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Preface

In 1998, R. Smith wrote that “The randomized clinical trial is the most important
advance in scientific medicine in the twentieth century.” Smith’s view may surprise
some of our clinical colleagues but is entirely defensible. Sequences of randomized
trials have led to dramatic advances in chronic diseases such as breast cancer,
childhood leukemia, HIV, cardiovascular disease, and many other areas. These
and other diseases are biologically complex and, despite decades of research,
still understood incompletely, at best. Adequately powered trials have led to
the discovery of incremental advances that have cumulatively yielded substantial
improvements in survival and disease control.

The contributions to this volume examine some issues in clinical trial design that
have received attention in recent years. The collection is intended primarily for the
statistical practitioner, especially the very busy trialist whose active collaboration
in cancer, HIV, cardiology, or other areas of medical research makes it difficult
to find the time to stay abreast of advances in trial methodology. The contributors
and I share the opinion that while the large majority of trials are well-designed
and conducted, newer methods for design and analysis linger too long in the
methodology literature before appearing in mainstream use.

The principles of design used across the range of trials are necessarily diverse; the
goals of a phase I safety study are very different from a careful assessment of patient
self-reported quality of life in late phase randomized trials. The common theme of
the pieces in this monograph is more general rather than a specific set of tools for
establishing the operating characteristics of a design. Taken together, these pieces all
examine ways to make trials more efficient or more reliable and consequently more
likely to reach their ultimate goal: a statistically sound contribution to evidence-
based medicine that will influence practice.

The order of presentation is roughly based on the sequence of trials from early
phase testing to measuring patient self-report in later phase trials. Ying-Kuen
Cheung explores alternative designs for phase I trials. The methodology here is
especially difficult; these trials must be small, minimize risk, and point the way
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viii Preface

to larger efficacy trials, a seemingly impossible, or a least incompatible, set of
goals. Phase I trials in cancer have stubbornly clung to the appealingly simple
3+3 designs. Cheung’s work suggests that more flexibility is possible. Vince Carey
and Robert Gentleman discuss the methods of randomization commonly used in
trials. The randomization in a phase III trial supports causal inference about a
treatment effect, so randomization is arguably the most important topic in trial
design. In addition to their clear account of the principles behind many allocation
schemes, Carey and Gentleman discuss their R package randPack implementing
many randomization methods. The package can be used as a core element of a
sophisticated randomization/registration system linked to a “backend” database, or
by itself to study the consequences of different allocation schemes.

Sequential designs for phase III trials have matured quickly during the last
20 years, and often carry the adjective “classical” because of their widespread
acceptance and use. Kyungmann Kim outlines the theory supporting both important
rules of thumb (the sample size inflation factor when adding interim looks) and
formal approaches (so-called α-spending functions). Institutional Review Boards
or Ethics Committees almost always ask how a phase III trial will be monitored,
and it is important that a trial statistician understand the basis of these designs. Two
chapters then look at aspects of interim monitoring that are less well-developed,
but no less important. Separately, the chapters explore two pressing questions:
how might one extend a promising trial that, if sufficiently large, might detect an
important treatment difference not anticipated in the initial design; and what are the
consequences of stopping a trial before full information because it seems destined
to be negative. Cyrus Mehta discusses the first of these topics in his chapter on
methods for re-estimating sample size without increasing the type I error probability
for the trial. These methods show promise in settings where abandoning a trial with
substantial initial investment may be a considerable scientific and financial error.
Of course, trials should not be continued when a negative outcome is very likely.
Jay Herson, Marc Buyse and Janet Wittes draw on their considerable collective
experience to provide guidance on early stopping for futility, outlining the methods
that are available and the settings to which each is best suited. Importantly, they use
case studies to illustrate the incorporation of futility analysis plans in designs.

While systemic treatments in cancer have led to many improvements in out-
come, they also are accompanied by side effects and often, disappointingly, later
recurrence. Rapid changes in technology have made possible measurements on
the underlying molecular biology of cancer and other diseases. This increased
understanding of the cellular pathways that either inhibit or accelerate proliferation
of malignant cells has led to some exciting targeted therapies in cancer, most notably
imatinib in chronic myelogenous leukemia and gastrointestinal stromal tumors, and
trastuzumab in subtypes of breast cancer. Mei-Ling Lee reviews the currently known
gene signatures that show promise either for identifying the risk of recurrence and
death from particular types of cancer, or for guiding research into new therapeutics.
She also explores the methodology behind the studies that validated these signa-
tures. Stephen George and Xiaofei Wang discuss the increasingly important issue of
the design of clinical trials of drugs that target subpopulations of cancer patients.
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Typically, these subpopulations have been identified through a genetic or other
biomarker of the type discussed by Lee, one that is either predictive or prognostic
and may be a target for a therapy designed with the candidate marker in mind.
These advances in molecular biology present both exciting possibilities for further
progress in diseases such as cancer as well as the conundrum of ever more refined
(and consequently, smaller) populations for trials. The area that George and Wang
explore will likely be the subject of considerable future research.

Finally, Diane Fairclough outlines current thinking in the design and analysis
of patient self-report, typically labeled but not limited to so-called quality of life
measurements. Quality of life outcomes are often omitted in trial design, not because
they are unimportant, but rather because they present so many challenges. The
foremost of these challenges are the attrition caused by early treatment failures or
general disease burden, the substantial variability in these measurements, and the
complex longitudinal models that make pre-trial sample size calculations difficult.
This last chapter explores all of these issues.

Clinical trialists are reminded almost daily that the participants (subjects, to use
the scientific term) in these experiments often live with a potentially fatal disease and
yet have agreed to help add to the understanding of treatments as partners in medical
science. These participants are owed trials that converge to safe doses, finish as soon
as possible, do not overlook potential advances or fail to collect data on personal
responses to therapy. This book is dedicated to those participants.

Boston, MA, USA David Harrington
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Chapter 1
Designs for Phase I Trials

Ying Kuen Cheung

1 Introduction

The primary objective of a phase I trial of a chemotherapy is to recommend a dose
for efficacy testing in phase II trials. In most phase I trials, antitumor activities will
be observed but will not be a formal part of the dose-finding process. Rather, the
phase II dose is often determined as the maximum dose that has an acceptable level
of toxicity, the so-called maximum tolerated dose (MTD). The rationale behind
this approach is that toxicities may serve as surrogate for tumor shrinkage in a
patient undergoing cytotoxic cancer treatment (Ratain et al. 1993). While phase I
designs for cancer trials were discussed as early as the 1960s (Carbone et al. 1965;
Schneiderman 1965), formal statistical formulation of the MTD did not appear in
the literature until Storer and DeMets (1987). Traditionally, a 3+3 algorithm is used
for dose escalation during a trial. The algorithm starts at a low dose (e.g., one-tenth
of LD10 in mice) and enrolls patients in groups of three: the next group of three
will receive the next higher dose if no toxicity occurs in the current group, and
stay at the same dose if one patient experiences toxicity; the trial will stop if there
are two or more patients experiencing toxicity at a dose. The MTD is identified
by the largest test dose with fewer than two patients experiencing a dose-limiting
toxicity during the first course of chemotherapy. There is no clear justification for
using the 3+3 method apart from convention. A main criticism is that its operating
characteristics depend arbitrarily on the underlying dose-toxicity curve and the
MTD thus identified does not correspond to any interpretable quantity upon repeated
sampling. From an ethical viewpoint, the conservative 3+3 escalation scheme tends
to place many patients at low and hence inefficacious doses, and may cause difficulty
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2 Y.K. Cheung

in consenting patients early in the trial (Rosa et al. 2006). Since the late 1980s,
several dose-finding designs, primarily motivated by applications to oncology, have
been proposed to address these problems of the 3+3 method (Babb et al. 1998;
O’Quigley et al. 1990; Simon et al. 1997; Storer 1989). The recent literature has seen
proposals of novel phase I trial designs for other disease areas such as acute stroke
(Cheung 2007; Cheung and Elkind 2010; Elkind et al. 2008), amyotrophic lateral
sclerosis (Cheung et al. 2006), and HIV (O’Quigley et al. 2001). While toxicity does
not play the same central role in drugs for other diseases as in cytotoxic agents, the
MTD still serves as a useful safety limit for future clinical investigation. In this
chapter, we provide a systematic review of dose-finding methods for the “standard”
phase I trials where the primary objective is to determine the MTD defined in terms
of binary toxicities over a short-term period.

Broadly, phase I designs can be classified by the dose-escalation approaches
as algorithm-based (Sect. 2) or model-based (Sect. 3). An algorithm-based design
prescribes a set of dose-escalation rules for any given dose without regard to the
observations at other doses. It has the virtue of simplicity because the rules can be
tabulated and made accessible to the clinical investigators prior to the start of a trial.
In contrast, a model-based design makes explicit use of a dose-toxicity model in
the dose escalation decisions, thus allowing borrowing strength from information
across doses. In Sect. 4, we compare some promising designs by simulations in
the context of a chemotherapy trial in lymphoma patients (Leonard et al. 2005).
Section 5 presents some key theoretical criteria for these dose-finding designs.

Another possible taxonomy for phase I designs is based on the study endpoints
chosen in accordance with the clinical situations such as the nature of toxicity, the
treatment plan, and the drug mechanism. In Sect. 6, we will review designs for three
types of “nonstandard” endpoints. First, we will discuss and advocate the use of
time-to-toxicity endpoints to deal with situations with delayed toxicity, which is
ubiquitous in multi-course chemotherapy, radiation therapy, and chemoprevention.
Second, we will review methods that use the ordinal toxicity severity weights, as
opposed to the dichotomized toxicity outcomes. Differentiating the severity among
high grade toxicities is crucial when giving high-risk experimental regimens such
as high-dose chemotherapy that may cause irreversible and disabling side effects
or even death, as well as severe but reversible toxicity. Third, we will outline the
basic concepts of bivariate designs that use both toxicity and efficacy endpoints
for situations where toxicity-driven designs may not adequately answer relevant
dosing questions. To make these novel designs accessible to the clinical colleagues,
statisticians need to be able to deliver and explain the methods in practice. Section 7
will discuss guidelines for method implementation and present the challenge ahead.

2 Algorithm-Based Designs

A prominent example of algorithm-based designs is the 3+3 algorithm. Despite
its deficiencies, the method is by far the most widely used design. It is common
to treat additional patients (typically 6–12) at the identified MTD to improve
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estimation precision for preliminary efficacy. Given the method’s poor dose
selection properties, the additional patients will likely be treated at an inappropriate
dose. The fundamental problem is the 3+3 method lacks a quantitative objective.
This section reviews some recent algorithm-based designs with rigorously defined
objectives.

2.1 Sequential Stepwise Tests

Consider a trial with K doses, and let pi denote the probability of toxicity at dose i.
The MTD is defined as the largest dose with pi ≤ θ for some target θ . The design
objective is to identify the MTD with a high probability and keep the probability of
selecting an unsafe dose low. Precisely, dose i is said to be safe if pi < φ for some
φ > θ . Then, the maximum safe dose (MAXSD) is defined as ν = max{i : pi < φ}
with the convention max /0 = 0, and can be estimated by a stepwise test ν̂ with
respect to the family of hypotheses: H0i : pi ≥ φ versus H1i : pi < φ . Under this
formulation, an unsafe dose will be declared safe and selected when a type I error
occurs against any true H0i. Therefore, the probability of selecting an unsafe dose
can be equivalently controlled via the familywise error rate (FWER) of ν̂ defined as

FWER(ν̂) = Pr(ν̂ > ν)≡ max
0≤m≤K

sup
μ∈Θm

Pμ(ν̂ > m),

where Pμ is the probability computed under the toxicity vector μ = (p1, . . . , pK)
T

and Θm = {μ : pm < φ , pk ≥ φ ;k > m} is the parameter subspace in which ν = m.
In addition, the probability of correct selection of the procedure ν̂ is defined as

PCS(ν̂) = min
0≤m≤K

inf
μ∈Θ ∗

m

Pμ(ν̂ = m),

where Θ ∗
m = {μ : max(p1, . . . pm)≤ θ , pk ≥ φ ;k >m} is a subset of Θm under which

the MTD is equal to ν .
Using this multiple testing framework, Cheung (2007) proposes two-stage step-

wise procedures that allow sequential dose assignments as ethics requires. The first
stage starts at dose i = S1 < K and escalates to i+ 1 if and only if the hypothesis
H0i is rejected; we will use Ri1(Ai1) to denote the rejection (acceptance) region of
H0i by data collected at dose i at stage 1. Escalation stops once Ai1 is observed for
some i. The second stage starts at S2 = min{i : Ai1 is observed}−1 with additional
patients; and deescalation occurs until Ri2 is observed for some i. Here, Ri2 denotes
the rejection region of H0i based on the cumulative data collected at dose i at the end
of stage 2. The MTD is estimated by ν̂ = max{i : Ri1 ∩Ri2 is observed}.

For any given Ril , the distribution of ν̂ is computed as

Pμ(ν̂ = m) =

⎧
⎨

⎩

δm2

[

∏S1−1
j=m+1(1− δ j2)

]
ΩS1,K for 0 ≤ m ≤ S1 − 1

[

∏m−1
j=S1

δ j1

]
γmΩm+1,K for S1 ≤ m ≤ K

,
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where δil = Pr(Ril |pi) for l = 1,2, γi = Pr(Ri1 ∩Ri2|pi), δ02 ≡ 1,ΩK+1,K ≡ 1, and

Ωm,K = (1− δm1)+
K−1

∑
i=m

(1− δi+1,1)
i

∏
j=m

(δ j1 − γ j)+
K

∏
j=m

(δ j1 − γ j).

Furthermore, operating characteristics of ν̂ can be summarized and computed as
FWER(ν̂) = 1−Pμ∗

0
(ν̂ = 0) and PCS(ν̂) = min0≤m≤K Pμ∗

m
(ν̂ = m), where μ∗

m is
the toxicity vector with pi = θ for i ≤ m and = φ for i > m, provided that Ri1 and
Ri1 ∩Ri2 are unbiased tests H0i against H1i, that is, δi1 and γi are decreasing in pi.

We can construct unbiased test regions using the likelihood ratio test (LRT) and
let Ril = {Zi(Nl) ≤ cl} for some prespecified c1 ≤ c2 and N1 ≤ N2, where Zi( j)
denotes the number of toxic outcomes in the first j patients at dose i. The stepwise
LRT procedure is defined completely by the parameters (c1,N1,c2,N2). It is quite
straightforward to iterate and find the set of design parameters that give the smallest
expected number of patients enrolled to a dose to reach a conclusion about H0i under
pi = φ , denoted by Eφ (N∗), among all LRT that satisfy

Pr(Ri1|φ)≤ ε∗, FWER(ν̂)≤ α0 and PCS(ν̂)≥ 1−α1. (1.1)

For LRT, Eφ (N∗) = N1Pr(Ai1|φ)+N2Pr(Ri1|φ). Generally, Eφ (N∗) is proportional
to the expected total number of patients receiving an overdose in a trial. A stepwise
procedure that minimizes Eφ (N∗) is referred to as a minimum overdose design.

