1980s. The first major treatment of the new theory was presented
in Barwise and Perry’s joint book Situations and Attitudes [1983].

Initially, situation semantics was conceived as essentially synthetic, with a math-
ematical ontology built up on set theory. Soon after the appearance of [Barwise
and Perry, 1983], however, the authors changed their approach and decided to
handle the topic in an analytic fashion, abstracting a mathematical ontology from
analyses of natural language use. Situation theory is the name they gave to the
underlying mathematics that arose in that manner. From the mid 1980s onward,
therefore, situation semantics was an analysis of semantic issues of natural lan-
guage based on situation theory.

Much of the initial development work in situation semantics was carried out
at the Center for the Study of Language and Information (CSLI), an interdisci-
plinary research center established at Stanford University through a $23 million
gift to Stanford from the System Development Foundation (a spin-off from RAND
Corporation).

As originally conceived, situation semantics is an information-based theory, that
seeks to understand linguistic utterances in tems of the information conveyed. (Al-
though work carried out by Devlin and Rosenberg in the 1990s showed that situa-
tion theory could also be used to analyze language use from an action perspective
[1996].) Barwise and Perry began with the assumption that people use language
in limited parts of the world to talk about (i.e. exchange information about) other
limited parts of the world. Call those limited parts of the world situations.

In their paper The Situation Underground [1980], the first published work on
situation semantics, Barwise and Perry wrote of situations:

The world consists not just of objects, or of objects, properties and
relations, but of objects having properties and standing in relations

Dov M. Gabbay and John Woods (Editors)
c
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to one another. And there are parts of the world, clearly recognized
(although not precisely individuated) in common sense and human
language. These parts of the world are called situations. Events and
episodes are situations in time, scenes are visually perceived situations,
changes are sequences of situations, and facts are situations enriched
(or polluted) by language.

The appearence of the word “parts” in the above quotation is significant. Sit-
uations are parts of the world and the information an agent has about a given
situation at any moment will be just a part of all the information that is theoreti-
cally available. The emphasis on partiality contrasts situation semantics from what
was regarded by many as its principal competitor as a semantic theory, possible
worlds semantics.

It is important to realize that, the use of mathematical concepts notwithstand-
ing, in situation theory and situation semantics, situations are taken to be real,
actual parts of the world, and the basic properties and relations the situation
semantics deals with are taken to be real uniformities across situations (and not
bits of language, ideas, sets of n-tuples, functions, or some other mathematical
abstractions).

Situation semantics provides a relational theory of meaning. In its simplest
form, the meaning of an expression φ it taken to be a relation

d, c‖φ‖e

between an utterance or discourse situation d, a speaker’s connection function c,
and a described situation e. These concepts will all be described in due course.

Although described as a “theory”, situation theory is more profitably approached
as a set of mathematically-based tools to analyze, in particular, the way context
facilitates and influences the rise and flow of information. Similarly, situation se-
mantics is best approached as a method for analyzing semantic phenomena. This
perspective is reflected in the structure of this article. After providing a brief ex-
planation of the key ideas of situation theory and situation semantics, we present
a number of specific topics in situation semantics. It is not intended to be a com-
prehensive coverage. Rather the goal is to provide some indication of the manner
in which the methods of situation semantics may be applied.

2 INFORMATION

Information is always taken to be information about some situation, and is assumed
to be built up from discrete informational items known as infons. Infons are of
the form

〈〈R, a1, . . . , an, 1〉〉 , 〈〈R, a1, . . . , an, 0〉〉

where R is an n-place relation and a1, . . . , an are objects appropriate for R.
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Infons are not things that in themselves are true or false. Rather a particular
item of information may be true or false about a situation. Given a situation, s,
and an infon σ, write

s |= σ

to indicate that the infon σ is made factual by the situation s. The offical termi-
nology is that s supports σ. Thus,

s |= 〈〈R, a1, . . . , an, 1〉〉

means that, in the situation s, the objects a1, . . . , an stand in the relation R, and

s |= 〈〈R, a1, . . . , an, 0〉〉

means that, in the situation s, the objects a1, . . . , an do not stand in the relation
R.

Infons may be combined, recursively, to form compound infons. The combi-
natory operations are conjunction, disjunction, and situation-bounded existential
and universal quantification. This is discussed later.

Given a situation s and a compound infon σ,

s |= σ

is defined by recursion in the obvious way. The actuality s |= σ is referred to as
a proposition.

3 TYPES

From a formal viewpoint, situation theory is many sorted. The objects (called
uniformities) in the ontology include the following:

• individuals, denoted by a, b, c, . . .

• relations, denoted by P,Q,R, . . .

• spatial locations, denoted by l, l′, l′′, l0, l1, l2, . . .

• temporal locations, denoted by t, t′, t0, . . .

• situations, denoted by s, s′, s′′, s0, . . .

• types, denoted by S, T, U, V, . . .

• parameters, denoted by ȧ, ṡ, ṫ, l̇, etc.
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These entities are assumed to be — or to correspond to — aspects of the agent’s
cognition of the world. That is, the agent has a scheme of individuation whereby
it carves the world up into manageable pieces. This “carving up” may take the
form of cognitive individuation or merely behavioral discrimination.

A particular feature of intelligent behavior is the recognition of types. The agent
recognizes (either consciously or through its behavior) various types of object,
various types of activity, etc.

The basic types of the formal theory are:

• TIM : the type of a temporal location

• LOC : the type of a spatial location

• IND : the type of an individual

• RELn : the type of an n-place relation

• SIT : the type of a situation

• INF : the type of an infon

• TYP : the type of a type (see later)

• PAR : the type of a parameter (see later)

• POL : the type of a polarity (0 and 1)

Given an object, x, and a type, T , we write

x : T

to indicate that the object x is of type T .

4 PARAMETERS

During the development of situation theory and situation semantics, considerable
discussion was devoted to the topic of parameters. The reason for this attention
was that, uniquely in the ontology, parameters are not individuated (in any direct
sense) by the agent; they are theoretical constructs. They do, however, correspond
to, and capture within the theoretical framework, important aspects of the agent’s
cognitive behavior. It is the very essence of cognitive activity that the agent tracks
various connections. For example, an agent aware of the connection between smoke
and fire, who knows that smoke is an indication of fire, needs to be able to connect
any specific instance of smoke to a specific instance of fire, one directly linked
to the perceived smoke. Within situation semantics, parameters capture such
linkages. It is through the mechanism of parameters that the general regularities
that govern cognitive activity, reasoning, and information flow become applicable
in actual circumstances.
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For each basic type T other than PAR, there is an infinite collection T1, T2, T3, . . .
of basic parameters, used to denote arbitrary objects of type T .

The parameters Ti are sometimes referred to as T -parameters.
Notation: l̇, ṫ, ȧ, ṡ, etc. to denote parameters (of type LOC, TIM, IND, SIT,

etc.).
Parameters are place-holders for specific entities, which the theoretical frame-

work uses to track crucial information links. Anchors for parameters provide a
formal mechanism for linking parameters to actual entities. An anchor for a set,
A, of basic parameters is a function defined on A, which assigns to each parameter
Tn in A an object of type T .

If σ is a compound infon and f is an anchor for some of the parameters in σ,
σ[f ] denotes the compound infon that results from replacing each parameter ȧ in
dom(f) by f(a).

In order to provide a more streamlined treatment of various linguistic and
(other) cognitive phenomena, situation theory provides a mechanism for restricting
the scope of parameters. Restricted parameters are constructed as follows.

Let v be a parameter. A condition on v is a finite conjunction of infons. (At
least one conjunct should involve v, otherwise the definition is degenerate.)

Given a parameter, v, and a condition, C, on v, define a new parameter, v ↾ C,
called a restricted parameter. v ↾ C denotes an object of the same type as v, that
satisfies the requirements imposed by C (in any situation where this applies). (If
C consists of a single parametric infon σ, we write v ↾ σ instead of v ↾ {σ}.)

Let r = v ↾ C be a parameter. Given a situation s, a function f is said
to be an anchor for r in s if:

1. f is an anchor for v and for every parameter that occurs free in
C ;

2. for each infon σ in C: s |= σ[f ] ;

3. f(r) = f(v) .

5 INFON LOGIC

Using parameters, the formal definition of the conjunction σ ∧ τ of two infons σ,
τ is as follows.

For any situation, s,

s |= σ ∧ τ iff s |= σ and s |= τ .

The conjunction is not itself an infon, but a compound infon.
The disjunction of two infons σ, τ is a compound infon σ ∨ τ such that for any

situation s,

s |= σ ∨ τ iff s |= σ or s |= τ (or both).



606 Keith Devlin

The above definitions are in fact clauses in a recursive definition of compound
infons.

If σ is an infon (or compound infon) that involves the parameter ẋ and u is
some set, then

(∃ẋ ∈ u)σ

is a compound infon.
For any situation, s, that contains (as constituents) all members of u :

s |= (∃ẋ ∈ u)σ

iff there is an anchor, f , of ẋ to an element of u, such that s |= σ[f ].
The anchor, f , here may involve some resource situation other than s. f must

assign to ẋ an appropriate object in some anchoring situation, e, that supports
the various infons that figure in the structure of ẋ.

For example, let σ be the compound infon

〈〈tired, ċ, t0, 1〉〉 ∧ 〈〈hungry, ċ, t0, 1〉〉

where ċ is a parameter for a cat.
Let s be a room situation at time t0 and u the set of individuals in s. Then:

s |= (∃ċ ∈ u)σ

iff there is an anchor, f , of ċ to some fixed object, c, in u (c necessarily
a cat) such that s |= σ[f ] , i.e. such that

s |= 〈〈tired, c, t0, 1〉〉 ∧ 〈〈hungry, c, t0, 1〉〉.

That is to say, s |= (∃ċ ∈ u)σ iff there is a cat, c, in u that at time t0 is tired and
hungry in s.

The existence of the anchor, f , entails the existence of an associated anchoring
(or resource) situation, e, such that (in particular)

e |= 〈〈cat, c, 1〉〉.

In particular, c is a constituent of e.
Note that the object c has to be in the (room) situation, s, at time t0 in order

for the proposition

s |= 〈〈tired, c, t0, 1〉〉 ∧ 〈〈hungry, c, t0, 1〉〉

to obtain.
If σ is an infon (or compound infon) that involves the parameter ẋ, and if u is

some set, then
(∀ẋ ∈ u)σ

is a compound infon.
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For any situation, s, that contains (as constituents) all members of u:

s |= (∀ẋ ∈ u)σ

iff, for all anchors, f , of ẋ to an element of u, s |= σ[f ].
In the cases both of existential and universal quantification, the bounding set

u may consist of all the objects of a certain kind that are in the situation s.
Consequently, the definitions do provide a notion of ‘unrestricted’ quantification,
but it is a notion of situated quantification.

For an example of situated quantification, when someone truthfully asserts

All citizens have equal rights.

they are presumably quantifying over some country such as the United States, not
the entire world, for which such a claim is not true.

6 TYPE ABSTRACTION

Situation theory provides various mechanisms for defining types. The two most
basic methods are type-abstraction procedures for the construction of two kinds
of types: situation-types and object-types.

Situation-types. Given a SIT-parameter, ṡ, and a compound infon σ, there is a
corresponding situation-type

[ṡ | ṡ |= σ],

the type of situation in which σ obtains.
This process of obtaining a type from a parameter, ṡ, and a compound infon, σ,

is known as (situation-) type abstraction. The parameter ṡ is called the abstraction
parameter used in this type abstraction.

For example,

[SIT1 | SIT1 |= 〈〈running, ṗ,LOC1,TIM1, 1〉〉].

Object-types. These include the basic types TIM, LOC, IND, RELn, SIT, INF,
TYP, PAR, and POL, as well as the more fine-grained uniformities described
below.

Object-types are determined over some initial situation. Let s be a given situ-
ation. If ẋ is a parameter and σ is some compound infon (in general involving ẋ),
then there is a type

[ẋ | s |= σ],

the type of all those objects x to which ẋ may be anchored in the situation s, for
which the conditions imposed by σ obtain.

This process of obtaining a type [ẋ | s |= σ] from a parameter, ẋ, a situation,
s, and a compound infon, σ, is called (object-) type abstraction.
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The parameter ẋ, is known as the abstraction parameter used in this type ab-
straction.

The situation s is known as the grounding situation for the type. In many
instances, the grounding situation, s, is the world or the environment we live in
(generally denoted by w).

For example, the type of all people could be denoted by

[IND1 | w |= 〈〈person,IND1, l̇w, ṫnow, 1〉〉].

Again, if s denotes Jon’s environment (over a suitable time span), then

[ė | s |= 〈〈sees, Jon,ė,LOC1,TIM1, 1〉〉]

denotes the type of all those situations Jon sees (within s). This is a case of an
object-type that is a type of situation.

This example is not the same as a situation-type. Situation-types classify situ-
ations according to their internal structure, whereas in the type

[ė | s |= 〈〈sees, Jon, ė,LOC1,TIM1, 1〉〉],

the situation is typed from the outside.

7 CONSTRAINTS

Types and the type abstraction procedures provide a mechanism for capturing the
fundamental process whereby a cognitive agent classifies the world. Constraints
provide the situation theoretic mechanism that captures the way that agents make
inferences and act in a rational fashion. Constraints are linkages between situa-
tion types. They may be natural laws, conventions, logical (i.e. analytic) rules,
linguistic rules, empirical, law-like correspondences, etc.

For example, humans and other agents are familiar with the constraint:

Smoke means fire.

If S is the type of situations where there is smoke present, and S′ is the type
of situations where there is a fire, then an agent (e.g. a person) can pick up
the information that there is a fire by observing that there is smoke (a type S
situation) and being aware of, or attuned to, the constraint that links the two
types of situation. This constraint is denoted by

S ⇒ S′.

(This is read as “S involves S′.”)
Another example is provided by the constraint

Fire means fire.
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This constraint is written
S′′ ⇒ S′.

It links situations (of type S′′) where someone yells the word fire to situations
(of type S′) where there is a fire.

Awareness of the constraint

fire means fire

involves knowing the meaning of the word fire and being familiar with the rules
that govern the use of language.

The three types that occur in the above examples may be defined as follows:

S = [ṡ | ṡ |= 〈〈smokey, ṫ, 1〉〉]

S′ = [ṡ | ṡ |= 〈〈firey, ṫ, 1〉〉]

S′′ = [u̇ | u̇ |= 〈〈speaking, ȧ, ṫ, 1〉〉 ∧ 〈〈utters, ȧ,fire, ṫ, 1〉〉].

Notice that constraints link types, not situations. However, any particular in-
stance where a constraint is utilized to make an inference or to govern/influence
behavior will involve specific situations (of the relevant types). Constraints func-
tion by capturing various regularities across actual situations.

A constraint
C = [S ⇒ S′]

allows an agent to make a logical inference, and hence faciliates information flow,
as follows. First the agent must be able to discriminate the two types S and S′.
(This use of the word ‘discriminate’ is not intended to convey more than the most
basic of cognitive activities.) Second, the agent must be aware of, or behaviorally
attuned to, the constraint. Then, when the agent finds itself in a situation s of
type S, it knows that there must be a situation s′ of type S′. We may depict this
diagrammatically as follows:

S
C

=⇒ S′

s : S ↑ ↑ s′ : S′

s
∃
−→ s′.

For example, suppose S ⇒ S′ represents the constraint smoke means fire.
Agent A sees a situation s of type S. The constraint then enables A to conclude
correctly that there must in fact be a fire, that is, there must be a situation s′ of
type S′. (For this example, the constraint S ⇒ S′ is most likely reflexive, in that
the situation s′ will be the same as the encountered situation s.)

A particularly important feature of this analysis is that it separates clearly the
two very different kinds of entity that are crucial to the creation and transmission
of information: one the one hand the abstract types and the constraints that link
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them, and on the other hand the actual situations in the world that the agent
either encounters or whose existence it infers.

It should be noted that the ontology of situation theory has no bottom layer;
every individual or situation can be subdivided into constituents, if desired. This
implies that it is possible to represent and analyze a domain at any degree of gran-
ularity, to move smoothly up and down the granularity scale during an analysis,
and to “zoom” the granularity to investigate specific issues in an analysis, while
keeping the remainder of the representation fixed. This feature can play a major
role in applications; for example, the analysis of engineer repair reports from a
large computer manufacturer, described in [Devlin and Rosenberg, 1996].

8 SITUATION SEMANTICS: THE BASIC IDEA

The object of study in situation semantics is the utterance. In the simplest version,
situation semantics analyzes utterances in terms of three situations:

• Utterance situation,

• Resource situation,

• Focal situation.

The utterance situation. This is the context in which the utterance is made
and received.

If Melissa says to Naomi

A man is at the door

the utterance situation, u, is the immediate context in which Melissa utters these
words and Naomi hears them.

The situation u includes both Melissa and Naomi (for the duration of the ut-
terance), and should be sufficiently rich to identify various salient factors about
this utterance, such as the door that Melissa is referring to..

This is probably the one in her immediate environment, but not necessarily.
For instance, if Melissa utters the sentence A man is at the door as part of a larger
discourse, the situation u could provide an alternative door.

The connections between the utterance and the various objects referred to, are
known as just that: connections (or speaker’s connections). Thus

u |= 〈〈utters, Melissa,Φ, l, t, 1〉〉 ∧ 〈〈refers-to, Melissa, the door, D, l, t, 1〉〉

where Φ is the sentence A man is at the door and D is a door that is fixed by u.
The speaker’s connections link the utterance (as part of u) of the phrase the

door to the object D.

Resource situations. If Melissa says
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The man I saw running yesterday is at the door,

she is making use of a situation that she witnessed the day before, the one in which
a certain man was running, in order to identify the man at the door.

There is another situation, r, a situation that occurred the day before the
utterance, and which Melissa witnessed, such that

u |= 〈〈utters, Melissa, Φ, l, t, 1〉〉∧

〈〈refers-to, Melissa, the man, M, l, t, 1〉〉∧

〈〈refers-to, Melissa, the door, D, l, t, 1〉〉

where Φ is the sentence

The man I saw running yesterday is at the door

and where Melissa is making use of r and the fact that M is the unique man such
that (for some appropriate values of l′, t′)

r |= 〈〈runs, M, l′, t′, 1〉〉.

Resource situations can become available for exploitation in various ways, such as:

1. by being perceived by the speaker;

2. by being the objects of some common knowledge about the world;

3. by being the way the world is;

4. by being built up by previous discourse.

The focal situation. Also known as the described situation, the focal situation
is that part of the world the utterance is about.

Features of the utterance situation serve to identify the focal situation. For
instance, suppose Melissa makes her utterance while peering out of the upstairs
window at the house across the street. Then her utterance refers to the situation,
s, that she sees, the situation at the house across the street, and we have

s |= 〈〈present, M, l, t, 1〉〉

where l is the location of the door and t is the time of the utterance.

9 PROPOSITIONAL CONTENT

By adopting an ontology that includes items of information (infons), we are able to
capture the notion of the information encoded by a representation, and can account
for the fact that the same information can be encoded by two quite different
representations, using quite different representation schemas.

There are then three notions that are often treated as if they were somewhat
interchangeable, but which situation theory regards as quite distinct (though re-
lated):



612 Keith Devlin

• information

• representations

• propositions.

In the case of a linguistic utterance, say Jon’s utterance of the assertive sentence

Mary is running

the representation is the utterance itself, which we regard as a situation, call it u.
The propositional content of the utterance u is the proposition

e |= σ

where e is the focal situation, σ is the infon 〈〈runs,M, tu, 1〉〉, M denotes the
individual Mary to whom Jon refers, tu is the time of the utterance, and e is
determined by various features of the utterance.

For example, e could be determined by Jon and the listener being part of some
larger situation in which this individual Mary is running, or more generally by
means of some other form of previously established context of utterance.

The propositional content is what might normally be referred to as the “infor-
mation conveyed by the utterance”.

10 LINGUISTIC MEANING

As we have seen already, the meaning of an assertive sentence, Φ, is a constraint,
an abstract link that connects the type of an utterance of Φ with the type of the
described situation. More generally, we can describe the meaning of other kinds
of sentence, and of a word or phrase, α, and in these cases too the meaning will
be a link between appropriate types.

In the case where a speaker utters the word, phrase, or sentence, α, to a single
listener, we shall use u to denote the utterance situation, e the (larger) embedding
situation, r any resource situation, and s the described situation. We denote the
speaker in u by au, and the listener by bu. The time and location of the utterance
are denoted by tu, lu, respectively.

U(α) denotes the situation-type of an utterance of α, namely:

U(α) = [u̇ | u̇ |= ≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪utters, ȧu, α, ˙lu, ṫu, 1 ≫].

Situation semantics distinguishes two different kinds of meaning. The abstract
meaning supplies the answer to the question “What does this word/phrase/sent-
ence mean (in general)?”, where the word/phrase/sentence is taken out of any
context; the meaning-in-use answers the question “What does this word/phrase/
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sentence mean (as it is being used in this instance)?”, where the word/phrase/sent-
ence is uttered in a particular context. The meaning-in-use is induced by the
abstract meaning, with the former a particular instantiation of the latter. In the
case of an utterance of a sentence, the meaning-in-use is closely related to the
propositional content. The abstract meaning is represented as an abstract link
between two types; the meaning-in-use as a relation between pairs of objects, in
general not types.

The abstract meaning of a part of speech, α, will be denoted by M(α); the
meaning-in-use of α will be denoted by ‖α‖.

In the case of individual words, the meaning-in-use provides a link between the
utterance situation and the object (possibly an abstract object, such as a relation)
in the world that the word denotes.

It should be born in mind that the brief account that follows provides a fairly
crude notion of word meaning. In practice, when a word is uttered as part of a
sentence or an extended discourse, the overall context of utterance can contribute
features to the meaning of that word (in that context).

11 THE MEANING OF ‘I’

In any utterance, u, ‘i’ denotes the speaker, au, of u. The meaning-in-use, ‖i‖, of
‘i’ is the relation that connects u to au for any utterance u. So, for given objects
u and a,

u‖i‖a if and only if u : U(i) and a = au.

Thus the meaning-in-use of the pronoun ‘i’ is a relation linking situations to indi-
viduals.

The abstract meaning of ‘i’, M(i), is the link between the situation-type

U(i) = [u̇ | u̇ |= ≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪utters, ȧu, i, ˙lu, ṫu, 1 ≫]

and the object-type

E = [ȧ | u̇ |=≪=, ȧ, ȧu, ˙lu, ṫu, 1 ≫].

Notice that there is exactly one type E such that U(i)[M(i)]E here.
The abstract link M(i) induces the relation ‖i‖ in the fashion:

‖i‖ = {(u, a) | u : U(i) & a : E where U(i)[M(i)]E}.

12 THE MEANING OF ‘YOU’

In any utterance situation, ‘you’ denotes the listener. Thus the meaning-in-use
of the word ‘you’ is such that
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u‖you‖b if and only if u : U(you) and b = bu

and the abstract meaning, M(you), is the link between the situation-type

U(you) = [u̇ | u̇ |= ≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪utters, ȧu,you, ˙lu, ṫu, 1 ≫]

and the object-type

E = [ḃ | u̇ |=≪=, ḃ, ḃu, ˙lu, ṫu, 1 ≫].

13 THE MEANING OF ‘HE’, ‘SHE’, ‘IT’

Taking the case ‘he’ for definiteness, the significant feature of the pronoun ‘he’,
when considered out of context, is that it is used to denote a male individual. The
appropriate type then to figure in the abstract meaning is the type of any male
individual:

F = [ḃ | w |=≪male, ḃ, 1 ≫]

where ḃ is an IND-parameter and where w denotes the world.

The abstract meaning, M(he), will be the link between the situation-type

U(he) = [u̇ | u̇ |= ≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪utters, ȧu, he, ˙lu, ṫu, 1 ≫]

and the object-type F .

Of course, in this case, the abstract meaning does not really capture the main
feature of a pronoun, which is to refer to a particular individual of the appropriate
gender. Rather, pronouns really acquire meaning when used in a specific context,
and accordingly it is the meaning-in-use that is the more important of the two
forms of meaning in this case.

Turning to that meaning-in-use, there are two main ways a pronoun can pick up
its referent: either through the speaker or else by having some other noun phrase
as an antecedent. Consider, for instance, the sentence:

Jon thought he was wrong.

Uttered one way, ‘he’ refers to Jon himself; that is to say, the pronoun picks up
its referent anaphorically from a previous part of the utterance. Alternatively, the
speaker could be using ‘he’ diectically, to refer to some other person, say Jerry.
This referent could be provided by the speaker pointing to Jerry, or could be
supplied by some previous utterance as part of a discourse, such as:

Jerry said there was a language of thought. Jon thought he was wrong.
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Thus the interpretation of an utterance of the pronoun ‘he’ requires the provision
of a referent by means of the utterance situation. That is to say, the utterance
situation, u, must supply some individual h = iu(he) (or h = iu(him)) such that
for some resource situation, r,

r |=≪male, h, 1 ≫

and then, for any a,

u‖he‖a if and only if u : U(he) and a = iu(he).

Notice that the individual h = iu(he) need not be a constituent of the utterance
situation. Rather the speaker uses, or relies upon, some resource situation, r, and
it is that resource situation, r, that has h as a constituent. Similarly for the other
pronouns, ‘she’, ‘it’, etc.

14 THE MEANING OF PROPER NAMES

Used correctly, a proper name should designate a particular individual. Since many
individuals often share the same name, this means that the context should some-
how identify the requisite individual the speaker has in mind. Thus for a proper
use of the name ‘Jan’, the utterance situation, u, should provide an individual
p = iu(Jan) such that for some resource situation, r,

r |=≪named, p,Jan, 1 ≫

and then, for any a,

u‖Jan‖a if and only if u : U(Jan) and a = iu(Jan).

As with the case of third-person pronouns above, there is no requirement that
the person Jan be present in the utterance situation. Rather Jan is a constituent
of the resource situation, r, which the speaker makes use of when he makes his
utterance.

Also as with third-person pronouns, the abstract meaning of a proper name
does not really capture what names are about in the way that the meaning-in-use
does. For example, M(Jan) is the link between the situation-type

U(Jan) = [u̇ | u̇ |= ≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪utters, ȧu, Jan, ˙lu, ṫu, 1 ≫]

and the object-type

E = [ḃ | w |=≪named, ḃ,Jan, 1 ≫].

To point out one particular manner in which the abstract meaning of proper
names is simply at too high a level of abstraction to really capture the way names
are used, notice that, if a is an individual of type E, then we shall have
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w |=≪named, a, Jan, 1 ≫

so for some temporal location t we will have

w |=≪named, a, Jan, t, 1 ≫ .

