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Preface

Decision making is an essential part of our private and profes-

sional life. The consequences of our decisions are sometimes very

simple, but very often our decisions affect our life and future

significantly. For example, selecting a dessert after a dinner is a

simple decision, however applying for a new job or choosing a

retirement plan could have significant effect on our life.

Every decision making problem has three major components:

the decision makers, the decision alternatives, and the conse-

quences of our decisions. The decision maker can be a single

person or a group of people, who are sometimes called the

stakeholders. The decision alternatives are the options from

which we can choose from. In selecting the feasible alternative

set we have to take into account all of the technical, economic,

environmental, regulatory, etc., constraints. If the consequences

of a decision making problem can be characterized by a single

criterion (such as profit), then the problem can be modeled as a

single-objective optimization problem. Depending on the types of

the objective function and the feasible set of alternatives the

mathematical model can be linear programming, or a nonlinear,

discrete, mixed programming problem or even dynamic or sto-

chastic optimization to mention only the most frequently used

model variants. There are many textbooks discussing these model

types and the most important solution methodology. Most of the

practical decision making problems cannot be described by a

single criterion. Water resources and environmental management

problems always have to consider several criteria simultaneously,
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social and other economic factors have to be considered among

others. Multi Criteria Decision Analysis (MCDA) is the usual

methodology to model and solve such problems. This book

attempts to introduce the modeling and solving of MCDA pro-

blems with illustrative case studies in water resources and envi-

ronmental management. Chapter 1 presents themajor components

and modeling of MCDA problems. The hierarchy of the criteria is

the subject of Chapter 2. The most important methods for solving

discrete problems are introduced in Chapter 3, and their counter-

parts for solving continuous problems are discussed in Chapter 4.

Social choice methodology is often used if there are several

stakeholders with conflicting priorities in the decision making

process when some of the criteria are hard to or cannot be quanti-

fied. Chapter 5 is devoted to this subject. Conflict resolution

concepts and procedures are introduced in Chapter 6 including

symmetric and non-symmetric bargaining. All models and meth-

ods discussed in the first six chapters assume complete and perfect

knowledge of all criteria and constraints. However, in reality most

decisionmaking problems are faced with uncertain environmental

and economical conditions. Chapter 7 introduces the main con-

cepts of modeling uncertainty and the corresponding solution

methodology.In addition to introducing and discussing modeling

concepts and mathematical methodology with simple classroom-

size numerical examples, several case studies are selected to illus-

trate how they work in reality. These case studies include project

selection, inter-basin water transfer, urban water management,

water allocation, groundwater quality as environmental health

risk, forestry treatment selection, multi-reservoir irrigation

planning, water distribution network design, and long-term water-

shed management. These studies are chosen from different regions

and countries including Hungary, India, Iran, Mexico, USA and

Vietnam.

This book is a result of the 4-year long cooperation of the

authors which started with a 1-year scholarship of the first author

at the University of Arizona, Tucson. This visit was followed by

several meetings, conferences and short courses, when the

authors could exchange ideas and earlier drafts of different

parts of the manuscript of this book.
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We hope that the material of this book will be helpful for

graduate students in mathematics, engineering and economics

in their studies in decision making. We also hope that engineers,

managers and all others facing with practical decision making

problems will find the material of this book useful in their work.

The methodology and the concrete application studies might

suggest new ideas, interesting and important research topics for

students and scientists.

Tabriz, Iran Mahdi Zarghami

Arizona, USA Ferenc Szidarovszky
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Chapter 1

Introduction to Multicriteria Decision
Analysis

1.1 Decision Analysis

Decision analysis is the science and art of designing or choosing

the best alternatives based on the goals and preferences of the

decision maker (DM). Making a decision implies that there are

alternative choices to be considered. In such cases, we do not

want to identify only as many of these alternatives as possible but

we want to choose the one that best fits our goals, desires,

lifestyle, values, and so on (Harris 1997). In other words, decision

analysis is the science of choice. For example, selecting the best

technology for urban water supply, developing flood protection

alternatives, or optimizing the operation of a reservoir are all the

problems of choice.

To describe the preferences of a DM we may use one of the

terms of Goals, Objectives, Criteria, and Attributes. However,

there are differences among their meanings. Goals are useful for

clearly identifying a level of achievement to strive toward

(Keeney and Raiffa 1993). Goals relate to desired performance

outcomes in the future, while an objective is something to be

pursued to its fullest level or it may generally indicate the direc-

tion of desired change. Criteria are more specific and measurable

outcomes. A criterion generally indicates the direction in which

we should strive to do better. In all decision problems, we want

M. Zarghami and F. Szidarovszky, Multicriteria Analysis,
DOI 10.1007/978-3-642-17937-2_1,
# Springer-Verlag Berlin Heidelberg 2011
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to accomplish or avoid certain things. To what degree we accom-

plish our goals or avoid unfavorable consequences should be

among the criteria. They are either achieved, or surpassed or

not exceeded (Hwang and Yoon 1981). The relation among

these three terms is indicated in Fig. 1.1. The attributes are also

performance parameters, components, factors, characteristics,

and properties. In this book, we will use the term criteria, instead

of objectives and attributes, which is closer to the meaning of

what is usually used by the DMs in water resources and environ-

ment management.

Example 1.1. The Common Agricultural Policy (CAP) absorbs

roughly 45% of the total budget of the European Union. The CAP

is a widely debated policy, in terms of both its budget and the

instruments being used (Gomez-Limon and Atance 2004). The

hierarchy of its goal, main objectives and criteria used to evaluate

the objectives is shown in Table 1.1.

The management of water resources and the environment takes

place in a multicriteria framework when it is necessary to con-

sider the technical, environmental and social implications of

the water resources projects, in addition to the economic criteria

to ensure sustainable decisions and favorable decision outcomes.

The traditional cost–benefit analysis, used for many decades

in water resources planning and environmental management,

Goals

Objectives

Criteria

Fig. 1.1 Relation among

the goals, objectives and

criteria

2 1 Introduction to Multicriteria Decision Analysis



transformed the different types of impacts into a single monetary

metric. Once that was done, the task was to find the plan or policy

that maximized the difference between the benefits and costs. If

the maximum difference between the benefits and costs was

positive, then the best plan or policy was found. However, not

all system performance criteria can be easily expressed in mone-

tary units. Even if monetary units are used to describe each

objective, then they do not address the distributional issues of

who benefits, who pays, and how much (Loucks and van

Beek 2005). To overcome this inefficiency multicriteria decision

analysis (MCDA) techniques are applied. The most important

advantages of using these methods for water resources manage-

ment are:

• To cope with limited water, financial and human resources

• To allow the combination of multiple criteria instead of a

single criterion

• To avoid opportunity costs of delay in decision-making

• To resolve conflict among stakeholders

• To simplify the administration of the projects

Table 1.1 Goal, objectives and criteria for the CAP project

Goal Objectives Criteria

Improving the welfare

of residents in

European countries

Social

objectives

1. To safeguard family agricultural holdings

2. To maintain villages and improving the

quality of rural life

3. To conserve traditional agricultural

products (typical local products)

Environmental

objectives

1. To encourage agricultural practices

compatible with environmental

conservation

2. To contribute to the maintenance of

natural areas

3. To maintain traditional agricultural

landscapes

Economic

objectives

1. To ensure reasonable prices for consumers

2. To ensure safe and healthy food

3. To encourage competitiveness of farms

4. To provide adequate income for farmers

5. To guarantee national food self-

sufficiency

1.1 Decision Analysis 3



1.2 The Components of MCDA Problems

Any MCDA problem has three main components: decision

maker/s (DMs), alternatives and criteria. These three elements

can be shown as the three basis of a triangle (Fig. 1.2).

The classification of an MCDA problem depends on the types

of these elements. The definitions of the three components are as

follow:

• Decision maker/s. The first element is identifying the DMs. For

a particular problem, we might have a single person who is

responsible for deciding what to do or several people or organi-

zations being involved in the decision-making process. In the

first case, we have only one DM; in the second case, we have

multiple DMs. When more than one DM is present, then they

might have different preferences, goals, objectives and criteria,

so no decision outcome is likely to satisfy every decision maker

equally. In such cases, a collective decision has to be made when

the outcome depends on how the different DMs take the inter-

ests of each others into account. In other words, the outcome

depends on their willingness to cooperate with each other. In the

case of multiple decision makers, we might consider the prob-

lem as an MCDA problem, where the criteria of the different

decision makers are considered the criteria of the problem

(Karamouz et al. 2003). In the case of a single DM and one

criterion, we have a single-objective optimization problem. The

applied methods depend on the type of the problem (linear

programming, nonlinear programming, integer or mixed pro-

gramming, dynamic optimization, stochastic programming,

etc.). Typical MCDA problems arise when a single decision

maker considers several criteria simultaneously. In the presence

Decision maker/s

Alternatives Criteria
Fig. 1.2 The elements of an

MCDA problem
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of multiple DMs the problem can be modeled by MCDA as

mentioned above, or in the case of conflicting priorities and

desires of the DMs, game theory can be used. MCDA is often

considered as the most powerful methodology of solving game

theoretical problems with cooperating players.

• Alternatives. These are the possibilities one has to choose

from. Alternatives can be identified (that is, searched for and

located) or even developed (created where they did not previ-

ously exist). The set of all possible alternatives is called the

decision space. In many cases, the decision space has only a

finite number of elements. For example, selecting a technology

from four possibilities results in a decision space with four

alternatives. In many other cases, the decision alternatives are

characterized by continuous decision variables that represent

certain values about which the decision has to be made. For

example, reservoir capacity can be any real value between the

smallest feasible value and the largest possibility.

• Criteria. These are the characteristics or requirements that each

alternative must possess to a greater or lesser extent. The alter-

natives are usually rated on how well they possess the criteria.

Since we have to make a choice from a given set of feasible

alternatives we need to measure how good those alternatives are.

The goodness of any alternative can be characterized by its evalua-

tions with respect to the criteria. These evaluations can be described

by crisp numbers, linguistic values, random or fuzzy numbers. A

criterion is called positive, if better evaluation is indicated by larger

values. Similarly a criterion is called negative, if better evaluation is

shown by a smaller value. Regarding the types of the alternatives,

we have two major classes of MCDA problems.

Before proceeding further, some comments are in order. In the

case of one criterion the problem is given as

Maximize f ðxÞ
subject to x 2 X :

Here x represents an alternative and X is the set of all feasible

alternatives. All values of f(x) when x runs through the feasible

1.2 The Components of MCDA Problems 5



set, X, are located on the real line. The optimal solution has

therefore the following properties:

1. The optimal solution is at least as good as any other solution.

2. There is no better solution than the optimal solution.

3. All optimal solutions are equivalent, i.e., they have the same

objective value.

In the case of one criteria, any two decisions xð1Þ and xð2Þ can be
compared since either f ðxð1ÞÞ>f ðxð2ÞÞ, or f ðxð1ÞÞ ¼ f ðxð2ÞÞ, or
f ðxð1ÞÞ<f ðxð2ÞÞ. In the case of multiple criteria, this is not true.

For example, in the case of two positive criteria the following two

outcomes cannot be compared:

1

2

� �

and
2

1

� �

;

since the first outcome is better in the second criterion and worse

in the first criterion.

1.3 Classification of MCDA Problems

1.3.1 Discrete Case

If the decision space is finite, then the construction of the feasible

decision space is very simple. We have to check the feasibility of

each alternative by determining whether or not it satisfies all

restrictions. We can show the discrete alternatives, criteria and

the evaluations of the alternatives with respect to the criteria in a

matrix, called the evaluation or decision matrix. In a decision

matrix, the (i, j) element indicates the evaluation of alternative j

with respect to criteria i, as it will be explained in the following

example.

Example 1.2. Table 1.2 represents an evaluation matrix. The

problem is to choose the best scheme for inter basin water transfer

from five alternatives (what can we do). The four criteria (what

6 1 Introduction to Multicriteria Decision Analysis



we get) are benefit–cost ratio, environmental sustainability, easy

operation/maintenance, and compliance with former water rights

in the watershed (in subjective judgment on a scale between 0 and

100). These criteria show and indicate the Integrated Water

Resources Management (IWRM) principles.

If we quantify the linguistic values on a 0 through 100 scale,

then the evaluation values of the alternatives with respect to

criteria C2 and C3 might become

80 10 50 80 100

and

90 90 10 10 50.

The decision space of the problem has five elements, the five

alternatives: A1, A2, A3, A4 and A5. The consequence of selecting

any one of the alternatives is characterized by the simultaneous

values of the criteria, which is a four-element vector. So the

objective space consists of five points in the four dimensional

space: (1.3, 80, 90, 70), (1.4, 10, 90, 90), (1.1, 50, 10, 75), (1.7,

80, 10, 40) and (1.2, 100, 50, 55). The decision space shows our

possible choices. That is, it represents what can be done. The

objective space shows the simultaneous criteria values, that is,

what we can get.

If we compare these alternatives, then we see that neither of

them can be improved in all criteria simultaneously by selecting

another alternative. In this case all of these alternatives can be

considered reasonable choices. In order to choose only one of

them which could be considered as the “best”, additional pref-

erence information is needed from the DM. The preferences of

the DM can be represented by many different ways, for example,

by specifying relative importance weights. These values are

shown in the second column of Table 1.2.

Table 1.2 Evaluation matrix of Example 1.2

Criteria Weights Alternatives

A1 A2 A3 A4 A5

C1 0.2 1.3 1.4 1.1 1.7 1.2

C2 0.1 High Low Medium High Very high

C3 0.4 Easy Easy Difficult Difficult Medium

C4 0.3 70 90 75 40 55

1.3 Classification of MCDA Problems 7



Figure 1.3 represents the steps of formulating and solving a

mathematical model for a discrete MCDA problem. As it is

shown in this procedure, the decision making process has recur-

sive nature.

1.3.2 Continuous Case

If the decision alternatives are characterized by continuous vari-

ables then the problem is considered to be continuous. In this

case, the alternatives satisfying all constraints are feasible, and

the set of all feasible alternatives is the feasible decision space.

The constraints are usually presented as certain equalities or

inequalities containing the decision variables.

In the classical optimization models, we have only one crite-

rion to optimize. However, in most decision-making problems we

are faced with several criteria that might conflict with each other.

For example, treatment cost and water quality are conflicting

criteria, as better quality requires higher cost. We can assume

Identify the decision problem with its goals it
should achieve

Feedbacks from
decision maker

Make the decision after
sensitivity analysis

Evaluate each alternative
with respect to the criteria

Get the information
and obtain the criteria

Develop alternatives

Fig. 1.3 The steps of formulating and solving a discrete MCDA problem
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that all criteria are maximized, otherwise each negative criterion

can be multiplied by �1.

Example 1.3. The water demand of an urban area can be supplied

from two sources, from groundwater and also from surface water.

The decision variables (alternatives) are how much water should

be pumped from the groundwater resource, x1, and how much

water should be transformed from the reservoir, x2. The DM

wants to minimize the total cost of satisfying the demand. The

unit cost of water supply from groundwater and surface water

supply are 3 and 2, respectively. The DM also desires to maxi-

mize the reliability of the supply, which can be identified by a

numerical scale. The groundwater is more reliable than surface

water in this area and then according to the knowledge of an

expert, the reliability can be shown by the numbers of 5 and 3 for

groundwater and surface water, respectively. The minimum

amount of total supplied water should be at least 5 units. The

groundwater can supply at most 4 units/year and the surface water

can supply maximum 3 units/year in average. The corresponding

continuous MCDA problem can be formulated as follows:

Minimize f1 ¼ 3x1 þ 2x2 (1.1)

and

Maximize f2 ¼ 5x1 þ 3x2

subject to x1 þ x2r5
x1b4
x2b3

x1; x2r0:

(1.2)

The decision space of this problem is shown in Fig. 1.4. The

decision alternatives should be chosen from this space. So, the set

of alternatives (possible supply designs) allows infinitely many

different choices.

The criteria (f1 and f2) are functions of the decision variables

(x1 and x2). These criteria are clearly in conflict: a low cost water
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supply scheme will certainly have low reliability. Figure 1.4

shows the set of feasible alternatives, it shows only what we

can do. In order to see the consequences of the decisions we

have to find and illustrate the set of the feasible criteria values,

which is called the objective space. In order to do this, we have to

express the decision variables as functions of the criteria values

by solving (1.1) and (1.2) for unknowns x1 and x2:

x1 ¼ �3f1 þ 2f2 (1.3)

and

x2 ¼ 5f1 � 3f2: (1.4)

By substituting these expressions into the constraints of the

original decision model, the corresponding constraints for the

criteria values become as follows:

2f1 � f2r5
�3f1 þ 2f2b4
5f1 � 3f2b3

�3f1 þ 2f2r0
5f1 � 3f2r0:

The feasible set of these inequalities is the objective space,

which is shown in Fig. 1.5.

Surface water,

Groundwater, x1

x2

(2, 3)

(4, 3)

(4, 1)

x1+x2≥ 5
x1£4

x2 £ 3

Fig. 1.4 The decision space

for Example 1.3
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Any point of the broken line with segments connecting the

point (12, 19) with (14, 23) and (14, 23) with (18, 29), shown in

Fig. 1.5, is reasonable since none of the criteria can be improved

without worsening the other. The choice of a single “best” point

from this infinite set should be based on additional preference and

tradeoff information obtained from the DM.

The steps of formulating and solving a mathematical model of

a continuous MCDA problem are presented in Fig. 1.6.

The continuous case is a special case of infinite problems.

There are many decision making problems with infinitely many

alternatives where some of the alternatives cannot be described

by continuous variables. For example this is the case if some

variables have only integer values. Consider the case when we

decide on doing something or not doing it at all. In this case, the

MCDA model has variables with discrete (0 or 1) values and

some other variables with continuous scales. These mixed pro-

blems can be solved by combining discrete and continuous meth-

ods. These types of decision problems are very rare in the water

resources modeling and environmental management problems. In

this book, we restrict our discussions to the purely discrete and

continuous models.

Notice that regardless of the type of the MCDA problem,

decision making is usually an iterative and continuous process.

That is, most decisions are made by moving back and forth

between choosing the criteria and identifying the alternatives

and the preferences of the DM. The available alternative set

often influences the choice of the criteria we use to evaluate

(14, 23)

(12, 19)

(18, 29)

Reliability, f2

Cost, f1

Fig. 1.5 The objective

space for Example 1.3
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them, and similarly the criteria set might also influence the

selection of the alternatives. After a computed solution is pre-

sented to the DM, it is either accepted or the DM makes some

changes and modifications in the model. Then the new solution is

computed, which is shown again to the DM. This interactive

process continues until a satisfactory solution is obtained.

No

Yes

Get preferences, tradeoff information from the
DM

DM modifies
preferences, tradeoff

information

Job done

Present it to DM

Find appropriate model fitting the
above information

Find solution

Does DM accept
solution?

Fig. 1.6 The steps of formulating and solving a continuous MCDA problem
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Chapter 2

The Hierarchy of the Criteria

2.1 Introduction

It has become more and more difficult to assess the consequences

of water resources and environmental decisions in a single-

dimensional way and to use only one criterion when judging

their characteristics and making comparisons. However in prac-

tice the water and environmental managers always compare,

rank, and then select decision alternatives with respect to only a

specific criterion. A single criterion of choice can be fully satis-

factory only in very simple and straightforward situations. For

example, they may select the largest water transfer scheme from a

lake, but they might worry whether the largest water transfer

scheme is the least expensive, the most reliable, and the most

suitable for the environment.

In this chapter we will first discuss the most important and

most common criteria in water and environmental management

in the scope of sustainable development. Sustainable water resources

systems are developed andmanaged to fully contribute to the aims

and objectives of the society, for now as well as for the future,

while maintaining their ecological, environmental, and hydrolo-

gical integrity (ASCE 1998; UNESCO 1999). Amethod of criteria

selection to be used in structuring the hierarchy of the criteria will

be the subject of this chapter. A case study will illustrate the

methodology.

M. Zarghami and F. Szidarovszky, Multicriteria Analysis,
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2.2 Criteria

In the following subsections various social, economic, and envi-

ronmental criteria are introduced and discussed. These criteria are

essential in securing sustainable development (Fig. 2.1).

2.2.1 Social Criteria

The social welfare of the region is the fundamental objective of

every water resources development plan and the social perfor-

mance of any project has a huge effect in the life of the society.

Some important social aspects and externalities of these projects

can be listed as follows:

• Considering equity in water resources allocation is very impor-

tant. The upper regions of a watershed should be treated in the

same way as the lower parts and vice versa, otherwise social

conflicts will arise. This equity will promote public consensus

and participation, which is vital for the success of a project.

• Traditional water right holders are very sensitive to keep their

rights. Serious social conflicts will be developed if a water plan

violates the already confirmed treaties. New water transfers

should also satisfy these people, otherwise they will oppose the

plan.

• Alternative projects that create more job opportunities and

reduce the poverty at the area are more preferred.

• The new water and environmental plans should be consistent

with the cultural and religious customs of the people.

Society

EconomyEcology

Fig. 2.1 Main pillars of

sustainable development
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• Reservoir construction, water transfer pipelines or floodplain

restoration always require that some people have be relocated

from their homes, resulting in various mental and emotional

tensions. Therefore projects with less resettlement are more

preferred.

• Dam constructions and their corresponding facilities may dam-

age historical sites such as heritage buildings. This damage has

to be kept in minimal level.

Social criteria are very important. However their modeling is

usually very difficult since they are evaluated and measured by

only qualitative data without quantitative measures.

2.2.2 Economic Criteria

Economic criteria are the basic measures in evaluating the alter-

native water resources development projects. There are useful

measures to quantify the economic and financial outcomes of a

project in its operation period. For example, we may maximize

the difference of the total benefits of a project and its costs. This

analysis is based on two economic concepts of scarcity and

substitution (Loucks and van Beek 2005). Since the various

resources are limited, people are willing to pay for them, therefore

they should be utilized efficiently. Instead of using the difference

of benefit and cost, the ratio of benefit to cost may also be used. In

these cases, the amount of benefit or cost is not important by itself

since only their difference or ratio is important. Another measure

to evaluate the investment alternatives is the internal rate of

return, which is the interest rate at which the total cost of the

investment is equal to the benefit of the investment.

In most multi-purpose water and environmental projects, trade-

offs should be considered with respect to the economic criteria.

As an example, consider an offshore aquifer that can be with-

drawn for irrigation. More withdrawal will lower the ground-

water table resulting in sea water intrusion. The salt-water intrusion

may destroy water quality, which might result in less agricultural

area.
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2.2.3 Environmental Criteria

In recent years, regular water resources were severely damaged

because of their unsustainable usage. In the future, the situation

could become much worse due to the growing demands and some

other factors like the impact of climate change. They will degrade

the condition of the rivers, lakes, groundwater supply and wet-

lands. This requires the consideration of environmental criteria in

all decision making. Some of the important factors, which should

be considered in the planning of water resources and environ-

mental projects, are as follows (World Bank 2007):

• Loss of aquatic habitat and elimination of species

• Water quality degradation in terms of oxygen depletion, nutri-

ent loading, elevated turbidity, effluent discharge of contami-

nants, and risk of groundwater contamination

• Change of hydrologic regimes, groundwater table shortfall,

saltwater intrusion into ground and surface water supplies

• Some problems such as soil erosion and its instability, land

subsidence due to extra groundwater pumping have increasing

effects in human, animal and agricultural diseases due to

extended growing seasons

Because of these common and complex problems, environ-

mental criteria should be included into every MCDA model in

water resources and environmental management, in order to

find sustainable development for now and for the future human

generations and for the environment.

2.3 Constructing the Hierarchy of the Criteria

Developing the hierarchy of the criteria has been already carried

out in the literature for many disciplines. According to Keeney and

Raiffa (1993), any hierarchy of the criteria has to fulfill all of the

following conditions. It has to be complete, operational, decom-

posable, non-redundant, and minimum size. Although sometimes

compromises have to be made among these requirements. For
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example, the effect of the attribute “time of construction” can be

combined and embodied within the calculation of the financial

attributes such as “benefit cost ratio”. Roy (1994) studied different

options of criteria selection, aiming to promote an overall analysis.