Alternatively, the sequential probability ratio test (SPRT) (Wald 1945) prescribes
the test regions Ril = {λi,τil ≥ ρl} and Ail = {λi,τil ≤ ξ} for l = 1,2, where

λi,n =
θ Zi(n)(1−θ )n−Zi(n)

φZi(n)(1−φ)n−Zi(n)

is the likelihood ratio for dose i, and τil = inf{n > 0 : λi,n ≥ ρl or λi,n ≤ ξ}. Cheung
(2007) provides an algorithm to find (ρ1,ρ2,ξ ) that minimizes Eφ (N∗) subject to
the constraints (1.1), and obtain the minimum overdose SPRT design.

Consider a trial starting at S1 = 3 among K = 5 doses. With α0 = 0.25, α1 = 0.50,
ε∗ = 0.50, θ = 0.25, and φ = 0.45, the LRT attains a minimum Eφ (N∗) = 13.2
when c1 = 3,N1 = 8,c2 = 5, and N2 = 19, and the SPRT attains a minimum
Eφ (N∗) = 9.5 when ρ1 = 1.683, ρ2 = 9.325, and ξ = 0.317. In this example,
the SPRT has a smaller Eφ (N∗) than the LRT as expected because the SPRT is
known to be optimal under the hypothesized values (Wald and Wolfowitz 1948).
Extensive simulations verify that the stepwise SPRT is generally superior to the
LRT in terms of average sample size and PCS. However, since the SPRT is an open-
ended procedure, truncated test should be applied for practicality. The maximum
sample size (N2) in the minimum overdose LRT provides a justified truncation for
the SPRT.

A potential limitation of the stepwise tests seems to be a large maximum sample
size (KN2). In the above designs, a maximum of 19 patients per dose is much greater
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Table 1.1 Dose decisions at each sample size nk by the minimum overdose
SPRT design for a trial starting at S1 = 3 among K = 5 doses, with α0 =
0.25,α1 = 0.50,ε∗ = 0.50,θ = 0.25, and φ = 0.45. The SPRT is truncated at
19 subjects

Stage 1: Intervals of Zk Stage 2: Intervals of Zk

nk Escalate Stay Deescalate nk Stopa Stay Deescalate

2 0 1 2 7 – [0,3] [4,7]
3 0 [1,2] 3 8 0 [1,4] [5,8]
4 0 [1,3] 4 9 0 [1,4] [5,9]
5 [0,1] [2,3] [4,5] 10 0 [1,4] [5,10]
6 [0,1] [2,3] [4,6] 11 [0,1] [2,5] [6,11]
7 [0,1] [2,3] [4,7] 12 [0,1] [2,5] [6,12]
8 [0,2] [3,4] [5,8] 13 [0,2] [3,5] [6,13]
9 [0,2] [3,4] [5,9] 14 [0,2] [3,6] [7,14]
10 [0,2] [3,4] [5,10] 15 [0,2] [3,6] [7,15]
11 [0,3] [4,5] [6,11] 16 [0,3] [4,6] [7,16]
12 [0,3] [4,5] [6,12] 17 [0,3] [4,7] [8,17]
· · · · · · · · · · · · 18 [0,3] [4,7] [8,18]
19b [0,5] – [6,19] 19b [0,5] – [6,19]
aOnce the stopping criteria is reached, the dose is confirmed safe
bThe boundaries are modified for truncation

than what a 3+3 trial will require (maximum 6 per dose), although simulations show
that the stepwise SPRT often concludes a trial with reasonable sample sizes. While
a maximum sample size that is larger than what is perceived to be feasible may turn
investigators away from using the method, the sample size determination reflects the
inadequacy of the sample size in current practice. The stepwise test is the first, and
so far the only, phase I design for which the sample size can be justified analytically
with respect to frequentist properties without depending entirely on simulations.
The succinct error statements (1.1) help clinicians appreciate the statistical inputs in
a dose-finding study, and facilitate a defensible approach to design the study. Also,
the sequential procedure is easy to implement and operates in a manner similar to
the standard algorithm. The dose decisions by the stepwise test can be charted and
made available to clinicians prior to a trial; see Table 1.1 for the SPRT procedure.

2.2 Up-and-Down Designs via Random Walk

Storer (1989) describes some up-and-down dose-escalation schemes, and proposes
the use of combinations of schemes in stages. For example, his design BD
consists of

Design B. Single patients are treated. The next patient is treated at the next lower
dose level if a toxic response is observed, otherwise at the next higher dose level.
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Design D. Groups of three patients are treated. Escalation occurs if no toxicity is
seen and deescalation if more than one patient has toxicity. If a single patient has
toxicity, the next group of three is treated at the same level.

The first stage of design BD follows design B, which is intended to move the trial
quickly through the low doses. Once toxicity is seen, the trial switches to design D
for dose escalation until a prespecified number of patients has been enrolled. Using
Markov Chain representation, it can be shown that design BD (design D) tends to
sample around a dose that causes toxicity with a probability θ = 0.33. Therefore,
design BD seems to be an appropriate method if the MTD is defined as the 33rd
percentile. Storer further suggests fitting the toxicity data to a logistic curve after
the trial ends, and estimates the MTD by maximum likelihood estimate of the 33rd
percentile of the fitted curve. Since the design concentrates sampling around the
target, the estimation is expected to be efficient and robust even if the logistic model
is not a correct specification of the dose-toxicity curve over the whole dosing range.

Durham et al. (1997) propose a biased coin design for any target θ ≤ 0.50.
The design will treat the next patient at the next lower dose if the current patient has
toxicity, and at the next higher dose with probability θ/(1− θ ) if otherwise. This
method may be viewed as a randomized extension of the Dixon and Mood’s up-and-
down method (Dixon and Mood 1948), and can be shown to produce a unimodel
asymptotic treatment allocation around the dose closest to the target percentile; see
Theorem 2 in Durham and Flournoy (1994).

These up-and-down rules assign a dose for the next patient (or group of patients)
on the basis of the most current group, without regard to the previous outcomes
at the same dose. As a result of this Markov property, their sampling properties is
analytically tractable for any given toxicity configuration via the transition matrix.
For example, for the biased coin design, the transition probabilities of deescalation,
staying, and escalation from a dose i = 2, . . . ,K−1 are pi, (1− pi)(1−2θ )/(1−θ ),
and (1− pi)θ/(1− θ ), respectively; the transition probabilities from doses 1 and
K can also be easily determined. However, frequentist properties such as (1.1) are
yet to be examined inductively over many configurations. Also due to the Markov
property of random walk, any dose, however, toxic it appears, may be revisited with
a nonnegligible probability even as data is accrued throughout the trial. Such lack of
convergence of treatment allocation may cause ethical difficulties in human trials.

2.3 Algorithm per Toxicity Probability Intervals

Ji et al. (JLB) (2007) consider an up-and-down design that assign doses based
on the posterior intervals of toxicity probability. The authors suggest using a
noninformative Beta prior with shapes (0.005,0.005) on pi so that the posterior
of pi is also Beta with shapes (0.005+Zi,0.005+ni−Zi), where ni and Zi = Zi(ni),
respectively, denote the sample size and the number of toxicities at dose i. The pos-
terior probabilities favoring escalation (E), staying (S), and deescalation (D) from a
dose i are then defined, respectively, as q(E, i) = Pr [pi −θ <−K1σi|ni,Zi], q(S, i)=
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Table 1.2 Dose decisions by the JLB (2007) method for θ = 0.25 with
K1 = 1.0,K2 = 1.5

Intervals of Zk for each dose decision

nk Escalate Stay Deescalate Deescalate and close

1 0 – – 1
2 0 1 – 2
3 0 1 2 3
4 0 1 2 [3,4]
5 0 [1,2] 3 [4,5]
6 0 [1,2] 3 [4,6]
7 0 [1,3] – [4,7]
8 0 [1,3] 4 [5,8]
9 [0,1] [2,3] 4 [5,9]
10 [0,1] [2,4] – [5,10]

Pr [−K1σi ≤ pk −θ ≤ K2σi|ni,Zi], and q(D, i) = Pr [pi −θ > K2σi|ni,Zi], where σi

is the posterior standard deviation of pi and K1,K2 > 0 are prespecified. The dose
decision (E,S,D) with the highest posterior probability will be assigned to the next
patient group. An exception is when q(E, i) > max{q(S, i),q(D, i)} but dose i+ 1
is proven unacceptably toxic with Pr(pi+1 > θ |ni+1,Zi+1)> 0.95, then the dose for
the next group will stay at the current dose i, with i+ 1 permanently closed. At the
end of the trial, the MTD is estimated by the dose with E(pi|ni,Zi) closest to θ
among all acceptable doses.

In contrast to the random walk rules, JLB use all observations accrued to a dose
to make a dose decision, and have provisions for closing a toxic dose so that it will
not be revisited. At the same time, since the dose decision is made without regard
to observations at other doses, it is possible to enumerate the prescribed action in
a table that the clinical investigators may use during a trial without performing the
posterior computations. For example, Table 1.2 displays the decision intervals of Zk

for a trial targeting at θ = 0.25.

3 Model-Based Designs

The continual reassessment method (CRM) (O’Quigley et al. 1990) is among the
first model-based phase I designs and has generated an extensive literature of its
own. The basic idea is to make dose decisions based on a dose-toxicity curve that
is being continually reassessed as data is accrued during a trial. This approach
has drawn attention in the medical community (Ratain et al. 1993) and appeals to
clinicians as an ethical alternative to the standard phase I method (Rosa et al. 2006).
The subsequent proposals of model-based designs by and large adopt the notion
of continual reassessment. This section thus provides a review of the model-based
methods with an emphasis on the CRM.
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3.1 The Continual Reassessment Method

3.1.1 The Basic Approach

In a typical phase I trial, patients are treated at a discrete panel of doses, denoted
by d1, . . . ,dK . Let Yj be the toxicity indicator of the jth patient enrolled to the trial,
and x j the dose assigned to the patient. The CRM assumes a one-parameter model
F(x,β ) that is strictly increasing in dose x and monotone in the parameter β , so that
pk = Pr(Yj = 1|x j = dk) is postulated to be F(dk,β ) for some β . Since the CRM is
originally presented as a Bayesian approach, a prior distribution G(β ) is assumed.
The trial starts by treating the first patient at the prior MTD ν0, that is, x1 = dν0 ,
where F(dν0 , β̂0) = θ and β̂0 =

∫
β dG(β ) is the prior mean of β . With the prior

and data in the first n patients, β is estimated by its posterior mean (denoted by
β̂n), and the next patient is set to receive xn+1 = argmindk |F(dk, β̂n)− θ | for some
prespecified target rate θ . This process continues until a desired sample size N is
reached. The final MTD estimate is given by xN+1.

Common choices of dose-toxicity model F(x,β ) in the CRM literature include
the empiric function xβ and the logistic function {1+ exp(−a0 − β x)}−1 with a
fixed intercept a0. Due to the monotone dose-toxicity assumption, the parameter
β is restricted to take on positive values, and is typically assumed lognormal or
gamma a priori. From a computational viewpoint, we find Gaussian quadrature
(Naylor and Smith 1982) provides an accurate approximation for β̂n in the following
parametrization:

F(x,β ) = xexp(β ) (empiric) and F(x,β ) =
{

1+ exp
(
−a0 − eβ x

)}−1
(logistic),

(1.2)

where β has a normal prior. This model setup also allows approximation of the
maximum likelihood approach (O’Quigley and Shen 1996) by specifying a large
variance in the prior.

3.1.2 Practical Modifications

The CRM is motivated by applications to phase I trials conducted in cancer patients.
To avoid treating many patients at low and inefficacious doses, the method starts at
a dose believed to be close to the true MTD. As a result, the original CRM may
cause more toxic outcomes than the standard 3+3 design. Expectedly, it raises safety
concerns and draws criticisms (Korn et al. 1994). Modifications have been suggested
to enhance the safety and practicality of the CRM. A common modification is the
adoption of an initial stage that starts at a low dose until the first toxicity occurs.
Generally, an initial design can be specified by a predetermined nondecreasing
sequence {xn,0} with x j−1,0 ≤ x j,0. A two-stage CRM assigns to the next patient



1 Designs for Phase I Trials 9

xn+1 =

{
xn+1,0 if Yj = 0 for all j ≤ n,

argmindk |F(dk, β̂n)−θ | if Yj = 1 for some j ≤ n.

For example, a two-stage design with xn,0 = �n/3	 for n = 1, . . . ,3K and = K for
n = 3K + 1, . . . ,N initially escalates dose after every three nontoxic outcomes, and
switches to the CRM for dose decision once the first toxicity is seen; where �x	 is
the smallest integer that is larger than or equal to x.

Another safety restriction is often imposed to prevent dose escalation for the next
patient if the current patient experiences a toxic outcome. This restriction ensures
dose-finding coherence which will be further discussed in Sect. 5.1.

3.1.3 Model Specification

An important practical point about the CRM is that the doses d1, . . . ,dK are not
the actual doses administered, but are defined on a conceptual scale that represents
an ordering of the risks for toxicity. This conceptual scale is useful, for instance,
in combination trials where each subsequently higher dose involves incrementing
doses of different treatments and there is no natural scale of dosage. In practice, dk

is obtained by substituting the initial guess of toxicity probability p0k for dose level
k into the dose-toxicity model, that is, p0k = F(dk, β̂0). Consider a trial with K = 5
doses and a target θ = 0.25. Suppose, we use the empiric function in (1.2) as the
working dose-toxicity model with β ∼ N(0,1.34) a priori, and believe that ν0 = 3
is the prior MTD with p03 = 0.25. Then, d3 is determined such that

dexp(0)
3 = 0.25.

The remaining di’s can be determined in a similar manner in accordance with the
corresponding initial guesses p0i’s. Thus, a CRM model includes the specification
of p01, . . . , p0K in addition to the dose-toxicity function F and prior G.