So all this tells us is that, at some time, this individual a is named ‘Jan’. But
of course, people can and do change their names, whereas correct usage of proper
names requires using the name that prevails at the appropriate time. And indeed
this may be reflected in the meaning-in-use. In the present framework this could
result from the resource situation having the appropriate temporal duration. But
there are other possibilities.

For instance, if the word ‘Jan’ were uttered as part of a complete sentence, then
features of the utterance as a whole could provide an appropriate temporal location
t0 so that in the meaning-in-use of the proper name ‘Jan’ (on this occasion) we
have

r |=≪named, a, Jan, t0, 1 ≫

where r is a resource situation.

15 THE MEANING OF NOUNS

The abstract meaning of a noun, α, is the link between the type, U(α), of an
utterance of α, and the type of the object denoted by α. For example, the abstract
meaning of the noun ‘apple’ is the link between the situation-type

U(apple) = [u̇ | u̇ |= ≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪utters, ȧu, apple, ˙lu, ṫu, 1 ≫]

and the object-type of all apples:

[ḃ | w |=≪apple, ḃ, 1 ≫]

where ‘apple’ here denotes the property of being an apple.
As for meaning-in-use, this concept applies not so much to nouns as to noun

phrases. The normal usage of a noun is as part of a noun phrase, and even on
those occasions where a noun is uttered in naked fashion, such as when a small
child looks at her plate and says “Apple”, this can be regarded, for our purposes,
as an abbreviation for the noun phrase ‘An apple’.

16 THE MEANING OF VERBS

The meaning-in-use of any verb is the link between the verb and the relation it
denotes. For example, the verb ‘runs’ corresponds to the relation, R, of running,
and for any utterance situation, u,
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u‖runs‖R.

(We deal with the issue of tense presently.)
To be consistent with the development so far, the abstract meaning of a verb,

say ‘runs’, should be taken to be the link between the type of an utterance of the
word ‘runs’ and the type of all relations of running. However, in this summary
account we do not have parameters for relations and do not form relation-types,
hence we cannot accommodate such a notion of abstract meaning of verbs. A more
complete development, in which relation-types abstraction was allowed, would be
able to handle this issue in the manner suggested.

17 SPEAKER’S CONNECTIONS

Notice that, in each case so far, the meaning-in-use of a word, α, is a relation, ‖α‖,
that links an utterance situation, u, with a certain object, a, either an individual
in the case where α is a pronoun or name, or a relation in the case of a verb. The
relation u‖α‖a places a constraint on the utterance situation, u, to supply or
contain a suitable object.

Given different utterance situations, the same word can be linked to different
objects. Around csli at the time situation semantics was being developed, the
name ‘John’ was very much dependent on the utterance situation: did the speaker
mean John Perry, John Etchemendy, or John Nerbonne (or even Jon Barwise in
the case of a spoken utterance)?

The notation used to denote the object that the utterance situation, u, provides
to correspond to a word, α, via its meaning, is cu(α). Thus, in the case of a third-
person pronoun or a proper name, cu is the same as the function iu introduced a
short while ago.

In case an utterance of a word or phrase, α, in an utterance, u, makes use of a
resource situation, r, this resource situation is denoted by cresu (α).

In the case where u is an utterance of a sentence, Φ, there will also be a described
situation, that part of the world the utterance of Φ is about. Denote this situation
by su(Φ).

The term speaker’s connections refers to any or all of the functions cu, cresu , and
su.

Thus the speaker’s connections are the functional links between the words the
speaker utters and those parts of, or objects in, the world she uses these words
to refer to. They thus provide a mathematical realization of the intentionality of
speech, the fact that agents use language to talk about the world.

Notice that effective communication requires that, in general, the listener is
aware of the identity of the described situation, su(Φ), and the values of the
speaker’s connection function, cu, and the onus is on the speaker to ensure that
the listener is so aware. In general there is, however, no need for the listener
to know the values of the resource-situation function, cres

u . The role played by
resource situations is simply that of a supporting background.
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For instance, if, in the course of a conversation, a speaker uses the noun ‘apple’,
then there must be some resource situation that supports the fact that the object
referred to is indeed an apple, and if challenged the listener might well agree that
there will be such a situation, but the identity of that resource situation is not in
general important.

18 SPEAKER’S CONNECTIONS AND TENSED VERBS

Consider the following sentences.

Mary is running.
Mary was running.
Mary will run.

In each case, the meaning of the word ‘run’ (ignoring the morphological differ-
ences between ‘run’, ‘runs’, ‘running’) connects this word to the same relation, R,
the relation of running. In using a particular tense of this verb, the speaker is pro-
viding a reference to a particular time, the time at which the running takes/took
place. Situation semantics accounts for this by means of the speaker’s connections
function. Thus,

• cu(is) = tu

• cu(was) = t where t ≺ tu

• cu(will) = t where tu ≺ t.

The last two often occur in the context of an existential quantification over t.

19 THE MEANING OF SINGULAR NOUN PHRASES

We shall restrict attention to meaning-in-use, and leave it to the reader to supply
the more general notion of abstract meaning (the link between the utterance type
and an appropriate object-type, that induces the meaning-in-use).

We commence with definite descriptions. For example:

(I) The man in a black hat.

(II) The President of the United States.

(III) The King of France.

Each of these can be used to denote, or refer to, a specific individual. Such
usage of a definite description is known as the referential use, which we consider
first.

In each of the above three examples then, if we assume the phrase is used to refer
to a particular individual, the question arises: where is that individual, i.e. what
situation(s) is the individual a constituent of? Clearly, he need not necessarily be
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a constituent of the utterance situation, or even the larger, embedding situation.
In the case of example (I), an utterance of this phrase could well have the relevant
individual present in the embedding situation, but most utterances of (II) will not
be made in the presence of the US President. And of course no contemporary
situation can include an individual that fits the description in (III), since there is
no current King of France.

Rather, in making (referential) use of a definite description

α = the π

in the utterance situation, u, the speaker is making use of some resource situation,
r = cresu (α), of which the requisite individual is a constituent.

So the meaning-in-use of α, ‖α‖, links u to an individual a = cu(α) such that:

1. r |=≪ Π, a, lΠ, tΠ, 1 ≫ ; and

2. a is the unique individual in r with property (i),

where Π is the property (possibly complex) that corresponds to π, namely the
property of being a π, and where lΠ and tΠ are the location and time associated
with Π if this is location or time dependent.

That is to say, for any given situation u and individual a,

u‖the π‖a if and only if

u : U(the π) and a satisfies (i) and (ii), where r = cresu (the π).

Thus, in the case of example (I), suppose this sentence is uttered at a party, and
it is this party (or maybe some time interval within this event) that we take to
be the utterance situation, u. Then the legitimate utterance of this phrase, with
reference to the situation u itself as resource situation, will require that there is a
man in u wearing a black hat, and moreover there is only one such man.

On the other hand, if we take u to be some conversation that is going on at
the party, say a conversation about the rock group playing at the other end of the
room, then the phrase (I) may be legitimately uttered provided that precisely one
man in the rock group is wearing a black hat, even though at the party as a whole
there may be many men wearing black hats. This is because the conversation itself
determines an appropriate resource situation, namely the situation comprising the
rock group.

In either case, the entire party as a resource situation or the rock group as a
resource situation, the speaker’s connections provide a resource situation, r, in
which there is exactly one man wearing a black hat (i.e. possessing the complex
property associated with the phrase ‘man in a black hat’, that is to say, being
a man in a black hat), and then the meaning of the definite description (I) links
the utterance situation u to this particular individual.

Returning now to example (II), this differs from (I) only in that the resource
situation will in general be quite distinct from the utterance situation. In fact,
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for most (referential) utterances of (II), the ‘default’ resource situation will be the
entire USA over some period of time, a situation that may include the utterance
situation or be quite disjoint from it.

Finally, sentence (III) is different from the other two in that there is, currently,
no individual in the world that fits this description: there is no King of France.
Thus a legitimate referential utterance of this phrase can only be made with ref-
erence to a resource situation located in the past, at a time when there was such
a person

The meaning-in-use of an indefinite description (used referentially) such as

A black cat

or

A small town in Germany

is defined in a similar way to that of a definite description, the only difference
being that the uniqueness condition (clause (ii) in the above) is not required.

Other singular noun phrases are handled similarly. For instance, when used
referentially by an individual KD, a phrase such as

my dog

functions very much like a definite description, in that there must be a resource
situation, r, in which there is one dog, d, that, at the appropriate time t, belongs
to KD, that is to say

r |=≪dog, d, t, 1 ≫ ∧ ≪owns, KD, d, t, 1 ≫

and the meaning of this phrase links the utterance situation with that dog.

20 SENTENCE MEANING

Consider an utterance situation, u, in which a speaker, au, utters a sentence, Φ,
to a single listener, bu, at a time tu and a location lu. The situation u may be
part of a larger, discourse situation, d. (Otherwise we take d = u.) The situation
d is part of some (possibly larger) embedding situation, e, that part of the world
of direct relevance to the utterance. During the utterance, the speaker may refer
to one of several resource situations. The utterance u will determine a described
situation, su = su(Φ).
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For definiteness, take the utterance of the single assertive sentence

Φ : Keith bought a dog.

Factors about the utterance situation, u, should, if this utterence is to succeed
in imparting to the listener the information Jan wants to convey, determine a
unique individual k = cu(Keith) such that for some resource situation rk =
cres
u (Keith):

(1) rk |=≪person, k, tk, 1 ≫ ∧ ≪named, k, Keith, tk, 1 ≫

(2) k is the only such individual in rk

where, according to the overall context, either tk includes tu or else tk includes
the time t introduced below.

The meaning of the word ‘bought’ relates Jan’s usage of this word to a relation
‘buys’, and the usage of the past tense determines that for some time, t, preceding
tu:

(3) su |=≪buys, k, p, t, 1 ≫

where p is as below.
Finally, for the utterance to be true, there must be an individual p and a resource

situation rp = cres
u (a dog) such that

(4) rp |=≪dog, p, t, 1 ≫

(5) su |=≪buys, k, p, t, 1 ≫ .

Let’s examine the various components of this analysis, beginning with the re-
source situation rk. In making her utterance the way she does, Jan presumably
assumes that the listener has some (possibly quite miminal) information about rk,
in particular the information that there is an individual k′ such that:

(6) rk |=≪person, k′, tk, 1 ≫ ∧ ≪named, k′,Keith, tk, 1 ≫

(7) k′ is the only such individual in rk.

It is not necessary that the listener can identify the k′ here with the individual,
k, Jan is referring to, though Jan might well be assuming the listener has such
knowledge.

The assumption by Jan of a certain shared knowledge about the resource situ-
ation, rk, is what enables her to use the name ‘Keith’ the way she does. Though
she herself may well have a very extensive stock of information about rk, the lis-
tener’s knowledge could be quite meager. It might only amount to the two items
(6) and (7) above. More likely, the listener’s knowledge of the rules governing
English proper names would allow him to conclude in addition that

(8) rk |=≪male, k′, tk, 1 ≫ .
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A fairly cursory knowledge of Jan’s family circumstances might also provide the
listener with the further information

(9) rk |=≪husband-of, k′, au, tk, 1 ≫ .

The listener then, requires only quite minimal knowledge about rk in order for
Jan’s usage of the word ‘Keith’ to be informational. But notice that Jan too
actually needs to draw on very little information about rk in order to make this
utterance.

Though more traditional, AI-oriented approaches to this issue might refer to rk

as a ‘Keith-file’, this would be misleading, in that use of the word ‘file’ suggests a
list of facts about Keith, a list to which the speaker and listener may each add new
information, and through which they each search for information. This is not at
all what is meant here. Rather, associated to this guy Keith is a certain situation
rk, and as the occasion demands, different people can draw on various items of
information about rk (in terms of our ontology, we might say they can utilize
various compound infons, σ, such that rk |= σ ). The situation rk remains constant
here, a fixed situation, part physical and part abstract, intimately associated with
Keith. We could, if we wished, refer to the collection of infons that the speaker
and listener each know to be supported by rk, as the speaker’s ‘Keith-file’ and the
listener’s ‘Keith-file’, respectively. In which case these files are dynamic entities
that change with time. But the situation rk remains fixed.

Turning next to Jan’s utterance of the word bought, in keeping with our overall
treatment of relations in this study, assume that both the speaker and the listener
associate with this word the same relation, buys, a complex, structured object
relating a number of arguments.

Now look at Jan’s usage of the phrase a dog. This is likewise linked to a certain
situation rp, a situation associated with the dog Keith bought, a situation that
supports, among other things, the fact of that dog being a dog.

Notice that Jan may or may not have any direct knowledge of just which dog
Keith bought. All we can say as theorists is that there must be such a p and an
associated resource situation rp. The use of the indefinite article leaves aside all
questions as to the identity of the dog.

Thus, Jan’s utterance refers to a situation in which there are two individuals,
k and p. The individual k is referred to directly in the utterance, and facts about
the resource situation rk are required in order for the utterance to convey the
information Jan intends of it (assuming the obvious intent, discussed below). The
individual p is not referred to in the utterance, nor is the resource situation rp.
There must of course be such an individual, and associated with that individ-
ual there will be a resource situation, rp. But Jan’s utterance does not identify
them the way it does the individual k and the situation rk. This distinction will
be highlighted in the following discussion about the informational content of the
utterance.

Turning now to that informational content, in the most straightforward case,
the item of information that Jan wants to convey by means of her utterance is what
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is referred to as the propositional content of the utterance. This is the proposition

su |= ∃ṗ∃ṫ≪ buys, k, ṗ, ṫ, 1 ≫

where ṗ is a parameter for a dog and ṫ is a parameter for a time period prior to
tu, for example ṫ = TIM56 ↾≪≺,TIM56, tu, 1 ≫.

Notice that this content has as constituents the described situation, su, the
individual k, and the relation buys. The speaker makes explicit reference both to
the individual k and the relation buys. The described situation, su, is not referred
to in the utterance. Rather the speaker’s connections put su into the propositional
content. Neither the actual time of the buying nor the actual dog bought get into
the propositional content.

Contrast this with an utterance of the sentence

Ψ : Keith bought the dog.

Here the propositional content is

su |= ∃ṫ≪ buys, k, p, ṫ, 1 ≫ .

This time the particular dog, p, gets into the propositional content as an articulated
constitutent of the utterance. But where does this individual come from? The
utterance of this one sentence alone does not serve to identify p. Rather some
previous utterance, or some embedding circumstance, has to pick out the particular
dog Jan refers to. Normal language use requires that an utterance of sentence Ψ
is indeed either preceded by an utterance that supplies the individual, p, referred
to in Ψ by the phrase ‘the dog’, or else the utterance is made in a circumstance
where other factors serve to make this identification, such as the utterance being
made while the speaker and listener are jointly viewing a scene in which there is
exactly one dog.

Notice that the fact that the person, k, referred to in any veridical utterance
of Φ, is named ‘Keith,’ does not contribute directly to the meaning of Φ, nor
does the fact that the individual bought, p, is a dog, although these are part of
the meanings of the two words concerned. Rather these facts are reflected in our
framework by virtue of the way parameters operate. Any veridical utterance of Φ
is constrained to have the word ‘Keith’ refer to a person named ‘Keith’ and the
word ‘dog’ refer to a dog.

The propositional content of the utterance of an assertive sentence is our the-
ory’s way of getting at the principal item of information that, under normal cir-
cumstances, the speaker intends to convey by the utterance. As such it is closely
related to the meaning of the sentence, which we turn to next.

The abstract meaning of a sentence is an extrinsic feature of the sentence,
independent of any particular context of utterance. For the present example, the
abstract meaning of the sentence Φ is an abstract link, M(Φ), that connects the
situation-type
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U = [u̇ | u̇ |=≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪utters, ȧu,Φ, ˙lu, ṫu, 1 ≫ ∧

≪refers-to, ȧu, Keith, k̇, ˙lu, ṫu, 1 ≫]

and the situation-type

E = [ṡ | ṡ |= ∃ṗ∃ṫ≪buys, k̇, ṗ, ṫ, 1 ≫]

where k̇ is a parameter for a person named ‘Keith’, ṗ is a parameter for a dog, and
ṫ is a parameter for a time period preceding ṫu, say ṫ = TIM5 ↾≪≺,TIM5, ṫu, 1 ≫.

The meaning-in-use of Φ, ‖Φ‖, should link any particular utterance of Φ with
the fact of the world (or relevant part thereof) being the way Φ says it should be.
That is to say it is the relation between situations u and v, induced by M(Φ),
such that:

u‖Φ‖v if and only if [u : U ] & [su(Φ) ⊆ v] & [v : E]

where U [M(Φ)]E.
The parametric, compound infon that determines the type E above is known

as the descriptive content of Φ, denoted by C(U). That is:

C(U) = ∃ṗ∃ṫ≪ buys, k̇, ṗ, ṫ, 1 ≫ .

It is denoted by C(U) rather than C(Φ), since the descriptive content is really a
function of the type of an utterance of Φ, rather than the sentence Φ. In particular,
it is U that provides the link between the word ‘Keith’ in Φ and the parameter
k̇ in C(U). In practice, however, this distinction is often blurred: C(Φ) being
understood to mean the descriptive content of Φ with respect to the type of an
utterance of Φ.

The descriptive content captures the ‘information template’ that produces the
principal item of information conveyed by any veridical utterance of the sentence
(that is to say, the information about the described situation that consitutes the
propositional content of the utterance) when the various parameters are anchored
to the appropriate objects.

Thus the descriptive content provides an intermediate layer between the syn-
tactic unit Φ and the propositional content of an actual utterance of Φ. It allows
us to account for Barwise and Perry’s efficiency of language; in this case the fact
that the same sentence Φ can be used over and over again, by different speakers,
referring to different Keiths and different dogs, to convey the ‘same’ item of infor-
mation each time, namely that the particular Keith referred to bought some dog.
The descriptive content is thus a uniformity across all propositional contents of all
veridical utterances of Φ.

Notice that the descriptive content transcends the actual syntax of Φ. Rather
it gets at something deeper than syntax. For example, translations of Φ into
different languages will all have the same descriptive content. The sentence is a
string of symbols, constructed in accordance with certain rules; the descriptive
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content is a parametric, compound infon, a genuine object in our ontology. A
veridical utterance of the sentence provides anchors for the various parameters
in the descriptive content, and the result is that item of information about the
described situation that constitutes the propositional content of the utterance.

In other words, if σ = C(Θ) is the descriptive content of an assertive sentence
Θ, then for any utterance, u, of Θ, if fu denotes the anchor that u provides for
the parameters in σ, then the propositional content of this utterance is

s |= σ[fu]

where s = su(Θ) (the described situation).

The anchors for the parameters in C(Θ) are clearly related to what we have
called the speaker’s connections for some of the words that go to make up Θ. If α
is a word or phrase in Θ and if the speaker’s connections link α to the individual
cu(α), and if ȧ is the parameter in C(Θ) that corresponds to α, then

fu(ȧ) = cu(α).

The descriptive content of a sentence is essentially a parametric object. Ac-
cording to the convention adopted in this article that there are no parameters for
relations, any descriptive content will involve relations, but by and large all other
constituents will be parameters. Exceptions would be where a word or phrase has
a fixed meaning, independent of context of utterance, such as ‘Earth’ or ‘Mars’ or
‘Principia Mathematicae’. (Though it is possible to argue for the context depen-
dency of each of these.)

Further discussion of sentence meaning requires the concept of ‘impact’ of an
utterance, introduced later.

21 ATTRIBUTIVE USES OF DEFINITE AND INDEFINITE
DESCRIPTIONS

Hitherto our discussion of both definite and indefinite descriptions has been in
terms of what is generally known as the referential use, where the description is
used to refer to a particular individual — a uniquely specified individual in the
case of a definite description, not uniquely identified in the case of an indefinite
description. There are, however, other uses of noun phrases.

Starting with definite descriptions, consider the following sentences, all involving
one of our original examples of a definite description:

1. The President of the United States lives in Washington.

2. George Bush is the President of the United States.

3. George Bush, the President of the United States, lives in Washington.
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Sentence 1 has two quite distinct readings. When the noun phrase is used
referentially, to refer to the particular individual who happens to be the President
of the United States at the relevant time, the propositional content of the utterance
(u) is of the form

su |=≪lives-in, p, c, tu, 1 ≫

where

p = cu(the President of the United States)

and

c = cu(Washington).

[In fact c is the city of Washington DC (a situation in our ontology) and, if the
utterance is made at the time of writing this article, in 2004, p is President George
Bush (an individual in our ontology).]

In using the phrase ‘the President of the United States’, the speaker
makes use of a resource situation r, possibly the whole of the United States, to
identify the particular individual p, that is to say, to determine the value of the
function cu for this particular noun phrase.

The second reading of sentence 1 is the attributive reading, where the sentence
has a meaning roughly the same as:

The President of the United States, whoever it is, always lives in Wash-
ington.

Under this reading, the phrase ‘the President of the United States’ does
not refer to a particular individual, but rather to the general property of being a
President of the United States. Under this reading, an utterance, u, of sentence 1
expresses a constraint, and the propositional content of u is:

su |= (S ⇒ T )

where

S = [ṡ | ṡ |=≪US-President, ṗ, ṫ, 1 ≫]

T = [ṡ | ṡ |=≪lives-in, ṗ, c, ṫ, 1 ≫]

where su, the described situation, is probably the entire United States, and where
c is the city of Washington DC, as before.

Turning now to sentence 2, there is clearly no meaningful reading of this sentence
in which the definite description ‘the President of the United States’ is used
referentially, since that would just amount to the triviality

George Bush is George Bush.
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Under the attributive reading, the phrase ‘the President of the United

States’ determines a predicate, the property of being the President of the United
States, and the propositional content of an utterance, u, of sentence 2 is:

su |=≪US-President, p, tu, 1 ≫

where p = cu(George Bush) is the individual (President) George Bush.
Finally, sentence 3 provides an example of an appositive use of a definite descrip-

tion. Uttering the phrase ‘the President of the United States’ as part of
sentence 3 provides additional information about the individual named ‘George

Bush’ referred to by the subject of the sentence. Among other things it serves to
specify precisely which George Bush the speaker has in mind.

The propositional content of an utterance, u, of sentence 3 will be:

su |=≪lives-in, p, c, tu, 1 ≫ ∧ ≪US-President, p, tu, 1 ≫

where p = cu(George Bush) is the individual (President) George Bush and
c = cu(Washington) is the city of Washington DC

Notice that, in the case of the attributive reading of sentence 1, the definite
description picks out a function, P, the function that associates with each time t
the current President of the United States at time t, and the propositional content
amounts to the claim that for any time t:

su |=≪lives-in,P(t), c, t, 1 ≫ .

A particularly striking example of such a functional use of a definite description
arises in connection with the so-called Partee Puzzle. This purports to show that
it is not always possible to substitute equals for equals, by considering the pair of
sentences:

• The temperature is ninety.

• The temperature is increasing.

A naive substitution of equals for equals in this pair of sentences produces the
absurdity

• Ninety is increasing.

Of course, such a substitution is not possible, and the question then is “Why not?”
The answer is that in the first sentence, the definite description ‘The tem-

perature’ is used referentially to refer to the actual temperature at the time of
utterance, whereas in the second sentence the same definite description is used
functionally to refer to the function that links the time to the temperature at that
time.

Broadly similar remarks to all the above can be made about indefinite descrip-
tions. For example, paralleling the three examples of sentences involving definite
descriptions, the following exhibit the same overall features:
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1. A Scotsman wears a kilt.

2. Angus is a Scotsman.

3. Angus, a Scotsman, lives in Oxford.

22 IMPACT

Another feature of sentence utterance considered in situation semantics is the im-
pact. Every sentence utterance has an impact, regardless of whether that sentence
is assertive or not.

As before, u is an utterance situation, in which a speaker, au, utters a sentence,
Φ, to a single listener, bu, at a time tu and a location lu. In general, u is part
of a larger, discourse situation, d. The discourse, d, is part of a (possibly larger)
embedding situation, e, that part of the world of direct relevance to the discourse.
The sentence Φ is not necessarily an assertive sentence.

Denote by t+u some time following the utterance. At the current level of gener-
ality, it is not possible to say exactly how much later than tu this time t+u is, nor
what its duration is. It depends very much on context. In the case of a command
that should be obeyed immediately, t+u could be an interval immediately following
the utterance, the time when the command should be obeyed. In the case of the
utterance, u, made as part of an ongoing discourse, d, a common value for t+u will
be tv, where v is the next sentence utterance in the discourse.

The impact of u, I(u), consists of compound infons, σ, built up from basic
infons of the form ≪R, . . . , t, i≫, where t 1 t+u , such that:

• e |= σ

• u � [e |= σ] (more precisely, u � {≪ |=, e, σ, 1 ≫}).

Intuitively, the impact of an utterance is the (relevant) change in the embedding
situation that the utterance brings about. (The parenthetic use of the word ‘rel-
evant’ here is to exclude such ‘irrelevant’ changes as the movement of molecules
in the air caused by the utterance, etc.). For example, in the case where Φ is
an assertive sentence, where the speaker (au) has the straightforward intention of
conveying to the listener (bu) the information comprising the propositional con-
tent, p, of u, and where this intention is fulfilled (i.e. the listener does acquire that
information), I(u) contains the infon

≪has-information, bu, p, t
+
u , 1 ≫ .

Notice that the speaker’s intention here is in terms of the listener having certain
information. We do not refer to the belief or knowledge of the listener. To do
so would be quite inappropriate. There are many cases where information is
conveyed without the listener, or indeed the speaker, either knowing or believing
that information. For example, the speaker or listener might be a computer,



Situtation Theory and Situation Semantics 629

which can acquire and dispense vast amounts of information but which neither
believes nor knows anything. Or again, one suspects that a great many television
newsreaders neither know nor believe all the information they read to camera.
Conveying information does not require belief or knowledge of that information,
though it does of course require that the speaker has that information.

One obvious property of the impact is that it serves to distinguish between
certain of Searle’s five illocutionary acts.

In the case of a directive, one might imagine that the impact will include the
listener’s act of compliance or non-compliance to the command.

For example, if Naomi says to Melissa

Close the door

then in the case where Melissa obeys the command, the impact of this utterance,
u, could include the infon

≪closes, Melissa, D, lD, t+u , 1 ≫

where D = cu(the door), or, if Melissa does not obey the command, it could
include the infon

≪closes, Melissa, D, lD, t+u , 0 ≫ .

However, this is not quite right. For as far as the act of communication is con-
cerned, the utterance of a directive has succeeded if, as a result of the utterance,
the listener forms the intention to perform the requisite action. Some other fac-
tor(s) might frustrate the fulfillment of this intention, but that is independent of
the success or failure of the speech act.

