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Preface

Hemodynamics is the study of the forces and physical mechanisms associated with
blood flow in the cardiovascular system. Due to the fact that blood is a suspension
of flexible particles in plasma and to the coupling between motion of blood and
the vessel wall, necessarily this subject includes both fluid and solid mechanical
processes. Hemodynamic features such as flow separation, flow recirculation, and
low and oscillatory wall shear stress are believed to play important roles in the
localization and development of vascular diseases such as atherosclerosis, cerebral
aneurysms, post-stenotic dilations and arteriovenous malformations. Therefore,
modeling, mathematical analysis and numerical simulation of these processes can
ultimately contribute to improved clinical diagnosis and therapeutic planning.

However, the circulatory system is extremely complex and so researchers are
faced with the need to formulate the numerical or mathematical problem in a form
which is sufficiently simple to be tractable, yet maintains enough complexity to be
relevant. For example, rather than modeling the entire circulatory system, isolated
segments of the circulation are studied, introducing the need to choose appropriate
inflow and outflow boundary conditions and possibly take a multi-scale approach.
The blood vessel wall is an inhomogeneous, nonlinear, material capable of growth
and remodeling, and blood is a concentrated suspension of deformable cellular
elements in plasma. The modeler needs to choose suitable constitutive models
for the wall and blood. The diameter of vessels in the circulatory system ranges
from the order of centimeters in the larger arteries to microns in the capillaries.
It is therefore appropriate to model blood as a single phase continuum in some
parts of the circulatory system, while in others, it is necessary to model blood
as a suspension. The chapters in this book address these and other topics from
different perspectives.

The present volume is a collection of six chapters which are based on a series
of lectures delivered by Anne M. Robertson (University of Pittsburgh), Giovanni P.
Galdi (University of Pittsburgh), Rolf Rannacher (University of Heidelberg), and
Stefan Turek (University of Dortmund) at the Oberwolfach Seminar “Hemody-
namical Flows: Aspects of Modeling, Analysis and Simulation”, during the period
November 20–26, 2005.

These lectures focused on various aspects of hemodynamics from different
angles, including physical modeling, mathematical analysis and numerical simula-
tion. Accordingly, this volume addresses the following main topics:

– General background in continuum mechanics;
– Multiphase nature of blood;
– Rheological data for blood;
– Newtonian and non-Newtonian constitutive models for blood;
– Mechanical models for blood vessel walls;
– Numerical methods for flow simulation;
– Aspects of mesh and model adaptivity;
– Particle transport in viscous flows;
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– Flows through systems of pipes;
– Fluid-structure interaction in blood vessels.

The above topics are organized as follows:
In the first chapter, Review of Relevant Continuum Mechanics, by A.M.

Robertson, the basic kinematical and dynamical issues that are at the foundation
of continuum mechanics used in the book are surveyed. The constitutive theory for
Newtonian fluids, general nonlinear viscous fluids, yield stress ”fluids”, viscoelastic
fluids and thixotropic fluids are covered. In preparation for a discussion of experi-
mental data on blood in the second chapter, viscometric flows and commonly used
rheometers are discussed. Finally, the fundamentals of nonlinear elastic solids are
introduced.

The second chapter, Hemorheology, by A.M. Robertson, A. Sequeira, and
M.V. Kameneva, is dedicated to constitutive models for blood, based on phe-
nomenological considerations. Experimental data on the multiphase properties of
blood are considered as well as the relationship between these properties and the
mechanical behavior of blood. These mechanical properties include shear thin-
ning viscosity, yield stress behavior and viscoelasticity. The significance of these
non-Newtonian behaviors in the circulation are addressed. The subject of blood
coagulation is considered, motivated by its importance in cardiovascular device
design. The chapter concludes with sections on the effect of gender and certain
diseases states on the mechanical response of blood.

The third chapter, Mathematical Problems in Fluid Mechanics, by Giovanni
P. Galdi, discusses some, of the many, topics which are at the foundation of the
analysis of models for blood flow, and points out directions for future research.
Specifically, it focuses on the following three different problems: pipe flow of a
Navier-Stokes liquid, flow of non-Newtonian and, in particular, viscoelastic liquids,
and liquid-particle interaction. This analysis has two main objectives. The first is
the study of the well-posedness of the relevant problems, whereas the second is
to provide a rigorous explanation of some fundamental experiments. In particular,
special attention is given to the investigation of the dependence of even qualitative
features of the on the non-Newtonian properties of the liquid.

The fourth chapter, Methods for Numerical Flow Simulation, by Rolf Ran-
nacher, introduces the computational methods for the simulation of PDE based
models of laminar hemodynamical flows. Space and time discretization is discussed
with emphasis on operator-splitting and finite-element Galerkin methods because
of their flexibility and rigorous mathematical basis. Special attention is paid to
the simulation of pipe flow and the related question of artificial outflow boundary
conditions. Further topics include efficient methods for the solution of the resulting
algebraic problems, techniques of sensitivity-based error control and mesh adap-
tation, as well as flow control and model calibration. The analysis is restricted to
laminar flows, where all relevant spatial and temporal scales can be resolved, and
no additional modeling of turbulence effects is required. This covers most of the
relevant situations of hemodynamical flows.
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In the fifth chapter, Numerics of Fluid-Structure Interaction, by Sebastian
Bönisch, Thomas Dunne, and Rolf Rannacher, numerical methods for simulating
the interaction of viscous liquids with rigid or elastic bodies are described. General
examples of fluid-solid/structure interaction (FSI) problems are flow transporting
rigid or elastic particles (particulate flow), flow around elastic structures (airplanes,
submarines) and flow in elastic structures (hemodynamics, transport of fluids in
closed containers). A common variational description of FSI is developed as the
basis of a consistent Galerkin discretization with a-posteriori error control and
mesh adaptation, as well as the solution of optimal control problems based on the
Euler-Lagrange approach.

The sixth chapter, Numerical Techniques for Multiphase Flow with Liquid-
Solid Interaction, by Jaroslav Hron and Stefan Turek, discusses numerical methods
for simulating multiphase flows with liquid-solid interaction based on the incom-
pressible NavierStokes equations combined with constitutive models for nonlinear
solids. More precisely, it addresses the following three topics. The first concerns
finite-element discretization and corresponding solver techniques for the resulting
algebraic systems. The second regards a fully monolithic finite-element approach
for fluid-structure interactions with elastic materials which is applied to several
benchmark configurations. Finally, the third section introduces the concept of
FEM fictitious boundary techniques, together with operator-splitting approaches
for particulate flow. This latter is especially designed for the efficient simulation
of systems with many solid particles of different shapes and sizes.

This work is aimed at a diverse readership. For this reason, an effort was
made to keep every topic as self-contained as possible. In fact, whenever details
are not explicitly given, the reader is referred to the appropriate literature.

Last, but not least, the authors would like to convey their sincere thanks to
all participants, who, with their questions and insights, helped to maintain a lively
and stimulating scientific atmosphere, typical of all Oberwolfach meetings.



Hemodynamical Flows. Modeling, Analysis and Simulation

Oberwolfach Seminars, Vol. 37, 1–62
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Review of Relevant Continuum Mechanics

Anne M. Robertson

Introduction

In this chapter we review the basic continuum mechanics at the foundation of
the technical material in this book. Readers interested in further information are
referred to monographs on this subject including Truesdell and Noll [65], Chad-
wick [10], Gurtin [27], Galdi [21, 22], Holzapfel [32], Temam and Miranville [61],
and Spencer [59]. The material is organized as follows:
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Notation

Before proceeding further, we discuss some of the notation used in this chapter.
We make use of Cartesian coordinates and the standard Einstein summation con-
vention. For clarity, relations are often given in both coordinate-free notation as
well as component form.

In general, lower-case letters (Greek and Latin) are used for scalar quantities,
boldface lower-case letters are used for first-order tensors (vectors) and boldface
upper-case letters are used for second-order tensors. The components of tensors
relative to a fixed orthonormal basis (rectilinear) (e1, e2, e3) are denoted using
Latin subscripts. Standard summation convention is used whereby repeated Latin
indices imply summation from one to three. The inner product between two arbi-
trary vectors u and v is denoted using the “·” notation and defined in this chapter
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as
u · v = ui vi. (0.1)

The linear transformation formed by the operation of a second-order tensor A on
a vector u to generate a vector v is written as v = A ·u. The dot product of two
second-order tensors A · B generates another second-order tensor C,

C = A · B or Cij = Aik Bkj . (0.2)

The inner product of two second-order tensors A and B is denoted by A : B and
defined in this chapter as

A : B = trace(AT · B) or A : B = Aij Bij . (0.3)

1. Kinematics

In this section, we introduce the kinematics necessary for describing the motion of
the solids and liquids discussed in this book.

1.1. Description of motion of material points in a body

First consider a physical body, which we identify by the symbol B. In this work,
we take a continuum approach and assume B is composed of a continuous set of
material particles. We identify an arbitrary material point in B by its position X
in a chosen reference configuration, which we denote as κ0

1. Namely, we assume
the body can be embedded in a three-dimensional Euclidean space, Figure 1. For
example, κ0 could be the configuration of the body at time zero, though it is
not necessary that the configuration of the body ever coincided with reference
configuration κ0. The mapping of each material particle of the body from κ0 to
Euclidean 3-space at an arbitrary time t will be called the configuration of B at
time t, denoted by κ(t). This mapping is assumed to be one-to-one, invertible and
differentiable as many times as necessary for all time.

The region occupied by the entire body in κ0 is denoted by R0 with closed
boundary ∂R0, Figure 1. The corresponding regions and boundaries for the body
in κ(t) are R and ∂R, respectively. An arbitrary material region within B in κ0

will be denoted as V0 (V0 ⊆ R0) with boundary ∂V0. The corresponding subregion
in the current configuration κ(t) is denoted as V (V ⊆ R) with boundary ∂V.

During the deformation (or motion) of B, an arbitrary material particle lo-
cated at position X in reference configuration κ0 will move to position x in con-
figuration κ(t). It is assumed that the deformation of all points in the body can
be described through a relationship of the form

x = χκ0
(X, t). (1.1)

1The use of the upper case symbol for the position vector in κ0 is an exception to the notation
for vectors introduced above.
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Figure 1. Schematic of notation used to identify material points
and regions in an arbitrary body B in the reference configuration
κ0 and current configuration κ(t).

We further assume χκ0
(X , t) is differentiable as many times as necessary in space

and time and possesses an inverse,

X = χ−1
κ0

(x, t). (1.2)

For our current purposes, it suffices to define one reference configuration for the
body. Hence, in further discussions, we drop the subscript κ0 and it will be under-
stood that the functions χ(X, t) and χ−1(x, t) depend on the choice of reference
configuration. In the discussion of viscoelastic fluids with fading memory in Sec-
tion 5, we will use the current configuration as the reference configuration. The
relevant kinematics for viscoelastic fluids will be discussed in Section 5.1.

1.2. Referential and spatial descriptions

Field variables such as density, ρ, will either be written as a function of X and t
(the referential or Lagrangian description) or as a function of x and t (the spatial
or Eulerian description),

ρ = ρ̄(X, t) = ρ̂(x, t). (1.3)

Note that the Eulerian description ρ̂(x, t) is independent of information about the
position of individual material particles and is typically used for the motion of
viscous fluids. Clearly these two descriptions can be related using (1.1) and (1.2).

The velocity v and acceleration a of a material particle can then be defined
with respect to the motion (1.1) through

v =
∂χ(X, t)

∂t
, a =

Dv

Dt
=

∂2χ(X , t)
∂t2

, (1.4)
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where the notation D(·)/Dt is used to denote the material derivative of a quantity.
It is literally the time derivative of the Lagrangian description of a quantity, holding
the material particle fixed. Namely, it is understood in evaluating the material
derivative in (1.4), that X is held fixed. Sometimes the material derivative is
called the total derivative or substantial derivative.

Frequently in fluid mechanics, the Eulerian description of the field variables is
of interest rather than the material description. Using the chain rule, the material
derivative can be written for the spatial formulation of a field variable. For example,

Dρ

Dt
=

∂ρ̄(X, t)
∂t

=
∂ρ̂(x, t)

∂t
+ vi

∂ρ̂(x, t)
∂xi

. (1.5)

Using (1.5), it follows that the acceleration, defined in (1.4), can be written with
respect to the spatial representation of the velocity field,

ai =
∂v̂i(x, t)

∂t
+ vj

∂v̂i(x, t)
∂xj

. (1.6)

1.3. Deformation gradient and measures of stretch and strain

1.3.1. Deformation gradient. The deformation gradient or displacement gradient
of the motion relative to the reference configuration κ0 is a second-order tensor
defined by

F =
∂χ(X, t)

∂X
or FiA =

∂χi(X, t)
∂XA

. (1.7)

It is the fundamental kinematic variable describing the change in length and ori-
entation of an infinitesimal material element dX in κ0 to dx in κ(t) during the
deformation. It can be shown that the relationship between dx and dX is

dx = F · dX, or dxi = FiAdXA. (1.8)

In future discussions, we denote the Jacobian of the transformation (1.1) by J .
Namely, the Jacobian is equivalent to the determinant of F ,

J ≡ det
∂χi(X , t)

∂XA
= det (F ) . (1.9)

We restrict attention to deformations for which χ(X, t) has an inverse, so nec-
essarily J �= 0. From (1.7), F = I in κ0. Since the deformation is taken to be
continuous and J �= 0, it follows that 0 < J < ∞. The relationship between the
infinitesimal volume occupied by material points in the current configuration dv
is related to the infinitesimal volume dV occupied by the same material points in
the reference configuration,

dv = J dV. (1.10)

It will be useful in the discussion of the governing equations to note the following
result for the material derivative of the Jacobian of the transformation (1.1),

DJ

Dt
= J div v, or

DJ

Dt
= J

∂vi

∂xi
. (1.11)
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1.3.2. Measures of deformation and strain. While the deformation gradient is a
fundamental kinematic variable, it will be shown in the later sections of this chap-
ter, that the dependence of the stress tensor on F is restricted if invariance re-
quirements are to be satisfied. As a result, the left Cauchy–Green tensor,

B = F · F T , or Bij = FiAFjA, (1.12)

and the right Cauchy–Green tensor,

C = F T · F , or CAB = FiAFiB , (1.13)

will be useful in discussions of constitutive models for solids. It follows from (1.12),
(1.13) and the properties of J that B and C are positive definite, symmetric
tensors.

For rigid motions, B and C are equal to the identity tensor. It is a simple
matter to used these variables to define measures of strain which vanish for rigid
motions. For example, the Lagrangian and Eulerian strains are respectively defined
as

E ≡ 1
2
(C − I), and e ≡ 1

2
(I − B−1). (1.14)

1.3.3. Physical significance of stretch and strain measures. In order to better un-
derstand the physical significance of the four tensors defined in (1.12)–(1.14), we
now consider the change in orientation and magnitude of an infinitesimal mate-
rial element dX in reference configuration κ0 that transforms to dx during the
deformation, (1.8). We will denote the magnitude of dx and dX as ds and dS,
respectively and let m and M be the unit vectors tangent to dx and dX, respec-
tively. It then follows from (1.8) that

ds2

dS2 = CAB MA MB. (1.15)

If we now consider the special case where dX is parallel to one of the coordinate
axis, for example, dX = dSe1, it follows from (1.15) that

C11 =
ds2

dS2 , and E11 =
1
2

ds2 − dS2

dS2 . (1.16)

Namely, C11 is equal to the square of the stretch and E11 is a measure of the
Lagrangian strain of an infinitesimal material element which was aligned with e1 in
the reference configuration. Similar results hold for the other diagonal components
of C and E.

In parallel with (1.15), it can be shown that

dS2 = B−1
ij mi mj ds2. (1.17)

Therefore, if an infinitesimal element dx is aligned with e1 in the current config-
uration,

B−1
11 =

dS2

ds2 and e11 =
1
2

ds2 − dS2

ds2 . (1.18)
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Thus, B−1
11 is equal to the square of the inverse of the stretch and e11 is a measure

of the Eulerian strain of an infinitesimal material element which is aligned with
e1 in the current configuration.

1.4. Velocity gradient and the rate of deformation tensor

While the fundamental kinematic variable for elastic solids is the deformation
gradient tensor, for viscous fluids, this quantity is the velocity gradient, L. The
components of L with respect to rectangular coordinates are 2

L = gradv, or Lij =
∂vi(x, t)

∂xj
. (1.19)

As will be discussed later in this chapter, the dependence of the stress tensor on
L must be restricted if invariance requirements are to be satisfied. As a result, we
are generally interested in the symmetric part of the velocity gradient, D, often
referred to as the rate of deformation tensor,

D =
1
2

(
L + LT

)
, or Dij =

1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
. (1.20)

1.4.1. Physical significance of the components of D. The physical significance of
D can be studied by considering the rate of change in magnitude of an infinitesimal
material element dx of length ds. Using (1.4), (1.7), (1.8), and (1.19), it can be
shown that

D(dx)
Dt

= L · dx or
Ddxi

Dt
= Lijdxj . (1.21)

Therefore,
D(ds2)

Dt
= 2 Dijdxidxj . (1.22)

For example, we see from (1.22) that the rate of change of magnitude of an infin-
itesimal element dx, which at time t is parallel to the e1 axis is

D11 =
1
ds

Dds

Dt
. (1.23)

The other diagonal elements of D can be interpreted in a similar way.
Now consider two infinitesimal material elements dx and dy at time t. It

follows from (1.20) and (1.21), that

D(dx · dy)
Dt

= 2 dx · D · dy or
D(dx · dy)

Dt
= 2 Dijdxidyj . (1.24)

If at time t, dx and dy are parallel to the e1 and e2 axis, respectively, then, from
(1.24),

D12 = −1
2

Dβ

Dt
, (1.25)

where β is the angle formed by dx and dy. The other off-diagonal elements can
be interpreted similarly. Note that this physical meaning of the components of

2The definition of the gradient of a vector varies in the literature. In some works, it is the
transpose of that used here.



8 A.M. Robertson

D does not require knowledge of the history of deformation of specific material
elements. Rather the components of D(x, t) are related to the rate of change of
material elements only at time t.

1.5. Special motions

1.5.1. Rigid motions. A rigid motion is one in which the distance between arbi-
trary material points remains constant. Therefore, for rigid motions, the material
derivative of ds is zero for all points in the body, for all time during the motion.
We see from (1.22) that a necessary and sufficient condition for a motion to be
rigid is that D be identically zero at all points in the body for all time.

One can show that the most general rigid motion can be written as

x = xo(t) + Q(t) · X, (1.26)

where Q is a proper orthogonal, second-order tensor.

1.5.2. Isochoric motions. Isochoric motions are those in which the volume occu-
pied by fixed material particles is unchanged during the motion. A material does
not have to be incompressible to undergo isochoric motions. We see from the re-
lation (1.10), that if a motion is isochoric, then the value of J is one at all points
in the body, throughout the motion. In this case, it follows from (1.11) that the
divergence of v is equal to zero and hence the trace of D is zero. In summary, the
following are each necessary and sufficient conditions for a motion to be isochoric,

J = 1, dv = dV,
DJ

Dt
= 0,

∂vi

∂xi
= 0, trace(D) = 0,

(1.27)

at all points in the body and throughout the motion.

1.5.3. Simple shear. A flow field that is of great significance in fluid mechanics is
simple shear flow, sometimes called Couette flow. In this flow, the velocity field is
steady, fully developed and uni-directional. The magnitude of the velocity depends
linearly on the spatial component with axis perpendicular to the direction of flow.
For example, if rectangular coordinates xi are chosen such that the flow direction
is parallel to the x1 axis, then the orientation and origin of the coordinate system
can be chosen such that the velocity field can be written as

Simple Shear v = γ̇0 x2 e1, (1.28)

where γ̇0 is a constant. Clearly simple shear is an example of an isochoric motion.
Using (1.4) and the initial condition x = X at t = 0, we obtain,

Simple Shear x = X + γ̇0 X2 te1. (1.29)

It is possible to show that simple shear flow can be generated between parallel
plates for a wide class of fluids called simple fluids (see Section 5.1). For this reason,
some rheometers are designed to generate approximations to this flow, Section 7.
With this in mind, we consider simple shear flow between two parallel plates
separated by a distance h, when the upper plate is moving with speed U in the
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e1 direction and the origin of the coordinate system coincides with a point on the
bottom plate, Figure 2. Using the no-slip boundary conditions at the top surface
with (1.28) it follows that γ̇0 = U/h.

Figure 2. Schematic of the velocity field in simple shear flow
between two parallel plates, driven by the motion of the upper
plate.

From (1.28) and (1.29), as well as the definitions of the kinematic tensors
introduced earlier in this section, it is straightforward to show that for simple
shear,

[F ] =

⎡⎣ 1 γ̇0t 0
0 1 0
0 0 1

⎤⎦ ,
[
F−1

]
=

⎡⎣ 1 −γ̇0t 0
0 1 0
0 0 1

⎤⎦ ,

[B] =

⎡⎣ 1 + γ̇2
0t2 γ̇0t 0

γ̇0t 1 0
0 0 1

⎤⎦ , [C] =

⎡⎣ 1 γ̇0t 0
γ̇0t 1 + γ̇2

0t2 0
0 0 1

⎤⎦ ,

[E] =
1
2

⎡⎣ 0 γ̇0t 0
γ̇0t γ̇2

0t2 0
0 0 0

⎤⎦ , [e] =
1
2

⎡⎣ 0 γ̇0t 0
γ̇0t −γ̇2

0t2 0
0 0 0

⎤⎦ ,

[D] =
γ̇0

2

⎡⎣ 0 1 0
1 0 0
0 0 0

⎤⎦ .

(1.30)

2. Governing equations

In this section, we discuss governing equations applicable to both fluids and solids.
Specific constitutive equations are discussed in the following sections. It is useful
to first recall the transport theorem which is used below to obtain local forms of
the governing equations from integral forms.

2.1. The transport theorem

Consider an arbitrary subset of the body B that occupies the region V0 with
boundary ∂V0 in κ0 and region V with boundary ∂V(t) in κ(t), Figure 1. Recall
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that V(t) is a material region of the fluid: a region occupied by a fixed set of
material particles in the body, that may change in time. The region V0 is in general
different than V(t). Let φ be any scalar or tensor-valued field with the following
representations,

φ = φ̄(X, t) = φ̂(x, t). (2.1)

Consider the volume integral, I, of φ over an infinitesimal material volume dv in
κ and over the corresponding volume J dV in κ0,

I ≡
∫
V(t)

φ̂(x, t)dv =
∫
V0

φ̄(X, t)JdV. (2.2)

The transport theorem states that

dI
dt

=
∫
V(t)

[
Dφ

Dt
+ φ̂(x, t) divv̂(x, t)

]
dv. (2.3)

Alternatively, using the divergence theorem, it is sometimes convenient to write
the transport theorem as,

dI
dt

=
∫
V(t)

∂φ̂(x, t)
∂t

dv +
∫

∂V (t)

φ̂(x, t) v̂(x, t) · n da (2.4)

where n is the outward unit normal to ∂V .

2.2. Conservation of mass

The mass M of a fixed subset of material particles of the body occupying a sub-
region V(t) of region R(t) at time t, Figure 1, is

M =
∫
V(t)

ρ(x, t) dv, (2.5)

where ρ(x, t) is the mass density of the fluid in κ(t). The mass M of the same
material region in the reference configuration κ0 is

M =
∫
V0

ρ0(X) dV, (2.6)

where ρ0(X) is the mass density of the same material region in κ0. The principle
of conservation of mass is the postulate that the mass of this fixed set of material
particles does not change in time,

dM
dt

= 0. (2.7)

In stating (2.7), we have assumed there are no mass sinks or sources. Making use
of the transport theorem (2.3) as well as (2.5) and (2.7), we can write the principle
of conservation of mass with respect to the spatial (Eulerian) representation of the
field variables,

0 =
∫
V(t)

(
Dρ

Dt
+ ρ divv

)
dv. (2.8)
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Making suitable assumptions about continuity of the field variables and making
use of the requirement that (2.8) holds for all subregions V(t) of R(t), we obtain
the local form of conservation of mass:

Dρ

Dt
+ ρ divv = 0 or

Dρ

Dt
+ ρ

∂v̂i(x, t)
∂xi

= 0. (2.9)

It follows from (1.10) with (2.5)–(2.7) that

ρJ = ρ0. (2.10)

2.2.1. Implications of conservation of mass for incompressible fluids. The volume
of the region occupied by material elements of an incompressible fluid cannot
change in time (the fluid cannot be compressed). Therefore, incompressible fluids
can only undergo isochoric motions and the conditions in (1.27) must be satisfied
for all motions of an incompressible fluid. It therefore follows from (2.9) that the
density of a material element of an incompressible fluid cannot change in time,

Dρ

Dt
= 0 and therefore, ρ = ρ0. (2.11)

Alternatively, this last result follows directly from (2.10) with J = 1.

2.3. Balance of linear momentum

The postulate of balance of linear momentum is the statement that the rate of
change of linear momentum of a fixed mass of the body is equal to the sum of the
forces acting on the body,

d

dt

∫
V(t)

ρv dv =
∫
V(t)

ρ b dv +
∫

∂V(t)

t da (2.12)

where b is the body force per unit mass, t = t̂(x, t, n) is the force per unit surface
area in κ(t) and n is the unit normal to this same surface at time t. The vector
t is often called the Cauchy stress vector. The first and second integrals on the
right-hand side of (2.12) represent the net force arising from body forces and
surface forces, respectively. Note, the stress vector depends on position, time and
the unit normal to the surface at x. Recall Cauchy’s lemma, which follows from
suitable smoothness assumptions on the function t(x, t, n) and the balance of
linear momentum (2.12)

t̂(x, t, n) = −t̂(x, t,−n). (2.13)

Building on this last result, the existence of a second-order tensor, T , called the
Cauchy stress tensor, can be shown (e.g., [59]), where

t = t̂(x, t, n) = T̂ (x, t) · n. (2.14)

Significantly, T is independent of n.
The local form of the equation of linear momentum can be obtained by using

the transport theorem, the divergence theorem, and (2.14) to write (2.12) as a
single volume integral. Then, making suitable assumptions about the continuity
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of the field variables, using the transport theorem and (2.8), we obtain the local
Eulerian form of the balance of linear momentum,

ρ a = div T + ρb, or ρ ai =
∂Tij

∂xj
+ ρbi. (2.15)

It is sometimes convenient to represent T as the sum of a deviatoric and
spherical part,

T = τ + t̄ I, (2.16)

where

tr τ = 0 and therefore t̄ =
1
3
tr (T )

or

τii = 0, and t̄ =
1
3
Tkk.

(2.17)

The tensor τ is often referred to as the deviatoric part of T and t̄I as the spherical
part. When the Cauchy stress tensor is decomposed in this way, −t̄ is often called
the pressure and is denoted by p. Using the decomposition, (2.16), the balance of
linear momentum can be written as

ρ a = −gradp + divτ + ρb or ρ ai = − ∂p

∂xi
+

∂τij

∂xj
+ ρbi. (2.18)

For compressible fluids, p is a thermodynamic pressure. An equation of state re-
lating pressure to other thermodynamic variables such as mass density and tem-
perature will be necessary. For incompressible fluids, p is a mechanical pressure
arising from the constraint of incompressibility. No equation of state is necessary,
rather, p will be determined as part of the solution to the governing equations and
boundary conditions.

2.3.1. Lagrangian form of balance of linear momentum. Recall that t(x, t, n) is
the force per unit area in the current configuration. In some cases, it is more
useful to consider an alternate stress vector defined as the force in the current
configuration per unit area in the reference configuration, which we will denote by
p (first Piola–Kirchhoff stress vector). The stress vectors p and t are then related
through ∫

∂V0

p(X, t, N ) dA =
∫

∂V
t(x, t, n) da, (2.19)

where N and n are the unit normals to surfaces ∂V0 and ∂V , respectively, at
the same material point. In addition, dA and da are the corresponding infinites-
imal material areas on ∂V0 and ∂V , respectively. Nanson’s formula relates these
geometric quantities,

nda = JF−T NdA or ni da = J F−1
Ai NA dA. (2.20)
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Following arguments similar to those used to obtain (2.14), the existence of a
second-order tensor P (first Piola–Kirchhoff tensor) can be shown,

p(X , t, N) = P (X , t) · N . (2.21)

It follows from (2.19)–(2.21),

P = J T · F−T or PiA = J Tij F−1
Aj . (2.22)

Using these results for p and P , we can rewrite (2.12) over surface and volume
integrals in κ0 to obtain,∫

V0

ρ0 a dV =
∫
V0

ρ0 b dV +
∫

∂V0

p dA. (2.23)

The corresponding local Lagrangian form of balance of linear momentum is

ρ0a = grad0 · P + ρ0 b or ρ0ai =
∂PiA

∂XA
+ ρ0bi. (2.24)

2.4. Balance of angular momentum

The balance of angular momentum is the statement that the rate of change of
angular momentum of a fixed material region arises from the combined torques
on the body. In the absence of body couples, the integral form of the balance of
angular momentum can be written as

d

dt

∫
V(t)

ρx × v dv =
∫
V(t)

ρ x × b dv +
∫
dV(t)

x × t da. (2.25)

The integral on the left-hand side of (2.25) is the angular momentum of the mate-
rial body at time t. The first and second integrals on the right-hand side of (2.25)
are the resultant torques due to body and surface forces, respectively. We can also
write a corresponding integral form over surfaces and volumes in the reference
configuration. In the interest of space we do not do so here. Making use of (2.9)
and (2.18) as well as suitable continuity assumptions, it can be shown that (2.25)
reduces to the requirement that the Cauchy stress tensor must be symmetric,

T = T T or Tij = Tji. (2.26)

It follows from (2.26) and (2.22) that

P · F T = F · P T . (2.27)

Clearly, P is not in general symmetric. Sometimes a third stress tensor, the second
Piola–Kirchhoff stress tensor, S, is defined through

S = F−1 · P or SAB = F−1
Ai PiB , (2.28)

and therefore,

S = J F−1 · T · F−T or SAB = J F−1
Ai Tij F−1

Bj . (2.29)

It follows from (2.27) and (2.28) that S is symmetric. This characteristic makes it
useful in some ways, though it does not have as clear a physical meaning as P .
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2.5. Mechanical energy equation

It is sometimes useful to consider the Mechanical Energy Equation which can be
obtained by taking the inner product of the velocity vector and the equation of
linear momentum (2.15) with (1.6),

1
2
ρ

D

Dt
(vivi) =

∂Tij

∂xj
vi + ρbivi. (2.30)

It should be emphasized that (2.30) is not derived from the equation of balance
of energy. An integral form of the mechanical energy equation can be obtained by
integrating (2.30) over the material region V(t) with surface ∂V(t), to obtain

d

dt

∫
V(t)

1
2
ρv · vdv =

∫
∂V(t)

t · vda +
∫
V(t)

ρb · vdv −
∫
V(t)

T : D dv, (2.31)

where we have made use of the divergence theorem, the transport theorem and
the conservation of mass. The first term in (2.31) is the rate of change of kinetic
energy in the material region V(t), the second term is the rate of work done by
surface forces on the surface ∂V(t), and the third integral is rate of work done on
the material region V(t) by body forces. The scalar, T : D = tr(T T ·D) = TijDij

is the rate of work by stresses per unit volume of the body. The last integral in
(2.31) is called the stress power or rate of internal mechanical work.

2.6. Balance of energy

We have already discussed the ability of the body to store energy in the form of
mechanical energy and for energy to enter the body through work done by surface
and body forces. Here, we extend this discussion and consider thermal energy.

If we consider a part of the body V(t) in the current configuration, we can
hypothesize the existence of a scalar functional called the specific internal energy,
u = u(x, t) (internal energy per unit mass). The internal energy for the part V(t)
of the body will then be ∫

V(t)

ρ u dv. (2.32)

We further hypothesize that thermal energy may enter the body through the sur-
face dV(t) of the body with outward unit normal n. It can be shown that this
thermal energy (“heat”) flux per unit surface area can be represented as the scalar
product of a vector q and the normal to the surface n, where q · n positive is
associated with heat leaving the surface and q ·n negative is associated with heat
entering the surface. In addition, thermal energy may enter the body as a specific
heat supply per unit time, r = r(x, t) (the heat entering the body per unit mass
per unit time). Therefore the rate at which thermal energy enters the region V(t)
of the body is

−
∫
dV(t)

q · nda +
∫
V(t)

ρrdv. (2.33)

The balance of energy is a statement that the rate of increase in energy (both
internal and kinetic) in region V(t) of the body is equal to the rate of work by
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body forces and contact forces plus thermal energy entering the body per unit
time. We can write this statement as

d

dt

∫
V(t)

ρ(u +
1
2
v · v)dv =

∫
dV(t)

t · vda +
∫
V(t)

ρ b · vdv

−
∫
dV(t)

q · nda +
∫
V(t)

ρ r dv.

(2.34)

Eq. (2.34) is sometimes called the first law of thermodynamics. Making suitable
assumptions about continuity of the field variables, we can obtain the local form
of (2.34),

ρ

(
Du

Dt
+ v · Dv

Dt

)
= T : D + v · (div T ) + ρv · b − divq + ρr. (2.35)

Using results from the mechanical energy equation, we can rewrite (2.35) as

ρ
Du

Dt
= T : D − divq + ρr, (2.36)

or in indicial form,

ρ
Du

Dt
= TijDij − ∂qi

∂xi
+ ρr. (2.37)

2.7. Restrictions on constitutive equations

Thus far, we have discussed governing equations fundamental to any continuum
material. To close this system of governing equations, we need to select constitu-
tive models for the material of interest. We choose to take a classical approach to
this subject, whereby we start with general forms of the constitutive equation and
then use fundamental principles to reduce the class of acceptable constitutive mod-
els. Prior to turning attention to the constitutive theories, we briefly summarize
requirements imposed on constitutive models in order that they be deemed “phys-
ically reasonable”. Here, and in the remainder of this chapter, we focus attention
on purely mechanical theories, where, for example, the effect of temperature vari-
ations are negligible. We will disregard any non-mechanical influences and assume
the state of the body is determined solely by the kinematical history, (e.g., [65],
pages 56–68). Motivated by applications to blood flow, in later sections, attention
will be concentrated on incompressible materials.

2.7.1. Principle of coordinate invariance. The constitutive equations must be in-
dependent of the coordinate system used to describe the motion of the body.

2.7.2. Principle of determinism for the stress. The stress in a body at the current
time is determined by the history of motion of that body and independent of any
aspect of its future behavior, [45].

2.7.3. Principle of local action. The determination of the stress for a given particle
in the body is independent of the motion outside an arbitrary neighborhood of that
particle (see [65], page 57 for a mathematical description of this principle). This
principle was originally combined with the previous principle [45].
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2.7.4. Principle of equipresence. Under this principle, a quantity which appears
as an independent variable in one constitutive equation should be present in all
others for that material unless it violates some law of physics or rule of invariance
(e.g., [65], pages 359–360, for an example in the context of thermoelasticity and a
historical discussion of this principle).

2.7.5. Principle of material frame indifference. There are two separate principles
which embody the concept that the response of the material should be unaffected
by its location and orientation. In the first, the mechanical response of a body is
required to be unchanged under a superposed rigid body motion of the body if
the change in orientation and position of the body is accounted for (e.g., [26] and
pages 484–486 of [44]). The second principle is the requirement that the material
response should be invariant under an arbitrary change of observer. For historical
reasons, Truesdell and Noll refer to the first of these principles as the Hooke–
Poisson–Cauchy form and the second as the Zaremba–Jaumann form. Strictly
speaking, these two principles are different, the second being more restrictive since
it includes improper orthogonal transformations, such as reflections. Truesdell and
Noll provide an interesting discussion of the history of these two principles in [65],
pages 45-47.

As will be discussed in the remainder of this chapter, invariance require-
ments play an important role in continuum mechanics in restricting the form of
constitutive equations.

2.7.6. Thermodynamic restrictions. The second law of thermodynamics is the re-
striction that the total entropy production for all thermodynamic processes is
never negative. In the remainder of this chapter, we restrict attention to purely
mechanical theories for which thermal effects are negligible. In this case, this re-
striction can be reduced to the statement that the stress power be non-negative
[39, 63, 64],

T : D ≥ 0. (2.38)

2.7.7. Well-posedness. The initial value problem associated with the governing
equations for the purely mechanical theory arising from the conservation of mass,
balance of linear momentum and the constitutive equation for the stress tensor
should be well-posed. By this we mean existence, uniqueness and continuous de-
pendence of the solution on the data can be shown (see, e.g., [28]).

2.7.8. Stability of the rest state. One of the methods used to evaluate the range
of physically reasonable parameters for a material is to evaluate the conditions
under which the rest state is stable. It seems physically reasonable to exclude
ranges of material parameters for which the rest state is unstable to infinitesimal
disturbances. This criterion has been used, for example, for viscoelastic fluids (see,
e.g., [15, 36, 24]) as well as fiber fluid mixtures [25].
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2.7.9. Attainability. An additional test, which is relatively straightforward and
does not require formulation within the context of thermodynamics, is to evaluate
the attainability of solutions for chosen benchmark flows for fluids or equilibrium
deformations for solids. A constitutive equation would seem to be physically un-
reasonable if a chosen steady or time-periodic motion (e.g., steady Couette flow)
is unattainable, no matter how gradually the driving mechanism is ramped to a
constant value and no matter how small this constant value is. Attainability of
“physically reasonable” steady flows has been studied for Newtonian fluids (e.g.,
[17, 31, 23] and the literature there cited) and well as for some viscoelastic fluids
[56]. We emphasize that attainability of a given solution should not be confused
with an examination of the stability of this solution (e.g., [17]).

2.7.10. Mechanical response of real materials. Experiments on real materials also
provide restrictions on the range of material parameters that are physically reason-
able. Since we cannot test every material in existence, strictly speaking, we cannot
actually “prove” an experimentally-based restriction on a constitutive equation
be necessary. Rather, experimental results for certain categories of real materi-
als (e.g., polymeric fluids) provide guidelines for defining a “reasonable” range of
parameters for a given material.

By way of example, in this subsection, we turn attention to some restrictions
we might impose on a class of fluids called incompressible simple fluids, which will
be discussed in more detail in Section 7.1. Briefly, an incompressible simple fluid
is a material for which the stress at a point and the current time is determined
up to a pressure once the strain of each past configuration relative to the present
configuration is known (e.g., [12]). Namely, unlike solid materials, we do not need
to know the strain relative to some inherent “natural” configuration. As discussed
earlier in this chapter, the density of incompressible materials is unchanged during
the deformation.

It can be shown that the mechanical behavior of a chosen (but arbitrary)
incompressible simple fluid is completely determined in some flows, for example,
simple shear flow, once three material functions are known for that fluid. This
result is somewhat unexpected since an incompressible simple fluid may have many
more than three material functions or constants. By material functions, we mean
functions that depend only on the nature of the material, not, for example, on the
experimental conditions. For reasons to be described below, we will refer to these
three functions as viscometric functions.

The three viscometric functions can be defined relative to the rectangular
components of the Cauchy stress tensor Tij given in (1.28) for simple shear,

τ(γ̇0) = T12 N1(γ̇0) = T11 − T22 N2(γ̇0) = T22 − T33. (2.39)

We will refer to the functions τ(γ̇0),N1(γ̇0),N2(γ̇0) as the shear stress function,
first normal stress difference and the second normal stress difference, respectively 3.

3There is some variation in the literature for the definitions of normal stress and even the sign
of the stress tensor. See page 71 of [58] for a nice discussion of this issue.
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It can be shown that τ(κ) is an odd function while N1(κ) and N2(κ) are even
functions (e.g., pages 70–71 of [58]).

Alternatively, we can consider the viscometric functions η, ψ1, ψ2,

η(γ̇0) =
T12

γ̇0
ψ1(γ̇0) =

T11 − T22

γ̇2
0

ψ2(γ̇0) =
T22 − T33

γ̇2
0

, (2.40)

referred to as the viscosity, first normal stress coefficient and second normal stress
coefficient, where γ̇0 �= 0. For Newtonian fluids, ψ1 and ψ2 are identically zero.

It turns out that simple shear is not the only motion for which the behavior
of an incompressible simple fluid is completely determined once η, ψ1 and ψ2 are
known. While most flows do not meet this requirement, there are a number of other
flows, called viscometric flows, which do (see, e.g., [12]). Viscometric flows include
steady, fully developed flow in a straight pipe of constant circular cross section
(sometimes called Poiseuille flow) and steady, unidirectional flow between two
concentric circular cylinders driven by the rotation of one or both of the cylinders
about their common axis (sometimes called Couette flow). Most rheometers are
designed to generate viscometric flows and can be used to measure one or more of
these material functions.

Based on experimental data for real polymeric fluids, the sign of ψ1 is ex-
pected to be non-negative and the sign of ψ2 to be non-positive [7]. In addition, the
ratio of the magnitude of the second normal stress coefficient to the first normal
stress coefficient is commonly believed to be less than one half (e.g., [38, 53]).

2.7.11. Further Comments. Roughly speaking, the five principles given in this
subsection restrict the general functional form of the constitutive equation (e.g.,
[65] for further details and historical information). The latter requirements im-
pose restrictions on the range of parameters for specific constitutive models. In
the following sections, applications of these restrictions to particular constitutive
equations are considered.

3. Nonlinear viscous fluids

Due to its relevance to blood, we now determine the most general physically rea-
sonable form of constitutive equations for incompressible viscous fluids,

T = −pI + τ (L), (3.1)

where p is the Lagrange multiplier arising from the incompressibility constraint
and τ is not necessarily the deviatoric stress defined in (2.16) and (2.17). Inherent
in the form of the stress tensor given in (3.1) is the assumption that the current
state of stress depends only on the velocity gradient at the current time and not on
any previous deformation the fluid might have undergone. Clearly (3.1) satisfies
the first four principles given above. We now turn attention to the fifth principle.
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3.1. Restrictions due to invariance requirements

Using invariance of the stress tensor under a superposed rigid body motion (see,
Section 2.7.5), and a representation theorem for symmetric isotropic tensor func-
tions, it can be shown that the most general form of (3.1) which satisfies invariance
requirements is (e.g., [2])

τ = φ0(IID, IIID)I + φ1(IID, IIID)D + φ2(IID, IIID)D2, (3.2)

where IID, IIID are the second and third principal invariants of D and can be
written in the following form for isochoric motions,

IID = −1/2 tr (D2), IIID = det D. (3.3)

The first invariant, ID = trD, is identically zero for isochoric motions. The func-
tion, φ0 can be absorbed into the Lagrange multiplier arising from the incompress-
ibility constraint to obtain

T = −p I + φ1(IID, IIID)D + φ2(IID, IIID)D2. (3.4)

Incompressible fluids with stress tensor of the form (3.4) are called Reiner–Rivlin
fluids. The Navier–Stokes fluid is a special Reiner–Rivlin fluid with φ2 equal to
zero and φ1 constant.

3.2. Restrictions on the Reiner–Rivlin equation due to behavior of real fluids

In this section, we calculate the viscometric functions from solutions for the Reiner–
Rivlin fluid in simple shear in order to determine restrictions on the material
functions φ1 and φ2 arising from knowledge of the behavior of real fluids. It follows
from (1.30), (3.2) and (3.3), that the only non-zero components of the extra stress
tensor τ in simple shear are

τ12 = τ21 = φ1
γ̇0

2
, τ11 = τ22 = φ0 + φ2

γ̇2
0

4
, τ33 = φ0. (3.5)

Therefore, from (3.5) and (2.40), the viscometric functions for a Reiner–Rivlin
fluid are

η =
φ1

2
, ψ1 = 0, ψ2 =

1
4

φ2. (3.6)

Hence, the physical meanings of φ1 and φ2 are

φ1 = 2 η, φ2 = 4 ψ2. (3.7)

However, there is no evidence of real fluids exhibiting a zero value for ψ1 and
a non-zero value for ψ2 [2]. For this reason, attention is typically confined to
a reduced form of the Reiner–Rivlin equation with φ2 equal to zero. In short,
based on invariance requirements and the behavior of real fluids, the most general
“reasonable” incompressible constitutive equation of the form T = T̂ (L) is

T = −pI + 2 η(IID, IIID)D. (3.8)

The functional dependence of η on IIID is often neglected. As discussed in [2],
page 54, there is some evidence that this may be reasonable for real fluids. In any
case, the quantity IIID is identically zero in simple shear (and other viscometric
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flows) and therefore the functional dependence of η on IIID cannot be determined in
most rheometers. In particular, the nonlinear viscosity functions used for blood are
assumed to depend only on IID. Since IID is not a positive quantity for isochoric
motions, it is useful to introduce a positive metric of the rate of deformation,
denoted by γ̇,

γ̇ ≡
√

2 tr (D2) =
√
−4IID. (3.9)

For example, in simple shear flow, this metric coincides with the shear rate γ̇0

introduced in (1.28). In summary,

Incompressible, generalized Newtonian fluid

T = −pI + 2η(γ̇)D where γ̇ ≡
√

2 tr (D2),
(3.10)

and p is the mechanical pressure. We emphasize that the use of the representation
(3.10) does not restrict attention to simple shear or other viscometric flows.

From (3.6) it is clear that, unlike the viscoelastic constitutive equations which
will be discussed in Section 5, the generalized Newtonian constitutive model (3.10),
is not capable of modeling non-zero normal stress effects in real fluids.

3.3. Restrictions on generalized Newtonian fluids due to thermodynamic
considerations

In this section, we use the second law of thermodynamics to deduce restrictions on
the choices of the material functions η(IID, IIID) in (3.8) (see, e.g., [63, 64, 11, 39]).
For the generalized Newtonian fluid (3.8),

T : D ≡ tr (T T · D) = 2 η tr (D2), (3.11)

where we have made use of the condition of incompressibility. Therefore, if the
stress power is assumed to be non-negative as in (2.38), we obtain the familiar
requirement that the viscosity be non-negative

η ≥ 0. (3.12)

3.4. Examples of generalized Newtonian fluids

As can be seen from (3.10), the generalized Newtonian fluids differ through their
choice of the viscosity function. One of the simplest viscosity functions is the
power-law model,

Power-Law Model η(γ̇) = K γ̇(n−1), (3.13)

where n and K are termed the power-law index and consistency, respectively. The
power-law model includes the Newtonian fluid as a special case (n=1), where the
viscosity η is then a constant, often denoted by μ. For n < 1, the power-law is
shear thinning (decreasing viscosity with shear rate), while for n > 1 it is shear
thickening, Figure 3. The shear thinning power-law model is often used for blood,
even though it predicts an unbounded viscosity at zero shear rate and zero viscosity
as the shear rate tends to infinity.

In order to address the limitations of the power-law model, a number of
viscosity functions have been defined with bounded and non-zero limiting values
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γ

η(
γ).

n = 1.0 (Newtonian)

n < 1 n > 1

.

Figure 3. Viscosity as a function of shear rate for power-law
fluids which are (a) shear thinning (n < 1), (b) constant viscosity
(n = 1) and (c) shear thickening (n > 1). Here, a finite range of
shear rates γ̇ is considered with γ̇ > 0.

of viscosity. Specific forms for the viscosity function for blood are discussed in
Section 7 of [57].

4. Yield stress “fluids”

When some fluid suspensions are placed between parallel plates and gradually
loaded by an applied force on the plates, Figure 2, the material appears to resist
flow until a finite level of stress is reached. Above this level, the suspensions appear
to flow like a fluid. This behavior led researchers to hypothesize the existence of a
material property called the yield value or yield stress, τY , of the material. Namely,
a critical stress level is required for the material to flow. As discussed in Section
7.1 of [57], the existence of a true yield stress is somewhat of a controversial issue
(see, for example, [5, 42]).

In formulating a mathematical description of yield stress materials, and in
particular a yield criterion, it is necessary to first select a metric of the stress
tensor. In simple shear flow (1.28), this is trivial because there are only two non-
zero components of the extra stress tensor and they are identical, τ12 = τ21. In this
case, the metric of the stress magnitude is just |τ12| and the yield criterion can be
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simply written as |τ12| = τY . For |τ12| < τY , the material can either behave rigidly
(no deformation) or display a non-rigid behavior (for example, deform elastically).
For |τ12| ≥ τY , the material will flow and can display shear thinning or even
viscoelastic properties. Strictly speaking, yield stress materials are not fluids since
they require a finite level of applied stress to flow.

While it is typically not discussed in the blood literature (see pages 74–75 in
[19] for an exception), it should be understood that when the flow is more complex
than simple shear, a more general metric of shear stress is needed. For example,
the yield criterion |τ12| = τY does not satisfy the principle of coordinate invariance
discussed in Section 2.7. Instead, we will use a more general function of the extra
stress tensor f(τ ) as a metric of stress magnitude and write the yield criterion as
f(τ ) = τY . In doing so, we have assumed yielding of the material is independent
of the mechanical pressure. It is straightforward to show the most general yield
criterion of this form which satisfies the principal of material invariance can be
represented as f(Iτ , IIτ , IIIτ ) = τY , where

Iτ = tr τ , IIτ = 1/2 ((tr τ )2 − tr τ 2) IIIτ = det τ . (4.1)

A simple form for the yield function, which is consistent with our physical expec-
tations from simple shear, is

f(Iτ , IIτ , IIIτ ) =
√
|IIτ |. (4.2)

The corresponding yield criterion is√
|IIτ | = τY Yield Criterion. (4.3)

In simple shear, the shear stress and therefore the stress metric are constant
throughout the flow field, so that (4.3) is satisfied everywhere or nowhere. However,
in more complex flows, such as fully developed flow in a straight pipe, the shear
stress varies throughout the flow field and the yield criterion will not be met
simultaneously throughout the fluid domain. Rather, there will be regions where
the yield criterion is reached (and the fluid is flowing) while in other regions the
value of

√
|IIτ | is below τY and the fluid does not flow (D = 0 in that region).

One such example is the well known plug flow discussed below for steady, fully
developed flow of a yield stress fluid in a straight pipe, Section 7.1.1.

4.1. Bingham model

The simplest yield stress model is the Bingham material, which behaves rigidly
until the yield criterion (4.3) is reached, after which it behaves like an incompress-
ible Newtonian fluid (constant viscosity), Figure 4. For a Bingham fluid in simple
shear (Section 1.5.3),

|τ12| < τY =⇒ γ̇0 = 0

|τ12| ≥ τY =⇒ τ12 = τY + μ γ̇0,
(4.4)

where μ is the constant viscosity in the region of flow. For simplicity, the prescribed
shear rate is non-negative (γ̇0 ≥ 0) here and in the remainder of this section.
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Bingham

Newtonian

Hershel-Bulkley

γ

τ12

τY

.
0

Figure 4. Behavior of representative Newtonian and yield stress
fluids in simple shear. Shear stress τ12 versus shear rate γ̇0 curves
for three models: (i) Newtonian, (ii) Bingham and (iii) Shear thin-
ning Herschel–Bulkley.

It is useful to have a Bingham model which is more generally valid than
(4.4), yet reduces to (4.4) in simple shear. A mathematical statement of a three-
dimensional Bingham model is (e.g., [16, 51])

√
|IIτ | < τY =⇒ Dij = 0

√
|IIτ | ≥ τY =⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dij =

1
2μ

(
1 − τY√

|IIτ |

)
τij

τij = 2

(
μ +

τY

2
√
|IID|

)
Dij ,

(4.5)

where μ is the constant viscosity attained once the material flows.
Materials which have been modeled by the Bingham constitutive model in-

clude pastes, margarine, mayonnaise, ketchup and blood. The Bingham fluid equa-
tion is important because it appears to model some real fluids well over a range of
applied stress and yet it is possible, in some cases, to obtain analytical solutions
for the flow field. The review article by Bird, Dai and Yarusso [8] contains a useful
collection of analytical solutions and an extensive reference list for the Bingham
model. Early studies of this constitutive equation can be found in [47, 48, 54, 51].
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4.2. Modified Bingham model

While Bingham fluids are relatively simple in form, they can be challenging to
model numerically due to the difficulty in tracking the yield surfaces in the flow
field. Papanastasiou [50] introduced a generalized Newtonian constitutive model
which eliminates the discontinuity in viscosity at zero shear rate, Figure 5,

η(γ̇) = μ +
τY

(
1 − e−c γ̇2/2

)
γ̇2 , (4.6)

where c, μ, and τY are material constants. We will refer to this model as the
modified Bingham fluid. The value of c determines the rate of exponential increase
to the constant viscosity μ, Figure 5.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Bingham Fluid
mod. Bingham, c = 5.0
mod. Bingham, c = 10.0
mod. Bingham, c = 20.0

τ12/ τY

γ.

Increasing c

0

Figure 5. Shear stress versus shear rate in simple shear for the
Bingham fluid and modified Bingham fluid for c = 5, 10, 20.

4.3. Herschel–Bulkley model

Like the Bingham model, the Herschel–Bulkley model [29, 30] behaves rigidly until
a critical level of the stress metric is reached. However, the Herschel–Bulkley model,
as well as the Casson model discussed next, can capture a nonlinear dependence of
viscosity on shear rate. The Herschel–Bulkley model displays a power-law viscosity
once it begins to flow, Figure 4. In simple shear,

|τ12| < τY =⇒ γ̇0 = 0

|τ12| ≥ τY =⇒ τ12 = τY + K γ̇n
0 .

(4.7)
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The three-dimensional Herschel–Bulkley model can be written in a form similar
to that of the Bingham model (4.5) with μ replaced by η(γ̇) = Kγ̇n−1,√

|IIτ | < τY =⇒ Dij = 0

√
|IIτ | ≥ τY =⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dij =

1
2Kγ̇n−1

(
1 − τY√

|IIτ |

)
τij

τij = 2

(
Kγ̇n−1 +

τY

2
√
|IID|

)
Dij .

(4.8)

4.4. Casson model

Casson [9] developed a theoretical expression for capturing the yield stress and
shear thinning behavior of fluid suspensions formed by dispersing various types of
pigments in lithographic varnish. In this theoretical model, he used high aspect ra-
tio rods to model the chain-like groups of pigments arising due to attractive forces
between the pigments. With increasing shear rate, the disruptive hemodynamic
forces increase, causing a decrease in rod size, which gives rise to the shear thin-
ning behavior. Within this formulation, the suspension was treated as dilute. The
resulting Casson equation, like the last two yield stress models, behaves rigidly
until the yield criterion (4.3) is satisfied, after which it displays a shear thinning
behavior. The Casson constitutive model is typically presented for simple shear
flow,

|τ12| < τY =⇒ γ̇0 = 0

|τ12| ≥ τY =⇒ τ
1/2
12 = τY

1/2 + (μN γ̇0)1/2.
(4.9)

This equation reduces to the Newtonian model when τY is set to zero, in which
case, μN is the Newtonian viscosity. While Eq. (4.9) is only applicable to simple
shear, it is straightforward to write a three-dimensional constitutive equation that
reduces to (4.9) in simple shear,√

|IIτ | < τY =⇒ Dij = 0

√
|IIτ | ≥ τY =⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dij =

1
2μN

(
1 −

√
τY

4
√
|IIτ |

)2

τij

τij = 2

(
√

μN +
√

τY

4
√

4|IID|

)2

Dij .

(4.10)

5. Viscoelastic fluids

Viscoelastic liquids have the ability to store as well as dissipate energy. This prop-
erty can lead to fascinating behaviors not seen in inelastic fluids, including rod-
climbing, tubeless siphons and elastic recoil (see, e.g., [7]). As will be discussed in
the next two chapters, the viscoelastic nature of human blood is believed to arise
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from the ability of three-dimensional aggregates of RBC (and to a lesser degree
individual RBCs) to store and release energy during flow.

The theoretical, experimental and numerical studies of polymeric fluids dur-
ing the last several decades have significantly increased our understanding of vis-
coelastic fluids and provide a strong foundation on which to discuss this subject.
There is not sufficient space in this section to provide a detailed coverage of the
theory of viscoelastic fluids. Rather, the reader is referred to Truesdell and Noll’s
classical reference Non-Linear Field Theories of Mechanics [65] as well as some
of the original references by Coleman and Noll, cited in this chapter. The reader
is also referred to the texts by Astarita and Marucci [2], Bird, Armstrong and
Hassager [7], Joseph [37], Owens and Phillips [49], and Schowalter [58].

In this section, we provide a very brief overview of some theoretical aspects
of viscoelastic fluids, beginning with a discussion of simple materials and simple
fluids. We then turn attention to simple fluids with fading memory, including two
approximate theories for simple fluids: ordered fluids arising from the retarded
motion expansion and linear viscoelastic fluids.

5.1. Simple fluids

Many of the continuum models for blood are specific cases of incompressible sim-
ple fluids which is a subcategory of a class of substances called simple materials.
A simple material is a body in which the stresses for a material element are de-
termined by the cumulative history of the deformation gradient for that element.
The concept of simple materials including simple fluids was originally developed
by W. Noll [45].

5.1.1. Kinematics. Prior to defining simple materials in mathematical terms, it is
necessary to introduce some relevant kinematics. Recall that material points in a
body can be identified by specifying their location in some reference configuration.
In elastic materials, it is often convenient to choose this configuration as the zero
stress state. For viscoelastic fluids with fading memory, it is convenient to choose
the reference configuration to be the configuration of the body at current time t,
denoted by κt. The current time is sometimes called the time of observation. We
then identify an arbitrary material point in the body by its position, x, in κt. The
position of these material points during the period prior to time t, at some time
τ ≤ t will be denoted as ξ and can be expressed as,

ξ = χt(x, τ) τ ∈ (−∞, 0]. (5.1)

We denote the configuration at arbitrary prior time τ by κτ . The function χt(x, τ)
is called the relative deformation function and is defined so that at time t ,

χt(x, t) = x. (5.2)

We define the rectangular components of the relative deformation gradient F t as

Ftij =
∂χti(x, τ)

∂xj
, (5.3)
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where F t can be shown to be a second-order tensor. An infinitesimal material
element dx in κt will be mapped to dξ in κτ through

dξ = F t · dx. (5.4)

We will assume F t is suitably continuous such that it is invertible, and hence,

detF t �= 0. (5.5)

It follows from (5.3) that F t(x, t) = I, so that at time t the detF t is equal to 1.
Since the motion is assumed to be continuous and detF t is never equal to zero,
we have that 0 < detF t < ∞. For isochoric motions, det F t is equal to 1 for all τ .

It is sometimes convenient to use an inverted time scale s = t − τ . Hence, s
is equal to zero at the current time and increases in magnitude as we go back in
time.

We now turn attention to the example of simple shear flow, (1.29). For these
flows, the reduced history can be written as

ξ = x − s γ̇0 x2 e1. (5.6)

Then from (5.3), the relative deformation gradient in simple shear is

[
Ftij

]
=

⎡⎢⎣ 1 −s γ̇0 0

0 1 0

0 0 1

⎤⎥⎦ . (5.7)

For use in future discussions, we define the right relative Cauchy–Green tensor Ct,
the Cauchy strain tensor Gt and the Finger strain tensor Ht,

Ct = F T
t · F t, Gt = Ct − I, Ht = C−1

t − I. (5.8)

The strain measures Gt and Ht are defined such that they are equal to 0 at the
current time t. Another kinematic quantity of interest is the kth Rivlin–Ericksen
tensor Ak, which can be defined for any Gt which is n times differentiable with
respect to s at time s = 0 4,

Rivlin–Ericksen
Tensors

Ak = (−1)k dkGt(s)
d sk

|s=0, k = 1, 2, 3, . . . (5.9)

For example,
A1 = gradv + (gradv)T

. (5.10)

Note that Ak are functions of the current time t as well as position x. A recurrence
formula can be used to calculate the other Rivlin–Ericksen tensors,

AN+1 =
DAN

Dt
+ LT · AN + AN · L. (5.11)

4For simplicity, in what follows, we will only explicitly write the dependence of a function on s.
The dependence on the current time t and reference position x will be understood.
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These Rivlin–Ericksen tensors are of particular interest because they arise when,
under suitable continuity assumptions, we consider a Taylor series expansion of
Gt about the current time (s = 0),

Gt(s) =
∞∑

N=1

(−1)N 1
N

AN sN , (5.12)

or

Gt(s) = −sA1 +
s2

2
A2 − s3

3
A3 + · · · . (5.13)

The result (5.12) will be quite useful in the discussion below on the retarded motion
expansion.
Simple materials. Employing the kinematics given above, we can then define the
constitutive equation for a simple material as

Simple Material T =
∞
H

s=0
[F t(s); ρ], (5.14)

where the symbol
∞
H

s=0
[·] is used to denote a second-order tensor-valued functional

of the history of the relative deformation gradient.
Simple fluids are simple materials with the maximal possible isotropy group

and are in fact isotropic. It can be shown [45], that without loss of generality, the
Cauchy stress tensor for an incompressible simple fluid that satisfies invariance
requirements can be written as

Incompressible Simple Fluid T = −pI + [
∞
S

s=0
Gt(s)],

subject to Q(t) ·
( ∞

S
s=0

Gt(s)
)
· QT (t) =

∞
S

s=0
[Q(t) · Gt(s) · QT (t)],

(5.15)

for all proper orthogonal tensors, Q(t), where p is the Lagrange multiplier asso-
ciated with the incompressibility constraint. This constraint can be written with
respect to Gt as

det(Gt + I) = 1. (5.16)

For incompressible materials, the extra stress tensor is determined to within a
scalar multiple of the identity tensor. In order to remove this indeterminacy, we
specify that

tr
∞
S
s=0

[(Gt)] = 0. (5.17)

Under this normalization, p can be seen to be the mechanical pressure
p = −1/3 trT , defined previously.

An important flow history, which we will make use of below, is the rest history
Gt(s) = 0 for all s ∈ [0,∞). Using (5.15)2, it can be shown if a simple fluid has
only experienced the rest history, the extra stress is proportional to the identity
tensor, namely, the stress is isotropic. It therefore follows that if a simple fluid does
experience an anisotropic stress, it must flow. For this reason, materials displaying
a yield stress are not simple fluids.
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5.1.2. Simple fluids with fading memory. The idea of simple fluids with fading
memory was introduced by Coleman and Noll in 1960 based on the expectation
that deformations in the recent past should have more influence on the current
state of stress than deformations in the distant past, [13]. Namely, the functional in
(5.15) should be more sensitive to values of Gt for small s, than large s. Physically,
this means the “memory” of the system will “fade away” in time. This sense of
fading memory then introduces the idea of a time scale inherent in the material
that sets the memory of the material, often referred to as the “natural time”.
In fact, what is really important is the ratio of this natural time, say λ, to a
characteristic time of observation associated with the flow, for example, T . This
important ratio is the Deborah number,

De =
λ

T
, (5.18)

which was first introduced by Reiner in 1964 [55]. Reiner named this ratio after
the prophetess Deborah who stated, “The mountains flowed before the Lord”.
As noted by Reiner, Deborah understood that even mountains are “fluid-like” if
viewed on a sufficiently long time scale.

The role of the Deborah number is clearly illustrated in well-known exper-
iments with “silly putty”, or unvulcanized rubber (e.g., [7], page 95). The time
constant of the silly putty is on the order of seconds. If silly putty is rolled into a
sphere and dropped to the floor, it will bounce. There is insufficient time during
this motion for the fluid to “forget” its original shape (T << λ). If the sphere of
silly putty is set on a table, it will flow into a puddle over a time period on the
order of tens of minutes. In this case, T >> λ. The value of λ is the same in both
cases. It is the time of observation which leads to a large De and elastic behavior,
in the first case, and low De and inelastic behavior, in the latter.

While simple fluids are more general than simple fluids with fading memory,
in practice we would not be able to sensibly test materials that depend significantly
on their entire history of deformation (s → ∞). For materials with fading memory,
we can in principal design rheometric protocols such that mechanical measurement
of the material properties are independent of the history of the material prior to
initiating the experiment.

Coleman and Noll defined fading memory more precisely within the context
of a Banach space L with a norm that can be used to measure the distance of
a given reduced history Gt(s) from the rest history (Gt = 0). This norm should
place more weight on values of Gt(s) for which s is small than for large s.

Coleman and Noll [13] introduced the Lh,p-norm, which is characterized by
a real constant p with 1 ≤ p ≤ ∞ and an influence function, h(s), which is a
real-valued function that approaches zero ‘rapidly’ as s → ∞,

||Gt(s)||h,p = p

√∫ ∞

0

h(s) |Gt(s)|p ds if 1 ≤ p < ∞

||Gt(s)||h,∞ = sups≥0 |Gt(s)|h(s) if p = ∞,

(5.19)
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and |Gt(s)| is the norm of the instantaneous value of Gt(s),

|Gt(s)| = (Gtik(s)Gtik(s))1/2. (5.20)

The influence function, h(s) is chosen to satisfy the following conditions,

1. h(s) is a positive, real-valued function, continuous over s ∈ [0,∞).
2. h(s) is normalized such that h(0) = 1.
3. h(s) tends to zero in such a way that lim

s→∞
srh(s) = 0, monotonically for

large s.

The value of r is often called the order of the influence function and determines the
strength of the fading memory. The set of all histories Gt(s) with finite Lh,p-norm
form a Banach space, Lh,p. Under this norm, two strain histories Gt(s), which are
the same for small s, but differ greatly for large s, will have nearly the same norm.

For example, the function

h(s) = exp(−βs), (5.21)

with β a positive constant, is an influence function of any order. Namely, the first
two conditions are satisfied for (5.21) and the third condition is satisfied no matter
how large a value is chosen for r. It follows from (5.19) that the value of ||Gt||
is more greatly influenced by events in the recent past than those in the distant
past.

We have yet to mathematically define simple fluids with fading memory.
Depending on the choice for r we can define fluids with weak or strong fading
memory. In this work, we confine attention to simple fluids with strong fading
memory so that we can expand the stress functional about the rest history or zero
history. As noted earlier, the rest history is a special flow history where the fluid
has been at rest for all time, so that F t = I or, Gt = 0 for all s ∈ [0,∞).

The Stronger Principles of Fading Memory can be stated as (see, e.g., [65], page
104),

There exists an influence function of order greater than n + 1/2 such

that the response functional
∞
S

s=0
(Gt(s)) is defined and n times Fréchet-

differentiable in a neighborhood of the zero history of the function space
Lhp.

It should be emphasized that this definition does not require that Gt be continuous
to be admissible. For example, we can still consider the step functions of strain
used in stress relaxation experiments as admissible for simple fluids with strong
fading memory.

An example of an incompressible simple fluid with strong fading memory is
the lower convected Maxwell fluid,

T = −pI +
∫ ∞

o

a e−s/λ Gt(s) ds. (5.22)
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In (5.22), a and λ are material constants and λ is a relaxation time, or a measure
of how quickly the “material forgets”. The “memory” of the material increases
with increasing λ.

5.2. Approximations for simple fluids with fading memory

For viscometric flows, it is possible to obtain valuable results for the behavior of
general simple fluids without a-priori selection of a particular history functional,
(e.g., [12])5. However, viscometric flows are a very restricted class of flows. With the
goal of obtaining general results for simple fluids, without restriction to viscometric
flows, we turn attention to two important approximate theories for simple fluids.
The theory of “ordered fluids” was obtained by Coleman and Noll as a hierarchy of
approximations to simple fluids with fading memory for “slow flows”. The theory
of infinitesimal linear viscoelasticity is based on the approximation that the strain
relative to the rest history is small. In this section, we provide a brief introduction
to these two approximate theories.

Coleman and Noll [14] proved that the general constitutive theory of incom-
pressible simple fluids with fading memory can be written as

Finite Linear Viscoelasticity T = −pI −
∫ ∞

0

m(s)Gt(s) ds, (5.23)

in the limit of
||Gt(s)|| → 0 (5.24)

with an error approaching zero faster than ||Gt(s)||. Namely, (5.23) is a first-order
approximation for all incompressible, simple fluids with fading memory. In order
for this material to display fading memory, m(s) must tend to zero as s → ∞, at
a rate that is consistent with the strength of the fading memory,∫ ∞

0

|m(s)|2 1
h2 ds < ∞. (5.25)

The function m(s) is called the memory function and can be related to the com-
monly measured relaxation function G(s) through

G(s) =
∫ ∞

s

m(u) du so m(s) = −dG(s)
ds

. (5.26)

We can therefore write the Cauchy stress tensor given in (5.23) as

T = −pI −
∫ ∞

0

G(s)
∂Gt(s)

∂s
ds, (5.27)

and therefore knowledge of G(s) is sufficient for determining the mechanical be-
havior of finite linear viscoelastic materials.

5Viscometric flows were introduced in Section 2.7.10 and will be further discussed in more detail
in Section 7.1
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Some examples of relaxation moduli are:

Maxwell Model G(s) = Goe
−s/λ

General Linear
Viscoelastic Model

G(s) =
N∑

k=1

Gke−s/λk

Relaxation Spectrum G(s) =
∫ ∞

0

H(λ)
λ

e−s/λdλ.

(5.28)

The variable λ with or without a subscript denotes the relaxation times for the
material. The general linear viscoelastic model is just a superposition of simple
Maxwell type models to allow for multiple relaxation times in the material. In
principle, these relaxation times can be determined experimentally from oscillatory
shear experiments which are discussed in more detail in Section 7.2.1.

The finite linear viscoelastic equation was obtained as an approximation for
small |Gt(s)|. We could equally well have started with a different relative strain
measure. For example, Ht = C−1

t − I. In this case, we would have obtained,

T = −pI +
∫ ∞

0

m(s)Ht(x, s) ds. (5.29)

It is interesting to note that while the integral model (5.23) was derived from
the simple fluid model under the condition (5.24), it satisfies invariance require-
ments and can be considered a constitutive model for finite strain problems. This
is also true for (5.29). Namely, while they will not represent the behavior of general
simple fluids at large strain, they can be treated as specific simple fluid models.
Their usefulness for large strain then depends on the existence of real materials
that display behaviors, at least in some categories of flows, that are consistent with
the predictions of (5.23) or (5.29). In fact, one such example of (5.29) is the Upper
Convected Maxwell (or Maxwell B) fluid. We will come back to this point in the
next section.

5.2.1. Infinitesimal linear viscoelasticity. One way the condition (5.24) will be
satisfied is if the kinematics of the simple fluid are restricted to motions in which
the norm of the strain relative to the rest history is small for all past times (see,
e.g., [12]). We define

ε = sup
s∈[0,∞)

(|F t(s) − I|). (5.30)

Then a deformation history F t(s) will be considered infinitesimal for all past times
if ε << 1. In infinitesimal linear viscoelasticity, only terms of order ε or larger are
considered and so all nonlinear effects such as shear thinning are ignored. An
example of a infinitesimal deformation history is small amplitude oscillatory shear
which will be discussed in Section 7.2.1. We can define the infinitesimal strain
tensor Et(s) as

Et(s) =
1
2

(
F t + F T

t − 2I
)

(5.31)



Review of Relevant Continuum Mechanics 33

so that,
Gt = 2 Et + O(ε2). (5.32)

Therefore from (5.23), (5.27) and (5.32) (see [12] for details),

Infinitesimal Linear Viscoelasticity

T = −pI − 2
∫ ∞

0

m(s)Et(s) ds.
(5.33)

To the order of the approximation of the infinitesimal theory, the simple
Maxwell model can be written as

τ + λ
∂τ

∂t
= 2 η D. (5.34)

Note that neither (5.33) nor (5.34) satisfy general invariance requirements.

5.2.2. Retarded motion expansion. Due to the fading memory of the material, the
relative strain does not necessarily have to be small for all past times in order that
(5.24) be met. Instead, it needs only to be small in the recent past. Coleman and
Noll introduced the idea of retarded motions which are, in a sense to be made
precise below, flows which are “slow enough” that condition (5.24) is met and
Gt(s) can be expanded about the zero history, (when some additional smoothness
requirements are made (e.g., [65], page 108).

Coleman and Noll showed that for these retarded motions, the functionals for
all simple fluids with strong fading memory can be approximated by a multi-linear
function of the present values of the time derivatives of Gt(s). The resulting hierar-
chy of approximations to the general history functional are the so-called “ordered
fluids”. Solutions obtained, for example, for second-order fluids are representative
of the behavior we would find for any simple fluid if the flow is “sufficiently slow”.

To quantify this notion of slow flows, Coleman and Noll defined a retardation
functional Γα[·] with a retardation factor α, as a linear transformation of Gt,

(ΓαGt)(s) = Gt(αs), 0 < α ≤ 1. (5.35)

They showed that Γα maps the space Lh,p into itself. So defined, the retardation
replaces a history Gt(s) with a history which is similar, but slower.

In order to expand the history functional about the zero history, Coleman and
Noll proved an approximation theorem that permits the asymptotic approximation
of a memory functional for “slow histories”, using a polynomial function of the
Rivlin–Ericksen tensors (5.9).

Using the approximation theorem, Nth-order approximations to slow flows of
simple fluids with fading memory can be obtained. By Nth order it is understood
that the norm of the remainder is of order αN+1. The first-order expansion for
slow flows is just a linear viscous fluid,

First-order fluid T = −p I + ηA1. (5.36)

The second-order expansion (called a second-order fluid) is

Second-order fluid T = −p̃ I + ηA1 + α1A2, + α2 A2
1, (5.37)
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where η, α1 and α2 are constants. The tilde notation is used to emphasize that p̃
is in general different from the mechanical pressure p = −1/3tr T . Higher-order
fluids can also be obtained, but we do not discuss these here.

The ordered fluids can then be thought of as an expansion about an in-
compressible Newtonian fluid. As the lowest ordered fluid displaying viscoelastic
behavior, the second-order fluid has historically received a great deal of atten-
tion. Since all simple fluids behave like the ordered fluids for “slow enough” flows,
these models have been used with great success to develop physical insight about
viscoelastic fluids. However, it should be cautioned that these are approximate
models. As will be discussed in Galdi [20], some of the ordered fluids have been
shown to display unsettling behavior such as instability of the rest state for ranges
of material parameters which are realistic for real fluids. See [7] for examples of
exact solutions for the ordered fluids and a discussion of the limitations and appro-
priate practical applications of these fluids. As noted on page 104 of [65], although
the ordered fluids are obtained as approximations to simple fluids with strong
fading memory, they do not themselves satisfy the conditions for strong fading
memory.

5.3. Finite viscoelastic models

Truesdell and Noll [65] subdivided viscoelastic constitutive equations into three
categories: (i) differential, (ii) integral, and (iii) rate type. In differential consti-
tutive models, the extra stress tensor can be written as an explicit function of a
finite number of time derivatives of the temporal derivatives of Gt or other suit-
able strain measures, at the current time t. Viscoelastic fluids of the integral type
are simple fluids for which the history functional can be written as one or more
integrals. An example was given in Equation (5.22). Rate-type constitutive models
include one or more time derivatives of the extra stress tensor. They do not appear
as an explicit expression for the stress tensor. These categories are not necessarily
distinct. For example, as will be discussed below, the Maxwell B model can be
written as both an integral and rate type model.

Many of the commonly used nonlinear viscoelastic models are special cases
of quasi-linear rate-type viscoelastic models called Maxwell models (e.g., [37]),

τ + λ
Dτ

Dt
= 2ηD, (5.38)

where the definition of the operator D( )/Dt is not unique and will be discussed
below. It is chosen so that the operator on τ is objective under a superposed rigid
body motion and the resulting second-order tensor is symmetric (we consider cases
where there is no body couple). The following operators can all be shown to be
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objective choices for Dτ/Dt,

Upper convected derivative
∇
τ =

Dτ

Dt
− L · τ − τ · LT ,

Lower convected derivative
�
τ =

Dτ

Dt
+ τ · L + LT · τ ,

Co-rotational Derivative
◦
τ =

1
2

(
∇
τ +

�
τ

)
,

(5.39)

where L is the velocity gradient defined in (1.19). To avoid confusion, we also write
the upper and lower convected derivatives in indicial form,

∇
τ ij =

∂τij

∂t
+ vk

∂τij

∂xk
− ∂vi

∂xk
τkj − τik

∂vj

∂xk

�
τ ij =

∂τij

∂t
+ vk

∂τij

∂xk
+ τik

∂vk

∂xj
+

∂vk

∂xi
τkj .

(5.40)

5.3.1. Johnson–Segalman model. Any superposition of objective operators is also
an objective operator. One such commonly used operator is

�
τ = (1 − ζ

2
)
∇
τ +

ζ

2
�
τ . (5.41)

When the operator defined in (5.41) is used in (5.38) and a constant viscosity
inelastic contribution is added (often called the solvent contribution), we obtain
the four-constant Johnson–Segalman (J–S) model [35],

τ = τ (1) + τ (2) (5.42)

with

τ (1) + λ
�

τ (1) = 2 η1 D, τ (2) = 2 η2 D. (5.43)

This model can equivalently be written as

τ + λ
�
τ = 2 (η1 + η2)

(
D + λ

η2

η1 + η2

�

D

)
. (5.44)

There is a wealth of literature evaluating the J–S model and we do not discuss
this here. Instead, we focus on special cases of the J–S model.

5.3.2. Convected Maxwell models. The lower convected Maxwell (LCM) and up-
per convected Maxwell models (UCM) are special cases of the J–S model with
ζ equal to 2 and zero, respectively as well as η2 = 0. Both models also have an
integral representation (see, e.g., pages 14–17 of [37]),

LCM: τ + λ
�
τ= 2 η D or τ =

∫ ∞

0

η

λ2 e−s/λ (I − Ct) ds

UCM: τ + λ
∇
τ= 2 η D or τ =

∫ ∞

0

η

λ2 e−s/λ (C−1
t − I) ds.

(5.45)
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5.3.3. Oldroyd-A and Oldroyd-B models. The Oldroyd-A and B models are special
cases of the J-S model with ζ equal to 2 and zero, respectively. As will be discussed
below, the viscometric functions of the Oldroyd-A model have not been found to
match the behavior of real fluids. For this reason we turn attention to the Oldroyd-
B model.

The differential form of the three-constant constant Oldroyd-B model is the
sum of contributions from a Maxwell B model τ (1) and a linear viscous fluid τ (2),

τ = τ (1) + τ (2) (5.46)

with

τ (1) + λ
∇(1)
τ = 2 η1 D, τ (2) = 2 η2 D, (5.47)

or, equivalently,

τ + λ
∇
τ = 2 (η1 + η2)

(
D + λ

η2

η1 + η2

∇
D

)
. (5.48)

When the Oldroyd-B equation is used to model the behavior of polymeric solutions,
the contributions (1) and (2) are often referred to as the polymeric and solvent

contributions. For small amplitude oscillatory flow,
∇
τ (1) reduces to ∂τ (1)/∂t and,

as a result, the Maxwell B models (5.47)1 reduces to the linear Maxwell model
(5.34). To the order of the second-order retarded motion expansion, the Oldroyd-
B model is equivalent to a second-order fluid with ψ2 = 0, or α2 = −2α1.

6. Thixotropic fluids

In his illuminating review article on thixotropy, Barnes [3] provides a historical
back drop for the field of thixotropy. We summarize some of the relevant points
here. Peterfi introduced the term thixotropy to describe the intriguing experimen-
tal results of Schalek and Szegvari, in which iron oxide gels appeared to completely
liquefy under gentle shaking and then resolidify when left at rest for sufficient time
[3]. The accepted explanation for their experimental results is that iron oxide par-
ticles form an association (microstructure) which is weak enough to be destroyed
by shaking but can re-establish itself when the fluid is left to stand. The word
thixotropy is appropriately a combination of the Greek words thixis (stirring or
shaking) and trepo (turning or changing).

Barnes emphasizes the tremendous variation in published definitions of thixo-
tropy. While those defined in industrial applications are typically directed at this
apparent gel-sol transition under shaking, those in many other communities focus
on the related issue of the time dependence of rheological properties (e.g., viscosity,
normal stress effects) arising from the finite time required for the breakdown and
build-up in microstructure. For example, Bauer and Collins provide the following
definition.
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When a reduction in magnitude of rheological properties of a system, such as
elastic modulus, yield stress, and viscosity, for example, occurs reversibly and
isothermally with a distinct time dependence on application of shear strain,
the system is described as thixotropic [6].

All liquids with microstructure have the potential to demonstrate thixotropy.
The microstructure may correspond, for example, to flocs, junctions in polymer
solutions, alignment of particles or arrangement of suspension microstructure. In
the case of blood at low shear rates, the microstructure is the three-dimensional
structure formed by red blood cells. This structure requires a finite time to form
and break leading to a dependence of viscosity and viscoelasticity on the duration
of applied shear. The shape of the particles will also affect the thixotropy. An
early rheologist Pryce-Jones noted that thixotropy is more pronounced in systems
composed of non-spherical particles [3]. Blood clearly falls in this category.

The theoretical formulation for thixotropic materials is far less developed
than that for simple fluids. Barnes [3] described three categories of thixotropic
models. In the first category, indirect microstructural theories, a scalar parameter
is used to describe the level of microstructure. An evolution equation is then in-
troduced to describe the rate of change of this parameter as a result of competing
effects driving build-up or breakdown in microstructure. In the second category,
direct structural theories, an approximate physical model is used to develop an evo-
lution equation describing temporal changes in actual microstructure. The third
category is more phenomenological in nature. Data for changes in material proper-
ties such as viscosity as a function of time are directly incorporated into the model
without introducing a structure parameter.

There is not sufficient space to discuss all three theories. Rather, we refer the
reader to [3] and the references cited there. Here, we will briefly cover one represen-
tative indirect structural models that captures some of the major physical features
of thixotropic materials. This model will provide a framework for discussing the
experimental data for blood thixotropy. In the indirect microstructural theories, a
metric of the level of microstructure, λ, is used 6. Typically, λ is normalized such
that λ ∈ [0, 1] and λ = 0 refers to the absence of structure (e.g., only individual
red blood cells remain) and λ = 1 refers to the largest level of structure possible
under the given physical conditions. A representative evolution equation is

dλ

dt
= g(γ̇, λ) where g(γ̇, λ) =

1
τ

(1 − λ) − α λ γ̇, (6.1)

and τ is a characteristic time of build-up of the structure and α is a second positive
material constant reflecting the rate of breakdown. The variable γ̇ is a non-negative
metric of shear such as the second invariant of the symmetric part of the velocity
gradient. The first term of g(γ̇, λ) is non-negative and leads to microstructure
build-up, while the second results in breakdown due to fluid shear. The net outcome
of these competing effects is then reflected in the sign of g(γ̇, λ). When g(γ̇, λ) is

6The use of the notation λ as a metric of microstructure is restricted to this section and Section
7.3. In the remainder of this chapter it is used as a time constant for viscoelastic fluids.
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positive, the net effect is build-up, when it is negative, the microstructure tends
to breakdown. When these two effects balance, (dλ/dt = 0), and an equilibrium
value for λ is obtained,

λeq =
1

1 + αγ̇τ
. (6.2)

Note that the equilibrium value depends on the applied shear rate. As the applied
shear rate tends to zero, the value of λeq tends to 1 (maximum microstructure),
while λeq tends to zero (complete breakdown) in the limit of γ̇ tending to infinity.

In real fluids, build-up of the microstructure requires the particles to travel
sufficiently close for their bonds to reform. This motion can arise due to Brownian
motion or, more effectively, via convection from fluid motion, though at the expense
of imposing forces that will tend to breakdown the structure. The model above
includes the effect of fluid motion on breakdown through γ̇, but not build-up.
The time scales for changes in microstructure can range from seconds to hours.
Typically, the time scale for restructuring is longer than that for breakdown.

The second part of the indirect microstructural theory is a constitutive model
describing the dependence of the mechanical properties (e.g., viscosity, viscoelas-
ticity) on the structural parameter. By way of illustration consider a relatively
simple form for the viscosity function that demonstrates a decrease in viscosity
with decreasing level of microstructure (one type of thixotropy),

η =
η∞

(1 − Kλ)2
and K = 1 − (

η∞
ηo

)1/2. (6.3)

The model (6.3) was introduced by Baravian, Quemada and Parker (see [3]). The
material constants ηo and η∞ can be seen to correspond to zero and infinite mi-
crostructure, respectively,

ηo = η(λ = 1), η∞ = η(λ = 0). (6.4)

When (6.3) is used in conjunction with an evolution equation of the form (6.1),
ηo and η∞ can be seen to correspond to the limiting equilibrium viscosities at low
and high shear rates, respectively.

7. Rheometrical flows

In this section, we discuss several categories of flows which are generated in com-
monly used rheometers.

7.1. Viscometric flows

While the rheological behavior of incompressible Newtonian fluids is completely
determined by the constant viscosity η, the situation for more general fluids is much
more complicated. Fortunately, it has been shown that the behavior of any simple
fluid in a broad class of flows called viscometric flows can be completely determined
once three material functions are determined. Appropriately, these three functions
are called viscometric material functions and are intrinsic properties of the fluid.
Though these viscometric functions were already introduced in Section 2.7.10, we
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return to the subject to provide a more precise definition of viscometric flows and
discuss some specific examples (see [12, 2] for a more detailed discussion).

Recall that for simple shear flow, (5.7), the relative deformation gradient F t

is of the form

F t(s) = (I − s M), (7.1)

where the components of M in rectangular coordinates are

[M ] =

⎡⎣ 0 κ 0
0 0 0
0 0 0

⎤⎦ , (7.2)

where κ is a constant equal to γ̇0 for simple shear. From the point of view of the
fluid element, any viscometric flow is indistinguishable from steady simple shear
flow when it is described in terms of suitably chosen local Cartesian coordinates.
In fact, the class of viscometric flows can be considered as a generalization of these
simple shear flows (7.1), for which F t is of the following form,

F t(s) = R(s) · (I − s M), (7.3)

where R(s) is orthogonal for all s and normalized so that R(0) = I. Furthermore,
the components of M take the form (7.2) for any orthonormal basis bi not just a
rectangular basis. In simple shear flow M is independent of the material point and
time. In contrast, in viscometric flows, M may depend on both these quantities.
In particular, R(s), κ and bi may be functions of x and t.

Examples of viscometric flows include simple shear flow as well as steady, fully
developed flows in channels and pipes of constant cross section. For the reader’s
convenience, we briefly recall the viscometric functions given in (2.40), which were
defined relative to simple shear flow (expressed in a Cartesian frame) with shear
rate γ̇0,

Viscosity or Shear Viscosity η(κ) ≡ T12/κ,

First normal stress coefficient ψ1(κ) ≡ (T11 − T22)/κ2,

Second normal stress coefficient ψ2(κ) ≡ (T22 − T33)/κ2,

(7.4)

where κ = γ̇0 �= 0 and Tij are the rectangular components of the Cauchy stress
tensor 7.

The coefficients ψ1 and ψ2 are zero for both Newtonian and generalized New-
tonian fluids. If we consider the Johnson–Segalman model in simple shear, it follows

7As noted earlier, alternative definitions of the first and second normal stress definitions are
sometimes used, though they can be formed from linear combinations of these given here.
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directly that

η(κ) =
(

η1

1 + 2 ζλ2 (1 − ζ/2)κ2 + η2

)
,

Ψ1(κ) =
(

2 η1 λ

1 + 2 ζλ2 (1 − ζ/2)κ2

)
,

Ψ2(κ) = −
(

ζ η1 λ

1 + 2 ζλ2 (1 − ζ/2)κ2

)
.

(7.5)

It is clear from (7.5), that in general the viscometric functions η, Ψ1 and Ψ2 are not
constants. For ζ ∈ (0, 2) the viscometric functions in the Johnson–Segalman model
are shear thinning, while for ζ = 0 or ζ = 2 they are constant. The viscometric
functions for special cases of the Johnson–Segalman as well as the second-order
fluid are given in Table 1.

Model η ψ1 ψ2

Newtonian Fluid, Eq. (5.36) η 0 0

Second-Order Fluid, Eq. (5.37) η −2 α1 (2 α1 + α2)

Maxwell A (LCM), Eq. (5.43)
ζ = 2, η2 = 0

η1 2η1λ −2η1λ

Maxwell B (UCM), Eq. (5.43)
ζ = 0, η2 = 0

η1 2η1λ 0

Oldroyd-A, Eq. (5.43) ζ = 2 η1 + η2 2η1λ −2η1λ

Oldroyd-B, Eq. (5.43) ζ = 0 η1 + η2 2η1λ 0

Table 1. Viscometric functions for some non-Newtonian fluids

Based on measurements of polymer solutions and melts, it is commonly assumed
that the ratio ψ2/ψ1 is negative with a magnitude less than 1/2. As a consequence,
the Maxwell A (or Lower Convected Maxwell, LCM) and Oldroyd-A models are
rarely used. It follows from the results in Table 1 that we would therefore expect
α1 ≤ 0 and α2 ≤ −2 α1 for the second-order fluid. Unfortunately, when physically
reasonable values of these material constants are used, the second-order fluid is
shown to illustrate anomalous behavior in a number of unsteady flows, see, e.g.,
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Galdi [20]. For this reason, applications of second-order fluids are generally con-
fined to steady flows.

7.1.1. Fully developed steady flow in a pipe. Due to its importance in capillary
rheometers, we turn attention to a specific viscometric flow: fully developed steady
flow in pipes of circular cross section of radius R under an imposed steady axial
pressure gradient. It is convenient to use a cylindrical coordinate system (r, θ, z),
with z axis coincident with the pipe centerline. We look for velocity fields of the
form v(r) = vz(r)ez which satisfy the governing equations and boundary condition
v = 0 at r = R. For such flows, the only non-zero components of D are Drz =
Dzr = (dvz/dr)/2 and therefore, γ̇ = |dvz/dr|, (3.11).

The incompressibility condition is identically satisfied by this velocity field
and the balance of linear momentum for a simple fluid reduces to (e.g., [12])

0 = −∂p

∂r
+

∂τrr

∂r
+

τrr − τθθ

r
,

0 = −1
r

∂p

∂θ
,

0 = −∂p

∂z
+

1
r

d

dr
(rτrz) ,

(7.6)

where we have used the fact that the extra stress tensor for a simple fluid can
only be a function of r for the given form of the velocity field. It follows from
(7.6), that for these flows, ∂p/∂z is a constant. Therefore, after simple integration
∂p/∂z = ΔP/L, where L is the length of the tube and ΔP is the difference
between the cross-sectional average pressures between the pipe inlet and outlet. It
then follows from (7.6)3 that

τrz = −1
2

ΔP

L
r, (7.7)

where we have required the shear stress to be bounded at r = 0.
It is useful in capillary rheometers to be able to determine the viscosity

function from measured values of ΔP and volumetric flow rate Q in pipes of
known R and L without selecting a constitutive model a priori. Prior to discussing
such a relationship, we rephrase the problem as one of obtaining η as a function
of a characteristic shear rate γ̇a, wall shear rate γ̇w, and wall shear stress τw,

γ̇a =
4Q

πR3 , τw = −1
2

ΔP

L
R, γ̇w = γ̇(τw). (7.8)

In writing (7.8)3, we have assumed the function τrz = τrz(γ̇) is invertible. Begin-
ning with the definition of Q for this flow, integrating by parts, using the condition
vz = 0 at r = R gives,

Q = 2π

∫ R

0

vz r dr = 2π

∫ R

0

r2 γ̇ dr. (7.9)
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After making a change of variables from r to τ , and using the invertibility of
τrz = τrz(γ̇), we find,

Qτ3
w

πR3 =
∫ τw

0

τ2
rz γ̇(τrz) dτ. (7.10)

After differentiating with respect to τw and rearranging, we obtain the Mooney–
Rabinowitsch equation [43, 52],

γ̇w

γ̇a
=

1
4

[
3 +

∂ ln γ̇a

∂ ln τw

]
. (7.11)

It follows from the definition of viscosity, that η(γ̇w) = τw/γ̇w, so from (7.11),

η(γ̇w) =
τw

γ̇a

4n′

3n′ + 1
=

πR4

2Q

ΔP

L

n′

3n′ + 1
, (7.12)

where

n′ =
∂ ln τw

∂ ln γ̇a
. (7.13)

Experiments can be run at different pressure drops to obtain a curve of γ̇a as a
function of τw (recall (7.8)). If these results are plotted on a log scale, the value n′

can be obtained from the slope of the curve, which will in general be a function of
τw.

While the relationship (7.12) is quite useful for viscometry, it is of interest
to include some of the exact solutions for steady, fully developed flows of simple
fluids in straight pipes of constant cross section. For simple fluids for which η is a
constant (e.g., Newtonian, Oldroyd-B, second-order fluid), it is a simple matter to
obtain the velocity field from (7.7). The well-known solution for the velocity field
and axial pressure drop for a constant viscosity fluid can be written as

Constant Viscosity

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v =

2 Q

πR2

(
1 − r2

R2

)
ez

dp

dz
= −8Q μ

πR4 ,

(7.14)
where μ is the constant fluid viscosity. For the fluids with power-law-type viscosity
functions (3.13), we can similarly obtain an explicit expression for the velocity field,

Fluid with power-
law viscosity

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v =

Q

πR2

3 + 1/n

1 + 1/n

[
1 − (

r

R
)1+1/n

]
ez

dp

dz
= −2K

R
(
3 + 1/n

π R3 )n Qn.

(7.15)

For the same flow rate, the velocity field in the shear thinning power-law model is
flatter than for the constant viscosity case, Figure 6.

There are also closed form solutions for fully developed, steady flow for some
of the yield stress fluids. Recall that for a yield stress fluids such as Bingham or
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Figure 6. Nondimensional axial velocity profile, vz/(Q/πR2), as
a function of nondimensional radius r/R for steady, fully devel-
oped flow of fluids with a power-law viscosity in a straight pipe,
Eq. (7.15). Here, the profiles are for the same flow rate but with
different values of n.

Casson, the value of D is zero at all points where
√
|IIτ | is less than the yield

stress. For the flow under consideration,

√
|IIτ | = |τrz| =

rΔP

2L
. (7.16)

Clearly,
√
|IIτ | will be largest at the largest radial position: r = R and so when

ΔPR/2L < τY , the yield criterion will not be met anywhere in the fluid. In this
case, D will be zero throughout the fluid. From the boundary conditions, it then
follows that the velocity is zero everywhere. If the driving pressure gradient is
increased so that ΔP/L > 2τY /R, there will be a region r ∈ [0, 2LτY /ΔP ], where
the yield criterion is not met and D = 0 (fluid moves with constant velocity). The
radius bounding this region is denoted as rY ,

rY =
2 L τY

ΔP
. (7.17)

For r ∈ (rY , R] the material will flow.
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The exact solution for steady, fully developed flow of a Bingham fluid (4.5)
in a pipe of constant radius R is:

Bingham Fluid

v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−dp

dz

R2

4μ

(
1 − rY

R

)2

ez for r ≤ rY

−dp

dz

R2

4μ

(
(1 − r2

R2 ) − 2rY

R
(1 − r

R
)
)

ez for r ≥ rY .

(7.18)

This velocity field corresponding to (7.18) is shown in Figure 7. The plug region
with D = 0 is clearly seen for r ∈ [0, rY ]. For comparison, the corresponding
velocity field for a Newtonian fluid flowing under the same axial pressure gradient
and with the same viscosity is shown as well. The resulting flow rates will be
different for these two fluids.

Bingham

Newtonian

r

v

~

~

YrY
~

Figure 7. Nondimensional axial velocity profile, ṽ = −vz(4μ)/
(R2dp/dz), as a function of nondimensional radius r̃ = r/R for
steady, fully developed flow of Newtonian and Bingham fluids in
a straight pipe, Eq. (7.18). The profiles shown are for the same
axial pressure drop, viscosity and pipe radius.
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The corresponding velocity field for flow of a Casson fluid (4.10) is (e.g., [46],
page 44):

Casson Fluid

v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dp

dz

R2

4μN

(
1 − rY

1/2

R1/2

)3(
1 +

1
3

rY
1/2

R1/2

)
ez for r ≤ rY

−dp

dz

R2

4μN

(
(1 − r2

R2 ) − 8
3

rY
1/2

R1/2
(1 − r3/2

R3/2
)

+ 2
rY

R
(1 − r

R
)
)

ez for r ≥ rY .

(7.19)

7.2. Periodic flows

7.2.1. Small amplitude oscillatory shear flows. Most measurements of linear vis-
coelastic properties of blood are based on small amplitude oscillatory shear exper-
iments. Consider, for example, oscillatory flow between parallel plates separated
by a gap h, driven by the oscillatory motion of the upper plate. This is a gen-
eralization of the steady shear flow, Eq. (1.28). For that flow it is convenient to
used rectangular coordinates such that the plates are parallel to the x1 axis and
the bottom plate is located at x2 = 0, Figure 2. Using this coordinate system, we
write the velocity of the top plate as v = U cos (ω t)e1. The bottom plate is held
fixed. We represent the position of material points in the fluid at arbitrary time t
by

x1(t) = X1 + γ0 X2 sin(ω t), x2(t) = X2, x3(t) = X3, (7.20)

where X is the position of the particle at time zero and x1, x3 ∈ (−∞,∞), x2 ∈
[0, h]. The shear displacement relative to the initial position is then

x(t) − X = γ0 X2 sin(ω t)e1, (7.21)

and the corresponding velocity field is

v = γ0 ω X2 cos(ω t)e1. (7.22)

It follows from (7.21) that particles at the top plate have the maximum amplitude
of motion equal to γ0 h. The shear displacement and velocity are 90o out of phase.
The only non-zero components of D are then D12 = D21 = γ0 ω cos(ωt)/2. In
this case, it follows from (3.9) that γ̇ = γ0 ω | cosωt|. If we use γ̇M to denote the
maximum of γ̇ during the cycle (its amplitude), then γ̇M = γ0 ω. It follows from
(7.22) and the no-slip boundary condition at the upper plate that γ0 = U/(ωh)
and therefore, γ̇M = U/h.

As discussed in Section 5.1, when analyzing the response of simple fluids
with fading memory, it is convenient to write the position of a material particle
at arbitrary past time τ with respect to the current position. Using results from
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Section 5.1.1 with (7.21), we find that for oscillatory shear flow the relationship
between the current position of a particle x and its past location ξ at time τ is

ξ(x, τ) = x + γ0 x2 (sin(ω τ) − sin(ω t))e1. (7.23)

Furthermore, for simplicity of the following calculations and ensuing discussion,
we represent (7.23) as

ξ = x + Re[x2 i γ0 eiωt(1 − e−iωs)]e1, (7.24)

where Re denotes the real part of a complex entity and it should be recalled that
s = t − τ . The only non-zero components of Gt for oscillatory shear (7.24) are

Gt12 = Gt21 = γo Re
[
i eiωt [1 − e−iωs]

]
, Gt22 = Gt

2
12. (7.25)

To ensure the validity of the infinitesimal linear viscoelasticity approximations for
all times, we require γ0 << 1 or γ̇M/ω << 1. Then, from (7.25), to the order of
this linearized theory Gt22 can be neglected.

It follows from (5.27), to the first order of approximation the only non-zero
components of the extra stress tensor are

τ12 = τ21 = Re[τ∗eiωt], (7.26)

where the complex shear stress τ∗ is

τ∗ = γ0 ω

∫ ∞

0

G(s) e−iωsds. (7.27)

In writing (7.27) we assume, to the order of the approximation, the motion has
been oscillatory for all previous times. Normal stress effects are only of second
order and therefore cannot be captured in this first-order theory. By convention,
we define the complex modulus G∗ as

G∗ = iω

∫ ∞

0

G(s) e−iωsds (7.28)

which can be split into its real and imaginary parts,

G∗ = G′(ω) + i G′′(ω) (7.29)

where G′ and G′′ are both real numbers are referred to as the storage modulus and
loss modulus. It is sometimes more convenient to write G∗ with respect to the loss
tangent δ,

G∗ = |G∗|eiδ. (7.30)
Clearly we can relate δ to G′ and G′′ through

tan δ = G′′/G′. (7.31)

Using the notation, (7.28) we can rewrite (7.27) as

τ∗ = −γ0 i G∗. (7.32)

Then, using (7.26) and (7.29), we have,

τ12 = γ0 [G′ sin(ω t) + G′′ cos(ω t)] . (7.33)
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For purely elastic materials, the shear stress and shear strain are in phase, in which
case G′′ = 0 and G′ plays the role of the elastic shear modulus. For purely viscous
materials, the velocity gradient and shear stress are in phase and G′ = 0. The
storage modulus G′ is thus named because of its association with the ability of an
elastic material to store elastic energy while the term loss modulus is due to the
energy dissipation associated with viscous fluids.

The complex viscosity η∗ is often reported in the literature on blood vis-
coelasticity,

η∗ = η′ − iη′′ (7.34)
where the viscous component η′ and the elastic component η′′ are real. The rela-
tionship between the complex viscosity and the complex modulus is

η∗ = G∗/iω, η′ = G′′/ω, η′′ = G′/ω. (7.35)

From (7.32) and (7.35), we have that

τ12 = γ0 ω [η′ cos(ω t) + η′′ sin(ω t)] . (7.36)

For a purely viscous fluid, η′′ is zero while for a purely elastic solid η′ is zero. For
this reason, η′ and η′′ are sometimes referred to as the viscosity and elasticity.

7.2.2. Maxwell fluids in infinitesimal oscillatory shear. Using the definition of the
relaxation modulus for a Maxwell fluid given in (5.28)1, we can calculate the
storage and loss moduli for a Maxwell fluid using (7.28) and (7.29),

G′(ω) =
η ω2 λ

1 + ω2 λ2 , G′′(ω) =
η ω

1 + ω2 λ2 , (7.37)

where we have used the result η = G0 λ and η is the shear viscosity defined in
(7.4). Therefore,

δ = tan−1(
1

λω
). (7.38)

Results for G′ and G′′ as a function of De = ω λ are shown in Figure 8. It follows
from (7.37), that these curves cross at the point

ω λ = 1. (7.39)

The value of 1/ω at this intersection point is sometimes used as an approximate
relaxation time. However, typically more than one relaxation time is needed to fit
the data well and a more complex model such as the general linear viscoelastic
model is used.

The real and imaginary parts of the complex viscosity for a simple Maxwell
fluid follow from (7.35) and (7.37),

η′ =
η

1 + ω2 λ2 , η′′ =
η ω λ

1 + ω2 λ2 . (7.40)

The dimensionless shear moduli η′ and η′′ are shown in Figure 9. Recall, that
as the value of De tends to zero, unsteady viscoelastic effects become less and less
important. As expected, in this limit, the value of η′ tends to the steady state
viscosity η.
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Figure 8. Dimensionless small amplitude oscillatory shear mod-
uli G′λ/η and G′′λ/η as a function of the Deborah number
De = ωλ for Maxwell fluids, Eq. (7.37). Here, η′ and η′′ are the
real and imaginary parts of the complex viscosity and η is the
shear viscosity, Eq. (7.4).
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Figure 9. Dimensionless small amplitude oscillatory shear mod-
uli η′/η and η′′/η as a function of the Deborah number De = ωλ
for Maxwell fluids, Eq. (7.37).
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7.2.3. Fully developed oscillatory flow in a pipe. Much of the data on blood vis-
coelasticity is obtained from oscillatory flow experiments in capillary rheometers.
Motivated by this application, we now consider flow through a straight pipe of
circular cross section of radius R, driven by a pressure gradient which is peri-
odic in time. In particular, we look for solutions for the velocity v and pressure
p which satisfy the governing equations for all r ∈ [0, R] with v = 0 at r = R.
Attention is restricted to solutions v which are unidirectional, fully developed and
axisymmetric,

v = vz(r, t)ez. (7.41)

For velocity fields of the form (7.41), the incompressibility condition is identically
satisfied, the components of the extra stress tensor depend at most on r and t, so
the balance of linear momentum, reduces to the following form,

0 = −∂p

∂r
+

∂τrr

∂r
+

τrr − τθθ

r
,

0 = −1
r

∂p

∂θ
,

ρ
∂vz

∂t
= −∂p

∂z
+

1
r

∂

∂r
(rτrz) ,

(7.42)

with boundary conditions vz = 0 on r = R. It follows (7.42) that the axial com-
ponent of the pressure gradient ∂p/∂z is at most dependent on time. We now
consider the specific case of an applied oscillatory axial pressure gradient of the
form, ∂p/∂z = −K1 cosωt where K1 is a real constant.

For some constitutive models, the equation for τrz is linear and decoupled
from the other components of stress when the velocity field is of the form (7.41).
Some examples are,

Newtonian τrz = η
∂vz

∂r
,

UCM, Eq. (5.45) τrz + λ
∂τrz

∂t
= η

∂vz

∂r
,

Oldroyd-B, Eq. (5.48) τrz + λ
∂τrz

∂t
= η

∂vz

∂r
+ η2λ

∂2vz

∂r∂ t
,

Maxwell, Eq. (5.34) τrz + λ
∂τrz

∂t
= η

∂vz

∂r
.

(7.43)

It should be recalled that the Maxwell model is an approximate model for small
strain histories. In all these cases, the material parameters η, η2, λ are constant. As
a result of the linearity, it is also possible to obtain the velocity field for pulsatile
flow as a superposition of the velocity fields generated from steady and oscillatory
axial pressure gradients.

We will consider the dependent variables as composed of a real and imaginary
part, for example,

∂p

∂z
(t) = Re[−K1 eiωt]. (7.44)
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We then look for solutions of the form

vz(r, t) = Re[v∗z (r)eiωt], Q(t) = Re[Q∗eiωt],

τrz(r, t) = Re[τ∗
rz(r)eiωt], τrr(r, t) = Re[τ∗

rr(r)eiωt],
(7.45)

where v∗z , Q∗ and τ∗
rz will, in general, be complex. After substituting the represen-

tations (7.45) in (7.43), we see that can obtain an explicit form for τ∗
rz,

Newtonian τ∗
rz = η

∂v∗z
∂r

,

UCM and Maxwell τ∗
rz =

η

1 + i λ ω

∂v∗z
∂r

,

Oldroyd-B τ∗
rz =

(η + i η2 λω)
1 + i λ ω

∂v∗z
∂r

.

(7.46)

We see, from (7.46), that in all cases, we obtain an explicit expression of the form

τ∗
rz(r) = η∗ dv∗z

dr
(7.47)

where η∗ is a complex constant. Making use of this last result we see that (7.42)3
decouples from the other equations,

i ω ρv∗z = −K1 +
η∗

r

∂

∂r

(
r
∂v∗z
∂r

)
. (7.48)

Equation (7.48) is of the same form as that for a Newtonian fluid with η replaced
by η∗. Making use of the well-known solution for a Newtonian fluid, we can write
the solution to (7.48) as

v∗rz = −K1 i

ρω

[
1 − Jo(βr/R)

Jo(β)

]
, β = R

√
−iρω

η∗ . (7.49)

The constant β can be related to the variable Y used in the work by Thurston on
this subject (e.g., [62]),

β = Y eiσ, with

⎧⎪⎪⎨⎪⎪⎩
Y = R

√
ρω

|η∗|

η∗ = |η∗| e−iφ, σ =
φ

2
− π

4
.

(7.50)

We see that Y is similar to the Womersely number with η replaced by η∗. However,
Y is no longer a measure of the ratio of unsteady inertial to viscous effects since
it also includes viscoelastic effects. The corresponding complex flow rate is

Q∗(t) =
i K1π R2

ρ ω

[
1 − 2J1(β)

β J0(β)

]
. (7.51)
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We can expand this result for small β (equivalently, small Y ), to obtain

Q∗(t) =
i K1 π R2

ρω

β2

8

[
1 +

1
6

β2 + O(β4)
]

. (7.52)

Splitting (7.52) into its real and imaginary parts and using (7.46), we obtain

Q(t) =
K1π R4

8 |η∗|

[
cos(φ + ωt) +

1
6

Y 2 sin(2φ + ωt) + O(Y 4)
]

. (7.53)

7.3. Non-periodic unsteady flows

For thixotropic experiments, one of the following types of non-periodic unsteady
functions for either shear rate (or shear stress) are often used:

• A step function in either shear rate or shear stress.
• A linear increase in shear rate followed directly by a linear decrease.
• Oscillatory shear flow.

We have already discussed oscillatory shear, so, in this section we turn attention to
the first two experiments. In both cases, we consider idealized flows which are time-
dependent homogeneous shear fields with velocity fields of the form v = v(x2, t)e1.
For example, flow generated between two plates parallel to the x1 axis, driven by
the motion of upper plate in the x1 direction. The applied shear stress necessary
to generate this flow will be denoted by τ12. The symmetric part of the velocity
gradient then has two identical non-zero components, which we denote as γ̇(t) and
refer to as the shear rate.
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Figure 10. Qualitative features of the dependence of shear stress
on time for a thixotropic fluid experiencing a step increase, then
decrease in shear rate. (a) Imposed shear rate versus time. (b) Re-
sulting temporal dependence of shear stress.

In the first type of experiment, at t = t0 a step increase in shear rate from zero
to γ̇ = γ̇a is applied. The shear rate is then held constant until time t = t1 when the
shear rate is abruptly dropped to a constant value γ̇b < γ̇a, Figure 10. In the case
that our test fluid has maximum structure, λ = 1, at the onset of the experiment,



52 A.M. Robertson

the microstructure will break down over time, tending towards an equilibrium value
denoted by λeq(γ̇a). As a result of the diminishing microstructure, the viscosity
will also decrease in time, tending toward ηeq(γ̇a). In turn, the applied stress will
initially be large, but as time passes and the viscosity drops, the shear stress
necessary to maintain this fixed shear rate will drop as well until the equilibrium
value is reached σa = ηeq(γ̇a) γ̇a. In the second part of the experiment, γ̇ is dropped
at time t1, from γ̇a to γ̇b. Over time, the microstructure will begin to reform, with λ
tending to the value of λeq(γ̇b). There will be a corresponding increase in viscosity
towards ηb = ηeq(λb) and applied shear stress towards σb = ηeq(γ̇b)γ̇b (see, [3]). The
rate at which these changes occur will depend on the time constants for build-up
and breakdown, which are material properties of the fluid.
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Figure 11. Qualitative features of the dependence of shear stress
on shear rate for a representative thixotropic fluid experiencing a
linear increase in shear rate followed directly by a linear decrease.
(a) Imposed shear rate versus time. (b) Resulting shear stress
versus shear rate.

In the second category of experiments, Figure 11, the shear rate is increased
linearly up to a maximum value and then ramped back down. This experiment
for thixotropic fluids is more complicated because γ̇ and hence the microstructure
will continuously change during the experiment. If the stress tensor depends only
on the current shear rate (the fluid does not display viscoelasticity or thixotropy),
the curved of shear stress as a function of shear rate will be identical for increas-
ing and decreasing shear. However, the curves for viscoelastic and/or thixotropic
materials is much more complex. In the following discussion, we consider the ef-
fects of thixotropy and viscoelasticity separately. As before, assume the material
has the maximum microstructure at time t0. As the shear rate is increased, the
microstructure breaks down, diminishing the viscosity of the material. As a result,
during the phase of diminishing shear rate which takes place at a later time, the
viscosity will be lower than that at the same shear rate during the phase of increas-
ing shear rate. The resulting loop traced out on the stress-shear rate curve is called
a hysteresis loop. The size of this loop is often used as a measure of thixotropy.
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The previous categories of flows can be used to obtain information about
specific material functions without selecting a particular constitutive model (e.g.,
viscometric functions, storage and loss moduli). Unfortunately, there are no uni-
versal “thixotropic material functions”. Rather, these non-periodic time-dependent
flows are used to provide information about material functions for a specific consti-
tutive model or used as a probe of qualitative features of the mechanical behavior.
Even this qualitative interpretation can be confounded by combined viscoelastic
and thixotropic effects.

8. Rheometers

The three most commonly used rheometers for measuring the bulk properties of
blood and other complex fluids are the concentric cylinder rheometer (Couette
rheometer), the cone and plate rheometer and the capillary rheometer, Figure 12.
These rheometers can be used to generate various special cases of the viscomet-
ric, periodic and unsteady non-periodic flows described in the last section. The
viscosity and linear viscoelastic material functions can be measured in all three
rheometers. While the cone and plate rheometer is used to measure the first normal
stress coefficient for some fluids (e.g., [4]), to date this has not been successfully
performed for blood. These three rheometers are briefly considered below. In the
interest of space, we confine our discussion to steady flows in the rheometers. The
reader is referred to texts such as [12] and [40] for further discussion of these de-
vices. It the following discussion, the fluid (e.g., blood) is treated as incompressible
and the material properties are assumed to be independent of pressure variations.

Figure 12. Schematic of three rheometers commonly used for
blood: (a) Couette rheometer, (b) cone and plate rheometer, (c)
capillary rheometer.
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8.1. Couette rheometer

In a Couette rheometer, the test fluid is placed between two concentric cylin-
ders with inner and outer radius Ri and Ro, respectively, and length L, Figure
12. A torque M is applied to rotate the cylinders generating a relative rotation
rate between the outer and inner cylinder ΔΩ = |Ωo − Ωi|. In obtaining the ma-
terial properties from measured quantities, flow is assumed to be axisymmetric
and purely circumferential with negligible end effects (e.g., [12]). For a finite-gap
cylinder, the shear rate varies across the gap and so a constitutive model must
be chosen a priori to obtain an expression for the viscosity. For example, for an
incompressible Newtonian fluid under steady rotation there is an explicit solution
for the viscosity as a function of the experimental parameters,

η =
M(R2

o − R2
i )

4 π L R2
oR

2
i ΔΩ

. (8.1)

A narrow-gap approximation is typically invoked to avoid a-priori selection of a
constitutive model. For example, if the inner cylinder is rotated and the outer
cylinder is held fixed, the following relationship is valid irrespective of the specific
simple fluid,

η =
M

4πR2
i L Ωi

(
1 − R2

i

R2
o

)
. (8.2)

It is recommended that the narrow-gap approximation only be used for very small
gaps (Ri/Ro ≥ 0.99), [40]. Higher-order approximations for the viscosity relation
based on a McLaurin series can also be used for gaps with 0.5 < Ri/Ro < 0.99
(e.g., [40]).

8.2. Cone and plate rheometer

The cone and plate rheometer consists of a cone atop a flat plate, Figure 12.
The test fluid between is driven by the motion of either the cone or the plate.
Measurements of the applied torque M and rotation rate Ω are used to obtain the
material properties under the assumption that inertial effects are negligible and
the free surface is spherical. Corrections for the influence of secondary motions
are available (see, e.g., [40], pages 209–213). The angle β between the cone and
plate is assumed to be small. Typically, β is less than 0.10 radians. Under these
assumptions, the stress and shear rate within the fluid are approximately constant
and the viscosity and first normal stress coefficient ψ1 take a particularly simple
form. For example, in steady flow experiments,

η =
3M

2πR3

β

Ω
, Ψ1 =

2F

πR2

β2

Ω2
, (8.3)

where R is the cone radius and F is the resultant upward force on the cone due
to normal stress effects.
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8.3. Capillary rheometer

The capillary rheometer is a popular instrument for measuring blood viscosity
and viscoelastic properties, due to its relative simplicity and ease of use. Some
researchers also found the similarity between the rheometer geometry and that of
some blood vessels appealing. In a capillary rheometer, the test fluid is driven by
gravity, compressed gas, or a piston from a reservoir through a cylindrical rigid tube
of radius R and length L, Figure 12. The underlying assumptions are that the flow
is fully developed and unidirectional. One source of error in the capillary rheometer,
even for single phase fluids, are end effects arising from increased pressure losses
at the entrance of tube from the reservoir and at the exit into a second reservoir
or air. Correction factors have been introduced for these artifacts (e.g., [40]).

The capillary rheometry is frequently used to measure viscosity and linear vis-
coelastic properties of liquids. By way of illustration, here we focus on applications
to measurements of viscosity in steady flow. A discussion of the use of capillary
rheometers for measurements of viscoelastic properties in oscillatory flows is cov-
ered in Section 8.1 in [57] of this volume. The shear rate varies with the radial
position in a capillary rheometer, even for steady flow of a constant viscosity fluid.
Therefore, the viscosity of shear thinning fluids will vary over the cross section.
An explicit expression for the viscosity as a function of the volumetric flow rate Q
and pressure drop ΔP only exists for a small number of cases, constant viscosity
and power-law viscosity fluids being the most obvious examples (Section 7.1). In
the constant viscosity case, we see from Eq. (7.14),

Constant Viscosity Fluids η = (πR4ΔP )/(8QL). (8.4)

The Weissenberg–Rabinowitsch relationship provides a means of obtaining the
viscosity function from measurements of Q and ΔP without choosing a constitu-
tive equation a priori ([52, 43], see, also for example, pages 238-242 of Macosko
[40]),

η =
πR4ΔP

8QL

(
4n′

3n′ + 1

)
where

1
n′ =

dlnQ

dlnΔP
. (8.5)

However, (8.5) is typically not used in blood rheology. Only an approximation to
the viscosity is calculated using the expression for Newtonian fluids, (8.4), rather
than the more precise results (8.5), even in regimes where shear thinning effects
are important. Alternatively, a measure of viscosity is calculated assuming a form
of the viscosity function a priori [41, 1]. In these cases it is important to identify
the range of shear rates over which the constitutive model provides a good match
for the data.

9. Nonlinear elastic solids

In order to provide some background for the equations used in the study of fluid-
solid coupling discussed in the contribution of Turek and Hron [66] of this volume,
we now turn attention to some fundamental issues in nonlinear elasticity. There
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are several recent texts and review articles on the subject of the biomechanics of
the arterial wall (see, e.g., [32, 33, 34, 60]). In the interest of space, we therefore
only very briefly introduce nonlinear elasticity and by way of example, discuss a
few nonlinear isotropic models which are used later in this volume. The reader
is referred to [65, 32, 10, 27, 59] for additional background material on nonlinear
elasticity.

9.1. Introduction to hyperelastic materials

In a purely mechanical theory, an elastic body is one where the response depends on
the deformation gradient or another appropriate measure of strain. For hyperelastic
materials, we will assume the existence of a strain energy density function, Σ(X, t),
sometimes called the stored energy per unit mass, such that

ρ
DΣ
Dt

= T : D or ρ
DΣ
Dt

= Tij Dij . (9.1)

In other words, the change in strain energy per unit mass of the body arises from
work done on the body by internal stresses. The total strain energy per unit mass
of the body will be denoted by U and is therefore,

U =
∫
V(t)

ρ Σ dv. (9.2)

After integrating (9.1) over an arbitrary volume V(t) and using (2.30) with (9.2),
it follows that

d

dt
(K + U) =

∫
∂V(t)

t · vda +
∫
V(t)

ρb · vdv, (9.3)

where K is the kinetic energy in the body,

K =
1
2

∫
V(t)

ρv · vdv. (9.4)

We see that for elastic bodies, work on the body is directly converted to kinetic or
stored energy. Equation (9.3) is the statement that the rate of change of kinetic
energy plus the rate of change of strain energy equals the rate of work by surface
and body forces.

In classical hyperelasticity, it is assumed that the strain energy at each mate-
rial point and for all time depends on the deformation gradient at the same point
and time,

Σ = Σ̃(F ). (9.5)

For homogeneous materials, the form of the function given in (9.5) will be the same
at all points. A normalization condition is typically applied to the strain energy
function, so that the strain energy vanishes in the reference configuration where
F = I,

Σ̃(I) = 0. (9.6)



Review of Relevant Continuum Mechanics 57

It then follows from (9.1) and (9.5) that

T = ρ
∂Σ
∂F

· F T or Tij = ρ
∂Σ

∂FiA
FjA. (9.7)

Using the definitions (2.22) and (2.28) with (9.7),

P = ρ0
∂Σ
∂F

or PiA = ρ0
∂Σ

∂FiA
(9.8)

and

S = ρ0 F−1 · ∂Σ
∂F

or SAB = ρ0 F−1
Ai

∂Σ
∂FiB

. (9.9)

Sometimes a strain energy per unit volume in the reference configuration W is
introduced,

U =
∫
Vo

W dV, (9.10)

and therefore, from (9.2), it follows that, W = ρ J Σ = ρo Σ. For example, we
can write (9.7) as

T =
1
J

∂W

∂F
· F T or Tij =

1
J

∂W

∂FiA
FjA. (9.11)

Using (2.22) and (2.28) with (9.11),

P =
∂W

∂F
or PiA =

∂W

∂FiA
(9.12)

and

S = F−1 · ∂W

∂F
or SAB = F−1

Ai

∂W

∂FiB
. (9.13)

9.2. Invariance restrictions

Invariance requirements restrict the form of the functional dependence of the strain
energy function on F . Without loss in generality, the most general form of the
strain energy function that satisfies invariance can be written as Σ = Σ̂(C). It
then follows from (9.7) and the definitions (1.7) and (1.13) that

T = ρ F ·
(

∂Σ
∂C

+
∂Σ

∂CT

)
· F T or Tij = ρ FiAFjB

(
∂Σ

∂CAB
+

∂Σ
∂CBA

)
, (9.14)

where Σ̂(C) is symmetric in CAB . In some works, rather than (9.14) the following
result is used,

T = 2 ρ F · ∂Σ
∂C

· F T or Tij = 2ρFiAFjB
∂Σ

∂CAB
. (9.15)

Care must be taken in using (9.15). See pages 212–213 of [60] for a straightforward
comparison of these two representations.
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9.3. Example: incompressible, isotropic hyperelastic materials

When we say a hyperelastic material is isotropic, we require that

Σ̄(QCQT ) = Σ̄(C) (9.16)

where Q is an arbitrary proper orthogonal second-order tensor. Namely, the me-
chanical response is the same even if the material undergoes an arbitrary rotation
in the reference configuration. It then follows from (9.16) and a representation
theorem for invariant scalar functions of symmetric tensors, that Σ can be written
as a function of the invariants of C,

IC = trC, IIC =
1
2
((tr C)2 − tr (C2)), IIIC = detC. (9.17)

For an incompressible material IIIC is constant and we simply use Σ = Σ(IC, IIC).
The components of the Cauchy stress tensor for an isotropic, incompressible hy-
perelastic material can then be reduced from (9.15) to

T = −pI + 2 ρ0
∂Σ
∂IB

B − 2 ρ0
∂Σ

∂IIB
B−1, (9.18)

where p is the Lagrange multiplier arising from incompressibility and we have used
the fact that IB = IC, IIB = IIC. Alternatively, using the relation W = ρ0Σ,

T = −pI + 2
∂W

∂IB
B − 2

∂W

∂IIB
B−1. (9.19)

Common examples of nonlinear, isotropic, incompressible, hyperelastic ma-
terials are the (i) Mooney–Rivlin material, (ii) a special type of Mooney–Rivlin
material called a Neo-Hookean material and (iii) an exponential model which has
been used for biological materials. For a Mooney–Rivlin material, the strain energy
function can be written as

W =
α

2
(IB − 3) +

β

2
(IIB − 3) (9.20)

where α and β are constants. It follows from (9.19) that the corresponding Cauchy
stress tensor for the Mooney–Rivlin material is

T = −pI + αB − βB−1. (9.21)

The neo-Hookean material is a special Mooney–Rivlin material for which β = 0,

W =
α

2
(IB − 3), T = −p I + α B. (9.22)

A special type of hyperelastic material with an exponential dependence on the first
invariant of B was introduced by Fung to model the nonlinearly elastic response
of biological tissue, [18],

W =
α

2γ

(
eγ(IB−3) − 1

)
, T = −p I + α B eγ(IB−3) (9.23)

where α and γ are material constants. A more recent application of this model
can be found in [67]. Notice that for the exponential model, the coefficient for B



Review of Relevant Continuum Mechanics 59

is not a constant as it was for the Mooney–Rivlin and Neo-Hookean models. In
addition, both the Neo-Hookean and exponential models are independent of IIB.

References

[1] T. Alexy, R.B. Wenby, E. Pais, L.J. Goldstein, W. Hogenauer, and H.J. Meiselman.
An automated tube-type blood viscometer: Validation studies. Biorheology, 42:237-
247, 2005.

[2] G. Astarita and G. Marrucci. Principles of Non-Newtonian Fluid Mechanics. Mc-
Graw Hill, 1974.

[3] H.A. Barnes. Thixotropy – a review. J. Non-Newtonian Fluid Mech., 70:1–33, 1997.

[4] H.A. Barnes, J.F. Hutton, and K. Walters. An Introduction to Rheology. Elsevier,
1989.

[5] H.A. Barnes. The yield stress – a review or ‘παντα ρει’ – everything flows? J. Non-
Newtonian Fluid Mech., 81:133–178, 1999.

[6] W.H. Bauer and E.A. Collins. Thixotropy and dilatancy. In F.R. Eirich, editor,
Rheology: Theory and Applications, volume 4. Academic Press, 1967.

[7] R.B. Bird, R.C. Armstrong, and O. Hassager. Dynamics of Polymeric Liquids, Vol-
ume I: Fluid Mechanics. John Wiley & Sons, second edition, 1987.

[8] R.B. Bird, G.C. Dai, and B.J. Yarusso. The rheology and flow of viscoplastic mate-
rials. Reviews in Chemical Engineering, 1:1–70, 1983.

[9] N. Casson. A flow equation for pigment-oil suspensions of the printing ink type. In
Rheology of Disperse Systems, pages 84–102. Pergamon, 1959.

[10] P. Chadwick. Continuum Mechanics. John Wiley & Sons, 1976.

[11] B.D. Coleman. Kinematical concepts with applications in the mechanics and ther-
modynamics of incompressible viscoelastic fluids. Arch. Rational Mech. Anal., 9:273–
300, 1962.

[12] B.D. Coleman, H. Markovitz, and W. Noll. Viscometric Flows of Non-Newtonian
Fluids. Springer-Verlag, 1966.

[13] B.D. Coleman and W. Noll. An approximation theorem for functionals, with approx-
imations in continuum mechanics. Arch. Rational Mech. Anal., 6:355–370, 1960.

[14] B.D. Coleman and W. Noll. Foundations of linear viscoelasticity. Rev. Mod. Phys.,
33(2):239–249, Apr 1961.

[15] J.E. Dunn and R.L. Fosdick. Thermodynamics, stability and boundedness of fluids
of complexity 2 and fluids of second grade. Arch. Rational Mech. Anal., 56:191–252,
1974.

[16] G. Duvant and J.L. Lions. Inequalities in Mechanics and Physics. Springer-Verlag,
1982.

[17] R. Finn. Stationary solutions of the Navier-Stokes equations. Symp. Appl. Math.,
17:121–153, 1965.

[18] Y.C. Fung. Elasticity of soft tissue in simple elongation. Am. J. Physiology, 213:1532–
1544, 1967.

[19] Y.C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag,
1993.



60 A.M. Robertson

[20] G.P. Galdi. Mathematical problems in classical and non-Newtonian fluid mechan-
ics. In Hemodynamical Flows. Modeling, Analysis and Simulation. Oberwolfach-
Seminars, Vol. 37, p. 121–273. Birkhäuser Verlag, 2008.
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Hemorheology

Anne M. Robertson, Adélia Sequeira and Marina V. Kameneva

Introduction

Hemorheology is the science of deformation and flow of blood and its formed
elements. This field includes investigations of both macroscopic blood properties
using rheometric experiments as well as microscopic properties in vitro and in
vivo. Hemorheology also encompasses the study of the interactions among blood
components and between these components and the endothelial cells that line
blood vessels.