Ideally, the initial guesses are specified to reflect the clinician’s prior beliefs.
In practice, this is hardly achieved and p0k’s are chosen as design parameters that
yield good operating characteristics. Intuitively, the CRM will likely recommend
the true MTD ν if the true dose-toxicity curve is steep around ν . Let βk be
defined such that F(dk,βk) = pk. Then, the “steepness condition” is mathematically
represented by

βν ∈ (bν ,bν+1),βk ∈
K⋃

i=k+1

(bi,bi+1) for k < ν , and βk ∈
k−1⋃

i=1

(bi,bi+1) for k > ν ,

(1.3)
where bk solves F(dk−1,bk) + F(dk,bk) = 2θ for k = 2, . . . ,K, and b1 and bK+1

are the limits the parameter space of β . Consider the empiric function with
p01 = 0.05, p02 = 0.12, p03 = 0.25, p04 = 0.40 and p05 = 0.55, and θ = 0.25.
Suppose ν = 3 and confine β to a sufficiently wide but finite interval, say [−5,5].
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Table 1.3 Indifference intervals for four CRM models for θ = 0.25 with K = 5. Models E1 and
L1 are, respectively, the empiric function and logistic function defined in (1.2) with initial guesses
(0.05,0.12,0.25,0.40,0.55), and models E2 and L2 with initial guesses (0.05,0.10,0.25,0.45,0.80).
Models E1 and L1, having narrower indifference intervals, are more sensitive than E2 and L2

ν Model E1 Model E2 Model L1 Model L2

1 (–,0.31) (–,0.30) (–,0.32) (–,0.30)
2 (0.19,0.32) (0.21,0.34) (0.18,0.33) (0.20,0.34)
3 (0.18,0.32) (0.16,0.34) (0.18,0.32) (0.16,0.34)
4 (0.18,0.32) (0.16,0.45) (0.18,0.32) (0.16,0.46)
5 (0.18,–) (0.06,–) (0.18,–) (0.04,–)

Then, condition (1.3) becomes β1 ∈ (−0.59,5), β2 ∈ (−0.20,5), β3 ∈ (−0.20,0.22),
β4 ∈ (−5,0.22), and β5 ∈ (−5,0.63). Converting these intervals in the parameter
space for β to intervals on the probability scale gives p1 ∈ (0,0.19), p2 ∈ (0,0.18),
p3 ∈ (0.18,0.32), p4 ∈ (0.32,1), and p5 ∈ (0.33,1). Condition (1.3) is violated if,
for instance, p2 ∈ (0.18, p3) with |p3 − 0.25|< |p2 − 0.25|. In this case, the CRM
may select dose 2 instead of ν = 3. Choosing a dose with p2 ∈ (0.18, p3) may be an
erroneous selection but not a serious one. The same can be said if p4 ∈ (p3, 0.32).
The interval (0.18, 0.32) is called the indifference interval for ν = 3 because the
CRM model may fail to differentiate ν and its neighbors with toxicity probabilities
falling in this interval.

Different CRM models have different indifference intervals, and apparently,
models with large indifference intervals are not sensitive enough to detect relevant
difference in toxicity probabilities. Table 1.3 shows the indifference intervals for
four CRM models with θ = 0.25 using different functional forms and different sets
of initial guesses. We note that the impacts of the functional form on sensitivity are
small in comparison to that of the initial guesses. Simulation is the primary tool to
evaluate the operating characteristics of a CRM design. With infinite possibilities of
choices of the initial guesses, it is thus sensible to restrict consideration to those with
adequate sensitivity. As such, the indifference interval technique provides a quick
supplement to simulation when planning a CRM trial.

3.2 Escalation with Overdose Control

Other model-based designs by and large use the same idea that continually updates
the belief about the dose-toxicity relationship during a trial. The main difference
lies in the dose decision criterion. Babb et al. (1998) propose the escalation with
overdose control (EWOC) in which the next dose xn+1 is given so that the posterior
probability of xn+1 exceeding the MTD is equal to α . The method assumes a dose-
toxicity model F(x,β ) where β is vector-valued (e.g., two-parameter logistic) so
that the model is more flexible and “realistic” than that in the CRM. Then the
model-based MTD xθ ,β is defined such that F(xθ ,β ,β ) = θ . Under a Bayesian
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paradigm, xθ ,β is random via the postulation of prior on the model parameter β ,
and xn+1 is defined such that Qn(xθ ,β ≤ xn+1) = α with Qn(·) denotes probability
computed under the posterior distribution of β given the first n observations. From a
decision-theoretic viewpoint, xn+1 minimizes the Bayes risk with respect to the loss
function

Lα (xθ ,x) =

{
α(xθ − x) if x ≤ xθ , i.e., if x is an underdose

(1−α)(x− xθ) if x > xθ , i.e., if x is an overdose
,

where x is an estimate of the true xθ . This loss function implies that the loss incurred
by treating a patient at one unit above the MTD is (1−α)/α times greater than that
by treating a patient at one unit below the MTD. Thus, a small α (e.g., 0.05) puts
a heavier penalty on overdose than underdose, and approaches the target dose from
below. From a practical viewpoint, the applicability of EWOC may be limited to
situations where a continuum of doses are available (e.g., IV administration).

3.3 Curve-Free CRM

In an attempt to avoid the reliance of a parametric dose-toxicity model, Gasparini
and Eisele (2000) propose a phase I design that governs dose assignments during a
trial by Bayesian nonparametric estimates of the dose-toxicity curve. A product-of-
beta prior is put on the toxicity probabilities p1, . . . , pK , namely,

1− p1,
1− p2

1− p1
,

1− p3

1− p2
, . . . ,

1− pK

1− pK−1

are assumed independently distributed as beta variables a priori. Besides monotone
dose-toxicity imposed by this prior, there is no parametric assumption on the toxicity
probabilities. The beliefs on pi’s are reassessed after every small group of patients
so that the next group is treated at argmini |E(pi| data)−θ |. This method proceeds
in the same manner as the CRM, and is usually called the curve-free CRM (CFM).

The CFM may cause rigidity that confines dose assignments to suboptimal
levels (Cheung 2002). Specifically, such rigidity occurs when a dose i is observed
with large observed toxicity rates (e.g., one toxic outcome out of two patients): a
high estimate for pi will drive the sequential CFM to assign a lower dose (dose
i− 1, say), and the nonparametric estimation will prevent escalation back to dose
i because whatever happens at dose i− 1 will have little effect on the estimation
of pi. Such rigidity may occur with a nonnegligible probability even if dose i is in
truth safe (i.e., pi ≤ θ ). This problem can be alleviated by using informative priors
on pi’s and larger group size (Cheung 2002). As a special case, the CFM reduces
to the CRM when using degenerated priors (whichessentially impose a parametric
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structure on pi’s). In this light, the use of nonparametric estimation in conjunction
with a CRM-type sequential design is not recommended. Rather, the CRM with a
one-parameter model is a reasonable method of choice, when calibrated using the
sensitivity technique in Sect. 3.1.3.

4 Example: A Bortezomib Trial in Lymphoma Patients

We designed a dose-finding study of bortezomib when used in combination with
the standard chemotherapy regimen as first-line treatment for lymphoma patients
(Leonard et al. 2005). Dose-limiting adverse events were defined as grade 3 or
more severe neuropathy, low platelet count, and symptomatic nonneurologic or
nonhematologic toxicity. The objective of the trial was to identify the MTD among
K = 5 test dose schedules with a target θ = 0.25; each subsequent regimen increases
in intensity by escalating the dose of bortezomib or the administration frequency.
The trial started the first subject at the third level (0.7 mg m−2 days 1 and 4 of a 21-
day cycle), and a modified CRM (Sect. 6.1) was used for subsequent dose escalation
in 18 subjects. The empiric model in (1.2) was used with β ∼ N(0,1.34); see model
E1 in Table 1.3.

4.1 Method Comparison

To anticipate how the CRM operates, Fig. 1.1a shows the outcomes of a simulated
trial run under the scenario p1 = p2 = 0.05, p3 = 0.08, p4 = 0.25, and p5 = 0.45.
In the trial, each patient was enrolled with a latent tolerance uniformly distributed
on the interval (0,1). If the uniform variate was smaller than the toxicity probability
associated with the dose given to the patient, then the patient had a toxic outcome;
otherwise, the patient did not have a toxic outcome. The trial started at dose level 3,
and dose assignments in the early part of the trial went back and forth between dose
level 4 and its neighboring doses. After patient 8, the CRM treated the remaining
patients at dose 4, which was also the final estimate of the MTD.

Figure 1.1b illustrates how the 3+3 algorithm might draw a wrong conclusion.
To match it with the simulated CRM trial, the same sequence of uniform variates
was applied in the generation of toxicity outcomes. Also for comparison purposes,
the algorithm was started at dose level 3. The trial ended after observing two toxic
outcomes at level 4, with a total of 6 enrolled patients. Simple binomial calculation
shows that, with p4 = 0.25, there is a nonnegligible probability (0.14) to observe
two toxic outcomes out of three subjects. While this is the sample size clinicians
expect to see, the 3+3 algorithm in this case concludes dose 4 as toxic too soon.

While the CRM is expected to outperform the 3+3 algorithm, it is of interest to
consider some recent algorithm-based designs whichare logistically simpler than
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Fig. 1.1 Simulated trials by six dose-escalation methods. Each point represents a patient, with “o”
indicating no toxicity and “x” indicating toxicity. Except for the 3+3 algorithm and the stepwise
procedure, the sample size is prespecified to be 18

the model-based CRM. Figure 1.1c shows the outcomes for the stepwise SPRT
as described in Table 1.1, Fig. 1.1d for Storer’s design D, Fig. 1.1e for the biased
coin design, and Fig. 1.1f for the JLB method as in Table 1.2. All designs were
started at dose 3, and the same sequence of uniform variates was used to generate
the toxicity outcomes. The biased coin design exhibited much within-trial variation
of dose assignments, primarily due to the Markovian nature of the design: after the
fifth patient at dose 3 experiencing a toxic outcome, the next dose was deescalated,
despite the four previous nontoxic observations at dose 3. The same “memoryless”
property may cause Storer’s design D to deescalate when the current dose appears
safe, or escalate when it appears toxic, perhaps to a lesser extent because of its
group-accrual nature. The stepwise SPRT induced less within-trial dose variation
than the up-and-down designs, while it allowed quick escalation after two nontoxic
outcomes at dose 3, and deescalation after two toxic outcomes at dose 5. The SPRT
trial ended with 13 subjects enrolled to dose 4. The JLB method exhibited more
within-trial variation than the stepwise procedure, but less when compared to the
memoryless designs. It assigned 9 patients to dose 4. Both the stepwise test and
JLB method selected dose 4 as the MTD.



14 Y.K. Cheung

Table 1.4 Operating characteristics of the CRM, the stepwise SPRT, the JLB and the 3+3
methods

Proportion of selecting dose Average numbers

Design 0/1a 2 3 4 5 Toxicity Sample size

Scenario 1, p: 0.05 0.05 0.25 0.45 0.55
3+3 0.05 0.39 0.43 0.12 0.02 2.7 14
CRM; n = 18 0.01 0.17 0.65 0.17 0.01 4.7 18
JLB; n = 18 0.03 0.28 0.45 0.20 0.03 4.4 18
CRM; n = 30 0.00 0.10 0.77 0.13 0.00 7.7 30
JLB; n = 30 0.04 0.29 0.53 0.13 0.00 6.8 30
SPRT; ntr = 19 0.00 0.22 0.71 0.07 0.00 10 32

Scenario 2, p: 0.05 0.05 0.08 0.25 0.45
3+3 0.05 0.06 0.35 0.41 0.12 2.6 16
CRM; n = 18 0.00 0.01 0.22 0.61 0.16 4.2 18
JLB; n = 18 0.01 0.07 0.26 0.50 0.16 3.9 18
CRM; n = 30 0.00 0.01 0.15 0.73 0.12 7.1 30
JLB; n = 30 0.02 0.07 0.29 0.54 0.08 6.2 30
SPRT; ntr = 19 0.00 0.01 0.22 0.71 0.07 9.0 31

Scenario 3, p: 0.05 0.05 0.08 0.12 0.25
3+3 0.05 0.07 0.12 0.31 0.45 1.9 17
CRM; n = 18 0.00 0.01 0.05 0.30 0.63 3.2 18
JLB; n = 18 0.01 0.07 0.11 0.26 0.55 3.1 18
CRM; n = 30 0.00 0.00 0.03 0.25 0.72 5.7 30
JLB; n = 30 0.01 0.08 0.11 0.29 0.51 5.1 30
SPRT; ntr = 19 0.00 0.01 0.02 0.22 0.75 5.0 25

Scenario 4, p: 0.05 0.05 0.12 0.25 0.25
3+3 0.05 0.12 0.33 0.20 0.29 2.2 16
CRM; n = 18 0.00 0.02 0.22 0.35 0.40 3.6 18
JLB; n = 18 0.01 0.11 0.23 0.21 0.43 3.2 18
CRM; n = 30 0.00 0.01 0.18 0.41 0.41 6.2 30
JLB; n = 30 0.01 0.10 0.25 0.23 0.40 5.6 30
SPRT; ntr = 19 0.00 0.02 0.15 0.17 0.65 5.9 26
aDose 1 may be concluded unsafe by the 3+3 algorithm, the JLB method, and the stepwise SPRT

4.2 Simulation Results

Table 1.4 show the operating characteristics of the CRM, the JLB method, and the
stepwise SPRT based on 5,000 simulation replicates under four dose-toxicity curves.
As a benchmark, we also include the results for the 3+3 algorithm that starts at the
lowest dose, whereas the others start at dose 3 as in the bortezomib trial. For the
CRM and the JLB method, we consider sample size 18 and 30. We did not evaluate
the random walk designs due to the memoryless property observed in Sect. 4.1.

The 3+3 algorithm is marked by small sample size, low number of toxicities, and
inferior accuracy when compared to the other methods. While it appears safe, the
low occurrence of toxicity is due to the fact that majority of the subjects are treated
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at low and inefficacious doses. It indicates that the resources invested in phase I
trials by the traditional approach are inadequate and misplaced.

The CRM with 18 subjects has good operating characteristics with over 60%
probability of selecting the true MTD in Scenarios 1–3, and increasing sample size
to 30 improves the accuracy further. Under Scenario 4 where the dose-toxicity curve
is flat around the MTD (dose 5), the CRM has mediocre performance, and does not
improve as sample size increases. This reveals the fact that the CRM (and almost all
other existing methods) assume strict monotonicity of the dose-toxicity curve. This
assumption, on the one hand, is true for the classical cytotoxic agents, but on the
other hand, needs to be reexamined for therapeutics outside oncology.

The JLB method is uniformly less accurate than the CRM except for Scenario 4,
where its performance is mediocre. More importantly, there seems to be a decline
in accuracy as sample size increases in Scenarios 3 and 4; it could be because there
is a higher likelihood to declare the highest dose as unacceptably toxic with a larger
number of “looks” of the data.

The stepwise SPRT has high probability of correct selection in all four scenarios,
with average sample sizes about 30. This suggests that an algorithm-based design
can be as efficient as the model-based CRM with comparable sample size. There
are two caveats, however. First, the sample size of the method is random and can be
large; for example, the 90th percentile of the sample size distribution range from 44
to 55 under the simulated scenarios. This can be mended by applying an aggressive
truncation (Cheung 2007). Second, the method on average induces slightly higher
proportions of toxicity. Safety of the stepwise procedure should also be read in light
of the fact that the method recommends any unsafe dose (pi ≥ 0.45) for future use
with a small probability (<0.10) in comparison to the other methods. Within-trial
safety can be further enhanced by choosing a small ε∗ in (1.1).