Accordingly, what the impact of Naomi’s utterance, u, will contain is either the
infon

≪of-type,Melissa, I(D), t+u , 1 ≫,

or the infon

≪of-type,Melissa, I(D), t+u , 0 ≫

where I(D) is the object-type of having an intention to close the door D.
Whether the directive is in fact obeyed or not is not reflected in the impact.

The impact is concerned exclusively with the effects of the utterance as a speech
act. But notice that it is the nature of a directive that exactly one of the above
two intentional-state infons must be in the impact. There is no ‘neutral’ position,
whereby the impact is void of any infon pertaining to Melissa’s intention regarding
the closing of the door.

That is to say, one feature of a directive is that if u is an utterance of a command
‘Do K’ then precisely one of

≪of-type, bu, I(K), t+u , 1 ≫
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or the infon

≪of-type, bu, I(K), t+u , 0 ≫

is in I(u), where I(K) is the object-type of having an intention to perform the
action K.

For a commisive, the impact will be the formation by the speaker of the intention
to perform some future action. Thus if Melissa says to Naomi

I will close the door

then the impact of this utterance, u, will include the infon

≪of-type, Melissa, I, t+u , 1 ≫

where I is the object-type of having an intention to close the door.
The impact of a declarator will be that act brought about by the utterance.

Thus, if Keith says to Dale:

You are now in charge of the department

then the impact of this utterance, u, includes the infon

≪in-charge-of, Dale, D, t+u , 1 ≫

where D = cu(the department).
The above examples illustrate the prominent and characteristic role played by

the impact in an utterance of a directive, commisive, or declarator. The impact is
not such a prominent feature of the utterance of an assertive or an expressive.

Indeed, at the present level of treatment, the impact does not distinguish be-
tween assertives and expressives. Both assertives and expressives are considered
purely in terms of the information conveyed, in the sense of propositional content.

But this does not mean that the utterance of assertive or expressive sentences
does not have an impact, as the following discussion indicates.

From the point of view of discourse analysis, one important feature of the impact
is that it enables us to handle the way that, as a discourse proceeds, referents are
supplied for subsequently used pronouns and otherwise ambiguous proper names.

For instance, consider the example mentioned earlier, where a speaker says:

The farmer bought a donkey. He beat it.

The discourse, d, here comprises two sentences. Let u1 be the utterance of the
first sentence, u2 that of the second. The embedding situation, e, extends the
discourse and includes the farmer and a donkey. The utterance u1 introduces the
two objects

F = cu1
(The farmer) and D = cu1

(a donkey)

into the discourse situation. Then, the utterance u2 may take
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cu2
(He) = F and cu2

(it) = D.

In this case, the impact of u1, I(u1), includes the infons

≪salient-in, F, d, t+u1
, 1 ≫

≪salient-in, D, d, t+u1
, 1 ≫ .

In general, if u is an utterance of a word/phrase/sentence, α, such that one or
more of cu(α), cres

u (α), or (in the case where α is a sentence) su(α) is defined, then
if a is any one of these objects, we have

≪salient-in, a, d, t+u , 1 ≫∈ I(u)

which implies that

e |=≪salient-in, a, d, t+u , 1 ≫ .

Moreover:

• if a = cu(α) is an individual that is referred to by α in u, then

≪refers-to, au, α, a, tu, 1 ≫∈ I(u)

• if a = cu(α) and r = cres
u (α), then

≪resource-for, r, a, tu, 1 ≫∈ I(u)

• if α is a sentence and s = su(α), then

≪speaking-about, au, α, s, tu, 1 ≫∈ I(u).

The function I is such that, if u1 is a subutterance of u2, then I(u1) ⊆ I(u2),
whenever both these sets are defined.

Consider now the following discourse (set in the late 1980s):

Ed : Did you see the 49ers game yesterday?

Jan: Yes, I think Montana is wonderful.

Ed : Yes, his last pass to Rice was amazing.

Let u1 be the first utterance, that of Ed, let u2 be the second, Jan’s, and let u3 be
Ed’s final utterance. Let t1, t2, t3 be the time intervals corresponding to each of
these utterances, respectively, and let Φ1,Φ2,Φ3 be the three sentences uttered.

The impact of u1 includes the introduction into the discourse situation of the
San Fransisco 49ers, sfo, as the resource situation, and

G = yesterday’s 49ers game
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as the described situation, the focus of the ensuing discourse.
Thus, I(u1) includes the following infons:

≪salient-in, sfo, d, t+1 , 1 ≫

≪salient-in, G, d, t+1 , 1 ≫

≪refers-to, Ed, the 49ers game, G, t1, 1 ≫

≪resource-for, sfo, G, t1, 1 ≫

where in this case t+1 denotes the time interval comprising both t2 and t3.
In asking the question he does, Ed is assuming that Jan is familiar with the

49ers, that she has access to the situation sfo. In making the initial ‘Yes’ response
she does, Jan confirms that she does indeed have such access. Otherwise, a more
appropriate response would have been “Who?” Likewise, her initial “Yes” shows
that she is also familiar with the situation G, since she would otherwise have
responded “No”.

Now, among the facts that Jan knows about the situation sfo is that the quar-
terback is named Joe Montana. Thus, in making her response, u2, Jan can take

cu2
(Montana) = M and cres

u2
(Montana) = sfo

where M is the individual Joe Montana.
In turn now, the impact of u2 includes the introduction of the individual M

into the discourse situation. That is to say, I(u2) includes the infon

≪salient-in, M,d, t+2 , 1 ≫

where t+2 denotes the time interval t3.
So, in making the utterance u3, Ed can take

cu3
(his) = M

in order to make his comment on the pass made by Montana to wide-receiver Jerry
Rice.

In the absence of Ed’s first utterance however, Jan’s remark could equally well
have been about the State of Montana. It was the utterance of u1, with its impact
including the introduction of the situation sfo into the embedding situation, that
prevented any such breakdown in communication due to the ambiguity of the word
‘Montana’.

Likewise, Ed’s knowledge of the situation sfo included the fact that its star
wide-receiver is a man, R say, called ‘Rice’, and thereby allowed him to take

cu3
(Rice) = R.

The success of u3 (in terms of the conveyance of information) depends upon Jan,
the listener, also knowing that the 49ers have a player called ‘Rice’. Otherwise, she
might have taken the referent of the word ‘rice’ to be the white, granular substance
found on the supermarket shelves, and not the person R that Ed was talking about.
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(Well, this is conceivable — the word is ambiguous.) More likely though, Jan’s
background knowledge of ball games would have forced her to conclude that Ed’s
use of the word ‘rice’ must refer to some person by that name, even if she had
never heard of that person before. Situation semantics can handle this possibility
as well.)

It would be easy to pursue the above investigation to far greater depths. But
the intention here is not to carry out a linguistic analysis, rather to indicate how
the formal tools of situation theory, including the impact of an utterance, can be
used to perform such an analysis.

23 SITUATION SEMANTICS AND SEARLE’S CLASSIFICATION OF
SPEECH ACTS

The meaning of an assertive sentence has already been defined and investigated.
But what is the meaning of other forms of sentence in the Searle classification, the
directives, commisives, declarators, and expressives? The machinery we now have
available is not only adequate for dealing with utterances of each of these types,
it also provides features that distinguish utterances of one category from those of
another.

As before, u is an utterance situation in which a speaker, au, utters a sentence,
Φ, to a single listener, bu, at a time tu and a location lu.

Let U be the type of an utterance of Φ by au to bu, namely:

U = [u̇ | u̇ |= ≪speaking-to, ȧu, ḃu, ˙lu, ṫu, 1 ≫ ∧

≪ utters, ȧu,Φ, ˙lu, ṫu, 1 ≫].

Start with the expressives, since from the standpoint of our situation semantics
these turn out to be very similar to the assertives.

Suppose that the sentence Φ is an expressive:

‘I am Π’

where Π is some psychological state, such as sorrow or anger. Let E be the
situation-type

E = [ṡ | ṡ |=≪of-type, ȧu, B(Π), ṫu, 1 ≫]

where B(Π) denotes the object-type of being in the state Π. Then M(Φ), the
abstract meaning of Φ, is the link between the types U and E.

Turning to the meaning-in-use of Φ, this will be a relation linking utterances
of Φ (i.e. situations of type U) to situations extending the described situation
that are of type E. So one question to answer is what are the possible described
situations? The answer is implicit in the nature of an expressive. In uttering an
expressive, the speaker, au, describes her own state, so that will be the described
situation, su(Φ). Then, given situations u and v we shall have
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u‖I am Π‖v if and only if

[u : U ] & [su(Φ) ⊆ v] & [v |=≪of-type, au, B(Π), tu, 1 ≫].

In the three remaining categories of utterance, the directives, commisives, and
declarators, the main function is not the conveyance of information, as was the case
with the assertives and expressives; rather it is the regulatory effect the utterance
has on action, either of the speaker or the listener. For such sentences, the impact
of the utterance is the most significant feature, not the propositional content.

Consider first the case where the sentence Φ is a directive:

‘Do K’.

Let E be the type

E = [ṡ | ṡ |= ≪of-type, ḃu, I(K), ṫ
+
u , 1 ≫ ∧

≪ �, u̇, (ṡ |=≪of-type, ḃu, I(K), ṫ
+
u , 1 ≫), 1 ≫]

where I(K) is the object-type of having an intention to perform the action K.
Then the abstract meaning of the sentence Φ, M(Φ), is defined to be the link

between the two types U and E. The intention here is that the meaning of a
directive is that link which, for a given utterance of the directive, connects the
utterance with its compliance (in the sense of forming the intention to do as
instructed). This explains the second component in the definition of the type E,
which we have expressed in an abbreviated fashion for clarity. The meaning must
reflect the fact that the intention to perform the action K that figures in Φ has to
arise by way of complying with the directive.

The meaning-in-use of Φ, induced by M(Φ), is a relation, ‖Φ‖, between utter-
ances, u, of Φ and certain situations v that extend the described situation, su(Φ).
Now the situation su(Φ) is identified by features of the utterance itself. For as-
sertives it can be any situation whatever. For expressives the described situation
is constrained to be the speaker’s state. In the case of a directive, the described
situation must be the listener’s state. Then for any two situations u and v:

u‖ Do K‖v if and only if

[u : U ]&[su(Φ) ⊆ v]&[v |= ≪ of-type, bu, I(K), t+u , 1 ≫ ∧
≪ �, u, (v |=≪ of-type, bu, I(K), t+u , 1 ≫), 1 ≫].

Suppose now that Φ is a commisive:

‘I will K.’

Let E be the type

E = [ṡ | ṡ |=≪of-type, ȧu, I(K), ṫ
+
u , 1 ≫]
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where again I(K) is the object-type of having an intention to perform the action
K.

The abstract meaning of Φ is again defined to be the link between the two types
U and E.

Turning to ‖Φ‖, if we are given a particular utterance, u, of the commisive Φ,
the described situation, su(Φ), will be the speaker’s state, and the meaning-in-use
of Φ relates the situation u to those situations v extending su(Φ) in which the
speaker forms the intention to do as promised in Φ:

u‖I will K‖v if and only if

[u : U ] & [su(Φ) ⊆ v] & [v |=≪of-type, au, I(K), t+u , 1 ≫].

Finally, suppose Φ is a declarator:

‘I declare K’.

Let E be the type

E = [ṡ | ṡ |=≪ T (K), ṫ
+
u , 1 ≫]

where T (K) expresses that fact that things are as the utterance of Φ declares them
to be. For example, if

K = ‘You are in charge’

then

T (K) = in-charge, bu.

Then M(Φ) is the link between U and E.
For ‖Φ‖, if we are given an utterance u of Φ, then there is no general rule as to

what is the described situation, su(Φ). It depends very much on K. In the case of
the example just given, su(Φ) will be whatever it is the listener is put in charge
of, say, the department. Then, given situations u and v, we have:

u‖You are in charge‖v if and only if

[u : U ] & [su(Φ) ⊆ v] & [v |=≪in-charge, bu, t
+
u , 1 ≫].

24 COMPOSITIONALITY

This brief article does not sent out to provide a full-blown account of the way that
the meaning of a composite sentence or utterance is built up from the meanings
of the various components. Certainly the high degree of context dependency of
this process would seem to render as a hopeless dream any kind of development
analogous to Tarski’s semantics of predicate logic. But the tools described are
adequate for an analysis of particular instances of compositionality, so it will be a
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useful exercise to investigate two of the simplest, and most basic kinds of example:
conjunction and disjunction. We restrict attention to meaning-in-use.

Start with conjunction. Let u be an utterance situation, in which a speaker au

utters a conjunctive sentence [Φ and Ψ] to a single listener bu at a time tu and a
location lu. In general, u is part of a larger, discourse situation d. The discourse
d is part of a (possibly larger) embedding situation e, that part of the world of
direct relevance to the discourse. Let u1 be the utterance situation in which the
clause Φ is uttered, u2 that pertaining to Ψ.

Naively, one might expect that, given assertives Φ and Ψ, the meaning-in-use
of the sentence [Φ and Ψ] is given by

u‖Φ and Ψ‖v if and only if u1‖Φ‖v and u2‖Ψ‖v.

This is indeed the case, but the superficial resemblance this has to the analogous
Tarskian rule obscures some considerable complexity.

Suppose for instance the sentence uttered is:

Sid loves Nancy and she loves him.

Then the above reduction gives

(∗) u‖Sid loves Nancy and she loves him‖v if and only if
u1‖Sid loves Nancy‖v and u2‖she loves him‖v.

The first conjunct here is straightforward enough. The speaker’s connections
should fix two individuals, S = cu1

(Sid) and N = cu1
(Nancy), such that (in

particular)
u1 |= ≪refers-to, au1

, Sid, S, lu1
, tu1

, 1 ≫ ∧
≪refers-to, au1

, Nancy, N, lu1
, tu1

, 1 ≫

and
v |= ≪loves, S,N, tu1

, 1 ≫ .

The second clause involves two pronouns, ‘she’ and ‘him’. The referents for these
pronouns must be supplied by the utterance. The most natural case would be
where

cu2
(she) = N and cu2

(him) = S

and then part of the requirement on v imposed by (∗) is

v |=≪loves, N,S, tu1
, 1 ≫ .

In this case the impact of the utterance u1 provides the relevant individuals to act
as referents for the pronouns used in u2. But there are other possibilities. The
utterance could pick out other individuals to be referents for these pronouns.

The meaning of disjunctive sentences, [Φ or Ψ], is similar to conjunctions.
Thus:

u‖Φ or Ψ‖v if and only if u1‖Φ‖v or u2‖Ψ‖v.

Remarks analogous to those made in the case of conjunction apply here as well.
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25 QUANTIFICATION

One of the most significant uses of parameters in situation theory arises in the
semantics of natural language quantification. For example, let Φ be the sentence

Every logician admires Quine.

Let u be an utterance of Φ. The first question I ask is what is the described
situation, e = su(Φ) ? Well, in the absence of any previously established context
this will surely be the world, w, or at least some part of the world that pertains to,
and in particular includes, all logicians — say the academic world. In any event,
the propositional content of the utterance u will be of the form

e |=<compound infon>.

The question is, just what compound infon occurs here?
The first approach takes as the propositional content of the utterance, u, the

proposition:

e |= (∀ṗ)≪admires, ṗ, Q, t, 1 ≫

or, more precisely (recall the convention regarding quantification in compound
infons):

e |= (∀ṗ ∈ e)≪admires, ṗ, Q, t, 1 ≫

where ṗ is a partameter for a logician, Q is the individual W.V.O. Quine, and t
is the present time. (Taking t to be the time of utterance, tu, would be inappro-
priately restrictive in this connection. The time interval t will include tu but have
considerably longer duration. The utterance makes no specific reference to time,
though it is clearly intended to be about ‘the present time’ or perhaps ‘the present
epoch’.)

By virtue of the manner in which quantifiers operate on infons, this means that
for any anchor f for the parameter ṗ to an object p in e, it must be the case that

e |=≪admires, p,Q, t, 1 ≫ .

In order for f to be an anchor for ṗ, there must be a resource situation, r, such
that:

r |=≪logician, p, t, 1 ≫ .

But there is no requirement that r should be the same situation as e, or indeed
bear any particular relation to e. (Though if e is the world, then r will be a
subsituation of e, of course.) Indeed, all that is required is that to each p in e to
which ṗ can be anchored, there will be some such resource situation r = rp that
depends on p.
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Consider now the sentences

Φ1 : Every player touched the ball.

Φ2 : Every player ate a cookie.

Let u1 be an utterance of Φ1, u2 an utterance of Φ2.
Starting with Φ1, the described situation, su1

(Φ1), will be some ball game, say
e, and the propositional content of u1 will be

e |= (∀ṗ)(∃ṫ)≪touch, ṗ, b, ṫ, 1 ≫

where ṗ is a parameter for a player, b = cu(the ball), and ṫ is a parameter for
a time preceding tu1

. The game situation e will provide the resource situation for
all the individuals p to which the parameter ṗ can be anchored. That is to say, for
any anchor f of ṗ to an individual p in e, it will be the case that for some time t
within the time-span of e:

• e |=≪player-in, p, e, t, 1 ≫

• e |=≪touch, p, b, t, 1 ≫ .

The resource situation for the fact that t precedes tu1
is, as always, the world:

w |=≪≺, t, tu1
, 1 ≫

since this is the nature of the basic type ≺.
Turning now to the second sentence, Φ2, assuming the players eat the cookies

during the game, the described situation, su2
(Φ2), will be the game e, as before,

and the propositional content of u2 will be

e |= (∀ṗ)(∃ċ)(∃ṫ)≪eats, ṗ, ċ, ṫ, 1 ≫

where ṗ is a parameter for a person and ṫ is a parameter for a time preceding
tu2

, much as before, and where ċ is a parameter for a cookie. (The reading of Φ2

whereby every player eats the same cookie is too implausible to consider; rather,
assume that to each player there corresponds a cookie which that player, and only
that player, eats.)

Clearly, there is no reason to suppose the game situation e supports the facticity
of any particular individual being a cookie. Nor is it necessarily the case that
every cookie eaten by some player is of the same variety, with its cookieness being
supported by one and the same resource situation. Rather, for each individual
p in e to which ṗ may be anchored and each corresponding time t to which ṫ is
anchored, and for which, therefore

e |=≪player-in, p, e, t, 1 ≫

there will be an individual c and a resource situation rc, such that
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rc |=≪cookie, c, t, 1 ≫ .

Given the assumption that the players eat the cookies during the game e, then
the cookie c will be a constituent of e. But this is not necessarily the case. The
cookies could be eaten at some other time. For instance, they could be eaten
in the locker-room after the game is over at some time t′ preceding tu2

. To be
definite, consider the case where a previous utterance has established, by way of
its impact, a speaker’s connection to a time t′ when the cookies were eaten. Then
the described situation e′ will be a situation different from the game e, and the
propositional content of u2 will be:

e′ |= (∀ṗ)(∃ċ)≪eats, ṗ, ċ, t′, 1 ≫ .

Whatever the described situation turns out to be, the two points to notice are,
firstly, that the described situation may or may not provide the scope and resource
situation for the quantified parameters, and secondly, the resource situation for an
instance of the quantifier (∃ċ) is not necessarily the same as that for the instance
of (∀ṗ) to which it corresponds.

In the case where the cookies are eaten during the game, then the described
situation provides the scope of the quantifier (∀ṗ) and the resource situation for
each anchor of ṗ being a player in e. The described situation also provides the
scopes for the quantifiers (∃ċ) and (∃ṫ), but for neither of these quantifiers does it
provide the appropriate resource situation.

If, on the other hand, the cookies are eaten at some other time determined by
the speaker’s connections associated with some prior utterance, then the described
situation provides the scope for the quantifier (∀ṗ) but not the resource situation
for any anchor of ṗ being a player in the game.

Thus, the theory places no restrictions on the possible scope of quantifiers or on
the situations that can provide a resource for the anchor of a particular parameter.
It is up to the speaker to ensure that the context of utterance provides the right
connections to the scope of any quantifier and to the appropriate resource situa-
tions, where relevant. In the case of a cookie, this is clearly of little importance, at
least in the majority of cases. But establishing the relevant game situation e and
whether the cookies were eaten during the game or at some other time is critical to
the success of the utterance as a conveyance of information. Situation semantics
allows for, and reflects, all possibilities, but leaves the responsibility for effective
communication where it belongs — with the speaker.

So far we have considered just two kinds of quantifiers, for all and there exists.
In order to handle other quantifiers, some further development of the situation-
theoretic framework is necessary.

One solution is to enlarge the collection of compound infons by introducing
various generalized quantifiers. For example, we could allow the following con-
structions to figure as compound infons:

(Mẋ ∈ u)σ and (F ẋ ∈ u)σ



640 Keith Devlin

where σ is a compound infon, where (Mẋ ∈ u) denotes ‘for most ẋ in u’, and
where (F ẋ ∈ u) denotes ‘for few ẋ in u’. Some form of definition of what these
quantifiers actually mean would then be necessary of course.

An alternative approach is to regard quantifiers (at least those that arise explic-
itly in natural language) not as operators acting on infons, but rather as relations
within the theory’s ontology; in particular, as relations between types. Thus,
for example, among the relations we might have the basic five-place relations
∀,∃,M, F , and then the following would be infons:

≪ ∀, u, S, T, l, t, i≫ ≪ ∃, u, S, T, l, t, i≫

≪M,u, S, T, l, t, i≫ ≪F, u, S, T, l, t, i≫

where u is a set or situation and S and T are one-place types.
The first of these is the informational item that: if i = 1 then all objects in u

of type S are of type T , and if i = 0 then it is not the case that all objects in u of
type S are of type T (at location l and time t).

The second is the informational item that: if i = 1 then there is an object in u
of type S that is of type T , and if i = 0 then there is no such object (at l, t).

The third is the information that: if i = 1 then most objects in u of type S are
of type T , and if i = 0 then this is not the case (at l, t).

Finally, the fourth infon is the informational item that: if i = 1 then few objects
in u of type S are of type T , and if i = 0 then this is not the case (at l, t).

Since quantification is now of the infonic form

≪ Q, u, S, T, l, t, i≫

a situation is required in order to obtain a proposition

e |=≪ Q, u, S, T, l, t, i≫

so the quantification is situated in, and hence restricted to, e.
Using this new framework, let’s take a second look at the two previous examples.

The first of these is an utterance u1 of the sentence

Φ1 : Every player touched the ball.

Under the new framework, the analysis of this utterance goes as follows. As
before, the described situation, su1

(Φ1), is the game, say g. Let S, T be the
following object-types:

S = [ṗ | g |= ≪player-in,ṗ, g, 1 ≫]

T = [ṗ | g |= (∃ṫ)≪touches, ṗ, b, ṫ, 1 ≫]

where ṗ is a parameter for a person, ṫ is a parameter for a time prior to tu1
and

b = cu1
(the ball). Then the propositional content of the utterance u1 is:

g |=≪ ∀, g, S, T, 1 ≫ .
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Notice that the use of the same parameter ṗ in the two type-abstractions was
in order to help the reader. In practice, since the abstraction parameter in a
type-abstraction becomes ‘absorbed’, leaving solely an ‘argument role’, it does not
matter which parameter is used in each abstraction. Rather, it is the nature of
the relation ∀ that it links the argument roles of the two types.

One further remark that needs to be made at this juncture concerns the quan-
tification of the time parameter ṫ in the definition of the type T . This was done
using the quantification mechanism for forming compound infons, rather than in
terms of our new quantifier framework. This reflects the fact that an unarticu-
lated quantification over time that arises by virtue of verb tense, is what might be
called a ‘structural’ quantification. That is to say, verb tense mechanisms are part
of the basic structure of language that our ontological framework is intended to
handle: our ontology includes temporal locations and quantification over tempo-
ral locations in compound infons, and verb tense relates directly to this temporal
aspect of our framework. Such implicit quantification is not at all the same as
an articulated quantification, even one over time, such as an utterance u′

1 of the
sentence

Φ′
1 : Every player touched the ball many times.

In this case, the analysis would be as follows.
Let M be a ‘many’ quantifier. Let Tb be the type

Tb = [ṫ | g |=≪ touch, ṗ, b, ṫ, 1 ≫]

where ṫ is a parameter for a time prior to tu′
1

and ṗ is a parameter for a person. Tb

is the parametric type of all instances at which some person touches b (= cu′
1
(the

ball)) during the course of the game g.
Tb is a parametric type with parameter ṗ, so we can form the type

T = [ṗ | g |=≪M, g, TIM1, Tb, 1 ≫]

the type of all persons for which there are many instances in g at which that person
touches b. Then the propositional content of u′

1 is:

g |=≪ ∀, g, S, T, 1 ≫

where S is as before.
Notice that the present framework allows for a quantifier such as ‘for many’

to be defined locally. In the case of the above example, the ‘many’ quantifier M
could be specially tailored to ball games. This is a strong argument in favor of
treating quantification as a relation within the ontology, rather than as part of
the underlying framework. Indeed, we may use our framework to investigate such
quantifiers.

The second of our two original examples is an utterance u2 of

Φ2 : Every player ate a cookie.
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Let e be the described situation, su2
(Φ2), whether this is the game g or some other

situation. Let Td be the type

Td = [ċ | e |= (∃ṫ)≪ eats, ṗ, ċ, ṫ, 1 ≫]

where ṫ is a parameter for a time preceding tu2
, ċ is a parameter for an edible

individual, and ṗ is a parameter for a person. Thus Td is the type of all edible
individuals that, in the situation e, are eaten at some time prior to tu2

by some
person. Noting that Td is a parametric-type with parameter ṗ, let Tp be the type

Tp = [ṗ | e |=≪ ∃, e, Tc, Td, 1 ≫]

where Tc is the type of a cookie. Thus Tp is the type of all those persons for which,
in the situation e, there is a cookie eaten by that person at some time preceding
tu2

.
With S as before, the propositional content of u2 is:

e |=≪ ∀, e, S, Tp, 1 ≫ .

The only question that remains to be answered is what is the described situation,
e? The naive answer is that e is simply the situation in which the cookies were
eaten. But this does not work here, since the infon in the propositional content of
the utterance involves the type S, which is an object-type with grounding situation
g, and there is no reason to suppose that the situation in which the cookies were
eaten supports an infon that concerns the game situation g. (If e and g coincide
there is no problem. This is what happened with the previous example concerning
the players touching the ball many times.) So we must look further for our answer.

In fact, the resolution to the problem involves a shift in the way we regard
quantification, since the approach we have adopted provides us with a view of
quantification that more traditional definitions do not. Given that quantification
is essentially a relation (indeed, a quantitative comparison) between two types, the
utterance of any sentence involving a quantifier must be about those two types,
among other things. That is to say, the described situation must include those
two types.