In a case study of Southern France, Netto et al. (1996) used 13

criteria, which were divided into three general categories: vulnera-

bility, reliability and adaptability. Constructing a hierarchy of

criteria is an iterative process. It continues until the stakeholders

find a commonly approved criteria set. The hierarchy of the

criteria has to comprise a reasonable simplification of the real

life (Aravossis et al. 2003).

2.3.1 Value Management

Value Management is dedicated to motivate people, develop

skills and promote innovation, with the aim of maximizing the

overall performance of the system. Value Management has

evolved based on previous methods using the concept of value

and functional approach. This approach was pioneered by Miles

in the 1940s and the 1950s who has developed the technique of

Value Analysis. In the early stages, this method was principally

used to identify and eliminate unnecessary costs (IVM 2005). It is

suggested that the concept of value relies on a relationship

between the satisfaction of the different criteria and their cost of

implementation in a model. Both the use of less resources and

larger satisfaction of needs result in greater value:

Value ¼ Satisfaction of the needs

Use of resources
: (2.1)

The following steps of Value Management can be used to

structure the hierarchy of criteria:

1. Information: Identify the preliminary hierarchy of criteria.

2. Function analysis: Identify the primary and secondary functions

of the criteria and their associated benefit–cost relationships.
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Primary functions are the initial and main goals and the second-

ary functions are the externalities resulting in using the criteria.

For example, when we define an attribute as “Diversification of

Financial Resources” the primary function is the reduction of the

Governmental budget of a project. The secondary function of

this attribute is lowering the economical risk of the project by

attaching the financial needs to its users.

3. Generating ideas: Generate new criteria for value improve-

ment through innovation mostly based on brainstorming.

4. Evaluation: Prioritize the new criteria according to their con-

tribution in improving the total value.

5. Action plan: Identify the actions/strategies required to achieve

the Value Analysis outcomes and to provide ongoing manage-

ment frameworks for project progression. For example, in the

case study described in the next subsection the strategy is to

achieve IWRM in ranking national water resources projects.

6. Analysis and reports: Prepare the final report, which includes

the description of the process outcomes and the developed

hierarchy of criteria.

2.3.2 Case Study

In the following case study, the above-described methodology

will be used as a basis for extracting the effective attributes

in sustainable ranking of water resources projects in Iran. The

Government of the Islamic Republic of Iran has approved some

important acts for water resources management. Based on the

principle no. 138 of the Islamic Republic of Iran’s constitution,

the cabinet approved “Long-Term Development Strategies for

Iran’s Water Resources”. It comprises IWRM principles and

water governance principles in 18 parts (MOE 2003). However,

these acts are only at vision, strategy and policy levels. To

evaluate water resources projects, it is necessary to construct a

hierarchy of criteria from the acts. As one of the main goals of

this study, a hierarchy of criteria has been developed. In the first

step similar watershed plans of 20 countries were analyzed,
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including Pakistan, Turkey, India, Kenya, Sweden, United States

and Brazil. Then, based on the state-of-the-art review and the

national acts of Iran, a preliminary hierarchy of the criteria was

introduced (Ardakanian and Zarghami 2004). In order to revise

and finalize the preliminary hierarchy, 30 experts conducted

the revision. Stakeholders were invited from the government,

Objectives Criteria

Employment and Migration
Public Participation
Social Equity
Recreation, Tourism and Aditional Facilities

Social Social Casualties and Damages of Dam Project
Natural Disasters Management "Flood and Drought"
More Settlement in Border Regions
Priority of Shared Waters
Reducing the Confilicts among Stakeholders

Priority of Usages
Benefit minus Cost
Benefit /Cost Ratio
Extent of Investments
Risk of Investments

Economics and Finance Development and Improvement Ratio in Agricultural Area
Base for Supplimentary Projects
Diversification of Financial Resources
Level of Construction Technology
Capabilties of Phased Operation
Simplicity of Operation and Maintanance
Level of Studying Phases

Consistancy with Climate
Less Damages to Ancient and Cultural Heritage
Range of Environmental Impacts

Environmental Studies of Watershed Conservation
Balancing of Water Resources
Studies on Supply and Demand Management

Consistancy with Policies
Consistancy with Logistic Plan

Comprehensive criteria Impacts on Other Projects
Management Capacities in Basin
Comprehensive Study in Basins

Fig. 2.2 Hierarchy of criteria for evaluation of water resources projects in Iran
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consulting companies, universities and non-governmental orga-

nizations. They participated in several sessions applying Value

Management methodology. The revised hierarchy is indicated

in Fig. 2.2, consisting of 4 objectives and 32 criteria. The main

objectives include social (cultural, political, security and legal),

economic and financial, environmental and comprehensive man-

agement affairs. In the future, the Government should organize

suitable acts and legislations to support the use of this hierarchy.

It is very general, so it can be used to evaluate any kind of water

resources projects.
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Chapter 3

Solution of Discrete MCDA Problems

3.1 Introduction

In this chapter we will introduce the most popular and most

frequently used solution methods for deterministic discrete

MCDA problems. In deterministic models the evaluations of the

alternatives, the criteria weights and all other parameters are

assumed to be certain and known. Models with uncertainty will

be discussed later in Chap. 7.

Assume that the number of decision alternatives is m which are

evaluated by n criteria. Let aij denote the evaluation of alternative

j with respect to criterion i, then the goodness of this alternative

can be characterized by the evaluation vector Xj ¼ (a1j, a2j,. . .,
anj). In the case of a single-objective optimization problem each

alternative is evaluated by only one criterion, so vector Xj has

only one element, Xj ¼ (aj). If j1 and j2 are two alternatives, then

their evaluations can be easily compared, since either aj1>aj2 ,

aj1<aj2 or aj1 ¼ aj2 . We can always assume that larger aj values

indicates better evaluation, otherwise we can multiply it by (�1).

So in the first case, when aj1>aj2 , alternative j1 is preferred to j2,

in the second case j2 is preferred to j1 and in the third case they are

equally preferred. So in the case of one criterion, any two alter-

natives can be directly compared. Unfortunately this is not the

case in the presence of multiple criteria. For instance, in the case

of n ¼ 2 assume that the evaluation vector of these alternatives
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are Xj1 ¼ 1; 2ð Þ and Xj2 ¼ 2; 1ð Þ. Alternative j1 is better than j2
in the second criterion but worse in the first. So these alternatives

cannot be compared directly. For a DM in order to choose

between alternatives j1 and j2 it is important to decide whether a

unit loss in one criterion is compensated by a unit gain in the

other or not. This kind of decision becomes much more compli-

cated if the gains and losses are given in different units and more

than two criteria are present.

This chapter will give an overview of the different methods

being used for best alternative selection. There are many different

ways how a DM can express his/her priorities and preferences.

For each such way a particular solution method can be suggested.

3.2 Dominance Method

Let Xj ¼ (a1j, a2j,. . ., anj) denote the evaluation vector of alterna-
tive j (j ¼ 1, 2,. . ., m). We say that an alternative dominates

another if it results in an equal or superior value in all criteria

and in at least one criterion it is strictly better. Mathematically

the property that alternative j dominates alternative l can be

expressed as aij � ail for all criteria i and there is at least one

criterion i such that

aij>ail:

It is however very seldom the case that one alternative dom-

inates all others. In such cases the dominating alternative is the

choice, and there is no need for further study. In many practical

problems however we can find alternative pairs that one alter-

native dominates the other even if no alternative dominates all

others. If an alternative j1 dominates j2, then there is no need to

consider alternative j2 in the further selection process, so it can be

eliminated and the number of alternatives decreases by one. After

all dominated alternatives are eliminated and still we have more

than one alternative left, then we have to continue the process

with the application of another method.
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Example 3.1. The best choice of the location of a dam, which to

be built in a watershed, is based on three criteria: net benefit (in

million dollars), number of beneficiaries (in thousands of people),

and geological stability (in subjective scale between 0 and 100).

The location alternatives are shown in Fig. 3.1. The evaluation

vectors for the four alternative locations are given in the columns

of Table 3.1. None of the alternatives dominates all others.

A1

A2

A3

A4

Watershed Boundary

Elevation Contour
River

Dam

Fig. 3.1 A schematic map of the four alternative dam locations

Table 3.1 Evaluation table for Example 3.1

Criteria Alternatives

A1 A2 A3 A4

C1 99.6 85.7 101.1 95.1

C2 4 19 40 50

C3 70 50 10 20
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Moreover, if we change the a11 ¼ 99.6 value to a11 ¼ 102 and

the value of a21 from 4 to 51, then alternative A1 will dominate all

others, so it would be the choice.

3.3 Sequential Optimization (SO)

This method is based on the ordinal preferences of the criteria.

It is assumed that the DM can identify his/her most important

criterion, i1, the second most important criterion, i2,. . ., and

finally the least preferred criterion in. The DM wants to satisfy

first the most important criterion as well as possible, and then to

satisfy the second with keeping the first at its most favorable

level, if some choices are still possible. After the second most

important criterion is satisfied in its best possible level and no

single best alternative is found, then the third criterion is opti-

mized, and so on. The procedure terminates if either a single best

alternative is found in any of the steps, or the least preferred

criterion is already optimized. If a single optimal alternative is

found at the end of this procedure, then it is the choice. Otherwise

any one of the optimal alternatives can be selected, since they

have identical evaluations in all criteria, so there is no difference

between them as far as the originally selected criteria are

concerned. In many cases the DM can add one or more new

criteria and repeat the process with only the optimal alternatives

in order to reach a unique decision.

Example 3.2. Consider again the dam location selection problem

given in Table 3.1. If criterion 1 is the most important for the DM,

then alternative A3 is his/her choice. If C2 is the most important,

then A4 is the choice, and if C3 is the most important, then

alternative A1 is the best. Assume now that the preference order

of the criteria is C1 � C2 � C3, where Ci1 � Ci2 means that

criterion i1 is more important than i2. Assume that in addition,

the DM has to rank the alternatives in addition to select his/her

best choice. In the first step the DM considers criterion C1 and

selects the best alternative with respect to this criterion: A3. Then
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this alternative is eliminated from the table, and C1 is considered

again with the remaining three alternatives. The best C1 value

is obtained at alternative A1. After this is also eliminated and

only alternatives A2 and A4 remain in the table, they are com-

pared with respect to criterion C1 again and A4 is found to be

better. So the ranking of the alternatives based on this approach

becomes

A3 � A1 � A4 � A2:

Notice that the ranking of the alternatives was very simple in

the above example, since there was always a unique best alterna-

tive in each step, which is not always the case. In general, we say

that alternative j1 is considered better than j2 if either aij1>aij2 for

all criteria, or there is a k (1 � k � n � 1) such that ailj1 ¼ ailj2
for l ¼ 1, 2,. . ., k and aikþ1j1>aikþ1j2 , where i1, i2,. . ., in is the

preference order of the criteria.

3.4 The «-Constraint Method («CM)

In the application of the sequential optimization method it is very

often the case that the procedure terminates before all criteria are

considered. It was the case earlier in Example 3.2, when the

optimization with respect to the most important criteria gave a

unique solution and no further investigation with the less impor-

tant criteria was needed. There is however the possibility that

some or all less important criteria give very poor, or unacceptable

evaluation to the selected alternatives. In order to avoid this

possibility the DM identifies his/her most important criteria and

gives minimum acceptable levels to all other criteria. This infor-

mation and requirement must guarantee that the selected best

choice will not give worse values in any criterion than the speci-

fied lower level.

The procedure consists of two steps. In the first step all alter-

natives which violate the lower bound conditions are eliminated.
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In the second step only the most important criterion is considered

and the remaining alternative with the best evaluation number is

selected.

Example 3.3. Consider again the problem of Table 3.1. Assume

that C1 is the most important criterion and the minimum accep-

tance value for C2 is 15 and for C3 is 20. Based on these lower

bounds the alternatives A1 and A3 have to be eliminated, and only

A2 and A4 remain in the table. In the second step they are

compared with respect to the most important criterion C1, and

in the comparison A4 has larger value, so it is the choice.

3.5 Simple Additive Weighting (SAW)

In applying this method the DM has to specify the relative

importance weights of all criteria. If the criteria altogether repre-

sent 100% of the interest of the DM, then let wi denote the

percentage of interest for criterion i. It is assumed that for all i,

wi � 0 and
Pn

i¼1

wi ¼ 1. In the simplest version of the method the

DM constructs a new objective function, which is the weighted

average of the evaluation values with respect to the different

criteria. That is, the weighted average

Fj ¼
Xn

i¼1

wiaij (3.1)

is assigned as the “overall” evaluation of alternative j. This

method is known as Simple Additive Weighting (SAW).

In most applications the aij values represent very different

phenomena, such as dollars, number of people and geologic

suitability in our earlier examples. In such cases the objective

function (3.1) has no direct meaning, since we added different

things. Another difficulty of applying this objective functions is

the fact that by changing the unit of any of the objectives, its

weight changes automatically. For example, if we change the unit
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of criterion C1 (net benefit) from million dollars to ten millions,

then the corresponding evaluation numbers will be divided by

10, which is equivalent to giving one tenth less weight to this

criterion. In order to overcome these difficulties we have to

normalize the evaluation numbers. We can use a simple linear

transformation

�aij ¼ aij � mi

Mi � mi

; (3.2)

where mi and Mi are the computed or estimated minimum and

maximum values of criterion i. Clearly �aij will be always

between 0 and 1 with zero worst value and unit best value.

Instead of this simple linear transformation we can introduce

utility functions ui(aij) for all criteria showing the satisfaction

levels (in percentages) of the values aij for criterion i. Then the

weighted average

Fj ¼
Xn

i¼1

wiuiðaijÞ (3.3)

shows the average satisfaction level of alternative j. The linear

transformation (3.1) corresponds to the linear utility function

uiðaijÞ ¼ aij � mi

Mi � mi

: (3.4)

The alternative with the largest objective value is selected as

the best choice.

Example 3.4. Returning to the dam selection problem with data

given in Table 3.1, we can select the minimum criteria values as

m1 ¼ 85:7; m2 ¼ 4; m3 ¼ 10

and maximum values

M1 ¼ 101:1; M2 ¼ 50; M3 ¼ 70:
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So the normalized criteria can be computed in the following

way

�a1j ¼ a1j � 85:7

101:1� 85:7
¼ a1j � 85:7

15:4
;

�a2j ¼ a2j � 4

50� 4
¼ a2j � 4

46
;

and

�a3j ¼ a3j � 10

70� 10
¼ a3j � 10

60

for j ¼ 1, 2, 3, 4. The normalized values are shown in Table 3.2,

where the weights of the criteria are also indicated.

The weighted average satisfaction values of the four alterna-

tives are as follows:

F1 ¼ 0:2ð0:903Þ þ 0:3ð0Þ þ 0:5ð1Þ ¼ 0:681

F2 ¼ 0:2ð0Þ þ 0:3ð0:326Þ þ 0:5ð0:667Þ ¼ 0:431

F3 ¼ 0:2ð1Þ þ 0:3ð0:783Þ þ 0:5ð0Þ ¼ 0:435

F4 ¼ 0:2ð0:610Þ þ 0:3ð1Þ þ 0:5ð0:167Þ ¼ 0:506:

Clearly the first alternative is the best. The complete ordering

of the alternatives can be done by ordering the alternatives in

decreasing Fj values. In our case

A1 � A4 � A3 � A2:

Table 3.2 Normalized evaluations and weights for Example 3.1

Criteria Alternatives

Weights A1 A2 A3 A4

C1 0.2 0.903 0.000 1.000 0.610

C2 0.3 0.000 0.326 0.783 1.000

C3 0.5 1.000 0.667 0.000 0.167
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3.6 Distance Based Methods (DBM)

There are two fundamentally different versions of this method. In

the first case the DM specifies (or we compute) the ideal point, the

components of which are the subjective or computed best values

of the different criteria. The ideal point is an n-dimensional

vector, and the evaluation vector Xj of each alternative is com-

pared to the ideal point by computing their distance. The alterna-

tive with the smallest distance is considered the best. In the

second approach the DM specifies (or we compute) the nadir,

the components of which are the subjective or computed worst

values of the criteria. The nadir also has n components. Each

alternative j will be compared to the nadir by computing the

distance of the evaluation vector Xj from the nadir. The alterna-

tive with the largest distance is then selected as the best choice. In

order to avoid the difficulties resulting from the different units of

the criteria, all criteria are normalized, so the components of the

ideal point, the nadir and the evaluation vectors are all normal-

ized. In most applications the weighted Minkowski-distance is

used. Let a�i denote the ith component of the ideal point and ai�
the ith component of the nadir, and assume that linear transfor-

mation is used for normalizing. Then the distance of alternative j

from the ideal point is given by

D
p
j ¼

Xn

i¼1

wi

a�i � aij

a�i � ai�

� �p
( )1

p

; (3.5)

where p � 1 is a positive user-selected model parameter. Simi-

larly the distance of alterative j from the nadir is defined by

relation

d
p
j ¼

Xn

i¼1

wi

aij � ai�
a�i � ai�

� �p
( )1

p

: (3.6)

The selection of parameter p is very important, since it has a

significant effect on the final choice. The case of p ¼ 1 corresponds

3.6 Distance Based Methods (DBM) 29



to simple averaging, p ¼ 2 to squared averaging, and p ¼ 1 is

selected if only the largest deviation is considered. According to

Tecle et al. (1998), “Varying the parameter p from 1 to infinity,

allows one to move from minimizing the sum of individual

regrets (i.e., having a perfect compensation among the objectives)

to minimizing the maximum regret (i.e., having no compensation

among the objectives) in the decision making process. The choice

of a particular value of this compensation parameter p depends on

the type of problem and desired solution. In general, the greater

the conflict between players, the smaller the possible compensa-

tion becomes”.

Two particular methods are especially popular in appli-

cations: Compromise Programming (CP) and Technique for

Order Performance by Similarity to Ideal Solution (TOPSIS).

In the case of compromise programming (Zeleny 1973) the

distance (3.5) is minimized. It is illustrated by the following

example.

Example 3.5. Consider again the data of the previous problem.

For all criteria, the ideal point components are the maximum

values, and the components of the nadir are the actual minimum

values. So the ideal point and the nadir are (101.1, 50, 70) and

(85.7, 4, 10) respectively. Using the distance formula (3.5) with

p ¼ 2 and weights (w1 ¼ 0.2, w2 ¼ 0.3, w3 ¼ 0.5) as before, the

D2
j distances become

D2
1¼ 0:22

101:1�99:6

101:1�85:7

� �2
þ0:32

50�4

50�4

� �2
þ0:52

70�70

70�10

� �2( )1
2

�0:301;

D2
2¼ 0:22

101:1�85:7

101:1�85:7

� �2
þ0:32

50�19

50�4

� �2
þ0:52

70�50

70�10

� �2( )1
2

�0:330;
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D2
3¼

�

0:22
101:1�101:1

101:1�85:7

� �2
þ0:32

50�40

50�4

� �2
þ0:52

70�10

70�10

� �2�1
2

�0:504;

D2
4¼ 0:22

101:1�95:1

101:1�85:7

� �2
þ0:32

50�50

50�4

� �2
þ0:52

70�20

70�10

� �2( )1
2

�0:424:

The first alternative gives the smallest distance, so it is the best

choice. The ranking of the alternatives can be also obtained by

ordering them in increasing D2
j values. In our case

A1 � A2 � A4 � A3:

Notice that in the case of p ¼ 1, minimizing distance (3.5),

maximizing distance (3.6) and the SAW methods with normal-

ized objectives are equivalent to each other, they result in the

same best choice and ranking of the alternatives. This observation

can be shown easily by noticing that

D1
j ¼

Xn

i¼1

wi

a�i � aij

a�i � ai�
¼

Xn

i¼1

wi

�aij þ ai�
a�i � ai�

þ a�i � ai�
a�i � ai�

� �

¼ �
Xn

i¼1

wi

aij � ai�
a�i � ai�

þ 1

and

d1j ¼
Xn

i¼1

wi

aij � ai�
a�i � ai�

:

Therefore if Fj denotes the weighted average normalized eval-

uation numbers of alternatives j, then clearly
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D1
j ¼ 1� Fj and d1j ¼ Fj:

Another version of distance based methods is known as the

TOPSIS method which combines the distances D1
j and d1j from

the ideal point and from the nadir into one combined measure

F
p
j ¼ d

p
j

D
p
j þ d

p
j

: (3.7)

Notice that 0bFp
j b1 and F

p
j ¼ 0 if and only if d

p
j ¼ 0, that is,

if alternative j is the nadir. Similarly F
p
j ¼ 1 if and only ifD

p
j ¼ 0,

that is, if alternative j is the ideal point. Therefore larger F
p
j value

indicates better alternative, so the alternative with the largest F
p
j

value is considered the best, and the ranking of the alternatives is

done by ordering them with decreasing F
p
j values.

Example 3.6. Consider again the decision problem of the previous

problem. Table 3.1 shows the evaluation numbers, the weights

are w1 ¼ 0.2, w2 ¼ 0.3, w3 ¼ 0.5, the ideal point is (101.1, 50,

70) and the nadir is (85.7, 4, 10). The distances D2
j from the ideal

point were already determined earlier in Example 3.5, so we need

now to compute only the distances from the nadir. They are as

follows:

d21 ¼ 0:22
99:6�85:7

101:1�85:7

� �2
þ0:32

4�4

50�4

� �2
þ0:52

70�10

70�10

� �2( )1
2

� 0:532;

d22 ¼ 0:22
85:7�85:7

101:1�85:7

� �2
þ0:32

19�4

50�4

� �2
þ0:52

50�10

70�10

� �2( )1
2

�0:347;

d23 ¼ 0:22
101:1�85:7

101:1�85:7

� �2
þ0:32

40�4

50�4

� �2
þ0:52

10�10

70�10

� �2( )1
2

�0:308;
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d24 ¼ 0:22
95:1�85:7

101:1�85:7

� �2
þ0:32

50�4

50�4

� �2
þ0:52

20�10

70�10

� �2( )1
2

�0:334:

Notice that the quantities inside the parentheses are the normal-

ized evaluation numbers listed in Table 3.2. The combined

“goodness” measures of the TOPSIS method can now be obtained

by using formula (3.7):

F2
1 ¼ 0:532

0:532þ 0:301
� 0:639;

F2
2 ¼ 0:347

0:347þ 0:330
� 0:513;

F2
3 ¼ 0:308

0:308þ 0:504
� 0:379;

F2
4 ¼ 0:334

0:334þ 0:424
� 0:441:

Since larger F
p
j value indicates better alternative, the ranking

of the four dam locations is as follows:

A1 � A2 � A4 � A3:

3.7 The Analytic Hierarchy Process (AHP)

In the application of the previously discussed methods the prior-

ity of the DM is expressed by a vector (w1, w2,. . ., wn) of

importance weights. In many applications the assessment of

such weights in not easy. The analytic hierarch process we

discuss in this section is based on pair-wise comparisons. In this

task the DM is asked about the relative importance of criterion
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i in comparison to criterion j for each criteria pair (i, j). In

answering the question, the DM has to concentrate on only two

criteria and not on the entire set of the criteria. The answer aij of
the DM gives an estimate of the ratio wi/wj. Since the DM

concentrates on only two criteria at each time and he/she does

not think of the relations between these criteria and the others,

his/her answers are usually inconsistent. If they were consistent,

then the following relations should be satisfied:

(i) aij ¼ 1
aji

for all i and j, since

aij ¼ wi

wj

¼ 1
wj

wi

¼ 1

aji
;

(ii) aij � ajk ¼ aik for all i, j and k, since

aij � ajk ¼ wi

wj

� wj

wk

¼ wi

wk

¼ aik:

Assume first that the answers are consistent. Then the matrix

A ¼ ðaijÞ clearly satisfies the following relation:

A

w1

w2

..

.

wn

0

B
B
B
@

1

C
C
C
A

¼
w1

w1
� � � w1

wn

..

. . .
. ..

.

wn

w1
� � � wn

wn

0

B
@

1

C
A

w1

w2

..