The simulation scenarios here are chosen to illustrate some recurring properties
of the designs. In summary, we find that the model-based CRM converges quickly
to the right dose even with a small sample size. When more resources are available,
the stepwise SPRT is competitive and in fact best when the dose-toxicity curve is
flat around the MTD (cf. Scenario 4) because the success of the stepwise procedure
does not rely on strict monotonicity of the dose-toxicity curve.

5 Theoretical Properties

General dose-finding theory motivated by ethics and scientific concerns in human
trials provides a necessary framework to evaluate the appropriateness of a phase I
design. This section reviews two such properties, coherence and consistency, and
discusses their relevance.
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Fig. 1.2 In the outcome sequences, each point represents a patient, with a “o” indicating no
toxicity and “x” indicating toxicity. (a) Incoherent escalation for patient 7, (b) incoherent
deescalation for patient 10, (c) a coherent outcome sequence

5.1 Coherence

The coherence principles for dose-finding studies state that no escalation should take
place for the next enrolled patient if the current patient experiences a toxic outcome,
and that de-escalation for the next patient is not appropriate if the current patient
shows no sign of toxicity. A dose-escalation design that may induce an incoherent
escalation or deescalation is called an incoherent design. Thus, for a coherence
design, Pr(xi+1 > xi|Yi = 1)= Pr(xi+1 < xi|Yi = 0)= 0 for all i. From a mathematical
viewpoint, coherence is a pointwise property because it involves every possible dose
assignment sequence in the sample space. Figure 1.2a shows an outcome sequence
with an incoherent escalation, and Fig. 1.2b with an incoherent deescalation; the
designs that generate these sequences are incoherent designs. Figure 1.2c shows a
coherent outcome sequence; but to establish coherence of the generating design for
N patients, all 2N outcome sequences need to be verified as coherent.

It is almost instinctive to enforce coherence as an ethical criterion in practice.
For algorithm-based designs such as the biased coin design where dose decision
rules are prespecified, coherence is an intrinsic part of the algorithm. In contrast,
coherence of a model-based design needs to be shown on a case-by-case basis.
The original CRM (Sect. 3.1.1) has been proved to be coherent in general (Cheung
2005). The two-stage CRM (Sect. 3.1.2) is not necessarily coherent, depending
on how the initial design is chosen. Several authors suggest imposing coherence
by restriction in a two-stage CRM (Faires 1994; Goodman et al. 1995; Korn
et al. 1994). Alternatively, Cheung (2005) provides a coherence condition for the
two-stage CRM, and suggests using an initial design sequence that meets the
condition. Precisely, let M0 = min{i : Yi = 1} denote the transition from the initial
design to the CRM in a two-stage design. Then, the coherence condition is met
if argmink |F(dk, β̂M0)− θ | ≤ xM0,0 where β̂M0 is the posterior mean of β given
the first M0 subjects treated according to the initial design. For a trial with N
patients, there are only N −1 possible transitions. Therefore, we can verify whether



1 Designs for Phase I Trials 17

a two-stage CRM is coherent by checking the corresponding outcome sequences for
M0 = 1,2, . . . ,N−1, without the need to go through all 2N outcomes. The coherence
condition may then serve as an objective criterion to choose initial sequence that is
compatible with the model-based CRM to produce a smooth transition of stages.
Currently, the initial design is typically chosen in an ad hoc manner without clear
justification. Since coherence is motivated as an ethical criteria, it may not lead
to efficient estimation of the dose-toxicity curve. In the related bioassay literature,
efficient designs may sequentially maximize the information (McLeish and Tosh
1990). However, such designs may not be coherent and are not appropriate for
human trials.

5.2 Consistency

A model-based design makes use of data available at all doses via a dose-toxicity
curve, which if consistently estimated, will lead to a consistent estimator for the
true MTD ν . In particular, we are concerned about strong consistency, that is,
xn+1 = ν eventually with probability one. At the same time, as the role of the
dose-toxicity curve is crucial in a model-based design, it is important to examine
the method’s robustness against misspecification because there is often not much
information to suggest a reliable model at an early clinical stage. The EWOC is
consistent under the assumption that F(x,β ) is a correct model (Zacks et al. 1998),
but its robustness under model misspecification has not been examined. The curve-
free method suffers no bias due to misspecification, but is inconsistent due to the
rigidity discussed in Sect. 3.3. Shen and O’Quigley (1996) prove that the CRM is
strongly consistent for ν even when F(x,β ) is misspecified; Cheung and Chappell
(2002) build on the work of O’Quigley and Shen and postulate that the steepness
condition (1.3) suffices consistency. Note that condition (1.3) is met if F(x,β ) is
correctly specified, but the converse is not true necessarily. Figure 1.3 shows the
probability of correctly selecting dose 5 by models E1 and E2 in Table 1.3 under the
scenario μ = (0.05,0.05,0.10,0.15,0.27).The CRM with model E1, which satisfies
condition (1.3) under μ , performs well at small sample size and improves as sample
size increases in accordance with our expectation of consistency. In contrast, the
CRM with model E2 does not satisfy condition (1.3) and its performance plateaus
as sample size increases. Also, the inconsistent model E2 is much inferior to E1 at
small sample size, indicating that asymptotics arguments are predictive of when a
CRM model may fail at small sample sizes.

Consistency offers a new perspective about the indifference intervals. Consider
the CRM using model E1, whose indifference interval for ν = 5 has a lower limit
0.18. It indicates the model cannot differentiate ν from a lower dose with toxicity
rate greater than 18%. Generally, an indifference interval is an interval of toxicity
probability to which the CRM will converge. In this sense, indifference interval is
an asymptotic concept. While asymptotics may not seem relevant in phase I trials,
our experience indicates that models with large indifference intervals (cf. Fig. 1.3)
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Fig. 1.3 The probability of
correct dose selection the
CRM using models E1 and
E2 in Table 1.3 at various
sample sizes. The results were
run under the scenario μ =
(0.05,0.05,0.10,0.15,0.27)
based on 5,000 simulation
replicates
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often does poorly at sample sizes. Finally, the notion of consistency bears an ethical
implication that patients enrolled onto the trial will eventually be treated at the
right dose, and is thus a practical design feature that encourages patient consent
(Rosa et al. 2006).

6 Further Topics

Up to this point, we have assumed that the primary endpoint is a binary toxicity out-
come defined over a short-term period. This section discusses how this commonly
held assumption may not be practical in the context of the bortezomib trial, and
reviews phase I methods tailored for the “nonstandard” study endpoints.

6.1 Delayed Toxicities

In the bortezomib trial, a patient might receive up to six 21-day cycles of treatment,
and therefore would be at risk of toxicity throughout the entire treatment period.
While it is a common practice to count only toxicity occurring in the first cycle as
dose-limiting, we may underestimate the toxicity burden incurred if toxicity tends
to occur at a later cycle. On the other hand, it is apparent that awaiting complete
follow-up for 126 days before making an escalation decision will cause delays and
add administrative burden. In the bortezomib trial and many others, if a toxicity
occurs, it may occur at a random time throughout the observation period. As such,
it is appropriate to use time-to-toxicity as the study endpoint and define the MTD
objective with respect to a prespecified observation window (denoted as T ). Cheung
and Chappell (2000) propose incorporating the patients’ times-to-event into the
CRM for dose decisions, and call the method the time-to-event CRM (TITE-CRM).
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Fig. 1.4 Outcome summary of the bortezomib trial. An unmarked number indicates the patient’s
entry time. Time of toxicity is marked with a “O,” and dropout with a “D.” Vertical positions of the
numbers are jittered to provide visual separation

The TITE-CRM proceeds in the same manner as the regular CRM: it assumes
a one-parameter dose-toxicity model F(x,β ), starts the trial at the prior MTD, and
repeatedly estimates β after every single patient so that the subsequent patient is
treated at the updated model-based MTD estimate. A key difference between the
TITE-CRM and the CRM is the estimation of β . With the data accrued up to the
first n patients, the TITE-CRM estimates β based on a weighted likelihood:

L (β ) =
n

∏
j=1

{
w(Cj,n+1;T )F(x j,β )

}Yj,n+1
{

1−w(Cj,n+1;T )F(x j ,β )
}1−Yj,n+1 ,

(1.4)

where Cj,n+1 and Yj,n+1, respectively, denote the follow-up time and toxicity status
of patient j just prior to the entry of patient n+ 1. The weight function w(c;T ) is
increasing in c such that w(0;T ) = 0 and w(c;T ) = 1 for c ≥ T . Then β may be
estimated by β̃n =

∫
βL (β )dG(β )/

∫
L (β )dG(β ). If a patient is admitted only if

the previous patient has been followed completely, then Cj, j+1 ≡ 1, the weighted
likelihood (1.4) reduces to the regular binomial likelihood, and β̃n = β̂n.

We may view w(Cj,n+1;T ) as Pr(Tj ≤ Cj,n+1|Tj ≤ T,x j) where Tj denote the
time-to-toxicity of patient j, so that L (β ) is a likelihood based on conditionally
independent current status data. In the same spirit of using an underparametrized
F(x,β ), Cheung and Chappell (2000) suggest the use of a predetermined, linear
weight function w(c;T ) = c/T for c ≤ T , and demonstrate that the TITE-CRM with
such an over-simplistic weight function performs well in many situations.

The TITE-CRM was used for dose-escalation in the bortezomib trial with the
linear weight and T = 126 days. Figure 1.4 displays the trial outcomes. The trial
started at dose 3 and the first escalation occurred at day 73 after four patients had
shown no toxicity over a fraction of the observation window. The next three patients
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were then enrolled at dose 4, and no toxicity was seen in any of the seven subjects
by 160 days, at which point the eighth subject arrived and was given dose 5. Shortly
after that, patient 7, who had just finished second cycle of treatment, experienced a
dose-limiting toxicity. Subsequently, the TITE-CRM assigned dose 4 for the next six
patients before reescalated to dose 5, which was the final MTD estimate. This trial
enrolled a total of 19 subjects in slightly over a year with only a single dose-limiting
toxicity. It indicates the TITE-CRM was reasonably cautious, while avoiding accrual
suspensions due to incomplete follow-up. The TITE-CRM have also been applied
trials in radiation oncology (Muller et al. 2004; Normolle and Lawrence 2006) and
acute stroke (Elkind et al. 2008).

Since the proposal of the TITE-CRM, there have been a number of extensions
aiming at improving the method’s safety. A general approach is to properly model
w(c;T ). For example, Cheung (2006) studies the use of adaptive weight function
that estimates w(Cj,n+1;T ) with the empirical quantity:

ŵ j,n+1 = un
∑n

i=1 I{Ti ≤Cj,n+1,Ci,n+1 ≥ T}
∑n

i=1 I{Ti ≤ T,Ci,n+1 ≥ T} +(1− un)
Cj,n+1

T

for some un → 1 as n increases. Generally, the use of linear weight appears to be
adequate except when the toxicity has a late-onset tendency. In these situations,
using adaptive weights prevents erroneous escalation by assigning lesser weights to
the early part of the observation window.

A second approach to enhance safety is to temporarily suspend accrual if the
accrued data suggest the risk of toxicity at the recommended dose is unacceptably
high. Bekele et al. (2008) quantify such risks by formal predictive probabilities. In
the bortezomib trial, we would ensure a minimum of 2-week observation period of
the last enrolled patient if the next patient was to receive a higher dose. We find this
simple approach a practical compromise between trial accrual and patient’s safety.
For many cancer trials, it is feasible to delay the treatment start date of a patients by
1–2 weeks without administratively closing the trial.

6.2 Toxicity Severity Scores

In the bortezomib trial, toxicity was graded according to the Common Terminology
Criteria for Adverse Events v3.0, with “0” indicating no toxicity to “5” indicating
toxic death, but the trial objective was defined in terms of a dichotomized outcome.
The TITE-CRM was used to find a dose with 25% dose-limiting toxicity rate. This
is indeed a common phase I trial practice for which most statistical designs provide
a convenient solution. This dichotomy, however, ignores two crucial features of the
ordinal toxicity grades. First, grade 4 toxicities such as neuropathy are disabling and
irreversible, whereas grade 3 neuropathy are severe and dose-limiting but can be
reversed with symptomatic treatment. While 25% grade 3 toxicity rate is tolerable,
the tolerance for grade 4 toxicity is much lower. Second, although low-grade toxicity
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is not dose-limiting, it signals that the trial has reached near the dosage range
where higher grade toxicity becomes likely. The accelerated titration design (Simon
et al. 1997) addresses the second issue: it initially escalates after every single
patient, and switches to the 3+3 algorithm when one patient has a dose-limiting
toxicity, or two patients experience grade 2 toxicity. In addition, the design allow
intra-patient escalation if the patient has grade 1 or no toxicity in the previous
cycle.

To address the gradation in toxicity severity, the recent statistical literature
(Bekele and Thall 2004; Yuan et al. 2007) introduces the concept of severity score
for various grades and types of toxicities. Suppose, there are Cj levels of severity
for toxicity type j for j = 1, . . . ,J, and let wjl denote the elicited severity weight for
level l of toxicity type j. Bekele and Thall (2004) define the expected total toxicity
burden (TTB) for dose dk as

ψ(w,dk,data) =
J

∑
j=1

Cj

∑
l=1

wjlE{π jl(dk,β ) |data},

where πi j(dk,β ) denotes the probability of experiencing level l of toxicity type j and
the expectation is taken with respect to the posterior distribution of the parameter
β . The dose-finding algorithm assigns the next dose on the basis of ψ(w,dk,data)
with respect to a fixed target TTB value ψ∗, and hence requires repeated estimation
of π jl(dk,β ) throughout the trial. The authors use a latent variable modeling
approach to estimate π jl(dk,β ). Because the model is highly parametrized and quite
elaborate, it is computationally difficult for model diagnostics and evaluation of the
design.

Yuan et al. (2007) subsequently adopt a similar frequentist concept, called
equivalent toxicity (ET) score, for the special case with J = 1 toxicity type. An ET
score for dose dk is defined as ψ(dk,β ) = ∑C

l=1 wlπl(dk,β ) and the objective is to
find the largest dk with ψ(dk,β ) ≤ ψ∗. Suppose for instance that the respective
severity weights for neuropathy at grade 2, 3, and 4 are 0.25, 0.5, and 1.0, and
their probabilities of occurrence at an “ideal” dose dk are 0.1, 0.2, and 0.05. Then
ψ(dk,β ) = 0.25×0.1+0.5×0.2+1.0×0.05= 0.175, and we may set ψ∗ = 0.175.
The authors propose to estimate β via quasi-likelihood:

n

∏
i=1

ψ(xi,β )Wi{1−ψ(xi,β )}1−Wi ,

where Wi ∈ {0.00,0.25,0.50,1.00} is the observed severity weight of patient i, and
the model ψ(x,β ) can be chosen according to the CRM convention (1.2). The quasi-
likelihood modeling approach extends directly from the CRM, so calibration of the
model ψ can be done in a similar manner to F(x,β ) as in Sect. 3.1.3.