Blood performs the essential function of delivering oxygen and nutrients to
all tissues, removing waste products and defending the body against infection
through the action of antibodies. The blood circulation in the cardiovascular sys-
tem depends not only on the driving force of the heart and the architecture and
mechanical properties of the vascular system, but also on the mechanical properties
of blood itself. Whole blood is a concentrated suspension of formed cellular ele-
ments including red blood cells (erythrocytes), white blood cells (leukocytes) and
platelets. The non-Newtonian behavior of blood is largely due to three aspects
of erythrocyte behavior: their ability to aggregate and form a branched three-
dimensional (3D) microstructure at low shear rates, their deformability, and their
tendency to align with the flow field at high shear rates [29, 118]. An understand-
ing of the coupling between the blood composition and its physical properties is
essential for developing suitable constitutive models to describe blood behavior.

Hemodynamic factors such as flow separation, flow recirculation, and low
and oscillatory wall shear stress are recognized as playing important roles in the
localization and development of vascular diseases. Therefore, mathematical and nu-
merical simulations of blood flow in the vascular system can ultimately contribute
to improved clinical diagnosis and therapeutic planning (see, e.g., [43, 80]). How-
ever, meaningful hemodynamic simulations require constitutive models that can
accurately model the rheological response of blood over a range of physiological
flow conditions. Experimental studies of the instability of the 3D microstructure of
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erythrocytes (RBCs) suggests that it is probably reasonable to treat the blood vis-
cosity as constant in most parts of the arterial system of healthy individuals, due to
the high shear rates found in these vessels and the length of time necessary for the
blood microstructure to form. However, in disease states in which the stability of
the aggregates is enhanced or for diseases in which the arterial geometry has been
altered to include regions of recirculation (e.g., saccular aneurysms), this simpli-
fying assumption may need to be relaxed and a more complex blood constitutive
model should be used. In addition, even in healthy patients, the non-Newtonian
characteristics of blood can play an important role in parts of the venous system.

We begin this chapter with a brief summary of blood components followed
by a discussion of relevant parameters in the cardiovascular system. In Section 3,
we turn attention to experimental data on the multiphase properties of blood and
the relationship between these properties and the mechanical response of blood. A
short introduction to the important subject of blood coagulation is then provided
in Section 4, motivated by its importance in medical devices such as stents and
artificial hearts as well as the pressing need for theoretical, experimental and nu-
merical efforts to further develop and validate these models. In Section 5, we then
turn to the subject of mechanical measurements of blood properties and challenges
in blood rheometry. In Section 6, the viscosity of whole blood is considered, includ-
ing experimental data and generalized Newtonian models for blood viscosity. The
following section covers the interesting, though controversial subject of yield stress
behavior of blood. In Section 8, the viscoelastic behavior of blood is briefly dis-
cussed. The chapter ends in Section 9 with a discussion of the relationship between
some disease states and mechanical properties of blood.

The constitutive models discussed in this chapter are phenomenological in
nature. Looking toward the future, we expect that more and more quantitative
experiments will be performed at the scale of the red blood cell, providing a rational
basis to extend these models to include microstructural aspects of blood. For
example, data on the time constants associated with the formation and breakup of
RBC microstructure in representative flow regimes and shear fields are extremely
important. Ultimately, it is expected that these microstructural models will make
it possible to predict hemodynamic features such as the inhomogeneous spatial
distribution of the red cells in vessels and the thixotropic behavior of blood.

The material of this chapter is organized as follows.
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1. Blood components

Whole blood is a concentrated suspension of formed cellular elements that includes
red blood cells (RBCs) or erythrocytes, white blood cells (WBCs) or leukocytes,
and platelets or thrombocytes, Table 1. The average person has between 4.5 and
6 L of blood, accounting for approximately 6 – 8% of the body weight in healthy
individuals. During a singleton pregnancy, the blood volume increases by 50%.

The formed elements represent approximately 45% by volume of the nor-
mal human blood. The process by which all formed elements of the blood are
produced (hematopoiesis), occurs mostly in the bone marrow, where cells mature
from primitive stem cells. Important factors in regulating blood cell production
include: the environment of the bone marrow, interactions among the cells, and
secreted chemicals called growth factors.

Cell Number per Unstressed Volume
mm3 shape and concentration (%)

dimensions (μm) in blood

Erythrocytes 4 − 6 × 106 Biconcave disc 45
8 × 1 − 3

Leukocytes
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

1

Total 4 − 11 × 103

Granulocytes
Neutrophils 1.5 − 7.5 × 103 Roughly
Eosinophils 0 − 4 × 102 spherical
Basophils 0 − 2 × 102 7 − 22

Lymphocytes 1 − 4.5 × 103

Monocytes 0 − 8 × 102

Platelets 250 − 500 × 103 Rounded or
oval 2 − 4

Table 1. Quantity, shape, size and concentration of cellular com-
ponents in normal human blood, from page 159 of [17].
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1.1. Plasma

Plasma consists primarily of water (approximately 90 – 92% by weight) in which in-
organic and organic substances (approximately 1 – 2%), various proteins (mostly
albumin, globulins, and fibrinogen) as well as many other components are dis-
solved. Its central physiological role is to transport these dissolved substances,
nutrients, wastes and the formed cellular elements throughout the circulatory sys-
tem. Plasma also plays an important role in homeostasis (constant colloid-osmotic
pressure), buffer function and coagulation.

1.2. Red blood cells (Erythrocytes)

Erythrocytes, or red blood cells, are highly flexible cells filled with an almost
saturated solution (approximately 32% by weight) of hemoglobin in water (65%)
as well as inorganic elements (K, Na, Mg and Ca). Hemoglobin is the protein inside
RBC that gives blood its red color and is primarily involved in oxygen and carbon
dioxide transport between the lungs and tissues of the body. As will be discussed
throughout this chapter, erythrocytes, which are the most numerous of the formed
elements (about 98%), have the largest influence on the mechanical properties of
blood. The properties of an individual RBC changes as it ages and the normal
life-span of a RBC in human blood is 100 – 120 days.

The shape of a normal unsheared erythrocyte is a biconcave discoid with a
diameter of 6 – 8 μm, surface area of approximately 130 μm2 and volume of ap-
proximately 98 μm3, Figure 1. This shape can be changed as a result of mechanical,
chemical or thermal effects. As elaborated on in Section 3, under normal hemody-
namic loading, the shape of the RBC changes dramatically from a biconcave disk
to an ellipsoid. Significantly, a biconcave disk has a greatly increased surface area
to volume ratio compared to spheres. For example, the surface area of a sphere
of volume of 98 μm3 is 103 μm2 compared with a surface area of 130 μm2 for a
biconcave RBC of an equivalent volume, Figure 1. This makes it possible for the
red blood cell to greatly deform without significant strain compared to a spherical
shaped cell, (e.g., Chapter 4 of [53]). In fact, RBC membranes cannot withstand
more than 5 – 10% increase in area without hemolysis [16].

1.2.1. Hematocrit (Ht). The volume concentration of RBCs in whole blood is
called the hematocrit, Ht. It is measured by centrifuging blood in a hematocrit
tube and measuring the volume occupied by the packed cells in the bottom of the
tube. Since some plasma remains trapped in the packed cells, the true hematocrit
is about 96% of this measured value [60]. Burton calculated the highest hemat-
ocrit possible for undeformed RBC based on geometric arguments for the closest
packing of biconcave human RBCs of thickness 2.7 μm and radius 8.1 μm. He
concluded RBCs must deform when the hematocrit is higher than 63%, (page 41
of [16]). Normal hematocrit levels for women and men are below this level, with an
average about 40% and 45%, respectively. In addition to gender, the hematocrit
level can vary due to disease state, activity level and the altitude in which the
individual lives. For example, severe blood loss and diseases such as haemolytic
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anemia, sickle cell anemia and thalassemia can cause Ht to drop as low as 10%.
Elevated hematocrit levels can arise due to high altitude, dehydration or diseases
characterized by excessive RBC production. In this latter case, hematocrit levels
can rise as high as 60 – 70% [60]. The mechanical properties of blood are strongly
dependent on the hematocrit level.

(a)

μm

μm

μm
μm

μm

7.65

1.44 2.84

Volume = 98
Surface area = 130

3
2

(b)

Figure 1. (a) Scanning electron microscope image of a red blood
cell (with permission from Dr. K.B. Chandran); (b) Schematic of
a RBC profile with average geometric parameters from 14 healthy
subjects (values from [54]).

1.3. White blood cells (Leukocytes)

WBCs are much less numerous than erythrocytes (less than 1% of the volume
of blood). They are normally roughly spherical in shape with diameters ranging
from about 7 – 22 μm, (page 167 of [17]). Leukocytes play a vital role in fighting
infection in the body both through (i) the destruction of bacteria and viruses (via
phagocytosis) and (ii) the formation of antibodies and sensitized lymphocytes.
There are five morphologically different types of WBC: basophils, eosinophils and
neutrophils (collectively called granulocytes) and also monocytes and lymphocytes,
Table 1. The term granular arises from the granular appearance of these cells.
WBCs originate partially in the bone marrow (granulocytes, monocytes and some
lymphocytes) and partially in the lymph tissue such as the lymph glands and
tonsils (most lymphocytes). While there is a constant supply of WBCs circulating
in the blood stream, about three times this number are stored in the marrow.
These cells can be rapidly transported to areas of infection and inflammation.
We refer the reader to classical physiology texts and modern references for more
information on these processes (e.g., [60]). Leukocytes are believed to have little
influence on the rheology of blood, except in extremely small vessels like capillaries
or in disease conditions, (e.g., [112, 78]). Their diameter is larger than the average



Hemorheology 69

diameter of a capillary and, as a result, they must undergo large deformations in
order to pass through the systemic or pulmonary microcirculation.

In some cases, the response of the leukocytes can lead to a cascade of activities
which are deleterious rather than beneficial to the body. It is now known, that the
adherence of leukocytes to the endothelial monolayer is one of the first steps in
the formation of atherosclerotic lesions and can be induced by an atherogenic diet,
(e.g., [77]). The leukocytes maintain adhesion to the endothelium through rolling.
There is a growing body of work directed at modeling and better understanding
this process from a biomechanical point of view as well as the general behavior of
the WBCs (e.g., [5, 23, 47, 71, 112]).

1.4. Platelets (Thrombocytes)

Platelets are small discoid non-nucleated cell fragments that are much smaller than
erythrocytes (approximately 6 μm3 in volume as compared to 98 μm3). They form
a small fraction of the particulate matter in human blood, Table 1. Platelets are
vital for the prevention of blood loss. When they come in contact with a damaged
vascular surface or foreign substance they dramatically change their physical form
and release chemicals that activate nearby platelets and cause them to adhere to
each other. This can lead to a platelet plug which is sufficient to stop bleeding
in small injuries. For larger injuries, the formation of a blood clot (coagulation)
is essential. Platelets play an important role in coagulation, which is discussed in
Section 4.

2. Relevant parameters for flow in the human cardiovascular
system

Prior to discussing the physical behavior of RBC in flowing blood, we provide typ-
ical values of physical parameters in the vessels of the human body, Tables 2 and 3
and corresponding non-dimensional parameters. For pulsatile flow of a general-
ized Newtonian fluid in a pipe, the important flow parameters are a characteristic
diameter (D), the fluid density (ρ), a characteristic fluid viscosity (ηc), a char-
acteristic velocity (V ), and a characteristic angular frequency (ω). For example,
the characteristic velocity could be the value of velocity averaged over both the
cross section and one period of the pulsatile waveform (V̄ ), and the characteristic
angular frequency could be the fundamental angular frequency of the flow. Recall,
the angular frequency is related to the frequency (f) through ω = 2 π f . There
may be other important geometric length scales besides the diameter arising, for
example, in the axial direction due to variations in cross section. When the vessel
diameter is on the order of the diameter of RBC or characteristic length scale
of the 3D microstructure formed by RBCs it is no longer appropriate to model
blood as a single phase continuum. In this case, additional parameters will become
important.
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Vessel Diameter Volumetric Flow Rate Spatial Mean Velocity

(mm) (mL/s) (mm/s)
min. max mean min. max mean

Ascending Aorta
Femoral Artery
Common Carotid
Carotid Sinus
External Carotid
Thoracic inferior

23.0 – 43.5
5.0
5.9
5.2
3.8
20.0

— — 364
-6.9 23.1 3.7
2.7 10.6 5.1
1.8 6.9 3.3
0.9 3.7 1.8
— — 34 – 50

— — 245 – 876
-350 1175 188
99 388 187
85 325 156
83 327 157
— — 107 – 160

Table 2. Physiological flow parameters for the human circula-
tion from [57].

Vessel Diameter Time average of Peak of spatial
spatial mean velocity mean velocity

(mm) (mm/s) (mm/s)

Ascending Aorta 20 — 630
Descending Aorta 16 — 270
Large Arteries 2 – 6 — 200 – 500
Capillaries 0.005 – 0.01 0.5 – 1 —
Veins 5 – 10 150 – 200 —
Vena Cava 20 110 – 160 —

Table 3. Physiological flow parameters compiled for the human
circulation, from page 93 of [141]. Mean velocity is the spatial
average of velocity over the cross section.

The Reynolds number (Re) and the Womersley number (α) can be formed
from these five parameters,

Re =
ρ V̄ D

ηc
, α =

D

2

√
ρω

ηc
. (2.1)

The Reynolds and Womersley numbers are measures of the significance of steady
and unsteady inertial effects to viscous effects, respectively. These parameters are
important for several reasons. First, they play a role in determining when it is
physically reasonable to make simplifications to the governing equations. In the
limit of small Re, it may be reasonable to neglect convective acceleration terms
while in the limit of small α, it may be suitable to treat even unsteady flows
as quasi-static, (e.g., pages 57–60 of [17]). For example, in the capillary bed the
Reynolds number is much less than one and the diameters of the capillaries are
on the order of the diameter of the RBC. Therefore, when modeling flow in the
capillary bed, we can ignore inertial effects in the balance of linear momentum,
but it will be important to model the motion of individual RBC, (e.g., [99]).
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The choice of characteristic viscosity requires some thought for non-Newton-
ian fluids such as blood because blood viscosity varies with shear rate (see Sec-
tion 6). Frequently, the asymptotic high shear viscosity is used, though this is
not possible for power-law fluids. Alternatively, the characteristic viscosity can be
chosen as the viscosity at a representative shear rate, such as the average velocity
V̄ divided by the pipe diameter D. Using this definition for a power-law fluid (see
formula (3.13) of the article [107] in this volume),

Re =
ρV̄ D

ηc
= ρV̄ 2−nDn/K. (2.2)

We now turn attention to estimating the range of Re and α in the human cir-
culatory system. As will be discussed in Section 6, blood viscosity strongly depends
on shear rate, temperature and hematocrit. Typical values for normal human blood
density and viscosity at 37oC for shear rates greater than approximately 400 s−1

are

Blood density ρ = 1.06 x 103 kg · m−3,
High shear-rate blood viscosity [75] η = 3 − 5.5 mPa · s. (2.3)

We now calculate representative Reynolds and Womersley numbers using the di-
ameters and mean velocities in Tables 2 and 3 with ρ = 1.06 x 103 kg · m−3 and
ηc = 3.5 mPa · s, assuming a fundamental frequency of 1 Hz. For later discussion
of the non-Newtonian behavior of blood, we also calculate a representative value
for the mean wall shear rate (γ̇w) using the mean velocity and diameter. In these
calculations, the velocity field is approximated as parabolic. Therefore, the rea-
sonableness of the wall shear rate estimate depends on how close the profile is to
parabolic.

The estimated range of Reynolds numbers in the ascending aorta are well
above the magnitude typically associated with transition to turbulence of a New-
tonian fluid in a straight pipe. Dintenfass (pages 129–132 of [44]) includes a thought
provoking discussion of various factors which would tend to suppress the develop-
ment of turbulent flow in the circulatory system including the thixotropy of the
fluid, existence of polymeric materials in the blood, and pulsatility of the flow. To
this list, vessel curvature can be added. As noted by Dintenfass, certain disease
states will diminish the effectiveness of some of these factors.

When the viscoelasticity of blood is considered, other material parameters en-
ter the problem such as λ, a characteristic time associated with the memory of the
fluid. A non-dimensional time scale called the Deborah number (see Section 5.1.2
of the article [107] in this volume) can then be used,

De = λω. (2.4)

If finite viscoelasticity is considered, non-dimensional first and second normal stress
coefficients can also be considered (see Section 7.1 of the article [107] in this vol-
ume).
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Vessel Reynolds Number Womersley Number Mean Wall Shear Rate

Re α (1/s)

Ascending Aortaa

Femoral Arterya

Common Carotida

Carotid Sinusa

External Carotida

Capillariesb

Large Veinsb

Vena Cavab

Thoracic inferiora

3200 – 6100
280
330
245
180

0.0015
300 – 450
670 – 970
650 – 970

16 – 30
3.4
4.1
3.6
2.6

0.003 – 0.007
3.4-6.9
13.8
13.8

45 – 300
300
250
240
330

400 – 1600
120 – 320
44 – 64
43 – 64

Table 4. Estimates of parameters Re, α, and wall shear rate ˙γw

based on data in Tables 2 and 3. The superscripts “a” and “b”
next to the vessel names are used to denote data from Tables 2
and 3, respectively. Definitions of Re and α are given in (2.1). The
wall shear rate is estimated using a parabolic velocity profile so
that γ̇w = 8V̄ /D. Values of density, viscosity, and characteristic
frequency are ρ = 1.06 x 103 kg · m−3, η = 3.5 mPa · s, and 1 Hz,
respectively.

3. Multiphase behavior of blood in shear flows

The non-Newtonian behavior of blood is largely due to three characteristics of the
erythrocytes: their tendency to form aggregates when at rest or at low shear rates,
their deformability, and their tendency to align in the flow direction at high shear
rates (e.g., [29, 118, 134]). The shape of the RBC can change (deform) both due
to in plane stretching of the RBC membrane as well as from bending. The high
deformability of RBC is due to the absence of a nucleus, to the elastic and viscous
properties of its membrane and also to geometric factors such as the shape, volume
and membrane surface area [24].

As will be elaborated on in the following sections, blood displays a shear
thinning viscosity, viscoelasticity, thixotropy and possibly a yield stress. In trying
to understand the mechanisms behind these bulk mechanical properties, we first
discuss experiments made over the years to categorize the response of RBC to
shear flows in three flow regimes. As discussed below, at low shear rates, the
RBC form a complex three-dimensional microstructure, while at high shear rates,
this microstructure is lost and flow-induced radial migration may lead to a non-
homogeneous distribution of RBC. A transition in microstructure is found between
these two regimes.

To better interpret and analyze the experimental data on blood it is helpful
to turn to the literature on the rheology of particle suspensions. For rigid parti-
cles, a vast amount of published literature exists (see, e.g., [108]). Aspects of this
subject are discussed in detail in Galdi [55]. However, the study of suspensions of
multiple, interacting and highly deformable particles such as blood, has received
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(a) (b) (c)

Figure 2. View of erythrocytes from normal human blood. In
(a), they are seen forming rouleaux (interference microscopy),
from p. 141 of [10] (with permission from Springer Verlag). In (b)
and (c), they have been fixed with glutaraldehyde while sheared
in a viscometer under a shear stress of (b) 10 Pa and (c) 300 Pa,
from [17] (with permission of the author and Oxford University
Press).

less attention and presents a challenge for both theoretical and computational fluid
dynamacists, (e.g., [41]).

3.1. Low shear behavior: aggregation and disaggregation of erythrocytes

In the presence of fibrinogen and large globulins (proteins found in plasma) ery-
throcytes have the ability to form a primary aggregate structure of rod-shaped
stacks of individual cells called rouleaux. At very low shear rates, the rouleaux align
themselves in an end-to-side and side-to-side fashion and form a secondary struc-
ture consisting of branched three-dimensional aggregates of the rouleaux [116],
Figure 2(a). Erythrocyte aggregation is a reversible dynamic phenomenon, consid-
ered as the main factor responsible for the shear thinning behavior at low shear
rates, [28]. It is observed both in vitro and in vivo. These stacks will not form if
the erythrocytes have been hardened or in the absence of fibrinogen and globulins
[85, 139]. In fact, suspensions of erythrocytes in plasma strongly demonstrate a
shear thinning behavior, while in albumin Ringer or isotonic salt solution (with
no fibrinogen or globulins) this behavior is greatly diminished (see Section 6.2).

F̊araheus demonstrated rouleaux formation at low shear rates in both phys-
iological and pathological conditions [48]. It is believed that in the majority of
the circulation, under healthy conditions, the shear rates are too high to allow
for the appearance of rouleaux. Flow in some veins and venules are exceptions
[11, 59, 99, 124]. As will be elaborated on in Section 9, in some disease states the
tendency for blood to form a three-dimensional microstructure of RBCs and the
strength of this microstructure are significantly increased.

Fundamental advances in our understanding of how the microstructure of
blood influences its mechanical properties were made possible with the invention
of the rheoscope [117]. In this rheometer, a transparent cone and plate are placed
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upon an inverted microscope, enabling visualization of the changing microstructure
of blood under shear. While prior experimental work provided indirect evidence
of the principal role of erythrocyte aggregation and disaggregation in determining
the rheological properties of whole blood at low shear (less than about 50 s−1),
experiments using the rheoscope provided direct evidence of this relation [59].

For blood at rest, or at very low shear rates, the three-dimensional structure
formed by the RBC appears solid-like, resisting flow, suggesting blood may have
a yield stress. As discussed later in this chapter, the existence of a yield stress is
somewhat of a controversial issue (see, for example, [7, 89]). Under increasing loads,
the blood begins to flow and the solid-like structure breaks up into 3D networks of
various sizes which appear to move as individual units and reach an equilibrium
size. This size is dependent on the shear rate. Increases in the shear rate lead to
a breakdown of the aggregates and a consequent reduction in equilibrium size.
The smaller aggregates result in a lower effective viscosity, leading to the shear
thinning behavior of blood. In the studies by Schmid-Schönbein [116] at shear rates
between 5.8 and 46 s−1, each doubling of the shear rate resulted in a decrease in
aggregate size of approximately 50%. He defined a critical shear rate γ̇max, as the
shear rate at which there are no more aggregates larger than 15 μm in constant
shear experiments. In whole blood from healthy human subjects, differing values
are reported for this critical shear rate, largely in the range of 5 – 100 s−1 (e.g.,
[59, 43]). In diseased states, γ̇max can increase substantially and will in turn have
a large impact on the mechanical properties of the blood. In blood samples from
patients with acute myocardial infarctions, the critical shear rate for dispersion was
found to be greater than approximately 250 s−1 and the average aggregate size was
larger than in controls for all shear rates [59, 116]. Rouleaux in blood samples from
a cardiac patient are shown in Figure 3 with normal blood shown for comparison.
The orderly three-dimensional network of RBC seen in normal blood is replaced by
three-dimensional clumps of heavily aggregated RBCs. The relationship between
blood properties and disease are further discussed in Section 9.

The process of disaggregation under increasing shear is reversible. When the
shear rate is quasi-statically stepped down to lower and lower values, the individual
cells form shorter chains, then longer rouleaux and eventually a 3D microstructure
[59]. The finite time necessary for equilibrium of the structure to be reached (both
during aggregation and disaggregation) is the central reason for the thixotropic
behavior of blood, (see Section 6 in [107] of this volume for a general discussion of
thixotropy). The time constants for aggregation and disaggregation are functions
of the shear rate. The equilibria are found to be reached more rapidly at higher
shear rates and more gradually at lower shear rates (e.g., [43]). A time interval
of 20 to 200 seconds was required for rouleaux to reform in a cone and plate
viscometer for shear rates between 0.01 and 1.0 s−1.

Of the blood proteins, fibrinogen is believed to have the most important
effect on blood microstructure, [83, 121, 56]. As fibrinogen levels are increased from
normal (2.5 – 3.9 g/l) to pathological levels (5 – 10 g/l) the aggregates increase
in size and strength, and larger shear rates are needed to break them down into
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(a) (b)

Figure 3. Three-dimensional microstructure of RBC aggregates
in human blood from (a) a healthy donor and (b) a cardiac pa-
tient. Rouleaux formed by rod-shaped stacks of RBCs can clearly
be seen in (a). The isolated darker circles on top of the rouleaux
arise from rouleaux branching off these stacks, forming the three-
dimensional microstructure of RBC aggregates. These branches
are less transparent and therefore darker. In (b), the heavily aggre-
gated RBCs form large three-dimensional clumps. In both figures,
the large light circles are white blood cells while the much smaller
light circles are platelets. Magnification 100X, (images from M.
Kameneva, with permission).

small rouleaux or a single cell suspension [30, 56, 96, 98]. Microrheological studies
presented by Merrill et al. in [86, 85, 84] indicate the process of red blood cell
aggregation and the resulting “apparent” yield shear stress and low shear viscosity
are influenced by additional factors such as temperature and hematocrit level,
red cell shape and deformability and most of all by the presence of other large
molecular weight plasma proteins such as immunoglobulins.

3.2. High shear rate behavior: deformation, tumbling and realignment of
erythrocytes

Schmid-Schönbein and Wells used their rheoscope to study the shape and orien-
tation of RBC dispersed (no microstructure) in a viscous liquid as a function of
the shear rate [118, 115]. They found the behavior of a RBC to be similar to that
of a liquid droplet. At very low shear rates of 1 s−1, the RBC were biconcave in
shape and could be seen to tumble. As the shear rate was increased to 2.3 s−1, the
cells began to align with the flow direction and tumble less. At 11.5 s−1, the cells
began to take on the shape of prolate ellipsoids with long axis parallel to the flow
direction and the red cell membrane could be seen to rotate about the internal
liquid, similar to the motion of the tread around the wheel of a tank. Theoretical
studies for this tank-treading motion can be found in [104, 50, 70]. The cells con-
tinued to elongate with increasing shear rate. When the shear rate was increased
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above 400 s−1, the RBCs deformed into outstretched ellipsoids with major axes
parallel to the flow direction.

This process was reversible. At each stepwise reduction of the shear rate, the
major axes of the ellipsoids become shorter and progressively the red cells recover
their biconcave shape. This increasing elongation, orientation and membrane tank-
treading were associated with a shear thinning behavior [28, 113].

3.3. Spatial distribution of erythrocytes in shear flows

In some situations, the distribution of red blood cells across the radius of blood
vessels or other conduits is far from uniform due to geometric, gravitational and
fluid dynamic effects. This inhomogeneity can lead to some important physiolog-
ical phenomena and unusual features such as the dynamic hematocrit of blood,
plasma skimming and the F̊ahraeus–Lindqvist effect, examined later in Section 3.4.
Avoiding inhomogeneities in the spatial distribution of RBC in rheometers is one
of the biggest challenges in obtaining accurate measurements of the mechanical
properties of blood.

3.3.1. Geometric packing effects. From purely a geometric packing point of view,
the density of RBC in a tube will be diminished at the wall compared with the
bulk of the fluid. This arises because the center of the RBC must be at least half
the RBC thickness away from the wall of a tube. This is sometimes called the
“excluded volume effect” or “Vand effect”. The viscosity near the tube wall is thus
diminished due to this decrease in effective RBC density. A discussion of equations
used to predict the drop in viscosity due to the excluded volume effect can be found
in [20]. For studies under conditions for which a signficant blood microstructure
composed of RBC aggregates exists, the characteristic length is determined by the
size of the blood microstructure rather than the RBC diameter, increasing these
geometric effects.

3.3.2. Particle sedimentation. A source of inhomogeneity which occurs even in the
absence of flow is RBC sedimentation. The specific gravity of RBCs is 1.10 and that
of plasma is 1.03, resulting in a very slow sedimentation rate for individual RBC
on the order of a few mm/hr (page 15 of [16]). However, the sedimentation rate will
increase with RBC aggregation and rouleaux formation. This sedimentation rate
is affected by the age, gender, pregnancy state, and disease state of the donor [48,
59]. The increased aggregate size associated with some diseases can substantially
enhance gravitational effects [59]. In fact, the sedimentation rate is used as a means
of monitoring disease states, Section 9.

3.3.3. Radial migration: dilute suspensions. When particles are placed in shear
flows, they experience flow-derived lift and drag forces in addition to gravitational
forces. These forces will in general not be balanced, leading to migration of the
particles. For dilute suspensions of rigid, neutrally buoyant, spherical particles, the
equilibrium position was experimentally shown to be 0.6 R from the axis (where R
is the tube radius) . This effect is called Segré–Silberberg effect, and is covered in
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[55] in this volume. Interestingly, the equilibrium radial position was found to be
independent of the particle radius, fluid density and fluid viscosity. The nature of
the particle distribution will in general depend on the shape and flexibility of the
particle as well as the shear rate of the flow. Recent analytical and experimental
results for radial migration of rigid particles are discussed in detail in [55]. Palmer
and Betts compared the radial migration of fresh and hardened RBC and found
the fresh RBC shifted radially much more than the hardened cells [94].

3.4. Outcomes of non-homogeneous distribution of erythrocytes

3.4.1. F̊ahraeus effect. F̊ahraeus studied the flow of blood from large feeding tubes
into long, narrow glass tubes (capillary tubes) of diameters between 0.05 and 1.5
mm. He found that in capillary tubes with diameters below 0.3 mm, the ratio of
the tube hematocrit to that in the feeding tube decreased with decreasing diam-
eter, [48, 49]. This effect, known as the F̊ahraeus effect or dynamic hematocrit, is
attributed to the pronounced axial migration of the erythrocytes. F̊ahraeus con-
jectured that as the RBC migrate toward the center of the capillary tube, their
average velocity increases. For the mass flow rate of RBC in the larger feeding tube
to be equal to that in the capillary tube, the density of RBC must be lower in
the capillary tube, (see [58] for a detailed discussion of this effect and F̊ahraeus’s
contributions in general). This is a separate effect from any change in the tube
hematocrit due to entrance or “screening” effects as blood flows from the feeding
tube into the capillary tube.

3.4.2. F̊ahraeus–Lindqvist effect. F̊ahraeus and Lindqvist [49] measured the rela-
tionship between flow rate and pressure drop in long tubes with diameters between
0.04 and 0.5 mm (a type of capillary rheometer). The shear rates they considered
were significantly larger than γ̇max, so the effect of the RBC microstructure would
be negligible. They found that for tubes of diameters less than 0.3 mm, the relative
viscosity appeared to strongly decrease with decreasing radius. For example, the
relative viscosity of normal blood was 30% lower in a 0.05 mm diameter capillary
tube than in a 1 mm diameter tube, [48]. This effect is commonly referred to as
the F̊ahraeus–Lindqvist effect, [58, 100]. The blood viscosity is a material property
and clearly is not dependent on the size of the device used to test it. Rather, some
of the assumptions used in calculating the viscosity from the measured pressure
and flow rate render the use of formula (8.4) of the article [107] in this volume in-
valid. For example, the assumption that the RBCs are homogeneously distributed
in the capillary tube is violated. In addition, as noted by F̊ahraeus and Lindqvist,
the decreased dynamic hematocrit, or the F̊ahraeus effect, results in lower values
of Ht in the smaller capillary rheometers, which leads to lower viscosities (see also
[36]). F̊ahraeus and Lindqvist [49] noted this seeming decrease in viscosity would
result in an advantageous decrease in flow resistance in arterioles and small veins.

3.4.3. Plasma skimming. As discussed above, geometric packing effects and radial
migration of RBC can act to lower the hematocrit adjacent to the vessel wall. In
some circumstances, when blood flows from this vessel into small lateral vessels,
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the fluid entering the smaller vessels will be preferentially drawn from this region
of lowered hematocrit. This effect, often referred to as plasma skimming, results in
a diminished hematocrit in small side branches compared with the parent vessel.
See pages 119–122 of [43] for a summary of early work on this subject exploring
the impact of various factors on plasma skimming such as branch angle, degree of
RBC aggregation, shear rate, and ratio of vessel diameters.

4. Platelet activation and blood coagulation

When a blood vessel is injured, a complex physiological process called hemostasis
is set into action. Hemostasis literally means the stopping of blood and includes
the following steps which are elaborated on below:

• Vasoconstriction, whereby the blood vessel diameter is diminished, slowing
bleeding.

• Primary hemostasis, during which platelets bind to the exposed collagen in
the wall, resulting in the formation of a hemostatic plug seconds after the
injury occurs.

• Secondary hemostasis or coagulation, a complex cascade of activities leading
to the strengthening of the platelet plug with fibrin strands and the formation
of a clot.

• Wall repair and clot dissolution.

4.1. Vasoconstriction

Following endothelial disruption, there is an immediate reaction that causes the
smooth muscle in the wall to contract (vasoconstriction), decreasing the vessel
diameter and diminishing blood loss. Vasoconstriction slows blood flow, enhancing
platelet adhesion and activation.

4.2. Primary hemostasis

Platelets (Section 1.4) play a central role in primary hemostasis. The surface of
platelets are coated with glycoproteins, which prevent adherence of the platelets
to a healthy endothelium, yet lead to adherence to injured endothelial cells and
especially to exposed collagen.

Primary hemostasis begins when organelles contained in the platelet cyto-
plasm come in contact with collagen exposed by arterial damage. The platelets
are then activated and release multiple factors from their cytoplasmic granules.
This in turn leads to activation of additional platelets which adhere to the origi-
nally activated platelets. This process continues, resulting in a platelet plug and
concluding the primary step in hemostasis.

When the concentration of activators exceeds a threshold value, platelet ag-
gregates that are formed by this process can break up, damaging the platelets and
causing aggregation at locations other than at the site of damage. Blood platelets
can also be activated by prolonged exposure to high or rapid increases in shear
stress [37, 73].
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4.3. Secondary hemostasis or clot formation

The final hemostatic mechanism is coagulation (clot formation) which involves
a complex cascade of enzymatic reactions. Thrombin is the bottom enzyme of
the coagulation cascade. Prothrombin activator converts prothrombin to throm-
bin. The primary role of thrombin is to convert fibrinogen, a blood protein, into
polymerized fibrin, stabilizing the adhered platelets and forming a blood clot (or
thrombus) [111, 105], Figure 4.

Figure 4. SEM image of fibrin binding to RBCs, (Obtained from
[92], with permission from the Electron Microscope Unit, Univer-
sity of Cape Town).

4.4. Wall repair and clot dissolution

The clot attracts and stimulates the growth of fibroblasts and smooth muscle cells
within the vessel wall, and begins the repair process that ultimately results in
fibrinolysis and the dissolution of the clot (clot lysis). Clot dissolution can also
occur due to mechanical factors such as high shear stress [106]. In practice a blood
clot can be continuously formed and dissolved. Generally, many factors affect its
structure, including the concentration of fibrinogen, thrombin, albumin, platelets
and red blood cells. At the end of the hemostatic process, normal blood flow
conditions are restored. However, some abnormal hemodynamic and biochemical
conditions can lead to pathologies such as thromboembolic or bleeding disorders,
which are of great clinical importance.

4.5. Models of activation and blood coagulation

The process of platelet activation and blood coagulation is quite complex and not
yet well understood. Recent reviews detailing the structure of the blood coagula-
tion system are available, for example in [2, 111]. Numerous experimental studies
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recognize that thrombus formation rarely occurs in regions of parallel flow, but
primarily in regions of stagnation point flows within blood vessel bifurcations,
branching and regions of strong curvature. Moreover, internal cardiovascular de-
vices such as prosthetic heart valves, ventricular assist devices and stents, generally
harbor high hemodynamic shear stresses that can cause platelet activation and re-
sult in coagulation. Thrombotic deposition encountered in these devices is a major
cause of their failure.

Reliable phenomenological models that can predict regions of platelet activa-
tion and deposition have the potential to help optimize design of internal cardiovas-
cular devices and can also be used to identify regions of the arterial tree susceptible
to the formation of blood clots (e.g., [123, 143]). A number of researchers have at-
tempted to tackle the challenging problem of developing models of this kind (e.g.,
[51, 74, 138, 6]). Anand et al. recently introduced a model for clot formation and
lysis in flowing blood that attempts to extend these existing models to integrate
more of the biochemical, physiologic and rheological factors [2, 3]. Preliminary 3D
numerical results for this model can be found in [12]. There remains a pressing
need for further experimental data to validate and develop these models.

5. Special considerations in rheometry of blood

In the remainder of this chapter, we turn attention to the measurement of the
mechanical properties of blood and constitutive models to describe this behavior.
The three most commonly used rheometers for blood are the concentric cylinder
rheometer (Couette rheometer), the cone and plate rheometer, and the capillary
rheometer, Figure 12 of the article [107] in this volume. The theory behind these
rheometers was previously discussed in Section 8 of [107]. These devices can be used
in steady and oscillatory modes to measure the viscosity and linear viscoelastic
properties of blood, respectively. In the cone and plate rheometer, it is also possible
to measure the first normal stress coefficient, though to date this has not been
successfully performed for blood.

We should expect these rheometers to provide mechanical properties of whole
blood that are in agreement with each other over a wide range of shear rates. In
practice, the range of each rheometer is limited, so that more than one rheometer
is used when blood properties are needed over a wide range of shear rates (e.g.,
0.01 – 500 s−1). To aid the reader in a rational interpretation of experimental data
in the literature, we first discuss some of the central challenges in blood rheometry.

5.1. Inhomogeneous distribution of particles

The application of all three rheometers to blood is nearly always based on the
assumption that the blood is a single-phase, homogeneous material. A necessary
condition for modeling blood as a homogeneous continuum is that the smallest
length scale of the device is large compared to the largest length scale of the
RBC (or the characteristic length of the RBC aggregate). However, like other
suspensions, this condition is not a guarantee of homogeneity. The cells may be
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non-uniformly distributed due to the geometric, gravitational and fluid-dynamical
mechanisms discussed in Section 3.3. These factors are in turn dependent on the
aggregate size which is strongly influenced by the concentration of fibrinogen and
high molecular weight globulins, hematocrit level and shear rate [97]. As a result,
measurement of the mechanical properties of blood is in general more difficult at
low shear rates, where aggregates are found (in blood from healthy donors, less
than about 50 s−1). These challenges are heightened by physiological conditions
that lead to increased size of RBC aggregates, for example, pathological levels of
fibrinogen.

RBC migration limits the smallest tube diameter that can be used in capillary
rheometers. When the tube diameter is below approximately 300 μm, the RBC
migration discussed in Section 3.3 leads to a layer near the tube wall that is nearly
deplete of RBCs (e.g., [49]). This inhomogeneous distribution of RBC is outside
the scope of the equations used to obtain viscosity from capillary rheometers,
Section 8 of [107]. As discussed in Section 3.4, an apparent reduction in viscosity
will result as well as a dependence of viscosity on capillary diameter.

Sedimentation can also generate an inhomogeneous distribution of RBC in
the reservoirs of capillary rheometers, which will then alter the concentration of
RBC in the capillary tube [49, 84]. Sedimentation is more of a problem in horizontal
tube viscometers and can be diminished by premixing the blood and using wider
capillaries to reduce measurement time.

In applications of cone and plate rheometers to suspensions such as blood,
a truncated cone is required, chosen such that the gap between the cone tip and
plate exceeds the characteristic length of particles in the suspension by a factor
of ten [91]. In addition, sedimentation can generate a RBC free layer adjacent to
the upper plate [84], which will lead to an under prediction of the viscosity. The
lift on particles due to fluid-dynamic mechanisms can diminish the importance of
gravitational effects at higher flow rates. Therefore, one method used to mitigate
sedimentation is to mix blood prior to testing. Sedimentation is more pronounced
at shear rates where RBC aggregation is stronger and hemodynamic effects are
lessened.

Couette viscometers are not as sensitive to RBC sedimentation as cone and
plate rheometers [82, 97]. However, in constant shear rate experiments below
1 – 10 s−1, a non-monotonic torque transient is observed [34]. In particular, af-
ter initiation of the constant shear, the torque is seen to reach a maximum value
and then decays to a steady-state value. A controversy remains over which torque
to use for blood viscosity calculations. Some authors use the torque obtained
by back extrapolation to zero time, while others use the final steady-state value
[34, 1]. The torque decay has been lessened by roughening the walls of the cylin-
ders [34, 84, 97]. The source of this torque transient is believed to arise from an
observed non-homogeneous distribution of RBC in the radial direction [34, 84].
This distribution has been attributed to geometric hindrance [34] and/or radial
migration [97].
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5.2. Thixotropy

In blood, thixotropic effects are due to the finite time required for the formation
and breakdown of the 3D microstructure formed by the RBC aggregates 1. This lag
time can play an important role in blood rheometry. For example, if blood leaves
the reservoir of a capillary rheometer in a state of lower/higher microstructure
than the expected equilibrium value, the fluid will have to flow a finite distance
down the tube before the microstructure associated with the imposed shear rate
is formed. If this distance is large enough, the entrance effects in the tube will
be significant and the viscosity will be substantially different from the equilibrium
value. While entrance effects are not an issue in rotational devices such as the cone
and plate and Couette viscometers, thixotropy can affect rheometry in other ways
[22]. For example, it seems likely that thixotropic effects play an important role in
the torque decay discussed previously.

5.3. Biochemical effects

Outside the body, blood has a tendency to coagulate after a few minutes. Various
additives are effective at preventing coagulation, though possibly at the expense
of altering the mechanical properties of blood from its native state. Merrill and
co-workers found the rheological properties of blood were similar between native
blood and blood with heparin added, as long as the tests were performed within
eight hours of withdrawal [86]. Similarly, Copley et al. [39] found viscosity was
insensitive to the addition of heparin and EDTA over a wide range of shear rates
(0.0009 – 1000 s−1).

5.4. Other considerations

Another consideration in the selection of rheometers is the need to assume a par-
ticular constitutive model for blood to interpret the data. A major advantage of
both the Couette rheometer and the cone and plate rheometer is that under cer-
tain assumptions (respectively, those of small gap and small angle) the shear rate
is constant throughout the fluid domain. The viscosity can then be determined
without an a-priori selection of a blood constitutive model, (see Section 8 in [107]
of this volume). For example, for a narrow gap Couette rheometer in which the
inner cylinder is rotated and the outer cylinder is held fixed, it is reasonable to use
the following relationship to calculate the fluid viscosity irrespective of the specific
fluid,

η =
M

4πR2
i L Ωi

(
1 − R2

i

R2
0

)
for narrow gaps Ri/R0 ≥ 0.99, (5.1)

where Ri and Ro are the radii of the inner and outer cylinder, respectively, L is
the cylinder length, M is the magnitude of the torque applied to the inner cylinder
and Ωi is the rotation rate of the inner cylinder. For a small angle cone and plate

1A general discussion of thixotropy is covered in Section 6 in [107] of this volume and the
references cited therein.
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viscometer, the viscosity can be calculated from

η =
3M

2πR3

β

Ω
for small angles β < 0.10 rad, (5.2)

where R is the cone radius, β is the angle between the cone and plate and M is
the magnitude of the applied torque. Equations (5.1) and (5.2) are discussed in
more detail in [107] of this volume.

When the RBC aggregate size is elevated, it may not be possible to use nar-
row gap rheometers. In practice, the relation (5.1) is sometimes used to calculate
an approximate viscosity in rheometers with wider gaps. In other cases, an ap-
proximate viscosity is calculated using the finite-gap formula for Newtonian fluids
given in (8.1) of [107] even though the blood displays a shear thinning viscosity.

When selecting a rheometer, an additional consideration is the minimum
sample size, particularly for human newborns or small animal studies. For example,
the entire blood volume of a rat can be less than 20 – 25 ml. An advantage of the
cone and plate rheometer is the relatively small sample size (about 0.5 – 1.0 ml).

6. Viscosity of whole blood

The most well studied non-Newtonian characteristic of blood is its diminishing vis-
cosity with increasing shear rate. This shear thinning behavior is the subject of this
section. For clarity, we begin with nomenclature for blood viscosity. We then turn
attention to a discussion of experimental data for the equilibrium measurements
of blood viscosity as a function of shear rate. Next, the relationship between blood
microstructure and the qualitative form of this viscosity dependence on shear rate
is discussed. Following this, the significance of shear thinning in the circulatory
system is considered. As a result of the time necessary for the 3D microstructure
of blood to form, the strong shear thinning behavior measured for normal blood
in-vitro does not play a role in much of the circulatory system. We then turn at-
tention to specific functional forms used to describe blood shear thinning. Finally,
the dependence of blood viscosity on other factors such as hematocrit level and
temperature is considered.

6.1. Nomenclature for blood viscosity

It should be emphasized that the nomenclature for viscosity is not used uniformly
within the literature on blood rheology. For clarity, we begin this section with
comments on this nomenclature and a statement of the definitions that will be
used in this chapter.

Viscosity. When we refer to blood viscosity, we mean the viscosity function defined
in (7.4) of the article [107] in this volume. We will sometimes call this the material
viscosity to emphasize that it is a material property. Different rheometers should
predict the same value for this quantity if they are used under the same conditions
(e.g., temperature and shear rate).
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Apparent Viscosity. There is some variability in the use of the term apparent
viscosity. We define apparent viscosity as the approximate viscosity obtained using
relations between viscosity and measured properties that are strictly only valid for
constant viscosity fluids, (e.g., Section 5.2 of Fung [53] and page 13 of [20]). For
example, for capillary rheometers, the apparent viscosity is calculated from the
data using (8.4) of [107], whereas the material viscosity is calculated using (8.5)
of [107]. As will be discussed shortly, the viscosity of blood from healthy human
donors at shear rates greater than 200 s−1 is approximately constant. At these
higher shear rates, the blood microstructure formed by aggregates of RBCs in the
test region of the capillary rheometer is likely insignificant, even though the shear
rate varies from zero to a maximum across the capillary tube. If this is the case,
the apparent viscosity will be close to the material viscosity at these higher shear
rates. In flow regimes where the non-constant viscosity is important, the apparent
viscosity is not an intrinsic material property of the fluid. In other works, the term
apparent viscosity is used for the material viscosity defined above and what we are
referring to as the apparent viscosity is called the effective viscosity (e.g., [36]).
Relative viscosity is the ratio of the suspension viscosity to the viscosity of the
suspending fluid alone or some other reference viscosity. In the hemorheology liter-
ature, it is defined as the ratio of either the material or apparent viscosity of whole
blood to that of either plasma or water at the same temperature. Sometimes the
terminology relative apparent viscosity is used to emphasize the relative viscosity
is the ratio of apparent viscosities.

6.1.1. Units of viscosity. While much of the scientific and engineering literature
makes use of SI units, important works on blood rheology use the CGS unit of
centipoise (cP). The poise was named after Jean Louis Marie Poiseuille and is
equivalent to 1 g/(cm · s). A centipoise is just 1/100 of poise. A common SI unit
of viscosity is the Pascal second: 1 Pa · s = 1 kg/(m · s), where

1 cP = 10−3 Pa · s = 1 mPa · s. (6.1)

6.2. Experimental data for whole blood viscosity

Shown in Figure 5 are representative data for the apparent viscosity as a function
of the shear rate for whole human blood with a hematocrit of 40% at 23o C. The
data were obtained using a Couette viscometer at shear rates from 0.06 to 128 s−1

and with a capillary viscometer at higher shear rates.
As discussed above, experiments on blood at low shear rates are exceedingly

difficult to perform. As a result, there remains a controversy over the behavior of
blood in the limit of shear rate tending to zero. In the absence of a yield stress, the
viscosity would tend to a finite value, denoted here by ηo. However, the concept of
a yield stress remains controversial, even for simpler suspensions [7]. We will delay
further discussion of this issue until Section 7.

The behavior of the viscosity for shear rates on the order of 1 s−1 and larger
are less controversial. As the shear rate is increased above this range, there is
a steep decrease in viscosity until a plateau in viscosity is apparently reached,
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Figure 5. Apparent viscosity as a function of the shear rate for
whole blood obtained from a 25 year old female donor with Ht
= 40%, T = 23oC. Obtained using a Contraves LS30 (Couette)
viscometer at shear rates of γ̇ ∈ [0.06, 128] s−1) and a Cannon–
Manning Semi-Micro (capillary) viscometer, (Cannon Instrument
Co.) at shear rates of γ̇ ∈ [300, 1000] s−1 (unpublished data from
M. Kameneva, with permission).

Figure 5. This plateau value is often referred to as the asymptotic blood viscosity
and denoted by η∞.

While the definitions for η0 and η∞ are clear from a mathematical perspective,

η0 = lim
γ̇→0

η(γ̇), η∞ = lim
γ̇→∞

η(γ̇), (6.2)

in practice, ηo can only be approximated from experimental data and the definition
of η∞ is only a mathematical construct. The maximum value of viscosity that can
be measured is limited by the challenges of measuring blood viscosity at low shear
rates. The definition for η∞ given in (6.2) is a mathematical convenience since at
shear rates on the order of 104 – 105 s−1 the RBC are lysed, [76]. In practice, this is
not important since a representative plateau value is easily measured if the blood
sample is properly anticoagulated, tested as soon as possible after withdrawal,
well mixed and well defined (hematocrit and temperature). As will be described
below, most generalized Newtonian constitutive viscosity models for blood include
both these constants. They can be determined as part of the nonlinear regression
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analysis used to determine the material constants from the experimental data.
Alternatively, η∞ can be obtained from measurements of the plateau viscosity at
a sufficiently high shear rate.

Classical references on blood viscosity include [34, 30, 84, 39, 63]. Cho and
Kensey [33] provide a compilation of viscosity data for blood at 37oC and fit nine
generalized Newtonian models to the data. However, these data include both hu-
man and canine blood and the generalized Newtonian models are fit to a combined
data set with a relatively wide distribution of hematocrits (33 – 45%). Unfortu-
nately, some references for the source of the data are incomplete. More recently,
Picart et al. provided shear stress versus shear rate data for shear rates as low as
10−3 s−1 and up to 10 s−1 using a Couette-type rheometer with roughened walls.
Separate data sets were provided for hematocrits of 54, 66 and 74% [97, 98].

Chien demonstrated that RBC aggregation is necessary to attain the strong
shear thinning effect shown in Figure 5, [28]. He compared the relative viscosities
of human RBCs in three solutions: normal RBCs in heparinized plasma (NP),
normal RBCs in 11% albumin Ringer solution (NA) and hardened RBCs in 11%
albumin Ringer solution (HA). All solutions were adjusted to the same hematocrit
(45%). The 11% albumin solution was adjusted to have the same viscosity (1.2
mPa · s) as the plasma but did not cause RBC aggregation.

In the NP suspension, the RBCs could aggregate, deform and align. The
associated viscosity dropped by a factor of approximately 45 as the shear decreased
from 0.01 to 500 s−1, Figure 6. In the NA suspension, the RBCs could deform and
align but could not form aggregates. In this case, the drop in viscosity was only
a factor of 3.5 over the same range of shear rates. Consistent with these latter
results, Chmiel and Walitza (page 97 of [31]) reported a three-fold shear thinning
effect over the same range of shear rates for normal RBC under conditions of non-
aggregation (RBC in an isotonic salt solution). Chmiel and Walitza used a 50%
by volume suspension.

It is also interesting to note that the NP and NA curves are indistinguishable
for shear rates higher than approximately 6 s−1. This value is in the low end of
the range commonly reported for γ̇max. Presumably at higher shear rates, further
drop in viscosity is due largely to deformation and alignment of individual RBCs.
For normal RBCs in plasma, the majority of the drop in viscosity (approximately
95%) occurs in this low shear range (γ̇ ≤[0.01, 6] s−1) where aggregation is playing
a role. Comparing the curves with and without aggregation, it can be seen that
this drop is diminished by 92% in the absence of aggregation.

6.3. Significance of shear thinning in the circulatory system

Often, viscosity functions are fit to data such as that in Figure 5 and used in
computational fluid-dynamic simulations of flow in the vasculature. However, it
should be emphasized that each of the data points in the viscosity curve represents
an equilibrium viscosity, obtained after the viscometer was run at a fixed shear rate
for several minutes at low shear rates and 30 – 40 seconds at higher shear rates.
Since the time for a drop of dye in the circulation to make its way through the
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Figure 6. Variation in relative viscosity as a function of the shear
rate for three types of RBC suspensions at 37oC: normal RBCs in
heparinized plasma (NP), normal RBC in 11% albumin Ringer so-
lution (NA) and hardened RBCs in 11% albumin Ringer solution
(HA). The solutions were all adjusted to a RBC volume of 45%.
The plasma and albumin Ringer solution both had a viscosity of
1.2 mPa · s. From [28], (reprinted with permission from AAAS).

entire circulatory system has been estimated to be on the order of a minute, it is
therefore important to consider under what circumstances shear thinning will play
a role in the circulation.

Cokelet (see [35], pages 144–148), summarized results for several important
time constants for human blood including: aggregate formation, aggregate dis-
aggregation and the recovery time for RBC deformation. Schmid-Schönbein and
co-workers studied the kinetics of RBC aggregation for normal and pathological
blood samples and found the half-time for aggregate formation in blood to be
3 – 5 seconds for normal blood and 0.5 – 1.5 seconds for pathological blood sam-
ples, [114]. The aggregation time was measured for samples of blood in which
the shear rate was dropped abruptly from 460 s−1 to approximately zero. Ex-
periments were run for blood with Ht = 45% at a temperature of 37oC. On the
other hand, disaggregation is expected to be much more rapid. Based on results
from micropipette-derived deformations of RBC, the half-time for a mechanically
deformed RBC to relax to half its initial stretch is estimated to be on the order of
0.06 seconds (see, e.g., [35], page 146). More recently, Thurston has estimated an
aggregation time on the order of a minute after the sudden cessation of oscillatory
shear at a shear rate of 500 s−1 and shear strain of 1.77 (RMS). The disaggregation
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Deformation
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and alignment characteristic of the high shear state was found to take only a few
seconds [133].

If it takes on the order of seconds to minutes for the 3D structure of RBC
to form, then for normal blood this structure will only exist in segments of the
circulation where there is a stable recirculation regime or regions of stagnant flow
with shear rates significantly lower than 1 s−1. It follows from the discussion
above, that 95% of the drop in viscosity occurs over the shear rate range of 0.01
to 6 s−1 and of this drop about 92% requires RBC aggregation. Therefore, with
few exceptions, it is incorrect to use strongly shear thinning viscosity models for
studies of the circulatory system in healthy patients. Either a constant viscosity
model should be employed or a much weaker shear thinning model appropriate for
individual RBCs in plasma should be used (e.g., the NA curve in Figure 6). Even
this weaker shear thinning model should be used with some caution since part of
this shear thinning effect is due to alignment of the RBC in the flow which may
happen over longer time frames than experienced in-vivo and have varying effects
in the various vessel geometries.

With some exceptions, the reader should therefore be discouraged from eval-
uating whether non-Newtonian features of normal blood are important by compar-
ing hemodynamic results using Newtonian models with those obtained using shear
thinning models fit to data such as that in Figure 5. A more relevant question is
to ask whether this microstructure will exist in the region of interest. Namely, has
the flow experienced low shear for a sufficient time for the 3D aggregate structure
to form?

For normal blood, this aggregate structure may have time to form in regions
of stable recirculation. For example, shear thinning may be important in a stable
vortex downstream of a stenosis, in a stable vortex inside a saccular aneurysm, or
in some anastomoses of the cerebral vasculature. In some regions of the arterial
system, the flow is nearly stagnant for extended periods of time, for example in
parts of the venous system, and so it is likely the aggregate structure can form in
these regions as well [11, 59, 99, 124]. In patients with pathological conditions that
increase the strength of the RBC aggregates, shear thinning may be significant in
extensive regions of the circulation. Some examples of these conditions are given
in Section 9 of this chapter.

In addition to modeling flow in the circulatory system, there are other valu-
able reasons to quantify the dependence of blood viscosity on shear rate. The
viscosity function can be used to define metrics such as the low shear viscosity, the
asymptotic or high shear viscosity, as well as the the steepness and location of the
transition between these two regions. As elaborated on in Section 9, these viscosity
metrics can then be used to quantify blood properties such as aggregation strength
and RBC deformability. Abnormal values of these metrics are in turn associated
with certain disease states.
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6.4. Viscosity models for blood

In this section, we discuss shear thinning models for blood viscosity. Yield stress
models are discussed in Section 7.

6.4.1. Constant viscosity models. As just discussed, the shear thinning nature of
normal blood is expected to play a minor role in the majority of the arterial
circulation. For this reason, the blood viscosity can often be approximated by the
constant infinite shear viscosity, η∞ or possibly a constant intermediate shear rate
for which the aggregates of RBC are completely dispersed.

6.4.2. Generalized Newtonian models. Using a nonlinear regression analysis, vis-
cosity functions of the form η(γ̇) are often fit to whole blood viscosity data such
as that shown in Figure 5.

The power-law model has frequently been used for blood viscosity,

Power-Law Model η(γ̇) = K γ̇(n−1), (6.3)

where n and K are termed the power-law index and consistency, respectively, and
n is chosen as less than one to reflect the shear thinning properties of blood 2.
The shear thinning power-law model predicts an unbounded value for η0 and zero
viscosity as the shear rate tends to infinity (η∞ = 0). While the behavior of blood
in the limit of zero shear rate is still a subject of debate, the high shear asymptotic
behavior is unphysical and limits the range of shear rates over which the power-
law model is reasonable for blood. Despite this limitation, the power-law model is
frequently used due to the number of analytical solutions which can be obtained
(e.g., Eq. (7.15) of [107] in this volume).

Most other viscosity functions for blood have a finite value for both ηo and
η∞ and can be written in the form

η = η∞ + (ηo − η∞)f(γ̇), (6.4)

or, in non-dimensional form as
η − η∞
ηo − η∞

= f(γ̇). (6.5)

The Carreau–Yasuda model contains several other models as special cases, so we
briefly comment on this model here. The viscosity function for this model is

η − η∞
ηo − η∞

=
1

[1 + (λγ̇)a](1−n)/a , (6.6)

where n < 1 for a shear thinning model. For small values of (λγ̇)a (the zero-shear-
rate region), the viscosity tends to a plateau of constant ηo. In the limit of large
(λγ̇)a (the power-law region), this model tends to a power-law-type model with
non-zero η∞. For this reason, n is referred to as the “power-law exponent”. The

2In some publications γ̇ is used to represent the shear rate in simple viscometric flows such as
simple shear. It should be recalled from formula (3.9) of [107] that γ̇2 = 2tr (D2) = −4IID where

D is the symmetric part of the velocity gradient. Namely, in this chapter and in [107], γ̇ is a
scalar invariant that has meaning in any flow field.
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value of a therefore determines the size of the transition region between the zero-
shear-rate and power-law regions. In the special case of a Carreau model, a = 2,
while in the Cross-model a = 1−n. In the Simplified Cross, a is set equal to 1 and
n is set to zero.

Examples of f(γ̇) used to model blood viscosity are given in Table 5 along
with material constants obtained from a nonlinear least squares analysis of the
data presented in Figure 5. In each case, the values of ηo and η∞ were obtained
along with the other material constants as part of the regression analysis. The
corresponding viscosity functions are shown with the original data in Figure 7.
The power-law constants were obtained in a similar manner for these data, and
are

Power-Law model n= 0.628, K= 20.2 mPa · sn. (6.7)

The R2 values for the analysis were calculated from

R2 =
n∑

i=1

[
(ηi − ηi

fit)
2
]
/

n∑
i=1

[
(ηi − ηi

mean)2
]
, (6.8)

where n is the total number of data points, η is the measured viscosity, ηfit is the
viscosity obtained from the functional approximation, and ηmean is the average of
the measured viscosity values. All models except the power-law and Powell–Eyring
had excellent fits, with R2 values greater than 0.998. The power-law model shows
a large deviation with the data at larger shear rates, Figure 7. This is expected
since η∞ = 0 for this model. The R2 values, for the power-law and Powell–Eyring
are 0.987 and 0.753, respectively.

6.5. Dependence of blood viscosity on factors other than shear rate

Blood viscosity is quite sensitive to a number of factors besides shear rate. These
include physical factors such as (i) hematocrit and concentrations of other blood
components, (ii) temperature, and (iii) plasma viscosity and composition, as well
as physiological factors such as (i) gender, (ii) disease state, (iii) natural age of
RBCs, and (iv) exercise level. Some of these factors will be discussed below. Due to
the number of factors which influence viscosity, care must be taken in interpreting
rheological data and selecting blood parameters.

6.5.1. Effect of hematocrit and blood components on viscosity. As can be seen in
Figure 8, blood viscosity increases dramatically as the hematocrit increases (see
also [27, 30, 122, 135]). These data were obtained for human blood at a fixed shear
rate of 128 s−1 and the hematocrit level was controlled by dilution of blood with
autologous plasma.

Brooks et al. found a strong dependence of the shear thinning properties
of blood on hematocrit [14] in their study of human RBC suspensions in ACD-
plasma, Figure 9. Interestingly, the shear thinning behavior is no longer discernible
below a critical hematocrit (Ht between 13% and 30%).
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Model
η − η∞
ηo − η∞

Material Constants

Powell–Eyring sinh−1(λγ̇) ηo = 60.2mPa·s,
η∞ = 64.9mPa·s, λ = 1206.5 s,

Modified
Powell–Eyring

ln(1 + λγ̇)

(λγ̇)m
ηo = 57.46mPa·s,
η∞ = 4.93mPa·s,
λ = 5.97 s, m = 1.16

Simplified Cross
1

1 + λγ̇
ηo = 73.0mPa·s,
η∞ = 5.18mPa·s, λ = 4.84 s

Cross Model
1

1 + (λγ̇)m ηo = 87.5mPa·s,
η∞ = 4.70mPa·s, λ = 8.00 s,
m = 0.801

Carreau
1

[1 + (λγ̇)2](1−n)/2
ηo = 63.9mPa·s,
η∞ = 4.45mPa·s, λ = 10.3 s,
n = 0.350

Carreau–Yasuda
1

[1 + (λγ̇)a](1−n)/a ηo = 65.7mPa·s,
η∞ = 4.47mPa·s,
λ = 10.4 s, n = 0.34, a = 1.76

Table 5. Representative generalized Newtonian models for blood
viscosity with corresponding material constants. Constants were
obtained using a nonlinear regression analysis of experimental
data shown in Figure 5. Data are from blood of a 25 year old
female donor with Ht= 40%, T = 23oC. Obtained using a Con-
traves LS30 (Couette) viscometer (γ̇ ∈ [0.06, 128] s−1) and a
Cannon–Manning Semi-Micro (capillary) viscometer, (Cannon In-
strument Co.) at γ̇ ∈ [300, 1000] s−1 (unpublished data from M.
Kameneva, with permission). The power-law constants for the
same data are, n = 0.628, K = 20.2 mPa · sn. Note that 1 cP
= 1 mPa·s

The strong nonlinear increase in viscosity with hematocrit at low shear rates
is thought to be due to an increase in rouleaux density, length, and cell-cell inter-
action with increasing RBC concentration [17].
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Figure 7. Apparent blood viscosity as a function of shear rate.
The viscosity data is that shown in Figure 5. Also shown are
curves for five generalized Newtonian constitutive models fit to
this same data set. The definitions of viscosity functions and as-
sociated material constants are given in Table 5.

Walburn and Schneck [137] extended the power-law model, Eq. (3.13) of
[107]. They evaluated the relative importance of shear rate, hematocrit, albumin,
total lipid, and TPMA (total protein minus albumin) on blood viscosity using
a cone and plate rheometer. The material constants in the original power-law
model were generalized to include a dependence on various combinations of these
five parameters. For a one-variable model, the shear rate is the most statistically
significant variable while for a two-variable model, shear rate and hematocrit were
statistically the most important variables. The two-variable power-law model they
proposed is

η(γ̇) = K γ̇(n-1) K = C1 exp(C2 Ht)
n = C4 − C3 Ht

}
2-parameter
W-S Model, (6.9)

where γ̇ ∈ [23.28, 232.80]s−1, Ht ∈ [35, 50]%, T = 37oC. Here, Ht is given as
a percentage, (e.g., Ht=45, when the hematocrit is 45%). Walburn and Schneck
[137] reported values of the constants as

[C1, C2, C3, C4] = [1.48 mPa · sn, 0.0512, 0.00499, 1.00], (6.10)



Hemorheology 93

Hematocrit (%)

A
pp

ar
en

tV
is

co
si

ty
(m

Pa
.s

)

0 10 20 30 40 50
1

2

3

4

5

6

7

8

Figure 8. Relationship between blood viscosity and hematocrit
for human blood diluted with autologous plasma at 21oC and a
shear rate γ̇ = 128 s−1. Data obtained using a Contraves LS30
(Couette) viscometer, (unpublished data from M.V. Kameneva,
with permission).

(see [109] for other constants for this model). Walburn and Schneck noted this
model was previously introduced by Sacks [110].

Walburn and Schneck [137] found the three most important parameters for
a 3-constant model are shear rate, Ht and TPMA levels in decreasing order of
significance and developed the following model,

η(γ̇) = K γ̇(n-1) K = D1exp((D2Ht)) exp((D4TPMA/Ht2))
n = 1 − D3 Ht

}
3-parameter
W-S Model,

(6.11)
where [D1, D2, D3, D4] = [7.97 mPa · sn, 0.0608, 0.00499, 145.85 dl/g].

Interestingly, the normal hematocrit varies substantially across species. For
example, it is 27% in camel, 32% in a sheep, 33% in a goat, and 46% in dog [125].
In turn, the dependence of viscosity on hematocrit varies across these species,
likely due to differences in factors such as shape, size and flexibility of the RBCs
[125]. For example, the RBCs of camels and llamas are elliptical in contrast to the
biconcave disk shape found in many other mammals. Stone et al. [125] made the
interesting observation that the hematocrit of animals appears to be in some sense



94 A.M. Robertson, A. Sequeira and M.V. Kameneva

0.2 0.5 1 5 10 50 100 500 1000

10

20

30

40

50

60

70

28.7

35.9

48.0

58.9
67.4

8.25 12.6

V
is

co
si

ty
   

  c
en

tip
oi

se

H  =n

−1

η

Shear rate  ( sec    )

~ ~

Figure 9. Relationship between human blood viscosity and
shear rate for RBCs suspended in ACD-plasma (acid-citrate-
dextrose anticoagulant) at 25oC for various volume concentration
of RBC defined through Hn. Here, Hn is defined as the hematocrit
times 0.96. Viscosity obtained using a Couette rheometer (repro-
duced from [14], with permission from the American Physiological
Society).

optimal for transporting oxygen for a given dependence of viscosity on shear rate in
each animal. Namely, for a fixed pressure drop, increasing the RBC concentration
will increase the oxygen transport rate up to a critical level, beyond which further
increases in hematocrit actually diminish oxygen transport due to the cost of
transport at increased viscosity. They evaluated the hematocrit in a number of
species and found that it falls near the optimal level. Similar results were found
for blood from human females (but not males) in a study of blood from 47 pre-
menopausal women and 51 age-matched men [66].

6.5.2. Effect of temperature on blood viscosity. Like many other liquids, the vis-
cosities of both plasma and whole blood are strongly dependent on temperature.
For example, when the temperature of blood with Ht = 40% is decreased from
body temperature (37oC) to room temperature (22oC), the viscosity at a shear
rate of 212 s−1 increases from 3.8 mPa·s to 6.3 mPa·s, an increase of 66% (n ≥
10) [102]. Under the same temperature drop, plasma viscosity of males age 44 –
45 increased more than 45%, from 1.2 to 1.76 mPa·s, (n=125), Table 6.

Merrill et al. found the dependence of the ratio of whole blood viscosity to
water viscosity to be relatively insensitive to temperature for T ∈ [10, 40]o C and
γ̇ ∈ [1, 100]s−1, [86]. As a result, blood viscosity is often reported relative to the
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n Plasma Viscosity Temperature

(in cP = mPa · s)

Males (age 44 – 45), [44] 125 1.760 ± 0.134 20oC

125 1.229 ± 0.086 37oC

125 1.150 ± 0.076 40oC

Male (age 22 – 37), [44] athletes 9 1.630 ± 0.045 20oC

9 1.183 ± 0.021 37oC

9 1.132 ± 0.019 40oC

Table 6. Plasma viscosity for men at different temperatures and
ages. Ten males in the 44 – 45 age group showed cardiovascular
disorders within one year of the test [44]. For comparison, the
viscosity of water is 1.01 mPa · s and 0.69 mPa · s at 20oC and
37oC, respectively.

viscosity of water at the same temperature. Merrill at al. proposed an Arrhenius
type relationship for blood with the same activation energy Ea (cal/mol) as used
for water [86], which can be written in the following form,

η(γ̇, T ) = η(γ̇, T0) exp(−Ea

R
(
1
T

− 1
T0

))
{

T ∈ [10, 40]oC
γ̇ ∈ [1, 100]s−1,

(6.12)

where R is the gas constant, T is the temperature (oK), and T0 is a chosen refer-
ence temperature (oK) at which the dependence of blood viscosity on shear rate,
η(γ̇, T0), is known. Stoltz et al. use Ea/R = 2.01 ±0.03 x 103 o K (page 20 of
[124]).

The relationship (6.12) can be used to normalize blood viscosity data ob-
tained at different temperatures. If the temperature dependence of blood is mod-
eled through (6.12), then if follows from (6.4), with the exception of ηo and η∞,
that the material constants for a generalized Newtonian fluid will be independent
of temperature. If, as suggested by Merrill, we use the value of Ea (cal/mol) for
water, we can easily determine the viscosity at different temperatures through

η(γ̇, T ) = η(γ̇, T0)
ηH20(T )
ηH20(T0)

. (6.13)

For example, using (6.13), the high and low shear viscosities for the Carreau–
Yasuda model at 37o C can easily be obtained from those given in Table 5 at 20o

C and are shown in Table 7.
Though the temperature of the human body is typically carefully maintained

at approximately 37oC, the extremities of the body can drop substantially below
this. Some medical conditions such as Raynaud’s syndrome and medical treat-
ments such as induced hypothermia during cardio-pulmonary bypass [69] involve
lowered blood temperature in-vivo. The relation (6.13) is useful for determining
appropriate blood viscosities for studies under these low temperature conditions.
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T = 20oC T = 37oC

ηo (mPa · s = 1 cP) 65.7 45.1

η∞ (mPa · s = 1 cP) 4.47 3.07

(6.14)

Table 7. Asymptotic (low and high shear) viscosities for the
Carreau–Yasuda model at 20oC and 37oC using results from Table
5 and Eq. (6.13). In evaluating Eq. (6.13), the viscosity of water
was taken as ηH20 = (1.01, 0.694) mPa · s at (20,37)oC.

6.5.3. Effect of plasma viscosity on blood viscosity. Although the molecular weight
of some plasma proteins exceeds 106 Da, the plasma viscosity does not show a
measurable dependence on shear rate. Early reports of a non-Newtonian plasma
viscosity were later attributed to the formation of a surface film at the plasma/air
interface in the rheometer (see, e.g., [43], p. 41).

Even in the healthy population, there is a variation in plasma viscosity which
is enhanced by some diseases. It has been found to depend on various factors
including temperature, age, gender and level of physical fitness, Table 6, [44]. These
variations are important because plasma viscosity influences whole blood viscosity.
In diseases in which the concentrations of fibrinogen and/or immunoglobulins are
increased, the plasma viscosity can increase significantly.

7. Yield stress behavior of blood

We recall from Section 4 of [107] that yield stress materials require a finite shear
stress to commence flowing. In formulating a constitutive model for such materials,
it is necessary to define a yield criterion. This criterion must be met for the material
to flow. As discussed in Section 4 of [107], a relatively simple, physically relevant
yield criterion is √

|IIτ | = τY , (7.1)
where τY is a material property of the fluid called the yield stress and IIτ is a
scalar invariant of the extra stress tensor, τ ,

IIτ = 1/2 ((tr τ )2 − tr τ 2). (7.2)

Therefore, for
√
|IIτ | < τY , the fluid will not flow.

Measurements of the yield stress τY are typically performed using rheome-
ters which control either kinematic variables (e.g., cylinder or cone rotation rate)
or stress-related variables (torque, pressure drop). In shear-rate-controlled exper-
iments, the yield stress cannot be measured directly, rather it is obtained by back
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extrapolation to zero shear rate, possibly using a specific constitutive model. An
extensive description of methods for measuring yield stress is given in [91]. Copley
et al. [38] summarize early experimental evidence for blood yield stress in both
in-vitro and in-vivo experiments.

7.1. Yield stress data for blood

As discussed previously, measurements on blood at low shear rates are notoriously
difficult, contributing to the large variation in yield stress values for blood reported
in the literature. These values have ranged from 0.20 to 40 mPa (see, e.g., [43]).
This spread is also seen in Figure 10, obtained from [98], and has been attributed to
artifacts arising from interactions between the RBCs and surfaces of the rheometer
[20] as well as the experimental method used to measure (approximate) the yield
stress. Picart et al. roughened the walls of a Couette rheometer in an effort to

Figure 10. Yield stress as a function of hematocrit reported in
the literature using different experimental methods: sedimenta-
tion method [19]; viscometric balance method [9], back extrapo-
lation from shear-rate-controlled experiments [86, 30, 145, 98]. A
large variability in yield stress values can be seen. Reproduced
from [98] with permission from The Society of Rheology.

diminish slip at the inner cylinder during experiments at shear rates down to 1 x
10−3 s−1. When they compared their results with data obtained in smooth surface
rheometers they found nearly an order of magnitude difference, Figure 11, [98].
They concluded the slip was an important artifact at these lower shear rates. In
that work, they defined the yield stress as the value of stress measured at a shear
rate of 1 x 10−3 s−1. Namely, they did not use back extrapolation even though the
shear stress was still decreasing with decreasing shear rate, Figure 11.
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Figure 11. Comparison of shear stress as a function of shear
rate for RBCs in plasma at low shear rates in a Couette cylin-
der with smooth and roughened walls, T = 25oC and Ht= 54%.
Reproduced from [98] with permission from The Society of Rhe-
ology.

Dintenfass appears to be the first to question the appropriateness of the yield
stress as a material constant for blood (e.g., page 82 of [43]). He suggested that
rather than treating the yield stress as a constant, it should be considered as a
function of time. A time dependence was also noted in [21]. In fact, due to the
thixotropic nature of blood, we expect measurements of the yield stress to be quite
sensitive to the microstructure of the blood prior to yielding, which is expected to
be sensitive to both the shear rate history as well as time (e.g., [89]).

The large range in yield stress seen for blood is consistent with results for
other fluids where a large spread in yield values is attributed to the experimen-
tal methodology, the criterion used to define the yield stress, and the length of
time over which the experiment is run [91]. A true material constant should be
independent of these factors and these results have called into serious question the
treatment of the yield stress as a material parameter [91, 7, 89].

Barnes and Walters [8] point out the dilemma in trying to verify the existence
of a yield stress if it is defined as a stress below which no unrecoverable flow occurs.

“Such a definition effectively rules out experimental proof of the existence of
a yield stress, should such exist, since it would require an infinite time to show
that the shear rate, at any given stress is actually zero”.

Furthermore, in a compelling review article on the subject of yield stress, Barnes
notes several examples where the data for the viscosity appeared to grow un-
bounded as the shear rate was reduced to zero, suggesting the existence of a yield
stress [7]. However, when experiments were run at smaller values of shear rate, the
viscosity plateaued to a finite value.
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Having said this, we turn to Barnes comments on the usefulness of the yield
stress [7],

“Although we have shown that, as a physical property describing a critical
yield stress below which no flow takes place, yield stresses do not exist, we can,
without any hesitation, say that the concept of a yield stress has proved – and,
used correctly, is still proving – very useful in a whole range of applications,
once the yield stress has been properly defined. This proper definition is as
a mathematical curve-fitting constant, used along with the other parameters
to produce an equation to describe the flow curve of a material over a limited
range of shear rates”.

In this light, we turn attention to yield stress models that can be useful in the low
shear rate region for blood and briefly discuss a few of these models.

7.2. Yield stress constitutive models for blood

One of the most commonly used yield stress models for blood is Casson’s model
(see also Section 4 in [107] of this volume). Casson materials behave rigidly until
(7.1) is satisfied, after which they display a shear thinning behavior. The typically
cited Casson equation, is only applicable for simple shear flow. This is discussed
in greater detail in Section 4 in [107] of this volume. It is straightforward to write
a three-dimensional constitutive equation that reduces to Casson’s equation in
simple shear,√

|IIτ | < τY =⇒ Dij = 0

√
|IIτ | ≥ τY =⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Dij =

1
2μN

(
1 −

√
τY

4
√

|IIτ |

)2

τij

τij = 2

(
√

μN +
√

τY

4
√

4|IID|

)2

Dij .

(7.3)

The Newtonian constitutive equation is a special case of (7.3) with τY set to zero,
in which case μN is the Newtonian viscosity.

Scott-Blair was the first to apply the Casson model to blood [120, 103].
He compared the predictions of Casson’s equation with capillary rheometer data
for whole blood, plasma and serum from humans, cows and pigs and found an
excellent fit for capillary diameters greater than 0.15 mm. The Casson model is
still frequently used for whole blood as well as the Bingham model (4.4) of [107]
and the Herschel–Bulkley model (4.7) of [107]. Oka [93] generalized these equations
to allow gradual disruption of bonds with shear rate. Charm found that Casson’s
model gives the best fit to blood data [20], though there is some argument that
these data do not match the Casson model well below 1 s−1, [84]. Charm [20]
suggested this might be due to problems in viscometry at this low shear rate.

Merrill et al. found a relatively simple relationship between hematocrit and
yield stress to be valid for Ht up to about 50% [86],

τ1/3
y = A (Ht − Htc)/100 A ≈ 0.8 ± 0.2 mPa, (7.4)
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where Htc is a critical value of hematocrit below which there is no yield behavior.
This material parameter varies between individuals. In the five donors considered
in [86], Htc ranged from 1.3% to 6.5%.

8. Viscoelasticity of blood

Viscoelastic fluids are viscous fluids which have the ability to store and release
energy (see Section 5 of [107] for background material on viscoelastic fluids). The
viscoelasticity of blood at normal hematocrits is largely due to its ability to store
and release energy from its branched 3D microstructure [25, 32]. As will be dis-
cussed shortly, the ability of the microstructure to store energy is affected by the
properties of the RBC membrane and the bridging mechanisms within the 3D
structure. Elastic energy can also be stored in the deformation of individual RBC,
though this is not believed to play an appreciable role unless the RBC concentra-
tion is significantly elevated above normal physiological levels [25].

Using a rheoscope, Schmid-Schönbein obtained fascinating results for the
elastic deformations of the three-dimensional aggregate structure, [116]. Under in-
creasing applied shear rate, the aggregate length could be seen to increase up to
three fold [116]. Elongation of the rouleaux aggregates under applied shear was
found to arise from several mechanisms: (1) realignment of the individual cells
(sliding of the cells from a parallel stack to a sheared stack), (2) trapezoidal defor-
mation of cells located at the branch point of two rouleaux, and (3) deformation
of individual cells within an individual rouleaux (ellipsoidal and eventually pro-
late deformation), Figure 12(a)–(c). Under increasing shear, contact between some
of cells was eventually lost and the resulting segments were seen to recoil, Figure
12(f)–(g). If the shear rate was decreased prior to reaching this rupture level, recoil
of the structure could also be observed, Figure 12(d)–(e). The extension, rupture
and recoil were only observed in rouleaux that bridged larger secondary structures
such as shown in Figure 12.

In [40] and [136], deformations of the rouleaux structure were evaluated under
low frequency shear flow (0.01 Hz). Cyclic elastic deformations of the microstruc-
ture were observed to occur at the same frequency as the imposed shear rate
(Ht = 45%). This was consistent with the larger magnitudes in blood viscoelastic-
ity measured under those same conditions. As the frequency was increased to 10
Hz, the RBC formed irregular clumps and the aggregated network was no longer
continuous.

8.1. Measurements of blood viscoelasticity

The magnitude of viscoelastic effects in blood are relatively small and, as a result,
successful measurements of the first and second normal stress differences for blood
have not been reported, (e.g., [40]). To date, the viscoelastic properties of blood
have been measured by generating oscillatory (or sometimes pulsatile) flows and
step transient flows in the rheometers discussed in Section 8 of [107]. Thurston
was the first to measure the viscoelastic properties of blood and has contributed
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Figure 12. Schematic of the deformation of three-dimensional
blood aggregates with increasing shear rate, as observed by
Schmid-Schönbein using his rheoscope. Reproduced from [116]
(with permission from Springer Science and Business Media).

the largest body of experimental work in this area of blood rheology (e.g., [134]
and references cited therein).

The viscoelastic data for blood is often reported in terms of the complex
viscosity, η∗ which can be decomposed into its real and imaginary parts,

η∗ = η′ − i η′′ = |η∗|e−iφ. (8.1)

For a perfectly viscous fluid, η′′ = 0 and η = η′. For fluids with a mechanism to
store elastic energy, η′′ is non-zero. For this reason, the material constants η′ and
η′′ are often referred to as the viscosity and elasticity, respectively.

As detailed in Section 7.2.1 of [107], if the periodic deformations are of small
amplitude, the linear viscoelastic rheological properties η′ and η′′ can be obtained
independent of the selection of a constitutive model. However, these linear vis-
coelastic functions take on a different meaning and relevance in nonlinear regimes
of deformation such as finite strain oscillatory flow and the pulsatile flow found in
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the circulatory system. For both finite-amplitude oscillations and pulsatile flows,
an exact solution for fully developed periodic flow in a straight pipe of constant
circular cross section exists for some quasi-linear viscoelastic models such as the
Oldroyd-B model. These models can be used to interpret data obtained for large-
amplitude experiments in capillary rheometers, including pulsatile flow. However,
these models have constant shear viscosity and exact solutions are not available
for periodic flows of viscoelastic materials with shear thinning viscosity.

8.1.1. Oscillatory flow in capillary rheometers. Most measurements of blood vis-
coelasticity are made for oscillatory or pulsatile flows generated in capillary rheo-
meters. We therefore begin this section with a brief summary of the theoretical
foundation behind the measurement of viscoelastic parameters in capillary rheome-
ters. Further details can be found in Section 7.2.1 of [107], Chapter 5 of [31],
Appendix B of [134], [126], and [127].

Consider flow of an incompressible fluid in a pipe of constant radius R which is
driven by an oscillatory axial pressure gradient of the form ∂p/∂z = −K1 cos(ωt),
where p is the mechanical pressure, t is time, ω is the angular frequency of oscilla-
tion, and the z axis is parallel to the pipe centerline. As in Section 7.2.1 of [107],
for ease of analysis, we rewrite the dependent variables as the real part of complex
counterparts,

∂p

∂z
(t) = Re[−K1 eiωt], vz(r, t) = Re[v∗z (r)eiωt],

Q(t) = Re[Q∗eiωt], τrz(r, t) = Re[τ∗
rz(r)e

iωt],
(8.2)

where v∗z , Q∗ and τ∗
rz are in general complex and K1 is real. Following Thurston

(e.g., Appendix B of [134], [126], and [127]), we restrict attention to constitutive
equations for which τ∗

rz is linear in dv∗rz/dr,

τ∗
rz = η∗ dv∗rz/dr (8.3)

where η∗ is assumed to be independent of the shear rate. In this case, it is pos-
sible to obtain an explicit solution relating the flow rate to the applied pressure
gradient and ultimately determine expressions for η′ and η′′ in terms of these mea-
sured quantities. However, this assumption forces us to restrict attention to either
infinitesimal deformations or consider large amplitude oscillations but for specific
quasi-linear constitutive models which do not display shear thinning behavior.
Some examples are Newtonian fluids and the constant viscosity Oldroyd-B fluid,
(see, e.g., Section 7.2.3 of [107]). For example, for the Upper Convected Maxwell
fluid and Oldroyd-B fluid (see, e.g., Section 7.2 of [107]):

UCM η∗ =
η

1 + i λ ω
, η′ =

η

1 + λ2 ω2 , η′′ =
ηλω

1 + λ2 ω2 ,

Oldroyd-B η∗ =
(η + i η2 λω)

1 + i λ ω
, η′ =

η + η2 (λω)2

1 + λ2 ω2 , η′′ =
(η − η2) (λω)

1 + λ2 ω2 .

(8.4)
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The explicit solution for the complex flow rate for fluids which satisfy (8.3)
is (see Section 7.2.3 of [107] for details),

Q∗(t) =
i K1π R2

ρ ω

[
1 − 2J1(β)

β J0(β)

]
, (8.5)

where

β = R

√
−i ρω

η∗ . (8.6)

For small values of β, (8.5) can be approximated as,

Q∗(t) =
i K1π R2

ρω

β2

8

[
1 +

1
6

β2 + O(β4)
]

. (8.7)

Using an electrical analogy, a complex impedance per unit length (Z∗) can
be defined as,

Z∗ =
K1

Q∗ . (8.8)

It follows from (8.7) and (8.8) that,

Z∗ =
8η′

π R4 + i

(
4
3

ρω

π R2 − 8η′′

π R4

)
+ O(β2). (8.9)

It is useful to consider the following representations for Z,

Z∗ = Re[Z∗] + iIm[Z∗] = |Z∗| e−iθ. (8.10)

It is then clear from (8.8), that θ is the phase shift between the pressure gradient
and volumetric flow rate. We see from (8.7) and (8.8) that through O(β2),

η′ =
π R4

8
Re[Z∗], η′′ =

1
6

ρωR2 − π R4

8
Im[Z∗]. (8.11)

Therefore, using (8.2), (8.8), (8.10), and (8.11), the values of η′ and η′′ can be
determined from measurements of K1, Q(t) and the phase difference between them
in a capillary rheometer of known geometry.

For linear viscoelastic materials, η′ and η′′ depend only on the frequency ω.
However, data for η′ and η′′ are often reported outside this linear range where they
also depend on shear rate and shear strain. Since the shear rate and strain vary
with the radius in a capillary rheometer, representative values of these quantities
must be chosen. A characteristic shear rate is often defined to be the amplitude of
the shear rate at the wall (γ̇w). If follows from the explicit solution for the velocity
field (see Section 7.2.3 of [107]),

γ̇w = |Re

[
τ∗
rz(R)
η∗

]
|, (8.12)

where, τ∗
rz can be obtained from a control volume analysis of the balance of linear

momentum for the tube,

τ∗
rz(R) =

K1 R

2
− i ρ ω Q∗

2 π R
. (8.13)
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A measure of the strain (γw) is then defined relative to γ̇w through

γ̇w = γw ω. (8.14)

The subscript “w” is often dropped in the literature.

8.1.2. Data on blood viscoelasticity. Representative data for η′ and η′′ for whole
human blood are shown in Figs. 13 and 14. It can be seen that η′ and η′′ both
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Figure 13. The dependence of the viscous (η′) and elastic (η′′)
components of the complex viscosity on the frequency of oscilla-
tion compared with the viscous component of complex viscosity
for plasma. Reprinted from [128] (with permission from IOS
Press).

depend on frequency, though η′′ is relatively independent of ω over the frequency
range associated with a normal human pulse (0.5 to 20 Hz) with values of η′′ ∈
[3.6, 5.8] mPa·s for frequencies in that range [132]. The qualitative shape of the
dependence on frequency [128], is similar to that shown in Figure 8 of [107] for
a simple Maxwell fluid, suggesting a multiple relaxation Maxwell model could be
used to fit the blood data.

Shown in Figure 14 are the complex components of blood viscosity from
healthy donors as a function of the RMS value of oscillatory shear rate at the wall,
[131] (from oscillatory flow in a capillary rheometer). For comparison, the viscosity
obtained in steady-flow experiments in a Contraves LS30 (Couette) viscometer are
shown (labeled ηs for emphasis). Both components of the complex viscosity η′′ can
be seen to have relatively constant values for shear rates below 1.5 s−1. In this
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range, the elastic and viscous component are approximately 3.9 mPa·s and 11.5
mPa·s, respectively. As the shear rate is increased beyond this level, blood displays
a nonlinear viscoelastic behavior (η′ and η′′ are dependent on shear rate). This
range of shear rates is outside the linear viscoelastic range. The value of η′′ starts
dropping rapidly as the shear rate is increased beyond this level, diminishing to
0.1 mPa·s by 16 s−1. This sharp decrease is tied to the breakdown of the blood
microstructure formed by RBC aggregates. As expected after this region, there is
a merging of the η′ and ηs curves.
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Figure 14. Dependence of the steady flow viscosity (ηs) on shear
rate (Contraves LS30 viscometer) and the dependence of the vis-
cous (η′) and elastic (η′′) components of the complex viscosity on
the RMS value of wall shear rate (capillary rheometer). Human
blood from healthy donors for Ht = 43% and T = 22oC. Oscil-
latory data measured at a frequency of 2 Hz. Reproduced from
[131] with permission from The Society of Rheology.

8.2. Dependence of viscoelasticity on other factors

The complex viscosity is strongly dependent on hematocrit and temperature. It
is of interest to determine a functional dependence of complex viscosity on these
variables, so that blood data obtained at one hematocrit and temperature can
be used for applications at other values. Shown in Figure 15 are η′ and η′′ for
human blood in which the hematocrit was adjusted by removing cells or plasma.
Both components increase steeply with increasing hematocrit, though the elastic
component was found to be more sensitive. The general character of these curves
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γ̇w = 1s−1 γ̇w = 10s−1

η′(1 cP = 1 mPa · s) 10 − 12.9 7.7 − 9.4

η′′(1 cP = 1 mPa · s) 3.9 − 4.5 1.5 − 2.2

Table 8. Average values of the complex viscosity components η′

and η′′ for blood from 25 young healthy male donors at T = 22oC
and a frequency of 2 Hz. Normalized to a hematocrit of 45%. Data
from [130].

is unchanged by hematocrit level, except at the highest hematocrit, where the
curves can be seen to turn up at large shear rates. Thurston determined that for
Ht ∈ [35, 50]%, η′ is approximately proportional to Ht2 and η′′ to Ht3, [130].
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Figure 15. The dependence of the (a) viscous (η′) and (b) elastic
(η′′) components of the complex viscosity on the hematocrit and
RMS value of wall shear rate (capillary rheometer). Human blood
from healthy donors with T = 22oC, f = 2 Hz. Reprinted from
[130] with permission from IOS Press.

Using these results, Thurston normalized complex viscosity data for blood
from healthy young males (n=25) to a hematocrit of 45% at 22oC, and obtained
the average values shown in Table 8. Thurston also explored the temperature
dependence and found that, like viscosity (Eq. (6.12)), both η′ and η′′ displayed
an Arrhenius-type relationship (see, e.g., [134]).
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Additional factors which affect the viscoelasticity are plasma components,
cell rigidity and tendency for RBC to aggregate. We refer the reader to [134] for a
review of the dependence of blood viscoelasticity on these factors.

8.3. Significance of viscoelasticity in the circulatory system

As discussed at the beginning of this section, the viscoelastic behavior of blood
is largest in magnitude under conditions where the 3D microstructure of blood
exists. Once this structure is broken down to the level of individual cells or groups
of cells, the capacity of normal blood to store elastic energy is greatly diminished
as reflected in the greatly diminished magnitude of η′′ and the approach of η′ to
η. Therefore, many of the issues which were considered in the discussions of the
shear thinning viscosity of blood in Section 6.3 are also important here. Briefly,
for normal human blood there are few regions of the circulation where the 3D
microstructure is stable. Some exceptions are parts of the venous system and
regions of stable recirculation downstream of a stenosis or inside some aneurysm
sacs. Pathological blood conditions exist for which the microstructure is greatly
strengthened. In these cases, blood viscoelasticity may be significant in extensive
regions of the circulation and could be an important factor in arterial flow for
patients with these conditions.

As discussed in detail in [134], an assessment of blood viscoelasticity has
merit as a sensitive indicator of the state of the blood and as a result, patient
health. For example, the value of η′′ has also been found to be quite sensitive to
pathologies such as myocardial infarction, peripheral vascular disease, and diabetes
(e.g., [134]), and hence the viscoelastic properties of blood have been used as a
method of probing the pathological state of blood.

8.4. Viscoelastic constitutive models

While the linear viscoelastic functions are relatively straightforward to obtain and
useful as a metric of the state of the blood components, it should be emphasized
that most real motions of blood in the circulatory system are not in the small
strain regime. Therefore, while the linear elastic material constants are indicative
of aspects of the microstructure, nonlinear viscoelastic models are needed if the
finite viscoelastic behavior of blood is to be modeled.

A significant challenge in developing nonlinear viscoelastic constitutive mod-
els for blood is selecting the simplest model that captures the frequency and shear
rate dependence found in physiologically relevant flows. A number of models have
already been considered that include both shear thinning and viscoelastic effects.
Phillips and Deutsch [95] employed the following rate-type shear thinning model,

τ + λ1
∇
τ + μo (trτ )D = 2 η0 D + 2 η0 λ2

∇
D, (8.15)

in steady flows. They noted this model could predict the torque overshoot observed
experimentally for blood. See Chapter 4 of [31] for additional discussion of this
model. They further tested this model in a Couette device, comparing predicted
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and measured values of the critical Taylor number for instability, [42]. Based on
their results, they extended the model (8.15) to include higher order terms, [42].

Yeleswarapu et al. [144] introduced a five-constant generalization of the Oldroyd-
B model given in Eq. (5.48) of [107]. In this model, they replaced the constant
viscosity η = η1 + η2 with a generalized Newtonian viscosity of the form

η(γ̇) = η∞ + (η0 − η∞)
[
1 + ln(1 + Λγ̇)

(1 + Λγ̇)

]
. (8.16)

They obtained data for steady, capillary flow and used it to determine the constants
in their model and found, ηo = 200 mPa·s, η∞ = 6.5 mPa·s and Λ = 11.14 s. A
steady flow of this kind, can only be used to evaluate the viscosity function and
can not differentiate between this model and a shear thinning inelastic model with
the same viscosity function. It is not clear why a logarithmic function rather than
a simpler generalized Newtonian model was used. In this work, comparisons with
other models were confined to the constant viscosity case.

More recently, Anand and Rajagopal considered a finite viscoelastic model [4]
developed in the context of a more general thermodynamic framework, [101]. This
model, along with the Yeleswarapu model, and a different generalization of the
Oldroyd-B model were evaluated against oscillatory shear data from a capillary
rheometer study [129]. However, the Anand and Rajagopal model has not yet been
evaluated for transient viscoelastic experiments (e.g., [15]).

9. Disease states and mechanical properties of blood

A variety of diseases are associated with pathological changes in the mechanical
properties of blood such as blood and plasma hyperviscosity, diminished RBC
deformability, and increased RBC aggregation. For example, diabetes, myocardial
infarction, malignant and rheumatic diseases are accompanied by an increase in
blood viscosity [81]. Acute psychological stress was also shown to increase blood
viscosity [90]. As discussed earlier, blood viscoelasticity is altered in myocardial
infarction, peripheral vascular disease, and diabetes [134]. Below, we elaborate on
a few of these pathological changes to blood properties.

9.1. Increased hematocrit

One of the most common hemorheological disorders is significantly elevated hema-
tocrit (Ht > 50%) or polycythemia, which increases both low shear and asymptotic
blood viscosity and causes harmful circulatory effects. For example, high hemat-
ocrit and blood viscosity levels associated with hypoxic pulmonary vasoconstric-
tion cause a strong elevation in pulmonary vascular resistance and may lead to
right heart failure. Primary and secondary polycythemias increase mortality of
patients with heart and/or lung diseases [80].
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9.2. Plasma hyperviscosity

As discussed in Section 6.5.3, blood viscosity is strongly affected by plasma vis-
cosity. Therefore, an elevation in plasma viscosity may markedly raise vascular
resistance. Heightened plasma viscosity, which is usually accompanied by anoma-
lous RBC aggregation, may be caused by increased concentrations of proteins,
particularly those with high molecular weight and/or nonspheroid shape (fibrino-
gen and/or certain serum globulins).

9.3. Hyperaggregation of red blood cells

Increased RBC aggregation is observed in a variety of clinical states such as infec-
tions, trauma, burns, diabetes mellitus, postinfarction, malignant and rheumatic
diseases, AIDS, macroglobulinemia, myeloma, etc. [80]. This is clinically mani-
fested by the presence in blood of large, three-dimensional aggregates of RBCs
and abnormally high erythrocyte sedimentation rates. Figure 3(a) shows the RBC
aggregate structure characteristic of normal human blood under no flow condi-
tions. Figure 3(b) shows an example of pathological RBC aggregation in blood
of a cardiac patient under similar conditions. The 3D aggregates of RBC from
the cardiac patient are significantly more resistant to breakup under shear stress
loading than those from normal human blood.

Hyperaggregation of RBCs causes a pathological elevation of blood viscosity
under low flow (low shear rate). This process is particularly important for patho-
logical conditions such as circulatory collapse and shock. Since the magnitude of
blood flow in postcapillary venules is less than in precapillary arterioles, RBC ag-
gregation, blood viscosity and vascular resistance can be preferentially elevated in
the postcapillary vessels. As a result, intracapillary pressure is increased and the
liquid phase is filtrated from capillaries into the interstitium. This, in turn, causes
a rise in local hematocrit and hence an additional increase in RBC aggregation
and blood viscosity. This process can also be of considerable significance in low
blood flow states, such as found in patients during cardiac failure.

9.4. Decreased RBC deformability

A decrease in RBC deformability is a major hemorheological disorder which leads
to a decrease in the number of functioning capillaries, impaired tissue perfusion
and oxygenation and deteriorated removal of metabolites from tissue and organs. A
significant decrease in RBC deformability can be caused by hematological diseases
such as malaria or sickle cell disease.

Malaria is a group of diseases caused by plasmodia – a parasitic protozoan,
which are transferred to the human blood by mosquitoes and which occupy and
destroy red blood cells. Blood viscosity and RBC deformability are altered, causing
severe anemia in people with this disease [45, 46].

Sickle cell disease is a hereditary disease caused by a defective form of hemo-
globin. Upon deoxygenation, polymerization of abnormal sickle hemoglobin can
occur causing the RBC to become sickle-shaped. Sickled cells demonstrate re-
duced deformability [13] and a lower tendency to aggregate [26]. The viscosity of
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blood containing irreversibly sickled cells exceeds that of normal blood under all
experimental conditions and it can be of the order of fifty times greater [26]. The
sickled RBCs obstruct blood flow through the microvessels resulting in lowered tis-
sue perfusion and oxygenation which in turn causes severe abdominal and muscle
pain, lung tissue damage (pneumonia, acute chest syndrome), strokes, hematuria,
infection and many other complications. They also cause damage to most organs
including the spleen, kidneys and liver. Sickle cells are rapidly destroyed in the
body causing severe anemia.

A decrease in RBC deformability can also result from exposure of blood
to abnormal hydrodynamic (e.g., elevated shear stresses) and environmental (e.g.,
hemodilution, temperature stress) conditions. Such conditions can arise, for exam-
ple, during extracorporeal blood circulation in cardio-pulmonary bypass surgery
and in patients implanted with heart valves and cardiac-assist devices or treated
with other blood-contacting artificial devices [68, 69, 88]. Deformability is the
major parameter which defines the ability of RBCs to enter and pass through
the smallest capillaries and provide adequate gas transport. A decrease in RBC
deformability may lead to diminished tissue oxygen supply and waste removal.

10. Gender and the mechanical properties of blood

Kameneva et al. [64, 65] studied the effect of gender on hematocrit, plasma and
blood viscosity using a Couette viscometer for low shear values and a capillary vis-
cometer for the high shear values. The gender-related variation in blood-rheological
parameters was studied in connection with the remarkable difference in mortality
from ischemic heart disease and, especially, from myocardial infarction between
men and pre-menopausal women. The major hypothesis was that the reduced
morbidity and mortality from cardiovascular diseases in women of reproductive
age in comparison to age-matched men might be associated with the difference in
age distribution of RBCs in blood due to monthly bleeding and the subsequent
difference in mechanical properties of blood of pre-menopausal women and men.

Approximately 0.8% of the total number of RBCs is renewed every 24 hours
[119]. Due to monthly blood loss, female blood is expected to contain more young
and fewer old RBCs. In fact, it was shown that age distribution of RBCs is sig-
nificantly different in males and females [87]. The authors demonstrated that pre-
menopausal female blood has 80% more young RBCs and 85% fewer old RBCs
than male blood. Elevated levels of old RBCs have a marked effect on blood vis-
cosity, increasing both low and high shear viscosity values.

Results for the differences in mean values of hemorheological parameters for
male and female blood is shown in Table 9. The data were obtained for 98 healthy
volunteers: 47 premenopausal women (age 25.7 ± 4.8) and 51 men (age 26.2 ±
5.1) [66]. The ability of RBCs to deform was evaluated using a RBC rigidity index
which is the inverse value of the RBC deformability. This index is defined as the
ratio of the high shear rate asymptotic viscosity to the plasma viscosity η∞/ηp.
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The high shear asymptotic blood viscosity was measured at a standard hematocrit
of Ht=40% and taken to be the blood viscosity in the high shear plateau region
[79]. Also shown in this table, is the erythrocyte sedimentation rate (ESR) which
is a measure of the level of RBC aggregation. The ESR was obtained by measuring
the degree of RBC sedimentation after one hour in Wintrobe tubes, for blood with
a standard hematocrit of 40% [142]. The level of RBC aggregation is also reflected
in the blood viscosity at low shear rates [81].

Women Men Level of Statistical
(n=47) (n=50) Significance

Hematocrit,% 40.0 ± 2.4 45.8 ± 2.7 p < 0.001

Plasma viscosity, mPa·s 1.73 ± 0.09 1.74 ± 0.08 n.s.

Low Shear Blood Viscosity, mPa·s 36.1 ± 4.9 58.3 ± 12.1 p < 0.001
γ̇ = 0.277 s−1, Original Ht

Asymptotic Blood Viscosity, mPa·s 4.8 ± 0.4 6.0 ± 0.8 p < 0.001
γ̇ > 400 s−1, Original Ht

Low Shear Blood Viscosity, mPa·s 35.59 ± 4.2 41.6 ± 4.4 p < 0.001
γ̇ = 0.277 s−1, Ht = 40%

Asymptotic Blood Viscosity, mPa·s 4.84 ± 0.4 5.3 ± 0.5 p < 0.001
γ̇ > 400 s−1, Ht = 40%

Erythrocyte Sedimentation Rate 8.4 ± 3.1 10.8 ± 4.1 p < 0.005
mm/hr, Ht = 40%

RBC Rigidity Index, Ht = 40% 2.8 ± 0.1 3.1 ± 0.1 p < 0.001

Table 9. Rheological parameters of male and female blood (data
are presented as mean value ± a standard deviation for each pa-
rameter, unpaired student’s t-test). All tests were performed at
23oC, from [66].

This study demonstrated a statistically significant difference in most hemo-
rheological parameters of male versus female blood. Hematocrit level, blood viscos-
ity at both high and low shear rates and for both original and standard hematocrit,
RBC sedimentation rate (ESR) and RBC rigidity index were found to be signifi-
cantly higher in male than in female blood, whereas plasma viscosity did not differ
significantly. This latter finding is consistent with a much earlier thorough study
of many aspects of human plasma viscosity by Harkness [61]. The higher values of
both low shear and high shear viscosity in male blood is consistent with the larger
values of hematocrit and RBC aggregation as well as the lower RBC deformability
(inversely proportional to the Rigidity Index).
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Significantly, increased hematocrit, increased blood viscosity, increased RBC
aggregability and decreased RBC deformability have been shown to be risk factors
for development of cardiovascular diseases [67, 81, 72]. Therefore, the measured
differences in the mechanical properties of male and female blood place men at a
much higher risk of cardiovascular diseases than pre-menopausal women.
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Centro de Matemática e Aplicações
Instituto Superior Técnico
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Introduction

Blood flow per se is a very complicated subject. Thus, it is not surprising that
the mathematics involved in the study of its properties can be, often, extremely
complex and challenging.

The role of mathematics in the investigation of blood flow properties – as in
the most part of applied sciences – is twofold and is directed toward the accom-
plishment of the following objectives. The first one, of a more theoretical nature, is
the validation of the models proposed by engineers, and consists in securing condi-
tions under which the governing equations possess the fundamental requirements
of well-posedness, such as existence and uniqueness of corresponding solutions and
their continuous dependence upon the data. The second one, of a more applied
character, is to prove that these models give a satisfactory interpretation of the
observed phenomena. In general, both tasks present serious difficulties in that
they require the study of several different, and frequently combined, topics that
include, among others, Navier–Stokes equations, non-Newtonian fluid models, non-
linear elasticity, fluid-structure interaction and multi-phase flow. It must be added
that some of these topics are still at the beginning of a systematic mathematical
research, whereas some others are in a continuous growth.

As a matter of fact, the initiation or the methodical investigation of several
of the above research areas was just motivated by problems arising in blood flow.
Moreover, blood flow can also pose challenging questions in “classical” topics,
questions that, in the past, happened to receive little or no attention at all. A
typical example is provided by the problem of the flow of a Navier–Stokes liquid
in an unbounded piping system, under a given time-periodic flow-rate, that has
been “discovered” only in 2005, thanks to the work of H. Beirão da Veiga; see [7].
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It seemed to me hopeless to present and to describe in this article all relevant
aspects of the mathematical analysis related to blood flow, even at an introductory
level. Therefore, I preferred to concentrate on some, of the many, topics which are
at the foundation of this analysis, and to point out directions for future research.
More specifically, I focused on three different subjects which are the content of as
many separate chapters.

The first chapter deals with the study of some fundamental properties of the
flow of a Navier–Stokes liquid in a piping system, which can be either unbounded
or bounded. Here, I have concentrated the analysis mostly on steady-state and
time-periodic motions, and on their attainability. There are several reasons for
this choice. On the one hand, because these types of motions are the most “el-
ementary” to occur in the arterial and venuous system, and, on the other hand,
because the initial-boundary value problem in an unbounded piping system has
been investigated in full detail in the most recent article [86], to which I refer the
interested reader.

The second chapter is dedicated to the mathematical analysis of certain
non-Newtonian fluid models, including generalized Newtonian, second-order and
Oldroyd-B. Basically, I have focused my attention on the well-posedness of the
problems related to these models.

In the third chapter, I analyze two problems of fluid-particle interaction.
The first is related to the orientation of symmetric rigid bodies sedimenting in
viscoelastic liquids, while the second deals with the lateral migration of a rigid
sphere in the shear flow of a viscoelastic liquid in a horizontal channel. These
two problems provide examples of how a mathematical analysis is able to furnish
a rigorous explanation of the observed phenomena. In this respect, it should be
observed that the method employed in the treatment of both problems requires one
particle at a time interacting with the liquid. There are different approaches to the
study of a system of particles moving into a liquid. However, the results obtained
with these latter are only of basic nature and regard, mainly, well-posedness of
the problems associated with the relevant equations. For this different, but very
important, aspect of particulate flow we refer the reader to [31] and to literature
cited therein.

A significant topic that I have left out is the problem of interaction between
a fluid and an elastic structure. The reason for this choice is because, I believe,
this area is still at the beginning, and, moreover, in order to describe the major
contributions, a fair amount of technical prerequisites is needed. The most relevant
mathematical works in fluid-structure imteraction – all developed in the last 3
years – can be grouped into two categories. In the first one, where a Navier–Stokes
liquid interacts with its bounding walls described either by an elastic string (in
the two-dimensional case) or elastic membrane (in the three-dimensional case); see
[6, 20, 23]. In the other category, a “bulk” elastic solid is embedded in a Navier–
Stokes liquid bounded by a rigid wall [29, 28, 47]. More significant topics in this
area remain to be investigated, that are related to blood flow, such as liquid moving
in a piping system bounded by elastic walls under prescribed flow-rate, deformable
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body moving into a liquid in a channel or in a liquid that fills the whole space, to
mention a few.

This article is aimed at a diverse readership. For this reason, I tried to make
every subject as self-contained as possible. Whenever details are not explicitly
given, I refer the reader to the appropriate literature. The contents of this article
are organized as follows:

Contents

1. Problems in the pipe flow of a Navier–Stokes liquid 125
1.1. Fully developed flows 125
1.2. The entry flow problem 142
1.3. Mathematical modeling of a piping system. Unbounded

domain approach 148
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Notation

As a rule, we shall use the notation of [36]. However, for the reader’s convenience,
we collect here the most frequently used symbols.

By N we denote the set of positive integers, while Rn is the Euclidean n-
dimensional space, and {e1, e2, e3, . . . ,en} ≡ {ei} the associated canonical basis.

Given a second-order tensor A and a vector a, of components {Aij} and {ai},
respectively, in the basis {ei}, by a · A [respectively, A · a] we mean the vector
whose components are given by Aijai [respectively, Aijaj ]. Moreover, if B = {Bij}
is another second-order tensor, by the symbol A · B we mean the second-order
tensor whose components are given by AilBlj . We also set A : B = trace(A ·BT),
where the superscript “T” denotes transpose, and |A| =

√
A : A.
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Given a vector field h(x) ≡ {hi(x)}, x ∈ Rn, by ∇h we denote the second-
order tensor field whose components {∇h}ij in the given basis are given by
{∂hj/∂zi}.

For any domain A, Ck(A), k ≥ 0, Lq(A), Wm,q(A), m ≥ 0, 1 < q < ∞,
denote the usual space of functions of class Ck on A, and Lebesgue and Sobolev
spaces, respectively. Norms in Lq(A) and Wm,q(A) are denoted by ‖ · ‖q,A, ‖ ·
‖m,q,A. The duality pairing in Lq(A) is indicated by (·, ·)A. The completion of the
space C∞

0 (A), constituted by the infinitely differentiable functions with compact
support in A, in the Wm,q(A)-norm is denoted by Wm,q

0 (A). The dual space of
Wm,q

0 (A) is indicated by W−m,q′
0 (A), q′ := q/(q − 1). Unless confusion arises,

we shall usually drop the subscript “A” in these norms. The trace space on ∂A
for functions from Wm,q(A) will be denoted by Wm−1/q,q(∂A) and its norm by
‖ · ‖m−1/q,q,∂A.

By Dk,q(A), k ≥ 1, 1 < q < ∞, we indicate the homogeneous Sobolev space
of order (m, q) on A, [103] [36], that is, the class of functions u that are (Lebesgue)
locally integrable in Ω and with Dβu ∈ Lq(A), |β| = k, where

Dβ =
∂|β|

∂xβ1
1 ∂xβ2

2 ∂xβ3
3

, |β| = β1 + β2 + β3.

The natural (semi-norm) in Dk,q(A), is given by (1)

|u|Dk,q(A) :=

⎛⎝∑
|β|=k

∫
A
|Dβu|q

⎞⎠1/q

.

The completion of C∞
0 (A) in the norm | · |Dk,q(A) is denoted by Dk,q

0 (A), whereas,
setting (2)

D(A) = {ϕ ∈ C∞
0 (A) : ∇ · ϕ = 0} ,

the completion of D(A) in the norm | · |Dk,q(A) is denoted by Dk,q
0 (A). The dual

spaces of Dk,q
0 (A) and Dk,q

0 (A) are indicated by D−k,q′
0 (A) and D−k,q′

0 (A), respec-
tively.

Occasionally, if X is a Banach space, we shall denote its norm by ‖ · ‖X .
Given a Banach space X , and an open real interval (a, b), we denote by

Lq(a, b; X) the linear space of (equivalence classes of) functions f : (a, b) → X
whose X-norm is in Lq(a, b). Likewise, for r a non-negative integer and I a real
interval, we denote by Cr(I; X) the class of continuous functions from I to X ,
which are differentiable in I up to the order r included. If X = Rn, we shall
simply write Lq(a, b), Cr(I), etc.

(1)Typically, we shall omit in the integrals the infinitesimal volume or surface of integration.
(2)Let X be any space of real functions. As a rule, we shall use the same symbol X to denote
the corresponding space of vector and tensor-valued functions.
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1. Problems in the pipe flow of a Navier–Stokes liquid

In this chapter we shall furnish a mathematical analysis of the motion of a Navier–
Stokes liquid in a system of pipes, P , whose bounding walls are rigid and imper-
meable.

The preliminary question that we would like to investigate is how to model
P . We shall be mainly concerned with the following two complementary ways of
approaching the problem:
(A1) We assume that the “exiting” pipes (outlets) extend to infinity.
(A2) We truncate the outlets at a finite distance.
Of course, both approaches are – each one in its own way – an idealization of real
situations and, as we shall see, both approaches present advantages and disadvan-
tages. At this time we wish to observe only that, in case (A1), the difficulty relies,
mostly, in determining the asymptotic behavior at large distances in the outlets,
while, in case (A2), the challenging task is that of prescribing the appropriate
boundary conditions at the inflow-outflow (open) parts of the boundary which are
“physically reasonable” and make the corresponding initial-boundary value and
boundary-value problems well set.

Once we have chosen a certain mathematical model and formulated the as-
sociated governing equations, the basic questions we shall address include the
following ones:
(a) Existence and uniqueness of steady-state motions, when the the driving force

is time- independent.
(b) Existence and uniqueness of time-periodic motions when the driving force is

time-periodic.
(c) Attainability of the above motions, as time goes to infinity, when the fluid is

started from rest.
The investigation of the above properties requires a preliminary study of so called
fully developed flows in an infinite straight pipe of constant cross-section, which
will be accordingly analyzed in full detail.

As it will be shown later on, to date, despite the efforts conveyed by many
mathematicians, the answers to the questions (a)–(c) are only partially known, and
several basic problems remain still unsettled. Specifically, one is able to produce
answers only on condition that the magnitude of the data is sufficiently restricted.
However, it is not clear if this is due to a lack of a sufficient mathematical knowledge
or, rather, to some hidden physical phenomenon. Unfortunately, this is the typical
situation that the mathematician experiences with the Navier–Stokes equations
and, probably, it is just for this reason that these equations are so particularly
fascinating.

1.1. Fully developed flows

Let us consider a Navier–Stokes fluid in an infinite, straight pipe, Ω, of constant
cross-section S (bounded domain of R

2). Thus, assuming that x1 is parallel to the
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axis of the pipe, we may write

Ω = {x ∈ R
3 : x′ := (x2, x3) ∈ S} ,

and the equations governing the motion of the fluid are given by
∂v

∂t
+ v · ∇v = νΔv −∇p

∇ · v = 0

⎫⎬⎭ in Ω. (1.1)

In these equations ν is the coefficient of kinematical viscosity and p = P/ρ, where
P is the pressure field of the fluid and ρ is its density.

If we introduce the dimensionless quantities

t∗ = (d2/ν)t , x∗
i = xi/d , i = 1, 2, 3 , v∗ = Uv (1.2)

with d diameter of S and U a reference velocity, it is immediately checked that
the system (1.1) admits a (dimensionless) solution of the form (stars omitted)

vP (x, t) = V (x2, x3, t)e1 , pP = −G(t)x1 , (1.3)

with
∂V

∂t
=
(

∂2V

∂x2
2

+
∂2V

∂x2
3

)
+ G(t) , V (x2, x3, t)|S = 0 . (1.4)

Flow described by velocity and pressure fields given in (1.3) are called fully de-
veloped, in that all kinematical quantities do not depend on the axial coordinate.
Of particular significance in many applications are two particular classes of fully
developed flow, namely, steady flow (Hagen–Poiseuille flow [54, 88]) where

V = V (x2, x3) , G = const.

and time-periodic flow (Womersley flow [116]) where

V (x2, x3, t + 2π) = V (x2, x3, t) , G(t + 2π) = G(t) ,

for all t ∈ R and where, without loss of generality, we assume that the period
T = 2π.

In regards to (1.4) one is typically interested to solve two specific classes of
problems, that we shall denote by Problem 1 and Problem 2, respectively, and
which we formulate next.

Problem 1. Given the axial pressure gradient, G, constant or time-periodic, find
the corresponding velocity field V .
Problem 2. Given the flow-rate, Φ, through the cross-section S

Φ :=
∫

S

V dS , (1.5)

constant or time-periodic, find corresponding velocity field V and axial pressure
gradient G.

It is clear that the choice of solving either Problem 1 or Problem 2 is dictated
by the nature of the specific situation we want to address. For example, in the case
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of blood flow in large arteries, it seems much more appropriate to study Problem
2 [116].

With a look at (1.4), we recognize that the mathematical formulation of
the above problems is completely different, in that one is direct (Problem 1) and
the other is inverse (Problem 2). More specifically, let’s think of (1.4) as a heat
equation problem, where V is the “temperature” and G is the “heat source”. Then
Problem 1 reduces to the standard (and elementary) situation of determining the
“temperature” when the “heat source” is given. In contrast, Problem 2 requires
the resolution of the non-standard inverse problem [89] where we prescribe the
“average temperature” (the flow-rate) and we have to find pointwise “temperature”
and “heat source”.

In what follows, we show that the solvability of Problem 2 can be reduced
to that of Problem 1. This follows from the general result that we prove, namely,
that Φ and G are related by an invertible relationship expressed through quantities
depending only on the cross-section and, therefore, independent of V .

Even though the steady-state case is a particular case of the time-periodic
one (see also Remark 1.4), we would like to provide the resolution of the above
problems separately for the two situations. This because, in the steady-state case,
the resolution is quite immediate. We shall also consider Problems 1 and 2 for the
initial-boundary value problem associated to (1.9) in regards to the question of
attainability of steady-state and time-periodic solutions.

1.1.1. Steady-state case. In this case, (1.3) reduces to

∂2V

∂x2
2

+
∂2V

∂x2
3

= −G , V (x2, x3)|S = 0 . (1.6)

Consider the following Dirichlet problem:

∂2ϕ

∂x2
2

+
∂2ϕ

∂x2
3

= −1 , ϕ(x2, x3)|∂S = 0 . (1.7)

It is well known that, if S is of class C2 or convex, (1.6) has one and only one solu-
tion ϕ ∈ W 2,2(S) ∩W 1,2

0 (S). Multiplying both sides of (1.7) by ϕ and integrating
by parts we find ∫

S

ϕ =
∫

S

|∇ϕ|2 > 0.

Thus, if we set

V (x2, x3) =
Φ∫

S

ϕdS
ϕ(x2, x3) , G =

Φ∫
S

ϕdS
, (1.8)

we obtain at once that these V and G solve (1.6) for any choice of Φ, and that
Φ =

∫
S

V dS. Thus, in Problem 1, the solution to (1.6) is given by V = Gϕ, while
in Problem 2 it is just furnished by (1.8).

Remark 1.1. The function ϕ depends only on S. Therefore, the relation between
G and Φ depends only on S and is independent of the particular velocity field V .
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1.1.2. Time-periodic case. In this case, the problem reduces to the following one

∂V

∂t
=
(

∂2V

∂x2
2

+
∂2V

∂x2
3

)
+ G(t) , V (x2, x3, t)|S = 0 ,

V (x2, x3, t) = V (x2, x3, t + 2π) , for all (x2, x3) ∈ S and t ∈ R,
(1.9)

where, in Problem 1, the function G is prescribed with G(t) = G(t + 2π), whereas
in Problem 2 the flow-rate Φ is prescribed with Φ(t) = Φ(t + 2π) and we have to
find time-periodic V and G.

From (1.9) we immediately deduce that the resolution of Problem 1 presents
no difficulty, since it is equivalent to the elementary problem of finding time-
periodic solutions of the heat equation when the right-hand side G is a given
time-periodic function. In such a case we have the following (see, e.g., [113])

Theorem 1.1. Let S be a bounded domain in the plane and let G be a 2π-periodic
function with G ∈ L2(−π, π). Then (1.9) has a unique 2π-periodic solution u, such
that u is continuous from [−π, π] in H1

0 (S) and
∂V

∂t
, ΔV ∈ L2(S × (−π, π)) . (1.10)

This solution satisfies, in addition, the inequality

max
t∈[−π,π]

‖V (t)‖2
1,2 +

∫ π

−π

(∥∥∥∥∂V

∂t

∥∥∥∥2

2

+ ‖ΔV (t)‖2
2

)
dt ≤ c

∫ π

−π

|G(t)|2dt (1.11)

where c = c(Ω) > 0.

We now turn to Problem 2. Its solvability, under very special assumptions
on the time-dependence of the flow rate and for S a circle, was first given by
Womersley [116]. Much more recently, Beirão da Veiga [7] has solved the prob-
lem in its full generality. However, from his approach it is not clear what is the
relation between Φ and G and, in fact, it seems to depend on the velocity field
V . Successively, Galdi and Robertson [43] provided a different and much more
elementary approach that proves, among other things, that Φ and G are related
by one-to-one correspondence with coefficients depending only on the cross-section
and, therefore, independent of V . As a byproduct of this result, they show that
the resolution of Problem 2 is equivalent to that of Problem 1. In what follows we
will present the main ideas of Galdi and Robertson approach, referring to [43] for
details.

To this end, consider the following sequence of problems, n ∈ N, (3)

∂ucn

∂t
= Δucn + cos(nt) in S , ucn|∂S = 0 , ucn(x, 0) = ucn(x, 2π) , x ∈ S ,

∂usn

∂t
= Δusn + sin(nt) in S , usn|∂S = 0 , usn(x, 0) = usn(x, 2π) , x ∈ S .

(1.12)

(3)For simplicity, the point (x2, x3) will be denoted by x, rather than by x′.
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The functions ucn and usn can be viewed as real and imaginary part, respectively,
of the function vn where

∂vn

∂t
= Δvn + eint in S , vn|∂S = 0 , vn(x, 0) = vn(x, 2π) , x ∈ S . (1.13)

A solution to (1.13) is given by vn(x, t) = Vn(x)eint, with Vn = ϕn + iψn, and

−n ψn = Δϕn + 1 ,

n ϕn = Δψn

}
in S , ϕn|∂S = ψn|∂S = 0 . (1.14)

By standard methods, we prove that, for each non-negative integer n, the system
(1.14) possesses a unique solution ϕn, ψn ∈ W 1,2

0 (S) with Δϕn, Δψn ∈ L2(S). For
these properties to hold, S can be an arbitrary bounded domain. We also observe
that, obviously, ϕn and ψn depend only on n and S. From (1.13) and (1.14) we
then conclude that the solutions to (1.12) are given by

ucn = ϕn cos(nt) − ψn sin(nt) , usn = ψn cos(nt) + ϕn sin(nt) . (1.15)

We shall now establish some simple but important properties of solutions to (1.14).
Set

an =
∫

S

ϕn dx , bn = −
∫

S

ψn dx n = 0, 1, 2, . . . . (1.16)

We emphasize that, for each fixed n, the numbers an and bn depend only on S.

Lemma 1.1. Let ϕn, ψn ∈ W 1,2
0 (S) be a solution to (1.14). Then, the following

inequality holds,

‖Δϕn‖2 + ‖Δψn‖2 ≤ |S| 12 , for all n = 0, 1, 2, . . . , (1.17)

where |S| is the area of S. Moreover, the real numbers an and bn defined in (1.16)
satisfy the following properties,
(a) an > 0, for all n = 0, 1, 2, . . . ; b0 = 0, bn > 0 for all n ∈ N;

(b) a0 ≤ |S|2
2

; an ≤ |S|
n

, bn ≤ |S|
n

, for all n ∈ N;

(c) lim
n→∞

(nbn) = |S|.

Proof. See [43, Lemma 2.1]. �

We shall next establish the relation between G and Φ. To this end, we write the
Fourier series of both quantities:

G(t) =
Gc0

2
+

∞∑
n=1

{Gcn cos(nπt) + Gsn sin(nπt)} ,

Φ(t) =
Φc0

2
+

∞∑
n=1

{Φcn cos(nπt) + Φsn sin(nπt)} .

(1.18)

The following result holds.
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Proposition 1.1. The Fourier coefficients (Gcn, Gsn) of G and those (Φcn, Φsn) of
Φ are related to each other according to the following formulas, n = 0, 1, 2, . . .,

Φcn = anGcn − bnGsn , Φsn = bnGcn + anGsn . (1.19)

or, equivalently, by their inverse

Gcn =
anΦcn + bnΦsn

a2
n + b2

n

, Gsn =
anΦsn − bnΦcn

a2
n + b2

n

. (1.20)

Proof. We begin to observe that, obviously, it is enough to show the validity of
(1.19), since (1.20) follows directly from this latter. (Notice that, by Lemma 1.1,
we have a2

n + b2
n > 0 for all n = 0, 1, 2, . . .). Set

ucn = ucn(x, t) ≡ ucn(2π − t) , usn = usn(x, t) ≡ usn(2π − t) , t ∈ [−π, π] .
(1.21)

From (1.12), it follows that ucn satisfies the following problems,

∂ucn

∂t
+ Δucn = − cos(n(2π − t)) in S , ucn|∂S = 0 , ucn(0) = ucn(2π) ,

∂usn

∂t
+ Δusn = − sin(n(2π − t)) in S , usn|∂S = 0 , usn(0) = usn(2π) .

(1.22)

We now multiply both sides of (1.9) by ucn and integrate by parts over S. We thus
obtain

d

dt
(V, ucn) − (V,

∂ucn

∂t
+ Δucn) = (G, ucn) .

Furthermore, we integrate this relation over t ∈ [−π, π]. By taking into account
(1.5), (1.15)1, (1.16), (1.21)1, (1.22)1 and the fact that u(x,−π) = u(x, π), we get∫ π

−π

Φ(t) cos[(n(2π − t)] dt =
∫ π

−π

G(t) {an cos[n(2π − t)] + bn sin[n(2π − t)]} dt .

From this relation we deduce at once∫ π

−π

Φ(t) cos(nt) dt =
∫ π

−π

G(t) {an cos(nt) − bn sin(nt)} dt

which coincides with the first relation in (1.19). The second relation in (1.19) is ob-
tained exactly by the same procedure, provided we replace in the above argument
ucn with usn. The proposition is, therefore, completely proved. �

The convergence of the series (1.18) and the relation between the norms of
G and Φ in L2(−π, π) is proved in the following.

Proposition 1.2. Assume that the numbers (Φcn, Φsn) and (Gcn, Gsn), n = 0, 1, 2,
. . ., satisfy (1.19) (or, equivalently, (1.20)). Then, if the Fourier series (1.18)1
converges to some G ∈ L2(−π, π), also the Fourier series (1.18)2 converges to
some Φ ∈ L2(−π, π)and we have

‖Φ‖L2(−π,π) ≤ c0|S|‖G‖L2(−π,π) (1.23)
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where c0 =
√

max{2, |S|2/4} . Conversely, if the Fourier series (1.18)2 converges
to some Φ ∈ L2(−π, π) with dΦ/dt ∈ L2(−π, π), then also the Fourier series
(1.18)1 converges to some G ∈ L2(−π, π) and we have

‖G‖L2(−π,π) ≤ c1‖Φ‖L2(−π,π) +
2
|S|

∥∥∥∥dΦ
dt

∥∥∥∥
L2(−π,π)

, (1.24)

where c1 is a positive constant depending only on S.

Proof. From (1.19) and Lemma 1.1(a) it follows that

Φc0 = a0Gc0 , |Φcn|2 + |Φsn|2 = (a2
n + b2

n)(|Gcn|2 + |Gsn|2) , n ∈ N . (1.25)

Therefore, from Lemma 1.1(b) we find

|Φco|2
2

+
∞∑

n=1

{
|Φcn|2 + |Φsn|2

}
≤ |S|4

4
|Gco|2

2
+ 2|S|2

∞∑
n=1

{
|Gcn|2 + |Gsn|2

}
which proves that the series (1.18)2 is converging in L2(−π, π), if G ∈ L2(−π, π).
Moreover, (1.23) follows from Parseval’s equality. Conversely, we notice that (1.25)
implies

|Gcn|2 + |Gsn|2 ≤ 1
b2
n

(
|Φcn|2 + |Φsn|2

)
, for all n ∈ N . (1.26)

From Lemma 1.1(c) we have that there is a positive integer n such that

bn ≥ |S|
2n

, for all n ≥ n .