Thus in the present example, the described situation, e, must include both the
game situation, g, and the situation in which the cookies are eaten, say h. Then
what the utterance does is describe a relation between the two situations g and h,
namely the quantitative comparison between the individuals in g that are players
and the individuals in h that ate a cookie. In this case, the fact that all individuals
of the former type are of the latter type.

Notice that, although this was not the original aim, our investigation has led to
an alternative conception of the nature of quantification: it is simply a particular
kind of relation between types. Indeed, we can apply this to the ‘traditional-style’
quantifiers we allow in the formation of compound infons. Although our theory
treats these quantifiers as logical operators on compound infons, we may apply
our ‘quantifiers-as-relations’ conceptualization at a meta-theoretic level in order
to regard these quantifiers as relations too.
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26 NEGATION

There are a number of ways that a sentence can involve negation. The most
straightforward of these is verb phrase negation. This is easily handled in situation
semantics by means of a polarity change and a possible quantifier switch. For
example, let u1 be an utterance of the sentence

Φ1 : John did not see Mary.

Let e be the described situation, e = su1
(Φ1). Then the propositional content of

u is

e |= (∀ṫ)≪sees, J,M, ṫ, 0 ≫

where ṫ is a parameter for a time prior to tu1
, J = cu1

(John), and M = cu1
(Mary).

There is, however, one question that needs to be answered. What is the de-
scribed situation e ? In the case of an utterance of the positive sentence ‘John
saw Mary’ there is no problem. In the absence of any context that determined
otherwise, the described situation will be the act of John seeing Mary, the situa-
tion in which the seeing takes place. In other words, for a positive utterance, in
the absence of any other contextual features, the utterance itself determines the
described situation. But for a negative utterance this is not the case. There will
be a great many situations in which John did not see Mary. Just which one is the
speaker referring to?

The answer is that it is up to the speaker to fix the described situation. At
least, this is what the speaker’s obligation amounts to in our theory’s terms. In
everyday language, what the speaker must do is ensure that the listener is aware
just what the utterance is about. To make the utterance u1 without having set
the relevant context results in a failure to communicate. Uttered on its own,
without there being either a predetermined described situation or else an obvious
‘default’ situation, the sentence Φ1 does not convey information, at least not the
information that would be captured by the propositional content. (Most obvious
scenarios for such an utterance do in fact supply an obvious default described
situation.)

Since there will be a great many situations in which John did not see Mary, in
order for the utterance u1 to convey the right information, the speaker must ensure
that some aspect of the context of utterance determines the described situation e.
The utterance should convey the same information, in the sense of propositional
content, as an utterance of the ‘sentence’

♯ John did not see Mary in e

where the ♯ indicates a sentence that is not part of normal English (in that one
does not normally mention a situation).

The above remarks apply to a great many negative utterances. Of course, in
the vast majority of cases the utterance of a positive sentence too is made with
reference to a predetermined described situation. Speakers generally speak about
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some part of the world. Indeed, this is one of the main motivating factors behind
situation theory.

Negated quantifiers are also handled quite easily. For example, let u2 be an
utterance of the sentence

Φ2 : Not every student passed the quiz.

Let q = cu2
(quiz), let tq be the time of taking the quiz q, and let e be the situation

comprising the taking of the quiz.
Presumably the speaker is referring to some particular class, c, the class that

took the quiz q. Let ṗ be a parameter for a person, and let

S = [ṗ | c |= ≪student-in, ṗ, c, tq, 1 ≫]

T = [ṗ | e |= ≪passes, ṗ, q, tq, 1 ≫].

Then the propositional content of u2 is:

d |=≪ ∀, c, S, T, 0 ≫

where d is the described situation.
Recalling the discussion of the previous section concerning quantifiers, note that

the utterance states a relationship between the type of all students in c and the
type of all persons who passed the quiz q, and accordingly the described situation
d will extend both c, the grounding situation for type S, and e, the grounding
situation for type T .

A seemingly more problematical form of negation is exemplified by an utterance,
u3, of the sentence

Φ3 : No sailors were there.

Assuming u3 is part of a discourse about a particular dinner party, say d, the
natural assumption is that d is the described situation. In which case, how can a
proposition of the form

d |= σ

have anything to say about sailors? There are no sailors at the party!
Clearly, it cannot. But a few moments reflection should indicate that this

issue has nothing to do with negation. Consider an utterance, u4, of the positive
sentence

Φ4 : There is a sailor that was there.

Though on this occasion a sailor will be a constituent of the party, it is unlikely
that this situation will have anything to say about this particular person being a
sailor, and so once again the propositional content cannot be of the form

d |= σ.
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So what has gone wrong?
The answer is that nothing is wrong, except for the assumption that d is the

described situation for an utterance of Φ3 or Φ4. For both sentences involve
quantifiers, and as we observed in the previous section, an utterance of a quantifier
sentence states a relationship between two types, so the described situation must
include the grounding situations of those two types.

Both u3 and u4 are about sailors: they describe a relation that connects the
collection of all sailors and the dinner party d. The grounding situation for the
type of all sailors is the world, or at least enough of the world to ground this type.
So, if ṫ is a parameter for a time preceding the utterance in each case, and if

S = [ṗ | w |= ≪sailor, ṗ, ṫ, 1 ≫]

T = [ṗ | d |= ≪present-in, ṗ, d, ṫ, 1 ≫]

then the propositional content of u4 is

w |= (∃ṫ)≪ ∃, d, S, T, ṫ, 1 ≫

and the propositional content of u3 is

w |= (∀ṫ)≪ ∃, d, S, T, ṫ, 0 ≫,

(or possibly
w |= (∀ṫ)≪ No, d, S, T, ṫ, 1 ≫,

if the quantifier ‘No’ is regarded as a basic relation in the ontology).
Given our present conception of quantifiers then, even though u3 or u4 could

be uttered as part of a discourse that until then had concerned the party situation
exclusively, once the property of being a sailor is introduced, the so-called de-
scribed situation is extended to include the grounding situation for being a sailor.
Of course, you might object to my calling the resulting situation the described
situation in this case, and look for another name. On the other hand, given a
framework in which a quantifier is interpreted as a relation between two types,
rather than some form of logical operator on the second of those types, which
is the case in classical logic, then it really is the case that a quantifier utterance
describes (some feature of) both those types (and hence their grounding situations
in the case of object-types): indeed, it compares the two types.

It should be noted that the semantics assigned to u4 is different from the se-
mantics that would be assigned to an utterance u′

4 (under the same circumstances
and with reference to the same dinner party situation d) of the sentence:

A sailor was there.

In this case, the described situation is indeed the party, d, and the propositional
content of the utterance is:

d |= ∃ṗ∃ṫ≪present-in, ṗ, d, ṫ, 1 ≫
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where ṗ is a parameter for a sailor and ṫ is a parameter for a time prior to the
time of utterance.

The distinction between u4 and u′
4 amounts to a difference in focus. Uttering

the sentence

There is a sailor that was there

makes a definite claim about the collection of sailors (namely that at least one of
them was at the party). On the other hand, uttering the sentence

A sailor was there

makes a claim about the party (namely that among the guests there was at least
one sailor).

Of course, none of the above examples involves a negation in the sense of clas-
sical logic, where negation is a logical operator that acts on well-formed formulas.
Rather they are simply utterances of sentences that involve a negative component.
As we have seen, this generally requires more emphasis on the specification of the
described situation than is the case for utterances where there is no such negative
component, but apart from that there was no real difference between positive and
negative assertions as far as the above analysis was concerned.

Far more reminiscent of the negation operator of classical logic is sentence denial,
where a positive assertive sentence is prefixed by a phrase such as ‘It is not the
case that . . . ’ For example, let u5 be an utterance of the sentence

Φ5 : It is not the case that John saw Mary.

The starting point of most discussions is to take the phrase ‘It is not the case
that’ as determining a denial operator that acts on the sentence ‘John saw Mary’.
Situation semantics takes a different tack, regarding Φ5 as a negative version of
the sentence

Φ6 : It is the case that John saw Mary.

In both cases, let J be the referent for the name John, M the referent for the
name Mary, ṫ a parameter for a time prior to the time of utterance.

Let e5 = su5
(Φ5), e6 = su6

(Φ6). The propositional content of u6 is:

w |=≪|=, e6, (∃ṫ)≪ sees, J,M, ṫ, 1 ≫, 1 ≫ .

That is to say, the effect of the prefix ‘It is the case that’ in an utterance of a
sentence ‘It is the case that Φ’ is to make the propositional content of the sub-
utterance of Φ the infon part of a proposition about the world.

Turning now to u5, the most natural choice of the propositional content would
seem to be:

w |=≪|=, e5, (∃ṫ)≪ sees, J,M, ṫ, 1 ≫, 0 ≫

where the polarity of the world proposition has changed from a 1 in the case of u6

to a 0 in the case of u5. Does this accord with our intuitions?
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Unravelling the notation a bit, what this proposition says is that

(∗) e5 �|= (∃ṫ)≪ sees, J,M, ṫ, 1 ≫ .

Now, in order for a negative utterance to be informational (in the intended man-
ner), the speaker should ensure that the described situation is adequately identi-
fied. That is to say, the speaker should make sure that the listener knows what
the utterance is about. In the present case, e5 is the John and Mary situation, or
something extending it. Since John’s seeing Mary is a relevant feature (the speaker
talks about it), it ought to be the case that the situation e5 that constitutes the
described situation completely determines whether or not John actually did see
Mary or not. That is to say, it should be the case that: either

e5 |= (∃ṫ)≪ sees, J,M, ṫ, 1 ≫,

or else
e5 |= (∀ṫ)≪ sees, J,M, ṫ, 0 ≫ .

Assuming this is the case, then by (∗), the propositional content of u5 should entail
the second of these two propositions. This is what we would have expected.

Notice that the above places a restriction on the possible described situation for
utterances involving denials. The requirement we have stipulated is considerably
stronger than the universally true fact that for any situation s and any infon σ,
either s |= σ or else s �|= σ. A cooperative use of a negative utterance such as
u5 places on the speaker an obligation to ensure that the described situation as
understood by the listener (i.e. what the listener thinks the utterance is about) is
sufficiently rich to decide the relevant issue, in this case whether John saw Mary
or not, one way or the other.

A natural question to ask in connection with sentence denial is how it affects
conjunctive and disjunctive sentences. The natural expectation is that there is
some form of duality between the two, as occurs in classical logic. And indeed this
is the case, given that certain requirements are met.

For example, imagine a discourse between Jan and Ed about last week’s 49ers
game, g, in which Jan makes the following utterance, u:

It is not the case that Joe threw the ball and Roger carried the ball.

This has a propositional content of the form

w |=≪|=, g, σ, 0 ≫

where σ is the compound infon

(∃ṫ1)≪ throws, J, b, ṫ1, 1 ≫ ∧ (∃ṫ2)≪ carries, R, b, ṫ2, 1 ≫

and where J = cu(Joe), R = cu(Roger), and b = cu(the ball).
Unravelling the notation a little, this says the following:

(∗) g �|= (∃ṫ1)≪ throws, J, b, ṫ1, 1 ≫ ∧ (∃ṫ2)≪ carries, R, b, ṫ2, 1 ≫ .
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Now, since g is the actual game, either

g |= (∃ṫ1)≪ throws, J, b, ṫ1, 1 ≫,

or else
g |= (∀ṫ1)≪ throws, J, b, ṫ1, 0 ≫,

and again either
g |= (∃ṫ2)≪ carries, R, b, ṫ2, 1 ≫,

or else
g |= (∀ṫ2)≪ carries, R, b, ṫ2, 0 ≫ .

So by (∗) it must be the case that at least one of

g |= (∀ṫ1)≪ throws, J, b, ṫ1, 0 ≫

and
g |= (∀ṫ2)≪ carries, R, b, ṫ2, 0 ≫ .

Hence

g |= (∀ṫ1)≪ throws, J, b, ṫ1, 0 ≫ ∨ (∀ṫ2)≪ carries, R, b, ṫ2, 0 ≫ .

Reverting back to infon notation, this becomes

w |=≪|=, g, σ, 1 ≫,

where σ is the compound infon

(∀ṫ1)≪ throws, J, b, ṫ1, 0 ≫ ∨ (∀ṫ2)≪ carries, R, b, ṫ2, 0 ≫ .

In words:

It is the case that Joe did not throw the ball or Roger did not carry the
ball.

Which seems right.
The above example is related to the following notion of infon duality, which is

important in studies of compositionality.
The dual , σ, of a compound infon, σ, is defined by recursion as follows.

• If σ is a basic infon of the form ≪R, a1, . . . , an, i≫ then
σ =≪R, a1, . . . , an, 1− i≫ .

• If σ = σ1 ∧ σ2, then σ = σ1 ∨ σ2.

• If σ = σ1 ∨ σ2, then σ = σ1 ∧ σ2.

• If σ = (∀ẋ ∈ u)τ , then σ = (∃ẋ ∈ u)τ .
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• If σ = (∃ẋ ∈ u)τ , then σ = (∀ẋ ∈ u)τ .

We say a situation e is complete relative to the compound infon σ if at least
(and hence exactly) one of the propositions

e |= σ , e |= σ

is valid.
A generalization of the above argument shows that if u is an utterance of a

denial

It is not the case that Φ

and if the sub-utterance of the sentence Φ has the propositional content

e |= σ

and if e is complete relative to σ, then the propositional content of u is

w |=≪|=, e, σ, 1 ≫

which is ‘equivalent’ to
e |= σ.

The point made earlier is that, for an utterance of a denial to be suitably
informational, the speaker should ensure that the listener is sufficiently aware of
the context. In the theory’s terms, what this amounts to is that the described
situation as understood by both speaker and listener should be complete relative
to the requisite infon.

27 CONDITIONALS

Conditionals, or if–then statements, are the bedrock of rational argument and
as such are central not only to such overtly ‘logical’ pursuits as mathematics,
computer science, the sciences in general, philosophy, and the legal system, but to
large parts of our everyday life. And yet for all their ubiquity, conditionals resisted
the attempts of generations of philosophers to understand just what the devil they
are? What exactly does a conditional say about the world? There is a great deal
that can, and has been, said. Here we shall simply pursue the matter sufficiently
to indicate the role that situation theory can play.

In our current terminology, the issue to be investigated is this. If u is an
utterance of a conditional of the form

If Φ then Ψ

then what is the propositional content of u (and hence what is the meaning of the
sentence uttered)?

We consider four examples that, though having some similarities, lead to quite
different, but in many ways paradigmatic analyses:
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1. If it freezes, Ovett wears a hat.

2. If it freezes, Ovett will not run.

3. If it freezes, Ovett will be cold.

4. If it had frozen, Ovett would not have run.

Again as a homage to the era when situation semantics was being developed, all
four examples will be understood to refer to cross-country races and the British
athlete Steve Ovett, who dominated middle distance running in the 1980s.

Sentence 1 appears first because its analysis turns out to be different from the
others. Indeed, although all four sentences have an if–then form, an utterance of
any of sentences 2, 3, or 4 will refer to a specific, single event, a cross-country race
in this case, whereas sentence 1 can only be used to refer to such events in general.

In fact, an utterance of sentence 1 does not express a conditional at all, but
rather is a statement of the validity of a certain constraint, a general connection the
obtains between all those events when it freezes and all those events when Ovett
wears a hat. (Actually, there is a reading of sentence 2 that also serves to express
a general link. We shall not consider this alternative reading, and the analysis
presented below will exclude this possibility. As always, the main concern is with
utterances of sentences, and by concentrating on utterances we avoid alternative
readings of sentences.)

The remaining three sentences all do express genuine conditionals of one form or
another. Sentences 2 and 3 are syntactically similar. Each may be used to predict
some form of link between two specific future events. Sentence 4 is different in
that a speaker would normally only utter sentence 4 after the race in question
had taken place, and moreover only if, counter to the antecedent of the utterance,
it had in fact not frozen. Statements made with sentences such as 4, where the
antecedent is false, are known as counterfactuals. Non-counterfactual, predictive-
type conditionals such as examples 2 and 3 are often referred to as indicative
conditionals.

Let u1 be an utterance of sentence 1:

If it freezes, Ovett wears a hat.

This does not refer to any particular pair of events. Rather the utterance states
that there is a connection between two types of event, the type of race situation
where it is freezing and the type of race situation where Ovett wears a hat. In
other words, what u1 does is state a certain constraint. We make this precise
below.

Let
S = [ė | ė |= ≪present-in, SO, ė, ṫr, 1 ≫ ∧

≪registered-in, SO, ṙ, ṫr, 1 ≫ ∧
≪freezing, ṫr, 1 ≫]

T = [ė | ė |= ≪wears-hat, SO, ṫr, 1 ≫],
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where ṙ is a parameter for a race, ė is a parameter for the situation surrounding
ṙ (that is to say, the race itself, the race organization, and the environment local
to the race), ṫr is a parameter for the time of ṙ, and SO = cu1

(Ovett).
Then the propositional content of u1 is

w |= (S ⇒ T ),

or at least
d |= (S ⇒ T ),

for a suitably large part of the world d (enough to include all the race situations
involving Steve Ovett).

The remaining three examples all have in common the fact that they are used
to refer to specific events. (At least, this is true in the case of their normal uses,
the ones considered here.) Nevertheless they all exhibit quite distinctive features
that make it difficult to come up with any kind of unified treatment that seems
appropriate for all examples.

We shall present two alternative treatments, both of which have some appeal
as well as some shortcomings.

One approach to handling conditionals in logic is the material conditional. The
first treatment of the semantics of sentences 2 through 4 develops a version of this
approach within the framework of situation semantics. (This treatment adopts an
extreme form of the material conditional that expresses nothing more than the
contingent prohibition of two particular eventualities. Other treatments of the
conditional can be developed within the framework of situation theory that could
also be described as a material conditional — for example, taking the relationship
to link types rather than specific propositions as below.)

Let u2 be an utterance of sentence 2:

If it freezes, Ovett will not run.

A situation-theoretic analysis of this utterance along the lines of the material
conditional goes as follows.

The utterance u2 refers to some particular circumstance, an upcoming race and
how the weather will affect the participation of Ovett. The described situation, d,
therefore, comprises the organization of the race and the meteorological environ-
ment local to the race.

Note that the race is not an existing situation, nor an event that has taken
place in the past, but rather is some planned, future event: indeed an event that
might eventually be cancelled, and not take place at all. Thus r has an objective
existence purely as a result of the intentionality network of planning agents, to
whit Man. But this does not prevent r being a perfectly well-defined situation in
our ontology. People discuss future events all the time, and frequently plan their
activities around future events.

What claim does the utterance make about the situation d ? It does not state
some kind of constraint, as does an utterance of 1. Nor is there a constraint of
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which this is an instance, as is the case in example 3, which we consider presently.
There is no generally prevailing causal link between the local temperature and
Ovett running or not running. Runners can, and do, run in freezing conditions,
Ovett among them. The freezing conditions might well be the reason Ovett decides
not to run on this particular occasion, but that is Ovett’s personal decision. There
is no general rule, no constraint as there was in example 1.

Rather what the utterance does is claim that a certain event will not occur,
namely the event of it freezing and Ovett running in the race. That is to say, if
we let r be the race, lr the location of r, tr the time of r, and e the environment
local to lr, then the propositional content of u2 is:

d |=≪ precluded, P ∧Q, tu, 1 ≫,

where P is the proposition

e |=≪ freezing, lr, tr, 1 ≫,

and Q is the proposition

r |=≪ runs− in,SO, r, tr, 1 ≫,

and where SO = cu2
(Ovett).

Turning now to sentence 3, let u3 be an utterance of:

If it freezes, Ovett will be cold.

Again we develop a situation-theoretic analysis analogous to the material con-
ditional of classical logic.

In this case the utterance u3 expresses an instance of a general constraint, the
constraint that if it is freezing then a person will be cold. There is a definite, gener-
ally prevailing, causal link between the antecedent ‘it freezes’ and the consequent
‘Ovett will be cold’. However, it is arguable (see momentarily) that although 2 and
3 differ as to the reason for the validity of the expressed conditional, this difference
does not affect the meaning of the sentence, and the propositional content in the
case of example 3 will be just as in 2. Thus, if d is the described situation and
td is the requisite time (so td = cu3

(will) and tu3
≺ td), then the propositional

content of the sub-utterance of ‘it freezes’ is

d |=≪ freezing, td, 1 ≫ .

and the propositional content of the sub-utterance of ‘Ovett will be cold’ is

d |=≪ cold, SO, td, 1 ≫ .

Then the propositional content of u3 is

d |=≪ precluded, P ∧Q, tu2
, 1 ≫
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where P is the proposition

d |=≪ freezing, td, 1 ≫

and Q is the proposition

d |=≪ cold, SO, td, 0 ≫ .

According to the above analysis then, the reason why the semantics of 3 works
out the same as for 2 is that, although the utterance of 3 states an instance of
a general constraint, it is not part of the utterance that it is such an instance.
Rather the utterance asserts a simple conditional that expresses, as a matter of
fact, that a particular pair of events cannot occur in conjunction. The distinction
between 2 and 3 is part of the general background knowledge of the world that
both the speaker and listener will be aware of. The constraint of which 3 states
a particular instance is not part of the propositional content of the utterance u3,
since the utterance makes no reference to the constraint.

So far then, a material-conditional style analysis seemed to work for examples
2 and 3. What about the final example? Let u4 be an utterance of the sentence 4:

If it had frozen, Ovett would not have run.

Presumably u4 refers to a specific event, a past race r, run at a location lr at a
time tr where tr ≺ tu, in an environment e. The utterance refers to properties of
each of the situations r and e, the property of it freezing in e and the property of
Ovett running in r. This was also the case in example 2. If we attempt an analysis
using the material-conditional approach as in example 2, we obtain the following
propositional content for u4:

d |=≪ precluded, P ∧Q, tu, 1 ≫

where P is the proposition

e |=≪ freezing, lr, tr, 1 ≫

and Q is the proposition

r |=≪ runs-in, SO, r, tr, 1 ≫,

and where d is the described situation.
But what is the described situation? In the case of example 2, d comprised

both r and e, that is to say, both the race and the (meteorological) environment
local to the race. But this cannot be right in this case. Why? Well, the use of the
subjunctive in 4 is only appropriate if in fact

e |=≪ freezing, lr, tr, 0 ≫
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and if this is the case and we take d to extend e, then our proposed proposi-
tional content is degenerate and essentially non-informational: it would be a valid
proposition regardless of whether or not Ovett ran in the race.

This is, of course, why the material conditional fails so miserably to handle
counterfactuals in classical logic. The material conditional renders a proposition

P → Q

as true whenever P is false, and consequently is unable to handle counterfactuals,
which by their very nature have a false antecedent.

But a situation-theoretic framework saves us from falling into this trap, and in
a way that squares with our everyday intuitions about counterfactuals. In making
an utterance of 4 with the sincere intention of conveying information, the speaker is
not referring to the situation as it was, but to some hypothetical variant thereof, a
variant that resembles the actual situation in almost every way except for differing
as to the fact of it freezing or not.

In other words, the described situation d is not a part of the world extending
the actual race-environment situation e. It is some abstract situation postulated
by the speaker. If da denotes the actual race organization and environment local
to the race, what was the described situation in example 2, then d and da will have
the same constituents and the same spatial and temporal extent, and for almost
all infons σ it will be the case that

d |= σ if and only if da |= σ,

but

d |=≪freezing, lr, tr, 1 ≫ and da |=≪freezing, lr, tr, 0 ≫ .

What justification is there for allowing a situation such as d into the ontology?
Well, people do indeed use conditionals such as the above all the time, and if
you accept the two premises that (a) when two people are engaged in a successful
exchange of information, they must be talking about something, and (b) we use
situations to represent these ‘somethings’, then it follows that hypothetical entities
such as the d above will figure as situations.

To summarize the above account, suppose u is an utterance of a conditional
sentence of the form

If Φ then Ψ,

(or equivalent) and that

e1 |= σ1

is the propositional content of the sub-utterance of Φ and

e2 |= σ2
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is the propositional content of the sub-utterance of Ψ. Then the propositional
content of u is:

d |=≪ precluded, (e1 |= σ1) ∧ (e2 |= σ2), tu, 1 ≫

where d = su(If Φ then Ψ) is the described situation.

In the case of an indicative conditional, the described situation, d, will include
both e1 and e2. In the case of a counterfactual, where in fact

e1 |= σ1

then d will be a hypothetical situation that differs minimally from what actually
occurred (i.e. from a situation including both e1 and e2) in that:

d |= σ1.

The alternative approach to the semantics of conditionals is not only uniform
across examples of forms 2, 3, and 4, as was the case with the first treatment, but
in fact includes example 1 as well, in that an utterance of any ‘if–then’ statement
is taken to refer to a constraint (in one way or another).

We commence with sentence 3. As before, u3 is an utterance of the sentence

If it freezes, Ovett will be cold.

This utterance expresses an instance of the constraint that, if a person’s environ-
ment is freezing, and that person is scantily clad (such as a runner), then that
person will be cold. More precisely, let S and T be the situation-types

S = [ė | ė |= ≪freezing, ṫ, 1 ≫ ∧
≪present-in, ṗ, ė, ṫ, 1 ≫ ∧
≪scantily-clad, ṗ, ṫ, 1 ≫]

T = [ė | ė |= ≪cold, ṗ, ṫ, 1 ≫]

where ė is a situation parameter, ṫ is a temporal parameter, and ṗ is a parameter
for a person.

Then the described situation for u3 is the world and the propositional content
is:

w |= (S ⇒ T )[f ]

where f anchors ṗ to SO = cu3
(Ovett).
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Turning now to example 2, let u2 be an utterance of the sentence:

If it freezes, Ovett will not run.

As noted earlier, u2 differs from u3 in that it does not express an instance of a
general constraint. And yet it does make a prediction of a future event. Assuming
this prediction has an informational basis, and is not just a random guess, how can
this be? Surely the only informational basis on which to make such a prediction
is knowledge of some uniformity that systematically links the eventuality of it
freezing and Ovett’s deciding not to run; in other words, a constraint.

But what constraint? As observed earlier, runners can and do run in freezing
conditions. Indeed, Ovett himself has run in freezing conditions, though as a
matter of fact he prefers not to. Whether or not Ovett runs in the race referred
to in the utterance u2 is purely up to Ovett to decide. So where is the constraint?

The answer is that human beings are planning creatures. They form plans or
intentions as to their future courses of action. And part of this plan-formation pro-
cess will involve establishing what we might call personal constraints, constraints
that govern their own action in accordance with their own desires and intentions.

Thus, Ovett, having found as a result of past experience that running in freezing
conditions is unpleasant, and indeed can lead to illness and injury, might well
decide that in future he will not run if it is freezing. Or it may be even more
specific than this. Maybe he has just recovered from a cold and decides that, as
far as next Saturday’s race is concerned, the one referred to in u2, he will not
run if it is freezing. Beyond next Saturday he forms no intentions either way as
far as running in cold weather is concerned. But for this one occasion he forms a
personal constraint that will guide his future actions.