There are several issues with the use of the severity scores. First, there is no
current standard weights assigned to toxicities. Second, in the process of specifying
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a target ψ∗, clinicians need to specify an ideal toxicity profile. This is a challenging
task as there are virtually infinitely many possible profiles. A third and related point
is the fact that very different toxicity profiles may have the same value. For example,
a dose that causes grade 2, 3, and 4 neuropathy with probabilities 0.6, 0.03, and
0.01 will have an ET score 0.175. Although this dose has the same ET score as the
previous dose, it has low incidence of high grade toxicity and is thus more tolerable
than the previous one. Motivated by the first difficulty, Lee et al. (2009) suggest
precalibrating the toxicity severity score, which they call toxicity burden score,
based on pilot clinical data. To address the other two issues in a sequel, Lee et al.
(2001) study an extension of the CRM that defines the trial objective with respect
to multiple toxicity constraints applied on the toxicity burden score. Their approach
has the advantage that the MTD based on ordinal toxicity is a natural extension of
the MTD in the standard settings with a binary toxicity endpoint.

These severity weight approaches provide formal statistical framework that can
facilitate the incorporation of ordinal toxicities into dose finding. On the other hand,
while they may be implemented at some well-supported research institutions in a
specialized and sporadic fashion, methodology and theoretical research directed at
these issues is needed before these methods can be broadly implemented.

6.3 Bivariate Designs

Many dose-escalation designs that incorporate both toxicity and efficacy endpoints
are motivated by noncancer applications, where safety consideration is relevant but
not adequate. Even in cancer trials, the ultimate goal is to identify an efficacious dose
for future research. This leads to the combined “phase I/II” clinical trial in which
both toxicity and efficacy are considered in the planning stage. The bortezomib trial
was one such example with a simple design: the TITE-CRM was used in the phase I
portion of the trial where toxicity was the sole basis of dose escalation; an expanded
cohort – with proper sample size calculation – was then enrolled to the identified
MTD to evaluate the 2-year progression-free survival rate in the study subjects.

For trials with a quick efficacy response, it is feasible to use the response, as well
as the toxicity endpoint to choose doses during a trial. Majority of bivariate designs
in the statistical literature are model-based and focus on bivariate binary outcomes
(Braun 2002; Thall and Cook 2004; Yin et al. 2006). To illustrate their basic idea,
let FE(x,β ) and FT(x,β ) denote the respective probabilities of achieving efficacy
and toxicity at dose x, where the parameter β is vector-valued. A dose x is called
acceptable if

Qn{FE(x,β )> p
E
}> aE and Qn{FT(x,β )< pT}> aT,

where p
E

and pT are fixed lower and upper limits on the probabilities of efficacy
and toxicity specified by clinicians, aE and aT are fixed probability cut-offs, and
Qn denotes probability computed under the posterior distribution given the first n
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Table 1.5 Coherence-guided dose decision in bivariate trials

Row Efficacy Toxicity Escalation Deescalation

1 No No Okay Incoherent: efficacy and toxicity
2 No Yes Incoherent: toxicity Incoherent: efficacy
3 Yes No Okay Incoherent: toxicity
4 Yes Yes Incoherent: toxicity Okay

observations. The basic idea of these approaches is to define a utility U(x,β ) of
dose x as a function of FE(x,β ) and FT(x,β ); then, among all acceptable doses, the
dose with the highest posterior expected utility EQn{U(x,β )} will be selected for
use in the next incoming group of patients.

The model-based and utility-based approach need further research in two aspects.
First, the impact of underparametrized models on the method’s performance needs
to be examined. Some (Braun 2002) adopt underparametrized models in light of
the robustness of the one-parameter CRM, whereas others (Thall and Cook 2004;
Yin et al. 2006) use elaborate models. Although elaborate models have less bias in
nonsequential settings, model flexibility may cause undesirable rigidity that confines
treatments to suboptimal doses when the doses are assigned sequentially (Cheung
2002).

Second, the preference for the pair {FE(x,β ),FT(x,β )} is sensitive to how the
utility U(x,β ) is defined. For example, under the efficacy–toxicity odds ratio utility,
that is, U ∝ FE(1−FT)/{FT(1−FE)}, the pair (0.8,0.25) having an odds ratio 12
is preferred to (0.2,0.05) which has an odds ratio 4.75. The order of preference is
reversed under an efficacy–toxicity probability ratio utility, that is, U ∝ FE/FT. Such
disagreement in the preference ordering is unavoidable for an utility-based method,
because any real-valued function U projects the two-dimensional (FE,FT) onto a
one-dimensional space. From a clinical viewpoint, the above two pairs represent
very different trade-off preference, and therefore clinician’s inputs are crucial in the
success of these approaches.

Regardless of the choice of the utility function, the coherence principles for the
toxicity-driven designs (Sect. 5.1) can be easily extended to the bivariate setting to
simplify dose decisions. Table 1.5 displays all possible outcomes of a patient and
the corresponding incoherent moves due to efficacy and toxicity considerations. As
defined in the Sect. 5.1, a deescalation is incoherent if the current patient does not
experience toxicity (rows 1 and 3 in Table 1.5). Likewise, for efficacy, if the current
patient does not achieve a response, it is not ethically sound to treat the next patient
at a lower and less efficacious than the current one (rows 1 and 2 in Table 1.5). On the
other hand, if the patient has a response, it may be fine to escalate dose for the next
patient as long as safety permits it. When the current patient has a toxic outcome but
not a response (row 2 in Table 1.5), bivariate coherence implies neither escalation
nor deescalation is permissible, and leaves staying at the current dose as the only
logical dose decision for the next patient – unless if there is a clear indication that
the dose has response rate less than p

E
and toxicity rate greater than pT, then the trial

should be closed and the drug concluded futile. These coherence-guided decisions
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are transparent and clinically sensible, and provide useful algorithmic restrictions
to the complex “black-box” approach of the model-based methods. Coherence may
also provide the basic structure for algorithm-based bivariate designs which have
received relatively little attention in the literature.

7 Challenge Ahead: Implementation

Much effort is needed to overcome the status quo in phase I trial practice. In this
regard, algorithm-based designs are appealing because they are operationally simple
and transparent. This being the case, statisticians should still be able to defend a new
algorithm-based design and explain why it is superior to the familiar traditional 3+3
method, as it may not be the case at times. In particular, the stepwise procedure has
the familiarity advantage because it operates in a similar manner to the 3+3 scheme,
while possessing clear statistical properties with prespecified error rates.

On the other hand, our experience with extensive simulations (e.g., Sect. 4.2)
indicates that model-based methods such as the CRM provide quick convergence to
the right dose, and thus are particularly suited to the “standard” phase I trial setting
where the number of subjects are limited. In addition, for the “nonstandard” settings
(Sect. 6), model-based approaches have great flexibility to account for variation and
the dose-response structure through statistical modeling, and hence provide answers
to clinically relevant questions. These advantages, however, are no substitutes for
careful planning and operational transparency during the trial.

A crucial step in planning a model-based trial is calibration of the working model,
augmented by simulations. As shown in Sect. 5.2, a carefully calibrated CRM model
will have robust performance even when the working model is misspecified. For the
CRM and its extensions, the R package dfcrm (Cheung 2008) provides general
model calibration tools and simulation capability to aid trial planning in the R
computing environment (R Development Core Team 2008). The R package dfcrm
also consists of functions to run the CRM, plot an updated dose-toxicity curve,
and summarize dose assignments during a trial. For credibility and transparency
reasons, it is important for the clinical investigators to see that the method can be
implemented in robust and reproducible platform and a comprehensible manner.

Any statistical phase I design should not replace sound clinical judgement. It is
almost always appropriate to view the model-based dose assignments as advisory,
especially in the event that an escalation is recommended. As there is an increasing
trend for constituting a data and safety monitoring committee for early phase cancer
trials, the committee may be a natural body to confirm or disapprove the model-
based recommendations based on data not formally incorporated in the model. On
the other hand, a good model-based design should mimic sound clinical judgment
in a systematic manner. As a case in point, when a two-stage CRM recommends
an escalation when the most current patient has a toxic outcome, we certainly can
override the recommendation and impose coherence by restriction. However, the
fact that the model-based recommendation does not sound right indicates the model
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has not been properly calibrated. As any dubious dose decision by the supposedly
superior dose-escalation design shall be effective at convincing the clinicians to stay
with the sensible 3+3 algorithm, much care should be given to ensure that clinically
sensible judgments can be reproduced in a systematic manner. In this light, there is
much room for research and theoretical investigation for the complex model-based
designs for the complex “nonstandard” settings, where simulations remain the only
tool for method evaluation (cf. Sect. 6.3).
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Chapter 2
Randomized and Balancing Allocation Schemes
for Clinical Trials: Computational Perspectives
on Design and Deployment

Vincent J. Carey and Robert Gentleman

1 Conceptual Overview

Randomization of patients to treatments is an essential component of almost all
clinical trials. The basic motivation is to allow for appropriate inference to be made
and to avoid selection bias that might occur when the treatment likely to be assigned
to a given patient is known to the experimenter. Some tension is created by the
somewhat contradictory goals of keeping the process from being predictible, while
at the same time ensuring that the proportions of patients allocated to the various
treatments do not vary considerably from prespecified targets.

A wide variety of allocation schemes have been proposed and many have
been used in practice. The monograph of Rosenberger and Lachin (2002) is a
very thorough and clear treatment of relevant details on the theory and analysis
of randomized designs, and should be consulted by anyone considering doing
research on randomization methods. More recently, Rosenberger and Sverdlov
(2008) provides updates on research regarding covariate-adaptive randomization
methods. Most methods take different approaches to ensuring balance, which is
the correspondence between the treatment allocations given and those that were
intended. In this chapter, we review a number of the basic randomization schemes
and provide illustrations using a computer implementation. That implementation is
suitable for experimentation and testing the ideas discussed in this chapter.
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1.1 Basic Notions for Idealized Experiments

A very simple trial design involves n patients and two treatments, denoted A and B.
The trial protocol specifies that NA patients receive treatment A and NB = n−NA

patients receive treatment B. There are n allocation events, consisting of recruitment,
determination of eligibility and consent, and assignment of treatment to patient i, i=
1, . . . ,n. The trial will also involve the determination of a response event or measure,
denoted Yi, for each patient. If Ȳt denotes the sample mean of the Yi for those values
of i to which treatment t was allocated, then the statistic Δ̄BA = ȲB − ȲA is a natural
quantity to consider as a measure of the effect of treatment B in comparison to A.
Inference can either be based on a known probability distribution for Δ̄BA under
the hypothesis of equal effects if available, or it can be based on permutation-based
approaches. Our concern throughout this chapter is to address the question:

• How should allocations be structured so that estimates of treatment effects
and tests of hypotheses about treatment effects will have desirable statistical
properties?

This question includes some inevitably complicated concepts, and our discussion is
intentionally limited, avoiding considerations of logistics, ethics, and economics of
the experiment. The structure to be imposed on the allocations will involve decision
making for each patient, and can also involve consideration of past allocations.
Estimates and tests of treatment effects may have different forms depending on
scientific objectives of the trial. Statistical properties to be secured may also be
application-dependent. We next define a few simple allocation schemes in which
we can examine some of these concepts a bit more closely.

Stratification is also dealt with in this section, after all the randomization
methods have been described. In our implementation, we found it useful to
assign randomizers to strata. This allows for trials where different randomization
schemes (in some cases different treatment allocations) can be used within different
strata. The approach also greatly facilitates rerandomization since there are often
differences in patient populations between strata, suggesting that rerandomization
should be carried out separately for each stratum.

1.2 Treatment Allocation Schemes

We now provide brief descriptions of a number of different randomization methods.
All methods described here are implemented in the companion software package,
randPack which is available from the Bioconductor Project. Our discussion focuses
on the case where there are two treatments, and often where equal allocation of
patients to each treatment is desired. The concepts presented can be extended to
more complex situations involving multiple treatments and intentional unequal allo-
cations. In our implementation, the treatment allocation scheme can be represented
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as an integer vector, with one number for each of the treatments. For example,
a scheme might be represented as A=2,B=3, indicating that on average, for
every five patients randomized two will be on treatment A and 3 on treatment B.
When unequal treatment allocations are desired, we consider imbalance to be the
difference between the treatment allocations as given and the ideal (or expected)
allocations defined by the randomization scheme.

A major motivation for concern with imbalance is its effect on efficiency of
inference on the trial. Under complete randomization, it is possible that substantial
imbalance occurs, and only a small number of individuals receive one of the
treatments. In this case, uncertainty about the effect of the rarely used treatment
can make it very difficult to obtain a clear interpretation of the difference between
the treatments. To formalize this, suppose Yi is the measured response for subject i,
i= 1, . . . ,n. If the equal-variance two-sample t-test is used to test the null hypothesis
of equal mean response values for A and B, the quantity Δ̄BA will be divided by its
standard error

se(Δ̄ )[n,nA,σ2
A,σ

2
B] =

√

(1/nA+ 1/nB)(nA + nB− 2)−1[(nA − 1)s2
A +(nB − 1)s2

B]

and the ratio will be referred to a t distribution with n − 2 degrees of freedom.
To obtain a simple quantity that illustrates the effect of imbalance (in this case,
departure from equal numbers of assignments for A and B) on se(Δ̄), we fix s2

A =

s2
B = 1 and obtain se(Δ̄ )[n,nA,1,1] =

√
(n−1

A +n−1
B ). A dimensionless quantity that

will take its minimum value (unity) for a perfectly balanced allocation is the ratio

se(Δ̄ )[n,nA,1,1]/se(Δ̄)[n,n/2,1,1].

This ratio is in fact independent of n and can be written as 0.5
√

p−1 +(1− p)−1,
where p is the fraction of allocations to treatment A. It is easy to show that with
an imbalance as large as 70:30, the ratio is less than 1.10. Such findings support
the general belief that, other things being equal, the risk of efficiency loss owing to
imbalances that may arise with pure randomization is not a major concern.