.

wn

0

B
B
B
@

1

C
C
C
A

¼ n

w1

w2

..

.

wn

0

B
B
B
@

1

C
C
C
A
;

and if we use the notation w ¼ (w1, w2,. . ., wn)
T then

Aw ¼ nw (3.8)

meaning that n is an eigenvalue of matrix A with the associated

eigenvector w. Matrix A is nonnegative and its rank is unity, since

row k of the matrix is the wk/w1-multiple of the first row. There-

fore it has one positive eigenvalue and all other eigenvalues are

equal to 0. The Perron–Frobenius theory implies that n is the

principal eigenvalue of A and vector w is unique except with
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a constant multiplier. We can normalize the components of this

vector by dividing them by their sum as:

wi ¼ wi

Pn

j¼1

wj

(3.9)

to get the normalized weights of the criteria.

In order to obtain the weights we do not need to compute the

eigenvectors, a good approximation can be obtained in a simple

approach. Notice that the sum of the elements of the different

columns equals

Pn

l¼1

wl

w1

;

Pn

l¼1

wl

w2

; . . . ;

Pn

l¼1

wl

wn

;

respectively, and by dividing each column by the sum of its

elements the modified A matrix becomes

�w1 �w1 � � � �w1

�w2 �w2 � � � �w2

..

. ..
. ..

.

�wn �wn � � � �wn

0

B
B
B
@

1

C
C
C
A
; (3.10)

that is, it has identical columns.

As mentioned earlier, the aij estimates obtained from the DM

usually do not satisfy the consistency requirements, therefore the

normalized matrix (3.10) based on the estimates will not have

identical columns. So we have to find the column vector which is

the best overall approximation of the different columns of the

obtained normalized matrix. As it is well known from statistics, it

is the simple algebraic average of the columns. This average

vector gives the estimates of the normalized weights. Based on

this observation the procedure can be described as follows:

Step 1. Construct the A matrix from pair-wise comparisons.

Step 2. Normalize each column of this matrix.
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Step 3. Compute the algebraic average of the columns of the

normalized matrix.

The elements of this vector give the weights.

Example 3.7.We return now to the dam selection problem exam-

ined in some of our earlier examples. There are four alternatives

to select from based on three criteria. From the questionnaire

given to the representatives of the DM company, the following

approximating pair-wise comparison matrix was obtained:

A ¼
1 1=3 5

3 1 7

1=5 1=7 1

0

@

1

A:

The sums of the elements of the columns are 21/5, 31/21 and

13, respectively. The normalized comparison matrix is obtained

by dividing all elements of each column by the column sum. The

resulting normalized matrix becomes

5=21 7=31 5=13
15=21 21=31 7=13
1=21 3=31 1=13

0

@

1

A;

and the algebraic average of the three columns gives the approx-

imating weight-vector:

w¼ 1

3

5=21

15=21

1=21

0

B
B
@

1

C
C
Aþ

7=31

21=31

3=31

0

B
B
@

1

C
C
Aþ

5=13

7=13

1=13

0

B
B
@

1

C
C
A

8
>><

>>:

9
>>=

>>;
¼

0:2828

0:6434

0:0738

0

B
B
@

1

C
C
A:

We can also check the level of inconsistency of the DM. We

have to find first a good approximation of the principal eigen-

value of matrix A, which clearly differs from the theoretical

value, n. If we multiply each element of the normalized weight

vector w by the corresponding column sum of the true compari-

son matrix and add these products, then the result becomes
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Xn

l¼1

wl �
Pn

i¼1

wi

wl

¼
Xn

l¼1

1 ¼ n;

which is the true principal eigenvalue. We can obtain its good

estimation lmax based on the approximating comparison matrix

by doing the same: adding the products of the column sums and

the corresponding components of the normalized weights vector.

Then the inconsistency index can be obtained by the principal

formula:

ICI ¼ lmax � n

ðn� 1ÞRI ;

where the value of RI depends on the size of the problem. It is

tabulated and its values are given in Table 3.3.

Example 3.8. In the case of the previous example n ¼ 3, so

RI ¼ 0.58. It is easy to see that

lmax ¼ 21

5
ð0:2828Þ þ 31

21
ð0:6434Þ þ 13ð0:0738Þ � 3:0969;

so

ICI ¼ 3:0969� 3

ð3� 1Þ0:58 � 0:084;

which is less than 10% so we consider the DM consistent.

In many applications this procedure is used first to find the

weights, and then another (such as weighting or distance based)

method is used with the obtained weights to find the best solution.

Table 3.3 Values of RI

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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The AHP can be also used to find final decisions. In this case

the problem has to be decomposed into several hierarchy levels.

The highest level is the level of the numerical criteria, the lowest

level consists of the alternatives, and there might be several levels

in between the elements of which are combined in obtaining the

next higher level, for example by using a multi-objective method.

The pair-wise comparisons are repeated in each level and the

results are combined by simple linear combinations.

Example 3.9. Returning to the previous example we have two

levels, the alternatives and the criteria. The hierarchic structure is

shown in Fig. 3.2. Pair-wise comparisons are performed for the

four alternatives with respect to the three criteria. The compari-

son matrices are shown in Tables 3.4–3.6.

Then we can compute the combined goodness measure of each

alternative based on the weights of the corresponding level for the

C1 C2 C3 Criteria

A1 A2 A3 A4 Alternatives

Fig. 3.2 Hierarchical structure for Example 3.9

Table 3.4 Pair-wise comparison matrix level 2 with respect to C1

Alternatives A1 A2 A3 A4 Weight vector

A1 1 1 7 5 0.45

A2 1 1 3 5 0.37

A3 0.14 0.33 1 0.33 0.07

A4 0.11 0.2 3 1 0.11

Sum 2.25 2.53 14 11.33 1

lmax ¼ 4.17, ICI ¼ 6.3% < 10% (acceptable)

Table 3.5 Pair-wise comparison matrix level 2 with respect to C2

Alternatives A1 A2 A3 A4 Weight vector

A1 1 5 3 5 0.53

A2 0.2 1 0.33 3 0.13

A3 0.33 3 1 5 0.27

A4 0.2 0.33 0.2 1 0.07

Sum 1.73 9.33 4.53 14 1

lmax ¼ 4.33, ICI ¼ 12.2%~10% (marginally acceptable)
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three criteria. The overall goodness measures are obtained as the

following linear combinations:

F1 ¼ 0:29	 0:45þ 0:64	 0:53þ 0:07	 0:09 ¼ 0:48;

F2 ¼ 0:29	 0:37þ 0:64	 0:13þ 0:07	 0:54 ¼ 0:23;

F3 ¼ 0:29	 0:07þ 0:64	 0:27þ 0:07	 0:28 ¼ 0:21;

F4 ¼ 0:29	 0:11þ 0:64	 0:07þ 0:07	 0:09 ¼ 0:08:

The multipliers 0.29, 0.64 and 0.07 are the resulted weights of

the three criteria obtained in Example 3.7. The second part of

each term is taken from the computed components of the weight

vectors of Tables 3.4–3.6. The final ranking is therefore

A1 � A2 � A3 � A4.

There are user-friendly softwares available to solve MCDA

problems by using the AHP method. For example, the reader may

refer to Expert Choice which can be downloaded from http://

www.expertchoice.com/.

3.8 Other Methods

There are other important methods reported in the literature

to solve MCDA problems and several case studies have been

solved by using these methods. Some of them are ELECTRE

(Figueira et al. 2005), MAUT (Keeney and Raiffa 1993), and

PROMETHEE (Brans et al. 1986). For a complete review and

analysis, the reader can refer to Hajkowicz and Collins (2007).

Table 3.6 Pair-wise comparison matrix level 2 with respect to C3

Alternatives A1 A2 A3 A4 Weight vector

A1 1 0.2 0.33 1 0.09

A2 5 1 3 5 0.54

A3 3 0.33 1 5 0.28

A4 1 0.2 0.2 1 0.09

Sum 10 1.73 4.53 12 1

lmax ¼ 4.18, ICI ¼ 6.6% < 10% (acceptable)
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3.9 Case Studies

3.9.1 Inter-basin Water Transfer

The mean annual rainfall of Iran is about 250 mm that is about

30% of the world’s average. The increasing water demand has

also caused a decrease in annual per capita water resources. The

uneven distribution of water across the country and the growth of

population have led to the present water shortages in the major

parts of the country, especially in the central and the Southeastern

regions. The country is divided into six main hydrological basins

as shown in Fig. 3.3. The per capita water resources potential in

basin 3 is four times the potential in basin 4.

Water transfer between regions is an effective way to decrease

water shortages. In this study transfers to the Zayanderud sub-

basin are examined. The importance of the most appropriate

project selection is due to the high cost, long tunnels, large

quantity and good quality of water transfer and the induced social

conflicts. The Zayanderud sub-basin is located west of the

Fig. 3.3 Main basins of Iran and the position of the water transfer projects
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Central main basin, and it is denoted by number 4. The Zayan-

derud River in this basin flows through Isfahan which is a main

tourist city in Iran. In recent years this basin had extensive

growth in quantity and quality. To decrease water shortages in

this basin, there are several possibilities for inter-basin water

transfer (IBWT) projects and we have selected four of them to

evaluate: Kuhrang III, Cheshmelangan, Beheshtabad and Gukan.

Data for the evaluation of these four alternatives with respect to

the attributes are presented in Table 3.7. They were gathered

from experts of the DM company for these projects (adopted

from Zarghami et al. 2007). In the decision matrix, the following

seven criteria were considered:

• Consistency with policies: The DM has been questioned to rate

the alternatives in view of their consistency with national,

regional and local policies, especially those of the water autho-

rities. The DM answered in linguistic variables as very high,

high, fairly high, medium, fairly low, low and very low.

• Resettlement of people: Each of the IBWT projects in this

study needs a reservoir. The reservoir requires the costly

Table 3.7 Decision matrix for the evaluation of the IBWT projects (adopted from

Zarghami et al. 2007)

Criteria Weights Alternatives

A1 A2 A3 A4

C1 Consistency

with policies

High High Very high Very high High

C2 Resettlement

of people

(negative)

Fairly

high

0 0 200 4,000

C3 Public participation Low Fairly high Medium High Very high

C4 Benefit/cost Medium 1.5 1.4 1.1 1.6

C5 Diversification

of financial

resources (%)

Medium 5 0 3 4

C6 Allocation of water

to prior usages

Very

high

Fairly high High High High

C7 Range of the

negative

environmental

impacts

(negative)

Fairly

low

Low Medium Fairly low Fairly high
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resettlement of people from some villages. It is a negative

attribute. This attribute has been measured by the number of

the resettled people.

• Public participation: The IBWT projects generate social con-

flicts in the entire transportation line. If the people have higher

participation in planning and organizing the resettlement pro-

cess and in selling their lands, then higher participation in

increased labour opportunities and in designing reduced

water rights could make the project successful. It is difficult

to define a quantitative index for this attribute, therefore the

DM has been asked to rate the alternatives by linguistic vari-

ables only.

• Benefit/cost: The financial studies give the benefit/cost ratio

for each alternative.

• Diversification of financial resources: The Governmental bud-

get for the construction of the projects is limited and also

uncertain. It is therefore an advantage of a project if it has

other financial sources from private companies or foreign

funds. The index for measuring this attribute is the percentage

of non-governmental funds in all financial resources.

• Allocation of water to prior usages: Priorities of water usage

for transferred waters to the Zayanderud basin are domestic

users (high), industry (fairly high), agriculture (fairly low) and

environmental and recreational needs (low).

• Range of the negative environmental impacts: According to the

environmental impact assessment studies, the DM declared the

range of environmental impacts for each project by linguistic

variables. This criterion is also negative.

These criteria satisfy the general test imposed by Cox (1999)

which evaluates the economic productivity impacts, environmental

quality impacts, socio-cultural impacts and benefit distribution

considerations.

After completion of the decision matrix, the relative weights of

the criteria have been obtained from the DM by a direct method

using linguistic variables. We added the word “negative” for

criteria, for which higher value means worse performance.

Based on these data different methods were applied.
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3.9.1.1 Dominance Method

There is no alternative that dominates all other projects with

respect to all of the criteria, so this method does not provide

solution for the problem.

3.9.1.2 Sequential Optimization Method

The criterion C6 has the highest weight. Then using the sequential

optimization method, with respect to this criterion A2, A3 and A4

are selected as the best alternatives. Since multiple best choice is

found we have to continue the method with the second most

important criterion. C1 has the second highest weight. Then

among A2, A3 and A4, alternatives A2 and A3 are the best. To

compare A2 and A3 we use the third most important criterion, C2.

With respect to this criterion, A2 dominates A3. So the final

ranking becomes A2 � A3 � A4 � A1.

3.9.1.3 «-Constraint Method

The most important criterion is C6, and in applying this method

the DM should give minimum acceptance levels for positive

criteria and maximum acceptance levels for negative criteria.

Let’s assume that e1 ¼ High, e2 ¼ 200, e3 ¼ Medium, e4 ¼ 1.1,

e5 ¼ 0, and e7 ¼ Medium. Then A4 is omitted since it violates the

constraints of e2 and e7. Based on the most important criterion C6,

the ranking of the alternatives become A2 ¼ A3 � A1 and the least

preferred one is A4.

3.9.1.4 The SAW, CP and TOPSIS Methods

Before applying the SAW, CP and TOPSIS methods, the original

data of Table 3.7 have to be synthesized by the following steps.

Step 1. The linguistic data should be quantified by numerical

values. A typical scale is shown in Table 3.8.
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After the linguistic variables are replaced by their equivalent

numerical values, a new decision matrix is obtained with numer-

ical values in all positions. It is shown in Table 3.9.

Step 2. The evaluation numbers of the alternatives are normal-

ized into the unit interval [0, 1] by using the linear transformation
aij�mi

Mi�mi
for positive criteria and

Mi�aij
Mi�mi

for negative criteria, where

Mi and mi are the largest and smallest actual values, respectively,

of criterion i. The normalized decision matrix is given in

Table 3.10.

Table 3.8 Linguistic

variables and equivalent

numerical values

Linguistic variables Number

Very low 0.00

Low 0.20

Fairly low 0.35

Medium 0.50

Fairly high 0.65

High 0.80

Very high 1.00

Table 3.9 Numerical decision matrix

Criteria Weights Alternatives

A1 A2 A3 A4

C1 0.80 0.80 1.00 1.00 0.80

C2 0.65 0 0 200 4,000

C3 0.20 0.65 0.50 0.80 1.00

C4 0.50 1.5 1.4 1.1 1.6

C5 0.50 5 0 3 4

C6 1.00 0.65 0.80 0.80 0.80

C7 0.35 0.20 0.50 0.35 0.65

Table 3.10 Normalized decision matrix

Criteria Weights Alternatives

A1 A2 A3 A4

C1 0.80 0.00 1.00 1.00 0.00

C2 0.65 1.00 1.00 0.05 0.00

C3 0.20 0.30 0.00 0.60 1.00

C4 0.50 0.80 0.60 0.00 1.00

C5 0.50 1.00 0.00 0.60 0.80

C6 1.00 0.00 1.00 1.00 1.00

C7 0.35 1.00 0.33 0.67 0.00
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Step 3. The normalized evaluations of the alternatives are

multiplied by the criteria weights. The final evaluation matrix

for this case is shown in Table 3.11.

The rankings of the alternatives are presented in Table 3.12 by

using various methods.

3.9.2 Urban Water Management

City of Zahedan is the capital of the Sistan and Baluchestan state

in South-eastern Iran. The countries of Afghanistan and Pakistan

are the neighbors of this province. Zahedan’s urban water system

faces major challenges. The city had a resident population of

about 450,000 in 2000. In addition, uncontrolled immigration

of Afghans to Zahedan increased the population of the city by

200,000 in recent years. As a result of the population growth,

Zahedan’s urban water demand became 46 	 106 m3/year, but

only 24 	 106 m3/year was supplied in 2001. The mean annual

rainfall of Iran is 250 mm but it is less than 80 mm in this city.

Table 3.11 The weighted normalized inputs

Criteria Alternatives

A1 A2 A3 A4

C1 0.00 0.80 0.80 0.00

C2 0.65 0.65 0.03 0.00

C3 0.06 0.00 0.12 0.20

C4 0.40 0.30 0.00 0.50

C5 0.50 0.00 0.30 0.40

C6 0.00 1.00 1.00 1.00

C7 0.35 0.12 0.23 0.00

Table 3.12 Result of rankings of the IBWT projects

Alternatives Ranks

SAW and

CP, p ¼ 1

CP, p ¼ 2 CP, p ¼ 10 TOPSIS

A1 4 4 4 4

A2 1 1 1 2

A3 2 2 2 1

A4 3 3 3 3
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There are no permanent rivers near the city except seasonal

floods, with the average of 3 	 106 m3/year. In addition, the

groundwater resources have been extracted more than the yield

capacity during the last 15 years.

The water distribution network is not in a standard condition

since its 47% is older than 30 years, and it has a total water

leakage of more than 30%. Due to this inadequate network,

most of the people buy potable water from handy carts or trucks.

To decrease the water shortage and to meet the water demand in

the coming years an MCDA model is developed to find the most

appropriate water distribution method. Eight alternatives are

considered (Abrishamchi et al. 2005):

Alternative 1. Building a new water supply system for the

whole city

Alternative 2. Building a new network for the new part of the

city, renewing the existing sanitary water distribution system,

extending the small drinking water distribution system with a

30 km long public standpipes within the old part of city, with

water vendors, and with water kiosks

Alternative 3. Similar to A2, but the small drinking water

distribution network with public standpipes is extended to over

a length of 60 km within the old part of the city

Alternative 4. Building a new drinking water supply system for

the whole city and rehabilitation and extension of the existing

sanitary water system

Alternative 5. Building a new drinking water distribution sys-

tem for the new part of the city, rehabilitation and extension

of the existing sanitary water distribution network, as well as

keeping the existing small drinking water standpipes, water ven-

dors and water kiosks

Alternative 6. Extension of the small drinking water distribu-

tion network with 30 km long public standpipes within the city,

rehabilitation and extension of the existing sanitary water distri-

bution network with water vendors and water kiosks

Alternative 7. Similar to A6 but the small drinking water

distribution network with public standpipes is extended over a

length of 60 km
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Alternative 8. Similar to A7 with the possibility of private

service connections

The best water distribution alternative should be decided in an

IWRM scope. The first stage was defining the criteria and then

some questionnaires were distributed among the various stake-

holders of the Zahedan’s urban water system and based on the

answers nine criteria were adopted to be used in the evaluation of

the alternatives (Abrishamchi et al. 2005). The evaluation matrix

of the eight alternatives with respect to the nine criteria is pre-

sented in Table 3.13. The criteria weights were obtained from the

local DM. The five-level linguistic scale (VL, L, M, H and VH)

is transformed into the numerical values using the scales (1, 2,

3, 4, 5).

3.9.2.1 Dominance Method

In this case study, there is no alternative that dominates all other

projects.

3.9.2.2 Sequential Optimization Method

The criterion C1 is the most important one. By using the sequen-

tial optimization method, A6 has the lowest cost and will be the

most important alternative. The remaining alternatives are ranked

based on their evaluation values with respect to C1. There is a tie

Table 3.13 Evaluation matrix of the urban water problem (adopted form Abrishamchi

et al. 2005)

Criteria Weights Alternatives

A1 A2 A3 A4 A5 A6 A7 A8

C1 Total cost (negative) 3 116 53 50 138 76 49 52 52

C2 Public appraisal 2 VH H M H M VL L L

C3 Political impact 2 VH H M H M VL L M

C4 Quality of water 1.8 VH H M H M M M M

C5 Health impact 2.2 VL L M L M VH H H

C6 Flexibility 2.3 VL M M L VH M M H

C7 Water demand control 1.7 VL L M M H VH VH M

C8 Time of water shortage 1.5 4 11 11 2 5 6 5 5

C9 Population impact 1.5 VH H H H M L L M
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between A7 and A8 therefore their evaluations with respect to

the second most important criterion should be used. The final

ranking of the alternatives is A6 � A3 � A8 � A7 � A2 � A5 �
A1 � A4.

3.9.2.3 «-Constraint Method

Since C1 is the most important criterion, the DM should give

acceptable levels for all remaining criteria. If he/she selects {e2 to
e7 ¼ Medium, e8 ¼ 3, and e9 ¼ Medium} then all alternatives

except A5 and A8 will be eliminated. Comparing their evaluations

with respect to the most important criteria, C1, alternative A8 is

selected to be the best.

Applying different methods to this problem, the results are

shown in Table 3.14. In all cases either alternative A8 or A2 is

selected as the best choice.

3.10 Discussions

This chapter introduced the most popular methods for solving

discrete MCDA problems. Each method is based on a particular

way how the DM expresses his/her preferences. Ordinal prefer-

ences are used in sequential optimization. The most important

Table 3.14 Ranks of the alternatives with various methods

Alternatives Ranks

SAW and

CP, p ¼ 1

CP, p ¼ 2 CP, p ¼ 5 TOPSIS

A1 7 8 7 7

A2 2 2 1 2

A3 6 4 4 5

A4 8 7 8 8

A5 4 3 3 3

A6 5 6 6 6

A7 3 5 5 4

A8 1 1 2 1
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criterion is specified with acceptable levels for all other criteria in

the case of the e-constraint method. Importance weights are given

for applying simple additive weighting. In the case of distance

based methods the DM wants to get criteria values as close as

possible to the ideal point or as far as possible from the nadir. The

analytic hierarchy process can supply importance weights for the

criteria based on pair-wise comparisons and it is also able to

provide final decisions. The case studies of inter-basin water

transfer and urban water management illustrate the methodology.

Different methods usually give different results. The main

reason of this discrepancy is the fact that the different methods

are based on different ways of expressing the preferences of the

DM, and these preference information are not consistent. The best

way of solving this problem is to present all results to the DM, who

can then think over his/her preference information and be able to

modify them appropriately. Then the computations have to be

repeated with the revised preference information, and the results

presented again to the DM. This iterative process continues until a

satisfactory final decision can be made.
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Chapter 4

Solution of Continuous MCDA Problems

4.1 Introduction

In this chapter, we introduce the most popular and most frequently

used solutionmethods for continuousMCDAproblems. The goal of

these methods is to generate the set of technologically feasible and

efficient alternatives and then choosing the most favorable ones.

4.2 Dominance Method

In this method we find the strongly nondominated solutions. And

then any method, discussed later in this chapter, can be applied on

the set of the strongly nondominated solutions to get the final

choice. Let X be the decision space and let fiðxÞ; i ¼ 1; 2; � � � ; n,
denote the criteria. A solution x� 2 X is weakly nondominated, if

there is no x 2 X such that

fiðxÞ>fiðx�Þ

for all i, that is, we cannot increase all criteria values simulta-

neously. A solution x� 2 X is (strongly) nondominated, if there is

no x 2 X such that fiðxÞ≧ fiðx�Þ for all i, and with strict inequality
for at least one i. That is, no criterion can be improved without

worsening another one.

M. Zarghami and F. Szidarovszky, Multicriteria Analysis,
DOI 10.1007/978-3-642-17937-2_4,
# Springer-Verlag Berlin Heidelberg 2011
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In Fig. 4.1 the set of weakly nondominated solutions and the

unique strongly nondominated solution are shown for the unit

square objective space.

Example 4.1. Assume that a combination of three wastewater

treatment technologies can be used. If x1 and x2 denote the

proportion (in percent) of applying technologies 1 and 2, then

1 � x1 � x2 is the proportion of the third technology. These

variables clearly must satsify constraints

x1; x2r0

x1 þ x2b1:

The feasible decision space is shown in Fig. 4.2.

Assume that there are two major pollutants to be removed

from the wastewater. The three technology variants remove 3,

2, 1 mg/m3 respectively from the first kind of pollutant and 2, 3,

1 mg/m3 from the second. So the amount of removed pollutant of

the first kind is

3x1 þ 2x2 þ 1ð1� x1 � x2Þ ¼ 2x1 þ x2 þ 1

and that of the second kind is

weakly
nondominated

weakly
nondominated

strongly
nondominated

1.0

1.0 ƒ1

ƒ2
Fig. 4.1 Weakly and

strongly nondominated

solutions
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2x1 þ 3x2 þ 1ð1� x1 � x2Þ ¼ x1 þ 2x2 þ 1

from each unit amount of treated water.