Setting b = min{b1, . . . , bn}, in view of Lemma 1.1(a), it follows that b > 0. Thus,
from this latter displayed equation, from Lemma 1.1(b) and from (1.26) we find

|Gco|2
2

+
∞∑

n=1

{
|Gcn|2 + |Gsn|2

}
≤ 4

|S|4
|Φco|2

2
+

1

b
2

∞∑
n=1

{
|Φcn|2 + |Φsn|2

}
+

4
|S|2

∞∑
n=1

n2
{
|Φcn|2 + |Φsn|2

}
which, by the assumptions on Φ, shows that the series (1.18) converges in
L2(−π, π). Finally, (1.24) is a consequence of Parseval’s equality. �

An immediate, important consequence of the previous results is the following
one which proves the resolution of Problem 2.

Theorem 1.2. Let S be a bounded domain of the plane, and let Φ be a 2π-periodic
function with Φ , dΦ/dt ∈ L2(−π, π). Then, the problem

∂V

∂t
= ΔV + G in G , V |∂Ω = 0 ,

∫
S

V (x, t) dx = Φ(t) (1.27)
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admits one and only one 2π-periodic solution (V, G), where V ∈ C([−π, π]; W 1,2
0 (S)

and satisfies (1.10), while G ∈ L2(−π, π). Furthermore, the solution satisfies the
estimate

max
t∈[−π,π]

‖V (t)‖2
1,2 +

∫ π

−π

(∥∥∥∥∂V

∂t

∥∥∥∥2

2

+ ‖ΔV (t)‖2
2 + |G(t)|2

)
dt

≤ c

∫ π

−π

(
|Φ(t)|2 + |dΦ/dt|2

)
dt ,

(1.28)

where c = c(S) > 0.

Proof. Let Φcn, Φsn be the Fourier coefficients of Φ, and consider the series on the
right-hand side of (1.18)1, with coefficients Gcn, Gsn given in (1.20). From Propo-
sition 2.2 we know that the series (1.18)1 is convergent to some G ∈ L2(−π, π)
and that inequality (1.24) holds. We then solve problem (1.9) with this given G.
The existence part along with the validity of (1.28) is then a consequence of The-
orem 2.1, Proposition 2.1 and of inequality (1.24). As for uniqueness, it suffices to
show that if (V, G) solves (1.27) with Φ ≡ 0, then V ≡ G ≡ 0. Multiplying both
sides of (1.27) by u, integrating over S × (−π, π) and using Φ ≡ 0 then furnishes∫ π

−π
‖∇V ‖2

2 = 0, that is V ≡ 0. By going back to the first equation in (1.27), we
then infer G ≡ 0, and uniqueness follows. �

Remark 1.2. Solutions of Theorem 1.2 have the following simple representation,

V (x, t) =
Gc0

2
ϕ0 +

∞∑
n=1

{[Gcnϕn + Gsnψn] cos(nt) + [Gsnϕn − Gcnψn] sin(nt)} ,

(1.29)
where, for n = 0, 1, 2, . . ., the functions ϕn, ψn satisfy (1.14) while the numbers
Gcn, Gsn are given in (1.20). This easily follows from (1.12)–(1.15) along with
Lemma 1.1.

Remark 1.3. If S is of class C2 or if it is convex, we can replace the term ‖ΔV ‖2
2

in (1.28) with ‖V ‖2
2,2.

Remark 1.4. In the special case when Φ is a constant, then from (1.29), (1.18) and
(1.20), we find V = Φϕ0/a0 = Gϕ0 which, by (1.16), coincides with (1.8).

1.1.3. Attainability of steady-state and time-periodic flow. In several applied prob-
lems it is of some interest to investigate the rate at which a given unsteady motion,
started from rest, approaches, as time goes to infinity, a fully developed steady-
state flow or, more generally, time-periodic flow, corresponding to prescribed flow-
rate. This is the problem of attainability of the given flow. This problem, which in
its full generality will be treated in the following Section 1.3.3, requires a prelim-
inary study in the subclass of fully developed flow. This will be the object of the
present section. More specifically, assume that the flow-rate of a fully developed
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flow is smoothly increased from zero to a certain constant or time-periodic func-
tion Φ = Φ(t) in the time-interval [0, 1]. (4) We shall show that the corresponding
velocity field and axial pressure gradient will tend, as t → ∞, exponentially fast to
the analogous quantities corresponding to Λ, the constant of decay being propor-
tional to the first eigenvalue of the Laplace operator in S with Dirichlet boundary
conditions.

Mathematically, the problem is formulated as follows. Let ψ = ψ(t) be a
smooth, non-decreasing “ramping” function defined in R that is 0 for t ≤ 0 and
is 1 for t ≥ 1, and set Φ(t) = ψ(t)Φ(t). Moreover, denote by (V , G) the solution
corresponding to the flow-rate Φ. The attainability problem consists then in finding
a solution (V, G) of the following initial-boundary value problem (5)

∂V

∂t
=
(

∂2V

∂x2
2

+
∂2V

∂x2
3

)
+ G(t) , V (x, t)|S = 0 ,

V (x, 0) = 0 , x ∈ S ,

∫
S

V (x, t)dx = Φ(t) , t ≥ 0 ,

(1.30)

such that
lim

t→∞
(V (x, t) − V (x, t)) = 0 , lim

t→∞
(G(t) − G(t)) = 0 . (1.31)

We now set
u := V − V , q := G − G , F := (ψ − 1)Φ

so that (1.30) and (1.31) reduce to find u(x, t) and q(t) solving the following
equations,

∂u

∂t
=
(

∂2u

∂x2
2

+
∂2u

∂x2
3

)
+ q(t) , u(x, t)|S = 0 ,

u(x, 0) = u0(x) , x ∈ S ,

∫
S

u(x, t) dx = F (t) , t ≥ 0 ,

lim
t→∞

u(x, t) = 0 , lim
t→∞

q(t) = 0 ,

(1.32)

where
u0(x) := −V (x, 0) , and F (t) = 0 for all t ≥ 1.

Our strategy for the resolution of (1.32) is based on the recent work of Galdi,
Pileckas and Silvestre [41] and goes as follows. We show that, in a sufficiently
smooth class of solutions and for a given u0, the functions q and F are related
by an invertible Volterra linear integral equation of the second kind, with kernel
depending only on S; see Proposition 1.3. Thus, given F (sufficiently smooth)
and u0 we can determine the corresponding q and then, by elementary results
on the heat equation, we obtain u from (1.32)1,...,4 in the appropriate function
class (Proposition 1.4). Finally, by a general result on solutions to linear integral

(4)The number 1 in this interval can be replaced by any number a > 0. In such a case, the
constants involved in Theorem 1.3 will depend on a as well.
(5)Again for the sake of notational simplicity, we shall denote the point (x2, x3) by x, instead of
x′.
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Volterra equations of the second kind proved in Lemma 1.3, we show that u and
q satisfy also (1.32)5,6 and find the corresponding rate of decay (Proposition 1.5).

In order to accomplish our goal, let θ(x, t) be the solution to the following
initial boundary value problem in ST := S × (0, T ), T > 0, for the heat equation⎧⎨⎩

∂

∂t
θ(x, t) = Δθ(x, t) ,

θ(x, t) |∂S = 0 , θ(x, 0) = ϕ(x) ,

(1.33)

where ϕ is the solution to (1.7). We recall that [70], if S is of class C2 (or convex),
then ϕ ∈ W 2,2(S) ∩ W̊ 1,2(S) and that

‖ϕ‖W 2,2(S) ≤ c0 , (1.34)

where c0 depends only on S. Consequently, we conclude that (1.33) has a unique
solution θ such that∥∥∥∥ ∂

∂t
θ(·, t)

∥∥∥∥2

L2(ST )

+
∫ T

0

‖θ(·, t)‖2
W 2,2(S) dt < ∞ ;

and that this solution satisfies∥∥∥∥ ∂

∂t
θ(·, t)

∥∥∥∥2

L2(ST )

+
∫ T

0

‖θ(·, t)‖2
W 2,2(S) dt ≤ c ‖ϕ‖2

W 2,1(S) , (1.35)

where c1 = c1(S) > 0; see, e.g., [70] . Since ϕ ∈ W 2,2(S), we also deduce that

∇∂θ

∂t
∈ L2(ST ) ,

∂θ

∂t
∈ C([0, T ]; L2(S)),

max
t∈[0,T ]

(∥∥∥∥ ∂

∂t
θ(·, t)

∥∥∥∥
L2(S)

+ ‖θ(·, t)‖W 2,2(S)

)
+
∥∥∥∥∇ ∂

∂t
θ(·, t)

∥∥∥∥
L2(ST )

≤ c‖ϕ‖W 2,2(S) ,

(1.36)
where c2 = c2(S) > 0; see [70]. Finally, for arbitrary δ > 0, we further find
∂2

∂t2 θ ∈ L2(S × (δ, T )) and Δ ∂
∂tθ ∈ L2(S × (δ, T )). (6)

Now, let u(x, t) be a “sufficiently smooth” solution to (1.32). Multiplying
both sides of equation (1.32)1 by θ(x, τ − t) and integrating by parts over S, we
find∫

S

∂

∂t
u(x, t)θ(x, τ − t) dx =

∫
S

Δu(x, t)θ(x, τ − t) dx + q(t)
∫

S

θ(x, τ − t) dx,

that is,
∂

∂t

∫
S

u(x, t)θ(x, τ − t) dx −
∫

S

u(x, t)
∂

∂t
θ(x, τ − t) dx

=
∫

S

u(x, t)Δθ(x, τ − t) dx + q(t)
∫

S

θ(x, τ − t) dx.

(6)Note that it is not possible to take δ = 0, because the initial datum ϕ(x) does not satisfy the
compatibility condition, i.e., Δϕ(x) |∂S �= 0.
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Integrating this last relation with respect to t from 0 to τ and taking into account
that

νΔθ(x, τ − t) =
∂

∂τ
θ(x, τ − t) = − ∂

∂t
θ(x, τ − t),

u(x, 0) = u0, θ(x, τ − t)
∣∣∣
t=τ

= θ(x, 0) = ϕ(x),

we derive∫
S

u(x, τ)ϕ(x) dx −
∫

S

u0(x)θ(x, τ) dx =
∫ τ

0

H(τ − t)q(t) dt , (1.37)

with
H(s) :=

∫
S

θ(x, s) dx . (1.38)

We next differentiate both sides of (1.37) with respect to τ and employ (1.33) to
get∫

S

∂

∂τ
u(x, τ)ϕ(x) dx −

∫
S

Δu0(x)θ(x, τ) dx = H(0)q(τ) +
∫ τ

0

H ′(τ − t)q(t) dt.

Using equation (1.32)1 and integrating twice by parts we deduce∫
S

∂

∂τ
u(x, τ)ϕ(x) dx =

∫
S

Δu(x, τ)ϕ(x) dx + q(τ)
∫

S

ϕ(x) dx

=
∫

S

u(x, τ)Δϕ(x) dx + q(τ)
∫

S

ϕ(x) dx = −
∫

S

u(x, τ) dx

+q(τ)
∫

S

ϕ(x) dx = −F (τ) + q(τ)
∫

S

ϕ(x) dx,

where F (τ) is given in (1.32)4. Since H(0) =
∫

S θ(x, 0) dx =
∫

S ϕ(x) dx, from
the two latter displayed equalities, we find that F (t) and q(t) are related by the
following Volterra equation of the first kind,

−F (τ) −
∫

S

Δu0(x)θ(x, τ) dx =
∫ τ

0

H ′(τ − t)q(t) dt. (1.39)

If we differentiate (1.39) with respect to τ and take into account (1.33), we obtain

−F ′(τ) −
∫

S

Δu0(x)Δθ(x, τ) dx = H ′(0)q(τ) +
∫ τ

0

H ′′(τ − t)q(t) dt , (1.40)

and since, by (1.7) and (1.33), we have

H ′(0) =
∫

S

∂

∂τ
θ(x, τ)

∣∣∣
τ=0

dx =
∫

S

Δϕ(x) dx = −|S|

we conclude that (1.40) takes the form

q(τ) =
∫ τ

0

K(τ − t)q(t) dt + Ψ(τ) , (1.41)

where

Ψ(τ) :=
1
|S|

(
F ′(τ) +

∫
S

Δu0(x)Δθ(x, τ) dx

)
(1.42)
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and

K(s) :=
1
|S|

d2

ds2

∫
S

θ(x, s) dx . (1.43)

Notice that if u0 ∈ W 1,2(S) and F ∈ W 1,2(0, T ), then Ψ ∈ L2(0, T ) and

‖Ψ‖L2(0,T ) ≤ c1

(
‖F‖W 1,2(0,T ) + ‖u0‖2

)
, (1.44)

with c1 = c1(S) > 0. This follows by integrating by parts the second term on
the right-hand side of (1.42) and by taking into account (1.36). Alternatively, if
F ∈ C1([0, T ]) and u0 ∈ W 2,2(S), then Ψ ∈ C([0, T ]) and

max
t∈[0,T ]

|Ψ(t)| ≤ c2

(
max

t∈[0,T ]
|F ′| + ‖u0‖2,2

)
, (1.45)

with c2 = c2(S) > 0, as a consequence, again, of (1.42) and (1.36).
Equation (1.41) can be viewed as a Volterra integral equation of the second

kind in the unknown function q, for a given Ψ. Notice that the kernel K depends
only on S and it is independent of the particular solution u. Furthermore, if q ∈
C[0, T ], then (1.41) and (1.39) are equivalent if and only if

∫
S

u0(x)dx = F (0). In
fact, from (1.41) we get

d

dτ

(∫ τ

0

H ′(τ − t)q(t)dt + F (τ) + (Δu0, θ(τ))
)

= 0 ,

which, by (1.38) and (1.36)3, coincides with (1.39) if and only if F (0) = −(Δu0, ϕ)
where ϕ (= θ(x, 0)) satisfies (1.7). We thus deduce

F (0) = −(Δu0, ϕ) = −(u0, Δϕ) =
∫

S

u0(x)dx .

The existence and uniqueness of a solution q to (1.41) in the class C[0, T ] follows
from known results, provided Ψ ∈ C[0, T ] and K ∈ L1(0, T ); see [81]. Thus, if we
assume F ′ ∈ C[0, T ] – namely, Λ′ ∈ C[0, T ] – from (1.36) we deduce Ψ ∈ C[0, T ].
(Recall that, by the results of Sections 1.1.1 and 1.1.2 we may take u0 := V ∈
W 2,2(Ω).)

Concerning the summability property of K, we have the following result for
whose proof we refer to [41, Lemma 2.2].

Lemma 1.2. Let ψk ∈ W̊ 1,2(S)∩W 2,2(S) and λk > 0 be eigenfunctions and eigen-
values of the Laplace operator in S with homogeneous Dirichlet boundary condi-
tions. Then, the kernel K(t) admits the representation

K(t) =
1
|S|

∞∑
k=1

β2
kλk exp(−λkt) , (1.46)

where βk =
∫

S
ψk(x)dx, k = 1, 2, . . . Thus, K(t) > 0 for all t > 0 and, moreover,∫ ∞

0

K(t) dt = 1 . (1.47)
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Finally, for all t ∈ (0, 1], the following inequality holds,

K(t) ≤ C t−1/2 , (1.48)

where C = C(S) > 0.

We next observe that, as shown in [108], the unique solution q to (1.41) is
represented by the formula

q(t) =
∫ t

0

R(t − s)Ψ(s) ds + Ψ(t), t ∈ [0, T ], (1.49)

where R(t) satisfies the estimate [81]

‖R‖L1(0,T ) ≤ c(T )‖K‖L1(0,T ) .

If F ′ ∈ C([0, T ]) and u0 ∈ W 2,2(S), this inequality combined with (1.36), (1.42),
(1.49) and (1.45) readily furnishes that q ∈ C([0, T ]) and that

max
t∈[0,T ]

|q(t)| ≤ c3

(
max

t∈[0,T ]
|F ′(t)| + ‖u0‖2,2

)
, (1.50)

where c3 = c3(T, S) > 0. Alternatively, if we only have F ∈ W 1,2(0, T ) and
u0 ∈ W 1,2(S), then, from (1.49), from Young’s inequality for convolutions and
from (1.44) it follows that

‖q‖L2(0,T ) ≤ c4

(
‖F‖W 1,2(0,T ) + ‖u0‖1,2

)
, (1.51)

where c4 = c4(T, S) > 0. From the above considerations we then obtain the fol-
lowing result.

Proposition 1.3. Let S be of class C2, u0 ∈ W 1,2
0 (S), and let F ∈ W 1,2(0, 1). (7)

Then, there exists one and only one solution q ∈ L2(0, T ) to (1.41), for all T > 0 .
Moreover, q satisfies (1.51) . If F ∈ C1([0, 1]) and, in addition, u ∈ W 2,2(S), then
q ∈ C([0, T ]) for all T > 0 and estimate (1.50) holds.

With this result in hand it is easy to prove existence for problem (1.32)1,...,4

in a suitable class. Specifically, we prove the following.

Proposition 1.4. Let S be of class C2, F ∈ W 1,2(0, 1) and let u0 ∈ W 1,2
0 (S) satisfy

the condition ∫
S

u0(x)dx = F (0) . (1.52)

Then, problem (1.32)1,...,4 has one and only one solution (u, q) such that, for all
T > 0,

u ∈ C([0, T ]; W 1,2
0 (S)) ,

∂u

∂t
∈ L2(ST ) u ∈ L2((0, T ); W 2,2(S)) , q ∈ L2(0, T ) .

(1.53)

(7)Recall that F (t) = 0 for all t ≥ 1.
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This solution satisfies, in addition, the inequality

max
t∈[0,T ]

‖u(t)‖2
1,2 +

∫ T

0

(∥∥∥∥∂u

∂t

∥∥∥∥2

2

+ ‖u(t)‖2
2,2 + |q(t)|2

)
dt

≤ C1

(
‖F‖2

W 1,2(0,1) + ‖u0‖2
1,2

)
,

(1.54)

where C1 = C1(S, T ) > 0. Moreover, if F ′ ∈ C([0, 1]) and, in addition, u0 ∈
W 2,2(S), then, for all T > 0,

∂u

∂t
∈ C([0, T ]; L2(S)) u ∈ C([0, T ]; W 2,2(S)) , q ∈ C[0, T ] , (1.55)

and u satisfies also the inequality

max
t∈[0,T ]

(∥∥∥∥∂u

∂t
(t)
∥∥∥∥

2

+ ‖u(t)‖2,2 + |q(t)|
)

≤ C2

(
max

t∈[0,1]
|F ′(t)| + ‖u0‖2,2

)
, (1.56)

where C2 = C2(S, T ) > 0.

Proof. For the given F we pick q as the solution to (1.41), according to Proposition
1.3. We then consider problem (1.32)1,...,4 with this specific q. The existence part of
the field u then follows from classical results on the heat equation, while estimates
(1.54) and (1.56) follow from (1.51) and (1.50), respectively. As for uniqueness,
assume that u lies in the above class and satisfies the following initial-boundary
value problem

∂u

∂t
=
(

∂2u

∂x2
1

+
∂2u

∂x2
2

)
+ q(t) , u(x, t)|S = 0 ,

u(x, 0) = 0 , x ∈ S ,

∫
S

u(x, t)dx = 0 , t ≥ 0 .
(1.57)

Multiplying both sides of (1.57)1 by u, integrating by parts over S and using
(1.57)4, we deduce

1
2

d

dt
‖u‖2

2 + ‖∇u‖2
2 = 0 ,

which, in turn, by (1.57)3 implies u(x, t) ≡ 0. This, by (1.57)1, furnishes q(t) ≡ 0,
and uniqueness follows. �

We shall next show the asymptotic properties of u and q.

Proposition 1.5. Let S be of class C2, F ∈ W 1,2(0, 1) and let u0 ∈ W 1,2
0 (S) satisfy

condition (1.52) Then, the solution (u, q) determined in Proposition 1.4 satisfies
the following properties for all t ≥ 1,

‖u(t)‖1,2 ≤ ‖u(1)‖1,2 e−λ1t ,∫ ∞

1

(∥∥∥∥∂u

∂t

∥∥∥∥2

2

+ ‖u(t)‖2
2,2 + |q(t)|2

)
eλ1t dt ≤ C‖∇u(1)‖2

2 ,
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where λ1 = λ1(S) is the smallest eigenvalue of the Laplace operator introduced in
Lemma 1.2 and C = C(S) > 0.

Proof. We begin to obtain some estimates on u. Multiplying both sides of (1.32)1
by u and then by ∂u/∂t, and integrating by parts over S we obtain

1
2

d

dt
‖u‖2

2 + ‖∇u‖2
2 = (q, u) = q F , (1.58)

and
1
2

d

dt
‖∇u‖2

2 +
∥∥∥∥∂u

∂t

∥∥∥∥2

2

= (q,
∂u

∂t
) = q F ′ . (1.59)

Since F (t) = 0 for all t ≥ 1, from (1.58), from the Poincaré inequality and from
Gronwall’s lemma we find that

‖u(t)‖2 ≤ ‖u(1)‖2 e−λ1t , for all t ≥ 1 , (1.60)

where λ1 is defined in Lemma 1.2. Furthermore, by the Schwarz inequality, from
(1.58) we also find that

‖∇u(t)‖2
2 ≤

∥∥∥∥∂u

∂t

∥∥∥∥
2

‖u(t)‖2 , for all t ≥ 1 .

If we use Poincaré inequality in this latter relation we deduce

‖∇u(t)‖2 ≤ 1
(λ1)1/2

∥∥∥∥∂u

∂t

∥∥∥∥
2

, for all t ≥ 1 . (1.61)

Therefore, replacing (1.61) into (1.59) we obtain

d

dt
‖∇u‖2

2 + 2λ1‖∇u‖2
2 ≤ 0 , for all t ≥ 1 .

By Gronwall’s lemma, this inequality, in turn, furnishes

‖∇u(t)‖2 ≤ ‖∇u(1)‖2 e−λ1t , for all t ≥ 1 . (1.62)

We next multiply both sides of (1.59) by eλ1t. Integrating the resulting equation
from t = 1 to t = ∞, by a simple calculation we get∫ ∞

1

eλ1t

∥∥∥∥∂u

∂t

∥∥∥∥2

2

dt =
eλ1

2
‖∇u(1)‖2

2 +
λ1

2

∫ ∞

1

eλ1t‖∇u(t)‖2
2 dt .

If we substitute (1.62) into this equation, it follows that∫ ∞

1

eλ1t

∥∥∥∥∂u

∂t

∥∥∥∥2

2

dt ≤ eλ1 + e−λ1

2
‖∇u(1)‖2

2 . (1.63)

We now go back to (1.32)1 and multiply both sides by the solution, ϕ, to (1.7).
After an integration by parts, we get

Aq(t) = (
∂u

∂t
, ϕ) + (∇u,∇ϕ) , (1.64)
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where A :=
∫

S
ϕ(x)dx > 0. Consequently, by (1.62) and (1.63), from (1.64) we

find ∫ ∞

1

|q(t)|2eλ1t dt ≤ C ‖∇u(1)‖2
2 , (1.65)

where C = C(S) > 0. The proposition then follows from (1.60), (1.62), (1.63), and
(1.65). �

If F and u0 satisfy more regular assumptions than those stated in Proposi-
tion 1.5, then we are able to obtain a pointwise decay for q also. This will be a
consequence of Proposition 1.5 and of the following general lemma.

Lemma 1.3. Let τ be an arbitrary positive number, and let r ∈ Lq(0,∞)∩ C[0, τ ],
1 ≤ q < ∞, be a solution to the integral equation

r(t) =
∫ t

0

J(t − s) r(s) ds + G(t) t ∈ (0,∞) (1.66)

where J ∈ Lq′
(1,∞) ∩L1(0, 1) and G ∈ L∞(0,∞) . Then r ∈ L∞(0,∞) and there

exists a positive constant κ depending only on ε, q and J such that

‖r‖L∞(1,∞) ≤ κ
(
‖r‖Lq(0,∞) + ‖G‖L∞(0,∞)

)
. (1.67)

Proof. Let T be an arbitrarily fixed, finite number strictly greater than 1 and
suppose that r attains its maximum in [1, T ] at some point t ∈ [1, T ]. For any
ε ∈ (0, 1) we perform the following splitting,∫ t

0

J(t − s)r(s) ds =
∫ t−ε

0

J(t − s)r(s) ds +
∫ ε

0

J(s)r(t − s) ds := I1(t) + I2(t) .

(1.68)
Since J ∈ L1(0, 1), we have

|I2(t)| ≤ |r(t)|
∫ ε

0

|J(s)| ds = γ(ε) |r(t)| , (1.69)

where, by the absolute continuity of Lebesgue integral, γ(ε) → 0 as ε → 0. More-
over,

|I1(t)| ≤ ‖J‖Lq′(ε,∞)‖r‖Lq(0,∞) := M(ε)‖r‖Lq(0,∞) . (1.70)

From (1.66)–(1.70) we obtain

(1 − γ(ε)) r(t) ≤ M(ε)‖r‖Lq(0,∞) + ‖G‖L∞(0,∞) .

We now choose ε so small that γ(ε) < 1/2, so that this latter inequality furnishes

|r(t)| ≤ 2 (M ‖r‖Lq(0,∞) + ‖G‖L∞(0,∞)) for all t ∈ [1, T ] . (1.71)

Since T > 1 is arbitrary and M is independent of T , (1.71) shows that r is
uniformly bounded in [1,∞) with a bound given by the right-hand side of (1.71).
This proves (1.67). Moreover, r ∈ C([0, 1]) and, therefore, r ∈ L∞(0, 1), which
completes the proof of the lemma. �

Combining Proposition 1.5 and Lemma 1.3, we obtain the following.
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Proposition 1.6. In addition to the assumptions of Proposition 1.5, suppose that
F ′ ∈ C([0, 1]) and u0 ∈ W 2,2(S). Then, q ∈ C([0, T ]) ∩ L∞(0,∞), for all T > 0,
and the following inequality holds for all t ≥ 1,

|q(t)| ≤ C (‖∇u(1)‖2 + ‖u0‖2,2) e−λ1t/2. (1.72)

Proof. We multiply both sides of (1.41) by eλ1 t/2 to find

r(t) =
∫ t

0

J(t − s) r(s) ds + G(t), t ≥ 0, (1.73)

where

r(t) := q(t) eλ1 t/2 , J(t) := K(t) eλ1 t/2 , G(t) := Ψ(t) eλ1 t/2 .

We notice that, from (1.65), we have that r ∈ L2(0,∞). Furthermore, from Lemma
1.2 we easily deduce that J ∈ L2(1,∞) ∩ L1(0, 1). Finally, from (1.42) we find

|Ψ(t)| ≤ C1 ‖u0‖2,2‖θ(t)‖2,2 , for all t ≥ 1 ,

with C2 = C2(S) > 0. Therefore, since by classical estimates for the solutions to
problem (1.33) we have

‖θ(t)‖2,2 ≤ C2 ‖ϕ‖2,2 e−λ1t , t ≥ 0 ,

with C1 = C2(S) > 0, it follows that

‖G‖L∞(0,∞) ≤ C3‖u0‖2,2 , (1.74)

for a suitable C3 = C3(S) > 0. In conclusion, r, J and G satisfy all the assumptions
of Lemma 1.3, and the proposition follows. �

We now rephrase the results obtained in Proposition 1.4–Proposition 1.6 in
terms of the original attainability problem (1.30)–(1.31).

Theorem 1.3. Let S be of class C2. The following properties hold.
Attainability of Steady-State Flow. Let (V , G) be the solution to the steady-state
problem given in (1.8) corresponding to a given constant flow-rate Φ. Then, prob-
lem (1.30)–(1.31) has one and only one solution (V, G) such that, for all T > 0,

∂V

∂t
∈ C([0, T ]; L2(S)) V ∈ C([0, T ]; W 2,2(S)) , G ∈ C[0, T ] . (1.75)

Moreover, there is C1 = C1(S) > 0 and C2 = C2(S, T ) > 0 such that, for all t ≥ 1,

‖V (t) − V ‖1,2 ≤ ‖V (1) − V (1)‖1,2 e−λ1t ,∫ ∞

1

(∥∥∥∥∂(V − V )
∂t

∥∥∥∥2

2

+ ‖(V − V )(t)‖2
2,2 + |(G − G)(t)|2

)
eλ1t dt

≤ C1‖∇(V − V )(1)‖2
2,

|G(t) − G| ≤ C1 (‖∇(V − V )(1)‖2 + ‖V ‖2,2) e−λ1t/2 ,

max
t∈[0,T ]

(∥∥∥∥∂V

∂t
(t)
∥∥∥∥

2

+ ‖(V − V )(t)‖2,2 + |q(t)|
)

≤ C2 |Φ| ,

(1.76)
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where λ1 = λ1(S) is the smallest eigenvalue of the Laplace operator introduced in
Lemma 1.2.
Attainability of Time-Periodic Flow. Let (V , G) be the solution to the time-periodic
problem given in Theorem 1.2 corresponding to a given flow-rate Φ ∈ W 1,2(−π, π).
Then, problem (1.30)–(1.31) has one and only one solution (V, G) such that, for
all T > 0,

V ∈ C([0, T ]; W 1,2
0 (S)) ,

∂V

∂t
∈ L2(ST ) V ∈ L2((0, T ); W 2,2(S)) , G ∈ L2(0, T ) .

Moreover, V − V and G−G satisfy the estimates (1.76)1,2 and the following one,
for all T > 0,

max
t∈[0,T ]

‖(V − V )(t)‖2
1,2+

∫ T

0

(∥∥∥∥∂(V − V )
∂t

∥∥∥∥2

2

+‖(V − V )(t)‖2
2,2+|(G − G)(t)|2

)
dt

≤ C3 ‖Φ‖2
W 1,2(−π,π) ,

where C3 = C3(S, T ) > 0.

Proof. The proof is an immediate consequence of Proposition 1.4–Proposition 1.6,
once we take into account that (i) the compatibility condition (1.52) is satisfied,
because

∫
S V dS = Φ, and (ii) in the case of steady-state flow, V ∈ W 2,2(S). �

1.2. The entry flow problem

One of the most important problems in the theory and application of pipe flow
is the so-called entry flow problem. A viscous fluid is continuously injected in a
straight pipe, at a constant flow-rate Φ. The motion of the fluid is assumed to be
steady.

Figure 1. Entry Flow Problem.

What is experimentally observed is that there is a critical length, �, depending on
the magnitude of Φ (or, more properly, on the Reynolds number), such that after
a distance � from the inlet, the flow becomes essentially fully developed, that is,
the velocity profile coincides – within a given margin of error – with that of the
Poiseuille flow corresponding to the flow-rate Φ. The evaluation of � is, of course,
of great relevance because it gives us a measure of where the motion becomes
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essentially laminar. A sketch of the entry flow problem is given in Figure 1, for a
pipe of circular cross-section.

A rigorous mathematical analysis of this problem started in 1978, with the
paper of Horgan and Wheeler [59] and continued through the work of many other
mathematicians, including C.J. Amick, O.A. Ladyzhenskaya and V.A. Solonnikov
and L.E. Payne; see [36, Chapter VI] and [37, Chapter XI].

The objective of this section is to provide a mathematical formulation of the
entry-flow problem and to present the basic ideas and the main results. We shall
also point out some basic open questions. (8)

Let Ω be a semi-infinite straight pipe of constant cross-section S, defined as
follows

Ω = {x ∈ R
3 : x1 > 0 and (x2, x3) ∈ S} .

Furthermore, let (vP , pP ) be the (time-independent) Poiseuille flow (1.3) corre-
sponding to the flow-rate Φ and let (v, p) be any other steady-state flow in Ω
corresponding to the same flow-rate Φ. If we choose in (1.2) U = ν/d, from (1.1)
we then obtain that the difference (u := v−vP , φ := p−pP ) satisfies the following
non-dimensional equations,

Δu −∇φ = u · ∇u + vP · ∇u + u · ∇vP

∇ · u = 0

}
in Ω,

u|Γ = 0 ,

∫
S

u1 dS = 0 ,

(1.77)

where Γ := ∂S × (0,∞) is the lateral surface of Ω.
Our goal is to investigate the rate of decay to (0, 0) of the “perturbed” flow

(u, φ).
Before presenting the main results related to this problem, we would like to

sketch the basic ideas used for its resolution. In order to not obscure the substance
with a number of technical details, due to the presence of the nonlinear term and
of the pressure field in (1.77)1, we prefer to introduce these ideas in the simplest
“model problem” of Laplace’s (scalar) equation:

Δu = 0 in Ω , u|Γ = 0 . (1.78)

Thus, suppose that (1.78) has a solution with a finite Dirichlet integral, ‖∇u‖2 <
∞ (we shall come back later on this assumption). Since u|Γ = 0, we may use the
following (Poincaré’s) inequality,∫

S

|u|2 dS ≤ μ2

∫
S

|∇u|2 dS (1.79)

with μ :=
√

1/λ1 (λ1 defined in Lemma 1.2), to show that, in fact,

u ∈ W 1,2(Ω) . (1.80)

(8)Clearly, the entry-flow problem can be formulated in the more general case of when the injected
fluid is driven by a time-periodic flow-rate and the fully developed flow is time-periodic as well;
see Remark 1.5
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Multiplying both sides of (1.78)1 by u and integrating by parts over ΩR,ρ := {x ∈
Ω : 0 ≤ R < x1 < ρ}, we find∫

ΩR,ρ

|∇u|2 = −
∫

SR

u
∂u

∂x1
dS +

∫
Sρ

u
∂u

∂x1
dS , (1.81)

where Sa := {x ∈ Ω : x1 = a , (x2, x3) ∈ S}. In view of (1.80), we deduce, along
a sequence at least,

lim
k→∞

∫
Sρk

u
∂u

∂x1
dS = 0 ,

so that (1.81) implies ∫
ΩR

|∇u|2 = −
∫

SR

u
∂u

∂x1
dS , (1.82)

where Ωa := Ωa,∞, a > 0. Using the Schwarz inequality along with (1.79) on the
right-hand side of (1.82) we find∫

ΩR

|∇u|2 ≤ μ

∫
SR

|∇u|2 dS . (1.83)

Therefore, setting G(R) :=
∫
ΩR |∇u|2, and recalling the definition of μ, this latter

inequality furnishes
G′(R) ≤ −λ

1/2
1 G(R) , (1.84)

which, in turn, after a simple integration, implies∫
ΩR

|∇u|2 ≤ e−λ
1/2
1 R

∫
Ω

|∇u|2 . (1.85)

Moreover, provided Γ is sufficiently smooth (of class C2, for example) from well
known elliptic estimates we have

max
x∈Ω2R

(|u(x)| + |∇u(x)|) ≤ M

∫
ΩR

|∇u|2 , for all R ≥ 1 ,

where the positive constant M is independent of R. This inequality, combined with
(1.85), at once furnishes the following decay estimate,

|u(x)| + |∇u(x)| ≤ M e−λ
1/2
1 x1

∫
Ω

|∇u|2 , for all x1 ≥ 2. (1.86)

It is interesting to observe that the decay constant depends only on the cross-
section S and it is easily computed for cross-sections of specific simple shapes,
like circles or squares. The quantity λ

−1/2
1 , which has the dimension of a length,

gives a measure of the “entry length” for problem (1.78). We now turn to the
assumption that u has a finite Dirichlet integral and show that it can be fairly
weakened. Actually, let us multiply both sides of (1.78) by u and let us integrate
by parts over ΩR := {x ∈ Ω : x1 < R}. We thus get

g(R) :=
∫

ΩR

|∇u|2 =
∫

S0

u
∂u

∂x1
dS −

∫
SR

u
∂u

∂x1
dS := b −

∫
SR

u
∂u

∂x1
.
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Using the Schwarz inequality and (1.79) on the right-hand side of this latter in-
equality we find

g(r) ≤ b + λ
−1/2
1

∫
SR

|∇u|2 dS = b + λ
−1/2
1 g′(R) . (1.87)

Now, we have the following two possibilities: either

g(R) uniformly bounded for all R ≥ 0 , (1.88)

or
lim

R→∞
g(R) = ∞. (1.89)

In case (1.88), we have ‖∇u‖2 < ∞ and, consequently, the decay estimate (1.85)
holds. In case (1.89), we claim that, necessarily,

L := lim inf
R→∞

e−λ
1/2
1 R g(R) > 0 . (1.90)

In fact, assume L = 0. Then, from (1.87) it follows that
d

dr

(
e−λ

1/2
1 rg(r)

)
= e−λ

1/2
1 r(g′(r) − λ

1/2
1 g(r)) ≥ −λ

1/2
1 b e−λ

1/2
1 r .

We now integrate both sides of this latter relation from R to R1 > R to obtain

e−λ
1/2
1 R1g(R1) − e−λ

1/2
1 Rg(R) ≥ b e−λ

1/2
1 R1 − b e−λ

1/2
1 R ,

and so, applying lim inf
R1→∞

to both sides of this relation, we get

e−λ
1/2
1 Rg(R) ≤ b e−λ

1/2
1 R + L = b e−λ

1/2
1 R ,

since L = 0. Therefore, g(R) would be uniformly bounded, which contradicts
(1.89).

The result just showed are summarized in the following.

Lemma 1.4. Let u be a solution to (1.78) such that

lim inf
R→∞

e−λ
1/2
1 R

∫
ΩR

|∇u|2 = 0 . (1.91)

Then, necessarily, ‖∇u‖2 < ∞ and the estimate (1.85) holds. Moreover, if S is of
class C2, the pointwise estimate (1.86) is valid.

The method used in the proof of Lemma 1.4 for the model problem (1.78)
can be transposed to the more complicated situation of the Navier–Stokes problem
(1.77). However, the results that one is able to obtain in this case are not as
complete as in the case of (1.78). This is due, on the one hand, to the presence of
the pressure term and, also, to the nonlinear term. On the other hand, and this
is the main drawback of the method, one is able to find a decay estimate on the
Dirichlet integral of u, namely, an analogous of estimate (1.85), if the magnitude
of the flow-rate Φ is “small enough”. Another striking difference with the simple
case (1.78) is that the decay constant depends not only on the cross-section (like
in (1.86)) but also on the flow-rate and on the Dirichlet integral of u. In order to
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show where all the above restrictions come from, we shall briefly sketch the proof,
referring the reader to [36, Chapter VI] and [37, Chapter XI] for full details. Thus,
if we assume that ‖∇u‖2 < ∞, dot-multiplying both sides of (1.77)1 by u and
integrating by parts over ΩR we can show the validity of the following relation
(the analog of (1.82)),∫

ΩR

|∇u|2 = −
∫

SR

(
u · ∂u

∂x1
− φu1 −

1
2
|u|2(u1 + V )

)
dS −

∫
ΩR

u2 V ′u1 , (1.92)

where the prime denotes differentiation. With the help of (1.79) and of the prop-
erties of V we find that∫

ΩR

u2 V ′u1 ≤ C(S)|Φ|
∫

ΩR

|∇u|2 ,

where C(S) is a positive constant depending only on the cross-section. Therefore,
if γ := 1 − C(S)|Φ| > 0, from this latter inequality and from (1.92) we obtain

γ

∫
ΩR

|∇u|2 ≤ −
∫

SR

(
u · ∂u

∂x1
− φu1 −

1
2
|u|2(u1 + V )

)
dS . (1.93)

The first term on the right-hand side of (1.93) can be increased exactly as in the
model problem to get

−
∫

SR

u · ∂u

∂x1
≤ μ

∫
SR

|∇u|2 dS , (1.94)

while the last term, with the help of (1.79), can be increased as follows,

1
2

∫
SR

V |u|2 ≤ C1(S) |Φ|
∫

SR

|∇u|2 dS , (1.95)

with C1(S) > 0. Moreover, if Γ is sufficiently smooth, we have (see [37, Lemma
XI.4.1])

sup
x∈ΩR

(|u(x)| + |∇u(x)|) ≤ C2‖∇u‖2,ΩR−1 , all R > 1 , (1.96)

with C2 = C2(S, Φ, ‖∇u‖2) > 0. Thus, using (1.99) along with (1.79) we obtain

1
2

∫
SR

|u|2 u1 dS ≤ C3

∫
SR

|u|2 ≤ C4

∫
SR

|∇u|2 , (1.97)

where C4 = C4(Φ, S, ‖∇u‖2) > 0. From (1.93)–(1.95) and (1.97) we deduce

γ

∫
ΩR

|∇u|2 ≤ C5

∫
SR

|∇u|2 +
∫

SR

φu1 dS , (1.98)

where C5 = C5(Φ, S, ‖∇u‖2) > 0. At this point, it is not known (and, probably,
not true) whether there are constants K = K(S, Φ, ‖∇u‖2) > 0 and 0 ≤ δ < 1
such that ∫

SR

φu1 dS ≤ K

∫
SR

|∇u|2 dS + δγ

∫
ΩR

|∇u|2 ,
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and so we can not reduce (1.98) to the form of the differential inequality (1.84).
However, by using more elaborated tools, one can show (see, e.g., [37, Section
XI.4]) that (1.98) implies the following one,

γ

∫ ∞

ρ

G(R) dR ≤ −C5G
′(ρ) + C6 G(ρ) , all ρ ≥ 1 , (1.99)

where

G(R) :=
∫

ΩR

|∇u|2 ,

and C6 = C6(S, Φ, ‖∇u‖2) > 0. The integro-differential inequality (1.99) can be
integrated (see [36, Lemma VI.2.2]) to give

G(R) ≤ K1G(0) e−K2R all R ≥ 1

with Ki = Ki(Φ, S, ‖∇u‖2) > 0, i = 1, 2, that is,∫
ΩR

|∇u|2 ≤ K1‖∇u‖2
2 e−K2R all R ≥ 1 . (1.100)

The estimate (1.100) along with (1.96) allows us to obtain an exponential, point-
wise decay for u and ∇u:

sup
x∈ΩR

(|u(x)| + |∇u(x)|) ≤ K3 e−K2R all R ≥ 1 , (1.101)

with K3 = K3(Φ, S, ‖∇u‖2) > 0. If Γ is of class C∞, this decay property can be
extended to derivatives of arbitrary order of u and ∇φ.

Coming back to the assumed condition ‖∇u‖2 < ∞, we can not prove its
validity under a hypothesis as weak as (1.91), and a stronger requirement is needed.
Specifically, one can show that if

lim inf
R→∞

R−3

∫
ΩR

|∇u|2 = 0, (1.102)

and if |Φ| is sufficiently small, then ‖∇u‖2 < ∞; see [37, Lemma XI.4.3].
The results presented so far can be summarized in the following.

Theorem 1.4. There exists a constant c = c(S) > 0 such that, if |Φ| < c, then all
solutions to (1.77) in the class (1.102) must have a finite Dirichlet integral, and
decay to zero according to (1.100). Moreover, if Γ is of class C∞, then u, ∇φ and
all their derivatives of arbitrary order decay expontially fast to zero with the same
decay constant K2 of (1.100).

Remark 1.5. The results of Theorem 1.4 suggest the following directions of further
research.

1. From a theoretical point of view, the most important question left open by
Theorem 1.4 is whether or not the results there established continue to hold
without the restriction on the magnitude of the flow-rate.
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2. Another important question is to give a quantitative lower bound for the decay
constant K2 in (1.100) in terms of S, Φ and of some physical parameters at
the inlet of the pipe where the liquid is injected (at x1 = 0, that is), such its
maximum velocity, or its total kinetic energy.

3. By a simple argument, based on the spatial analitycity property of solutions
to (1.77)1,2, one show that the “perturbation” field u(x) can not decay to zero
(namely, the flow can not become fully developed) at a finite distance from
the outlet. Therefore, another not less important problem to investigate is
the determination of decay estimates from below for the perturbation velocity
and pressure fields.

4. Finally, it would be interesting to study the entry flow problem in the more
general situation of a time-periodic flow-rate. In this case, one should consider
the problem of attainability of the fully developed, time-periodic Poiseuille
flow both in space and time; see also Section 1.3.2.

1.3. Mathematical modeling of a piping system. Unbounded domain approach

Assume we have a liquid moving into a piping system, subject to prescribed flow
rates Φi = Φi(t) in each outlet Ωi, i = 1, 2, . . . , N . We suppose that Ω1, . . . ,Ωl

are “upstream” outlets, while Ωl+1, . . . ,ΩN are “downstream” outlets. By incom-
pressibility,

l∑
i=1

Φi =
N∑

i=l+1

Φi .

The case of a piping system with three outlets is sketched in Figure 2.

Figure 2. Sketch of a piping system.

The first problem that one should address when modeling a piping system is
how to prescribe boundary conditions at the open sections of the outlets. As we
mentioned at the beginning of this Section 1, there are basically two ways of doing
it. The first one assumes that each outlet, Ωi, can be extended to a semi-infinite
pipe of constant cross-section, possibly depending on i. The second one, instead,
keeps the outlets of finite length and prescribes suitable boundary conditions at
the open sections. Of course, these latter conditions should be chosen such as to
meet a certain number of requirements that will be discussed in the next section.
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In the current section we consider the unbounded domain approach. In this
case, on the basis of what we have shown previously, it appears natural to assume
that, eventually in each outlet, the flow becomes fully developed and, consequently,
the velocity field approaches that of the Poiseuille flow corresponding to the flow-
rate in that particular outlet. This situation is analogous to the more familiar one
of a flow past an obstacle, where one assumes that, at large distance from the
body, the flow velocity eventually reaches a constant value.

In order to not obscure the underlying ideas, we shall suppose that the system
consists of only two (semi-infinite) outlets, Ω1 and Ω2, of cross-section S1 and S2,
respectively. Therefore, the region of flow, Ω, can be written as follows:

Ω = Ω1 ∪ Ω0 ∪ Ω2 ,

where Ω0 is a compact set of R3and, in possibly different coordinate systems,

Ω1 = {x ∈ R3 : x1 < 0 , (x2, x3) ∈ S1} ,

Ω2 = {x ∈ R3 : x1 > 0 , (x2, x3) ∈ S2} .

We shall also often use the following splitting of Ω:

Ω = Ω̃1 ∪ Ω̃0 ∪ Ω̃2 ,

with

Ω̃1 := {x ∈ Ω1 : x1 < −1 } , Ω̃2 := {x ∈ Ω2 : x1 > 1 } Ω̃0 := Ω − (Ω̃1 ∪ Ω̃2) .
(1.103)

In the following two subsections, we shall consider, separately, the two cases
of constant flow-rate (steady-state motions) and time-periodic flow-rates (time-
periodic motions). In performing this study, the next simple lemma is particularly
useful.

Lemma 1.5. Let Ω be Lipschitz, and let v ∈ W 1,2(Ω) and u, w ∈ W 1,2
0 (Ω). Then

the following inequalities hold:

‖w‖2 ≤ C‖∇w‖2,

|(u · ∇v, w)| ≤ C‖∇u‖2‖∇v‖2‖∇w‖2 ,

where C = C(Ω) > 0.

Proof. The first inequality follows by using (1.79) in each Ωi along with the in-
equality

‖w‖2,ω ≤ Cω‖∇w‖2 , (1.104)

holding for any function w in W 1,2(ω), ω a Lipschitz, bounded domain, and that
vanishes on a subset of ∂ω having a non-zero (two-dimensional) Lebesgue measure;
see [37, Exercise II.4.10]. The second inequality is a consequence of the first one,
of the Hölder inequality and of the embedding W 1,2(Ω) ⊂ L4(Ω). �
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1.3.1. Steady-state case. Assuming that the flow-rate Φ is constant, the mathe-
matical problem consists then in finding a pair (v = v(x), p = p(x)) such that

Δv −∇p = v · ∇v

∇ · v = 0

}
in Ω,

∫
S

v · n dS = Φ ,

v|∂Ω = 0,

lim
|x|→∞, x∈Ωi

(v(x) − vPi(x)) = 0 , i = 1, 2 .

(1.105)

These equations are written in non-dimensional form, with the same scale quan-
tities used for (1.77). Furthermore, S is a generic cross-section, that is, any inter-
section of a plane with Ω that reduces to Si in Ωi, and n is the unit normal to
S oriented from Ω1 toward Ω2. Finally, vPi, i = 1, 2, are the (non-dimensional)
Poiseuille velocity fields corresponding to the flow-rate Φ.

In order to solve (1.105) it is useful to introduce the so-called (unit) flow-
rate carrier. By this we mean a field a defined in Ω and satisfying the following
properties.

(i) a ∈ W 2,q(ω) , for all q ≥ 1 and for all bounded domains ω ⊂ Ω ;
(ii) ∇ · a = 0 in Ω , a|∂Ω = 0 ;

(iii)
∫

S

a · n dS = 1 ;

(iv) Φa(x) = vP1(x) for all x ∈ Ω̃1 and Φa(x) = vP2(x) for all x ∈ Ω̃2, where Ω̃1

and Ω̃2 are defined in (1.103) ;
(v) there is C = C(Ω0, S1, S2) > 0 such that max

x∈Ω
(|a(x)| + |∇a(x)|) ≤ C .

The existence of the field a is shown in [36, Section VI.1]. Here, we shall give a
brief description of how to construct the field a, referring to [36, Section VI.1]
for details. Let ζ1 = ζ1(x) and ζ2 = ζ2(x) be two smooth functions satisfying the
properties

ζ1(x) =

{
1 x1 ≤ −1

0 x1 ≥ −1/2
x ∈ Ω1 ,

ζ2(x) =

{
1 x1 ≥ 1

0 x1 ≤ 1/2
x ∈ Ω2 ,

and set
U := ζ1vP1 + ζ2vP2 , (1.106)

where vPi = vPi/Φ. Clearly, the field U is smooth everywhere in Ω and reduces
to vPi in Ω̃i. However, U is not solenoidal and so we need to add to it a suitable
“correction”. To this end, let Ω̃0 := Ω− (Ω̃1 ∪ Ω̃2) and let W be a solution to the
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problem

∇ · W = −∇ · U in Ω̃0 ,

W ∈ W 2,q
0 (Ω̃0) , ‖W‖1,q ≤ C ‖∇ · U‖q , ‖W ‖2,q ≤ C ‖∇ · U‖1,q ,

(1.107)

where C = C(Ω̃0, q) > 0. The existence of W is shown in [36, Section VI.1]. If we
extend W to zero outside Ω̃0 and continue to denote by w such an extension, we
easily deduce that a := U + W satisfies all properties (i)–(v) listed above.

We now look for a solution to (1.105) of the form (v = u + α, p) where
α := Φ a and u satisfies the problem

Δu −∇p = u · ∇u + α · ∇u + u · ∇α + F

∇ · u = 0

}
in Ω,

∫
S

u · n dS = 0 , u|∂Ω = 0,

lim
|x|→∞, x∈Ωi

u(x) = 0 , i = 1, 2 ,

(1.108)

where
F := −Δα + α · ∇α .

Notice that, by the property (iv) of a, we have

F (x) = Gie1 for all x ∈ Ω̃i, i = 1, 2 , (1.109)

where Gi is the axial pressure gradient of the corresponding Poiseuille flow (see
(1.6)). The existence of a solution to (1.108) can be shown by means of the classical
Galerkin method in the space D1,2

0 (Ω). We recall that, if ∂Ω is (locally) Lipschitz,
then D1,2

0 (Ω) consists of those solenoidal vector fields in Ω that belong to W 1,2(Ω)
and have zero trace at the boundary. Let {ϕk} ⊂ D(Ω) be a base in D1,2

0 (Ω) and
set

um =
m∑

k=1

ckmϕk ,

where the coefficients ckm are determined from the system of equations∫
Ω

∇um : ∇ϕk = −
∫

Ω

(um · ∇um + α · ∇um + um · ∇α) ·ϕk −
∫

Ω

F ·ϕk , (1.110)

with k = 1, 2, . . . , m . It is known, see [37, Section XI.3], that a solution to (1.110)
exists if we can show that the Dirichlet norm of um is uniformly bounded. If we
dot-multiply both sides of (1.110) by ckm and sum over k from 1 to m we obtain

‖∇um‖2
2 =

∫
Ω

um · ∇um · α −
∫

Ω

F · um . (1.111)

By the property (v) of the field a, by Schwarz inequality and by Lemma 1.5 we
easily get ∫

Ω

um · ∇um · α ≤ C1|Φ| ‖∇um‖2
2 , (1.112)
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where C1 = C1(Ω) > 0. Furthermore, using the splitting Ω = Ω̃1 ∪ Ω̃0 ∪ Ω̃1, we
deduce ∫

Ω

F · um =
∫

Ω̃0

F · um +
2∑

i=1

∫
Ω̃i

F · um

≤ C2(|Φ| + |Φ|2)‖∇um‖2 +
2∑

i=1

∫
Ω̃i

F · um ,

(1.113)

where C2 = C2(Ω) > 0 and we have used property (i) of a together with (1.79).
We next observe that, by (1.109),∫

Ω̃1

F · um = G1

∫ −1

−∞

(∫
S

um · e1 dS

)
dx1 = 0 ,

because, since um is of compact support and solenoidal, we have∫
S

um · e1 dS = 0 .

Likewise, ∫
Ω̃2

F · um = G1

∫ ∞

1

(∫
S

um · e1 dS

)
dx1 = 0 ,

and so, from (1.111)–(1.113), it follows that

(1 − |Φ|C1)‖∇um‖ ≤ C2(|Φ| + |Φ|2) .

Therefore, if |Φ| < 1/C1, namely the magnitude of the flow-rate is suitably re-
stricted, the previous inequality furnishes the desired bound for the Dirichlet norm
of um. Once this a-priori bound has been established, it is routine to show that we
can select a subsequence {um′} and find a vector u ∈ D1,2

0 (Ω) such that um′ → u,
as m′ → ∞, in suitable topologies, and that u satisfies the following “weak form”
of (1.108):∫

Ω

∇u : ∇ϕ = −
∫

Ω

(u · ∇u + a · ∇u + u · ∇a) · ϕ −
∫

Ω

F · ϕ ,

for all ϕ ∈ D(Ω). Furthermore, there exists a scalar field p such that the pair
(v := u+α, p) is of class C∞(Ω) and satisfies (1.105)1,2,3. The boundary condition
(1.105)4 is also satisfied in the ordinary sense, provided ∂Ω is sufficiently smooth,
e.g., of class C2; see [37, Sections XI.1, XI.2 and XI.3]. Concerning the asymptotic
condition (1.105)5, from Theorem 1.4 we know that the decay rate is exponential,
provided ∂Ω is sufficiently smooth. Our final consideration regards the uniqueness
of these solutions. In [37, Theorem XI.3.2] it is shown that they are unique on
condition that, again, the magnitude of the flow-rate is below a suitable constant
depending only on Ω.

The results discussed so far can be then summarized in the following.
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Theorem 1.5. Assume Ω of class C2 and let Φ ∈ R. Denote by CΦ the class of
fields v such that

CΦ = {(v, p) solve (1.105) and ‖∇(v − vPi)‖2,Ωi < ∞ , i = 1, 2} (1.114)

where vPi are the Poiseuille velocity in Ωi, i = 1, 2, corresponding to the flow-rate
Φ. There is a constant C = C(Ω) > 0 such that if

|Φ| < C ,

then problem (1.105) has one and only one solution (v, p) with v in the class CΦ.
This solution satisfies the estimate

2∑
i=1

‖∇(v − vPi)‖2
2 + ‖∇v‖2,Ω0 ≤ C1|Φ| ,

with C1 = C1(Ω) > 0 and, in addition, it is infinitely differentiable in Ω. Moreover,
if Ω is of class C∞, v − vPi and ∇p−Gi, i = 1, 2, together with their derivatives
of arbitrary order, decay exponentially fast in the corresponding outlets Ωi.

Remark 1.6. The problem of existence of solutions to (1.105) was proposed by
J. Leray to O.A. Ladyzhenskaya during his visit to St. Petersburg (Leningrad, at
that time) in 1958. For this reason such an existence problem is often referred to
as “Leray’s Problem”; see [36, Chapter VI], [37, Chapter XI]. In 1959, Ladyzhen-
skaya published a paper (see Dokl. Akad. Nauk. SSSR, 124, 551–553) claiming
its resolution without restrictions on the magnitude of the flow-rate. However, her
proof contains a major mistake, as pointed out by R. Finn in 1965 (see Proc.
Symp. Appl. Math., 17, 121–153). Since then, many mathematicians, including
C.J. Amick, O.A. Ladyzhenskaya, V.A. Solonnikov, K. Pileckas, H. Morimoto,
H. Fujita and P.J. Rabier, have given several significant contributions to this in-
triguing problem without, however, being able to remove the restriction on the
magnitude of the flow-rate. Clearly, the question appears to be extremely diffi-
cult and it is not even known if it admits a positive answer. In this regards, we
wish to mention the result of Ladyzhenskaya and Solonnikov [71], who prove that
problem (1.105) always has a solution for arbitrary flow-rate, provided we give up
the asymptotic condition (1.105)5. Moreover, their solutions satisfy also (1.105)5
if the magnitude of the flow-rate is sufficiently “small”. In this case, they are also
unique.

Remark 1.7. In the case of N > 2 outlets, the results of Theorem 1.5 continue to
hold, provided (

∑N
i=1 |Φi|) < C, where Φi is the flow-rate in the outlet Ωi and C

is a suitable positive constant depending only on Ω .

1.3.2. Time-periodic case. The methods used for the case of a constant flow-rate
can be suitably generalized to prove existence of time-periodic flows of period 2π
(say), corresponding to a time-periodic flow-rate of the same period 2π. In the case
of two outlets, the problem is formulated as follows. Given a (dimensionless) time-
periodic function, Φ = Φ(t), of period 2π, find a pair (v(x, t), p(x, t)) 2π-periodic
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in t, such that

∂v

∂t
+ v · ∇v = Δv −∇p

∇ · v = 0

⎫⎬⎭ in Ω × (−π, π),

∫
S

v · n dS = Φ(t) ,

v|∂Ω = 0,

lim
|x|→∞, x∈Ωi

(v(x, t) − vPi(x, t)) = 0 , i = 1, 2 , t ∈ (−π, π) ,

(1.115)

where vPi are time-periodic Poiseuille flows corresponding to the flow-rate Φi and
whose existence has been determined in Theorem 1.2. Moreover, in the dimen-
sionless equation (1.115) we have chosen the scale velocity U = ν/d, where d is a
characteristic length of the cross-section S.

The first result concerning the well-posedness of problem (1.115) is due to
Beirão da Veiga [7], who proved existence of weak solutions (á la Leray–Hopf),
provided the magnitude of the flow-rate and of its first derivative is suitably re-
stricted. Under similar restrictions and by using the ideas of Galdi and Silvestre
[45], we shall now prove existence and uniqueness of strong solutions.

To this end, we need some preparatory results. Hereafter we will assume that
Ω is uniformly of class C2. (9) We begin to introduce a 2π-periodic flow-rate carrier
A(x, t) satisfying the following properties.

(i) A ∈ L2(−π, π; W 2,2(ω)) ,
∂A

∂t
∈ L2(−π, π; L2(ω)) , for all bounded domains

ω ⊂ Ω ;
(ii) ∇ · A(x, t) = 0 for a.a. (x, t) ∈ Ω × (−π, π) , A(x, t)|∂Ω = 0 , for a.a. t ∈

(−π, π);

(iii)
∫

S

A · n dS = Φ(t) ;

(iv) A(x, t) = vP1(x, t) for all (x, t) ∈ Ω̃1 × (−π, π) and A(x, t) = vP2(x, t) for
all x ∈ Ω̃2 × (−π, π), where Ω̃i, i = 1, 2, is defined in (1.103) ;

(v) for any bounded domain ω ⊂ Ω there is C = C(ω) > 0 such that

max
t∈[−π,π]

‖A‖2
1,2,ω +

∫ π

−π

(∥∥∥∥∂A

∂t

∥∥∥∥2

2,ω

+ ‖A(t)‖2
2,2,ω

)
dt ≤ C ‖Φ‖2

W 1,2(−π,π) ;

(9)We recall that a domain D is said to be uniformly of class C2 if D lies always on one part of
its boundary ∂D and for every y0 ∈ ∂D, there exists a ball B centered at y0 and of radius ρ,
independent of y0, such that ∂D∩B admits a Cartesian representation of the form y3 = f(y1, y2)

where f is a C2-function in its domain such that f and all its derivatives up to the order 2 included
are bounded by a constant M independent of y0.
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(vi) there is Ki = Ki(Si) > 0, i = 1, 2 such that

max
t∈[−π,π]

‖A‖2
W 1,2(Si)

+
∫ π

−π

(∥∥∥∥∂A

∂t

∥∥∥∥2

L2(Si)

+ ‖A(t)‖2
W 2,2(Si)

)
dt

≤ K2
i ‖Φ‖2

W 1,2(−π,π) .

The construction of the field A makes use of Theorem 1.2 and is formally analogous
to that of the field a in the steady-state case that we described in the previous
section (with q = 2). More precisely, we set A := U + W , where U and W are
defined in (1.106) and (1.107) and where, this time, the Poiseuille velocity fields
vP1 and vP2 are those constructed in Theorem 1.2. Then, taking into account of
the properties of W and of the following, further one∥∥∥∥∂W

∂t

∥∥∥∥
1,2

≤ C

(∥∥∥∥ ∂

∂t
(∇ · U)

∥∥∥∥
2

)
, (1.116)

with C = C(Ω̃0) > 0, we easily show the validity of the above conditions (i)–(vi).
We next consider an increasing sequence of suitable bounded domains, {Ω(k)},

“invading” Ω. Set

Ω̃1k = {x ∈ Ω̃1 : x1 ≥ −k} , Ω̃2k = {x ∈ Ω̃2 : x1 ≤ k} ;

then Ω(k) is defined as

Ω(k) = Ω̃0 ∪ Ω̃1k ∪ Ω̃2k ∪ ω1k ∪ ω2k ,

where the domains ωik satisfy the conditions

(A) ω1k ⊂ {x ∈ Ω1 : x ∈ (−k − 1,−k)} , ω2k ⊂ {x ∈ Ω1 : x ∈ (k, k + 1)},
(B) ω1(k+1) = ω1k + (−1, 0, 0) , ω2(k+1) = ω1k + (1, 0, 0).

Thus, recalling that Ω is uniformly of class C2, also Ω(k) will be of class C2

uniformly with respect to k ∈ N, namely, the constants ρ and M defining the
C2-regularity of Ω(k) (see footnote (9)) are independent of k.

Clearly, Ω = ∪∞
k=1Ω

(k). We will use the notation

Ω̃(k)
1 := Ω̃1k ∪ ω1k , Ω̃(k)

2 := Ω̃2k ∪ ω2k ,

so that
Ω(k) = Ω̃(k)

1 ∪ Ω̃0 ∪ Ω̃(k)
2 .

Let P = P (k) be the orthogonal projection operator of L2(Ω(k)) onto its
subspace L2

σ(Ω(k)) of solenoidal functions having vanishing normal component at
∂Ω(k) in the trace sense.

The following results hold.

Lemma 1.6. Set

(v, w) := (v, w)Ω(k) , ‖ · ‖s := ‖ · ‖s,Ω(k) .
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There exists a constant C = C(Ω) > 0, independent of k, such that

| (u · ∇A, v) | ≤ C‖Φ‖W 1,2(−π,π)‖∇u‖2‖∇v‖2 , (1.117)

for all u, v ∈ W 1,2
0 (Ω(k)) , and

| (u · ∇A, v) | ≤ C‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 ,

| (A · ∇u, v) | ≤ C‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 ,
(1.118)

for all u ∈ D1,2
0 (Ω(k)) ∩ W 2,2(Ω(k)) , v ∈ L2(Ω(k)) .

Proof. In order to show the lemma, we need a number of inequalities that we
collect here:

‖w‖r,S ≤ K1 ‖∇w‖2,S , r ∈ [1,∞) , w ∈ W 1,2
0 (S) ,

‖w‖∞,S ≤ K2 ‖∇w‖3,S , w ∈ W 1,3
0 (S) ,

‖∇w‖3,S ≤ K2 ‖w‖2,2,S , w ∈ W 2,2(S) ,

‖w‖q,Ω̃0
≤ K3 ‖∇w‖2,Ω̃0

, q ∈ [1, 6] , w ∈ W 1,2(Ω̃0) , w|Γ0 = 0,

‖∇w‖3 ≤ K4 ‖PΔw‖2 , w ∈ D1,2
0 (Ω(k)) ∩ W 2,2(Ω(k)) ,

‖w‖2,2 ≤ K4‖PΔw‖2 , w ∈ D1,2
0 (Ω(k)) ∩ W 2,2(Ω(k)) ,

(1.119)

where S is any bounded domain in R2, Γ0 := ∂Ω ∩ ∂Ω̃0, and K1 = K1(r, S) >
0, K2 = K2(S) > 0, K3 = K3(q, Ω) > 0 and K4 = K4(Ω) > 0. Inequalities
(1.119)1,2,3 are classical, and we refer to [36, Chapter I] for a proof. We next
observe that since

‖w‖2,Ω̃0
≤ K5‖∇w‖2,Ω̃0

, w ∈ W 1,2(Ω̃0) , w|Γ0 = 0 , (1.120)

with K5 = K5(Ω̃0) > 0, see, e.g., [36, Exercise II.4.10], inequality (1.119)4 follows
from standard embedding theorems. Furthermore, by (1.79) we deduce, for any
w ∈ C∞

0 (Ω(k)),
‖w‖

2,Ω̃
(k)
i

≤ ci ‖∇w‖
2,Ω̃

(k)
i

, i = 1, 2, (1.121)

where ci = ci(Si) > 0, i = 1, 2. Therefore, from (1.120) and (1.121) we conclude

‖w‖2 ≤ c ‖∇w‖2 , w ∈ W 1,2
0 (Ω(k)) , (1.122)

where c = c(Ω) > 0. Since we also have

(w, PΔw) = (w, Δw) = −‖∇w‖2 , w ∈ D1,2
0 (Ω(k)) ∩ W 2,2(Ω(k)) ,

by (1.122) and by Schwarz inequality we find

‖∇w‖2 ≤ c ‖PΔw‖2 , w ∈ D1,2
0 (Ω(k)) ∩ W 2,2(Ω(k)) . (1.123)

We now recall the inequalities (see, e.g., [57, Lemma 1])

‖∇w‖3 ≤ K6

(
‖∇w‖

1
2
2 ‖D2w‖

1
2
2 + ‖∇w‖2

)
, w ∈ W 2,2(Ω(k)) , (1.124)
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and

‖D2w‖2 ≤ c1 (‖PΔw‖2 + ‖∇w‖2) , (1.125)

where D2w stands for an arbitrary second derivative of w and the constants K6

and c1 > 0 are independent of w and k. Combining (1.124) and (1.125) we find,
in particular,

‖∇w‖3 ≤ K7

(
‖∇w‖

1
2
2 ‖PΔw‖

1
2
2 + ‖∇w‖2

)
, w ∈ W 2,2(Ω(k)) , (1.126)

with K7 = K7(Ω) > 0 independent of k. Consequently, (1.119)5 follows from
(1.122), (1.123) and (1.126), while (1.119)6 follows from (1.122), (1.123) and
(1.125). We now proceed to the proof of (1.117). By the Hölder inequality, by
(1.119)4 with q = 4, and by the properties (ii) and (v) of A we find

|(u · ∇A, v)| = |(u · ∇v, A)|

≤ ‖A(t)‖4,Ω̃0
‖u‖4‖∇v‖2 +

2∑
i=1

∣∣∣∣∣
∫

Ω̃
(k)
i

u · ∇v · A
∣∣∣∣∣

≤ C1‖Φ‖W 1,2(−π,π)‖∇u‖2‖∇v‖2 +
2∑

i=1

∣∣∣∣∣
∫

Ω̃
(k)
i

u · ∇v · A
∣∣∣∣∣ ,

where C1 = C1(Ω) > 0. Moreover, extending u and v to zero outside Ω̃(k), for all
k ∈ N, we have∣∣∣∣∣

∫
Ω̃

(k)
1

u · ∇v · A
∣∣∣∣∣ =

∣∣∣∣∫ −1

−k−1

(∫
S1

u · ∇v · A dS

)
dx1

∣∣∣∣ .

By virtue of the Hölder inequality, by (1.119)1 with r = 4, and by the properties
(iv) and (vi) of A, we obtain∣∣∣∣∫ −1

−k−1

∫
S1

u · ∇v · A dS dx1

∣∣∣∣ ≤
∫ −1

−k−1

‖A‖4,S1‖u‖4,S1‖∇v‖2,S1 dx1

≤ k2
1‖A(t)‖1,2,S1

∫ −1

−k−1

‖∇u‖2,S1‖∇v‖2,S1 dx1

≤ k2
1K1‖Φ‖W 1,2(−π,π)‖∇u‖2‖∇v‖2 .

Likewise, we show∣∣∣∣∣
∫

Ω̃
(k)
2

u · ∇v · A
∣∣∣∣∣ ≤ k2

1K1‖Φ‖W 1,2(−π,π)‖∇u‖2‖∇v‖2 ,

and so we conclude the validity of (1.117). We now pass to the proof of (1.118)1.
We extend v to 0 outside Ω(k) and continue to denote by v this extension. From
the Hölder inequality and from (1.119)6 and by the properties (ii) and (v) of A
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we find

|(u · ∇A, v)| ≤ ‖∇A(t)‖2,Ω̃0
‖u‖∞‖v‖2 +

2∑
i=1

∣∣∣∣∣
∫

Ω̃
(k)
i

u · ∇A · v
∣∣∣∣∣

≤ C2‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 +
2∑

i=1

∣∣∣∣∣
∫

Ω̃
(k)
i

u · ∇A · v
∣∣∣∣∣ ,

(1.127)
where C2 = C2(Ω) > 0. From the definition of Ω̃(k)

1 , we have∣∣∣∣∣
∫

Ω̃
(k)
1

u · ∇A · v
∣∣∣∣∣ ≤

∣∣∣∣∫
Ω̃1k

u · ∇A · v
∣∣∣∣+ ∣∣∣∣∫

ω1k

u · ∇A · v
∣∣∣∣ =: I1 + I2 . (1.128)

Recalling the definition of Ω̃1k, the properties of A and (1.119)6, we find

I1 ≤
∫ −1

−k

‖∇A‖2,S1‖u‖∞,S1‖v‖2,S1 dx1

≤ C3 ‖Φ‖W 1,2(−π,π)

∫ −1

−k

‖u‖2,2,S1‖v‖2,S1 dx1

≤ C4 ‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 ,

(1.129)

where C4 = C4(Ω) > 0. In order to evaluate I2, we observe that, given the stated
properties of u, we can approximate u in W 1,s(Ω(k)), s > 3, with a sequence of
functions {um} ⊂ C∞

0 (Ω(k)). If we use the embedding W 1,s(Ω(k)) ⊂ L∞(Ω(k))
with the embedding constant C = C(Ω(k), s) > 0, we deduce∣∣∣∣∫

ω1k

(um − u) · ∇A · v
∣∣∣∣ ≤ ‖um − u‖∞‖∇A‖2‖v‖2 ≤ C‖u − um‖1,s‖∇A‖2‖v‖2 ,

which, in turn, implies that

I2 = lim
m→∞

∣∣∣∣∫
ω1k

um · ∇A · v
∣∣∣∣ . (1.130)

However, by (1.119)2, by the Hölder inequality and by the properties of A, we
have ∣∣∣∣∫

ω1k

um · ∇A · v
∣∣∣∣ ≤

∫ −k

−k−1

‖∇A‖2,S1‖um‖∞,S1‖v‖2,S1 dx1

≤ C5 ‖Φ‖W 1,2(−π,π)

∫ −k

−k−1

‖∇um‖3,S1‖v‖2,S1 dx1

≤ C5 ‖Φ‖W 1,2(−π,π)‖∇um‖3‖v‖2 ,

where C5 = C5(Ω) > 0. From this relation, from (1.130) and from the property of
the sequence {um} we recover

I2 ≤ C5 ‖Φ‖W 1,2(−π,π)‖∇u‖3‖v‖2 ,
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and so, by (1.119)5,

I2 ≤ C6 ‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 ,

where C6 = C6(Ω) > 0. From this latter equation and from (1.128) and (1.129),
we find ∣∣∣∣∣

∫
Ω̃

(k)
1

u · ∇A · v
∣∣∣∣∣ ≤ C6 ‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 , (1.131)

with C6 = C6(Ω) > 0. Likewise, we show∣∣∣∣∣
∫

Ω̃
(k)
2

u · ∇A · v
∣∣∣∣∣ ≤ C7 ‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 , (1.132)

for another C7 = C7(Ω) > 0, so that (1.118)1 follows from (1.127), (1.131) and
(1.132). In order to prove (1.118)2, we again extend v to 0 outside Ω(k) and
continue to denote by v this extension. From the Hölder inequality and from
(1.119)4 with q = 6, (1.119)5 and by the properties (ii) and (v) of A we obtain

|(A · ∇u, v)| ≤ ‖A(t)‖6,Ω̃0
‖∇u‖3‖v‖2 +

2∑
i=1

∣∣∣∣∣
∫

Ω̃
(k)
i

A · ∇u · v
∣∣∣∣∣

≤ C7‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 +
2∑

i=1

∣∣∣∣∣
∫

Ω̃
(k)
i

A · ∇u · v
∣∣∣∣∣ ,

(1.133)
where C7 = C7(Ω) > 0. As in the proof of (1.118)1 we perform the splitting∣∣∣∣∣

∫
Ω̃

(k)
1

A · ∇u · v
∣∣∣∣∣ ≤

∣∣∣∣∫
Ω̃1k

A · ∇u · v
∣∣∣∣+ ∣∣∣∣∫

ω1k

A · ∇u · v
∣∣∣∣ =: I1 + I2 . (1.134)

By the properties of A, by (1.119)1 with r = 6 and by (1.119)5, we find

I1≤
∫ −1

−k

‖A‖6,S1‖∇u‖3,S1‖v‖2,S1dx1≤C8 ‖Φ‖W 1,2(−π,π)

∫ −1

−k

‖u‖2,2,S1‖v‖2,S1dx1

≤ C9 ‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 ,
(1.135)

where C9 = C9(Ω) > 0. Furthermore, using again the Hölder inequality along with
(1.119)1 with r = 6 and (1.119)5, we show that

I2 ≤
∫ −k

−k−1

‖A‖6,S1‖∇u‖3,S1‖v‖2,S1dx1

≤ C10 ‖Φ‖W 1,2(−π,π)

∫ −k

−k−1

‖∇u‖3,S1‖v‖2,S1dx1

≤ C10 ‖Φ‖W 1,2(−π,π)‖∇u‖3‖v‖2

≤ C11‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 ,

(1.136)
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where C11 = C11(Ω) > 0. From (1.134)–(1.136) it follows that∣∣∣∣∣
∫

Ω̃
(k)
1

A · ∇u · v
∣∣∣∣∣ ≤ C12 ‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 , (1.137)

where C12 = C12(Ω) > 0. In a completely analogous manner we show that∣∣∣∣∣
∫

Ω̃
(k)
2

A · ∇u · v
∣∣∣∣∣ ≤ C13 ‖Φ‖W 1,2(−π,π)‖PΔu‖2‖v‖2 , (1.138)

with C13 = C13(Ω) > 0, and so (1.118)2 follows from (1.133), (1.134), (1.137) and
(1.138). �

Remark 1.8. Inequalities (1.119)5,6 continue to hold on the entire domain Ω. This
can be easily proved by using the fact that the constants involved do not depend
on k. Therefore, exactly by the same arguments used in the proof of Lemma 1.6,
we can show that inequalities (1.117) and (1.117)1 continue to hold if we replace
Ω(k) with the whole domain Ω.

We are now in a position to show the main result of this section.

Theorem 1.6. Let Ω be uniformly of class C2 and assume that Φ ∈ W 1,2(−π, π)
with Φ(−π) = Φ(π). Then, there exists a positive constant C = C(Ω) such that if

‖Φ‖W 1,2(−π,π) < C , (1.139)

problem (1.115) has at least one time-periodic solution (v, p) of period 2π, with
v = u + A, such that

u ∈ L∞(−π, π;D1,2
0 (Ω)) ∩ L2(−π, π; W 2,2(Ω)) ,

∂u

∂t
∈ L2(−π, π; L2(Ω)) ,

∇p ∈ L2(−π, π; L2(Ω)) .
(1.140)

Moreover, this solution satisfies the estimate

ess sup
t∈(−π,π)

‖u(t)‖2
1,2 +

∫ π

−π

(∥∥∥∥∂u

∂t

∥∥∥∥2

2

+ ‖u(t)‖2
2,2

)
dt ≤ C1‖Φ‖2

W 1,2(−π,π) , (1.141)

where C1 = C1(Ω, ) > 0.
Concerning the asymptotic conditions (1.115)5 they are satisfied in the fol-

lowing sense:

lim
r→∞

max
x∈Ωir

|v(x, t) − vPi(x, t)| = 0 , i = 1, 2 for a.a. t ∈ [−π, π] , (1.142)

where Ω1r := {x ∈ Ωi : x1 < −r} and Ω2r := {x ∈ Ωi : x1 > r}.
Finally, if (ũ, p̃) is any other solution in the class (1.140), then u ≡ ũ, p̃ ≡ p.
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Proof. We begin to explain the basic ideas. First of all, as in the steady-state case,
we write v = u + A, where u satisfies the problem

∂u

∂t
+ u · ∇u + A · ∇u + u · ∇A = Δu −∇p + f

∇ · u = 0

⎫⎬⎭ in Ω × (−π, π),

∫
S

u · n dS = 0 , u|∂Ω = 0,

lim
|x|→∞, x∈Ωi

u(x) = 0 , i = 1, 2 ,

(1.143)
with

f := −∂A

∂t
+ ΔA − A · ∇A .

By the property (iv) of A, we have

f(x, t) = −Gi(t)e1 for all x ∈ Ω̃i, i = 1, 2 , (1.144)

where Gi(t) is the axial pressure gradient of the corresponding Poiseuille flow (see
(1.4)). We next consider the increasing sequence of C2-bounded domains, {Ω(k)},
introduced previously and show that, on each domain Ω(k) problem (1.143) has
a 2π-periodic solution (u(k), p(k)) in the class (1.140). Successively, we prove that
these “approximating solutions” can be bounded in suitable norms, uniformly in k,
along a subsequence at least, and that in the limit of large k they converge, again
in appropriate topologies, to a solution of problem (1.143) in the class (1.140). In
order to find a solution in each Ω(k), we shall use the Galerkin method with the
special basis constituted by the eigenfunctions, {ψ(k)

j }, of the Stokes problem:

PΔψ
(k)
j = −λ(k)ψ

(k)
j , ψ

(k)
j ∈ L2

σ(Ω(k)) ∩ W 1,2
0 (Ω) ∩ W 2,2(Ω(k)) , (1.145)

where P , we recall, is the orthogonal projection operator of L2(Ω(k)) onto its
subspace L2

σ(Ω(k)) of solenoidal functions having vanishing normal component at
∂Ω(k). The family {ψ(k)

j } is orthonormal in L2(Ω(k)). We extend each ψ
(k)
j to zero

in Ω, outside Ω(k) and continue to denote by ψ
(k)
j this extension. It is easy to check

that ψ
(k)
j carries no flow-rate, that is,∫

S

ψ
(k)
j · n dS = 0 .

An approximating solution to problem (1.143) in Ω(k) is sought of the form

u(k)
m (x, t) =

m∑
i=1

c
(k)
mi(t)ψ

(k)
i (x)
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where the coefficients c
(k)
mi(t), i = 1, . . . , m are solutions to the following system of

ordinary differential equations:
d

dt
(u(k)

m , ψ
(k)
i )+

(
(u(k)

m · ∇u
(k)
m + A · ∇u

(k)
m + u

(k)
m · ∇A), ψ(k)

i

)
= (Δu

(k)
m , ψ

(k)
i ) + (f , ψ

(k)
i ) , i = 1, 2, . . . , m ,

(1.146)

and where (·, ·) denotes the L2(Ω(k)) scalar product of vector functions. We shall
now prove that (1.146) has a 2π-periodic solution, provided the norm of Φ in
W 1,2(−π, π) is suitably restricted. To this end, multiplying both sides of (1.146)
by c

(k)
mi (t) and summing over i from 1 to m, we get (superscript k omitted)

1
2

d

dt
‖um‖2

2 + ‖∇um‖2
2 = (um · ∇um, A) + (f , um) . (1.147)

In view of (1.117), we have

(um · ∇um, A) ≤ C1‖Φ‖W 1,2(−π,π)‖∇u‖2
2 , (1.148)

where C1 = C1(Ω) > 0. We observe next that, from (1.144) and for all k ∈ N, we
have

(f , um) =
∫

Ω̃0

f · um − G1(t)
∫ −1

−k−1

∫
S1

um · e1 − G2(t)
∫ k+1

1

∫
S2

um · e1 ,

where we used the fact that um = 0 outside Ω(k). Thus, since um carries no flow-
rate, from the previous relation and from the Schwarz inequality and inequality
(1.120) we find

(f , um) ≤
(∫

Ω̃0

|f |2
)1/2(∫

Ω̃0

|um|2
)1/2

≤ C2

(∫
Ω̃0

|f |2
)1/2

‖∇um‖2 ≤ C3

∫
Ω̃0

|f |2 + 1
4‖∇um‖2

2 ,

(1.149)

with C3 = C3(Ω) > 0. Collecting (1.147), (1.148) and (1.149) and imposing

‖Φ‖W 1,2(−π,π) <
1

4C2
, (1.150)

we thus deduce
d

dt
‖um‖2

2 + ‖∇um‖2
2 ≤ 2C4

∫
Ω̃0

|f |2 . (1.151)

We now notice that, from the definition of f , from (1.150), from elementary em-
bedding inequalities and from property (v) of the flow-rate carrier A it easily
follows that ∫ π

−π

∫
Ω̃0

|f |2dt ≤ C5 ‖Φ‖2
W 1,2(−π,π) , (1.152)

with C5 = C5(Ω) > 0. Consequently, integrating both sides of (1.151) from −π to

π, we obtain, on the one hand, that ‖um(t)‖2 =
m∑

i=1

|cmi(t)|2 is uniformly bounded
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in t ∈ [−π, π], provided ‖um(−π)‖2 =
m∑

i=1

|cmi(−π)|2 < ∞, which implies that

the solutions cmi(t) to the system (1.146) can be extended to the whole interval
[−π, π], and, on the other hand, that the following estimate holds:∫ π

−π

‖∇um(t)‖2
2dt ≤

(
‖um(−π)‖2

2 − ‖um(π)‖2
2 + C6‖Φ‖2

W 1,2(−π,π)

)
, (1.153)

with C6 = C6(Ω) > 0. It is easy to prove that we can choose um(−π) in such a
way that um(−π) = um(π). Actually, by a routine calculation that we omit and
refer to [90] for details, we prove that the map

T : cmi(−π) ∈ R
m �→ cmi(π) ∈ R

m

is continuous. It is also easy to prove that T transforms the ball of Rm, BR, of
radius R into itself, for a suitable R. To this end, using (1.79) in the second term
on the left-hand side of (1.151) along with Gronwall’s lemma and (1.152) we obtain

‖um(π)‖2
2 ≤ ‖um(−π)‖2

2e
−C7π + C5‖Φ‖2

W 1,2(−π,π) , (1.154)

with C7 = C7(Ω) > 0. Thus, if we choose, for example,

R2 = 2C5

‖Φ‖2
W 1,2(−π,π)

1 − e−C7π
,

T transforms BR into itself and, therefore, by Brower’s theorem, T has a fixed point
in BR, that is, um(−π) = um(π). We may thus extend, by periodicity, um(t) to
the whole real line. Furthermore, since ‖um(−π)‖2 ≤ R, from (1.151)–(1.153) we
also have

‖um(t)‖2
2 +

∫ π

−π

‖∇um(t)‖2
2dt ≤ C8 ‖Φ‖2

W 1,2(−π,π) (1.155)

where C8 = C8(Ω) > 0 is independent of k. We now show further bounds for the
sequence {um}. If we dot-multiply both sides of (1.146) by λ

(k)
i cmi(t), sum over i

from 1 to m and take into account (1.145), we find

1
2

d

dt
‖∇um‖2

2 + ‖PΔum‖2
2 = ((um · ∇um + A · ∇um + um · ∇A), PΔum)

+(f , PΔum) .
(1.156)

In order to estimate the first term on the right-hand side of (1.156), we recall the
classical Sobolev inequality

‖w‖6,Ω(k) ≤ K‖∇w‖2,Ω(k) ,

where K is a positive universal constant independent of k. Thus, from the Hölder
inequality, from (1.126), and from Young’s inequality

ab ≤ ε−q/q′ aq′

q′
+ ε

bq

q
, a , b , ε > 0 ,

1
q

+
1
q′

= 1 , q ∈ (1,∞) , (1.157)
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we obtain
(um · ∇um, PΔum) ≤ C9‖um‖2

6‖∇um‖2
3 + (1/4)‖PΔum‖2

2

≤ C10

(
‖∇um‖4

2 + ‖∇um‖6
2

)
+ (1/2)‖PΔum‖2

2 ,
(1.158)

where C10 = C10(Ω) > 0. The second and third term on the right-hand side of
(1.156) are estimated by (1.118). Thus, setting

‖Φ‖W 1,2(−π,π) := D ,

we have

(A · ∇u, PΔum) + (u · ∇A, PΔum) ≤ C13D ‖PΔum‖2
2 , (1.159)

where C13 = C13(Ω) > 0. Moreover, by the same reasonings leading to (1.149), we
find

(f , PΔum) ≤ C16

∫
Ω̃0

|f |2 + (1/4)‖PΔum‖2
2 , (1.160)

with C14 = C14(Ω) > 0. Then, from (1.156)–(1.160) it follows that there exists a
constant C15 = C15(Ω) > 0 such that if D < C15, the following inequality holds:

d

dt
‖∇um‖2

2 + ‖PΔum‖2
2 ≤ C16

(
‖∇um‖4

2 + ‖∇um‖6
2

)
+ C17

∫
Ω̃0

|f |2 , (1.161)

with Ci = Ci(Ω) > 0, i = 16, 17. One consequence of (1.161) is obtained by using
(1.119)6 on the second term on its left-hand side. We get

d

dt
‖∇um‖2

2 + ‖∇um‖2
2 ≤ C18

(
‖∇um‖4

2 + ‖∇um‖6
2

)
+ C19

∫
Ω̃0

|f |2 , (1.162)

with Ci = Ci(Ω) > 0, i = 18, 19. We then go back to (1.155) and observe that,
by the mean-value theorem, there exists tm (possibly depending on m) in (−π, π)
such that

‖∇um(tm)‖2
2 ≤ C8

2π
D2.

So, using (1.152) and the 2π-periodicity of um, we can readily show that, if D2 is
below a certain positive constant depending only on Ω, equation (1.162) implies
that

‖∇um(t)‖2
2 ≤ C20 D2 , for all t ∈ [−π, π] , (1.163)

where, again, the constant depends only on Ω. Furthermore, if we integrate both
sides of (1.161) over (−π, π) and employ (1.152), (1.163) and the fact that D is
below a suitable constant, we find, for some C21 = C21(Ω) > 0,∫ π

−π

‖PΔum(t)‖2
2dt ≤ C21 D , (1.164)

namely, by (1.119)6 and (1.163),∫ π

−π

‖um(t)‖2
2,2dt ≤ C22 D , (1.165)
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with C22 = C22(Ω) > 0. We next look for an estimate on the time derivative of

um. To this end, if we multiply both sides of (1.146) by
dcmi

dt
and sum over i from

1 to m we deduce

1
2

d

dt
‖∇um‖2

2 +
∥∥∥∥∂um

∂t

∥∥∥∥2

2

= −
(

(um · ∇um + A · ∇um + um · ∇A),
∂um

∂t

)
+(f ,

∂um

∂t
) .

(1.166)
Again using the Hölder inequality, (1.157) and (1.119)6, we find∣∣∣∣((um · ∇um,

∂um

∂t

)∣∣∣∣ ≤ ‖um‖2
∞‖∇um‖2

2 + (1/4)
∥∥∥∥∂um

∂t

∥∥∥∥2

2

≤ C23‖PΔum‖2
2‖∇um‖2

2 + (1/4)
∥∥∥∥∂um

∂t

∥∥∥∥2

2

,

(1.167)

with C23 = C23(Ω) > 0. The second and the third term on the right-hand side of
(1.166) can be estimated by (1.118) to obtain∣∣∣∣(A · ∇um,

∂um

∂t

)
+
(

um · ∇A,
∂um

∂t

)∣∣∣∣ ≤ C24D
2‖PΔum‖2

2 + (1/4)
∥∥∥∥∂um

∂t

∥∥∥∥2

2

,

(1.168)
where C24 = C24(Ω) > 0. Finally, by an argument entirely analogous to that
leading to (1.149), we get

|(f ,
∂um

∂t
)| ≤ C25

∫
Ω̃0

|f |2 + (1/4)
∥∥∥∥∂um

∂t

∥∥∥∥2

2

, (1.169)

where C25 = C25(Ω) > 0. From (1.166)–(1.169), and taking into account (1.152),
(1.163) and (1.164), we conclude that there exists a constant C26 = C26(Ω) > 0
such that ∫ π

−π

∥∥∥∥∂um

∂t

∥∥∥∥2

2

dt ≤ C26D
2 . (1.170)

Once the uniform (in m and k) estimates (1.146), (1.155), (1.163), (1.165)
and (1.170) have been obtained, it becomes routine to prove the existence of a
2π-periodic solution to (1.143). We will sketch the procedure here, referring the
reader to [45] for details. Using the above estimates we can show that there exist
a subsequence {um′} and a 2π-periodic in time vector field u(k)(x, t) such that

um′ → u(k) weakly in L2(−π, π; W 2,2(Ω(k))),

∂um′

∂t
→ ∂u(k)

∂t
weakly in L2(−π, π; L2(Ω(k))),

um′(t) → u(k)(t) weakly in W 1,2(Ω(k)), uniformly in t ∈ (−π, π) .
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Furthermore, u(k) satisfies the problem

∂u(k)

∂t
+ u(k) · ∇u(k) + A · ∇u(k) + u(k) · ∇A

= Δu(k) −∇p(k) + f

∇ · u(k) = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ in Ω(k) × (−π, π),

∫
S

u(k) · n dS = 0 , u|∂Ω(k) = 0 ,

(1.171)

for a suitable p ∈ L2(−π, π; W 1,2(Ω(k))). In addition, the sequence of fields u(k)

continues to satisfy (1.146), (1.155), (1.163), (1.165) and (1.170) where, as we
observed, the bounds do not depend on k. Thus, we can select a subsequence
converging, in suitable topologies, to a vector field u belonging to the class (1.140)1
and obeying (1.141). In addition, we can find a suitable scalar field p in the class
(1.140)2 which together with u satisfies (1.141) and (1.143)1,2,3. As far as condition
(1.142), we recall the inequality

max
x∈Σr

|w(x)| ≤ C ‖w‖2,2,Σr , (1.172)

where Σ = {x ∈ Ω1 : r < x1 < r + 1} and where the constant C is independent
of r; see, e.g., [36, Chapter II]. We now apply (1.172) to u(x, t) and notice that
u = v − vP1 in Ω̃1 and that u ∈ W 2,2(Ω) for a.a. t ∈ R. Thus, (1.142) in Ω1

follows by letting r → ∞ in (1.172) with w ≡ u. A similar proof holds for Ω2.
It remains to show uniqueness. Let (u1, p1) be the solution to (1.143) that we
have just constructed, let (u2, p2) be another solution in the class (1.140), and set
u := u2 − u1, p := p2 − p1. From (1.143) we then find

∂u

∂t
+ u2 · ∇u + u · ∇u1 + A · ∇u + u · ∇A = Δu −∇p

∇ · u = 0

⎫⎬⎭ in Ω,

∫
S

u · n dS = 0 , u|∂Ω = 0,

lim
|x|→∞, x∈Ωi

u(x) = 0 , i = 1, 2 .

(1.173)

If we dot-multiply both sides of (1.173)1 by u, integrate by parts over Ω, then
integrate over the time-interval (−π, π), and employ the 2π-periodicity of u, we
find ∫ π

−π

‖∇u(t)‖2
2 dt = −

∫ π

−π

[(u · ∇u2, u) + (u · ∇A, u)] dt . (1.174)

By Remark 1.8 and by (1.117), we have∫ π

−π

| (u · ∇A, u) | ≤ C‖Φ‖W 1,2(−π,π)

∫ π

−π

‖∇u‖2
2 . (1.175)
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Moreover, by the Hölder inequality,∫ π

−π

|(u · ∇u2, u)| dt ≤
∫ π

−π

‖u‖2
4‖∇u1‖2 dt .

Now, by (1.119)4 with q = 4 and by (1.79) we obtain

‖u‖2 ≤ C27‖∇u‖2 ,

with C27 = C27(Ω) > 0. So, using the embedding W 1,2(Ω) ⊂ L4(Ω), we find

‖u‖4 ≤ C28‖∇u‖2 , (1.176)

with C28 = C28(Ω) > 0. Moreover, since u1 satisfies (1.141), we have

ess sup
t∈(−π,π)

‖∇u1‖2 ≤ C29 ‖Φ‖W 1,2(−π,π) , (1.177)

where C29 = C29(Ω) > 0. From (1.174)–(1.177) it easily follows that, if a condition
of the type (1.139) is satisfied for a suitable constant C, then u(x, t) = 0, a.e. in
Ω × (−π, π). The proof of the theorem is thus completed. �

Remark 1.9. As in the steady-state case, see Remark 1.7, the results of Theorem
1.5 can be directly extended to the situation where Ω has N > 2 outlets Ωi,
provided we require that the flow-rates Φi are time-periodic with the same period
2π and satisfy a condition of the type

N∑
i=1

‖Φi‖W 1,2(−π,π) < C ,

for a suitable positive constant C.

1.3.3. Attainability of steady-state and time-periodic flow. In Section 1.1.3 we
considered the problem of attainability of steady-state and time-periodic flow in
the class of fully developed flow. The objective of this section is to study this
problem in its complete generality. Thus, assume that the flow-rate is increased
from zero to a given constant (respectively, time-periodic) function Φ. We wish
to show that if the magnitude of Φ is suitably restricted, the corresponding un-
steady flow will converge, as time goes to infinity, to the corresponding steady-state
(respectively, time-periodic) flow.

Just for the sake of simplicity, we shall consider attainability in the time-
periodic case, leaving the (simpler) steady-state case to the interested reader as an
exercise. Furthermore, we will assume that the domain Ω satisfies the assumptions
of Theorem 1.6.

Thus, let v = v(x, t), p = p(x, t) be the solution constructed in Theorem 1.6
corresponding to the flow-rate Φ satisfying the restriction (1.139) and let vPi be the
corresponding Poiseuille flow in Ωi, i = 1, 2. Moreover, let v = v(x, t), p = p(x, t)
be a solution to (1.3) corresponding to the flow-rate ψΦ, where ψ = ψ(t) is the
“ramping” function introduced in Section 1.3.3. Thus, setting

w := v − v , φ := p − p ,
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we have
∂w

∂t
+ w · ∇w + v · ∇w + u · ∇v = Δw −∇φ

∇ · w = 0

⎫⎬⎭ in Ω × (0,∞),

∫
S

w(x, t) · n dS = (ψ − 1)Φ(t) , t ∈ (0,∞),

w(x, t)|∂Ω = 0 , t ∈ (0,∞) , w(x, 0) = −v(x, 0) , x ∈ Ω .

(1.178)

The attainability problem consists then in finding a solution to (1.178) satisfying
the condition

lim
t→∞

(w(x, t) − v(x, t)) = 0 , x ∈ Ω . (1.179)

Similarly to the problems treated in the previous Sections 1.3.1 and 1.3.2, also
for problem (1.178) an existence proof, in a suitable function class, can be safely
accomplished by the construction of an appropriate flow-rate carrier, in conjuction
with the Galerkin method and proper a-priori estimates. In the following, we shall
limit ourselves to derive these estimates formally, leaving to the interested reader
the task of combining them with the Galerkin method to produce the existence
result. As a byproduct, our estimates will also show in which sense (1.179) is
achieved.

We begin to introduce a flow-rate carrier, B, defined as follows. Let

Ũ = ζ1U1 + ζ2U2

where
U1(x, t) = (V1(x, t)e1 − vP1(x, t)) , x ∈ Ω1,

U2(x, t) = (V2(x, t)e1 − vP2(x, t)) , x ∈ Ω2,

and Vi, i = 1, 2, solves (1.30)–(1.31) in Si × (0,∞), i = 1, 2. We then set

B = Ũ + W̃

with W̃ given in (1.107) with U ≡ Ũ . Notice that, since Ũ(x, 0) = U(x, 0), we
may take W̃ (x, 0) = W (x, 0) and so, recalling that V1(x, 0) = V2(x, 0) = 0, x ∈ Ω,
and the definition of A (see the beginning of Section I.3.2), we may deduce

A(x, 0) + B(x, 0) = 0 , x ∈ Ω . (1.180)

Using the properties of W̃ given in (1.107), with q = 2, and (1.116), and the
results of Theorem 1.3, it becomes a straightforward procedure to establish that
B satisfies, in particular, the following conditions.

(i) B ∈ L2(0,∞; W 2,2(ω)) ,
∂B

∂t
∈ L2(0,∞; L2(ω)) , for all bounded domains

ω ⊂ Ω ;
(ii) ∇·B(x, t) = 0 for a.a. (x, t) ∈ Ω×(0,∞) , B(x, t)|∂Ω = 0 , for a.a. t ∈ (0,∞);

(iii)
∫

S

B · n dS = (ψ − 1)Φ(t) ;
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(iv) for any bounded domain ω ⊂ Ω there are c1 = c1(ω, Φ) > 0 and c2 =
c2(ω, T ) > 0 such that

sup
t≥0

(‖B(t)‖2
1,2,ω eλ1t) +

∫ ∞

0

(∥∥∥∥∂B

∂t

∥∥∥∥2

2,ω

+ ‖B(t)‖2
2,2,ω

)
eλ1tdt ≤ C ,

max
t∈[0,T ]

‖B(t)‖2
1,2,ω ≤ c2 ‖Φ‖2

W 1,2(−π,π) , for all T > 0 ;

(v) there are Ci = Ci(Si, Φ) > 0 and Ki = Ki(Si, T ) > 0, i = 1, 2, such that

sup
t≥0

(‖B(t)‖2
W 1,2(Si)

eλ1t) +
∫ ∞

0

(∥∥∥∥∂B

∂t

∥∥∥∥2

L2(Si)

+ ‖B(t)‖2
W 2,2(Si)

)
eλ1tdt ≤ Ci,

max
t∈[0,T ]

‖B(t)‖2
1,2,Si

≤ Ki ‖Φ‖2
W 1,2(−π,π) , for all T > 0 .

We next write w = u+B and obtain, from (1.178), (1.180) and from the properties
of B, that u satisfies the initial-boundary value problem

∂u

∂t
+ u · ∇u + v · ∇u + u · ∇v

+u · ∇B + B · ∇u = Δu −∇φ + F

∇ · u = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω × (0,∞),

∫
S

u(x, t) · n dS = 0 , t ∈ (0,∞),

u(x, t)|∂Ω = 0 , t ∈ (0,∞) , u(x, 0) = −v(x, 0) + A(x, 0) := u0(x) , x ∈ Ω ,
(1.181)

with

F := −∂B

∂t
− B · ∇B − v · ∇B − B · ∇v + ΔB . (1.182)

Notice that, because of (1.141), it follows that

u0 ∈ W 1,2(Ω) . (1.183)

We also notice that (1.3), (1.32) and the properties of B imply

F = −Gi(t)e1 − (v − vPi) · ∇B − B · ∇(v − vPi) , x ∈ Ω̃i , i = 1, 2 . (1.184)

Dot-multiplying both sides of (1.181)1 by u, integrating by parts over Ω and taking
into account (1.181)2 and the solenoidality of B, we get

1
2

d

dt
‖u‖2

2 + ‖∇u‖2
2 = −(u · ∇B, u) + (u · ∇u, u)− (u · ∇A, u) + (F , u) , (1.185)

where u := v − A. In view of Remark 1.8, we find

|(u · ∇A, u)| ≤ C1‖Φ‖W 1,2(−π,π)‖∇u‖2
2 , (1.186)
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with C1 = C1(Ω) > 0, while, by the Hölder inequality, by the embedding W 1,2(Ω)
⊂ L4(Ω), by Lemma 1.5 and by (1.141) we get

|(u · ∇u, u)| ≤ C2‖Φ‖W 1,2(−π,π)‖∇u‖2
2 , (1.187)

where C2 = C2(Ω) > 0. Moreover, reasoning exactly as in the proof of (1.117), we
show that

|(u · ∇B, u)| ≤ C3(‖B‖1,2,Ω̃0
+

2∑
i=1

‖B‖W 1,2(Si))‖∇u‖2
2 .

Thus, by properties (iv) and (v) of B, we find

|(u · ∇B, u)| ≤ 1
4‖∇u‖2

2 (1.188)

provided ‖Φ‖W 1,2(−π,π) < C4 for some C4 = C4(Ω) > 0. It remains to estimate
the last term on the right-hand side of (1.185). Taking into account (1.184) and
that u carries no flow-rate, with the help of Schwarz inequality and of Lemma 1.5
we find

(F , u) ≤ C5

(∫
Ω̃0

|F |2 +
2∑

i=1

(
‖v − vPi‖2

4‖∇B‖2
4,Si

+ ‖B‖2
∞,Si

‖v − vPi‖2
1,2

))
+ 1

4‖∇u‖2
2 ,

where C5 = C5(Ω) > 0. Using in this latter relation (1.119)1−3, the embedding
W 1,2(Ω) ⊂ L4(Ω) and (1.141) we deduce

(F , u) ≤ C5

∫
Ω̃0

|F |2 + C6

2∑
i=1

‖B‖2
2,2,Si

+ 1
4‖∇u‖2

2 , (1.189)

with C6 = C6(Ω, Φ) > 0. We next observe that from the Minkowski and Schwarz
inequalities and from the embeddings W 2,2(Ω̃0) ⊂ W 1,4(Ω̃0) ⊂ L∞(Ω̃) we obtain

‖v · ∇B + B · ∇v‖2 ≤ C7‖B‖2,2,Ω̃0

(
‖v − A‖4,Ω̃0

+ ‖v − A‖1,2,,Ω̃0

+‖A‖4,Ω̃0
+ ‖A‖1,2,,Ω̃0

) (1.190)

and
‖B · ∇B‖2,Ω̃0

≤ C7‖B‖1,2,Ω̃0
‖B‖2,2,Ω̃0

, (1.191)

with C7 = C7(Ω) > 0. Thus, collecting (1.189)–(1.191) and taking into account
(1.182), (1.141) and property (v) of the field A and property (iv) of the field B,
we conclude

(F , u) ≤ F(t) + 1
2‖∇u‖2

2 , F := C8

(
‖∂B

∂t
‖2
2,Ω̃0

+ ‖B‖2
2,2,Ω̃0

+
2∑

i=1

‖B‖2
2,2,Si

)
,

(1.192)
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with C8 = C8(Ω̃0, Φ) > 0. Consequently, from (1.184)–(1.188) and (1.192) we
obtain that, if ‖Φ‖W 1,2(−π,π) is below a suitable constant depending only on Ω,
the following inequality holds:

d

dt
‖u‖2

2 + 1
2‖∇u‖2

2 ≤ 2F .

If we use the first inequality of Lemma 1.6 in this relation, we obtain
d

dt
‖u‖2

2 + C9‖u‖2
2 ≤ 2F .

with C9 = C9(Ω) > 0. Integrating this relation and taking into account (1.183),
we find

‖u(t)‖2
2 ≤ ‖u0‖2

2e
−C9t + 2e−C9t

∫ t

0

F(s)eC9sds .

From this latter inequality, from (1.192) and from the properties (iv) and (v) of
B we deduce

‖u(t)‖2
2 ≤ ‖u0‖2

2e
−C9t + 2C10e

−C9t

∫ t

0

e(C9−λ1)sds , (1.193)

with C10 = C10(Ω, Φ) > 0, from which it follows, in particular, that ‖u(t)‖2 is
uniformly bounded in time and that, furthermore, it decays to zero exponentially
fast. This latter shows the way in which condition (1.179) is satisfied.

Remark 1.10. (1) The boundedness and asymptotic properties just obtained can
be shown also in other, stronger norms like, for example, the W 1,2-norm.
(2) As we observed earlier, the estimate (1.193), in conjunction with the Galerkin
method, can be used to prove existence of (weak) solutions to problem (1.181).
Strong solutions can be obtained by an “invading domain” technique completely
analogous to that used in Section 1.3.2.
(3) By using more careful estimates, we can prove that, for ‖Φ‖W 1,2(−π,π) suffi-
ciently small, the quantity C10 in (1.193) is of the form C11‖Φ‖W 1,2(−π,π), where
C11 is a positive constant depending on Ω and on |ψ′|.

1.4. Mathematical modeling of a piping system. Bounded domain approach with
“do-nothing” boundary conditions

In the numerical simulation of the flow of a liquid in a piping system it appears
quite obvious that the system can not be modeled with the “unbounded outlets”
method that we have introduced and discussed in the previous sections. In fact, the
system has to be “truncated” at some point in the outlets, and appropriate “arti-
ficial” boundary conditions must be imposed at the open parts of the boundary,
Si, i = 1, . . . , N ; see Figure 3.

Even though a natural choice could be that of imposing the condition that the
velocity of the liquid matches that of a (suitable) Poiseuille flow, we immediately
realize that this choice need not be appropriate. The reason being that, as we have
shown in Section 1.2, in a steady-state flow the entry length in each semi-infinite
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Figure 3. Truncated piping system.

outlet – that is, the distance from the inlet of each semi-infinite pipe at which the
flow becomes fully developed – depends on the velocity distribution at the inlet. So,
with this choice of boundary conditions, what could be a “reasonable” truncation
at a certain distance in each semi-infinite outlet in some flow, in another flow it
could show to be completely wrong.

In 1991, P.M. Gresho [48] proposed a type of boundary conditions that, as
further shown by the systematic numerical investigation of J.G. Heywood, R. Ran-
nacher and S. Turek [58], in several significant cases do not suffer from problems
caused by where, in the outlets, the truncation occurs. These boundary conditions,
often called “do-nothing” boundary conditions, are formulated as follows. Let Γ
and Si, i = 1, . . . , N , denote the “lateral” surface and the open parts, respectively,
of the piping system; see Figure 3. The do-nothing boundary conditions are then
expressed by the following (non-dimensional) requirements:

v|Γ = 0 ,

(
∂v

∂n
− pn

)∣∣∣∣
Si

= Pin , i = 1, . . . , N . (1.194)

In (1.194), v, p are velocity and pressure field of the fluid satisfying the Navier–
Stokes equations (1.1), n = n(Si) is the outer unit normal to Si, i = 1, . . . , N ,
while the quantities Pi are prescribed functions. Typically, for steady-state flow,
Pi is a given constant, while, for time-dependent flow, Pi is a given function of
time.

For the numerical investigation of system (1.194) with boundary conditions
(1.194) and for more detailed information about the physical meaning of the quan-
tities Pi, we refer the interested reader to the above cited papers of Gresho, of
Heywood et al., and to the article of Rannacher in this volume [91]. In what fol-
lows, we shall be mostly focused on the study of several mathematical properties
of the steady-state solutions to problem (1.1)–(1.194), see Section 1.4.1, while in
Section 1.4.2 we shall investigate the (few) known properties of time-dependent
solutions.
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Besides the basic issues of existence and uniqueness for the boundary and
the initial-boundary value problems, there is a number of significant questions
that one can treat. They concern the relation between solutions to (1.1)–(1.194)
and solutions to the problem in the whole unbounded piping system. In particular,
we may address the following problems.
(a) Convergence of solutions to (1.199) on a sequence of “invading” domains, to

solutions of (1.1) on the whole unbounded piping system.
(b) Conversely, given a solution corresponding to a given flow-rate in an un-

bounded piping system, construct a sequence of solutions on truncated do-
mains approaching the given one.

(c) Control of the data of the sequence of solutions on the truncated domains by
means of the flow-rate of the limiting solution and vice versa.

We will answer the above questions in the case of steady-state flow. The extension
of our results to the time-dependent case appears to be a somewhat challenging
task, mainly, due to the lack of a satisfactory existence theory; see Section 1.4.2.

As usual, we shall assume, for simplicity, that the piping system has only
two outlets and that, on both open parts of the outlets, the do-nothing boundary
conditions are prescribed. Since the pressure p may be defined up to a constant, we
assume, without loss of generality, that P1 = 0 and set P2 = P . The case of more
than two outlets, as well as the case of Dirichlet boundary conditions on some of
the open parts and do-nothing boundary conditions on the remaining open parts
present no relevant difficulty and are easily treated by exactly the same methods.

Throughout this section we shall use the following notation. As usual, by
Ω = Ω1 ∪ Ω0 ∪ Ω2 we indicate the unbounded piping system considered in the
previous sections. By V ⊂ Ω we denote the “truncated” region of flow, bounded
by the lateral surface Γ and by the two surfaces Si, i = 1, 2. These latter are taken
to be flat and orthogonal to the axis of the i-th outlet, so that Si coincides with
the cross-section in each outlet. Even though many results that we will find do
not require such a high degree of regularity, we shall assume that Γ is a surface of
class C2. Thus, V has the Lipschitz regularity.

We may split V as follows:

V = V1 ∪ Ω0 ∪ V2 , (1.195)

where

V1 = {x ∈ Ω1 : x1 ∈ (−b1, 0) , x ∈ S1} , V2 = {x ∈ Ω2 : x1 ∈ (0, b2) , x ∈ S2} ,
(1.196)

with b1 and b2 positive real numbers which, without loss of generality, we may
take such that bi ≥ 2, i = 1, 2. Sometimes, we shall also use the splitting

V = Ṽ1 ∪ Ω̃0 ∪ Ṽ2 , (1.197)

where

Ṽ1 = {x ∈ V1 : x1 ∈ (−b1,−1)} , V2 = {x ∈ V2 : x1 ∈ (1, b2)} , (1.198)

and Ω̃0 is defined in (1.103).
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1.4.1. Boundary-value problem. The objective of this section is to investigate the
well-posedness of the boundary-value problem (in non-dimensional form)

Δv −∇p = v · ∇v

∇ · v = 0

}
in V ,

v|Γ =
(

∂v

∂n
− pn

)∣∣∣∣
S1

= 0 ,

(
∂v

∂n
− pn

)∣∣∣∣
S2

= Pn.

(1.199)

In these equations, n = n(Si) is the outer unit normal to Si and P is a prescribed
(non-dimensional) constant.

In order to reach our goal, we need some preliminary considerations. Let

H(V) := {ϕ ∈ W 1,2(V) : ∇ · ϕ = 0 , ϕ|Γ = 0} . (1.200)

Using the properties of W 1,2(V) along with inequality (1.104), it is easy to prove
that H is a Hilbert space with associated scalar product

(∇ϕ1,∇ϕ2) :=
∫
V
∇ϕ1 : ∇ϕ2 . (1.201)

The following lemma holds.

Lemma 1.7. Set

(·, ·) := (·, ·)V .

There exists a constant C = C(S1, S2, Ω0) > 0, independent of bi, i = 1, 2, such
that

|(ϕ · ∇ψ, χ)| ≤ C ‖∇φ‖2‖∇ψ‖2‖∇χ‖2 ,

for all ϕ, ψ, χ ∈ H(V).

Proof. We recall the inequality [37, Lemma XI.2.1]∫ t+1

t

(∫
S2

|ϕ|4 dS

)
dx ≤ κ

(∫ t+1

t

(∫
S2

|∇ϕ|2 dS

)
dx

)2

, ϕ ∈ H(V) , (1.202)

holding for arbitrary t ∈ [0, b2 − 1], with a positive constant κ depending only on
S2. Next, take m ∈ N such that m ≤ b2 < m + 1. If we set δ := b2 − m (< 1), we
then find

|(ϕ · ∇ψ, χ)V2 | ≤
∫ δ

0

∫
S2

|ϕ · ∇ψ · χ| dSdx1 +
m−1∑
l=0

∫ l+δ+1

l+δ

∫
S2

|ϕ · ∇ψ · χ| dS dx1

≤
∫ 1

0

∫
S2

|ϕ · ∇ψ · χ| dSdx1 +
m−1∑
l=0

∫ l+δ+1

l+δ

∫
S2

|ϕ · ∇ψ · χ| dS dx1.
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By the Hölder inequality we obtain

|(ϕ · ∇ψ, χ)V2 |

≤
(∫ 1

0

∫
S2

|ϕ|4dS dx1

) 1
4
(∫ 1

0

∫
S2

|χ|4dS dx1

) 1
4
(∫ 1

0

∫
S2

|∇ψ|2dS dx1

) 1
2

+
m−1∑
l=0

(∫ l+δ+1

l+δ

∫
S2

|ϕ|4dS dx1

)1
4
(∫ l+δ+1

l+δ

∫
S2

|χ|4dS dx1

)1
4
(∫ l+δ+1

l+δ

∫
S2

|∇ψ|2dS dx1

)1
2

,

and so, with the help of (1.202), we find

|(ϕ · ∇ψ, ψ)V2 | ≤ κ2‖∇ϕ‖2‖∇ψ‖2‖∇χ‖2

+κ2‖∇ϕ‖2

m−1∑
l=0

(∫ l+δ+1

l+δ

∫
S2

|∇ψ|2dS dx1

) 1
2
(∫ l+δ+1

l+δ

∫
S2

|∇χ|2dS dx1

) 1
2

≤ 2κ2‖∇ϕ‖2‖∇ψ‖2‖∇χ‖2 ,
(1.203)

where, in the last step, we have used the Cauchy inequality. In a completely similar
fashion, we show

|(ϕ · ∇ψ, χ)V1 | ≤ 2κ2‖∇ϕ‖2‖∇ψ‖2‖∇χ‖2 . (1.204)

Furthermore, by the Hölder inequality and by (1.119)4, we find

|(ϕ · ∇ψ, ψ)Ω0 | ≤ ‖ϕ‖4‖ψ‖4‖∇χ‖2 ≤ C1‖∇ϕ‖2‖∇ψ‖2‖∇χ‖2 ,

with C = C(Ω0) > 0. The lemma then follows from this latter displayed relation
and from (1.203)–(1.204). �

We shall next provide a “weak” formulation of problem (1.199) as follows;
see [58]. We dot-multiply both sides of (1.199)1 by ϕ ∈ H(V), integrate by parts
over V and use conditions (1.199)2,3,4 to obtain (see (1.201) for notation)

(∇v,∇ϕ) = −(v · ∇v, ϕ) + P

∫
S2

ϕ · n dS , for all ϕ ∈ H(V). (1.205)

A weak solution to (1.199) is a field v ∈ H(V) satisfying (1.205).
Before we proceed to proving existence and uniqueness of weak solutions, we

would like to make the following comments.
(a) The above definition of a weak solution is meaningful because, due to Lemma

1.7 and to the Schwarz inequality and (1.79), each term in (1.205) is finite.
(b) Consider the functional

F(w) := (∇v,∇w) + (v · ∇v, w) , w ∈ W 1,2
0 (V) ,

where v is a weak solution to (1.199). In view of Lemma 1.7, F is linear and
bounded on W 1,2

0 (V). Moreover, if we take in (1.205) ϕ ∈ D1,2
0 (V), we find

F(ϕ) = 0 , for all ϕ ∈ D1,2
0 (V).
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Then, by [36, Corollary III.5.1] there exists a “pressure field” p ∈ L2(V) such
that

(∇v,∇w) + (v · ∇v, w) = (p,∇ · w) , for all w ∈ W 1,2
0 (V). (1.206)

(c) From (1.206) and from classical interior regularity results for the Navier–
Stokes equations [37, Lemma VIII.1.2 and Theorem VIII.5.1], we obtain that
every weak solution, v, and the corresponding pressure field, p, defined above
in (b) are, in fact, in C∞(V) and the pair (v, p) satisfies (1.199)1 in the
ordinary sense.

(d) So far as the regularity up to the boundary of weak solutions, we observe that,
by well-known results [37, Theorem VIII.5.2], they are (at least) continuous
up to boundary Γ. Concerning the regularity on the boundaries S1 and S2

we have the following. Setting R3
+ = {x ∈ R3 : x1 > 0}, it can be shown

that the linear system

Δu −∇τ = G

∇ · u = 0

}
in R3

+ ,
(

∂u

∂n
− τn

)∣∣∣∣
x1=0

= g ,

with G and g prescribed, is of the Agmon–Douglis–Nirenberg-type. As a
consequence, by using a standard procedure, and taking into account that Si

is flat, one can show that any weak solution v and corresponding pressure p
is of class C∞ in B∩Ω := β, where B is an arbitrary ball centered at a point
of Si, such that dist(β, Γ) > 0. It is readily seen, then, that a weak solution
v and the associated pressure p assume the boundary condition (1.199)4 at
each point of Si in the ordinary sense. In fact, if we integrate by parts (1.205)
and use the fact that, by (c), (v, p) satisfy (1.199), we obtain

2∑
i=1

∫
Si

(
∂v

∂n
− pn − Pin

)
· ϕ dS = 0 , for all ϕ ∈ H(V) , (1.207)

where P1 := 0 and P2 := P . Let

φ = φe1 + ζ2e2 + ζ3e3 := φe1 + ζ ,

where

φ, ζ2, ζ3 ∈ C∞
0 (S2) ,

∫
S2

φdS = 0 .

By [36, Exercise III.3.4], we may extend φ in V to a function, ϕ ∈ H(V), such
that, for some small ε > 0, ϕ(x) = 0 whenever dist(x, Γ) < ε or dist(x, S1) <
ε. Replacing such a ϕ in (1.207) we obtain∫

S2

(
∂v

∂n
− pn − Pn

)
· φ dS = 0 ,
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that is, by recalling that n(S2) = e1 and by the arbitrarity of φ and ζ,∫
S2

(
∂v1

∂n
− p − P

)
φdS = 0 , for all φ ∈ C∞

0 (S2) with
∫

S2

φdS = 0 ,∫
S2

∂v

∂n
· ζ dS = 0 , with ζ = ζ2e2 + ζ3e3, any ζi ∈ C∞

0 (S2), i = 2, 3.

These two conditions then imply that there exists a constant, c2, such that

∂v

∂n
− pn − Pn

∣∣∣∣
S2

= c2n . (1.208)

Likewise, we show
∂v

∂n
− pn

∣∣∣∣
S1

= c1n . (1.209)

We next replace (1.208) and (1.209) into (1.207) to get

c1

∫
S1

ϕ · n dS + c2

∫
S2

ϕ · n dS = 0 , for all ϕ ∈ H(V). (1.210)

So, if we choose ϕ such that∫
S2

ϕ · n = 1 ,

by the Gauss theorem and by the fact that ∇ · ϕ = 0 in V we find∫
S1

ϕ · n = −1 ,

and from (1.210) we infer c1 = c2 := −c. Thus, if we modify p by the addition
of the constant c, from (1.208) and (1.209) we obtain that v and p satisfy the
desired boundary conditions on Si, i = 1, 2.

In order to show existence and uniqueness for (1.199), in analogy with what we
developed for the unbounded case, it is convenient to use a suitable flow-rate
carrier, α := Φ a, with a of the type introduced in Section I.3.1 and Φ to be
determined appropriately; see (1.212). Thus, if we write v = u + α and replace it
into (1.205), we obtain

(∇u,∇ϕ) = −(u · ∇u, ϕ) − (α · ∇u, ϕ) − (u · ∇α, ϕ) − (α · ∇α, ϕ)

−(∇α,∇ϕ) + P

∫
S2

ϕ · n dS ,
(1.211)

for all ϕ ∈ H(V). In view of the property (iv) of a, we have

(α · ∇α, ϕ) = (α · ∇α, ϕ)Ω̃0
.

Moreover, again by the same property, we find

(∇α,∇ϕ) = (∇α,∇ϕ)Ω̃0
+

2∑
i=1

(∇vPi,∇ϕ)Ṽi
,
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where each vPi carries the flow-rate Φ. Integrating by parts the last two terms on
the right-hand side of this relation and taking into account (1.3) and (1.8)2, we
find

(∇vP1,∇ϕ)Ṽ1
= (ΦM1(b1 − 1) + c)

∫
S1

ϕ · n dS,

(∇vP2,∇ϕ)Ṽ2
= ΦM2(b2 − 1)

∫
S2

ϕ · n dS ,

where c is an arbitrary constant and Mi = Mi(Si) > 0, i = 1, 2. Thus, if we choose
c = −Φ M1(b1 − 1) and

Φ =
P

M2(b2 − 1)
, (1.212)

from (1.211) we conclude, for all ϕ ∈ H(V),

(∇u,∇ϕ) = −(u · ∇u, ϕ) − (α · ∇u, ϕ) − (u · ∇α, ϕ) − G , (1.213)

where
G := −(α · ∇α, ϕ)Ω̃0

− (∇α,∇ϕ)Ω̃0
. (1.214)

Remark 1.11. The constant M2 in (1.212) can be explicitly evaluated. In fact, we
have

M2 = M2(S2) =
(∫

S2

ϕdS

)−1

,

where ϕ is the solution to (1.7). For example, if S2 is a circle of radius r, we find
M2 = π R4/8.

The following result holds.

Theorem 1.7. There are positive constants Ki, i = 1, 2, depending only on Ω0, S1

and S2, but otherwise independent of b1 and b2, such that, if

|P | < b2K1 , (1.215)

there exists one and only one weak solution, v, to (1.199) that satisfies the inequal-
ity

‖∇(v − α)‖2 ≤ K2

b2
|P | , (1.216)

where α = Φa, with a flow-rate carrier introduced in Section 1.3.1 and Φ given
in (1.212).

Proof. Let us first consider the linearized problem

(∇u,∇ϕ) = F(ϕ) , for all ϕ ∈ H(V) , (1.217)

where F is a given, bounded linear functional on H(V) and set

‖F‖−1,2 := sup
ϕ∈H(V) ,ϕ�=0

|F(ϕ)|
‖∇ϕ‖2

.
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Since H(V) is a Hilbert space with scalar product (1.201), we deduce, by the Riesz
theorem, the existence of one and only one u ∈ H(V) satisfying (1.217) along with
the estimate

‖∇u‖2 = ‖F‖−1,2 . (1.218)

Let us now consider the map

T : w ∈ Bρ �→ u ∈ H(V) ,

where Bρ is the ball of radius ρ in H(V) centered at 0, while u satisfies the problem

(∇u,∇ϕ) = −(w · ∇w, ϕ) − (α · ∇w, ϕ) − (w · ∇α, ϕ) − G
for all ϕ ∈ H(V) ,

(1.219)

with G = G(ϕ) given in (1.214). We shall show that, provided |P |/b2 is below
a suitable constant and ρ is chosen appropriately, the map T is a contraction of
Bρ into itself, thus recovering the existence part of the theorem. To prove the
contracting property of T , we begin to observe that the functional

F1 : ϕ ∈ H(V) �→ (u1 · ∇u2, ϕ) ∈ R , u1, u2 ∈ H(V) ,

is linear and, by Lemma 1.7, it is bounded with

‖F1‖−1,2 ≤ C1‖∇u1‖2‖∇u2‖2 , (1.220)

where C1 = C1(Ω0, S1, S2) > 0. We next observe that, by (1.79) and (1.119)4 it
easily follows that

‖ϕ‖2 ≤ C2‖∇ϕ‖2 , ϕ ∈ H(V) (1.221)

with C2 = C2(Ω0, S1, S2) > 0. Consequently, since by the property (v) of a it is

max
x∈V

(|α(x) + |∇α(x)|) ≤ C |Φ|

with C = C(Ω0, S1, S2) > 0 , by the Schwarz inequality and by (1.221) we find
that the functional

F2 : ϕ ∈ H(V) �→ −(α · ∇w, ϕ) − (w · ∇α, ϕ)

is also (linear) and bounded with

‖F2‖−1,2 ≤ C3 |Φ| ‖∇w‖2 (1.222)

where C3 = C3(Ω̃0, S1, S2) > 0. Finally, it is obvious that G given in (1.214) is a
linear functional on H(V) and that, again from the Schwarz inequality and from
(1.119)4,

‖G‖−1,2 ≤ C4

(
|Φ| + |Φ|2

)
, (1.223)

where C4 = C4(Ω0, S1, S2) > 0. From the results shown for problem (1.217), and
with the help of (1.218), (1.220), (1.222) and (1.223), we may then state that, for
any w ∈ Bρ, (1.219) has one and only one solution u ∈ H(V), which, in addition,
satisfies the estimate

‖∇u‖2 ≤ C1 ρ2 + C3|Φ| ρ + C4(|Φ| + |Φ|2) . (1.224)
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Thus, if we take

|Φ| ≤ C5 :=
1

4C1(1 + C4)2 + 2C3(1 + C4) + C4
, ρ = 2(1 + C4)|Φ| , (1.225)

from (1.224) it follows that
‖∇u‖2 ≤ 1

2ρ , (1.226)
that is, T transforms Bρ in itself. Moreover, setting ui := T (wi), i = 1, 2, u :=
u1 − u2, w := w1 − w2, from (1.219) we deduce, for all ϕ ∈ H(V),

(∇v,∇ϕ) = −(w1 · ∇w, ϕ)− (w · ∇w2, ϕ)− (α · ∇w, ϕ)− (w · ∇α, ϕ). (1.227)

Consequently, applying to (1.227) the results obtained for the linear problem
(1.217) along with (1.220) and (1.222), we find

‖∇u‖2 ≤ ‖∇w‖2 [C1 (‖∇w1‖2 + ‖∇w2‖2) + C3|Φ|] ,

which, in turn, in view of (1.225), yields

‖∇u‖2 ≤ (C1(2(1 + C4) + C3) |Φ| ‖∇w‖2 <
1
2
‖∇w‖2 . (1.228)

The map T is then a contraction and the fixed point u satisfies (1.213)–(1.214).
Furthermore, once we take into account that the flow-rate Φ is related to P by
(1.212), from (1.225) and (1.226), we find that v := u + α satisfies also (1.216).
Finally, the uniqueness part follows by setting w ≡ u in (1.228). �
Remark 1.12. It is worth emphasizing that the flow-rate, Φ, carried by the vector
field α is, in general, distinct from the flow-rate, Φ̃, carried by the velocity field v.
Now, in practical problems of blood flow modeling, the physical parameter that
one prescribes is the flow-rate Φ̃. However, if one uses the “do nothing” boundary
conditions one has to prescribe P . Thus, as pointed out to me by Anne Robertson,
it would be extremely interesting to find some sort of relation between Φ̃ and
P . This problem, even for small data, seems to be quite challenging because it
definitely involves the “geometry” of the pipe. Moreover, it is not excluded that
velocity fields corresponding to the different values of P may carry the same flow-
rate.