However, overall imbalance is only one of many features controlling the
appeal and interpretability of randomized experiments. Because many clinical trial
treatments must be administered sequentially, over periods of calendar time that
may range into months or years, it becomes important to consider a concept of
allocation balance for temporal locales. Even though pure randomization will almost
always achieve approximate balance in large enough studies, the problem of “runs”
of repeated allocations to a single arm can lead to problems of interpretation.
Rosenberger and Lachin (2002) elegantly describe the problem as follows:

[The occurrence of] severe imbalances at some point during the trial [...] is particularly
undesirable if there is a time-heterogeneous covariate that is related to treatment outcome,
because imbalances in treatment assignments can then lead to imbalances in those important
covariates. [Sect. 3.5]
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Simple simulations can be used to learn about features of run lengths in pure
randomization. For n = 50, the median maximum run length is 6, and the 90th
percentile of the distribution of maximum run lengths is 8. So, it would be common
in trials of size 50 to encounter a run of assignments to only one arm of size
exceeding 10% of the total sample size. The corresponding percentiles for n = 500
are 9 and 12, indicating that the fraction of sample size consumed by long runs
grows only very slowly with n. Nevertheless, in 25% of trials of size 500, one will
see at least two runs of length 10 or more. Such events can cause “data hounds” to
salivate profusely. Discovery of the association of such runs with environmental
events, for example, can lead to questions of the effects of the imbalance on
reliability of interpretation. Other designs, such as the permuted block design, allow
strict control over the occurrence of allocation runs.

1.2.1 Complete Randomization

Following Rosenberger and Lachin (2002), we let Ti = 1 if the ith patient is given
drug A and Ti = 0 if the ith patient is given drug B, i = 1, . . . ,n. Under complete
randomization, the Ti are independent and identically distributed Bernoulli random
variables with Pr(Ti = 1) = 1/2 for all i. Rosenberger and Lachin also define
the quantities NA(i) = ∑i

j=1 Tj, j = 1, . . . , i, and NB(i) = i−NA(i). Then a signed
measure of imbalance for n allocations is Dn = NA(n)−NB(n), and a dimensionless
measure of imbalance is Q = NA(n)/n. For large n and any r > 0,

Pr(|Dn|> r)≈ 2

{

1−Φ
(

r√
n

)}

so that the probability of imbalances exceeding certain thresholds of interest may be
computed.

A bit of R code that allows us to explore this concept is as follows. We define a
function percDn(n, p) which will compute the pth percentile of the distribution
of |Dn|.
> tailDn = function(n,r) 2*(1-pnorm(r/sqrt(n)))
> percDn = function(n, p)
+ uniroot( function(r) tailDn(n,r)-p,
+ lower=0, upper=100)$root
> percDn(50, .1)

[1] 11.63087

Thus, in about 10% of all completely randomized trials of size 50, there will be
an imbalance of at least 11 assignments.
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1.2.2 Permuted Blocks

The permuted block design arranges treatment allocations in blocks and the order of
assignment is permuted within the block. The number of blocks is then determined
by the size of the block and the number of patients to be randomized. In this
design balance is guaranteed at the block boundaries within strata (if there are
many strata then substantial imbalance can occur due to small amounts in each of
the strata). In the permuted block design for a two-arm trial with equal allocation
probabilities involving n patients, a block size b is established and M = n/b blocks
are constructed. The allocations to treatment are dictated by the sequence of blocks
and the assignment sequences within each block, which are obtained by randomly
permuting the set of b treatment labels.

There are obvious tradeoffs encountered in adopting a permuted block design in
preference to a purely randomized design. First, if the block size is small, it becomes
possible to accurately predict future treatment assignments near block boundaries.
For this reason, it is often advised to keep the block size as a secret parameter of
trial design, or to use randomly varying block sizes. Alternatively, if the block size
is large, the problem of runs reemerges. Third, in the “gold standard” multicenter
clinical trial design, it is typical to treat center as a stratum. Blocks are then defined
within strata, and during the course of the trial, many blocks may be incompletely
filled. Interesting analyses of imbalance distributions in stratified permuted block
designs will be reviewed in the discussion of stratification below.

Thus, blocked randomization can ensure that allocations to treatment arms are
close to balanced with respect to n, the total number of treatments assigned.
Avoidance of possibilities of selection bias at block boundaries requires that the
block size be kept secret or is randomly varied. When blocking is conducted within
a small number of strata, the factors defining the strata will also typically be close
to balanced between the arms. If there are many strata, it becomes possible for the
trial overall to be substantially unbalanced although most of the strata themselves
are individually close to balanced.

1.2.3 Coin- and urn-Based Allocation Schemes

Efron’s biased coin design involves a constant parameter p ∈ (0.5,1.0], and is
denoted as BCD(p). For a two arm study, define Dn to be an increasing function
of NA(n) satisfying DN = 0 when NA(n) = n/2. Allocation for the first treatment
occurs using a flip of an unbiased coin; after j−1 allocations, the jth allocation will
depend on the value of D j−1. Specifically, the jth allocation is to treatment A with
probability 1/2 if D j−1 = 0, with probability p if D j−1 < 0 and with probability 1− p
if D j−1 > 0. The long-run distribution of |Dn| can be obtained with the theory of
random walks. Writing r = p/(1− p), the long run probability of perfect balance for
n even is 1− 1/r; an imbalance of magnitude k occurs with probability decreasing
like e−k.



34 V.J. Carey and R. Gentleman

An allocation algorithm that may be regarded as an adaptive biased coin
procedure is Wei’s urn-based design. For a two-arm study, two parameters specify
the procedure: α , the number of balls of types A and B with which the urn is popu-
lated at the start of the study, and β , the number of balls of type A (respectively B)
added after a draw of a ball of type B (respectively A). The procedure can then
be denoted UD(α,β ). Patients are allocated sequentially according to the type of
a single ball that is drawn and replaced; before the next allocation, the β balls
of specified type are added. The probability that the first treatment to A is 1/2,
and if NB(k) denotes the number of patients allocated to B among the first k
allocations, then the probability that the kth patient is allocated to A is given by
(α +β NB(k− 1))[2α +β (k− 1)]−1.

Both the biased coin and urn-based allocation procedures engender unconditional
probabilities of allocation to treatment A of 1/2. Rosenberger and Lachin use
simulation to show that the variance of the fraction of allocations to A in trials of size
50 is larger for UD(0,1) than for BCD(2/3) (2002, Table 3.4). However, studies of
susceptibility to selection bias via optimal guessing of impending allocations shows
that the urn design is superior to both BCD(2/3) and permuted block designs; see
Chap. 6 of Rosenberger and Lachin (2002).

1.2.4 Minimization

When prognostic factors exist that can affect the tendency of a patient to respond to
a study treatment, it is possible in relatively small trials that such factors can become
confounded with the treatment assignment. This possibility has led to the creation of
a family of allocation procedures known as “minimization.” Treatment allocations
are made on the basis of the history of past allocations, using the distribution of
prognostic factors within arms up to randomization n−1. The nth allocation is made
to minimize the discrepancy between arms in the distribution of prognostic factors.
Rationale for developing such procedures was given by Begg and Iglewicz (1980):

[B]alancing for prognostic factors prior to the study is necessary as it provides a consider-
ably more efficient comparison of treatments for trials of a typical size .... [W]e believe that
trials in which the prognostic factors are seen to be well-balanced will authenticate results
in a more convincing manner to a scientific audience than will a sophisticated covariate
analysis alone.

Briefly, the idea behind minimization is to attempt to ensure balance on several
different variables simultaneously. Once the variables are identified, one must de-
termine how to measure discrepancies from balance, how to combine the imbalance
scores into a single score for each potential treatment allocation and finally there
must be an algorithm to select the treatment given these combined scores.

To illustrate minimization in concrete terms, consider the following example.
Patients are allocated to one of two treatments, A or B. Two factors, sex and stage
(at three levels) were chosen as factors for which balance is desired. A new male
patient with stage I disease needs to be entered and the current state of treatment
allocations is given in Table 2.1.
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Table 2.1 Treatment allocations for
minimization example

A B
M I 3 2

II 1 4
III 3 1

F I 2 2
II 3 3
III 1 1

For sex, the imbalance will be measured as the absolute value of the difference
between arms in count of males, and for stage it will be the square of the differ-
ence between arms. The selection of the imbalance measure (absolute value, square
of the difference, etc.) is a user defined choice. We first determine the state of
the experiment for males. There are 14 males enrolled and of these seven are on
treatment A and seven on treatment B. Now, for each treatment, we assign the
new patient to it and then measure the mismatch score. So, first with A, we get
abs(8− 7) = 1 and then with B, we get abs(7− 8) = 1. So there is no preference.

Next, we consider those with stage I. There are nine enrolled patients with stage
I of the disease; 5 on A and 4 on B. If the new patient is assigned to A, we get a
score of (6− 4)2 = 4 and if assigned to B, we get (5− 5)2 = 0.

Now, we need some means of combining the scores on the two factors. A simple
way to do this is to use weights. So, lets say that stage is really important and we
will give it weight 4 while sex is less important and will be given weight 1. Thus,
the overall score if the new patient is assigned to A is 17 while if the patient is
assigned to B the score is 1. Now, we need to decide which assignment to make.
There are many possibilities. Examples include: (1) choose the treatment with the
lowest score; (2) choose the one with the lowest score with some fixed probability;
(3) choose a treatment with probability proportional to score.

To briefly summarize, one must determine which factors to use. Then, for each
of these factors one must determine what imbalance measure to use. Then, one must
determine how to combine those scores, a common choice is a weighted average.
And finally, once scores are computed for each potential treatment allocation
then an algorithm to select one must be specified. In our implementation, we
used a deterministic method to select the treatment; the treatment with the best
score is chosen with probability 1. An unfortunate effect of this choice is that
for a fixed set of patients once the first patient has been assigned the remainder
of the assignments are essentially deterministic. Making use of some form of
randomization at this stage is likely to be important in practice since it makes the
process less deterministic.

The method has several potential advantages in that it is able to provide balance
across many covariates. However, it has the substantial disadvantage of being some-
what difficult to assess the performance using classical statistical methods. Hence,
for this allocation scheme in particular access to inference via rerandomization or
simulation seems particularly important.
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1.3 Stratification

In a very thorough review of randomization in clinical trials +design, Zelen (1974)
wrote:

One of the key dictums in experimentation is to take account of all known factors which
may significantly affect the outcome of a trial. Not to do so may introduce biases in
the data, which may lead to drawing wrong conclusions and possibly introduce so much
variability in the data so as to completely obscure any real differences among the treatments.
When the factors influencing response are known, we can take this into account in the
initial randomization. Then the randomization is referred to as stratified randomization. For
example, some factors important for planning cancer studies are: institution, anatomical
staging, histological type, prior treatment, general health of patient, demographic factors,
etc.

Taking account of these other factors in the initial treatment assignment ensures that
each of the therapies has an equal distribution of patients with regard to the important
characteristics which may significantly affect response. Of course, using a stratified
randomization scheme increases the bookkeeping of the clinical trial. One must weigh the
gain in efficiency of the trial against the increased complexity of running the study.

In line with these concluding caveats, a challenge to the desirability of stratified
designs was raised by a group of highly eminent statisticians writing in 1976:

The improvement in the sensitivity of a clinical trial to be expected from achieving perfect
balance between the numbers on each treatment in each retrospective stratum, instead of
letting them be defined by chance, is just that to be expected from randomizing a single
extra patient into each retrospective stratum.... However many initial strata are defined,
only a few retrospective strata will be needed, and so the expected benefits from initial
stratification are slighter than would intuitively be expected; indeed, if the organizational
complexity of stratification at the time of randomization reduced collaboration at all, a net
loss of efficiency would be the likely result Peto et al. (1976).

These authors conclude with the caveat that multicenter trials should be stratified
by center.

In practice, it is seldom the case that investigators have only one or two
factors of concern for which stratification is proposed, and discussions of the cost-
effectiveness of the construction of numerous strata are common in trial design
considerations. Chapter 8 of Rosenberger and Lachin (2002) reviews classical
developments in reasoning about the efficiency of stratified randomization in the
context of stratified analyis. It is shown that in large trials, efficiencies of post-
hoc stratified analyses are not substantially increased for trials in which stratified
(as opposed to simple) randomization was used for treatment allocation. In small
trials, stratified randomization does yield efficiency benefits, but the number of strata
that can be feasibly used in small trials is often quite small.

The implementation of stratified randomization is not conceptually complex.
Each stratum has its own allocation algorithm. Logistical concerns arise when
determination of stratum membership is uncertain (as it may often be when “race”
is used as a stratum), or when members of certain strata are hard to recruit.
Randomized trials with stratified randomization can be unbalanced when numerous
strata are all slightly unbalanced in the same way. Approximate distributions for
imbalance measures under models for the occurrence of unfilled blocks are derived
by Hallstrom and Davis (1988).
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1.4 Inference Procedures: Rerandomization

Data from clinical trials are generally analyzed using a population model-based
approach. But there are some concerns with taking such an approach, primary
among them the fact that randomization was restricted and that certain patterns
of treatment allocation were not possible. As noted by both Efron (1971) and
Cox (1982), the likely effect of ensuring close balance at all times is a reduc-
tion in variance, making population-based analyses (or ones based on complete
randomization) conservative. While some effects may be alleviated in relatively
large samples, it is not uncommon to perform subset analyses (say on particular
centers) and these analyses would likely benefit from an approach that was more
faithful to the randomization mechanism employed in the study. We consider such
rerandomization tests below.

Permutation tests are a widely used method for testing hypotheses. The approach
is quite simple: under the null hypothesis that the treatment has no effect then the
distribution of the trial test statistic is identical for all assignments of treatment
labels to patients. The null distribution of the trial test statistic can be computed by
permuting the treatment labels against the observed outcomes. For each permutation
the test statistic of interest can be computed and the observed value of that statistic,
for the labels as originally assigned, is compared to the permutation-based reference
distribution. We note that in general there is no real need to enumerate all possible
permutations and that rather, a Monte Carlo approach, where a large number of
possible permutations is sampled, should provide sufficient accuracy.

One might argue that not all permutations of the treatments are valid, given
the randomization scheme, and while that is indeed true, one can just as easily
permute the arrival times of the patients, and treat the treatments as fixed. Clearly
the same distribution achieves, and hence provided that one can rationalize permut-
ing the arrival times of patients (or the order in which they are assigned treatments)
then permutation-based inference has validity. However, in many trials, especially
those that have long accrual times, such as many cancer trials, there is temporal
heterogeneity in the patient population. Thus, one may not be able to obtain valid
inference in this way.

Rerandomization is the process of keeping the patients ordered as they were
observed in the trial and generating new treatment allocations according to the
randomization scheme that was chosen for the trial. For example, if permuted blocks
were used, then one could generate many different sets of permuted blocks, and
apply each set in turn, to develop the necessary reference set.

It is worth pointing out an important difference between permutation-based
inference and rerandomization. With permutation-based inference, we are condi-
tioning on the marginal distribution of the treatment assignments. From this a
reference set of test statistics, consistent with that conditioning are generated. For
rerandomization, we reassign treatment allocations according to the protocol and
can get any set of allocations consistent with the protocol. The rerandomization
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approach, thus, seems to be more aligned with the question of what would happen if
this same set of patients was reassigned (under the null hypothesis of no treatment
affect).