If the DM wants to maximize the total amount of the removed

material, then he/she has to solve the following problem with two

criteria:

Maximize 2x1 þ x2; x1 þ 2x2
subject to x1; x2r0

x1 þ x2b1:

The objective space can be obtained by solving equations

2x1 þ x2 ¼ f1 and x1 þ 2x2 ¼ f2

for x1 and x2, and then substituiting the resulting expressions

into the constraints of the problem. From the first equation we

have

x2 ¼ f1 � 2x1

and the second equation implies that

x1 þ 2f1 � 4x1 ¼ f2

1.0

1.0

x2

x

x1

Fig. 4.2 Decision space for

Example 4.1
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so

x1 ¼ 2f1 � f2

3
and x2 ¼ f1 � 4f1 � 2f2

3
¼ 2f2 � f1

3
:

The constraint x1 � 0 gives f2 � 2f1, the constraint x2 � 0

implies f2 � f1/2 and the constraint x1 + x2 � 1 can be rewritten

as

2f1 � f2

3
þ 2f2 � f1

3
b1;

that is,

f1 þ f2b3:

The objective space is shown in Fig. 4.3.

It is the closed triangle with vertices (0, 0), (2, 1) and (1, 2).

4.3 Sequential Optimization

In this method the order of criteria is given as ðf1 �
f2 � � � � � fnÞ, where n is the number of the criteria, f1 is the

most important criterion, f2 is the second most important, etc. and

finally, fn is the least important criterion. In this method the most

important criterion is maximized first, then the second most

(0,0)

(1,2)

(2,1)1

1

2

2

f2

f1

Fig. 4.3 Objective space of

Example 4.1
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important is maximized under the additional constraint which

keeps the first criterion at optimal level. Then the third criterion

is optimizedwith keeping the first two at their optimal levels, and so

on. Therefore we solve the MCDA problem by using the following

steps:

Step 1:

Maximize f1ðxÞ
subject to x 2 X

�

optimum value is f �1

Step 2:

Maximize f2ðxÞ
subject to x 2 X

f1ðxÞ ¼ f �1

9
>=

>;
optimum value is f �2

..

.

Step k:

Maximize fkðxÞ
subject to x 2 X

f1ðxÞ ¼ f �1
..
.

fk�1ðxÞ ¼ f �k�1:

The process terminates if either a unique optimal solution is

found in any of the steps, or we proceeded n steps.

Example 4.2. The problem of Example 4.1 can be solved by

sequential optimization. If f1 is more important than f2, then the

best value of f1 occurs at the vertex (2, 1) with decision variables

x1 ¼ 2f1 � f2

3
¼ 1 and x2 ¼ 2f2 � f1

3
¼ 0:

If f2 is more important than f1, then the best value of f2 occurs at

the vertex (1, 2) with the corresponding decision variables
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x1 ¼ 2f1 � f2

3
¼ 0 and x2 ¼ 2f2 � f1

3
¼ 1:

This method always leads to strongly nondominated solutions,

but it has a drawback since most points on the nondominated

curve can be lost as potential solutions. If there is a unique solu-

tion in any earlier step, then the less important objectives are

not considered at all. For example, if Step 1 provides a unique

optimal solution, then the procedure terminates, so only the most

important criterion is considered in the selection of the best

alternative. In order to overcome this difficulty we can relax the

optimality conditions in each step, so we can get the solution by a

modified method, where Step k is the following:

Maximize fkðxÞ
subject to x 2 X

f1ðxÞrf �1 � e1
..
.

fk�1ðxÞrf �k�1 � ek�1;

where e1; e2; . . . ; ek�1 are given, DM selected positive constants,

and f �1 ; . . . ; f
�
k�1 are the optimal objective function values

obtained in the earlier steps. Any solution obtained by this

method is necessarily weakly nondominated, there is no guaran-

tee for strong nondominance. Another approach is when the

decision maker assigns minimal acceptable levels for all criteria

and at each step of the method these values are used in additional

constraints as required lower bounds for the criteria. This is the

basic idea of the method introduced in the next subsection.

4.4 The «-Constraint Method

In this method the most important criterion is selected and mini-

mal acceptable levels are given for all other criteria. If the first

criterion is the most important, then the MCDA model is formu-

lated as follows:
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Maximize f1ðxÞ
subject to x 2 X

f2ðxÞre2
..
.

fnðxÞren:

Example 4.3. Consider again the problem of Example 4.1 and

assume that f1 � f2 and the minimum acceptable level for f2 is

3/2. Then the e-constraint method solves problem

Maximize 2x1 þ x2
subject to x1; x2r0

x1 þ x2b1
x1 þ 2x2r 3

2
:

We can obtain the solution from the decision space and also

from the objective space. Figure 4.4 shows the graphical solution

in the decision space.

X2

X1

2x1+x2=1

2x1+x2=0

1

11
2

3
4

Fig. 4.4 Reduced decision space for Example 4.3
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Clearly the largest value of 2x1 þ x2 occurs at the intercept

of the lines x1 þ x2 ¼ 1 and x1 þ 2x2 ¼ 3=2 which is

x1 ¼ x2 ¼ 1=2.
We can solve the problem by using the objective space. The

reduced objective space is shown in Fig. 4.5.

The largest f1 value occurs at the intercept of the horizontal line

f2 ¼ 3=2 and linear segment connecting vertices (1, 2) and (2, 1)

which is f1 ¼ f2 ¼ 3=2. The corresponding decision variables are

x1 ¼ 2f1 � f2

3
¼ 1

2
and x2 ¼ 2f2 � f1

3
¼ 1

2
:

4.5 Simple Additive Weighting

In this method the relative preferences of the DM on the set of the

criteria are presented by the positive weights, w1;w2; . . . ;wn,

where we assume that
Pn

i¼1 wi ¼ 1. If the complete set of the

criteria has 100% interest of the DM, then these weights show

how it is divided among the different criteria. In this case we have

to solve the following optimization problem:

Maximize w1f1ðxÞ þ � � � þ wnfnðxÞ
subject to x 2 X :

(0,0)

(1, 2)

(2, 1)

1 2

1

3
2

2

f2

f1

–

Fig. 4.5 Reduced objective

space for Example 4.3
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The solution of this problem is always strongly nondominated.

However, by this method selection, we might lose nondominated

solutions as it is shown in Fig. 4.6. We mention here that in the

case of a linear problem all strongly nondominated solutions

can be obtained as optimal solutions of the above problem with

positive weights (see, for example Szidarovszky et al. 1986).

Example 4.4. In our earlier Example 4.1, assume that w1 ¼
w2 ¼ 1

2
. Then we have to solve the single-objective optimization

problem

Maximize 3
2
x1 þ 3

2
x2

subject to x1; x2r0
x1 þ x2b1:

From Fig. 4.2 it is easy to see that there are infinitely many

optimal solutions, all points on the linear segment connecting

vertices (1, 0) and (0, 1). Assume next that the first criterion is

twice more important than the second one. Then we may select

f2

f1

Cannot be obtained by
the weighting method

Fig. 4.6 Drawback of the SAW method
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w1 ¼ 2=3 and w2 ¼ 1=3, so the problem has to be modified as

follows:

Maximize 2
3
ð2x1 þ x2Þ þ 1

3
ðx1 þ 2x2Þ ¼ 5

3
x1 þ 4

3
x2

subject to x1; x2r0
x1 þ x2b1:

It is easy to see that the optimal solution is x1 ¼ 1 and x2 ¼ 0.

This method has some difficulties. First, the composite good-

ness measure,
Pn

i¼1

wifiðxÞ, usually has no meaning by itself, since

different criteria mean different things. Second, the solution

changes if we change the units in which the criteria are measured.

In order to overcome these difficulties we have to transform the

criteria to a common measure. If the DM can assign a utility

function ui which characterizes the goodness of the values of

criterion i, then this common measure can be selected as the

satisfaction level ui(fi) of this criterion. If there is no such utility

function, then simple normalization can be used. Define for each

criterion,

Mi ¼ maxffiðxÞ x 2 Xgj
and

mi ¼ minffiðxÞ x 2 Xgj ;

which are the individual maximum and minimum values of fi. We

can then assume that the value Mi gives 100% satisfaction while

mi, as the worst possible outcome, gives 0%. By assuming linear

scale we can normalize fi as follows:

�fiðxÞ ¼
fiðxÞ � mi

Mi � mi

:

Notice in addition that �fiðxÞ is unitless, so the composite crite-

rion w1
�f1ðxÞ þ w2

�f2ðxÞ þ � � � þ wn
�fnðxÞ is also unitless and repre-

sents an average satisfaction of the outcomes by selecting x as the

decision.
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4.6 Distance Based Methods

In this method the DM first selects an ideal point, what he/she

considers the best but usually unachievable outcome. In the lack

of such information we can compute an ideal point having the

individual maximum values of the criteria in its components.

Then the DM selects a distance measure r of n-dimensional

vectors. The properties of the different distances and selection

guidelines are given in Chap. 3. So if f (x) is the criteria vector at

decision x and f * is the ideal point, then the DM wants to

minimize the distance between f * and f(x) by solving the follow-

ing problem:

Minimize r f �; f ðxÞð Þ
subject to x 2 X

This concept is shown in Fig. 4.7.

Example 4.5. Consider again the problem of the previous exam-

ple. The objective space is shown in Fig. 4.3. The minimum and

maximum values of both criteria are 0 and 2, respectively. There-

fore the ideal point can be selected as (2, 2) and the nadir is (0, 0).

Similarly to relations (3.5) and (3.6) the distances of any alterna-

tive x ¼ (x1, x2) from the ideal point and from the nadir can be

given as

f2

f1

H

ideal point f *

Fig. 4.7 Distance based

methods
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Dp
x ¼ w1

2� 2x1 � x2

2

� �p

þ w2

2� x1 � 2x2

2

� �p� �1
p

;

and

dpx ¼ w1

2x1 þ x2

2

� �p

þ w2

x1 þ 2x2

2

� �p� �1
p

:

If p ¼ 1, then the results coincide with those obtained by using

the weighting method. Assume that w1 ¼ w2 ¼ 0:5, then mini-

mizing Dp
x with p ¼ 2 and p ¼ 1 results in the optimal solution

x1 ¼ x2 ¼ 0.5, and maximizing dpx with p ¼ 2 and p ¼ 1 gives

the optimal solutions x1 ¼ 1 and x2 ¼ 0, and x1 ¼ 0 and x2 ¼ 1.

If the ideal point is obtained from the maximum values of the

criteria, then distance-based methods with distance minimization

are also called Compromise Programming.

Assume that all criteria and all constraints are linear, so the

problem has the specific form:

Maximize cTi x i ¼ 1; 2; . . . ; nð Þ
subject to xr0

Axbb:

Let a�i and ai� denote the ith component of the ideal point and

the nadir, respectively. In the case of p ¼ 1 the solution is the

same as the one obtained by using the weighting method with

normalized criteria,

Xn

i¼1

wi

a�i � cTi x

a�i � ai�
¼

Xn

i¼1

wi

a�i � ai�
a�i � ai�

�
Xn

i¼1

wi

cTi x� ai�
a�i � ai�

¼ 1�
Xn

i¼1

wi

cTi x� ai�
a�i � ai�

:

In the case of p ¼ 2 a quadratic programming problem has to

be solved. We can easily show that the case of p ¼ 1 with
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distance minimization can also be solved by linear programming.

The distance minimizing problem can be written as follows:

Minimize max wi
a�i�cTi x

a�
i
�ai�

n o

subject to xr0
Axbb:

Let z denote the objective function, then for all i,

wi

a�i � cTi x

a�i � ai�
bz;

that is,

wic
T
i xþ zða�i � ai�Þrwia

�
i :

Therefore by adding this constraint for all values of i to the

original set of constraints and minimizing z results in a linear

optimization problem for unknowns x and z.

4.7 Other Methods

For a complete review and analysis on the different MCDA

methods, the reader is referred to for example, Szidarovszky

et al. (1986) and Ehrgott (2005). User-friendly software packages

are also available to solve optimization problems. For example,

the reader may consider GAMS (Brooke et al. 1996), which can

be downloaded from http://www.gams.com/.

4.8 Case Studies

4.8.1 Water Allocation Problem

The Mexican Valley is a part of the watershed of the same name.

It includes the metropolitan area of Mexico City, with an area of

9,674 km2. This region has a variety of economic activities that
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contribute to about one third of the National Gross Product and

concentrates about 20% of the population (19.9 millions) in only

0.5% of the national territory. Water availability in the Mexican

Valley was 573 m3/hab/year by 1950, and it has decreased dra-

matically to 85 m3/hab/year by 2003. The distribution of the

water in the State of Mexico is managed by the National Water

Commission (NWC) that delivers water in bulk to the state water

utility. The state water utility has to accept the water, treat it, and

distribute it to various counties in the state.

Water supply is produced from six aquifers with 1,681 million

cubic meter (MCM)/year, from which 234 MCM/year are

provided by surface water, 353 MCM/year are from treated

water supply and finally, 623 MCM/year is from water imported

from other places. The gap between the growing use of water and

the supply becomes larger each year, making water supply and

distribution more and more difficult, so a comprehensive model-

ing effort is needed to find best water distribution strategies.

There are also environmental problems: the groundwater

resources are overexploited beyond their capacity. Deforestation

has reduced the infiltration rate and recharge of the aquifers.

Wastewater generation is another problem since the capacity of

the 160 wastewater treatment facilities with total capacity of 3.2

(m3/s) is not enough to treat the current water discharge (CNA

2003). There is also a mean average precipitation in the region

equivalent to 1,800 mm/year, but due to the short rainfall period

from June to September, flooding becomes an additional problem

due to the lack of infrastructure and management.

There is a need to decide how this limited resource should be

allocated among competing users, how to restore or at least to

stop the environmental damage caused by both wastewater and

aquifer overexploitation and how to increase water supply in the

region for future generations (Salazar et al. 2007).

4.8.1.1 Mathematical Model

In order to find an optimal water distribution strategy a linear

model is developed and proposedwith threewater users: agriculture,
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industry and domestic. Each of them uses surface, ground and

treated water.

Let k ¼ 1, 2, 3 denote the agriculture, industry and domestic

users, respectively. The decision variables for each user are as

follows:sk ¼ surface water available for user k, gk ¼ groundwater

available for user k, tk ¼ treated water available for user k, s�k ¼
imported surface water available for user k, g�k ¼ imported

groundwater available for user k.

Variables sk, gk, tk refer to local water supplies, and s�k ,g
�
k refer

to water supplies imported from other regions at the Mexican

Valley. The objective of each user is to maximize water supply:

Maximize ðsk þ gk þ tk þ s�k þ g�kÞ; (4.1)

so we have an optimization problem with 3 criteria and 15

decision variables. Each user has its constraints, they are pre-

sented next.

Agricultural Use

The irrigated area is 50,000 ha. The main crops are corn, lucerne,

oats, barley, and vegetables. Water demand for one season of

each year is 474.6 MCM. The farmers have the option to use two

seasons, then water demand will become 950 MCM approxi-

mately. (Water Utility by 2003 delivered 594 MCM/year for

agricultural use.) The supplied water amount must not exceed

demand, since we do not want the users to waste water:

s1 þ g1 þ t1 þ s�1 þ g�1b950: (4.2)

The minimum water amount required is approximately

475 MCM, therefore we require that

s1 þ g1 þ t1 þ s�1 þ g�1r475: (4.3)

LetG ¼ set of crops that can use only groundwater, because of

quality requirements, ai ¼ ratio of crop i in agriculture area,

vi ¼ water need of crop i per ha.
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The overall groundwater percentage must not be less than

needed by crops which can be irrigated by only groundwater:

g1 þ g�1
s1 þ g1 þ t1 þ s�1 þ g�1

r

P

i2G
aivi

V
¼ 0:00026

0:04468
¼ 0:00586;

where V ¼ P

all i

aivi is the total water need per ha. These data were

obtained from the annual statistics on the agriculture of Mexico.
This constraint can be rewritten in a linear form as

0:00586s1 � 0:99414g1 þ 0:00586t1 þ 0:00586s�1
� 0:99414g�1b0: (4.4)

We also require that the treated water percentage cannot be

larger than that in the case when all crops in T are irrigated only

by treated water:

t1

s1 þ g1 þ t1 þ s�1 þ g�1
b

P

i2T
aivi

V
¼ 0:00743

0:04468
¼ 0:16629;

where T ¼ set of crops which can use treated water. This is

equivalent to the linear form

� 0:16629s1 � 0:16629g1 þ 0:83371t1 � 0:16629s�1
� 0:16629g�1b0: (4.5)

The rest of the crops can be irrigated by surface water.

Industrial Use

Sincewe do notwant to supplymorewater than the industrial needs,

s2 þ g2 þ t2 þ s�2 þ g�2b460: (4.6)

According to WNC the minimum required water amount for

industry is 177 MCM, so we also require that
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s2 þ g2 þ t2 þ s�2 þ g�2r177: (4.7)

A minimum proportion of 0.7 of groundwater usage for indus-

try was considered in an agreement with the WNC delivery in

2003. For the same period, industry can also use a maximum

amount of 30 MCM/year of treated water which represents a

proportion of 0.17. These water quality constraints require that

g2 þ g�2
s2 þ g2 þ t2 þ s�2 þ g�2

r 0:7

and

t2

s2 þ g2 þ t2 þ s�2 þ g�2
b 0:17:

These constraints reflect that more groundwater usage provides

better water quality but more treated water makes it worse. These

constraints are equivalent to the linear forms

0:7s2 � 0:3g2 þ 0:7t2 þ 0:7s�2 � 0:3g�2b0 (4.8)

and

� 0:17s2 � 0:17g2 þ 0:83t2 � 0:17s�2 � 0:17g�2b0: (4.9)

Domestic Use

The average water usage in Mexico City and in the State of

Mexico is 360 l/day/person, so for a population of 19.9 million

people it gives a maximum water demand of 2,615 MCM. The

water availability in the European Countries of 200 l/person/day

as a lower bound produces a minimum water demand of

1,452.7 MCM. Hence we have the following constraints:

s3 þ g3 þ t3 þ s�3 þ g�3b2; 615 (4.10)
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and

s3 þ g3 þ t3 þ s�3 þ g�3r1; 452:7: (4.11)

According to CNA (2003), 127 MCM are used each year for

public services which gives a proportion of 0.06. Since treated

water can be used for only this purpose, we have the corres-

ponding constraint as

t3

s3 þ g3 þ t3 þ s�3 þ g�3
b 0:06;

or in linear form

� 0:06s3 � 0:06g3 þ 0:94t3 � 0:06s�3 � 0:06g�3b0: (4.12)

The additional constraints are

s1 þ s2 þ s3 ¼ 234 (4.13)

and

g1 þ g2 þ g3 ¼ 1; 684 (4.14)

where 234 MCM and 1,684 MCM are the total surface and

groundwater supplies in the Mexican Valley respectively. These

constraints require that all local water supplies must be used

before imported water can be considered. In addition, maximum

453 MCM of surface water can be imported from Rio Cutzamala

(127 km away fromMV) and also maximum 170 MCM of ground-

water from Lerma (15 km away from MV). The corresponding

availability constraints are

s�1 þ s�2 þ s�3b453 (4.15)

and

g�1 þ g�2 þ g�3b170: (4.16)
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So we have a linear MCDA problem with 15 variables and 3

criteria. It can be solved by any method outlined earlier in this

chapter, for example by using the simple additive weighting

method with normalized criteria.

4.8.1.2 Numerical Results

The results of the MCDA approach provide optimal ground,

surface and treated water distribution between the three users.

We considered three scenarios and repeated the computations for

each of them. First we assumed the same aquifer overexploita-

tion, the same bound for treated water percentage for agriculture

and the same water supply for domestic use 200–360 l/person/

day. When agriculture is the priority, then the domestic users can

get a minimum water supply of 200 l/person/day, and at the same

time farmers satisfy their water demand for both seasons. On the

other hand, when domestic users have the priority with water

supply 292.5 l/person/day, then the farmers have available water

for only one season.

In Scenario II we also wanted to reduce water shortages in all

three sectors, however with decreased water extraction from the

aquifer to 1,000 MCM (59%), and increased use of treated water

in agriculture by 50%.

In Scenario III we also wanted to optimize water distribution of

the three sectors with maintaining aquifer sustainability by

extraction of maximum 788 MCM/year and by increasing the

use of surface water to 857 MCM/year. This scenario is the best

because in the worst case, farmers can get at least 635 MCM to

cover one season and also some crops in the second season. In

addition, domestic users can get slightly more than their mini-

mum demand. The main environmental advantage of this case is

the aquifer sustainability which stops aquifer overexploitation

and the consequent subsidence and salinity intrusion.

Table 4.1 displays a summary of the results of the three

scenarios where w1, w2, w3 are the weights of the three criteria.

It can be observed that a trade off is needed between government

investment and the usage of ground and treated water.
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4.8.2 Groundwater Quality Management

Although many of the groundwater optimization problems are

solved with single objective optimization, most real-world ground-

water management problems constitute a MCDA problem. In this

case, an unconfined, heterogeneous aquifer is pumped by three

public supply wells located in close proximity to a groundwater

contaminant plume (Coppola and Szidarovszky 2001). The prob-

lem of maximizing water supply via pumping while minimizing

risk of well contamination was considered for a 12-month planning

horizon. The basis for this continuousMCDAmodel was a compu-

tational neural network (CNN).

Using simulation results from MODFLOW, the finite-differ-

ence groundwater flow model developed by the United States

Geological Survey, a CNN was trained to estimate the evolution

of groundwater head at points of interest in the aquifer in

response to monthly changes in pumping and aerial recharge

rates. For the theory and applications of CNN see for example,

Wasserman (1989). The CNN architecture was embedded into

LINGO, a commercial linear optimization program, to generate

the entire set of nondominated solutions. The CNN is linear, so a

linear optimization problem with two objectives was obtained. It

is well known that all nondominated solutions can be obtained by

using the weighting method with appropriate weights. Therefore

by systematically varying the weights and solving the resulting

linear programming problems, we could generate the entire non-

dominated solution set.

A hypothetical but realistic isotropic, heterogeneous uncon-

fined aquifer was modeled using MODFLOW. There are three

pumping wells, P1, P2, P3, where P2 is closest to the contaminated

area. The governing groundwater flow equation, that represents

transient horizontal flow (Dupuit assumption) in an anisotropic,

heterogeneous unconfined aquifer system, can be written as par-

tial differential equation

rðkh � rhÞ þ Qd½ðx� x�Þðy� y�Þ� � Rðx; yÞ ¼ Sy@h=@t

(4.17)
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where k is the hydraulic conductivity vector, h is the hydraulic

head, d is the Dirac delta function, Q is a pumpage vector, x*, y*

is a set of well locations, R is a vector of natural recharge, and Sy
is the specific yield. Solving (4.17) with a large set of pumping

rates and aereal recharge rates for the head values at the points of

interest the requested data set was obtained to train a CNN, which

then was used to replace the physical model (4.17).

The MCDA problem of maximizing water supply via pumping

while minimizing risk of well contamination was considered for a

12-month planning horizon discretized into monthly stress periods.

The two criteria are conflicting because increased pumping rates

induce hydraulic gradient changes along the contaminant boundary

that increase the risk of well contamination. The problem is further

complicated by the introduction of multiple time periods.

Supply was defined as the actual amount of groundwater

pumped out by the three wells over the 12-month period. Risk

was measured as the annual sum of the head differences between

the downgradient and upgradient nodes (under non-pumping

conditions) at the three risk pairs. Positive values indicate some

risk since “upgradient” nodes would overall have a lower ground-

water elevation than the “downgradient” nodes, resulting in a

general gradient reversal.