Remark 1.13. Among other things, the previous Theorem 1.7 ensures that any
weak solution to (1.199) is unique in the ball, BR, of H(V) centered at the origin
and of radius R = K|P |, for a suitable K > 0; see (1.216), (1.225) and (1.214). In
other words, two weak solutions corresponding to the same data and lying in BR

must necessarily coincide. It then arises spontaneously the question of whether a
given solution satisfying (1.216) is unique in the class of all possible weak solutions
corresponding to the same data. This question, that admits a positive (and simple)
answer in the case of the “classical” Dirichlet boundary conditions, is, to date,
open, in the case of the do-nothing boundary conditions (1.199)3,4,5. To see where
and how the problem arises, let v1 and v2 be two weak solutions corresponding to
the same data P . Setting v = v1 − v2, from (1.205) we find

(∇v,∇ϕ) = −(v · ∇v, ϕ) − (v1 · ∇v, ϕ) − (v · ∇v1, ϕ) , for all ϕ ∈ H(V).
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Setting ϕ = v into this equation we thus get

‖∇v‖2
2 = (v · ∇v, v) + (v1 · ∇v, v) + (v · ∇v1, v) . (1.229)

Applying Lemma 1.7 to the last two terms on the right-hand side of (1.229) and
using (1.216), we get

(1 − C|P |)‖∇v‖2
2 ≤ (v · ∇v, v) ,

where C = C(V) > 0, and so, if |P | < 1/(2C), say, we obtain

‖∇v‖2
2 ≤ 2(v · ∇v, v). (1.230)

Now, if we were using Dirichlet boundary conditions on ∂V , namely, v = 0 on the
whole Γ ∪ S1 ∪ S2, the term on the right-hand side of (1.230) would vanish and
uniqueness would follow under the assumption that only the solution v1 is “small”.
However, with the do-nothing boundary conditions, at the surfaces S1 and S2 the
normal component of v need not vanish, so that, the right-hand side of (1.230) is,
in principle, not zero and it is given by

1
2

2∑
i=1

∫
Si

|v|2v · n dS.

One very unpleasant consequence of this fact is that we do not know, in general, if
the only solution corresponding to zero data is the solution v = 0. We only know
that it is unique in the ball Bρ.

1.4.2. Relation between steady-state flow in bounded and unbounded piping sys-
tems. Our next objective is to find the relation between solutions on the truncated
domain determined in Theorem 1.7 and solutions in the whole unbounded piping
system found in Theorem 1.5. To this end, we introduce the notation

V(k) = V(k)
1 ∪ Ω̃0 ∪ V(k)

1 ,

V(k)
1 := {x ∈ Ω1 : −k − 1 < x1 < −1} , V(k)

2 := {x ∈ Ω2 : 1 < x1 < k + 1} ,

S
(k)
1 := {x ∈ Ω1 : x1 = −k − 1} , S

(k)
2 := {x ∈ Ω2 : x1 = k + 1}.

The following result holds.

Theorem 1.8. Consider the sequence of problems

Δv(k) −∇p(k) = v(k) · ∇v(k)

∇ · v(k) = 0

}
in V(k),

v(k)|Γ =
(

∂v(k)

∂n
− p(k)n

)∣∣∣∣
S

(k)
1

= 0 ,

(
∂v(k)

∂n
− p(k)n

)∣∣∣∣
S

(k)
2

= P (k)n ,

(1.231)
where {P (k)} is a sequence of given real numbers such that

lim
k→∞

(
P (k)

k

)
= P .
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Moreover, set

Φ(k) :=
P (k)

kM
, Φ :=

P

M
; α(k) := Φ(k)a , α := Φa ,

where M = M(S2) > 0 and a is the flow-rate carrier defined in Section I.3.1.
Then, the following statements hold.

(a) There exists a constant K = K(S1, S2, Ω0) > 0 such that if∣∣∣∣P (k)

k

∣∣∣∣ < K ,

it follows that

‖∇(u(k) − u)‖2,V(k) ≤ C0|Φ(k) − Φ| + C1 e−k C2 , (1.232)

where v(k) := u(k) + α(k) and v := u + α are the velocity fields associated to
the uniquely determined solutions to problems (1.199) and (1.105) obtained
in Theorem 1.7 and Theorem 1.5, respectively, while C0 = C0(Ω) > 0 and
Ci = Ci(Ω, Φ, ‖∇u‖2) > 0, i = 1, 2.

(b) Conversely, there is K∗ = K∗(Ω) > 0, such that, for any Φ ∈ R with |Φ| <
K∗, the corresponding unique solution to (1.105), in the class CΦ, obtained in
Theorem 1.5 can be approximated, in the sense of (1.232), by a sequence of
solutions {v(k) := u(k)+α(k), p(k)} to (1.231) corresponding to P (k) = k MΦ .

Before we give the proof of the theorem, we wish to observe the following.

Remark 1.14. (1) The constant M in the theorem coincides with the constant M2

given in (1.212) and can be explicitly computed; see Remark 1.11.
(2) In case (b), in Equation (1.232) we can drop the first term on the right-hand
side and we can replace u(k) − u with v(k) − v. In fact, in this case, we have
Φ(k) = Φ, and, consequently, α(k) = α which furnishes v(k) − v = u(k) − u. In
case (a), by the triangle inequality and by (1.232), we have

‖∇(v(k) − v)‖2,V(k) ≤ ‖∇(u(k) − u)‖2,V(k) + ‖∇(α(k) − α)‖2,V(k)

≤ C1 e−k C2 + C k|Φ(k) − Φ| ,
where C = C(Ω) > 0. Therefore, the rate of convergence of v(k) to v (and that of
u(k) to u as well) in the Dirichlet norm depends also on the (prescribed) rate of
convergence of Φ(k) to Φ.
(3) By using inequality (1.232) along with local estimates for the Stokes problem
in the outlets Ωi (see (1.96) and [37, Section XI.4]), we can show convergence
of (u(k), p(k)) to (u, p), together with their derivatives up to the order N , also
in pointwise norms. The number N depends only on the regularity of ∂Ω. If, in
particular, Ω is of class C∞, then N = ∞.

Proof of Theorem 1.8. We recall that

Δα = ∇pPi , α · ∇α = 0 in Ω̃i , i = 1, 2 ,
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where pPi, i = 1, 2, are the pressure fields associated to the Poiseuille flow in the
outlet Ωi. Thus, if we dot-multiply both sides of (1.108) by ϕ ∈ V(k) and integrate
by parts over V(k) we get (with (·, ·) ≡ (·, ·)V(k))

(∇u,∇ϕ) = −(u · ∇u, ϕ) − (α · ∇u, ϕ) − (u · ∇α, ϕ)

−(∇α,∇ϕ)Ω̃0
− (α · ∇α, ϕ)Ω̃0

+
2∑

i=1

∫
S

(k)
i

(
∂u

∂n
− (p − pPi)n

)
· ϕ dS ,

(1.233)

where we have used the fact that

(Δα, ϕ)Ω̃0
= −(∇α,∇ϕ)Ω̃0

+
2∑

i=1

∫
S

(1)
i

∂α

∂n
· ϕ dS

= −(∇α,∇ϕ)Ω̃0
+

2∑
i=1

∫
S

(1)
i

∂vPi

∂n
· ϕ dS = −(∇α,∇ϕ)Ω̃0

.

Furthermore, by (1.213), we have

(∇u(k),∇ϕ) = −(u(k) · ∇u(k), ϕ) − (α(k) · ∇u(k), ϕ) − (u(k) · ∇α(k), ϕ)

−(α(k) · ∇α(k), ϕ)Ω̃0
− (∇α(k),∇ϕ)Ω̃0

.

(1.234)
If we set w(k) := u(k) −u|V(k) and A(k) := α(k) −α, from (1.233)–(1.234) we find

(∇w(k),∇ϕ) = −(u(k) · ∇w(k), ϕ) − (w(k) · ∇u, ϕ) − (A(k) · ∇u(k), ϕ)

−(α · ∇w(k), ϕ) − (u(k) · ∇A(k), ϕ) − (w(k) · ∇α, ϕ)

−(∇A(k),∇ϕ)Ω̃0
− (α(k) · ∇A(k), ϕ)Ω̃0

− (A(k) · ∇α, ϕ)Ω̃0

−
2∑

i=1

∫
S

(k)
i

(
∂u

∂n
− (p − pPi)n

)
· ϕ dS ,

(1.235)
We now observe that, by the properties of α and α(k), and by the assumption on
the sequence P (k)/k,

max
x∈Ω

(
|A(k)(x)| + |∇A(k)(x)|

)
+ ‖∇A(k)‖2,Ω̃0

≤ C1|Φ(k) − Φ|,

max
x∈Ω

(|α(x)| + |∇α(x)|) + ‖∇α‖2,Ω̃0
≤ C1|Φ|,

max
x∈Ω

|α(k)| ≤ C1 ,

(1.236)
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with C1 = C1(Ω) > 0. We next choose ϕ ≡ w(k) into (1.235), employ Lemma 1.7,
(1.236), (1.220)1 and the Schwarz inequality to obtain

‖∇w(k)‖2
2 ≤ C2

(
‖∇u(k)‖2 + ‖∇u‖2 + |Φ|

)
‖∇w(k)‖2

2

+C3|Φ(k) − Φ|
(
‖∇u(k)‖2 + |Φ| + 1

)
‖∇w(k)‖2

+C4

(
max

x∈S
(k)
1 ∪S

(k)
2

|∇u(x)| + max
x∈S

(k)
1

|p(x) − pP1(x)|

+ max
x∈S

(k)
2

|p(x) − pP2(x)|
)(∫

S
(k)
1 ∪S

(k)
2

|w(k)|2dS

)1/2

(1.237)

where Ci = Ci(Ω) > 0, i = 2, 3, 4. From Theorem 1.5 and Theorem 1.7 and by
assumption, we know that

‖∇u(k)‖2 ≤ C5|Φ(k)| , ‖∇u‖2 ≤ C5|Φ|, (1.238)

with C5 = C5(Ω) > 0, provided |Φ(k)| (in case (a)) or |Φ| (in case (b)) is below a
suitable constant, K, depending only on Ω. Thus, by taking K sufficiently small
(if necessary), and by observing that, from (1.79),

(∫
S

(k)
1 ∪S

(k)
2

|w(k)|2dS

)1/2

≤ C6‖∇w(k)‖2

with C6 = C6(S1, S2) > 0, from (1.237) we conclude

‖∇w(k)‖2 ≤ C7|Φ(k) − Φ| + C8

(
max

x∈S
(k)
1 ∪S

(k)
2

|∇u(x)| +
2∑

i=1

max
x∈S

(k)
i

|p(x) − pPi(x)|
)

(1.239)
where the positive constants C7 and C8 depend only on Ω. However, from [37,
Lemma XI.4.1, Lemma XI.4.4 and Remark XI.4.3] we know that there exist two
positive constants C9 and C10 depending only on Ω, Φ and ‖∇u‖2

2 such that

max
x∈S

(k)
1 ∪S

(k)
2

|∇u(x)| +
2∑

i=1

max
x∈S

(k)
i

|p(x) − pPi(x)| ≤ C9e
−C10k ,

so that the theorem follows from this latter inequality and from (1.239). �

1.4.3. Initial-boundary value problem. In this section we shall discuss the well-
posedness of the following initial-boundary value problem (in non-dimensional
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form and with the same notation as Section 1.4.1):
∂v

∂t
+ v · ∇v = Δv −∇p

∇ · v = 0

⎫⎬⎭ in V ,

v|Γ =
(

∂v

∂n
− pn

)∣∣∣∣
S1

= 0 ,

(
∂v

∂n
− pn

)∣∣∣∣
S2

= Pn,

v(x, 0) = v0(x),

(1.240)

where P = P (t), t ≥ 0, and v0 = v0(x), x ∈ V , are prescribed functions.
The challenging feature of problem (1.240) consists in the fact that, because

of the “do-nothing” boundary conditions – and unlike the classical “no-slip” con-
ditions – we can not prove that (v · ∇v, v) = 0 (see also Remark 1.13). The
immediate effect of this observation is that one is no longer able to show that the
kinetic energy of the fluid is controlled, at all times, only by the function P and by
the initial data (of arbitrary size), due to the fact that, in principle, some uncon-
trolled “backflow” can take place at the open sections of the pipe, namely, at the
surfaces Si, i = 1, 2. The mathematical consequence of the lack of controllability
of the kinetic energy at all times is that one is not able to prove global existence
even of weak solutions in the three-dimensional case.

Actually, if V is two-dimensional, that is, in the case of a flow in a channel, one
can still prove global existence of weak solutions (a la Leray–Hopf), on condition
that the size of P and of the initial data is appropriately restricted. This result
can be easily achieved by combining the Galerkin method together with a suitable
a-priori estimate that we shall now derive, at least formally. If we dot-multiply
both sides of (1.240)1 by v, integrate over V and use the boundary conditions
(1.240)3,4, we obtain

1
2

d

dt
‖v‖2

2 + ‖∇v‖2
2 = −(v · ∇v, v) + P

∫
S2

v · n dS . (1.241)

We now recall the inequality

‖v‖4,D ≤ C ‖v‖
1
2
2,D‖∇v‖

1
2
2,D , (1.242)

where D is a bounded, Lipschitz domain of R
2, v belongs to W 1,2(D) and vanishes

on a portion of ∂D having nonzero (one-dimensional) Lebesgue measure, and C =
C(D) > 0; see [36, Exercise II.2.9 and Exercise II.4.10]. Thus, from this inequality
and from that of Hölder, we obtain

|(v · ∇v, v)| ≤ ‖v‖2
4‖∇v‖2 ≤ C2‖v‖2‖∇v‖2

2 . (1.243)

Furthermore, let

φ =

⎧⎪⎪⎨⎪⎪⎩
0 if x1 ≤ b2 − 1,

2x1 − 2(b2 − 1) if x1 ∈ (b2 − 1, b2 − 1
2 ),

1 if x1 ≥ b2 − 1
2 .

.
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By taking into account that ∇ · v = 0 in V , and that v|Γ = 0, we find∣∣∣∣∫
S2

v · n dS

∣∣∣∣ = ∣∣∣∣∫
S2

φv · n dS

∣∣∣∣ = ∣∣∣∣∫
V
∇φ · v

∣∣∣∣ ≤ C1‖v‖2 , v ∈ H(V) , (1.244)

where C1 = C1(S2) > 0. Thus, employing into (1.241) this latter relation together
with (1.243), it follows that

1
2

d

dt
‖v‖2

2 + (1 − C2‖v‖2)‖∇v‖2
2 ≤ C1 |P |‖v‖2 .

Finally, if we use (1.221) and (1.157) on the right-hand side of this latter inequality,
we conclude

d

dt
‖v‖2

2 + (1 − 2C2‖v‖2)‖∇v‖2
2 ≤ C2 |P |2 , (1.245)

where C2 = C2(V) > 0. From this relation it readily follows that if ‖v0‖2
2 ≤

1/(8C2), say, then
‖v(t)‖2

2 < 1/(4C2) , for all t > 0 , (1.246)
provided ‖P‖L∞(0,∞) is suitably restricted. Actually, assume, by contradiction,
that t∗ is the first (finite) instant at which ‖v(t∗)‖2

2 = 1/(4C2). With the help of
(1.221) and (1.245) we then find

‖v(t∗)‖2
2 ≤ ‖v0‖2

2e
−κt + C2 e−κt∗

∫ t∗

0

eκt∗ |P (s)|2ds ,

where κ = κ(V) > 0. Thus,

‖v(t∗)‖2
2 < ‖v0‖2

2 + C2‖P‖2
L∞(0,∞) ,

and so, if we choose C2‖P‖2
L∞(0,∞) < 1/(8C2), from the previous inequality and

from the assumption on v0, we get ‖v(t∗)‖2
2 < 1/(4C2) which gives a contradiction.

Once (1.245) has been established, we go back to (1.245) and find that∫ t

0

‖∇v(s)‖2
2ds ≤ 2‖v0‖2

2 + 2C2

∫ t

0

|P (s)|2ds . (1.247)

Estimates (1.246) and (1.247), in conjunction with the Galerkin method, allow us
then to prove the existence of weak solutions under the stated restrictions on the
data.

Remark 1.15. Concerning the existence of two-dimensional global strong solutions
for small data, the situation is not completely clear. By “strong”, we mean that
the velocity field v ∈ L∞(0, T ; H(V))∩L2(0, T ; L∞(V)), while ∂v/∂t, and Δ̃v are
in L2(V × [0, T ]), where Δ̃ is the (suitably defined) Stokes operator. In fact, the
validity of a result of existence of strong solutions (for small data) in the two-
dimensional case is claimed by Heywood et al. in [58, Section 6]. However, the
argument given there is based on the validity of the second inequality below Eq.
(48) of that paper, for which the authors refer to an article that does not appear
in their list of references. Moreover, the proof of that inequality does not seem
to be completely obvious. Nevertheless, by the methods employed in this section
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it is possible to show existence and uniqueness of global solutions in a suitable
regularity class; see Remark 1.17.

If V is three-dimensional, it is at once established that the procedure pre-
sented above fails to produce global existence of weak solutions. In fact, in such a
case, the inequality (1.242) is replaced by the following (see [36, loc. cit.] and the
next Lemma 1.8):

‖v‖4 ≤ C‖v‖
1
4
2 ‖∇v‖

3
4
2 ,

which now, instead of (1.243), yields

|(v · ∇v, v)| ≤ C2‖v‖
1
2
2 ‖∇v‖

5
2
2 ,

and the argument employed previously for the two-dimensional case does not work.
Consequently, the existence of (even weak) global solutions to (1.240) remains open
in the three-dimensional case.

However, some local in time theorems of existence of solutions to (1.240) in
suitable function class, with corresponding uniqueness results, are indeed available.
In fact, in the paper [66], Kučera and Skalák show, by means of a fixed-point
argument, existence of solutions such that (with H(V) defined in (1.200))

v ∈ L2(0, T ∗; L2
σ(V)) ,

∂v

∂t
∈ L2(0, T ∗; H(V)) ,

∂2v

∂t2
∈ L2(0, T ∗; H−1(V)) ,

(1.248)
provided v0 is sufficiently smooth and that P and v0 satisfy certain further restric-
tions, including the condition P (0) = 0. (10) These solutions are still “weak” (in
the sense that they do not possess second spatial derivatives, even in the interior
of V), but, nevertheless, they are proved to be unique.

In the remaining part of this section, we shall prove local existence solutions
to (1.240) in a class somewhat stronger than (1.248). Our main tools are Lemma
1.7, the following Lemma 1.8 and the classical Galerkin method.

Remark 1.16. As in the steady-state case, all the estimates that we will derive are
independent of the numbers b1 and b2 defining the region of flow V ; see (1.195). (11)

Therefore, we may, in principle, apply the methods of the previous section to
investigate if and how flows in the bounded region V converge to flow in the
unbounded pipe Ω.

The following lemma holds.

Lemma 1.8. There exists a constant C = C(S1, S2, Ω0) > 0 such that

‖ϕ‖4 ≤ C ‖ϕ‖1/4
2 ‖∇ϕ‖3/4

2 , for all ϕ ∈ H(V).

(10)As a matter of fact, the results of [66] cover more general situations than that described by
problem (1.240). Actually, the domain V need not be “pipe-like” with cuts orthogonal to the
axis in each outlet, whereas the boundary conditions include the case when P is prescribed as
(suitable) function of space and time.
(11)The notation we will use throughout this section is the same as that of Section 1.4.1.
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Proof. From a well-known embedding inequality (see, e.g., [36, Exercise II.2.9]) we
have

‖ϕ‖4,ω ≤ C1‖ϕ‖1/4
2 ‖∇ϕ‖3/4

2 , (1.249)
with C1 = C1(ω) > 0, where ω is any bounded, Lipschitz domain of Ω with ∂Ω∩∂ω
having non-zero (two-dimensional) Lebesgue measure. So, in particular,

‖ϕ‖4,Ω0 ≤ C1‖ϕ‖1/4
2 ‖∇ϕ‖3/4

2 . (1.250)

Moreover, setting

‖ · ‖q
q,V2;t,t+1

:=
∫ t+1

t

∫
S2

| · |q dS dx1 ,

with t arbitrary in [0, b2 − 1], from the proof of Lemma XI.2.1 of [37] (see the
procedure after formula (2.5)), it follows that

‖ϕ‖4
4,V2;t,t+1

≤ κ

∫ t+1

t

(‖ϕ‖2
2,V2;t,t+1

+ ‖ϕ‖2,V2;t,t+1‖∇ϕ‖2,V2;t,t+1)
∫

S2

|∇ϕ|2 dS dx1 ,

where κ = κ(S2) > 0, which implies

‖ϕ‖4
4,V2;t,t+1

≤ κ
(
‖ϕ‖2

2‖∇ϕ‖2
2,V2;t,t+1

+ ‖ϕ‖2,V‖∇ϕ‖2‖∇ϕ‖2
2,V2;t,t+1

)
. (1.251)

As in Lemma 1.7, we take m ∈ N such that m ≤ b2 < m+1 and set δ := b2−m (<
1). We then have

‖ϕ‖4
4,V2

≤
∫ δ

0

∫
S2

|ϕ|4dS dx1 +
m−1∑
l=0

‖ϕ‖4
4,V2;l+δ,l+δ+1

≤
∫ 1

0

∫
S2

|ϕ|4dS dx1 +
m−1∑
l=0

‖ϕ‖4
4,V2;l+δ,l+δ+1

.

(1.252)

From (1.249) we get ∫ 1

0

∫
S2

|ϕ|4dS ≤ C2‖ϕ‖2‖∇ϕ‖3
2 , (1.253)

with C2 = C2(S2) > 0. Furthermore, from (1.251) it follows that
m−1∑
l=0

‖ϕ‖4
4,V2;l+δ,l+δ+1

≤ κ
(
‖ϕ‖2

2‖∇ϕ‖2
2 + ‖ϕ‖2‖∇ϕ‖3

2

)
≤ C3 ‖ϕ‖2‖∇ϕ‖3

2 , (1.254)

where C3 = C3(S2, Ω0) > 0 and where, in the second inequality, we have used
(1.221). Collecting (1.252)–(1.254) we deduce

‖ϕ‖4
4,V2

≤ C4 ‖ϕ‖2‖∇ϕ‖3
2 , (1.255)

with C4 = C4(S2, Ω0) > 0. In analogous fashion we can show

‖ϕ‖4
4,V1

≤ C5 ‖ϕ‖2‖∇ϕ‖3
2 , (1.256)

with C5 = C5(S1, Ω0) > 0. The lemma then follows from (1.250), (1.248) and
(1.249). �
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We are now in a position to prove the main result of this section.

Theorem 1.9. Let v0 ∈ W 2,2(V)∩H(V) and let P ∈ W 1,2(0, T ). Suppose, further,
that v0 satisfies at least one of the conditions:

(a) v0 ∈ W 2,2
0 (V) ,

(b)
∂v0

∂n

∣∣∣∣
S1

= 0 ,
∂v0

∂n

∣∣∣∣
S2

= P (0)n .

Then, there exists T ∗ = T ∗(P, v0, Ω0, S1, S2) ∈ (0, T ) and a uniquely determined
field v in the class

v ∈ C(0, T ∗; W 1,2(V)) ,
∂v

∂t
∈ L∞(0, T ∗; L2

σ(V)) ∩ L2(0, T ∗; W 1,2(V)) , (1.257)

that satisfies (1.240) in the following generalized sense:

(
∂v

∂t
, ϕ)+ (∇v,∇ϕ) =−(v · ∇v, ϕ)+P

∫
S2

ϕ · n dS , for all ϕ ∈ H(V). (1.258)

Finally, the following estimate holds:

max
t∈[0,T∗]

‖v(t)‖1,2+ ess sup
t∈[0,T∗]

∥∥∥∥∂v

∂t
(t)
∥∥∥∥

2

+
∫ T∗

0

‖∇vt‖2
2 dt

≤ C (‖v0‖2
2,2 + |P|W 1,2(0,T ) + β|P (0)|) ,

(1.259)

where C = C(S1, S2, Ω0) > 0 and where β is 1 or 0 according to whether v0

satisfies condition (a) or (b).

Proof. The proof is quite classical and makes use of the Galerkin method. Let
{ψk} be a basis of H(V) with ψ1 = v0, and consider the following sequence of

“approximating problems” (with
∂(·)
∂t

≡ (·)t):

(vmt, ψk)+ (∇vm,∇ψk) =−(vm · ∇vm, ψk)+P

∫
S2

ψk · n dS , k = 1, . . . , m ,

vm(x, t) :=
m∑

k=1

ckm(t)ψk(x) .

(1.260)
The unknown coefficients ckm must be determined from the system of ODE’s
(1.260) with the initial conditions

c1m(0) = 1 , c2m(0) = c3m(0) = · · · = cmm(0) = 0 . (1.261)

We now perform the following operations. (a) We multiply both sides of (1.260)1
by ckm and sum over k from 0 to m; (b) we multiply both sides of (1.260)1 by
dckm/dt and sum over k from 0 to m, and, finally, (c) we take the time derivative
of (1.260)1, then multiply both sides of the resulting equation by dckm/dt and
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sum over k from 0 to m. We thus obtain the following three equations where, for
simplicity, the subscript m has been omitted.

1
2

d

dt
‖v‖2

2 + ‖∇v‖2
2 = −(v · ∇v, v) + P

∫
S2

v · n dS,

1
2

d

dt
‖∇v‖2

2 + ‖vt‖2
2 = −(v · ∇v, vt) + P

∫
S2

vt · n dS,

1
2

d

dt
‖vt‖2

2 + ‖∇vt‖2
2 = −(vt · ∇v, vt) − (v · ∇vt, vt) + P ′

∫
S2

vt · n dS .

(1.262)

In order to estimate the right-hand sides of the above equations, besides Lemma
1.7 and Lemma 1.8, we recall the inequality∣∣∣∣∫

S2

ϕ · n dS

∣∣∣∣ ≤ C1(S2)‖∇ϕ‖2 , ϕ ∈ H(V) , (1.263)

which is easily established with the help of the Schwarz inequality and of (1.79) .
Thus, using (1.263) together with (1.157), we find, for any ε > 0,∣∣∣∣P∫

S2

v · n dS

∣∣∣∣+ ∣∣∣∣P∫
S2

vt · n dS

∣∣∣∣+ ∣∣∣∣P ′
∫

S2

vt · n dS

∣∣∣∣
≤ C2(|P |2 + |P ′|2 + ‖∇v‖2

2) + ε ‖∇vt‖2
2 ,

(1.264)
with C2 = C2(S2, ε) > 0. Moreover, by Lemma 1.7, we have

|(v · ∇v, v)| ≤ C3 ‖∇v‖3
2 , (1.265)

where C3 = C3(S1, S2, Ω0) > 0 . Furthermore, with the help of Hölder inequality,
of Lemma 1.8 and of (1.157) we obtain

|(vt · ∇v, vt)| ≤ ‖v‖2
4‖∇v‖2 ≤ C4‖vt‖

1
2
2 ‖∇vt‖

3
2
2 ‖∇v‖2

≤ C5 (‖vt‖4
2 + ‖∇v‖8

2) + ε‖∇vt‖2
2 ,

(1.266)

with C5 = C5(S1, S2, Ω0, ε) > 0. In analogous way, we get

|(v · ∇vt, vt)| ≤ ‖v‖4‖vt‖4‖∇vt‖2 ≤ C6‖v‖
1
4
2 ‖vt‖

1
4
2 ‖∇v‖

3
4
2 ‖∇vt‖

7
4
2

≤ C7 (‖v‖8
2 + ‖vt‖8

2 + ‖∇v‖8
2) + ε‖∇vt‖2

2 ,
(1.267)

with C7 = C7(S1, S2, Ω0, ε) > 0. Finally, again by the same arguments, we find

|(v · ∇v, vt)| ≤ ‖v‖4‖vt‖4‖∇v‖2 ≤ C8‖v‖
1
4
2 ‖vt‖

1
4
2 ‖∇vt‖

3
4
2 ‖∇v‖

7
4
2

≤ C9 (‖v‖8
2 + ‖vt‖8

2 + ‖∇v‖14
2 ) + ε‖∇vt‖2

2 ,
(1.268)

where C9 = C9(S1, S2, Ω0, ε) > 0. Thus, setting

Y := ‖v‖2
2 + ‖∇v‖2

2 + ‖vt‖2
2 , P := |P |2 + |P ′|2 ,
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from (1.262) and (1.264)–(1.268), by taking ε sufficiently small, we deduce

dY

dt
+ ‖∇vt‖2

2 ≤ C10 (Q(Y ) + P) , (1.269)

where C10 = C10(S1, S2, Ω0) > 0 and Q(z) is a suitable polynomial with Q(0) = 0.
We next observe that

Y (0) ≤ C11(‖v0‖2
2,2 + β |P (0)|) , (1.270)

with C11 = C11(S1, S2, Ω0) > 0, and where β = 1 or β = 0 according to whether
v0 satisfies the assumption (a) or (b) in the theorem. In fact, from (1.260)2 and
(1.261), and recalling that ψ1 = v0, we find

Y (0) ≤ ‖v0‖2
1,2 + ‖vmt(0)‖2

2 .

Now, from (1.260)1 it follows that

‖vmt(0)‖2
2 = −(∇v0,∇vmt(0)) − (v0 · ∇v0, vmt(0)) + P (0)

∫
S2

vmt(0) · n dS .

(1.271)
Under the assumption (a) of the theorem, since v0 ∈ W 2,2

0 (V), we find

−(∇v0,∇vmt(0)) = (Δv0, vmt(0)) ≤ ‖Δv0‖2‖vmt(0)‖2 , (1.272)

while, by (1.244), we also get

P (0)
∫

S2

vmt(0) · n dS ≤ C12|P (0)|‖vmt(0)‖2 , (1.273)

where C12 = C12(S2) > 0. Furthermore, by the Hölder inequality it follows that

|(v0 · ∇v0, vmt(0))| ≤ ‖v0‖6‖∇v0‖3‖vmt(0)‖2 .

Employing in this relation (1.119)1,4 and (1.124) we easily obtain

|(v0 · ∇v0, vmt(0))| ≤ C13‖v0‖2
2‖vmt(0)‖2 , (1.274)

where C13 = C13(S1, S2, Ω0) > 0. Therefore, (1.270) follows from (1.271)–(1.274).
Likewise, under the assumption (b) of the theorem, by integration by parts, we
find

−(∇v0,∇vmt(0)) + P (0)
∫

S2

vmt(0) · n dS = (Δv0, vmt(0))

≤ ‖Δv0‖2‖vmt(0)‖2 ,

and so (1.270) follows again from this latter relation and from (1.274).
We now go back to (1.269). Disregarding, temporarily, the second term on its

left-hand side, we easily show that there is T ∗ = T ∗(C10, ‖v0‖2,2, |P|W 1,2(0,T )) ∈
(0, T ) such that

Y (t) ≤ C14(‖v0‖2
2,2 + |P|W 1,2(0,T ) + β|P (0)|) , for all t ∈ [0, T ∗] , (1.275)
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with C14 = C14(S1, S2, Ω0) > 0. Using this information back into (1.269), we then
conclude ∫ T∗

0

‖∇vt‖2
2 dt ≤ C15(‖v0‖2

2,2 + |P|W 1,2(0,T ) + β|P (0)|) , (1.276)

with C15 = C15(S1, S2, Ω0) > 0. With the estimates (1.275) and (1.276) in our
hand, it is then routine to prove that, as m → ∞, we can select a subsequence,
{vm′}, converging to a vector field v in the function class (1.257), which, further,
obeys (1.259). Moreover, with the help of (1.260)1, we also show that v satisfies
(1.258). The proof of existence is therefore completed. In order to show uniqueness,
let v1 and v2 two solutions to (1.258) in the class (1.257), corresponding to the
same P and same v0. Setting u = v1 − v2 we thus obtain

(
∂u

∂t
, ϕ)+ (∇u,∇ϕ) = −(v1 · ∇u, ϕ)− (u · ∇v2, ϕ) , for all ϕ ∈ H(V). (1.277)

Choosing ϕ = u into (1.277) furnishes

1
2

d

dt
‖u‖2

2 + ‖∇u‖2
2 = −(v1 · ∇u, u) − (u · ∇v2, u) . (1.278)

By the Hölder inequality and by Lemma 1.8, we have

|(v1 · ∇u, u)| +|(u · ∇v2, u)| ≤ ‖v1‖4‖u‖4‖∇u‖2 + ‖u‖2
4‖∇v2‖2

≤ C15

(
‖v1‖

1
4
2 ‖v1‖

3
4
2 + ‖∇v2‖2

)
(‖u‖

1
4
2 ‖∇u‖

7
4
2 + ‖u‖

1
2
2 ‖∇u‖

3
2
2 ) ,

(1.279)
with C15 = C15(S1, S2, Ω0) > 0. By assumption, we have

‖v1‖
1
4
2 ‖v1‖

3
4
2 + ‖∇v2‖2 ≤ κD ,

where κ is a numerical constant and D is the right-hand side of (1.259). Replacing
this information back into (1.279) and employing (1.157) we deduce

|(v1 · ∇u, u)| + |(u · ∇v2, u)| ≤ C16‖u‖2
2 + 1

2‖∇u‖2
2 ,

with C16 = C16(D, S1, S2, Ω0) > 0. Thus, from this latter relation and (1.278) we
conclude

d

dt
‖u(t)‖2

2 ≤ 2C16‖u(t)‖2
2 , u(0) = 0 ,

which, in turn, by Gronwall’s lemma, implies u(t) = 0, for all t ∈ [0, T ∗]. Unique-
ness is then accomplished and the proof of the theorem is completed. �
Remark 1.17. By the procedure employed in the proof of Theorem 1.8, it is not
difficult to show that, if V ⊂ R

2, problem (1.240) admits a unique global solution in
the class (1.257), provided the data v0 and P are, in addition, suitably restricted
in size. The key role in this proof is played by (a) inequality (1.242) that, in
two dimensions, replaces the inequality of Lemma 1.8, and (b) by the two global
estimates given in (1.246) and (1.247). We leave the (few) details to the interested
reader.
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2. Problems in non-Newtonian fluid mechanics

As is well known, the constitutive equation that defines an incompressible, viscous
Navier–Stokes fluid is characterized by the linear dependence of the Cauchy stress
tensor, T , on the stretching tensor, D = D(v) := 1

2 (∇v +(∇v)), with v velocity
field of the liquid. Specifically, we have

T = −p I + 2μ D , (2.1)

where p is the pressure field, namely, the Lagrange multiplier associated to the
incompressibility constraint, while μ is a positive constant called shear stress vis-
cosity. Fluids obeying the constitutive law (2.1) are called Newtonian. Every other
fluid is called non-Newtonian.

Objective of this chapter is to present a mathematical analysis of a num-
ber of significant problems associated to certain non-Newtonian models that are
mostly used in the engineering community and that are specifically related to
blood flow issues. Of course, since for a non-Newtonian fluid the relation between
T and D is nonlinear, the corresponding governing equations are more compli-
cated than the Navier–Stokes equations. Consequently, the mathematical analysis
of non-Newtonian models is, in principle, much more complicated than that for
a Newtonian fluid, which, as we know, is already very difficult. Therefore, before
embarking ourselves on a potentially much more complex journey, we would like
to present some (among many others!) significant arguments motivating a math-
ematical study of non-Newtonian models.

2.1. Why non-Newtonian models?

It is a well-established experimental fact that many real incompressible fluids,
including blood, can not be described, under all circumstances, by the Navier–
Stokes equations. Some of these experiments are very easy to reproduce, even in
a home-made laboratory, and we would like to describe them here.

Probably, one of the most famous experiments is the rod-climbing or Weis-
senberg effect. Here a cylindrical container, C, is filled with liquid, L, and a cylin-
drical rod is immersed in L with its axis parallel to that of C; see Figure 4. Next,
the rod is rotated and kept at a constant angular velocity, Ω. Now the response of
the free surface of L to the rotation of the rod is dramatically different depending
on the physical characteristic of L. In fact it will reach an equilibrium configu-
ration which for a Newtonian liquid, like water, will be like the one sketched in
Figure 4(a), while for certain non-Newtonian liquids, like ordinary hair shampoo,
the equilibrium surface will “climb the rod”, as shown in Figure 4(b). Moreover,
if the angular velocity is further increased, then, in the non-Newtonian case, the
free surface may start oscillating periodically, while climbing the rod; see [61, pp.
510–521].

Another not less remarkable and even simpler example of non-Newtonian
effects is provided by the sedimentation of symmetric particles in a liquid. In this
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(a) Newtonian (b) Non-Newtonian

Figure 4. Rod-climbing effect.

experiment rigid particles of constant density, possessing rotational and fore-and-
aft symmetry (cylinders of constant density, for instance) are dropped from rest in
a vertical container filled with a liquid, L. If the appropriate Reynolds number (12)

is not “too large”, the particle will reach a well-defined stable orientation that is
completely independent of the initial orientation.

(a) Newtonian (b) Non-Newtonian

Figure 5. Sedimentation of symmetric particles in a liquid.

In particular, for a Navier–Stokes liquid like water, the particle will orient
itself with its major axis of symmetry, a, perpendicular to the direction of gravity,
g, while in a liquid like hair shampoo it will orient itself with a parallel to g; see
Figure 5. It is important to emphasize that the dimensionless numbers involved in
these experiments may be very small. For example, for cylinders made of plastic,
Teflon, aluminum and titanium, with length ∼ 2cm and diameter in the range

(12)Typically, the Reynolds number is defined as Ud/ν where U and d are the average speed and
the hydraulic radius of the particle, respectively, while ν is the kinematic viscosity of the liquid.
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0.25 ∼ 1cm, sedimenting in a 1.5 – 2% solution of Polyox in water, it is found that
the Reynolds number varies from 0.016 to ∼ 5, while the Weissenberg number (13)

ranges between 0.048 and ∼ 0.3; see [78].
As a final, simple example of different behavior of Newtonian and non-

Newtonian liquids, we shall consider the sedimentation of homogeneous spheres
in the vicinity of a rigid wall. In this case, a sphere of constant density is dropped
in a vertical container, and “close enough” to one of its walls, so that “wall ef-
fects” become relevant. What is observed is that the sphere will move away from
the wall or closer to it depending on whether the liquid is Newtonian (Figure 6(a))
or non-Newtonian (Figure 6(b)). Moreover, the equilibrium distance to the wall,
he, will depend also on the physical characteristics of the sphere and of the liquid;
see [5].

(a) Newtonian (b) Non-Newtonian

Figure 6. Sedimentation of spheres nearby a vertical wall.

From the physical point of view, all the above experiments can be (qualitatively)
explained by the fact that certain non-Newtonian liquids are able to exert a type
of forces due to the so-called normal stresses, which are absent in the case of a
Newtonian (Navier–Stokes) liquid; see Sections 2.3.1 and 2.3.2.

Besides the “normal stress effect”, there is another important feature that
is absent in a Navier–Stokes liquid and which may show up in more complex
liquids like, for example, blood. In fact, in a Navier–Stokes liquid (e.g., water),
the shear viscosity μ (see (2.1)) is constant for a reasonable wide range of shear
rate, while in certain non-Newtonian liquids the viscosity may depend on the shear
rate in a suitable range of shear rate. In particular, it may monotonically decrease
or increase with increasing shear rate. Liquids showing the former behavior are
referred to as shear-thinning, while liquids showing the latter are called shear-
thickening.

A remarkable example of shear-thinning fluid is blood. In fact, in the range
of low/mid shear rate (up to a few hundred sec−1) the blood shows shear-thinning
properties (see Figure 7), while at higher shear rates the viscosity is practically
constant. This phenomenon is commonly attributed to the properties of blood cells

(13)A dimensionless number that measures the “elasticity” of the fluid.
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that change under increasing shear rate, and it is explained as follows [97]. In the
low-shear region the red blood cells tend to aggregate with the effect of producing
large clusters (so-called rouleaux). As the shear rate increases the shear stress
begins to produce some disaggregation and overall reduces the size of aggregates.
In the mid-shear region cell aggregates are largely destroyed by the stress levels
present at these shear rates. Moreover, red cells orient and deform in order to pass
adjacent cells. All the above changes in the aggregation of cells produces an overall
variation in the blood viscosity. At high shear-rate they become strongly aligned
to the direction of shear and form layers that slide on adjacent plasma layers.
This structure is quite stable in this regime of shear-rate, with the consequence of
keeping the overall viscosity constant.

Figure 7. Dependence of blood viscosity on shear rate, showing the
shear-thinning property of blood (after Chang et al. [21])

For further and more complete information about the physics and the appropriate
modeling of non-Newtonian fluids, we refer the interested reader to [4] and also to
the article of A.M. Robertson [94] in this volume.

2.2. Problems related to generalized Newtonian models

As mentioned previously, the two characteristic features of the Newtonian model
are the linear dependence of the stress tensor T on D, and the fact that the
shear viscosity μ is constant; see (2.1). Thus, a “natural” way of generalizing
the constitutive equation (2.1) is to drop the linearity assumption, as well as
to allow the dependence of μ on the stretching tensor D. Therefore, a simple
generalization of (2.1) would lead to assume that T is a quadratic polynomial in
D, with coefficients depending on D:

T = (−p + h0)I + h1D + h2D
2 . (2.2)

As a matter of fact, it turns out that the constitutive equation (2.2) gives us the
most general dependence of T upon D, that is compatible with basic physical
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requirements. Specifically, let us assume that

T = −pI + σ(D) , (2.3)

where σ is a symmetric, (14) tensor-valued function of D. Then, a necessary and
sufficient condition for the constitutive equation to be compatible with the prin-
ciple of material invariance (15) is that T has to be of the form (2.2), where the
coefficients hi, i = 0, 1, 2, can only be functions of the principal invariants of D.
Thus, taking into account that traceD = ∇ · v = 0, it follows that hi may de-
pend only on |D| :=

√
D : D and on detD. Fluids obeying the constitutive law

(2.2) with h0 = 0, and with the mentioned restrictions on hi, i = 1, 2, are called
Reiner–Rivlin fluids.

It is important to observe that constitutive equations of the type (2.2), though
describing fluids more general than those obeying the linear relation (2.1), do not
seem to explain, even in a semi-quantitative way, the experiments we have men-
tioned in the previous section. Actually, in a little known paper of 1959, J. Serrin
[102] used the Reiner–Rivlin model to give a mathematical explanation of the
“rod-climbing” effect, which, as a by-product, would furnish a method for mea-
suring some material parameters associated with the liquid model. His calcula-
tions assume that the coefficient h2 (the so called “cross-viscosity”) be a non-zero
constant. However, it was later demonstrated by C. Leigh in 1961 [74], that the
assumption h2 =constant�= 0 is incompatible with the Second Principle of Ther-
modynamics and, consequently, Serrin’s analysis is not applicable. Concerning the
interaction liquid-particles and preferred orientation in sedimentation experiments,
more recently, A. Vaidya [111] has proved, by elementary symmetry arguments,
that models of the type (2.2) are unable to predict the orientation of symmetric
cylinders in non-Newtonian liquids described in the preceding section. In other
words, despite certain nonlinear effects are taken into account, the homogeneous
cylinder will orient itself as in a Navier–Stokes liquid.

A special sub-class of the non-Newtonian constitutive equation (2.2) is rep-
resented by generalized Newtonian models, where h0 = h2 = 0 and h1, the “gen-
eralized shear viscosity”, depends only on the second invariant of D, namely, |D|.
Thus, generalized Newtonian liquids are described by the constitutive equation

T = −pI + h1 D , h1 = h1(|D|) . (2.4)

Among these models, a very popular one within the engineering community is
the so-called “power law” model, introduced by W. Ostwald as early as 1925 [85],
where

h1(|D|) = μ1|D|q−2 (2.5)
with μ1 > 0 and q > 1. Notice that the classical Newtonian (Navier–Stokes) case
corresponds to q = 2. The popularity of the empirical model (2.5) is essentially due
to the fact that a wide class of flow problems can be solved analytically for it; see,

(14)The assumption of symmetry is necessary because T must be symmetric [94].
(15)Roughly speaking, this fundamental principle requires that the physical properties of a ma-
terial must be independent of the observer. For more details, see the article [94] in this volume.



198 G.P. Galdi

e.g., [13, Section 4.2]. Nevertheless, (2.5) may become completely unrealistic in the
shear-thinning regime q < 2, in that the viscosity of the liquid grows unbounded
(h1 → ∞) at small shear rates (|D| → 0), and the error between calculated values
with (2.5) and experimental data can be quite large [13, Section 4.1]. For this
and other reasons, in 1968 P.J. Carreau proposed, in his Ph.D. Thesis, a “more
realistic” model given by

h1(|D|) = μ0 + μ1(μ2 + |D|2) q−2
2 , (2.6)

where μi, i = 0, 1, 2, are positive material constants; see [19]. Obviously, (2.6) does
not present the unbounded viscosity drawback of (2.5) and, moreover, it furnishes
a very good curve-fitting of experimental data for a number of liquids and in a
wide range of shear rate values; see [13, Section 4.1(a)] and the references therein.
We shall not deal with more details of these and of other models of generalized
Newtonian liquids, and refer the interested reader to [13, Chapter 4], and to the
article of A.M. Robertson [94] in this volume.

In the mathematical community, generalized Newtonian models became par-
ticularly fashionable only in the late 1960s, when O.A. Ladyzhenskaya started a
systematic investigation of the well-posedness of initial-boundary- and boundary-
value problems associated to certain generalized Newtonian models [67, 68, 69].
The timing is not surprising, because, as we shall see later on, the mathemati-
cal analysis of generalized non-Newtonian models requires certain tools from the
theory of monotone operators, pioneered by the work of G.J. Minty [82] and
F.E. Browder [18] in the early 1960s. Ladyzhenskaya’s investigation was basically
focused on models where

h1(|D|) = μ0 + μ1|D|q−2 , (2.7)

and where μ0, μ1 > 0, and q > 1. This constitutive law is a particular case of
(2.6) when we take, in this latter, μ2 = 0. Ladyzhenskaya’s results were particu-
larly interesting, for both initial-boundary- and boundary-value problems. (16) In
fact, for the former, she was able to prove three-dimensional global existence and
uniqueness in the same function class, provided q ≥ 9/4. (17) For the latter, she
showed existence of solutions in a possibly multiply-connected bounded domain, Ω,
and corresponding to non-homogeneous boundary data v∗, that satisfy only the
compatibility condition ∫

∂Ω

v∗ · n = 0 ,

where n is the unit outer normal to ∂Ω, under the assumption that q > 2. It is
worth emphasizing that either one of the above problems is an outstanding open
question in the case of the Navier–Stokes equations.

(16)In her above-cited papers, Ladyzhenskaya considers also cases where h1 = μ0 + μ1|∇v|q−2

or h1 = μ0 + μ1|∇ × v|q−2. We would like to emphasize that these choices make no sense from
the physical point of view, since the corresponding constitutive equations would not obey the
principle of material invariance that we mentioned before.
(17)Actually, for existence she only required q ≥ 12/5.
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Over the years, Ladyzhenskaya’s theorems were improved and/or extended in
several directions by different authors, including J.-L. Lions, J. Nečas, J. Frehse and
their collaborators, either with the objective of lowering the exponent q, or even
by considering more general hypothesis on the function h1 than those expressed by
(2.7). In particular, great effort has been directed to prove well-posedness results
for models where the constant μ0 in the constitutive assumption (2.7) is zero, that
is, for models such as (2.5). In this respect, we wish to emphasize one more time
that, even though very challenging from a mathematical viewpoint, the power-law
model (2.5) is physically not realistic for all values of |D|.

In the following sections we shall present some basic results concerning the
well-posedness of the boundary-value problem associated to certain generalized
Newtonian models, in bounded domains as well as in a piping system.

For a complete and update list of results concerning the well-posedness of the
initial-boundary value problem, we refer the interested reader to the recent paper
of J. Wolf [115] and to the monograph [79].

Concerning regularity issues (a topic that is still unsettled, in many respects,
and currently under deep investigation) we refer to the papers of C. Ebmeyer [30]
and to the more recent ones of H. Beirão da Veiga [8, 9, 10, 11].

Finally, we would like to indicate a number of problems that, seemingly, have
received little or no attention and that are, nevertheless, of great significance in
several applications and, in particular, in blood flow problems.

(i) Existence, uniqueness and attainability of time-periodic motions in an un-
bounded piping system subject to a given time-periodic flow-rate (see Sec-
tions 1.3.2 and 1.3.3, for the analogous problem for a Navier–Stokes liquid).

(ii) Formulation of appropriate boundary conditions for a “truncated” bounded
piping system and study of the corresponding well-posedness (see Section I.4,
for the analogous problem for a Navier–Stokes liquid).

(iii) Well-posedness of the exterior boundary-value problem.

2.2.1. Boundary-value problem in bounded domain. In this and the next sections,
we shall be interested in the unique solvability of the boundary-value problem

∇ · (h1(|D(v)|)D(v)) = v · ∇v + ∇p + f

∇ · v = 0

}
in Ω,

v|∂Ω = v∗ ,

(2.8)

where f and v∗ are prescribed functions, Ω is a domain of R3, either bounded or
unbounded, and, we recall, D = D(w) is the symmetric part of ∇w.

We will assume that h1 is of the form

h1 = κ0 + h(|D|) , (2.9)

where h is a continuous scalar function defined on the linear subspace of R3×3, T ,
of second-order tensors, satisfying the following properties.
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(i) Coercivity:
h(|A|)A : A ≥ κ1A

q − κ2 , q > 1 ; (2.10)
(ii) Growth:

|h(|A|)A| ≤ κ3

(
|A|q−1 + 1

)
, q > 1 ; (2.11)

(iii) Monotonicity:

(h(|A|)A − h(|B|)B) : (A − B) > 0 , if A �= B . (2.12)

Here, A and B are arbitrary elements from T , and κi, i = 0, 1, 2, 3 are constants,
depending at most on q, such that κi > 0, i = 1, 3, κ0 ≥ 0 and κ2 ∈ R.

Remark 2.1. The constitutive laws (2.5)–(2.7) satisfy (2.9)–(2.11). More specifi-
cally, the power-law (2.5) and the Ladyzhenskaya “model” (2.7) satisfy (2.9) with
κ0 = 0 and κ0 ≡ μ0, respectively. Moreover, they both satisfy (2.10)–(2.11) with
κ1 = κ3 ≡ μ1, κ2 = 0. As far as the Carreau law (2.6) is concerned, it clearly satis-
fies (2.9) with κ0 ≡ μ0. Furthermore, it is easy to show that it satisfies (2.10) (18),
whereas the validity of (2.11) is trivially established if q > 2, and becomes a con-
sequence of [96, Lemme 3.1, Eqs. (3.2) and (3.5)], if 1 < q < 2. Finally, it can be
shown that (2.5)–(2.7) also satisfy (2.12); see [96, Lemme 3.1].

We shall begin to furnish some existence and uniqueness results for the prob-
lem (2.8)–(2.12), when Ω is bounded. To this end, we shall follow some arguments
due, basically, to O.A. Ladyzhenskaya [67, 68, 69] and J.-L. Lions [76, Chaptre 2,
§5].

We begin to put (2.8) in a weak form. If we dot-multiply both sides of (2.8)1
by ϕ ∈ D(Ω) and then integrate by parts over Ω, we have

(κ0D(v)+h(D(v))D(v), D(ϕ)) = (v·∇ϕ, v)−(f , ϕ) , for all ϕ ∈ D(Ω) . (2.13)

Next, we set

Vq = Vq(Ω) :=

{
D1,q

0 (Ω) ∩ D1,2
0 (Ω) if κ0 > 0 ,

D1,q
0 (Ω) if κ0 = 0 ,

Wq = Wq(Ω) :=

{
W 1,q(Ω) ∩ W 1,2(Ω) if κ0 > 0 ,

W 1,q(Ω) if κ0 = 0 ,

and define v to be a weak solution to the problem (2.8)–(2.12) if v = u+V , where
u ∈ Vq(Ω), and V ∈ Wq(Ω) with ∇ ·V = 0 in Ω, and V = v∗ at ∂Ω (in the trace
sense). (19)

(18)The case q ≥ 2 is obvious. For the case q < 2, it is enough to show that there exist constants
ci = ci(q) > 0, i = 1, 2, such that

x2

(1 + x2)(2−q)/2
≥ c1 xq − c2 , x ≥ 0 .

Now, if 1 ≤ x, the inequality follows at once with c1 = 2(q−2)/2 and arbitrary c2 ≥ 0. If x < 1,
then the inequality again follows with c1 = c2 = 1. Thus, in conclusion, (2.6) satisfies (2.10) with

κ1 = 2(q−2)/2 and κ3 = 1.
(19)If κ0 = 0, the above definition of weak solution is meaningful if q ≥ 6/5; see Remark 2.1.
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2.2.1(a) Existence results with v∗ ≡ 0. In this section we shall prove the existence
of a weak solution to (2.8)–(2.12) in the case when v∗ = 0, referring to the next
subsection for the case v∗ �≡ 0. We shall achieve this goal under the hypothesis of
the validity of the physically more realistic case κ0 > 0 in (2.9). The case κ0 = 0
which gives, in fact, more restrictive and less complete results, will be discussed
and presented in Remark 2.1.

Specifically, we have the following.

Theorem 2.1. Let Ω be a Lipschitz, bounded domain of R3. Assume that f ∈
D−1,q′

0 (Ω)∩D−1,2
0 (Ω), q > 1, and that h1 satisfies (2.9)–(2.12) with κ0 > 0. Then,

for any given q > 1, problem (2.8)–(2.12), with v∗ ≡ 0, has at least one corre-
sponding weak solution v ∈ D1,2

0 (Ω) ∩ D1,q
0 (Ω).

Proof. Let {ψk} ⊂ D(Ω) be a basis in D1,2
0 (Ω) whose linear hull can approximate

any ϕ ∈ D(Ω) in the C1(Ω)-norm. (20). We then look for solutions to (2.8) of the
form

vm =
m∑

k=1

ckmψk

(h1(|D(vm)|)D(vm), D(ψk)) = (vm · ∇ψk, vm) − (f , ψk) , k = 1, . . . , m .
(2.14)

Multiplying through both sides of (2.14)2 by ckm, summing over k from 1 to m we
get

κ0‖D(vm)|22 + (h(D(vm))D(vm), D(vm)) = −(f , vm) . (2.15)

Thus, from (2.15) and (2.10) we deduce

κ0‖D(vm)‖2
2 + κ1‖D(vm)‖q

q ≤ −(f , vm) + κ2|Ω| . (2.16)

We then use the Korn inequality

‖∇v‖r ≤ C1 ‖D(v)‖r , for all v ∈ W 1,r
0 (Ω) , r > 1 , C1 = C1(Ω, r) > 0 , (2.17)

into (2.16), to find that

‖∇vm‖2 ≤ C2 (‖f‖−1,2 + 1) ,

‖∇vm‖q ≤ C3 (‖f‖
1

q−1
−1,q′ + 1) ,

(2.18)

where C2 = C2(κ2, Ω) > 0 and C3 = C3(κ2, Ω, q) > 0. The inequalities in
(2.18) allow us, on the one hand, to prove that (2.14) has at least one solution
(c1m, . . . , cmm) for all m ∈ N (see [76]), and, on the other hand, to find a field v

(20)The sequence {ψk} satisfying the mentioned properties can be easily constructed by the

methods used in [36, Lemma VII.2.1].
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and a subsequence, that we continue to denote by {vm}, such that

vm → v weakly in W 1,q
0 (Ω) and W 1,2

0 (Ω) ,

vm → v

⎧⎪⎪⎪⎨⎪⎪⎪⎩
strongly in Lr(Ω) , all r ∈ [1,

3q

3 − q
) , if q < 3 ,

strongly in Lr(Ω) , all r ∈ [1,∞) , if q = 3 ,

strongly in C0,λ(Ω) , all λ ∈ (0, 1 − 3/q) , if q > 3.

(2.19)

We shall now pass to the limit m → ∞ in (2.14)2 and, by using the information
(2.19), will show that we can replace in it vm with v. It is simple to prove that,
for any fixed k,

(vm · ∇ψk, vm) → (v · ∇ψk, v) . (2.20)

In fact, by the Poincaré inequality, we have

‖vm‖2 ≤ C4‖∇vm‖2 ≤ C4(‖f‖−1,2 + 1) ,

where C4 = C4(κ2, Ω) > 0. Moreover, by (2.19), vm(x) → v(x) for almost all
x ∈ Ω, possibly along a subsequence. Thus, from [76, Lemme I.1.3] it follows
that vmivmj converges weakly to vivj , i, j = 1, 2, 3. Since ∇ψk ∈ D(Ω), (2.20)
follows. We shall next consider the convergence of the term on the left-hand side
of (2.14). From (2.11) and (2.18) it follows that the sequence {h(|D(vm)|)D(vm)}
is bounded in Lq′

(Ω), and so there exists a subsequence, still denoted by {vm},
and an element G ∈ Lq′

(Ω) such that

h(|D(vm)|)D(vm) → G weakly in Lq′
(Ω) . (2.21)

Therefore, from (2.14), (2.19)1, (2.20) and (2.21) we conclude that

κ0(D(v), D(ψk)) + (G, D(ψk)) = (v · ∇ψk, v)− (f , ψk) , k = 1, . . . , m . (2.22)

In order to show the existence of a weak solution it is enough to prove that

(G, D(ϕ)) = (h(|D(v)|)D(v), D(ϕ)) , for all ϕ ∈ D(Ω). (2.23)

In fact, if (2.23) holds, then , by (2.22), we obtain that (2.13) is satisfied for
ϕ ≡ ψk, for all k ∈ N and, therefore, by the properties of {ψk}, for all ϕ ∈ D(Ω).
The proof of (2.23), will be achieved through a procedure often referred to as
“Minty–Browder trick” [82], [18]. Multiplying both sides of (2.22) by ckm and
summing over k from 1 to m we find

κ0(D(v), D(vm)) + (G, D(vm)) = (v · ∇vm, v) − (f , vm) . (2.24)

We wish to pass to the limit m → ∞ into this relation. Given the convergence
properties (2.19) and the fact that G ∈ Lq′

(Ω), the left-hand side and the sec-
ond term on the right-hand side converge to κ0‖D(v)‖2

2 + (G, D(v)) and (f , v),
respectively. Concerning the convergence of the nonlinear term, we observe that,
since v ∈ D1,2

0 (Ω), by the Sobolev embedding theorem we have v ∈ L4(Ω) and so,
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from this fact and from the weak convergence of ∇vm to ∇v in L2(Ω) (see (2.19)1
we obtain

lim
m→∞

(v · ∇vm, v) = (v · ∇v, v) . (2.25)

Now, again recalling that v ∈ D1,2
0 (Ω), by a standard density argument, we can

easily show that (v · ∇v, v) = 0. Consequently, from this observation and from
(2.25), passing to the limit m → ∞ in (2.24), we finally conclude

κ0‖D(v)‖2
2 + (G, D(v)) = −(f , v) . (2.26)

We next observe that, setting

σ(v) := h(|D(v)|)D(v) ,

by (2.14)2 it easily follows that

κ0‖D(vm)‖2
2 + (σ(vm), D(vm)) = −(f , vm) ,

so that, letting m → ∞ in this relation and using (2.26), we have

lim
m→∞

[
κ0‖D(vm)‖2

2 + (σ(vm), D(vm))
]

= κ0‖D(v)‖2
2 + (G, D(v)) . (2.27)

Furthermore, by (2.12)2, we find

(κ0(D(vm) − D(Ψ)) + (σ(vm) − σ(Ψ)), D(vm) − D(Ψ)) ≥ 0 ,

for all Ψ ∈ D1,q
0 (Ω) ∩ D1,2

0 (Ω). Thus, passing to the limit m → ∞ into this latter
relation and using (2.27) we infer that

(κ0(D(v) − D(Ψ)) + (G − σ(Ψ)), D(v) − D(Ψ)) ≥ 0

for all Ψ ∈ D1,q
0 (Ω) ∩ D1,2

0 (Ω).
(2.28)

If we now choose Ψ = v − εϕ, ε > 0, ϕ ∈ D(Ω), from (2.28) we get

(εκ0D(ϕ) + (G − σ(v − εϕ)), D(ϕ)) ≥ 0 for all ϕ ∈ D(Ω).

We now let ε → 0 into this relation and use the continuity property of h(D),
the growth condition (2.11) and the Lebesgue dominated convergence theorem to
show that

(G − σ(v), D(ϕ)) ≥ 0 for all ϕ ∈ D(Ω).

Repeating the above procedure with −ϕ in place of ϕ, we then arrive at (2.23),
which concludes the proof of the theorem. �

Remark 2.2. If we assume that the material constant κ0 in the constitutive hy-
pothesis (2.13) vanishes (as in the case of the “power-law” model (2.5)), then the
above argument furnishes existence of weak solutions provided we impose the re-
striction q ≥ 9/5. Actually, if κ0 = 0, the very definition of weak solution requires
q ≥ 6/5. In fact, taking into account that, this time, v ∈ D1,q

0 (Ω) only, for the non-
linear term on the right-hand side of (2.13) to be convergent we need v ∈ L2(Ω)
and this, by the Sobolev embedding theorem, is ensured provided q ≥ 6/5. Now,
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assuming f ∈ D−1,q′
0 (Ω), from (2.16) with κ0 = 0, and (2.17), instead of (2.18) we

only obtain the weaker estimate

‖∇vm‖q ≤ C (‖f‖
1

q′−1
−1,q′ + 1) , (2.29)

where C = C(q, Ω, κ1, κ2) > 0. The proof of the existence of weak solutions pro-
ceeds along the same lines of the proof when κ0 > 0 without conceptual changes,
till the passage to the limit given in (2.25). In fact, in order that this relation
holds, we need a further restriction from below on the exponent q. This because
for the convergence of the nonlinear term in (2.25) we need v ∈ L2q′

(Ω), and
since v ∈ D1,q

0 (Ω), by the Sobolev embedding theorem, this happens if q ≥ 9/5.
The rest of the proof remains virtually unchanged and so we may conclude that
weak solutions exist also when κ0 = 0, provided the material parameter q is not
less than 9/5. The case when κ0 = 0 and q ∈ (6/5, 9/5) has been considered by
M. Růžička [95], and by J. Frehse et al. in [33, 34]. In particular, by using a com-
pletely different approach than the one presented here, these latter authors show
that a weak solution does exist for all given q in the above range. Their method
avoids the use of the Minty–Browder trick (which essentially requires the restric-
tion q ≥ 9/5) and replaces it by showing the existence of a suitable approximating
sequence of solutions {vm} (different than the Galerkin approximations) with the
properties that ∇vm(x) → ∇v(x) for a.a. x belonging to the compact subsets of
Ω. For further and full details, we refer the reader to the paper [34].

The next question that we would like to address concerns the existence of
a suitable pressure field associated to the weak solutions to problem (2.8)–(2.12).
Actually, from the summability properties of the weak solution and from [36,
Corollary III.5.1] we easily obtain that if Ω is Lipschitz and κ0 > 0, there exists a
scalar field p ∈ Ls(Ω), with s = 2 if q < 2, and s = q′ if q > 2, such that

(κ0D(v) + h(|D(v)|)D(v), D(ψ)) = (v · ∇ψ, v) − (f , ψ) + (p,∇ · ψ)

for all ψ ∈ C∞
0 (Ω).

(2.30)

However, following a procedure introduced in [33], we can give more detailed regu-
larity properties of the pressure, provided we assume Ω more regular (of class C2,
for instance). Consider the Stokes problems

(∇w1,∇ϕ) = (h(|D(v)|)D(v),∇ϕ) , w1 ∈ D1,q′
0 (Ω),

(∇w2,∇ϕ) = κ0(D(v),∇ϕ) , w2 ∈ D1,2
0 (Ω),

(∇w3,∇ϕ) = −(v · ∇ϕ, v) , w3 ∈ D1,6
0 (Ω) ∩ W 2,3/2(Ω) , all r > 1 ,

(2.31)

where ϕ is an arbitrary element from D(Ω) and v is the weak solution determined
in Theorem 2.1. In view of the properties of the weak solution and of the embedding
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W 1,2(Ω) ⊂ L6(Ω), we know that the fields wi, i = 1, 2, 3, exist; see [36, Chapter
IV]. Moreover, we know that there are p1 ∈ Lq′

(Ω), p2 ∈ L2(Ω) and p3 ∈ W 1,3/2(Ω)
such that

(∇w1,∇ψ) = (h(|D(v)|)D(v),∇ψ) − (p1,∇ · ψ),

(∇w2,∇ψ) = κ0(D(v),∇ψ) − (p2,∇ · ψ),

(∇w3,∇ψ) = −(v · ∇ψ, v) − (p3,∇ · ψ) ,

(2.32)

for all ψ ∈ C∞
0 (Ω). Moreover, adding the three equations in (2.31) side by side

and taking into account that v satisfies (2.13), we obtain

(∇(w1 + w2 + w3),∇ϕ) = −(f , ϕ) .

If we assume, for example, f ∈ D1,2
0 (Ω), then, again by known results on the

Stokes problem (see [36, Theorem IV.1.1 and Theorem IV.6.1]), it follows that
there exists p� ∈ L2(Ω) such that

(∇(w1 + w2 + w3),∇ψ) = −(f , ψ) + (p�,∇ · ψ) , (2.33)

for all ψ ∈ C∞
0 (Ω). Therefore, setting p := p� +

∑3
i=1 pi from (2.32)–(2.33) we get

that p satisfies (2.30). Summarizing, we have the following.

Theorem 2.2. Let v be a weak solution to (2.8)–(2.12) with κ0 > 0. Assume that
Ω is of class C2 and that f ∈ D−1,2

0 (Ω). Then, there exists a scalar field p such
that (21)

p = p1 + p2 + p3 ,

where p1 ∈ Lq′
(Ω), p2 ∈ L2(Ω) and p3 ∈ W 1,3/2(Ω), and such that (v, p) satisfy

(2.30). In particular, p has the following global summability properties: p ∈ L2(Ω),
if q < 2, while p ∈ Lq′

(Ω), if q > 2. For this latter to hold it is sufficient to assume
Ω Lipschitz.

Remark 2.3. If κ0 = 0 (see Remark 2.1), we have, as expected, that p may have
different regularity properties than in the case κ0 > 0. Actually, under the as-
sumption f ∈ D−1,q′

0 (Ω) and that Ω is of class C2, by the same argument used
previously we show that p = p̃1 + p̃2, with p̃1 ∈ Lq′

(Ω) and p̃2 ∈ W 1,s(Ω), where
s = 3q/(6−q) if q < 3, any s < q if q = 3, and s = q if q > 3. Therefore, in particu-
lar, by the Sobolev embedding theorem, p ∈ Lq′

(Ω) if q ≥ 9/4 and p ∈ L3q/(6−q) if
q ∈ [6/5, 9/4). This latter property can be directly proved by using [36, Corollary
II.5.1], in which case it is sufficient to require Ω only Lipschitzian.

(21)In case q > 2, the part p3 of the pressure can be shown to be even more regular. We leave
the task of finding this extra regularity to the interested reader (see also Remark 2.2).
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2.2.1(b) Existence results with v∗ �≡ 0. Our next objective is the study of problem
(2.8)–(2.12) in the case when v∗ �≡ 0. Before doing this, we would like to recall
that, in the Newtonian case, that is, in the case of the Navier–Stokes equations,
the existence is known provided the datum v∗ (belongs to a suitable function class
and) satisfies the conditions∫

Γi

v∗ · n = 0 , i = 1, . . . , N , (2.34)

where Γi are the N connected components of the boundary ∂Ω of the region of flow
[37, Theorem VII.4.1]. However, the necessary condition imposed on the datum
v∗ by the incompressibility property ∇ · v = 0, only requires that∫

∂Ω

v∗ · n = 0 . (2.35)

Clearly, (2.34) is more restrictive than (2.35), unless N = 1. It is an outstanding
open question in the mathematical theory of the Navier–Stokes equations to prove
of disprove existence of solutions to the non-homogeneous boundary-value problem
when only the natural compatibility condition (2.35) is satisfied. Nevertheless, if
the liquid is non-Newtonian and obeys the constitutive law (2.4), (2.9)–(2.12), we
shall show that the corresponding boundary-value problem (2.8) is solvable under
the assumption (2.35), provided q > 2. This latter means, roughly speaking, that
the liquid has to be “just a little bit” shear-thickening, that is, it is enough that
its viscosity increases “only slightly” with increasing shear rate. It is interesting
to observe that this result holds regardless of whether κ0 is zero or not zero. If
q < 2 and κ0 > 0, it can be shown that existence holds under the same conditions
of a Navier–Stokes liquid, that is, under the more restrictive assumption (2.34).
Finally, if q < 2 and κ = 0, the situation is even worse and existence is known
only if v∗ (satisfies (2.35) and) is small in a suitable norm [16].

In what follows, we shall limit ourselves to prove existence of weak solutions to
(2.8)–(2.12) when q > 2. More precisely, we wish to find a vector field v ∈ W 1,q(Ω),
q > 2, with ∇·v = 0 in Ω, v = v∗ at ∂Ω, and satisfying (2.13). To this end, assume
that v∗ is prescribed in W 1−1/q,q(∂Ω) and satisfies condition (2.35). It is then
known that, if Ω is Lipschitz, we can find a vector field V ∈ W 1,q(Ω) such that
∇·V = 0 in Ω and V = v∗ (in the trace sense) at ∂Ω; see [36, Exercise III.3.4]. We
then look for solutions v to (2.13) in the form v := u+V where u ∈ D1,q

0 (Ω). Then,
as in the case v∗ = 0, we use the Galerkin method to construct approximating
solutions to (2.13) (see (2.14)), where now

vm = V +
m∑

k=1

ckmψk =: V + um, (2.36)

(h1(|D(vm)|)D(vm), D(ψk)) = (vm · ∇ψk, vm) − (f , ψk) , k = 1, . . . , m .

The existence proof will then be identical to that of Theorem 2.1 provided we show
that the approximating solutions satisfy a suitable uniform estimate analogous to
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(2.18). In order to prove this latter, we multiply (2.36)2 by ckm and sum over k
from 1 to m. We thus get (the subscript “m” is, for simplicity, omitted)

κ0(D(v), D(u)) + (h(D(v))D(v), D(u)) = (v · ∇u, v) − (f , u) . (2.37)

Now, from (2.36)1, (2.10)–(2.11) and from the Hölder inequality it follows that

κ0(D(v), D(u))+(h(D(v))D(v), D(u)) ≥ κ0‖D(v)‖2
2 + κ1‖D(v)‖q

q

−κ0(D(v), D(V )) − (h(D(v))D(v), D(V )) − κ2|Ω|
≥ κ0‖D(v)‖2

2 + κ1‖D(v)‖q
q

− 1
2κ0‖D(v)‖2

2 − 1
2κ1‖D(v)‖q

q − C1 (V + 1)

≥ 1
2κ0‖D(v)‖2

2 + 1
2κ1‖D(v)‖q

q − C1 (V + 1) ,

where C1 = C1(q, κ0, κ1, κ2, κ3, Ω)) > 0, and

V := ‖D(V )‖2
2 + ‖D(V )‖q

q . (2.38)

Therefore, by the triangle inequality, we conclude
κ0(D(v), D(u)) + (h(D(v))D(v), D(u))

≥ 1
2κ0‖D(u)‖2

2 + 1
2κ1‖D(u)‖q

q − C2(1 + V) ,
(2.39)

where C2 = C2(q, κ0, κ1, κ2, κ3, Ω) > 0. Moreover, observing that (v · ∇u, u) = 0,
after an integration by parts, we find that

(v · ∇u, v) = (V · ∇u, V ) − (u · ∇V , u) , (2.40)

and so, by the Hölder inequality,

(v · ∇u, v) ≤ ‖∇u‖q‖V ‖2
2q′ + ‖u‖2

2q′‖∇V ‖q .

Now, since q > 2, we have the embedding W 1,q(Ω) ⊂ L2q′
(Ω). Therefore, using

in this latter displayed relation Young’s inequality (see (1.157) of Section 1) and
Korn’s inequality (2.17) we obtain

(v · ∇u, v) ≤ 1
4κ1‖D(u)‖q

q + C3‖V ‖2q/(q−2)
1,q , (2.41)

where C3 = C3(κ0, κ1, Ω, q) > 0. Finally, employing again Young’s and Korn’s
inequalities, we increase the last term on the right-hand side of (2.37) as follows:

|(f , u)| ≤ 1
8κ1‖D(u)‖q

q + C4 ‖f‖q′
−1,q′ , (2.42)

with C4 = C4(κ0, κ1, Ω, q) > 0. Collecting (2.37)–(2.39) and (2.41)–(2.42) we then
obtain the desired estimate

‖D(u)‖q
q ≤ C5

(
‖f‖q′

−1,q′ + ‖D(V )‖2
2 + ‖D(V )‖q

q + ‖V ‖2q/(q−2)
1,q + 1

)
, (2.43)

with C5 = C5(κ0, κ1, κ2, κ3, Ω, q) > 0, which in turn, by the triangle inequality
and by Korn’s inequality implies the following one on v:

‖∇v‖q
q ≤ C6

(
‖f‖q′

−1,q′ + ‖D(V )‖2
2 + ‖D(V )‖q

q + ‖V ‖2q/(q−2)
1,q + 1

)
, (2.44)

for another C6 = C6(κ0, κ1, κ2, κ3, Ω, q) > 0.
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Therefore, using (2.44) together with exactly the same procedure used in the
proof of Theorem 2.1, we can show that from the sequence {vm} we can select a
subsequence {vk} which, as k → ∞, converges in the appropriate topologies to a
solenoidal field v ∈ W 1,q(Ω), q > 2, satisfying (2.13). Of course, by construction,
v = v∗ at ∂Ω.

We have thus proved the following result.

Theorem 2.3. Let Ω be a Lipschitz, bounded domain of R3. Assume that f ∈
D−1,q′

0 (Ω), q > 2, that h1 satisfies (2.9)–(2.12) with κ0 ≥ 0 and that v∗ ∈
W 1−1/q,q(∂Ω) and satisfies the compatibility condition (2.35). Then, for any given
q > 2, problem (2.8) has at least one corresponding weak solution. Specifically,
there exists v ∈ W 1,q(Ω) with ∇ · v = 0 in Ω, v = v∗ at ∂Ω, and such that (2.13)
is satisfied.

Remark 2.4. We wish to emphasize the following two facts. In the first place, the
assumption q > 2 is crucial for the estimate of the second term on the right-hand
side of (2.40). In the second place, the condition κ0 > 0 is not needed in deriving
(2.43), which therefore continues to hold also for κ0 = 0. Of course, since Ω is
bounded, (2.43) furnishes an estimate also for the L2-norm of D(u).

2.2.1(c) Uniqueness results. Our next task is the investigation of the uniqueness of
weak solutions. Specifically, we shall prove a uniqueness result under the assump-
tion that the function h1 satisfies the conditions (2.9), (2.11) and (2.12), with
κ0 > 0. An analogous result when κ0 = 0 will be discussed in Remark 2.4.

Theorem 2.4. Let Ω be a Lipschitz, bounded domain of R3 and let v1, v2 be two
weak solutions to problem (2.8), where h1 satisfies (2.9), (2.11) and (2.12) with
κ0 > 0 and a given q > 1. Then, if

‖v1‖3 <

√
3 κ0

2
,

necessarily v1 = v2.

Proof. Set u := v1 − v2. From (2.13) we then find

κ0(D(u), D(ϕ))+ (h(D(v1))D(v1) − h(D(v2))D(v2), D(ϕ))

= (u · ∇ϕ, u) + (u · ∇ϕ, v1) + (v1 · ∇ϕ, u)

for all ϕ ∈ D(Ω) .

(2.45)

Let {uk} be a sequence from D(Ω) converging to u in the norm of D1,2
0 (Ω) ∩

D1,q
0 (Ω). By [36, Theorem III.6.1], this sequence exists. We replace uk for ϕ in

(2.45) and pass to the limit k → ∞ on both sides of the resulting equation. In
view of the summability properties of weak solutions and of the assumption (2.11)
made on h1, it is easy to show the validity of the relation

κ0‖D(u)‖2 + (h(D(v1))D(v1) − h(D(v2))D(v2), D(u)) = (u · ∇u, v1) . (2.46)
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Now, by the Hölder inequality and by the Sobolev inequality

‖u‖6 ≤ 2√
3
‖∇u‖2 ,

see, e.g., [36, p. 31], we find

|(u · ∇u, v1)| ≤ ‖u‖6‖∇u‖2‖v1‖3 ≤ 2√
3
‖v1‖3‖∇u‖2

2 . (2.47)

Therefore, inserting this latter inequality back into (2.46) and recalling the as-
sumption (2.12), we find

(κ0 −
2√
3
‖v1‖3)‖∇u‖2

2 ≤ 0 ,

from which the result follows. �

Remark 2.5. If κ0 = 0, uniqueness results can still be recovered, provided we
strengthen the monotonicity assumption on the function h (≡ h1). For example,
suppose that for all symmetric tensors A, B, the function h satisfies the property

(h(A)A − h(B)B) : (A − B) ≥ κ4 |A − B|2(|A| + |B|)q−2 if q > 2 (2.48)

where κ4 = κ4(q) > 0. Then, from (2.46) with κ0 = 0, and from (2.48) and (2.17),
we readily find that

‖∇u‖2
2 ≤ C(u · ∇u, v1) ,

where C = C(Ω, κ4) > 0, from which, with the help of (2.47), we again obtain
uniqueness, provided the norm ‖v1‖3 is sufficiently small. (22) It must be empha-
sized that all the constitutive relations (2.5)–(2.7) satisfy the property (2.48) for
any q > 2; see [96, Lemme 3.1]. If q ∈ (1, 2) it can be shown that the constitutive
equations (2.5)-(2.7) satisfy, instead, the inequality

(h(A)A − h(B)B) : (A − B) ≥ κ5
|A − B|2

(δ + |A|2−q + |B|2−q)
if q ∈ (1, 2) , (2.49)

where κ5 = κ5(q) > 0 and δ ≥ 0; see [96, Lemme 3.1]. In such a circumstance the
proof of uniqueness requires a little more work than the case q > 2. In addition,
and most important, it shows a drawback that is not present in the case q > 2.
Specifically, besides the condition q ≥ 9/5, the known uniqueness results require
that both solutions, v1 and v2, be sufficiently “small” in suitable norms (that is,
we have just local uniqueness); see [16]. More precisely, given two weak solutions
v1 and v2 to (2.8) with h1 satisfying (2.9) with κ0 = 0, (2.11) and (2.49) for some
q ∈ [9/5, 2), there exists a positive constant C depending only on Ω and on the
material parameters, such that if ‖∇vi‖1,q < C, i = 1, 2, then v1 = v2. Also in
this case, Ω is requested to be Lipschitz. For the proof of this theorem we refer to
[16]. To date, no uniqueness result for weak solutions is known if h (≡ h1) satisfies
(2.11), (2.49) and q ∈ [6/5, 9/5).

(22)Actually, in this case, we can also find uniqueness imposing restrictions on the Ls-norm of
v1, with s < 3. We leave the simple proof of this statement to the interested reader.
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2.2.2. Boundary-value problem in unbounded piping system. In this section we
shall investigate the existence and uniqueness of steady flow of generalized non-
Newtonian liquids in an unbounded system of pipes with prescribed flow-rate, Φ.
As in the previous section, we shall use the liquid model given by (2.4) where h1

satisfies (2.9)–(2.12) with κ0 > 0. The case κ0 = 0 will be discussed in Remark
2.10.

For the sake of simplicity, we shall assume that the piping system consists
of a “distorted” pipe Ω = Ω0 ∪ Ω1 ∪ Ω2, where Ωi, i = 0, 1, 2, are defined at the
beginning of Section 1.3. (23) Therefore, the relevant boundary-value problem is
described by the equations

∇ · (h1(|D(v)|)D(v)) = v · ∇v + ∇p

∇ · v = 0

}
in Ω,

∫
S

v · n dS = Φ, v|∂Ω = 0 .

(2.50)

As in the Newtonian (Navier–Stokes) case, in order to solve this problem and to
find the asymptotics of the velocity field, we shall introduce, for the case at hand,
the analogue of Hagen–Poiseuille flow in an infinite straight pipe (see Section 1.1).
This will be the object of the next section.

2.2.2(a) Fully developed steady-state flows. Let us consider a generalized New-
tonian liquid (described by (2.4), (2.9)–(2.12)) in an infinite, straight pipe, Ω, of
constant cross-section S (bounded domain of R2). In what follows, we suppose S
of class C2. Assuming x1 parallel to the axis of the pipe, it is then easy to check
that (2.50)1,2,4 admits a solution of the type

vP (x) = U(x2, x3)e1 , pP (x) = −Γx1 , (2.51)

with Γ ∈ R, provided the pair (U, Γ) satisfies the boundary-value problem

κ0Δ′U + ∇′ · (h(|∇′U |)∇′U) = −Γ , U(x2, x3)|S = 0 , (2.52)

where the prime means differentiation only with respect to x2 and x3. In obtaining
(2.52) we have noticed that, for the velocity field given in (2.51), the only nonzero

components of D are D12 = D21 =
∂U

∂x2
and D13 = D31 =

∂U

∂x3
, so that 2|D| =

|∇′U |. (24) We recall that, from the physical point of view, Γ is the (constant) axial
gradient of pressure. In analogy with the Newtonian case, we call the flow (2.51)–
(2.52) the Hagen–Poiseuille or, more simply, the Poiseuille flow of the generalized
Newtonian model.

If the constant Γ is prescribed, then it is easy to show the existence of a
weak solution to (2.52). By this latter, we mean a scalar field U such that (primes

(23)Throughout this section, the notation will be the same as that introduced in Section 1.3.
(24)Rigorously, we should have used another symbol h̃, say, for the function h in (2.52) where

h̃(|∇′U |) = h( 1
2
|∇′U |). However, in order to avoid to introduce further notation, we set h̃ ≡ h.
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omitted)

κ0 (∇U,∇φ) + (h(|∇U |)∇U,∇φ) = (Γ, φ) for all φ ∈ V q(S) , (2.53)

where

V q = V q(S) :=

{
W 1,q

0 (S) ∩ W 1,2
0 (S) if κ0 > 0 ,

W 1,q
0 (S) if κ0 = 0 .

In fact, by formally multiplying both sides of (2.52)1 by U and by integrating by
parts, in view of the properties of the function h we find (with ‖ · ‖r,S ≡ ‖ · ‖r)

κ0‖∇U‖2 + ‖∇U‖q ≤ C , (2.54)

where C = C(q, S, Γ) > 0. Thus, using the Galerkin method along with exactly
the same procedure adopted in the proof of Theorem 2.1, we can show that, for
any given q > 1, there exists U satisfying (2.53)–(2.54).

If, however, the flow-rate,

Φ =
∫

S

U(x2, x3) dS , (2.55)

is prescribed, then the task is slightly less obvious, since, in this case, we have to
find U and Γ satisfying (2.53), which thus becomes an inverse problem. To show
existence in this case, we set

Ĉ∞
0 (S) = {ϕ ∈ C∞

0 (S) :
∫

S

ϕ(x2, x3) dS = 0} ,

and denote by Ŵ 1,r
0 (S), 1 < r < ∞, the completion of Ĉ∞

0 (S) in the W 1,r-norm.
We also set

V̂ q = V̂ q(S) :=

⎧⎨⎩ Ŵ 1,q
0 (S) ∩ Ŵ 1,2

0 (S) if κ0 > 0 ,

Ŵ 1,q
0 (S) if κ0 = 0 .

We then define the pair (U, Γ) to be a weak solution to (2.52) corresponding to the
flow-rate Φ ∈ R, if U ∈ V q(S), and (a) U satisfies (2.55), and (b) the pair (U, Γ)
obeys (2.53).

The following result holds.

Proposition 2.1. Let h satisfy the assumptions (2.10)–(2.12) for some q > 1, and
let κ0 ≥ 0. Then, for any Φ ∈ R there exists one and only one weak solution (U, Γ)
to (2.52). Assume, further, that either q > 2 or κ0 > 0. Then the following two
properties hold.

(i) U ∈ C0(S) and there is a constant C > 0 depending at most on q, S, Φ and
κ0 such that

‖U‖C0(S) ≤ C .

(ii) The map
M : Φ ∈ R �→ (U, Γ) ∈ C0(S) × R

is continuous.
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Proof. Proving the existence of a weak solution, (U, Γ), to (2.52) is equivalent to
proving the existence of U ∈ V q(S) satisfying (2.55) along with the condition

κ0 (∇U,∇ϕ) + (h(|∇U |)∇U,∇ϕ) = 0 for all ϕ ∈ V̂ q(S). (2.56)

Actually, it is obvious that if (U, Γ) is a weak solution to (2.52), then U satisfies
(2.56). Conversely, assume that U ∈ V q(Ω) satisfies (2.56), and let φ be an ar-
bitrary element of V q(S), and χ ∈ V q(S) with

∫
S χ dS = 1. We then choose in

(2.56)

ϕ = φ − χ

∫
S

φ(x2, x3) dS .

Clearly, ϕ ∈ V̂ q(S). Thus, setting

h := κ0∇U + h(|∇U |)∇U , (2.57)

we find
(h,∇φ) = (Γ, φ) , for all φ ∈ V q(S) ,

where

Γ :=
∫

S

h · ∇χ dS , (2.58)

which shows that the pair (U, Γ) satisfies (2.53). Notice that the constant Γ does
not depend on the particular choice of χ. In fact, if χ1 is another function from
V q(S) with

∫
S

χ dS = 1, we deduce that χ − χ1 ∈ V̂ q(S) and so, by (2.56),∫
S

h · ∇χ dS =
∫

S

h · ∇χ1 dS .

Furthermore, from (2.57)–(2.58) it follows that

|Γ| ≤ C (κ0‖∇U‖1 + ‖h(|∇U |)∇U‖1) , (2.59)

with C = C(S) > 0. Now, the existence of a function U ∈ V q(S) satisfying (2.55)
and (2.56) can be proved by the same arguments used in the proof of Theorem
2.1, provided we show an a-priori estimate for U , of the type given in (2.54). In
order to obtain this latter, we look for a solution U of the form U = u + a, where
a = Φ A, and A ∈ C∞

0 (S), with∫
S

A(x2, x3) dS = 1 .

Clearly, u has zero flow-rate through S. Thus, by formally replacing u for ϕ in
(2.56) we get

κ0‖∇U‖2
2 + (h(|∇U |)∇U,∇u) = 0 . (2.60)

Moreover, by the properties of the function h, we also have

(h(|∇U |)∇U,∇u) ≥ C1 ‖∇U‖q
q − (h(|∇U |)∇U,∇a) − C2|S|

≥ 1
2C1 ‖∇U‖q

q − C3 (‖∇a‖q
q + 1) ,
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where Ci = Ci(κi) > 0, i = 1, 2, and C3 = C3(κ1, κ2, q, S) > 0. Substituting this
latter inequality in (2.60) proves the following one:

κ0‖∇U‖2
2 + ‖∇U‖q

q ≤ C4 (|Φ|q + 1) (2.61)

with C4 = C4(κ1, κ2, q, S) > 0, which furnishes the desired estimate. Concerning
uniqueness, let (U1, Γ1) and (U2, Γ2) be two weak solutions corresponding to the
same flow-rate Φ, and set U := U1 − U2, Γ := Γ1 − Γ2. From (2.53) we find

κ0(∇U,∇φ) + (h(|∇U1|)∇U1 − h(|∇U2|)∇U2,∇φ) = (Γ, φ) for all φ ∈ V q(S).
(2.62)

Since V̂ q(S) ⊂ V q(S) and since U ∈ V̂ q(Ω) (25) from (2.62) we get

κ0‖∇U‖2
2 + (h(|∇U1|)∇U1 − h(|∇U2|)∇U2,∇U) = 0 ,

which, in particular, implies

(h(|∇U1|)∇U1 − h(|∇U2|)∇U2,∇U) ≤ 0 .

However, by the assumption (2.12) and by the fact that U ∈ V q(S), from this
latter inequality we infer U = 0 a.e. in S, which, once replaced in (2.62), furnishes
Γ = 0, and uniqueness follows. Let us now show that U ∈ C0(S), under the stated
assumptions. If q > 2, then, by the Sobolev embedding theorem and by (2.61), the
claim is obvious. If q < 2 and k0 > 0, we notice that, from the assumption (2.11)
on h, we find that

φ ∈ V q(S) �→ −(h(|∇U |)∇U,∇φ) + (Γ, φ)

defines a bounded linear functional and, consequently, by well-known results on
elliptic equations, from (2.53) we obtain that U ∈ V q′

(S) together with the esti-
mate

‖∇U‖V q′ (S) ≤ C5( ‖∇U‖V q(S) + |Γ|) , (2.63)

where C5 = C5(κ0, S, q) > 0. Thus, the required property again follows from
the Sobolev embedding theorem and (2.59) and (2.61). It remains to show the
continuity of the map M , namely, for any given Φ0 and ε > 0, there exists δ =
δ(Φ0, ε) > 0 such that

|Φ − Φ0| < δ =⇒ ‖U − U0‖C0(S) + |Γ − Γ0| < ε , (2.64)

(25)It is easy to show that Ŵ 1,r
0 (S) = {ϕ ∈ W 1,r

0 (S) :
∫
S ϕdS = 0} ≡ V 1,r

0 (S). In fact, clearly,

Ŵ 1,r
0 (S) ⊂ V 1,r

0 (S). Conversely, let u ∈ V 1,r
0 (S). We have to prove that there exists a sequence

{uk} ⊂ Ĉ∞
0 (S) converging to u in the W 1,r-norm. Since V 1,r

0 (S) ⊂ W 1,r
0 (S), there exists a

sequence {ψk} ⊂ C∞
0 (S) converging to u in W 1,r(S). Let ζ ∈ C∞

0 (S) with
∫

S ζ dS = 1. Then,
the sequence

uk := ψk − ζ

∫
S

ψk dS , k ∈ N ,

belongs to Ĉ∞
0 (S) and converges to u in W 1,r(S).
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where (U, Γ) and (U0, Γ0) are weak solutions corresponding to Φ and Φ0, respec-
tively. In fact, assume that (2.64) does not hold. Then we can find sequences {Φn},
{Un, Γn} and a number ε0 > 0, independent of n, such that

lim
n→∞

Φn = Φ0 , and ‖Un − U0‖C0(S) + |Γn − Γ0| ≥ ε0 for all n ∈ N. (2.65)

We recall that, by (2.58), Un and Γn are related by the equation

Γn =
∫

S

(κ0∇Un + h(|∇Un|)∇Un) · ∇χ . (2.66)

Now, from (2.61), if q > 2, and from (2.59), (2.61) and (2.63), if q < 2 and κ0 > 0,
and from (2.66), we may find subsequences {Unk

, Γnk
}, such that

Unk
→ Ũ weakly in V s(S) , s = q , q′ ,

lim
nk→∞

Γnk
= Γ̃ ,

(2.67)

for some Ũ ∈ V s(S) and Γ̃ ∈ R. By using the monotonicity property of h along
with (2.67), it is a simple task to prove that there is Γ̃ ∈ R such that (Ũ , Γ̃), is
a weak solution to (2.52) corresponding to the flow-rate Φ0. Therefore, in view of
uniqueness, Ũ = U0, Γ̃ = Γ0 and so, by taking into account that the embedding
V s(S) ⊂ C0(S), s > 2, is compact, conditions (2.67) contradict (2.65) and the
proof of the proposition is completed. �

Remark 2.6. Unlike the Navier–Stokes case (see Section I.1.1), for the generalized
Newtonian models considered here, in general, it is not immediate to find the
relation between the flow-rate Φ and axial pressure gradient Γ. However, in the
case of the power-law model (2.5), due to the homogeneity of the constitutive
equation, it is possible to find a simple relation. Specifically, set

U =
1

μ
1

q−1
1

Γ

|Γ|
q−2
q−1

u , (2.68)

where u solves the problem

∇ ·
(
|∇u|q−2∇u

)
= −1 , u|∂S = 0. (2.69)

Then, it is immediate to check that U is a solution to (2.52) with κ0 = 0 and
h = μ1 |∇U |q−2∇U . Therefore, from (2.68) we obtain the relation

Φ = M
1

μ
1

q−1
1

Γ

|Γ|
q−2
q−1

,

with M :=
∫

S
u dS, or, equivalently,

Γ = μ1
Φ
M

∣∣∣∣ Φ
M

∣∣∣∣q−2

.
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Observe that M depends only on S. In the case when S is a circle of radius R, the
solution to (2.68) is easily found to be

u = C(R, q)
[
1 −

( r

R

) q
q−1
]

,

where C(R, q) > 0 depends only on R and q; see, e.g., the article of A.M. Robertson
[94] in this volume. It is clear that the above type of scaling does not work any
more if κ0 > 0, or even if κ0 = 0 and h ≡ h1 is given by (2.6) with μ0 = 0.

Our next objective is to establish some regularity results for the solution
determined in Proposition 2.1. To this end we need to impose some further re-
strictions on the function h. Specifically, setting

aij(p) :=
∂

∂pj
(h(|p|)pi) , i, j = 1, 2 ,

we shall assume the ellipticity and growth properties

aij(p) ξi ξj ≥ λ (κ + |p|)q−2|ξ|2,
|aij(p)| ≤ Λ (κ + |p|)q−2 ,

(2.70)

where λ > 0, Λ > 0 and κ ≥ 0 are constants, possibly depending on q.
By a straightforward calculation, one shows that the function h associated to

each constitutive relation (2.5)–(2.7) satisfies (2.70). The following result holds.

Proposition 2.2. Let S be of class C1,β, for some β > 0 and let h satisfy (2.70).
Then, if either q > 2 or κ0 > 0, the weak solution (U, Γ) to (2.52) corresponding
to a given Φ ∈ R, satisfies U ∈ C1,γ(S), for some γ > 0. Moreover, there exists a
constant C > 0 depending, at most, on q, S, κ0 and Φ), such that

‖U‖C1,γ(S) ≤ C .

Proof. Under the given assumptions on q and κ0, by Proposition 2.1, we know
that U is bounded in S by some constant depending, at most, on q, S κ0 and Φ.
The result is then an immediate consequence of [75, Theorem 1]. �

Remark 2.7. (1) In the case of the power-law model, it can be shown that u,
and hence U , is in C0(S), for all q ∈ (1,∞), despite the fact that κ0 = 0 (see
Remark 2.1). In fact, one can prove the stronger result that, for any given q > 1,
the corresponding weak solution u to (2.69) is in W 2,2(Ω); see [77]. Then, by [75,
Theorem 1], it follows that u ∈ C1,γ(S), for some γ > 0.

(2) In the case of the Carreau model (2.6), the regularity of the weak solution to
(2.52), corresponding to a given Φ, follows also when μ0 ≡ κ0 = 0 (see Remark
2.1). In fact, by classical results on non-degenerate quasi-linear elliptic equations
in divergence form, it follows that if S is of class C2,β , for some β > 0, then
U ∈ C2,β(S); see, e.g., [72, Theorem 8.3 in Chapter 4] .
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2.2.2(b) Steady-state flow in a distorted pipe. The main result of this section will
concern existence and uniqueness for problem (2.50), under suitable assumptions
on the function h1. In order to achieve this goal, as in the Newtonian case, it is
appropriate to furnish an equivalent formulation of (2.50), and to put this latter
in a weak form. To this end, we begin to introduce the flow-rate carrier γ = γ(x)
satisfying the following properties.

(i) γ ∈ C1(ω) , for all bounded domains ω ⊂ Ω ;
(ii) ∇ · γ = 0 in Ω , γ|∂Ω = 0 ;

(iii)
∫

S

γ · n dS = Φ ;

(iv) γ(x) = vP1(x) for all x ∈ Ω̃1 and γ(x) = vP2(x) for all x ∈ Ω̃2, where, we
recall, Ω̃1 and Ω̃2 are defined in (1.103) , and vPi, i = 1, 2, are the Poiseuille
velocity fields in Ωi defined in (2.51) and corresponding to the flow-rate Φ ;

(v) for any ε > 0, there is δ = δ(ε) > 0 such that max
x∈Ω

|γ(x)| < ε, if |Φ| < δ .

Taking into account Proposition 2.1, the existence of a field γ satisfying (i)–(iv)
can be proven exactly by the same methods used to construct the flow-rate carrier
a of Section I.3.1. Moreover, the property (v) follows from Proposition 2.1(ii).

We next notice that, in view of the properties of the fields γ and vPi(x), we
find that

∇ · (κ0 + h(|D(γ)|)D(γ) − γ · ∇γ = −Γie1

γ · ∇γ = 0

}
in Ωi , i = 1, 2 . (2.71)

Therefore, since∫
Si

ϕ · n dS = 0 for all ϕ ∈ D1,r
0 (Ω) , i = 1, 2 , 1 < r < ∞ ,

from the preceding relation we deduce∫
Ω

(κ0 + h(|D(γ)|)) D(γ) : D(ϕ) = −
∫

Ω̃0

γ · ∇γ · ϕ

−
∫

Ω̃0

(κ0 + h(|D(γ)|)) D(γ) : D(ϕ) ,

(2.72)

for all such ϕ. We shall now give a suitable generalized formulation of problem
(2.50). We set

Vq(Ω) := D1,q
0 (Ω) ∩ D1,2

0 (Ω) , q ∈ (1,∞) , q �= 2 .

Clearly, Vq(Ω), endowed with the natural norm ‖u‖Vq(Ω) ≡ ‖∇u‖q + ‖∇u‖2, is a
reflexive, separable Banach space. We next set v = u + γ, multiply both sides of
(2.50)1 by ϕ ∈ Vq(Ω), integrate by parts over Ω and use (2.72). We thus obtain
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the equation

((κ0 + h(|D(u + γ)|)) D(u + γ) − (κ0 + h(|D(γ)|)) D(γ), D(ϕ))

= (u · ∇ϕ, u) + (u · ∇ϕ, γ) + (γ · ∇ϕ, u) + F (ϕ)

for all ϕ ∈ V q(Ω) ,
(2.73)

where

F (ϕ) :=
∫

Ω̃0

γ · ∇γ · ϕ +
∫

Ω̃0

(κ0 + h(|D(γ)|))D(γ) : D(ϕ) . (2.74)

We shall say that u : Ω �→ R3 is a weak solution to problem (2.50) if and only if
(a) u ∈ Vq(Ω) , and (b) u satisfies (2.73)–(2.74).

The proof of existence and uniqueness of weak solutions requires the following
more stringent assumptions on the function h,

|h(|A|)A − h(|B|)B| ≤ κ4(κ5 + |A|q−2 + |B|q−2)|A − B|,
(h(|A|)A − h(|B|)B) : (A − B) ≥ κ6|A − B|q ,

(2.75)

for arbitrary second-order symmetric tensors A, B and q > 2, with κ4, κ6 > 0 and
κ5 ≥ 0 material constants.

Remark 2.8. Conditions (2.75) imply (2.10)–(2.12). Moreover, all constitutive
equations (2.5)–(2.7) satisfy the properties (2.75); see [96, Lemme 3.1].

Theorem 2.5. Let h1 satisfy the assumptions (2.9), (2.75) with κ0 > 0 and for
some some q > 2, and assumptions (2.70) as well. Then, given Φ ∈ R, there exists
a constant C = C(Ω, q, κ0, κ4, κ5, κ6) > 0 such that, if |Φ| < C, problem (2.50)
has at leat one one weak solution u. Furthermore, there exists a positive constant
M = M(Ω, q, κ0, κ4, κ5, κ6), such that if ‖∇u‖2 < M , then u is the only weak
solution corresponding to Φ.

Proof. It is convenient to write (2.73)–(2.74) as a nonlinear equation in the space
V� := [Vq(Ω)]′. Throughout the proof, we shall denote by 〈·, ·〉 the duality pairing
between V� and Vq(Ω). In view of the assumption (2.75)1, from the properties
of the function γ and from the Hölder inequality, we easily obtain that, for any
u ∈ Vq(Ω), the map

ϕ ∈ Vq(Ω) �→
((κ0 + h(|D(u + γ)|))D(u + γ) − (κ0 + h(|D(γ)|)) D(γ), D(ϕ)) ∈ R

defines an element A(u) of V�, such that

〈A(u), ϕ〉 = ((κ0 + h(|D(u + γ)|))D(u + γ)

− (κ0 + h(|D(γ)|)) D(γ), D(ϕ))
(2.76)

for all ϕ ∈ Vq(Ω), with

‖A(u)‖V� ≤ C1 (‖∇u‖2 + ‖∇u‖q−1
q ) , (2.77)
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where C1 is a positive constant independent of u. Moreover, on the one hand, in
view of the embedding Vq(Ω) ⊂ L4(Ω), we have

|(u · ∇ϕ, u)| ≤ ‖u‖2
4‖ϕ‖Vq(Ω) ≤ C2 ‖u‖2

Vq(Ω) ‖ϕ‖Vq(Ω) ,

and, on the other hand, by the Poincaré inequality (see (1.79) in Section 1), the
Schwarz inequality and the properties of the function γ it follows that

|(u · ∇ϕ, γ) + (γ · ∇ϕ, u)| ≤ C3 ‖u‖Vq(Ω)‖ϕ‖Vq(Ω) ,

where Ci, i = 2, 3, are positive constants independent of u and ϕ . Therefore,
taking into account the linear dependence on ϕ of the above quantities, we can
find a uniquely determined B(u) ∈ V� such that

〈B(u), ϕ〉 = (u · ∇ϕ, u) + (u · ∇ϕ, γ) + (γ · ∇ϕ, u) , (2.78)

for all ϕ ∈ Vq(Ω). Finally, again by the properties of the function γ, it is immediate
to prove that there exists a constant C4 > 0 independent of ϕ such that |F (ϕ)| ≤
C4 ‖ϕ‖Vq(Ω), and so there exists f ∈ V� such that

〈f, ϕ〉 = F (ϕ) , (2.79)

for all ϕ ∈ Vq(Ω). From (2.76), (2.78)–(2.79), we find that the existence of a weak
solution to (2.50) is equivalent to finding u ∈ Vq(Ω) such that

〈A(u), ϕ〉 = 〈B(u), ϕ〉 + 〈f, ϕ〉 for all ϕ ∈ Vq(Ω). (2.80)

The proof of existence can be now handled by means of the classical theory of
monotone operators. Let {ϕk} be a sequence from D(Ω) which is an orthogonal
basis in D1,2

0 (Ω) and whose linear hull is dense in Vq(Ω). We look for an approxi-
mated solution to (2.80) of the form

um :=
m∑

k=1

ckmϕk ,

〈A(um), ϕk〉 = 〈B(um), ϕk〉 + 〈f, ϕk〉 , k = 1, . . . , m .

(2.81)

As in the case of the bounded domain treated in the previous section, the existence
of a solution to (2.81) is obtained provided we show a uniform estimate for um,
m ∈ N. We thus multiply both sides of (2.81) by ckm and sum over k from 1 to m.
Taking into account that 〈B(um), um〉 = (um · ∇um, γ), from (2.75), (2.76), and
from the Korn inequality, we find

‖∇um‖2
2 + ‖∇um‖q

q ≤ C5 (um · ∇um, γ) + ‖f‖V�‖u‖Vq(Ω) , (2.82)

where C5 > 0 is independent of m. By the Poincaré inequality we find that

|(um · ∇um, γ)| ≤ C6 max
x∈Ω

|γ(x)| ‖∇um‖2
2 ,

with C6 = C6(Ω) > 0, and so, by the property (v) of γ, we can choose |Φ| so small
that

C6 max
x∈Ω

|γ(x)| <
1
2

.
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From (2.82) we thus find

‖∇um‖2
2 + ‖∇um‖q

q ≤ 2‖f‖V�‖u‖Vq(Ω) ,

which, with the help of (1.157) in Section 1, in turn, implies

‖∇um‖2
2 + ‖∇um‖q

q ≤ C7 (‖f‖2
V� + ‖f‖

q
q−1
V� ) , (2.83)

with C7 = C7(q) > 0. This is the desired estimate that proves the existence of a
solution to (2.81), for all m ∈ N. From (2.83) we may select a subsequence, that
we continue to denote by {um} and u ∈ Vq(Ω) such that

um → u weakly in Vq(Ω).

Moreover, from (2.77) and (2.83) it follows that the sequence {A(um)} is uniformly
bounded in V� and, consequently, there exists G ∈ V� such that

lim
m→∞

〈A(um), ϕ〉 = 〈G, ϕ〉 , for all ϕ ∈ Vq(Ω). (2.84)

Having established these properties, the existence proof becomes completely anal-
ogous to that of Theorem 2.1 and it will only be sketched here. Since

lim
m→∞

〈B(um), ϕk〉 = 〈B(u), ϕk〉 ,

in view of the properties of the sequence {ϕk}, it is enough to show that

〈A(u), ϕ〉 = 〈G, ϕ〉 , for all ϕ ∈ Vq(Ω). (2.85)

From (2.81)2 and (2.84) we can show that

lim
m→∞

〈A(um), um〉 = 〈G, u〉 . (2.86)

Now, from the monotonicity properties of the function h, (2.75)2, we obtain, for
all ψ ∈ Vq(Ω),

〈A(um) − A(ψ), um − ψ〉 ≥ 0 ,

and so, passing to the limit m → ∞ and taking into account (2.86), we get

〈G − A(ψ), u − ψ〉 ≥ 0 for all ψ ∈ Vq(Ω) .

Therefore, choosing ψ = u + λϕ, λ > 0 and letting λ → 0, by the continuity
property of h we find

〈G − A(u), ϕ〉 ≥ 0 for all ϕ ∈ Vq(Ω) ,

which proves (2.85). The proof of existence is then accomplished. Let now, u1 be
another weak solution corresponding to Φ, and let w := u − u1. From (2.80) it
follows that

〈A(u) − A(u1), w〉 = 〈B(u) − B(u1), w〉 ,

which, taking into account (2.75)2 and (2.78), in particular, implies

‖∇w‖2
2 ≤ C7 ((w · ∇w, u) + (w · ∇w, γ)) ≤ C8 (‖∇u‖2 + max

x∈Ω
|γ(x)|)‖∇w‖2

2 ,

(2.87)
where we have used the embedding W 1,2(Ω) ⊂ L4(Ω) and where Ci > 0, i = 7, 8,
are independent of u and u1. By the property (v) of γ, there exists δ > 0 such that
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C8 max
x∈Ω

|γ(x)| < 1
2 , provided |Φ| < δ. Under the sated assumptions, the uniqueness

result is then an immediate consequence of (2.87). �

Remark 2.9. If κ0 > 0 and 1 < q < 2, unique solvability still holds, provided h
satisfies appropriate assumptions. More precisely, suppose that h is a continuous
function satisfying (2.12) along with the following one:

|h(|A|)A − h(|B|)B| ≤ κ7|A − B| , (2.88)

for all symmetric tensors A and B and for some constant κ7 > 0 independent of
A and B. We then define a weak solution to problem (2.50) to be a vector field
u ∈ D1,2

0 (Ω) satisfying (2.73)–(2.74) with Vq(Ω) replaced by D1,2
0 (Ω). Because of

(2.88) (and of the properties of γ), it is readily checked that every term in (2.73)
is meaningful. Thus, by the same arguments used in the proof of Theorem 2.5, we
can show the existence of a weak solution on the condition that the magnitude of
the flow-rate does not exceed a certain constant. This solution is also unique if its
Dirichlet norm is sufficiently “small”. Notice that the Carreau law (2.6) satisfies
(2.88); see [96, Lemme 3.1, Eqs. (3.4) and (3.5)].

Remark 2.10. If κ0 = 0, as in the case of the power-law model (see Remark 2.1),
the procedure employed in the proof of Theorem 2.5 fails. However, by using a
“weighted” approach, with weight related to the Hagen–Poiseuille velocity fields,
vPi, in Ωi, i = 1, 2, E. Marušić-Paloka has shown in [80] some existence and
uniqueness results of a weak solution for the power-law model (see (2.5)), with
q > 2 for “small” flow-rate. This approach requires a detailed information about
the dependence of vPi on the cross-sectional coordinates and, consequently, the
proof is given only in the case of a circular cross section, where an explicit solution
is known (see Remark 2.6). The case q < 2 remains open, even in the case of
circular cross-sections.

2.3. Problems related to viscoelastic liquid models

As we observed in Section 2.2, there are two main properties of many real incom-
pressible fluids that can not be explained by the Newtonian (Navier–Stokes) model.
They are (a) the dependence of the viscosity on the shear, and (b) the normal-
stress effects, where the fluid shows a stress distribution normal to the direction
of shear, other than the one due to the pressure. However, whereas the generalized
Newtonian model and, more generally, the Reiner–Rivlin model (namely, (2.2)
with h0 = 0 and hi, i = 1, 2, functions of the principal invariants), are able to fur-
nish results in quite a good agreement with experiments in case (a), there appears
to be no obvious way that they could explain experiments where normal-stress ef-
fects play a fundamental role, such as “rod-climbing” and orientation of free-falling
symmetric particles. In this respect, Clifford Truesdell makes the following witty
comments [109, p. 116].

It was natural to expect that if one constant, μ, could specify a Navier–
Stokes fluid completely, the two functions [h1] and [h2] of the Reiner–Rivlin
theory ought to be more than enough to explain any deviation from classical
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theory, so various rheologists suggested particular functions [h1] and [h2] as
being more intuitive or physical than others. As the normal-stress effects
came to be understood better, more precise experiments were performed,
which made it clear that no choice whatever of [h1] and [h2] could fit the
data. This experimental fact surprised such empiricists as believed that if one
disposable constant was good, half a dozen would surely be better. Indeed,
this example shows that while adjustment of one constant may provide a
splendid first approximation for all or nearly all incompressible fluids, two
disposable functions of two variables may fail to improve that approximation
quantitatively.

In the late 1950s W. Noll [83] proposed another, very general model of a fluid,
called simple fluid, (26) that, among other things, could give a very good account
of normal-stress effects. The main characteristic of this model, roughly speaking,
is that the response of the material does not depend on the current status of the
material but, rather on its hystory. In more precise words, the constitutive equation
of the fluid does not depend on the deformation at the current time t, but on the
whole “hystory” of the deformation, from −∞ to t. It goes without saying that
this class of constitutive equations is quite general and, as such, of possibly little
practical use. Therefore, in a series of papers, B.D. Coleman and W. Noll [24, 25,
26] introduced and analyzed the concept of “fading memory” which essentially
describes “how far back” a fluid may remember its past hystory. Mathematically,
this translates into a suitable expansion of the constitutive equation (which, in the
case of simple fluids becomes a functional) in terms of a “retardation parameter”,
r, so that the constitutive equation is represented by a power series in r. If the
series is truncated after the linear term, we obtain the Navier–Stokes model (2.1),
whereas if it is truncated after the quadratic term, cubic term, etc., we obtain
the second-order, third order, etc., approximation of the simple fluid. A popular
truncation in the engineering community is the second-order one, that furnishes
the following relation between stress and deformation:

T = −pI + α0A1 + α1A2 + α2A
2
1 , (2.89)

where A1 = 2D (D stretching tensor of the fluid),

A2 :=
∂A1

∂t
+ v · ∇A1 + A1 · (∇v) + ∇v · A1 , (2.90)

(v velocity field of the fluid), and where the coefficients αi, i = 0, 1, 2, are, at most,
functions of the principal invariants of D. The fluid whose stress tensor is given
by (2.89)–(2.90) with αi=const., i = 0, 1, 2, and α0 = μ (shear viscosity) is called
second-order or grade 2 fluid. It is worth emphasizing that, in this framework, the
relations (2.89)–(2.90) do not represent a constitutive equation, but, rather, only
a suitable approximation of it. It is, therefore, not surprising that, as we shall
see, the initial-boundary value problem for the equations of motion associated to
(2.89)–(2.90) presents some incongruities. Among these, the most striking one is
that, if one accepts the values of the constant α1 measured by rheologists, which

(26)Actually, Noll proposed the more general model of simple material.
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gives α1 < 0, the rest state is nonlinearly unstable in the sense of Liapounov; see
Section 2.4.2. In fact, if we restrict ourselves to linear instability of the rest state,
then D.D. Joseph has shown that, if α1 < 0, all truncations of the simple fluid of
arbitrary order, n, will lead to equations of motion where the rest state is linearly
unstable [60]. In this respect, Joseph observes [61]

. . . it is wrong to study stability u sing constitutive expressions for “fluids” (27)

of grade n. These expressions arise in response to slow deformations. In fact,

there is no such a thing as a constitutive equation without prior specification of

the domain of deformations in which the constitutive equation lives. However

good rigid body mechanics is for some problems, it is obviously no good for

studying deformation of strained bodies.

In principle, these incongruities would disappear, had we considered the complete
constitutive equations, without any approximation. Actually, again in the words
of Clifford Truesdell [109, p. 132],

[It is not proven] any relation at all between the solutions (28) of the differential

equations of motion for the fluid of grade 2 and the solutions (29) of the

equations of motion of the general simple fluid that the particular fluid of

grade 2 approximates.

Nevertheless, all inconsistencies vanish if we restrict our analysis to steady-state
(or quasi-steady state) motions of the fluid, where the values of the parameters α1

and α2 are, in fact, measured. As a matter of fact, as we shall see, in this case the
second-order fluid gives qualitative and rigorous predictions which are in a very
good agreement with experiments, in a significant range of physical parameters.

Other, more complicated, popular models in the engineering community that
do not suffer from the drawbacks of the second-order fluid are the so-called vis-
coelastic fluids of rate-type or differential type. The main characteristic of these
models is that the non-Newtonian part of the Cauchy stress tensor obeys a consti-
tutive equation expressed by first-order differential equation in time that should
be studied in conjunction with the linear momentum equation (and conservation
of mass). Referring to [13, Chapter 7], and to the article of A.M. Robertson [94]
in this volume for further information regarding this type of models, here we shall
recall one of the most widely used, the Oldroyd-B fluid. In this case, the Cauchy
stress tensor T is given by

T = −pI + 2μ∞ D + τ , (2.91)

where τ satisfies the constitutive equation

λ1

(
∂τ

∂t
+ v · ∇τ − τ · (∇v) −∇v · τ

)
+ τ = 2 (μ0 − μ∞)D , (2.92)

(27)In quotes in the original text.
(28)Emphasized in the original text.
(29)Emphasized in the original text.
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with λ1, μ0 and μ∞ are positive material constants, with μ∞ < μ0. Notice that
if λ1 = 0, then (2.89)–(2.92) reduce to the Navier–Stokes constitutive equation
(2.1), with μ ≡ μ0. The constitutive equation (2.92) is the prototype of much more
general models, including upper and lower convected Maxwell, Johnson-Segalman,
generalized Jeffreys and others which, from the mathematical viewpoint, amount to
add a certain number of nonlinear terms into (2.92). The mathematical problems
related to these more general models present, more or less, the same degree of
difficulty as those related to (2.92) and, consequently, can be treated by the same
arguments.

The objective of this section is to provide some results and methods related
to the mathematical theory of viscoelastic fluids, modeled by second-order and
Oldroyd-B fluids. Further results associated to more general models will also be
considered.

The main idea behind the mathematical (and numerical) study of the prob-
lems related to the above viscoelastic models (and to their generalizations) was
introduced by M. Renardy [92] and, successively and independently, by G.P. Galdi
et al. [39], in a different context. It consists in splitting the original equations of
motion into a Stokes-like system and into a transport-like vector equation. This
decomposition is, in fact, quite natural if one looks at the models from a physical
point of view. Actually, they have to combine two different and coexisting features
of the liquid, namely, diffusion (typical of the parabolic character of the Navier–
Stokes equations) and transport (typical of the hyperbolic character of an elastic
material).

Before performing the mathematical study in the following Sections 2.4 and
2.5, we would like to show how the normal stress-effects, inherent in these models,
are able to account for a qualitative or even semi-quantitative explanation of the
“rod-climbing” and “particle orientation” experiments we mentioned in Section 2.1
and that the Reiner–Rivlin model was not able to predict. A completely rigorous
proof of the “particle orientation” phenomenon is deferred to Section 3.

2.3.1. A semi-quantitative explanation of the “rod-climbing” effect. A viscoelastic
fluid partially fills the region between two infinite, vertical cylinders, C1 and C2,
of radii r1 and r2, respectively, with C2 at rest and C1 rotating with a constant
angular velocity, Ω = Ωe3, parallel to its axis; see Figure 8.
We suppose that the motion of the liquid is steady. Thus, if we assume the second-
order fluid model, the motion of the liquid is governed by the equations

ρ v · ∇v = ∇ · T ,

∇ · v = 0 ,
(2.93)

where ρ is the (constant) density of the liquid, T is given in (2.89)–(2.90), and
v = v(x). By a direct calculation, we show that the Couette velocity field

vc =
(

A

r
+ B r

)
eθ , A := Ωr1 , B :=

Ω(r1/r2)
r2[(r1/r2)2 − 1]

(2.94)
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Figure 8

along with the corresponding pressure field

pc = ρ gx3 − ρ

∫
(A + Br2)2r−3 dr (2.95)

is a solution to (2.93), satisfying the boundary conditions

vc(r1) = Ω r1eθ , vc(r2) = 0 .

In the above equations, g is the gravity, (r, θ) is a polar coordinate system in
the plane x3 =const., and {er, eθ} is the associated canonical base. By another
(tedious but) straightforward calculation, from (2.89)–(2.90) we find that the com-
ponent T33 of the stress tensor, evaluated along (vc, pc), is given by

T33 = −pc − α1vc · Δvc − 1
4 (2α1 + α2)|A1(vc)|2 . (2.96)

Moreover, by direct inspection, from (2.94) we find

vc · Δvc = 0 , |A1(vc)|2 = 8
A2

r4
,

so that (2.96) furnishes

T33 = −pc − 2(2α1 + α2)
A2

r4
. (2.97)

If the free surface, Γ, of the liquid does not greatly vary from the horizontal, it is
reasonable to disregard there the contribution of the component Trθ of the stress
tensor, so that the equation of Γ is found simply by equating the component −T33

to the atmospheric pressure patm. Thus, from (2.95) and (2.96) we deduce that the
equation of Γ is given by

x3 = −patm

ρg
− γ

ρg r4
+

1
g

∫
(A + Br2)2r−3 dr , γ := 2(2α1 + α2) . (2.98)

From this equation, we can easily show the “rod-climbing” effect. Actually, differ-
entiating both sides of (2.98) with respect to r and evaluating this derivative at



Mathematical Problems in Fluid Mechanics 225

r1 (at the surface of the inner cylinder, that is), we obtain

χ :=
dx3

dr

∣∣∣∣
r=r1

=
A2

gr5
1

⎧⎨⎩
[
1 −

(
r1

r2

)2
]2

r2
1 +

4γ

ρ

⎫⎬⎭ . (2.99)

Therefore, we will have that the liquid “climbs the rod” if and only if χ < 0, and
so, a sufficient condition for this to happen is that

r2
1 < −4γ

ρ
. (2.100)

Since the observed value of γ := 2α1 + α2 is � −21gr/cm [61, Section 17.11],
condition (2.99) gives the qualitative information that rod-climbing can occur if
the radius of the inner cylinder is not too large. In addition, it is interesting to
observe that, from (2.99) it also follows that, in the case of a Newtonian fluid
(γ ≡ 0), the slope of the surface in the vicinity of the inner cylinder is always
increasing.

Remark 2.11. A study of the “rod-climbing” effect for a second-order liquid has
been performed by D.D. Joseph and R.L. Fosdick [64, 65], by means of a formal
series expansion in the angular velocity of the rod. However, we wish to emphasize
that a rigorous proof of rod-climbing is an outstanding open question.

2.3.2. A qualitative explanation of particle orientation. The phenomenon of par-
ticle orientation in a liquid is obviously related to the torque that the liquid is
able to exert on the body. In particular, the possible equilibrium configurations
of the body (either stable or unstable) will be those at which the torque is zero.
Following [106] and [63], we shall qualitatively evaluate the torque exerted by a
Navier–Stokes fluid and by normal stress in a second-order fluid, and show that
they are completely different and, in fact, competing. In order to make things
simpler, we shall consider a two-dimensional version of the phenomenon consisting
of an ellipse translating with a constant velocity, U , through an incompressible
liquid. We assume that the viscous effects of the liquid are negligible. (30) The
streamline distribution is then of the type described in Figure 9(a).
We now recall that, for a second-order liquid the stress vector, t, at a surface Σ
with unit outer normal n, is given by (disregarding shear viscosity terms)

t = −pn + 1
2 (2α1 + α2)|A1|2n ; (2.101)

see [12]. Now, if α1 = α2 = 0, namely, in the Newtonian case, the only stress on
the surface is due to the pressure, p, which is a maximum at the two stagnation
points S1 and S2 and is directed toward the body, as indicated in Figure 9(b). It is
then clear that these stresses will generate a couple that tends to orient the ellipse
with its major axis perpendicular to U (see Figure 5(a)). At the other extreme, let
us consider the stress distribution generated by the purely viscoelastic term. From
(2.101) it follows that this latter is higher at those points of the surface where the

(30)As we shall see in Chapter 3, this assumption can be rigorously justified, provided the
Reynolds number of the particle is not too “large”.
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Figure 9. (a) Streamline distribution in an inviscid liquid around an
ellipse translating with velocity U ; (b) S1 and S2 are the two stagnation
points of the flow, where the pressure is a maximum; (c) The purely
viscoelastic normal stress is maximal at the points A and B where the
streamlines are denser.

velocity gradient of the liquid is larger, that is, where the streamlines are denser.
With a view to Figure 9(c), we see that the streamlines crowd around the points
A and B of the surface. Therefore, since 2α1 +α2 ∼ −23 cm/gr < 0, these stresses
are directed toward the body and will generate a couple that tends to orient the
ellipse with its major axis parallel to U , in agreement with the experiment (see
Figure 5(b)).

2.4. Some results in the mathematical theory of second-order fluids

In this section we shall concentrate on certain mathematical topics related to
second-order fluids. To this end, we recall that the linear momentum equation
ρ dv/dt = ∇ · T + ρf , where T is given in (2.89)–(2.90) (with α0 ≡ μ), and f is
the body force acting on the fluid, along with the incompressibility condition, can
be written as (see [35])

∂

∂t
(v − α1Δv) + ω × v −α1(Δω × v)

= νΔv −∇P + N (v) + f

∇ · v = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ in Ω × (0, T ), (2.102)

In these equations, Ω is the region of flow, T > 0, ω := ∇× v, and

N(v) := (α1 + α2)
{
Δv · A1 + 2∇ ·

[
∇v · (∇v)

]}
,

P :=
1
ρ

[
p − α1v · Δv +

α1

4
|A1|2 +

1
2
ρ|v|2

]
.

(2.103)

Furthermore, we set ν := μ/ρ and we continue to denote by α1 and α2 the ratios
α1/ρ and α2/ρ, respectively. To (2.102) we shall append the following adherence
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boundary conditions:

v(x, t) = 0 , for all (x, t) ∈ ∂Ω × (0, T ) . (2.104)

In the following subsections we shall furnish some results concerning well-posedness
of the initial-boundary value problem and of the boundary-value problem associ-
ated to (2.102)–(2.103). In particular, we shall show that in the experimentally
observed range of physical parameters the rest state is always unstable. This is
no paradox since, as we noted in Section 2.3, the second-order fluid is only an
approximation of the simple fluid and, as such, it may give erroneous predictions.
Actually, it should be expected that erroneous predictions occur in time-dependent
situations, given that the second-order fluid comes from an approximation that
requires “sufficiently slow flow” of the fluid. As we mentioned previously, these
inconsistencies disappear in a steady-state flow.

2.4.1. Well-posedness of the boundary-value problem. In this section we shall be
interested to the steady-state problem associated to (2.102)–(2.104), obtained by
formally neglecting the dependence on t of the fields v and P . This leads to the
boundary-value problem

ω × v − α1(Δω × v) = νΔv −∇P + N(v) + f

∇ · v = 0

}
in Ω ,

v|∂Ω = 0 ,

(2.105)

where N is defined in (2.103)1. As we mentioned previously, unique solvability
of (2.105) can be obtained by the following “splitting method”, originally intro-
duced by V. Coscia and G.P. Galdi [27]; see also [35]. By a formal Helmholtz-like
decomposition of Δv we have

Δv = u + ∇π

∇ · v = 0

}
in Ω,

v∂Ω = 0 ,

(2.106)

where, from (2.105), the field u satisfies the problem

ν u − α1v ×∇× u = ∇× v × v − N(v) + ∇φ − f

∇ · u = 0

}
in Ω,

u · n|∂Ω = 0 ,

(2.107)

with φ := P − νπ . It is easy to check that (2.105) and (2.106)–(2.107) are equiva-
lent problems, provided u and v are sufficiently regular. Moreover, for a given u,
(2.106), is the well-known Stokes problem for (v, π) with Dirichlet boundary data
in the domain Ω, whereas, for a given v, (2.107) is a “vector” transport problem for
(u, φ). Now, consider the map M : ϕ �→ u, defined (formally) as the composition



228 G.P. Galdi

of the map M1 : ϕ �→ v defined by

Δv = ϕ + ∇π

∇ · v = 0

}
in Ω

v∂Ω = 0 ,

(2.108)

with the map M2 : v �→ u defined by (2.107). The existence of a solution to
(2.106)–(2.107) (and so, equivalently, to (2.105)) will be established if we show
that the map M , suitably defined, has a fixed point. This latter is indeed shown
in the paper of V. Coscia and G.P. Galdi [27]. Specifically, setting

Xm(Ω) = {v ∈ Wm,2(Ω) : ∇ · v = 0 in Ω , v · n|∂Ω = 0}
with n unit outer normal to ∂Ω, the following result holds; see [27] and [35, The-
orem 5.1].

Theorem 2.6. Let Ω be a bounded domain of class Cm+2, f ∈ Wm,2(Ω), m ≥ 2,
and α1, α2 ∈ R. Then, there exists a constant C = C(Ω, m, |α1 + α2|, α1, ν) > 0
such that, if ‖f‖m,2 ≤ C, problem (2.105) has a unique solution v ∈ Xm+2(Ω),
P ∈ Wm+1(Ω). Thus, if, in particular, m = 3, then v ∈ C3(Ω), P ∈ C1(Ω) .

Proof. We shall sketch a proof of Theorem 2.6, referring the reader to the papers
[27], [35] for full details. We propose the following two preparatory lemmas. The
first one is a classical result on the Stokes problem and its proof can be found,
for example, in [36, Theorem IV.6.1]. The proof of the second one is given in [35,
Lemma 3.4].

Lemma 2.1. Let Ω be of class Cm, for some m ≥ 0. Then, given ϕ ∈ Wm,2(Ω),
there exists one and only one solution to (2.108) (v, π) ∈ [Wm+2,2(Ω)∩D1,2

0 (Ω)]×
Wm+1,2(Ω). In particular, this solution satisfies the estimate

‖v‖m+2,2 + ‖p‖m+1,2 ≤ C‖ϕ‖m ,

where C = C(m, Ω) > 0.

Lemma 2.2. Let Ω be of class Cm, m ≥ 2, and let

v ∈ Xm+2(Ω) , with ‖v‖m+2,2 ≤ C D ,

f ∈ Wm,2(Ω) , with ‖f‖m,2 ≤ β D ,

for some C > 0. Then, there exists a constant c = c(Ω, m, |α1 + α2|, α1, ν) > 0
such that if D < c, β < c, problem (2.107) admits a unique solution, u, φ, such
that (u, φ) ∈ Xm(Ω) × Wm+1,2(Ω). Moreover ‖u‖m ≤ D.

Finally, we recall the following Schauder fixed point theorem.

Lemma 2.3. A compact mapping M of a closed bounded, convex set G of a Banach
space Y into itself has a fixed point.
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We now choose M as described previously, Y := Xm+1(Ω), m ≥ 1, and, for D > 0,
we define

G := {ϕ ∈ Y : ‖ϕ‖m,2 ≤ D} .