1.5 Exceptions to the Ideal Setting

In practice, clinical trials can be very messy affairs. Treatments may become
unavailable for some period of time; patient information may be improperly entered
and manual intervention is needed; sites enter and leave the study, perhaps due to
lapses in IRB approval. A comprehensive system would need to include methods
for verifying patient, and institution, eligibility. It would need to allow treatments to
be suspended and resumed.

When there are many strata, it is possible for the trial to be quite unbalanced
when all strata are considered, but for no strata to be very unbalanced. In some
implementations additional constraints might be added, for example, to ensure
that the allocations at all institutions or sites are approximately balanced. We will
not directly consider such mechanisms since they typically add a great deal of
complexity to the system.

Another important factor in the implementation of any system is predictibility.
If there is a chance that the individual randomizing patients can readily guess what
the next treatment will be, then there is some chance that bias will creep in. They
may be less willing to enroll a patient in the trial if they think that the patient is
poorly suited to a treatment that is highly likely to be the next treatment allocated.

2 Computational Architectures for Allocation in Clinical Trials

In this section, we describe and illustrate features of systems that can perform
treatment assignments for clinical trials in reasonably flexible ways. Some important
properties of such systems include

• Standardized formal specification. The description of a trial is typically provided
in the form of a protocol document composed by and for human readership.
These are invaluable and irreplaceable but are almost always ambiguous in
important ways. Many aspects of trial design and implementation are algorithmic
in nature and can be specified through computer programs whose soundness
and validity can be mechanically checked. A more effective approach to trial
description will consist of a combination of textual protocol and computable
specification components.

• Validity criteria for data elements. It is often possible to prospectively define
aspects of trial data that must be satisfied if the protocol is correctly implemented.
Examples important for randomization include form and content of enrollment
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variables, particularly those involved in eligibility and stratification determina-
tions. Allocation tools should have access to and make use of validity conditions
as a matter of course.

• Modular design. For any given clinical trial network, a universal backbone
of textual and software components should be complemented by components
that can be interchanged to vary trial operations as desired. For example, the
representation of a stratum should allow specification of an allocation procedure
specific to that stratum. Conditions for determining patient eligibility and making
endpoint decisions should be defined in modules that can be “plugged in” to
the trial backbone to flexibly define the trial’s operations. When modularity
principles are followed, trial simulation can be used to examine impacts of using
different procedures in different stages of trial conduct.

• Auditability. Each allocation decision needs to be reconstructible on demand so
that assurances of unbiasedness and soundness can be made in monitoring or trial
review.

There are many ways of designing computing systems that implement clinical trials
allocation procedures. We will use the R programming language to define data
structures and functional workflow components that create trial data and compute
treatment allocations. We do not want to get into the details of the underlying
software implementation but provide here a concise conceptual framework for our
implementation. Various entities, such as a randomizer or a clinical trial can be
represented as objects, with specific slots for different entities. The process of
initiating a clinical trial and assigning patients requires the creation of an object
that now contains data, in addition to the specifications of the trial. To achieve
this we define one class, ClinicalExperiment that holds the specifications
and a second class, ClinicalTrial that holds the experiment specifications, the
patient data and the randomizers.

We have taken a similar approach in our design of the randomizers. There are two
basic classes, RandomizerDesc, which provides the description of a randomizer
and Randomizer which holds an instance of the randomizer for a particular trial
or strata within a trial. Currently, we support five types of randomization, random,
permuted blocks, urn models, minimization, and Efron’s biased coin.

2.1 Experiment- and Patient-Level Data Structures

Here, we formalize the construction of a clinical experiment object and patient data
that can be used to populate it. We want to have sufficient structure to be interesting
and realistic. We create a trial randomized at four centers (C1, C2, C3, C4),
with three covariates, sex, age (grouped), and a random standard Normal variate
(the outcome, hence, our trial is null since the same distribution of outcomes is used
for all individuals). The allocation will be stratified by center, age and sex will be
used for covariate allocations.
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First we create a set of patient identifiers, these are different for each of the
centers. As a technical aside, the use of the symbol L after integers, for example,
1000L, indicates to R that they are to be treated as integer constants.

> library(randPack)
> # establish form and limits of IDs
> pidStruct = new("PatientID",
+ strata=c("C1", "C2", "C3", "C4"),
+ start = c(1000L, 2000L, 3000L, 4000L),
+ stop = c(1999L, 2999L, 3999L, 4999L))
> pidStruct

randPack PatientID instance for 4 strata.
The total number of IDs prepared is 4000.

Now, we specify factors relevant to randomization and the treatment names and
balanced allocation ratio (we used A=2, B=2 to get a block size of four when
permuted blocks is implemented):

> ce = new("ClinicalExperiment",
+ name="bookdemo",
+ factors=list(
+ center=c("C1", "C2", "C3", "C4"),
+ sex=c("Male", "Female"),
+ age = c("a50-54", "a55-59", "a65-69"),
+ stdnor = "numeric"),
+ treatments=c(A=2L, B=2L),
+ randomization=list(),
+ # following operates on PatientData instance
+ strataFun = function(x)x@strata,
+ patientIDs = pidStruct)
> ce

ClinicalExperiment: bookdemo
With 2 treatments

A B
With 0 strata

In principle, information in the factors component specified above could
be used to formalize eligibility conditions for patients considered for enrollment.
Note that since we have not yet specified our strata, the value is currently set to 0.
Once we have instantiated the trial (through a call to createTrial below), the
number of strata will be set, and hence printed.
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2.2 Randomization Specification

We use randPack class definitions to construct a permuted blocks randomizer. Note
that we do not need to specify the block size as that is inferred from our description
of the experiment above.

> pbdesc = new("PermutedBlockDesc",
+ treatments = ce@treatments,
+ type="PermutedBlock",
+ numBlocks=250L)

The following code associates a permuted blocks method with each center:

> randomization(ce) = list(C1=list(pbdesc),
+ C2=list(pbdesc),
+ C3=list(pbdesc),
+ C4=list(pbdesc))

We instantiate the associated clinical trial using the createTrial function.
We specify a seed for the random number generator separately for each strata using
the seed argument.

> CT1 = createTrial(ce, seed = c(301, 401, 501, 601))
> CT1

randPack Clinical Trial instance
ClinicalExperiment: bookdemo

With 2 treatments
A B

With 4 strata
C1 C2 C3 C4

Randomizer: C1
Patients Randomized 0

Randomizer: C2
Patients Randomized 0

Randomizer: C3
Patients Randomized 0

Randomizer: C4
Patients Randomized 0

2.3 Cohort Simulation: Allocations

Since we wrote the function simPats, we can simulate a cohort of enrolees
with a simple list-based schema. We specify the proportions of enrolees from
different centers, proportions of factors expected, and distributions of continuous
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covariates, each of these values is generated independently of the others. Statistical
dependencies among the various factors schematized here could be incorporated in
more realistic simulation frameworks by modifying the simPats function.

> coh1 = list(center=c(C1=.4, C2=.2, C3=.1, C4=.3),
+ sex=c(Male=.5, Female=.5),
+ age = c(‘a50-54‘=.4, ‘a55-59‘=.3,
+ ‘a60-64‘=.1, ‘a65-69‘=.2),
+ stdnor = function(x)rnorm(x))
> simDat = simPats(100, coh1)
> simDat[1:5,]

center sex age stdnor
1 C1 Male a65-69 2.2232335
2 C4 Male a50-54 -1.0025901
3 C2 Female a65-69 0.1826401
4 C1 Male a60-64 0.6004586
5 C1 Female a65-69 0.6196092

We obtain the allocation for patients from this cohort as follows. First, we create
100 PatientData containers on the basis of the cohort table generated above.

> pdlist = lapply(1:100, function(i)
+ new("PatientData", date=Sys.Date(), name=
+ paste("Patient", i, sep=""),
+ covariates=simDat[i, c("age", "sex", "stdnor")],
+ strata=as.character(simDat[i, "center"])))

Now we invoke the getTreatmentmethod for the trial on each of the patients:

> trts = lapply(1:100, function(i) getTreatment(CT1,
+ pdlist[[i]]))
> CT1

randPack Clinical Trial instance
ClinicalExperiment: bookdemo

With 2 treatments
A B

With 4 strata
C1 C2 C3 C4

Randomizer: C1
Patients Randomized 43

Randomizer: C2
Patients Randomized 24

Randomizer: C3
Patients Randomized 5

Randomizer: C4
Patients Randomized 28
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The covariates along with the allocations are obtained with the code

> ei = getEnrolleeInfo(CT1)
> names(ei)

[1] "C1" "C2" "C3" "C4"

> ei[["C1"]][1:4, ]

name age sex stdnor alloc
1 Patient1 a65-69 Male 2.2232335 B
2 Patient4 a60-64 Male 0.6004586 B
3 Patient5 a65-69 Female 0.6196092 A
4 Patient14 a50-54 Male 1.3650090 A

generating one data frame per stratum. In most of the analyses reported below, we
collapse this to a single dataframe and do not report stratum specific values, although
in practice one would perform stratum specific analyses.

To conclude this sketch of allocation computations, we illustrate how a determin-
istic minimization procedure can be used with the same patient data. The randPack
package includes functions that implement the allocation criteria of Taves (1974)
and Pocock and Simon (1975). We will use the latter with the objective of
minimizing age imbalance between arms.

We begin by defining a minimization randomizer and then instantiate a new
clinical experiment object that uses this randomizer. Random number generator
seeds are supplied to deal with the cases in which a randomized choice is required.

> md = new("MinimizationDesc", treatments=c(A=1L,
B=1L),

+ method=minimizePocSim, type="Minimization",
+ featuresInUse="age")
> dd = list(C1=list(md), C2=list(md),
+ C3=list(md), C4=list(md))
> randomization(ce) = dd
> CT2 = createTrial(ce, seed=c(301,401,501,601))

Allocations are made in the same way as above, by calling the getTreatment
function.

> trtsMin = lapply(1:100, function(i)
+ getTreatment(CT2, pdlist[[i]]))
> CT2

randPack Clinical Trial instance
ClinicalExperiment: bookdemo

With 2 treatments
A B

With 4 strata
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C1 C2 C3 C4
Randomizer: C1

Patients Randomized 43
Randomizer: C2

Patients Randomized 24
Randomizer: C3

Patients Randomized 5
Randomizer: C4

Patients Randomized 28

A comparison of the association of age and allocation in trials CT1 and CT2 can
be conducted using χ2 statistics. First, we obtain the statistic for the permuted block
assignments.

> ct1dat = do.call(rbind, getEnrolleeInfo(CT1))
> with(ct1dat, chisq.test(table(age, alloc)))

Pearson’s Chi-squared test

data: table(age, alloc)
X-squared = 1.1077, df = 3, p-value = 0.7752

And then repeat the computation for the minimization assignments.

> ct2dat = do.call(rbind, getEnrolleeInfo(CT2))
> with(ct2dat, chisq.test(table(age, alloc)))

Pearson’s Chi-squared test

data: table(age, alloc)
X-squared = 0.0361, df = 3, p-value = 0.9982

While neither trial is threatened by a concern that treatment and age are con-
founded, the allocations via minimization yield marginal frequencies that are more
consistent with statistical independence of treatment and age than those obtained
via permuted blocks.

2.4 Summary on Computational Infrastructure

In the preceding subsections, we have shown a few of the key components required
to support flexible treatment allocations in randomized clinical trials. The structure
of the experiment is defined by the target treatment allocation ratios and the
stratification factors. Trial allocation procedures are specified on a per-stratum
basis and can employ arbitrary information on patient characteristics to compute
allocations.
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Table 2.2 Summary of functions in randPack

createTrial Create an instance of the ClinicalTrials class
factorNames Access the factor names in a ClincialExperiment instance
getEnrolleeInfo Returns one dataframe per strata of enrollee information
getTreatment Performs the assignment of a treatment to the supplied patient
makeRandomizer Instantiate the randomizer for a strata
minimizePocSim The Pocock–Simon minimizer
minimizeTaves The Taves minimizer
numberOfFactorLevels Returns a list of the factors and how many levels each has
numberOfTreatments Returns the number of treatments specified for a clinical trial
randomization<- Assignment of the randomizer to a strata in a clinical trial
simPats Simple function to simulate patient populations
treatmentFactors Lists all factors associated with the experiment
treatmentNames Lists the names of the treatments associated with the experiment

The randPack functions used for illustration in this section would require
strengthening for use in real clinical applications. We have not addressed the tasks
of validating patient eligibility or verifying the logical and substantive soundness
of patient covariate information. The problem of communicating allocations to
remote sites upon request requires attention to possible conflicts when requests
are made simultaneously; a genuine relational database system with record locking
should be used as the “back end” to any serious system for clinical trial allocation
infrastructure. Finally, attention to concerns about information security and effec-
tiveness of masking of treatment assignments in blinded trial designs is important
but beyond the scope of this chapter.

Despite these limitations, the implementation in randPack provides readily
accessible tools for exploration and assessment of different approaches to treatment
allocation, and we illustrate some facets of this facility in the next section.

We summarize the set of functions provided by randPack in Table 2.2.

3 Evaluating Allocation Methods

We begin a brief comparative investigation of allocation methods by constructing a
variety of randomizer description objects and creating a tool to generate allocations
according to all randomizer types for a fixed patient dataset. We will reuse the
ClinicalExperiment object defined above in Sect. 2.1 for illustration.

Then, we create a function with parameters NSUB (population size) and
popschem (population structure) that generates a single realization of a cohort
from the schematized population, and defines five trials based on this cohort. Each
trial uses a different allocation algorithm.

> getTrialSet = function(NSUB=100, popschem) {
+ simDat = simPats(NSUB, popschem)
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+
+ pdlist = lapply(1:NSUB, function(i)
+ new("PatientData",
+ date=Sys.Date(), name=paste("Patient", i,

sep=""),
+ covariates=simDat[i, c("age", "sex", "stdnor")],
+ strata=as.character(simDat[i, "center"])))
+
+ ai = as.integer
+ rdesc = new("RandomDesc", treatments

= ce@treatments,
+ type = "Random", numPatients = ai(NSUB))
+
+ pbdesc = new("PermutedBlockDesc",
+ treatments = ce@treatments,
+ type="PermutedBlock",
+ numBlocks=ai(NSUB/

sum(ce@treatments)))
+
+ ebcdesc = new("EfronBiasedCoinDesc",
+ treatments = ce@treatments,
+ type="EfronBiasedCoin", numPatients=ai(NSUB),

p=2/3)
+
+ urndesc = new("UrnDesc", treatments

= ce@treatments,
+ type="Urn", numPatients=ai(NSUB), alpha=0,

beta=1)
+
+ mdesc = new("MinimizationDesc", treatments

=ce@treatments,
+ method=minimizePocSim, type="Minimization",
+ featuresInUse="age")
+
+ dlist = list(rand=rdesc, permBl=pbdesc,

biasedCoin_66=ebcdesc,
+ urn_0_1=urndesc,
+ pocSimMin=mdesc)
+
+ d2strata = function(x) list(C1=list(x), C2=list(x),
+ C3=list(x), C4=list(x))
+
+ allDescs = lapply(dlist, d2strata)
+
+ allTrials = lapply(allDescs, function(x) {
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+ randomization(ce) = x
+ createTrial(ce, seed=c(301,401,501,601))
+ })
+ list(allTrials=allTrials, pdlist=pdlist)
+ }

We have now described five different trials. They are all using the same patient
data, so we have a form of blocking for our simulation experiment. We next run the
getTrialSet function to instantiate the designs for the trials.