Because supply and risk were quantified with different physi-

cal dimensions (volume/time versus length), they had to be nor-

malized, which was done in such a way that in the normalized

objectives, unit value corresponds to the best and zero value to

the worst possibility. The nondominated set was determined by

using the weighting method with varying weights:

Maximize ½a � Risk Normalizedþ ð1� aÞ � Supply Normalized�
(4.18)

subject to

Risk ¼
X12

i¼1

ðh6;i � h5;iÞ þ ðh8;i � h7;iÞ þ ðh10;i � h9;iÞ
� �

;

(4.19)
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Supply ¼
X3

k¼1

X12

i¼1

Pk;i
: (4.20)

State variables h5,i through h10,i are the head values at the

three risk pairs (six nodes), with subscript i corresponding to

months 1–12. There are 36 decision variables, denoted by Pk,i

corresponding to the monthly pumping rates, in m3/min, for each

of the three wells (e.g., P1,2 is the monthly pumping rate of well 1

in February).

In the objective function, a ¼ 1 considers only risk, a ¼ 0 only

supply, and values between 0 and 1 represents some tradeoff

between risk and supply. For example, the case of a ¼ 0.5 weights

both criteria equally. By systematically varying the value of a, the
set of all non-dominated solutions was identified. In this two-

criterion case, the nondominated set is a 2-dimensional graphical

representation of the trade-off between supply and risk which

serves as a basis for applying any MCDA method. In cases where

the decision makers are unable to supply importance weights, we

have to repeat the computations for a large set of systematically

selected weights and present all answers to the decision makers

who can then assess their priorities based on the results. The

minimum acceptable weight for risk should be 0.5, that is, mini-

mizing risk of contamination is at least as important as supply.

Figure 4.8 depicts the non-normalized nondominated set

derived by the CNN and verified with MODFLOW for risk versus

supply, where annual risk is reported in meters (m) and annual

supply in cubic meters (m3). Clearly the risk of well contamina-

tion increases as supply increases because larger groundwater

withdrawals dictate higher pumping rates, so it further extends

the hydraulic influence into the contamination zone.

Tables 4.2 and 4.3 display the results of the MCDA based on

the two nondominated frontiers obtained from the use of CNN
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and the MODFLOW software. These results are explained in

more detail in Coppola and Szidarovszky (2001). The trade-off

policies identified from the CNN derived frontier usually result in

a smaller supply than the MODFLOW verified frontier, but this is

not always the case as it is demonstrated by supply weights

ranging from 0.25 to 0.425. Overall, the results generated from

the two frontiers compare favorably. The results, regardless of

frontier, show pumping policies that excluded the use of well P2.

This pumping well, located closest to the contamination zone, is

the most vulnerable to be contaminated. In addition, because of

its close proximity to the hypothetical boundary, it has the great-

est potential for increasing risk to the other wells as quantified by

the three risk pairs. Keeping well P2 turned off is consistent with

the decision to select risk weight at least equal to supply weight.

By comparison, if wells P1 and P3 pump at their maximum rates

each month, the annual risk is close to 0 m. As such, the head

differences on average at the three risk pairs over the 12 months

are close to zero. At this value, the two wells are around the upper

limit of withdrawing groundwater without reversing the hydrau-

lic gradient and potentially spreading pollution.

4.9 Discussions

This chapter introduced the most frequently applied methods for

solving continuous MCDA problems. As in the case of discrete

problems each method is based on a particular way of expressing

the preferences of the DM. A water allocation problem and a

groundwater quality management problem illustrated the meth-

odology. Very often different results are obtained by using dif-

ferent methods. The discrepancy can be eliminated by the same

interactive repeated process that was explained in the last section

of the previous chapter.
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Chapter 5

Social Choice Methods

5.1 Introduction

Decision making in water resources and environmental manage-

ment is usually based on the preferences of more than one DM.

If the evaluation of the alternatives with respect to all DMs can be

quantified, then the suitable MCDA formulation of the problem

can be used as shown in the former chapters. However, in many

cases the human preferences are difficult to be quantified. In most

applications such opinions are quantified by using some subjec-

tive measures, say for example, the worst possibility is indicated

by 0, the best by 10, and all values are characterized by a number

on the scale [0, 10]. Even in the case of quantifiable criteria, the

uncertainty in the objective functions makes any approach ques-

tionable. In most cases, many researchers therefore raise serious

questions about the objectivity of these methods.

In this chapter, an alternative methodology is introduced, in

which the particular preference values do not need to be precisely

known. The method is based on only the ranking of the alternatives

with respect to each DM. This methodology is known as social

choice. In this chapter, a brief overview of the most popular

methods in finding the best alternative will be given. Two interest-

ing case studies will be then presented in water and environmental

management.

M. Zarghami and F. Szidarovszky, Multicriteria Analysis,
DOI 10.1007/978-3-642-17937-2_5,
# Springer-Verlag Berlin Heidelberg 2011
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5.2 Social Choice Methods

Let n be the number of the DMs andm the number of alternatives.

The exact values of the evaluations of the alternatives by the DMs

are assumed to be unknown. The most appropriate method is

social choice, which needs only the relative rankings of the

alternatives instead of using particular values for the evaluations.

In the decision matrix of these problems, the aij element repre-

sents the ranking of the jth alternative from the viewpoint of the

ith DM. If aij ¼ 1, then the best alternative from the viewpoint of

the ith DM is the jth alternative, and if it is 2, then the jth

alternative is the second best, and so on. We will next introduce

the most popular social choice methods.

5.2.1 Plurality Voting

This method selects an alternative that is considered the best by

most DMs. Define:

f ðaijÞ ¼
1 if aij ¼ 1

0 if otherwise,

(

(5.1)

and for all alternatives compute

Aj ¼
Xn

i¼1

f ðaijÞ: (5.2)

Notice that Aj show that how many times the jth alternative is

selected as the first choice by the DMs. Then alternative j* with

the maximum value of Aj is selected as the social choice:

Aj� ¼ max Aj

��
: (5.3)
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Example 5.1. The Caspian Sea is shared by five neighboring

countries. There are also five different scenarios to divide the

benefits of the sea among the stakeholders. The participant

countries have ranked the scenarios as shown in Table 5.1. For

the complete review on the problem, the reader may refer to

Sheikhmohammady et al. (2010).

By using the plurality voting method we have A1 ¼ 2, A2 ¼ 0,

A3 ¼ 1, A4 ¼ 2 and A5 ¼ 0, so both Scenarios 1 and 4 are

considered the best.

If the DMs have different relative powers, then in (5.2) the

quantity f(aij) has to be multiplied by the power of DMi.

5.2.2 Borda Count

This method selects the decision alternative according to the total

score of each alternative with respect to the preferences of the

various DMs. If aij denotes the elements of the decision matrix,

then the score of each alternative Bj is given as

Bj ¼
Xn

i¼1

gðaijÞ; (5.4)

with

gðaijÞ ¼ m� aij: (5.5)

Table 5.1 Ranking of the different scenarios with respect to the preferences of the five

DMs

Decision makers Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

DM1 1 3 2 5 4

DM2 1 4 5 3 2

DM3 5 3 1 2 4

DM4 5 2 4 1 3

DM5 4 2 5 1 3
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Notice that n is again the number of DMs and m is the number

of alternatives. The alternative j* with the maximum value of Bj is

the superior choice:

Bj� ¼ max f Bjg : (5.6)

Note that for each alternative we have

Bj ¼
Xn

i¼1

gðaijÞ ¼
Xn

i¼1

ðm� aijÞ ¼ nm�
Xn

i¼1

aij: (5.7)

Therefore, a modified version of the Borda count is to add the

aij values for i ¼ 1, 2,. . ., n with each fixed value of j and then

select the alternative with the lowest sum.

Example 5.2. The problem of Example 5.1 can also be solved by

the Borda count. Based on (5.7), B1 ¼ 9, B2 ¼ 11, B3 ¼ 8,

B4 ¼ 13 and B5 ¼ 9, so Scenario 4 is the most preferred choice

for the group of DMs.

If the DMs have different relative powers, then each aij matrix

element has to be multiplied by the power of DMi.

5.2.3 Hare System (Successive Deletion)

This method is based on the successive deletion of less attractive

alternatives until the most preferred alternative is found. In this

method, the alternative jmin with the smallest value of Aj is

deleted from the decision matrix. The values of Aj were already

defined in (5.2). Then the decision matrix is modified by using the

following formula:

anewij ¼ aij if aij<aijmin

aij � 1 otherwise:

�

(5.8)

This process must be repeated until the superior alternative is

recognized. If at any stage, the score of one alternative is more
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than half of the number of DMs (i.e. Aj>
n
2
), then the process

terminates and this alternative becomes the social choice.

Example 5.3. In the case of Example 5.1, we had A1 ¼ 2, A2 ¼ 0,

A3 ¼ 1, A4 ¼ 2 and A5 ¼ 0. Then both of Scenarios 2 and 5

should be eliminated from the decision matrix. Since we used

two eliminations in one step, we use relation (5.8) twice, first in

eliminating Scenario 2 and then in eliminating Scenario 5. The

revised matrix is shown in Table 5.2.

The new Aj values, based on Table 5.2, are A1 ¼ 2, A3 ¼ 1,

and A4 ¼ 2. Since Scenario 3 has the lowest score, in Step 2 it has

to be eliminated. The new decision matrix is shown in Table 5.3.

The new scores are A1 ¼ 2 and A4 ¼ 3. Then Scenario 4

becomes the social choice since it satisfies the relation A4>
5
2

If the DMs have different relative powers, then in computing

the Aj values by relation (5.2), each f(aij) value has to be multi-

plied by the power of DMi.

5.2.4 Dictatorship

In this method one of the DMs is selected to be the dictator

and then the most preferred alternative by him/her would be

Table 5.2 Revised decision

matrix in Step 1 of

Example 5.3

Scenario 1 Scenario 3 Scenario 4

DM1 1 2 3

DM2 1 3 2

DM3 3 1 2

DM4 3 2 1

DM5 2 3 1

Table 5.3 Revised decision

matrix in Step 2 of

Example 5.3

Scenario 1 Scenario 4

DM1 1 2

DM2 1 2

DM3 2 1

DM4 2 1

DM5 2 1
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considered the superior one. In other words, if the i*th DM is the

dictator, then alternative j* will be the choice if and only if

ai�j� ¼ 1: (5.9)

Example 5.4. In the problem of Example 5.1, assume DM2 has the

major political authority at the region then he/she is the dictator in

this problem. Then Scenario 1 becomes the choice of the group.

5.2.5 Pairwise Comparisons

In this method, we first calculate for each pair (a, b) of alter-

natives, the number of DMs who prefer a to b. Let N(a, b) denote

this number, then we consider alternative a to be overall more

preferred than b if

Nða; bÞ>Nðb; aÞ; (5.10)

or alternatively,

a � b , Nða; bÞ> n

2
: (5.11)

Notice that in the case, when N(a, b) ¼ N(b, a) with some

alternatives a and b, then we cannot consider any of them to be

more preferred than the other. Based on these values we have one

of the following options:

1. We compute the N(a, b) values for all pairs of alternatives.

An alternative is non-dominated if there is no better alterna-

tive. In the social choice literature this alternative is called the

Condorcet winner.

2. We suppose that a comparison agenda is given, in which the

alternatives are ordered as a1, a2,. . .. First, we compare a1 with

a2 based on this schedule, and then we compare the former
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winner (in the case of tie, both) with a3 and so on. At the end of

each comparison, the losing alternative is eliminated. This

process continues until the last alternatives are compared,

when the social choice is found as the last winner. Since the

comparisons are sequentially performed according to the

schedule, we do not need to compare all alternatives with all

others.

Example 5.5. We calculate the N(a, b) values for the problem

introduced in Example 5.1. The results are shown in Table 5.4.

Notice that we have to compute these values only for a < b and

then may use the relation Nðb; aÞ ¼ n� Nða; bÞ to complete the

lower part of the matrix.

First we have NðSc:1; Sc:2Þ ¼ 2< 5
2
, so the second one is better

and we should next compare the winner (Scenario 2) to Scenario

3. Since NðSc.2, Sc:3Þ ¼ 3> 5
2
, Scenario 2 is the winner again

and it should be compared to the fourth one. Notice that

NðSc.2, Sc:4Þ ¼ 1< 5
2
. Therefore the fourth scenario is the win-

ner and it should be compared finally to the fifth one:

NðSc:4; Sc:5Þ ¼ 3> 5
2
therefore Scenario 4 is the final winner

and it is the social choice.

If the relative powers of the DMs are different then we should

revise the N(a, b) values as follows:

Nða; bÞ ¼ Sum of the relative powers of the DMs, who pre-

fer alternative a to alternative b.

By using these modified N(a, b) values, the superior alternative

can be selected in the same way as before. The consideration of

the different powers of the DMs is an essential feature in solving

water resources and environmental management problems.

Table 5.4 N(a, b) values for Example 5.1

Scenario 2 Scenario 3 Scenario 4 Scenario 5

Scenario 1 2 3 2 2

Scenario 2 – 3 1 4

Scenario 3 – – 2 2

Scenario 4 – – – 3
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5.3 Case Studies

5.3.1 Forest Treatment Problem

This case study finds the best alternative among four different

forest treatment options in Northern Arizona, USA. There are six

stakholders which presented their ordinal preferences on the

alternatives. The study of d’Angelo et al. (1998) describes the

details of the alternatives and also the stakeholders who are

involved in the problem. The decision matrix is shown in

Table 5.5. The alternatives can be briefly described as follows.

Each of them was applied on a designated area in order to assess

and compare their consequences:

A1: On a completely clear cut watershed all merchantable

poles and saw commercial wood felled. All slash and debris

were machine windrowed to conserve the watershed. The wood-

land tree species were allowed to sprout and grow after the

clearing treatment.

A2: The watershed treated by uniform thinning and some parts

of the basal were removed, leaving even-aged groups of trees. All

slash was windrowed.

A3: An irregular strip cut was applied to the third watershed.

All merchantable wood was removed within irregular strips and

the remaining non-merchantable trees felled. The overall treat-

ment resulted in reduction in the basal area on the watershed.

Slash was piled and burned in the cleared strips.

A4: A part of the watershed served as a control against which

the other three treatments were evaluated. The characteristics and

Table 5.5 The decision matrix of Case Study 5.3.1 (revised after d’Angelo et al. 1998)

Decision makers A1: clear

cut

A2: uniform

thinning

A3: strip cut

and thinning

A4:

control

DM1: water users 1 2 3 4

DM2: wildlife advocates 4 2 1 3

DM3: livestock producers 1 2 3 4

DM4: wood producers 3 4 2 1

DM5: environmentalists 4 3 2 1

DM6: managers 4 2 3 1
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resources of this watershed are investigative of what might be

gained in the future if only custodial management is applied.

In this case, the power weights of the stakeholders are assumed

to be identical.

5.3.1.1 Plurality Voting

Based on (5.2) we have A1 ¼ 2;A2 ¼ 0;A3 ¼ 1;A4 ¼ 3 implying

that alternative A4 (control) with the highest score is the social

choice.

5.3.1.2 Borda Count

The Borda counts of the alternatives, based on (5.7) are

B1 ¼ 7;B2 ¼ 9;B3 ¼ 10;B4 ¼ 10. Therefore both strip cut and

thinning and control with the highest Borda scores are the

choices.

5.3.1.3 Hare System

In this case, alternative 2 has the lowest Aj value, so it is elimi-

nated first from the decision table. The resulting matrix is shown

in Table 5.6.

Here the third alternative has the smallest Aj value among

A1 ¼ 2;A3 ¼ 1;A4 ¼ 3, so it is next eliminated. The reduced

decision matrix is shown in Table 5.7.

Since the fourth alternative, control has A4 ¼ 4> 6
2
¼ 3; it is

the social choice.

Table 5.6 Revised decision

matrix in Step 1 of Case

Study 5.3.1

Decision makers A1 A3 A4

DM1 1 2 3

DM2 3 1 2

DM3 1 2 3

DM4 3 2 1

DM5 3 2 1

DM6 3 2 1
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5.3.1.4 Dictatorship

In this case the best alternative depends on the preference of only

the dictator. For example if DM6 (Managers) is the dictator then

based on Table 5.5, the fourth alternative (Control) becomes the

social choice.

5.3.1.5 Pairwise Comparisons

Pairwise comparisons will be now applied for the problem given in

Table 5.5. First, the quantities N(a, b) are determined for each

ordered pair (a, b) of alternatives. For example, for the pair (1, 2)

the water users, livestock producers and wood producers prefer

alternative A1 to A2 and others prefer A2 to A1, therefore we have

N(1, 2) ¼ 3. That is, there is a tie between these alternatives, which

means that no overall preference among them is found. TheN(a, b)

values for all pairs of alternatives are summarized in Table 5.8.

Based on the values shown in Table 5.8, the preference graph is

sketched in Fig. 5.1. Based on this graph, we can only conclude

that clear cut should be eliminated and no comparison of the other

three alternatives is found.

Table 5.7 Revised decision

matrix in Step 2 of Case

Study 5.3.1

Decision makers A1 A4

DM1 1 2

DM2 2 1

DM3 1 2

DM4 2 1

DM5 2 1

DM6 2 1

Table 5.8 The N(a, b) values in the pairwise comparison of the alternatives

N(a, b) A1: clear cut A2: uniform

thinning

A3: strip cut

and thinning

A4: control

A1: clear cut – 3 2 2

A2: uniform thinning 3 – 3 3

A3: strip cut and thinning 4 3 – 3

A4: control 4 3 3 –
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5.3.2 Ranking Water Resources Projects

In this case study, we will examine ten water resources develop-

ment projects which are proposed to be constructed in a central

watershed of Iran. The decision committee includes six represen-

tatives from the stakeholder organizations and a moderator from

the government. In order to use MCDM methodology the stake-

holders should be questioned concerning their preferences on

these alternatives. However, there are several difficulties in

obtaining objective function values for the different alternatives:

• The numerical evaluations of the alternatives with respect to

some criteria are not available.

• Even in cases when they are available, they are very subjective

and uncertain and the decision making process will become

very complicated and the results unreliable.

• The stakeholders do not want to reveal their precise evaluation

values especially in conflict situations.

Therefore it will be easier and the only possibility to obtain the

relative rankings of the alternatives. The results are shown in

2
Uniform
thinning

1
Clear
cut

4
Control

3
Strip cut

and
thinning

Fig. 5.1 Preference graph illustrating pairwise comparisons in Case Study 5.3.1
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Table 5.9. The relative powers of the six DMs are different in the

viewpoint of the group moderator. However due to the intensive

conflict among the stakeholder, the moderator did not reveal

these relative power values. The linguistic weights shown in

Table 5.9 are obtained from an independent senior expert who

is familiar with this case.

Now, we can find the most appropriate alternative by using the

various social choice methods. Notice that instead of verbal

descriptions of the power values we had to use the scale shown

in Table 5.10 to quantify the qualitative values.

5.3.2.1 Plurality Voting

The plurality voting method is applied for the data of Table 5.9

and the scores of the different alternatives are shown in

Table 5.11. Based on these results, the last alternative has the

largest Aj value. Notice that in the case of using power index pi for

DMi, (5.2) should be revised as

Table 5.9 Ranking of the alternatives with different stakeholders

Decision

makers

Power of DMs Alternatives

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

DM1 Medium 4 8 3 10 2 6 7 9 5 1

DM2 High 5 9 3 8 4 2 1 10 6 7

DM3 Slightly high 4 10 2 9 3 7 6 8 5 1

DM4 Slightly low 1 7 2 9 3 8 6 10 5 4

DM5 Low 7 8 5 10 3 4 6 9 2 1

DM6 High 4 9 2 10 3 8 6 7 5 1

Table 5.10 Qualitative

values and their numerical

equivalents

Qualitative value Numerical value

Very low 0.00

Low 0.20

Slightly low 0.35

Medium 0.50

Slightly high 0.65

High 0.80

Very high 1.00
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Aj ¼
Xn

i¼1

f ðaijÞpi: (5.12)

So the last alternative is the social choice, which is indicated

with bold value in the table.

5.3.2.2 Borda Count

The Borda counts for this case study are shown in Table 5.12.

Based on these results, the third alternative has the highest Borda

count, which is indicated with bold value in the table. Therefore it

is the social choice. Notice again that due to the usage of different

powers, (5.7) is revised as

Bj ¼
Xn

i¼1

piðm� aijÞ ¼ m
Xn

i¼1

pi �
Xn

i¼1

piaij: (5.13)

Table 5.11 Scores of

alternatives by using

plurality voting in Case

Study 5.3.2

Alternatives Aj

A1 0.35

A2 0.00

A3 0.00

A4 0.00

A5 0.00

A6 0.00

A7 0.80

A8 0.00

A9 0.00

A10 2.15

Table 5.12 Results of

using Borda count in Case

Study 5.3.2

Alternatives Bj

A1 19.45

A2 4.05

A3 24.50

A4 2.60

A5 22.80

A6 13.85

A7 16.70

A8 4.40

A9 16.30

A10 23.85
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5.3.2.3 Hare System

Notice that the total weights of the DMs is 3.3, and A10 has

more than half of this value (2.15 > 1.65). Therefore it is the

social choice.

5.3.2.4 Dictatorship

The result of using dictatorship depends on the choice of the

dictator. Since DM2 and DM6 have the highest powers in the

committee, one of them has to be selected as the dictator. For

example if the dictator is DM2, then alternative A7 is the choice.

If DM6 is considered as the dictator, then alternative A10 will be

the choice.

5.3.2.5 Pairwise Comparisons

First, we calculate the N(a, b) values. In the case when the DMs

have different powers, instead of using n/2 as a winning thresh-

old, we should use 1
2

Pn
i¼1 pi. In this case the sum of the DMs’

powers is 3.3 and therefore the winning alternative should have

larger score than 3.3/2 ¼ 1.65, and if the score is 1.65, then there

is a tie between the two alternatives. Assume that the pairwise

comparisons are made in the order A1, A2,. . . and the consecutive
comparisons are the followings:

NðA1;A2Þ ¼ 0:5þ 0:8þ 0:65þ 0:35þ 0:2þ 0:8¼ 3:3>1:65;
so A1 is the winner;

NðA1;A3Þ ¼ 0:35<1:65; so A3 is the winner;

NðA3;A4Þ ¼ 0:5þ 0:8þ 0:65þ 0:35þ 0:2þ 0:8¼ 3:3>1:65;
so A3 is the winner;

NðA3;A5Þ ¼ 0:8þ 0:65þ 0:35þ 0:8 ¼ 2:6>1:65; so A3 is

the winner;

NðA3;A6Þ ¼ 0:5þ 0:65þ 0:35þ 0:8 ¼ 2:3>1:65; so A3 is

the winner;

NðA3;A7Þ ¼ 0:5þ 0:65þ 0:35þ 0:2þ 0:8 ¼ 2:5>1:65; so A3

is the winner;
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NðA3;A8Þ ¼
0:5þ 0:8þ 0:65þ 0:35þ 0:2þ 0:8 ¼ 3:3>1:65; so A3 is the

winner;

NðA3;A9Þ ¼ 0:5þ 0:8þ 0:65þ 0:35þ 0:8 ¼ 3:1>1:65; so A3

is still the winner;

NðA3;A10Þ ¼ 0:8þ 0:35 ¼ 1:15<1:65; so A10 is the final

winner.

Thus, alternative A10 is finally the social choice.

5.4 Consensus on the Results

In a group decision making problem it is very important to

evaluate the consensus measure among the DMs. Consensus is

a measure to quantify the group agreement on the final social

choice. A popular way to calculate the consensus measure is by

using the Spearman rank correlation coefficient. It is a non-para-

metric method, which does not depend on the distribution of the

uncertain preferences. It calculates the correlation coefficient

among the ranking of alternatives declared by DMi in comparison

to the ranking obtained by the group as

ri ¼ 1�
6
Pm

j¼1

d2ij

mðm2 � 1Þ ; (5.14)

where dij is the distance between the rank of alternative j declared

by DMi and its rank calculated by a social choice method, and m

is again the number of alternatives. As an illustration we use the

results of the previous subsection and compute the correlation

coefficients between the DM’s rankings (Table 5.9) and the

results of applying the Borda count (Table 5.12). The reason of

using the Borda counts is that it represents a complete ranking

of the alternatives in comparison with the other four methods.