Knowing of this constraint, a speaker may then confidently utter sentence 2.
That is to say, it is the knowledge of the constraint that provides the speaker with
an informational basis for the utterance. In effect, what the utterance of sentence
2 conveys to the listener is that ‘this guy Ovett has formed the intention that if
it is freezing on the day of this particular race, then he will not run’. Indeed,
we may adopt the position that it is precisely this constraint that provides the
propositional content of u2.

More precisely, let S and T be the situation-types

S = [ė | ė |= ≪environment-of, ė, r, tr, 1 ≫ ∧
≪freezing, lr, tr, 1 ≫]

T = [ė | ė |= ≪run-in, SO, r, lr, tr, 0 ≫]

where r is the race in question, lr is its location, tr is its time, and ė is a situation
parameter.

Taking the described situation, d, to be Ovett’s state at the temporal interval
tu2

) then the propositional content of u2 is:

d |= (S ⇒ T ).
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At which point a not unnatural question would be: why does the same treat-
ment not work in the case of sentence 3? Though in the case of 3 there was a
prevailing general constraint, the actual utterance only referred to an instance
of that constraint involving Ovett. So why in case 3 did we take the described
situation to be the world, and the propositional content to be

w |= (S ⇒ T )[f ]

where (S ⇒ T ) is a general constraint and f an anchor to Ovett? Why not
particularize the constraint to Ovett in the first place, as in example 2?

The answer is this. In case 2, the utterance has nothing to do with Ovett’s state
of mind, with his desires and his intentions. There is no personal constraint of
this nature. For all the speaker or listener knows, Ovett has not given a thought
to it being cold on race day and his getting cold then. Moreover, there is no
reason to assume that the situation d will support the general constraint that if
it is freezing a person will get cold, or even that if it is freezing Ovett will get
cold. Nevertheless, if it does freeze on race day, Ovett certainly will get cold.
Not because of any plan of intention he has formed. Simply because there is a
prevailing general constraint to the effect that scantily clad people get cold if the
temperature falls below freezing. The propositional content of u3 has a structure
that accords with this observation.

In example 2, on the other hand, there is no prevailing general constraint, only
the personal constraint (or ‘contingency plan’) formulated by Ovett.

In neither case does the speaker explicitly mention the constraint. But, ac-
cording to the present account, the constraint is nevertheless the content of the
utterance: the propositional content captures what it is the speaker claims to be
the case.

Finally, what about the counterfactual case, example 4? Let u4 be an utterance
of the sentence

If it had frozen, Ovett would not have run.

The grammatical structure of the sentence makes it clear that the utterance is
made after the race has taken place, and that in fact it had not frozen. The
speaker is describing the personal constraint Ovett had formed prior to the race.
As it happens, the conditions that would have brought that constraint into play,
and resulted in Ovett’s not running, did not prevail — it did not freeze. But Ovett
nevertheless had formed that constraint, and would have acted in accordance with
it. This is what the utterance claims. Accordingly, the propositional content of
the utterance is almost the same as in the previous case.

What distinguishes these two cases are the circumstances of utterance. In ex-
ample 2, at the time of the utterance, the race has not yet taken place (tu ≺ tr)
and the utterance describes a constraint that prevails at the time of utterance;
in example 4, the race has already taken place (tr ≺ tu) and moreover it did not
freeze, and the utterance describes a constraint that prevailed at the time of the
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race. Thus with the types S and T as before, the propositional content of u4 is

d |= (S ⇒ T )

where in this case the described situation, d, is Ovett’s state at the time of the
race.

We finish this section by examining a famous pair of examples due to Quine.
The traditional question is what is the status of the following two sentences?

(1) If Bizet and Verdi had been compatriots, Bizet would have been Italian.

(2) If Bizet and Verdi had been compatriots, Verdi would have been French.

A lot of the considerable discussion generated by these examples has concen-
trated on their counterfactual nature. But similar problems arise if we consider the
following two indicative sentences involving the contemporary American philoso-
pher John Perry and the British linguist Robin Cooper:

(3) If Perry and Cooper are compatriots, then Perry is English.

(4) If Perry and Cooper are compatriots, then Cooper is American.

We investigate both pairs of sentences first using the material conditional frame-
work and then in terms of the constraint-based approach. The conclusion we shall
draw is that the material conditional works moderately well in the case of sentences
(1) and (2), but fails hopelessly when presented with (3) and (4), whereas the treat-
ment in terms of constaints handles both pairs with ease. Indeed, my examination
of these examples provides strong evidence to suggest that the constraint-based
approach is the right way to handle conditionals, be they counterfactual or indica-
tive.

Of course, unlike many of the discussions that have taken place concerning sen-
tences (1) and (2), our approach will be in terms of utterances of these sentences.
So, starting with the material conditional treatment of the first pair of sentences,
let u1 be an utterance of sentence (1). Let B = cu1

(Bizet), V = cu1
(Verdi), and

let t be the time to which the utterance implicitly refers, i.e. the time when both
Bizet and Verdi were alive. Let d denote the described situation.

According to the framework developed above, the propositional content works
out to be:

(i) d |=≪precluded, P ∧Q, tu1
, 1 ≫

where P is the proposition

(ii) d |=≪compatriots, B, V, t, 1 ≫

and Q is the proposition

(iii) d |=≪Italian, B, t, 0 ≫,

and where d differs from reality, da, in a minimal fashion such that (ii) is valid.
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Now,

(iv) da |=≪Italian, V, t, 1 ≫

and

(v) da |=≪French, B, t, 1 ≫ .

So if d is to differ from da minimally it must, by (i), be the case that

(vi) d |=≪Italian, V, t, 1 ≫

and

(vii) d |=≪Italian, B, t, 1 ≫ .

Thus in this case d is a hypothetical situation in which both Bizet and Verdi are
Italian.

Starting with an utterance u2 of sentence (2) we likewise end up with a hypo-
thetical situation d′ such that

(viii) d′ |=≪French, V, t, 1 ≫

and

(ix) d′ |=≪French, B, t, 1 ≫ .

These are the only possible outcomes if the described situation is to differ min-
imally from reality.

Is this a reasonable account? Although it does provide a consistent semantics
of utterances of sentences (1) and (2), you may not find it particularly convincing.
But still, it is a solution.

On the other hand, as far as the second pair of examples is concerned, utterances
of sentences (3) and (4), the material conditional approach simply does not get
off the ground. An utterance of either (3) or (4) certainly does not postulate a
hypothetical, alternative world the way that the subjunctive in (1) and (2) does.
Rather the described situation must be (part of) the real world. But then the
falsity of the antecedent renders the entire semantics degenerate.

Ultimately, it is this example, and others like it, that persuade many to opt for
the second of my two treatments, the one in which conditionals are taken to refer
to constraints, even though the material conditional does provide a good semantics
for the future-directed, predictive type of indicative conditional and an acceptable,
if not wholly convincing, semantics for counterfactuals.

The constraint-based semantics for conditionals provides a uniform treatment
for all four sentences, as well as clarifying the issues involved in these examples.

An utterance of any one of the four sentences refers to a generally prevailing
constraint of the form:

If person A and person B are compatriots and person A has nationality
N, then person B has nationality N.
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for some nationality N .
Let u1 be an utterance of sentence (1), and let B, V, t denote Bizet, Verdi, and

the time they were both alive, as before. Let ȧ, ḃ be parameters for people, and
let S1, T1 be the situation-types

S1 = [ė | ė |=≪compatriots, ȧ, ḃ, ṫ, 1 ≫ ∧ ≪Italian, ȧ, ṫ, 1 ≫]

T1 = [ė | ė |=≪Italian, ḃ, ṫ, 1 ≫].

Then the described situation for u1 is the world and the propositional content
of u1 is:

w |= (S1 ⇒ T1)[f ]

where f(ȧ) = V, f(ḃ) = B.
Similarly, the propositional content of an utterance, u2, of sentence (2) is:

w |= (S2 ⇒ T2)[f ]

where

S2 = [ė | ė |=≪compatriots, ȧ, ḃ, ṫ, 1 ≫ ∧ ≪French, ḃ, ṫ, 1 ≫]

T2 = [ė | ė |=≪French, ȧ, ṫ, 1 ≫]

and where f is as before.
Notice that this semantics for utterances u1 and u2 resolves the confusion that

can arise between (1) and (2). Given the constraint that figures in its propositional
content, an utterance of sentence (1) will be appropriate — that is to say it will be
informational — if the listener and speaker know that Verdi was Italian. Then the
utterance makes a valid assertion that describes this particular instance of that
constraint. Likewise, an utterance of u2 will be appropriate given the knowledge
that Bizet was French.

Of course, an anchor, f , that assigns Verdi to the parameter ȧ and Bizet to the
parameter ḃ is not possible for any situation that includes both of these individuals
and is of type S1, so there can be no actual situation to which the constraint

(S1 ⇒ T1)[f ]

applies.
If you accept the existence of hypothetical situations, then this is not an obsta-

cle. Since the constraint is reflexive, it simply guarantees that in any hypothetical
situation e in which Bizet and Verdi are compatriots and Verdi is Italian, then
Bizet is Italian.

However, even if you reject hypothetical situations, the propositional content is
still informational, in that it describes a valid constraint: the constraint itself is
not invalid, it is just that it does not apply to the pair Bizet, Verdi.

Similar remarks apply in the case of the second sentence.
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Turning now to the pair (3), (4), all we need to do now is observe that the above
analysis works equally well in this case. Indeed, the temporal location plays no
external role in the above discussion, and hence there is no distinction between
the first pair and the second as far as our analysis is concerned. It applies equally
to sentences that refer to past events and sentences that apply to the present, and
indeed to sentences that refer to the future.

28 THE LIAR PARADOX

To finish, we see how situation semantics resolves the famous semantic paradox,
the Liar. This is most often given as a query for the truth or falsity of the sentence:

(1) This sentence is false.

In this form, the problem does not arise for us, since sentences are not the
kinds of object that are either true or false. Instead, they are objects that can be
used to convey information. Since a sentence is not an appropriate argument for
the property ‘true/false’, from a situation semantic perspective (1) simply has no
meaning.

Suppose we modify the question to the truth or falsity of an utterance of the
sentence:

(2) This utterance is false.

Again there is no paradox: this sentence too has no meaning. As with sentences,
utterances are not the kinds of things that are true or false. However, we are getting
closer, since an utterance of an assertive sentence will determine a proposition, and
in situation semantics it is the propositions that are the bearers of truth.

The correct formulation of the Liar paradox in situation semantics is in terms
of the proposition determined by an utterance, u, of the sentence:

(3) The proposition expressed by this utterance is false.

or, more simply but less precise, an utterance of the sentence

(Φ) This proposition is false.

Let s be the described situation, s = su(Φ). Then, taking the basic property
here to be ‘true’, with ‘false’ being identified with ‘not true’, the propositional
content, p, of u is:

s |=≪ true, p, 0 ≫ .

Notice that p is itself the proposition referred to by the phrase This proposition

in the utterance, that is:

p = cu(This proposition).
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The utterance claims that p is false. In other words, p claims that p is false.
This is starting to look like a paradox. But we need to make sure we know exactly
what is meant by ‘false’ here. Since we are taking ‘false’ to mean ‘not true’, this
amounts to clarifying what we mean by ‘truth’.

In situation semantics, every proposition

e |= σ

is either true or false (i.e. not true). Truth means that e does indeed support
σ, which is a strong condition to place on the situation s. Falsity, on the other
hand, means simply that s fails to support σ, which is fairly weak — unlike the
proposition e |= σ, which is strong, but in general quite different. Let’s examine
the proposition p above with this notion firmly in mind.

Suppose first that p is true. Thus

s |=≪ true, p, 0 ≫

is a valid proposition. Then, since s is part of the entire world, w, it follows that

w |=≪ true, p, 0 ≫

is a valid proposition. In other words, p is false. This is a contradiction.
Hence p must be false. In other words,

s �|=≪ true, p, 0 ≫ .

But this is not necessarily a paradox. All it says is that the situation s does not
support the infon

≪ true, p, 0 ≫ .

Now since p is false, we certainly have

w |=≪ true, p, 0 ≫

but again this is not necessarily paradoxical unless s = w. So what our investiga-
tion amounts to is not a paradox but a straightforward proof of a theorem:

Theorem 1: su(Φ) �= w

In words, the described situation in an utterance of the Liar sentence Φ cannot be
the world.

Moreover, since we have shown that p is false, we have also established another
theorem:

Theorem 2: Any utterance of the Liar sentence Φ expresses a false proposition.

In short, the Liar paradox has been resolved. Or has it? Can’t we simply
re-introduce the paradox by modifying Φ to read:

(Φ′) This proposition is false in the world.



Situtation Theory and Situation Semantics 663

Surely in this case the described situation, su(Φ′), will have to be w = cu(the

world), won’t it?
In fact it will not. Analogs of Theorems 1 and 2 go through for the modified

sentence Φ′, so the same argument as before shows that w cannot be the described
situation.

The conclusion has to be that w is not a situation. And so we have a third
theorem:

Theorem 3: w is not a situation.

This is analogous to the result in set theory that the class of all sets is not a set.
But notice that this does not prevent set-theorists from discussing the so-called
universe of sets, V , all the time, and often treating it as if it were a set. The trick
is simply to develop enough sophistication to do this with safety.

Similarly, in situation theory we often handle the world much as if it were a
situation. We just have to bear in mind that it is not in fact a situation, and make
sure we do not use it inappropriately.

29 FURTHER READING

For a historical introduction to the early development of situation semantics, see
Barwise and Perry’s initial [1980] paper and their [1983] book.

For a comprehensive coverage of situation theory and situation semantics as it
eventually settled down, see [Devlin, 1991] book. Much of this article is based on
that treatment.

For a complete survey of all of Barwise’s papers on situation theory and situation
semantics, see the [Devlin, 2004] article.

For an extended discussion of the application of situation semantics to the
resolution of the classical Liar Paradox, see Barwise and Etchemendy’s [1987]

book.
An excellent compilation of many of Barwise’s papers on situation theory and

situation semantics is provided by his [1989] monograph.
The [1997] book by Barwise and Seligman provides an exploration of the situ-

ation theoretic notion of a constraint in a very general setting.
For an application of situation theory to decision making using an action- ori-

ented approach, see Devlin and Rosenberg’s [1996] monograph. A less technical
coverage of roughly the same material, aimed at the business world, is provided
by Devlin’s [1999] book.

See also the series of conference volumes Situation Theory and Its Applications,
Volumes I, II, and III, all published in the CSLI Lecture Notes series (1991–1993).
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DIALOGUE LOGIC

Erik C.W. Krabbe

1 INTRODUCTION

In 1961 a PhD-ceremony took place in Kiel (Germany), where the new doctor
defended a dissertation with a title that must have sounded a bit peculiar at the
time: Arithmetik und Logik als Spiele [Arithmetic and Logic as Games]. The
supervisor of this dissertation was Paul Lorenzen (1915–1994), who was known as
a contributor to research into the foundations of mathematics. The new doctor was
Kuno Lorenz. The innocent spectator was bound to wonder what serious sciences
such as arithmetic and logic could have to do with games. And what kind of game
could that be? Glancing through the dissertation one would discover that these
were dialogue games, systems for discussion in which assertions are attacked and
defended according to meticulously formulated rules of dialogue. The dissertation
expands on ideas and suggestions, then recently proposed by Paul Lorenzen, that
were primarily motivated by certain problems in the foundation of mathematics.

The theory of dialogue games based on logical rules can be seen as a techni-
cal elaboration of Wittgenstein’s notion of ‘language games’. However, given its
emphasis on formal rules, it admittedly displays no more than a weak affinity to
Wittgenstein’s later philosophy [1953]. After 1961, this theory — dialogical logic or
dialogue logic, for short — was further developed, both by Paul Lorenzen himself
[1962; 1969; 1987; Kamlah and Lorenzen, 1967; 1973; Lorenzen and Schwemmer,
1973; 1975] and by Kuno Lorenz [1968; 1973] as well as by other authors.1

Related ideas were proposed, independently, by Jaakko Hintikka [1968], who
developed a game-theoretic semantics, and by Charles Hamblin (1922–1985) [1970],
who reshaped the theory of fallacies.

Nowadays, the influence of dialogue logic is clearly traceable in the field of
theory of argumentation (including informal logic).2 The more formal studies in
artificial intelligence that pertain to defeasible reasoning constitute another area
where dialogue logic had some influence.3

1[Stegmüller, 1964; Drieschner, 1966, Kindt, 1970; 1972; 1980; Van Dun, 1972, Thiel, 1978;
Barth and Krabbe, 1982; Haas, 1980; 1984; Mayer, 1981; Stegmüller and Varga von Kibéd, 1984;
Felscher, 1985; 1986; Krabbe, 1985; 1985a; 1986; 1988; Hoepelman and Van Hoof, 1993; Van
Hoof, 1995; Valerius, 1990; Rahman and Rückert, 1999; 2001b].

2See, for instance, Van Eemeren and Grootendorst [1982; 1984; 1992; 2004], Walton [1984;
1998], and Walton and Krabbe [1995].

3See, for instance, [Vreeswijk, 1993; Rahman and Rückert, 2001b].
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Along these two streams, argumentation theory and artificial intelligence, the
dialogical or dialectical point of view has become almost a commonplace and nowa-
days very few researchers will be plagued by associations with frivolity when they
hear that some serious intellectual activities are analyzed as games. But around
1961 the climate was still thoroughly ‘monolectical’. Logic was supposed to be
about formal proofs, with ‘deduction’ and ‘derivation’ as key terms. The pre-
vailing picture consisted of one mind diligently deriving propositions from a list
of axioms or assumptions. Another picture, based on semantic analysis and the
search for counterexamples was still relatively new, but gaining in importance.
The picture of logic as an interpersonal affair, however, seemed almost forgotten.
By these lights, the step taken by Lorenzen was no less than revolutionary, as it set
out to replace the prevailing monolectism of a solitary reasoner by an interactive
dialectism of discussants, thus returning to logic’s dialectical roots.

In this essay, I am concerned with the history of dialogue logic in the second half
of the 20th century. By dialogue logic I mean the study of systems of rules (called
‘dialogue games’, ‘dialectic systems’, or ‘systems of formal dialectic’) that regulate
discussions between two (or more) parties, where some of the rules are logical,
which is to say that they prescribe attacks and defenses on the basis of the logical
form of the sentences attacked or defended. I shall mainly, but not exclusively,
focus on the systems proposed by Paul Lorenzen and by those logicians that were
inspired by him.

The discussion of 20th century developments will be preceded by a brief glance
at the dialectic character of logic at the time of its birth (section 2). Next we shall
study Lorenzen’s earliest papers (section 3). We must then take up the discussion
about structural rules, i.e. the rules that are independent of the logical forms of
sentences. In this respect Lorenz’s systems will be seen to differ considerably from
those of Lorenzen (section 4).4 One section will be devoted to comparisons between
Lorenzen systems and those introduced by Hintikka and by Hamblin (section 5).
At the end we shall discuss further developments, such as the introduction of
modalities, and various applications (section 6).5

2 THE AGONISTIC ROOTS OF LOGIC

The word ‘agonistic’ in the title of this section derives from the Greek agōn (=
game, contest). In what follows I hope to show that originally logic was concerned
with a kind of discussion game or verbal contest and that, therefore, contemporary
dialogue logic has its roots in the oldest kind of logic.

Mainly because of his syllogistic, Aristotle (384–322 bc) is generally honored
as the first logician. However, the first book of his Prior Analytics, in which
this syllogistic is set out, is only a small part of his logical writings. These are
known as the Organon (= tool) and comprise: Categories, On Interpretation, Prior

4All the same, both groups of systems will here be covered by the term ‘Lorenzen systems’.
5Please note as well that the bibliography contains, besides the works referred to in the

chapter, a number of other contributions to dialogue logic and its applications.
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Analytics (two books), Posterior Analytics (two books), Topics (eight books), and
On Sophistical Refutations. These works do not present a closely knit whole;
they were written in different periods of Aristotle’s career, and underwent various
revisions. Moreover, the traditional order of these work is clearly different from the
order in which they were written and experts differ about the order in which the
works of the Organon got their present shape. It is, however, likely that the famous
syllogistic of Prior Analytics I was a late discovery and that the last two works of
the Organon, the Topics and On Sophistical Refutations, showing no traces of this
syllogistic, together form the clearest exposition of Aristotle’s first logical theory.
The Categories, too, may be an early work, and can be said to present a different
aspect of this first logical theory. At the end of On Sophistical Refutations — which
is clearly meant to be a conclusion to the Topics as well — Aristotle himself, with
uncharacteristic boastfulness, declared that nothing preceded this first theory of
logic.

What was the subject of the Topics and of On Sophistical Refutations? They
dealt with the art of disputation. So, originally logic was a theory of disputation
or discussion. In the opening lines of the Topics, Aristotle himself characterizes
the purpose of his treatise as follows: ‘The purpose of the present treatise is to
discover a method by which we shall be able to reason from generally accepted
opinions about any problem set before us and shall ourselves, when sustaining
an argument, avoid saying anything self-contradictory’ [Aristotle, 1976, p. 273;
100a18–21]. The largest part of the Topics consists of a discussion of a great
number of topoi. The word ‘topoi ’ is the plural of topos, which literally means
‘place’. The exact technical meaning of the term topos is still a moot question.
According to Slomkowski ‘a topos is a universal proposition and functions as a
hypothetical premiss [a premise that is a generalized (bi)conditional statement]
in hypothetical syllogisms [deductions based on such premises] which in turn are
constructed with the help of topoi ’ [1997, p. 3]. Examples are principles such as:
‘A is B if and only if not-B is not-A’ and ‘A is B if and only if more or less or
equally much A is more or less or equally much B’. Knowledge of such universal
principles is needed to be successful in certain kinds of structured discussion in
which one party tries to refute the other by means of a deduction (see below).
The work On Sophistical Refutations is sometimes listed as the ninth book of the
Topics. It treats of fallacies as stratagems that may be used to trip up one’s
opponent as well as of the opportunities for logical self-defense.6

But what kind of discussion do these works refer to? This can only partially be
surmised from the Topics, even though its eighth and last book gives quite some
information about the course of events in these discussions. Anyhow, the following
features seem characteristic:7

(i) Discussions start with a problem that can be expressed by a question of the

6Logical Self-Defense is the title of a well-known textbook in informal logic [Johnson and
Blair, 1994].

7Cf. [Moraux, 1968].
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form: Is it the case that . . . , or is it not? For instance: Is the world finite,
or is it not?

(ii) There are two roles: the Questioner (Q) and the Answerer (A).

(iii) A chooses as his initial thesis one of the two possible answers to the question
that expresses the problem; Q’s initial thesis is the other possible answer.
For instance, A holds that the world is infinite and Q holds that it is finite.

(iv) Q’s aim is to successfully establish his thesis and thus to refute the Answerer.
A’s aim is to uphold his thesis and thus to prevent the Questioner from
achieving his aim.

(v) To achieve his aim, Q puts questions to A. These questions take the form:
Is it the case that . . . ? For instance: Is it the case that everything that has
come into being has come into being from something? On the other hand,
A does not put questions to Q. So there is an asymmetry in the roles.

(vi) Possible replies to a question are: (1) to admit the point (A concedes), (2)
not to admit the point, (3) to admit the point with certain qualifications
(on the one hand... on the other hand . . . ), (4) to request that the question
be clarified, (5) to object to the question (see Rule (ix)).

(vii) In principle, each point conceded by A offers an advantage to Q; nevertheless
it is not the case that A can follow a simple strategy of refusing to concede
anything. When A is asked to concede something that agrees with what is
generally or sufficiently acceptable, he can not refuse the concession, unless
granting it would amount to an immediate admission that Q’s thesis was
right.

(viii) A has a right to clarify or adjust an earlier concession whenever Q twists
this concession in an undesirable direction.

(ix) A can protest against certain of Q’s questions or conclusions by formulating
objections.

(x) Q wins whenever he refutes A by deducing Q’s thesis from the answers given,
and also when A, to avoid this, produces answers that go against generally
or sufficiently accepted opinions.

(xi) A wins whenever Q is unsuccessful. Perhaps there is a time set for discussion
so that A wins whenever Q does not win within the preset time. Also, A
certainly wins whenever he manages to raise an objection that unsettles his
adversary.

One might agree that this set of rules looks quite a bit like a game, with discus-
sion rules functioning as the rules of the game. Unfortunately, no manual survives
to provide us with definite answers about the ins and outs of these rules, nor do
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we have any direct recordings of the discussions themselves as they occurred in
Aristotle’s time. But, though Aristotle created the first theory about this type of
discussion, that does not imply that he designed the type himself. On the contrary,
it is plausible that, generally, a particular cultural phenomenon precedes theoriz-
ing about that phenomenon. Indeed, in Aristotle’s time the cultural phenomenon
of a particular type of regimented discussion had existed for at least a century.
One may think of Zeno of Elea, the sophists, Socrates, and the Megarian school.
Plato’s early (‘Socratic’) dialogues may serve as examples that have at least a lot
in common with those discussions to which Aristotle’s theorizing pertains. A short
fragment will suffice to show that these dialogues sometimes display a gamesome
character.

Dionysodorus: You will admit all this [among other things that Ctesip-
pus’ father is a dog ], if you answer my questions. Tell
me, have you got a dog?

Ctesippus: Yes, and a brute of one too.

D: And has he got puppies?

C: Yes indeed, and they are just like him.

D: And so the dog is their father?

C: Yes, I saw him mounting the bitch myself.

D: Well then: isn’t the dog yours?

C: Certainly.

D: Then since he is a father and is yours, the dog turns
out to be your father, and you are the brother of the
puppies, aren’t you? [Quickly to keep the other from
cutting in:] Just answer me one more small question:
Do you beat this dog of yours?

C (laughing): Heavens yes, since I can’t beat you!

D: Then do you beat your own father?

(Adapted from Plato: Euthydemus [1997, 298D–E].)

The crucial move in this fragment: He is a father and is yours, so he is your
father , is alluded to by Aristotle in his On Sophistical Refutations: ‘Is the dog
your father?’ [Aristotle, 1965, p. 121; 179a34–35]. It is there presented as an
example of the so-called fallacy of accident.

The asymmetry in the roles — see Rule (v) above — is clearly illustrated by
the next fragment that occurs a bit earlier in the same dialogue:

[Socrates just asked a question. Dionysodorus, who anticipates that he
is going to be refuted, tries to avoid answering that question. After
a brief interlude, there follows a straightforward attempt to have an
illegitimate change of roles.]
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Dionysodorus: [...] so go ahead and answer.

Socrates: Before you answer me, Dionysodorus?