Recalling the definition of M , from Lemma 2.1 and Lemma 2.2 we obtain that M
is well defined and that, if D is sufficiently small, namely, if ‖f‖m,2 is sufficiently
small, we have M(G) ⊂ G. Moreover, the compact embedding Xm ⊂ Xm−1 implies
the compactness of M . Then it remains to check the continuity of M in the Y -
norm. To this end, it can be readily shown that, in view of the compactness of M ,
it is enough to check the continuity of M in the L2-norm. To prove this latter,
let vn and v be the solutions to (2.108) corresponding to ϕn and ϕ, respectively,
and set un := M(ϕn), u := M(ϕ). We now subtract to (2.107) the same equation
written with u ≡ un and multiply the resulting equation by u − un. Integrating
by parts over Ω, we find

ν‖u − un‖2
2 + α1(∇× (u − un) × v, u − un)

+ α1(∇× un × (v − vn), u − un) − ((ω − ωn) × v, u − un)

− (ωn × (v − vn), u − un) + (N(v) − N(vn), u − un) = 0 ,

(2.109)

where ωn := ∇ × vn. By the Schwarz inequality, by (2.103) and by the Sobolev
embedding theorem one can show that (see [35, Lemma 3.1])

|((ω − ωn) × v,u − un) + (ωn × (v − vn), u − un)

+ (N(v) − N (vn), u − un)|
≤ C1(‖v‖m+2,2 + ‖vn‖m+2,2)‖v − vn‖m+2,2‖u − un‖2 ,

(2.110)

with C1 = C1(Ω, m, |α1 + α2|) > 0. Furthermore, again by the Schwarz inequality
and the Sobolev theorem, we find

|(∇× (u − un) × v, u − un)| = |((u − un) · ∇v, u − un)

+ ((u − un) ×∇× v, u − un)|
≤ C2‖v‖m+2,2‖u − un‖2

2 ,

(2.111)

with C2 = C2(Ω, m) > 0. From Lemma 2.1 and from the fact that ϕ, ϕn ∈ G, we
deduce

‖v‖m+2,2, ‖vn‖m+2,2 ≤ C D , ‖v − vn‖m+2,2 ≤ C ‖ϕ − ϕn‖m,2 ,

and so, by choosing D sufficiently small, from (2.109)–(2.111) we conclude

ν‖u − un‖2 ≤ C3‖ϕ − ϕn‖2 ,

with C3 > 0 independent of ϕ, u and n. We have thus shown the continuity
of the map M which, therefore, by Schauder’s theorem Lemma 2.3, possesses a
fixed point in G. This concludes the existence proof. Concerning uniqueness, let
(v1, p1) and (v2, p2) be two solutions of (2.105) corresponding to the same data
and belonging to the functional class stated in the theorem. Moreover, denote by
u1 and u2 the Helmholtz projections of Δv1 and Δv2 on X0(Ω). We recall that



230 G.P. Galdi

both ui, i = 1, 2, satisfy (2.106). Thus, letting u := u1−u2 and using a procedure
similar to that used to prove the continuity of the map M , we can show that

ν‖u‖m,2 ≤ C4 (‖v1‖m+2,2 + ‖v2‖m+2,2) ‖u‖m,2 ,

where C4 = C4(Ω, m, α1, α2); see [27] for details. Since

‖v1‖m+2,2 + ‖v2‖m+2,2 ≤ C5 D = C6‖f‖m,2 ,

with Ci > 0, i = 5, 6, independent of vk, k = 1, 2. These latter two displayed
equations then prove uniqueness if ‖f‖m,2 is sufficiently small. �

The method used in the proof of Theorem 2.6 can be applied to more general
situations like, for example, steady motion of a second-order fluid in a piping
system under the action of a constant flow-rate, Φ. This amounts to solve problem
(2.105) with f = 0 and with the side condition∫

S

v · n dS = Φ ,

where S is the cross-section of the “distorted pipe” Ω (see Sections 1.3 and 1.3.1).
In fact, one can show that the Hagen–Poiseuille flow given in Section 1.1.1 is also
a solution to (2.105) (in an infinite straight pipe). Thus, similarly to the Navier–
Stokes case, one can look for a solution to the problem in the form v = w + Φa,
where a is the “flow-rate carrier” constructed in Section 1.3.1. To the resulting
equation for w we then apply the “splitting method” adopted in the proof of
Theorem 2.6. This procedure, ultimately furnishes existence and uniqueness to
the problem, at least if |Φ| does not exceed a given constant. The details of this
proof can be found in the paper of K. Pileckas et al. [87].

The same method can be suitably adapted to consider well-posedness in
exterior domains. The interested reader is referred to the papers of G.P. Galdi
et al. [44], A. Novotný et al. [84].

We finally observe that this “splitting method” has also been successfully
applied to numerical studies of viscoelastic fluids by A. Sequeira and her associates;
see, e.g., [100], [101].

2.4.2. Instability of the rest state and well-posedness of the initial-boundary value
problem. Detailed experiments performed by rheologists consistently show a value
of the parameter α1 in the range −100 ÷ −1 gr/cm; see, e.g., [61, Section 17.11].
However, it is easy to see that, if α1 < 0, the rest state of a second-order fluid is
nonlinearly unstable in the sense of Liapounov. We shall suppose, for simplicity,
that Ω is bounded. Define the norm

[|v|] := max
x∈Ω

|∇v(x)| + ‖∇v‖2

and assume, per absurdum, that the rest state is stable in the norm [|·|] in the
Liapunov sense, that is,

∀ε > 0, ∃ δ(ε) > 0 : [|v(0)|] < δ =⇒ sup
t≥0

[|v(t)|] < ε . (2.112)
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By dot-multiplying both sides of (2.102)1 by v, by integrating by parts over Ω and
by taking into account (2.102)2–(2.104), we obtain

dN

dt
= ν‖∇v‖2

2 + (N (v), v) , (2.113)

where

N(t) = 1
2

∫
Ω

(
|α1| |∇v|2 − |v|2

)
.

By a straightforward calculation, we show that

(N (v), v) = 4(α1 + α2)
∫

Ω

[∇v · (∇v)] · ∇v ≥ −4|α1 + α2| [|v|] ‖∇v‖2 .

Therefore, from (2.112)–(1.207) we may choose ε > 0 such that

dN

dt
≥ λN(t) , λ :=

ν − 4ε|α1 + α2|
|α1|

> 0 .

As a consequence, we get

N(t) ≥ N(0) exp (λt) , for all t > 0 , (2.114)

provided [|v(0)|] < δ. Let un be the normalized eigenfunction of the Stokes operator
corresponding to the eigenvalue σn, namely,

−Δun = σnun + ∇pn

∇ · un = 0

}
in Ω,

un = 0 at ∂Ω .

It is well known that σn → ∞ as n → ∞. We choose as initial data v(0) = An un

where An > 0 and un satisfy the conditions

‖∇un‖2

‖un‖2
2

≡ σn >
1

|α1|
, An[|un|] < δ .

From (2.114) it then follows that

[|v(t)|]2 ≥ (|α1|σn − 1)
|α1|

‖v(0)‖2
2 exp (λt) , for all t ≥ 0 ,

and hence
[|v(t)|] → ∞ as t → ∞ ,

contradicting the hypothesis of stability.
However, if α1 is negative, but not too large in magnitude, one can still

prove that the initial-boundary value problem associated to (2.102)–(2.103) has a
unique, classical solution, at least for a short time interval. Specifically, we have
the following result; see [35, Theorem 4.1].
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Theorem 2.7. Let Ω be a bounded domain of R3 of class Cm+2, m ≥ 2, and
let α1 > −λ1, where λ1 is the smallest eigenvalue of the Stokes operator in Ω
with Dirichlet boundary conditions. Then, for any t0 > 0, v(·, t0) ≡ v0 ∈ Xm+2

and f ∈ L∞
loc(R+; Wm,2(Ω)), there exists T = T (α1, α2, v0, Ω, m) > 0 such that

problem (2.102)–(2.103) has a unique solution in I := [t0, t0 + T ] satisfying

v ∈ C0(I; Xm+1(Ω)) ∩ L∞(I, Wm+2(Ω)) , ∇P ∈ L∞(I, Wm+1(Ω)),

∂v

∂t
∈ L∞(I, Wm+1(Ω)) .

In particular, if m = 3 and if, in addition, ∂f/∂t ∈ L∞
loc(R+W 3,2(Ω)), then

v ∈ C1(I; C3(Ω)) , P ∈ C0(I; C1(Ω)) .

We shall not include here the proof of this theorem. Rather, we shall limit our-
selves to observe that its method of proof is again based on a “splitting” argument
similar to that used in the solvability of the boundary-value problem. Actually, in
this case, the solution is sought as a fixed point of the map M̃ : ϕ �→ u, defined
as the composition of the map M̃1 : ϕ �→ v, defined as

v − α1Δv = ϕ + ∇π

∇ · v = 0

}
in Ω × I,

v∂Ω×I = 0 ,

and of the map M̃2 : v �→ u, where u solves the time-dependent vector transport
problem

∂u

∂t
+ σ (u − v) − v ×∇× u = N(v) −∇φ + f

∇ · u = 0

⎫⎬⎭ in Ω × I,

u · n|∂Ω×I = 0 , u(·, t0) = u(t0) ,

with σ := ν/α1 and φ := P +π/α1+∂π/∂t . Notice that if we formally take ϕ = u
in the above equations, we obtain the initial-boundary value problem associated
to (2.102)–(2.103).

2.5. Some results in the mathematical theory of Oldroyd-B fluids and related
models

In this section we will be interested in well-posedness questions related to the
equations
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∂v

∂t
+ v · ∇v = μ∞Δv −∇p + ∇ · τ + f

∇ · v = 0

λ1

(
∂τ

∂t
+ v · ∇τ − τ · (∇v) −∇v · τ

)
+ τ

= 2 (μ0−μ∞) D(v)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
in Ω×(0, T ),

v(x, t)|∂Ω×(0,T ) = 0 ,
(2.115)

and to their steady-state counterpart, obtained by suppressing the time-depen-
dence on the unknowns v, p and τ . In these equations λ1 and λ are constant,
positive material parameters, while ν is the coefficient of kinematic viscosity. As
we mentioned in Section 2.3, (2.115) describes the motion of a viscoelastic Oldroyd-
B fluid with associated boundary condition. Notice that, if λ1 = 0, then (2.115)1,2,3

reduce to the Navier–Stokes equations.
It is not hard to show – as noticed for the first time by M. Renardy [92]

in the steady-state case and then, successively, further developed in the general
case, steady or unsteady, by C. Guillopé and J.-C. Saut [51, 52] – that (2.115) can
be split into a Stokes-like problem and into a transport-like problem of the same
types considered for the second-order fluid in the previous sections. Similarly to
Theorem 2.1 and Theorem 2.2, the existence proof is based upon finding the fixed
point of a suitable composite map, M , involving both problems. Actually, in the
case at hand, the splitting is even more “natural” than that for a fluid of grade 2.
In fact, we define M := M2 ◦ M1, and M1 : (ϕ, σ) �→ v where v is the solution to
the Stokes problem

∂v

∂t
= μ∞Δv −∇p + f1

∇ · v = 0

⎫⎪⎬⎪⎭ in Ω × (0, T ),

v(x, t)|∂Ω×(0,T ) = 0 , v(x, 0) = v0(x) , x ∈ Ω,

(2.116)

with
f1 := −ϕ · ∇ϕ + ∇ · σ + f ,

and M2 : v �→ τ where τ satisfies the transport equation

λ1

(
∂τ

∂t
+ v · ∇τ

)
+ τ = f2 in Ω × (0, T ) , τ (x, 0) = τ 0(x) , x ∈ Ω, (2.117)

with
f2 := λ1(τ · (∇v) + ∇v · τ ) + 2 (μ0 − μ∞)D(v) .

In (2.116)–(2.117), v0 and τ 0 are prescribed vector and second-order tensor, re-
spectively. It is clear that the existence of a solution to the initial-boundary value
problem associated to (2.115) is established if one shows that M has a fixed point.

Classical results on the Stokes problem and on the time-dependent transport
equation allow C. Guillopé and J.-C. Saut [51, 52] to establish that the map M
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has a fixed point in a suitable function class, at least for T sufficiently “small”.
However, if the size of v0, τ 0, and f in appropriate norms, is suitably restricted
and if some further restriction on the magnitude of the dimensionless quantity
ω := 1 − μ∞/μ0 is imposed, then one can take T = ∞. More precisely, we have
the following result for whose proof we refer to the cited papers of C. Guillopé and
J.-C. Saut.

Theorem 2.8. Let Ω be a bounded domain of R3 of class C3, and assume that

f ∈ L2
loc(R+; W 1,2(Ω)) ,

∂f

∂t
∈ L2

loc(R+; W−1,2
0 (Ω)) ,

v0 ∈ D1,2
0 (Ω) ∩ W 2,2(Ω) , τ 0 ∈ W 2,2(Ω) .

Then, there exists T > 0, such that problem (2.115) with initial conditions v(x, 0) =
v0(x) and τ (x, 0) = τ 0(x) has one and only one solution (v, p, τ ) in the time
interval (0, T ), in the class

v ∈ L2(0, T ; W 3,2(Ω)) ∩ C0([0, T ];D1,2
0 (Ω) ∩ W 2,2(Ω)) ,

∂v

∂t
∈ L2(0, T ;D1,2

0 (Ω)) ∩ C0([0, T ]; L2
σ(Ω)),

p ∈ L2(0, T ; W 2,2(Ω)) , τ ∈ C0([0, T ]; W 2,2(Ω)) .

Assume, in addition, that Ω is of class C4. Then, there exist constants ω0 > 0 and
C > 0 such that if 0 < ω < ω0 and

‖v0‖2,2 + ‖τ 0‖2,2 + ess sup
t∈R+

(
‖f(t)‖1,2 +

∥∥∥∥∂f

∂t
(t)
∥∥∥∥
−1,2

)
< C ,

we may take T = ∞.

Remark 2.12. An interesting generalization of Theorem 2.8 can be found in the
paper of A. Hakim [56]. Besides considering more general models of the type
mentioned in Section 2.3, in this paper the author allows the viscosity to be shear-
dependent. In other words, the assumption that the coefficient μ̃ := μ0 − μ∞ in
(2.92) is independent of |D| is relaxed to include the more physical relevant case
of when μ̃ is a function of |D|. Particular cases include the “power-law” model
(see (2.5)) and the Carreau model (see (2.6)). Hakim’s results hold when Ω ⊂ R2.

The global existence result of Theorem 2.8, suitably elaborated and under
the assumption that f does not depend on time, leads to the existence of steady-
state solutions for problem (2.115), namely, to a triple v = v(x), p = p(x), and
τ = τ (x) such that

ϕ · ∇ϕ = μ∞Δv −∇p + ∇ · τ + f

∇ · v = 0

λ1

(
v · ∇τ − τ · (∇v) −∇v · τ

)
+ τ = 2 (μ0 − μ∞)D(v)

⎫⎪⎪⎬⎪⎪⎭ in Ω,

v(x)|∂Ω = 0 .

(2.118)
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However, this result, besides the requirement of “smallness” of f in a suitable
norm, necessitates the further condition 0 < ω < ω0, for some ω0 > 0. We recall
that the only physical condition imposed on ω is that it is positive and strictly
less than one. We shall now sketch a simple argument that shows why this extra
condition is needed for the above mentioned fixed point proof to work. Let M :
(ϕ, σ) �→ (v, τ ) be the composite map defined through the maps M1 : (ϕ, σ) �→ v
with

v · ∇v = μ∞Δv −∇p + ∇ · σ + f

∇ · v = 0

⎫⎬⎭ in Ω,

v(x)|∂Ω = 0 ,

(2.119)

and M2 : v �→ τ where

λ1

(
v · ∇τ − τ · (∇v) −∇v · τ

)
+ τ = 2 (μ0 − μ∞)D(v) in Ω . (2.120)

We assume, for example, that M is defined on SD, D > 0, where

SD : = {(ϕ, σ) ∈ [D1,2
0 (Ω) ∩ Wm+2,2(Ω)] × Wm+1,2(Ω) :

‖ϕ‖m+2,2 + ‖σ‖m+1,2 ≤ D} ⊂ Wm+1,2(Ω) × Wm,2(Ω)

and m ≥ 2. The first thing to show is that, under suitable assumptions on f , M
maps SD into itself for an appropriate choice of D. To this end, by classical results
concerning the Stokes operator in a bounded domain (see Lemma 2.1), and taking
into account that Wm,2(Ω) is an algebra for m ≥ 2, from (2.119) we get

μ∞‖v‖m+2,2 ≤ C1

(
‖ϕ‖2

m+2 + ‖σ‖m+1,2 + ‖f‖m

)
, (2.121)

where C1 = C1(Ω, m) > 0. Furthermore, by known results on the steady-state
transport equation (see also Lemma 2.2) we can prove the following estimate for
(2.120):

‖τ‖m+1,2 ≤ C2 ((μ0 − μ∞)‖v‖m+2,2 + ‖v‖m+2,2‖τ‖m+1,2) , (2.122)

with C2 = C2(Ω, m, λ1) > 0. Recalling that (ϕ, σ) ∈ SD and choosing D = f/β,
β > 0, from (2.121)–(2.122) it follows, in particular, that

‖τ‖m+1 ≤ C3 ((μ0 − μ∞)‖v‖m+2,2 + (D2 + D + β D)‖τ‖m+1,2) ,

with C3 = C3(Ω, m, λ1, μ∞) > 0. Thus, choosing D sufficiently small, from this
latter relation we get

‖τ‖m+1 ≤ 2C3 (μ0 − μ∞)‖v‖m+2,2 . (2.123)

Employing again (2.121) into (2.123), we get, for some C4 = C4(Ω, m, λ1, μ∞) > 0,

‖τ‖m+1 ≤ 2C4 ω(D2 + D + β D)

from which it is obvious that if we want ‖τ‖m+1 ≤ D, we have to impose that ω
is less than a suitable quantity.

It is of some interest to investigate if the above restriction on ω can be
eliminated. This problem has been addressed by R. Talhouk [104] who was able
to remove this restriction, by recurring to an idea originally due to M. Renardy
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[92]. Talhouk’s method of proof is again based on a fixed-point argument, but,
as expected, the map involved is different than the one we have just considered.
Referring the reader to [104] for a proof, here we shall limit ourselves to state the
main result.

Theorem 2.9. Let Ω be a bounded domain in R3 of class Cm+2, m ≥ 1, f ∈
Wm,2(Ω) and ω := (1 − μ∞/μ0) ∈ (0, 1). Then, there exists a constant C =
C(Ω, m, λ1, μ∞, μ0) > 0 such that, if ‖f‖m,2 ≤ C, problem (2.118) has at least one
solution

(v, p, τ ) ∈ [D1,2
0 (Ω) ∩ Wm+1,2(Ω)] × Wm,2(Ω) × Wm,2(Ω) := Y m(Ω) .

Moreover, there exists C0 > 0, independent of the particular solution, such that if
two solutions, corresponding to the same f , have their Y m(Ω)-norm less than C0,
they must coincide.

The results of Theorem 2.9 have been generalized and/or extended in several
directions. Generalizations and extensions include the cases when the viscoelastic
model is “shear thinning” or “shear-thickening” as in Remark 2.12, and the flow
occurs in an exterior domain. These results were found by C. Guillopé and her
collaborators [53, 50] and, independently, by A. Sequeira and N. Arada [2, 3].

For well-posedness questions of the boundary-value problem associated to
fluids of rate-type in piping system, we refer, among others, to the paper by
M.A. Fontelos and A. Friedman [32], and that of K. Pileckas et al. [87] .

Remark 2.13. Seemingly, an area that has not been contributed yet, even though
very significant from the point of view of applications, is that of existence, unique-
ness and stability of time-periodic flow in an unbounded piping system for fluids
of rate-type. Moreover, to my knowledge, there is no result concerning mathemat-
ical modelling and corresponding well-posedness results for a bounded (truncated)
system of pipes, for both second-order and rate-type fluid models.

3. Problems in liquid-particle interaction

The motion of small particles in a viscous liquid represents one of the main focuses
of applied research; see, e.g., [93, 62] and the references cited therein. Actually,
studies on liquid-particle interaction cover a wide range of applications, and can
be ubiquitously found in the engineering literature, from manufacturing of short-
fiber composites [1, 73] to separation of macromolecules by electrophoresis, [49, 55,
107, 105], from flow-induced microstructures [62] to blood flow [97, 15, 110] and
particle-laden materials [22]. The presence of the particles affects the flow of the
liquid, and this, in turn, affects the motion of the particles, so that the problem
of determining the flow characteristics for the combined system liquid-particle is
highly coupled. It is just this latter feature that makes any fundamental problem
related to liquid-particle interaction a particularly challenging one.

In Sections 2.1 and 2.3.2 we have given several examples of particle-liquid
interaction and, more important, we have emphasized how this interaction, for a
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fixed type of particles, may dramatically depend on the physical properties of the
liquid. For example, we have noticed that a homogeneous particle in the shape
of an ellipsoid, dropped from rest in a viscous liquid, will orient itself with its
broadside perpendicular or parallel to the gravity according to whether the liquid
is Newtonian or viscoelastic, no matter what the initial orientation.

Another type of problem that requires separate attention is the motion of
spherical particles in the shear flow of a viscous liquid. This problem drew the
attention of many researchers, from both theoretical and experimental viewpoints,
after the famous series of experiments performed by G. Segrè and A. Silberberg
[98, 99] on the inertial migration of neutrally buoyant spheres in a the shear flow
of a Navier–Stokes liquid in a pipe, at low Reynolds number. In this experiment,
a number of spheres of same density as the liquid, is initially at rest in a pipe of
circular cross-section of radius R. The flow-rate of the liquid is then raised to a
fixed constant value and then, in a certain range of (particle) Reynolds number,
it is observed that, eventually, the spheres will chain to form a stable ring located
at a distance from the axis of the pipe of approximately 0.6 R; see Figure 10.

Figure 10. Sketch of the Segrè-Silberberg experiment; (a) floating
spheres (zero flow-rate); (b) chaining spheres (non-zero, constant flow-

rate)

A most striking application of the migration of “spherical” particles in shear flow
can be found in the lateral migration of erythrocytes (red blood cells) in Poiseuille
flow in a channel, under a sufficiently large shear rate. A detailed experimental
analysis of this phenomenon was performed by W.S.J. Uijttwaal et al. in [110],
where the migration of blood cells was studied in the shear flow of a phosphate
buffer solution in a duct. The geometry of the flow chamber and of the particles
make the setting, basically, two-dimensional. In Figure 11 are reported some of the
findings of [110], concerning the concentration of erythrocytes versus the width,
w, of the duct, from which it appears that the highest concentration is at about
0.6 w from the center of the channel. The wall shear rate is 2800 sec−1, which
makes erythrocites behave, basically, as rigid particles [97].

Objective of this chapter is to provide a mathematical analysis of (a) orien-
tation of symmetric particles sedimenting in a viscous liquid, and (b) migration of
spherical particles in a channel under shear flow.

In case (a), we shall show, in particular, that the competition between “iner-
tial effects” (purely Newtonian) and the “normal-stress effects” (purely viscoelas-
tic) is responsible for the orientation of a homogeneous symmetric and sufficiently
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Figure 11. Erythrocyte concentration versus channel width in
Poiseuille flow, with particle Reynolds number 10−3 and wall shear
rate 2800 sec−1(after Uijttwaal et al. [110]).

smooth particle in a viscoelastic liquid: whenever the former is predominant, the
particle will orient with its broadside, b, perpendicular to the gravity, g, and, vice
versa, when the latter prevails, then b and g are parallel. This result is shown
in a small range of the relevant dimensionless parameters, the Reynolds and the
Weissenberg numbers, in agreement with the experimental findings. Moreover, we
shall also present some experimental work which shows that cylindrical particles
free-falling in a viscoelastic liquid may show an equilibrium angle between b and
g somewhere between 0 and π/2, depending on whether they have sharp flat ends
or smooth round ends (“shape-tilting” phenomenon).

Concerning problem (b), we shall consider the two-dimensional version of
it, where the pipe is modeled as a channel and the sphere becomes a “disk”.
Thus, not only shall we provide a mathematical analysis of the Segrè–Silberberg
experiment but, in addition, we shall also consider the case of non-buoyant particles
and the influence of viscoelasticity on the migration. In both cases, we shall use
the second-order fluid to model the viscoelastic liquid. Our presentation of the
results will closely follow the papers of G.P. Galdi et al. [42] and of G.P. Galdi and
V. Heuveline [40]. We also refer to these papers for the many further references on
the subject.

3.1. Sedimentation of symmetric particles in viscoelastic liquid

Suppose that a rigid body, B, is moving in a viscoelastic liquid, L, filling the whole
space, (31) under the sole action of gravity g, namely, B is sedimenting in L. We

(31)We assume that the liquid occupies the entire space exterior to the body. From the physical

point of view, this means that we neglect “wall effects”. In fact, as observed experimentally, these
latter are completely irrelevant for the orientation phenomenon we are interested in.
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assume that B is a homogeneous body of revolution around an axis, a, with fore-
and-aft symmetry and that its translational velocity, U , and angular velocity, ω,
are constant in time with respect to an inertial frame. Our objective in this section
is to find the possible equilibrium configurations of B, determined by the angle,
θ, between a and g at small and nonzero Reynolds and Weissenberg numbers. In
order to solve this problem, we make the following observations.
(a) As observed experimentally, in the above range of dimensionless numbers the

motion of B is purely translational, that is, ω = 0.
(b) At all possible equilibrium configurations, determined by θ, the total torque,

M, exerted by the liquid on the body must vanish.
On the basis of these two observations we shall restrict ourselves to translational
motions of B, and will evaluate M along these motions. With this in mind, we
begin to write the Cauchy stress, T , of L, in dimensionless form, as

T = T (w, φ) := T N (w, φ) − λS(w) , (3.1)

where
T N (w, φ) := −φI + 2D(w),

S(w) := (A2(w) + εA1(w) · A1(w)) ,
(3.2)

λ = −α1 V/dμ (Weissenberg number), ε = α2/α1, d is the diameter of B, V is a
scaling speed, and μ is the (constant) shear viscosity coefficient of L. Finally, the
constants α1 and α2 and the tensor fields A1 and A2 are defined in Section 2.3.
Notice that, since α1 < 0 in a realistic liquid, we have λ > 0. It is convenient to
refer the equation of motion of the system {B,L} to a frame attached to B with
the origin at the center of mass of B. Therefore, the relevant equations become
[42]

Re u · ∇u = Δu −∇p − λ∇ · S(u) + g

∇ · u = 0

⎫⎬⎭ in Ω,

lim
|x|→∞

u(y) = −U ,

u(x) = 0, y ∈ Σ,

(3.3)

mg =
∫

Σ

T (u, p) · n, (3.4)∫
Σ

x × T (u, p) · n = 0. (3.5)

In (3.3)–(3.5), Ω is the (time-independent) region exterior to B occupied by L, u
is the velocity field of L relative to B, Re := V d/μ is the Reynolds number, m
is the effective mass of B, (32) g is a unit vector in the direction of gravity, and
Σ := ∂Ω (the bounding surface of B). We recall that a solution to this problem is
given by the quadruple {u, p, U , g}, which we will call translational steady fall. It

(32)Namely, m = (ρs/ρf − 1)|B|/d3, where ρs and ρf denote densities of B and L, respectively,

and |B| is the volume of B. In what follows, we shall assume that m > 0.
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is worth emphasizing that also g is an unknown, since the motion of the system
is referred to a frame attached to B, whose orientation with respect to gravity is
part of the problem.

Concerning problem (3.3)–(3.5), one can establish a preliminary existence
result which, roughly speaking, states that there are at least two possible main
classes of solutions. In order to state this result, we introduce the functional class
AC as follows. For a given C > 0, we shall say that a solution {u, p, U , g} to
(3.3)–(3.5) belongs to the class AC if and only if, for some q ∈ (1, 2) and t > 1,

Re
1
2 ‖u + U‖ 2q

2−q
+ Re

1
4 ‖∇u‖ 4q

4−q
+ ‖D2u‖1,q + ‖D2u‖1,t

+‖∇p‖q + ‖∇p‖t ≤ C .

We have the following result, for whose proof we refer to Theorem 3.1 and Theorem
3.2 of [42].

Theorem 3.1. Let B be a homogeneous body of revolution around an axis a, of
class C3 and possessing fore-and-aft symmetry. Then, there exist Re 0, λ0, C > 0
depending only on B and ε such that, for Re < Re 0, λ < λ0, there are at least
two types of translational steady falls {u, p, U , g} ∈ AC , and they are determined
by the following directions of the acceleration of gravity g:

(a) g is parallel to a;
(b) g is orthogonal to a.

In both cases, g is parallel to U , with U ·g > 0. Moreover, if {u1, p1, U , g1} ∈ AC

is another translational steady fall corresponding to the same velocity U , there exist
Re 1, λ1 > 0 depending only on B, ε, and C such that, for Re < Re 1, λ < λ1, we
have u ≡ u1, p ≡ p1, and g = g1.

In other words, this theorem states, in particular, that in a suitable functional
class and at small Reynolds and Weissenberg numbers, the body B can orient itself
with its axis of revolution either parallel or orthogonal to gravity. Our next task
is to show that, at small Reynolds and Weissenberg numbers, these are the only
possible orientations that B can achieve. In order to reach this goal, we will evaluate
the torque M exerted by the fluid on B, when B is in generic a translational motion
and show that M is zero if and only if either condition (a) or (b) holds. We shall
sketch the proof of this result here, referring to [42] for full details. We recall that

M = −
∫

Σ

x × T · n . (3.6)
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In order to evaluate M, we begin to introduce the following auxiliary fields
(h(i), p(i)), and (H(i), P (i)), i = 1, 2, 3, satisfying the boundary value problems

Δh(i) = ∇p(i)

∇ · h(i) = 0

}
in Ω,

h(i)(x) = ei, x ∈ Σ,

lim
|x|→∞

h(i)(x) = 0,

(3.7)

and
ΔH(i) = ∇P (i)

∇ · H(i) = 0

}
in Ω,

H(i)(x) = ei × x, x ∈ Σ,

lim
|x|→∞

H(i)(x) = 0,

(3.8)

where {ei} is the canonical basis in R3. The fields (h(i), p(i)) [respectively, the fields
(H(i), P (i))] are velocity and pressure fields of L when B is translating [respectively,
B is rotating] in L along three orthogonal directions. It is evident that the auxiliary
fields depend only on geometric properties of B such as size, shape, symmetry, etc.
Existence and uniqueness of (h(i), p(i)), and (H(i), P (i)) is well known [36, Chapter
V]. Multiplying (3.3)1 by H(i), integrating by parts over Ω, using (3.8)2,3,4 and
the fact that (u, p) are in the class AC , we find

−Mi = 2
∫

Ω

D(u) : D(H(i)) − λ

∫
Ω

S : D(H(i)) + Re
∫

Ω

u · ∇u · H(i). (3.9)

The first integral on the right-hand side of this relation can be evaluated by mul-
tiplying (3.8)1 by u + U and integrating by parts over Ω . We get

2
∫

Ω

D(u) : D(H(i)) = U ·
∫

Σ

T N (H(i), P (i)) · n. (3.10)

From (3.9), and (3.10) we thus obtain

M = MS + Re MI + λMV (3.11)

where (i = 1, 2, 3)

MS
i := −U ·

∫
Σ

T N (H(i), P (i)) · n,

MI
i := −

∫
Ω

u · ∇u · H(i),

MV
i :=

∫
Ω

S(u) : D(H(i))

(3.12)
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are the torque in the Stokes approximation (i.e. Re = λ = 0), the torque due to
inertia (i.e. λ = 0), and the torque due to the non-Newtonian character of L (i.e.
Re = 0), respectively.

We now denote by (uS , pS) the solution to (3.3)1,...,4, and set

M0,I
i = −

∫
D

uS · ∇uS · H(i)

M0,V
i =

∫
D

S(uS) : D(H(i)).
(3.13)

From (3.11)–(3.13) we thus get

M = MS + Re M0,I + λM0,V + N (3.14)

where
N = Re

(
MI − M0,I

)
+ λ

(
MNN − M0,NN

)
≡ Re N 1 + λN 2.

The expression (3.14) for M applies to a generic body translating with velocity
U . We now specialize it to the case when B has the afore-mentioned symmetry
properties. Without loss of generality, we take the x2-axis of a frame attached to B
coinciding with the axis of revolution a of B, and assume the translational velocity
U contained in the plane x1, x2 with U1, U2 > 0; see Figure 12.

Figure 12. Choice of the axes.

With these choices, one can show the following results, for whose proof we refer
again to Section 3 of [42]:

MS = 0,

M0,I
1 = M0,I

2 = M0,V
1 = M0,V

2 = 0,

and
M0,I

3 = U1U2GI , M0,V
3 = U1U2GV,ε (3.15)

where

GI := −
∫
D

(
h(1) · ∇h(2) + h(2) · ∇h(1)

)
· H(3) (3.16)
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and

GV,ε := −
∫
D

(
h(1) · ∇A1(h(2)) + (∇h(1))T · A1(h(2)) + A1(h(1)) · ∇h(2)

+h(2) · ∇A1(h(1)) + (∇h(2))T · A1(h(1)) + A1(h(2)) · ∇h(1)

+2εA1(h(1)) · A1(h(2))
)

: D(H(3)) .

(3.17)
Notice that the torque in the Stokes approximation, MS , is identically zero, show-
ing that “purely viscous effects” play no role in the orientation of the symmetric
body. Furthermore, GI and, for a fixed ε, GV,ε depend only on the geometric
properties of B, such as size or shape, but they are otherwise independent of the
orientation of B and of the properties of the liquid. The quantities GI and GV,ε are
referred to as the inertial torque coefficient and the visco-elastic torque coefficient,
respectively. From (3.14)–(3.17) we deduce that

M = (ReGI + λGV,ε)U1U2e3 + N .

The following fundamental result follows from [46] and [42].

Theorem 3.2. Let B satisfy the assumptions of Theorem 3.1 and let {u, p, U , g}
be in the class AC . Suppose (33)

ReGI + λGV,ε �= 0. (3.18)

Then, there exists a positive number c0, depending only on B and ε, such that for
0 < Re , λ < c0, we have (34)

1
2 |ReGI + λGV,ε|U1U2 ≤ |M| ≤ 3

2 |ReGI + λGV,ε|U1U2 . (3.19)

Moreover, there exist positive numbers c1, c2, and γ, depending only on B and ε,
such that

M = (ReGI + λGV,ε) U1U2e3 + N (3.20)

where |N | ≤ c2

(
Re 1+γ + λ1+γ

)
.

Let us analyze some consequences of Theorem 3.2. In the first place, we know
that the equilibrium positions for B correspond to M = 0 and so, provided (3.18)
holds, this can happen only if U is either directed along the axis of revolution a
of B or it is perpendicular to it. From Theorem 3.1 it then follows that U has
the same orientation as g and so we conclude that provided (3.18) holds, the only
possible orientations of B at small Reynolds and Weissenberg numbers are with a
either parallel or perpendicular to g.

(33)Notice that if ReGI + λGV,ε = 0, all orientations are allowed (at small Re and λ). In a real

experiment, however, this vanishing condition is practically unattainable.
(34)The numbers 1

2
and 3

2
, in (3.19) can be replaced by 1 − η and 1 + η, respectively, 0 < η < 1,

in which case the constant c0 in the statement of the theorem will depend also on η.
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Secondly, let us now consider the stability of such orientations. Since U1 =
|U | cos θ, U2 = |U | sin θ (see Figure 12), Equation (3.20), at first order in Re and
λ furnishes

M = |U |2(ReGI + λGV) sin θ cos θe3. (3.21)
Thus, if we limit ourselves to perturbations in the form of infinitesimal disorien-
tations of a with respect to g, of the type δθe3, we have

d(M · e3)
dθ

∣∣∣∣
θ=θ0

< 0 =⇒ stability ,

d(M · e3)
dθ

∣∣∣∣
θ=θ0

> 0 =⇒ instability ,

where θ0 denotes the equilibrium configuration (that is, θ0 is either 0 or π/2).
Consequently, we obtain

θ = 0

{
stable if ReGI < −λGV ,

unstable if ReGI > −λGV ,

θ =
π

2

{
stable if ReGI > −λGV ,

unstable if ReGI < −λGV .

From this we see that the competition between the inertial torque (= inertial
effects) and viscoelastic torque (= normal-stress effects) is responsible for the sta-
bility/instability of the configurations θ = 0, π/2.

The above results are better stated in terms of the elasticity number E :=
λ/Re . Actually, set

Ec := − GI
GV,ε

.

Clearly, Ec depends only on the geometric properties of B and on the material
constant ε. The previous results can then be summarized in the following theorem.

Theorem 3.3. Let B be a body of revolution around an axis a, possessing fore-and-
aft symmetry, and of class C3. Then, there exists a positive number c0, depending
only on B and ε, such that for 0 < Re , λ < c0 the following properties hold.
(a) If E �= Ec, there exists two and only two classes of translational steady falls

that B can perform, namely, those characterized by a being either parallel
(class Pa) or perpendicular (class Pe) to gravity.

(b) At first order in Re and λ, if E < Ec, then the falls in the class Pe are
stable and those in the class Pa are unstable, whereas, if E > Ec, the reverse
conclusion holds.

The mathematical predictions of Theorem 3.3 have been analyzed in detail
in [42], when B is a prolate spheroid of eccentricity e. In this case, the “critical”
elasticity number Ec, for fixed ε, is a function of e only. It is found that GI < 0, for
all e ∈ (0, 1), while, for physically realistic values of ε, GV,ε > 0 for all e ∈ (0, 1),
so that Ec > 0 for all these values of e as well. The results are summarized in
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Figure 13. A comparison of Theorem 3.3 with the experiments of Joseph and Liu
[78] is reported in Figure 14. In agreement with [78], the value of ε is chosen to be
−1.8.

Figure 13. Critical elasticity number Ec versus eccentricity e, for
ε = −1.8. According to Theorem 3.3, if E > Ec, the ellipsoid falls with
its major axis a parallel to g, while if E < Ec, the fall with a parallel
to g is stable.

3.2. Shape-tilting phenomenon

In this section we wish to present and briefly discuss another interesting and puz-
zling property of sedimentation of symmetric bodies in a viscoelastic liquid, the
so-called “shape-tilting” phenomenon. This curious phenomenon was systemati-
cally studied from the experimental viewpoint by J. Wang et al. in [114], and
still lacks of any mathematical explanation. Specifically, a homogeneous cylindri-
cal particle with round ends is dropped in a polymeric liquid. Let us call a the
axis of the cylinder. Then, as expected, the particle will eventually reach an equi-
librium configuration with its broadside parallel to the direction of gravity. Now,
if the ends of the same particle are made flat, the particle will eventually find an
equilibrium configuration with an angle θ somewhere between 0◦ and 90◦; see Fig-
ure 15. It has been experimentally found that the equilibrium angle θ, for a fixed
material, is a monotonically increasing function of the aspect ratio of the cylinder
defined as the ratio of its length L to its diameter d. Some significant findings are
given in Figure 16.

Probably, the shape-tilting phenomenon can be qualitatively interpreted by
the fact that the presence of sharp edges enhances the normal-stress effects, but no
definitive conclusion can be drawn. However, if this is the case, a rigorous interpre-
tation appears to be rather difficult, in that the mathematical analysis of particle
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Figure 14. Results of Theorem 3.3 versus experimental results of Liu
and Joseph [78]. The different symbols refer to the different materials
used in the experiments. � Brass; � Aluminum; � Plastic; � Tin. The
observed equilibrium angles are mentioned besides the plotted points.
The dashed line indicates the critical ratio E/Ec = 1. Theorem 3.3
correctly predicts that all data point lying above the line should have
θ = 0◦, otherwise θ = 90◦.

Figure 15. (a) Snapshots of sedimentation of an aluminum cylinder
with round ends in a 0.75% aqueous polythylene oxide solution; (b)
Same particle as in (a) with flat ends, and same polymeric solution.

orientation discussed in the previous section requires very smooth particles, of
class C3 at least.

Another intriguing aspect to this problem has been very recently added by
the experimental findings of A. Vaidya [112]. The kinematic viscosity coefficient (at
zero shear) of the polymeric solution used in his experiments is 100 times greater
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than that of the solutions used in [114]. As a result, the sedimentation of a cylinder
in a 4-feet high tank can take up to several hours. In such a case, Vaidya finds
that there is no shape-tilting and that all particles eventually orient themeselvs
with their broad side parallel to gravity, for aspect ratios ranging between 0.75
and 2.00.

Figure 16. Dependence of the equilibrium angle θ on the aspect ratio
for different materials (from J. Wang et al. [114]). When L/d becomes
“sufficiently large”, a cylinder with flat ends will orient itself the same
way as a cylinder with round ends, namely, with its broad side parallel
to gravity. The polymeric solution is the same as that of Figure 1.5.

3.3. Motion of a disk in the shear flow of a liquid in a horizontal channel

Our objective in this and the next sections is to investigate equilibrium positions
and velocity of a disk moving in the shear (Poiseuille) flow of a viscoelastic liquid in
a horizontal channel. As usual, the liquid is modeled by a second-order liquid. We
are interested in steady motions of the system liquid-disk, that is, the translational
velocity U and the angular velocity ω of the disk Σ are constant in time, and the
motion of the fluid as seen from a frame I attached to Σ and moving with velocity
U is independent of time. Thus, for a steady motion to occur, it is clear that the
(unknown) velocity U of Σ must be directed along the channel walls which we
will take, without loss of generality, parallel to the x1-axis of the frame I. We also
take the origin of I coinciding with the center of Σ and use the thickness d of the
channel as a length scale. It is convenient to define V ≡

√
gd as velocity scale,

with g acceleration of gravity. We then find that the Poiseuille flow (v0, p0), as
seen from I assumes the following dimensionless form (see Section 1.1.1):

v0(x2; h) = −6Fr [h2 + h(2x2 − 1) + x2(x2 − 1)]e1 ≡ Fr f(x2, h)e1 ,

p0(x1) = −12
Φ

μd2 x1,
(3.22)
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where Fr = Φ
V d , is the Froude number, Φ is the given flow rate (which, without

loss, we assume to be positive), μ is the shear viscosity of the liquid and −h and
1 − h are the x2-coordinates of the walls Γ1 and Γ2 of the channel; see Figure 17.

Thus, mathematically, our problem can be formulated as follows.
Find {v, p, ω, U, h} satisfying the dimensionless equations

∇ · T (v, P ) = Rv · ∇v

∇ · v = 0

}
in Ω,

v |S = ωe3 × x, v |Γ1
= v |Γ2

= −U ,

lim
|x1|→∞

(v(x1, x2) − v0(x2; h) + U) = 0,∫ 1−h

−h

v1(x1, x2)dx2 = Fr − U · e1,∫
S

T (v, P ) · n = G,

∫
S

x × T (v, P ) · n = 0.

(3.23)

Here Ω is the region occupied by the fluid, S is the surface of Σ, while T = T (v, P )
is the Cauchy stress tensor given by

T (v, P ) = T N (v, P ) − λS(v) (3.24)

with T N and S defined in (3.2). Moreover, P = p − Rx2, R = ρV d
μ (the disk

Reynolds number), ρ is the fluid density, λ = −α1V
dμ (the Weissenberg number)

and G = −Rαe2. Finally,

α = π(R/d)2(ρs/ρ − 1) , (3.25)

where R, ρs are the radius and the density of the disk, respectively. (35)

Figure 17. Schematic view of the system.

Our strategy in solving the problem develops according to the following steps.

Step 1. We prove the existence and uniqueness of a solution to problem (3.23) for
any given h ∈ (a, 1 − a), where a := R/d (< 1/2). The corresponding solution
{v, P, U , ω} will have U = U1e1 + U2e2 where, U2, in general, need not be zero.
However, by virtue of the existence and uniqueness result, we find that there is a

(35)We shall assume throughout that ρs ≥ ρ so that α ≥ 0.
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map M : h ∈ (a, 1 − a) �→ U2 ∈ R. Therefore, all possible equilibrium positions
will be given by the zeros of the map M.
Step 2. Our next objective is the evaluation of these zeros. Following [40], we shall
evaluate the zeros of M at first order in R and λ. However, as shown in [17], the
zeros of M can be precisely computed also to higher orders in R and λ.

However, both steps require a preliminary study of the associated Stokes
problem, formally obtained by setting λ = R = 0 in (3.22)–(3.24). This preparatory
study, very interesting on its own, will be performed in the following Section 3.3.1.
Successively, in Section 3.3.2 we shall prove the result stated in Step 1, while
in Section 3.3.3 we will give a complete description of the equilibrium positions
according to Step 2. In order to simplify the presentation, we shall give a detailed
proof of these results only in the case of a Newtonian (Navier–Stokes) liquid. Their
modifications due to viscoelastic effects will be summarized in Section 3.3.3. For
details about these latter, we refer the reader to the paper [40].

3.3.1. Stokes approximation. Let us consider problem (3.24) in absence of vis-
coelastic effects and in the limit of vanishing Reynolds number. We thus get the
following Stokes approximation of the original problem.

∇ · T (vs, Ps) = 0

∇ · vs = 0

}
in Ω,

vs |S = ωse3 × x, vs |Γ1
= vs |Γ2

= −Us ,

lim
|x1|→∞

(vs(x1, x2) − v0(x2; h) + U s) = 0,∫ 1−h

−h

vs1(x1, x2)dx2 = Fr − U s · e1 ,∫
S

T (vs, P ) · n = 0,

∫
S

x × T (vs, Ps) · n = 0,

(3.26)

with T (vs, Ps) := T N (vs, Ps) and where the unknowns are {vs, Ps, U s, ωs, h}. Our
next goal is to decouple the above system, that is, we shall separate the equations
of the body from the equations of the liquid. To this end, we begin to rewrite the
last two equations in (3.26) in an equivalent form. Let us introduce the auxiliary
fields {w(i), π(i)} defined as solutions to the linear problems (i = 1, 2, 3)

∇ · T N (w(i), π(i)) = 0

∇ · w(i) = 0

}
in Ω,

w(i) |S = βi, w(i) |Γ1
= w(i) |Γ2

= 0,

lim
|x1|→∞

w(i)(x1, x2) = 0,

(3.27)

where βi = ei for i = 1, 2, and β3 = e3×x. Notice that all fields w, π depend only
on h. Furthermore, w(i), p(i) and all corresponding derivatives decay exponentially
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fast to zero as |x| → ∞ [37, Chapter XI]. In view of the symmetry x1 → −x1 of
problems (3.27), it is easily shown that the following relations hold:∫

S

T N (w(2), π(2)) · n = T2(h)e2 ,

∫
S

x × T N (w(2), π(2)) · n = 0 ,∫
S

T N (w(3), π(3)) · n = T3(h)e1 ,

∫
S

T N (w(1), π(1)) · n = T1(h)e1,∫
S

v0 · T N (w(1), π(1)) · n = FrF1(h)e1,

∫
S

v0 · T N (w(2), π(2)) · n = 0 ,∫
S

v0 · T N (w(3), π(3)) · n = FrF3(h)e1,

(3.28)
where Ti(h), i = 1, 2, 3, and Fi(h), i = 1, 3, depend only on h. Moreover, obviously,∫

S

x×T N (w(1), π(1))·n = R1(h)e3,

∫
S

x×T N (w(3), π(3))·n = R2(h)e3, (3.29)

where, again, Ri(h), i = 1, 3, depend only on the location of the disk. It is easy to
see that

T3(h) = R1(h) , for all > 1 − a > h > a . (3.30)

Actually, if we multiply (3.27)1 with i = 3 by w(1), integrate by parts over Ω and
take into account (3.28), we obtain

T3(h) = 2
∫

Ω

D(w(1)) : D(w(3)) .

Likewise, if we multiply (3.27)1, with i = 1, by w(3), integrate by parts over Ω and
take into account (3.28), we obtain

R1(h) = 2
∫

Ω

D(w(3)) : D(w(1)) ,

and (3.30) follows. Moreover, we have that

T1(h) > 0 , T2(h) > 0 ,R2(h) > 0 , T1(h)R2(h) −R1(h)T3(h) > 0 , (3.31)

for all 1 − a > h > a. In fact, let w =
∑3

i=1 λiw
(i), Π =

∑3
i=1 λiπ

(i), λi ∈ R,
i = 1, 2, 3. From (3.27) we find

∇ · T N (w, Π) = 0

∇ · w = 0

}
in Ω,

w |S =
3∑

i=1

λiβi , w |Γ1
= w |Γ2

= 0,

lim
|x1|→∞

w(x1, x2) = 0.

(3.32)
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Multiplying (3.32)1 by w, integrating by parts over Ω and taking into account
(3.30) and (3.28) we get

λ2
1T1 + λ2

2T2 + λ2
3R2 + 2λ1λ3T3 = 2

∫
Ω

|D(w)|2 .

Since the right-hand side of this equation is always positive, unless λ1 = λ2 = λ3 =
0, and the λ’s are arbitrary, the property (3.31) follows. We now multiply (3.26)1
by w(i), i = 1, 2, 3, integrate by parts over Ω and use the asympotic properties of
w(i) to obtain (i = 1, 2, 3)∫

S

βi · T (vs, Ps) · n = 2
∫

Ω

D(vs) : D(w(i)) . (3.33)

Likewise, multiplying (3.27)1 by vs − v0 + U s and integrating by parts over Ω we
find (i = 1, 2, 3)∫

S

(U s + ωse3 × x − v0) · T N (w(i), π(i)) · n = 2
∫

Ω

D(vs) : D(w(i)) . (3.34)

From (3.28), (3.29), (3.33) and (3.34), one deduces that the last two equations in
(3.26) are equivalent to the following ones:

ωsR1(h) + Us1T1(h) = FrF1(h),

Us2T2(h) = 0,

ωsR2(h) + Us1T3(h) = FrF2(h).

(3.35)

Thanks to (3.35), we are in a position to give a full answer to the equilibrium
problem for the disk in the Stokes approximation.

Proposition 3.1. For any given Fr > 0 and h ∈ (a, 1 − a), problem (3.26) has one
and only one solution {vs, Ps, U s, ωs}, where

vs = Fr [A(h)(w(1) − e1) + B(h)w(3) + w(4)] := Fr vs ,

Ps = Usπ
(1) + ωsπ

(3) + Fr w(4),

U s = Use1 := Fr A(h)e1 , ωs = Fr B(h),

and where A and B are functions of h only, and

∇ · T (w(4), π(4)) = 0

∇ · w(4) = 0

}
in Ω,

w(4) |S = 0, w(4) |Γ1
= w(4) |Γ2

= 0,

lim
|x1|→∞

(
w(4)(x1, x2) − f(x2, h)e1

)
= 0 .

(3.36)

Moreover, for each fixed h and Fr , Us and ωs are the solutions to the linear system

ωsR1(h) + UsT1(h) = FrF1(h),

ωsR2(h) + UsT3(h) = FrF2(h).
(3.37)
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Proof. For any given Fr and h in their respective ranges, in view of (3.31) we can
find a unique solution, {U = Use1, ωs}, to (3.35) satisfying the properties stated in
the proposition. Clearly, by construction, with this choice of U s and ωs, equations
(3.26)6,7 are automatically satisfied. Moreover, by the properties of the fields w
and π, It is immediately checked that

vs := Us(w(1) − e1) + ωsw
(3) + Frw(4) ,

Ps := Usπ
(1) + ωsπ

(3) + Frw(4)

solve (3.26)1,...,5. The proof of the proposition is thus completed. �

Remark 3.1. One interesting consequence of Proposition 3.1 is that in the Stokes
approximation all admissible values of h are equilibrium heights. Consequently,
the migration of the disk must come from the inertial-effects of the liquid (the
nonlinear terms), a fact first discovered by F.P. Bretherton in 1962 [14].

The nonzero component, Us, of the translational velocity and the angular
velocity, ωs, as functions of h and for fixed Fr can be computed from (3.37). This
has been done in [40] and the results are reported in Figure 18.

Figure 18. Graphs of Us/Fr 2 and ωs/Fr 2 versus h computed from
(3.37) (solid line). The dotted line corresponds to the velocity and
vorticity, respectively, in the Poiseuille flow (3.22).

3.3.2. A fundamental existence and uniqueness theorem. The goal of this section
is to show the following result.

Theorem 3.4. Let h ∈ (a, 1 − a), Fr ≥ 0 and G : R+ �→ R3 be given, where G is
a (real) analytic function of R. Then there exists R0 > 0 such that, if R < R0,
problem (3.23)–(3.24) with λ = 0 has one and only one solution {v, P, U , ω} such
that

(v − v0 + U) ∈ W 2,2(Ω) , P ∈ W 1,2(Ω) .
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Moreover, the solution is (real) analytic in R and, denoted by {vs, Ps, U s, ωs} the
solution to (3.23) corresponding to R = λ = 0, the series

v = vs +
∞∑

n=1

vnRn , P = Ps +
∞∑

n=1

PnRn ,

U = U s +
∞∑

n=1

UnRn , ω = ωs +
∞∑

n=1

ωnRn ,

are absolutely convergent in the norms of W 2,2(Ω), W 1,2(Ω), R2 and R, respec-
tively.

In order to prove this result, we need some preliminary considerations and
preparatory lemmas. We first put problem (3.23)–(3.24) in an equivalent form. To
this end, we begin to construct a suitable extension of v0, along the lines of the
argument of Section I.3.1. Let ζ = ζ(x1, x2) be a smooth function such that (with
r =

√
x2

1 + x2
2 )

ζ(x1, x2) =

{
1 if r > 2δ

0 if r < δ

and set

ah = (ah1(x1, x2), ah2(x1, x2))

where

ah1(x1, x2) =
∂ζ

∂x2

∫ x2

−h

f(η, h)dη + ζ(x1, x2)f(x2, h),

a2h(x1, x2) = − ∂ζ

∂x1

∫ x2

−h

f(η, h)dη ,

where f(x2, h) is defined in (3.22). Taking into account that max f(x2, h) = 3/2,
and that max |f ′(x2, h)| = 6, by direct inspection one shows that ah satisfies the
following properties:

1. ah ∈ C∞(Ω);
2. ∇ · ah = 0 in Ω;
3. ah(x1, x2) = v0(x2; h), |x1| > 2δ;
4. |∇ah(x)| ≤ M , x ∈ Ω;
5. ‖a · ∇a‖q ≤ M , 1 ≤ q ≤ ∞;

6.
∫ 1−h

−h

ah1(x1, x2)(η)dη =
∫ 1−h

−h

f(η, h)dη = 1;

where M is independent of h. We next set

u = v − Frah + U , Π = P − ζp0 .
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Using the properties of ah we then obtain that the field u satisfies the problem

∇ · T (u, Π) = R (B(u, u) − B(U , u) + Fr (B(ah, u)

+B(u, ah) − B(U , ah))) + F
∇ · u = 0

⎫⎪⎬⎪⎭ in Ω,

u |S = ωe3 × x + U , u |Γ1
= u |Γ2

= 0,

lim
|x1|→∞

u(x1, x2) = 0,∫ 1−h

−h

u1(x, x2)dx2 = 0,∫
S

T (u, p) · n = G,

∫
S

x × T (u, p) · n = 0 ,

(3.38)

where T ≡ T N , B(a, b) = a · ∇b and F = RFr B(ah, ah) + Fr 2g, with g a
function of bounded support. We shall now look (formally) for a solution to (3.38)
of the form

u =
∞∑

n=0

unRn , Π =
∞∑

n=0

ΠnRn , U =
∞∑

n=0

UnRn , ω =
∞∑

n=0

ωnRn ,

where the zero-th order terms are the solution to the following Stokes problem
(determined in Proposition 3.1):

∇ · T (u0, Π0) = Fr g

∇ · u0 = 0

}
in Ω,

u0 |S = ω0e3 × x + U0, u0 |Γ1
= u0 |Γ2

= 0,

lim
|x1|→∞

u0(x1, x2) = 0,∫ 1−h

−h

u01(x, x2)dx2 = 0,∫
S

T (u0, Π0) · n = G0,

∫
S

x × T (u0, Π0) · n = 0 ,

(3.39)
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while, for n ≥ 1,

∇ · T (un+1, Πn+1) =
n∑

k=0

(B(un−k, uk) − B(Un−k, uk))

+Fr (B(ah, un) + B(un, ah) − B(Un, ah)) + F̃

∇ · un+1 = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ in Ω,

un+1 |S = ωn+1e3 × x + Un+1, (3.40)

un+1 |Γ1
= un+1 |Γ2

= 0,

lim
|x1|→∞

u(x1, x2) = 0,∫ 1−h

−h

un+1 · e1(x, x2)dx2 = 0,∫
S

T (un+1, Πn+1) · n = Gn+1,

∫
S

x × T (un+1, Πn+1) · n = 0 .

In (3.40) F̃ = Fr 2B(h, h) if n = 0, and F̃ = 0 otherwise. Moreover, Gk are the
coefficients of the power series of G. We want to show that problems (3.39) and
(3.40) are solvable for all n ≥ 0 with corresponding estimates. Let H(Ω) be the
class of functions ϕ such that

1. ϕ ∈ C∞
0 (Ω);

2. ∇ · ϕ = 0 in Ω; (3.41)
3. ϕ ≡ 0 in a neighborhood of Γ1andΓ2;

4. ϕ = ϕ ≡ Φ1 + Φ2e3 × y, for some Φ1 ∈ R
2, Φ2 ∈ R, in a neighborhood of S.

Reasoning as in [38], one can show the validity of the Poincaré inequality

‖ϕ‖2 ≤ γ0‖D(ϕ)‖2, (3.42)

where γ0 is a constant independent of h. Furthermore, one shows that the “trans-
lational velocity” Φ1 and the “spin” Φ2 of a generic ϕ ∈ H(Ω) can be controlled
by the L2-norm of D. Specifically, we have

|Φ1| + |Φ2| ≤ γ‖D(ϕ)‖2 (3.43)

where γ depends only on R. We shall denote by H(Ω) the completion of H(Ω) in
the norm ‖D(·)‖2.

We have the following lemma.
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Lemma 3.1. Let F 1 ∈ L2(Ω), F 2 ∈ R2 be given. Then, the problem

∇ · T (u, Π) = F 1

∇ · u = 0

}
in Ω,

u |S = ωe3 × x + U , u |Γ1
= u |Γ2

= 0,

lim
|x1|→∞

u(x1, x2) = 0,∫ 1−h

−h

u1(x, x2)dx2 = 0,∫
S

T (u, Π) · n = F 2,

∫
S

x × T (u, Π) · n = 0 ,

(3.44)

has one and only one solution {u ∈ W 2,2(Ω), Π ∈ W 1,2(Ω), U , ω}. Moreover, this
solution satisfies the estimate

|U | + |ω| + ‖u‖2,2 + ‖Π‖1,2 ≤ C (‖F 1‖2 + |F 2|) , (3.45)

where C = C(Ω) > 0.

Proof. We give a weak formulation of the problem. Thus, multiplying (3.44)1 by
ϕ ∈ H(Ω), and integrating by parts over Ω, we find

Φ1 ·
∫

S

T (u, p) · n + Φ2e3 ·
∫

S

x × T (u, p) · n −
∫

Ω

D(u) : D(ϕ) =
∫

Ω

F 1 · ϕ ,

where Φ1 +Φ2e3×x is the trace of ϕ at S. Therefore, using the last two equations
in (3.44)2 it follows that∫

Ω

D(u) : D(ϕ) = −
∫

Ω

F 1 · ϕ + Φ1 · F 2 . (3.46)

We shall say that {u, h, ω, U} is a weak solution to problem (3.44) if and only if:
(i) u ∈ H(Ω), (ii) u = ωe3 × x + Ue1, x ∈ S, and (iii) u satisfies (3.46) for all
ϕ ∈ H(Ω).

The existence of a field u satisfying requirements (i) and (iii) can be proved
by the classical Galerkin method. As is known, the method furnishes existence
provided we obtain a suitable a-priori bound on the solution. This latter can be
obtained as follows. Replacing, formally, ϕ in (3.46) with u, we get

‖D(u)‖2
2 = −

∫
Ω

F 1 · u + U · F 2 . (3.47)

Using in (3.47) the Schwarz inequality along with (3.42) and (3.43) we find

‖D(u)‖2 ≤ γ0 ‖F 1‖2 + γ |F 2| , (3.48)

which furnishes the desired a-priori estimate. By means of (3.48) and of the
Galerkin method we thus establish the existence of a weak solution that, in addi-
tion, satisfies (3.47). From standard regularity theory, see, e.g., [36, Lemma VI.1.2],
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we have that u ∈ W 2,2(Ω) and that it satisfies (3.44)1 for some Π ∈ W 1,2(Ω).
Moreover, the following estimate holds:

‖u‖2,2 + ‖Π‖1,2 ≤ c (‖F 1‖2 + ‖D(u)‖2 + |U | + |ω|) , (3.49)

where we used the inequality

‖∇u‖2 ≤
√

2‖D(u)‖2 ; (3.50)

see [38]. The lemma then follows from (3.48), (3.49) and (3.43). �
Lemma 3.2. Let v, w ∈ W 1,2(Ω). Then

‖B(v, w)‖2 ≤ c‖D(v)‖2‖D(w)‖2 ,

where c = c(Ω) > 0.

Proof. By the Schwarz inequality, we have

‖B(v, w)‖2 ≤ ‖v‖4‖w‖4 .

Since
‖u‖4 ≤ c ‖∇u‖2 u ∈ W 1,2(Ω) ,

see, e.g., [36, Lemma IX.2.1], the lemma follows from these last two displayed
inequalities and from (3.50). �

Set

Vn := ‖un‖2,2 + ‖Π‖1,2 + |Un| + |ωn|,

Hn :=
n∑

k=0

(B(un−k, uk) − B(Un−k, uk)) + Fr (B(ah, un)

+ B(un, ah) − B(Un, ah)) + F̃ n ,

where F̃ n = F̃ if n = 1 and F̃ n = 0 otherwise. From Lemma 3.2 and from the
properties 1–6 of the function ah it easily follows that

‖Hn‖2 ≤ c

(
n∑

k=0

Vn−kVk + Fr Vn + Fr2δn1

)
, n ≥ 0 . (3.51)

We now apply the results of Lemma 3.1 and Lemma 3.2 to problems (3.39) and
(3.40) and use (3.51). We thus get

V0 ≤ c (Fr + |G0|),

Vn+1 ≤ c

(
n∑

k=0

Vn−kVk + Fr Vn + Fr2δn1 + |Gn+1|
)

, n ≥ 0 .
(3.52)

Let An be defined through the recurrent relations
A0 = c (Fr + |G0|),

An+1 = c

(
n∑

k=0

An−kAk + Fr An + Fr2δn1 + |Gn+1|
)

, n ≥ 0 .
(3.53)
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Clearly, Vk ≤ Ak, for all k ≥ 0. We shall now show that, provided R is sufficiently

restricted, the series Z :=
∞∑

n=0

AnRn is converging, thus implying the convergence

of
∞∑

n=0

VnRn which will complete the existence part of the theorem. To reach our

goal we observe that, multiplying both sides of (3.53)2 by Rn, using the Cauchy
product formula and summing over n from 0 to ∞, we obtain

Z − A0 = c
[
R(Z2 + FrZ + Fr 2) + S

)
(3.54)

where S =
∞∑

n=0

|Gn|Rn − |G0|. The solution to (3.54) that reduces to a0 at x = 0

is given by

Z(x) =
1

2cR
[
(1 − cRFr ) −

√
(1 − cRFr )2 − 4(A0 + cFr 2 + S) cR

]
which is positive and has an analytic branch provided

1 > cRFr , (1 − cRFr )2 > 4(A0 + cFr 2 + S) cR .

Let B > 0 be such that the series S + |G0| converges for all R ∈ (0, B] and let
GM = GM (B) denote an upper bound for S + |G0|, uniformly in R ∈ (0, B].
Taking into account that A0 = V0 and inequality (3.52)1, we thus deduce that this
latter condition is satisfied provided we choose R < min{B, C(Fr +Fr 2+GM )−1},
where C > 0 depends only on Ω. The theorem is therefore proved. �

3.3.3. Evaluation of equilibrium heights. It must be emphasized that the “trans-
lational velocity” U of solutions given in Theorem 3.4 need not be directed along
the walls Γ1, Γ2, that is, these solutions may have U2 �= 0. However, from the same
theorem, we know that for any given h there exists one and only one correspond-
ing U2 ∈ R. Our next objective is to find for which values, heq, of h we have that
U2 = 0. Such values heq will give precisely the possible equilibrium values for the
heights h.

To reach this goal, we rewrite the last two equations in (3.23) in an equiva-
lent form. To this end, we dot-multiply both sides of (3.23)1 by w(i), i = 1, 2, 3,
integrate by parts over Ω and use the asympotic properties of w(i) to obtain
(i = 1, 2, 3)∫

S

βi · T (v, P ) · n = R
∫

Ω

v · ∇v · w(i) + 2
∫

Ω

D(v) : D(w(i)) . (3.55)
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From (3.28), (3.29), (3.34) and (3.55), one deduces that the last two equations in
(3.23) are equivalent to the following ones:

ωR1(h) + U1T1(h) = FrF1(h) −R
∫

Ω

v · ∇v · w(1),

U2T2(h) = −R
∫

Ω

v · ∇v · w(2) −Rα,

ωR2(h) + U1T3(h) = FrF2(h) −R
∫

D

v · ∇v · w(3) ,

(3.56)

where, we recall, α is defined in (3.25). From these equations it is possible to draw
a number of consequences. Actually, in view of Theorem 3.4, from (3.56)2 it follows
that

RU
(1)
2 T2(h) = Fr 2RG(h) −Rα + Λ, (3.57)

where
G(h) :=

∫
Ω

vs · ∇vs · w(2) , (3.58)

and
|Λ| ≤ C R2, C = C(Ω,Fr ) > 0 .

Thus, at first order in R and λ , we find that U2 is given by

U
(1)
2 =

Fr 2

T2(h)
[G(h) − K] (3.59)

where K = α

Fr 2 . Since the equilibrium heights heq are those at which U2 = 0,
from (3.59) we deduce that, at first order in R and λ , heq is the solution to the
equation

G(h) = K. (3.60)
Notice that the quantity RFr 2G(h) represents, at first order in R the component
of the force exerted by the liquid in the direction orthogonal to the translational
velocity of the disk (lift). Solutions to the equation (3.60) were computed numeri-
cally in [40], and will be presently discussed. We observe that, once the values for
heq have been obtained, from (3.56)1,3 and with the help of Theorem 3.4, we may
calculate also the translational and angular velocities of the disk, U

(1)
1 and ω(1),

at first order in R. In fact, we have

ω(1)R1(h) + U
(1)
1 T1(h) = −Fr 2

∫
Ω

vs · ∇vs · w(1),

ω(1)R2(h) + U
(1)
1 T3(h) = −Fr 2

∫
D

vs · ∇vs · w(3).

(3.61)

However, the numerical computation of [40] gives that the two integrals on the
right-hand side of (3.61) are zero, so that, at first order in R the translational and
angular velocity of the disk coincides with that evaluated in the Stokes approxi-
mation and given in Proposition 3.1 (see also Figure 18). In fact, as shown in [17],
the first further non-zero contributions to U1 and ω are at the second order in R.
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Let us now study the equilibrium equation (3.60) in some detail, starting
with the case α = 0. From the physical point of view, this means that the disk has
zero buoyancy. With a view to Figure 19, we then find three possible solutions

h(1) = 0.261 , h(2) = 0 , h(3) = 0.738.

Figure 19. Equilibrium heights for zero buoyancy.

Notice that h(1) and h(3) are stable, while h(2) is unstable. These conclusions come
from the following argument. Consider a small variation in h at the equilibrium
position h(1). If it is at the left of h(1), that is, the sphere is pushed downward in
the channel, G(h) is positive there and, therefore, the lift is positive. This means
that the fluid will exert a force in the upward direction that will try to bring the
particle back to h(1). Analogously, if the perturbation is at the right of h(1), that
is, the sphere is pushed upward in the channel, G(h) is negative there and the
lift is negative. This means that the liquid will exert a force in the downward
direction that will bring the particle back to h(1). For the same reasons, h(3) is
stable and h(2) is unstable. We may summarize these results by saying that a given
equilibrium position heq is stable if the slope of G(h) is negative at heq and it is
unstable if it is positive.

Let us next consider the case of a negative buoyancy, that is, the density of
the particle is larger than that of the liquid. We then have α > 0. From (3.60)
we thus deduce that the equilibrium heights are given by the intersection of the
straight line α/Fr 2 (represented by the solid straight line in Figure 20) with the
curve G(h).

With a view to Figure 19, wee see that all equilibrium heights move downward
in the channel. In particular, the stable ones, h(1) and h(3), become closer to the
bottom plate. We also have the following interesting “jump phenomenon” in the
equilibrium height. Consider a particle in the top half of the channel and set
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Figure 20. Equilibrium for a nonzero buoyancy.

δ = G(hc), where hc is the coordinate of the point C, the local maximum of
G(h); see Figure 20. In [40] the value for δ was computed and found δ = 0.00134.
Therefore, if

α/Fr 2 < 0.00134 , (3.62)

the position h(3) exists and it is locally stable. However, if

α/Fr 2 > 0.00134 , (3.63)

the particle will jump to the position h(1) on the lower half of the channel, that
always exists and is always locally stable. This fact has a very simple interpretation
from the physical point of view. In fact, for a given flow rate (Fr ), a particle can
stay in equilibrium in the top half of the channel if it is not “too heavy”, that is, if
there is enough lift. Otherwise, the particle will fall down. Notice that, for a given
α, we can always increase Fr (that is we can always increase the flow rate) in such
a way that the particle stays in the equilibrium position h(3). The above result can
also be interpreted in a different way. We fix the buoyancy, α, of the particle and
take Fr sufficiently small in such a way that (3.63) holds, namely, there is only one
stable equilibrium height (h(1)) located on the branch of the curve G(h) close to
the bottom plate. If we increase Fr , we will reach a critical value at which (3.62)
is valid, and another stable equilibrium height h(3) appears.

Using (3.59) and taking into account that U
(1)
2 = dh/dt, in [40] the trajec-

tories of disks, starting at different heights in the channel, have been computed.
The results for α = 1 and Fr = 2.58, 2.77 and 10 are shown in Figure 21, 22 and
23, respectively.
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Figure 21. Trajectories of the disk, at first order in R, for α = 1
and Fr = 2.58. The magnitude of the flow-rate is not large enough to
generate an equilibrium position in the upper part of the channel. See

(3.62).

Figure 22. Trajectories of the disk, at first order in R, for α = 1 and
Fr = 2.77. The magnitude of the flow-rate is large enough to generate
an equilibrium position in the upper part of the channel. See (3.63).
However, not every particle initially in the upper part of the channel
will reach the upper equilibrium position.
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Figure 23. Trajectories of the disk, at first order in R, for α = 1
and Fr = 10.0. The magnitude of the flow-rate is now large enough,
and every particle initially in the upper part of the channel will reach
the upper equilibrium position.

We wish to end this section with a final remark. In view of the analyticity
of the solution established in Theorem 3.4, it is clear that, in principle, from
(3.35), we can evaluate U2, ω and h to any fixed order in the Reynolds number R.
Of course, the effective computation may become more and more complicated at
higher order. Evaluation of the above quantities up to the 5th order included has
been done in [17].

3.3.4. Evaluation of equilibrium heights. Viscoelastic case. In this section we shall
analyze how the viscoelastic properties of the liquid can modify the equilibrium
heights determined for the purely Newtonian case in Section 3.3.4. As usual, we
shall employ the second-order fluid model. Therefore, the non-Newtonian char-
acteristic will reduce to normal-stress effects. Also, as mentioned previously, we
shall limit ourselves to describe the main ideas and the main results, referring the
reader to [40] for further details.

The starting point of the analysis is the replacement of (3.56) with one that
takes into account the non-Newtonian character of the liquid, expressed by the
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tensor S defined in (3.2). Now, the following relations can be proven:

ωR1(h) + U1T1(h) = FrF1(h) −R
∫

Ω

v · ∇v · w(1) + λ

∫
Ω

S(v) : D(w(1)),

U2T2(h) = −R
∫

Ω

v · ∇v · w(2) + λ

∫
Ω

S(v) : D(w(2)) −Rα, (3.64)

ωR2(h) + U1T3(h) = FrF2(h) −R
∫

D

v · ∇v · w(3) + λ

∫
Ω

S(v) : D(w(3)).

As in the Newtonian case, the next step is to “expand” {v, p, U , ω} around the
Stokes solution given in Proposition 3.1. In fact, one can show that, in particular,
(3.64)2 furnishes

R(1 + E)U (1)
2 T2(h) = R

(
Fr 2G(h) + E Fr 2GV (h) − α

)
+ Λ (3.65)

where E := λ/R is the elasticity number, G is defined in (3.58),

GV (h) :=
∫

Ω

S(vs) : D(w(2)) (3.66)

and

|Λ| ≤ C R2, C = C(Ω,Fr , E) > 0 .

Thus, at first order in R, we find that U2 is given by

U
(1)
2 =

Fr 2

(1 + E)T2(h)
[G(h) + EGV (h) − K] (3.67)

where K is defined after (3.59). From (3.67) it follows that the equilibrium heights
are now determined by the equation

G(h) + EGV (h) = K , (3.68)

which is solved numerically in [40], for different values of E and K. Since the
viscoelastic effect is measured through the parameter E, we are interested in how
solutions h = heq of (3.68) change by increasing E. In [40] it is found that the
overall effect of viscoelasticity is to move the disk toward the middle of the channel
and not away from it, as it happens in the purely Newtonian case. In Figures 24
and 25 is reported the variation of heq with E for K = 0, that is, when the disk and
the liquid have the same density. We see that the two stable equilibrium heights
for E = 0 eventually merge in only one situated in the middle of the channel.
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Figure 24. Variation of the equilibrium heights with E for K = 0.
It is seen that the equilibrium heights move toward the middle of the
channel. This property is enhanced at higher values of E, as shown in
Figure 25.

Figure 25. Variation of the equilibrium heights with E for K = 0.
The two distinct stable equilibrium heights merge into the (stable) one
located in the middle of the channel.

In Figure 26 it is reported the computation of the equilibria for fixed E and
increasing K > 0. Here, the situation is qualitatively analogous to the Newtonian
case. In fact, the upper equilibrium position tends to disappear, whereas the lower
one tends to move toward the bottom wall.
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Figure 26. Variation of the equilibrium heights with K for E = 0.05.
For this value of the elasticity the only equilibrium height is in the
middle of the channel. As K increases, it moves continuously toward
the lower wall.

We end with a final remark concerning the translational and angular velocity
of the disk. As a matter of fact, it was found in [40] that the integrals appearing
on the right-hand side of (3.64)1,3 are, effectively, zero. As a consequence, the first-
order contributions to the translational and angular velocities of the disk are zero
and, therefore, they coincide with the analogous quantities evaluated in the Stokes
approximation (see Proposition 3.1 and Figure 18).
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[10] Beirão da Veiga, H., On Some Boundary Value Problems for Flows with Shear De-
pendent Viscosity, Variational Analysis and Applications Nonconvex Optim. Appl.,
Vol. 79, Springer, New York, 2005, 161–172.

[11] Beirão da Veiga, H., Navier–Stokes Equations with Shear-Dependent Viscosity. Reg-
ularity up to the Boundary, J. Math. Fluid Mech., in press.

[12] Berker, R., 1964, Contrainte sur un Paroi en Contact avec un Fluide Visqueux
Classique, un Fluide de Stokes, un Fluide de Coleman-Noll, C.R. Acad. Sci. Paris,
285, 5144–5147.

[13] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids,
Volume I, John Wiley & Sons, second ed. (1987).

[14] Bretherton, F.P., The motion of a Rigid Particle in a Shear Flow at Low Reynolds
Number. J. Fluid Mech. 14 (1962), 284–304.

[15] Bitbol, M., Red Blood Cell Orientation in Orbit C = 0, Biophys. J. 49 (1986),
1055–1068.
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[99] Segrè G., and Silberberg, A., Behaviour of Macroscopic Rigid Spheres in Poiseuille
Flow, Part I, J. Fluid Mech. 14 (1962), 115–135.
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Introduction

This chapter introduces into computational methods for the simulation of PDE-
based models of laminar hemodynamical flows. We discuss space and time dis-
cretization with emphasis on operator-splitting and finite-element Galerkin meth-
ods because of their flexibility and rigorous mathematical basis. Special attention
is paid to the simulation of pipe flow and the related question of artificial out-
flow boundary conditions. Further topics are efficient methods for the solution
of the resulting algebraic problems, techniques of sensitivity-based error control
and mesh adaptation, as well as flow control and model calibration. We concen-
trate on laminar flows in which all relevant spatial and temporal scales can be
resolved and no additional modeling of turbulence effects is required. This covers
most of the relevant situations of hemodynamical flows. The numerical solution of
the corresponding systems is complicated mainly because of the incompressibility
constraint which enforces the use of implicit methods and its essentially parabolic
or elliptic character which requires the prescription of boundary conditions along
the whole boundary of the computational domain.

The material of this article is based on long-standing joint work of several
former and present members of the Numerical Methods Group at the Institute of
Applied Mathematics, University of Heidelberg. For more details the following pub-
lications may be consulted: Rannacher [65, 66], Rannacher/Turek [67, 48], Becker
[3, 4, 5], Becker/Rannacher [13, 14], Bangerth/Rannacher [2], Braack/Richter [20],
Becker/Vexler [15], Heuveline/Rannacher [47], Most of the numerical examples
have been obtained using the software tools ‘Gascoigne’ [34], ‘Hiflow’ [45], and the
graphics packages ‘VisuSimple’ [77, 8] and ‘HiVision’ [46, 18]. More references to
the relevant literature will be given at the respective places in the text, below. The
contents of this article are organized as follows:
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1. Finite-element methods for the simulation of viscous flow

1.1. The Navier–Stokes equations

The continuum-mechanical model of the flow of a viscous Newtonian fluid is the
system of conservation equations for mass, momentum and energy:

∂tρ + ∇ · (ρv) = 0, (1.1)

∂t(ρv) + ρv · ∇v −∇ · (μ∇v + 1
3μ∇ · vI) + ∇ptot = ρf, (1.2)

∂t(cpρT ) + cpρv · ∇T −∇ · (λ∇T ) = h. (1.3)

In the following, the fluid is assumed as incompressible and the density as homo-
geneous, i.e., ρ ≡ const., so that (1.1) reduces to the constraint ∇·v = 0. Further,
in the isothermal case, the energy equation decouples from the momentum and
continuity equations and, setting ρ ≡ 1, the Navier–Stokes system can be written
in short as

∂tv + v · ∇v − νΔv + ∇p = f, (1.4)

∇ · v = 0, (1.5)
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with the kinematic viscosity ν > 0. This system is supplemented by appropriate
initial and boundary conditions,

v|t=0 = v0, v|Γrigid = 0, v|Γin = vin, (μ∂nv − pn)|Γout = qn, (1.6)

where Γrigid, Γin, and Γout are the rigid part, the inflow part and the outflow
part, respectively, of the flow domain’s boundary ∂Ω . The role of the natural
outflow boundary condition on Γout will be discussed in greater detail below. In
this formulation the flow domain may be two- or three-dimensional. This model is
made dimensionless through a scaling transformation with the Reynolds number
Re = UL/ν as the characteristic parameter, where U is the reference velocity
and L the characteristic length, e.g., U ≈ max |vin| and L ≈ diam(Ω).

1.1.1. Variational formulation. The finite-element discretization of the Navier–
Stokes problem (1.4–1.5) is based on its variational formulation. In order to un-
derstand the behavior of this method, we need a certain amount of mathematical
formalism. We will use the following subspaces of the usual Lebesgue function
space L2(Ω) of square-integrable functions on a domain Ω ⊂ Rd (d = 2 or 3):

L2
0(Ω) =

{
ϕ ∈ L2(Ω) : (v, 1) = 0

}
, H1(Ω) =

{
v ∈ L2(Ω), ∇v ∈ L2(Ω)d

}
,

and H1
0 (Γ; Ω) =

{
v ∈ H1(Ω), v|Γ = 0

}
, for some (non-trivial) part Γ of the

boundary ∂Ω, as well as the corresponding inner products

(u, v) =
∫

Ω

uv dx, (∇u,∇v) =
∫

Ω

∇u · ∇v dx,

and norms ‖v‖ = (v, v)1/2 and ‖∇v‖ = (∇v,∇v)1/2 . These are all spaces of
R-valued functions. Spaces of Rd-valued functions v = (v1, . . . , vd) are denoted
by boldface-type, but no distinction is made in the notation of norms and inner
products; thus, H1

0(Γ; Ω) = H1
0 (Γ; Ω)d has norm ‖∇v‖ = (

∑d
i=1 ‖∇vi‖2)1/2, etc.

All the other notation is self-explaining:

∂tu =
∂u

∂t
, ∂iu =

∂u

∂xi
, i = 1, 2, 3, ∂nv = n · ∇v, ∂τ = τ · ∇v,

where n and τ are the normal and tangential unit vectors along the boundary
∂Ω , respectively, and the dot ‘ · ’ indicates the inner product of vector quantities.

The pressure p in the Navier–Stokes equations is uniquely (possibly up to a
constant) determined by the velocity field v . There holds the stability estimate
(‘inf-sup’ stability)

inf
q∈L2(Ω)

{
sup

ϕ∈H1
0(Γ;Ω)

(q,∇ · ϕ)
‖q‖ ‖∇ϕ‖

}
≥ γ0 > 0, (1.7)

where L2(Ω) has to be replaced by L2
0(Ω) in the case Γ = ∂Ω. Finally, we

introduce the bilinear and trilinear forms

a(u, v) := ν(∇u,∇v), b(p, v) := −(p,∇ · v), n(u, v, w) := (u · ∇v, w),
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and the abbreviations

H := H1
0(ΓD; Ω), L := L2(Ω)

(
L := L2

0(Ω) in the case ΓD = ∂Ω
)
,

where ΓD = Γin ∪ Γrigid. With this notation the variational formulation of the
Navier–Stokes problem (1.4,1.5) reads as follows:

Problem 1.1. Find functions v(·, t) ∈ vin + H and p(·, t) ∈ L , where v(·, t) is
continuous on [0, T ] and differentiable on (0, T ], such that v|t=0 = v0, and

(∂tv, ϕ) + a(v, ϕ) + n(v, v, ϕ) + b(p, ϕ) = (f, ϕ) ∀ϕ ∈ H, (1.8)

b(χ, v) = 0 ∀χ ∈ L. (1.9)

The corresponding stationary problem reads

Problem 1.2. Find v ∈ vin + H and p ∈ L , such that

a(v, ϕ) + n(v, v, ϕ) + b(p, ϕ) = (f, ϕ) ∀ϕ ∈ H, (1.10)

b(χ, v) = 0 ∀χ ∈ L. (1.11)

It is well known that, for Γout = ∅, the stationary problem (1.10,1.11) pos-
sesses a unique solution, which is also a classical solutions if the data of the prob-
lems are smooth enough. However, for small viscosity, i.e., large Reynolds number,
these solutions may be unstable. For the non-stationary problem (1.8,1.9) the ex-
istance of a unique solution is known for general data in two dimensions, but in
tree dimensions only for sufficiently small data, e.g., ‖∇v0‖ ≈ ν, or on sufficiently
short intervals of time, 0 ≤ t ≤ T , with T ≈ ν. For more details on the math-
ematical theory of the Navier–Stokes equations the reader may consult, e.g., [32]
and the article Galdi [33] in this volume.

1.2. Discretization of space

For the discretization in space the finite-element Galerkin method is considered.
Let Th be decompositions of Ω into (closed) cells K (triangles or quadrilaterals
in 2d, and tetrahedra or hexahedra in 3d) such that:

• Ω = ∪{K ∈ Th}.
• Any two cells K, K ′ only intersect in common faces, edges or vertices.
• The decomposition Th matches the decomposition ∂Ω = Γin ∪ Γrigid ∪ Γout.

In the following, we will also allow decompositions with a certain limited number
of ‘hanging nodes’ in order to ease local mesh refinement and coarsening. For the
cells K ∈ Th , let hK := diam(K) , ρK the radius of maximal ball contained inK ,
and h := maxK∈Th

hK . In the following, we will assume shape-regularity,

chK ≤ ρK ≤ hK , (1.12)

but quasi-uniformity, maxK∈Th
hK ≤ c minK∈Th

hK , is not required.
The ‘finite-element’ spaces Hh ⊂ H corresponding to the decompositions

Th are defined by

Hh := {vh ∈ H, vh|K ∈ P (K), K ∈ Th},
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Refinement

Coarsening

Figure 1. Refinement and coarsening in quadrilateral meshes
using ‘hanging’ nodes.

where P (K) are certain spaces of elementary functions on the cells K. In the
simplest case, P (K) are full polynom spaces, P (K) = Pr(K), for some de-
gree r ≥ 1 . On general quadrilateral or hexahedral cells, one uses ‘paramet-
ric’ elements, i.e., the local shape functions are constructed by using transfor-
mations ψK : K̂ → K between the ‘physical’ cell K and a fixed ‘reference
unit-cell’ K̂ , i.e., vh|K(ψK(·)) ∈ Pr(K̂). This construction is necessary, in gen-
eral, in order to preserve ‘conformity’ (i.e., global continuity) of the cell-wise
defined functions vh ∈ Hh. For example, the use of bilinear shape functions
ϕ ∈ span{1, x1, x2, x1x2} on a quadrilateral mesh in 2D employs likewise bilin-
ear transformations ψK : K̂ → K.

In a finite-element discretization ‘consistency’ is expressed in terms of local
approximation properties of the shape functions used. For example, in the case of
a second-order approximation using linear or d-linear shape functions, there holds
locally on each cell K:

‖v − Ihv‖K + hK‖∇(v − Ihv)‖K ≤ cIh
2
K‖∇2v‖K . (1.13)

Here, Ihv ∈ Hh is the natural ‘nodal interpolation’ of a function v ∈ H ∩H2(Ω),
i.e., Ihv coincides with v with respect to certain ‘nodal functionals’ (e.g., point
values at vertices, mean values over edges or faces, etc.). The ‘interpolation con-
stant’ is usually of size cI ∼ 0.1−1.

On a finite-element mesh Th of Ω , one defines spaces of ‘discrete’ trial and
test functions, Hh ⊂′ H and Lh ⊂ L. The notation Hh ⊂′ H indicates that
in this discretization the spaces Hh may be ‘non-conforming’, i.e., the discrete
velocities vh are continuous across the interelement boundaries and zero along the
rigid boundaries only in an approximate sense, with the cell-wise defined forms

ah(ϕ, ψ) :=
∑

K∈Th

ν(∇ϕ,∇ψ)K , bh(χ, ϕ) := −
∑

K∈Th

(χ,∇ · ϕ)K ,

with analogous definitions for nh(ϕ, ψ, ξ) and ‖∇ϕ‖h . With this notation the dis-
crete versions of the stationary Navier–Stokes problem (1.10,1.11) read as follows:
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Problem 1.3. Find vh ∈ vin
h + Hh and ph ∈ Lh, such that

ah(vh, ϕh) + nh(vh, vh, ϕh) + bh(ph, ϕh) = (f, ϕh) ∀ ϕh ∈ Hh,

bh(χh, vh) = 0 ∀ χh ∈ Lh,

where vin
h is a suitable approximation of the inflow data vin.

The spaces Hh×Lh are required to satisfy a discrete (uniform) ‘inf-sup’
condition:

inf
qh∈Lh

{
sup

ϕh∈Hh

bh(qh, ϕh)
‖qh‖‖∇ϕh‖h

}
≥ γ > 0. (1.14)

This ensures that the discrete problems possess solutions which are uniquely deter-
mined in Hh×Lh and stable. Under certain smoothness conditions on the solution
and for sufficiently good boundary approximation, there holds the a priori estimate

‖∇(v − vh)‖h + ‖p− ph‖ ≤ chr
{
‖v‖Hr+1 + ‖p‖Hr

}
, (1.15)

if trial functions of degree r ∈ {1, 2} for the velocity and at least of degree r − 1
for the pressure are used.

1.2.1. Examples of Stokes elements. We recall some standard finite-element
spaces, which are frequently used in the spatial discretization of the Navier–Stokes
equations.

(1) The non-conforming ‘rotated’ d-linear Q̃nc
1 /P0 Stokes element: This is the

natural quadrilateral analogue of the well-known triangular non-conforming finite
element of Crouzeix/Raviart (see Girault/Raviart [36]) and is sometimes referred
to as ‘Rannacher/Turek element’ (see Rannacher/Turek [67]). It works well in
two- as well as in three dimensions and is implemented in the FEATFLOW code;
see Turek [72, 74] and URL: http://www.featflow.de. The reference velocity shape
functions are ‘rotated’ d-linear with piecewise constant pressures:

Q̃nc
1 (K) =

{{
q ◦ ψ−1

T : q ∈ P1 + span{x2
1 − x2

2}
}

, for d = 2,{
q ◦ ψ−1

T : q ∈ P1 + span{x2
1 − x2

2, x
2
2 − x2

3}
}

, for d = 3.

The nodal functionals are the mean values over edges (in 2D) or faces (in 3D),
FS(vh) = |S|−1

∫
S

vh do, for the velocity, and the mean value over the cell,
FK(ph) = |K|−1

∫
K ph dx, for the pressure. The corresponding finite-element

spaces are defined by

Hh :=
{

vh ∈ L2(Ω) : vh|K ∈ Qnc
1 (K)d, K ∈ Th, continuous w.r.t.

the nodal functionals FS(·) , and FS(vh) = 0 for S ⊂ Γ

}
,

Lh := {qh ∈ L2(Ω) : qh|K ∈ P0(K), K ∈ Th}.

(2) The conforming d-linear Qc
1/Qc

1 Stokes element with pressure stabilization:
This Stokes element uses continuous isoparametric d-linear shape functions for
both the velocity and the pressure approximations. The nodal values are just the
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function values of the velocity and the pressure at the vertices of the cells, making
this approximation particularly attractive in three dimensions:

Qc
1(K) =

{{
q ◦ ψ−1

T : q ∈ P1 + span{x1x2}
}
, for d = 2,{

q ◦ ψ−1
T : q ∈ P1 + span{x1x2, x1x3, x2x3, x1x2x3}

}
, for d = 3.

�
�
�
�
�

K
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K

The corresponding finite-element spaces are defined by

Hh := {vh ∈ H1
0(Γ; Ω) : vh|K ∈ Qc

1(K)d, K ∈ Th},
Lh := {qh ∈ H1(Ω) : qh|K ∈ Qc

1(K), K ∈ Th},
with the nodal functionals Fa(vh) = vh(a) and Fa(ph) = ph(a) . This combination
of spaces, however, would be unstable, i.e., it would fail to satisfy the inf-sup
condition, if used together with the standard variational formulation of the Navier–
Stokes system. Following Hughes et al. [51], for stabilization one may add certain
least squares terms in the continuity equation (so-called ‘pressure stabilization
method’),

b(χh, vh) + ch(χh, ph) = gh(vh; χh),
where

ch(χh, ph) =
α

ν

∑
K∈Th

h2
K(∇χh,∇ph)K ,

gh(vh; χh) =
α

ν

∑
K∈Th

h2
K(∇χh, f + νΔvh − vh · ∇vh)K .

The correction terms on the right-hand side have the effect that this modifica-
tion (even for higher-order polynomial approximation) is fully consistent, since
the additional terms cancel out if the exact solution {v, p} is inserted. On fairly
general meshes, one obtains a stable and consistent approximation of the Navier–
Stokes problem with optimal-order accuracy. However, from a practical point of
view, the above least-squares stabilization has several short-comings. First, be-
ing used together with the Neumann-type outflow boundary condition (1.6), it



282 R. Rannacher

induces a non-physical numerical boundary layer along the outflow boundary. Sec-
ond, the evaluation of the various terms in the stabilization forms ch(χh, ph) and
gh(vh; χh) is very expensive, particularly in 3D. These problems can be resolved
by using instead the so-called ‘local pressure stabilization’ (LPS) of Becker/Braack
[7]. Here, the stabilization forms are gh = 0 and

ch(χh, ph) := (∇(χh − π2hχh),∇(ph − π2hph)),

where π2h denotes the projection into a space L2h defined on a coarser mesh
T2h. The resulting scheme is of second-order accurate, the evaluation of the system
matrices is cheap and the consistency defect at the outflow boundary is avoided.

(3) Higher-order Stokes elements: One of the main advantages of the finite-ele-
ment Galerkin method is that it provides systematic ways of dealing with complex
geometries and of constructing higher-order approximation. Popular examples are:

• The triangular P#
2 /P dc

1 element with continuous piecewise quadratic velocity
(augmented by a cubic ‘bulb function’) and discontinuous piecewise linear
pressure approximation.

• The quadrilateral Qc
2/Qc

2 element with continuous piecewise biquadratic ve-
locity as well as pressure approximation and pressure stabilization.

• The triangular P c
2/P c

1 or the quadrilateral Qc
2/Qc

1 Taylor-Hood element with
continuous piecewise quadratic or biquadratic velocity and piecewise linear
or bilinear pressure approximation.

All these Stokes elements are inf-sup stable and third-order accurate for the ve-
locity and second-order for the pressure, the errors measured in the respective L2-
norms; see Girault/Raviart [36] and Brezzi/Falk [22]. Practical experience shows
that they yield much better approximations than the lower-order elements de-
scribed above; see John [52] and Braack/Richter [20].

1.2.2. Treating dominant transport. In the case of higher Reynolds number (e.g.,
Re > 500 for the driven cavity, and Re > 50 for pipe flow around a cylinder) the
standard finite-element models become unstable since they essentially use central-
differences-like discretization of the advection term. For curing this, additional
stabilization is needed:

• ‘Upwind techniques’ as common in FDM can also be used for FEM, but
have only first-order accuracy and usually impose too much damping; see
Tobiska/Schieweck [70].

• The Galerkin structure of the FEM is fully respected by the so-called ‘stream-
line diffusion method’ in form of an SUPG (‘Streamline Upwinding Petrov
Galerkin’) method or LSSD (‘Least-Squares Streamline Diffusion’) method.
The idea of streamline diffusion is to introduce artificial diffusion acting only
in the transport direction while maintaining the second-order consistency of
the scheme; see Hughes and Brooks [50].

• A new development for transport stabilization is the use of ‘local-projection
stabilization’ (LPS) in the spirit of a ‘multiscale’ approach, such as already
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described above for pressure stabilization. This has proven to be a very eco-
nomical and sufficiently consistent method; see Braack/Burmann [19].

We describe the LSSD method for the Navier–Stokes system in greater detail. To
this end, we introduce the product Hilbert-spaces V := H×L of pairs u := {v, p}
and ϕ = {ψ, χ} as well as their discrete analogues Vh := Hh ×Lh of pairs
uh := {vh, ph} and ϕh = {ψh, χh}. On these spaces the semi-linear form

A(u)(ϕ) := ah(v, ψ) + nh(v, v, ψ) + bh(p, ψ) − b(χ, v) − (f, ψ)

is defined. Then, the variational formulation of the stationary Navier–Stokes equa-
tions is written in the following compact form:

Problem 1.4. Find u ∈ (vin
h , 0)T + V, such that

A(u)(ϕ) = 0 ∀ϕ ∈ V.

For defining the stabilization, we introduce the differential operator S(u) :=
−νΔ + v · ∇ . Then, with the weighted L2-bilinear form

(v, w)δ :=
∑

K∈Th

δK(v, w)K ,

the LSSD stabilized finite-element approximation reads:

Problem 1.5. Find uh ∈ (vin, 0)T + Vh, such that

A(uh)(ϕh) + (S(uh)uh − f, S(uh)ϕh)δ = 0 ∀ϕh ∈ Vh.

The stabilization form contains the terms∑
K∈Th

δK(∇ph,∇χh)K ,
∑

K∈Th

δK(vh·∇vh, vh·∇ψh)K ,
∑

K∈Th

δK(∇·vh,∇·ψh)K ,

where the first term stabilizes the pressure-velocity coupling for the conforming
Qc

1/Qc
1 Stokes element, the second term stabilizes the transport operator, and

the third term enhances mass conservation. The other terms introduced in the
stabilization are correction terms which guarantee second-order consistency for the
stabilized scheme. Practical experience and analysis suggest the following choice
of the stabilization parameters:

δK = α
( ν

h2
K

+
β|vh|K;∞

hK

)−1

,

with values α ≈ 1
12 and β ≈ 1

6 . The terms −νΔvh as well as −νΔψh in the sta-
bilization are usually dropped, since they vanish or almost vanish on the low-order
elements considered. Theoretical analysis shows that this kind of Galerkin stabi-
lization actually leads to an improvement over the standard upwinding scheme.
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1.3. The stationary algebraic problems

The discrete Navier–Stokes problem including simultaneously pressure and stream-
line diffusion stabilization has to be converted into an algebraic system which
can be solved on a computer. To this end, we choose appropriate local ‘nodal
bases’ {ψi

h, i = 1, . . . , Nv} of the ‘velocity space’ Hh, and {χi
h, i = 1, . . . , Np}

of the ‘pressure space’ Lh, and expand the unknown solution {vh, ph} in the
form vh − vin

h =
∑Nv

j=1 xjψ
j
h and ph =

∑Np

j=1 yjχ
j
h. Accordingly, we introduce the

matrices

A =
(
ah(ψj

h, ψi
h)
)Nv

i,j=1
, B =

(
bh(χj

h, ψi
h)
)Nv,Np

i,j=1
,

N(x) =
(
nh(vh, ψj

h, ψi
h) + nh(ψj

h, vin
h , ψi

h)
)Nv

i,j=1
,

S(x) =
(
(−νΔψj

h + vh · ∇ψj
h,−νΔψi

h + vh · ∇ψi
h)δ + (∇ · ψj

h,∇ · ψi
h)δ

)Nv

i,j=1
,

T (x) =
(
(∇χj

h,−νΔψi
h + vh · ∇ψi

h)δ

)Nv ,Np

i,j=1
, C =

(
(∇χj

h,∇χi
h)δ

)Np

i,j=1
,

and vectors

b =
(
(f, ψi

h) − a(vin
h , ψi

h) − nh(vin
h , vin

h , ψi
h) + (f, vh · ∇ψi

h)δ

)Nv

i=1
,

c =
(
(f,∇χi

h)δ

)Np

i=1
.

Notice that the non-homogeneous inflow data vh|Γin = vin
h is implicitly incorpo-

rated into the system, and the stabilization only acts on velocity basis functions
corresponding to interior nodes. With this notation the original variational formu-
lation can equivalently be written in form of an algebraic system for the vectors
x ∈ R

Nv and y ∈ R
Np of expansion coefficients:[
A + N(x) + S(x) B + T (x)
−BT + T (x)T C

] [
x
y

]
=
[

b
c

]
. (1.16)

This system has essentially the features of a saddle-point problem (since C is
small of size h2) and is generically non-symmetric. This poses a series of problems
for its iterative solution.

1.4. Discretization of time

We now consider the non-stationary Navier–Stokes system (Problem 1.1)

(∂tv, ϕ) + a(v, ϕ) + n(v, v, ϕ) + b(p, ϕ) = (f, ϕ) ∀ ϕ ∈ H,

b(χ, v) = 0 ∀ χ ∈ L,
(1.17)

where it is implicitly assumed that v as a function of time is continuous on [0,∞)
and differentiable on (0,∞). The choice of the function spaces H ⊂ H1(Ω) and
L ⊂ L2(Ω) depends again on the specific boundary conditions chosen for the
problem to be solved. Due to the incompressibility constraint the non-stationary
Navier–Stokes system has the character of a ‘differential-algebraic equation’ (in
short ‘DAE’) of ‘index two’, in the language of ODE theory. This requires an
implicit treatment of the pressure within the time-stepping process, while the
other flow quantities may, in principle, be treated more explicitly.
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1.4.1. The ‘Rothe Method’. In the ‘Rothe method’, at first, the time variable is
discretized by one of the common time-differencing schemes. For example, the
backward Euler scheme leads to a sequence of stationary Navier–Stokes-like prob-
lems, starting from the given initial value v0,

k−1
n (vn−vn−1, ϕ) + a(vn, ϕ) + n(vn, vn, ϕ) + b(pn, ϕ) = (fn, ϕ),

b(χ, vn) = 0,
(1.18)

for all {ϕ, χ} ∈ H × L , where kn = tn − tn−1 is the time step. Each of these
problems is then solved by a spatial discretization method as described in the
preceding section. This provides the flexibility to vary the spatial discretization,
i.e., the mesh or the type of trial functions in the finite-element method, during
the time stepping process. In the classical Rothe method the time-discretization
scheme is kept fixed and only the size of the time step may change.

1.4.2. The ‘Method of Lines’. The more traditional approach to solving time-
dependent problems is the ‘method of lines’. At first, the spatial variable is discrete,
e.g., by a finite-element method as described in the preceding section, leading to
a DAE system of the form[

M 0
0 0

] [
ẋ(t)
ẏ(t)

]
+
[

A + N(x(t)) B
−BT C

] [
x(t)
y(t)

]
=
[

b(t)
c(t)

]
,

for t ≥ 0, with the initial value x(0) = x0 defined by u0
h − uin

h (0) =
∑Nv

i=1 x0
i ψ

i
h.

The mass matrix M , the stiffness matrix A and the gradient matrix B are as
defined above. The matrix C and the right-hand side c come from the pres-
sure stabilization when using the conforming Qc

1/Qc
1 Stokes element. Further, to

simplify notation, the matrices N(·) and B as well as the vectors b and c are
thought to contain also all further terms arising from the transport stabilization.
This DAE system is now discretized with respect to time. Let k denote the time-
step size. Frequently used schemes are the simple ‘one-step-θ schemes’, in which
the time step tn−1 → tn reads[

M + θkAn θkB
−BT C

] [
xn

yn

]
=
[

[M − (1−θ)kAn−1]xn−1 + θkbn + (1−θ)kbn−1

cn

]
,

where xn ≈ x(tn) and An := A(xn). Special cases are the ‘forward Euler scheme’
for θ = 0 (first-order explicit), the most popular ‘Crank–Nicolson scheme’ for
θ = 1/2 (second-order implicit, A-stable), and the the ‘backward Euler scheme’
for θ = 1 (first-order implicit, strongly A-stable). These properties can be seen
by applying the schemes to the scalar model equation ẋ = λx. In this context it
is related to a rational approximation of the exponential of the form

Rθ(−λ) =
1 − (θ − 1

2 )λ
1 + θλ

= e−λ + O
(
(θ − 1

2 )|λ|2 + |λ|3
)
, |λ| ≤ 1.

The most robust implicit Euler scheme is very dissipative and therefore not suitable
for the time-accurate computation of non-stationary flow. In contrast to that, the
Crank–Nicolson scheme has only very little dissipation but occasionally suffers
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from instabilities caused by the possible occurrence of rough perturbations in the
data which are not damped out due to the only weak stability properties of this
scheme (not strongly A-stable). This defect can in principle be cured by an adaptive
step-size selection but this may enforce the use of an unreasonably small time step,
thereby increasing the computational cost. Alternative schemes of higher order
are based on the (diagonally) implicit Runge–Kutta formulas or the backward
differencing multi-step formulas, both being well known from the ODE literature.
These schemes, however, have not yet found wide applications in practical flow
computations, mainly because of their higher complexity and storage requirements
compared with the simple Crank–Nicolson scheme. Another alternative to the
Crank–Nicolson scheme is the so-called ‘fractional-step-θ scheme’.

1.4.3. The Fractional-Step-θ Scheme. Each time step is split into three substeps
tn−1 → tn−1+θ → tn−θ → tn, which read[

M +αθkAn−1+θ θkB
−BT C

] [
xn−1+θ

yn−1+θ

]
=
[

[M−βθkAn−1]xn−1 + θkbn−1

cn−1+θ

]
,[

M +βθ′kAn−θ θ′kByn−θ

−BT C

] [
xn−θ

yn−θ

]
=
[

[M−αθ′kAn−1+θ]xn−1+θ + θ′kbn−θ

cn−θ

]
,[

M +αθkAn θkB
−BT C

] [
xn

yn

]
=
[

[M−βθkAn−θ]xn−θ + θkbn−θ
h

cn

]
.

Here, θ = 1−1/
√

2 = 0.292893 . . ., θ′ = 1−2θ, α ∈ (1/2, 1], and β = 1−α, in
order to ensure second-order accuracy, and strong A-stability. In the context of
the scalar model equation this scheme reduces to a rational approximation of the
exponential of the form

Rθ(−λ) =
(1 − αθ′λ)(1 − βθλ)2

(1 + αθλ)2(1 + βθ′λ)
= e−λ + O(|λ|3), |λ| ≤ 1.

1.4.4. Splitting and projection schemes. The fractional-step-θ scheme was origi-
nally introduced as an operator-splitting scheme in order to separate the two main
difficulties in solving the problem, namely the nonlinearity causing asymmetry
and the incompressibility constraint causing indefiniteness; see the survey article
Glowinski [37] and the literature cited therein. However, since the efficient numeri-
cal handling of this kind of indefinite nonlinear problems is not much of a problem
anymore today, we will not discuss this variant of the fractional-step-θ scheme. We
rather briefly introduce the so-called ‘projection methods’ which are particularly
efficient for solving non-stationary problems in certain situations. The ‘classical’
Chorin projection method has originally been designed in order to overcome the
problem with the incompressibility constraint ∇ · v = 0 . The continuity equation
is decoupled from the momentum equation through an iterative process (again ‘op-
erator splitting’). There are various schemes of this kind in the literature referred
to as ‘projection method’, ‘quasi-compressibility method’, ‘SIMPLE method’, etc.
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All these methods are based on the same principle idea. The continuity equation
∇· v = 0 is supplemented by certain stabilizing terms involving the pressure, e.g.,

(1) ∇ · v + εp = 0,

(2) ∇ · v − εΔp = 0, ∂np|∂Ω = 0,

(3) ∇ · v + ε∂tp = 0, p|t=0 = 0,

(4) ∇ · v − ε∂tΔp = 0, ∂np|∂Ω = 0, p|t=0 = 0,

where the small parameter ε is usually taken as ε ≈ hα , or ε ≈ kβ , depending on
the purpose of the procedure. For example, (1) corresponds to the classical ‘penalty
method’, and (2) is the simplest form of the ‘least squares pressure stabilization’
scheme described above, with ε ≈ h2 in both cases. Further, (3) corresponds to
the ‘quasi-compressibility method’ with ε ≈ k , while (4) occurs in the context of
Van Kan’s second-order projection method with ε ≈ k2 . These approaches are
closely related to the Chorin projection method. Since this method used to be
particularly attractive for computing non-stationary incompressible flow, we will
discuss it in some greater detail. For a comprehensive discussion of such types of
schemes, we refer to the book Gresho/Sani [38].

For simplicity consider the case of pure homogeneous Dirichlet boundary
conditions, v|∂Ω = 0. Then, the projection method reads as follows:

Chorin Projection Method: For an admissible initial value v0, solve for n ≥ 1:
(i) Implicit ‘Burgers step’ for ṽn ∈ H:

k−1(ṽn − vn−1) − νΔṽn + ṽn · ∇ṽn = fn, in Ω. (1.19)

(ii) ‘Projection step’ for vn := ṽn + k∇p̃n, where p̃n ∈ H1(Ω) is determined by

Δp̃n = k−1∇ · ṽn, in Ω, ∂np̃n
|∂Ω = 0. (1.20)

Substep (ii) amounts to a Poisson equation for p̃n with homogeneous Neumann
boundary conditions. It is this non-physical boundary condition, ∂np̃n

|∂Ω = 0,
which has caused a lot of controversial discussion about the value of the projection
method. Nevertheless, the method has proven to work well for representing the
velocity field in many flow problems of physical interest. It is very economical as
it requires in each time step only the solution of a (nonlinear) advection-diffusion
system and a scalar Neumann problem.

For the projection methods rigorous convergence results are available showing
that the quantities p̃n are indeed reasonable approximations to the pressure p(tn) .
This may be understood by re-interpreting the projection method in the context of
‘pressure stabilization’. To this end the quantity vn−1 = ṽn−1−k∇p̃n−1 is inserted
into the momentum equation yielding

k−1(ṽn − ṽn−1) − νΔṽn + (ṽn · ∇)ṽn + ∇p̃n−1 = fn, ṽn
|∂Ω = 0, (1.21)

∇ · ṽn − kΔp̃n = 0, ∂np̃n
|∂Ω = 0. (1.22)

This appears like an approximation of the Navier–Stokes equations involving a
first-order (in time) ‘pressure stabilization’ term, i.e., the projection method can
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be viewed as a pressure stabilization method with a global stabilization parameter
ε = k , and an explicit treatment of the pressure term. As a byproduct, this also
explains the success of the not inf-sup-stable Qc

1/Qc
1 Stokes element in the context

of non-stationary computations. The pressure error is actually confined to a small
boundary strip of width δ ≈

√
νk and decays exponentially into the interior of Ω.

The projection approach can be extended to formally higher order. The most
popular example is the so-called ‘Van Kan method’:

Van Kan Method: For admissible starting values v0 and p0 compute, for n ≥ 1
and some α ≥ 1

2 :
(i) Second-order implicit ‘Burgers step’ for ṽn ∈ H:

k−1(ṽn − vn−1) − 1
2νΔ(ṽn + vn−1) + ṽn · ∇ṽn + ∇pn−1 = fn−1/2. (1.23)

(ii) Pressure Poisson problem for qn ∈ H1(Ω):

Δqn = α−1k−1∇ · ṽn, in Ω, qn
|∂Ω = 0. (1.24)

(iii) Pressure and velocity update:

vn = ṽn − αk∇qn, pn = pn−1 + qn, in Ω. (1.25)

This scheme can also be interpreted in the context of pressure stabilization meth-
ods using a stabilization of the form

∇ · v − αk2∂tΔp = 0, in Ω, ∂np|∂Ω = 0, (1.26)

i.e., this method appears like a quasi-compressibility method of the form (4) with
ε ≈ k2.

1.5. The quasi-stationary algebraic problems

As for the stationary Navier–Stokes problem the space-time discrete variational
problems (1.18) are converted into algebraic systems. We continue using the nota-
tion from above for the nodal bases {ψi

h, i = 1, . . . , Nv} of the velocity space Hh

and {χi
h, i = 1, . . . , Np} of the pressure space Lh, and the associated system ma-

trices A, B, N(x), S(x), T (x) , and C . The corresponding velocity ‘mass matrix’
is

M :=
(
(ψi

h, ψj
h)
)Nv

i,j=1
.

Then, the algebraic equations for the nodal vectors x ∈ RNv and y ∈ RNp read[
M + kA + kN(x) + kS(x) kB + kT (x)

−kBT + kT (x)T C

] [
x
y

]
=
[

b
c

]
. (1.27)

Special multigrid methods for solving this particular problem efficiently are de-
scribed in the article Turek [74] in this volume.
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2. Numerical simulation of pipe flow

A typical setting of flow in hemodynamics is that of flow through a pipe or through
a system of pipes. Usually one is only interested in the flow properties in a smaller
section of the global system, for example in bypass simulation. Therefore, the
global flow region has to be truncated to a smaller domain in order to limit the
computational work or since the characteristics are not accessible outside that
region. This requires the use of artificial boundary conditions at the cut boundaries.
This section is concerned with the definition of such conditions and the theoretical
as well as practical difficulties going along with them. The material presented in
this section is mainly based on Heywood et al. [48]

2.1. Variational ‘open’ boundary conditions

We consider a prototypical flow configuration, a bifurcating pipe in two dimensions,
as shown in Figure 2. The underlying mathematical model is again the system of

Figure 2. Configuration of flow through a bifurcating pipe.

the incompressible Navier–Stokes equations with the natural no-slip boundary
conditions along the rigid walls Γrigid ,

∂tv − νΔv + v · ∇v + ∇p = 0 in Ω,

∇ · v = 0 in Ω,

v = 0 on Γrigid.

(2.1)

The question is that of how to deal with the ‘open’ boundaries Γout and Γin =
Γ(1)

in ∪ Γ(2)
in , which originate from truncating a larger flow region. In this case, we

may assume that these cut boundaries are straight and form right angles with the
rigid walls. Other situations require certain modifications in the following argu-
ment. Depending on the physical situation, which is to be modeled, the following
boundary conditions may be used:

• flow driven by prescribed inflow profile:

v = vin on Γin,

• flow driven by prescribed mean flux:∫
Γin

v · n do = F in,

• flow driven by prescribed pressure profile:

p = pin on Γin,
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• flow driven by prescribed mean pressure drop:∫
Γout

p do −
∫

Γin

p do = P.

All these boundary conditions contain flow quantities such as velocity profiles,
fluxes, mean pressure drops, etc., which need to be prescribed in a particular situ-
ation. Hence its relevance depends on whether these quantities are available from
measurements or can actively be enforced. In this view, prescribing mean quanti-
ties such as fluxes and mean pressure drops seems more natural (and physically
meaningful) than prescribing velocity or pressure profiles.

If nothing particular is known about the flow behavior outside the compu-
tational domain, it is most natural to assume that the inflow and outflow pipe
segments extend as straight pipes such that the main flow behaves like parallel
pipe flow (Poiseuille flow) beyond the artificial boundaries. A further requirement
is that of as little upstream effect as possible. We note that the Poiseuille flow
satisfies several types of boundary conditions:

• Dirichlet condition: v|Γout = vPoiseuille,
• Neumann condition: ∂nv|Γout = 0, (v × n)|Γout = 0,
• Periodicity condition: v|Γin = v|Γout ,
• Free outstream condition: (ν∂nv − pn)|Γout = 0,

and mixtures of these. Some of these conditions are essential and have to be
incorporated into the solution space H , and others are natural and result from
the variation principle.

We prefer the most simple outflow boundary condition, called the ‘(varia-
tional) do-nothing (or free-stream) condition’, which seems most natural since it
does not prescribe anything at Γout , i.e., it uses the solution space

H := {v ∈ H1(Ω)d, v = 0 on Γrigid ∪ Γin},
in the variational formulation of problem (2.1).

Problem 2.1. Determine v(·, t) ∈ vin + H, p(·, t) ∈ L , such that v(0) = v0 and
(∂tv, ψ) + a(v, ψ) + b(v, v, ψ) + b(p, ψ) = 0 ∀ψ ∈ H,

b(χ, v) = 0 ∀χ ∈ L.
(2.2)

Assuming the existence of a sufficiently smooth solution, the variation prin-
ciple

0 = ν(∇v∇ϕ) + (v · ∇v, ϕ) − (p,∇ · ϕ) = (−νΔv + v · ∇v + ∇p, ϕ)

+ (ν∂nv − pn, ϕ)Γout ∀ϕ ∈ H

implies the natural outflow boundary condition

ν∂nvn − p = 0, ν∂nvτ = 0, on Γout. (2.3)

Further using the incompressibility constraint, we have

0 =
∫

Γout

{ν∂nvn − p} do =
∫

Γout

{−ν(n ×∇)vn − p} do = −
∫

Γout

p do,
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i.e., the ‘do-nothing’ outflow boundary condition implies as hidden condition that
the pressure has mean value zero at the outflow boundary,∫

Γout

p do = 0. (2.4)

The performance of the ‘do-nothing (free-stream)’ outflow boundary condition is
demonstrated in Figure 3 by showing pressure isolines for unsteady flow around an
inclined ellipse at Re = 500 in a channel compared to the result in another channel
of half its size. Notice that the stream of vortices seems to be almost undisturbed
by the ‘do-nothing’ outflow boundary condition, even though the tangential flow
is not zero. In this case the commonly used ‘zero-flux’ boundary condition,

∂nv|Γout = 0, (v × n)|Γout = 0, (2.5)

is not satisfied.

Figure 3. Vorticity patterns of channel flow around an inclined
ellipse at Re = 500 compared to the result in another channel of
half its size.

Next, we consider the case that the inflow velocity vin is not known but rather
a mean pressure drop P between inflow and outflow boundary is prescribed. This
can be modeled by using the solution space

H := {v ∈ H1(Ω)d, v = 0 on Γrigid}
in the variational formulation of problem (2.1).

Problem 2.2. Determine v(·, t) ∈ vin + H, p(·, t) ∈ L , such that v(0) = v0 and

(∂tv, ψ) + ν(∇v,∇ψ) + (v · ∇v, ψ) − (p,∇ · ψ) = −(P, n · ψ)Γout ∀ψ ∈ H,

(χ,∇ · v) = 0 ∀χ ∈ L.
(2.6)

This formulation contains the following natural boundary conditions:
ν∂nv − pn = 0 on Γin, ν∂nv − pn = Pn on Γout,

|Γin|−1

∫
Γin

p do − |Γout|−1

∫
Γout

p do = P.
(2.7)
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2.2. Problems with the ‘do-nothing’ boundary condition

The naive use of the ‘do-nothing’ outflow boundary condition can result in unde-
sirable behavior of the computed flow. In the following, we discuss some of these
problems.

(i) Problem of multiple outlets. The use of the ‘do-nothing’ boundary condition
at several outlets Γi ⊂ ∂Ω results in boundary conditions

ν∂nv − pn = Pin on Γi, |Γi|−1

∫
Γi

p do = Pi.

The question is that of the appropriate choice of the mean pressures Pi. Figure 4
shows the effect of the ‘do-nothing’ outflow boundary condition for flow through
bifurcating channels of different lengths for Re = 20 .

Figure 4. Effect of the ‘do-nothing’ outflow boundary condition
for flow through a bifurcating channel.

(ii) Modifications of the variational formulation.

a) In order to preserve energy conservation in the case of velocity approximation,
which is not exactly divergence-free, a common remedy is the use of a symmetrized
transport formulation

(v · ∇v, ϕ) → 1
2 (v · ∇v, ϕ) − 1

2 (v · ∇ϕ, v).

This change has no effect in the case of pure Dirichlet boundary conditions. But
using the ‘do-nothing’ approach this modification leads to the outflow condition

ν∂nv − pn − 1
2 |vn|2n = 0, on Γout, (2.8)

which is not satisfied by the Poiseuille flow and consequently induces an undesirable
flow behavior across the outflow boundary.

b) Recalling the physical origin of the Navier–Stokes equations one is motivated
to use the strain tensor formulation

ν(∇v,∇ϕ) → ν(D[v], D[ϕ]), D[v] = 1
2 (∇v + ∇vT ),

for the viscous term. Again this change has no effect in the case of pure Dirichlet
boundary conditions. But using the ‘do-nothing’ approach this modification leads
to the outflow boundary condition

n·D[v] − pn = 0, on Γout, (2.9)

which is not satisfied by the Poiseuille flow, either, and induces an undesirable flow
behavior across the outflow boundary.
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Figure 5 shows the effect of using the ‘do-nothing’ concept for outflow pre-
scription together with the symmetrized transport formulations and the defor-
mation tensor formulation. In both cases non-physical behavior is observed, with
streamlines bending either inwards or outwards at the outflow boundary. For com-
parison the correct streamline pattern of the Poiseuille flow is shown.

Figure 5. Effect of the ‘do-nothing’ outflow boundary condition
in connection with the standard variational formulation (top), the
symmetrized transport formulations (middle), and the deforma-
tion tensor formulation (bottom).

(iii) Further problems. The ‘do-nothing’ outflow boundary condition also works
in the non-stationary case, e.g., in simulating von Karman vortex shedding, as
demonstrated in Figure 3. However problems may occur in the following cases:

• acting non-zero forcing f , such as in heat-driven flow,
• if outflow boundary and rigid boundary do not form a right angle,
• if boundaries are moving by enforcement or in the context of fluid-structure

interaction.
All these situations share the property that, for physical reasons, the flow cannot
be expected to be essentially parallel across the outflow boundary.

2.3. The problem of well-posedness

Finally, we want to address the question of well-posedness of the variational for-
mulation involving the ‘do-nothing’ outflow boundary condition. We will see that
there are problems even in the case of stationary plain pipe flow.
(i) First, we consider the Stokes equations with the variational formulation

ν(∇v,∇ψ) − (p,∇ · ψ) − (χ,∇ · v) = −
n∑

i=1

(qi, v · n)Γi , (2.10)

for all {ψ, χ} ∈ H×L . Taking ψ := v and χ := 0 , we obtain the ‘energy relation’

ν‖∇v‖2 = −
n∑

i=1

(Pi, v · n)Γi . (2.11)
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From this, we easily conclude existence, uniqueness and stability of solutions by
standard arguments; see Heywood et al. [48].
(ii) Next, we turn to the Navier–Stokes equations with the variational formulation

ν(∇v,∇ψ) + (v · ∇v, ψ) − (p,∇ · ψ) − (χ,∇ · v) = −
n∑

i=1

(Pi, v · n)Γi , (2.12)

for all {ψ, χ} ∈ H×L . Again taking ψ := v and χ := 0 , we obtain the nonlinear
‘energy relation’

ν‖∇v‖2 = −(v · ∇v, v) −
n∑

i=1

(Pi, v · n)Γi =
n∑

i=1

∫
Γi

(1
2 |v|

2 − Pi)v · n do. (2.13)

From this, we conclude existence, uniqueness and stability of solutions for suffi-
ciently small data |Pi| � 1 in a small H-ball

Bρ := {w ∈ H, ‖∇w‖ < ρ}.
We remark that in the case of pure Dirichlet boundary conditions, we can show
an a priori bound of the solution in terms of data,

‖∇v‖ ≤ C(ν, vin, f). (2.14)

This in turn leads us to the result that the problem is well posed for sufficiently
small data. Unfortunately, in the case of open outlets such an a priori bound is
not known. This is reflected by the fact that not even the global uniqueness of the
zero-solution has been proven yet,

ν(∇v,∇ψ) + (v · ∇v, ψ) = 0 ∀ψ ∈ H ⇒ v = 0 ?

However this possible non-uniqueness could not be confirmed by numerical exper-
iments.

2.4. The closure problem

The simulation of the flow through a section of a pipe or a pipe system requires
the prescription of boundary conditions at the artificial cut boundaries. As seen
above, these may be given in terms of mean fluxes or mean pressure drops. The
determination of such conditions is related to a ‘closure problem’ since they are
supposed to model the global behavior of the flow in the whole system and its
interaction with the local flow behavior in the pipe section considered.

Closure by global lower-dimensional models. One attractive approach to solve the
closure problem is the embedding of the full 3D model of a portion of a pipe
into a lower-dimensional, e.g., 1D model, of the closed blood flow circuit. For the
systematic development of this method, we refer to the series of papers Formaggia
et al. [31], Quarteroni et al. [63], Quarteroni/Veneziani [64], Milisic/Quarteroni
[58], and Fernandez et al. [30]. This approach allows one to model the qualitative
behavior of the system, but does not lead to quantitative information, which would
be needed, for instance, for assisting the operation of a particular patient.
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Closure by measurement-based model calibration. An alternative approach to the
closure problem uses model calibration based on local flow measurements. Suppose
that the goal of the simulation is to predict the mean shear stress at the middle
part Γ ⊂ Γ1 of the bottom wall in Figure 6, which is relevant, for instance, in
planing of bypass operations,

E(u) :=
∫

Γ

n · σ · ex do.

Γout

Γ0

Γ

Γin

in
(1)

(2)

S

S S

1

2 3

Γ1

Figure 6. Configuration of the bypass setting.

In this case the mathematical model reads in strong form as follows:
− νΔv + v · ∇v + ∇p = 0, ∇ · v = 0 in Ω,

v = v̂ on Γin, v = 0 on Γ0 ∪ Γ1,

ν∂nv − p · n = q1 · n on Γ(1)
in , ν∂nv − p · n = q2 · n on Γ(2)

in ,

ν∂nv − p · n = 0 on Γout.

(2.15)

The unknown pressure mean values qi at the openings Γ(i)
in are to be determined

by parameter estimation from given measurements, for example, of the mean fluxes

Cj(u) :=
∫

Sj

v · n do,

along certain interior cross sections of the flow domain or other measurable local
flow quantities. This approach will be described in the context of general flow
optimization problems in the next section; for details see Vexler [75].

3. Mesh adaptation and model calibration

This section introduces into methods for mesh adaptivity and model calibration
in numerical flow simulation. The emphasis is on viscous incompressible flows
governed by the Navier–Stokes equations. The finite-element Galerkin method
provides the basis for a common rigorous a posteriori error analysis.

A large part of the existing work on a posteriori error analysis deals with error
estimation in global norms such as the ‘energy norm’ involving usually unknown
stability constants. However, in most CFD applications, the error in a global norm
does not provide useful bounds for the errors in the quantities of real physical
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interest. Such ‘goal-oriented’ error bounds can be derived by duality arguments
borrowed from optimal control theory. These a posteriori error estimates provide
the basis of a feedback process for successively constructing economical meshes and
corresponding error bounds tailored to the particular goal of the computation. This
approach, called the ‘dual weighted residual method’ (DWR method), is developed
within an abstract functional analytic setting, thus providing the general guideline
for applications to various kinds of flow models including also aspects of flow
control and hydrodynamic stability.

The ‘residual-based’ error indicators largely exploit the structure of the un-
derlying differential equations. This requires an appropriate discretization which
inherits as much as possible of the structure and properties of the continuous
model. Here, the method of choice is the ‘continuous’ finite-element Galerkin
method (cG-FEM) which is particularly suited for approximating models governed
by viscous terms, such as the Navier–Stokes equations for moderate Reynolds
numbers. For inviscid models or those with dominant transport, such as the Euler
equations, the ‘discontinuous’ finite-element Galerkin method (dG-FEM) shares
most of the features of the traditional finite volume method (FVM) but is poten-
tially more flexible with respect to mesh geometry and order of approximation.
Both methods are based on variational formulations of the differential equations
to be solved and allow for the rigorous derivation of a priori as well as a posteriori
error estimates.

3.1. Principles of a posteriori error estimation

We begin with a brief discussion of the philosophy underlying the approaches to
adaptivity which will be the subject of the following discussion. Let the goal of
a simulation be the accurate and efficient computation of the value of a func-
tional J(u) , the ‘target quantity’, with accuracy TOL from the solution u of a
continuous model

A(u) = F, (3.1)

by using a discrete model Ah(uh) = Fh of dimension N . The evaluation of the
solution by the output functional J(·) represents what we exactly want to know
of a solution. This may be, for instance, the stress or pressure near a critical point,
certain local mean values of species concentrations, the drag and lift coefficient of
a body in a viscous liquid, etc. Then, the goal of adaptivity is the ‘optimal’ use
of computing resources to achieve either minimal work for prescribed accuracy, or
maximal accuracy for prescribed work. These goals are approached by automatic
mesh adaptation on the basis of local ‘error indicators’ taken from the computed
solution uh on the current mesh Th = {K} . Examples of such error indicators
are:

• error indicators based on pure ‘regularity’ information,

ηreg
K := hK‖D2

huh‖K ,

where D2
huh are certain second-order difference quotients,
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• error indicators based on local gradient recovery such as the well-known
‘Zienkiewicz–Zhu indicator’ (see Ainsworth/Oden [1]),

ηZZ
K := ‖Mh(∇uh) −∇uh‖K ,

where Mh(∇uh) is obtained by locally averaging function values of ∇uh ,
• error indicators based on ‘residual’ information,

ηres
K := hK‖R(uh)‖K ,

where R(uh)|K are certain ‘residuals’ of the computed solution.