The detail of calculating the d1j values for DM1 is shown in

Table 5.13.
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Now based on (5.14) the r1 value is obtained as

r1 ¼ 1� 6ð0þ 1þ 4þ 0þ 1þ 1þ 4þ 1þ 1þ 1Þ
10ð100� 1Þ ¼ 0:9152:

Assuming Normal distribution for r1, its standardized value, z,

is

z ¼ r � m
1ffiffiffiffiffiffiffi
m�1

p ¼ 0:9152� 0
1ffiffiffiffiffiffiffiffi
10�1

p ¼ 2:7456:

Using the table of the normal distribution (Appendix), the

cumulative probability value is 0.9970, which results in

the two-tailed error of 0.0015. The correlation coefficient and

the significance levels (p-value) for the consensus measures of

other DMs are determined and all are shown in Table 5.14.

A larger value of the Spearman’s coefficient indicates larger

level of consensus.

The consensus of a group is usually under criticism, if its

measure is less than ~0.60 (Messier 1983; Ashton 1992). Fortu-

nately the results of the consensus levels in Table 5.14 are greater

than ~0.60 except in the case of DM2. Therefore the moderator

Table 5.13 Distances between the ranking obtained by DM1 and the Borda counts in

Case Study 5.3.2

Ranks A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

DM1 4 8 3 10 2 6 7 9 5 1

Borda count 4 9 1 10 3 7 5 8 6 2

d1j 0 �1 2 0 �1 �1 2 1 �1 �1

d21j 0 1 4 0 1 1 4 1 1 1

Table 5.14 Consensus

measures of the DMs in

Case Study 5.3.2

Decision

makers

Correlation

coefficients

Significance

(two-tailed)

DM1 0.9152 0.0015

DM2 0.5152 0.0306

DM3 0.9636 0.0010

DM4 0.8424 0.0029

DM5 0.6727 0.0109

DM6 0.9636 0.0010
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should have discussions and additional interview with DM2 to

revise his/her rankings and then the consensus measure should be

calculated again until all of the DMs are satisfied with the results

obtained by using Borda counts.

5.5 Discussions

This chapter introduced four social choice methods. They do not

require the knowledge of objective function values, they only

need the rankings of the alternatives by the DMs. Two case

studies were used to illustrate the methodology. The first study

determined the best treatment alternative of a forest region in

Northern Arizona, and the second study helped to find the best

project for water resources development of a watershed in Iran.

Plurality voting is a simple procedure with the disadvantage

that it considers only the best rankings by the DMs. Borda count

is able to provide a complete ordering of the alternatives in most

cases (not in Case Study 5.3.1 but in Case Study 5.3.2). The

decisions in Hare system are based on only first rankings, so it

has the same disadvantage as plurality voting. Pairwise compari-

son results largely depend on the order in which comparisons are

performed. Dictatorship considers only the ranking of only one

DM. Based on the general properties of these methods as well as

on the actual case studies we can recommend Borda count for

solving these types of water resources problems.

The goodness of the consensus (social choice solution) can be

measured by the Spearman coefficient. Its application was illu-

strated for Case Study 5.3.2.
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Chapter 6

Conflict Resolution Methods

6.1 Introduction

Water and environmental management problems usually face

conflicts among the stakeholders because of limited resources

and different preferences. These problems become more compli-

cated when stakeholders have conflicting criteria. In such cases

we should find appropriate trade-offs between them. When cri-

teria are in conflict, then any improvement in one criterion can be

achieved in the expense of worsening the condition of others. For

example, protecting natural resources is in conflict with the

economic benefits of their utilization. If we would allocate the

limited water resources just for the domestic or for the industrial

usages, then it would threaten the sustainability of the environ-

ment.

In any trade-off, the DM should select a single choice from the

set of nondominated solutions. A very popular approach to deal

with such problems is known as conflict resolution, which is a

special chapter of cooperative game theory. Any two-person

conflict is mathematically defined by a pair ðH ; f �Þ, where

H � R2 is a convex, closed, bounded and comprehensive feasible

criteria space, f � ¼ ð f �1 ; f �2 Þ is the disagreement or the status

quo point. H is called comprehensive if f 2 H and �fbf imply

that �f 2 H . Figure 6.1 shows this situation. Let fi denote the

criterion value of DMi, and since no rational DM would accept

M. Zarghami and F. Szidarovszky, Multicriteria Analysis,
DOI 10.1007/978-3-642-17937-2_6,
# Springer-Verlag Berlin Heidelberg 2011
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a value less than that would be obtained in the case of disagree-

ment, we have to assume firf �i for both DMs. Therefore the

feasible criteria space H is reduced to its subset

H� ¼ ðf1; f2Þjðf1; f2Þrðf �1 ; f �2 Þ;ðf1; f2Þ 2 H
� �

:

It is also assumed that the Pareto frontier of H* is a strictly

decreasing concave function of f1. Notice that F
�
1 and F�

2 are the

maximal values of the criteria and so point F� ¼ ðF�
1 ;F

�
2Þ is the

ideal point.

6.2 The Nash Bargaining Solution

Consider this problem from the point of view of a single DM, say

DM1. He/she has no idea of the choice of the other DM, so this

choice is considered to be random on the feasible set ½ f �2 ;F�
2 �.

There are two possibilities. If the simultaneous decision vector

( f1, f2) is feasible, then both DMs obtain their choices, otherwise

they get the disagreement (or status quo) values. Assuming

uniform distribution for f2, the expected criterion value of DM1 is

f1
gðf1Þ � f �2
F�
2 � f �2

þ f �1 1� gðf1Þ � f �2
F�
2 � f �2

� �

; (6.1)

f1

f2

f1f1

H

f2 = g(f1)

F1 = g –1(f2 )

F2 = g(f1)*

*
*

* * *

*

f

Fig. 6.1 The feasible set of

H in a conflict with two

DMs
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since vector ðf1; f2Þ 2 H if f2 belongs to the interval ½f �2 ; gðf1Þ�.
This expected value can be rewritten as

f �1 þ ðf1 � f �1 Þðgðf1Þ � f �2 Þ
F�
2 � f �2

;

where the first term is a constant, and the denominator of the

second term is a given positive value. Therefore this expected

value is maximal if the product ðf1 � f �1 Þðgðf1Þ � f �2 Þ is the larg-
est. It gives a point (f1, f2) with f2 ¼ g(f1) on the Pareto frontier

such that the product of the differences of the actual and the

disagreement criterion values is as large as possible. This point

is symmetric for the two DMs, so this is a common optimal

solution for both of them, therefore it is a reasonable solution

for the conflict situation. Notice that it can be obtained by solving

the following optimization problem:

Maximize ðf1 � f �1 Þðf2 � f �2 Þ
subject to ðf1; f2Þ 2 H

f1rf �1
f2rf �2 :

(6.2)

This objective function is usually called the Nash product.

Since the logarithm of the objective function is strictly concave,

this problem has a unique solution, which can be obtained very

easily. Observe that at the endpoints f �1 and F�
1 of the feasible

interval of f1 the objective function has zero values, so the

optimum is interior. If g is differentiable, then the first order

condition implies that

gðf1Þ � f �2 þ g0ðf1Þðf1 � f �1 Þ ¼ 0: (6.3)

The left hand side is strictly decreasing in f1, furthermore its

value is F�
2 � f �2 >0 at f1 ¼ f �1 and is g0ðF�

1ÞðF�
1 � f �1 Þ<0 at

f1 ¼ F�
1 . Therefore there is a unique solution in interval ðf �1 ;F�

1Þ
which can be obtained by using any of the well known methods

for solving single-variable equations (like bisection, regular falsi,
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secant, or Newton methods). A comprehensive summary of these

procedures is given for example, in Szidarovszky and Yakowitz

(1978). In his classical paper, Nash (1950) introduced six require-

ments which have to be satisfied by a fair solution. He also proved

that there is a unique solution satisfying these axioms and it is the

optimal solution of problem (6.2). Therefore it is usually called

the (Symmetric) Nash Bargaining Solution.

Many authors have criticized the Nash axioms, and modified

them. Any such modification has resulted in a new bargaining

solution method. In the following subsections the most popular

such concepts and solutions will be introduced.

6.3 The Non-symmetric Nash Solution

The non-symmetric Nash solution is the generalization of the

Nash solution for non-symmetric DMs. It is the unique solution

of the following problem:

Maximize ðf1 � f �1 Þaðf2 � f �2 Þ1�a

subject to ðf1; f2Þ 2 H

f1rf �1
f2rf �2 ;

(6.4)

where a 2 ½0; 1� and 1 � a are the relative powers of the two

DMs or the weights of their objectives.

Example 6.1. A limited water supply should be allocated between

an agricultural district and a rural area. Each of them wants more

and more water. The feasible criteria space is assumed to be

H ¼ ðf1; f2Þjf1; f2r0; f2b1� f1
2

� �
with the disagreement payoff

vector (0, 0) as shown in Fig. 6.2. The zero disagreement point

shows that without an agreement none of the users can receive

water, and therefore they can receive only zero benefits.
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If we assume equal power weights as a ¼ 1 � a ¼ 0.5, then

the non-symmetric Nash problem becomes the Nash bargaining

solution which can be written as follows:

Maximize ðf1 � 0Þ0:5ðf2 � 0Þ0:5
subject to 0bf1b1

f2 ¼ 1� f1
2;

or

Maximize ðf1 � 0Þð1� f1
2 � 0Þ

subject to 0bf1b1:

The objective function is f1 � f1
3

� �
which is 0 at the endpoints

f1 ¼ 0 and f1 ¼ 1 so the optimal solution is interior. The first

order condition implies that

1� 3f1
2 ¼ 0

implying that

f1 ¼
ffiffiffi
3

p

3
� 0:5774; and so f2 ¼ gðf1Þ ¼ 2

3
� 0:6667:

So the optimal point is approximately (0.58, 0.67).

f2 =1– f1
2

f2

f1f *

H

1

1

Fig. 6.2 The feasible

objective set of Example 6.1
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6.4 Area Monotonic Solution

The area monotonic solution is based on selecting a linear array

starting from the disagreement point and dividing H into two

subsets of equal area, as shown in Fig. 6.3. Hence, the first

coordinate of the solution, f1, is the root of the nonlinear equation

A1 ¼ A2 where

A1 ¼
Zf1

f �
1

gðxÞdx� 1

2
ðf1 � f �1 Þ f �2 þ gðf1Þ

� �
; (6.5)

and

A2 ¼ 1

2
ðf1 � f �1 Þðf �2 þ gðf1ÞÞ þ

ZF
�
1

f1

gðxÞdx� ðF�
1 � f �1 Þf �2 : (6.6)

Notice that A1 increases in f1 and A2 decreases in f1. So

equation A1 � A2 ¼ 0 has a unique solution. If the conflict is

f2

f1
f1

A2

A1

F1 = g–1(f2)

f2 = g (f1)

*

*

* *

Fig. 6.3 Conflict resolution

by dividing H into equal

areas
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not symmetric, that is a 6¼ 0.5, then we might define the non-

symmetric area monotonic solution by requiring that the ratio of

the areas of the two regions be a=ð1� aÞ. We should therefore

solve the problem of ð1� aÞA1 ¼ aA2.

Example 6.2. In the problem of Example 6.1 the total feasible

area of H is calculated as

Z1

0

ð1� x2Þdx ¼ x� x3

3

	 
1

0

¼ 2

3
;

so both A1 and A2 have to be 1/3. For A2 we have equation

1

3
¼ f1ð1� f1

2Þ
2

þ
Z 1

f1

ð1� x2Þdx ¼ f1 � f1
3

2
þ x� x3

3

	 
1

f1

¼ f1 � f1
3

2
þ 2

3
� f1 þ f1

3

3
;

that is,

3f1 � 3f1
3 þ 4� 6f1 þ 2f1

3 ¼ 2

or

f1
3 þ 3f1 � 2 ¼ 0:

Using the Newton’s method in three iteration steps, the optimal

point is obtained for two correct decimals: (0.60, 0.64).

6.5 Equal Loss Solution

The equal loss solution was also originally developed for the

symmetric case, when the values of both criteria were relaxed

simultaneously from their largest values with equal speed until an
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agreement was achieved. That is, both players should decrease their

payoff values from the ideal point with equal speed until feasible

solution is found (see Fig. 6.4). Therefore, we determine the point

(f1, g(f1)) on the Pareto frontier such that

F�
1 � f1 ¼ F�

2 � gðf1Þ; (6.7)

which is a monotonic nonlinear equation for f1.

In the case of different powers of the players, a 6¼ 0.5, we may

generalize this concept by requiring that the more important

objective is relaxed slower than the other one by assuming that

the ratio of the relaxation speeds equals (1 � a)/a. That is, f1 is
the solution of equation

aðF�
1 � f1Þ ¼ ð1� aÞðF�

2 � gðf1ÞÞ: (6.8)

Similarly to Example 6.2, the nonlinear equation for the single

unknown f1, can be easily solved by using standard methodology.

Example 6.3. Assuming equal power weights and using relation

(6.7) with F�
1 ¼ F�

2 ¼ 1, we have

1� f1 ¼ 1� ð1� f1
2Þ;

that is,

g (f1) = F2

f2

f1 F1 = g –1(f2 )

f2 = g (f1)

f1

*

*

* * *

*

Fig. 6.4 Equal loss solution
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f1
2 þ f1 � 1 ¼ 0

with the solution

f1 ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

p

2
¼ �1þ ffiffiffi

5
p

2
� 0:62:

Then the optimal point is (0.62, 0.62).

6.6 Kalai–Smorodinsky Solution

In the case of the Kalai–Smorodinsky solution as shown in

Fig. 6.5, an arrow starts from the status quo point and moves

toward the ideal point. The last feasible point is then accepted as

the solution. That is, we move the payoff vector from the status

quo point toward the ideal point as far as possible. Hence, we

have to compute the unique solution of the following equation:

gðf1Þ � f �2 ¼ F�
2 � f �2

F�
1 � f �1

ðf1 � f �1 Þ; (6.9)

f1 F1

F2

(F1,F2)

(f1,f2)

*

*

* *

* *

Fig. 6.5 The

Kalai–Smordinsky solution
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where the two-point formula is used for the equation of the arc.

If the criteria of the DMs have different importance weights,

then the slope of the arc changes in such a way that the more

important criterion is improved more rapidly. Therefore in this

case (6.8) should be revised as follows

gðf1Þ � f �2 ¼ ð1� aÞðF�
2 � f �2 Þ

aðF�
1 � f �1 Þ

ðf1 � f �1 Þ: (6.10)

Example 6.4. In Example 6.1 with equal power weights, (6.9) has

the special form

ð1� f1
2Þ � 0 ¼ ð1� 0:5Þð1� 0Þ

0:5ð1� 0Þ ðf1 � 0Þ;

that is,

f1
2 þ f1 � 1 ¼ 0:

Therefore the optimal solution is again (0.62, 0.62).

6.7 Case Studies

6.7.1 Multi-reservoir Bi-objective Planning

The four-reservoir system of the Cauvery River basin in India is

modelled using a bi-objective mathematical programming prob-

lem to find optimum cropping patterns, subject to land, water and

downstream release constraints (Vedula and Rogers 1981). The

monthly deterministic model is applied to maximize both the net

economic benefit and the irrigated cropped area. The tradeoff

curve between these two conflicting criteria is developed and

then four conflict resolution methods are used to find the optimum

design.
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In Fig. 6.6, the Hemavathy, Krishnarajasagara, Kabini and

Mettur reservoirs are denoted respectively by A, B, C and D.

Reservoir D mainly regulates the releases to the existing irriga-

tion in the downstream. The groundwater supply is not consid-

ered as a usable water resource because a large part of it is in the

hard rock area.

The first criterion maximizes the total economic benefit from

all crops in the upper basin, where the model considers the option

of irrigating or not irrigating any or all of the cropped areas. So

the first criterion is the following:

Maximize f1 ¼
X3

j¼1

XMj

i¼1

ðaijIij þ bijUijÞ; (6.11)

where aij ¼ net benefits at site j per unit area of irrigated crop i

(j ¼ 1, reservoir A; j ¼ 2, reservoir B; and j ¼ 3, reservoir C);

bij ¼ net benefits at site j per unit area of unirrigated crop i;

Iij ¼ irrigated area at site j with crop i; Uij ¼ unirrigated area at
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Fig. 6.6 Reservoir systems in part of the Cauvery River basin, India
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site j with crop i; and Mj ¼ total number of crops considered at

site j.

The second criterion maximizes the total irrigated area from all

crops in the upper basin:

Maximize f2 ¼
X3

j¼1

XMj

i¼1

Iij: (6.12)

The decision variables are the cropped areas with each type of

crop at each reservoir with or without irrigation and the monthly

storages in each of the reservoirs. The constraints for each month

at each of the reservoir sites are as follows:

• The land allocation should be such that the same area for a

given crop is available throughout its growing season.

• The storage continuity constraints include all inflows, outflows

(diversions and downstream releases) and evaporation losses.

• The total irrigated and unirrigated land areas in each month are

limited by the physically available values.

• The downstream release from reservoir D should not be less

than the estimated water requirements for existing downstream

irrigation.

Evaporation losses, crop water requirements for existing and

proposed irrigation, net benefits from irrigated and unirrigated

cultivation per unit area of the crops were estimated from avail-

able information and summarized in Vedula and Rogers (1981).

The maximum net benefit (first criterion) was found to be

2,085 � 106 rupees (Rs.) (at 1970–1972 price level). The maxi-

mum irrigated cropped area (second criterion) was found to be

755.6 � 103 ha. A bi-objective analysis using the e-constraint
approach (already described in Chap. 3) revealed seven Pareto

frontier solutions as shown in Table 6.1. The criterion values are

also normalized to be in the range of [0, 1] with 0 and 1 repre-

senting the minimum and maximum values, respectively. Based

on these normalized criterion values the tradeoff curve between

the net benefits and irrigated cropped areas is shown in Fig. 6.7.

Now the question is the following: which point of the tradeoff

curve should be selected as the solution of the conflict. We applied

106 6 Conflict Resolution Methods



the four methods discussed earlier in this chapter. We used

four different weights selection for the criteria. By using least

squares a cubic polynomial was fitted to the Pareto frontier and

the GAMS software was used to find the numerical solutions

(Table 6.2).

6.7.2 Water Distribution Network Design

The optimal operation of water distribution networks is one of the

most important topics in water engineering. The existing optimiza-

tion models minimize only the cost of the new or the rehabilitated

Table 6.1 Pareto frontier set and their normalized values

No. f1, net benefit

106 Rs.

f2, area 10
3 ha Normalized f1 Normalized f2

1 2,085 527.6 1.00 0.00

2 2,071 573.2 0.94 0.20

3 2,054 618.8 0.86 0.40

4 2,034 664.4 0.76 0.60

5 1,971 710.0 0.47 0.80

6 1,927 730.0 0.27 0.89

7 1,868 755.6 0.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

f2

f1

f2 = – 2.45f1
3+ 2.41f1

2 – 0.97f1 + 1.00

Fig. 6.7 Pareto frontier of the bi-objective model of the Cauvery River basin
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network. However there are other important criteria in real appli-

cations concerning the leakage, reliability, water quality, and

redundancy among others. In this section, a bi-objective optimi-

zation model is developed to the benchmark problem of the Hanoi

trunk network, Vietnam (Fig. 6.8). This network consists of 32

nodes and 34 pipes supplied by a fixed grade source in elevation of

100m. Theminimum required head at the junction nodes has to be

30 m. The commercially available diameters, D, for the pipes are

selected from the set A ¼ [304.8, 406.4, 508.0, 609.6, 762.0,

1,016.0] in millimeter, and their corresponding cost ($) per unit

length is assumed to be given by the function 1.1 � D1.5.

In this case, the optimal design of the water distribution net-

work can be formulated as follows. The first criterion is to

minimize the total cost of constructing the network:

Table 6.2 Optimum decisions by varying weights for the case of the Cauvery River

basin

a, weight of
net benefit

1 � a, weight
of area

f1, normalized

net benefit

f2, normalized

area

f1, net benefit

106 Rs.

f2, area

103 ha

Non-symmetric Nash solution

1.00 0.00 1.00 0.00 2,085 527.6

0.75 0.25 0.81 0.50 2,043 641.6

0.50 0.50 0.67 0.69 2,013 686.1

0.25 0.75 0.53 0.80 1,984 709.1

0.00 1.0 0.00 1.00 1,868 755.6

Area monotonic solution

1.00 0.00 1.00 0.00 2,085 527.6

0.75 0.25 0.88 0.35 2,059 607.4

0.50 0.50 0.69 0.67 2,018 680.4

0.25 0.75 0.37 0.85 1,948 721.4

0.00 1.0 0.00 1.00 1,868 755.6

Equal loss solution

1.00 0.00 1.00 0.00 2,085 527.6

0.75 0.25 0.82 0.47 2,046 634.8

0.50 0.50 0.68 0.68 2,016 682.6

0.25 0.75 0.47 0.82 1,970 714.6

0.00 1.0 0.00 1.00 1,868 755.6

Kalai–Smorodinsky solution

1.00 0.00 1.00 0.00 2,085 527.6

0.75 0.25 0.90 0.30 2,063 596.0

0.50 0.50 0.68 0.68 2,016 682.6

0.25 0.75 0.29 0.86 1,931 723.7

0.00 1.0 0.00 1.00 1,868 755.6
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Minimize f1 ¼
Xn

i¼1

CiðDi; LiÞ; (6.13)

where n is the number of pipes in the system, Ci is the cost

function for pipe i with diameter Di and length Li.

The second criterion is maximizing a resiliency measure. Any

increase in the value of network resilience, improves the reliabil-

ity of the network under failure due to the variability in different

water consumption levels. That is, the second criterion is to

maximize network resilience:

Maximize f2 ¼
Xm

j¼1

RðHj � Hj;minÞ; (6.14)

where m is the number of nodes, Hj is the head of water in node j,

Hj,min is the minimum required head in node j. In addition, R is
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Fig. 6.8 The case of the Hanoi network (Fujiwara and Khang 1990)
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a function of both the nodal surplus power and the uniformity in

the diameters connected to that node. These criteria should be

optimized subject to the energy and mass balance conditions at

each node:

gjðH ;DÞ ¼ 0; (6.15)

HjrHj;min; (6.16)

Di 2 A; (6.17)

where gj represents the nodal mass and loops energy balance. The

decision variables are the alternative design options for each pipe

in the network. The hydraulic analysis on the constraints is

calculated by using the EPANET software and the optimization

problem is solved by using a specially developed Genetic Algo-

rithm after converting it to a constrained, single-objective and

deterministic equivalent optimization problem (Prasad and Park

2004). Thirty Pareto optimal (that is, nondominated) solutions

were obtained and their normalized criteria values are shown in

Fig. 6.9. Notice that the highest value of the cost criterion is

normalized to 0 and the smallest value to 1. Then the new

0.0
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0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

f2

f1

f2 = –0.46f1
2 – 0.59f1 +1.02

Fig. 6.9 The Pareto frontier and its continuous approximation for the water distribu-

tion problem
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normalized cost criterion as well as the resiliency index should be

maximized.

Conflict resolution methods were selected to find appropriate

design from the Pareto set given in Fig. 6.9. The obtained solu-

tions are shown in Table 6.3. Similarly to the previous case study,

the results with five different weights selections are presented.

6.8 Discussions

Conflict resolution methodology was outlined in this chapter.