D: You refuse to answer then?

S: Well, is it fair?

D: Perfectly fair.

S: On what principle? Or isn’t it clearly on this one,
that you have come here on the present occasion as
a man who is completely skilled in arguments, and
you know when an answer should be given and when
it should not? So now you decline to give any answer
whatsoever because you realize you ought not to?

D: You are babbling instead of being concerned about
answering. But, my good fellow, follow my instruc-
tions and answer, since you admit that I am wise.

S: I must obey then, and it seems I am forced to do so,
since you are in command, so ask away.

[Plato, 1997, 287C]

In this fragment the participants interrupt their discussion in order to engage
in a metadiscussion, i.e. a discussion about the rules of discussion for the original
discussion. What they do is analogous to interrupting a game in order to resolve
some conflict about the rules of the game. In his ironic way, Socrates depicts his
adversary as an expert on matters of discussion and agrees to an — actually most
unfair — exchange of roles.

We saw that each participant in a discussion has a particular aim (Rules (iv),
(x), and (xi)), just as in most games. These internal objectives — one’s objectives
within the discussion — must be distinguished from the external objective, the goal
of the discussion as a whole. This external goal may consist in the participants’
common desire to exercise themselves in finding and expressing arguments, or
in their fondness of wrangling, but discussions can also constitute a method of
teaching, or a method of inquiry, for instance by generating a survey of the pros
and cons in a particular case. Clearly, the external goal of a discussion will (and
ought to) influence the form of discussion, i.e. the way the discussion will proceed
as determined by the rules.

There is a twofold task for logic here. First, logic should formulate and justify
various forms of discussion that are geared to different external goals. Second, it
should give strategic advice to those that are going to participate in a discussion
of a particular type. As we saw, Aristotle made a start, which was also the start
of logic itself.
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3 SMALL BEGINNINGS

In this section, we shall analyze two brief papers by Paul Lorenzen, which were to
start the development of 20th century dialogue logic.

3.1 Logic and Contest

The revival of the dialectical point of view in logic started in 1958, when Paul
Lorenzen read his paper Logik und Agon. This paper, published as [1960], remained
rather unknown until it was republished in [Lorenzen and Lorenz, 1978, pp. 1–8].
Until then, the best known early paper on dialogue logic had been [Lorenzen, 1961].
In Logik und Agon, Lorenzen sharply contrasted the agonistic roots of logic, which
I tried to sketch in the preceding section, with the solo-minded and monolectical
points of view of our time:

If one compares this agonistic origin of logic with modern conceptions,
according to which logic is the system of rules that, whenever they
are applied to some arbitrary true sentences, will lead one to further
truths, then it will be but too obvious that the Greek agon has come
to be a dull game of solitaire. In the original two-person game only
God, secularized: ‘Nature’, who is in possession of all true sentences,
would still qualify as an opponent. Facing Him there is the human
individual — or perhaps the individual as a representative of humanity
— devoted to the game of patience: starting from sentences that were,
so he believes, obtained from God before, or snatched away from Him,
and following rules of logic, he is to gain more and more sentences.
([Lorenzen and Lorenz, 1978, p. 1], translated from the German by
the present author.)

But bringing back a dialectical point of view is not the same as proposing to do
logic in a dialogical way (starting dialogue logic). For the first, it is sufficient to
distinguish certain dialectical roles, such as Questioner and Answerer, as well as
some types and goals of dialogue. For the second, a dialectical approach is of
course indispensable, but moreover one should propose rules of attack and defense
that are dependent upon the logical form of the sentence attacked or defended.
This step was indeed taken in Logik und Agon, a paper of no more than eight
pages.

That we need another interpretation of logic than the ‘modern conception’
sketched in the passage just quoted is evident from the existence of disagree-
ments about what principles are logically valid, such as the disagreement between
intuitionists and classical logicians about the Law of Excluded Middle (tertium
non datur) [Lorenzen and Lorenz, 1978, p. 2]. In order to present such an inter-
pretation, Lorenzen starts with formal calculi consisting of a list of uninterpreted
symbols and a number of rules that permit one to derive sequences of these sym-
bols. Such calculi had been studied by Lorenzen in his Einführung in die operative
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Logik und Mathematik [1955], and the dialogical approach to logic must be seen
as an attempt to replace these so-called operative foundations of mathematics by
better ones. As an example Lorenzen presents a system with two symbols: +, and
0, and three rules:

(I) ⇒ +

(II) x⇒ x0

(III) x⇒ +x+

Here ‘⇒’ serves to express that these are to be read as rules, and ‘x’ serves as a
variable for arbitrary sequences of symbols [Lorenzen and Lorenz, 1978, p. 2]. In
itself this calculus has nothing to do with logic. But it can serve as a basis for a
logical dialogue game. In this game there are two players: a Proponent (P) and
an Opponent (O). A simple case would be that P claims to be able to derive the
sequence + + 0+, whereas O challenges him to do so. If P manages to present
the derivation, he wins, otherwise he loses. According to Lorenzen, this simple
game is all we need in order to understand what it means to claim to be able to
derive + + 0+ (written as ⊢ + + 0+), no further semantics is necessary [Lorenzen
and Lorenz, 1978, p. 3]. Actually, for what follows, it is inessential that claims
(Behauptungen) by P refer to derivability in a calculus, as long as it is clear what
actions are to be undertaken by P in order to win. These actions may even consist
of empirical experiments [Lorenzen and Lorenz, 1978, pp. 3–4].

A somewhat more complex claim would be ⊢ x → + + x. The content of this
claim is that, if P is challenged on this account by O, then, for any sequence r,
as soon as O claims ⊢ r, P is committed to claim ⊢ + + r [Lorenzen and Lorenz,
1978, p. 4]. By some rules that are not yet spelled out in this paper O can
be forced to present her derivation first, so that P can profit from it when it is
his turn to deliver. It is clear that this last example brings us close to what, in
the introduction, was called a ‘logical rule’, i.e. a rule that prescribes attacks and
defenses on the basis of the logical form of the sentences attacked or defended. The
logical operator to which the rule pertains would be ‘→’. Only, the antecedent
and consequent are not statements or statement-like entities but sequences of
symbols and variables. However, if we reinterpret the claim ⊢ x → + + x as
∀x(⊢ x →⊢ + + x), the explanation in the paper can be seen to explain a logical
rule for ‘→’. If P makes this claim and is challenged by O, O should first select a
sequence r to be substituted for ‘x’, P should then claim ⊢ r →⊢ + + r and P’s
further commitments are exactly described by the rule. Thus one may say that
this is the place where dialogue logic starts.

The paper gives further examples in which also rules for ‘∀ ’ and ‘∨’ are used.
Negation is introduced as follows. Let the discussants have agreed on the selection
of a sequence that is certainly underivable in the calculus. Let us say this is the one-
place sequence ‘0’. Then the claim that a certain sequence, say ‘0+’ is underivable
may be expressed as ⊢ 0+ → 0, or, in our reconstruction, as ⊢ 0+ →⊢ 0. Thus, if
P makes this claim, the burden of proof is upon O to show that ‘0+’ is derivable,
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i.e. O should derive ‘0+’ or otherwise lose the game [Lorenzen and Lorenz, 1978,
pp. 4–5].

With some claims, there is a way for P that leads to a win irrespective of
the calculus (or other action complex) that functions as a basis for the dialogue
game. These are called ‘generally admissible’ (allgemein-zulässig). Lorenzen gives
the example ⊢ (x → y) → ((y → z) → (x → z)), which in our reconstruction
would read as ∀x∀y∀z((⊢ x→⊢ y)→ ((⊢ y →⊢ z) → (⊢ x→⊢ z))). In Lorenzen’s
explanation of the general admissibility of this claim, which amounts to the Law of
Transitivity of Conditionals, many things about the rules of dialogue are taken for
granted that were later on to be made explicit, as the field developed. For instance,
it is supposed without any comment, that O is committed to (the analogue of)
modus ponens [Lorenzen and Lorenz, 1978, p. 5].

Some (analogues of) classical laws are not generally admissible. Lorenzen ‘s
example here is the Law of Double Negation: ⊢ ((x → 0) → 0) → x, or in our
reconstruction: ∀x(((⊢ x →⊢ 0) →⊢ 0) →⊢ x), where again it is presumed that
‘0’ is the selected underivable sequence. Unlike the preceding claim, this one is,
according to Lorenzen, risky for P because there could be a sequence r such that
O knows how to derive r, but P does not [Lorenzen and Lorenz, 1978, p. 6].
Nevertheless, I would say, the Law of Double Negation does admit of a way for
P to win, only P may fail to be aware of this fact. The strategy for this claim
happens to be dependent on knowledge about what sequences are derivable in the
calculus. The strategy for the Law of Transitivity of Conditionals is free of such
dependency. Thus, Lorenzen has made a point, which would later be expressed by
saying that, given certain rules of the game, there is a formal winning strategy in
the second case, but not in the first.

Since the Law of Double Negation is one of the classical principles that were
rejected by the intuitionists, and since similar stories as the one above can be told
for other such principles, it seems that the interpretation of logical operators as
determined by moves in a contest will be inclined to favor Brouwer’s intuitionism
[1908]. That is precisely what Lorenzen is saying on the last page of his paper, but
he also points out that by modification of the game rules (for instance, by granting
P the right to withdraw certain moves and to live up to earlier commitments,
whereas according to the ‘intuitionistic’ rules these earlier commitments would
have lapsed) one may justify classical logic. This insight was taken up in later
developments. On the other hand, Lorenzen’s suggestion to identify intuitionistic
logic with eristic logic and classical logic with dialectic logic, where the former
would be antagonistic and the latter cooperative, and thus to distinguish different
types of dialogue did not take on [Lorenzen and Lorenz, 1978, p. 8].8

Finally, there are three points I wish to stress before we leave this remarkable
paper. One is that the paper makes it crystal clear that originally dialogue logic
was not about a game with meaningless formulas, but thoroughly based on a set
of meaningful expressions. That is, in the parlance that developed later, dialogue

8For a further development of the idea of having different types of dialogues, see [Walton and
Krabbe, 1995].
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logic starts with material, not formal, dialogues. Further it is interesting that
the semantics of the elementary statements is ‘empractical’, that is, describable
in terms of actions (such as presenting a derivation in a calculus) without use of
abstract semantic jargon [Lorenzen and Lorenz, 1978, p. 3]. Here we see that the
paper anticipates the reform program of the Erlangen School, to which we shall
briefly return in section 5. Finally the idea that dialogue logic can yield more than
one logic (pluralism) was with Lorenzen’s project right from the start.

3.2 A Dialogical Criterion for Constructivity

Paul Lorenzen’s second paper on dialogue logic, Ein dialogisches Konstruktivitäts-
kriterium [ A Dialogical Criterion for constructivity], received much more attention
than his first. It was presented on a symposium on the foundations of mathemat-
ics in 1959, published as [1961], and reprinted in [Lorenzen and Lorenz, 1978, pp.
9–16]. The paper purports to clarify the notion of ‘constructivity’. To equate ‘con-
structive’ with ‘recursive’, Lorenzen says, yields too narrow a concept, Brouwer’s
explanations are understood only by few, and his own formulations about opera-
tive ‘definiteness’ are, so he admits, equally unclear [Lorenzen and Lorenz, 1978,
p. 9].

A common problem with discussions of constructivity is that it is not always
clear what entities are supposed to be either constructive or nonconstructive. Here
these entities seem to be statements (Aussagen) and statement forms or predicates
(Aussageformen), rather than methods or proofs; but also logical operators and
inductive definitions seem to be entities that may be called constructive, probably
in the sense that the new statements or statement forms they yield when applied
to constructive statements or statement forms are again constructive.

Statements are called proof-definite (beweisdefinit) when it is decidable whether
a given alleged proof is indeed a proof (a well-defined class of potential proof must
here be understood). Claims to the effect that a certain sequence is derivable
in a calculus belong to the proof-definite statements. Proof-definite statements
form a basis from which further statements can be built, using logical operators.
If these further statements can be discussed in dialogues such that each dialogue
ends with a decision whether P has won or lost with respect to his claim, they
are called dialogue-definite (dialogisch-definit). Lorenzen’s proposal is to replace
the vague concept of ‘constructivity’ with the more precise concept of ‘dialogical
definiteness’ [Lorenzen and Lorenz, 1978, p. 10]. Lorenzen now discusses, in order,
the dialogical sense of logical operators and that of inductive definitions.

The logical operators Lorenzen treats in this paper are ∧ (conjunction), ∨ (dis-
junction), → (implication), ¬ (negation), ∀ (universal quantifier), and ∃ (existen-
tial quantifier). To show the constructivity, in the sense of dialogue-definiteness, of
these operators, it suffices to show that each statement formed by these operators
starting from dialogue-definite statements (or, in the case of quantifiers, from pred-
icates whose statemental substitution instances are dialogue-definite) will again be
dialogue-definite. For this it suffices to formulate dialogue rules that reduce a di-
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alogue about a statement formed by one of these operators to dialogues about its
direct constituents (or, in the case of quantifiers, that constituent’s statemental
substitution instances). If this procedure proves successful, the curious effect will
be that all first-order statements will have been shown to be constructive in the
sense of being dialogue-definite. This holds for intuitionistically acceptable prin-
ciples and unacceptable principles (such as the Law of Excluded Middle and the
Law of Double Negation) alike. But the difference is that for the intuitionistically
acceptable principles there is, supposedly, a winning strategy (Gewinnstrategie)
for P, whereas for the unacceptable principles there is not [Lorenzen and Lorenz,
1978, pp. 11–13]. Hence ‘constructive’ in the sense of dialogue-definite must be
sharply distinguished from ‘constructively valid’.

In this paper, the dialogue rules are not yet spelled out in a satisfactory way.
Instead of discussing each of them here we do better to discuss a later and more
polished version. Let it suffice to remark that the paper does not contain a de-
scription of a dialogue game in game-theoretical terms, or easily translatable into
such terms. Some rules underwent considerable changes in later developments.
Take for instance, the rule for implication, which here says that if P claims a→ b
he is committed to claim b as soon as O has made the claim a and has successfully
defended this claim against P [Lorenzen and Lorenz, 1978, p. 11]. But in systems
as they were developed later, P need not claim b as long as there are other things
for him to do, and he may reach a win before ever reaching a stage where claiming
b becomes mandatory.

Since we are left a bit in the dark about the precise rules of the game, it will be
a tricky affair to assess Lorenzen’s claims that there is or is not a winning strategy
in certain cases. The problem is the more urgent since, as we saw, in Logik und
Agon [1960]. Lorenzen himself pointed out that a change of rules would suffice to
justify classical logic. In later publications, these shortcomings were repaired.

Nevertheless, the paper takes a big step forward. There are now indications
of logical rules for all the principal operators of first-order logic. There is a clear
insight that the universal and the existential quantifier are to be distinguished
by the identity of the discussant who is called upon to select a substituent for
the bound variable. If P claims ∀xQ(x) it is O who makes the choice, but if P
claims ∃xQ(x) it is P himself who selects (upon O’s challenge) the term to be
substituted for x [Lorenzen and Lorenz, 1978, p. 12]. Also, dialogical tableaux
are introduced to describe strategies for P, and the similarity with Beth-tableaux
is noted [Lorenzen and Lorenz, 1978, p. 11].9

About the second part of the paper, I shall be brief. In it Lorenzen shows how
inductive definitions may introduce new dialogue-definite predicates. (A predicate
is dialogue-definite if its substitution instances are dialogue-definite.) For instance,
let a predicate Q(x) be introduced by an inductive definition based on dialogue-
definite predicates and statements, say one with the basic clause A(x) ⇒ Q(x)

9Beth [1955; 1959], see also [Beth, 1962]. Lorenzen notified Beth of this similarity in a letter
dated 17 August 1959 in which he presents a dialogical tableau in first-order language for the
syllogistic argument form Festino. This could be the first communication of a dialogical tableau.
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and the inductive clause Q(x) ∧ R(x, y) ⇒ Q(y). If P claims that Q(n) he may
try to defend this by having recourse to an antecedent in either the basic or
the inductive clause. Say, P uses the inductive clause stating Q(m) ∧ R(m,n).
Assuming that R(m,n) is unproblematic, he must now defend Q(m). This could
be done in the same way (or, perhaps, by an appeal to the basic clause). To avoid
an endless regress, P is to commit himself in advance to a maximal number of steps
(in a generalized version, this becomes a series of choices generating a decreasing
sequence of ordinals). If P reaches a statement A(r), he will win the dialogue
about Q(n), if he can defend A(r). If he cannot defend A(r) or runs out of steps
before even reaching such a statement, he will lose the dialogue about Q(n). By
these stipulations the predicate Q(x) is made into a dialogue-definite predicate
[Lorenzen and Lorenz, 1978, pp. 13–14]. This approach opens a perspective on
having a dialogical arithmetic and, as Lorenzen shows, in its generalized form (with
decreasing sequences of ordinals) a dialogue-definite concept of truth [Lorenzen and
Lorenz, 1978, p. 15].

4 STRUCTURAL RULES

It may be clear from the preceding section that, after the early stages of dialogue
logic, what was most needed was a more precise description of the rules of dia-
logue. Without a more definite description of what moves would be admissible in
a dialogue and when they would be admissible, dialogues would never be able to
serve as a basis for a concept of constructivity, nor in any definite sense, yield a
logic, whether classical or intuitionist. Thus a more technical approach was called
for. In this section we shall see how both Lorenzen and Lorenz worked out pro-
posals to fill the bill. The choice of structural rules, that is rules which determine
when a move is admissible, provides a main theme for the 1960s.

4.1 Arithmetic and Logic as Games

With Kuno Lorenz’s dissertation [1961], dialogue logic reached the age of maturity
(selections reprinted in [Lorenzen and Lorenz, 1978, pp. 17–95]). Besides giving
the first complete formulations of dialogue games, Lorenz’s dissertation contains
the first detailed reasoning about strategies in these games and establishes some
connections with other approaches to logic. This was made possible, because
now, for the first time, dialogical games were defined with sufficient precision to
make them amenable to metalogical analysis. For this, Lorenz availed himself of
mathematical game theory. Concepts such as that of a game rule, a game situation
or position, a starting position, a final position, a player, a strategy, a winning
strategy, were fruitfully employed. The logical rules (allgemeine Spielregel) for
attacks and defenses of statements of specific logical forms were listed separately
as a common basis for various games. These rules were now clearly distinguished
from the structural rules (spezielle Spielregel). The former explain how one may
attack or defend a statement, whereas the latter stipulate when one is allowed
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to do so [Lorenzen and Lorenz, 1978, pp. 22–23]. The terms ‘logical rule’ and
‘structural rule’ for these two sets of dialogue rules were introduced by Wolfgang
Stegmüller [1964, pp. 85–87].

Lorenz’s logical rules are listed below in Figure 1. This figure is quoted from
Lorenz’s text [Lorenzen and Lorenz, 1978, p. 38], with only slight changes in
notation. The column headed by C lists statements of various logical forms, the
one headed by z′ lists possible attacks on C, whereas the column under z′′ lists
the defenses of C against the attacks under z′.

C z′ z′′

Konjunktion A ∧B
?l A
?r B

Adjunktion A ∨B ?
A
B

Subjunktion A→ B A B
Negation ¬A A

große Konj. ∀xA ?n A[n/x]
große Adj. ∃xA ? A[n/x]

Figure 1. Logical Rules

According to Figure 1, a conjunction can be attacked in two ways, either by
challenging the left conjunct or by challenging the right conjunct. The defense
consists in each case by a statement of the conjunct challenged. A disjunction can
be attacked only by challenging it as a whole. It is then up to the defense to select
a disjunct to put forward. In the case of implication, the attack commits one to
a statement of its antecedent, whereas the consequent constitutes the defense. A
negation can be attacked by stating the statement it negates, there is no specific
defense. A universally quantified statement can be attacked by selecting an indi-
vidual constant, and defended by the corresponding substitution instance. (A[n/x]
stands for the statement obtained by substituting n for all free occurrences of x
in A.) Finally, an existentially quantified statement can be attacked by a pure
challenge, but this time the defense comprises the selection of a constant to be
substituted for x and a statement of the resulting substitution instance.

In order to formulate structural rules, Lorenz introduces some terminology.
Each dialogue (or initial fragment of a dialogue) can be envisaged as written in
two columns. The left column contains the statements and challenges (question
marks) produced by O, whereas the right column contains those produced by P.
(Lorenz uses ‘S’ and ‘W’ instead of ‘O’ and ‘P’, but we shall here stick to the
more common designations.) Each row in the diagram is called a round. A round
can not contain more than one expression (statement or question mark) in each
column. Rounds may either be open or closed. They are open if they contain just
one attack in one column and nothing in the other column. They are closed when
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the attack in the one column is parried by a defense in the other column. On top
of the diagram, there is an (improper) open round containing, in P’s column, the
dialogue’s initial statement, later to be called ‘the thesis’. It will never be closed.
Let us assume that the thesis is logically complex, so that there is a way to attack
it. The first (proper) round is opened by O as she attacks the thesis. Then P either
closes this round by putting in a defense, or opens a new round by a new attack.
The first option does not obtain if the thesis was a negation. The last option only
exists if O’s first move presented a statement and not a question mark, i.e. if the
initial thesis was either an implication or a negation. Moreover O’s first statement
must be logically complex, or otherwise open to attack. The rest of the dialogue
is constructed in the same way: the discussants move alternately, opening a new
round which is then put below the others, or returning to close rounds that are
still open [Lorenzen and Lorenz, 1978, pp. 40–41].

Structural rules can now be formulated as restrictions on the opening and clos-
ing of rounds. For instance the pure rule (reine Spielregel) stipulates that for each
move by one of the discussants, the other discussant may introduce only one coun-
termove, either an attack or a defense. Consequently, each move must consist of a
reaction to the preceding move: attacks must take place in the round immediately
following the one which contains the statement attacked, and a defense move can
only close the bottommost round [Lorenzen and Lorenz, 1978, p. 41].

An alternative is the strict rule (strenge Spielregel) according to which attacks
may be postponed. It is now possible to react to a move once by an attack and
once by a defense (but not more). Further, according to the strict rule, a defense
move must close the bottommost open round, which need not be the bottommost
round [Lorenzen and Lorenz, 1978, p. 56].

The effective rule (effektive Spielregel) introduces an asymmetry in the roles of
Opponent and Proponent. In this type of game, a move by P can only be attacked
once, as with the strict rule, whereas there is no limit to the number of attacks
on a move by O. The rule for defenses is strict for both roles: each defense must
close the bottommost open round [Lorenzen and Lorenz, 1978, p. 63].

The antieffective rule (antieffektive Spielregel) mirrors the effective rule. The
rule for attacks is strict for both roles: each move may be attacked only once,
but the attack can be postponed. Defenses by O must close the bottommost open
round, but defenses by P may either do that or open a new kind of open round (a
so-called defense round). Defense rounds are never closed [Lorenzen and Lorenz,
1978, p. 67].

Finally, the maximally P-friendly rule is the classical rule (klassische Spielregel).
It combines the strict rule for attacks and defenses by O with the amplified possibil-
ities for attacks and defenses by P as granted by the effective and the antieffective
rule respectively [Lorenzen and Lorenz, 1978, pp. 69–70].

In all these games the rule for winning and losing stipulates that whoever’s turn
it is to move will have lost when he or she cannot make a legal move, whereas the
other discussant will in that case have won. If no final position is ever reached,
which means that the dialogue is infinitely long, O will count as having won, and
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P as having lost [Lorenzen and Lorenz, 1978, p. 28]. Lorenz does not tell how
this is to be carried out, but it may obviously be done by having P choose some
maximal number of steps beforehand. Thus the games are fixed, except for the
way in which to handle elementary (logically simple) statements. This leads us to
another innovation by Lorenz: the introduction of formal dialogue games.

In one sense of ‘formal’ all dialogue games are formal because they are based on
logical rules that pertain to the logical forms of statements. They are also formal
in the sense of displaying rigorous procedures. But, as we saw, Lorenzen’s first
examples of dialogue games were based on meaningful statements and therefore,
in another sense, material. In his dissertation, Lorenz wanted to make a precise
distinction between logical and factual truth, and for that purpose he introduced
formal dialogue games (formale Dialogspiele) to complement the material games
(faktische Dialogspiele) [Lorenzen and Lorenz, 1978, pp. 48–50]. Whereas mate-
rial games operate with statements, formal games operate more abstractly with
statemental schemata (formulas). We saw that with Lorenzen’s material dialogues,
it was not immediately obvious which strategies would establish that some state-
ment expressed a logical truth instead of a merely factual one. Lorenz tackles this
problem from the other side, by using the formal games to define which statemen-
tal schemata are logically valid (allgemeingültig). A dialogue-definite statemental
schema is valid iff there is, in the formal game, for P a winning strategy pertaining
to that schema [Lorenzen and Lorenz, 1978, p. 53]. If one wishes, one may then
say that statements that are substitution instances of a logically valid schema are
logically true.

Since we want a winning strategy in a formal dialogue game to show how P,
whatever concrete substitutions are made for the elementary statement-schemata
(atomic formulas), will be able to win in the corresponding material games, we
must take care that a statement of an elementary schema cannot become inde-
fensible after substitution. This makes Lorenz introduce an asymmetry between
the roles of O and P by stipulating, for formal dialogues, an additional clause to
the logical rules (Zusatz zur allgemeine Spielregel), which was called ‘basic rule’ in
[Stegmüller, 1964, pp. 85–86]. It is a rule to the effect that P may state an elemen-
tary schema only if this schema was stated before by O.10 Let a formal dialogue
proceed according to this basic rule, and suppose that P states a propositional
variable q, then q must have been stated before by O. If then some concrete sub-
stitution is made for q, say the statement Q is substituted for q, P will, generally,
be able to defend Q. Given that Q will also have been substituted for the occur-
rence of q that was stated by O, it is obvious that P may just copy O’s moves as
she starts to attack his statement of Q. Following that strategy, P will always have
the last word. (Here I presume that the structural rules will not prevent P from
following this strategy.) In general: if, in a formal dialogue, concrete substitutions
are made for elementary statement-schemata, P may copy O’s moves with respect
to the substituted statements. Thus a winning strategy for a position in a formal

10Besides, one may, as a part of the basic rule, also introduce a clause that stipulates how
often P may copy an elementary schema [Lorenzen and Lorenz, 1978, p. 52].
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game will (generally) guarantee winning strategies for its substitution instances in
material games.

It will be clear, however, that this approach will not work if the pure rule
is chosen as a structural rule. For, in games under the pure rule, O’s former
statements are no longer accessible, so that there can be no question of copying
O’s moves. Therefore the pure rule does not yield an interesting logic in this way:
‘Die “reine” Logik ist leer ’ (‘ “Pure” logic is empty’) [Lorenzen and Lorenz, 1978,
p. 25]. But the other types of structural rule are used by Lorenz to define formal
dialogue games, each yielding a different formal logic.