According to the size of the error indicators the current mesh may be locally re-
fined or coarsened, or a full remeshing may be performed. Although remeshing
is very popular in CFD applications since it allows to use commercial mesh gen-
erators and to maintain certain mesh qualities, it also has some disadvantages.
The most severe one is that remeshing destroys the regular hierarchical structure
of successively refined meshes which makes the use of efficient multigrid solvers
difficult. Therefore, all examples presented in this article employ hierarchical mesh
adaptation, which allows for optimally efficient geometrical multigrid solution; see
Becker/Braack [6].

The traditional approach to adaptivity aims at estimating the error with
respect to the generic ‘energy norm’ of the problem in terms of the computable
‘residual’ R(uh) = ‘F −A(uh)’, which is well defined in the context of a finite-
element Galerkin method,

‖u − uh‖E ≤ c
( ∑

K∈Th

h2
Kρ2

K

)1/2

, (3.2)

where ρK := ‖R(uh)‖K , and the sum extends over all cells of the mesh Th . For
references see the survey articles by Ainsworth/Oden [1] and Verfürth [76]. This
approach seems rather generic as it is directly based on the variational formulation
of the problem and allows to exploit its inherent coercivity properties. However,
in most applications the error in the energy norm does not provide a useful bound
on the error in the quantities of real physical interest. A more versatile method
for a posteriori error estimation with respect to relevant error measures such as
point values, line averages, etc., is obtained by using duality arguments as com-
mon in the a priori error analysis of finite-element methods. This approach has
been systematically developed by C. Johnson and his co-workers [54, 29], and was
then extended by the author and his group to a practical feedback method for
mesh optimization termed ‘dual weighted residual method’ (DWR method); see
Becker/Rannacher [12, 13, 14]. A general introduction to the DWR method and
a variety of applications can be found in the survey article Becker/Rannacher [14]
and the book Bangerth/Rannacher [2]. Variants of this approach have also been
developed in the groups of A.T. Patera [57, 62], and J.T. Oden [60, 61].
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The DWR method yields weighted a posteriori error bounds with respect to
prescribed ‘output functionals’ J(u) of the solution, of the form

|J(u) − J(uh)| ≤
∑

K∈Th

ρKωK , (3.3)

where the weights ωK are obtained by approximately solving a linearized dual
problem, A′(u)∗z = J . The dual solution z may be viewed as a generalized Green
function with respect to the output functional J(·) , and accordingly the weight ω
describes the effect of variations of the residual R(uh) on the error J(u)−J(uh),
as consequence of mesh adaptation. This accomplishes control of

• error propagation in space (global pollution effect),
• interaction of various physical error sources (cross sensitivities).

In practice it is mostly impossible to determine the complex error interaction by
analytical means, it rather has to be detected by computation. This automatically
leads to a feed-back process in which error estimation and mesh adaptation go
hand-in-hand leading to economical discretization for computing the quantities of
interest.

3.2. The dual weighted residual (DWR) method

The theoretical basis of the DWR method is laid within the abstract framework
of Galerkin approximation of variational equations in Hilbert space. The following
presentation is adopted from Becker/Rannacher [14].

3.2.1. Approximation of stationary points. Let X be a Hilbert space and L(·) a
differentiable functional on X . Its first-, second-, and third-order derivatives at
some x ∈ X are denoted by L′(x)(·) , L′′(x)(·, ·) , and L′′′(x)(·, ·, ·) , respectively.
Suppose that x ∈ X is a stationary point of L(·), i.e.,

L′(x)(y) = 0 ∀y ∈ X. (3.4)

This equation is approximately solved by a Galerkin method using finite-dimen-
sional subspaces Xh ⊂ X , parametrized by h ∈ R+ . We seek xh ∈ Xh satisfying

L′(xh)(yh) = 0 ∀ yh ∈ Xh. (3.5)

For estimating the difference L(x) − L(xh) , we start from the trivial identity

L(x) − L(xh) =
∫ 1

0

L′(xh + se)(e) ds,

where e := x − xh . Approximating the integral by the trapezoidal rule yields

L(x) − L(xh) = 1
2

{
L′(xh)(e) + L′(x)(e)

}
+ 1

2

∫ 1

0

L′′′(xh + se)(e, e, e) s(s− 1) ds.

Thus, observing (3.4) and (3.5), we obtain the following result.
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Proposition 3.1. For any solutions of the problems (3.4) and (3.5), we have the a
posteriori error representation

L(x) − L(xh) = 1
2L′(xh)(x − yh) + Rh, (3.6)

for arbitrary yh ∈ Xh. The remainder term Rh is cubic in the error e,

Rh := 1
2

∫ 1

0

L′′′(xh + se)(e, e, e) s(s − 1) ds.

Remark 3.2. In view of the possible non-uniqueness of the solutions x and xh ,
the formulated goal of estimating the error quantity L(x) − L(xh) needs some
explanation. The error representation (3.6) does not explicitly require that the
approximation xh is close to x . However, since it contains a remainder term in
which the difference x−xh occurs, the result is useful only under the assumption
that the convergence xh → x , as h → 0 , is known by a priori arguments.

3.2.2. Approximation of variational equations. Let A(·)(·) be a differentiable se-
mi-linear form and F (·) a linear functional defined on some Hilbert space V . We
seek a solution u ∈ V to the variational equation

A(u)(ϕ) = F (ϕ) ∀ϕ ∈ V. (3.7)

For a finite-dimensional subspace Vh ⊂ V , again parametrized by h ∈ R+ , the
corresponding Galerkin approximation uh ∈ Vh is determined by

A(uh)(ϕh) = F (ϕh) ∀ϕh ∈ Vh. (3.8)

We assume that equations (3.7) and (3.8) possess solutions (not necessarily
unique). Let the goal of the computation be the evaluation J(u) , where J(·) is a
given differentiable functional. We want to embed this situation into the general
setting of Proposition 3.1. To this end, we note that computing J(u) from the
solution of (3.7) can be interpreted as computing a stationary point {u, z} ∈ V×V
of the Lagrangian

L(u, z) := J(u) − A(u)(z) + F (z),

with the dual variable z ∈ V , that is solving

A(u)(ψ) = F (ψ) ∀ψ ∈ V, (3.9)

A′(u)(ϕ, z) = J ′(u)(ϕ) ∀ϕ ∈ V. (3.10)

In order to obtain a discretization of the system (3.9–3.10), in addition to (3.8),
we solve the discrete adjoint equation

A′(uh)(ϕh, zh) = J ′(uh)(ϕh), ϕh ∈ Vh. (3.11)

We suppose that the dual problems also possess solutions z ∈ V and zh ∈ Vh ,
respectively. Notice that at the solutions x = {u, z} ∈ X := V ×V and xh =
{uh, zh} ∈ Xh := Vh×Vh, there holds

L(u, z) − L(uh, zh) = J(u) − J(uh).
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Hence, Proposition 3.1, applied to the Lagrangian L(·)(·) on X yields a represen-
tation for the error J(u) − J(uh) in terms of the residuals

ρ(uh)(ψ) := F (ψ) − A(uh)(ψ),

ρ∗(zh)(ϕ) := J ′(uh)(ϕ) − A′(uh)(ϕ, zh).

Since L(u)(z) is linear in z , the remainder Rh only consists of the following
three terms:

J ′′′(uh + se)(e, e, e) − A′′′(uh + se)(e, e, e, zh+se∗) − 3A′′(uh + se)(e, e, e∗),

where e := u − uh and e∗ := z − zh . This leads us to the following result.

Proposition 3.3. For any solutions of the Euler–Lagrange systems (3.9), (3.10) and
(3.8), (3.11), we have the a posteriori error representation

J(u) − J(uh) = 1
2ρ(uh)(z − ψh) + 1

2ρ∗(zh)(u − ϕh) + Rh, (3.12)

for arbitrary ψh, ϕh ∈ Vh . The remainder term Rh is cubic in the errors e :=
u − uh and e∗ := z − zh,

Rh := 1
2

∫ 1

0

{
J ′′′(uh + se)(e, e, e)− A′′′(uh + se)(e, e, e, zh + se∗)

− 3A′′(uh + se)(e, e, e∗)
}

s(s − 1) ds.

The remainder term Rh in (3.12) is usually neglected. The evaluation of the
resulting error estimator

η(uh) := 1
2ρ(uh)(z−ψh) + 1

2ρ∗(zh)(u−ϕh),

for arbitrary ψh, ϕh ∈ Vh , requires the determination of approximations to the
exact primal and dual solutions u and z, respectively.

Remark 3.4. We note that the error representation (3.12) is the nonlinear analogue
of the trivial identity

J(e) = ρ(uh)(z−ψh) = ρ∗(zh)(u−ϕh) = F (e∗), (3.13)

in the linear case, for arbitrary ϕh, ψh ∈ Vh .

Integrating by parts in (3.12), we can derive a simpler error representation
that does not contain the unknown primal solution u ,

J(u) − J(uh) = ρ(uh)(z − ψh) + R̃h, (3.14)

for arbitrary ψh ∈ Vh , with the remainder term

R̃h =
∫ 1

0

{
A′′(uh + se)(e, e, z)− J ′′(uh + se)(e, e)

}
s ds.

The evaluation of (3.14) only requires a guess for the dual solution z , but the
remainder term R̃h is only quadratic in the error e .
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3.2.3. Approximation of optimization problems. We continue using the notation
from above. A differentiable ‘cost-functional’ J(u, q) is now to be minimized under
the equation constraint (3.7),

J(u, q) → min, A(u, q)(ϕ) = F (ϕ) ∀ϕ ∈ V, (3.15)

where q is the control from the ‘control space’ Q , and A(·, ·)(·) is a differentiable
semi-linear form on V ×Q×V . On the space X := V ×Q×V , we introduce the
Lagrangian

L(u, q, λ) := J(u, q) − A(u, q)(λ) + F (λ),

with the adjoint variable λ ∈ V . We want to compute stationary points x =
{u, q, λ} ∈ X of L , that is, solutions of the variational equation

L′(x)(y) = 0 ∀y ∈ X. (3.16)

This is equivalent to the saddle-point system

A′
u(u, q)(ϕ, λ) = J ′

u(u, q)(ϕ) ∀ϕ ∈ V, (3.17)

A(u, q)(ψ) = F (ψ) ∀ψ ∈ V, (3.18)

A′
q(u, q)(χ, λ) = J ′

q(u, q)(χ) ∀χ ∈ Q. (3.19)

We refer to the book Tröltzsch [71] for a general discussion of the Euler–Lagrange
approach and the derivation of the corresponding ‘KKT system’ (3.17–3.19) of
first-order necessary optimality conditions in the formulation of optimal control
problems with PDEs.

For discretization of Equation (3.16), we introduce finite-dimensional sub-
spaces Vh ⊂ V and Qh ⊂ Q , parametrized by h ∈ R+ , and set Xh :=
Vh×Qh× Vh ⊂ X . Then, approximations xh = {uh, qh, λh} ∈ Xh are determined
by

L′(xh)(yh) = 0 ∀yh ∈ Xh, (3.20)

which is equivalent to the discrete saddle-point problem

A′
u(uh, qh)(ϕh, λh) = J ′

u(uh, qh)(ϕh) ∀ϕh ∈ V, (3.21)

A(uh, qh)(ψh) = F (ψh) ∀ψh ∈ Vh, (3.22)

A′
q(uh, qh)(χh, λh) = J ′

q(uh, qh)(χh) ∀χh ∈ Qh. (3.23)

The residuals of these equations are defined by

ρ∗(λh)(·) := J ′
u(uh, qh)(ϕh) − A′

u(uh, qh)(ϕh, λh),

ρ(uh)(·) := F (ψh) − A(uh, qh)(ψh),

ρ∗∗(qh)(·) := J ′
q(uh, qh)(χh) − A′

q(uh, qh)(χh, λh).

Again, since the pairs {u, q} and {uh, qh} satisfy the state equations, we have

L(u, q, λ) − L(uh, qh, λh) = J(u) − J(uh).

Then, as before, we obtain from Proposition 3.1 the following result.
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Proposition 3.5. For any solutions of the saddle point problems (3.17)–(3.19) and
(3.21)–(3.23), we have the a posteriori error representation

J(u) − J(uh) = 1
2ρ(uh)(λ − ψh) + 1

2ρ∗(λh)(u − ϕh)

+ 1
2ρ∗∗(qh)(q − χh) + Rh,

(3.24)

for arbitrary ϕh, ψh ∈ Vh and χh ∈ Qh. The remainder term Rh is cubic in the
errors eu := u − uh , eλ := λ − λh , and eq := q −qh .

For examples of the use of the error representation (3.24) for mesh adaptation
in numerical optimal control, we refer to the ‘landmark paper’ Becker et al. [11]
and to the forthcoming book Becker/Vexler [16].

3.2.4. Approximation of stability eigenvalue problems. Let û ∈ V and ûh ∈
Vh be a base solution and its Galerkin approximation determined by semilinear
equations

a(û)(ψ̂) = F (ψ̂) ∀ψ̂ ∈ V, (3.25)

and

a(ûh)(ψ̂h) = F (ψ̂h) ∀ψ̂h ∈ Vh, (3.26)

such as (3.7) and (3.8), respectively, with slightly changed notation for technical
reasons. We consider the eigenvalue problem associated with the linearization of
the semi-linear form a(·)(·) about û ,

a′(û)(u, ϕ) = λm(u, ϕ) ∀ϕ ∈ V, (3.27)

and its discrete analogues,

a′(ûh)(uh, ϕh) = λh m(uh, ϕh) ∀ϕh ∈ Vh. (3.28)

Here, m(·, ·) is a symmetric, semidefinite bilinear form on V . We assume that
a′(ûh)(·, ·) is coercive on V and that m(·, ·) is compact, such that the Fredholm
theory applies to this eigenvalue problem. From the eigenvalues λ ∈ C of (3.27)
one can obtain information about the (dynamic) stability of the base solution û .
For Reλ > 0 it is said to be ‘linearly stable’ and for Reλ < 0 ‘linearly unstable’.
The related aspects of ‘linear (hydrodynamic) stability theory’ will be discussed
in greater detail below.

In order to derive an a posteriori estimate for the eigenvalue error λ−λh ,
we introduce the spaces V := V × V × C and Vh := Vh × Vh × C , and denote
their elements by U := {û, u, λ} and Uh := {ûh, uh, λh}, respectively. Further,
for Φ = {ϕ̂, ϕ, μ} ∈ V , we introduce a semi-linear form A(·)(·) by

A(U)(Φ) := f(ϕ̂) − a(û)(ϕ̂) − a′(û)(u, ϕ) + λm(u, ϕ) + μ
{
m(u, u) − 1

}
.

With this notation the sets of equations (3.25,3.27) and (3.26,3.28) can be written
in compact form as follows:

A(U)(Φ) = 0 ∀Φ ∈ V , (3.29)

A(Uh)(Φh) = 0 ∀Φh ∈ Vh. (3.30)
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For controlling the error of this approximation, we choose the functional

J(Φ) := μ m(ϕ, ϕ),

for Φ = {ϕ̂, ϕ, μ} ∈ V , which is motivated by the fact that J(U) = λ , since
m(u, u) = 1 . In order to apply the general result of Theorem 3.3 to this situation,
we have to identify the dual problems corresponding to (3.29) and (3.30). The dual
solutions Z = {ẑ, z, π} ∈ V and Zh = {ẑh, zh, πh} ∈ Vh are determined by the
equation

A′(U)(Φ, Z) = J ′(U)(Φ) ∀Φ ∈ V , (3.31)

and its discrete analogue

A′(Uh)(Φh, Zh) = J ′(Uh)(Φh) ∀Φh ∈ Vh, (3.32)

respectively. By a straightforward calculation (for the details see Heuveline and
Rannacher [47]), we find that the dual solution Z = {ẑ, z, π} ∈ V is given by
z = u∗ and π = λ , while ẑ = û∗ is determined as solution of

a′(û)(ψ, û∗) = −a′′(û)(ψ, u, u∗) ∀ψ ∈ V. (3.33)

The corresponding residuals are defined by

ρ(ûh)(ψ) := f(ψ) − a(ûh; ψ),

ρ∗(û∗
h)(ψ) := −a′′(û)(ψ, uh, u∗

h) − a′(ûh)(ψ, û∗
h),

ρ(uh, λh)(ψ) := λh m(uh, ψ) − a′(ûh)(uh, ψ),

ρ∗(u∗
h, λh)(ψ) := λh m(ψ, u∗

h) − a′(ûh)(ψ, u∗
h).

Then, from Theorem 3.3, we obtain the following result.

Proposition 3.6. For the eigenvalue problems (3.27) and (3.28), we have the error
representation

λ−λh = 1
2

{
ρ(ûh)(û∗ − ψ̂h) + ρ∗(û∗

h; û − ϕ̂h)
}

+ 1
2

{
ρ(uh, λh)(u∗ − ψh) + ρ∗(u∗

h, λh)(u − ϕh)
}
−Rh,

(3.34)

with arbitrary ψ̂h, ψh, ϕ̂h, ϕh ∈ Vh. The cubic remainder Rh is given by

Rh = 1
2 (λ−λh)(ev, ev∗) − 1

12a′′(û)(ê, ê, ê∗) − 1
12a′′(û)(ê, e, e∗),

where êv := v̂ − v̂h , êv∗ := v̂∗ − v̂∗h , ev := v − vh , and ev∗ := v∗ − v∗h .

Remark 3.7. The result of Theorem 3.5 does not require the eigenvalue λ to
be simple or non-degenerate. However, this is the generic case in most practical
applications. The test for m(v∗h, v∗h) → ∞ or m(v∗h, v∗h) � 1 can be used to detect
either the degeneracy of the eigenvalue λ or, in the case 0 < Reλ � 1 , the
extension of the corresponding ‘pseudo-spectrum’ into the negative complex half-
plane, which indicates possible dynamic instability of the base flow. For a more
detailed discussion of this point, we refer to Heuveline and Rannacher [47].
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3.3. Model problems and practical aspects

In this section, we describe the application of the foregoing abstract theory to
prototypical model situations which usually occur as components of flow models.
In this context, we also discuss the practical evaluation of the a posteriori error
representations and their use for automatic mesh adaptation. The first model
case is the elliptic Poisson equation, the second one a purely hyperbolic transport
problem, and the third one the parabolic heat equation.

3.3.1. Elliptic model case: Poisson equation. We consider the model problem

−Δu = f in Ω, u = 0 on ∂Ω, (3.35)

on a polygonal domain Ω ⊂ R2 . The natural solution space for the boundary value
problem (3.35) is the Sobolev space V = H1

0 (Ω) . The variational formulation of
(3.35) seeks u ∈ V , such that

(∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ V. (3.36)

The finite-element approximation of (3.36) uses finite-dimensional subspaces

Vh = {v ∈ V : v|K ∈ P (K), K ∈ Th},

defined on decompositions Th of Ω into triangles or quadrilaterals K (cells) of
width hK = diam(K); we write h = maxK∈Th

hK for the global mesh width.
Here, P (K) denotes a suitable space of polynomial-like functions defined on the
cell K ∈ Th . We will mainly consider low-order finite elements on quadrilat-
eral meshes where P (K) = Q̃1(K) consists of shape functions which are ob-
tained as usual via a bilinear transformation from the space of bilinear functions
Q1(K̂) = span{1, x1, x2, x1x2} on the reference cell K̂ = [0, 1]2 (isoparametric
bilinears). Local mesh refinement or coarsening is realized by using hanging nodes.
The variable corresponding to such a hanging node is eliminated from the system
by linear interpolation of neighboring variables in order to preserve the conformity
of the global ansatz, i.e., Vh ⊂ V (for more details we refer to Carey/Oden [23]).
The discretization of (3.36) determines uh ∈ Vh by

(∇uh,∇ϕh) = (f, ϕh) ∀ϕh ∈ Vh. (3.37)

The essential feature of this approximation is the Galerkin orthogonality of the
error e = u − uh,

(∇e,∇ϕh) = 0, ϕh ∈ Vh. (3.38)

A priori error analysis. We begin with a brief discussion of the a priori error anal-
ysis for the scheme (3.37). By ihu ∈ Vh , we denote the natural nodal interpolant
of u ∈ C(Ω) satisfying ihu(a) = u(a) at all nodal points a . There holds (see,
e.g., Brenner/Scott [21]):

‖u − ihu‖K + h
1/2
K ‖u − ihu‖∂K + hK‖∇(u − ihu)‖K ≤ cih

2
K‖∇2u‖K , (3.39)
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with some interpolation constant ci , usually 0.1 ≤ ci ≤ 1.0 . By the projection
property of the Galerkin finite-element scheme the interpolation estimate (3.39)
directly implies the a priori energy-norm error estimate

‖∇e‖ = inf
ϕh∈Vh

‖∇(u − ϕh)‖ ≤ cih
2‖∇2u‖. (3.40)

Further, employing a duality argument (so-called Aubin–Nitsche trick),

−Δz = ‖e‖−1e in Ω, z = 0 on ∂Ω, (3.41)

we obtain

‖e‖ = (e,−Δz) = (∇e,∇z) = (∇e,∇(z − ihz) ≤ cicsh‖∇e‖, (3.42)

where the stability constant cs is defined by the a priori bound ‖∇2z‖ ≤ cs.
Together with the energy-error estimate (3.40), this implies the improved a priori
L2-norm error estimate

‖e‖ ≤ c2
i csh

2‖∇2u‖ ≤ c2
i c

2
sh

2‖f‖. (3.43)

A posteriori error analysis. Next, we seek to derive a posteriori error estimates.
Let J(·) be an arbitrary (linear) error functional defined on V , and z ∈ V the
solution of the corresponding ‘dual problem’

(∇ϕ,∇z) = J(ϕ) ∀ϕ ∈ V. (3.44)

Taking ϕ = e in (3.44) and using the Galerkin orthogonality (3.38), in accordance
with the general result of Theorem 3.3 and the relation (3.13), we obtain after
cell-wise integration by parts the error representation

J(e) = ρ(uh)(z − ϕh) = (∇e,∇(z − ϕh))

=
∑

K∈Th

{
(−Δu + Δuh, z − ϕh)K − (∂nuh, z − ϕh)∂K

}
,

with an arbitrary ϕh ∈ Vh . This can be rewritten as

J(e) =
∑

K∈Th

{
(Rh, z − ϕh)K + (rh, z − ϕh)∂K

}
, (3.45)

with the ‘cell-’ and ‘edge-residuals’ defined by

Rh|K = f + Δuh, rh|Γ :=

{
− 1

2 [∂nuh], if Γ ⊂ ∂K \ ∂Ω,

0, if Γ ⊂ ∂Ω,

where [∇uh] denotes the jump of ∇uh across the cell edges Γ . From the error
identity (3.45), we can infer an a posteriori error estimate of the form

|J(e)| ≤ η(uh) :=
∑

K∈Th

ηK(uh), (3.46)

with the cell-wise error indicators

ηK(uh) := |(Rh, z − ϕh)K + (rh, z − ϕh)∂K |.
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These indicators are ‘consistent’ in the sense that they vanish at the exact solution,
ηK(u) = 0 .

Proposition 3.8. For the finite-element approximation of the Poisson equation
(3.35), there holds the ‘goal-oriented’ a posteriori error estimate

|J(eh)| ≤
∑

K∈Th

ρK ωK , (3.47)

with the cell residuals ρK and weights ωK defined by

ρK :=
(
‖Rh‖2

K + h−1
K ‖rh‖2

∂K

)1/2
, ωK :=

(
‖z − ihz‖2

K + hK‖z − ihz‖2
∂K

)1/2
.

Remark 3.9. In general, the transition from the error identity (3.45) to the error
estimate (3.46) and further to (3.47) causes significant over-estimation of the true
error. The weights ωK describe the dependence of the error J(eh) on variations
of the cell residuals ρK . In practice they have to be determined computationally.

Remark 3.10. Since the relation (3.45) is an identity, any reformulation of it can
be used for deriving estimates for the error J(e) . However, one has to be careful
in extracting local refinement indicators. For example, one may prefer the form

J(e) =
∑

K∈Th

{
(f, z − ϕh)K − (∇uh,∇(z − ϕh))K

}
,

which does not require the evaluation of normal derivatives across the interelement
boundaries. But the corresponding local error indicators

ηK(uh) := |(f, z − ϕh)K − (∇uh,∇(z − ϕh))K |
are not consistent, i.e., ηK(u) �= 0 . Mesh adaptation based on these inconsistent
error indicators generally results in unnecessary over-refinement.

Remark 3.11. Another approach to goal-oriented a posteriori error estimation uses
so-called ‘gradient recovery techniques’ in the spirit of the ZZ approach. From the
dual equation (3.44) employing Galerkin orthogonality, we obtain the error identity

J(e) = (∇e,∇e∗), (3.48)

with the primal and dual errors e = u − uh and e∗ = z − zh , respectively. Let
MK(∇uh) be an approximation obtained by local averaging, satisfying

‖∇u − MK(∇uh)‖K � ‖∇u −∇uh‖K̃ ,

where K̃ denotes an hK-neighborhood of cell K . Then,

J(e) ≈
∑

K∈Th

(MK(∇uh) −∇uh, MK(∇z) −∇zh)K ,

and the mesh adaptation may be based on the local error indicators

ηK(uh) := |(MK(∇uh) −∇uh, MK(∇z) −∇zh)K |.
For more details on this method see Korotov, Neitaanmäki and Repin [56]. Its
possible success depends on the reliability of the approximation MK(∇uh) ≈ ∇u
which is to be expected only for isotropic elliptic problems.
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Remark 3.12. The error representation (3.45) seems to suggest that the use of
differently refined meshes for u and z may be advisable according to their mutual
singularities. However, this is a misconception as it does not observe the special
role of the multiplicative interaction between primal residuals and dual weights.
Primal and dual solutions do not need to be computed on different meshes if their
singularities are located at different places. This rule is well confirmed by numerical
tests even for hyperbolic problems.

A posteriori energy-norm error bound. By the same type of argument as used
above, we can also derive the traditional global energy-norm error estimates. To
this end, we choose the functional

J(ϕ) := ‖∇e‖−1(∇e,∇ϕ)

in the dual problem (3.44). Its solution z ∈ V satisfies ‖∇z‖ ≤ 1 . Applying
Theorem 3.8, we obtain the estimate

‖∇e‖ ≤
∑

K∈Th

ρK ωK ≤
( ∑

K∈Th

h2
Kρ2

K

)1/2( ∑
K∈Th

h−2
K ω2

K

)1/2

,

with residual terms and weights as defined above. Now, we use the approximation
estimate( ∑

K∈Th

{
h−2

K ‖z − i∗hz‖2
K + h−1

K ‖z − i∗hz‖2
∂K

})1/2

≤ c∗i ‖∇z‖, (3.49)

where i∗hz ∈ Vh is a modified nodal interpolation which is defined and stable on
H1(Ω) (for the construction of such an operator see Brenner/Scott [21]). Using
this, we easily deduce the a posteriori energy-norm error estimate

‖∇e‖ ≤ ηE(uh) := c∗i

( ∑
K∈Th

h2
Kρ2

K

)1/2

. (3.50)

An analogous argument also yields the usual a posteriori L2-norm error bound

‖e‖ ≤ ηL2(uh) := cics

( ∑
K∈Th

h4
Kρ2

K

)1/2

. (3.51)

Evaluation of error estimates. From the a posteriori error estimate (3.46), we
want to deduce criteria for local mesh adaptation and for the final stopping of the
adaptation process. To this end, we have to evaluate the local cell error indicators

ηK(uh) := |(Rh, z − ϕh)K + (rh, z − ϕh)∂K |,
for arbitrary ϕh ∈ Vh , and the global error estimator

η(uh) =
∑

K∈Th

ηK(uh).

This requires the construction of an approximation z̃ ≈ z ∈ V , such that z̃ − ihz̃
can substitute z − ihz , resulting in approximate cell error indicators

η̃K(uh) := |(Rh, z̃ − ihz̃)K + (rh, z̃ − ihz̃)∂K |
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and the corresponding approximate error estimator

|J(e)| ≈ η̃(uh) :=
∑

K∈Th

η̃K(uh).

The goal is to achieve an optimal effectivity index for the error estimator η̃(uh) ,

Ieff := lim
TOL→0

η̃(uh)
|J(e)| = 1.

Computational experience shows that asymptotic sharpness does not seem to be
achievable with acceptable effort (see Becker/Rannacher [13]). With all the cheaper
methods considered the effectivity index Ieff never really tends to 1, but in most
relevant cases stays well below 2, what may actually be considered as good enough.
There are two separate aspects to be considered: the sharpness of the global error
bound η̃(uh) and the effectivity of the local error indicators η̃K which are used
in the mesh refinement process.

Accurate a posteriori error estimation is a delicate matter. Already by once
applying the triangle inequality,

|J(e)| ≤ η(uh) =
∑

K∈Th

ηK(uh), (3.52)

asymptotic sharpness may be lost. This is seen, for instance, in the case J(u) =
u(0) when the exact as well as the approximate solution are anti-symmetric with
respect to the x-axis meaning that e(0) = 0, but η(uh) �= 0.

Most practical ways of generating approximation z̃ are based on solving the
dual problem numerically. Let zh ∈ Vh denote the approximation to z obtained
on the current mesh by the same finite-element method as used for computing uh .

1. Approximation by higher-order methods: The dual problem is solved by
using biquadratic finite elements on the current mesh yielding an approximation
z
(2)
h to z. The resulting error estimator is denoted by

η(1)(uh) :=
∑

K∈Th

∣∣(Rh, z
(2)
h − ihz

(2)
h )K + (rh, z

(2)
h − ihz

(2)
h )∂K

∣∣.
It is seen by theoretical analysis as well as by numerical experiments that in ‘good’
cases η(1)(uh) has optimal effectivity, Ieff ≈ 1 . This rather expensive way of
evaluating the error estimator is useful only in certain circumstances, e.g., for very
irregular dual problems such as occurring in the solution of the Euler equations.

2. Approximation by higher-order interpolation: A cheaper strategy uses
patchwise biquadratic interpolation of the bilinear approximation zh on the cur-
rent mesh yielding an approximation i

(2)
2h zh to z . This construction requires some

special care for elements with hanging nodes, in order to preserve the higher-order
accuracy of the interpolation process. The resulting global error estimator is de-
noted by

η(2)(uh) :=
∑

K∈Th

∣∣(Rh, i
(2)
2h zh − zh)K + (rh, i

(2)
2h zh − zh)∂K

∣∣.
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This rather simple strategy turns out to be surprisingly effective in many different
situations. It is actually used in most of the computational examples discussed
below. For the Poisson test problems considered there holds Ieff ≈ 1.5 − 2 . For
more details and for other strategies for evaluating the error estimators we refer
to Becker/Rannacher [13, 14].

Remark 3.13. If on the basis of a numerical approximation to the dual solution z
an approximate error representation η̃(uh) has been generated, one may hope to
obtain an improved approximation to the target quantity by setting

J̃(uh) := J(uh) + η̃(uh) ≈ J(u).

Such a ‘post-processing’ can significantly improve the accuracy in computing J(u) .
This idea has been systematically developed in Giles/Süli [35], particularly for
finite-volume approximations of flow problems.

Strategies for mesh adaptation. We want to discuss some strategies for organizing
local mesh adaptation on the basis of the a posteriori error estimates derived above.
Suppose that we have an a posteriori error estimate of the form

|J(u) − J(uh)| ≈ η̃(uh) ≤
∑

K∈Th

η̃K , (3.53)

with local cell-error indicators η̃K = η̃K(uh) . The prescribed error tolerance is
TOL and the maximum number of mesh cells Nmax .

(i) Error-balancing strategy: Cycle through the mesh and seek to equilibrate the
local error indicators according to

η̃K ≈ TOL

N
, N = #{K ∈ Th}. (3.54)

This process requires iteration with respect to the number of mesh cells N and
eventually leads to η̃(uh) ≈ TOL .
(ii) Fixed-fraction strategy: Order cells according to the size of η̃K ,

η̃KN ≥ · · · ≥ η̃Ki · · · ≥ η̃K1 ,

and refine 20% of cells with largest η̃K (or those which make up 20% of the
estimator value) and coarsen 10% of those cells with smallest η̃K . By this strat-
egy, we may achieve a prescribed rate of increase of N (or keep it constant in
solving non-stationary problems). The fixed fraction strategy is very robust and
economical, and is therefore used in most of the examples discussed below.
(iii) Mesh-optimization strategy: Use the (heuristic) representation

η(uh) =
∑

K∈Th

ηK(uh) ≈
∫

Ω

h(x)2Ψ(x) dx, (3.55)

directly for deriving a formula for an optimal mesh-size distribution hopt(x), for
details see Bangerth/Rannacher [2]. Corresponding ‘optimal’ meshes may be con-
structed by successive hierarchical refinement of an initial coarse mesh or by a
sequence of complete remeshings.
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3.4. Hyperbolic model case: transport problem

As a simple model case, we consider the scalar transport equation

β · ∇u = f in Ω, u = g on ∂Ω−, (3.56)

on a domain Ω ⊂ R2 with inflow boundary ∂Ω− = {x ∈ ∂Ω, n · β < 0} . Accord-
ingly, ∂Ω+ = ∂Ω\∂Ω− is the outflow boundary. The transport vector β is assumed
as constant for simplicity. Then, the natural solution space is V = {v ∈ L2(Ω),
β · ∇v ∈ L2(Ω)} . This problem is discretized using the Galerkin finite-element
method with streamline diffusion stabilization (see Hansbo/Johnson [39] and also
Johnson [53]). On quadrilateral meshes Th , we define subspaces

Vh = {v ∈ H1(Ω), v|T ∈ Q̃1(K), K ∈ Th}
again consisting of (isoparametric) bilinear finite elements. The discrete solution
uh ∈ Vh is defined by

(β · ∇uh − f, ϕh + δβ · ∇ϕh) + (n · β(g − uh), ϕh)∂Ω− = 0 ∀ϕh ∈ Vh, (3.57)

where the stabilization parameter is locally determined by δK = αhK . In this
formulation the inflow boundary condition is imposed in the weak sense. This
facilitates the use of a duality argument in generating a posteriori error estimates.
Let J(·) be a given functional for controlling the error e = u− uh . Following the
DWR approach, we consider the corresponding dual problem

Ah(ϕ, z) = (β · ∇ϕ, z + δβ · ∇z) − (n · βϕ, z)∂Ω− = J(ϕ) ∀ϕ ∈ V, (3.58)

which is a transport problem with transport in the negative β-direction. We note
that the stabilized bilinear form Ah(·, ·) is used in the duality argument in order
to achieve an optimal treatment of the stabilization terms; for a detailed discussion
of this point see Houston et al. [49]. The resulting error representation reads

J(e) = (β · ∇e, z − ϕh + δβ · ∇(z − ϕh)) − (n · βe, z − zh)∂Ω− ,

for arbitrary ϕh ∈ Vh. This leads us in the following result.

Proposition 3.14. For the approximation of the transport problem (3.56) by the
finite-element scheme (3.57), there holds the a posteriori error estimate

|J(e)| ≤
∑

K∈Th

ρKωK , (3.59)

with the cell residuals ρK and weights ωK defined by

ρK :=
(
‖f − β · ∇uh‖2

K + h−1
K ‖n · β(uh − g)‖2

∂K∩∂Ω−

)1/2
,

ωK :=
(
‖z − ϕh‖2

K + δ2
K‖β · ∇(z − ϕh)‖2

K + hK‖z − ϕh‖2
∂K∩∂Ω−

)1/2
.

Remark 3.15. We note that the a posteriori error bound (3.59) explicitly contains
the mesh size hK and the stabilization parameter δK as well. This gives us
the possibility to simultaneously adapt both parameters, which is particularly
advantageous in capturing sharp layers in the solution.
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�
β

Γ

Figure 7. Configuration and grids of the test computation for
the model transport problem (3.56) (left), primal solution (middle)
and dual solution (right) on an adaptively refined mesh.

A simple thought experiment helps to understand the features of the error
estimate (3.59). Let Ω = (0, 1)2 and f = 0 . We take the functional J(u) =
(1, n · βu)∂Ω+ . The corresponding dual solution is z ≡ 1, so that J(e) = 0. Hence

(1, n · βuh)∂Ω+ = (1, n · βu)∂Ω+ = −(1, n · βg)∂Ω− ,

which recovers the well-known global conservation property of the scheme.
Next, we take again the unit square Ω = (0, 1)2 and f = 0, and consider the

case of constant transport β = (1, 0.5)T and inflow data g(x, 0) = 0, g(0, y) = 1 .
The quantity to be computed is part of the outflow as indicated in Figure 7:

J(u) =
∫

Γ

β · nu ds .

The mesh refinement is organized according to the fixed-fraction strategy described
above. Table 1 shows results for this test computation (see Hartmann [41]). The
corresponding meshes and the primal as well as the dual solution are presented
in Figure 7. Notice that there is no mesh refinement enforced of the dual solution
along the upper line of discontinuity since here the residual of the primal solution
is almost zero. Apparently, this has not much effect on the accuracy of the error
estimator.

Remark 3.16. The results of this simple test show a somewhat counter-intuitive
feature of error estimation using the DWR method. The evaluation of the a pos-
teriori error estimator for a functional output J(u) does not require extra mesh
refinement in approximating the dual solution z . It is most economical and suffi-
ciently accurate to compute both approximations uh as well as zh on the same
(adapted) mesh. This is due to the multiplicative occurrence of residual ρK and
weight ωK in the error representation formulas. In areas where the primal solution
u is smooth, and therefore the residual of uh small, the error in approximating
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Table 1. Convergence results of the test computation for the
model transport problem (3.56).

L N J(e) η Ieff
0 256 2.01e-2 2.38e-2 1.18
2 634 1.09e-2 1.21e-2 1.11
4 1315 6.25e-3 7.88e-3 1.26
6 2050 4.21e-3 5.37e-3 1.27
8 2566 3.90e-3 5.01e-3 1.28

10 3094 3.41e-3 4.71e-3 1.38

the weight may be large, due to irregularities in z , without significantly affecting
the accuracy of the error representation.

Remark 3.17. The simple transport problem (3.56) is the prototype of the Euler
equations for modeling inviscid compressible flow. Adaptive finite-elemente meth-
ods for the Euler equations using the DWR method have been developed in a series
of papers (Hartmann [41] and Hartmann/Houston [42, 43, 44]).

3.4.1. Parabolic model case: heat equation. We consider the heat-conduction prob-
lem

∂tu − Δu = f in QT , u|t=0 = u0 in Ω, u|∂Ω = 0 on I, (3.60)

on a space-time region QT = Ω × I , where Ω ⊂ Rd, d ≥ 1, and I = [0, T ]; the
coefficient a may vary in space. This model is used to describe diffusive transport
of energy or certain species concentrations.

The discretization of problem (3.60) uses a Galerkin method in space-time.
We split the time interval [0, T ] into subintervals In = (tn−1, tn] according to

0 = t0 < · · · < tn < · · · < tN = T, kn := tn − tn−1.

At each time level tn , let Tn
h be a regular finite-element mesh as defined above

with local mesh width hK = diam(K) , and let V n
h ⊂ H1

0 (Ω) be the corresponding
finite-element subspace with d-linear shape functions. Extending the spatial mesh
to the corresponding space-time slab Ω× In , we obtain a global space-time mesh
consisting of (d + 1)-dimensional cubes Qn

K := K × In . On this mesh, we define
the global finite-element space

V k
h =

{
v ∈ W, v(·, t)|Qn

K
∈ Q̃1(K), v(x, ·)|Qn

K
∈ Pr(In) ∀ Qn

K

}
,

where W = L2((0, T ); H1
0 (Ω)) and r ≥ 0 . For functions from this space and their

time-continuous analogues, we use the notation

vn+ = lim
t→tn+0

v(t), vn− = lim
t→tn−0

v(t), [v]n = vn+ − vn−.

The discretization of problem (3.60) is based on a variational formulation
which allows the use of functions, which are discontinuous in time at the time
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instants tn . This method, termed dG(r) method (discontinuous Galerkin method
in time), determines approximations U ∈ V k

h by requiring

A(U, ϕ) = 0 ∀ϕ ∈ V k
h , (3.61)

with the semi-linear form

A(u, ϕ) =
N∑

n=1

∫
In

{
(∂tu, ϕ) + (∇u,∇ϕ) − (f, ϕ)

}
dt +

N∑
n=1

([u]n−1, ϕ
+
n−1),

where u−
0 = u0 . We note that the continuous solution u also satisfies equation

(3.61) which again implies Galerkin orthogonality for the error e = u − U with
respect to the bilinear form A(·, ·) . Since the test functions ϕ ∈ V k

h may be
discontinuous at times tn , the global system (3.61) decouples and can be written
in form of a time-stepping scheme,∫

In

{
(∂tU, ϕ) + (∇U,∇ϕ)

}
dt + ([U ]n−1, ϕ(n−1)+) =

∫
In

(f, ϕ) dt, n = 1, . . . , N,

for all ϕ ∈ V n
h . In the following, we consider only the lowest-order case r =

0, the so-called ’dG(0) method’, which is closely related to the backward Euler
scheme. For explaining the application of the DWR approach to this situation, we
concentrate on the control of the spatial L2-norm error ‖eN−‖ at the end time
T = tN , corresponding to the error functional

J(ϕ) := (ϕN−, eN−)‖eN−‖−1.

The corresponding dual problem in space-time reads as

∂tz − Δz = 0 in Ω × I,

z|t=T = ‖eN−‖−1eN− in Ω, z|∂Ω = 0 on I.
(3.62)

In this situation the abstract error representations (3.12) or (3.13) take the form

J(e) =
N∑

n=1

∑
K∈Tn

h

{
(Rk

h, z−Ik
hz)K×In + (rk

h, z−Ik
hz)∂K×In

− ([U ]n−1, (z−Ik
hz)(n−1)+)K

}
,

(3.63)

with an appropriate approximation Ik
hz ∈ V k

h and the local residuals

Rk
h|K := f − ∂tU + ΔU, rk

h|Γ :=

{
− 1

2 [∂nU ], if Γ ⊂ ∂T \∂Ω,

0, if Γ ⊂ ∂Ω.

Here, we use the natural interpolation Ik
hz ∈ V k

h which is defined by∫
In

Ik
hz(a, t) dt = z̄(a), z̄(x) :=

∫
In

z(x, t) dt, x ∈ Ω,
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for all nodal points a of the mesh Tn
h . Observing that the time-integrated equation

residual Rk
h = f−∂tU +ΔU as well as the jump-residual rk

h are constant in time,
the a posteriori error representation can be rewritten in the form

J(e) =
N∑

n=1

∑
K∈Tn

h

{
(f−f, z−Ik

hz)Qn
K

+ (Rk
h, z−Ik

hz)Qn
K

+ (rk
h, z−Ik

hz)∂K×In − ([U ]n−1, (z−Ik
hz)(n−1)+)K

}
.

(3.64)

From this error representation we conclude the following result:

Proposition 3.18. For the approximation of the heat conduction problem by the
dG(0)-FEM, there holds the a posteriori error estimate

|J(e)| ≤
N∑

n=1

∑
K∈Tn

h

{
ρh,n

K ωh,n
K + ρk,n

K ωk,n
K

}
, (3.65)

where the cell residuals and weights can be grouped as follows:

(i) spatial terms:

ρh,n
K :=

(
‖Rk

h‖2
K×In

+ h−1
K ‖rk

h‖2
∂K×In

)1/2
,

ωh,n
K :=

(
‖z̄−Ik

hz‖2
K×In

+ hK‖z̄−Ik
hz‖2

∂K×In

)1/2
,

(ii) temporal terms:

ρk,n
K :=

(
‖f−f̄‖2

Qn
K

+ k−1
n ‖[U ]n−1‖2

K

)1/2
,

ωk,n
K :=

(
‖z−Ik

hz‖K×In + kn‖(z−Ik
hz)(n−1)+‖2

K

)1/2
.

In the error estimator (3.65) the effect of the space discretization is separated
from that of the time discretization. On each space-time cell Qn

K the indicator
ηn

K,h := ρn
K,hωn

K,h can be used for controlling the spatial mesh width hK and the
indicator ηn

K,k := ρn
K,kωn

K,k for the time step kn , i.e., spatial mesh size and time
step can be adapted independently. The weights ωn

K,h and ωn
K,k are evaluated in

the same way as described for the stationary case by post-processing a computed
approximation zh ∈ V k

h to the dual solution z . An analogous a posteriori error
estimator can also be derived for higher-order time stepping schemes, such as
the dG(1) scheme and the cG(1) scheme, the latter being closely related to the
popular Crank–Nicolson scheme. For more details, we refer to Hartmann [40],
Bangerth/Rannacher [2], and the literature cited therein. The first complete a
posteriori error analysis of dG methods for parabolic problems has been given in
a sequence of papers Eriksson et al. [25], and Eriksson/Johnson [26, 27, 28].
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Numerical test. The performance of mesh adaptation based on the error identity
(3.64) is illustrated by a simple test in two space dimensions where the constructed
exact solution represents a smooth rotating bump on the unit square. Figure 9
shows a sequence of adapted meshes at successive times obtained by controlling
the spatial L2-norm error at the end time tN = 0.5 (see Hartmann [40]). We
clearly see the effect of the weights in the error estimator which suppress the
influence of the residuals during the initial period. Accordingly, the time step is
kept coarse at the beginning and is successively refined when approaching the end
time tN .
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Figure 8. Development of the time-step size (left) and the num-
ber Nn of mesh cells (right) over the time interval I =[0, 0.5] .

Figure 9. Sequence of refined meshes for controlling the end-
time error ‖eN−‖ shown at four consecutive times levels tn =
0.125000, . . . , 0.5 .

3.5. Application to flow models

We consider the stationary Navier–Stokes system for pairs u := {v, p} ,

A(u) :=
{
−νΔv + v · ∇v + ∇p − f

∇ · v

}
= 0, (3.66)

with the usual boundary conditions

v|Γrigid = 0, v|Γin = vin, ν∂nv − np|Γout = 0.
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where Γin , Γout , and Γrgid are the ‘inflow’, the ‘outflow’ and the ‘rigid’ part of the
boundary. For this problem, we will consider the full cycle of numerical simulation
(see Becker et al. [9]):

• computation of a target quantity J(u) from the solution of

A(u) = 0,

• minimization of J(u) w.r.t. some control q quantity under the equation
constraint

A(u) + Bq = 0,

• investigation of the stability of the optimum state û by solving the stability
eigenvalue problem

A′(û)u = λMu.

The use of adaptive finite-element methods for all three problems can be treated
within the same general framework laid out above.

The finite-element approximation of the Navier–Stokes system is based on
its variational formulation. To this end, we recall some of the notation from the
preeeding sections, i.e., the function spaces

L := L2(Ω), H := {v∈H1(Ω)d : v|Γin∪Γrigid =0}, V := H×L,

and the semi-linear form (‘energy form’)

a(u)(ϕ) := (∇v,∇ϕv) + (v · ∇v − f, ϕv) − (p,∇ · ϕv) + (ϕp,∇ · v),

for arguments u = {v, p}, ϕ = {ϕv, ϕp} . The variational Navier–Stokes problem
then seeks u ∈ (vin, 0)+V , such that

a(u)(ϕ) = 0 ∀ϕ ∈ V. (3.67)

The Galerkin finite-element discretization uses the Q1/Q1-Stokes element, i.e.,
equal-order d-linear approximation of velocity and pressure (see Figure 10),

Lh ⊂ L, Hh ⊂ H, Vh := Hh×Lh,

defined on quadrilateral or hexahedral meshes. As mentioned above, the Q1/Q1-
Stokes element does not satisfy the usual ‘inf-sup’ stability condition. Following
Hughes et al. [50, 51], this discretization is supplemented by ‘least-squares’ stabi-
lization of pressure-velocity coupling and advection. The stabilized discrete prob-
lems seek uh ∈ (vin

h , 0)+Vh , such that

ah(uh)(ϕh) := a(uh)(ϕh) + (A(uh),S(uh)ϕh)δ = 0 ∀ϕh ∈ Vh, (3.68)

where

S(u)ϕ :=
{

v · ∇ϕv + ∇ϕp

∇ · ϕv

}
, (ϕ, ψ)δ :=

∑
K∈Th

δK (ϕ, ψ)K .

The stabilization parameter δK is chosen adaptively as described above by

δK = α
( ν

h2
K

+
β|vh|K;∞

hK

)−1

, (3.69)
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isopar{1, x1, x2, x1x2}

vh(a), ph(a)

Figure 10. Quadrilateral mesh patch with a ‘hanging’ node.

with values α ≈ 1
12 and β ≈ 1

6 .

3.5.1. A posteriori error analysis. Let J(·) be a prescribed (linear) ‘error func-
tional’ and z = (zv, zp) ∈ V the associated dual solution determined by

ν(∇ψ,∇zv) − (ψ, v · ∇zv) + (ψ, n · vzv)Γout + (ψ,∇v v) = J(ψ), (3.70)

for all ψ = (ψv, ψp) ∈ V . The corresponding ‘out-flow’ boundary condition is of
Robin-type, {ν∂nzv + n · v̂zv − zpn}|Γout = 0 . From the general Theorem 3.3, we
can infer the following a posteriori error representation (Becker/Rannacher [14]):

J(u − uh) = 1
2ρ(uh)(z − ihz) + 1

2ρ∗(uh, zh)(u − ihu) + Rh, (3.71)

where in this case the cubic remainder Rh can be bounded as follows:

|Rh| ≤ ‖ev‖ ‖∇ev‖ ‖ev∗‖∞ + O(δ‖ev‖),
with the errors ev := v− vh , ev∗ := zv − zv

h . Here, the primal residual is given by

ρ(uh)(z−ihz) :=
∑

K∈Th

{
(Rh, zv−ihzv)K + (rh, zv−ihzv)∂K

+ (zp−ihzp,∇ · vh)K + . . .
}
,

with the cell and edge residuals ( [. . . ] denoting jumps across the cell edges or
faces)

Rh|K := f − νΔvh+vh · ∇vh+∇ph,

rh|Γ :=

⎧⎪⎨⎪⎩
− 1

2 [ν∂nvh−nph], if Γ �⊂ ∂Ω,

0, if Γ ⊂ Γrigid ∪ Γin,

−ν∂nvh+nph, if Γ ⊂ Γout.

The corresponding dual residual has the form

ρ∗(uh, zh)(u−ihu) :=
∑

K∈Th

{
(R∗

h, v−ihv)K + (r∗h, v−ihv)∂K

+ (p−ihp,∇ · zh)K + . . .
}
,
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with cell and edge residuals

R∗
h|K := j − νΔzv

h−vh · ∇zv
h+∇vT

h zv
h−∇ · vhzv

h+∇zp
h,

r∗h|Γ :=

⎧⎪⎨⎪⎩
− 1

2 [ν∂nzv
h+n · vhzv

h−zp
hn], if Γ �⊂ ∂Ω,

0, if Γ ⊂ Γrigid ∪ Γin,

−ν∂nzv
h−n · vhzv

h+zp
hn, if Γ ⊂ Γout.

From (3.71), we obtain the practical error estimator

η̃ω(uh) := 1
2ρ(uh)(z̃h − zh) + 1

2ρ∗(uh, zh)(ũh − uh), (3.72)

where ũh and z̃h are approximations to u and z , respectively, obtained by post-
processing the Galerkin solutions uh and zh , as described above.

A first example: 2D flow around a circular cylinder. We consider the laminar flow
around the cross section of a cylinder in a 2D channel (with slightly displaced
vertical position) as shown in Figure 11. This is a standard benchmark problem
for which reference solutions are available (Schäfer/Turek [69]).

.

Γin S Γout

Γ1

Γ2

Figure 11. Configuration of the benchmark problem ‘viscous flow
around a circular cylinder’ with outlets Γ1,2 for boundary control
by pressure variation.

One of the quantities of physical interest is the drag coefficient defined by

Jdrag(u) = cdrag :=
2

Ū2D

∫
S

nT σ(v, p)e1 ds,

where S is the surface of the cylinder, D its diameter, U the reference inflow
velocity, σ(v, p) = 1

2ν(∇v+∇vT ) + pI the stress force acting on S, and e1 the
unit vector in the main flow direction. In our example, the Reynolds number is
Re = Ū2D/ν = 20 , such that the flow is stationary. For evaluating the drag
coefficient, one usually uses an equivalent volume formula,

Jdrag(u) =
2

Ū2D

∫
Ω

{σ(v, p)∇ē1 + ∇ · σ(v, p)ē1} dx,

where ē1 is an extension of e1 to the interior of Ω with support along S . Notice
that on the discrete level the two formulas differ. Theory and computation show
that the volume formula yields more accurate and robust approximations of the
drag coefficient (see Becker [3]).
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Table 2 shows the results of the drag computation, where the effectivity index
is again defined by Ieff := η̃ω(uh)/|J(e)| (see Becker [3]). Figure 12 shows refined
meshes generated by the ’weighted’ error estimator η̃weight(uh) and by a (heuristic)
’energy norm’ error indicator using only the primal cell residuals,

ηres(uh) :=
( ∑

K∈Th

{
h2

K‖Rh‖2
K + hK‖rh‖2

∂K + h2
K‖∇ · vh‖2

K

})1/2

.

A posteriori error estimates based on this type of residual error indicators have
been derived by Oden et al. [59], Verfürth [76], and Bernardi et al. [17]. In Johnson
et al. [55] duality arguments are used to obtain long-term error bounds for the non-
stationary Navier–Stokes equations.

Table 2. Results for drag and lift on adaptively refined meshes,
error level of 1% indicated by bold face.

Computation of drag

L N cdrag η̃drag Ieff

4 984 5.66058 1.1e−1 0.76

5 2244 5.59431 3.1e−2 0.47

6 4368 5.58980 1.8e−2 0.58

6 7680 5.58507 8.0e−3 0.69

7 9444 5.58309 6.3e−3 0.55

8 22548 5.58151 2.5e−3 0.77

9 41952 5.58051 1.2e−3 0.76

∞ 5.579535 . . .

Figure 12. Refined meshes generated by the ’residual error’ es-
timator (top) and by the ‘weighted’ error estimator (bottom).

A second example: 3D flow around a square cylinder. Next, we consider a 3D
version of the above example, namely stationary channel flow around a cylin-
der with square cross-section. Again the target quantity of the computation is
the drag coefficient cdrag . Table 3 shows the corresponding results compared to
those obtained by mesh adaptation based on the residual error indicators ηres

K (see
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Braack/Richter [20]). The superiority of goal-oriented mesh adaptation is clearly
seen. However, one should not forget that these specially tuned meshes are not
necessarily also appropriate for computing other flow quantities such as the global
vortex structure of the flow or the pressure along the shear forces along the walls.
For computing these quantities the mesh adaptation has to utilize the correspond-
ing dual solutions.

Table 3. Results of the drag computation: (left) with mesh adap-
tation by ‘residual’ error indicator, (right) with mesh adaptation
by ‘weighted’ error indicator.

Nres cd Nweight cd

3, 696 12.7888 3, 696 12.7888
21, 512 8.7117 8, 456 9.8262
80, 864 7.9505 15, 768 8.1147

182, 352 7.9142 30, 224 8.1848
473, 000 7.8635 84, 832 7.8282

− − 162, 680 7.7788
− − 367, 040 7.7784
− − 700, 904 7.7769
∞ 7.7730 ∞ 7.7730

3.6. Application in optimal flow control

Next, we present some results obtained for the minimization of the drag coeffi-
cients by boundary control. The data is chosen such that Re = U

2
D/ν = 40 for

the uncontrolled flow. The drag coefficient cd is to be minimized by optimally
adjusting the pressure prescription q at the secondary outlets ΓQ = Γ1 ∪ Γ2 (see
Figure 11). This means that a state u ∈ (vin, 0)+V is sought, such that

Jdrag(u) → min,

under the constraint

a(u, q)(ϕ) := a(u)(ϕ) + b(q, ϕ) = (f, ϕv) ∀ϕ ∈ V, (3.73)

where the control form is given by

b(q, ϕ) := −(q, n · ϕv)ΓQ .

In Table 4, the values of the drag coefficient on optimized meshes, as shown in
Figure 14, are compared with results obtained on globally refined meshes (see
Becker [4, 5]). It is clear from these numbers that a significant reduction in the
dimension of the discrete model is possible by using appropriately refined meshes.
Figure 14 shows streamline plots of the uncontrolled (q = 0) and the controlled
(q = qopt) solution and a corresponding ‘optimal’ mesh.
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Figure 13. Geometry-adapted coarse mesh (top) and refined
meshes obtained by the ‘energy-norm’ (middle) and the ‘weighted’
error estimator (bottom).

The locally refined mesh produced by the adaptive algorithm seems to con-
tradict intuition since the recirculation behind the cylinder is not so well resolved.
However, due to the particular structure of the optimal velocity field (most of the
flow leaves the domain at the control boundary), it might be clear that this recir-
culation does not significantly influence the cost functional. Instead, a strong local
refinement is produced near the cylinder, where the cost functional is evaluated,
as well as near the control boundary. It remains the question whether the gener-
ated stationary ‘optimal’ flow is dynamically stable, i.e., can actually be realized
in practice.

3.7. Application in hydrodynamic stability analysis

For investigating the stability of the stationary optimal state û = {v̂, p̂} obtained
above by the linear stability theory, we have to solve the following non-symmetric
eigenvalue problem for u := {v, p} ∈ V and λ ∈ C :

−νΔv + v̂ · ∇v + v · ∇v̂ + ∇p = λv, ∇ · v = 0, (3.74)
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Table 4. Uniform refinement (left) versus adaptive refinement
(right) in the drag minimization.

Uniform refinement Adaptive refinement
N Jmin

drag N Jmin
drag

10512 3.31321 1572 3.28625
41504 3.21096 4264 3.16723
164928 3.11800 11146 3.11972

Figure 14. Velocity of the uncontrolled flow (top), the controlled
flow (middle) and the corresponding adapted mesh (bottom).

with homogeneous boundary conditions

v|Γin∪Γrigid = 0, (ν∂nv − pn)|Γout∪ΓQ
= 0.

Its variational form reads

a′(û)(u, ϕ) = λm(u, ϕ) ∀ϕ ∈ V, (3.75)

where m(u, ϕ) := (v, ϕv) . The associated ‘adjoint’ eigenvalue problem determines
v∗ ∈ V and λ∗ = λ̄ ∈ C , such that

ν(∇ψ,∇v∗) − (ψ, v̂ · ∇v∗) + (ψ, n · v̂v∗)Γout + (ψ,∇v̂ v) = λ∗(ψ, v∗), (3.76)

for all ψ ∈ V . The dual eigenpair has to satisfy Robin-type outflow boundary
conditions, (ν∂nv∗ + n · v̂v∗ − p∗n)|Γout∪ΓQ

= 0 . From the general Theorem 3.6,
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we obtain the eigenvalue error estimator

|λcrit − λcrit
h | ≤

∑
K∈Th

{
η̂K + ηλ

K

}
+ Rh. (3.77)

where the cell error indicators η̂K = ρ̂K(ûh)ω̂K and ηλ
K = ρK(uh)ωK represent

the errors due to the approximation of the optimal base flow û = {v̂, p̂}} and the
approximation of the corresponding eigenpair {u, λ}, respectively. For instance,
the primal eigenvalue error indicators are obtained from the residual term

ρK(uh)(u∗−ψh) :=
∑

K∈Th

{(Rh, v̂∗ − ψh)K + (rh, v̂∗ − ψh)∂K

+ (p̂∗ − χh,∇ · v̂h)K + . . . },
with the cell and edge residuals defined by

Rh|K := λvh + νΔvh − vh · ∇vh −∇ph,

rh|Γ :=

⎧⎪⎨⎪⎩
− 1

2 [ν∂nvh − phn], if Γ �⊂ ∂Ω,

0, if Γ ⊂ Γrigid ∪ Γin,

ν∂vh − phn, if Γ ⊂ Γout.

This leads us to the following criterion for balancing linearization and discretization
error: ∑

K∈Th

η̂K ≤
∑

K∈Th

ηλ
K . (3.78)

This criterion together with the fixed-fraction strategy described above has been
used in the computation of the critical eigenvalues of the optimum state û . Fig-
ure 15 shows adapted meshes for computing the optimum stationary state and the
corresponding critical eigenvalue λcrit . We see that the eigenvalue computation
requires more global mesh refinement. This is reflected by the results shown in Fig-
ure 16. On coarser meshes, such as used in the optimization process, the error due
to the linearization about the wrong base solution ûh dominates the error due to
the discretization of the eigenvalue problem, but on more globally refined meshes
the picture changes and the linearization error falls below the discretization error.
Still the meshes obtained by this adaptation process are more economical than
simply using the meshes generated by the plain residual-based error estimator.

3.8. Calibration of flow models

In the following, we present a general approach to the numerical solution of (dis-
crete) parameter identification problems based on the least-squares method. This
can be used for parameter calibration in flow models such as in the closure problem
discussed in Section 2.4. For more details, we refer to Vexler [75] and Becker/Vexler
[15], see also Becker et al. [10], and the literature cited therein.

Let V denote the state space, Q = Rnp the control space, Z = Rnm the
observation space with observation operator C : V → Z , and observation c̄ ∈ Z .
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Figure 15. Meshes obtained by the error estimators for the drag
minimization (top) and the eigenvalue computation (bottom).
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Figure 16. The size of the two components of the error estimator
ηλ

h(ûh, û∗
h, uh, u∗

h, λh) , i.e., the errors in the base solution and the
eigenvalue approximation.

Then, the corresponding optimization problem seeks u ∈ V and q ∈ Q = R
np ,

such that

J(u) := 1
2‖C(u) − c̄‖2

Z → min, a(u, q)(ϕ) = 0 ∀ϕ ∈ V, (3.79)

with an energy-semi-linear from a(·, ·)(·) as described above. The corresponding
necessary first-order optimality condition (analogous to (3.17-3.19) reads

a′
u(u, q)(ϕ, λ) = J ′

u(u, q)(ϕ) ∀ϕ ∈ V, (3.80)

a′
q(u, q)(χ, λ) = J ′

q(u, q)(χ) ∀χ ∈ Q, (3.81)

a(u, q)(ψ) = 0 ∀ψ ∈ V. (3.82)
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The discretization of (3.79) uses finite-element spaces Vh ⊂ V and determines
{uh, qh} ∈ Vh × Q , such that

J(uh) = 1
2‖C(uh) − c̄‖2

Z → min, a(uh, qh)(ϕh) = 0 ∀ϕh ∈ Vh. (3.83)

If the form a(·, q)(·) is regular for any q ∈ Q , we can define the solution operator
S : Q → V and, setting u = S(q) , obtain the following unconstrained equivalent
of (3.79) posed in the finite-dimensional space Q = Rnp :

j(q) := 1
2‖c(q) − c̄‖2

Z → min, c(q) := C(S(q)), q ∈ Q.

The derivatives

Gij := ∂qj ci(q) = C′
i(u)(wj), G = (Gij)

np

i,j=1,

are determined by the solutions wj ∈ V of the auxiliary equations

a′
u(u, q)(wj , ϕ) = −a′

qj
(u, q)(1, ϕ) ∀ϕ ∈ V.

Using this notation the necessary first-order optimality condition is

j′(q) = 0 ⇔ G∗(c(q) − c̄) = 0.

This equation may be solved by a fixed-point iteration of the form

qk+1 = qk + δq, Hk δq = G∗
k(c̄ − c(qk)), Gk = c′(qk),

with a suitably chosen preconditioning matrix Hk . Popular choices are:

• The full ‘Newton algorithm’, Hk := G∗
kGk + 〈c(qk) − c̄, c′′(qk)〉Z .

• The ‘Gauß-Newton algorithm’, Hk := G∗
kGk .

• The ‘update method’, Hk := G∗
kGk + Mk with certain corrections Mk .

However, the full Newton algorithm is rarely used in this context since it involves
the evaluation of the term 〈c(qk

h)− c̄, c′′(qk
h)〉Z , particularly the second derivative

c′′h(qk
h) . This is rather expensive since it requires the solution of several auxiliary

problems, depending on the dimension of Q . Since in the limit k → ∞ the devi-
ation ch(qh) − c̄ is expected to be small, the Gauß–Newton algorithm is justified
and its convergence is sometimes even super-linear.

3.8.1. A posteriori error estimation. Controlling the error in the discretization of
a parameter identification problem based on the control functional J(·) may be
inappropriate for guiding mesh adaptation. Hence, in this situation, one follows
another approach by choosing an error control functional E(·) which addresses
the error in the controls more directly, e.g.,

E(uh, qh) := 1
2‖q − qh‖2

Q.

Then, the systematic error control by the general approach described above applied
to the Galerkin approximation of the saddle-point system (3.80–3.82) has to use
an extra ‘outer’ dual problem with solution z = {zu, zq, zλ} ∈ V × Q × V ,

A′(u, q, λ)(ϕ, χ, ψ, zu, zq, zλ) = E′(u, q, λ)(ϕ, χ, ψ), (3.84)



326 R. Rannacher

for all {ϕ, χ, ψ} ∈ V × Q × V , where

A(u, q, λ)(ϕ, χ, ψ) := a′
u(u, q)(ϕ, λ) − J ′

u(u, q)(ϕ)

+ a′
q(u, q)(χ, λ) − J ′

q(u, q)(χ) + a(u, q)(ψ).

A careful analysis of this setting results in an a posteriori error representation of
the following form (Vexler [75] and Becker/Vexler [15]):

E(u, q) − E(uh, qh) = ηh + Rh + Ph. (3.85)

Here, the main part ηh of the estimator has the usual form

ηh = 1
2ρ(uh, qh)(z − ihz) + 1

2ρ∗(uh, qh, zh)(u − ihu),

with the ‘dual solution’ z ∈ V determined by the dual problem

a′
u(u, q)(ϕ, z) = −〈G(G∗G)−1∇E(q), C′(u)(ϕ)〉Z ∀ϕ ∈ V,

and the residuals

ρ(uh, qh)(ψ) := −a(uh, qh)(ψ),

ρ∗(uh, qh, zh)(ϕ) := 〈Gh(G∗
hGh)−1∇E(qh), C′(uh)(ϕ)〉 − a′

u(uh, qh)(ϕ, zh).

The remainder Rh due to linearization is again cubic in the errors u−uh, q−qh,
and z−zh, and the additional error term Ph is bounded like

|Ph| ≤ C̃ ‖e‖V ‖C(u)− c̄‖Z. (3.86)

Due to the particular features of the parameter identification problem, we can
expect that ‖C(u)− c̄‖Z � 1 for the optimal state. Hence, this term is neglected
compared to the leading term η . Based on the a posteriori error bound (3.85) the
mesh adaptation is organized as described above.

3.8.2. Application to the closure problem. The method described above is applied
to the closure problem discussed in Section 2.4. The underlying model is

− νΔv + v · ∇v + ∇p = 0, ∇ · v = 0 in Ω,

v = 0 on Γrigid, ν∂nv − p · n = 0 on Γout,

ν∂nv − p · n = q1 · n on Γ(1)
in , ν∂nv − p · n = q2 · n on Γ(2)

in .

(3.87)

Here, the unknown pressure mean values qi at the openings Γ(i)
in are to be de-

termined by parameter estimation from given measurements, for example, of the
mean fluxes

Cj(u) :=
∫

Sj

v · n do,

along certain interior cross sections of the flow domain or other measurable local
flow quantities as depicted in Figure 17.

Using the a posteriori error representation (3.85) in the parameter identifi-
cation process described in the preceding section, adapted meshes are generated
as shown in Figure 18. The resulting solution efficiency obtained on these meshes
compared to uniformly or accordingly to the ‘energy-norm’ error estimator refined
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Figure 17. Configuration of the bypass problem for model calibration.

meshes are presented in Figure 19. The superiority of the sensitivity-driven mesh
adaptation is clearly seen.

Figure 18. Adapted meshes in the model calibration process.
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Figure 19. Efficiency of mesh adaptation in the model calibra-
tion process.
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3.9. Current work and further development

Systematic mesh adaptation in optimal flow control by the DWR approach has
great potential for significantly reducing the computational work. Current and
future developments are on the following topics:

• Combination of spatial mesh size and time-step adaptation for solving the
space-time KKT system in non-stationary flow control.

• Incorporation of control and state constraints, such as lower bounds on the
lift coefficient, clift ≥ c0 , or the suppression of local recirculation, v1 ≥ 0 .

• Optimization in fluid-structure interaction problems, as discussed in the ar-
ticle Bönisch et al. [24] in this volume.
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[71] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen - Theorie, Ver-
fahren und Anwendungen. Vieweg, Braunschweig, 2005.

[72] S. Turek, Efficient solvers for incompressible flow problems: an algorithmic and com-
putational approach. Springer, Heidelberg-Berlin-New York, 1999.
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Introduction

This chapter describes numerical methods for simulating the interaction of viscous
liquids with rigid or elastic bodies.

General examples of fluid-solid/structure interaction (FSI) problems are flow
transporting rigid or elastic particles (particulate flow), flow around elastic struc-
tures (airplanes, submarines) and flow in elastic structures (hemodynamics, trans-
port of fluids in closed containers). In all these settings the dilemma in modeling
the coupled dynamics is that the fluid model is normally based on an Eulerian
perspective in contrast to the usual Lagrangian formulation of the solid model.
This makes the setup of a common variational description difficult. However, such
a variational formulation of FSI is needed as the basis of a consistent Galerkin
discretization with a posteriori error control and mesh adaptation, as well as the
solution of optimal control problems based on the Euler–Lagrange approach.

In this article, we describe variational methods for simulating two prototyp-
ical types of fluid-solid/structure interaction phenomena: the movement of rigid
bodies in a viscous fluid and the interaction of a viscous fluid with an elastic
structure. Figure 1 shows the gravity-driven motion of a non-symmetric body in a
Newtonian fluid as the solution of the Navier–Stokes equations. Figure 2 shows the
instability-induced oscillation of a thin elastic plate in a viscous fluid, computed
by the usual Arbitrary Lagrangian–Eulerian (‘ALE’) method.

The material presented in this article is mainly based on the doctoral theses of
the first two authors, Bönisch [9] and Dunne [20]. For more details the reader may
also consult the articles Bönisch/Heuveline [10, 11], Dunne/Rannacher [21], and
Bönisch et al. [13]. Most of the numerical examples have been provided using the
software tools ‘Gascoigne’ [4], ‘Hiflow’ [31], and the graphics packages ‘VisuSimple’
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[55, 5] and ‘HiVision’ [32, 12]. More references to the relevant literature will be
given at the respective places in the text, below.
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1. Fluid-‘single rigid body’ interaction

We present a finite element Galerkin scheme for the detailed simulation of the
free fall of a single rigid body in a viscous fluid filling all space. By residual-
controlled adaptation of the mesh and the size of the computational domain the
method achieves a high degree of flexibility and accuracy. Numerical results are
presented for two-dimensional configurations which allow for stable and unstable
quasi-stationary as well as non-stationary solutions. For example, in a stationary
situation in two dimensions more than 107 unknowns would be necessary with a
uniform mesh on a truncated domain Ωh with diam(Ωh) = 2500 to achieve an
error of less than 10% in the fall velocity. Employing local mesh adaptation the
same accuracy can be achieved with only 1.5 ·106 unknowns. Combining this with
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Figure 1. Fall of a non-symmetric body in a viscous liquid under gravity.

Figure 2. Oscillating thin elastic plate in a viscous fluid, com-
puted by the ALE approach.

more sophisticated artificial boundary conditions the domain can be reduced to
diam(Ωh) = 100 resulting in only 7.5 · 105 unknowns.

1.1. Model setup in the body frame

The free fall of a rigid body in a viscous fluid is one of the simplest examples of
fluid-structure interaction. Particularly for rotationally symmetric bodies several
theoretical results concerning the existence of quasi-stationary states and their
stability are available; see Weinberger [58], Hu et al. [36, 37], Unverdi/Tryggvason
[54], Desjardin/Esteban [19], Glowinski et al. [28], Burger et al. [17], and Conca et
al. [18], Hoffmann/Starovoitov [33], Gunzburger et al. [29], Galdi [23, 24], and the
references cited therein. For general non-symmetric and non-convex bodies these
questions seem to be largely open. Here, numerical experiments may be able to
guide theoretical analysis. Despite its simplicity the numerical solution of the un-
derlying model equations poses severe difficulties. The conceptionally unbounded
domain has to be truncated and appropriate artificial boundary conditions are
needed. The dynamic behavior of the orientation of the body and the speed and
direction of fall is determined by the quantities drag, lift, and torque, the accurate
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computation of which is rather delicate. The coupling of the relevant quantities in
the model is highly nonlinear. The reliable computation of drag, lift, and torque
requires a sufficiently large computational domain as well as local mesh refinement
along the body’s surface.

The numerical approach is based on the solution of the ‘incompressible’
Navier–Stokes equations in body-fixed coordinates and uses a finite-element dis-
cretization with mesh adaptation based on the DWR (Dual Weighted Residual)
concept described in Becker/Rannacher [7]. By systematic mesh refinement the
quantities of interest, such as the free fall velocity, the orientation of the body and
the acting hydrodynamic force and torque, can be computed to any prescribed
accuracy. This works for two as well as three-dimensional configurations. An ad-
ditional feature is the monitoring of the stability of quasi-stationary solutions by
computing critical eigenvalues. The performance of the current implementation
of this method will be illustrated by the results of some simulations for two-
dimensional configurations with stationary as well as non-stationary solutions.
We investigate the existence of quasi-stationary states for symmetric bodies and
the dynamic stability of these solutions. More details on the numerical method-
ology and the computational examples can be found in Bönisch et al. [13]. These
‘experimental’ observations may serve as stimulus for further theoretical analysis.

We consider the free fall of a solid body S ⊂ R
d (d = 2, 3) in an incompress-

ible liquid L filling the whole space D := Rd \ S. The solid body S is assumed
to be a bounded domain and the velocity of its mass center C (resp. its angular
velocity) are denoted by VC (resp. Ω ) in the inertial frame F . The region occu-
pied by S at time t is described by S(t) and the corresponding attached frame
is denoted by R(t) . The fluid-body coupling occurs through Dirichlet boundary
conditions. In the inertial frame F the equations of conservation of momentum
and mass of the fluid as well as of linear and angular momentum of the body in
their non-conservative form together with their natural boundary conditions are
given by

Fluid

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ∂tv + ρv · ∇v = ρg + ∇ · σ(v, p),
∇ · v = 0, for (x, t) ∈

⋃
t>0 S(t)c × {t},

v(x, 0) = 0, lim|x|→∞ v(x, t) = 0,

v(x, t) = VC(t) + Ω(t) × (x − xC(t)), forx ∈ ∂S(t).

(1.1)

Body

{
dt(mSVC) = mSg −

∫
∂S(t) σ(v, p) · N do,

dt(JS(t) · Ω) = −
∫

∂S(t)
(x − xC) × [σ(v, p) · N ] do.

(1.2)

Here, ρ is the constant density of L , v and p are the Eulerian velocity field and
pressure associated with L , σ is the Cauchy stress tensor and ρg is the force
of gravity which is assumed to be the only external force. We assume further a
Navier–Stokes liquid model for which the Cauchy stress tensor is given by σ(v, p) =
−p1 + μ(∇v + (∇v)T ) , where μ is the shear viscosity. Further, mS is the mass
of the body, N is the unit normal to ∂S(t) oriented toward the body and JS
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the inertia tensor with respect to the mass center C . We assume VC(0) = 0 and
Ω(0) = 0 .

The straightforward formulation (1.1–1.2) has the disadvantage that the re-
gion S(t) occupied by the liquid is time-dependent. This can be avoided by re-
formulating these equations in the body-attached frame R(t) . If y denotes the
position of a point P in the frame R(t) and x is the position of the same point
in F , we have

x = Q(t)y + xC(t), Q(0) = I, xC(0) = 0, (1.3)

with Q an orthogonal linear transformation. In addition, we introduce the follow-
ing transformed fields:

v(y, t) := QT v(Qy + xC , t), p(y, t) := p(Qy + xC , t), G := QT g, (1.4)

V (y, t) := QT (VC + Ω × Qy), σ(v, p) := QT σ(Qv, p)Q, ω := QT Ω, (1.5)

and

VC := QT · VC , n := QT · N, IS := QT · JS · Q, ∂S := ∂S(0). (1.6)

Using the transformations (1.3–1.6), we can reformulate the system of equations
(1.1–1.2) in the following form:

Fluid

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ∂tv + ρ((v − V ) · ∇)v + ρω × v = ∇ · σ(v, p) + ρG(t),
∇ · v = 0, for (y, t) ∈ S(0)c × (0,∞),
v(y, 0) = 0, lim|y|→∞ v(y, t) = 0,

v(y, t) = VC(t) + ω(t) × y, for x ∈ ∂S(t).

(1.7)

Body

⎧⎪⎨⎪⎩
mSV̇C + mS(ω × VC) = mSG(t) −

∫
∂S

σ(v, p) · n do,

IS · ω̇ + ω × (IS · ω) = −
∫

∂S y × [σ(v, p) · n] do,

dtG − G × ω = 0.

(1.8)

In order to keep compatible notations for both the two- and three-dimensional case,
we assume for d = 2 that ω := (0, 0, ω) and similarly y×[σ·n] = (0, 0,−y2(σ·n)1+
y1(σ · n)2) . For d = 2 , the second equation in (1.8) reduces to a scalar equation.
The additional term ω× v in the momentum equation in (1.7) corresponds to the
Coriolis force induced by the frame transformation (1.3). In the body frame R(t)
the direction of the gravitational force G depends on time t and therefore becomes
an unknown to be computed. The third additional equation of (1.8) provides the
equation needed for describing its variation. Its derivation relies on simple calculus
related to the transformation (1.3). For more details regarding the derivation of
these equations, we refer to Galdi [24], or Bönisch et al. [13].

1.2. The stationary free-fall problem

The solid body S is said to undergo a free steady fall if the translational and
angular velocity VC and ω are constant and if the motion of the liquid L is
stationary in the frame R(t) . The study of such a configuration is of great interest
since it corresponds to so called terminate state motions of sedimenting particles
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for which many questions still remain open, e.g., the number of possible terminal
states for a given body geometry, the orientation of the solid body, the stability of
the corresponding solution (see Galdi [24] and references therein).

The free-steady-fall equations are obtained by requiring that v , p , VC ,
ω , and G are time-independent. Comparing with (1.7–1.8), this leads us to the
following system of equations:

Fluid

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ(v − V ) · ∇v + ρω × v = ∇ · σ(v, p) + ρG,

∇ · v = 0, for y ∈ Rd \ S,

v(y, 0) = 0, lim|y|→∞ v(y) = 0,

v(y) = V (y) := VC + ω × y for y ∈ ∂S.

(1.9)

Body

⎧⎪⎨⎪⎩
mS(ω × VC) = mSG −

∫
∂S σ(v, p) · n do,

ω × (IS · ω) = −
∫

∂S
y × [σ(v, p) · n] do,

G × ω = 0.

(1.10)

For the most general setup, we assume ω �= 0. Due to the third equation in (1.10),
this configuration can be attained only for d = 3 . Further it imposes G parallel
to ω . The free-steady-fall problem can then be stated as follows:

Problem 1.1 (Stationary fall in 3D). Assume d = 3. Given ρ, σ = σ(v, p), |G| =
|g|, IS , and mS , find v, p, VC , ω, and G, where G = |g||ω|−1ω if ω �= 0 (see
Table 1), such that equations (1.9–1.10) hold.

An important subclass of free-steady-fall problems is given by the case ω = 0
describing a solid body S , which falls in a purely translational motion. The prob-
lem formulation for this case is subtle since it depends not only on the dimension
d of the problem but also on the geometrical properties of the solid.

At first, we assume that the equation G×ω = 0 has to be enforced and cannot
be eliminated by means of any special geometrical properties of the solid S or of
the flow configuration. For d = 3 such a translational problem is overdetermined
and will therefore not be further considered (see Table 1). For d = 2 however this
problem is well formulated in the sense that it involves six unknowns associated
to six scalar equations. It can be stated as follows:

Problem 1.2 (Stationary fall in 2D). Assume d = 2. Given ρ, σ = σ(v, p), |G| =
|g|, IS , mS , and ω := 0, find v, p, VC , and the direction Ĝ of G := |g|Ĝ, such
that equations (1.9–1.10) hold.

The system of equations (1.9–1.10) describes different classes of free-fall
regimes and configurations which are outlined on Table 1.

From the physical point of view, the reason of the overdetermination of the
translational free steady fall for d = 3 can be interpreted by the fact that additional
geometric properties of the solid body S have to prevent it from rotating (see
Galdi/Vaidya [25]). Following Galdi [24], we consider now translational free-steady-
fall problems for solid bodies with symmetry properties. Let {e1, e2, e3} be the
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Table 1. Number of physical unknowns in the fluid-rigid body
interaction problem depending on the setup.

Number of
Dimension ω Body-fluid setup unknowns scalar equations

3 �= 0 general 10 10
2 �= 0 not possible - -
3 = 0 overdetermined 9 10
2 = 0 general 6 6
3 = 0 symmetric 5 5
2 = 0 symmetric 4 4

canonical basis of R3. Assume that the solid body is homogeneous and symmetric
with respect to the axis e2. Further, the velocity field v and the pressure p
describing the terminal state of the fluid L are assumed to be symmetric with
respect to the axis e2. One can show (see Galdi/Vaidya [25]) that every sufficiently
smooth pair {v, p} satisfies the following equations:∫

∂S

σ(v, p) · n = η e2, η ∈ R, (1.11)∫
∂S

y × [σ(v, p) · n] = 0, (1.12)

V = αV e2, αV ∈ R. (1.13)

Therefore for the symmetric case, the equations (1.10) reduce to the following
scalar equation:

−
{∫

∂S

σ(v, p) · n ds
}

2
+ mS |g| = 0, (1.14)

since comparing the first equation of (1.10) with (1.11) implies G = ±|g|e2. We
choose the orientation G = −|g|e2 for the force of gravity. Under these assump-
tions of symmetry, the steady-free-fall problem can be formulated as follows:

Problem 1.3 (Symmetric steady fall in 2D). Given ρ, σ = σ(v, p), G = −|g|e2,
IS , mS , and ω := 0, find v, p , and the scalar quantity αV defining V := αV e2 ,
such that equations (1.9) and (1.14) hold.

Problem 1.3 is well formulated for both three or two dimensions.

1.3. Numerical approximation

We begin with some standard notation. For a domain Ω ⊂ Rd, let L2(Ω) denote
the Lebesgue space of square-integrable functions on Ω equipped with the inner
product and norm

(f, g)Ω :=
∫

Ω

fg dx, ‖f‖Ω := (f, f)1/2.
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Analogously, L2(∂Ω) denotes the space of square-integrable functions defined on
the boundary ∂Ω. The L2-functions with generalized (in the sense of distribu-
tions) first-order derivatives in L2(Ω) form the Sobolev space H1, while H1

0 ={
v ∈ H1(Ω), v|∂Ω = 0

}
and L2

0(D) :=
{
q ∈ L2(D) : (q, 1)D = 0

}
.

1.3.1. The general non-stationary case. We first consider the setting of formula-
tion (1.7–1.8) for the solution of the general free-fall problem. The unbounded
domain D := Rd\S filled by the liquid L is replaced by a bounded domain
Ω ⊂ Rd\S which is chosen to be large enough in order that the liquid may be
assumed to be at rest on Γ which denotes the boundary of Ω without ∂S. In the
remainder of this paper, Ω is chosen such that the impact of this simplification
on the quantities of interest is smaller than the discretization error. We refer to
Bönisch et al. [14, 15] for a detailed discussion on this issue.

The key ingredient for the derivation of a weak form of the equations is an
adequate choice of the velocity space allowing to eliminate the explicit formulation
of the hydrodynamic force and torque on the solid body needed for the kinematic
equations (1.10). This can be obtained by including the no-slip Dirichlet condition
in the velocity space:

H1(D) :=
{
(v, V, ω) : v ∈ [H1

loc(D)]d, V, ω ∈ R
d, v|∂S = V + ω × y

}
,

where D := Rd\S. The pressure p, defined only modulo constants, is assumed
to lie in the space L2

0(D) . For U := {(v, VC , ω), p, G}, Φ := {(ϕ, ϕ1, ϕ2), q, γ} ∈
H1(D) × L2

0(D) × Rd , we define the semi-linear form

A(U)(Φ) := ρ(((v − (VC + ω × y)) · ∇)v, ϕ)D + (ω × v, ϕ)D

− (p,∇ · ϕ)D + 2μ(D(v), D(ϕ))D − (ρG, ϕ)D

− ϕ1 · [mS(G − ω × VC)] + ϕ2 · [ω × (IS · ω)] − (∇ · v, q)D,

which is obtained by testing the equations (1.9–1.10) with Φ ∈ H1(D)×L2
0(D)×Rd

and by integration by parts of the diffusive terms and the pressure gradient.
Here, D(v) := 1

2 (∇v + (∇v)T ) is the deformation tensor. The equations (1.9)
modeling the balance of the linear and angular momentum can obviously be re-
covered by testing A(U)(Φ) with the functions Φ = {(0, ϕ1, 0), 0, 0} and Φ =
{(0, 0, ϕ2), 0, 0}), respectively. Further, we will use the bilinear form

m(∂tU, Φ) := (ρ∂tv, ϕ) + (mSV̇C , ϕ1) + (İS · ω̇, ϕ2) + (Ġ, γ).

Then, the variational formulation of the general non-stationary problem reads as
follows:

Problem 1.4. Find a time-differentiable field U(t) = {(v(t), VC(t), ω(t)), p(t), G(t)}
∈ H1(D) × L2

0(D) × Rd, such that

m(∂tU, Φ) + A(U)(Φ) = 0 ∀Φ ∈ H1(D) × L2
0(D) × R

d. (1.15)
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Remark 1.5. The advantages of the formulation (1.15) rely on the fact that the
force and torque on the solid body do not need to be computed explicitly. Numer-
ical instabilities arising for the computation of these lower-dimensional integrals
can therefore be avoided (see Hu et al. [37]).

Problem 1.4 is discretized in time by the so-called fractional-step-θ scheme
described, e.g., in the article Rannacher [47] in this volume; see also Rannacher
[46] and Turek [53]. The fluid-body interaction is handled by operator-splitting
leading to the following time-stepping process:

1. Extrapolate V n−1
C , ωn−1 to Ṽ n

C , ω̃n (explicit).
2. Compute vn, pn from the Navier–Stokes system by solving the three time

substeps using the Newton method with geometric multigrid solution of the
linear subsystems (implicit).

3. Compute the hydrodynamic forces acting on the body.
4. Update V n

C , ωn, Gn by applying one higher-order explicit time step to the
corresponding ODEs (explicit).

The stationary subproblems within this scheme are discretized in space by the
finite-element method on a truncated bounded domain Dh = ∪{K ∈ Th} , using
the Q2/Q1 Taylor–Hood element on a quadrilateral mesh with hanging nodes for
local mesh refinement (see Girault/Raviart [27] and also the article Rannacher [47]
in this volume). The finite-element spaces are given by

Wh
1 :=

{
((v, V, ω), p) ∈ ([C(Dh)]d × R

d × R
d) × C(Dh),

v|K ∈ [Q2]d, p|K ∈ Q1, v|∂S = V + ω × y
}
,

in which the no-slip Dirichlet condition is included, in order to avoid the explicit
formulation of the hydrodynamic force and torque on the solid body needed for
the kinematic equations. Here the polynom spaces Qk are to be understood in the
isoparametric sense. This approximation is consistent with third order, i.e., there
holds ‖v − Ihv‖ = O(h3) for the nodal interpolant Ihv of a sufficiently smooth
velocity field.

1.3.2. The special stationary cases. The particular features of the various for-
mulations of the stationary free-fall problem result in correspondingly simplified
approximate problems. We first consider the most general setup of Problem 1.1,
i. e., ω �= 0 and the related equations (1.9-1.10). For U := {(v, VC , ω), p}, Φ :=
{(ϕ, ϕ1, ϕ2), q} ∈ H1(D) × L2

0(D) , we define the semi-linear form

A1(U)(Φ) := ρ(((v − (VC + ω × y)) · ∇)v, ϕ)D + (ω × v, ϕ)D

− (p,∇ · ϕ)D + 2μ(D(v), D(ϕ))D − (ρ|g||ω|−1ω, ϕ)D

− ϕ1 · [mS(|g||ω|−1ω − ω × VC)] + ϕ2 · [ω × (IS · ω)] − (∇ · v, q)D.

A weak form of Problem 1.1 reads as follows:

Problem 1.6. Find U := {(v, VC , ω), p} ∈ H1(D) × L2
0(D), such that

A1(U)(Φ) = 0 ∀Φ ∈ H1(D) × L2
0(D). (1.16)
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For the weak formulation of Problem 1.2 and Problem 1.3, the formulation (1.16)
simplifies greatly since the free steady fall is then assumed to be translational. For
the velocity field we define

H2(D) :=
{
(v, V ) : v ∈ [H1

loc(D)]d, V ∈ R
d, v = V on ∂S

}
.

For U := {(v, VC), p, θ} ∈ H2(D) × L2
0(D) × R and Φ := {(ϕ, ϕ1), q, ϕ2} ∈

H2(D) × L2
0(D) × R, we define the semi-linear form

A2(U)(Φ) := ρ(((v − VC) · ∇)v, ϕ)D − (p,∇ · ϕ)D + 2μ(D(v), D(ϕ))D

− (∇ · v, q)D − ρ(G, ϕ) − mSG · ϕ1

+ (−y2 {σ(v, p) · n}1 + y1{σ(v, p) · n}2, ϕ2)∂S ,

where G is assumed to be G := |g|
(
cos θ
sin θ

)
. The weak formulation of Problem 1.2

may then be stated as follows:

Problem 1.7. Find U := {(v, VC), p, θ} ∈ H2(D) × L2
0(D) × R, such that

A2(U)(Φ) = 0 ∀Φ ∈ H2(D) × L2
0(D) × R. (1.17)

For Problem 1.3 the direction of the gravitation force G is not a variable anymore.
Further due to equation (1.13) the direction of VC is known to be collinear to e2.
For this configuration, we therefore define the space

H3(D) :=
{
(v, αV ) : v ∈ [H1

loc(D)]d, αV ∈ R, v = αV e2 on ∂S
}

, (1.18)

for the velocity field. For U := {(v, αV ), p}, Φ := {(ϕ, ϕ1), q} ∈ H3(D) × L2
0(D) ,

we define the semi-linear form

A3(U)(Φ) := ρ(((v − αV e2) · ∇)v, ϕ)D − (p,∇ · ϕ)D + 2μ(D(v), D(ϕ))D

− (∇ · v, q)D − (ρG, ϕ)D − mSϕ1e2 · G.

The weak formulation for Problem 1.3 may then be stated as follows:

Problem 1.8. Find U := {(v, αV ), p} ∈ H3(D) × L2
0(D), such that

A3(U)(Φ) = 0 ∀Φ ∈ H3(D) × L2
0(D). (1.19)

Using the finite-element spaces Wh
1 defined above, the discrete counterpart

of Problem (1.6) reads as follows:

Problem 1.9. Find Uh ∈ Wh
1 , such that

A1(Uh)(Φh) = 0 ∀Φh ∈ Wh
1 . (1.20)

Analogously, we define for Problem 1.7 and Problem 1.8, respectively, the following
finite-element spaces:

Wh
2 :=

{
(v, V, p, θ) ∈ [C(Ω)]d×R

d×C(Ω)×R, v|K ∈ [Q2]d, p|K ∈ Q1, v|∂S = V
}

,

Wh
3 :=

{
(v, αV , p) ∈ [C(Ω)]d×R×C(Ω), v|K ∈ [Q2]d, p|K ∈ Q1, v|∂S = αV e2

}
.

The discrete counterpart of Problem (1.7) reads
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Problem 1.10. Find Uh ∈ Wh
2 , such that

A2(Uh)(Φh) = 0 ∀Φh ∈ Wh
2 . (1.21)

Analogously, the discrete counterpart of Problem (1.8) reads

Problem 1.11. Find Uh ∈ Wh
3 , such that

A3(Uh)(Φh) = 0 ∀Φh ∈ Wh
3 . (1.22)

1.4. The issue of domain truncation

The truncation of the unbounded exterior domain to a bounded computational
domain with artificial (homogeneous) ‘outflow’ boundary conditions creates errors
which may be of significant size. To illustrate this point, we consider the particular
situation with the parameters body length l = 6 , body width w = 1 , shear
viscosity μ = 0.1 , and density ρ = 1. Figure 3 shows the dependence of the free-
fall velocity on the diameter dD of the truncated computational domain. We see
that satisfactory accuracy is achieved only for dD ≥ 400 units.
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Figure 3. Effect of truncated domain (diameter) on the free-fall
velocity of steady motion.

Asymptotic analysis shows that a ‘parabolic wake’ develops upstream and in
the crosswind direction the flow behaves like potential flow. Hence for modeling the
farfield behavior of the flow, one may use ‘outflow’ boundary conditions governed
by the Gaussian (heat) kernel

v ∼
(1

2
C′x1x

−3/2
2 e

− Ux2
1

4νx2 , C′x−1/2
2 e

− Ux2
1

4νx2

)T

, C′ := −Q
√

U

2
√

πν
,

and by the derivative Green function

v(x) ∼ Q

4π

x

|x|2 .

On this basis improved artificial boundary conditions can be derived for the
truncated computational domain, which allow for a significant reduction of its
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size without sacrificing accuracy. This is demonstrated in Figure 4. In this ap-
proach the choice of the truncation diameter dD can be adaptively controlled by
residual-based a posteriori error estimates and the resulting errors may be bal-
anced with the discretization error. For details, we refer to Wittwer [59], Bönisch
et al. [14, 15]). Other approaches for treating unbounded domains are discussed in
Tsynkov [51, 52].

Figure 4. Effect of domain truncation (left) and gain in accu-
racy by improved ‘outflow’ boundary conditions based on asymp-
totic analysis (right).

Remark 1.12. The effect of truncating exterior domains to bounded computational
domains has been analyzed in Bänsch/Dörfler [1] in the context of a posteriori
energy-norm error estimation.

1.5. Toward economical meshes

Our goal in this section is to derive an a posteriori error estimator to control the
accuracy of the most important output quantities in the free-fall problem, namely
the velocity and the orientation of the falling body. At the same time this gives us
strategies for an adequate mesh adaptation in order to obtain economical meshes.
The derivation of a posteriori error estimates for the approximation of the contin-
uous equation (1.16) by means of equation (1.20) relies on their interpretation as
an optimal control problem and their embedding into the framework described in
the article Rannacher [47] in this volume.

At first we recall from Becker/Rannacher [7] an abstract framework for the
a posteriori error analysis of Galerkin approximation of general nonlinear varia-
tional equations; see also Becker et al. [6] and Bangerth/Rannacher [2]. Let A(·)(·)
be a differentiable semi-linear form defined on a function space W . The deriva-
tives of A(·)(·) at a point u in direction δu, δv, δw are denoted by A′(u)(δu, ·),
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A′′(u)(δu, δv, ·), and A′′′(u)(δu, δv, δw, ·), e.g.,

A′(u)(δu, ϕ) := lim
τ→0

1
τ

{
A(u + τδu)(ϕ) − A(u)(ϕ)

}
, ϕ ∈ W.

Here, we use the convention that the dependence on the variables in the second
round brackets is always linear while that with respect to the variable in the first
brackets may be nonlinear. We assume that the variational equation

A(u)(ϕ) = 0 ∀ϕ ∈ W, (1.23)

has a solution u ∈ W . Suppose that the goal is to compute a certain physical
quantity related to u by a differentiable functional J(·) with derivatives denoted
by J ′(u)(δu), J ′′(u)(δu, δv), and J ′′′(u)(δu, δv, δw). Problem (1.23) is thought to
be approximated by a Galerkin method using finite-dimensional subspaces Wh ⊂
W parametrized by h ∈ R+. We assume that the associated discrete problems

A(uh)(ϕh) = 0 ∀ϕh ∈ Wh, (1.24)

also possess solutions uh ∈ Wh with J(uh) being the approximation to the target
quantity J(u).

The aim is now to derive a posteriori estimates for the error J(u) − J(uh).
To this end, we employ the Euler–Lagrange approach of optimal control theory.
The problem of computing J(u) from the solution of (1.23) can be equivalently
formulated as computing stationary points {u, z} ∈ W × W of the Lagrangian
functional

L(u)(z) := J(u) − A(u)(z), (1.25)

with the adjoint variable z ∈ W . Hence we seek solutions {u, z} ∈ W ×W to the
Euler–Lagrange system

A(u)(ϕ) = 0 ∀ϕ ∈ W, (1.26)

A′(u)(z)(ϕ) = J ′(u)(ϕ) ∀ϕ ∈ W. (1.27)

Notice that the first equation of this system is just the considered variational
equation (1.23). The Galerkin approximation of system (1.26–1.27) in the subspace
Wh ⊂ W seeks pairs {uh, zh} ∈ Wh × Wh satisfying

A(uh)(ϕh) = 0 ∀ϕh ∈ Wh, (1.28)

A′(uh)(zh)(ϕh) = J ′(uh)(ϕh) ∀ϕh ∈ Wh. (1.29)

To the approximate solutions uh ∈ Wh, we associate the residual

ρ(uh)(·) := −A(uh)(·), (1.30)

which is defined on all of W .

Proposition 1.13. For the Galerkin approximation (1.28)–(1.29) of the Euler–
Lagrange system (1.26)–(1.27), we have the a posteriori error representation

J(u) − J(uh) = ρ(uh)(z − ϕh) + Rh (1.31)
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for arbitrary elements ϕh ∈ Wh. The remainder Rh is quadratic in the error
e := u − uh and given by

Rh =
∫ 1

0

{
A′′(uh + se)(e, e, z)− J ′′(uh + se)(e, e)

}
s ds. (1.32)

Proof. The proof which relies on standard differential calculus can be found in
Becker/Rannacher [7]. �

This general approach will now be applied to the (steady) free-fall problem.
We recall the governing semi-linear form

A1(U)(Φ) := ρ(((v − (VC + ω × y)) · ∇)v, ϕ)D + (ω × v, ϕ)D

− (p,∇ · ϕ)D + 2μ(D(v), D(ϕ))D − (ρ|g||ω|−1ω, ϕ)D

− ϕ1 · [mS(|g||ω|−1ω − ω × VC)] + ϕ2 · [ω × (IS · ω)] − (∇ · v, q)D,

for arguments U = {(v, VC , ω), p} and Φ = {(ϕ, ϕ1, ϕ2), q} . The corresponding
derivative which occurs in the dual problem has the form

A′
1(U)(Ψ, Φ) := ρ(((ψ − (ψ1 + ψ2 × y)) · ∇)v, ϕ))

+ ρ(((v − (VC + ω × y)) · ∇)ψ, ϕ) + (ω × ψ, ϕ) + (ψ2 × v, ϕ)

− (r,∇ · ϕ) + 2μ(D(ψ), D(ϕ)) + ϕ1 · (ψ2 × VC + ω × ψ1)

+ ϕ2 ·
(
ψ2 × (IS · ω) + ω × (IS · ψ2)

)
− (∇ · ψ, q),

for arguments U = {(v, VC , ω), p} , Φ = {(ϕ, ϕ1, ϕ2), q} , and Ψ = {(ψ, ψ1, ψ2), r} .
At first, in order to avoid an overload of technicalities for the derivation, we con-
sider the setup of the simplest Problem 1.3 with the governing semi-linear form

A3(U)(Φ) := ρ(((v − αV e2) · ∇)v, ϕ)D − (p,∇ · ϕ)D + 2μ(D(v), D(ϕ))D

− (∇ · v, q)D − (ρG, ϕ)D − mSϕ1e2 · G.

For U := {(v, αV ), p} ∈ H3(D) × L2
0(D), the target functional for the control of

the fall velocity of the body S is chosen as

J3(U) := αV , U ∈ H3(D) × L2
0(D). (1.33)

The associated dual problem is given by

A′
3(U)(Φ, Z) = J ′

3(U)(Φ) ∀Φ ∈ H3(D) × L2
0(D), (1.34)

with the discrete analogue

A′
3(Uh)(Φh, Zh) = J ′

3(Uh)(Φh) ∀Φh ∈ Wh
3 . (1.35)

To the approximate solution Uh ∈ Wh
3 of the discrete Problem 1.11, we associate

the residual
ρ3(Uh)(·) := −A3(Uh)(·). (1.36)

Then, Proposition 1.13 gives us the following result:
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Proposition 1.14. Let U :={(v, αV ), p} ∈ H3(D)×L2
0(D) and Z :={(zv, zα), zp}∈

H3(D) × L2
0(D) be the solutions of (1.19) and (1.34), respectively. Further, let

Uh and Zh be their discrete counterparts, i.e., the solutions of (1.22) and (1.35),
respectively. Then, there holds the error representation

αV − αh
V = ρ3(Uh)(Z − Zh) + R3, (1.37)

where the remainder R3 is quadratic in the errors ev := v−vh and eα := αV −αh
V ,

R3 := ρ((ev · ∇)ev, zv)D − ρeα((e2 · ∇)ev, zv)D.

Proof. The identity (1.37) is a direct consequence of the general error representa-
tion (1.31) of Proposition 1.13. To identify the remainder R3, we note that

A′′
3 (Uh + sE)(E, E, Z) = 2ρ(((ev − eαe2) · ∇)ev, zv)D

J ′′
3 (Uh + sE)(E, E) = 0.

This completes the proof. �
Remark 1.15. The dual problem associated to equation (1.34) possesses, despite
its linear character, a structure similar to the primal Problem 1.8. The natural
boundary condition of (1.34) is indeed∫

∂S

[σ(zv, zp) · n] · e2 dσ = 1. (1.38)

which should be compared to (1.14).

For the more complex setup of Problem 1.6, one can derive an error represen-
tation similar to (1.37). In that context, however, due to the existence of additional
nonlinear terms for the description of the gravitation force G := |g||ω|−1ω, the re-
mainder becomes much more complicated. In order to control the fall velocity of
the solid body S , we choose the functional

J1(U) := 1
2 |VC |2, U := {(v, VC , ω), p} ∈ H1(D) × L2

0(D).

The associated dual problem is defined as

A′
1(U)(Φ, Z) = J ′

1(U)(Φ) ∀Φ ∈ H1(D) × L2
0(D), (1.39)

with its discrete analogue

A′
1(Uh)(Φh, Zh) = J ′

1(Uh)(Φh) ∀Φh ∈ Wh
1 . (1.40)

To the approximate solution uh ∈ Wh
1 of the discrete Problem 1.9, we associate

the residual
ρ1(Uh)(·) := −A1(Uh)(·).

Analogously to Proposition 1.14, we obtain the following result.

Proposition 1.16. Let U := {(v, VC , ω), p}, Z := {(zv, zVC , zω), zp} ∈ H1(D) ×
L2

0(D) be the solutions of (1.16) and (1.39), respectively. Further, let Uh and
Zh be their discrete counterparts in Wh

1 , i.e., the solutions of (1.20) and (1.40),
respectively. Then, we have the error representation

J1(U) − J1(Uh) = ρ1(Uh)(Z − Zh) + R1, (1.41)
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with a remainder R1 quadratic in the errors ev := v − vh, eVC := VC − V h
C , and

eω := ω − ωh,

R1 :=ρ((ev · ∇)ev, zv)D − ρ((eVC · ∇)ev, zv)D − ρ(((eω × y) · ∇)ev, zv)D

+ (eω × ev, zv)D − zVC · [eω × eVC ] + zω · [eω × (IS · eω)]

− 1
2 |e

VC |2 + O(|eω |2).

The term O(|eω |2) is due to the unknown direction of the gravitational force.

Proof. The error representation (1.41) is derived in the same way as that of Propo-
sition 1.14. It follows from the error representation derived in Proposition 1.13.
The expression of the remainder R1 follows from

A′′
1(uh + se)(e, e, z) = ρ(([ev − (eVC + eω × y)] · ∇)ev, zv)D

− 2zVC · [eω × eVC ] + 2zω · [eω × (IS · eω)] + O(|eω|2),
J ′′

1 (uh + se)(e, e) = |eVC |2.

This completes the proof. �

Notice that Proposition 1.16 can be trivially extended to the configuration
of Problem 1.7. In that context however, especially for stability analysis of the
terminal state, the error control of the orientation of the solid body may be of
great interest. Our proposed approach allows us indeed to control the orientation
of the solid body by means of the functional

J2(U) := θ, U := {(v, VC), p, θ} ∈ H2(D) × L2
0(D) × R.

The associated dual problem is defined as

A′
2(U)(Φ, Z) = J ′

2(U)(Φ) ∀Φ ∈ H2(D) × L2
0(D) × R, (1.42)

as well as its discrete analogue

A′
2(Uh)(Φh, Zh) = J ′

2(Uh)(Φh) ∀Φh ∈ Wh
2 . (1.43)

To the approximate solution Uh ∈ Wh
2 of the discrete problem 1.10 we associate

the residual
ρ2(Uh)(·) := −A2(Uh)(·). (1.44)

The discretization error on the orientation of the solid body S can be estimated
by means of the following proposition:

Proposition 1.17. Let U := {(v, VC), p, θ}, Z := {(zv, zVC ), zp, zθ} ∈ H2(D) ×
L2

0(D) × R be the solutions of (1.17) and (1.42), respectively. Further, let Uh

and Zh be their discrete counterparts, i.e., the solutions of (1.21) and (1.43),
respectively. Then, there holds

θ − θh = ρ2(Uh)(Z − Zh) + R2, (1.45)
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with a remainder R2 quadratic in the errors ev := v − vh, eVC := VC − V h
C , and

eθ := θ − θh,

R2 := ρ(((ev − eVC ) · ∇)ev, zv)D

+ 1
2 |g|

{
ρ
((cos θ

sin θ

)
, zv
)

D
+ mS

((cos θ

sin θ

)
· zVC

)}
|eθ|2.

Proof. The error representation (1.45) is a direct consequence of Proposition 1.13.
To identify the remainder R2, we note that

A′′
2 (Uh + sE)(E, E, Z) = 2ρ(((ev − eVC ) · ∇)ev, zv)D

+ ρ|g|
{((cos θ

sin θ

)
, zv
)

D
+ ρ−1mS

(
cos θ

sin θ

)
· zVC

}
|eθ|2,

J ′′
2 (Uh + sE)(E, E) = 0.

This completes the proof. �

Remark 1.18. We note that by the same approach as used above, goal-oriented
a posteriori error estimates can also be derived for the hydrodynamical force and
torque acting on the solid body S ,

Jψ1(U) :=
∫

∂S

[σ(v, p) · n] · ψ do, Jψ2×y(U) :=
∫

∂S

y × [σ(v, p) · n] · ψ do.

This allows one to control any weighted combination of both quantities. This
can be done by an adequate definition of the weights ψ1 and ψ2 of the trace
ψ = ψ1 + ψ2 × y , which determines the Dirichlet boundary condition for the
corresponding dual solution, zv|∂S = ψ .

Figure 5 shows adapted meshes obtained by using the DWR approach in the
simulation of the ‘steady fall problem’.

Figure 5. Adapted meshes – horizontal fall (left: D=800, right: D=100).
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1.6. Hydrodynamic stability

The stability of the steady-fall solutions û = {v̂, p̂} shown in Figure 6 has been
investigated by the linearized stability theory, i.e., by checking the eigenvalues of
the corresponding linearized stability eigenvalue problem,

A′
1(Û)(U, Φ) = λ(U, Φ) ∀Φ ∈ H1(D) × L2

0(D). (1.46)

If one eigenvalue has real part Reλ ≤ 0 , then the steady-state solution is (dy-
namically) unstable, i.e., it will not persist under arbitrarily small perturbations.
Otherwise, if all eigenvalues have real parts Reλ > 0 , then the steady-state so-
lution is called ‘linearly stable’; see Heuveline/Rannacher [30] The results for the
‘free-fall problem’ are shown in Table 2.

Figure 6. Stationary motion of a falling body in a Newtonian
fluid: unstable vertical orientation (left) and stable horizontal ori-
entation (right).

Table 2. Results of the stability analysis of the steady-free-fall problem.

2D case: μ = 0.1 Real part of the critical eigenvalue
domain diameter vertical orientation horizontal orientation

200 -0.82 0.81
800 -1.91 0.61
1000 -1.94 0.84

We see that in the 2D symmetric case for moderate Reynolds number (μ = 0.1),
there is one stable (horizontal body orientation) and one unstable (vertical body
orientation) solution. For very small Reynolds number, i.e., for μ ≥ 106, all orien-
tations correspond to (numerically) stable solutions.

1.7. Dynamics of non-stationary free fall

Finally, we report on some results obtained by the non-stationary version of the
numerical method described above. In a two-dimensional setting, we simulate the
free fall of a (symmetric) rod in a viscous liquid. We are interested in the different
types of steady and unsteady fall patterns for varying Reynolds numbers, a ques-
tion which has been experimentally studied in the literature, see Field et al. [22]
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and Belmonte et al. [8]. The experimental studies identify four different regimes
of “free fall”:

• Quasi-steady motion (low Re and moment of inertia).
• Oscillatory motion (higher Re and low moment of inertia).
• Tumbling motion (moderately large Re and very large moment of inertia).
• Chaotic motion (moderately large Re and moment of inertia).

All four types of motion could be realized by the numerical simulation, see Figure 7
(see [10] for more details).

−3−2−101
−70

−60

−50

−40

−30

−20

−10

0

−3−2−101
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

−5 0 5 10 15

−70

−60

−50

−40

−30

−20

−10

0

−30 −20 −10 0 10

−150

−100

−50

0

Figure 7. ‘Free-fall’ patterns of symmetric bodies (from left to
right): quasi-steady, oscillatory, tumbling, and ‘chaotic’ motion.

1.8. Open problems and further development

The free fall of a rigid body in a viscous fluid is a subject rich of theoretical as well
as computational and experimental problems. Though being relatively elementary
in its mathematical formulation this physical process poses many difficult ques-
tions, for example, for stationary and non-stationary fall patterns of non-symmetric
bodies, for criteria of the stability of corresponding quasi-stationary fall, for the
number of stable states depending on the geometry, and so on. Further, the study
of theses questions for various models of non-Newtonian fluids opens a whole new
field of interesting problems for research. An example is the question of the pos-
sible ‘tilt angle’ of a falling body depending on its shape and the nature of the
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liquid, which is currently being investigated theoretically and numerically as well
as experimentally, see Galdi et al. [26, 57].

2. Fluid-‘many rigid bodies-wall’ interaction

2.1. The stress-DLM method

Next, we describe the so-called ‘stress-DLM’ (Lagrange-multiplier-based fictitious-
domain method) formulation of Patankar at al. [45, 43, 44, 42] for the direct
numerical simulation of rigid particulate flows, particularly of the behavior of
many particles and the interaction of particles with rigid walls. For more details
on this material, we refer to Bönisch [9]. The idea of the stress-DLM method
is to assume that the entire fluid-particle domain is occupied by the fluid and
then to constrain the fluid inside the particle domain as a rigid body by setting
the deformation tensor equal to zero. The latter constraint is represented by a
Lagrange multiplier field in the particle domain, which can be interpreted as being
the displacement field of a linear elastic body. The velocity and the Lagrange
multiplier can be represented by an equal-order interpolation scheme in a finite-
element formulation, which unlike as in the pressure-velocity coupling does not
require extra stabilization.

Let Ω be the computational domain which includes both the fluid and the
particle domain and let P (t) be the particle domain. The governing equations for
fluid motion are given by:

ρf (∂tv + v · ∇v) + ∇p − μΔv = ρfg, in Ω \ P (t),

∇ · v = 0 in Ω \ P (t),

v = v∂(t) on ∂Ω(t), v = vi on ∂P (t),

v|t=0 = v0 in Ω \ P (0),

(2.1)

where ρf is the fluid density, U = {v, p} is the fluid velocity and pressure pair, vi

is the velocity of the fluid-particle interfaces ∂P (t) , and v0 is the initial velocity. In
the stress-DLM formulation the particles are treated as a fluid with an additional
constraint to impose the rigidity. Accordingly, the governing equations for particle
motion are:

ρs (∂tv + v · ∇v) + ∇p − μΔv = ρsg in P (t),

∇ · v = 0 in P (t),

∇ · D[v] = 0 in P (t), n · D[v] = 0 on ∂P (t),

v = vi on ∂P (t),

v|t=0 = v0 in P (0),

(2.2)

where ρs is the particle density. The third equation in (2.2) represents the rigidity
constraint, that sets the deformation tensor, D[v] := (∇v+∇vT )/2, in the particle
domain equal to zero. Then, a combined weak formulation of the fluid-particle
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equations (2.1–2.2) can be derived by introducing a distributed Lagrange multiplier
(DLM) Λ, which can be interpreted as an extra-stress inside the particle. With
the spaces

V0 := H1
0 (Ω)2, L0 := {q ∈ L2(Ω), (q, 1)Ω = 0},

the combined weak formulation reads as follows:

Problem 2.1. For t > 0, find v ∈ v∂ + V0, p ∈ L0, Λ ∈ H1(P (t))2 satisfying(
ρf (∂tv + v · ∇v − g), ϕ)Ω − (p,∇ · ϕ

)
Ω

+ (χ,∇ · v)Ω + μ(∇v,∇ϕ)Ω
+
(
(ρs − ρf )(∂tv + v · ∇v − g), ϕ

)
P (t)

+
(
D[Λ], D[ϕ]

)
P (t)

+
(
D[ψ], D[v]

)
P (t)

= 0,

(2.3)

for all ϕ ∈ V0, χ ∈ L0(Ω), ψ ∈ H1(P (t))2 .

The fluid-particle interface condition is internal to the combined system (2.3).
Hence the particle translational and angular velocities are not present in the com-
bined form.

2.2. The fractional-step scheme

Equation (2.3) is solved by means of an operator-splitting time-stepping scheme.
The algorithm is a variant of the scheme presented in Patankar et al. [45]:

Step 1: Calculation of the particle velocity. Given an approximation vn of v(tn),
find the translational velocity Un and the angular velocity Ωn of the particle,

MUn =
∫

P (tn)

ρsv
n dx, IΩn =

∫
P (tn)

r × ρsv
n dx, (2.4)

where M is the mass of the particle, and I denotes the moment of inertia.

Step 2: Explicit update of particle position/orientation. This is achieved by the
following subcycling procedure: Set Xn+1,0 := Xn. For k = 1, . . . , K:

X∗n+1,k = Xn+1,k−1 +
Δt

2K

(
Un + Un−1

)
,

Xn+1 = X∗n+1,k +
(Δt

K

)2 1
2M

(
F (Xn+1,k−1) + F (X∗n+1,k)

)
.

(2.5)

Set Xn+1 := Xn+1,K , and

An+1
c :=

1
Δt2

(
Xn+1 − Xn − 1

2
(
Un + Un−1

))
.

Here, F denotes the collision force acting on the particles to prevent them from
penetrating each other or the walls of the domain. Ac is the acceleration of the
particle due to collision. This term provides an additional body force acting on
the particle and is included in the combined momentum equation to be solved in
the subsequent steps.
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Step 3: Solve the flow equations on Ω. Find vn+1/2 ∈ v∂+V0(tn+1) and pn+1/2 ∈
L0, such that(

ρf (Δt−1{vn+1/2 − vn} + vn+1/2 · ∇vn+1/2 − g), ϕ
)
Ω

−
(
pn+1/2,∇ · ϕ)

)
Ω

+
(
χ,∇ · vn+1/2

)
Ω

+ μ
(
∇vn+1/2,∇ϕ

)
Ω

= 0,
(2.6)

for all {ϕ, χ} ∈ V0 × L2
0(Ω).

Step 4: Correct velocity in the particle domain. Find vn+1 ∈ v∂ + V0(tn+1) and
Λn+1 ∈ H1(P (tn+1))2, such that(

ρfΔt−1(vn+1 − vn+1/2), ϕ
)
Ω
−
(
ρsA

n+1
c , ϕ

)
P (tn+1)

+
(
D[Λn+1], D[ϕ]

)
P (tn+1)

+
(
D[ψ], D[vn+1]

)
P (tn+1)

+
(
(ρs − ρf )(Δt−1{vn+1 − vn} + vn+1/2 · ∇vn+1/2 − g), ψ

)
P (tn+1)

= 0,

(2.7)

for all {ϕ, ψ} ∈ V0 × H1(P (tn+1))2. The last fractional step, Equation (2.7),
adds computational cost to the solution procedure. To avoid this, Patankar et al.
[41, 49]) proposed a fast projection scheme that eliminates the need to solve (2.7)
by means of an iterative procedure.

2.2.1. Mesh adaptation in the stress-DLM method. In its original form the stress-
DLM method has been described on uniform meshes in order to facilitate the use
of special fast-solution algorithms and to keep the cost of the solution process low.
However, this may either lead to insufficient resolution of the flow near the particle
boundary and therefore to inaccurate representation of the particle interaction
or to enormous costs when handling many particles on a very fine mesh. The
alternative proposed in this article is to use locally adapted meshes, which still
have a good degree of regularity. The refinement zones of the mesh are attached to
the particles following purely geometrical criteria and are moved according to the
movement of the particles. A further step of adaptation is applied in the numerical
integration of bilinear forms along the particle-liquid interface. Here, the ususal
4-point Gauß rule is replaced by a summed Newton–Cotes rule, in order to cope
with the discontinuity in the density across this interface, see Figure 8. This simple
approach has proven to be very effective in several numerical tests.

2.2.2. Test case ‘Dancing of Two Particles’. For validation the stress-DLM method
has been applied for simulating the 2D motion of two rigid bodies subject to
gravity in a vertical channel. Figure 9 shows the result where ‘drafting’, ‘kissing’
and ‘tumbling’ are seen as can be observed in corresponding experiments.

2.2.3. Test case ‘Fall of Many Particles Through a Hole’. Next, the case of groups
of particles is considered. Figure 10 shows the 2D motion of a number of circular
particles subject to gravity in a vertical channel with a constriction. The initial
‘pyramid-like’ positioning of the particles is depicted on the left-hand side of Figure
10. The setup is slightly asymmetric (One particle on the right is missing.) in
order to avoid symmetry-breaking being triggered by numerical instabilities. The
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Particle boundary

Summed rule
Gauss(4) rule

Figure 8. Mesh adaptivity in the stress-DLM method for a
single particle and selective numerical integration along the fluid-
particle interfaces.

Figure 9. Free fall of two bodies in a viscous Newtonian liquid:
‘drafting’, ‘kissing’ and ‘tumbling’ phenomena are observed.

simulation was done with 41 particles of diameter 0.05 on dynamically adapted
meshes with about 20, 000 − 40, 000 cells and minimal mesh size hmin ≈ 0.005 .
The finest mesh was obtained by 4 global and 3 additional local refinement steps.
This finest mesh would correspond to a globally refined mesh with about 440, 000
cells. The (uniform) time step was Δt = 0.005 , i.e., 2000 time steps were needed
for the computation over the relevant time interval [0, 10] . The whole simulation
took about 1 day on an AMD Athlon64 3500+ computer. This time could be
significantly reduced by optimizing the components of the multigrid solver used
within each time step.
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Figure 10. Free fall of many bodies in a viscous Newtonian liq-
uid: sketch of the initial positions of the particles (left), temporal
evolution of the flow field and particle positions (upper row) and
corresponding adapted meshes (lower row).

2.3. Open problems and further development

The particular version of the stress-DLM method described above can also be
used in 3D and can be naturally generalized to particles of any general shape.
However, the restriction to simple particles with high degree of symmetry results
in a drastic reduction of computational work, which allows for treating a larger
number (≥ 103) of particles; see Tezduyar et al. [50] and Wan/Turek [56].
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3. Fluid-‘elastic structure’ interaction

As a prototypical example of a fluid-structure interaction (FSI) problem, we con-
sider the benchmark ‘Vibrating Thin Plate’, the configuration of which is shown
in Figure 11; see Hron/Turek [34] and Dunne/Rannacher [21].

Figure 11. Configuration of the FSI benchmark ‘Vibrating Thin Plate’.

The model characteristics used in this FSI example are that of an incompressible
Newtonian fluid and of a compressible St. Venant–Kirchhoff (STVK) or an incom-
pressible neo-Hookean (INH) material for the structure. The numerical approaches
used for the simulation are summarized as follows:

– ‘Monolithical’ arbitrary Lagrangian–Eulerian (ALE) or Eulerian–Eulerian
variational formulation.

– Galerkin finite-element method for fluid and structure.
– Mesh adaptation by the DWR approach based on numerically computed

model sensitivities for the Galerkin residual as ‘model perturbation’.
– Time stepping by the ‘fractional-step-θ’ scheme.
– Linearization by Newton-type iteration for fluid and structure part and func-

tional iteration for ‘interface’-capturing.
– GMRES with multigrid-preconditioning for the algebraic linear subproblems.

3.1. Solution methods for FSI problems

We briefly recall the common approaches for solving FSI problems.

(I) Combining the Eulerian and the Lagrangian setting involves conceptional diffi-
culties. The time-varying fluid domain depends on the deformation of the structure
domain. In turn, for determining the deformation of the structure the fluid bound-
ary values (velocity and normal stress) are needed. In the partitioned approach
each of the two subproblems is solved separately (using standard methods/codes),
and so iterated to a solution of the coupled system.
(II) The ‘arbitrary Lagrangian–Eulerian’ (ALE) method is based on a ‘monolithi-
cal’ variational formulation of the FSI problem. For representing the fluid-structure
interface an auxiliary coordinate transformation ζf is introduced, which is deter-
mined by a variational equation. With its help the fluid problem is rewritten as
one on the reference domain which is fixed in time. All computations are done on
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t n
t n+1

Fluid

Structure

Fluid

Structure

t n+2

Fluid
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Figure 12. Partitioned approach: Lagrangian and Eulerian
frameworks iteratively coupled.

the reference domain/mesh and as a part of the computation the function ζf has
to be determined at each time step; see Hron/Turek [35].

Ω̂f Ω̂f Ω̂f

Ω̂s Ω̂s Ω̂s

ζn
f ζn+1

f
ζn+2

f

Ωn
f Ωn+1

f
Ωn+2

f

Ωn
s Ωn+1

s Ωn+2
s

tn tn+1 tn+2

Figure 13. Transformation approach: both frameworks Lagrangian.

(III) Both, the partitioned and the transformation approach to overcome the Euler-
Lagrange discrepancy, explicitly track the fluid-structure interface by mesh adjust-
ment and are referred to as ‘interface tracking’ methods. The structure problem
is left in its natural Lagrangian setting. An alternative is to treat the FSI prob-
lem in a purely Eulerian setting such as commonly used for describing two-phase
flows; see Lui/Walkington [40]. A phase variable is employed on the fixed mesh
to distinguish between the different phases, liquid and solid. This approach to
identifying the fluid-structure interface is referred to as ‘interface capturing’. This
approach is similar to the Level Set (LS) method but is realized in a form which
avoids the need for reinitialization due to smearing effects. We emphasize that
both approaches, the ALE and the Eulerian method, are based on ‘monolithical’
variational formulations of the FSI problem.

Typical results of a simulation based either on the ALE or the purely Eulerian
approach are shown in Figure 14.

3.2. Variational formulation

We begin with introducing some notation, which slightly differs from the one
occurring above and will be used throughout the following presentation. By Ω ⊂
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Figure 14. Results for the FSI benchmark ‘Vibrating Thin
Plate’ obtained by the ALE (left) and the Eulerian (right) ap-
proaches.

R
d ( d = 2 or d = 3 ), we denote the domain of definition of the FSI problem. The

domain Ω is supposed to be time-independent but to consist of two possibly time-
dependent subdomains, the fluid domain Ωf (t) and the structure domain Ωs(t).
Unless needed, the explicit time-dependency will be skipped in this notation. The
boundaries of Ω , Ωf , and Ωs are denoted by ∂Ω, ∂Ωf , and ∂Ωs, respectively.
The common interface between Ωf and Ωs is Γi(t), or simply Γi. The initial
structure domain is denoted by Ω̂s. Spaces, domains, coordinates, values (such
as pressure, displacement, velocity) and operators associated to Ω̂s (or Ω̂f ) will
likewise be indicated by a ‘hat’.

Partial derivatives of a function f with respect to the i-th coordinate are
denoted by ∂if , and the total time-derivative by dtf . The divergences of vectors
and tensors are written as divf =

∑
i ∂ifi and (divF )i =

∑
j ∂jFij . The gradient

of a vector-valued function v is the tensor (∇v)ij = ∂jvi. By [f ], we denote the
jump of a (possibly discontinuous) function f across an interior boundary, where
n is always the unit vector n at points on that boundary.

For a set X , we denote by L2(X) the Lebesque space of square-integrable
functions on X equipped with the usual inner product and norm

(f, g)X :=
∫

X

fg dx, ‖f‖X = (f, f)1/2
X ,

respectively, and correspondingly for vector- and matrix-valued functions. Mostly
the domain X will be Ω, in which case we will skip the domain index in products
and norms. For Ωf and Ωs, we similarly indicate the associated spaces, products,
and norms by a corresponding index ‘f’ or ‘s’. Let LX := L2(X) and L0

X :=
L2(X)/R . The functions in LX (with X = Ω, X = Ωf (t), or X = Ωs(t)) with
first-order distributional derivatives in LX make up the Sobolev space H1(X).
Further, H1

0 (∂XD, X) = {v ∈ H1(X) : v|∂XD
= 0}, where ∂XD is that part of

the boundary ∂X at which Dirichlet boundary conditions are imposed. Further,
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we will use the function spaces VX := H1(X)d , V 0
X := H1

0 (X)d , and for time-
dependent functions

LX := L2[0, T ; LX], VX := L2[0, T ; VX ] ∩ H1[0, T ; V ∗
X ],

L0
X := L2[0, T ; L0

X], V0
X := L2[0, T ; V 0

X ] ∩ H1[0, T ; V ∗
X ],

where V ∗
X is the dual of V 0

X . Again, the X-index will be skipped in the case of
X = Ω, and for X = Ωf and X = Ωs a corresponding index ‘f’ or ‘s’ will be
used.

The fluid part is described by the usual ‘incompressible’ Navier–Stokes equa-
tions naturally written in the Eulerian frame using a time-dependent flow do-
main Ωf (t). The unknowns are the pressure field pf ∈ Lf and the velocity field
vf ∈ vD

f + Vf .

Problem 3.1 (Fluid model). Find {vf , pf} ∈ {vD
f +V0

f}×Lf , such that vf (0) = v0
f ,

and

(ρf (∂t + vf · ∇)vf , ψv)f + (σf , ε(ψv))f + (∇ · vf , ψp)f = ff (ψv), (3.1)

for all {ψv, ψp} ∈ V 0
f × Lf , where

σf := −pfI + 2ρfνf ε(vf ), ε(v) := 1
2 (∇v + ∇vT ).

The structure part is described by the Lamé–Navier equations naturally writ-
ten in the Lagrangian frame. We consider an ‘incompressible neo-Hookean’ (INH)
and a compressible ‘St. Venant–Kirchhoff’ (STVK) material. The density of the
structure is ρs. The material elasticity is usually described by the Lamé coefficients
λs, μs. The model is formulated in Lagrangian coordinates in the domain Ω̂s with
the scalar pressure field p̂s ∈ L̂f and the vector displacement and velocity fields
ûs ∈ ûD

s + V̂0
s , v̂s ∈ v̂D

s + V̂0
s .