Four different methods were introduced, each of them is based

on a particular expression of the fairness of the solution. These

Table 6.3 Bi-objective optimal solutions with different weights for the Hanoi network

a, weight of
normalized

cost

1 � a, weight
of resiliency

f1, normalized

cost

f2, normalized

resiliency

Cost

(103 $)

Network

resilience

index

Non-symmetric Nash solution

1.00 0.00 1.00 0.00 6,349.3 0.231

0.75 0.25 0.749 0.320 6,497.1 0.250

0.50 0.50 0.533 0.575 6,624.4 0.264

0.25 0.75 0.305 0.797 6,758.7 0.277

0.00 1.0 0.00 1.00 6,938.4 0.289

Area monotonic solution

1.00 0.00 1.00 0.00 6,349.3 0.231

0.75 0.25 0.772 0.291 6,483.6 0.248

0.50 0.50 0.537 0.570 6,622.0 0.264

0.25 0.75 0.277 0.821 6,775.2 0.279

0.00 1.0 0.00 1.00 6,938.4 0.289

Equal loss solution

1.00 0.00 1.00 0.00 6,349.3 0.231

0.75 0.25 0.766 0.298 6,487.1 0.248

0.50 0.50 0.553 0.553 6,612.6 0.263

0.25 0.75 0.329 0.776 6,744.6 0.276

0.00 1.0 0.00 1.00 6,938.4 0.289

Kalai–Smorodinsky solution

1.00 0.00 1.00 0.00 6,349.3 0.231

0.75 0.25 0.792 0.264 6,471.8 0.246

0.50 0.50 0.553 0.553 6,612.6 0.263

0.25 0.75 0.274 0.823 6,777.0 0.279

0.00 1.0 0.00 1.00 6,938.4 0.289
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methods can be used in both symmetric and non-symmetric cases.

Since the results by applying different methods are usually dif-

ferent, the DM has to have a good feeling about his/her idea of the

fairness of the solution and then to accept the answer which

closest resembles his/her notion of fairness.

112 6 Conflict Resolution Methods



Chapter 7

MCDA Problems Under Uncertainty

7.1 Introduction

Many researchers emphasize that a real challenge in modeling

MCDA problems is how to incorporate the uncertainty of the

input data. MCDA models for water and environmental manage-

ment, similar to many areas, face uncertainties that generally

arise from two sources: random or probabilistic uncertainty

related to environmental, economic or technical data, and fuzzy

uncertainty related to subjective judgments and the characteris-

tics of the DM. By considering uncertainty, the decision analysis

becomes more difficult, but by ignoring it we might miss reality.

This chapter discusses and illustrates the main approaches for

modeling these two types of uncertainty. The studies of Sahinidis

(2004) and Stewart (2005) review the literature of the different

types of the uncertain MCDA models and solution procedures.

7.2 Probabilistic Methods

In water resources and environmental management, we often

have quantities, which cannot be forecasted with certainty. This

type of variables like water demand, energy prices, rainfall or

stream flow, evaporation, wastewater pollutions and others are

called random or probabilistic variables. In this section, we deal

M. Zarghami and F. Szidarovszky, Multicriteria Analysis,
DOI 10.1007/978-3-642-17937-2_7,
# Springer-Verlag Berlin Heidelberg 2011
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with random variables with regular and stationary behavior. The

statistical attributes of these types of variables are not changing

and they can be characterized by single probability distributions

(Loucks and van Beek 2005). If there are serial correlations in the

spatial or temporal chains of the random values or trends, then

they have to be taken into account. Advanced statistical methods

(such as factor analysis) can be used to find the independent

factors and regression analysis can be applied to find the trends,

which has to be added to the predicted time-related values.

7.2.1 Certain Equivalents

Assume first that the feasible set is deterministic, only the criteria

depend on random parameters. Let x be a random vector, the com-

ponents of which are the random parameters. Let x be the deci-

sion variable and X the feasible decision space. Then the problem

can be formulated as

Maximize fkðx; xÞ
subject to x 2 X :

In the economic literature, it has been shown that the lottery of

the random outcome fkðx; xÞ is equivalent to a linear combination

of its expectation and variance,

Eðfkðx;xÞÞ � bkVarðfkðx;xÞÞ; (7.1)

where bk shows the level of risk acceptance of the DM. If bk ¼ 0,

then he/she considers only the expected values and completely

ignores risk characterized by the variance. Larger value of bk
shows that the DM is more sensitive about accepting risk and

would like to reduce uncertainty. Expression (7.1) is called the

certain equivalent.

Example 7.1. Consider again the problem of locating a dam,

which was introduced earlier in Example 3.1. Assume that the
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DM has medium sensitivity about risk in the net benefit, very low

sensitivity about risk in the number of beneficiaries and he/she is

very sensitive about geological stability. So he/she assigns the

risk coefficients b1 ¼ 1.0, b2 ¼ 0.1 and b3 ¼ 10 to the three

criteria. Assume in addition that the standard deviation over

expected value (coefficient of variation) of the net benefit data

is 5%, those of the number of beneficiaries and geological stabil-

ity are 10% and 2%, respectively. The expected values are given

in Table 3.1 and the variance data are shown in Table 7.1.

The certain equivalents of the random criteria values for each

alternative are computed by using expression (7.1), and they are

presented in Table 7.2.

Based on the new evaluation matrix any method for solving

discrete MCDA problems can be used.

Example 7.2. Consider again the continuous MCDA problem

introduced earlier in Example 4.1, and assume that the amount

of pollutant removal by the first two technologies can be con-

sidered exact values, however the amounts estimated by using

the third technology variant are uncertain with 30% standard

deviations. The amount of the removed pollutant of the first

kind is

f1 ¼ 3x1 þ 2x2 þ x1ð1� x1 � x2Þ

Table 7.1 Variances of the evaluation values for Example 7.1

Criteria Alternatives

A1 A2 A3 A4

C1 24.800 18.361 25.553 22.610

C2 0.160 3.610 16.000 25.000

C3 1.960 1.000 0.040 0.160

Table 7.2 Evaluation table for Example 7.1 with certain equivalents

Criteria Alternatives

A1 A2 A3 A4

C1 74.800 67.339 75.547 72.490

C2 3.984 18.639 38.400 47.500

C3 50.400 40.000 9.600 18.400
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and that of the second kind is

f2 ¼ 2x1 þ 3x2 þ x2ð1� x1 � x2Þ

where x1 and x2 are random variables with

Eðx1Þ ¼ Eðx2Þ ¼ 1 and Varðx1Þ ¼ Varðx2Þ ¼ 0:09:

Clearly

Eðf1Þ ¼ 3x1 þ 2x2 þ 1ð1� x1 � x2Þ ¼ 2x1 þ x2 þ 1;

Varðf1Þ ¼ ð1� x1 � x2Þ20:09;

Eðf2Þ ¼ 2x1 þ 3x2 þ 1ð1� x1 � x2Þ ¼ x1 þ 2x2 þ 1;

and

Varðf2Þ ¼ ð1� x1 � x2Þ20:09:
Assume that the DM is more sensitive about the risk con-

cerning the first pollutant than the second one by selecting

b1 ¼ 2 and b2 ¼ 1. So the deterministic equivalents of the two

objective functions are

2x1 þ x2 þ 1� 0:18ð1� x1 � x2Þ2;
and

x1 þ 2x2 þ 1� 0:09ð1� x1 � x2Þ2:
Therefore the DM will solve the following deterministic

problem:

Maximize 2x1 þ x2 þ 1� 0:18ð1� x1 � x2Þ2; x1 þ 2x2 þ 1

� 0:09ð1� x1 � x2Þ2
subject to x1 þ x2b1

x1; x2r0:
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7.2.2 Discrete Problems

The application of certain equivalents was already introduced in

the previous subsection, when each random evaluation value is

replaced by its certain equivalent. Then the resulting determin-

istic MCDA problem can be solved by using any method intro-

duced earlier.

Example 7.3. Returning to the problem introduced in Example

7.1, first we have to normalize the criteria. The smallest and

largest values of C1 are 67.339 and 75.547, so the normalized

first criterion becomes (C1 � 67.339)/(75.547 � 67.339). Simi-

larly, the normalized second criterion becomes (C2 � 3.984)/

(47.500 � 3.984), and the normalized third criterion can be

obtained as (C3 � 9.600)/(50.400 � 9.600). The normalized

evaluation table is given in Table 7.3. Assume that simple addi-

tive weighting is used with weights w1 ¼ 0.25, w2 ¼ 0.25 and

w3 ¼ 0.50, then the weighted averages for the four alternatives

are given as follows:

A1 ¼ 0:909 0:250ð Þ þ 0:000 0:250ð Þ þ 1:000 0:500ð Þ ¼ 0:727;

A2 ¼ 0:000 0:250ð Þ þ 0:337 0:250ð Þ þ 0:745 0:500ð Þ ¼ 0:457;

A3 ¼ 1:000 0:250ð Þ þ 0:791 0:250ð Þ þ 0:000 0:500ð Þ ¼ 0:448;

A4 ¼ 0:627 0:250ð Þ þ 1:000 0:250ð Þ þ 0:216 0:500ð Þ ¼ 0:515:

Based on these results, A1 � A4 � A2 � A3.

Notice that in applying the above discussed method we used

only the expectations and variances of the evaluation numbers,

Table 7.3 Normalized evaluation matrix for Example 7.3

Criteria Alternatives

A1 A2 A3 A4

C1 0.909 0.000 1.000 0.627

C2 0.000 0.337 0.791 1.000

C3 1.000 0.745 0.000 0.216
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there was no need to know the distribution functions. In cases,

when the distribution functions are available, simulation is an

alternative approach. This method can be described in the follow-

ing way. Select a large positive integer N as the number of

generating random evaluation values. For each case, random

values of the evaluation numbers are generated and they are

used to form a random evaluation matrix. In the case of each

evaluation matrix, the best alternative is determined by using a

DM selected method. After repeating this step for N times, we

have the number of cases for each alternative, when it was

selected as the best choice. Let N1, N2,. . ., Nm denote these

values, so Nk denote the number of cases when alternative Ak

was the best. Then for each alternative the probability that it is

optimal can be approximated by the relative frequency pk ¼ Nk/N.

In this way a discrete probability distribution can be obtained on

the set of the alternatives. The overall best alternative can be

chosen as any central tendency of this distribution: the mean, the

median or the mode. The mean is given as

Mean ¼ 1

N

Xm

k¼1

kpk; (7.2)

which is usually a non-integer value, so we have to round it to the

closest integer as the integer part of Mean + 0.5. The median is

alternative k, if

Xk�1

l¼1

pl<
1

2
b
Xk

l¼1

pl; (7.3)

and the mode is the alternative which has the highest pk probabil-

ity value.

The method of generating random evaluation numbers depends

on the types of the distribution functions of the elements. The

random number generator of a computer supplies uniform random

numbers in the unit interval [0, 1]. Let u denote such random value.

Assume first an evaluation number aij has a discrete distribution
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with possible values að1Þ<að2Þ< � � � with occurring probabilities

pð1Þ; pð2Þ; . . . . The corresponding random values of aij is a
ðkÞ, if

Xk�1

l¼1

pl<ub
Xk

l¼1

pl: (7.4)

In the case of special distribution types more simple algorithms

can be used. If aij is a Bernoulli variable with parameter p, then

the generated value of aij is 1 if u � p, otherwise it is 0. If aij is a

binomial variable with parameters n and p, then the generated

value of aij is the sum of n independent Bernoulli numbers with

the same parameter p. We will describe the case of Poisson

variables a little later.

Assume next that aij is a continuous variable with distribution

function F(aij),where F is assumed to be strictly increasing. If u is

uniform in [0, 1], then the random number F�1ðuÞ follows the

given distribution function F. If aij is uniform in an interval [A,

B], then the generated random value of aij is given as u(B � A) +

A, since the distribution function of aij is (aij � A)/(B � A). If aij
is exponential with parameter l, then FðaijÞ ¼ 1� e�laij , so the

random value of aij is the solution of equation

1� e�laij ¼ u;

implying that

aij ¼ � 1

l
lnð1� uÞ or aij ¼ � 1

l
ln u; (7.5)

since if u is uniform in [0, 1] then 1 � u is also uniform in this

interval.

Poisson variables can be easily generated by using exponential

random variables. A random Poisson number with parameter l is
k, if for a sequence of independent random exponential values

e1, e2,. . . with the same parameter value l we have

Xk�1

l¼1

el<1b
Xk

l¼1

el: (7.6)
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Assume next that aij is normal with parameters m and s2. Using
the distribution function F of standard normal variable, the equa-

tion for the random value of aij becomes

F
aij � m

s

� �
¼ u;

that is,

aij ¼ F�1ðuÞsþ m: (7.7)

There is a more simple way to generate normally distributed

random numbers. Let u1, u2,. . ., uN be a sequence of independent

uniform numbers from interval [0, 1]. If N is sufficiently large,

then
PN

k¼1

uk is approximately normally distributed. The normal-

ized value

PN

k¼1

uk � N
2

ffiffiffiffi
N
12

q

is a good approximation of the standard normal variable, so

aij ¼
PN

k¼1

uk � N
2

ffiffiffiffi
N
12

q � sþ m (7.8)

is normally distributed with parameters m and s2.
Any monograph on stochastic simulation and Monte Carlo

methods gives a comprehensive summary for generating random

values from the most frequently used distribution types.

7.2.3 Continuous Problems

In the case of continuous MCDA problems, we might find uncer-

tain values in both the objective functions and in the constraints.
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If only the objective function have random elements, then their

certain equivalents are first determined and then the resulted

deterministic problem is solved by any one of the methods dis-

cussed earlier for solving continuous MCDA problems. If there is

randomness in the constraints, then there is the possibility that

they become violated. In the stochastic programming literature

there are two major methods to consider the violation of the

constraints.

1. Depending on the levels of violations, loss functions are intro-

duced and added to one or more objective functions or added to

the problem as additional objective functions.

2. Probability levels are given for each constraint or for each

group of constraints which are then replaced by the require-

ment that they have to be satisfied with probabilities greater

than or equal to given tolerance levels (chance constraints

method, see for example, Charnes and Cooper 1959).

Sometimes these two approaches are combined by introducing

additional loss functions and probabilistic constraints. As an

example, assume that in an allocation problem the constraint

requires to receive at least amount T to be supplied by an uncer-

tain source. Assume that X is the actually supplied amount, which

is normally distributed with mean m and variance s2. Then the

probabilistic constraint becomes

PðXrTÞr1� e;

where 1� e is the given probability level. This constraint can be

rewritten as

1� F
T � m
s

� �

r1� e;

where F is the standard normal distribution function. By using its

inverse, we have

T � m
s

bF�1ðeÞ;
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or

Tbmþ sF�1ðeÞ: (7.9)

This relation shows that by selecting the target value of

mþ sF�1ðeÞ, the received amount will be at least T with proba-

bility 1� e. The table of the standard normal distribution function

is given in Appendix. The function values are presented only for

the nonnegative values of x. If x < 0, then we can use relation

FðxÞ ¼ 1� Fð�xÞ, where �x is positive, so Fð�xÞ can be found
in the table.

Example 7.4. Consider again the water allocation problem intro-

duced earlier in Example 6.1, where we assume that the feasible

criteria space is uncertain:

H� ¼ ðf1; f2Þjf1; f2r0; f2b1� tf 21
� �

;

where t is a normally distributed random variable with E(t) ¼ 1

and Var(t) ¼ 0.01. If we consider this problem as a MCDA

problem, then it can be formulated as

Maximize f1; f2

subject to f1; f2r0
f2b1� tf12:

The criteria f1, f2 and the nonnegativity constraints are deter-

ministic, only the last constraint is random. Let 1� e be the user
selected probability level such that

Pðf2b1� tf 21 Þr1� e:

This condition can be rewritten as

P tb
1� f2

f 21

� �

r1� e;

122 7 MCDA Problems Under Uncertainty



or

F
1� f2

f 21

� �

r1� e;

where F is the distribution function of t. Since FðtÞ ¼ F t�1
0:1

	 

;

this equation can be rewritten as

F

1� f2

f 21
� 1

0:1

0

B
B
@

1

C
C
Ar1� e

or

1� f2

f 21
r0:1F�1ð1� eÞ þ 1

which is equivalent to relation

f2b1� f 2
1
� ð0:1F�1ð1� eÞ þ 1Þ:

For example, if we take the probability level 1� e ¼ 97:5%,

then F�1ð0:975Þ ¼ 1:96, so this last constraint becomes

f2b1� 1:196f 2
1
:

Therefore the deterministic problem has the form

Maximize f1; f2

subject to f1; f2r0

f2b1� 1:196f1
2:

The feasible set is shown in Fig. 7.1.
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By assuming equal weights and using simple weighted averag-

ing the resulting single-objective optimization problem can be

written as

Maximize f1 þ f2

subject to f1; f2r0
f2b1� 1:196f1

2:

It is easy to see that the optimal solution occurs when the slope

of function f2 ¼ 1� 1:196f1
2 is �1, that is, when

� 2ð1:196Þf1 ¼ �1

implying that

f1 ¼ 1

2:392
� 0:418

and

f2 ¼ 1� 1:196ð0:418Þ2 � 0:791:

Caballero et al. (2004) describe alternative methods to solve

uncertain MCDA problems if randomness occurs in both the

objective function and in various parameters of the constraints.

f2

f10.9144

1

Fig. 7.1 Feasible set of

Example 7.4
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7.3 Fuzzy Methods

In the definition of most practical problems, the human judg-

ments are often vague and therefore cannot be expressed by using

exact numerical values. Fuzzy sets offer a way of representing

and manipulating the data that are not precise, but rather vague.

Such vague judgments are frequently used to evaluate water

resources projects and therefore we have to use fuzzy set theory

in tackling their uncertainty. Let X be a given nonempty set.

A fuzzy set A in X is characterized by its membership function

mA: X ! [0, 1] where the value of mA(x) is interpreted as the

degree that element x belongs to set A.

Definition 1. The degree that a value x belongs to either set A or

set B is the maximum of the two individual membership function

values:

mA[BðxÞ ¼ MaximumfmAðxÞ; mBðxÞg: (7.10)

Definition 2. The degree that a value x is simultaneously belongs

to both sets A and B is the minimum of the two individual

membership function values:

mA\BðxÞ ¼ MinimumfmAðxÞ; mBðxÞg: (7.11)

There is a large variety of the shapes of the different types of

the membership functions applied in different applications.

Definition 3. The trapezoidal fuzzy number is defined by the

membership function with tolerance interval [a, b], left width l

and right width r as shown in Fig. 7.2. If a ¼ b, then it becomes a

triangular fuzzy number.

Let m1 ¼ a1; b1; l1; r1ð Þ and m2 ¼ a2; b2; l2; r2ð Þ be positive

trapezoidal fuzzy numbers. Then the basic arithmetic operations

are defined as follows (Bonissone 1982):

m1 þ m2 ¼ a1 þ a2 ; b1 þ b2 ; l1 þ l2 ; r1 þ r2ð Þ; (7.12)
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m1 � m2 ¼ a1 � b2 ; b1 � a2 ; l1 þ r2 ; r1 þ l2ð Þ; (7.13)

m1 � m2 ¼ a1a2 ; b1b2 ; a1l2 þ a2l1 � l1l2 ; b1r2 þ b2r1 þ r1r2ð Þ;
(7.14)

and

m1=m2 ¼
a1

b2
;
a2

b1
;
a1r2 þ l1b2

b2 b2 þ r2ð Þ ;
b1l2 þ r1a2

a2 a2 � l2ð Þ
� �

: (7.15)

7.3.1 Discrete Problems

In defining water and environmental problems, we frequently use

the terms of low, slightly low, medium and very high among

others to describe the importance of the various criteria instead of

specifying weights. When we compare alternatives without spe-

cific values, fuzzy variables are usually used. These types of

variables express the vague and ambiguous values. This section

illustrates how they can be modeled and used in formulating and

solving discrete MCDA problems.

In applying fuzzy parameters in solving discrete MCDA pro-

blems, we may use the methods of Chap. 3 in the following steps:

– First we define suitable fuzzy membership functions for the

weights of the criteria and for the evaluation values of the

alternatives.

m

0

1

l ra b
x

Fig. 7.2 A trapezoidal

fuzzy number

m ¼ a; b; l; rð Þ
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– The fuzzy arithmetic operations of (7.12–7.15) are next used to

obtain the fuzzy scores of the alternatives (e.g. weighted sum

of evaluation numbers).

– After obtaining the final fuzzy membership functions of the

combined goodness measures, they will be compared. To com-

pare fuzzy numbers several methods are known from the

literature. The simplest way is to defuzzify them by the max-

membership method, which selects the value(s) with the high-

est membership degree. Another approach is by using the

a-cuts or the center of mass method. In the first case the

membership function is cut horizontally at different a–levels
between 0 and 1. For each a-level of the membership function,

the minimum and maximum possible values of the variable are

determined and averaged. With a given constant a value, the

alternative with the higher average value is considered to have

higher rank.

Chen and Hwang (1991) gives a comprehensive survey of

fuzzy discrete MCDA methods.

Example 7.5. Several alternative water transfer projects are pro-

posed and considered to conserve the drying Uremia Lake in Iran.

To evaluate these projects four criteria were selected and the

criteria weights were obtained by questioning three responsible

DMs. However due to the uncertainty in the problem these

experts presented their preferences only by linguistic terms as

shown in Table 7.4.

These linguistic variables are modeled with fuzzy numbers, the

membership functions of which are shown in Fig. 7.3.

Table 7.4 The evaluation of the criteria by three DMs

DMs Power

of DMs

Criteria

C1: environmental

impacts

C2: construction

cost

C3: simplicity

of construction

C4: social

acceptance

DM1 High High Very high Medium Slightly low

DM2 Medium Slightly high Medium High High

DM3 Slightly

low

Medium Very high Slightly low High
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By using the fuzzy simple additive weighting method and

(7.12) and (7.14), we can compute the fuzzy weights of all

criteria. For example, in the case of criterion 1 we have

F1 ¼
X3

i¼1

wiai1 ¼ ðHigh�HighÞ þ ðMedium� Slightly HighÞ

þ ðSlightly low�MediumÞ
¼ ð0:9� 0:9; 1� 1; 0:9� 0:2þ 0:9� 0:2� 0:2� 0:2;

1:0� 0:0þ 1:0� 0:0þ 0:0� 0:0Þ þ ð0:5� 0:8; 0:5� 0:8;

0:5� 0:2þ 0:8� 0:2� 0:2� 0:2; 0:5� 0:2þ 0:8� 0:2

þ 0:2� 0:2Þ þ ð0:2� 0:5; 0:2� 0:5; 0:2� 0:2þ 0:5� 0:2

� 0:2� 0:2; 0:2� 0:2þ 0:5� 0:2þ 0:2� 0:2Þ
¼ 1:31; 1:50; 0:64; 0:48ð Þ:

Similar calculations show that F2 ¼ (1.35, 1.45, 0.70, 0.44),

F3 ¼ (0.94, 1.04, 0.52, 0.52), and F4 ¼ (0.81, 0.90, 0.60, 0.60).

By using the max-membership method, the defuzzified criteria

weights are 1.40, 1.40, 0.99, and 0.85 respectively concerning

the criteria of environmental impacts, construction cost, sim-

plicity of construction, and social acceptance. If we normalize

the weight vector for unit sum, then it becomes {0.30, 0.30,

0.21, 0.19}.

Medium
Slightly
high

Slightly
LowLowVery low High Very high

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0

m(x)

x

Fig. 7.3 The equivalent fuzzy numbers of the linguistic terms
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7.3.2 Continuous Problems

There is a large variety of methods to solve continuous MCDA

problems with fuzzy variables. In most of these methods there is

no difference between the objectives and the constraints. One of

the easiest methods is to find the intersection of the membership

functions of all objectives, {mG1(x), mG2(x),. . .} and all con-

straints, {mC1(x), mC2(x),. . .} and then the fuzzy decision will be

the value of x that maximizes the membership function mD(x) of
the intersection. This solution concept can be mathematically

formulated as

Maximize mDðxÞ ¼ MaximizeminfmG1ðxÞ; mG2ðxÞ; . . . ;
mC1ðxÞ; mC2ðxÞ; . . .g: (7.16)

Example 7.6. The water level x of a reservoir varies between

0 and 10 m, which is represented by the following membership

function:

mC1ðxÞ ¼
0:25x if 0bx<4

1 if 4bx<6

2:5� 0:25x if 6bxb10:

8
<

:
(7.17)

The optimum level of the reservoir depends on two criteria.