It is time to present an example of a formal dialogue. The dialogue in Figure 2
is not compatible with the pure rule, but it is compatible with the strict rule and,
therefore, with all the other choices of structural rules presented here. It is (with
slight modifications in the notation) quoted from [Lorenzen and Lorenz, 1978, p.
57]. Here ‘p’ and ‘q’ are propositional variables.

O P
0. ((p→ p) → q) → q

1. (p→ p) → q [0] 6. q
5. q 2. p→ p [1]
3. p [2] 4. p

Figure 2. A Strict Dialogue

In Figure 2, the moves are numbered in the order in which they were brought
forward in the dialogue. Moves 5 and 6 show how one may return to earlier rounds
to close them. A number in brackets is put behind each attack to indicate which
formula was attacked. Thus the formulas with a number in brackets behind them
are attacks, they open rounds, whereas formulas without a number in brackets
represent defenses and close their round. Notice that, according to the basic rule,
the defense move number 6 could not have occurred immediately after move 1. It
is only permissible after O stated q in move 5.

A remarkable feature of Lorenz’s formal dialogue games is that they all allow
the Opponent to attack other statement-schemata than the one introduced by P
in his last move and to defend against another attack than the one executed by P
in his last move. For instance, in Figure 2, move 5 fails to react to P’s preceding
move (move 4). The following structural rule, here quoted from [Krabbe, 1985a,
p. 304], is adopted in none of Lorenz’s formal dialogue games:

D6 After the first move (O’s attack on the initial thesis), each further
move by O consists of a reaction on the immediately preceding
move by P.

According to a terminology introduced by Felscher [1985; 1986] Lorenz’s dialogue
games with the effective rule, which also lack D6, are systems of type D. Below we
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shall see that Lorenzen formulated systems which incorporate D6, and which in
Felscher’s terminology are said to be of type E. It has proven to be rather difficult
to show that these two types of systems are equivalent to one another.

4.2 Metamathematics

In his monograph Metamathematik [1962], Paul Lorenzen used the dialogical ap-
proach to give an interpretation of the logical operators and to define a concept of
effective logical truth (validity). It seems unlikely that, when writing this mono-
graph, Lorenzen was already fully taking into account the work by his pupil Lorenz.
Anyhow, they both agree in making a clear distinction between material and for-
mal dialogues. Though Lorenzen in [1962] did not yet distinguish them by special
names, it is obvious that he starts with dialogues about statements (material di-
alogues) [1962, pp. 20–24] and then goes on to construct a game with dialogues
about statemental schemata (formal dialogues) [1962, pp. 24–28]. The latter
system is used to define effective validity [Lorenzen, 1962, pp. 28–29].

In Metamathematik the material dialogues are merely sketched, as they were
in Lorenzen’s earlier papers. There is no clear account of the structural rules
for these dialogues. The rule for implication remains less than satisfactory. It
now says that when one discussant, say P, claims a → b, then O is either to
concede this and to lose the dialogue, or to claim that a. If O claims that a, P
is committed to claim b in case O can defend a [1962, p. 23]. We are not told
how it is to be determined that O can defend a, unless it is meant that O must
have completed a successful defense of a, which stipulation would make this rule
for implication return to the equally unsatisfactory formulation in [1961]. Thus
the precise formulation of logical rules for material dialogues is still on the way.
The same holds for the structural rules: there is now an awareness that something
must be said about these and an attempt to stipulate such a rule, but the result
is not very convincing [1962, pp. 23–24].

With formal dialogues, however, the progress made looks more promising. In
Metamathematik one finds a precise description of the formal language to be used in
such dialogues. This is a first-order language with the same logical operators as in
[Lorenzen, 1961]: ∧ (conjunction), ∨ (disjunction), → (implication), ¬ (negation),
∀ (universal quantifier), and ∃ (existential quantifier); moreover there are two
logical constants which I shall write as ⊤ (verum) and ⊥ (falsum). The logical
rules for these constants stipulate that ⊤ may not be challenged and that whoever
claims that ⊥ has lost the dialogue [Lorenzen, 1962, p. 24]. The second rule
must have been a slip of the pen: it may hold for O, but P must be allowed to
claim that ⊥ and yet win the dialogue whenever O contradicts herself. Otherwise,
the equivalence with Heyting’s logic [1930], which Lorenzen claims to hold [1962,
p. 31], would break down. The logical rules for the operators are not listed
in a survey, as in Lorenz’s dissertation. Yet one may find out what they are
from Lorenzen’s presentation of a formal calculus for the construction of winning
strategies, for which he uses the notational devices of Beth-tableaux [1955; 1959;
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1962]. From the rules of this calculus [Lorenzen, 1962, pp. 25–28] one may infer
what the logical rules are supposed to be like and that they exactly agree with the
logical rules formulated by Lorenz. Further, the structural rules are constrained
by the requirement that this calculus for the construction of winning strategies
has to agree with them. The rule for elementary formulas in this formal game also
agrees with Lorenz’s basic rule: There are no challenges of elementary claims and
P can only make an elementary claim if O made the same claim before [Lorenzen,
1962, pp. 25–26]. The rules for winning and losing must be the logical rule for
⊥, as amended above, and a rule to the effect that if it is someone’s turn to move
and he cannot make a legal move, this discussant loses the dialogue, whereas his
adversary wins. We saw that Lorenz, too, adheres to the latter principle.

Thus we see that by writing Metamathematik, Lorenzen much clarified his po-
sition. He gave a better idea about what the dialogues looked liked, clearly distin-
guished between material and formal dialogues, and provided tableau techniques
to establish winning strategies. Also, the connections with Gentzen’s sequent cal-
culi [1934] and Heyting’s logic (intuitionistic logic) [1930] were clarified. On most
issues Lorenzen and Lorenz were in agreement, yet the development of structural
rules in Lorenzen’s systems would head into a direction different from that taken
by Lorenz.

4.3 Dialogue Logic in Kindergarten

In 1967 Wilhelm Kamlah and Paul Lorenzen first published their Logische
Propädeutik oder Vorschule des vernünftigen redens (Logical Propaedeutic or Pre-
School of Reasonable Discourse [1967; 1973], English translation 1984). Together
with its sequel ([Lorenzen and Schwemmer, 1973] 2nd edition 1975) which was in
the preface to its second edition characterized as an elementary school of technical
and practical reason, the Logical Propaedeutic forms a systematic introduction to
the constructive approach to language, science, and ethics of the Erlangen School.
That words like ‘pre-school’ and ‘elementary school’ are not to be taken literally,
may be obvious. Nevertheless, these terms are important in as far as they in-
dicate the principle that all of the language of science and of ethics should be
reconstructible and teachable on the basis of language uses grounded in everyday
practice.

Somewhere in the process of reconstructing language the student is to relearn
the use of logical operators as well as their connections with truth and with logical
truth. It is here that dialogue logic comes in. The dialogue games provide a context
in which the meaning of logical operators and the semantic and logical notions that
are based on these meanings can be clarified. In [Kamlah and Lorenzen, 1967] this
is done in chapter 6, which was written by Lorenzen. In the second edition, this
chapter — renumbered as chapter 7 — underwent various modifications.
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When writing this chapter, Lorenzen realizes that if the notion of truth of a
thesis is to be given in terms of winning strategies for the Proponent in a material
dialogue, a more precise determination of the structural rules is called for [Kamlah
and Lorenzen, 1967, p. 200]. In going through several attempts to formulate an
adequate structural rule, the text then shows something of the ongoing struggle
about this issue that was so characteristic for the sixties and seventies. Since
the same steps toward a structural rule were taken in Lorenzen’s John-Locke-
Lectures (1967–1968), published as Normative Logic and Ethics [1969], I shall
insert references to the latter publication as well.

A first version makes the following stipulations: P starts by putting forward
his thesis. After that, the players move alternately. Each player may attack only
one of the statements put forward by his adversary or defend himself against one
attack by his adversary [Kamlah and Lorenzen, 1967, p. 201]; [Lorenzen, 1969, p.
27].

After discussion of a particular example from the point of view of what consti-
tutes reasonable argument, Lorenzen deems it plausible that defenses should not
be given in any order, but rather obey the last-in-first-out principle. This leads
to a second version: Each player may attack only one of the statements put for-
ward by his adversary or defend himself against the last attack by the adversary
against which he has not yet defended himself [Kamlah and Lorenzen, 1967, p.
202]; [Lorenzen, 1969, p. 28].

It is then observed that this does not prevent O from protracting the dialogue
by endlessly repeating her attacks. The same holds for P, but it is in P’s interest
to complete the defense of his thesis and therefore to try and avoid repetitious
behavior. On the other hand, O has not made a statement at the initial stage of
the dialogue and therefore is only interested in preventing P from completing his
task. So, some limit on repetitions by O has to be imposed. Therefore, as a third
version it is suggested to stipulate that after the thesis has been put forward, O
should select a natural number m that is to stand for the maximal number op
repetitions of attacks by O on a statement by P. A thesis T is to be called ‘true’ if
P can win the dialogue about T , whatever the choice of m [Kamlah and Lorenzen,
1967, pp. 202–203]; [Lorenzen, 1969, p. 28].

But, says Lorenzen, there is a simpler structural rule (allgemeine Spielregel)
that leads to the same set of true theses (true in the sense that P can always
win). Here he refers to a technical paper by Kuno Lorenz (of which Lorenzen
must have seen the manuscript and have known the date of publication) in which
various aspects of dialogue theory were closely investigated [1968]. This simpler
structural rule is no other than the rule D6 mentioned above. Therefore, the fourth
version of the structural rule runs as follows:

1. The Proponent may attack only one of the statements put forward
by the Opponent or defend himself against the last move of attack
by the Opponent.
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2. The Opponent may attack only the statement that was put for-
ward in the preceding move by the Proponent or defend himself
against the attack in the preceding move by the Proponent

([Kamlah and Lorenzen, 1967, pp. 203–204], translated from the Ger-
man by teh present author, cf. [Lorenzen, 1969, p. 29].)

In Normative Logic and Ethics he adds:

That this simplification of the general rule [= structural rule] does not
affect the defensibility of any thesis is a logically composite metadi-
alogical assertion. Since the meta-dialogue may be played with the
unmodified general rule, there is no circularity here; but this meta-
dialogue is too complicated to be dealt with in these lectures. The
modification of the general rule serves only to simplify the dialogue;
therefore I will continue to use it, although it could be dispensed with
[1969, p. 29].

Thus, in the end Lorenzen proposes a system of type E (in Felscher’s terminology).
Though Lorenzen refers to [Lorenz, 1968] for the equivalence of E and D systems,
not everyone was convinced that a complete proof could be found there. This
equivalence problem was the subject of [Kindt, 1970]. There is a sketch of a proof
in [Haas, 1980, §1.4], a very detailed proof in [Felscher, 1985], and a relatively
quick proof, in [Krabbe, 1985a], which was based on ideas in [Lorenz, 1968].

To complete his description of the rules for material dialogues, Lorenzen for-
mulates a simple rule for winning and losing: The Proponent has won [if and]
only if the Opponent can no longer make a move [Kamlah and Lorenzen, 1967, p.
204]; [Lorenzen, 1969, p. 28]. He explains that the last move by which P wins the
dialogue must either be a defense of an elementary statement, or an attack on an
elementary statement that the Opponent can not defend.

This discussion of structural rules may appear rather intricate, especially if we
consider that we are still in the kindergarten of reasonable discourse. Yet, we
are not at the end of it. In the second edition of the Logische Propädeutik, the
whole passage we just discussed was deleted from the text. Instead, Lorenzen now
proposes three alternative rules [Kamlah and Lorenzen, 1973, pp. 213–215]. The
first is called strictly constructive (streng-konstruktiv);11 it agrees with Lorenz’s
pure rule (reine Spielregel). The second and the third liberalize the conditions
for P, while leaving those for O as in the strictly constructive rule. All these
rules, therefore, imply rule D6 and yield E-dialogues. The second rule is called
the constructive structural rule (konstruktive allgemeine Dialogregel), it agrees
with the rules quoted above from the first edition. Also, this rule is analogous
to Lorenz’s effective rule for D-dialogues. The third, called the classical rule of
dialogue (klassische Dialogregel), is analogous to Lorenz’s classical rule for D-
dialogues. It liberalizes the conditions for P under the constructive rule as follows:

11Later Lorenzen preferred to call this rule simply streng, whereas he called the constructive
structural rule effektiv [Lorenzen, 1987].
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The Proponent attacks one of the statements put forward by the other,
or defends himself against one attack by the other.
([Kamlah and Lorenzen, 1973, p. 215], translated from the German by
the present author.)

These three kinds of dialogue yield three different concepts of truth, all of them
based on the idea that a statement is true if and only if the Proponent will always
be able to win the dialogue with that statement as its initial thesis: strictly con-
structive, constructive, and classical truth [Kamlah and Lorenzen, 1973, p. 217].
There follows a brief discussion about the justifications for the proposed liberal-
izations. One must, according to Lorenzen, take care that with each liberalized
rule strictly constructive truth is preserved. But this is trivial for rules that only
enlarge P’s possibilities to move. The other main requirement concerns the consis-
tency of the resulting dialogue system: For each statement A, it should not be the
case that both A and ¬A are true in the dialogical sense, that is, P should not have
a winning strategy for both. If we assume that ⊥ is a statement for which P has
no winning strategy and that ¬A is dialogically equivalent to A→⊥, consistency
is a special case of a metatheorem to the effect that, for all statements A and B,
if P has winning strategies for both A → B and for A, he has one for B. This
theorem, which is similar to Gentzen’s main theorem (Gentzen’s Hauptsatz ), is a
little above the kindergarten level. Lorenzen refers the reader to the elementary
school of [Lorenzen an dSchwemmer, 1973; 1975]. Consistency follows from the
theorem by simply letting B be ⊥ [Kamlah and Lorenzen, 1973, pp. 217–218].

Whatever one may think of these justifications, they work equally well for con-
structive and classical dialogues, as Lorenzen recognizes. The only advantage of
the constructive rule is that it allows for a maximum of distinctions between for-
mulas (a minimum of equivalence). But some may think of this as a drawback
rather than an advantage.

Next ,let us consider formal dialogues, dialogues that use formulas (statement-
schemata) instead of statements. How do they fare in kindergarten? Lorenzen’s
motivation for formal dialogues is the same as Lorenz’s: some strategies in the
material games depend on truth values of elementary formulas, but others do not.
In these latter cases, the Proponent may arrange the dialogue so that he will
finally have to defend some elementary statement that has been put forward by
the Opponent as well. If P attacks this statement and O cannot defend it, P will
have won. If O can defend it, P may win the dialogue by copying O’s defense.
But, unlike Lorenz,12 Lorenzen does not propose a rule to the effect that P may
state an elementary formula only if this formula was stated by O before. At some
places, the text may suggest this, but if taken literally it does not say that this
is one of the rules. For instance the formal rule for winning and losing runs as
follows:

12And unlike Lorenzen himself in [Lorenzen, 1962].
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The Proponent has won when he has to defend an elementary formula
after the Opponent’s bringing forward of an identical elementary for-
mula.
([Kamlah and Lorenzen, 1967, p. 207; 1973, p. 221], translated from
the German by the present author.)

Though this may suggest that, for this rule to apply, O must first state the ele-
mentary formula, before P states it and O attacks it, this need not be the only
possibility. It could also be that P first states the formula, O then attacks it, and
P forces O later to state the formula herself. That this is the right interpretation is
borne out by one of the examples later on in the same text [Kamlah and Lorenzen,
1967, p. 210; 1973, p. 223].

What Lorenzen does stipulate for formal dialogues, is that in these dialogues the
Proponent is not allowed to attack elementary statements, whereas the Opponent
is free to do so (using a simple sign of challenge ‘?’ ). There is, however, no way for
the Proponent to defend himself to such an attack [Kamlah and Lorenzen, 1967, p.
206; 1973, p. 220]. Further, the structural rules are the constructive ones [Kamlah
and Lorenzen, 1967, p. 207; 1973, p. 221] (or the classical ones [1973, p. 222]) as
they were stipulated for material E-dialogues. Constructive and classical logical
truths are defined as formulas that can be defended by the Proponent against
any possible opposition in the constructive or the classical formal dialogue game,
respectively. Thus the formal games yield a foundation for logic.

As an illustration, a constructive formal E-dialogue is presented in Figure 3. The
thesis is the same as in Figure 2. Again, the moves are numbered consecutively,
but the dialogue is not analyzed as a sequence of rounds. Attacks are indicated
by the presence of a question mark

O P
0. ((p→ p) → q) → q

1. (p→ p) → q ? 2. q
3. ? 4. p→ p ?
5. q

P wins

Figure 3. A Constructive Formal E-Dialogue

In the dialogue of Figure 3, P wins because, in the situation after move 5, O has
stated q herself, while P still has to defend his statement of q in move 2 against
O’s attack in move 3 (this being the last of O’s attacks).

Interestingly, formal dialogues are exclusively a kindergarten subject. They
do not return in the elementary school [Lorenzen and Schwemmer, 1973; 1975;
Lorenzen, 1987]. The reason must be that, for the foundations of logic, it is
sufficient to have the notion of a formal strategy (a strategy that does not depend
on the meaning of elementary statements) in material dialogues, and that actually,
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for this purpose, the set-up of separate formal dialogue games, though meaningful,
is not indispensable. Anyhow, Lorenzen gave priority to the material dialogues.
In Normative Logic and Ethics he wrote:

However, in order to understand the formal game, that is, in order to
answer the question, why it is reasonable to spend our time with this
game, we will have to remember that the formal game is a formalization
of the material game. The material game has to be understood first,
then it has to be formalized. The result is the formal game. With the
formal game we are simulating material dialogues. [Lorenzen, 1969,
p.35]

After the second edition of Logische Propädeutik, Lorenzen kept to the three kinds
of structural rule for material dialogues he had then defined and henceforth ex-
plained logical concepts in terms of the formal strategies for material dialogues
determined by these rules.

5 COMPARISONS

In this section we shall briefly discuss the general character of Jaakko Hintikka’s
game-theoretical semantics and of Hamblin’s formal dialectic. Both were developed
independently of Lorenzen’s work (and of each other), and it remains to be seen
to what extent these enterprises are related.

5.1 Language-Games for Quantifiers

In 1968 Hintikka published his paper Language-Games for Quantifiers, in which
he introduced games of seeking and finding to explain the meaning of quantifiers.
The rules of the game are very much like those we find summarized in Lorenz’s
table (Figure 1, above), but this similarity is not immediately obvious, because
Hintikka does not analyze the game in terms of attacks and defenses. To give a
good idea of what the game is like, I shall quote the rules as they are expounded in
Quantifiers, Language-Games, and Transcendental Arguments, which is chapter 5
of [1973]. The language used is a first-order language (with ∧, ∨, ¬, ∀, and ∃),
which is interpreted within a domain of individuals D. Hence, the dialogues are
material. We are informed that there are two players: myself and Nature. I slightly
adapt the notations, to make for ease of comparison.

At each stage of the game, a substitution-instance G of a (proper or
improper) subformula of F is being considered. The game begins with
F , and proceeds by the following rules:

(G.∃) If G is of the form ∃xG0, I choose a member of D, give
it a name, say ‘n’ (if it did not have one before). The game is
continued with respect to G0[n/x].
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Here G0[n/x] is of course the result of substituting ‘n’ for ‘x’ in
G0.

(G.∀) If G is of the form ∀xG0, Nature likewise chooses a member
of D.

(G.∨) If G is of the form (G1 ∨ G2), I choose G1 or G2, and the
game is continued with respect to it.

(G.∧) If G is of the form (G1 ∧ G2), Nature likewise chooses G1

or G2.

(G.¬) If G is of the form ¬G0, the game is continued with respect
to G0 with the roles of the two players interchanged.

[Hintikka, 1973, pp. 100–101]

In a finite number of moves the game will reach an elementary statement. This
statement is either true or false in the underlying interpretation. If it is true, I
(that is the player who is then performing the role of myself) win and Nature (that
is the player who is than performing the role of Nature) loses. If it is false, it will
be the other way around.

It is not hard to see that this game, which will henceforth be called the Hin-
tikka game, is equivalent to a material dialogue game with the pure (or, strictly
constructive) rule. Call the player that takes on to play the role of myself at the
start ‘Proponent’, and call his adversary ‘Opponent’ (remember that the roles of
myself and Nature may be interchanged). Now a Lorenzen dialogue corresponding
to the Hintikka game about F will start with P’s putting forward of F as the
thesis. P is myself and O is Nature. Until we get to a negation, each move by a
rule of the Hintikka game can be analyzed as an attack by O and a defense by P
in the Lorenzen game. All formulas will appear in P’s column. The reversal of
roles, when a formula ¬G0 appears can be analyzed as an attack according to the
rule for negation , so that G0 now appears in O’s column. This means that from
now on O is myself and P is Nature. Each step by a Hintikka rule (until another
negation operator appears) is now analyzed as an attack by P and a defense by O.
This analysis can be continued until the end of the game. Also, winning and losing
will concur. So each tournament according to the Hintikka game corresponds to
an equivalent tournament in a material Lorenzen game. It may be seen that the
converse holds as well.

So the similarities between the Hintikka games and the dialogue games in the
preceding sections are obvious. What are the differences? Hintikka characterizes
the Lorenzen games as ‘indoor games’ and his own games as ‘outdoor’:

In fact it seems to me that a sharp distinction has to be made between
such ‘outdoor’ games of exploring the world in order to verify or fal-
sify certain (interpreted) statements by producing suitable individuals
and such ‘indoor’ games as, e.g., proving that certain uninterpreted
formulae are logical truths by manipulating sequences of symbols in a
suitable way. [Hintikka, 1973, p.81]
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But this way to see the distinction between Hintikka games and Lorenzen Games
is untenable. The basis of Lorenzen’s approach to logical operators is to be found
in material dialogues, which are every bit as ‘outdoor’ as the Hintikka game.
Hintikka, however takes the formal games to be typical for the Lorenzen approach.
We saw already that formal games are merely a (dispensable) tool for the study
of formal strategies. They do not constitute the locus where the logical operators,
foremost among them the quantifiers, are introduced.

Then what is the difference? Technically, I think, with respect to some basic
games there is none. So the approaches overlap. But also, either approach pursues
interests that are not mirrored by the other. On the one hand, we saw that in their
treatment of material dialogues in a context where all elementary statements have
a well-determined truth value, both approaches are in complete agreement. On
the other hand, game-theoretic semantics does not consider different options for
structural rules, and Lorenzen dialogue logic never entered the field of branching
quantifiers.

However, the two approaches also display a difference in their principal orien-
tation towards logic. Around 1970, there were three major orientations towards
(or pictures of) logic: the derivational orientation, the semantic orientation, and
the dialogical orientation.13 According to the derivational orientation logical op-
erators are implicitly defined by the system of axioms and inference rules to which
they belong. Logical validity (logical consequence) is defined as derivability in
such a system. According to the semantic orientation logical operators are defined
by means of semantic rules that serve to calculate semantic values for linguistic
objects (relative to a model). Logical validity is reconstructed as immunity from
counterexample. According to the dialogical orientation logical operators are im-
plicitly defined by the dialogue game to which they belong, whereas logical validity
is defined as the availability of a formal winning strategy for the Proponent.14

When this rough classification is applied, Hintikka and Lorenzen systems will
be subsumed in different groups. The Lorenzen approach is a truly dialogical
approach, but the Hintikka approach is, notwithstanding appearances to the con-
trary, primarily semantic. A small piece of evidence for this is the absence of a
rule for implication, which is dialogically the most interesting operator. Generally
there is in game-theoretical semantics a lack of discussion about typical dialogical
issues such as the different sets of structural rules and their consequences for the
possibilities of winning and losing. Rather, game-theoretical semantics competes
successfully with other approaches in semantics, notably model-theoretic semantics
[Saarinen, 1979]. Seen in this way, game-theoretic semantics provides an ingenious
way to describe semantic values, but does not, primarily, constitute an approach
to various kinds of logical validity defined in terms of winning strategies.

13Orientations were called ‘garbs’ in [Barth and Krabbe, 1982, ch. 1].
14There are more orientations possible. Recently an information-theoretic orientation has been

but forward [Veltman, 1996].
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5.2 Formal Dialectic

Charles Hamblin’s book Fallacies [1970] is as renowned for its historical as for
its systematic chapters. Among its systematic chapters the one entitled ‘Formal
Dialectic’ (chapter 8) invites a comparison with the work of Paul Lorenzen and
Kuno Lorenz. Hamblin starts with the concept of a dialectical system. ‘This is no
more or less than a regulated dialogue or family of dialogues’ [1970, p. 255]. For
instance, a regulated interchange of statements about the weather, would count as
a dialectic system [1970, p. 256]. Dialectic is the study of dialectic systems, and
it can proceed in two ways:

The study of dialectical systems can be pursued descriptively, or for-
mally. In the first case, we should look at the rules and conventions
that operate in actual discussions [. . . ] . A formal approach, on the
other hand, consists in the setting up of simple systems of precise but
not necessarily realistic rules, and the plotting of the properties of the
dialogues that might be played out in accordance with them. Neither
approach is of any importance on its own; for description of actual cases
must aim to bring out formalizable features, and formal systems must
aim to throw light on actual, describable phenomena. [. . . ]Dialectic,
whether descriptive or formal, is a more general study than Logic; in
the sense that Logic can be conceived as a set of dialectical conven-
tions. It is an ideal of certain kinds of discussion that the rules of Logic
should be observed by all participants, and that certain logical goals
should be part of the general goal. [Hamblin, 1970, p. 256]

A word is in order on what is here meant by ‘formal’. Since this term is used by
Hamblin as an opposite of ‘descriptive’, its meaning must be different from any of
the three meanings we met before (rigorous, related to logical form, operating with
formulas rather than statements). Rather, ‘formal’ here means nondescriptive or
normative. We may observe that the Lorenzen dialogues (whether material or not)
are formal in this sense as well, and that, therefore, their study (dialogue logic)
must be belong to formal dialectic. Moreover, as Hamblin says, formal dialectic is
a more general study than logic, and since dialogue logic is a part of logic, formal
dialectic must be a more general study than dialogue logic.

This will even hold for that part of formal dialectic that studies dialectical sys-
tems in which rules of logic are observed. For, in formal dialectic these rules of
logic need not take the shape of rules of dialogue logic as in Figure 1, above. They
could appear as consistency requirements based on a logic formulated in a non-
dialogical way (e.g. in terms of derivations). Indeed, none of the formal dialectic
systems that Hamblin introduces in his chapter on formal dialectic comprises for-
mal dialogue rules giving an analysis of the meaning of logical operators in terms
of possible attacks and defenses. Also, there is no definition of logical validity in
terms of winning strategies. We conclude that Hamblin’s formal dialectic is not
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an analogue of dialogue logic, but a more comprehensive study which shares with
dialogue logic an interest in dialectic rules.