Problem 3.2 (INH structure model). Find {ûs, v̂s, p̂s} ∈ {ûD
s + V̂0

s} × {v̂D
s + V̂0

s} ×
L̂s, s.t. ûs(0) = û0

s , v̂s(0) = v̂0
s , and

(ρsdtv̂s, ψ̂
u)ŝ + (σ̂sF̂

−T , ε̂(ψ̂u))ŝ = f̂s(ψ̂u),

(dtûs − v̂s, ψ̂
v)ŝ = 0,

(detF̂ , ψ̂p)ŝ = (1, ψ̂p)ŝ,

(3.2)

for all {ψ̂u, ψ̂v, ψ̂p} ∈ V̂ 0
s × V̂ 0

s × L̂s , where

F̂ := I + ∇̂ûs, σ̂s := −p̂sI + μs(F̂ F̂T − I), ε̂(ψ̂u) := 1
2 (∇̂ψ̂u + ∇̂ψ̂uT ).

Problem 3.3 (STVK structure model). Find {ûs, v̂s} ∈ {ûD
s + V̂0

s} × {v̂D
s + V̂0

s },
such that ûs(0) = û0

s , v̂s(0) = v̂0
s , and

(ρsdtv̂s, ψ̂
u)ŝ + (Ĵ σ̂s F̂−T , ε̂(ψ̂u))ŝ = f̂s(ψ̂u),

(dtûs − v̂s, ψ̂
v)ŝ = 0,

(3.3)
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for all {ψ̂u, ψ̂v} ∈ V̂ 0
s × V̂ 0

s , where

F̂ := I + ∇̂ûs, Ĵ := detF̂ , Ê := 1
2 (F̂T F̂ − I),

ε̂(ψ̂u) := 1
2 (∇̂ψ̂u + ∇̂ψ̂uT ), σ̂s := Ĵ−1F̂ (λs(trÊ)I + 2μsÊ)F̂T .

For writing the structure equations in the Eulerian frame, we use the (inverse)
displacement function D(x) of points in the deformed domain Ωs back to points
in the initial domain Ω̂s,

D̂ : Ω̂s → Ωs, D̂(x̂) = x̂ + ûs = x,

D : Ωs → Ω̂s, D(x) = x − us = x̂.

Since det∇̂D̂ = detF̂ �= 0, the displacements D and D̂ are well defined. With
this notation, we introduce the Eulerian pressure ps, displacement us,

ps(x) = p̂s(D(x)) = p̂s(x̂), us(x) = ûs(D(x)) = ûs(x̂).

Here, the difficulty is that us is only implicitly determined by ûs , since D(x)
also depends on us. This leads us to introduce the ‘set of initial positions’ (IP set)
Φ(t, Ω) of all points of Ω at time t . If we look at a given ‘material’ point at the
position x ∈ Ω and the time t ∈ (0, T ], then the value Φ(t, x) will tell us what
the initial position of this point was at time t = 0. These points are transported in
the full domain with a certain velocity w . The convection velocity in the structure
will be the structure velocity itself, w|Ωs

= vs, but in the fluid domain a harmonic
(or biharmonic) extension is used for stability reasons. With this notation, the
mapping Φ is determined by the following transport equation for the IP set:

Problem 3.4 (IP set equation). Find Φ ∈ Φ0 + V0, such that

(∂tΦ + w · ∇Φ, ψ) = 0 ∀ψ ∈ V 0, (3.4)

where Φ0 is a suitable extension of the Dirichlet data along the boundaries,

Φ(0, x) = x, x ∈ Ω, Φ(t, x) = x, {t, x} ∈ (0, T ] × ∂Ω.

This means that x̂+ û(t, x̂) = x, for any point with the initial position x̂ and the
position x later at time t . Since x̂ = Φ(0, x̂) = Φ(t, x) and û(t, x̂) = u(t, x), it
follows that Φ = x − u . Using this in the IP set transport equation yields

(∂tu − w + w · ∇u, ψ) = 0 ∀ψ ∈ V 0. (3.5)

Differentiating the identity D(D̂(x̂)) = x̂ yields

(I −∇u)(I + ∇̂û) = I ⇔ ∇̂û = (I −∇u)−1 − I.

Thus, the Cauchy stress tensor σs can be written for INH and STVK materials
in the Eulerian framework as follows:

σs =

{
−psI + μs(FFT − I) (INH material),
J−1F (λs(trE)I + 2μsE)FT (STVK material),

F = I + ∇̂û = (I −∇u)−1, J = detF, E = 1
2 (FT F − I).
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This leads us to the following Eulerian formulation of the structure equations:

Problem 3.5 (Eulerian INH structure model). Find {us, vs, ps} ∈ {uD
s + V0

s } ×
{vD

s + V0
s } × Ls, such that us(0) = u0

s , vs(0) = v0
s ,

(ρs(∂tvs + vs · ∇vs), ψu)s + (σs, ε(ψu))s = fs(ψu),

(∂tus − vs + vs · ∇us, ψ
v)s + (∇ · vs, ψ

p)s = 0,
(3.6)

for all {ψu, ψv, ψp} ∈ V 0
s × V 0

s × Ls where σs := −psI + μs(FFT − I) ,

F := (I −∇u)−1, ε(ψu) = 1
2 (∇ψu + ∇ψuT ).

Problem 3.6 (Eulerian STVK structure model). Find {us, vs} ∈ {uD
s +V0

s}×{vD
s +

V0
s }, such that us(0) = u0

s , vs(0) = v0
s ,

(ρs(∂tvs + vs · ∇vs), ψu)s + (σs, ε(ψu))s = fs(ψu),

(∂tus − vs + vs · ∇us, ψ
v)s = 0,

(3.7)

for all {ψu, ψv} ∈ V 0
s × V 0

s , where σs := J−1F (λs(trE)I + 2μsE)FT ,

F := (I −∇u)−1, J := detF, E := 1
2 (FT F − I).

Now, we can combine the Eulerian formulations of the fluid and structure part
to a monolithical variational formulation of the coupled FSI problem in Eulerian
frame. The IP set function Φ allows us to determine the characteristic functions
χs and χf := 1 − χs of structure and fluid domain, respectively, by

χf (t, x) =

{
1, Φ(t, x) = x − u(t, x) ∈ Ω̂f \ Γ̂i.

0, Φ(t, x) = x − u(t, x) ∈ Ω̂s.

The fluid-structure interface is implicitly determined by

Γi(t) = {x ∈ Ω, x − u(x, t) ∈ Γ̂i}. (3.8)

The evaluation of Φ requires a continuation of the displacement and its gradient
from the structure domain into the fluid domain. The value of u in the fluid
domain is determined by the choice of the convection velocity w , for which we
use the harmonic continuation of the structure velocity to Ω . In the case of the
compressible STVK material, we also use the harmonic continuation of the fluid’s
pressure into the structure domain.

Problem 3.7 (Eulerian formulation of FSI problem). Find {v, w, u, p}∈{vD+V0}×
V0 × V0 × L, such that v(0) = v0, u(0) = u0, and

(ρ(∂tv + v · ∇v), ψ) + (σ, ε(ψ)) = f(ψ) ∀ψ ∈ V 0,

(∇ · v, χ) = 0 ∀χ ∈ L (INH material),

(χf∇ · v, χ) + (χsαp∇p,∇χ) = 0 ∀χ ∈ L (STVK material),

(∂tu − w + w · ∇u, ψ) = 0 ∀ψ ∈ V 0,

(χs(w − v), ψ) + (χfαw∇w,∇ψ) = 0 ∀ψ ∈ V 0,

(3.9)
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where αp, αw are positive constants, χs = 1 − χf , and

χf :=

{
1, x − u ∈ Ω̂f \ Γ̂i,

0, x − u ∈ Ω̂s,
ρ/σ :=

{
ρf/σf in Ωf ,

ρs/σs in Ωs,

σf := −pI + 2ρfνf ε(v),

σs :=

{
−pI + μs(FFT − I) (INH material),
J−1F (λs(trE)I + 2μsE)FT (STVK material),

F := (I −∇u)−1, J := detF, E := 1
2 (FT F − I).

In some situations the solution of an FSI problem may tend to a ‘steady
state’ {v∗, u∗, w∗} as t → ∞ (e.g., driven cavity)

v∗f := lim
t→∞

v|Ωf
, v∗s ≡ 0, w∗ ≡ 0,

u∗
s := lim

t→∞
u|Ωs

, u∗
f = ulim

f := lim
t→∞

u|Ωf
.

Here, u∗
f depends on w|Ωf

as harmonic extension of w|Ωs
.

Problem 3.8 (Eulerian formulation of the ‘stationary’ FSI problem). Find {u, v, p}
∈ {uD + V 0} × {vD + V 0} × L , such that

(ρv · ∇v, ψ) + (σ, ε(ψ)) = 0 ∀ψ ∈ V 0,

(∇ · v, χ) = 0 ∀χ ∈ L (INH material),

(χf∇ · v, χ) + (χsαp∇p,∇χ) = 0 ∀χ ∈ L (STVK material),

(χf (u − ulim
f ), ψ) + (χsv, ψ) = 0 ∀ψ ∈ V 0.

In the following Table 3, we summarize the two monolithical variational for-
mulations of the FSI problem, the (arbitrary) Lagrangian–Eulerian (ALE) and the
Eulerian–Eulerian formulation.

3.3. Numerical approximation

The Galerkin discretization is based on a variational formulation. For arguments
U = {v, w, u, p} and Ψ = {ψv, ψw, ψu, ψp} ∈ W := [V ]4, we introduce the space-
time semi-linear form

A(U)(Ψ) :=
∫ T

0

{
(ρ(∂tv + v · ∇v), ψv) + (σ(v), ε(ψv))

+

{
(∇ · v, ψp) (INH material)
(χf∇ · v, ψp) + (χsαp∇p,∇ψp) (STVK material)

− (f, ψv) + (∂tu − w + w · ∇u, ψu)

+ (χs(w − v), ψw) + (χfαw∇w,∇ψw)
}

dt.

Then, the variational formulation of the FSI problem in the Eulerian frame reads:
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———————————————————————————————————-
Table 3. Variational formulations of the FSI problem.

I) ALE formulation (INH):

Ω̂ = Ω̂f ∪ Γ̂i ∪ Ω̂s

Find {v̂, û, p̂} for v̂(0), û(0) with

(ρĴ∂tv̂ + χ̂fρĴ(∂tû − v̂) · ∇̂v̂F̂−1, ψ)

+ (Ĵ σ̂F̂−T , ε̂(ψ)) = f̂(ψ)

(χ̂s(Ĵ − 1) + χ̂f ∇̂ · (Ĵ v̂ · F̂−T ), ξ) = 0

(∂tû − χ̂sv̂, ψ) + (χ̂f ∇̂û, ∇̂ψ) = 0

(harmonically continued ûs into Ωf )

for all test fields {ψ, ξ, ψ, ψ}, where

χ̂s(x̂) :=

{
0, x̂ ∈ Ω̂f

1, x̂ ∈ Ω̂s ∪ Γ̂i

χ̂f := 1−χ̂s

σ̂ :=

{
−p̂f + μf (∇̂v̂f F̂−1+F̂−T ∇̂v̂T

f )
−p̂s + μs(F̂ F̂T −I) in Ω̂s ∪ Γ̂i

F̂ := I + ∇̂û, Ĵ := detF̂

II) Eulerian formulation (INH):

Ω = Ωf ∪ Γi ∪ Ωs

Find {v, w, u, p} for v(0), u(0) with

(ρ∂tv + ρv · ∇v, ψ) + (σ, ε(ψ)) = f(ψ)

(∇ · v, ξ) = 0

(∂tu − w + w · ∇u, ψ) = 0

(χs(w − v), ψ) + (χf∇w,∇ψ) = 0

(harmonically continued ws into Ωf )

for all test fields {ψ, ξ, ψ, ψ}, where

χs(x) :=

{
0, x−u ∈ Ω̂f

1, x−u ∈ Ω̂s ∪ Γ̂i

χs := 1 − χf

σ :=

{
−pfI + 2μf ε(vf ) in Ωf

−psI + μs(FFT − I) in Ωs

F := (I −∇u)−1

———————————————————————————————————-

Problem 3.9. Find U ∈ UD + W0 , such that

A(U)(Ψ) = 0 ∀Ψ ∈ W0, (3.10)

where UD is an appropriate extension of the Dirichlet boundary and initial data
and the space W0 is defined by

W0 := {Ψ ∈ [V0]4, ψu(0) = ψv(0) = 0}.

The spatial discretization is by ‘equal-order’ Q1 finite elements (d-linear shape
functions) for all unknowns and the time discretization by the cG(r) (‘continuous’
Galerkin or Crank–Nicolson scheme) method, with r = 1 . The corresponding
finite-element spaces for velocity and pressure on meshes Th are denoted by Vh .
This spatial discretization needs stabilization in order to compensate for the lack-
ing ‘inf-sup stability’. As an alternative to the usual SDLS (Streamline Diffusion
Least-Squares) or SUPG (Streamline Upwinded Petrov Galerkin) stabilization of
Hughes et al. [38, 39], we suggest the LPS (Local Projection Stabilization) method
proposed in Becker/Braack [3] and Braack/Burman [16], which has several advan-
tages over the other stabilization methods. For formulating this method, we use
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the cellwise weighted L2-scalar product

(ϕ, ψ)δ :=
∑

K∈Th

δK (ϕ, ψ)K ,

δK := α
(
χfρfνfh−2

K +χsμsh
−2
K + βρ|vh|∞;Kh−1

K + γ|wh|∞;Kh−1
K

)−1
.

Further, we define the ‘fluctuation operator’ πh : Vh → V2h on the finest mesh
level Th by πh = I − P2h , where P2h : Vh → V2h is the L2-projection. For this
construction it is assumed that the meshes Th always consist of regular 2 × 2-
patches of cells of width hT , such that the spaces Vh and V2h are well defined.
With this notation, we define the stabilization form

Sδ(Uh)(Ψh) :=
∫ T

0

{
(∇πhph,∇πhψp

h)δ + (ρvh · ∇πhvh, vh · ∇πhψv
h)δ

+ (wh · ∇πhuh, wh · ∇πhψu
h)δ

}
dt.

In this form the first term stabilizes the fluid pressure, the second term the struc-
ture pressure, the third term the transport in the flow model, and the fourth
term the transport of the displacement uh . For more details see also the article
Rannacher [47] in this volume.

Now, the finite-element approximation of the variational problem (3.10) is
formulated with discrete analogues W0

h of the spaces W0 as follows:

Problem 3.10 (Finite-element approximation of the FSI problem). Find Uh ∈
UD

h + W0
h, such that

Aδ(Uh)(Ψh) := A(Uh, Ψh) + Sδ(Uh)(Ψh) = 0 ∀Ψh ∈ W0
h. (3.11)

For computing steady-state solutions, we use a pseudo-time stepping tech-
niques based on the simple (first-order) backward Euler scheme. The solution of
the nonlinear algebraic systems in each of the (implicit) time steps is achieved by
a standard Newton method with adaptive step-length selection. The stabilization
terms and the terms involving the characteristic function χf , determining the po-
sition of the interface, are treated by a simple functional iteration. The resulting
linear subproblems are solved by GMRES with preconditioning by a geometric
multigrid method with block-ILU smoothing.

3.4. Mesh adaptation

Since the finite-element approximation (3.11) of the FSI problem is based on a
‘monolithical’ variational formulation, we can apply the concept of the DWR (Dual
Weighted Residual) method described above for organizing automatic mesh adap-
tation. Below, we will compare the performance of three different ways of mesh
refinement:

• uniform mesh refinement using several steps of uniform (edge) bisection of a
coarse initial mesh,
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• zonal mesh refinement using a purely geometry-based criterion by marking
all cells for refinement which have certain prescribed distances from the fluid-
structure interface,

• local mesh refinement driven by a systematic residual-based criterion (DWR
method) by marking all cells for refinement which have error indicators above
a certain threshold.

We recall the basics of the DWR method in a simplified form applied to the
present situation of finite-element approximation of the FSI problem. For details,
see Becker/Rannacher [7] and the article Rannacher [47] in this volume.

If the value J(U) for some (linear) functional J(·) is be computed, the
approximation is to be controlled in terms of the error

|J(U) − J(Uh)| = |J(U − Uh)| ≤ TOL.

We assume the existence of the directional derivative

A′(U)(Φ, Ψ) := lim
τ→0

1
τ

{
A(U + τΦ)(Ψ) − A(U)(Ψ)

}
, Φ, Ψ ∈ W0,

and introduce the bilinear form

L(U, Uh)(Φ, Ψ) :=
∫ 1

0

A′(Uh + s(U − Uh))(Φ, Ψ) ds.

Let Z ∈ W0 be the solution of the ‘dual problem’

L(U, Uh)(Φ, Z) = J(Φ) ∀Φ ∈ W0. (3.12)

the existence of which is assumed. Then, taking Φ = U − Uh ∈ W0 yields the
error representation

J(U − Uh) = L(U, Uh)(U − Uh, Z)

=
∫ 1

0

A′(Uh + s(U − Uh))(U − Uh, Z) ds = A(U)(Z) − A(Uh)(Z).

Further, using the perturbed Galerkin orthogonality property

A(U)(Ψh) − A(Uh)(Ψh) = ‘STAB′, Ψ ∈ W0
h,

we obtain

J(U − Uh) = A(U)(Z − Ψh) − A(Uh)(Z − Ψh) − Sδ(Uh)(Ψh)

= F (Z − Ψh) − A(Uh)(Z − Ψh) − Sδ(Uh)(Ψh)

=: ρ(Uh)(Z − Ψh) + ‘STAB′

=
∑

K∈Th

ρK(Uh)(Z − Ψh) + ‘STAB′,



Numerics of Fluid-Structure Interaction 367

where Ψh ∈ W0 is an arbitrary element. By cellwise integration by parts and
rearranging boundary terms, we obtain

|J(U − Uh)|

≈
∑

K∈T̃h

{
(∇ · σ(Uh) − ρvh · ∇vh, zv − zv

h)K − (1
2 [σ(Uh) · n], zv − zv

h)∂K

− (χf∇ · vh + χs∇ · uh, zp − zp
h)K − (χf (uh − uf ) + χsvh, zu − zu

h)K

}
,

and estimating further

|J(U − Uh)| ≈
∑

K∈T̃h

ηK , ηK :=
4∑

i=1

ρ
(i)
K ω

(i)
K , (3.13)

with the residual terms and weights

ρ
(1)
K := ‖∇ · σ(Uh) − ρvh · ∇vh‖K , ω

(1)
K := ‖Z − Zh‖K ,

ρ
(2)
K := 1

2h
−1/2
K ‖[σ(Uh) · n]‖∂K , ω

(2)
K := h

1/2
K ‖zv − zv

h‖∂K ,

ρ
(3)
K := ‖χf∇ · vh + χs∇ · uh‖K , ω

(3)
K := ‖zp − zp

h‖K ,

ρ
(4)
K := ‖χf (uh − uf ) + χsvh‖K , ω

(4)
K := ‖zu − zu

h‖K .

The steps from this ‘theoretical’ to a ‘practical’ error estimate are as follows:
– Linearization of the dual problem:

L(U, Uh)(Φ, Ψ) ≈ L(Uh, Uh)(Φ, Ψ) = A′(Uh)(Φ, Ψ).

This linearization causes an error, which is quadratic in the error E := U−Uh

and can be safely neglected in most cases (compare with the general error
representation in Proposition 1.13).

– Solution of the ‘discrete’ dual problem for Zh ∈ W0
h :

A′(Uh)(Φ, Zh) = J(Φh) ∀Φh ∈ W0
h.

– Approximation of dual solution: From Zh , we generate improved approxima-
tions to Z in a post-processing step by patchwise higher-order interpolation.
On 2 × 2-patches of cells in Th the 9 nodal values of the piecewise bilinear
Zh are used to construct a patchwise biquadratic function Z̃ .

The result is a ‘practical’ a posteriori error estimate:

|J(U − Uh)| ≈ η :=
∑

K∈Th

ρK(Uh)ωK(Z̃). (3.14)

On the basis of this error estimate the automatic mesh adaptation is organized
along the following lines. Let an error tolerance TOL be given.

1. Compute the primal solution Uh on the current mesh, starting from some
initial state, e.g., that with zero deformation.

2. Compute the solution Z̃h of the approximate discrete dual problem.
3. Evaluate the cell-error indicators ηK := ρK(Uh)ωK(Z̃h).
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4. If η < TOL (the given tolerance), then accept Uh and evaluate J(Uh) ,
otherwise proceed to the next step.

5. Determine the 25% cells with largest and the 10% cells with smallest values
of ηK . The cells of the first group are refined and those of the second group
coarsened. Then, continue with Step 1. By this strategy it can be achieved
that the number of cells stays about constant during the adaptation process
within a time-stepping procedure.

Remark 3.11. The solvability of the dual problem (3.12) is not for granted and
has to be established by exploiting the particular properties of the primal problem
(3.11). This is a difficult task in view of the rather few existence results in the
literature for general FSI problems. However, in our test calculation, we have
never encountered difficulties in obtaining the ‘discrete’ dual solution. In the test
examples presented below, the discrete dual problem has been set up simply by
transposing the Newton matrix at the final solution.

Remark 3.12. The above assumption of differentiability of the semi-linear form
A(U)(·) may cause concerns in treating the FSI problem since the dependence
of the characteristic function χf (u) on the deflection u is generically not dif-
ferentiable (only Lipschitzian). However, this non-differentiability is confined to
the interface between fluid and structure which can be assumed to form a lower-
dimensional manifold. Hence, for practical applications, after discretization along
the interface, the directional derivative can safely be replaced by a mesh-size de-
pendent difference quotient. This pragmatic approach has proven very successful
in similar situations, e.g., for Hencky elasto-plasticity Rannacher/Suttmeier [48].

For illustrating the application of the DWR method to the FSI problem,
particularly the computation of the linearized dual problem, we use the following
simplified model situation formulated with the notation from above:

Ω = Ωs ∪ Γi ∪ Ωf ,

A(U)(Ψ) :=
(
a(U)ε[U ], ε[Ψ]

)
= (f, Ψ) ∀Ψ ∈ V (Ω),

where

a(U)(x) :=

{
Cs, x − U(x) ∈ Ω̂s,

Cf , x − U(x) �∈ Ω̂s.

The corresponding finite-element approximation is

A(Uh)(Ψh) = (f, Ψh) ∀Ψh ∈ Vh,

with the residual functional

ρ(Uh)(Ψ) := (f, Ψ) − A(Uh)(Ψ), Ψ ∈ V (Ω).

Using the formal definition of the directional derivative A′(U)(Φ, Ψ) , we find for
sufficiently smooth interface Γi and Φ that

A′(U)(Φ, Ψ) =
(
a(U)ε[Φ], ε[Ψ]

)
+ (n · [Cs − Cf ]ε[Φ], Ψ)Γi .
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Then, using the solution Z ∈ V (Ω) of the corresponding dual problem

A′(U)(Φ, Z) = J(Φ) ∀Φ ∈ V (Ω),

we obtain the a posteriori error representation

J(U − Uh) ≈ ρ(Uh)(Z − IhZ).

The realization of this methods for the full FSI problem proceeds analogously but
involves many more terms to evaluate. For the details, we refer to Dunne [20]. In
the test examples considered below, the discrete dual problem has been set up
simply by transposing the Newton matrix at the final solution.

3.5. Stationary test case ‘Elastic Flow Cavity’

At first, we present a stationary test case. The fluid is modeled by the linear Stokes
equations and the structure material is incompressible neo-Hookean. The flow and
solid deformation velocity are small enough to allow for a stationary solution of
the coupled linear systems. This solution is computed by a pseudo-time stepping
method employing the implicit Euler scheme. A steady state is reached once the
kinetic energy of the structure is below the tolerance ‖vs‖2 ≤ 10−8.

Γ̂d3

Γ̂d2

v̂0

Ω̂f

Γ̂i

Γ̂d1

Γ̂d3

Ω̂s Γ̂d3

Γ̂d2

Figure 15. Configuration of the ‘elastic flow cavity’ problem
(left) and final position of the interface (right).

The cavity has a size of 2 × 2 , and its elastic part has a height of 0.5 . The
material constants are ρf = ρs = 1, νf = 0.2, and μs = 2.0. The tangential flow
profile at the top boundary is given by v0(x) = 0.54x, x ∈ [0.0, 0.25] , v0(x) =
1, x ∈ (0.25, 1.75) , and v0(x) = 4(2 − x), x ∈ [1.75, 2.0] .

Figure 16 shows the development of ‖vs‖2 during the pseudo-time-stepping
process depending on the number of cells of the mesh and the mass error of the
structure at the stationary state. As expected the kinetic energy tends to zero.
The multiple ‘bumps’ in the time development of the kinetic energy occur due to
the way the elastic structure reaches its stationary state by ‘swinging’ back and
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forth a few times. At the extreme point of each swing the kinetic energy has a
local minimum. The mass error of the structure at the stationary state is of the
expected order O(h2).
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Figure 16. Time variation of ‖vs‖2 for different N (left) and
mass error in the steady state (right) on globally refined meshes.

For testing the ‘goal-oriented’ mesh adaptation, we take the value of the
pressure at the point A = (0.5, 1.0)T which is located in the flow region. To avoid
sharp singularities in the corresponding dual solution and the resulting unnecessary
overrefinement, the associated functional is regularized to

J(u, p) := |SA|−1

∫
SA

p dx ≈ p(A),

where SA ∈ Th is a cell patch containing the point A. As reference value of p(A),
we use the result obtained on a very fine uniform mesh.

In Figures 17 the resulting pressure error and the relative error in mass
conservation is displayed as a function of the number of mesh cells. Figure 18
shows a sequence of adapted meshes. As expected two effects can be seen. There
is local refinement around the point of interest and since the position of the fluid-
structure interface is a decisive factor for the pressure field, local refinement also
occurs along the interface.

It may seem surprising that in Figure 17 there is no reduction of the mass
error in the last iteration. This is due to the approach we are using here. After
each step of mesh adaption a new primal solution is calculated, starting with the
initial state of no deformation. The sensitivity analysis though does not take the
initial state into account. Mesh adaption takes place around the final state of the
interface, it does not reflect its initial state. An easy way of alleviating the mass
error problem is to explicitly move a certain amount of local refinements with the
interface from one time step to the next. Doing that though in this example would
have made it unclear if the local refinement at the final interface position was due
to the sensitivity analysis or the explicit movement of interface-bound refinement.
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Figure 17. Error reduction (left) and error of mass conservation (right).

Figure 18. Locally adapted meshes with N = 335, N = 1031,
N = 3309, and N = 5123 cells.

3.6. Non-stationary test case ‘Vibrating Thin Plate’

Next, we consider the benchmark configuration shown in Figure 11. Along the
upper and lower boundary the usual ‘no-slip’ condition is used for the velocity. At
the (left) inlet a constant parabolic inflow profile is prescribed which drives the
flow, and at the (right) outlet the ‘do-nothing’ boundary condition ν∂nv−pn = 0
is realized. This implicitly forces the pressure to have zero mean value at the outlet.
The initial condition is zero flow velocity and structure displacement. As material
properties, we assume the fluid as incompressible and Newtonian, the cylinder as
fixed and rigid, and the structure as (compressible) St. Venant–Kirchhoff (STVK)
type.

The first set of computations is done on globally refined meshes for validat-
ing the proposed method and its software implementation. Then, for the same
configuration adaptive meshes are used where the refinement criteria are either
purely heuristic, i.e., based on the cell distance from the interface, or are based on
a simplified stationary version of the DWR approach (at every tenth time step) as
already used before for the cavity example. In all cases a uniform time-step size
of 0.005 s is used. Since in the Eulerian approach the structure deformations are
not in a Lagrangian framework, it is not clear how well the mass of the structure
is conserved in an Eulerian approach.
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Figure 19 illustrates the treatment of corners in the structure by the IP
set approach compared to the LS approach. In the Level Set (LS) method the
interface is identified by all points for which ϕ = 0, while in the IP set method
the interface is identified by all points which are on one of the respective isoline
segments belonging to the edges of the bar. The differences are visible in the cells
that contain the corners.

Figure 19. Treatment of corners by the LS method (left) and
by the IP set method (right).

Since in the Eulerian approach the structure deformations are not in a La-
grangian framework, it is not immediately clear, due to the coupling with the fluid,
how well the mass of the structure is conserved in an Eulerian approach, especially
in the course of an instationary simulation comprising hundreds of time steps. In
Figure 20, we display the bar’s relative mass error as a function of time. Except
for certain initial jitters, the relative error is less than 1%.
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Figure 20. Mass conservation error of the IP set method.

Figure 21 illustrates the time dynamics of the structure and the adapted
meshes over the time interval [0, T ] . For both approaches, we obtain a periodic
oscillation with maximum amplitudes and frequency, which are quite close to each
other: 1.6e-2 versus 1.51e-2 and 6.86s−1 versus 6.70s−1.

In the last test case (St. Venant–Kirchhoff material) the fluid is initially in
rest and the bar is subjected to a vertical (gravitational) force. This causes the bar
to bend downward until it touches the bottom wall. A sequence of snapshots of
the transition to steady state obtained by the Eulerian approach for this problem
is shown in Figure 22. The position of the trailing tip A is shown in Figure 23. We
see that by sensitivity-driven local refinement by the DWR method on only 1900
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Figure 21. Vertical displacement of end point A : ALE ap-
proach: max = 0.0882m , ν = 1.95 s−1, Eulerian approach:
max = 0.0822m , ν =1.92 s−1.

cells almost the same accuracy can be achieved as by zonal refinement on 12300
cells. The gain in CPU time needed is almost 85 %.

Figure 22. Zonal and local refinement: N ∼ 3, 000 (left col-
umn), N ∼ 12, 000 (middle column), N ∼ 1, 900 (right column).

3.7. Open problems and further development

In this section, we presented a fully Eulerian variational formulation for ‘fluid-
structure interaction’ (FSI) problems. At several examples the Eulerian approach
turns out to yield results which are in good agreement with those obtained by
the standard ALE approach. In order to have a ‘fair’ comparison both methods
have been implemented using the same numerical components and software library
GASCOIGNE [4]. The method based on the Eulerian approach is inherently more
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Figure 23. Position xA(t) of point A : required CPU time:
zonal 30 h, local 4 h.

expensive than the ALE method, by about a factor of two, but it can also treat
large deformations and topology changes.

One conceptional disadventage of the Eulerian approach to treating FSI prob-
lems is the need for a time-independent outer domain Ω , in which the FSI process
takes place. This seems to prevent the use of this approach for simulating flow
through blood vessels since here the time-varying vessel wall forms the ‘outer do-
main’. This difficulty can be cured by embedding the whole vessel into an outer
softer medium, as seems realistic from the biological point of view. The physical
properties of this outer medium have to be provided by biomedical experience.
The realization of this concept is the subject of ongoing research.

The fully Eulerian variational formulation of the FSI problem provides the
basis for the application of the ‘dual weighted residual’ (DWR) method for ‘goal-
oriented’ a posteriori error estimation and mesh adaptation. The feasibility of the
DWR method for FSI problems has, in a first step, been demonstrated for the
computation of steady state solutions. The following topics have to be worked on
in the future:

• The DWR method has to be applied also for non-stationary FSI problems,
particularly for the simultaneous adaptation of spatial mesh and time step
size.

• Another goal is the development of the Eulerian approach for three-dimen-
sional FSI problems and to explore its potential for FSI problems with large
deformations and topology changes, such as occurring in heart-valve simula-
tions.

• Application to optimal control problems with FSI

min
q∈Q

J(u, q) ! a(u, q)(ψ) = f(ψ) ∀ψ ∈ V.

In the context of the ‘all-at-once’ approach (KKT System) goal-oriented error
estimation is ‘relatively cheap’.
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Introduction

In many fluid applications, particularly in multiphase flow problems with liquid-
solid interaction based on the incompressible Navier–Stokes equations, the math-
ematical description and the numerical schemes have to be designed in such a way
that quite complicated constitutive relations and interactions between fluid and
solids can be incorporated into existing flow solvers in an accurate and robust man-
ner. In the following sections, first of all we describe finite-element discretization
strategies and corresponding solver techniques (approximate Newton methods,
multilevel pressure Schur complement techniques, operator-splitting approaches)
for the resulting discrete systems of equations. The need for the development
of robust and efficient iterative solvers for implicit high-resolution discretization
schemes is emphasized and the numerical treatment of extensions of the Navier–
Stokes equations (Boussinesq approximation, k−ε turbulence model) is addressed
which is evaluated by simulation results for prototypical applications including
multiphase and granular flows. In the second part, a fully monolithic finite-element
approach is described for fluid-structure interactions with elastic materials which
is applied to several benchmark configurations. In the third part, the concept of
FEM fictitious-boundary techniques, together with operator-splitting approaches
for particulate flow, is introduced which allows the efficient simulation of systems
with many solid particles of different shape and size.
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1. Numerical methods for incompressible flow

1.1. Introduction

For single-phase Newtonian fluids occupying a domain Ω ⊂ Rd (d = 2, 3) during
the time interval (t0, t0 + T ], the incompressible Navier–Stokes equations

∂u
∂t

− νΔu + u · ∇u + ∇p = f , Div u = 0 (1.1)

describe the laminar flow motion which depends on the physical properties of the
fluid (viscosity ν) and, possibly, on some external forces f like buoyancy. The
constant density ρ is hidden in the pressure p(x1, . . . , xd, t) which adjusts itself
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instantaneously so as to render the time-dependent velocity field u(x1, . . . , xd, t)
divergence-free. The problem formulation is completed by specifying the initial
and boundary values for each particular application.

Although these equations seem to have a quite simple structure, they consti-
tute a ‘grand challenge’ problem for mathematicians, physicists, and engineers, and
they are (still) object of intensive research activities in the field of Computational
Fluid Dynamics (CFD), especially since they are the basis for more complex non-
linear, multiphase flow models, particularly arising in bioengineering applications.
Incompressible flow problems are interesting from the viewpoint of applied math-
ematics and scientific computing, since they include the whole range of difficulties
which typically arise in the numerical treatment of partial differential equations.
Therefore, they provide a perfect starting point for the development of reliable
numerical algorithms and efficient software for CFD simulations.

Specifically, the typical problems which scientists and engineers are frequently
confronted with, concern the following aspects:

• time-dependent partial differential equations in complex domains,
• strongly nonlinear and stiff systems of strongly coupled equations,
• convection-dominated transport at high Reynolds numbers (Re ≈ 1

ν ),
• saddle-point problems due to the incompressibility constraint,
• local changes of the problem character in space and time.

Figure 1. Experiment (source: Van Dyke’s ‘Album of Fluid Mo-
tion’) vs. numerical simulation (source: ‘Virtual Album of Fluid
Motion’) for flow around a cylinder.

These peculiarities of this ‘model problem’ impose stringent requirements
on virtually all stages of algorithm design: discretization, solver, and software
engineering. In particular, the following difficulties must be taken into account:

• nonlinear systems for millions of unknowns (large but sparse matrices),
• conditional stability (explicit schemes) and/or proper time step control,
• anisotropic/unstructured meshes (boundary layers, complex geometries).

Active research aimed at the development of improved numerical methods
for the incompressible Navier–Stokes equations has been going on for more than
three decades. The number of publications on this topic is enormous (see the book
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by Gresho et al. [41] for a comprehensive overview). However, in many cases the
computational results produced by the available CFD tools are only qualitatively
correct. A quantitatively precise flow prediction for real-life problems requires still
that the accuracy of discretization schemes is enhanced and/or the solvers become
more efficient. This can be easily demonstrated by benchmark computations [111],
especially for non-stationary flows.

Moreover, a current trend in CFD is to combine the ‘basic’ Navier–Stokes
equations (1.1) with more complex models which describe industrial applications
involving turbulence, multiphase flow, nonlinear fluids, combustion/detonation,
free and moving boundaries, fluid-structure interaction, weakly compressible ef-
fects, etc. These extensions, which will be discussed in the present chapter, have
one thing in common: they require highly accurate and robust discretization tech-
niques as well as efficient solution algorithms for generalized Navier–Stokes-like
systems. In order to design and implement such powerful numerical methods for
real-life problems, many additional aspects need to be taken into account. The
main ingredients of an ‘ultimate’ CFD code are as follows:

• advanced mathematical methods for PDEs (→ discretization),
• efficient solution techniques for algebraic systems (→ solver),
• reliable and hardware-optimized software (→ implementation).

If all of these components were available, the number of unknowns could be
significantly reduced (e.g., via adaptivity or a high-order approximation) and,
moreover, discrete problems of the same size could be solved more efficiently.
Hence, the marriage of optimal numerical methods and fast iterative solvers would
make it possible to exploit the potential of modern computers to the full extent and
enhance the performance of incompressible flow solvers (improve the MFLOP/s
rates) by orders of magnitude. This is why these algorithmic aspects still play an
increasingly important role in contemporary CFD research.

In this chapter, we briefly review the Multilevel Pressure Schur Complement
(MPSC) approach to the solution of incompressible flow problems and combine it
with FEM discretization techniques. We will explain some characteristics of special
high-resolution FEM schemes as applied to incompressible flow problems and dis-
cuss some computational details regarding the efficient numerical solution of the
resulting nonlinear and linear algebraic systems. Furthermore, we will examine
different coupling mechanisms between the ‘basic’ flow model (standard Navier–
Stokes equations for velocity and pressure) and additional scalar or vector-valued
transport equations, being representative for multiphase flow problems and con-
figurations in biofluid mechanics, in order to capture the relevant physical effects.

1.2. Discretization of the Navier–Stokes equations in time

We consider numerical solution techniques for the incompressible Navier–Stokes
equations,

ut − νΔu + u · ∇u + ∇p = f , Div u = 0 , in Ω × (0, T ] , (1.2)
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for given force f and viscosity ν, with prescribed boundary values on the boundary
∂Ω and an initial condition at t = 0. Solving this problem numerically is still a
considerable task in the case of long time calculations and high Reynolds numbers,
particularly in 3D and also in 2D if the time dynamics is complex. Examples for
2D and 3D results can be found in www.featflow.de/album.

The common solution approach is a separate discretization in space and time.
We first (semi-) discretize in time by one of the usual methods known from the
treatment of ordinary differential equations, such as the forward or backward
Euler-, the Crank–Nicolson or fractional-step-θ scheme, or others, and obtain a
sequence of generalized stationary Navier–Stokes problems.

Basic θ-scheme:

Given un and k = tn+1 − tn, then solve for u = un+1 and p = pn+1

u− un

k
+ θ[−νΔu + u · ∇u] + ∇p = gn+1 , Div u = 0 , in Ω (1.3)

with right-hand side gn+1 := θfn+1 + (1 − θ)fn − (1 − θ)[−νΔun + un · ∇un].

The parameter θ has to be chosen depending on the time-stepping scheme,
e.g., θ = 1 for the backward Euler, or θ = 1/2 for the Crank–Nicolson scheme.
The pressure term ∇p = ∇pn+1 may be replaced by θ∇pn+1 + (1 − θ)∇pn, but,
with appropriate post-processing, both strategies lead to solutions of the same
accuracy. In all cases, we end up with the task of solving, at each time step, a
nonlinear saddle point problem of given type which has then to be discretized in
space.

In the past, explicit time-stepping schemes have been commonly used in non-
stationary flow calculations, but because of the severe stability problems inherent
in this approach, the required small time steps prohibit the efficient treatment of
long-time flow simulations. Due to the high stiffness, one should prefer implicit
schemes in the choice of time-stepping methods for solving this problem. Since
implicit methods have become feasible, thanks to more efficient nonlinear and
linear solvers, the schemes most frequently used are (still) either the simple first-
order backward Euler scheme (BE), with θ = 1, or more preferably the second-
order Crank–Nicolson scheme (CN), with θ = 1/2.

These two methods belong to the group of one-step-θ-schemes. The CN
scheme occasionally suffers from numerical instabilities because of its only weak
damping property (not strongly A-stable), while the BE-scheme is of first-order
accuracy only (however: it is a good candidate for steady-state simulations). An-
other method which has proven to have the potential to excel in this competition
is the fractional-step-θ scheme (FS). It uses three different values for θ and for the
time step k at each time level.

For a realistic comparison of all mentioned schemes, we define a macro time
step with K = tn+1 − tn as a sequence of 3 time steps of (possibly variable) size
k. Then, in the case of the backward Euler or the Crank–Nicolson scheme, we
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perform three substeps with the same θ (θ = 0.5 or θ = 1) as above and (micro)
time step k = K/3.

Backward Euler scheme:

[I + K
3 N(un+ 1

3 )]un+ 1
3 + K

3 ∇pn+ 1
3 = un + K

3 fn+ 1
3 ,

Div un+ 1
3 = 0,

[I + K
3 N(un+ 2

3 )]un+ 2
3 + K

3 ∇pn+ 2
3 = un+ 1

3 + K
3 fn+ 2

3 ,

Div un+ 2
3 = 0,

[I + K
3 N(un+1)]un+1 + K

3 ∇pn+1 = un+ 2
3 + K

3 fn+1

Div un+1 = 0

Crank–Nicolson scheme:

[I + K
6 N(un+ 1

3 )]un+ 1
3 + K

6 ∇pn+ 1
3 = [I − K

6 N(un)]un + K
6 fn+ 1

3 + K
6 fn,

Div un+ 1
3 = 0,

[I + K
6 N(un+ 2

3 )]un+ 2
3 + K

6 ∇pn+ 2
3 = [I − K

6 N(un+ 1
3 )]un+ 1

3 + K
6 fn+ 2

3

+K
6 fn+ 1

3 ,

Div un+ 2
3 = 0,

[I + K
6 N(un+1)]un+1 + K

6 ∇pn+1 = [I − K
6 N(un+ 2

3 )]un+ 2
3 + K

6 fn+1

+K
6 fn+ 2

3 ,

Div un+1 = 0.

Here and in the following, we use the more compact form for the diffusive
and advective part:

N(v)u := −νΔu + v · ∇u . (1.4)

For the fractional-step-θ scheme we proceed as follows. Choosing θ = 1 −√
2

2 , θ′ = 1−2θ, and α = 1−2θ
1−θ , β = 1−α, the macro time step tn → tn+1 = tn+K

is split into the three following consecutive substeps (with θ̃ := αθK = βθ′K):
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Fractional-step-θ scheme:

[I + θ̃N(un+θ)]un+θ + θK∇pn+θ = [I − βθKN(un)]un + θKfn,
Div un+θ = 0,

[I + θ̃N(un+1−θ)]un+1−θ + θ′K∇pn+1−θ = [I − αθ′KN(un+θ)]un+θ

+θ′Kfn+1−θ,
Div un+1−θ = 0,

[I + θ̃N(un+1)]un+1 + θK∇pn+1 = [I − βθKN(un+1−θ)]un+1−θ

+θKfn+1−θ,
Div un+1 = 0.

Being a strongly A-stable scheme, the FS-method possesses the full smooth-
ing property which is important in the case of rough initial or boundary values.
Further, it contains only very little numerical dissipation which is crucial in the
computation of non-enforced temporal oscillations in the flow. A rigorous theoret-
ical analysis of the FS-scheme applied to the Navier–Stokes problem establishes
second-order accuracy for this special choice of θ. Therefore, this scheme combines
the advantages of both the classical CN-scheme (second-order accuracy) and the
BE-scheme (strongly A-stable), but with the same numerical effort.

These results have been confirmed by extensive numerical simulations which
are part of [122]. While that paper examined the accuracy of the above mentioned
time-stepping schemes, also the question of fully coupled vs. operator-splitting
techniques as well as the treatment of the nonlinearity has been addressed. One
of the main statements – see also the results in [124] – was that the fractional-
step-θ scheme is our preferred method, together with a fully implicit, fully coupled
approach which solves the nonlinear saddle-point problems in each time step via
Newton-like techniques together with special multigrid preconditioners (‘Multi-
level Pressure Schur Complement’ [124]). While the question of the total efficiency
w.r.t. operator-splitting or fully coupled approaches is hard to answer, this fully
implicit approach is definitively the most accurate and most robust – but often
most expensive, too – approach which is preferable from a purely mathematical
viewpoint since finite-element arguments can be used for this Galerkin approach
and, hence, error control and residual based adaptivity become feasible.

A modified fractional-step-θ scheme:
Consider an initial value problem of following form, with X(t) ∈ Rd, d ≥ 1:⎧⎨⎩

dX

dt
= f(X, t) , ∀t > 0,

X(0) = X0.

Then, the modified θ-scheme (see [135]) with macro time step Δt can be written
as three consecutive substeps, where θ = 1 − 1/

√
2, X0 = X0, n ≥ 0 and Xn is
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known:
Xn+θ − Xn

θΔt
= f

(
Xn+θ, tn+θ

)
,

Xn+1−θ =
1 − θ

θ
Xn+θ +

2θ − 1
θ

Xn,

Xn+1 − Xn+1−θ

θΔt
= f

(
Xn+1, tn+1

)
.

As shown in [36], the most important properties of this θ-scheme are that
• it is fully implicit;
• it is strongly A-stable;
• it is second-order accurate (in fact, it is “nearly” third-order accurate [36]).

These properties promise some advantageous behavior, particularly in im-
plicit CFD simulations for non-stationary incompressible flow. Applying one step
of this scheme to the Navier–Stokes equations, we obtain the following variant of
the scheme:

1.

⎧⎪⎨⎪⎩
un+θ − un

θΔt
+ N(un+θ)un+θ + ∇pn+θ = fn+θ,

Div un+θ = 0,

2. un+1−θ = 1−θ
θ un+θ + 2θ−1

θ un,

3.

⎧⎪⎨⎪⎩
un+1 − un+1−θ

θΔt
+ N(un+1)un+1 + ∇p̃n+1 = fn+1,

Div un+1 = 0,

3b. pn+1 = (1 − θ)pn+θ + θp̃n+1.

These three substeps build one macro time step and have to be compared with
the previous description of the Backward Euler, Crank–Nicolson and fractional-
step-θ scheme which all have been formulated in terms of a macro time step with
three substeps, too. Then, the resulting accuracy and numerical cost are better
comparable and the rating is fair. The main difference to the previous ‘classical’
schemes is that substeps 1. and 3. look like an backward Euler step while substep 2.
is an extrapolation step only for previously computed data such that no operator
evaluations at previous time steps are required.

Substep 3b. can be viewed as postprocessing step for updating the new pres-
sure which however is not a must. In fact, in our numerical tests [135] we omitted
this substep 3b. and accepted the pressure from substep 3. as final pressure ap-
proximation, that means pn+1 = p̃n+1.

Summarizing, one obtains that the numerical effort of the modified scheme
for each substep is cheaper – at least for ‘small’ time steps (treatment of the
nonlinearity) and complex right-hand side evaluations (for instance, in the case of
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Figure 2. Nodal points of the non-conforming finite-element pair Q̃1/Q0.

particulate flow which involves collision models for many particles as source terms
and CPU-dominant parts) – while the resulting accuracy is similar. Incidentally,
the modified θ-scheme is a Runge–Kutta one; it has been derived in [36] as a
particular case of the fractional-step-θ scheme (see the above reference for details).

1.3. Discretization of the Navier–Stokes equations in space

For the spatial discretization, we choose a finite-element approach. However finite
volumes, finite differences or spectral methods are possible, too. A finite-element
model of the Navier–Stokes equations is based on a suitable variational formu-
lation. On the finite mesh Th (triangles, quadrilaterals or their analogues in 3D)
covering the domain Ω with local mesh size h, one defines polynomial trial functions
for velocity and pressure. These spaces Hh and Lh should lead to numerically sta-
ble approximations as h → 0, i.e., they should satisfy the so-called inf-sup (LBB)
condition [35]

min
qh∈Lh

max
vh∈Hh

(qh, Div vh)
||qh||0 ||∇vh||0

≥ γ > 0 (1.5)

with a mesh-independent constant γ. On the other hand, equal order interpolations
for velocity and pressure are also admissible provided that an a-priori unstable
discretization is stabilized in an appropriate way (see, e.g., [56]).

In what follows, we employ the stable Q̃1/Q0 finite-element pair (rotated
bilinear/trilinear shape functions for the velocities, and a piecewise constant pres-
sure approximation). In the two-dimensional case, the nodal values are the mean
values of the velocity vector over the element edges, and the mean values of the
pressure over the elements (see Fig. 2).

This non-conforming finite element is a quadrilateral counterpart of the well-
known triangular Stokes element of Crouzeix–Raviart [19] and can easily be defined
in three space dimensions. A convergence analysis is given in [105] and computa-
tional results are reported in [113] and [114]. An important advantage of this
finite-element pair is the availability of efficient multigrid solvers which are suffi-
ciently robust in the whole range of Reynolds numbers even on non-uniform and
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highly anisotropic meshes [112],[125] if appropriate stabilization techniques are
applied.

Such stabilization techniques for (non-conforming) FEM discretizations in
the context of incompressible flow problems, for instance described by the Navier–
Stokes equations or appropriate extensions in multiphase problem settings, are
still a challenging task, particularly from a practical point of view regarding the
following aspects:

I. Necessity. There are two well-known situations for non-conforming finite-
element methods when severe numerical problems may arise: the lack of coercivity
for non-conforming low-order approximations for symmetric deformation tensor
formulations, mainly visible for the iterative solvers for small Re numbers, and
whenever convective operators are dominant, for instance, for medium and high
Re numbers or for the treatment of pure transport problems. Then, the standard
Galerkin formulation fails and may lead to numerical oscillations and convergence
problems of the iterative solvers, too.

II. Robustness. To analyze the quality of FEM stabilization terms for a wide
range of Re numbers and for different problem types is one of the central tasks for
the use of stabilization techniques as black box tools in future CFD codes. Here,
the question of appropriate parameter settings and stabilization terms is always a
delicate task, particularly on general meshes.

As a model problem we consider incompressible flow problems described by
the generalized Navier–Stokes equations. The Cauchy stress tensor is given by σ =
2ν(DII(u), p)D(u)− pI, where p is the pressure; D(u) = 1

2 (∇u +∇T u) is the rate
of the deformation tensor, u denotes the velocity; ν(·) is the (nonlinear) viscosity
which may depend on the second invariant of the rate deformation tensor DII(u) =
1
2 tr(D2(u)) and the pressure p. Then, depending on the specific viscosity function
ν(·) we consider the following prototypical models (with appropriate parameters
ν0, r). In the case of a Newtonian fluid with constant viscosity, we will replace the
deformation tensor D(u) by the usual formulation with the gradient ∇u only.

• Newtonian flow defined for ν(z, p) = ν0,
• Non-Newtonian flow due to Power law, with ν(z, p) = νoz

r
2−1, resp., Bingham

law with ν(z, p) = νoz
− 1

2 ,
• Non-Newtonian flow with pressure and shear-dependent viscosity, as de-

scribed for instance in [50, 79] or in the case of the Schaeffer model [110],
with ν(z, p) = ν0pz−

1
2 , for granular powder flow.

In all cases, the velocity u and the pressure p satisfy the following generalized
Navier–Stokes equations:

∂u
∂t

+ u · ∇u− Div (2ν(DII(u), p)D(u)) + ∇p = �f, Div u = 0 , (1.6)

resp., for Newtonian flow with constant viscosity
∂u
∂t

+ u · ∇u − νΔu + ∇p = �f, Div u = 0 . (1.7)
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In the following, we mainly consider the stationary generalized Navier–Stokes
problem (1.6) in a bounded domain Ω ⊂ R2, and we use the rate of the deformation
tensor instead of the gradient formulation as in (1.7), unless it is stated explicitely.
If we restrict the set V of test functions to be divergence-free and if we take the
constitutive laws into account, the above (stationary) equations (1.6) lead to:∫

Ω

2ν(DII(u), p)D(u) : D(v) dx +
∫

Ω

(u · ∇u)v dx =
∫

Ω

�fv dx, ∀v ∈ V. (1.8)

It is straightforward to penalize the constraint Divv = 0 to derive the equivalent
mixed formulations:

Find (u, p) ∈ X × M such that∫
Ω

2ν(DII(u), p)D(u) : D(v) dx +
∫

Ω

(u · ∇u)v dx +
∫

Ω

p Div v dx

=
∫

Ω

�fv dx, ∀v ∈ X,∫
Ω

q Div u dx = 0, ∀q ∈ M,

(1.9)

with the spaces X = [H1
0 (Ω)]2 and M = L2(Ω). In some test calculations, we also

consider related Stokes problems, which means that we omit the convective term∫
Ω(u · ∇u)v dx. For the following analysis, we introduce the bilinear forms:

〈A(w, q)u,v〉 =
∫

Ω

2ν(DII(w), q)D(u) : D(v) dx, (1.10)

〈N(w)u,v〉 =
∫

Ω

(w · ∇u)v dx , 〈Bq,v〉 =
∫

Ω

q Div v dx. (1.11)

Then, we can rewrite our generalized flow problems in the following compact form:

Find (u, p) ∈ X × M such that

〈A(u, p)u,v〉 + 〈N(u)u,v〉 + 〈Bp,v〉 =
∫

Ω

�fvdx, ∀v ∈X,

〈Bq,u〉 = 0, ∀q ∈M.

(1.12)

For the finite-element discretization, we consider a subdivision T ∈ Th consist-
ing of quadrilaterals in the domain Ωh ∈ R2, and we employ the non-conforming
rotated bilinear Rannacher–Turek element. For any quadrilateral T , let (ξ, η) de-
note a local coordinate system obtained by joining the midpoints of the opposing
faces of T . Then, in the non-parametric case, we set on each element T

Q̃1(T ) := span
{
1, ξ, η, ξ2 − η2

}
. (1.13)

The degrees of freedom are determined by the nodal functionals {F (a,b)
Γ (·), Γ ⊂

∂Th},

F a
Γ := |Γ|−1

∫
Γ

vdγ or F b
Γ := v(mΓ) (mΓ midpoint of edge Γ) (1.14)
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such that the finite-element space can be written as

W a,b
h := {v ∈ L2(Ωh), v ∈ Q̃1(T ), ∀T ∈ Th, v continuous w.r.t. all

nodal functionals F a,b
Γi,j

(·), and F a,b
Γi0

(v) = 0, ∀Γi0}.
(1.15)

Here, Γi,j denotes all inner edges sharing the two elements i and j, while
Γi0 denotes the boundary edges of ∂Ωh. In this paper, we always employ version
’a’ with the integral mean values as degrees of freedom. Then, the corresponding
discrete functions will be approximated in the spaces

Vh := W a
h × W a

h , Lh :=
{
qh ∈ L2(Ω), qh|T = const., ∀T ∈ Th

}
. (1.16)

Due to the loss of global continuity of the discrete velocities, the classical (dis-
crete) ‘Korn Inequality’

∑
T ∈Th

‖v‖H1(T ) ≤ c (
∑

T ∈Th
‖v‖2

L2(T ) + ‖D(v)‖2
L2(T ))

1
2

is not satisfied which is important for problems involving the symmetric part D(u)
of the gradient. Therefore, appropriate edge-oriented stabilization techniques (see
[8, 44, 132]) have been recently proposed which directly incorporate the jump
across the inter-elementary boundaries. Another source of problems for FEM dis-
cretizations, not only for non-conforming finite elements, is the case of dominant
convection, that means the case of medium and high Re numbers or if additional
tracer equations are included. Consequently, in the following we discuss several sta-
bilizations techniques for both sources of instability and provide a short overview
on (typical) stabilization techniques for non-conforming FEM in the case of domi-
nating convection and for satisfying Korn’s inequality. Here, we only consider linear
stabilization techniques in contrast to high-resolution schemes of FCT-FEM, resp.,
TVD-FEM type (see [68, 125] for the corresponding details).

FEM upwinding
The main idea is to introduce new edge-centered lumping regions and special
lumping operators (for details see [125]). Then, the discrete convective operator
〈N (uh)vh,wh〉 is replaced by

〈Ñ(uh)vh,wh〉 =
∑

l

∑
k∈Λl

∮
Γlk

uh · nlkdγ[1 − λlk(uh)(vh(mk) − vh(ml))]wh(ml).

(1.17)
Based on the local Reynolds number ReT on each cell T (see [125] for details)

ReT =
||u||∞,T · hT

ν
(1.18)

we can define:

λlk(uh) =

⎧⎪⎪⎨⎪⎪⎩
1
2 + δ∗ReT

1 + δ∗ReT
if ReT ≥ 0,

1
2(1 − δ∗ReT )

otherwise.
(1.19)

Here, hT is a local mesh size parameter on each cell T which can be critical on
highly distorted meshes. Moreover, the appropriate choice of the free parameter
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δ∗ is quite sensitive and can significantly influence the resulting accuracy as the
following test calculations will demonstrate.

FEM streamline-diffusion

This method was originally proposed by, for instance, Johnson [61] and by Hughes
and Brooks [55], and it has been successfully applied to several classes of problems
since streamline-diffusion methods can combine good stability and high accuracy.
So, due to its simplicity, streamline-diffusion is a common tool used in many (com-
mercial) CFD codes. It mainly consists of adding the following stabilization term
to the original convection operator described by 〈N (uh)vh,wh〉, that means:

〈Ñ (uh)vh,wh〉 = 〈N (uh)vh,wh〉 +
∑

T∈Th

δT

∫
T

(uh · ∇vh)(uh · ∇wh)dx. (1.20)

Here, the critical quantity for an efficient computational treatment is the local
damping parameter δT . A usual setting is described, for instance, in [125]. The
local Reynolds number ReT can be introduced as before and we can define, for
instance,

δT = δ∗ · hT

||u||∞,Ω

· 2ReT

1 + ReT
. (1.21)

Due to the more complex bilinear form, including numerical integration in
certain quadrature points, the numerical work for the matrix assembling process is
increased and, again, the precise definition of δ∗ and hT , particularly on strongly
anisotropic meshes containing large aspect ratios, can be critical. And, finally, the
application to non-steady problems and the extension to more complex coupled
problems or systems, as for instance Boussinesq approximations or multiphase flow
problems is not fully clear.

Edge-oriented FEM stabilization

The main idea is to augment the original finite-element discretization by an interior
penalty term involving the jump of the function values or of the gradient of the
approximate FEM solution. The jump for a function u on an edge from ∂T can
be defined by

[u] =

⎧⎪⎨⎪⎩
u+ · n+ + u− · n− on internal edges,
u · n on Dirichlet boundary edges,
0 on Neumann boundary edges,

(1.22)

where n is the outward normal to the edge and (·)+ and (·)− indicate the value
of the generic quantity (·) on the two elements sharing the same edge. In the
literature, several jump terms were introduced for different situations:

I. Jump terms including function values:

j1(u,v) =
∑

edge E

γν
1
|E|

∫
E

[u][v]dσ. (1.23)



392 S. Turek and J. Hron

John et al. [60] introduced the jump term in the non-conforming streamline-
diffusion method for convection-dominated problems to achieve the same accuracy
as with conforming streamline-diffusion FEM methods. Moreover, to satisfy the
discrete Korn inequality, variants have been presented by Hansbo and Larson in
[44] and by Turek, Ouazzi and Schmachtel in [132]. And, in a similar way, an
analogous approach for a general Korn inequality for piecewise H1-functions has
been introduced by Brenner in [8].

II. Jump terms including the gradient:

j2,α(u,v) =
∑

edge E

γ|E|α
∫

E

[∇u][∇v]dσ,

j3,α(u,v) =
∑

edge E

γ|E|α
∫

E

[n · ∇u][n · ∇v]dσ,

j4,α(u,v) =
∑

edge E

γ|E|α
∫

E

[t · ∇u][t · ∇v]dσ,

j5,α(u,v) =
∑

edge E

γ|E|α
∫

E

[(t · ∇u) · n][(t · ∇v) · n]dσ.

(1.24)

These terms (with different α) for stabilizing convection dominated problems
have been introduced by Burman, Hansbo et al. in a series of papers (see [9, 10]).

III. Jump terms including the divergence:

j(u,v) =
∑

edge E

γ|E|2
∫

E

[Div u][Div v]dσ. (1.25)

This approach was also originally proposed by Burman, Hansbo et al. to
control the incompressibility condition.

IV. Jump terms including the normal component of function values:

j(u,v) =
∑

edge E

γν
1
|E|

∫
E

[n · u][n · v]dσ. (1.26)

To control the non-conformity arising from the pressure term in Darcy’s law,
this term has been introduced by Burman and Hansbo in [11].

Summarizing this overview, it shows that for different types of problems corre-
sponding jump terms with “free” constant γ and order |E|α have been introduced.
Our own contribution is a new variant which uses only one jump term and one
choice for the free parameter γ, and which is nevertheless able to simultanously
treat both types of problems. To be precise, in [131] we proposed the following
jump term, resp., discrete stabilization term (with hE = |E|):

〈Suh,vh〉 =
∑

edge E

max(γ∗νhE , γh2
E)
∫

E

[∇uh][∇vh]dσ, (1.27)
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which will be added to the original bilinear form, resp., discretized stiffness matri-
ces, and which uses only the gradient of the approximate solution. This approach
is based on a blending of (1.23), applying an appropriate scaling with h2

E due to
the gradient of the discrete trial, resp., test functions, together with the formula in
(1.24), applying α = 2. In the case of nonlinear viscosity ν, this stabilization term
may depend in a nonlinear way on the solution, too. The parameters γ, γ∗ can be
chosen – more or less arbitrarily as numerical tests have shown – in the interval
[0.0001, 0.1], with no significant influence on the resulting accuracy, robustness and
efficiency. Summarizing, we can differ between the following situations:

1. In the case of treating the convective operators, u · ∇u, the upwinding and
the streamline-diffusion approach modify the original discrete convective op-
erator 〈N (uh)vh,wh〉 by an operator 〈Ñ (uh)vh,wh〉 which may depend in
a nonlinear way on the solution uh itself via the local Re number; in contrast,
the edge-oriented technique always adds a linear operator 〈Suh,vh〉, unless
an additional (nonlinear) shock-capturing term is used.

2. In the case of treating the deformation tensor formulation, D(u), the edge-
oriented approach employs an additional stabilization term which mainly
depends on the size of the viscosity ν; if ν depends on the solutions uh and
ph, then this stabilization can become nonlinear. In the case of upwinding
and streamline-diffusion, a corresponding stabilization is only performed if
the convective operator is getting dominant. That means that for very low
Re numbers, but with deformation tensor, no stabilization is applied since
the local Re number vanishes.

In [131], the described edge-oriented stabilization approaches including jump
terms of the gradient on the edges of the computational mesh together with low
order non-conforming FEM spaces have been numerically analyzed for incom-
pressible flow problems. The computational tests considered cases of various Re
numbers (ranging from Re = 1, resp., Stokes flow, over medium Re numbers
with periodically oscillating flow phenomena up to the case ‘Re = ∞’). Moreover,
formulations including the gradient as well as the symmetric deformation tensor
(‘Korn’s inequality’) of the velocity have been considered, and we examined non-
Newtonian problems with pressure and shear-dependent viscosity, too. The pro-
posed edge-oriented stabilization term involves only the gradient of the discrete
test and trial functions (leading to reduced assembling costs), which together with
a special parameter setting taking into account the local size of the viscosity, if
available, requires only one ‘free’ parameter γ. The numerical tests for various pro-
totypical problems settings have shown that, in contrast to classical stabilization
schemes of upwinding or streamline-diffusion type, the influence of this parameter
onto the resulting accuracy, robustness and efficiency is surprisingly small.

Summarizing our computational tests with these special edge-oriented FEM
stabilization methods (see [131]), we can state that:

• we can stabilize the lack of coercivity (‘Korn’s inequality’) for problems for-
mulated in terms of the symmetric part of the velocity gradient;
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• we can handle problems for most relevant Re numbers, even in the limit of
inviscid flow;

• we can successfully realize strategies for simulating non-Newtonian flow with
pressure and shear-dependent viscosity;

• we can solve the resulting linear generalized Oseen problems in conjunction
with standard multigrid components.
Based on these positive results for a wide range of typical flow simulations, we

can state that the proposed stabilisation technique may be an interesting candidate
for black-box components in CFD codes. Therefore, one future aim is to study the
corresponding numerical behaviour w.r.t. accuracy and robustness in cases of visco-
elastic fluids and multiphase flow settings including pure transport problems which
are coupled with the Navier–Stokes equations. Moreover, we examine improved
iterative solvers which explicitely employ the complete stiffness matrix, based on an
extended matrix structures due to the additional coupling of FEM basis functions
by the edge-oriented jump terms.

1.4. Pressure Schur complement solvers

Using the notation u and p also for the coefficient vectors in the representation of
the approximate solution, the discretized Navier–Stokes equations may be written
as a coupled (nonlinear) algebraic system of the form:

Given un and g, compute u = un+1 and p = pn+1 by solving

Au + ΔtBp = g , BTu = 0, where (1.28)

g = [M − θ1ΔtN(un)]un + θ2Δtfn+1 + θ3Δtfn . (1.29)

Here, M is the (consistent or lumped) mass matrix, B is the discrete gradient
operator, and −BT is the associated divergence operator. Furthermore,

Au = [M − θΔtN(u)]u, N(u) = K(u) + νL, (1.30)

where L is the discrete Laplacian and K(u) is the nonlinear transport operator
incorporating a certain amount of artificial diffusion due to some appropriate FEM-
stabilization as described before.

The solution of nonlinear algebraic systems like (1.28) is a rather difficult
task and many aspects need to be taken into account:

• treatment of the nonlinearity: fully nonlinear solution by Newton-like meth-
ods or iterative defect correction, explicit or implicit underrelaxation, moni-
toring of convergence rates, choice of stopping criteria etc.;

• treatment of the incompressibility: strongly coupled approach (simultaneous
solution for u and p) vs. segregated algorithms based on operator splitting
at the continuous or discrete level (classical projection schemes [14],[140] and
pressure correction methods like SIMPLE [28],[92]);

• complete outer control: problem-dependent degree of coupling and/or implic-
itness, optimal choice of linear algebra tools (iterative solvers and underlying
smoothers/preconditioners), automatic time step control etc.
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This abundance of choices leads to a great variety of incompressible flow
solvers which are closely related to one another but exhibit considerable differences
in terms of their stability, convergence, and efficiency. The Multilevel Pressure
Schur Complement (MPSC) approach outlined below makes it possible to put
many existing solution techniques into a common framework and to combine their
advantages so as to obtain better run-time characteristics.

The fully discretized Navier–Stokes equations (1.28) as well as the linear
subproblems to be solved within the outer iteration loop for a fixed-point defect
correction or, with a similar structure, for a Newton-like method admit the repre-
sentation [

A ΔtB
BT 0

] [
u
p

]
=
[
g
0

]
. (1.31)

This is a saddle-point problem in which the pressure acts as the Lagrange multiplier
for the incompressibility constraint. In general, we have

A = αM + βN(u) , where β = −θΔt. (1.32)

For time-dependent problems, the parameter α is set equal to unity, whereas the
steady-state formulation is recovered for α := 0 and β := −1. If the operator A is
non-singular, the velocity can be formally expressed as

u = A−1(g − ΔtBp) (1.33)

and plugged into the discretized continuity equation

BTu = 0 (1.34)

which gives a scalar Schur complement equation for the pressure only,

BT A−1Bp =
1

Δt
BT A−1g. (1.35)

Thus, the coupled system (1.31) can be handled as follows:
1. Solve the Pressure Schur Complement (PSC) equation (1.35) for p.
2. Substitute p into relation (1.33) and compute the velocity u.

It is worth mentioning that the matrix A−1 is full and should not be assembled
explicitly. Instead, an auxiliary problem is to be solved by a direct method or
by inner iterations. For instance, the velocity update (1.33) is equivalent to the
solution of the discretized momentum equation Au = g − ΔtBp.

Likewise, the matrix S := BT A−1B is never generated in practice. Doing so
would be prohibitively expensive in terms of CPU time and memory requirements.
It is instructive to consider a preconditioned Richardson method which yields the
following basic iteration for the PSC equation:

p(l+1) = p(l) − C−1

[
Sp(l) − 1

Δt
BT A−1g

]
, l = 0, . . . , L − 1. (1.36)

Here C is a suitable preconditioner which is supposed to be a reasonable approxi-
mation to S but be easier to ‘invert’ in an iterative way.
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The number of PSC cycles L can be fixed or chosen adaptively so as to
achieve a prescribed tolerance for the residual. The choice C := S and L = 1
is equivalent to the coupled solution of the original saddle-point problem (1.31).
In principle, this challenging task can be accomplished by a properly configured
multigrid method. However, the computational cost per iteration is very high and
severe problems are sometimes observed on anisotropic grids that contain cells
with high aspect ratios. Moreover, the convergence rates do not improve as the
time step Δt is refined. Indeed, note that

A = M − θΔtN(u) ≈ M + O(Δt) (1.37)

for sufficiently small time steps. In this case, A can be interpreted as a non-
symmetric (and nonlinear) but well conditioned perturbation of the mass matrix
M . On the other hand, the PSC equation (1.35) reveals that

cond(S) = cond(BT [M + O(Δt)]−1B) ≈ cond(L) = O(h−2) . (1.38)

It follows that the condition number of the coupled system (1.31) is bounded
from below by O(h−2) regardless of the time step. The non-symmetric matrix
A acting on the velocity components ‘improves’ for small Δt but, unfortunately,
the overall convergence rates of coupled solvers depend also on the elliptic part
BT A−1B ≈ BT M−1B which is (almost) time step invariant.

In light of the above, the coupled solution strategy is inappropriate for the
numerical simulation of non-stationary flows which are dominated by convection
and call for the use of small time steps. Hence, the preconditioner C for the Schur
complement operator should be designed so as to take relation (1.37) into account.
Let us consider ‘crude’ approximations of the form

C := BT Ã−1B, (1.39)

where the matrix Ã should be readily ‘invertible’ but stay close to A at least in
the limit Δt → 0. Some typical choices are as follows

Ã := diag(A), Ã := ML, and Ã := M − θΔtνL.

Incompressible flow solvers based on the Richardson iteration (1.36) with this sort
of preconditioning comprise fractional-step projection methods [23],[40], [99],[123],
various modifications of the SIMPLE algorithm (for an overview, see Engelman
[28] and the literature cited therein) as well as Uzawa-like iterations. They can be
classified as global pressure Schur complement schemes due to the fact that C is
an approximation to the global matrix S = BT A−1B.

On the other hand, coupled solution techniques are to be recommended for
the treatment of (quasi-) stationary flows and Navier–Stokes equations combined
with RANS turbulence models and/or convection-diffusion equations for other
scalar quantities (temperatures, concentrations etc). In this case, it is worthwhile to
approximate the pressure Schur complement operator locally via direct inversion of
small matrix blocks associated with subdomains Ωi of the domain Ω or, in general,



Fluid-Solid Interaction 397

with a subset of the unknowns to be solved for. The resulting local pressure Schur
complement techniques correspond to

C−1 :=
∑

i

(BT
|Ωi

A−1
|Ωi

B|Ωi
)−1, (1.40)

whereby the patches Ωi are usually related to the underlying mesh and can consist
of single elements or element clusters. The global relaxation scheme is obtained by
embedding these “local solvers” into an outer iteration loop of Jacobi or Gauss–
Seidel type. This strategy has a lot in common with domain decomposition meth-
ods, but is more flexible when it comes to the treatment of boundary conditions.
A typical representative of local PSC schemes is the Vanka smoother [139] which
is widely used in the multigrid community.

Furthermore, it is possible to combine incompressible flow solvers based on
global PSC (“operator splitting”) and local PSC (“domain decomposition”) meth-
ods in a general-purpose CFD code. Indeed, all of these seemingly different solution
techniques utilize additive preconditioners of the form

C−1 :=
∑

i

αiC
−1
i .

In the next two sections, we briefly discuss the design of such preconditioners and
present the resulting basic iteration schemes which can be used as

• preconditioners for Krylov space methods (CG, BiCGSTAB, GMRES);
• Multilevel pressure Schur complement (MPSC) smoothers for multigrid.

The multigrid approach is usually more efficient, as demonstrated by benchmark
computations in [111].

1.5. Global MPSC approach

The basic idea behind the family of global MPSC schemes is the construction
of globally defined additive preconditioners for the Schur complement operator
S = BT A−1B. Recall that the matrix A has the structure

A := αM + βK(u) + γL, (1.41)

where β = −θΔt and γ = νβ. Unfortunately, it is hardly possible to construct a
matrix Ã and a preconditioner C = BT Ã−1B that would be a sufficiently good
approximation to all three components of A and S, respectively. Therefore, one
can start with developing individual preconditioners for the reactive (M), con-
vective (K), and diffusive (L) part. In other words, the original problem can be
decomposed into simpler tasks by resorting to operator splitting.

Let the inverse of C be composed from those of ‘optimal’ preconditioners
for the limiting cases of a divergence-free L2-projection (for small time steps),
incompressible Euler equations, and a diffusion-dominated Stokes problem

C−1 = α′C−1
M + β′C−1

K + γ′C−1
L ≈ S−1, (1.42)

where the user-defined parameters (α′, β′, γ′) may toggle between (α, β, γ) and
zero depending on the flow regime. Furthermore, it is implied that
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CM is an ‘optimal’ approximation of the reactive part BT M−1B,

CK is an ‘optimal’ approximation of the convective part BT K−1B,

CL is an ‘optimal’ approximation of the diffusive part BT L−1B.
The meaning of ‘optimality’ has to be defined more precisely. Ideally, partial

preconditioners should be direct solvers with respect to the underlying subprob-
lem. In fact, this may even be true for the fully ‘reactive’ case S = BT M−1B.
However, if these preconditioners are applied as smoothers in a multigrid context
and the convergence rates are largely independent of outer parameter settings as
well as of the underlying mesh, then this is already sufficient for optimality of the
global MPSC solver. Preconditioners CM , CK , and CL satisfying this criterion are
introduced and analyzed in [125].

At high Reynolds numbers, the time steps must remain small due to the
physical scales of flow motion. Therefore, the lumped mass matrix ML proves to
be a reasonable approximation to the complete operator A. In this case, our basic
iteration (1.36) for the pressure Schur complement equation

p(l+1) = p(l) + [BT M−1
L B]−1 1

Δt
BT A−1

[
g − ΔtBp(l)

]
(1.43)

can be interpreted and implemented as a discrete projection scheme such as those
proposed in [23],[40],[99]. The main algorithmic steps are as follows [123]:

1. Solve the ‘viscous Burgers’ equation for ũ

Aũ = g − ΔtBp(l).

2. Solve the discrete ‘Pressure-Poisson’ problem

BT M−1
L Bq =

1
Δt

BT ũ.

3. Correct the pressure and the velocity

p(l+1) = p(l) + q, u = ũ − ΔtM−1
L Bq.

In essence, the right-hand side of the momentum equation is assembled using
the old pressure iterate and the intermediate velocity ũ is projected onto the
subspace of solenoidal functions so as to satisfy the constraint BT u = 0.

The matrix BT M−1
L B corresponds to a mixed discretization of the Laplacian

operator [40] so that this method is a discrete analogue of the classical projection
schemes derived by Chorin (p(0) = 0) and Van Kan (p(0) = p(tn)) via operator
splitting for the continuous problem (see [14],[140]). For an in-depth presentation
of continuous projection schemes we refer to [98],[99]. Our discrete approach offers
a number of important advantages including

• applicability to discontinuous pressure approximations;
• consistent treatment (no splitting) of boundary conditions;
• alleviation of spurious boundary layers for the pressure;
• convergence to the fully coupled solution as l increases;



Fluid-Solid Interaction 399

• remarkable efficiency for non-stationary flow problems.

On the other hand, discrete projection methods lack the inherent stabilization
mechanisms that make their continuous counterparts applicable to equal-order
interpolations provided that the time step is not too small [98].

In our experience, it is often sufficient to perform exactly L = 1 pressure
Schur complement iteration with just one multigrid sweep. Due to the fact that the
numerical effort for solving the linear subproblems is insignificant, global MPSC
methods are much more efficent than coupled solvers in the high Reynolds number
regime. However, they perform so well only for relatively small time steps, so
that the more robust local MPSC schemes (see the following section) are to be
recommended for low Reynolds number flows.

In the case of singular perturbed problems or when the ellipticity is violated
(for Newton linearizations, an additional indefinite matrix is added), the develop-
ment of improved global MPSC schemes is still a big challenge, see the state of
the art of multigrid and domain decomposition analysis for convection-dominated
problems in [107], [88] and [34]. Moreover, in the last two decades a consider-
able effort was made to develop and analyse Schur complement preconditioners
for some particular problems of interest. Sometimes, good approximations can be
constructed by thinking in terms of the underlying differential operators, see [78]
for a discussion of handling the problem in terms of pseudo-differential operators.
Alternatively, one can succeed in building appropriate preconditioners by directly
manipulating the matrix blocks, see recent developments in [26]. For example, op-
timal preconditioners for S are well known for the case of (in-) stationary Stokes
equations, while adding convection terms in a system makes the problem of build-
ing a robust Schur complement preconditioner much more complicated. Although
the problem is far from being completely solved, a notable progress was made in
treating it. Below we discuss a few approaches in some detail.

One effective approximation of the Schur complement for the Oseen prob-
lem has been recently introduced and analysed in [63, 27]. Several justifications
have been given for this approach, the original one being based on the Green’s
tensor of the Oseen operator on the continuous level. A simpler, heuristic argu-
ment is to consider first the case where A and BT are both squared and commute:
ABT = BT A. If A is non-singular, its inverse must also commute with BT ; hence
A−1BT = BT A−1. If we think of A as representing a second-order differential
operator and B is first-order, then, apart from possible problems near the bound-
ary, assuming commutativity is reasonable. It follows from these assumptions that
S−1 = (BA−1BT )−1 = A(BBT )−1. In practice, however, A and BT are rectangu-
lar and represent operators acting on different function spaces. Note that BBT is,
again, a (scalar) pressure-Poisson-type operator; on the other hand, A is a (vector)
convection-diffusion operator acting on the velocities. This suggests introducing a
discrete convection-diffusion operator Ap acting on the pressure. Including the
necessary mass matrix scalings, the resulting approximation to the inverse of the



400 S. Turek and J. Hron

Schur complement is thus

Ŝ−1 := M−1
p Ap(BM−1

u BT )−1. (1.44)

Numerical experiments show that preconditioner (1.44) may provide mesh-
independent convergence rates for Krylov subspace iterative methods. For station-
ary problems, some dependence on the viscosity is still present: iterations count
as O(ν− 1

2 ) even for simple flows. This is however much better than the case of
simple preconditioners like a scaled mass matrix and may suffice for applications
where Reynolds numbers are low and moderate.

Trying to adopt the preconditioner (1.44) to non-Newtonian flow simulations
one finds several problems. One is that derivation of (1.44) substantially uses the
fact that the A block consists of n (n = 2, 3) independent sub-blocks, corresponding
to each velocity component. In our applications velocity components are “mixed”
in the left-upper block due to the deformation tensor involved in continuous prob-
lem formulation; additional mixing appears if Newton’s linearization is applied to
obtain the linear problem. Nevertheless, despite the fact that a direct extension of
the preconditioner (1.44) to non-Newtonian flows is not clear, this approach can
serve as good starting point for further developments.

It was discussed that the building of the preconditioner (1.44) is heavily
based on the special structure of the A-block and properties of the underlying
PDE. Therefore, for different applications one could be interested in a way of
constructing a Schur complement preconditioner entirely from the given matrix.
One such approach was suggested in [25]. The originally proposed preconditioner
is

Ŝ−1 := (BBT )−1(BABT )(BBT )−1. (1.45)

It has been given various justifications. A simple one is to observe that if
B was square and invertible, then the inverse of BA−1BT would be B−T AB−1.
However, B is rectangular. Therefore it makes sense to replace the inverse of B
with the Moore–Penrose pseudoinverse B†. If we assume B to have full rank, the
pseudoinverse of B is given by B† = BT (BBT )−1, thus justifying (1.45). Originally
developed for the Oseen equations the preconditioner (1.45) has a big advantage
– it can be directly applied to more complicated problems, in particular for mod-
eling non-Newtonian flows. However, even for the Oseen problem the performance
of the preconditioner (1.45) suffers from some mesh and viscosity dependence. For
the Oseen problem a relatively simple improvement of (1.45) was suggested re-
cently by Elman and coauthors. Therefore extending this approach to the case
of non-Newtonian flows also looks promising. It’s worth to mention that being
heuristically introduced and justified, none of the approaches (1.44) and (1.45)
admits mathematically strict analysis so far. Theoretical development and robust
estimates for Schur complement preconditioners for the Oseen system remains to
be a challenge for the numerical analysis community.

Another relevant question in the case of non-Newtonian flows is precondi-
tioning a (linear) problem with varying viscosity. Not so much seems to be known
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here. We mention only recent studies [89] of the Stokes problem with piecewise-
constant discontinuous viscosity, which appears in simulations of two-phase flows
using continuum surface force models. In these studies a robust preconditioner,
with respect to a jump in viscosity and mesh size, for S was constructed and anal-
ysed. This research may give a hint on how to treat the case of general varying
viscosity and which conditions should be imposed to obtain a robust results.

1.6. Local MPSC approach

The local pressure Schur complement approach is tailored to solving ‘small’ prob-
lems so as to exploit the fast cache of modern processors, in contrast to the readily
vectorizable global MPSC schemes. As already mentioned above, the basic idea
is to subdivide the complete set of unknowns into patches Ωi and solve the local
subproblems exactly within an outer block-Gauss–Seidel/Jacobi iteration loop.
Typically, every patch (macroelement) for this ‘domain decomposition’ method
consists of one or several neighboring mesh cells and the corresponding local ‘stiff-
ness matrix’ Ci is given by

Ci :=

[
Ã|Ωi

ΔtB|Ωi

BT
|Ωi

0

]
. (1.46)

Its coefficients (and hence the corresponding ‘boundary conditions’ for the subdo-
mains) are taken from the global matrices, whereby Ã may represent either the
complete velocity matrix A or some approximation of it, for instance, the diagonal
part diag(A). The local subproblems at hand are so small that they can be solved
directly by Gaussian elimination. This is equivalent to applying the inverse of Ci

to a portion of the global defect vector.
The elimination process leads to a fill-in of the matrix, which increases the

storage requirements dramatically. Thus, it is advisable to solve the equivalent
local pressure Schur complement problem with the compact matrix

Si := BT
|Ωi

Ã−1
|Ωi

B|Ωi
. (1.47)

In general, Si is a full matrix but it is much smaller than Ci, since only the
pressure values are solved for. If the patch Ωi contains just a moderate number of
elements, the pressure Schur complement matrix is likely to fit into the processor
cache. Having solved the local PSC subproblem, one can recover the corresponding
velocity field as described in the previous section. In any case, the basic iteration
for a local MPSC method reads[

u(l+1)

p(l+1)

]
=
[

u(l)

p(l)

]
− ω(l+1)

Np∑
i=1

[
Ã|Ωi

ΔtB|Ωi

BT
|Ωi

0

]−1
[

δu(l)
i

δp
(l)
i

]
, (1.48)

where Np denotes the total number of patches, ω(l+1) is a relaxation parameter,
and the global defect vector restricted to a single patch Ωi is given by[

δu(l)
i

δp
(l)
i

]
=
([

A ΔtB
BT 0

] [
u(l)

p(l)

]
−
[

g
0

])
|Ωi

. (1.49)
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In practice, we solve the corresponding auxiliary problem[
Ã|Ωi

ΔtB|Ωi

BT
|Ωi

0

] [
v(l+1)

i

q
(l+1)
i

]
=

[
δu(l)

i

δp
(l)
i

]
(1.50)

and compute the new iterates u(l+1)
|Ωi

and p
(l+1)
|Ωi

as follows:[
u(l+1)
|Ωi

p
(l+1)
|Ωi

]
=

[
u(l)
|Ωi

p
(l)
|Ωi

]
− ω(l+1)

[
v(l+1)

i

q
(l+1)
i

]
. (1.51)

This two-step relaxation procedure is applied to each patch, so some velocity
or pressure components may end up being updated several times. The easiest way
to obtain globally-defined solution values at subdomain boundaries is to overwrite
the contributions of previously processed patches or to calculate an average over
all patch contributions to the computational node.

The resulting local MPSC method corresponds to a simple block-Jacobi it-
eration for the mixed problem (1.28). Its robustness and efficiency can be easily
enhanced by computing the local defect vector (1.49) using the possibly updated
solution values rather than the old iterates u(l)

|Ωi
and p

(l)
|Ωi

for the degrees of free-
dom shared with other patches. This strategy is known as the block-Gauss–Seidel
method. Its performance is superior to that of the block-Jacobi scheme, while the
numerical effort is approximately the same (for a sequential code).

It is common knowledge that block-iterative methods of Jacobi and Gauss–
Seidel type do a very good job as long as there are no strong mesh anisotropies.
However, the convergence rates deteriorate dramatically for irregular triangula-
tions which contain elements with high aspect ratios (for example, stretched cells
needed to resolve a boundary layer) and/or large differences between the size of
two neighboring elements. The use of ILU techniques alleviates this problem but
is impractical for strongly coupled systems of equations. A much better remedy is
to combine the mesh elements so as to ‘hide’ the detrimental anisotropies inside of
the patches which are supposed to have approximately the same shape and size.
Several adaptive blocking strategies for generation of such isotropic subdomains
are described in [112],[125].

The global convergence behavior will be satisfactory because only the lo-
cal subproblems are ill conditioned. Moreover, the size of these local problems is
usually very small. Thus, the complete inverse of the matrix fits into RAM and
sometimes even into the cache so that the use of fast direct solvers is feasible.
Consequently, the convergence rates should be independent of grid distortions and
approach those for very regular structured meshes. If hardware-optimized routines
such as the BLAS libraries are employed, then the solution of small subproblems
can be performed very efficiently. Excellent convergence rates and a high overall
performance can be achieved if the code is properly tuned and adapted to the
processor architecture in each particular case.
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1.7. Multilevel solution strategy

Pressure Schur complement schemes constitute viable solution techniques as such
but they are particularly useful as smoothers for a multilevel algorithm, e.g., a geo-
metric multigrid method. Let us start with explaining the typical implementation
of such a solver for an abstract linear system of the form

ANuN = fN . (1.52)

It is assumed that there exists a hierarchy of levels k = 1, . . . , N , which may be
characterized, for instance, by the mesh size hk. On each of these levels, one needs
to assemble the matrix Ak and the right-hand side fk for the discrete problem. We
remark that only fN is available a priori, while the sequence of residual vectors
{fk} for k < N is generated during the multigrid run. The main ingredients of a
(linear) multigrid algorithm are

• matrix-vector multiplication routines for the operators Ak, k ≤ N ;
• an efficient smoother (basic iteration scheme) and a coarse grid solver;
• prolongation Ik

k−1 and restriction Ik−1
k operators for grid transfer.

Each k-level iteration MPSC(k, u0
k, fk) with initial guess u0

k represents a
multigrid cycle which yields an (approximate) solution of the linear system Akuk =
fk. On the first level, the number of unknowns is typically so small that the
auxiliary problem can be solved directly: MPSC(1, u0

1, f1) = A−1
1 f1. For all other

levels (k > 1), the algorithm shown in Table 1 is adopted [125].
After sufficiently many cycles on level N , the desired solution uN of the generic
problem (1.52) is recovered. In the framework of our multilevel pressure Schur
complement schemes, there are (at least) two possible scenarios:

Global MPSC approach

Solve the discrete problem (1.52) with

AN := BT A−1B, uN := p, fN :=
1

Δt
BT A−1g.

The basic iteration is given by (1.43) and equivalent to a discrete projection cycle,
whereby the velocity field u is updated in a parallel manner (see above). The bulk
of CPU time is spent on matrix-vector multiplications with the Schur comple-
ment operator S = BT A−1B which is needed for smoothing, defect calculation,
and adaptive coarse grid correction. Unlike standard multigrid methods for scalar
problems, global MPSC schemes involve solutions of a viscous Burgers equation
and a Poisson-like problem in each matrix-vector multiplication step (to avoid
matrix inversion). In the case of highly non-stationary flows, the overhead cost is
insignificant but it becomes appreciable as the Reynolds number decreases. Nev-
ertheless, numerical tests indicate that the resulting multigrid solvers are optimal
in the sense that the convergence rates are excellent and largely independent of
mesh anisotropies.

Local MPSC approach
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Table 1. Multigrid algorithm

Step 1. Presmoothing: Apply m smoothing steps (PSC iterations) to u0
k

to obtain um
k .

Step 2. Coarse grid correction: Calculate fk−1 using the restriction oper-
ator Ik−1

k via
fk−1 = Ik−1

k (fk − Akum
k )

and let ui
k−1 (1 ≤ i ≤ p) be defined recursively by

ui
k−1 = MPSC(k − 1, ui−1

k−1, fk−1), u0
k−1 = 0 .

Step 3. Relaxation and update: Calculate um+1
k using the prolongation

operator Ik
k−1 via

um+1
k = um

k + αkIk
k−1u

p
k−1 , (1.53)

where the relaxation parameter αk may be fixed or chosen adaptively so
as to minimize the error um+1

k − uk in an appropriate norm, for instance,
in the discrete energy norm

αk =
(fk − Akum

k , Ik
k−1u

p
k−1)k

(AkIk
k−1u

p
k−1, I

k
k−1u

p
k−1)k

.

Step 4. Postsmoothing: Apply n smoothing steps (PSC iterations) to um+1
k

to obtain um+n+1
k .

Solve the discrete problem (1.52) with

AN :=
[

A ΔtB
BT 0

]
, uN :=

[
u
p

]
, fN :=

[
g
0

]
.

The basic iteration is given by (1.48) which corresponds to the block-Gauss–
Seidel/Jacobi method. The cost-intensive part is the smoothing step, as in the case
of standard multigrid techniques for convection-diffusion equations and Poisson-
like problems. Local MPSC schemes lead to very robust solvers for coupled prob-
lems. This multilevel solution strategy is to be recommended for incompressible
flows at low and intermediate Reynolds numbers.

Further algorithmic details (adaptive coarse grid correction, grid transfer
operators, nonlinear iteration techniques, time-step control, implementation of
boundary conditions) and a description of the high-performance software pack-
age featflow based on MPSC solvers can be found in [125],[126]. Some pro-
gramming strategies, data structures, and guidelines for the development of a
hardware-oriented parallel code are presented in [127],[128],[130].
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1.8. Coupling with scalar equations

Both global and local MPSC schemes are readily applicable to the Navier–Stokes
equations coupled with various turbulence models and/or scalar conservation laws
for temperatures, concentrations, volume fractions, and other scalar variables. In
many cases, the quantities of interest must remain strictly non-negative for phys-
ical reasons, and the failure to enforce the positivity constraint for the numeri-
cal solution may have disastrous consequences. Therefore, a positivity-preserving
discretization of convective terms is indispensable for such applications. This pre-
requisite is clearly satisfied by algebraic FEM-FCT and FEM-TVD schemes [68]
or by nonlinear versions of the edge-oriented FEM techniques introduced in the
previous section.

As a representative example of a two-way coupling between the Navier–Stokes
equations and a scalar transport equation, we consider the well-known Boussinesq
approximation for natural convection problems. The non-dimensional form of the
governing equations for a buoyancy-driven incompressible flow reads [15]

∂u
∂t

+ u · ∇u + ∇p = νΔu + Teg, (1.54)

∂T

∂t
+ u · ∇T = dΔT, ∇ · u = 0, (1.55)

where u is the velocity, p is the deviation from hydrostatic pressure and T is the
temperature. The unit vector eg is directed ‘upward’ (opposite to the gravitational
force) and the non-dimensional diffusion coefficients

ν =

√
Pr

Ra
, d =

√
1

Ra Pr

depend on the Rayleigh number Ra and the Prandtl number Pr. Details of this
model and parameter settings for the MIT benchmark problem (natural convection
in a differentially heated enclosure) can be found in [15].

1.8.1. Finite-element discretization. After the discretization in space and time, we
obtain a system of nonlinear algebraic equations which can be written in matrix
form as follows:

Au(un+1)un+1 + ΔtMT T n+1 + ΔtBpn+1 = fu, (1.56)

AT (un+1)T n+1 = fT , BT un+1 = 0. (1.57)

Here and below the superscript n + 1 refers to the time level, while subscripts
identify the origin of discrete operators (u for the momentum equation and T
for the heat conduction equation). Furthermore, the matrices Au and AT can be
decomposed into a reactive, convective, and diffusive part,

Au(v) = αuMu + βuKu(v) + γuLu, (1.58)
AT (v) = αT MT + βT KT (v) + γT LT . (1.59)
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Note that we have the freedom of using different finite-element approximations
and discretization schemes for the velocity u and temperature T . The discrete
problem (1.56)–(1.57) admits the representation⎡⎣ Au(un+1) ΔtMT ΔtB

0 AT (un+1) 0
BT 0 0

⎤⎦⎡⎣ un+1

T n+1

pn+1

⎤⎦ =

⎡⎣ fu
fT

0

⎤⎦ (1.60)

and can be solved in the framework of a global or local MPSC method.

1.8.2. Global MPSC algorithm. Non-stationary flow configurations call for the use
of operator splitting tools for the coupled system (1.60). This straightforward ap-
proach consists in solving the Navier–Stokes equations for (u, p) and the energy
equation for T in a segregated manner. The decoupled subproblems are embedded
into an outer iteration loop and solved sequentially by a global MPSC method (dis-
crete projection). For relatively small time steps, this strategy works very well, and
simulation software can be developed in a modular way making use of optimized
multigrid solvers. Moreover, it is possible to choose the time step individually for
each subproblem.

In the simplest case (just one outer iteration per time step), the sequence of
algorithmic steps to be performed is as follows [134]:

1. Compute ũ from the momentum equation

Au(ũ)ũ = fu − ΔtMT T n − ΔtBpn.

2. Solve the discrete Pressure-Poisson problem

BT M−1
L Bq =

1
Δt

BT ũ.

3. Correct the pressure and the velocity

pn+1 = pn + q, un+1 = ũ − ΔtM−1
L Bq.

4. Solve the convection-diffusion equation for T

AT (un+1)T n+1 = fT .

Due to the nonlinearity of the discretized convective terms, iterative defect
correction or a Newton-like method must be invoked in steps 1 and 4. This algo-
rithm combined with the non-conforming FEM discretization appears to provide
an ‘optimal’ flow solver for unsteady natural convection problems.

1.8.3. Local MPSC algorithm. Alternatively, a fully coupled solution of the prob-
lem at hand can be obtained following the local MPSC approach. To this end, a
multigrid solver is applied to the suitably linearized coupled system (1.60). Each
outer iteration for the nonlinearity corresponds to the following solution update
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[112],[134]: ⎡⎣ u(l+1)

T (l+1)

p(l+1

⎤⎦ =

⎡⎣ u(l)

T (l)

p(l)

⎤⎦− ω(l+1)[F (σ, l)]−1

⎡⎣ δu(l)

δT (l)

δp(l)

⎤⎦ , (1.61)

where the global defect vector is given by the relation⎡⎣ δu(l)

δT (l)

δp(l)

⎤⎦ =

⎡⎣ Au(u(l)) ΔtMT ΔtB

0 AT (u(l)) 0
BT 0 0

⎤⎦⎡⎣ u(l)

T (l)

p(l)

⎤⎦−

⎡⎣ fu
fT

0

⎤⎦ (1.62)

and the matrix to be inverted corresponds to the (approximate) Frechét derivative
of the underlying PDE system such that [112],[125]

F (σ, l) =

⎡⎣ Au(u(l)) + σR(u(l)) ΔtMT ΔtB

σR(T (l)) AT (u(l)) 0
BT 0 0

⎤⎦ . (1.63)

The nonlinearity of the governing equations gives rise to the ‘reactive’ contri-
bution R which represents a solution-dependent mass matrix and may cause severe
convergence problems. This is why it is multiplied by the adjustable parameter σ.
The Newton method is recovered for σ = 1, while the value σ = 0 yields the fixed-
point defect correction scheme. In either case, the linearized problem is solved by
a fully coupled multigrid solver equipped with a local MPSC smoother of ‘Vanka’
type [112]. As before, the matrix F (σ, l) is decomposed into small blocks Ci asso-
ciated with individual patches Ωi. The smoothing of the global residual vector is
performed patchwise by solving the corresponding local subproblems.

The size of the matrices to be inverted can be further reduced by resorting to
the Schur complement approach. For simplicity, consider the case σ = 0 (extension
to σ > 0 is straightforward). It follows from (1.56)–(1.57) that

T n+1 = A−1
T fT , un+1 = A−1

u [fu − ΔtMT T n+1 − ΔtBpn+1], (1.64)

and the discretized continuity equation can be cast into the form

BTun+1 = BT A−1
u [fu − ΔtMT A−1

T fT − ΔtBpn+1] = 0 (1.65)

which corresponds to the pressure Schur complement equation

BT A−1
u Bpn+1 = BT A−1

u

[
1

Δt
fu − MT A−1

T fT

]
. (1.66)

Thus, highly efficient local preconditioners of the form (1.47) can be employed
instead of Ci. The converged solution pn+1 to the scalar subproblem (1.66) is
plugged into (1.64) to obtain the velocity un+1 and the temperature T n+1.

The advantages of the seemingly complicated local MPSC strategy are as
follows. First of all, steady-state solutions can be obtained without resorting to
pseudo-time-stepping. Moreover, the fully coupled treatment of dynamic flows
makes it possible to use large time steps without any loss of robustness. On the
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other hand, the convergence behavior of multigrid solvers for the Newton lin-
earization may turn out to be unsatisfactory and the computational cost per outer
iteration is rather high as compared to the global MPSC algorithm. The perfor-
mance of both solution techniques as applied to the MIT benchmark problem is
illustrated by the numerical results reported in [134].

1.9. Coupling with k − ε turbulence model

High-resolution schemes like FCT and TVD (see [68]) or particularly nonlinear
edge-oriented stabilization schemes with shock-capturing play an increasingly im-
portant role in simulation of turbulent flows. Flow structures that cannot be re-
solved on the computational mesh activate the flux limiter which curtails the raw
antidiffusion so as to filter out the small-scale fluctuations. Interestingly enough,
the residual artificial viscosity provides an excellent subgrid scale model for mono-
tonically integrated Large Eddy Simulation (MILES), see [6].

In spite of recent advances in the field of LES and DNS (direct numerical
simulation), simpler turbulence models based on Reynolds averaging (RANS) still
prevail in CFD software for simulation of industrial processes. In particular, the
evolution of the turbulent kinetic energy k and of its dissipation rate ε is governed
by two convection-dominated transport equations,

∂k

∂t
+ ∇ ·

(
ku− νT

σk
∇k

)
= Pk − ε, (1.67)

∂ε

∂t
+ ∇ ·

(
εu − νT

σε
∇ε

)
=

ε

k
(C1Pk − C2ε), (1.68)

where u denotes the averaged velocity, νT = Cμk2/ε is the turbulent eddy viscosity
and Pk = νT

2 |∇u + ∇uT |2 is the production term. For the standard k − ε model,
the default values of the involved parameters are as follows:

Cμ = 0.09, C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3.

The velocity field u is obtained from the incompressible Navier–Stokes equations
with ∇ · (ν + νT )[∇u + (∇u)T ] instead of νΔu.

We remark that the transport equations for k and ε are strongly coupled and
nonlinear so that their numerical solution is a very challenging task. Moreover,
the discretization scheme must be positivity-preserving because negative values of
the eddy viscosity are unacceptable. Unfortunately, implementation details and
employed ‘tricks’ are rarely reported in the literature, so that a novice to this
area of CFD research often needs to reinvent the wheel. Therefore, we deem it
appropriate to discuss the implementation of a FEM-TVD algorithm for the k− ε
model in some detail.

1.9.1. Positivity-preserving linearization. The block-iterative algorithm proposed
in [71],[72] consists of nested loops so that the coupled PDE system is replaced by
a sequence of linear subproblems. The solution-dependent coefficients are ‘frozen’
during each outer iteration and updated as soon as new values become available.
The quasi-linear transport equations can be solved by an implicit FEM-FCT or
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FEM-TVD scheme but the linearization procedure must be tailored to the need to
preserve the positivity of k and ε in a numerical simulation. Due to the presence of
sink terms in the right-hand side of both equations, the positivity constraint may
be violated even if a high-resolution scheme is employed for the discretization of
convective terms. It can be proved that the exact solution to the k − ε model re-
mains non-negative for positive initial data [86],[87] and it is essential to guarantee
that the numerical scheme will also possess this property.

Let us consider the following representation of the equations at hand [75]:
∂k

∂t
+ ∇ · (ku− dk∇k) + γk = Pk, (1.69)

∂ε

∂t
+ ∇ · (εu− dε∇ε) + C2γε = C1Pk, (1.70)

where the parameter γ = ε
k is proportional to the specific dissipation rate (γ =

Cμω). The turbulent dispersion coefficients are given by dk = νT

σk
and dε = νT

σε
.

By definition, the source terms in the right-hand side are non-negative. Further-
more, the parameters νT and γ must also be non-negative for the solution of the
convection-reaction-diffusion equations to be well-behaved [16]. In our numerical
algorithm, their values are taken from the previous iteration and their positivity is
secured as explained below. This linearization technique was proposed in [75] and
it was noticed that the positivity of the lagged coefficients is even more impor-
tant than that of the transported quantities and can be readily enforced without
violating the discrete conservation principle.

Applying implicit high-resolution schemes to the above equations, we obtain
two nonlinear algebraic systems which can be written in the generic form

A(u(l+1))u(l+1) = B(u(l))u(l) + q(k), l = 0, 1, 2, . . . (1.71)

Here k is the index of the outermost loop in which the velocity u and the source
term Pk are updated. The index l refers to the outer iteration for the k− ε model,
while the index m is reserved for inner flux/defect correction loops. The structure
of the matrices A and B is as follows:

A(u) = ML − θΔt(K∗(u) + T ), (1.72)
B(u) = ML + (1 − θ)Δt(K∗(u) + T ), (1.73)

where K∗(u) is the described transport operator incorporating nonlinear anti-
diffusion and T denotes the standard reaction-diffusion operator which is a sym-
metric positive-definite matrix with non-negative off-diagonal entries. It is obvious
that the discretized production terms q(k) are also non-negative if appropriate
positivity-preserving schemes are used. Thus, the positivity of u(l) is inherited by
the new iterate u(l+1) = A−1(Bu(l) + q(k)) provided that θ = 1 (backward Euler)
or the time step is sufficiently small.

1.9.2. Positivity of coefficients. The predicted values k(l+1) and ε(l+1) are used to
recompute the parameter γ(l+1) for the next outer iteration (if any). The turbulent
eddy viscosity ν

(k)
T is updated in the outermost loop. In the turbulent flow regime
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νT � ν and the laminar viscosity ν can be neglected. Hence, we set νeff = νT ,
where the eddy viscosity νT is bounded from below by ν and from above by the
maximum admissible mixing length lmax (e.g., the width of the computational
domain). Specifically, we define the limited mixing length l∗ as

l∗ =

{
α
ε if ε > α

lmax

lmax otherwise
, where α = Cμk3/2 (1.74)

and use it to update the turbulent eddy viscosity νT in the outermost loop

νT = max{ν, l∗
√

k} (1.75)

as well as the parameter γ in each outer iteration for the k − ε model:

γ = Cμ
k

ν∗
, where ν∗ = max{ν, l∗

√
k}. (1.76)

In the case of a FEM-TVD method, the positivity proof is only valid for the con-
verged solution to (1.71) while intermediate solution values may be negative. Since
it is impractical to perform many defect correction steps in each outer iteration,
it is worthwhile to substitute k∗ = max{0, k} for k in formulas (1.74)–(1.76) so
as to to prevent taking the square root of a negative number. Upon convergence,
this safeguard will not make any difference, since k will be non-negative from the
outset. The above representation of νT and γ makes it possible to preclude division
by zero and obtain bounded coefficients without making any ad-hoc assumptions
and affecting the actual values of k and ε.

1.9.3. Initial conditions. Another important issue which is rarely addressed in the
CFD literature is the initialization of data for the k − ε model. As a rule, it is
rather difficult to devise a reasonable initial guess for a steady-state simulation or
proper initial conditions for a dynamic one. The laminar Navier–Stokes equations
(1.1) remain valid until the flow gains enough momentum for the turbulent effects
to become pronounced. Therefore, the k−ε model should be activated at a certain
time t∗ > 0 after the startup.

During the ‘laminar’ initial phase (t ≤ t∗), a constant effective viscosity ν0

is prescribed. The values to be assigned to k and ε at t = t∗ are uniquely defined
by the choice of ν0 and of the default mixing length l0 ∈ [lmin, lmax] where lmin

corresponds to the size of the smallest admissible eddies:

k0 =
(

ν0

l0

)2

, ε0 = Cμ
k

3/2
0

l0
at t ≤ t∗. (1.77)

This strategy was adopted because the effective viscosity ν0 and the mixing length
l0 are somewhat easier to estimate than k0 and ε0. In any case, long-term simula-
tion results are typically not very sensitive to the choice of initial data.
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1.9.4. Boundary conditions. At the inlet, Γin all velocity components and the val-
ues of k and ε are given:

u = g, k = cbc|u|2, ε = Cμ
k3/2

l0
on Γin, (1.78)

where cbc ∈ [0.001, 0.01] is an empirical constant [16] and |u| =
√

u · u is the
Euclidean norm of the velocity. At the outlet Γout, the normal gradients of all scalar
variables are required to vanish, and the ‘do-nothing’ [125] boundary conditions
are prescribed:

n · S(u) = 0, n · ∇k = 0, n · ∇ε = 0 on Γout. (1.79)

Here S(u) = −
(
p + 2

3k
)
I + (ν + νT )[∇u + (∇u)T ] denotes the effective stress

tensor. The numerical treatment of inflow and outflow boundary conditions does
not present any difficulty. In the finite-element framework, relations (1.79) imply
that the surface integrals resulting from integration by parts vanish and do not
need to be assembled.

At an impervious solid wall Γw, the normal component of the velocity must
vanish, whereas tangential slip is permitted in turbulent flow simulations. The
implementation of the no-penetration (free slip) boundary condition

n · u = 0 on Γw (1.80)

is nontrivial if the boundary of the computational domain is not aligned with the
axes of the Cartesian coordinate system. In this case, condition (1.80) is imposed
on a linear combination of several velocity components whereas their boundary
values are unknown. Therefore, standard implementation techniques for Dirichlet
boundary conditions based on a modification of the corresponding matrix rows
[125] cannot be used.

In order to set the normal velocity component equal to zero, we nullify the
off-diagonal entries of the preconditioner A(u(m)) = {a(m)

ij } in the defect correction
loop. This enables us to compute the boundary values of u explicitly before solving
a sequence of linear systems for the velocity components:

a
(m)
ij := 0, ∀j �= i, u∗

i := u(m)
i + r(m)

i /a
(m)
ii for xi ∈ Γw. (1.81)

Next, we project the predicted values u∗
i onto the tangent vector/plane and con-

strain the corresponding entry of the defect vector r(m)
i to be zero:

u(m)
i := u∗

i − (ni · u∗
i )ni, r(m)

i := 0 for xi ∈ Γw. (1.82)

After this manipulation, the corrected values u(m)
i act as Dirichlet boundary con-

ditions for the solution u(m+1)
i at the end of the defect correction step.

As an alternative to the implementation technique of predictor-corrector
type, the projection can be applied to the residual vector rather than to the nodal
values of the velocity:

a
(m)
ij := 0, ∀j �= i, r(m)

i := r(m)
i − (ni · r(m)

i )ni for xi ∈ Γw. (1.83)
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For Cartesian geometries, the algebraic manipulations to be performed affect just
the normal velocity component. Note that virtually no extra programming ef-
fort is required, which is a significant advantage as compared to another feasible
implementation based on local coordinate transformations during the element-by-
element matrix assembly [29].

1.9.5. Wall functions. To complete the problem statement, we still need to pre-
scribe the tangential stress as well as the boundary values of k and ε on Γw. Note
that the equations of the k − ε model are invalid in the vicinity of the wall where
the Reynolds number is rather low and viscous effects are dominant. In order to
avoid the need for resolution of strong velocity gradients, wall functions can be
derived using the boundary layer theory and applied at an internal boundary Γδ

located at a distance δ from the solid wall Γw ([84],[86],[87]).
In essence, a boundary layer of width δ is removed from the actual computa-

tional domain Ω and the equations are solved in the reduced domain Ωδ subject
to the following empirical boundary conditions:

n · D(u) · t = −u2
τ

u
|u| , k =

u2
τ√
Cμ

, ε =
u3

τ

κδ
on Γδ. (1.84)

Here D(u) = (ν+νT )[∇u+(∇u)T ] is the viscous part of the stress tensor, the unit
vector t refers to the tangential direction, κ = 0.41 is the von Kármán constant,
and uτ is the friction velocity which is assumed to satisfy

g(uτ ) = |u| − uτ

(
1
κ

log y+ + 5.5
)

= 0 (1.85)

in the logarithmic layer, where the local Reynolds number y+ = uτ δ
ν is in the

range 20 ≤ y+ ≤ 100, and be a linear function of y+ in the viscous sublayer,
where y+ < 20. Note that u represents the tangential velocity as long as the
no-penetration condition (1.80) is imposed on Γδ.

Equation (1.85) can be solved iteratively, e.g., by Newton’s method [84],

ul+1
τ = ul

τ − g(ul
τ )

g′(ul
τ )

= ul
τ +

|u| − uτf(ul
τ )

1/κ + f(ul
τ )

, l = 0, 1, 2, . . . (1.86)

where the auxiliary function f is given by

f(uτ ) =
1
κ

log y+
∗ + 5.5, y+

∗ = max
{

20,
uτδ

ν

}
.

The friction velocity is initialized by the approximation

u0
τ =

√
ν|u|
δ

and no iterations are performed if it turns out that y+ = u0
τ δ
ν < 20. In other

words, uτ = u0
τ in the viscous sublayer. Moreover, we use y+

∗ = max{20, y+} in
the Newton iteration to guarantee that the approximate solution belongs to the
logarithmic layer and remains bounded for y+ → 0.
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The friction velocity uτ is plugged into (1.84) to compute the tangential
stress, which yields a natural boundary condition for the velocity. Integration by
parts in the weak form of the Navier–Stokes equations gives rise to a surface
integral over the internal boundary Γδ which contains the prescribed traction:∫

Γδ

[n · D(u) · t] · v ds = −
∫

Γδ

u2
τ

u
|u| · v ds. (1.87)

The free slip condition (1.80) overrides the normal stress and Dirichlet boundary
conditions for k and ε are imposed in the strong sense. For further details regarding
the implementation of wall laws we refer to [84],[86],[87].

1.9.6. Underrelaxation for outer iterations. Due to the intricate coupling of the
governing equations, it is sometimes worthwhile to use a suitable underrelaxation
technique in order to prevent the growth of numerical instabilities and secure the
convergence of outer iterations. This task can be accomplished by limiting the
computed solution increments before applying them to the last iterate:

u(m+1) := u(m) + ω(m)(u(m+1) − u(m)), where 0 ≤ ω(m) ≤ 1. (1.88)

The damping factor ω(m) may be chosen adaptively so as to accelerate convergence
and minimize the error in a certain norm [125]. However, fixed values (for example,
ω = 0.8) usually suffice for practical purposes. The sort of underrelaxation can
be used in all loops (indexed by k, l and m) and applied to selected dependent
variables like k, ε or νT .

In addition, an implicit underrelaxation can be performed in m-loops by in-
creasing the diagonal dominance of the preconditioner [31],[92]:

a
(m)
ii := a

(m)
ii /α(m), where 0 < α(m) ≤ 1. (1.89)

Of course, the scaling of the diagonal entries does not affect the converged solution.
This strategy proves to be more robust than an explicit underrelaxation of the form
(1.88). On the other hand, no underrelaxation is needed for moderate time steps
which are typically used in dynamic simulations.

1.10. Adaptive time-step control

A remark is in order regarding the time-step selection for implicit schemes. Unlike
their explicit counterparts, they are unconditionally stable so that the time step
is limited only by accuracy considerations (for non-stationary problems). Thus, it
should be chosen adaptively so as to obtain a sufficiently good approximation at the
least possible cost. Many adaptive time-stepping techniques have been proposed
in the literature. Most of them were originally developed in the ODE context and
are based on an estimate of the local truncation error which provides a usable
indicator for the step-size control.

The ‘optimal’ value of Δt should guarantee that the deviation of a user-
defined functional J (pointwise solution values or certain integral quantities like
lift and drag) from its exact value does not exceed a given tolerance

|J(u) − J(uΔt)| ≈ TOL. (1.90)
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Assuming that the error at the time level tn is equal to zero, a heuristic error
indicator can be derived from asymptotic expansions for the numerical values of
J computed using two different time steps. For instance, consider

J(uΔt) = J(u) + Δt2e(u) + O(Δt)4,
J(umΔt) = J(u) + m2Δt2e(u) + O(Δt)4,

where m > 1 is an integer number (m = 2, 3). The error term e(v) is supposed to
be independent of the time step and can be estimated as

e(u) ≈ J(umΔt) − J(uΔt)
(m2 − 1)Δt2

.

For the relative error to approach the prescribed tolerance TOL as required by
(1.90), the new time step Δt∗ should be chosen so that

|J(u) − J(uΔt∗)| ≈
(

Δt∗
Δt

)2 |J(uΔt) − J(umΔt)|
m2 − 1

= TOL.

The required adjustment of the time step is given by the formula

Δt2∗ = TOL
(m2 − 1)Δt2

|J(uΔt) − J(umΔt)|
.

Furthermore, the solution accuracy can be enhanced by resorting to Richardson’s
extrapolation (see any textbook on numerical methods for ODEs). The above
considerations may lack some mathematical rigor but nevertheless lead to a very
good algorithm for automatic time-step control [125]:

1. Make one large time step of size mΔt to compute umΔt.
2. Make m small substeps of size Δt to compute uΔt.
3. Evaluate the relative changes i.e. |J(uΔt) − J(umΔt)|.
4. Calculate the ‘optimal’ value Δt∗ for the next time step.
5. If Δt∗ � Δt, reject the solution and go back to step 1.
6. Assign u := uΔt or perform Richardson’s extrapolation.

Note that the computational cost per time step increases significantly since the
solution umΔt may be as expensive to obtain as uΔt (due to slow convergence). On
the other hand, adaptive time-stepping contributes to the robustness of the code
and improves its overall efficiency as well as the credibility of simulation results.
Further algorithmic details for this approach can be found in [125].

Another simple strategy for adaptive time-step control was introduced by
Valli et al. [137],[138]. Their PID controller is based on the relative changes of a
suitable indicator variable (temperature distribution, concentration fields, kinetic
energy, eddy viscosity etc.) and can be summarized as follows:
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1. Compute the relative changes of the chosen indicator variable u

en =
||un+1 − un||

||un+1|| .

2. If they are too large (en > δ), reject un+1 and recompute it using

Δt∗ =
δ

en
Δtn.

3. Adjust the time step smoothly so as to approach the prescribed tol-
erance TOL for the relative changes

Δtn+1 =
(

en−1

en

)kP
(

TOL

en

)kI
(

e2
n−1

enen−2

)kD

Δtn.

4. Limit the growth and reduction of the time step so that

Δtmin ≤ Δtn+1 ≤ Δtmax, m ≤ Δtn+1

Δtn
≤ M.

The default values of the PID parameters as proposed by Valli et al. [138] are
kP = 0.075, kI = 0.175 and kD = 0.01. Unlike in the case of adaptive time-stepping
techniques based on the local truncation error, there is no need for computing
an extra solution with a different time step. Therefore, the cost of the feedback
mechanism is negligible. Our own numerical studies [72] confirm that this heuristic
control strategy is very robust and efficient.

1.11. Some numerical examples

Flow around a cylinder. The first incompressible flow problem to be dealt with
is the well-known benchmark Flow around a cylinder developed in 1995 for the
priority research program “Flow simulation on high-performance computers” un-
der the auspices of DFG, the German Research Association [111]. This project
was intended to facilitate the evaluation of various numerical algorithms for the
incompressible Navier–Stokes equations in the laminar flow regime. A quantitative
comparison of simulation results is possible on the basis of relevant flow charac-
teristics such as drag and lift coefficients, for which sufficiently accurate reference
values are available. Moreover, the efficiency of different solution techniques can
be assessed in an objective manner.

Consider the steady incompressible flow around a cylinder with circular cross-
section. An in-depth description of the geometrical details and boundary conditions
for the 2D/3D case can be found in references [111],[125] which contain all rele-
vant information regarding this benchmark configuration. The flow at Re = 20 is
actually dominated by diffusion and could be simulated by the standard Galerkin
method without any extra stabilization (as far as the discretization is concerned;
the iterative solver may require using a stabilized preconditioner). However, it was
this ‘trivial’ steady-state problem that has led us to invent the multi-dimensional
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flux limiter of TVD type [68] since the need for an improved limiting strategy was
apparent.

Furthermore, it is instructive to study the interplay of finite-element dis-
cretizations for the convective and diffusive terms. As a matter of fact, discrete
upwinding can be performed for the cumulative transport operator or just for
the convective part. In the case of the non-conforming Q̃1-elements, the discrete
Laplacian operator originating from the Galerkin approximation of viscous terms
is a positive definite matrix but some of its off-diagonal coefficients are negative.
Our numerical experiments indicate that it is worthwhile to leave it unchanged
and start with a FEM-TVD discretization of the convective term.

Figure 3. Coarse mesh (2D) for the benchmark ‘Flow around a cylinder’.

To generate hierarchical data structures for the MPSC algorithms imple-
mented in the software package featflow [126], we introduce a sequence of suc-
cessively refined quadrilateral meshes. The elements of the coarse mesh shown
in Fig. 3 are subdivided into four subelements at each refinement level, and the
2D mesh is extended into the third dimension for a 3D simulation. The two-
dimensional results produced by a global MPSC (discrete projection) method with
a FEM-TVD discretization of the convective terms are presented in Table 1. The
computational mesh for multigrid level NLEV contains NMT midpoints and NEL
elements. For the employed Q̃1/Q0 finite-element pair, NMT represents the number
of unknowns for each velocity component, while NEL is the number of degrees of
freedom for the pressure. It can be seen that the drag and lift coefficients approach
the reference values CD ≈ 5.5795 and CL ≈ 0.01061 as the mesh is refined. The
same outcome can be obtained in the local MPSC framework without resorting to
pseudo-time-stepping.

In Table 3, we present the drag and lift coefficients for a three-dimensional
simulation of the flow around the cylinder. The hexahedral mesh for NLEV=4
consists of 49,152 elements, which corresponds to 151,808 unknowns for each ve-
locity component. In order to evaluate the performance of the global MPSC solver
and verify grid convergence, we compare the results to those obtained on a coarser
and a finer mesh. All numerical solutions were marched to the steady state by
the fully implicit backward Euler method. The discretization of convective terms
was performed using (i) finite volume upwinding (UPW), (ii) Samarski’s hybrid
scheme (SAM), (iii) streamline diffusion stabilization (SD), and (iv) algebraic flux
correction (TVD). This numerical study confirms that standard artificial viscosity
methods are rather sensitive to the values of the empirical constants, whereas
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NLEV NMT NEL CD CL

3 4264 2080 5.5504 0.8708 · 10−2

4 16848 8320 5.5346 0.9939 · 10−2

5 66976 33280 5.5484 0.1043 · 10−1

6 267072 133120 5.5616 0.1056 · 10−1

7 1066624 532480 5.5707 0.1054 · 10−1

8 4263168 2129920 5.5793 0.1063 · 10−1

Table 2. Global MPSC method / TVD-FEM discretization.

FEM-TVD performs remarkably well. The reference values CD ≈ 6.1853 and
CL ≈ 0.95 · 10−2 for this 3D configuration were calculated in [59] by an isopara-
metric high-order FEM.

NLEV UPW-1st SAM-1.0 SD-0.25 SD-0.5 TVD

3 6.08/ 1.01 5.72/ 0.28 5.78/-0.44 5.98/-0.52 5.80/ 0.36
4 6.32/ 1.20 6.07/ 0.62 6.13/ 0.26 6.26/ 0.18 6.14/ 0.46
5 6.30/ 1.20 6.14/ 0.83 6.17/ 0.70 6.23/ 0.64 6.18/ 0.80

Table 3. Global MPSC method: 3D simulation, CD/(CL · 100).

Backward facing step. Let us proceed with a three-dimensional test problem which
deals with a turbulent flow over a backward facing step at Re = 44, 000, see [84]
for details. Our objective is to validate the implementation of the k − ε model
as described above. As before, the incompressible Navier–Stokes equations are
discretized in space using the non-conforming Q̃1/Q0 finite-element pair, while
conforming Q1 (trilinear) elements are employed for the turbulent kinetic energy
and its dissipation rate. All convective terms are handled by the fully implicit
FEM-TVD method. The velocity-pressure coupling is enforced in the framework
of a global MPSC formulation.

Standard wall laws are applied on the boundary except for the inlet and
outlet. The stationary distribution of k and ε in the middle cross-section (z = 0.5)
is displayed in Fig. 4. The variation of the friction coefficient

cf =
2τw

ρ∞u2
∞

=
2u2

τ

u2
∞

=
2k

u2
∞

√
Cμ

along the bottom wall is presented in Fig. 5 (left). The main recirculation length
L ≈ 6.8 is in a good agreement with the numerical results reported in the literature
[84]. Moreover, the horizontal velocity component (see Fig. 5, right) assumes posi-
tive values at the bottom of the step, which means that the weak secondary vortex
is captured as well. The parameter settings for this three-dimensional simulation
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were as follows:

δ = 0.05, cbc = 0.0025, ν0 = 10−3, l0 = 0.02, lmax = 1.0.

The computational mesh shown in Fig. 6 contains 57,344 hexahedral cells (pres-
sure unknowns), which corresponds to 178,560 faces (degrees of freedom for each
velocity component) and 64,073 vertices (nodes for k and ε).

1.12. Application to more complex flow models

In this section, we discuss several incompressible flow models which require highly
accurate FEM techniques and which contain generalized Navier–Stokes problems
of the form

ρ

(
∂u
∂t

+ u · ∇u
)

= f + μΔu −∇p , Div u = 0 (1.91)

complemented by additional PDEs which describe physical processes like
1. Heat transfer in complex geometries

→ Ceramic plate heat exchanger
2. Multiphase flow with chemical reaction

→ Gas-liquid reactors
3. Nonlinear fluids/granular flow

→ Sand motion in silos
4. Free and moving boundaries

→ Level set FEM methods.
Although these typical flow configurations (to be presented below) differ in

their complexity and cover a wide range of Reynolds numbers, all of them require
an accurate treatment of diffusive and convective phenomena. Numerical artefacts
such as small-scale oscillations/ripples may cause an abnormal termination of the
simulation run due to division by zero, floating-point overflow etc. However, in
the worst case they can be misinterpreted as physical phenomena and eventually
result in making wrong decisions for the design of industrial equipment. Therefore,
non-physical solution behavior should be avoided at any cost, and the use of high-
resolution FEM discretization schemes is recommendable. Moreover, simulation
results must be validated by comparison with experimental data and/or numerical
solutions computed on a finer mesh.

1.12.1. Heat transfer in ‘Plate Heat Exchangers’. The first example deals with the
development of optimization tools for a constellation described by ‘coupled stacks’
with different layers (see Fig. 7). This example is quite typical for a complex flow
model in the laminar regime – small Re numbers due to slow fluid velocities and
very small diameters – which however requires unstructured FEM approaches due
to complicated small-scale geometrical details and which is coupled with additional
tracer equations which often are described by a convection-diffusion equation with
a small diffusion coefficient or by a pure transport problem. Hence, the appropriate
treatment on unstructured meshes and the implicit handling with large time steps
– the underlying flow field is (almost) quasi-stationary – are the critical aspects
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Distribution of k in the cutplane z = 0.5

Distribution of ε in the cutplane z = 0.5

Figure 4. Backward facing step: stationary solution, Re = 44, 000.
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Figure 5. Distribution of cf (left) and ux (right) along the bot-
tom wall.

Figure 6. Hexahedral computational mesh for the 3D simulation.

for an accurate and efficient methodology which shall be exemplarily illustrated
in the following.
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a) b) c)

Figure 7. Plate heat exchanger: a) geometric configuration; b)
typical flow pattern; c) velocity field for an ‘optimal’ distribution
of internal objects.

The aim of the underlying numerical study is the understanding and improve-
ment of the

• internal flow characteristics
• heat transfer characteristics

in the shown configuration which can be described by a Boussinesq model. Restrict-
ing to one stack only, the internal geometry between ‘inflow’ and ‘outflow’ holes
has to be analyzed and channel-like structures or many internal ‘objects’ have to
be placed to achieve a homogeneous flow field and correspondingly a homogeneous
distribution of tracer substances in the interior. In order to determine the optimal
shape and distribution of internal obstacles, the simulation software to be devel-
oped must be capable of resolving all small-scale details. Therefore, the underlying
numerical algorithm must be highly accurate and, moreover, sufficiently flexible
and robust. Algebraic FCT/TVD schemes and nonlinear edge-oriented FEM tech-
niques belong to the few discretization techniques that do meet these requirements.
Some preliminary results based on the incompressible Navier–Stokes equations for
velocity and pressure only are presented in Fig. 7.

The following step beyond ‘manual optimization’ shall be a fully automatic
optimization of shape, number, and distribution of the internal objects. Further-
more, the temperature equations are to be solved for each stack as well as for the
whole system taking into account heat transfer both in the flow field and between
the walls. In addition, chemical reaction models should be included, which give
rise to another set of coupled convection-reaction-diffusion equations. Last but
not least, accurate FEM techniques have to be employed in the postprocessing
step, whereby the ‘residence time distribution’ inside of each stack is measured by
solving a pure transport equation for passive tracers: Since the flow field is almost
stationary and allows large time steps due to the large viscosity parameters, the
nonlinear transport equation has to be treated in an implicit way which is a quite



Fluid-Solid Interaction 421

Riser RiserRiserDowncomer Downcomer

Figure 8. Bubble columns (left) and airlift loop reactors (right).

typical requirement for the accurate and efficient treatment for such type of flow
problems.

1.12.2. Bubbly flow in gas-liquid reactors. Bubble columns and airlift loop reac-
tors are widely used in industry as contacting devices which enable gaseous and
liquid species to engage in chemical reactions. The liquid is supplied continuously
or in a batch mode and agitated by bubbles fed at the bottom of the reactor. As
the bubbles rise, the gaseous component is gradually absorbed into the bulk liquid
where it may react with other species. The geometric simplicity of bubble columns
makes them rather easy to build, operate and maintain. At the same time, the
prevailing flow patterns are very complex and unpredictable, which represents a
major bottleneck for the design of industrial units. By insertion of internal parts,
bubble columns can be transformed into airlift loop reactors which exhibit a sta-
ble circulation pattern with pronounced riser and downcomer zones (see Fig. 8).
Hence, shape optimization appears to be a promising way to improve the reactor
performance by adjusting the geometry of the internals.