First, higher water level produces more recreational benefit

according to the following membership function:

mG1ðxÞ ¼
0 if x<6

�3þ 0:5x if 6bx<8

1 if 8bxb10:

8
<

:
(7.18)

In contrary, higher water level is less preferred due to pos-

sible flooding. The membership function of this criterion is

given as

mG2ðxÞ ¼ 1� 0:1x; if 0bxb10: (7.19)
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To find the optimum water level the fuzzy membership func-

tions of the constraint and the two criteria are presented in

Fig. 7.4. The intersection of these membership functions which

is defined by their minimal values for all x is shown by the bold

broken line with equation

mDðxÞ ¼
0 if xb6
�3þ 0:5x if 6<xb20=3
1� 0:1x if 20=3<xb10:

8
<

:

The optimal decision is x ¼ 20/3 � 6.67 that maximizes this

function.

7.4 Probabilistic-Fuzzy MCDA Models

All methods discussed previously in this chapter did not use the

combination of the different types of uncertainty in a given

problem. They assumed the existence of only probabilistic or

only fuzzy uncertainty. In recent studies, an increasing atten-

tion has been given to the solution of MCDA problems involving

both probabilistic and fuzzy uncertainties (see for example Ben

et al. 2004, among others). In this section a probabilistic-fuzzy

0 2 4 6 8

6.67

10

max

x

1

m(x)
mG2(x) mG1(x)mC1(x)

Fig. 7.4 The optimal water level in Example 7.6
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MCDA model in selecting optimal alternatives will be intro-

duced. The new approach, entitled probabilistic fuzzy ordered

weighted averaging (PFOWA) is based on the following method

elements.

The combined goodness measure for each alternative is

obtained by the OWA operator (Yager 1988). This aggregation

operator has been applied in many fields including decision

theory. An n-dimensional OWA operator assigns a combined

goodness measure for each alternative in an MCDA problem

based on an n-dimensional vector w ¼ ðw1 ; w2 ; . . . ; wnÞ of

order weights, which satisfies conditions wir0 for all i, and
Pn

i¼1

wi ¼ 1. Then the combined measure is

Fða1; a2; . . . ;anÞ ¼
Xn

i¼1

wi bi ¼ w1 b1 þ w2 b2 þ � � � þ wn bn;

(7.20)

where F : In 7!I with I ¼ ½0; 1	, and bi is the ith largest element in

the set fa1; a2 ; . . . ; ang of the evaluations of an alternative with

respect to the n criteria. Notice that the components of the input

vector have been ordered before multiplying them by the order

weights. The OWA method has a large variety by the different

selections of the order weights, which depend on the optimism

degree of the DM. The greater the weights at the beginning of the

vector are, the higher is the optimism degree. The optimism

degree y is defined as

y ¼ 1

n� 1

Xn

i¼1

ðn� iÞwi: (7.21)

Different methods are introduced in the literature for determin-

ing the order weights (Xu 2005). In this section fuzzy quantifiers

are used to characterize aggregation imperatives, in which, the

more objects are included, the higher is the satisfaction level.

Some examples of these quantifiers are most, half, few or at least

one of them. These linguistic inputs are modeled by regular
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increasing monotonic quantifiers that satisfy the following

conditions:

Qð0Þ ¼ 0;Qð1Þ ¼ 1 and Qðp1ÞrQðp2Þ if p1rp2: (7.22)

Function Q maps the unit interval I ¼ [0, 1] into itself and is

really a fuzzy membership function. It can be associated to an

n-dimensional OWA operator, where the components of the

weighting vector are obtained as

wi ¼ Q
i

n

� �

� Q
i� 1

n

� �

; i ¼ 1 ; 2 ; . . . ; n: (7.23)

There are many different possibilities for selecting fuzzy mem-

bership function Q. A particular form has been chosen as

QðpÞ ¼ pg with a given positive parameter g. The corresponding
optimism degree values are shown in Table 7.5.

The optimism degree can be calculated by using (7.23) and

(7.21) and by introducing the new variable p ¼ i/n and comput-

ing the limit as n tends to infinity:

y �
Z1

0

QðpÞdp ¼
Z1

0

pgdp ¼ 1

1þ g
: (7.24)

From this equation it is clear that g ¼ 1=y� 1, and by combin-

ing (7.20), (7.23) and (7.24), we have the following form of the

combined goodness measure of each alternative:

Table 7.5 Parameters of the fuzzy linguistic quantifier

Linguistic quantifier Parameter of quantifier, g Optimism degree, y
At least one of them g ! 0.0 0.999

Few of them 0.1 0.909

Some of them 0.5 0.667

Half of them 1.0 0.500

Many of them 2.0 0.333

Most of them 10.0 0.091

All of them g ! 1 0.001
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F ¼
Xn

i¼1

i

n

� �1
y�1

� i� 1

n

� �1
y�1

" #

bi: (7.25)

The alternative which has the highest F value is selected as the

most preferred one.

The evaluation numbers of the alternatives with respect to the

criteria are assumed to be probabilistic. The expected value E(Fk)

of the combined goodness measures for each alternative k, and its

variance, Var(Fk) can be obtained from actual data, subjective

assessment or by using stochastic simulation. Maximizing expec-

tations and minimizing variances are conflicting criteria so we

can use the certain equivalent introduced earlier in (7.1).

Based on the above discussed elements the procedure consists

of the following steps.

Step 1. Based on the optimism degree y of the DM, determine

the value of g ¼ 1=y� 1 and the corresponding membership

function Q(p).

Step 2. Estimate the expectations and variances of the evalua-

tion numbers of the alternatives with respect to the criteria.

Step 3. Obtain the risk acceptance values bk from the DMs and

use (7.1) to find the certain equivalents.

Step 4. Compute the combined goodness measure for each

alternative by using (7.25) and determine the alternative with

the highest such value.

The methodology discussed in this chapter will be illustrated

by two case studies. The first one is a discrete problem and the

second is continuous.

7.5 Case Studies

7.5.1 Long-Term Watershed Management

The application of the PFOWA approach is illustrated now to the

well-known MCDA problem of the Central Tisza River in Hun-

gary (David and Duckstein 1976). This case study consists of five
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distinct alternative water resources projects designed for long

term planning. These decision alternatives are as follows:

A1: The water resources of both the Tisza and the Danube

rivers are used; water is transferred from Danube by a multipur-

pose canal-reservoir system.

A2: A pumped reservoir system is built in the northeastern part

of the region, which will be supplied from the Tisza River only.

A3: The Tisza River water is used to supply flat-land reservoirs.

A4: This is a mountain reservoir system in the upper Tisza

River Basin, located outside Hungary.

A5: This is a conjunctive usage scheme of the Tisza River

water and groundwater of the Debrecen region based on regional

water regulation.

There are 12 evaluation criteria, 8 of them are subjective. The

assigned values of the subjective criteria are obtained by linguis-

tic variables. Table 7.6 shows the alternatives, the corresponding

weights and the evaluations of the alternatives with respect to

the criteria. Eight criteria are positive and four are negative.

The negative criteria are: costs, energy, land and forest use, and

sensitivity.

In applying the PFOWA method, we first need the bi values.

The subjective evaluations were quantified by using the numeri-

cal values according to the scales given in Table 7.7. The resulted

evaluation matrix with numerical values is shown in Table 7.8.

The numerical evaluations have been normalized into the unit

interval [0, 1] by using the following transformation:

�aij ¼

aij

Max
j

ðaijÞ for positive criteria

Min
j

ðaijÞ
aij

for negative criteria:

8
>>>><

>>>>:

(7.26)

The results are summarized in Table 7.9.

The normalized evaluation values are then multiplied by the

weights, which are already shown in Table 7.6. The original

weights {1, 2} were replaced by {0.33, 0.66} since the outputs
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have to be in the unit interval [0, 1]. The weighted evaluations of

each alternative with respect to the criteria are then ordered in

descending order. The results are shown in Table 7.10. These

Table 7.9 Normalized evaluation matrix

Criteria Alternatives

A1 A2 A3 A4 A5

C1 0.8604 1.0000 0.8477 0.9012 0.8418

C2 0.0800 0.3800 1.0000 1.0000 1.0000

C3 1.0000 0.8000 0.2000 1.0000 0.6500

C4 0.0143 0.0200 1.0000 0.1000 1.0000

C5 1.0000 0.8000 0.6500 0.2000 0.2000

C6 0.8000 1.0000 0.6500 1.0000 0.2000

C7 0.6667 0.7500 0.7500 1.0000 0.8571

C8 1.0000 1.0000 0.8000 0.6500 0.6500

C9 1.0000 0.8000 0.2000 0.8000 0.6500

C10 1.0000 0.8000 0.3500 0.2000 0.3500

C11 1.0000 0.8000 0.6500 0.2000 0.6500

C12 1.0000 1.0000 0.0500 0.0625 0.0500

Table 7.8 Evaluation matrix with numerical values

Criteria Alternatives

A1 A2 A3 A4 A5

C1 99.6 85.7 101.1 95.1 101.8

C2 4 19 50 50 50

C3 1 0.8 0.2 1 0.65

C4 0.7 0.5 0.01 0.1 0.01

C5 1 0.8 0.65 0.2 0.2

C6 0.8 1 0.65 1 0.2

C7 90 80 80 60 70

C8 1 1 0.8 0.65 0.65

C9 1 0.8 0.2 0.8 0.65

C10 1 0.8 0.35 0.2 0.35

C11 1 0.8 0.65 0.2 0.65

C12 0.05 0.05 1 0.8 1

Table 7.7 Equivalent numerical values for linguistic evaluations

Goodness:

Very bad Bad Fairly bad Medium Fair, fairly

good

Good Very good,

excellent

Difficulty:

Very difficult Difficult Fairly difficult Medium Fairly easy Easy Very easy

Sensitivity:

Not sensitive Low

sensitive

Fairly low

sensitive

Medium Fairly

sensitive

Sensitive Very

sensitive

Numeric value:

0.05 0.2 0.35 0.5 0.65 0.8 1
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values are however very uncertain and therefore the optimal

decision is also uncertain. Stochastic simulation is used to take

the uncertainty of the data into account. The values shown in

Table 7.9 were considered as expectations, and the standard

deviations were computed by using u ¼0.05, 0.1, 0.3, and 0.5 as

the coefficient of variation. Normal distribution was assumed for

all matrix elements. For each particular value of u, 100 simula-

tions were performed. For each run a random Table 7.9 was

generated, for each case the corresponding Table 7.10 of ordered

set of evaluations was computed. Based on this table the value of

Fk was computed for each case. These results were obtained by

using the fuzzy quantifier of many of them corresponding to

y ¼ 0.333 and by applying this optimism degree the order

weights were calculated by using (7.23). The resulted weights

vector became [0.007, 0.021, 0.035, 0.049, 0.062, 0.076, 0.090,

0.104, 0.118, 0.132, 0.146, 0.160]. Thus we generated 100 sample

elements of Fk for each selection of u and alternative k. Based

on these samples the expectations and variances were estimated

for each alternative and each choice of u. The resulted expected

values, E(Fk) and variances, Var(Fk) are shown in Table 7.11.

The maximum expected values and the minimum variances are

indicated for each scenario with boldface numbers (Zarghami and

Szidarovszky 2009).

These results show that with respect to the E(Fk) values alone,

alternative 1 is the most preferred project and alternatives 2 and

Table 7.10 The ordered set of evaluations of the alternatives

Order Alternatives

A1 A2 A3 A4 A5

1 0.6600 0.6600 0.5595 0.6600 0.5556

2 0.6600 0.6600 0.4290 0.6600 0.4290

3 0.6600 0.5280 0.4290 0.5948 0.4290

4 0.6600 0.5280 0.2640 0.5280 0.2829

5 0.6600 0.5280 0.2475 0.3300 0.2310

6 0.6600 0.5280 0.2310 0.2145 0.2145

7 0.5679 0.4714 0.2145 0.1320 0.2145

8 0.5280 0.3300 0.1320 0.1320 0.1320

9 0.3300 0.3300 0.1320 0.0943 0.1320

10 0.3300 0.3300 0.0528 0.0660 0.0528

11 0.3300 0.2475 0.0165 0.0528 0.0165

12 0.2200 0.1389 0.0094 0.0206 0.0094
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4 are the second and third most preferred ones. However, com-

paring the variances and knowing that a smaller variance repre-

sents a more robust choice, it is clear that with respect to the

variances alone, alternatives 3 and 5 are the most preferred

projects and the previous best decision, alternative 1 is the

least preferred one. This contradiction can be addressed by

using the certain equivalent including both E(Fk) and Var(Fk).

By using relation (7.1), alternative j is considered the best if and

only if for all k 6¼ j:

EðFjÞ � bVarðFjÞrEðFkÞ � bVarðFkÞ; (7.27)

and with known values of the expectations and variances this is

the case, when

bb
EðFjÞ � EðFkÞ

VarðFjÞ � VarðFkÞ if VarðFjÞ � VarðFkÞ>0

and

br
EðFjÞ � EðFkÞ

VarðFjÞ � VarðFkÞ if VarðFjÞ � VarðFkÞ<0

for k ¼ 1; 2; . . . ; j� 1; jþ 1; . . . ; m:

(7.28)

Table 7.11 Expected values and variances of the combined goodness measures

Alternatives

A1 A2 A3 A4 A5

u ¼0.05

E(Fk) 0.4366 0.3530 0.1330 0.1578 0.1316

Var(Fk) 0.0005 0.0003 0.0000 0.0001 0.0000

u ¼0.1

E(Fk) 0.4282 0.3462 0.1304 0.1548 0.1291

Var(Fk) 0.0019 0.0013 0.0002 0.0003 0.0002

u ¼0.3

E(Fk) 0.4586 0.3708 0.1397 0.1658 0.1382

Var(Fk) 0.0217 0.0142 0.0020 0.0028 0.0020

u ¼0.5

E(Fk) 0.4427 0.3579 0.1349 0.1600 0.1334

Var(Fk) 0.0573 0.0375 0.0053 0.0075 0.0052

The maximum expected values and the minimum variances are indicated for each

scenario with boldface numbers
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These inequalities provide the range of b such that any partic-

ular decision alternative j is the best. The optimality intervals of b
for each decision alternative are shown in Fig. 7.5 where the

value of u ¼ 0.5 and the quantifier many of them were selected.

7.5.2 Conservation or New Water Transfers?

7.5.2.1 Problem Description

The large city of Tabriz in Northwestern Iran is the capital of the

East Azerbaijan Province (Fig. 7.6) and its urban water system

faces several major challenges.

Mean annual precipitation in Tabriz is around 300 mm, which

is very small compared to the worlds’ average of 800 mm. The

Ajichi River is the only permanent river near the city. Due to the

high agricultural developments in the upper watershed and to

the low water quality this supply is not enough for the city.

Groundwater is extracted around its yield capacity, 40 (million

cubic meter per year, MCM/Y) as shown in Fig. 7.7.

The population of the city is growing by a high rate. Equation

(7.29) is used to predict the population of the city in the next

years:

Popt ¼ P1ð1þ rÞt�1; (7.29)

where Popt is the total population of the city in year t; P1 is the

population of the city in the base year of 2009 (1.45 millions); r is

0 5
b

10 15

A1

A2

A4

A3

A5Fig. 7.5 The intervals of

optimality with u ¼ 0.5
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Fig. 7.7 Groundwater utilization for Tabriz city in recent years
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the natural growth rate of the city which is estimated from the

national statistics to be about 2%.

Another difficulty is that the water distribution pipelines are

aged and the purified water leaks by the rate of 20% from the

network. In this study leakage detection and the rehabilitation of

the water distribution networks are considered as the main con-

servation measures.

Because of these shortcomings two water transfer pipelines

(from Zarrinerud and Nahand reservoirs) were planned and are

already in operation. To extend the water transfer from Zarri-

nerud, a second pipeline is under investigation. The outflow of the

Zarrinerud and Nahand reservoirs is the Urmia Lake. Due to the

dry condition of the lake there is a very serious problem in using

its recharge resources, which would result in a limited amount of

water diversions from the incoming rivers.

This study attempts to compare the conservation measures

(leak detection and repair) to the new water transfer line from

Zarrinerud by using a multi-criteria framework (Zarghami 2010).

The uncertainty of the parameters and the constraints will be

modelled by using probabilistic and fuzzy methods.

7.5.2.2 Criteria

The idea of IWRM requires that the optimal utilization of the

resources has to be determined in a multi-criteria environment.

According to the results of questionnaires obtained from the

DMs, the main objectives of the Tabriz urban water problem

are maximizing water supply, minimizing cost, and minimizing

the environmental hazard in a sustainable way.

Maximizing Water Supply

The water supply per capita, St, from four different sources can be

given as

St ¼ ðð1� lrÞ ½Gt þ Z1t þ Z2t þ Nt	 þ LtÞ=Popt; (7.30)
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where lr is the average water leakage rate in the network

(assumed to be 20% in this case); Gt is the groundwater with-

drawal rate from the aquifer (MCM/Y); Z1t is the transferred

water amount from the Zarrinerud reservoir by using the existing

line (MCM/Y); Z2t is the transferred water amount from the

Zarrinerud reservoir by the new line (MCM/Y); Nt is the trans-

ferred water amount from the Nahand reservoir (MCM/Y); Lt is

the conserved water amount by leakage detection and repairment

(MCM/Y). All parameters refer to year t.

The water supply should satisfy the demand and satisfying the

basic per capita water need is the basic priority. This basic annual

need is considered about 85 m3 per capita with zero annual

growth rate because of the recent critical droughts in the region.

However the satisfaction of this constraint is uncertain. If we

force the optimization model to strictly follow the condition

that supply has to be greater than or equal to the demand, then

it will result in non-feasible solutions. Therefore the satisfaction

degree of this uncertain constraint is modelled by using a hyper-

bolic fuzzy membership function (Fig. 7.8). The mathematical

equation of the membership value, mt, is as follows:

mt ¼ 0:5þ 0:5 tanhð2St=D� 1:2Þ; (7.31)

where D is the water demand per capita. Our objective is to

maximize this function.
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Fig. 7.8 The fuzzy membership function of water supply
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Minimizing Cost

The cost function of the water supply to this city is defined as

Ct ¼ 250Gt þ 1; 117Z1t þ 1; 520Nt þ 1; 500Lt

þ 1; 117Z2t þ 100; 000 if Z2t>0

0 if Z2t ¼ 0;

�

(7.32)

where Ct is the total cost of water supply in the city (million IR

Rials per year, 10,000 IR Rials � 1 US$ in 2009). We want to

minimize the value of Ct. Notice that the new water transfer from

Zarrinerud requires an annual fixed cost due to the investment in

pipelines and other infrastructures. This fixed cost is added to the

other cost terms only if Z2t > 0.

Minimizing Environmental Hazard

The Urmia Lake is now under great pressure, mainly due to water

transfers and the diversions of its natural inflows. Figure 7.9

shows its water level shortfall in recent years.

Therefore, there is a strong conflict between environmentalists

and the water supplying companies. The main objective of the

environmental organization is therefore to minimize the amount

of new water transfers. A simple decreasing criterion function is

defined for the water transfer by the second line of Zarrinerud:

Et ¼ ð37:2� Z2tÞ=37:2; (7.33)

which should be maximized. The term 37.2 is the maximum

water amount that could be transferred with the second Zarri-

nerud line.

7.5.2.3 Constraints

The constraints deal with the limitations of the water resources.

The available water resources are assumed to have probabilistic
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nature and are normally distributed. In modelling this uncertainty

the chance constraint method is used. It needs the average values,

the coefficients of variation, and also the probability level of

accepting each constraint. The relevant parameter values are

presented in Table 7.12. The last column of this table is calcu-

lated by using the chance constraints method as it was already

described in Sect. 7.2.3.

Based on the data of Table 7.12, the deterministic constraint on

Gt can be written as

0bGtb47:6: (7.34)

The maximum capacity of the water transfer from the Zarri-

nerud lines should be constrained as

0bZ1tb41:9 and 0bZ2tb37:2 (7.35)

for the existing and new lines. Maximum capacity of water

transfer from Nahand should satisfy the following constraint:
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Fig. 7.9 The water level shortfalls in the Urmia Lake (modified from CIWP 2008)

Table 7.12 Characteristics of the uncertain variables

Decision

variables

Average

(MCM/Y)

Coefficient of

variation

Probability of

acceptance (%)

Deterministic limit

(MCM/Y)

Gt 52 0.1 80 47.6

Z1t 56 0.3 80 41.9

Z2t 56 0.4 80 37.2

Nt 29 0.3 80 21.7
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0bNtb21:7: (7.36)

Repairing the network could conserve up to 15% of the total

supplied water amount (Baumann et al. 1979) so the conserved

water amount, Lt, is constrained as

Ltbel � ðGt þ Z1t þ Z2t þ NtÞ; (7.37)

where el is the effect of leakage detection which can be selected

from the range of 0–15%. However, in this study based on a

questionnaire a rational rate of 8% is assumed. Notice that all

variables are positive.

7.5.2.4 The Optimization Model and Results

The composite objective function of the equivalent determin-

istic multi-criteria optimization problem is modelled by max-

imizing the distance from the nadir point, as it was already

described in Sect. 3.6. Because of using nonlinear terms in the

criteria, the model is a nonlinear programming problem (NLP).

The weights of the three main criteria {wS, wC, wE} have been

also varied to create different scenarios. In Table 7.13 the

desired and the worst possible values of the three criteria are

presented. These values are obtained by maximizing and mini-

mizing each criterion as a single objective problem, subject to

the constraints of the model.

The distance from the nadir is as follows:

ut ¼ fðwSðmt � 0:0Þ=ð1:0� 0:0ÞÞp
þ ðwCðCt � 253E9Þ=ð0:0� 253E9ÞÞp

þ ðwEðEt � 0:0Þ=ð1:0� 0:0ÞÞpg1=p: (7.38)

Table 7.13 Ideal and worst values and weights of the objectives

Objective function Ideal value Worst value Weight

Water supply 1.0 0.0 0.6

Cost (billions IR Rials) 0.0 253 0.2

Environmental protection 1.0 0.0 0.2
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This utility function of the DM represents only year t. If a time

period of T years is considered, then the overall objective is to

maximize the sum of the discounted utility values through the

entire period:

Ut ¼
XT

t¼1

ut

ð1þ dÞt�1
; (7.39)

where d is the discount rate. This new objective emphasises the

“dynamic efficiency” of the decision making (Griffin 2006) and

gives the optimal decisions for each year t during the planning

horizon t ¼ 1, 2,. . ., T.
The resulted NLP model was solved by using the Conopt

solver in the GAMS (2006) software. The decision variables

were Gt, Z1t, Z2t, Nt and Lt, for all t representing the supply

terms. The optimum annual plan (for year 2009) is shown in

Fig. 7.10 by using the parameter of p ¼ 2, usually used in

compromise programming. The discount rate is assumed to be

d ¼ 10% by the 15 years planning horizon. The results, which are

described in more detail in Zarghami (2010) show that in the

optimal plan, water transfer from the Zarrinerud could supply

41.9 MCM/Y with 80% reliability. In addition, groundwater can

supply 40% of the water demand. The water company should not

extract more than this amount due to the possible degradation of

the aquifer. Surprisingly leakage detection could save about 9

MCM/Y and it can postpone the installation of the second transfer

Groundwater; 47.6

Transfer Z1; 41.9

Transfer Z2; 0

Transfer N; 21.7

Leak detection; 8.9

Fig. 7.10 Optimum water supply plan of Tabriz city (MCM/Y, year 2009, p ¼ 2,

Zarghami, 2010)
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line from Zarrinerud. Therefore a more sustainable environment

for the present and future generations can be guaranteed.

We also analysed the sensitivity of the results by changing the

values of the weights and other scalar parameters. The strategy

of the optimal solution always was the same. The results

indicate that in order to solve the conflict we should use the

conservation measures like leak detection rather than using new

water resources. However in the following years, due to popula-

tion growth and high water demand, new transfers will become

mandatory.
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Appendix. Cumulative Distribution of
the Standard Normal Variable Function

FðzÞ ¼ Rz

�1
1ffiffiffiffi
2p

p exp �x2

2

� �
dx:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6627 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

3.6 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

3.7 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.9 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

4.0 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

4.1 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

4.2 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

4.3 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

4.4 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4.5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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