The same observation holds for numerous other studies that are concerned with
dialectic, dialogue, or language games. I’m thinking of, among other things, Jaakko
Hintikka’s papers on information-seeking dialogues (e.g. [1981]), Lauri Carlson’s
dialogue theory [1983], Nicholas Rescher’s dialectics [1977], and the follow-up on
Charles Hamblin’s work on dialectical systems as undertaken by himself [1971],
by Jim Mackenzie, in many papers, e.g. [1979; 1985; 1990], and by John Woods
and Douglas Walton, also in many papers, see [1989], as well as monographs, (e.g.
[Walton, 1984; 1998]). These studies can not be discussed in this chapter, which
is exclusively concerned with dialogue logic in the more restricted sense. That is
not to deny that there are notable relationships and influences between dialogue
logic and these other types of dialectic. In fact, Lorenzen dialogues and Hamblin
dialogues were at a certain point integrated into one dialectical system [Walton
and Krabbe, 1995].

6 FURTHER DEVELOPMENTS AND APPLICATIONS

Returning to dialogue logic proper, I shall now briefly mention some of the de-
velopments that followed upon the kindergarten era. These developments concern
the introduction to modalities, a reframing of initial situations of dialogues and of
dialectical roles, new motivations for structural rules, and metalogical proofs. At
the end I shall review the various uses that have been made of dialogue logic.

6.1 Modalities in Dialogue

For an early formulation of dialogical rules for modal operators, we must actually
go back to the sixties. Lorenzen’s Normative Logic and Ethics [1969] already
contains a section on modal logic. In it Lorenzen introduces a symbol for necessity
(here I shall use ‘�’) that can be indexed by a reference to a system of (modality-
free) sentences Σ. The symbol ‘�Σ’ can then be read as ‘necessary relative to Σ’,
and is defined as follows:

�ΣA iff Σ logically implies A.

Here ‘A’ stands for a modality-free sentence [Lorenzen, 1969, p. 62]. The notion
of logical implication can of course be clarified by dialogue logic:

Σ logically implies A iff A is defensible as a thesis when the formulas Σ
are given as hypotheses (initial statements made by O). (Cf. [Lorenzen,
1969, pp. 30, 34–35].)

Lorenzen observes that there are theorems for which the choice of Σ does not
matter, so that we may suppress the index. These theorems can be called ‘modal-
logically true’, for instance:
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�A ∧�B → �(A ∧B)[1969, p. 62]

Lorenzen then characterizes the new, unindexed, operator by dialogical rules.
These rules are to be formulated without any reference to Σ, which remains sup-
pressed. The attack-defense-rule for �-formulas, that is their logical rule, is dis-
played in Figure 4.

Statement form Attack Defense
Necessity �A ? A

Figure 4. The Logical Rule for Necessity14

This rule would make ‘�’ into a void operator (like ‘it is the case that . . . ’), if it
weren’t for a special structural rule:

�-defense-rule: If the proponent defends a �-formula he may attack
only the �-formulae (the beginning � deleted) put by
the opponent beforehand [Lorenzen, 1969, p. 62].

We must take care not to interpret this rule in a way that would prevent P from
defending an attacked thesis �A by a counterattack against an hypothesis B∧�A,
say using ?r in order to obtain �A as a new hypothesis. This P is allowed to do,
even though B∧�A is not a �-formula. It is only after P has executed his defense
by asserting A, as prescribed by the logical rule for necessity, that the non-�-
formulas are as it were removed from the set of hypotheses [Krabbe, 1982a, pp.
207–208].

Lorenzen thus formulates a dialogical system for necessity in a nutshell. He
then goes on to discuss modal syllogistic and deontic modalities, but he seldom
returns to the dialogical basis. Apparently, Lorenzen did not set great store by
these rules of modal dialectics, for they do not reappear in his later treatments
of modality. In these later treatments, e.g. [Kamlah and Lorenzen, 1973; Loren-
zen and Schwemmer, 1973; 1975; Lorenzen, 1987], modalities are still critically
reconstructed in terms of dialogical procedures, but the dialogues in question are
not modal dialogues but material dialogues, in a metalanguage, about logical im-
plications. The notion of modal implication is explained in terms of generally
applicable winning strategies on this metalevel (i.e. strategies that do not depend
on Σ). To characterize the class of correct modal implications one may indeed
introduce a system of modal dialogues, but it can also be done in other ways.
This explains why the modal dialogues of Normative Logic and Ethics [Lorenzen,
1969] could gradually disappear from the scene. In Normative Logic and Ethics
there are still two dialogue rules (quoted above). In [Kamlah and Lorenzen, 1973,
p. 227] these are replaced by a �-rule (∆-Regel) without an indication of how

15[Lorenzen, 1969, p. 64]
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the players are to apply this rule in dialogue (i.e. of who should, or may, per-
form what act). In [Lorenzen and Schwemmer, 1975, p. 116] the �-rule (now
called ∆-Schritt) is no longer presented as a dialogue rule of an independently
formulated modal dialogue system, but as a reduction rule in a system for the
construction of modal tableaux (similar to the deductive Beth-tableaux of [1959;
1962]), the tableau system being designed to characterize exactly the correct modal
implications [Krabbe, 1982a, pp. 208–209].

All the same, the considerations in [Lorenzen, 1969] served as a starting point for
the development of a truly dialogical modal logic. In [Krabbe, 1982a; 1985; 1986]
this line of research has led to multiply modal systems (i.e. systems with many
different necessity operators) on the basis of an intuitionistic propositional logic
and displaying an S4-like character. Jaap Hoepelman and Toine van Hoof applied
dialogue logic to generic statements and conditionals and introduced interesting
role reversals in logical dialogues [Hoepelman and Van Hoof, 1993; Van Hoof,
1995]. Also modal dialogue logic (and many other special dialogue logics) were
studied by Shahid Rahman and Helge Rückert in a number of papers, e.g. [1999;
2001b].

6.2 The Initial Situation and Dialogical Roles

In most systems of dialogue rules the Opponent is to make the first move and this
move must be an attack directed at the initial thesis. Sometimes P’s assertion of
the initial thesis is counted as an improper move (move zero) that precedes the
actual dialogue. The initial situation most often is supposed to comprise just one
statement, the thesis, and there are no initial statements made by O. But we just
saw that in Normative Logic and Ethics [Lorenzen, 1969] the possible presence of
initial hypotheses was taken into account. So by a more general definition the
initial situation comprises a thesis (put forward by P) and set of statements put
forward by O. The latter set may be empty, bringing us back to the simpler type
of initial situation.

In an article published in [1980], Gerrit Haas staunchly defended the importance
of having a definition that admits initial hypotheses. But he also proposed another
and more radical change: the first proper move should be made by P instead;
nevertheless the case of an empty set of initial hypotheses should not be excluded.
What then would P’s first move put forward when there is, for P, no statement by
O to attack? The solution was that P should (in an improper zero move) announce
the thesis but not yet assert it. So, when the dialogue starts, P may as his first
proper move assert the announced thesis. This guarantees that P can always make
a first move, whether the set of hypotheses is empty or not. If there are statements
by O that P can attack, P may opt to do that first and to assert the thesis later.
The status of an announced but not yet asserted thesis equals that of a potential
defense that P has not yet realized. For instance, let O’s last attack have been on
a statement A→ B, then P has the option to assert B in a defense move, as long
as he did not yet do so. Hence, as long as the defense has not been realized one
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can say of such a potential defense B as well that it was announced, but has not
yet been asserted. Haas’s approach leads to elegant systems and works out very
nicely in the metatheory.

Closely related to the way one constructs the initial situation is the way one
views the two dialectical roles. These became gradually to be seen as more radically
divergent (‘asymmetric’). The assertions on O’s side were seen not to constitute
theses, but only hypotheses, or better concessions, that P may use to defend his
thesis. So the parlance of ‘attack and defense’ came to be felt as inappropriate.
This was also caused by its unnecessary martial sound, but mainly by the difference
between the two dialectical roles. In [Walton and Krabbe, 1995] this set of terms
is replaced by different sets for O and P: O challenges and P defends, P questions
and O answers.

Mostly, P is pictured as a serious discussant that tries to convince O of a thesis
he himself beliefs to be true. But beliefs play no part in formal dialogues and an
insincere Proponent is formally indistinguishable from a sincere one, as long as he
fulfills all his dialectical obligations; nevertheless it is important to have a picture
of the normal situation. In [Krabbe, 1982] another picture of the normal situation
has been proposed. According to this picture it is O who has an opinion, and
P who puts this to the test. O’s hypotheses, or concessions, together express a
theory O wants to maintain. P as a critic puts forward as a thesis, some statement
O would be inclined to reject. This is called a ‘provocative thesis’. Then P claims
that given O’s position she must also accept the provocative thesis. This kind of
criticism of O’s position is called ‘immanent criticism’. Clearly, there is no need
for P to believe his thesis to be true, even if P is sincere. The thesis could even
be ⊥, meaning that P claims that O’s theory is inconsistent. From this picture,
some of the customary rules of dialogue can be made more plausible.

6.3 Structural Rules Again

In the meantime, the debate on structural rules did not stop. There were proposals
of other motivations to support particular choices of rules, as well as investigations
about the effect of certain choices. These matters were a concern of, for instance,
[Barth and Krabbe, 1978; 1982; Haas, 1980; Felscher, 1986; Valerius, 1990].

A problem for some motivations was that it was felt to be highly desirable to
end up with a system that yielded a respectable logic, most often intuitionistic
logic, but that, at least by some, it was not seen as permissible to let this desire be
part of the motivation. Yet, wittingly or unwittingly, dialecticians could be influ-
enced by the desire to lay the foundations for some interesting logic (and prove an
equivalence theorem, see below). Even the extensive motivations given by Barth
and Krabbe, though officially resting on an analysis of norms for processes of con-
flict resolution, may have been biased by the prospective to generate foundations
for intuitionistic logic.

The analysis in [Barth and Krabbe, 1978; 1982] starts from the concept of a
conflict of avowed opinions. The idea is that such a conflict can be resolved by
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a discussion that satisfies certain norms. There is a proposal for a number of
fundamental norms, which are stated in rather general terms, and an attempt
to implement these norms by more specific norms. Acting in accordance with the
more specific norms is supposed to help achieve the ends of the more general norms.
Going down to ever more specific norms one finally reaches the level of rules of
dialogue which define a dialogue game (or a number of alternative games).16 For
instance, take the fundamental norm of dynamic dialectics:

FD D1 The system of FD-rules applied in a discussion shall be
designed to promote the revision and flux of opinions in
any company in which these rules are adopted. [Barth and
Krabbe, 1982, p. 29]

If one accepts this norm, one may implement it by also accepting:

FD D2 The rules shall be such that unavoidable decisions as to the
outcome of discussions will be reached as soon as possible.
[Barth and Krabbe, 1982, p. 79]

This can be implemented by a number of rules that avoid repetitions and verbosity.
Clearly, this road to structural rules is in principle feasible in any kind of formal
dialectic, not just dialogue logic.

6.4 Metalogic

Metalogic is the (mathematical) study of properties of logic systems and the rela-
tions between these systems. In the case of dialogue logic, the logic yielded by a
system of dialogue rules may be identified with the set of sentences for which there
is a P-winning strategy (i.e. a wining strategy for P), given that P starts with a
statement of the sentence in his improper move (move zero), and that O starts
with the empty set of hypotheses. In metalogic, the logics yielded by dialogue
systems are compared with one another and with logics yielded by other types of
system.

A P-winning strategy can be pictured as a tree of which the branches repre-
sent all possible dialogues in which P uses the strategy. The nodes are labeled by
moves (or, alternatively, by positions in the dialogue game). Whenever it is O’s
turn to move, all options for O are represented (this generally leads to a branching
of the tree), but whenever it is P’s turn to move, just one particular option is
represented. This is a P-strategy. A P-winning strategy is a P-strategy such that
the final nodes all represent moves that determine a win for P (or, alternatively,
a position in which P has won), and such that there are no infinite branches.17

Starting with [Lorenzen, 1961], P-winning strategies are mostly represented by

16For a brief exposition, see [Barth, 1982].
17In game-theoretical terms, P-strategies and P-winning strategies are parts of the game in

extensive form.
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dialogical tableaux. In Figure 5 an example is given of a dialogical tableau rep-
resenting a P-winning strategy for the same thesis as in Figure 2 and Figure 3.
The dialogue system is that of constructive and formal E-dialogues. To read a
dialogical tableaux, one should remember that, when a tableau splits its columns,
this represents a branching of the tree. In that case the leftmost O-column is to
be associated with the leftmost P-column to get one branch of the tree, and the
rightmost O-column is to be associated with the rightmost P-column to get the
other branch.18

O P
0. ((p→ p) → q) → q

1. (p→ p) → q? 2. q
3. ? 4. p→ p ?
5. p? 5. q 6. p
7. ? P wins

P wins

Figure 5. A Dialogical Tableau

The P-winning strategies of a system of dialogue rules must be fully analyzed in
order to prove correctness (soundness) and completeness theorems for the logic
yielded by the system. Here correctness and completeness are relative concepts.
A logic system L1 is correct relative to a logic system L2 if whatever is valid in L1

is also valid in L2. Most often L1 is a derivational or dialogical system, and L2 a
semantic system, but here we shall not require this to be the case. A logic system
L1 is complete relative to a logic system L2 if whatever is valid in L2 is also valid
in L1. A logic system L1 is equivalent to a logic system L2 if L1 is both correct
and complete relative to L2. Much metatheoretic research in dialogue logic has
been focusing on such relations, both to relate different dialogical logics and to
make comparisons with logic systems defined by derivational or semantic methods.

The problem with metalogical proofs about a dialogue system is that one first
has to specify the system in mathematical terms; that is, one has to define the
set of dialogue situations and the game rule, using for instance the apparatus of
set theory. This can often be done in various ways that are not always obviously
equivalent. Therefore the proofs are either very informal, and therefore not con-
vincing for everyone, or very rigorous, but limited to a particular specification in
mathematical terms. Nevertheless it is clear by now that for the main systems of
dialogue logic such proofs are available.

The equivalence between logics generated by (particular kinds of) D-dialogues
and (particular kinds of) E-dialogues proved a notoriously hard nut to crack. To
show this equivalence, one needs rather complex transformations of strategies.
Above, when discussing Lorenzen’s simplification of the structural rule (see 4.3
Dialogue Logic in Kindergarten), we saw that this matter was taken up by a

18These conventions are, of course, known from Beth-tableaux [1955; 1959; 1962].
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number of authors.19 As far as I can see, Felscher’s proof is correct, but very
complicated, whereas mine is also correct, but not as formal and much simpler.

As to the equivalence between dialogue logics and other (semantic, derivational)
logics, this has been studied by tableau methods since [Lorenz, 1961]. A number
of proofs and sketches of proofs have been published since, widely diverging in
methods and pertaining to different types of system: [Kindt, 1972, §10; Thiel,
1978; Haas, 1980; Mayer, 1981; Stegmüller and Varga von Kibéd, 1984; Felscher,
1985; Barth and Krabbe, 1982; Krabbe, 1982b; 1985a; 1988]. Kindt’s work is
very mathematical, and it is uncertain whether his specification corresponds to
the dialogue systems in the literature, Haas treats systems with his own kind
of initial situation, Mayer treats intuitionistic and classical logic, Stegmüller and
Varga von Kibéd treat classical logic only, Felscher presents very detailed proofs
for intuitionistic logic, Barth and Krabbe treat besides intuitionistic and classical
logic also minimal logic, but restrict themselves to propositional logic, [Krabbe,
1982b] gives the additions for predicate logic, [Krabbe, 1985a; 1988] present ever
quicker ways to prove equivalence.20

6.5 A Summary of the Uses of Dialogue Logic

What is the use of logical dialogue games? The answer has to be that with various
authors, or even with the same author at different times, one finds rather distinct
purposes. In his first publications on dialogue logic, Paul Lorenzen wanted to
amend the foundations of mathematics. The goal was to establish a constructive
mathematics and to justify some constructive logic (e.g. the intuitionistic logic
formulated by Arend Heyting [1930]), but to do so without absorbing the solipsis-
tic (one mind) philosophy of Heyting’s teacher, L. E. J. Brouwer. Soon it became
evident that, by varying the rules of dialogue, a dialogical foundation could also be
given to other logics than Heyting’s, including classical logic to which all construc-
tivists were in some way opposed. This is not to say that the case for constructive
(intuitionistic) logic was now lost, because one could still try to show that those
rules of dialogue that yield a constructive logic are for some reason to be preferred.

In the years that followed, dialogue logic developed into an independent dialog-
ical orientation towards logic that can compete with the semantic and with the
derivational orientations as a means to give a characterization of logical operators
(logical constants) — i.e. to determine the meaning of logical operators. In dia-
logue logic this is done by rules that stipulate in what way statements of various
logical forms can be attacked and defended.

This dialogical orientation towards logic can also compete with the semantic and
the derivational orientations as a means to provide precise meanings for concepts
of theoretical logic, such as ‘validity’ or ‘consistency’. In dialogue logic, definitions
for these concepts are framed in terms of strategies. As we saw, the logical validity
of a thesis can be defined as the existence of a winning strategy for the Proponent.

19[Lorenz, 1968; Kindt, 1970; Haas, 1980; Felscher, 1985; Krabbe, 1985].
20See [Felscher, 1986, pp. 349–353] for a more extensive evaluation.
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Consistency of a set of statements can be defined as the existence of a winning
strategy for the Opponent who grants these statements vis-à-vis a Proponent who
asserts a conventionally indefensible sentence, codified as ‘⊥’.

Lorenzen realized that the dialogical approach could also be deployed to con-
tribute to the foundation of other than mathematical uses of language.21 Together
with a number of German philosophers (known as the ‘constructivists’ or as the
‘Erlangen School’), he worked for a considerable period towards a critical recon-
struction of the Bildungssprache (the language of culture, i.e. the language of sci-
ence and philosophy, and so on). Their aim was to provide the intellectual means
to end the present lack of discipline as people are writing nineteen to the dozen and
talking at cross-purposes; to end the chaos in communication, for short [Kamlah
and Lorenzen, 1967; 1973, p. 11]. For this we must reconstruct our language step
by step, making sure that each part is thoroughly understood by its users. Point
of departure in this enterprise are those speech acts for which it is sufficiently clear
how they should be executed and for what purpose (for instance simple orders).
This so-called ‘empractical’ (empraktisch, also: empragmatisch) use of language is
safely kept in check by nonlinguistic action [Lorenzen and Schwemmer, 1975, p.22];
[Lorenzen, 1987, p. 20]. All further steps in the construction of language must be
teachable and verifiable as to their purpose [Lorenzen and Schwemmer, 1975, pp.
10–11]; [Lorenzen, 1987, p. 10]. Going through this process, we may finally reach
terms such as ‘synthetical a priori truth’, ‘coincidental’, ‘social structure’, or ‘or’,
and admit them in the reconstructed language. The language thus reconstructed
is called ‘ortholanguage’ (Orthosprache). Now, what is the role of dialogue games
in this program? It is that at a certain stage in this process of reconstruction one
has to reintroduce the logical operators, and this is done by explaining the rules
of logical dialogue games. In the process, the dialogue games are preceded by a
‘rational grammar’(rationale Grammatik) [Lorenzen and Schwemmer, 1975, p. 55];
[Lorenzen, 1987, p. 52] for parts of speech and elementary sentences, including
a survey of 216 well-founded locative prepositions. They are followed by further
reconstructions, pertaining to arithmetic, geometry, ethics, politics, etc.

Another objective of dialogue logic is to provide models for argumentation the-
ory. This aim is not inconsistent with the ideal of an ortholanguage, but neither
need it be restricted to that context. Let me briefly point out why argumenta-
tion theory, more specifically dialectical argumentation theory, needs models of
dialogue. In the dialectical approach to argumentation it is assumed that in ar-
guments there are always two roles in play, even when just one person is putting
forward an argument so that the role of the Opponent remains implicit (mono-
logues). The starting point for all arguments is found in differences of opinion.
The goal of an argumentative process is to resolve a difference of opinion so as
to reach a solid and well-founded agreement. It is not sufficient just to settle the
difference by negotiation or to put an end to it in some ad hoc way. Therefore,
the argumentative process must consist of a serious and critical discussion of the

21In these last paragraphs I paraphrase some of the remarks I made in [Hodges and Krabbe,
2001, pp. 36–38].
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issues. The ideal format of this process is to be given by a model of discussion.
Real life argumentative discussion may not be in accordance with this ideal for-
mat, but the theorist needs a model to analyze and evaluate what actually goes
on.

Models of argumentative discussion can be more or less formal. In the approach
to argumentation called ‘pragma-dialectics’ informal models based on speech act
theory are used [Van Eemeren and Grootendorst, 1982; 1984; 1992; 2004], in
a formal dialectic approach Lorenzen-type models are nowadays combined with
Hamblin-type models [Walton and Krabbe, 1995].22 Formal dialogue games, and
in general formal dialectic systems, of many different types constitute a kind of lab-
oratory for the argumentation theorist, where small scale conceptual experiments
are possible regarding concepts such as: making a claim, granting a concession,
useless versus useful repetition, burden of proof, blunder, fallacy, relevance, being
in the right versus being put in the right, etc. Further experiments concern differ-
ent options for rules of dialogue as well as the interaction of rules of dialogue that
seem separately plausible. Thus the study of dialogue games, together with other
kinds of formal dialectic, may stepwise contribute to a comprehensive theory of
argumentation.23

Finally, it can be seen that dialogue logic, together with other dialectically
oriented studies in logic, continues to relate with work in artificial intelligence and
linguistics.24 A recent issue of Synthese, edited by Shahid Rahman and Helge
Rückert testifies of the influence of dialogue logic in several directions and of the
continuing interest in dialogue logic itself [2001a].
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Sobociński, B., 52
Solecki, S., 537
Solovay, R., 36, 73–75
Sosa, E., 244
sound logic, 45
soundness, 213
Spaan, E., 50
special relativity, 41
Special Theory of Relativity, 482–

489
spheres, 138
splitting logic, 47
stack valued assignment, 582
Stalnaker, R., 573, 574, 589
Standard Analysis, 255, 256
Standard Deontic Logic (SDL), 206,

207, 220, 226
standard semantics, 222
state formulas, 69
state set, 83
state-description, 22, 32
Staudacher, P., 576
Stavi, J., 64, 68
Stirling, C., 67
STIT, 251, 252
stit-expressions, 492, 494
stit-formalism, 492–494
Stockmeyer, L., 69
Stokhof, M., 552, 556, 574–576,

585, 593
Stone’s Boolean representation, 1,

9, 12, 15, 38
Stone, M., 13

Stoy, J., 512
Streett, R., 69, 72, 528, 530
strict detachment rule, 7
strict implication, 6
strict necessitation, 222
strongest postcondition, 514
structural operational semantics,

508, 509
subdirect irreducibility, 40
subdirectly irreducible, 44
subframe, 44
substitution, 565
substitution of strict equivalents,

7
substitutivity of equals, 29
Supererogation Problem, 244
supererogatory, 197
Sylvan, R., 456
symbolic logic, 199

T , 220, 226
Tan, Y. H., 236
Tan, Y.-H., 592
Tang, Tsao-Chen, 11
Tarski, A., 8, 10, 12, 13, 15, 17,

18, 22, 29, 35, 36, 55, 70,
571

TAUT, 207
tempo-modal logic

semantics of, 430–436
syntax of, 425–430

temporal logic, 447–495
tense logic, 3, 26, 40, 68, 404, 405,

414–417, 420, 421, 425,
426, 428, 430, 431, 433,
436–439, 441–443, 450, 452,
453, 455, 456, 458, 460–
462, 465, 469, 473, 475–
477, 482, 485–489, 494

termination, 507
the least one can do, 197
The Logical Necessity of Obliga-

tions Problem, 227
Theory of Normative Positions, 252



718 INDEX

Theory of Normative Positoins, 252
Thomas, I., 403
Thomas, W., 69
Thomason, R. H., 257, 492
Thomason, S. K., 46, 50, 54–57,

478
three-point structure for tenses, 449,

450, 452, 453
three-valued logic, 402, 415
Tierney, M., 36, 77
time, 257
Tinchev, T., 527
Tiuryn, J., 499, 527, 537, 548
topological closure, 11
topology on a topos, 77
topos theory, 36, 76
Torre, L. van der, 592
Traditional Definitional Scheme

202, 205, 206, 208
Traditional Scheme, 203, 205, 206
Traditional Scheme’s deontic op-

erators, 217
Traditional Threefold Classification

(TTC), 202
transformational program, 516
transition structure, 83
Troelstra, A., 44
truth table, 19
truth value in a topos, 77
TTC, 206
Turi, D., 83
Turing completeness, 504
Turing, A., 504

U -calculus, 25, 51, 85
Ulam, S., 14
ultrafilter extension, 57
ultraproduct, 57
undecidable modal logics, 50, 54,

61
unpayable debts, 233
“until” connective, 68
update operator, 128
update PDL, 538

update product, 132
update semantics, 128, 590
Urmson’s Puzzle, 243
Urmson, J. O., 243
Urquhart, A., 50, 67

van Benthem, J., 44, 46, 49, 53,
61

van der Torre, L., 227, 236
van Eck, J., 257
van Fraassen, B. C., 236
Vardi, M., 69, 594
variable free indexing, 583
variety, 48, 55
Veltman, F., 573, 590, 593
Venema, Y., 60, 61, 523
Vermeulen, C., 566, 581–583, 593
Victims Paradox, 231
Violability Puzzle, 229
Visser, A., 558, 560, 565–567, 572,

575, 582, 594
von Wright, G. H., 5, 9, 197, 199,

211, 227–229, 233, 239,
241, 243, 245, 492

Vries, F.-J. de, 556, 591

Wajsberg, M., 23
Walker, A. G., 477–479
Walukiewicz, I., 72, 536
weakest liberal precondition, 514
well-connected, 12, 40
well-founded relation, 51
Wells, C., 357
Wesley, J., 414
WHILE language, 504
Whitehead, A. N., 402
Whitrow, G. J., 486
Winskel, G., 69
Wittgenstein, L., 22, 432
Wolper, P., 69
world-line, 152
Wright, G. von, 501

XPath, 518

(TDS),



INDEX 719

Xu, M., 494, 501

Zarnic, B., 592
Zeevat, H., 582, 590
Zeman, J., 404



This Page is Intentionally Left Blank