In the present chapter, we adopt a simplified two-fluid model which is based
on an analog of the Boussinesq approximation (1.55) for natural convection prob-
lems. At moderate gas holdups, the gas-liquid mixture behaves as a weakly com-
pressible fluid which is driven by the bubble-induced buoyancy. Following Sokoli-
chin et al. [116],[117] we assume the velocity uL of the liquid phase to be divergence-
free. The dependence of the effective density ρ̃L on the local gas holdup ε is taken
into account only in the gravity force, which is a common practice for single-phase
flows induced by temperature gradients. This leads to the following generalization
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of the Navier–Stokes equations:

∂uL

∂t
+ uL · ∇uL = −∇p∗ + ∇ ·

(
νT [∇uL + ∇uT

L ]
)
− εg,

Div uL = 0, p∗ =
p − patm

ρL
+ g · eg − gh, (1.92)

where the eddy viscosity νT = Cμk2/ε is a function of the turbulent kinetic energy
k and its dissipation rate ε (see above). Recall that the evolution of these quantities
is described by two scalar transport equations,

∂k

∂t
+ ∇ ·

(
kuL − νT

σk
∇k

)
= Pk + Sk − ε, (1.93)

∂ε

∂t
+ ∇ ·

(
εuL − νT

σε
∇ε

)
=

ε

k
(C1Pk + CεSk − C2ε), (1.94)

where the extra source terms are due to the bubble-induced turbulence

Pk =
νT

2
|∇u + ∇uT |2, Sk = −Ckε∇p · uslip.

The involved slip velocity uslip is proportional to the pressure gradient

uslip = − ∇p

CW

and the ‘drag’ coefficient CW ≈ 5 · 104 kg
m3s is determined from empirical correla-

tions for the rise velocity of a single bubble in a stagnant liquid [116].
The gas density ρG is related to the common pressure p by the ideal gas law

p = ρG
R
η T , which enables us to express the local gas holdup ε and the interfacial

area aS per unit volume as follows [70],[72]:

ε =
ρ̃GRT

pη
, aS = (4πn)1/3(3ε)2/3.

The effective density ρ̃G = ερG and the number density n (number of bubbles per
unit volume) satisfy the following continuity equations:

∂ρ̃G

∂t
+ ∇ · (ρ̃GuG) = −mint, (1.95)

∂n

∂t
+ ∇ · (nuG) = 0. (1.96)

The interphase momentum transfer is typically dominated by the drag force, and
the density of gas is much smaller than that of liquid, so that the inertia and gravity
terms in the momentum equation for the gas phase can be neglected [116],[117].
Under these (quite realistic) simplifying assumptions, the gas phase velocity uG

can be computed from the algebraic slip relation

uG = uL + uslip + udrift, udrift = −dG
∇n

n
,
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where the drift velocity udrift is introduced to model the bubble path dispersion
by turbulent eddies. It is usually assumed that dG = νT /σG, where the Schmidt
number σG equals unity. Substitution into (1.95)–(1.96) yields

∂ρ̃G

∂t
+ ∇ · (ρ̃G(uL + uslip) − νT∇ρ̃G) = −mint, (1.97)

∂n

∂t
+ ∇ · (n(uL + uslip) − νT∇n) = 0. (1.98)

Note that the contribution of udrift gives rise to diffusive terms in both equations
and it is implied that ρ̃G∇n/n = ∇ρ̃G. Strictly speaking, this relation is valid
only for an (almost) constant bubble mass m = ρ̃G/n but can also be used in
the framework of ‘operator-splitting’, whereby convection-diffusion and reaction-
absorption processes are decoupled from one another.

The sink term mint in equations (1.95) and (1.97) is due to the reaction-
enhanced mass transfer. It is proportional to the interfacial area aS and can be
modeled in accordance with the standard two-film theory. The effective concentra-
tions of all species in the liquid phase are described by extra convection-reaction-
diffusion equations [67],[69],[70],[72]. If the coalescence and breakup of bubbles
cannot be neglected, equation (1.96) should be replaced by a detailed population
balance model for the bubble size distribution [32]. In any case, we end up with a
very large system of convection-dominated PDEs which are strongly coupled and
extremely sensitive to non-physical phenomena that may result from an improper
discretization of the convective terms.

In order to implement the above drift-flux model in a finite-element code, we
need to collect all the numerical tools presented so far:

• high-resolution discretization schemes for the convective terms;
• MPSC solvers for the incompressible Navier–Stokes equations;
• block-iterative coupling mechanisms (Boussinesq approximation);
• implementation techniques for the k − ε turbulence model;
• adaptive time-stepping (PID control of the local gas holdup).

The segregated algorithm proposed in [72] consists of nested loops for the inti-
mately coupled subproblems which are solved sequentially using solution values
from the previous outer iteration to evaluate the coefficients and source/sink terms.
In each time step, the outermost loop is responsible for the coupling of all rele-
vant equation blocks and contains another outer iteration loop for the equations
of the k−ε turbulence model which are closely related to one another and must be
solved in a coupled fashion. The buoyancy force in the Navier–Stokes equations is
evaluated using the gas holdup from the previous outer iteration and fixed-point
defect correction is employed for all nonlinear convective terms, which gives rise
to another sequence of outer iterations. The iterative process is repeated until the
residual of the momentum equation and/or the relative changes of all variables
become small enough.

Operator-splitting tools are employed to separate convection-diffusion and
absorption-reaction processes at each time step. First, all scalar quantities are
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transported without taking the sources/sinks into account. The homogeneous
equations are decoupled and can be processed in parallel. An implicit time dis-
cretization of Crank–Nicolson or backward Euler type is performed for all equa-
tions. The value of the implicitness parameter θ and of the local time step can be
selected individually for each subproblem so as to maximize accuracy and/or sta-
bility. The communication between the subproblem blocks takes place at the end
of the common macro time step Δtn which is chosen adaptively so as to control
the changes of the gas holdup distribution. The flow chart of algorithmic steps to
be performed is as follows [72]:

1. Recover the pressure gradient ∇p via L2-projection.
2. Compute the associated slip velocity uslip = − ∇p

CW
.

3. Solve the homogeneous continuity equation for ρ̃G.
4. Update the number density n according to (1.98).
5. Convert ρ̃G and n into ε and aS; evaluate mint.
6. Solve the transport equations for concentrations.
7. Solve the ODE systems for absorption-reaction.
8. Enter the inner loop for the k − ε model (1.93)–(1.94).
9. Compute the turbulent eddy viscosity νT = Cμ

k2

ε .
10. Insert νT and ε into (1.92) and evaluate the residual.
11. If converged, then proceed to the next time step.
12. Solve the Navier–Stokes equations and go to 1.

The first example deals with the locally aerated bubble column that was
investigated in detail by Becker et al. [3]. The snapshots of the meandering bubble
swarm displayed in Fig. 9 are in a good agreement with experimental data. The
evolution of the gas holdup in the middle cross section of a prototypical airlift loop
reactor is shown in Fig. 10. Aeration takes place at the bottom of the riser section
where both phases flow upward. At the upper surface, the bubbles escape, while
the liquid is diverted into the gas-free downcomer so as to form a closed loop. The
two-phase flow reaches a steady state within a few seconds after the startup (see
the right diagram). Computational results for the reaction-enhanced absorption of
CO2 in a locally aerated bubble column filled with an aqueous solution of NaOH
are presented in [69],[72].

1.12.3. Nonlinear (granular) flow. Another interesting example for the need of
special FEM techniques is the numerical simulation of nonlinear incompressible
fluids,

∂u
∂t

+ (u · ∇)u − Div T + ∇p = f , Div u = 0 (1.99)

where T is the stress tensor. Denoting the deformation rate by D and the rotation
rate by W,

D =
1
2
(∇u + ∇uT ) , W =

1
2
(∇u −∇uT ), (1.100)
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Figure 9. Gas holdup distribution in a flat bubble column.

Figure 10. Gas holdup distribution in an airlift loop reactor.

we obtain as special case of (1.99) the case of Newtonian fluids via:

T = 2νD = ν(∇u + ∇uT ). (1.101)

The most popular variant of nonlinear fluids are Power-Law models, with a
viscosity ν in (1.101) which depends in a nonlinear way on D = D(u),

T = 2ν(D)D , ν(D) = ν0(ε1 + ε2|D|)α, (1.102)

with specific parameters ν0, ε1, ε2 and α. Fluids with α > 0 are called shear
thickening, in contrast to the case α < 0 (shear thinning), both of which lead to



426 S. Turek and J. Hron

numerical challenges. Such differential type models – see also Bingham or Reiner–
Rivlin fluids [79],[103] – do not require implicit calculations of T since the tensor T
can be represented as (nonlinear) function of D(u). Only modifications of existing
Navier–Stokes solvers have to be performed, without additional discretizations of
equations for T.

This is in contrast to the more general type of rate-type models which cou-
ple (nonlinear) evaluations and derivatives of T with functional evaluations and
derivatives in space and time of u und D. Examples are Rivlin–Ericksen and
second-grade fluids [62],[79] and particularly Oldroyd models [38],[103]. Defining
the objective time derivative of the tensor T as

DaT
Dt

=
∂T
∂t

+ (u · ∇)T + TW + (TW)T − a[TD + (TD)T ] , (1.103)

with −1 ≤ a ≤ 1, a general description for Oldroyd models [49],[102] reads

λ1
DaT
Dt

+ T + γ(T,D) = 2μ(λ2
DaD
Dt

+ D) , (1.104)

with relaxation time λ1, retardation time λ2 and viscosity parameter μ which may
additionally depend on D. In variants with γ(T,D) �= 0 (Oldroyd 8-constants
model, Larson model, Phan–Thien–Tanner model), there is another nonlinear re-
lation between T and D, while in the following we will concentrate on the case
γ(T,D) = 0, containing the so-called Jeffrey models, resp., the Maxwell fluids. Ex-
amples for numerical simulations can be found in papers by Joseph [62], Glowinski
[38] and [49]. We assume the following equation for T,

T = 2μvD + S , λ
DaS
Dt

+ S = 2μeD (1.105)

with λ = λ1, μv = μλ2
λ1

and μe = μ − μv. Then, we can rewrite the Navier–Stokes
model in (1.99) as

Re [
∂u
∂t

+ (u · ∇)u] + ∇p − (1 − α)Δu − Div S = f , Div u = 0, (1.106)

We [
∂S
∂t

+ (u · ∇)S + βa(S,D)] + S = 2αD, (1.107)

with the following definitions (−1 ≤ a ≤ 1, characteristic length L, resp., velocity
V):

βa(S,D) = SW + (SW)T − a[SD + (SD)T ], (1.108)

α =
μe

μe + μv
, Re =

LVρ

μe + μv
, We =

Vλ

L
. (1.109)

As a result, we obtain a coupled system consisting of a Navier–Stokes-like
system (1.106) in u, p with additional term DivS. Furthermore, there is a nonlinear
non-stationary tensor-valued reaction-transport equation in (1.107) which couples
both tensors S and D(u). To solve this highly complex system, there is need for
appropriate discretization techniques in space and time (implicit Euler, Crank–
Nicolson or fractional-step method together with LBB-stable FEM spaces). In
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particular, high-resolution FEM techniques are strongly required for the tensor-
valued transport problems since a monotone, oscillation-free and highly accurate
discretization of the tensor T is very important. Moreover, the mentioned MPSC
techniques for solving the saddle point problems and for the coupling between the
different equations are important research aspects for this kind of problem.

Finally, we mention the hypoplastic model for granular material of Kolymbas
[64] for the numerical simulation of dry cohesionless material, for instance, for the
flow of sand in silos. This approach contains components from rate-type as well
as from differential-type models such that the relation to the described Oldroyd
model gets immediately visible:

Re [
∂u
∂t

+ (u · ∇)u] = −∇p + Div T + f , Div u = 0, (1.110)

∂T
∂t

+ (u · ∇)T = −[TW − WT] (1.111)

+C1
1
2
(TD − DT) + C2tr(TD) · I

+C3

√
trD2T + C4

√
trD2

trT
T2

+ ν(D) [
∂D
∂t

+ (u · ∇)D + DW − WD].

Here, I denotes the unit matrix, ν(D) a nonlinear (tensor) function of Power-
Law type, and Ci are specific material constants. Again, the robust and accurate
treatment of the convective terms in absence of any second-order elliptic diffusive
term is a very important aspect for the numerical simulations.

1.12.4. Free surface/interface flows. The final example shortly illustrates the need
for implicit TVD or edge-oriented FEM discretizations for incompressible (lami-
nar) flow problems which contain free surfaces, resp., free interfaces:

ρi

(
∂v
∂t

+ v · ∇v
)
−∇ · (2μiS) + ∇p = ρig , (1.112)

∇ · v = 0 in Ωi , i = 1, 2, . . . (1.113)

with deformation tensor S = 1/2
(
∇v + (∇v)T

)
, densities ρi and (dynamic) vis-

cosities μi of the i-th fluid, gravity g and Γ = Ω̄1 ∩ Ω̄2 describing the interface,
Ω = Ω1 ∪Ω2 the complete domain with boundary Σ. This system is completed by
the boundary conditions

v = b on Σ , (1.114)

and the initial values

v|t=0 = v0 in Ω ; Γ|t=0 = Γ0 . (1.115)

Moreover, the conditions at the (free) interface read:
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Figure 11. Problem description.

1) Mass balance. The interface moves with the fluid,

V = v1 · n = v2 · n, (1.116)

with interface velocity V , normal vector n on the interface at Γ and vi as velocity
of the i-th fluid.

2) Momentum balance. The following relation holds for the stress tensor Ti =
−pI + 2μiS,

(T1 − T2) · n = κσn, (1.117)

with pressure p, surface tension coefficient σ and curvature κ of the interface.
These conditions read:

[v] |Γ · n = 0 , − [−pI + 2μ(x)S] |Γ · n = κσn , (1.118)

with [·]|Γ = limx∈Ω2→Γ (·) − limx∈Ω1→Γ(·), ρ(x) = ρ1 in Ω1 and ρ2 in Ω2, and
μ(x) = μ1 in Ω1 and μ2 in Ω2.

Beside classical front tracking methods, the (implicit) reconstruction of free
interfaces via an ‘indicator function’ ϕ, which satisfies ϕ = 0 directly at the in-
terface, is an alternative procedure. In contrast to the well-known VOF approach
[48], which uses a discontinuous indicator function ϕ, the Level-Set method is our
method of choice, particularly in the FEM context.

In both approaches, VOF as well as Level-Set, the indicator function ϕ and
hence the position of the free interface due to the isoline ϕ = 0 is advected via the
following pure transport equation:

∂ϕ

∂t
+ v · ∇ϕ = 0, (1.119)

while, in addition, the Level-Set function ϕ has the ‘signed distance’ property:
∂ϕ

∂t
+ v · ∇ϕ = 0 , |∇ϕ| = 1. (1.120)
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Figure 12. Rising bubble via the Level-Set method.

That means that ϕ is a function with zero-level at the interface, and the evaluation
of ϕ provides the (signed) distance to the interface Γ. The advantage is that this
special approach, |∇ϕ| = 1, leads to a smooth function ϕ so that higher-order
discretization schemes become feasible. However, this additional problem is not
trivial to solve, and a typical approach for this so-called ‘reinitialisation’ step is a
non-stationary formulation of |∇ϕ| = 1 as pure transport equation. Denoting the
solution of the transport problem (1.119) in each time step by ϕold, we are looking
for a distance function ϕ, with the same zero-level as ϕold, as steady-state solution
of:

∂ϕ

∂t
= sign(ϕold)(1 − |∇ϕ|). (1.121)

This is equivalent to solving
∂ϕ

∂t
+ sign(ϕold)|∇ϕ| = sign(ϕold) (1.122)

or finally:
∂ϕ

∂t
+ sign(ϕold)

∇ϕ · ∇ϕ

|∇ϕ| =
∂ϕ

∂t
+ w · ∇ϕ = sign(ϕold). (1.123)

Here, we define the ‘transport direction’ w = sign(ϕold) ∇ϕ
|∇ϕ| and solve this (non-

linear) problem in every time step until steady state which makes it obvious that
robust and highly accurate FEM discretizations methods together with efficient
solvers are needed. Numerical studies show that a monotone, oscillation-free and
accurate discretization of the indicator function ϕ and hence of the interface po-
sition is a very crucial point which is mainly responsible for the quality of free
interface simulations.

1.13. Conclusions

Even for laminar, single-phase flow models, there is still a big need for better math-
ematical approaches regarding discretization and solution aspects if much ‘better’
CFD simulations tools w.r.t. accuracy, flexibility, robustness and particularly to-
tal efficiency have to be derived. Then, the next laborious step will be to develop
professional software for grand-challenge industrial problems. However, the bench-
marks and numerical studies show that we must spend such efforts in improving
the ‘basic tools’, before stepping to more complex simulations! Otherwise, there
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might be no chance to tackle successfully much more complex simulation problems,
providing not only qualitatively, but also quantitatively accurate results. So, the
numerical main ingredients of our research studies for the near future read:

• Higher-order FEM spaces: Preliminary tests, by other CFD groups as well
as internally, show the much higher accuracy of higher-order polynomials.
Even for a biquadratic Q2 element with piecewise P1 pressure elements (see
next chapter), the gain already can be huge. However, at the moment it is
not clear how these approaches behave for non-smooth solutions with strong
gradients, and particularly the appropriate stabilization of the convective
terms for higher Re numbers is not obvious. Here, we plan to extend the
described TVD and particularly the edge-oriented FEM methodology to the
case of biquadratic FEM which is principally possible. This step together
with the development of corresponding hierarchical solvers of multigrid type,
which are absolutely necessary to exploit the potentially higher accuracy of
higher-order elements, will be examined in the very near future.

• Nonlinear solvers: Since TVD and nonlinear edge-oriented stabilization tech-
niques are per se nonlinear discretizations, appropriate Newton-like methods
have to be applied if implicit treatments – as for instance in the ‘reinitial-
ization step’ or for ‘tracer transport’ in slow flow – are necessary. However,
due to the ‘discrete and discontinuous’ structure of such techniques (TVD),
the problem of deriving derivatives being part of the (approximate) Jacobian
matrices is still unsolved and requires intensive studies.

• Multigrid solvers: Analogously to the nonlinear considerations, the numerical
behaviour of standard (geometric) multigrid of the resulting linear subprob-
lems is not yet clear and justifies further efforts.

• Tensor-valued transport operators: As described for nonlinear fluids, addi-
tional hyperbolic problems with transport operators may appear which how-
ever are defined for tensor-values functions, in contrast to the typical scalar
quantities, such that the extension of the described FEM techniques for these
cases has to be examined in the near future.

• A-posteriori error control: Since the described stabilization techniques are all
FEM methods, appropriate a-posteriori error control mechanisms for Galerkin-
type discretizations should be applicable. Particularly, residual-based error
control via dual problems for user-specific quantities in the spirit of Ran-
nacher and collaborators shall be examined and generalized to these new
classes of FEM methods to achieve ‘optimal’ control on refining and coars-
ening the computational meshes.

However, beside all these mathematical efforts in this work, results of compu-
tational studies (see [127] for a critical discussion) show that on recent processors
holds: Data moving is costly, and not data processing ! This is the major reason why
traditional numerical approaches for PDE’s and their realization as PDE software
have massive problems in achieving a significant percentage of the possible peak
performance. On the other hand, special tools for the Numerical Linear Algebra
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and for the complete solution part of the arising huge linear system of equations
can be significantly improved: Via cache-based techniques through exploiting lo-
cally structured features. We do not talk about improvements of 20% – 200%; in
fact, we aim to get overall speed-ups of size 10 – 1000, already on modern single
processors, while further significant improvements should become possible due to
corresponding optimal parallel strategies!

To realize these aims, very special ‘local structures’ have to be incorporated
into complex CFD simulation tools such that modern numerical components can
be applied, as, for instance, adaptive meshing and a-posteriori error control or
generalized multigrid/domain decomposition solvers. Furthermore, the same phi-
losophy has to be applied to fully implicit Navier–Stokes solvers of MPSC-type
which again are optimized with respect to performing more ‘arithmetic opera-
tion intensive’ work (Numerical Linear Algebra, multigrid, Krylov-space solvers)
instead of ‘memory access expensive’ tasks (assembling of stiffness matrices, de-
fects and residuals, modifying the mesh). It is obvious that the necessary work
for designing and particularly for realizing such software concepts is not an easy
job; the related FEAST project (see [128]) is based on such strategies, at least
regarding the discussed data structures and applied solvers. Anyway, the tech-
nological trends strongly indicate that such numerical and computational labour
is necessary: although the development of such software tools may take longer,
the gain in future will be huge, especially for ‘real-life’ applications in 3D which
at the moment often tend to be impossible due to huge performance problems.
However, all these software engineering aspects have always to be accompanied
by corresponding efforts in modern Numerics which also must explicitly take into
account the recent hardware developments. Otherwise, it may happen that many
‘nice’ mathematical developments get impracticable if much less than one percent
of the possible computing power is achieved.

2. FSI for fluid – elastic solid configurations

2.1. Overview

Both problems of viscous fluid flow and of elastic body deformation have been
studied separately for many years in great detail. But there are many problems
encountered in real life where an interaction between those two medias is of great
importance. Typical example of such a problem is the area of aero-elasticity. An-
other important area where such interaction is of great interest is biomechanics.
Such interaction is encountered especially when dealing with the blood circulatory
system. The problem of a pulsative flow in an elastic tube, the flow through the
heart flaps, the flow in the heart chambers are some of the examples. In all these
cases we have to deal with large deformations of a deformable solid interacting
with an unsteady, often periodic, fluid flow. The ability to model and predict the
mechanical behavior of biological tissues is very important in several areas of bio-
engineering and medicine. For example, a good mathematical model for biological
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tissue could be used in such areas as early recognition or prediction of heart mus-
cle failure, advanced design of new treatments and operative procedures, and the
understanding of atherosclerosis and associated problems. Other possible applica-
tions include development of virtual-reality programs for training new surgeons
or designing new operative procedures (see [85, 93]), and last but not least the
design of medical instruments or artificial replacements with optimal mechanical
and other properties as close as possible to the original parts (see [147]). These are
some of the areas where a good mathematical model of soft tissue with reliable
and fast numerical solution is essential for success.

2.1.1. Fluid-structure models. There have been several different approaches to
the problem of fluid-structure interaction. Most notably the work of [97, 95,
96, 94] where an immersed boundary method was developed and applied to a
three-dimensional model of the heart. In this model they consider a set of one-
dimensional elastic fibers immersed in three-dimensional fluid region and using
parallel supercomputer they were able to model the pulse of the heart ventricle.
Their method can capture the anisotropy caused by the muscle fibers.

A fluid-structure model with the wall modeled as a thin shell was used to
model the left heart ventricle in [17, 18] and [101, 100]. In [46, 47] a similar approach
was used to model a flow in a collapsible tubes. In these models the wall is modeled
by a two-dimensional thin shell which can be modified to capture the anisotropy
of the muscle. In reality the thickness of the wall can be significant and very
important. For example in arteries the wall thickness can be up to 30% of the
diameter and its local thickening can be the cause of an aneurysm creation. In
the case of heart ventricle the thickness of the wall is also significant and also the
direction of the muscle fibers changes through the wall.

2.1.2. Mixture models for perfusion. Another class of models which fall into the
fluid structure interaction problems are the fluid-solid mixture models used for
simulation of soft tissue perfusion like muscles or cartelage. Mixture theory was
first applied to swelling and diffusion in rubber materials [21, 104], mechanics
of skin [90], compression of cartilage [119, 66, 106] and blood perfusion through
biological tissues in [141, 142]. (see, for example, [33] and [82]) The basic idea
of mixture theory is the assumption of co-occupancy, i.e., at each spatial point
there is certain fraction of each constituent (with associated fields) and there are
prescribed balance equations for each constituent of the mixture as is usual for
a single continuum, with additional terms representing the interaction between
constituents within the mixture.

There have been several numerical studies of mixture models. One-dimensional
diffusion of fluid through an isotropic material is solved in [115], for transversely
isotropic materials in [21] and in [106] a one-dimensional diffusion through isotropic
stretched slab is solved using a velocity boundary condition. Finite-element solu-
tions of mixture models for the small deformation, linear elastic case are presented
in [66, 142] and for nonlinear large deformation description of various soft tissues
in [119, 118, 120, 24, 143, 1, 74].
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2.1.3. Theoretical results. The theoretical investigation of fluid structure interac-
tion problems is complicated by the need of mixed description. While for the solid
part the natural view is the material (Lagrangian) description, for the fluid it is the
spatial (Eulerian) description. In the case of their combination some kind of mixed
description (usually referred to as the arbitrary Lagrangian–Eulerian description
or ALE) has to be used which brings additional nonlinearity into the resulting
equations.

In [73] a time dependent, linearized model of interaction between a viscous
fluid and an elastic shell in small displacement approximation and its discretization
is analyzed. The problem is further simplified by neglecting all changes in the ge-
ometry configuration. Under these simplifications, by using energy estimates they
are able to show that the proposed formulation is well posed and a global weak
solution exists. Further they show that an independent discretization by standard
mixed finite elements for the fluid and by non-conforming discrete Kirchhoff tri-
angle finite elements for the shell together with backward or central difference
approximation of the time derivatives converges to the solution of the continuous
problem.

In [108] a steady problem of equilibrium of an elastic fixed obstacle sur-
rounded by a viscous fluid is studied. Existence of an equilibrium state is shown
with the displacement and velocity in C2,α and pressure in C1,α under assumption
of small data in C2,α and the domain boundaries of class C3.

For a basic introduction and complete reference of continuum theory see
[43, 121, 80, 45]. Its application in biomechanics are presented, e.g., in [33] and
[81]. We will mention in the following sections the basic notation and setup used
in this work.

A numerical solution of the resulting equations of the fluid structure inter-
action problem poses a great challenge since it includes the features of nonlinear
elasticity, fluid mechanics and their coupling. The easiest solution strategy, mostly
used in the available software packages, is to decouple the problem into the fluid
part and solid part, for each of those parts to use some well established method of
solution; then the interaction is introduced as external boundary conditions in each
of the subproblems. This has the advantage that there are many well-tested finite-
element based numerical methods for separate problems of fluid flow and elastic
deformation; on the other hand, the treatment of the interface and the interaction
is problematic. The approach presented here treats the problem as a single con-
tinuum with the coupling automatically taken care of as internal interface, which
in our formulation does not require any special treatment.

2.2. Continuum description

Let Ω ⊂ R
3 be a reference configuration of a given body. Let Ωt ⊂ R3 be a con-

figuration of this body at time t. Then a one-to-one, sufficiently smooth mapping
�χΩ of the reference configuration Ω to the current configuration

�χΩ : Ω × [0, T ] �→ R
3, (2.1)
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Ω0 Ωt

Ω

�χΩ0(t)

�χΩ(t)�χΩ(0)

Figure 13. The referential domain Ω, initial Ω0 and current
state Ωt and relations between them. The identification Ω ≡ Ω0

is adopted in this text.

describes the motion of the body, see Figure 13. The mapping �χΩ depends on the
choice of the reference configuration Ω which can be fixed in various ways. Here we
think of Ω to be the initial (stress-free) configuration Ω0. Thus, if not emphasized,
we mean by �χ exactly �χΩ = �χΩ0 .

If we denote by �X a material point in the reference configuration Ω, then the
position of this point at time t is given by

�x = �χ( �X, t). (2.2)

Next, the mechanical fields describing the deformation are defined in a standard
manner. The displacement field, the velocity field, deformation gradient and its
determinant are

�u( �X, t) = �χ( �X, t) − �X, �v =
∂�χ

∂t
, F =

∂�χ

∂ �X
, J = detF . (2.3)

Let us adopt the following useful notations for some derivatives. Any field quantity
ϕ with values in some vector space Y (i.e., scalar-, vector- or tensor-valued) can be
expressed in the Eulerian description as a function of the spatial position �x ∈ R3,

ϕ = ϕ̃(�x, t) : Ωt × [0, T ] �→ Y.

Then we define the following notation for the derivatives of the field ϕ:
∂ϕ

∂t
:=

∂ϕ̃

∂t
, ∇ϕ =

∂ϕ

∂�x
:=

∂ϕ̃

∂�x
, div ϕ := tr∇ϕ. (2.4)

In the case of Lagrangian description we consider the quantity ϕ to be defined on
the reference configuration Ω; then for any �X ∈ Ω we can express the quantity ϕ
as

ϕ = ϕ̄( �X, t) : Ω × [0, T ] �→ Y,

and we define the derivatives of the field ϕ as
dϕ

dt
:=

∂ϕ̄

∂t
, Gradϕ =

∂ϕ

∂ �X
:=

∂ϕ̄

∂ �X
, Div ϕ := tr∇ϕ. (2.5)
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These two descriptions can be related to each other through the relations

ϕ̄( �X, t) =ϕ̃(�χ( �X, t), t), (2.6)

dϕ

dt
=

∂ϕ

∂t
+ (∇ϕ)�v, Gradϕ =(∇ϕ)F ,

∫
Ωt

ϕdv =
∫

Ω

ϕJdV , (2.7)

dF

dt
=∇�v,

∂J

∂F
=JF−T ,

dJ

dt
=J div�v. (2.8)

For the formulation of the balance laws we will need to express time derivatives of
some integrals. The following series of equalities obtained by using the previously
stated relations will be useful:

d

dt

∫
Ωt

ϕdv =
d

dt

∫
Ω

ϕJdV =
∫

Ω

d

dt
(ϕJ) dV =

∫
Ωt

(
dϕ

dt
+ ϕdiv�v

)
dv

=
∫

Ωt

(
∂ϕ

∂t
+ div (ϕ�v)

)
dv =

∫
Ωt

∂ϕ

∂t
dv +

∫
∂Ωt

ϕ�v · �nda

=
∂

∂t

∫
Ωt

ϕdv +
∫

∂Ωt

ϕ�v · �nda.

(2.9)

The Piola identity is used, Div(JF−T ) = �0, which can be checked by differen-
tiating the left-hand side and using (2.8) together with an identity obtained by
differentiating the relation FF−1 = I.

2.2.1. Balance laws in the ALE formulation. The Eulerian (or spatial) description
is well suited for a problem of fluid flowing through some spatially fixed region. In
such a case the material particles can enter and leave the region of interest. The
fundamental quantity describing the motion is the velocity vector.

On the other hand, the Lagrangian (or referential) description is well suited
for a problem of deforming a given body consisting of a fixed set of material par-
ticles. In this case the actual boundary of the body can change its shape. The
fundamental quantity describing the motion in this case is the vector of displace-
ment from the referential state.

In the case of fluid-structure interaction problems we can still use the La-
grangian description for the deformation of the solid part. The fluid flow now
takes place in a domain with boundary given by the deformation of the structure
which can change in time and is influenced back by the fluid flow. The mixed
ALE description of the fluid has to be used in this case. The fundamental quantity
describing the motion of the fluid is still the velocity vector but the description is
accompanied by a certain displacement field which describes the change of the fluid
domain. This displacement field has no connection to the fluid velocity field and
the purpose of its introduction is to provide a transformation of the current fluid
domain and corresponding governing equations to some fixed reference domain.
This method is sometimes called a pseudo-solid mapping method [109].

Let P ⊂ R
3 be a fixed region in space (a control volume) with the boundary

∂P and unit outward normal vector �nP , such that P ⊂ Ωt for all t ∈ [0, T ]. Let �
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denote the mass density of the material. Then the balance of mass in the region
P can be written as

∂

∂t

∫
P

�dv +
∫

∂P
��v · �nPda = 0. (2.10)

If all the fields are sufficiently smooth, this equation can be written in local form
with respect to the current configuration as

∂�

∂t
+ div(��v) = 0. (2.11)

It will be useful to derive the mass balance equation from the Lagrangian point of
view. Let Q ⊂ Ω be a fixed set of particles. Then �χ(Q, t) ⊂ Ωt is a region occupied
by these particles at the time t, and the balance of mass can be expressed as

d

dt

∫
�χ(Q,t)

�dv = 0, (2.12)

which in local form with respect to the reference configuration can be written as

d

dt
(�J) = 0. (2.13)

In the case of an arbitrary Lagrangian–Eulerian description we take a region
Z ⊂ R3 which is itself moving independently of the motion of the body. Let the
motion of the control region Z be described by a given mapping

�ζZ : Z × [0, T ] �→ R
3, Zt ⊂ Ωt ∀t ∈ [0, T ],

with the corresponding velocity �vZ = ∂�ζZ
∂t , deformation gradient FZ = ∂�ζZ

∂ �X
and

its determinant JZ = det FZ . The mass balance equation can be written as

∂

∂t

∫
Zt

�dv +
∫

∂Zt

�(�v − �vZ) · �nZtda = 0, (2.14)

this can be viewed as an Eulerian description with a moving spatial coordinate
system or as a grid deformation in the context of the finite-element method. In
order to obtain a local form of the balance relation we need to transform the
integration to the fixed spatial region Z,

∂

∂t

∫
Z

�JZdv +
∫

∂Z
�(�v − �vZ) · F−T

Z �nZJZda = 0, (2.15)

then the local form is
∂

∂t
(�JZ) + div

(
�JZ(�v − �vZ) · F−T

Z

)
= 0. (2.16)

The two previous special formulations can be now recovered. If the region Z
is not moving in space, i.e., Z = Zt, ∀t ∈ [0, T ], then �ζZ is the identity mapping,
FZ = I, JZ = 1, �vZ = �0, and (2.16) reduces to (2.11). While, if the region Z
moves exactly with the material, i.e., �ζZ = �χ|Z , then FZ = F , JZ = J,�vZ = �v,
and (2.16) reduces to (2.13).
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The balance of linear momentum is postulated in a similar way. Let σ denote
the Cauchy stress tensor field, representing the surface forces per unit area, �f be
the body forces acting on the material per its unit mass. Then the balance of linear
momentum in the Eulerian description is stated as

∂

∂t

∫
P

��vdv +
∫

∂P
��v ⊗ �v�nPda =

∫
∂P

σT�nPda +
∫
P

��fdv. (2.17)

The local form of the linear momentum balance is
∂��v

∂t
+ div(��v ⊗ �v) = div σT + ��f, (2.18)

or with the use of (2.11) we can write

�
∂�v

∂t
+ �(∇�v)�v = div σT + ��f. (2.19)

From the Lagrangian point of view the momentum-balance relation is

d

dt

∫
�χ(Q,t)

��vdv =
∫

∂�χ(Q,t)

σT�n�χ(Q,t)da +
∫

�χ(Q,t)

��fdv. (2.20)

Let us denote by P = JσT F−T the first Piola–Kirchhoff stress tensor [43], then
the local form of the momentum balance is

d

dt
(�J�v) = Div P + �J �f, (2.21)

or using (2.13) we can write

�J
d�v

dt
= Div P + �J �f. (2.22)

In the arbitrary Lagrangian–Eulerian formulation we obtain

∂

∂t

∫
Zt

��vdv +
∫

∂Zt

��v ⊗ (�v − �vZ)�nZtda =
∫

∂Zt

σT�nZtda +
∫
Zt

��fdv, (2.23)

which in the local form gives

∂�JZ�v

∂t
+ div

(
�JZ�v ⊗ (�v − �vZ)F−T

Z

)
= div

(
JZσT F−T

Z

)
+ �JZ �f, (2.24)

or with the use of (2.16) we can write

�JZ
∂�v

∂t
+ �JZ(∇�v)F−T

Z (�v − �vZ) = div
(
JZσT F−T

Z

)
+ �JZ �f. (2.25)

In the case of angular momentum balance we assume that there are no ex-
ternal or internal sources of angular momentum, then it follows that the Cauchy
stress tensor has to be symmetric, i.e., σ = σT . Assuming an isothermal condition
the energy balance is satisfied and the choice of the constitutive relations for the
materials has to be compatible with the balance of entropy [121].
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Ωf

Ωs

Γ0
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Γ3

Ωf
t
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t
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Γ3
t

�χf

�χs

Figure 14. Undeformed (original) and deformed (current) configurations.

2.3. Fluid structure interaction problem formulation

At this point we make a few assumptions that allow us to deal with the task
of setting up a tractable problem. Let us consider a flow between thick elastic
walls as shown in Figure 14. We will use the superscripts s and f to denote the
quantities connected with the solid and fluid. Let us assume that both materials
are incompressible and all the processes are isothermal, which is a well-accepted
approximation in biomechanics, and let us denote the constant densities of each
material by �f , �s.

2.3.1. Monolithic description. We denote by Ωf
t the domain occupied by the fluid

and Ωs
t by the solid at time t ∈ [0, T ]. Let Γ0

t = Ω̄f
t ∩Ω̄s

t be the part of the boundary
where the solid interacts with the fluid and Γi

t, i = 1, 2, 3, be the remaining external
boundaries of the solid and the fluid as depicted in Figure 14.

Let the deformation of the solid part be described by the mapping

�χs : Ωs × [0, T ] �→ R
3, (2.26)

with the corresponding displacement �us and the velocity �vs given by

�us( �X, t) = �χs( �X, t) − �X, �vs( �X, t) =
∂�χs

∂t
( �X, t). (2.27)

The fluid flow is described by the velocity field �vf defined on the fluid domain Ωf
t ,

�vf (�x, t) : Ωf
t × [0, T ] �→ R

3. (2.28)

Further we define the auxiliary mapping, denoted by �ζf , to describe the change of
the fluid domain and corresponding displacement �uf by

�ζf : Ωf × [0, T ] �→ R
3, �uf ( �X, t) = �ζf ( �X, t) − �X. (2.29)

We require that the mapping �ζf is sufficiently smooth, one to one and has to
satisfy

�ζf ( �X, t) = �χs( �X, t), ∀( �X, t) ∈ Γ0 × [0, T ]. (2.30)

In the context of the finite-element method this will describe the artificial mesh
deformation inside the fluid region and it will be constructed as a solution to a
suitable boundary value problem with (2.30) as the boundary condition.
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The momentum and mass balance of the fluid in the time-dependent fluid
domain analogous to (2.16) are

�f ∂�vf

∂t
+ �f (∇�vf )(�vf − ∂�uf

∂t
) = div σf , div�vf = 0 in Ωf

t , (2.31)

together with the momentum and mass balance of the solid in the solid domain

�s ∂�vs

∂t
+ �s(∇�vs)�vs = div σs, div�vs = 0 in Ωs

t . (2.32)

The interaction is due to the exchange of momentum through the common
part of the boundary Γ0

t . On this part we require that the forces are in balance
and, simultaneously, the no-slip boundary condition holds for the fluid, i.e.,

σf�n = σs�n on Γ0
t , �vf = �vs on Γ0

t . (2.33)

The remaining external boundary conditions can be of the following kind: a natural
boundary condition on the fluid inflow and outflow part Γ1

t with pB given value.
Alternatively we can prescribe a Dirichlet-type boundary condition on the inflow
or outflow part Γ1

t ,

σf�n = pB�n on Γ1
t , �vf = �vB on Γ1

t , (2.34)

where �vB is given. The Dirichlet boundary condition is prescribed for the solid
displacement at the part Γ2

t and the stress free boundary condition for the solid is
applied at the part Γ3

t ,

�us = �0 on Γ2
t , σs�n = �0 on Γ3

t . (2.35)

We introduce the domain Ω = Ωf∪Ωs, where Ωf , Ωs are the domains occupied
by the fluid and solid in the initial undeformed state, and two fields defined on
this domain as

�u : Ω × [0, T ] → R
3, �v : Ω × [0, T ] → R

3,

such that the field �v represents the velocity at the given point and �u the displace-
ment on the solid part and the artificial displacement in the fluid part, taking care
of the fact that the fluid domain is changing with time,

�v =

{
�vs on Ωs,

�vf on Ωf ,
�u =

{
�us on Ωs,

�uf on Ωf .
(2.36)

Due to the conditions (2.30) and (2.33) both fields are continuous across the in-
terface Γ0

t and we can define global quantities on Ω as the deformation gradient
and its determinant,

F =I + ∇�u, J =detF . (2.37)

Using this notation the solid balance laws (2.32) can be expressed in the
Lagrangian formulation with the initial configuration Ωs as reference,

J�s d�v

dt
= Div P s, J = 1 in Ωs. (2.38)
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The fluid equations (2.31) are already expressed in the arbitrary Lagrangian–
Eulerian formulation with respect to the time dependent region Ωf

t ; now we trans-
form the equations to the fixed initial region Ωf by the mapping ζf defined by
(2.29):

�f ∂�v

∂t
+ �f (∇�v)F−1(�v − ∂�u

∂t
) = J−1 Div(JσfF−T ), Div(J�vF−T ) = 0 in Ωf .

(2.39)

It remains to prescribe some relation for the mapping ζf . In terms of the corre-
sponding displacement �uf we formulate some simple relation together with the
Dirichlet boundary conditions required by (2.30), for example

∂�u

∂t
= Δ�u in Ωf , �u = �us on Γ0, �u = �0 on Γ1. (2.40)

Other choices are possible. For example, the mapping �uf can be realized as a
solution of the elasticity problem with the same Dirichlet boundary conditions
[109]. Then, the complete set of the equations can be written as

∂�u

∂t
=

{
�v in Ωs,

Δ�u in Ωf ,
(2.41)

∂�v

∂t
=

{
1

J�s Div P s in Ωs,

−(∇�v)F−1(�v − ∂�u
∂t ) + 1

J�f Div(JσfF−T ) in Ωf ,
(2.42)

0 =

{
J − 1 in Ωs,

Div(J�vF−T ) in Ωf ,
(2.43)

with the initial conditions

�u(0) = �0 in Ω, �v(0) = �v0 in Ω, (2.44)

and boundary conditions

�u = �0, �v = �vB on Γ1, �u = �0 on Γ2, σs�n = �0 on Γ3. (2.45)

2.3.2. Constitutive equations. In order to solve the balance equations we need to
specify the constitutive relations for the stress tensors. For the fluid we use the
incompressible Newtonian relation

σf = −pfI + μ(∇�vf + (∇�vf )T ), (2.46)

where μ represents the viscosity of the fluid and pf is the Lagrange multiplier
corresponding to the incompressibility constraint.

For the solid part we assume that it can be described by an incompressible
hyper-elastic material. We specify the Helmholtz potential Ψ, and the solid Cauchy
stress tensor and the first Piola–Kirchhoff stress tensor are given by

σs = −psI + �s ∂Ψ
∂F

F T , P s = −JpsF−T + J�s ∂Ψ
∂F

, (2.47)
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where ps is the Lagrange multiplier corresponding to the incompressibility con-
straint.

The Helmholtz potential can be expressed as a function of different quantities

Ψ = Ψ̂(F ) = Ψ̂(I + ∇�u),

but due to the principle of material frame indifference the Helmholtz potential Ψ
depends on the deformation only through the right Cauchy–Green deformation
tensor C = F T F [43]

Ψ = Ψ̃(C). (2.48)

A certain coerciveness condition is usually imposed on the form of the Helmholtz
potential

Ψ̄(∇�u( �X, t)) ≥ a
∣∣∣∣∣∣∇�u( �X, t)

∣∣∣∣∣∣2 − b( �X), (2.49)

where a is a positive constant and b ∈ L1(Ωs). With this assumption and using
the integral identity (2.58) we can derive an energy estimate of the form

c

2
||�v(T )||2L2(ΩT ) +

∫ T

0

μ ||∇�v||2L2(Ωf
t ) dt + a ||∇�u(T )||2L2(Ωs)

≤ ||b||L1(Ωs) +
1
2
||�v0||2L2(Ωf ) +

β

2
||�v0||2L2(Ωs) .

(2.50)

where c = min(1, β).
Typical examples for the Helmholtz potential used for isotropic materials like

rubber is the Mooney–Rivlin material

Ψ̃ = c1(IC − 3) + c2(IIC − 3), (2.51)

where IC = trC, IIC = 1
2 (tr2 C − tr C2), IIIC = detC are the invariants of the

right Cauchy–Green deformation tensor C and ci are some material constants. A
special case of neo-Hookean material is obtained for c2 = 0. With a suitable choice
of the material parameters the entropy inequality and the balance of energy are
automatically satisfied.

2.3.3. Weak formulation. We non-dimensionalize all the quantities by a given char-
acteristic length L and speed V as follows:

t̂ = t
V

L
, �̂x =

�x

L
, �̂u =

�u

L
, �̂v =

�v

V
,

σ̂s = σs L

�fV 2
, σ̂f = σf L

�fV 2
, μ̂ =

μ

�fV L
, Ψ̂ = Ψ

L

�fV 2
,

further using the same symbols, without the hat, for the non-dimensional quanti-
ties and denoting by β = �s

�f the densities ratio. The non-dimensionalized system
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with the choice of material relations, (2.46) for viscous fluid and (2.47) for the
hyper-elastic solid is

∂�u

∂t
=

{
�v in Ωs,

Δ�u in Ωf ,
(2.52)

∂�v

∂t
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
β Div

(
−JpsF−T + ∂Ψ

∂F

)
in Ωs,

−(∇�v)F−1(�v − ∂�u

∂t
)

+ Div
(
−JpfF−T + Jμ∇�vF−1F−T

) in Ωf ,
(2.53)

0 =

{
J − 1 in Ωs,

Div(J�vF−T ) in Ωf ,
(2.54)

and the boundary conditions

σf�n = σs�n on Γ0
t , �v = �vB on Γ1

t , (2.55)

�u = �0 on Γ2
t , σf�n = �0 on Γ3

t . (2.56)

Let I = [0, T ] denote the time interval of interest. We multiply the equations
(2.52)–(2.54) by the test functions �ζ, �ξ, γ such that �ζ = �0 on Γ2, �ξ = �0 on Γ1, and
integrate over the space domain Ω and the time interval I. Using integration by
parts on some of the terms and the boundary conditions we obtain∫ T

0

∫
Ω

∂�u

∂t
· �ζdV dt =

∫ T

0

∫
Ωs

�v · �ζdV dt −
∫ T

0

∫
Ωf

∇�u · ∇�ζdV dt, (2.57)

∫ T

0

∫
Ωf

J
∂�v

∂t
· �ξdV dt +

∫ T

0

∫
Ωs

βJ
∂�v

∂t
· �ξdV dt

+
∫ T

0

∫
Ωf

J∇�vF−1(�v − ∂�u

∂t
) · �ξdV dt −

∫ T

0

∫
Ω

JpF−T · ∇�ξdV dt

+
∫ T

0

∫
Ωs

∂Ψ
∂F

· ∇�ξdV dt +
∫ T

0

∫
Ωf

Jμ∇�vF−1F−T · ∇�ξdV dt = 0,

(2.58)

∫ T

0

∫
Ωs

(J − 1)γdV dt +
∫ T

0

∫
Ωf

Div(J�vF−T )γdV dt = 0. (2.59)

Let us define the spaces

U = {�u ∈ L∞(I, [W 1,2(Ω)]3), �u = �0 on Γ2},
V = {�v ∈ L2(I, [W 1,2(Ωt)]3) ∩ L∞(I, [L2(Ωt)]3), �v = �0 on Γ1},
P = {p ∈ L2(I, L2(Ω))},

then the variational formulation of the fluid-structure interaction problem is to
find (�u,�v − �vB , p) ∈ U × V × P such that equations (2.57), (2.58) and (2.59) are
satisfied for all (�ζ, �ξ, γ) ∈ U × V × P including appropriate initial conditions.
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Figure 15. Location of the degrees of freedom for the Q2, P
dis
1 element.

2.3.4. Discretization. In the following, we restrict ourselves to two dimensions
which allows systematic tests of the proposed methods in a very efficient way,
particularly in view of grid-independent solutions. The time discretization is done
by the Crank-Nicholson scheme which is only conditionally stable but which has
better conservation properties than for example the implicit Euler scheme [30, 65].
The Crank–Nicholson scheme can be obtained by dividing the time interval I into
the series of time steps [tn, tn+1] with step length kn = tn+1 − tn. Assuming that
the test functions are piecewise constant on each time step [tn, tn+1], writing the
weak formulation (2.57)-(2.58) for the time interval [tn, tn+1], approximating the
time derivatives by the central differences ∂f

∂t ≈ f(tn+1)−f(tn)
kn

, and approximating
the time integration for the remaining terms by the trapezoidal quadrature rule
as ∫ tn+1

tn

f(t)dt ≈ kn

2
(f(tn) + f(tn+1)),

we obtain the time-discretized system. The last equation corresponding to the
incompressibility constraint is taken implicitly for the time tn+1 and the corre-
sponding term with the Lagrange multiplier pn+1

h in the equation (2.58) is also
taken implicitly.

The discretization in space is done by the finite-element method. We approxi-
mate the domain Ω by a domain Ωh with polygonal boundary and by Th we denote
a set of quadrilaterals covering the domain Ωh. We assume that Th is regular in the
usual sense that any two quadrilaterals are disjoint or have a common vertex or a
common edge. By T̄ = [−1, 1]2 we denote the reference quadrilateral. Our treat-
ment of the problem as one system suggests that we use the same finite elements
on both, the solid part and the fluid region. Since both materials are incompress-
ible, we have to choose a pair of finite-element spaces known to be stable for the
problems with incompressibility constraint. One possible choice is the conforming
biquadratic, discontinuous linear Q2, P

dis
1 pair, see Figure 15 for the location of

the degrees of freedom. This choice results in 39 degrees of freedom per element
in the case of our displacement, velocity, pressure formulation in two dimensions
and 112 degrees of freedom per element in three dimensions.
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The spaces U, V, P on an interval [tn, tn+1] would be approximated in the
case of the Q2, P

dis
1 pair as

Uh = {�uh ∈ [C(Ωh)]2, �uh|T ∈ [Q2(T )]2 ∀T ∈ Th, �uh = �0 on Γ2},
Vh = {�vh ∈ [C(Ωh)]2, �vh|T ∈ [Q2(T )]2 ∀T ∈ Th, �vh = 0 on Γ1},
Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T ) ∀T ∈ Th}.

Let us denote by �un
h the approximation of �u(tn), �vn

h the approximation of
�v(tn) and pn

h the approximation of p(tn). Further we will use following shorthand
notation:

F n = I + ∇�un
h, Jn = detF n Jn+ 1

2 =
1
2
(Jn + Jn+1),

(f, g) =
∫

Ω

f · gdV , (f, g)s =
∫

Ωs

f · gdV , (f, g)f =
∫

Ωf

f · gdV ,

f, g being scalars, vectors or tensors.
Writing down the discrete equivalent of the equations (2.57)–(2.59) yields(

�un+1
h − �un

h, �η
)
− kn

2

{(
�vn+1

h + �vn
h , �η

)
s
+
(
∇�un+1

h + ∇�un
h,∇�η

)
f

}
= 0, (2.60)

(
Jn+ 1

2 (�vn+1
h − �vn

h), �ξ
)

f
+ β

(
�vn+1

h − �vn
h , �ξ

)
s
− kn

(
Jn+1pn+1

h (F n+1)−T ,∇�ξ
)

s

+
kn

2

{(
∂Ψ
∂F

(∇�un+1
h ),∇�ξ

)
s

+
(
Jn+1∇�vn+1

h (F n+1)−1�vn+1
h , �ξ

)
f

+ μ
(
Jn+1∇�vn+1

h (F n+1)−1,∇�ξ(F n+1)−1
)

f

}
+

1
2

(
(Jn+1∇�vn+1

h (F n+1)−1 + Jn∇�vn
h(F n)−1)(�un+1

h − �un
h), �ξ

)
f

+
kn

2

{(
∂Ψ
∂F

(∇�un
h),∇�ξ

)
s

+
(
Jn∇�vn

h(F n)−1�vn
h , �ξ

)
f

+ μ
(
Jn∇�vn

h (F n)−1,∇�ξ(F n)−1
)

f

}
= 0,

(2.61)(
Jn+1 − 1, γ

)
s
+
(
Jn+1∇�vn+1

h (F n+1)−1, γ
)
f

= 0. (2.62)

Using the basis of the spaces Uh, Vh, Ph as the test functions �ζ, �ξ, γ we obtain
a nonlinear algebraic set of equations. In each time step we have to find �X =
(�un+1

h , �vn+1
h , pn+1

h ) ∈ Uh × Vh × Ph such that

�F( �X) = �0, (2.63)

where �F represents the discrete version of the system (2.60–2.62).
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2.3.5. Solution algorithm. The system (2.63) of nonlinear algebraic equations is
solved using the Newton method as the basic iteration. One step of the Newton
iteration can be written as

�Xn+1 = �Xn −
[

∂ �F
∂ �X

( �Xn)

]−1

�F( �Xn). (2.64)

This basic iteration can exhibit quadratic convergence provided that the initial
guess is sufficiently close to the solution. To ensure the convergence globally, some
improvements of this basic iteration are used. The damped Newton method with
line search improves the chance of convergence by adaptively changing the length
of the correction vector. The solution update step in the Newton method (2.64) is
replaced by �Xn+1 = �Xn + ωδ �X, where the parameter ω is determined such that
a certain error measure decreases. One of the possible choices for the quantity to
decrease is

f(ω) = �F( �Xn + ωδ �X) · δ �X. (2.65)

Since we know f(0) = �F( �Xn) · δ �X, and f ′(0) =
[

∂ �F
∂ �X

( �Xn)
]
δ �X · δ �X = �F( �Xn) ·

δ �X, computing f(ω0) for ω0 = −1 or ω0 determined adaptively from previous
iterations, we can approximate f(ω) by a quadratic function

f(ω) =
f(ω0) − f(0)(ω0 + 1)

ω2
0

ω2 + f(0)(ω + 1).

Then setting ω̃ = f(0)ω2
0

f(ω0)−f(0)(ω0+1) , the new optimal step length ω ∈ [−1, 0] is

ω =

⎧⎪⎪⎨⎪⎪⎩
− ω̃

2
if

f(0)
f(ω0)

> 0,

− ω̃

2
−
√

ω̃2

4
− ω̃ if

f(0)
f(ω0)

≤ 0.

(2.66)

This line search can be repeated with ω0 taken as the last ω until, for example,
f(ω) ≤ 1

2f(0). By this we can try to enforce a monotone convergence of the
approximation �Xn.

An adaptive time-step selection was found to help in the nonlinear conver-
gence. A heuristic algorithm was used to correct the time-step length according to
the convergence of the nonlinear iterations in the previous time step. If the con-
vergence was close to quadratic, i.e., only up to three Newton steps were needed to
obtain the required precision, the time step could be slightly increased, otherwise
the time-step length was reduced.

The structure of the Jacobian matrix ∂ �F
∂ �X

is

∂ �F
∂ �X

( �X) =

⎛⎝Suu Suv 0
Svu Svv Bu + Bv

BT
u BT

v 0

⎞⎠ , (2.67)
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———————————————————————————————————–
1. Let �Xn be some starting guess.
2. Set the residuum vector �Rn = �F( �Xn) and the tangent matrix A = ∂ �F

∂ �X
( �Xn).

3. Solve for the correction δ �X

Aδ �X = �Rn.

4. Find an optimal step length ω.
5. Update the solution �Xn+1 = �Xn − ωδ �X.

———————————————————————————————————–

Figure 16. One step of the Newton method with the line search.

and it can be computed by finite differences from the residual vector �F( �X),[
∂ �F
∂ �X

]
ij

( �Xn) ≈ [ �F ]i( �Xn + αj�ej) − [ �F ]i( �Xn − αj�ej)
2αj

, (2.68)

where �ej are the unit basis vectors in Rn and the coefficients αj are adaptively
taken according to the change in the solution in the previous time step. Since we
know the sparsity pattern of the Jacobian matrix in advance, it is given by the used
finite-element method, this computation can be done in an efficient way so that
the linear solver remains the dominant part in terms of the cpu time. However,
the resulting nonlinear and linear solution behavior is quite sensitive w.r.t. the
parameters [51].

2.3.6. Multigrid solver. The solution of the linear problems is the most time-
consuming part of the solution process. A good candidate seems to be a direct
solver for sparse systems like UMFPACK [22]; while this choice provides very ro-
bust linear solvers, its memory and CPU time requirements are too high for larger
systems (i.e., more than 20000 unknowns). Large linear problems can be solved by
Krylov space methods (BiCGStab, GMRes[2]) with suitable preconditioners. One
possibility is the ILU preconditioner with special treatment of the saddle point
character of our system, where we allow certain fill-in for the zero diagonal blocks
[7]. The alternative option for larger systems is the multigrid method presented in
this section.

We utilize the standard geometric multigrid approach based on a hierarchy
of grids obtained by successive regular refinement of a given coarse mesh. The
complete multigrid iteration is performed in the standard defect-correction setup
with the V or F-type cycle. While a direct sparse solver [22] is used for the coarse
grid solution, on finer levels a fixed number (2 or 4) of iterations by local MPSC
schemes (Vanka-like smoother [139, 125]) is performed. Such iterations can be
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Figure 17. Schematic view of the ventricle and elastic tube geometries.

written as⎡⎣ul+1

vl+1

pl+1

⎤⎦ =

⎡⎣ul

vl

pl

⎤⎦− ω
∑

Patch Ωi

⎡⎣ Suu|Ωi
Suv|Ωi

0
Svu|Ωi

Svv|Ωi
kB|Ωi

cuBT
s|Ωi

cvBT
f |Ωi

0

⎤⎦−1 ⎡⎣def l
u

def l
v

def l
p

⎤⎦ .

The inverse of the local systems (39 × 39) can be done by hardware optimized
direct solvers. The full nodal interpolation is used as the prolongation operator P
with its transposed operator used as the restriction R = P T .

2.4. Applications

In this section we present a few example applications to demonstrate the presented
methods. As a motivation we consider the numerical simulation of the cardiovas-
cular hemodynamics which has become a useful tool for deeper understanding of
the onset of diseases of the human circulatory system, as for example blood cell
and intima damages in stenosis, aneurysm rupture, evaluation of the new surgery
techniques of heart, arteries and veins.

In order to test the proposed numerical method simplified two-dimensional
examples which include some of the important characteristics of the biomechanical
applications are computed. The first example is a flow in an ellipsoidal cavity and
the second is a flow through a channel with elastic walls. In both cases the flow
is driven by changing fluid pressure at the inflow part of the boundary while the
elastic part of the boundary is either fixed or stress-free.

The constitutive relations used for the materials are the incompressible New-
tonian model (2.46) for the fluid and the hyper-elastic neo-Hookean material (2.51)
with c2 = 0 for the solid. This choice includes all the main difficulties the numerical
method has to deal with, namely the incompressibility and large deformations.

2.4.1. Flow in an ellipsoidal cavity. The motivation for our first test is the left
heart ventricle which is approximately ellipsoidal void surrounded by the heart
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Figure 18. Maximum and minimum volume configuration with
the fluid flow

Figure 19. Shear stress distribution in the wall during the period.

muscle. In our two-dimensional computations we use an ellipsoidal cavity, see Fig-
ure 17, with prescribed time-dependent natural boundary condition at the fluid
boundary part Γ1:

p(t) = sin t on Γ1. (2.69)

The material of the solid wall is modeled by the simple neo-Hookean constitutive
relation (2.51) with c2 = 0.

Figures 18 and 19 show the computational grid for the maximal and minimal
volume configuration of the cavity and the velocity field of the fluid for the same
configurations.

One of the important characteristics is the shear stress exerted by the fluid
flow on the wall material. Figure 19 shows the distribution of the shear stress in
the domain for three different times.

In Figures 20 and 21 the volume change of the cavity as a function of the
time and the average pressure inside the cavity versus the volume of the cavity is
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Figure 20. Volume of the fluid inside and the pressure-volume
diagram for the ellipsoidal cavity test.

Figure 21. The displacement trajectory and velocity of a point
at the fluid solid interface (inner side of the wall) for the ellipsoidal
cavity test.

shown together with the trajectory and velocity of a material point on the solid-
fluid interface. We can see that after the initial cycle which was started from the
undeformed configuration the system comes to a time periodic solution.

2.4.2. Flow in an elastic channel. The second application is the simulation of a
flow in an elastic tube or, in our 2-dimensional case, a flow between elastic plates.
The flow is driven by a time-dependent pressure difference between the ends of
the channel of the form (2.69). Such a flow is also interesting to investigate in the
presence of some constriction as a stenosis, which is shown in Figure 25.

For the flow in the channel without any constriction the time dependence of
the fluid volume inside the channel is shown together with the pressure volume
diagram in the figure and the trajectory and velocity of a material point on the
solid fluid interface in Figures 23 and 24. The velocity field is shown in Figure 22
at different stages of the pulse.
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Figure 22. Velocity field during one pulse in channel without an obstacle

Figure 23. Volume of the fluid in the channel and the pressure-
volume diagram.

Figure 24. Displacement trajectory and velocity of a point at
the fluid-solid interface (inner side of the wall).
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Figure 25. Fluid flow and pressure distribution in the wall dur-
ing one pulse for the example flow in a channel with constriction.

Finally in Figure 25 the velocity field in the fluid and the pressure distribution
throughout the wall is shown for the computation of the flow in a channel with
elastic obstruction. In this example the elastic obstruction is modeled by the same
material as the walls of the channel and is fixed to the elastic walls. Both ends
of the walls are fixed at the inflow and outflow and the flow is again driven by a
periodic change of the pressure at the left end.

2.5. FSI benchmark

We finally consider the problem of viscous fluid flow interacting with an elastic
body which is being deformed by the fluid action. As mentioned in the previ-
ous part such a problem is encountered in many real-life applications of great
importance. In order to analyze different ways to solve such problems a simple
benchmark configuration with known solution can be a useful tool. One suitable
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simple numerical benchmark was proposed in [129]. The configurations consist of
laminar incompressible channel flow around an elastic object which results in self-
induced oscillations of the structure. Moreover, characteristic flow quantities and
corresponding plots are provided for a quantitative comparison.

We consider the flow of an incompressible Newtonian fluid interacting with
an elastic solid. We denote by Ωf

t the domain occupied by the fluid and Ωs
t by the

solid at the time t ∈ [0, T ]. Let Γ0
t = Ω̄f

t ∩ Ω̄s
t be the part of the boundary where

the elastic solid interacts with the fluid. The fluid is considered to be Newtonian,
incompressible and its state is described by the velocity and pressure fields �vf , pf .
The constant density of the fluid is �f and the viscosity is denoted by νf . The
Reynolds number is defined by Re = 2rV̄

νf , with the mean velocity V̄ = 2
3v(0, H

2 , t),
r radius of the cylinder and H height of the channel (see Fig. 26). The structure
is assumed to be elastic and compressible. Its configuration is described by the
displacement �us, with velocity field �vs = ∂�us

∂t . The material is specified by giving
the Cauchy stress tensor σs (the second Piola–Kirchhoff stress tensor is then given
by Ss = JF−1σsF−T ) by the following constitutive law for the St. Venant–

Kirchhoff material (E = 1
2 (F TF − I)):

σs =
1
J

F (λs(tr E)I + 2μsE)F T, Ss = λs(tr E)I + 2μsE. (2.70)

The boundary conditions on the fluid-solid interface are assumed to be

σf�n = σs�n, �vf = �vs on Γ0
t , (2.71)

where �n is a unit normal vector to the interface Γ0
t . This implies the no-slip con-

dition for the flow, and that the forces on the interface are in balance.

L

H

l

h

(0, 0)

C

r
l

h
A

B

Figure 26. Computational domain with the details of the struc-
ture part.

The domain is based on the 2D version of the well-known CFD benchmark
in [133] and shown here in Figure 26. By omitting the elastic bar behind the
cylinder one can exactly recover the setup of the flow around cylinder configuration
which allows for validation of the flow part by comparing the results with the
older flow benchmark. The setting is intentionally non-symmetric [133] to prevent
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value [m]
channel length L 2.5
channel width H 0.41
cylinder center position C (0.2, 0.2)
cylinder radius r 0.05

value [m]
elastic structure length l 0.35
elastic structure thickness h 0.02
reference point (at t = 0) A (0.6, 0.2)
reference point B (0.2, 0.2)

Table 4. Overview of the geometry parameters.

parameter FSI1 FSI2 FSI3
�s [103 kg

m3 ] 1 10 1
νs 0.4 0.4 0.4
μs [106 kg

ms2 ] 0.5 0.5 2.0
�f [103 kg

m3 ] 1 1 1
νf [10−3 m2

s ] 1 1 1
Ū [ms ] 0.2 1 2

parameter FSI1 FSI2 FSI3
β = �s

�f 1 10 1
νs 0.4 0.4 0.4
Ae = Es

�f Ū2 3.5 × 104 1.4 × 103 1.4 × 103

Re = Ūd
νf 20 100 200

Ū 0.2 1 2

Table 5. Parameter settings for the full FSI benchmarks.

the dependence of the onset of any possible oscillation on the precision of the
computation.

2.5.1. Boundary and initial conditions. A parabolic velocity profile is prescribed
at the left channel inflow

vf (0, y) = 1.5Ū
y(H − y)(

H
2

)2 = 1.5Ū
4.0

0.1681
y(0.41 − y), (2.72)

such that the mean inflow velocity is Ū and the maximum of the inflow veloc-
ity profile is 1.5Ū . The no-slip condition is prescribed for the fluid on the other
boundary parts. i.e., top and bottom wall, circle and fluid-structure interface Γ0

t .
The outflow condition can be chosen by the user, for example stress-free or

do-nothing conditions. The outflow condition effectively prescribes some reference
value for the pressure variable p. While this value could be arbitrarily set in the
incompressible case, in the case of a compressible structure this will have influence
on the stress and consequently the deformation of the solid. In this description,
we set the reference pressure at the outflow to have zero mean value.

Suggested starting procedure for the non-steady tests is to use a smooth
increase of the velocity profile in time as

vf (t, 0, y) =

{
vf (0, y)1−cos( π

2 t)

2 if t < 2.0,

vf (0, y) otherwise,
(2.73)

where vf (0, y) is the velocity profile given in (2.72).
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level #refine #el #dof
0+0 0 62 1338
1+0 1 248 5032
2+0 2 992 19488
3+0 3 3968 76672
4+0 4 15872 304128

Figure 27. Example of a coarse mesh and the number of degrees
of freedom for refined levels.

level nel ndof ux of A [×10−3] uy of A [×10−3] drag lift
2 + 0 992 19488 0.022871 0.81930 14.27360 0.76178
3 + 0 3968 76672 0.022775 0.82043 14.29177 0.76305
4 + 0 15872 304128 0.022732 0.82071 14.29484 0.76356
5 + 0 63488 1211392 0.022716 0.82081 14.29486 0.76370
6 + 0 253952 4835328 0.022708 0.82086 14.29451 0.76374
ref. 0.0227 0.8209 14.295 0.7638

Table 6. Results for FSI1.

2.5.2. Computational results. The mesh used for the computations is shown in
Fig. 27. The following FSI tests are performed for two different inflow speeds.
FSI1 is resulting in a steady state solution, while FSI2, FSI3 result in periodic
solutions. The computed values are summarized in Table 6 for the test FSI1 and
in Figures 28, 29 for the tests FSI2 and FSI3.

2.6. Conclusion

In this section we presented a general formulation of the dynamic fluid-structure
interaction problem suitable for applications with finite deformations and lami-
nar flows. While the presented example calculations are simplified to allow initial
testing of the numerical methods the formulation is general to allow immediate
extension to more realistic material models. For example, in the case of material
anisotropy one can consider

Ψ̃ = c1(IC − 3) + c2(IIC − 3) + c3(|F�a| − 1)2,

with �a being the preferred material direction. The term |F�a| represents the exten-
sion in the direction �a. In [57, 58] a similar material relation of the form

Ψ̃ = c1 (exp (b1(IC − 3)) − 1) + c2 (exp (b2(|F�a| − 1)) − 1)

has been proposed to describe a passive behavior of the muscle tissue. Adding to
any form of Ψ a term like f(t, �x)(|F�a| − 1) one can model the active behavior of
a material and then the system can be coupled with additional models of chem-
ical and electric activation of the active response of the tissue, see [82]. In the
same manner the constitutive relation for the fluid can be directly extended to the
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FSI2: x & y displacement of the point A
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FSI2: lift and drag force on the cylinder+flag
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dr
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lev. ux of A [×10−3] uy of A [×10−3] drag lift
2 −14.00± 12.03[3.8] 1.18 ± 78.7[2.0] 209.46± 72.30[3.8] −1.18± 269.6[2.0]
3 −14.25± 12.03[3.8] 1.20 ± 79.2[2.0] 202.55± 67.02[3.8] 0.71 ± 227.1[2.0]
4 −14.58± 12.37[3.8] 1.25 ± 80.7[2.0] 201.29± 67.61[3.8] 0.97 ± 233.2[2.0]
lev. ux of A [×10−3] uy of A [×10−3] drag lift
2 −14.15± 12.23[3.7] 1.18 ± 78.8[1.9] 210.36± 70.28[3.7] 0.80 ± 286.0[1.9]
3 −13.97± 12.01[3.8] 1.25 ± 79.3[2.0] 203.54± 68.43[3.8] 0.41 ± 229.3[2.0]
4 −14.58± 12.44[3.8] 1.23 ± 80.6[2.0] 208.83± 73.75[3.8] 0.88 ± 234.2[2.0]
ref. −14.58± 12.44[3.8] 1.23 ± 80.6[2.0] 208.83± 73.75[3.8] 0.88 ± 234.2[2.0]

Figure 28. Results for FSI2 with time step Δt = 0.002, Δt = 0.001.

power-law models used to describe the shear-thinning property of the blood. Fur-
ther extension to visco-elastic models and coupling with the mixture-based model
for soft tissues together with models for chemical and electric processes involved
in biomechanical problems would allow to perform realistic simulations for real
applications.

To obtain the solution approximation the discrete systems resulting from the
finite-element discretization of the governing equations need to be solved which
requires sophisticated solvers of nonlinear systems and fast solvers for very large
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FSI3: x & y displacement of the point A
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FSI3: lift and drag force on the cylinder+flag
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lev. ux of A [×10−3] uy of A [×10−3] drag lift
2 −3.02 ± 2.78[10.6] 0.99 ± 35.70[5.3] 444.6± 31.69[10.6] 9.48 ± 151.55[5.3]
3 −3.02 ± 2.83[10.6] 1.43 ± 35.43[5.3] 457.1± 20.05[10.6] 1.23 ± 146.04[5.3]
4 −2.85 ± 2.56[10.9] 1.53 ± 34.35[5.3] 459.8± 20.00[10.9] 1.51 ± 148.76[5.3]
lev. ux of A [×10−3] uy of A [×10−3] drag lift
2 −3.00 ± 2.79[10.7] 1.19 ± 35.72[5.3] 445.0± 35.09[10.7] 8.26 ± 163.72[5.3]
3 −2.86 ± 2.68[10.7] 1.45 ± 35.34[5.3] 455.7± 24.69[10.7] 1.42 ± 146.43[5.3]
4 −2.69 ± 2.53[10.9] 1.48 ± 34.38[5.3] 457.3± 22.66[10.9] 2.22 ± 149.78[5.3]
ref. −2.69 ± 2.53[10.9] 1.48 ± 34.38[5.3] 457.3± 22.66[10.9] 2.22 ± 149.78[5.3]

Figure 29. Results for FSI3 with time step Δt = 0.001, Δt = 0.0005.

linear systems. The computational complexity increases tremendously for full 3D
problems and with more complicated models like visco-elastic materials for the
fluid or solid components. The main advantage of the presented numerical method
is its accuracy and robustness with respect to the constitutive models. The pos-
sible directions of improving the efficiency of the solvers include development of
fast linear solvers based on multigrid ideas, spatial and temporal adaptivity and
effective use of parallel computations.
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3. Numerical techniques for fluid-rigid solid configurations

In this section, we investigate the numerical simulation of particulate flow us-
ing a new moving-mesh method combined with the multigrid fictitious-boundary
method (FBM) [136, 146, 144]. With this approach, the mesh is dynamically re-
located through a (linear) partial differential equation to capture the surface of
the moving particles with a relatively small number of grid points. The com-
plete system is realized by solving the mesh movement and the partial differential
equations of the flow problem alternately via an operator-splitting approach. The
flow is computed by a special ALE formulation with a multigrid finite-element
solver, and the solid particles are allowed to move freely through the computa-
tional mesh which is adaptively aligned by the moving-mesh method in every time
step. One important aspect is that the data structure of the undeformed initial
mesh, in many cases a tensor-product mesh or a semi-structured grid consisting of
many tensor-product meshes, is preserved, while only the spacing between the grid
points is adapted in each time step so that the high efficiency of structured meshes
can be exploited. Numerical results demonstrate that the interaction between the
fluid and the particles can be accurately and efficiently handled by the presented
method. It is also shown that the presented method significantly improves the
accuracy of the previous multigrid FBM to simulate particulate flow with many
moving rigid particles.

3.1. Introduction

The numerical simulation of particulate flow or the motion of small rigid particles
in a viscous liquid is one of the main focuses of engineering research and still
a challenging task in many applications. Depending on the area of application,
these types of problems arise frequently in numerous settings, such as sedimenting
and fluidized suspensions, lubricated transport, hydraulic fracturing of reservoirs,
slurries, understanding solid-liquid interaction, etc.

Several numerical simulation techniques for particulate flows have been de-
veloped over the past decade. In these methods, the fluid flow is governed by the
continuity and momentum equations, while the particles are governed by the equa-
tion of motion for a rigid body. The flow field around each individual particle is
resolved, the hydrodynamic force between the particle and the fluid is obtained
from the solutions. Hu, Joseph and coworkers [52, 53] as well as Maury [83] devel-
oped a finite-element method based on unstructured grids to simulate the motion
of a large number of rigid objects in Newtonian and visco-elastic fluids. This ap-
proach is based on an arbitrary Lagrangian–Eulerian (ALE) technique. Both the
fluid and solid equations of motion are incorporated into a single coupled varia-
tional equation. The hydrodynamic forces and torques acting on the particles are
eliminated in the formulation. The nodes on the particle surface move with the
particle, while the nodes in the interior of the fluid are computed using Laplace’s
equation to guarantee a smoothly varying distribution of the nodes. At each time
step, a new mesh is generated when the old one becomes too distorted, and the
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flow field is projected onto the new mesh. In this scheme, the positions of the parti-
cles and grid nodes are updated explicitly, while the velocities of the fluid and the
solid particles are determined implicitly. In the case of 2D, the remeshing of the
body-fitted meshes can be done by available grid generation software, but in the
more interesting case of a full 3D simulation, the problem of efficient body-fitted
grid generation is not yet solved in a satisfying manner yet.

In a series of papers by Glowinski and coauthors [37, 91, 38, 36], they pro-
posed a distributed Lagrange multiplier (DLM)/fictitious-domain method for the
direct numerical simulation of a large number of rigid particles in fluids. In the
DLM method, the entire fluid-particle domain is assumed to be a fluid and the
particle domain is constrained to move with the rigid motion. The fluid-particle
motion is treated implicitly using a combined weak formulation in which the mu-
tual forces cancel. This formulation permits the use of a fixed structured grid
thus eliminating the need for remeshing the domain. In [136, 146, 144, 145], we
presented a similar but different multigrid fictitious-boundary method (FBM) for
the detailed simulation of particulate flow. The method is based on a fixed (un-
structured) FEM background grid. The motion of the solid particles is modeled
by the Newton–Euler equations. Based on the boundary conditions applied at the
interface between the particles and the fluid which can be seen as an additional
constraint to the governing Navier–Stokes equations, the fluid domain can be ex-
tended into the whole domain which covers both fluid and particle parts. The FBM
starts with a coarse mesh which may contain already many of the geometrical fine-
scale details, and employs a (rough) boundary parametrization which sufficiently
describes all large-scale structures with regard to the (geometric) boundary con-
ditions. Then, all fine-scale features are treated as interior objects such that the
corresponding components in all matrices and vectors are unknown degrees of
freedom which are implicitly incorporated into all iterative solution steps.

An advantage of these fictitious-domain methods over the generalized stan-
dard Galerkin finite-element method is that they allow a fixed grid to be used,
eliminating the need for remeshing, and they can be handled independently from
the flow features. Much progress has been made for adopting the fictitious-domain,
resp., boundary methods to simulate particulate flow, yet the quest for more ac-
curate and efficient methods remains active, particularly for many particles of dif-
ferent shape and size: an underlying problem when adopting the fictitious-domain
methods is that the boundary approximation is of low accuracy only. Particularly
in 3D, the ability of the fictitious-domain methods to deal accurately with the in-
teraction between fluid and rigid particles is greatly limited unless very fine meshes
are used. One remedy could be to preserve the mesh topology, for instance, as gen-
eralized tensor product or block-structured meshes, while a local alignment of the
positions of the grid points with the physical boundary of the solid is achieved
by a moving-mesh process such that the boundary approximation error can be
significantly decreased.
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Many researchers have come to recognize mesh adaption as an effective tool
for simulating sharp fronts or moving interfaces and reducing numerical disper-
sion and oscillation. It has been demonstrated that significant improvements in
accuracy and efficiency can be gained by adapting the mesh nodes so that they
remain concentrated in regions of sharp fronts or interfaces. There are many ex-
isting mesh-adaptive methods to achieve this purpose. Generally speaking, mesh
adaptivity is usually applied in the form of local mesh refinement or through a
continuous mesh mapping. In locally adaptive mesh-refinement methods [4], an
adaptive mesh is obtained by adding or removing points to achieve a desired level
of accuracy. This allows a systematic error analysis. However, local refinement
methods require more complicated data structures, compared to simple tensor-
product meshes, and fairly technical methods to communicate information among
different levels of hierarchical refinements. In the mapping approach [54, 13], the
mesh points are moved continuously in the whole domain to concentrate in re-
gions where the solution has the largest variations or moving interfaces locate.
These solution-adaptive or geometry-adaptive meshes can be used to compute ac-
curately the sharp variation or the moving interface problems. They also have the
additional advantage of allowing the use of standard solvers since all computations
are performed in the same logical domain using a uniform mesh.

Over the past decade, several mesh-adaptive techniques have been developed,
namely the so-called h-, p- and r- methods. The first two do static remeshing; here,
the h-method does automatic refinement or coarsening of the spatial mesh based
on a-posteriori error estimates or error indicators, and the p-method takes higher-
or lower-order approximations locally as needed. In contrast, the r-method (also
known as moving-mesh method) relocates grid points in a mesh having a fixed
number of nodes in such a way that the nodes remain concentrated in regions of
rapid variation of the solution or corresponding moving interfaces. The r-method
is often a dynamic method which means that it uses time-stepping or pseudo-
time-stepping approaches to construct the desired transformation. The r-method
or moving-mesh method differs from the h-, and p-methods in that the former
keeps the same number of mesh points, resp., unknowns throughout the entire
solution process, while the latter have to treat hanging node problems. Thus, the
size of computation and the data structures are fixed, which enables the r-method
much easier to be incorporated into most CFD codes without the need for changing
the system matrix structures and adding special interpolation procedures. The r-
method has received more attention due to some new developments which clearly
demonstrate its potential for problems such as those having moving interfaces
[5, 76, 77, 12, 39]. Nevertheless, it is clear that the preferred method of choice in
future might be of r-h-p-type, that means combining all these adaptive techniques.

The primary objective of this contribution is to combine the multigrid fictitious-
boundary method (FBM) [136, 146, 144] with a prototypical version of a new
moving-mesh method described in [39] for the simulation of particulate flow and
to analyse the accuracy of the proposed combining method, comparing its results
with the pure multigrid fictitious-boundary method without mesh adaptation. As
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we have shown in [144], the use of the multigrid FBM does not require to change
the mesh during the simulations, although the rigid particles vary their positions.
The advantage is that no expensive remeshing has to be performed while a fixed
mesh can be used such that in combination with appropriate data structures and
fast CFD solvers very high efficiency rates can be reached. However, the accuracy
for capturing the surfaces of solid particles is only of first order which might lead to
accuracy problems. For a better approximation of the particle surfaces, we adopt
a deformed grid, created from an arbitrary block-structured mesh, in which the
topology is preserved: only the grid spacing is changed such that the grid points
are concentrated near the surface of the rigid particles. Here, the solution of ad-
ditional linear Poisson problems in every time step is required for generating the
deformed grid, which means that the additional work is significantly less than the
main fluid-particle part.

This section is organized as follows. In Subsection 3.2, the physical models to-
gether with collision models for particulate flow are described. The moving-mesh
method and examples are presented in Subsection 3.3. The detailed numerical
schemes and algorithms including the multigrid FBM, ALE formulation, time and
space discretizations, as well as the complete numerical algorithm are given in
Subsection 3.4. Prototypical numerical experiments are implemented and compu-
tational results will be presented in Subsection 3.5. Improvements of accuracy over
the previous pure multigrid FBM will be emphasized. The concluding remarks will
be given in Subsection 3.6.

3.2. Description of the physical models

3.2.1. Governing equations. In our numerical studies of particle motion in a fluid,
we will assume that the fluids are immiscible and Newtonian. The particles are
assumed to be rigid. Let us consider the unsteady flow of N particles with mass
Mi (i = 1, . . . , N) in a fluid with density ρf and viscosity ν. Denote Ωf (t) as the
domain occupied by the fluid at time t, and Ωi(t) as the domain occupied by the
ith particle. So, the motion of an incompressible fluid is governed by the following
Navier–Stokes equations in Ωf (t),

ρf

(
∂ u
∂ t

+ u · ∇u
)
−∇ · σ = 0 , Div u = 0 ∀ t ∈ (0, T ), (3.1)

where σ is the total stress tensor in the fluid phase defined as

σ = −p I + μf

[
∇u + (∇u)T

]
. (3.2)

Here, I is the identity tensor, μf = ρf · ν, p is the pressure and u is the fluid
velocity. Let ΩT = Ωf (t) ∪ {Ωi(t)}N

i=1 be the entire computational domain which
shall be independent of t. Dirichlet- and Neumann-type boundary conditions can
be imposed on the outer boundary Γ = ∂Ωf (t). Since Ωf = Ωf (t) and Ωi = Ωi(t)
are always depending on t, we drop t in all following notation.
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The equations that govern the motion of each particle are the following
Newton–Euler equations, i.e., the translational velocities Ui and angular veloc-
ities ωi of the ith particle satisfy

Mi
dUi

d t
= (ΔMi) g + Fi + F′

i , Ii
dωi

d t
+ ωi × (Ii ωi) = Ti , (3.3)

where Mi is the mass of the ith particle; Ii is the moment of the inertia tensor; ΔMi

is the mass difference between the mass Mi and the mass of the fluid occupying
the same volume; g is the gravity vector; F′

i are collision forces acting on the ith
particle due to other particles which come close to each other. We assume that
the particles are smooth without tangential forces of collisions acting on them; the
details of the collision model will be discussed in the following subsection. Fi and
Ti are the resultants of the hydrodynamic forces and the torque about the center
of mass acting on the ith particle which are calculated by

Fi = (−1)
∫

∂Ωi

σ · n d Γi , Ti = (−1)
∫

∂Ωi

(X − Xi) × (σ · n) d Γi, (3.4)

where σ is the total stress tensor in the fluid phase defined by Eq. (3.2), Xi is
the position of the mass center of the ith particle, ∂Ωi is the boundary of the ith
particle, n is the unit normal vector on the boundary ∂Ωi pointing outward to the
flow region. The position Xi of the ith particle and its angle θi are obtained by
integration of the kinematic equations

dXi

d t
= Ui ,

d θi

d t
= ωi. (3.5)

No-slip boundary conditions are applied at the interface ∂Ωi between the ith
particle and the fluid, i.e., for any X ∈ Ω̄i, the velocity u(X) is defined by

u(X) = Ui + ωi × (X − Xi) . (3.6)

3.2.2. Collision models. For handling more than one particle, a collision model is
needed to prevent the particles from interpenetrating each other. Glowinski, Joseph
and coauthors [38, 36] proposed repulsive force models in which an artificial short-
range repulsive force between particles is introduced keeping the particle surfaces
more than one element (the range of the repulsive force) apart from each other.
In these models, overlapping of the regions occupied by the rigid bodies is not
allowed since conflicting rigid-body motion constraints from two different particles
are not imposed at the same velocity nodes. However, in numerical calculations,
the overlapping of particles might happen: For solving this problem, Joseph et
al. [150] suggested a modified repulsive force model in which the particles are
allowed to come arbitrarily close and even to overlap slightly each other. When
conflicting rigid body motion constraints from two different particles are applied
onto a velocity node, then the constraint from the particle that is closer to that
node is used. A repulsive force is only applied when the particles overlap each
other.
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Following such ideas, we examine a modified collision model with a new
definition of short-range repulsive forces which cannot only prevent the particles
from getting too close, it can also deal with the case of particles overlapping each
other when numerical simulations bring the particles very close due to unavoidable
numerical truncation errors. For the particle-particle collisions, the repulsive force
is determined as

FP
i,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for di,j > Ri + Rj + ρ,

1
ε′P

(Xi − Xj)(Ri + Rj − di,j), for di,j < Ri + Rj ,

1
εP

(Xi − Xj)(Ri + Rj + ρ − di,j)2, for Ri + Rj ≤ di,j ≤ Ri + Rj + ρ,

where Ri and Rj are the radii of the ith and jth particle, Xi and Xj are the
coordinates of their mass centers, di,j = |Xi − Xj | is the distance between their
mass centers, ρ is the range of the repulsive force (usually ρ = 0.5 ∼ 2.5Δh, Δh is
the local mesh size), εP and ε′P are small positive stiffness parameters for particle-
particle collisions. If the fluid is sufficiently viscous, and ρ � Δh as well as ρi/ρf

are of order 1 (ρi is the density of the ith particle, ρf is the fluid density), then
we can take εP � (Δh)2 and ε′P � Δh in the calculations. For the particle-wall
collisions, the corresponding repulsive force reads

FW
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for d′i > 2Ri + ρ,

1
ε′W

(Xi − X′
i)(2Ri − d′i), for d′i < 2Ri,

1
εW

(Xi − X′
i)(2Ri + ρ − d′i)

2, for 2Ri ≤ d′i ≤ 2Ri + ρ,

where X′
i is the coordinate vector of the center of the nearest imaginary particle P ′

i

located on the boundary wall Γ w.r.t. the ith particle, d′i = |Xi−X′
i| is the distance

between the mass centers of the ith particle and the center of the imaginary particle
P ′

i , εW is a small positive stiffness parameter for particle-wall collisions, usually
εW = εP /2 and ε′W = ε′P /2 in our calculations. Then, the total repulsive forces
(i.e., collision forces) exerted on the ith particle by the other particles and the
walls can be expressed as follows,

F′
i =

N∑
j=1,j �=i

FP
i,j + FW

i . (3.7)

3.3. Moving-mesh method

In this section, we briefly describe the moving-mesh method which will be adopted
and coupled with the multigrid fictitious-boundary method (FBM) [136, 146, 144]
to solve numerically the particulate flow equations. The details of the moving-mesh
method can be found in [39].
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The moving-mesh problem can be treated to constructing a transformation ϕ,
x = ϕ(ξ) from the computational space (with coordinate ξ) to the physical space
(with coordinate x). There are several types of moving-mesh methods, generally
computing x by minimizing a variational form or computing the mesh velocity
v = xt using a Lagrangian-like formulation. The moving-mesh method we will
employ belongs to the velocity-type class, which is based on Liao’s work [5, 76,
77, 12] and Moser’s work [20]. This method has several advantages: only linear
Poisson problems on fixed meshes are to be solved, monitor functions can be
obtained directly from error distributions or distance functions, mesh tangling can
be prevented, and the data structure from the starting mesh is preserved.

Suppose g(x) (area function) to be the area distribution on the undeformed
mesh, while f(x) (monitor function) in contrast describes the absolute mesh size
distribution of the target grid, which is independent of the starting grid and chosen
according to the need of the physical problem. Then, the transformation ϕ can be
computed via the following four steps:

1. Compute the scaling factors cf and cg for the given monitor function f(x) > 0
and the area function g using

cf

∫
Ω

1
f(x)

dx = cg

∫
Ω

1
g(x)

dx = |Ω|, (3.8)

where Ω ⊂ R2 is a computational domain, and f(x) ≈ local mesh area. Let
f̃ and g̃ denote the reciprocals of the scaled functions f and g, i.e.,

f̃ =
cf

f
, g̃ =

cg

g
. (3.9)

2. Compute a grid-velocity vector field v : Ω → R
n by solving the Poisson

problem

−div(v(x)) = f̃(x) − g̃(x), x ∈ Ω, and v(x) · n = 0, x ∈ ∂Ω, (3.10)

where n is the outer normal vector of the domain boundary ∂Ω which may
consist of several boundary components.

3. For each grid point x, solve the following ODE system
∂ϕ(x, t)

∂t
= η(ϕ(x, t), t), 0 ≤ t ≤ 1, ϕ(x, 0) = x, (3.11)

with

η(y, s) :=
v(y)

sf̃(y) + (1 − s)g̃(y)
, y ∈ Ω, s ∈ [0, 1]. (3.12)

4. Get the new grid points via

ϕ(x) := ϕ(x, 1). (3.13)

Here, we give two examples for the generation of deformed grids using the
described moving-mesh method. Fig. 30 shows the case of two objects with one
rectangle and one ellipse inside a square domain. The starting mesh presented in
Fig. 30(a) is equidistant, and we want to generate a deformed mesh which can align
the grid lines near both the surface of the ellipse and the rectangle. We choose the
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(a) Equidistant mesh (b) Deformed mesh

Figure 30. Example of a deformed mesh generated from an
equidistant mesh

monitor function f(x) as a function of Δd, here Δd is the minimum distance of grid
points to the both surfaces of the two solid bodies (an ellipse, resp., a rectangle).
Fig. 30(b) shows the generated deformed mesh. We can see that the grid lines are
concentrated around the surfaces of the two solid bodies.

Fig. 31 presents another case with two ellipses in a long channel. The starting
mesh and positions of the two ellipses are given in Fig. 31(a). If we choose the
monitor function f(x) as in the above case, i.e., to be a function of Δd, with Δd
being the minimum distance of grid points to both surfaces of the two solid ellipses,
then the generated deformed mesh is shown in Fig. 31(b): We can see that there
are still too many grid lines remaining in the lower part of the channel; however,
there is no solid body. Moreover, the grid points in the gap between the two ellipses
are not distributed very well. Next, we try to use another monitor function f(x),
a digit filter function Δd1 × Δd2, here Δd1 and Δd2 are the distances of the grid
points to the surface of both ellipses; then, a much better deformed mesh can
be generated. We can see in Fig. 31(c) that the grid lines are more concentrated
around the surfaces of both ellipses and in the region of the gap between the two
ellipses, and there are less grid lines staying in the down part of the channel, too.
It is clearly shown that the quality of the grid distribution is depending on the
choice of the monitor function which is subject of further research.

3.4. Numerical method

3.4.1. Multigrid FEM fictitious-boundary method. The details of the multigrid
FEM fictitious-boundary method have been presented in [136, 146, 144]. For illus-
tration, a brief description is given below.
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(a) Equidistant mesh (b) Deformed mesh 1 (c) Deformed mesh 2

Figure 31. Second example of deformed meshes generated from
a equidistant mesh

The fictitious-boundary method (FBM) is based on a multigrid FEM back-
ground grid which covers the whole computational domain ΩT and can be chosen
independently from the particles of arbitrary shape, size and number. It starts
with a coarse mesh which may already contain many of the geometrical details of
Ωi (i = 1, . . . , N), and it employs a fictitious-boundary indicator (see [136]) which
sufficiently describes all fine-scale structures of the particles with regard to the
fluid-particle matching conditions of Eq. (3.6). Then, all fine-scale features of the
particles are treated as interior objects such that the corresponding components
in all matrices and vectors are unknown degrees of freedom which are implicitly
incorporated into all iterative solution steps (see [146]). Hence, by making use of
Eq. (3.6), we can perform calculations for the fluid in the whole domain ΩT . The
considerable advantage of the multigrid FBM is that the total mixture domain ΩT

does not have to change in time, and can be meshed only once. The domain of
definition of the fluid velocity u is extended according to Eq. (3.6), which can be
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seen as an additional constraint to the Navier–Stokes equations (3.1), i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Div u = 0 (a) for X ∈ ΩT ,

ρf

(
∂ u
∂ t

+ u · ∇u
)
−∇ · σ = 0 (b) for X ∈ Ωf ,

u(X) = Ui + ωi × (X − Xi) (c) for X ∈ Ω̄i, i = 1, . . . , N.

(3.14)

For the study of interactions between the fluid and the particles, the calculation of
the hydrodynamic forces acting on the moving particles is very important. From
Eq. (3.4), we can see that the surface integrals on the wall surfaces of the particles
should be conducted for the calculation of the forces Fi and Ti. However, in the
presented multigrid FBM method, the shapes of the wall surface of the moving
particles are implicitly imposed in the fluid field. If we reconstruct the shapes of
the wall surface of the particles, it is not only a time-consuming work, but also
the accuracy is only of first order due to a piecewise constant interpolation from
our indicator function. For overcoming this problem, we perform the hydrodynamic
force calculations using a volume-based integral formulation. To replace the surface
integral in Eq. (3.4) we introduce a function αi,

αi(X) =

{
1 for X ∈ Ωi,

0 for X ∈ ΩT \ Ωi,
(3.15)

where X denotes the coordinates. The importance of such a definition can be seen
from the fact that the gradient of αi is zero everywhere except at the wall surface
of the ith particle, and equals to the normal vector ni of wall surface of the ith
particle defined on the grid, i.e., ni = ∇αi. Then, the hydrodynamic forces acting
on the ith particle can be computed by

Fi = −
∫

ΩT

σ · ∇αi d Ω , Ti = −
∫

ΩT

(X − Xi) × (σ · ∇αi) d Ω . (3.16)

The integral over each element covering the whole domain ΩT can be calculated
with a standard Gaussian quadrature of sufficiently high order. Since the gradient
∇αi is non-zero only near the wall surface of the ith particle, thus the volume
integrals need to be computed only in one layer of mesh cells around the ith
particle, which leads to a very efficient treatment.

The algorithm of the (classical) multigrid FEM fictitious-boundary method
for solving the coupled system of fluid and particles can be summarized as follows:

1. Given the positions and velocities of the particles, solve the fluid equations
Eqs. (3.14) (a) and (b) in the corresponding fluid domain involving the posi-
tion of the particles for the fictitious-boundary conditions.

2. Calculate the corresponding hydrodynamic forces and the torque acting on
the particles by using Eq. (3.16), and compute the collision forces by Eq.
(3.7).

3. Solve Eq. (3.3) to get the translational and angular velocities of the particles,
and then obtain the new positions and velocities of the particles by Eq. (3.5).
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4. Use Eq. (3.14) (c) to set the new fluid domain and fictitious-boundary con-
ditions, and solve for the new velocity and pressure of the fluid phase as
described in step 1.

3.4.2. ALE formulation of the FBM. For a better approximation of the solid sur-
faces, we adopt the above described moving-mesh method such that we can pre-
serve the mesh topology as generalized tensor product or block-structured meshes,
while a local alignment with the rigid-body surface is reached. The moving-mesh
method is sometimes referred to as quasi-Lagrangian method. When the moving-
mesh method is applied to the multigrid FBM, a mesh velocity Wm in the con-
vective term in Eq. (3.14b) should be introduced, i.e.,

ρf

[
∂ u
∂ t

+ (u − Wm) · ∇u
]
−∇ · σ = 0 for X ∈ Ωf , (3.17)

so that no interpolation routines from old to new meshes is required since the grid
topology is preserved.

In the literature this is also referred to as an Arbitrary Lagrangian–Eulerian
(ALE) formulation. Note that the mesh velocities Wm do not appear in the con-
tinuity equation, as a pressure-Poisson problem is solved to satisfy the continuity
equation in an outer loop. Care has to be taken to satisfy the geometric conser-
vation law (GCL), where the mesh velocity Wm must be equal to the movement
of the mesh velocity Δx during the time step. Therefore, the mesh velocities Wm

should be calculated according to the nodal movement from the previous time step
by

Wm =
1

Δt
(xn+1 − xn) (3.18)

where Δt is the time-step size and n denotes the time-step number.
In each time step, a new deformed mesh is generated based on a starting

mesh, then the system matrices are updated and the mesh velocity according to
the new position of the deformed mesh nodes will be calculated. Since the moving-
mesh method keeps the same number of mesh points throughout the entire solution
process, the size of computation and the data structure are fixed, which enables this
method to be much easier to incorporate into most CFD codes without the need
for changing the system matrix structures and for special interpolation procedures.

3.4.3. Time discretization by fractional-step-θ scheme. We first semi-discretize the
Eqs. (3.14) (a) and (3.17) in time by the fractional-step-θ scheme (see the previous
contribution in this book). Given un and the time step K = tn+1 − tn, then solve
for u = un+1 and p = pn+1. In the fractional-step-θ-scheme, one macro time step
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tn → tn+1 = tn+K is split into three consecutive substeps with θ̃ := αθK = βθ′K,

un+θ + θK∇pn+θ =[I − βθKN(un)]un

Div un+θ =0 ,

[I + θ̃N(un+1−θ)]un+1−θ + θ′K∇pn+1−θ =[I − αθ′KN(un+θ)]un+θ

Div un+1−θ =0 ,

[I + θ̃N(un+1)]un+1 + θK∇pn+1 =[I − βθKN(un+1−θ)]un+1−θ

Div un+1 =0 ,

(3.19)

where θ = 1 −
√

2
2 , θ′ = 1 − 2θ, and α = 1−2θ

1−θ , β = 1 − α, N(v)u is a compact
form for the diffusive and convective part,

N(v)u := −ν ∇ ·
[
∇u + (∇u)T

]
+ (v − Wm) · ∇u . (3.20)

Therefore, from Eq. (3.19) in each time step, we have to solve nonlinear
problems of the following type,

[I + θ1KN(u)]u + θ2K∇p = f , f := [I − θ3KN(un)]un , Div u = 0 . (3.21)

For Eq. (3.14) (c), we simply take an explicit expression like

un+1 = Un
i + ωn

i × (Xn − Xn
i ) . (3.22)

3.4.4. Space discretization by finite-element method. If we define a pair {u, p} ∈
H := H1

0(Ω) × L := L2
0(Ω), and bilinear forms a(u,v) := (∇u,∇v) and b(p,v) :=

−(p, Div v), a weak formulation of the Eq. (3.21) reads as follows,{
(u,v) + θ1K [ a(u,v) + n(u,u,v) ] + θ2K b (p,v) = (f ,v) , ∀v ∈ H
b (q,u) = 0 , ∀ q ∈ L.

(3.23)
Here, L2

0(Ω) and H1
0(Ω) are the usual Lebesgue and Sobolev spaces, n(u,u,v) is

a trilinear form defined by

n(u,v,w) :=
∫

Ω

[ui − (wm)i]
(

∂vj

∂xi
+

∂vi

∂xj

)
wj dx . (3.24)

To discretize Eq. (3.23) in space, we introduce a quadrilateral mesh Th for the
whole computational domain ΩT , where h is a parameter characterizing the max-
imum width of the elements of Th. To obtain the fine mesh Th from a coarse mesh
T2h, we simply connect opposing midpoints. In the fine grid Th, the old midpoints
of the coarse mesh T2h become vertices. We choose the Q̃1/Q0 element pair which
uses rotated bilinear shape functions for the velocity spanned by 〈x2 − y2, x, y, 1〉
in 2D and piecewise constants for the pressure in cells. The nodal values are the
mean values of the velocity vector over the element edges and the mean values
of the pressure over the elements rendering this approach non-conforming. This
Q̃1/Q0 element pair has several important features which have been described in
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a previous chapter of this contribution. If we choose finite-dimensional spaces Hh

and Lh and define a pair {uh, ph} ∈ Hh ×Lh, the discrete version of (3.23) reads,⎧⎨⎩
(uh,vh) + θ1K [ ah(uh,vh) + ñh(uh,uh,vh) ]

+θ2K bh(ph,vh) = (f ,vh) , ∀vh ∈ Hh

bh(qh,uh) = 0 , ∀ qh ∈ Lh,
(3.25)

where ah(uh,vh) :=
∑

T∈Th
a(uh,vh)|T and bh(ph,vh) :=

∑
T∈Th

b(ph,vh)|T .
Note that ñh(uh,uh,vh) is a new convective term which includes streamline-
diffusion stabilizations defined by

ñh(uh,vh,wh) :=
∑

T∈Th

n(uh,vh,wh)|T +
∑

T∈Th

δT (uh · ∇vh,uh · ∇wh)|T , (3.26)

here δT is a local artificial viscosity which is a function of a local Reynolds number
ReT ,

δT := δ∗ · hT

||u||Ω
· 2ReT

1 + ReT
, ReT =

||u||T · hT

ν
, (3.27)

where ||u||Ω means the maximum norm of velocity in ΩT , ||u||T is an averaged
norm of velocity over T , hT denotes the local mesh size of T , and δ∗ is an additional
free parameter which can be chosen arbitrarily (δ∗ = 0.1 is used in our calcula-
tions, see [124]). Obviously, for small local Reynolds numbers, with ReT → 0, δT

is decreasing such that we reach in the limit case the second-order central dis-
cretization. Vice versa, for convection dominated flows with ReT >> 1, we add an
diffusion term of size O(h) which is aligned to the streamline direction uh.

3.4.5. Discrete projection scheme. For solving the discrete nonlinear problems
after time and space discretizations, we have to take the following points into
account, i.e., treatment of the nonlinearity, treatment of the incompressibility,
and complete outer control like convergence criteria for the overall outer itera-
tion, number of splitting steps, convergence control, embedding into multigrid,
etc. In general, there are (at least) two possible approaches for solving the dis-
crete problems [122]. One is the so-called full Galerkin schemes: first, we treat the
nonlinearity by an outer nonlinear iteration of fixed-point- or quasi-Newton-type
or by linearization via extrapolation in time, and then we obtain linear subprob-
lems (Oseen equations) which can be solved by a direct coupled or a splitting
approach separately for velocity and pressure. Typical schemes are preconditioned
GMRES-like or multigrid solvers based on smoothers/preconditioners like Vanka,
SIMPLE or local pressure Schur complement (see [124]). The disadvantage of these
approaches is the high numerical cost for small time steps which are typical for
particulate flow. Another possibility are the projection-type schemes: First, we
split the coupled problem and obtain definite problems in u (Burgers equations)
as well as in p (Pressure-Poisson problems). Then, we treat the nonlinear prob-
lems in u by an appropriate nonlinear iteration or linearization technique while
optimal multigrid solvers are used for the Poisson-like problems. Classical schemes
belonging to this class are the Chorin and van Kan projection schemes and the



470 S. Turek and J. Hron

discrete projection method, all of them are well suited for dynamic configurations
which require small time steps (see [123]).

In this chapter, based on the latter approach combined with multigrid meth-
ods, we adopt the discrete projection method (DPM) as special variant of the more
general multigrid pressure Schur complement (MPSC) schemes to solve the dis-
crete nonlinear problems after time and space discretizations. A detailed descrip-
tion of DPM and MPSC schemes has been presented in [124]: We first perform as
outer iteration a fixed-point iteration, applied to the fully nonlinear momentum
equations. Then, in the inner loop, we solve the corresponding velocity equations
involving linear transport-diffusion problems. Finally, the pressure is updated via
a pressure-Poisson-like problem, and the corresponding velocity field is adjusted.
Since every time step requires the solution of linearized Burgers equations and
Poisson-like problems, an optimized multigrid approach is used. The most impor-
tant components are matrix-vector multiplication, smoothing operator and grid
transfer routines (prolongation and restriction) for the underlying FEM spaces
which have been realized in FEATFLOW (see [124] for the details).

3.4.6. Numerical algorithm. The whole algorithm of the multigrid FEM-FBM and
moving-mesh methods for the numerical simulation of rigid particulate flows can
be summarized as follows:

1. Given (initial) particle positions Xi and velocity Ui in the overall domain
ΩT . Next, we assume that we have finished the calculations at time tn.

2. Generate a new deformed mesh via the four steps of Eq. (3.8)–(3.13).
3. Compute the mesh velocity Wm by using Eq. (3.18) based on the new and

the previous deformed mesh.
4. Set the fictitious-boundary conditions by using Eq. (3.14) (c) with the ’old’

particle positions Xn
i and the velocity Un

i at time tn.
5. By using the FBM and implementing the discrete projection scheme, build the

system matrix and solve the fluid ALE equations of Eqs. (3.25) to get the fluid
velocity un+1 and the pressure pn+1 at time tn+1 on the full computational
domain ΩT .

6. Calculate the hydrodynamic forces Fn+1
i and T n+1

i exerted on every particle
(i = 1, . . . , N) by using the volume integration formulation of Eq. (3.16).

7. When two particles come too close, the time step has to be reduced. Then,
we adopt several substeps with Δtk = K/Λ (k = 1, . . . ,Λ, Λ is the number of
substeps calculations, K = tn+1−tn) for calculating the collisions and updat-
ing the particle positions and velocities during the collisions. Set Un,0

i := Un
i

and Xn,0
i := Xn

i .
8. Determine the number of substep calculations Λ by

Λ=

⎧⎨⎩ 1, if (di,j)min≥(Ri + Rj)max,

MIN
{

10, 1 + MAX
( |di,j − Ri − Rj |

�

)}
, if (di,j)min <(Ri + Rj − �)max,

(3.28)
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where � is the maximum penetration distance to be allowed (maximal over-
lapping range).

9. By using the Newton–Euler equations of Eq. (3.5) to calculate the motion of
the solid particles, we obtain the new interim particle position Xn+1/2,k

i and
velocity Un+1/2,k

i as well as the new angular velocity ωn+1
i and angle θn+1

i

by

Un+1/2,k
i = Un,k

i +
(

ΔMi g
Mi

+
Fn

i + Fn+1
i

2 Mi

)
Δtk , (3.29)

Xn+1/2,k
i = Xn,k

i +
(

ΔMi g
Mi

+
Fn

i + Fn+1
i

2 Mi

)
(Δtk)2 , (3.30)

ωn+1
i = ωn

i +
(

T n
i + T n+1

i

2 Ii

)
K , θn+1

i = θn
i +

(
ωn

i + ωn+1
i

2

)
K . (3.31)

10. Use the collision model of Eqs. (3.2.2) and (3.2.2) to calculate the repulsive
forces (F′

i)
n+1,k with the interim particle position Xn+1/2,k

i .
11. Update the particle positions and the velocity by the repulsive forces to obtain

the new particle position Xn+1,k
i and the velocity Un+1,k

i at time tn+1 by

Un+1,k
i = Un+1/2,k

i +
(F′

i)
n+1

Mi
Δtk , Xn+1,k

i = Xn+1/2,k
i +

(F′
i)

n+1

Mi
(Δtk)2. (3.32)

12. Set Un,k+1
i := Un+1,k

i and Xn,k+1
i := Xn+1,k

i if k < Λ, and repeat the steps
9 – 12.

13. Set Un+1
i := Un+1,Λ

i and Xn+1
i := Xn+1,Λ

i .
14. Advance to the next new time step, set tn := tn+1 and repeat the steps 2 –

14.

3.5. Numerical results

First of all, a benchmark configuration of 2D flow around a circular body in a
channel is given to assess the suitability and accuracy of the hydrodynamic force
calculations based on the combination of the multigrid FBM and the new moving-
mesh technique. Then, three cases of a single moving particle in the fluid are
presented to further validate the improvement of accuracy and efficiency using the
presented method. Finally, the drafting, kissing and tumbling of two disks in a
channel and the sedimentation of 120 circular particles in a cavity are provided to
show that the presented method can be easily implemented for the simulation of
particulate flow with large number of particles. Since we have used a prototypical
implementation of the new mesh deformation method only, efficiency considera-
tions are of only preliminary type while we concentrated more on the validation
and accuracy aspects of the new FEM-ALE fictitious-boundary method for par-
ticulate flow.
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(a) Equidistant mesh (LEVEL = 4)

(b) Deformed mesh (LEVEL = 4)

Figure 32. Different meshes adopted for flow around a fixed
circular cylinder

3.5.1. Benchmark experiment. We first consider the benchmark case of flow around
a fixed circular cylinder in a channel as described in [148]. The channel height is
H = 0.41, length L = 2.2, the cylinder diameter D = 0.1. The center point of the
cylinder is located at (0.2, 0.2). The Reynolds number is defined by Re = ŪD/ν
with the mean velocity Ū = 2U(0, H/2, t)/3. The kinematic viscosity of the fluid
is given as ν = μf/ρf = 10−3 and its density ρf = 1. The inflow profiles are
parabolic U(0, Y, t) = 6.0ŪY (H − Y )/H2 with Ū = 0.2 such that the resulting
Reynolds number is Re = 20 which leads to steady-state solutions.

Table 7. Drag and lift coefficients for flow around a fixed circular
cylinder with Re = 20

by using equidistant meshes

LEVEL NVT NEL Drag Cd Lift Cl VEF(%) CPU
4 561 512 4.44688 -0.0649815 91.643 0.8
5 2145 2048 5.31808 -0.3508040 97.697 3.0
6 8385 8192 5.50358 -0.0093675 99.261 12.0
7 33153 32768 5.50585 0.0312388 99.842 54.6
8 131841 131072 5.53049 0.0239737 99.958 375.0

reference values Cd = 5.5795 Cl = 0.010618

Fig. 32 shows the equidistant and deformed (static) meshes employed in our
calculations, in which the circle shows the position of the cylinder. The shown
meshes are successively refined by connecting opposite midpoints. The deformed
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Table 8. Drag and lift coefficients for flow around a fixed circular
cylinder with Re = 20

by using deformed meshes

LEVEL NVT NEL Drag Cd Lift Cl VEF(%) CPU
4 561 512 6.25486 0.0682610 99.332 1.3
5 2145 2048 5.72950 0.0297392 99.788 4.0
6 8385 8192 5.61971 0.0291702 99.946 14.0
7 33153 32768 5.58139 0.0118296 99.985 76.0
8 131841 131072 5.57706 0.0104031 99.997 402.0

reference values Cd = 5.5795 Cl = 0.010618

mesh is generated from the equidistant mesh, but it has more grid nodes and
elements concentrated and aligned around the surface of the cylinder. In Tables 7
and 8, the characteristics of these meshes after several global refinements are given.
The meaning of “LEVEL” is the number of refinements, “NVT” the number of
vertices, and “NEL” the number of elements, “VEF” the ratio of the effective
cylinder area covered by the fixed mesh through the fictitious-boundary method
w.r.t. the real cylinder area, “CPU” the typical CPU time needed (DELL Precision
Workstation 670, 2.66 GHz) for reaching steady-state.

Tables 7 and 8 present the computed results by using the equidistant mesh
and deformed mesh, respectively. The corresponding reference results of drag and
lift coefficients for this benchmark problem are also listed in these tables for com-
parison. From the tables, we can see that all results of drag and lift coefficients
are converging w.r.t. mesh refinement except those for the lift coefficients when
using equidistant mesh. The results for the deformed meshes are much better and
more accurate than those for the equidistant meshes. For the deformed mesh cases,
on LEVEL = 6 with only NEL = 8192, quite satisfying results have already been
obtained. Obviously, the accuracy is improved by using the grid-deformation tech-
niques. Moreover, the effective area ratio of the cylinder captured by the deformed
mesh lines has reached more than 99% in LEVEL = 4, while it requires LEVEL = 6
for equidistant meshes. For CPU time, about 10% time is increased for the cases
of deformed meshes over the equidistant mesh on the same level due to additional
time needed for the deformed-mesh generation. However, the main CPU time is
still needed for the fluid-solid part, not for the part of deformed-mesh generation.
Moreover, in the deformed-mesh cases, we can adopt a lower-level mesh which can
obtain high accuracy results but only small CPU time increases compared to the
case of equidistant meshes. For example, for the deformed mesh in LEVEL = 7,
very accurate results of force calculations are possible and only 76 sec CPU is
needed, while for the equidistant mesh in LEVEL = 8, the CPU time of 375 sec
is required but the results of force calculations are still not so accurate. Hence, it
shows that the deformed mesh can significantly improve the force calculations.
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(a) Deformed mesh (t = 18.9)

(b) Deformed mesh (t = 21)

Figure 33. Deformed meshes for one oscillating circular cylinder
in a channel.

3.5.2. One oscillating circular cylinder in a channel. Next, an oscillating circular
cylinder in a channel with a prescribed velocity is considered. The channel height
is H = 0.41, length L = 2.2, the cylinder diameter D = 0.1. The center point
of the cylinder is located initially at (1.1, 0.2). The prescribed velocity for the
cylinder is given by u = 2πf A cos(2πf t), A = 0.25, f = 0.25, v = 0, and no-slip
velocity conditions are imposed at the two walls, inlet and outlet of the channel.
The kinematic viscosity of the fluid is given by ν = μf/ρf = 10−3 and its density
ρf = 1. The fluid in the channel is initially at rest.

The deformed meshes are generated by using the moving-mesh method in
every time step in order to align the mesh around the surface of the moving
cylinder. Fig. 33 gives two snapshot results at t = 18.9 and t = 21 of the deformed
meshes, and Fig. 34 presents the corresponding local vector field, norm of velocity
and local vorticity distribution, respectively. These pictures show that the flow in
the channel is disturbed by the oscillating cylinder, and the vortex is generated
periodically in the wake of the cylinder. Fig. 35 illustrates the comparison of the
computed drag coefficient Cd by the presented method with the reference result
based on the body-fitted mesh (see [146]). The results calculated from LEVEL = 5
to LEVEL = 8 and the parameters of the number of elements “NEL” for each
refinement level are all shown together. From the comparisons, we can see that
the presented results are identical with increasing the mesh refinement, and they
agree very well with the reference results. On the deformed mesh on LEVEL = 5
with 2048 elements, very good results have already been reached.
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(a) Local vector field (t = 18.9) (b) Local vector field (t = 21.0)

(c) Norm of velocity (t = 18.9)

(d) Norm of Velocity (t = 21)

(e) Local vorticity values (t = 18.9) (f) Local vorticity values (t = 21)

Figure 34. Oscillating circular cylinder in a channel.

3.5.3. One 2D circular ball falling down in a channel. The computational domain
is a channel of width 2 and height 6. A rigid circular ball with diameter d = 0.25
and density ρp = 1.5 is located at (1, 4) at time t = 0, and it is falling down under
gravity in an incompressible fluid with density ρf = 1 and viscosity ν = 0.1, with
gravitational acceleration constant g = −980. We suppose that the ball and the
fluid are initially at rest. The simulation is carried out on fixed equidistant meshes
and moving deformed meshes, respectively, each of them having two different level,
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Figure 35. Drag coefficients for one oscillating circular cylinder
in a channel.

(a) t = 0.30 (b) t = 0.48 (c) t = 0.30 (d) t = 0.48

Figure 36. One 2D circular ball falling down in a channel.

i.e., LEVEL = 6 with 12545 nodes and 12288 elements, as well as LEVEL = 7
with 49665 nodes and 49152 elements which provide sufficiently accurate results.

Fig. 36 gives two snapshots at t = 0.30 and t = 0.48 on the deformed mesh
and the corresponding vector field, respectively. Fig. 37 presents the comparison
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Figure 37. Time history of y-position and v-velocity component
of the center of the falling ball.
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Figure 38. Time history of the effective area ratio of the falling ball.

of the time history of the y-coordinate and v-velocity component of the center of
the ball by using equidistant meshes and deformed meshes, each of them are calcu-
lated by the mesh levels LEVEL = 6 and LEVEL = 7, respectively, both leading
to convergent results with refining the mesh. If we compare these results with
those obtained by Glowinski in [36], we can see that the results of the deformed
meshes are much closer to his results than those of the equidistant meshes, which
proves again that the accuracy is improved when the moving deformed meshes
are employed. Fig. 38 shows the ratio (%) of the effective area of the falling ball
covered by the underlying fixed equidistant mesh and the adaptively deformed
mesh compared with the real area of the disk, respectively. Again we can see that
the deformed mesh can much better capture the falling ball than the equidistant
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mesh, which also explains why the deformed mesh can improve the accuracy of
the simulation. Table 9 shows the typical CPU time for one time step and mem-
ory (in MByte) needed (DELL Precision Workstation 670, 2.66 GHz) by using
equidistant and deformed meshes, respectively. We can also see the linear relation
between CPU and storage cost w.r.t. the mesh size due to the optimized multigrid
components. The CPU time of the deformed mesh cases is increased by appr. 10%
to 20% compared to the equidistant mesh cases, since the deformed mesh genera-
tion, mesh velocities and system matrix update are needed to implement in every
time step. However, the computer memory storage required for both cases is not
significantly changed.

Table 9. CPU time for one time step and storage for one falling ball.

LEVEL Equidistant mesh Deformed mesh
CPU time Storage (MB) CPU time Storage (MB)

4 0.11 0.15 0.13 0.19
5 0.53 0.71 0.61 0.76
6 1.89 2.97 2.36 3.10
7 7.36 11.82 8.95 12.83

3.5.4. Induced rotation of an airfoil in a channel. The rigid bodies considered so
far have been of circular form. The following simulation will show that the pre-
sented method can deal with rigid bodies of more complicated shape very well, and
provides better results compared to that without using the moving-grid deforma-
tion techniques. We consider a NACA0012 airfoil that has a fixed center of mass
and is induced to rotate freely around its center of mass due to hydrodynamical
forces under the action of an incompressible viscous flow in a channel. The channel
has width 20 and height 4. The density of the fluid is ρf = 1 and the density of the
airfoil is ρp = 1.1. The viscosity of the fluid is νf = 10−2. The initial condition for
the fluid velocity is u = 0 and the boundary conditions are given as u = 0 when
y = 0 or 4 and u = 1 when x = 0 or 20 for t ≥ 0. The initial angular velocity and
angle of incidence of the airfoil are zero. The airfoil length is 1.0089304 and the
fixed center of mass of the airfoil is at (0.420516, 2). Hence the Reynolds number
is about 101 with respect to the length of the airfoil and the inflow speed. The
detailed shape of the NACA0012 is described as follows (for 0 ≤ X ≤ 1.0089304):

Y =0.6 · { 0.2969 ·
√

X +X · [−0.126+X · [−0.3516+X · ( 0.2843− 0.1015 ·X ) ]] }.

The simulation is realized on both fixed equidistant meshes and moving de-
formed meshes, each of them having two different levels, i.e., LEVEL = 7 with
41409 nodes and 40960 elements, as well as LEVEL = 8 with 164737 nodes and
163840 elements. The deformed mesh is generated in each time step in order to
always keep the grid alignment around the surface of the induced rotating airfoil.
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(a) Starting mesh

(b) Deformed mesh (t = 14.7)

(c) Deformed mesh (t = 16.0)

(d) Zoomed mesh (t = 14.7) (e) Zoomed mesh (t = 16.0)

Figure 39. Initial mesh and deformed meshes during the simu-
lation of the induced rotation of a NACA0012 airfoil in a channel.
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Figure 40. Time history of the angle of incidence θ and angular
velocity ω.

(a) Vorticity (t = 14.7) (b) Vorticity (t = 16.0)

(c) Pressure (t = 14.7) (d) Pressure (t = 16.0)

Figure 41. Local vorticity and pressure values for the rotating
NACA0012 airfoil.
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(a) Norm of velocity (t = 14.7)

(b) Norm of velocity (t = 16)

(c) Local vector field (t = 14.7) (d) Local vector field (t = 16)

Figure 42. Induced rotation of a NACA0012 airfoil in a channel.

Fig. 39 (a) shows the starting equidistant mesh to generate the deformed meshes.
In Fig. 39 (b) and (c), two deformed meshes at t = 14.7 and t = 16.0 are pre-
sented, their local zooms are illustrated in Fig. 39 (d) and (e). Fig. 40 plots the
time history of the angle of incidence θ and the angular velocity ω of the airfoil
calculated by using the equidistant and the deformed meshes, each of them is per-
formed on the two levels LEVEL = 7 and LEVEL = 8, respectively. The local
vorticity distribution, local pressure contour, norm of velocity and local vector
field for t = 14.7 and t = 16.0 are given in Fig. 41 and Fig. 42. From these figures
and pictures, we can see that the airfoil quickly reaches a periodic motion and in-
tends to keep its broadside perpendicular to the inflow direction which is a stable
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(a) t = 0.0 (b) t = 0.15 (c) t = 0.18 (d) t = 0.30 (e) t = 0.42 (f) t = 0.65

Figure 43. Deformed meshes for two circular disks falling down
in a channel.

position for a non-circular rigid body setting in a channel at moderate Reynolds
numbers. We observe that the results of the deformed meshes converge better to a
mesh independent solution than those on the equidistant meshes, and are in excel-
lent agreement with those obtained by Glowinski, Joseph and coauthors [38, 36].
The results of the equidistant meshes exhibit much more numerical oscillations
and loose stability since they cannot catch very well the velocity field close to
the leading edge of the airfoil, which causes the numerical solution blew up near
the leading edge of the airfoil. Obviously, good results and significant accuracy
improvements are achieved by using the moving-grid deformation techniques. It
illustrates that the presented method can easily handle more complex shapes of
rigid bodies and can obtain more accurate results than those without employing
the moving grid deformation techniques.

3.5.5. Drafting, kissing and tumbling of two disks in a channel. We will carry on
the cases of multiple particles in a fluid to show that the presented method can be
easily applied to more realistic particulate flow with several particles.

When two particles are dropped close to each other, they interact by un-
dergoing “drafting, kissing and tumbling” [149], which is often chosen to examine
the complete computational model of particulate flow, including the prevention
of collisions. Therefore, we also study the sedimentation of two circular particles
in a two-dimensional channel, comparing the results w.r.t. two different levels of
mesh refinement and regarding the results in [36]. The computational domain is a
channel of width 2 and height 6. Two rigid circular disks with diameter d = 0.25
and density ρp = 1.5 are located at (1, 5) (No.1 disk) and (1, 4.5) (No.2 disk) at
time t = 0, and they are falling down under gravity in an incompressible fluid



Fluid-Solid Interaction 483

(a) t = 0.0 (b) t = 0.15 (c) t = 0.18 (d) t = 0.30 (e) t = 0.42 (f) t = 0.65

Figure 44. Vector fields for two circular disks falling down in a channel.

with density ρf = 1 and viscosity ν = 0.01, with gravitational acceleration con-
stant g = −980. We suppose that the disks and the fluid are initially at rest. The
simulation is carried out on moving deformed meshes, having two different levels,
i.e., LEVEL = 7 with 49665 nodes and 49152 elements, as well as LEVEL = 8
with 197633 nodes and 196608 elements which gives sufficiently accurate solutions.

Fig. 43 shows the moving deformed meshes employed in simulation of the
two falling disks. The grid lines are always concentrated around the surfaces of the
two disks and in the region of the gap between the two disks, and move with the
two disks during the computations. Fig. 44 presents the corresponding computed
vector fields. From these figures, we can see that the disk in the wake (No.1 particle)
falls more rapidly than the disk No.2 in front since the fluid forces acting on it
are smaller. The gap between them decreases, and they almost touch (“kiss”)
each other at time t = 0.15. After touching, the two disks fall together until they
tumble (t = 0.18) and subsequently they separate from each other (t = 0.30). The
tumbling of the disks takes place because the configuration, when both are parallel
to the flow direction, is unstable. The No.1 disk is touching first the bottom wall at
t = 0.42, while the No.2 disk reaches the bottom wall at t = 0.65. In Fig. 45, several
quantities are plotted. These are the time histories of the x and y-coordinate of the
two disk centers, u and v-component of the disk translational velocities, obtained
for the two deformed meshes, LEVEL = 7 and LEVEL = 8, respectively. We can
see that the results computed on the two different deformed meshes are essentially
indistinguishable. All results compare qualitatively well with those presented in
[91, 36, 150, 151].
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Figure 45. Time history of two circular disks falling down in a
channel: (a) x-coordinate, (b) y-coordinate of the center of the two
disks, and (c) u-component, (d) v-component of the translational
velocity of the center of the two disks. Dotted line for No.1 disk
and dot-dashed line for No.2 disk by deformed mesh LEVEL = 7,
as well as dashed line for No.1 disk, and solid line for No.2 disk
by deformed mesh LEVEL = 8.

3.5.6. Sedimentation of 120 circular particles. Finally, we consider the sedimenta-
tion of 120 circular particles with identical size falling down in a closed rectangular
cavity. The width and height of the cavity are 4 and 6. The 120 particles are placed
at the top of the cavity with 8 rows, while in each row the number of particles is
15. The diameter of the particles is 0.24. The range of the repulsive force is chosen
as ρ = 0.0167. The position of the particles at time t = 0 is shown in Fig. 50(a).
The particles and the fluid are at rest at t = 0. The density of the fluid is ρf = 1
and the density of the particles is ρi = 1.1 (i = 1, . . . , 120). The viscosity of the
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fluid is ν = 10−2 (all quantities in non-dimensional form). The parameter εP in
the collision model has been taken as 10−6, and εW = εP /2, ε′P = εP , ε′W = εW .
The moving meshes are shown in Figs. 46–47. We can see that grid lines are moved
and concentrated around the surfaces of each particle and in the regions of the
gap between particles, and can always keep alignment with the surfaces of each
particle even when the particles move. The corresponding snapshots for the evolu-
tion of the vector fields of the 120 sedimenting circular particles are illustrated in
Figs. 50 and 51. These figures clearly show the development of the Rayleigh–Taylor
instability. This instability develops into a fingering and textbook phenomenon,
and many symmetry-breaking and other bifurcation phenomena including draft-
ing, kissing and tumbling take place at various scales in space and time. Many
complex vortices have been formed which pull the particles downward and mix
each other. Finally, the particles settle at the bottom of the cavity and the fluid
returns to rest.

3.6. Conclusions

We demonstrated the combination of the multigrid fictitious-boundary method
and a new moving-mesh method for the simulation of particulate flow with mov-
ing rigid particles of different shape and size. The new approach directly improves
the accuracy upon the previous pure multigrid FBM based on static non-aligned
meshes. Moreover, it is computationally cheap and simple to implement. Since
the size of the problem and the data structure of the moving deformed meshes
are fixed, this enables the proposed method to be incorporated into most CFD
codes without the need for changing the matrix structures and for adding special
interpolation procedures. Numerical tests demonstrate that it is suitable to accu-
rately and efficiently perform the direct numerical simulation of particulate flow
with large number of moving particles. One classical CFD benchmark experiment,
three numerical examples of single moving particles in a fluid as well as the draft-
ing, kissing and tumbling of two disks in a channel and the sedimentation of 120
particles in a cavity have been presented to show that the new method can sig-
nificantly improve the accuracy for dealing with the interaction between the fluid
and the particles, and can be easily applied to more realistic flow configurations
with many moving particles.

In the future, we will combine these mesh-deformation techniques in the con-
text of the FEM-ALE fictitious-boundary approach with special hardware-oriented
implementation features for generalized tensor-product meshes: As long as the (lo-
cal) data structure of such highly-structured meshes with different local spacing is
preserved, special cache and pipelining-oriented techniques can be developed which
can significantly exploit the available supercomputing power of modern processors
and which allow special hardware components like GPU-computing. Preliminary
results are already available and will be presented in future.
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(a) t = 0.0 (b) t = 0.35

(c) t = 0.56 (d) t = 1.02

Figure 46. Deformation meshes for 120 particles falling down in
a cavity.
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(e) t = 1.53 (f) t = 2.04

(g) t = 3.06 (h) t = 5.0

Figure 47. Deformation meshes for 120 particles falling down in
a cavity (cont.).
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Figure 48. Zoomed mesh at t = 1.53.
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Figure 49. Zoomed mesh at t = 2.04.
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(a) t = 0.0 (b) t = 0.35

(c) t = 0.56 (d) t = 1.02

Figure 50. Velocity fields for 120 particles falling down in a cavity.
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(e) t = 1.53 (f) t = 2.04

(g) t = 3.06 (h) t = 5.0

Figure 51. Velocity fields for 120 particles falling down in a
cavity (cont.).
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