> oneSetup = getTrialSet(NSUB = 100, popschem = coh1)

The allocations prescribed by each design are assigned in the statement below
(the call to getTreatment causes the actual assignment).

> allEnrollments = lapply(oneSetup$allTrials,
function(x) lapply(1:100,

+ function(i) getTreatment(x,
oneSetup$pdlist[[i]])))

Now, we can extract the assignments and carry out any analysis of interest on
them.

> allDF1 = lapply(oneSetup$allTrials, function(x)
do.call(rbind,

+ getEnrolleeInfo(x)))

We can tabulate the ultimate allocation counts for each method easily:

> sapply(allDF1, function(x) table(x$alloc))

rand permBl biasedCoin_66 urn_0_1 pocSimMin
A 47 50 51 52 48
B 53 50 49 48 52

3.1 Departures from Target Allocation Ratios

We need a large number of realizations of the previously described setup to check
for systematic differences among trial designs in achievement of target allocation
ratios. The following code generates 100 realizations.

> if (!exists("allDF")) {
+ if (file.exists("allDF.rda")) load("allDF.rda")
+ else allDF = lapply(1:100, function(i) {
+ cat(i)
+ setup = getTrialSet(NSUB=100, popschem=coh1)
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rand PB EBC(2/3) UD(0,1) min
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Fig. 2.1 Distributions of numbers of assignments to treatment A in 100 nominally balanced trial
realizations for 100 patients in 4 strata as defined in object ce (Sect. 2.1). Notation: rand denotes
purely random allocation; PB denotes permuted blocks, fixed blocksize of 4; EBC(2/3) denoted
Efron’s biased coin with p = 2/3; UD(0,1) is Wei’s urn design with α = 0, β = 1, and min is
Pocock–Simon minimization

+ tmp = lapply(setup$allTrials, function(x)
+ lapply(1:100, function(j)
+ getTreatment(x, setup$pdlist[[j]])))
+ lapply(setup$allTrials, function(x) do.call(rbind,
+ getEnrolleeInfo(x)))
+ })
+ save(allDF, file="allDF.rda")
+ }
> tabulateA = sapply(1:100, function(i)
+ sapply(1:5, function(x)sum(allDF[[i]][[x]]$

alloc=="A")))
> ac = as.character
> tabulateRuns = sapply(1:100, function(i)
+ sapply(1:5, function(x)
+ max(rle(ac(allDF[[i]][[x]]$alloc))$length)))

Figure 2.1 shows the distribution of the number of allocations to treatment A over
100 realizations for each design. Pure randomization shows the greatest degree of
fluctuation; permuted blocks fails to achieve perfect allocation owing to incomplete
blocks in strata.
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We now consider the distribution of lengths of longest runs of allocations.
We simply concatenate the allocations across strata within each realization.
Figure 2.2 shows that permuted blocks allocations confine maximal run lengths
very effectively, while some long runs are observed in all other procedures.

> ac = as.character
> tabulateRuns = sapply(1:100, function(i)
+ sapply(1:5, function(x)
+ max(rle(ac(allDF[[i]][[x]]$alloc))$length)))
> numrun = as.numeric(t(tabulateRuns))
> type = rep(c("rand", "PB", "EBC(2/3)",
+ "UD(0,1)", "min"), each=100)
> ftype = factor(type)

3.2 Avoiding Accidental Confounding

The minimization procedure is designed to ensure that trial arms do not exhibit sub-
stantial differences in the distribution of specific cofactors. We have implemented
minimization to work with categorical cofactors, and in the simulation study we
have used a discrete representation of patient age for the minimization algorithm.
Figure 2.3 shows the effectiveness of the minimization algorithm in forcing the dis-
tributions of treatment and age to be approximately statistically independent, in that
the χ2 statistic measuring departure of observed frequencies from those expected
under independence is generally much smaller for minimization allocations than for
any other procedure.

3.3 Inference: Permutation vs. Rerandomization

In this subsection, we consider relationships among simulation-based distributions
of test statistics obtained with different allocation algorithms. The response variable
is a standard Gaussian deviate generated independently for each individual at time of
cohort construction. The statistic of interest is the standard error (sampling standard
deviation) of the estimated mean treatment effect. Three classes of statistic are of
interest:

• Model-based: The standard error of the t-statistic for the two-sample test of a
treatment effect on the mean response.

• Permutation-based: The empirical standard deviation of the permutation distri-
bution of the estimated mean difference.
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Fig. 2.2 Distributions of maximum run length over 100 trial realizations under various random-
ization schemes. Notation: rand denotes purely random allocation; PB denotes permuted blocks,
fixed blocksize of 4; EBC(2/3) denoted Efron’s biased coin with p = 2/3; UD(0,1) is Wei’s urn
design with α = 0, β = 1, and min is Pocock–Simon minimization

• Rerandomization-based: The empirical standard deviation of the rerandomiza-
tion distribution of the estimated mean difference.

The model-based statistics are generated as follows:

> alls = sapply(allDF, sapply,
+ function(x)
+ summary(lm(x$stdnor˜x$alloc))$coef[2,"Std.

Error"])

For permutation-based inference, we have an inner iteration.

> NPERM = 100
> i = 0 # for monitoring
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rand PB EBC(2/3) UD(0,1) min
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Fig. 2.3 Distributions of χ2 statistics testing for independence between enrollee age and treatment
allocation. Notation: rand denotes purely random allocation; PB denotes permuted blocks, fixed
blocksize of 4; EBC(2/3) denoted Efron’s biased coin with p = 2/3; UD(0,1) is Wei’s urn design
with α = 0, β = 1, and min is Pocock–Simon minimization

> perm = function(x) {i<<-i+1; cat(i);
+ sample(x, size=length(x), replace=FALSE)}
> permstat1 = function(w)
+ summary(lm(w$stdnor˜perm(w$alloc)))$coef[2,

"Estimate"]
> permsd = function(w)
+ sd(sapply(1:NPERM, function(z) permstat1(w)))
> allsPerm = sapply(allDF, sapply,

function(x)permsd(x))

Figure 2.4 shows that for this application, model-based and permutation-based
inferences will be essentially indistinguishable. This is to be expected as the test
used is optimal for the data generation scheme.

Computation of rerandomization distributions of test statistics of interest is
relatively simple given the modularity of the design of the system. The following
code chunk defines a function that takes a list of stratum-specific randomizer
descriptions and a clinical experiment object as input, and returns the standard
deviation of a 100 point rerandomization distribution for a statistic computed on
each of 100 realizations of the allocation procedure. This is a fairly laborious
undertaking that is embarassingly parallel, so the code given here uses the multicore
package (Urbanek 2009) to dispatch the work over 12 cores. For the minimization
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Fig. 2.4 Comparison of model-based standard error distribution (a) over 100 realizations of
the sample cohort for five randomization algorithms, and permutation-based sampling standard
deviations of the mean difference between arms for 100 permutations of each of the same
realizations (b). Notation: rand denotes purely random allocation; PB denotes permuted blocks,
fixed blocksize of 4; EBC(2/3) denoted Efron’s biased coin with p = 2/3; UD(0,1) is Wei’s urn
design with α = 0, β = 1, and min is Pocock–Simon minimization

procedure, reseeding the stratum-specific generator has limited impact on the
sequence of covariate-based allocations, at best altering only the very first allocation
directly. Therefore, we permute the arrival times of participants to the trial for this
procedure.

Figure 2.5 shows that, relative to model-based standard error computation,
there is a hint of variance reduction for several of the allocation schemes when
rerandomization is employed in this context.

> getrrstats = function(rlist, ce) {
+ randomization(ce) = rlist
+ require(multicore)
+ NRERAND = 100
+ NREALIZ = 100
+ NPATS = 100
+ rerandstats = mclapply(1:NREALIZ, function(r) {
+ cat(r)
+ seedmat = matrix(round(1e+05 * runif(400), 0),

nr = NRERAND)
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Fig. 2.5 Comparison of model-based standard error distribution (a) over 100 realizations of the
sample cohort for five randomization algorithms, and rerandomization-based sampling standard
deviations of the mean difference between arms for 500 rerandomizations of each of the same
realizations (b). Rerandomization for the minimization algorithm employed permutation of the
entry times for trial participants. Notation: rand denotes purely random allocation; PB denotes
permuted blocks, fixed blocksize of 4; EBC(2/3) denoted Efron’s biased coin with p = 2/3;
UD(0,1) is Wei’s urn design with α = 0, β = 1, and min is Pocock–Simon minimization

+ rerandest = rep(NA, NRERAND)
+ for (i in 1:NRERAND) {
+ cat(i)
+ curtri = createTrial(ce, seed = seedmat

[i, ])
+ shuff = function(x) x[sample(1:length(x),

size = length(x),
+ replace = FALSE)]
+ pdl = mallPDLISTS[[r]]
+ if (ce@randomization[[1]][[1]]@type

== "Minimization")
+ pdl = shuff(mallPDLISTS[[r]])
+ trts = lapply(1:NPATS, function(j)

getTreatment(curtri,
+ pdl[[j]]))
+ df = do.call(rbind, getEnrolleeInfo

(curtri))



54 V.J. Carey and R. Gentleman

+ rerandest[i] = summary(lm(df$stdnor ˜
df$alloc))$coef[2,

+ "Estimate"]
+ }
+ sd(rerandest)
+ }, mc.cores = 12)
+ }

4 Discussion

Investigators planning randomized clinical experiments are fortunate to have access
to the fruits of over 2 decades of statistical research on approaches to treatment allo-
cation. The efforts that we have described in Sect. 1 confront universal requirements
of protection from bias and maintenance of statistical efficiency in very different
ways, and no broad consensus on best practices for the linked processes of treatment
allocation and downstream analysis is currently available.

We have described a system that can be used to examine properties of different
methods for allocating patients to treatments in clinical trials. Our intention is not to
provide a fully functioning system that could be used for randomizing real patients,
but rather to provide a system that is capable of addressing important questions in
the design and analysis of clinical trials. The code is reasonably comprehensive and
compact and could easily be extended by anyone familiar with the R programming
language.

Figures 2.1–2.5 demonstrate some of the questions that can be addressed using
this system. We are aware of no other systems that would allow for such explicit
comparisons. More importantly, our system supports inference by rerandomization,
and that, it seems, is essential for understanding other properties of the allocation
schemes being used.
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Chapter 3
Sequential Designs for Clinical Trials

KyungMann Kim

1 Introduction

Until the mid 1980s, when methods for group sequential design and analysis of
clinical trials became available, most phase III randomized, controlled trials were
planned with a fixed design in which the number of patients were predetermined,
that is, fixed in advance, based on the design parameters. Patients enrolled serially
over the period known as the accrual period, and after a fixed minimum follow-
up after the last enrolled patient, a final analysis was performed. Notwithstanding
such designs, however, because of ethical concern for the participating patients,
unplanned interim analyses were often performed periodically on the accumulating
data with consideration for possible early termination of the trial should there be
sufficient evidence for beneficial or harmful effects. As will be noted later, these
unplanned analyses have the potential to compromise the statistical integrity or
fidelity of the trial.

Indeed, because of ethical and safety concern with experiments on humans, the
conduct of clinical trials is often monitored at regular intervals to ensure the ongoing
safety of participants and the validity and integrity of the data. This concern for the
ethics of clinical trials and the safety of participants is particularly critical in phase
III randomized, controlled trials. It is widely recognized that considerations should
be given for possible early termination if continuation of the trial is unwarranted
ethically when beneficial or adverse effects of a treatment are established with an
acceptable or unacceptable risk/benefit ratio, respectively.

Sequential methods for analysis of accumulating data were developed in the
1920s (Dodge and Romig 1929) and mid 1940s (Wald 1947), establishing that
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Table 3.1 Effects of repeated significance testing at a nominal 0.05 level

Number of repeated significance tests

1 2 3 4 5 10 20 50 100 · · · ∞
Type I error 0.050 0.083 0.107 0.126 0.142 0.193 0.246 0.320 0.374 · · · 1.000

a savings in the required sample size is possible by applying hypothesis tests
repeatedly without compromising the statistical integrity of the test by maintaining
the type I error and type II error probabilities. Peter Armitage was perhaps the first
to recognize the ethical relevance of sequential methods for clinical trials in a series
of papers in later 1950s, culminating in his landmark textbook published in 1960
and updated later (Armitage 1975). Sequential methods are widely used lately in all
phases of clinical trials, from phase I dose-finding trials, phase II efficacy screening
trials, and to phase III effectiveness trials.

There are two approaches to sequential analysis of clinical trials, one based
on repeated significance testing and the other based on the so-called sequential
boundaries. The repeated significance testing approach adjusts significance levels
to account for repeated or multiple tests in interim analyses. These methods have
their origin in Armitage (1954) and were subsequently adapted by Pocock (1977),
O’Brien and Fleming (1979), and Lan and DeMets (1983). The approach based on
sequential boundaries has its origin in the sequential probability ratio test (SPRT) of
Wald (1947) and includes the triangular test initially developed by Anderson (1960)
as a modification of the SPRT to reduce sample size and later adapted for interim
analyses by Whitehead (1997). In this chapter, we will describe the designs based
on the repeated significance testing approach.

If one were to apply the fixed sample significance test repeatedly, thus the
terminology “repeated significance testing,” the false positive rate, that is type I
error probability, is known to become inflated beyond the desired level, ultimately
converging to one. This phenomenon was described as sampling to reach a foregone
conclusion by Anscombe (1954). Table 3.1 summarizes the effect of repeated
significance testing for normal data at a nominal level of α = 0.05 and shows the
actual type I error probabilities achieved.

This can be explained by the law of the iterated logarithm and clearly in-
dicates the need to adjust the significance levels or the critical values for the
repeated significance tests. To maintain the overall significance level despite the
repeated significance tests, one has to choose the critical values c1, . . . ,cK of
the repeated significance tests such that

Pr(|Z1|< c1, . . . , |ZK |< cK) = 1−α

under the null hypothesis, where each Zk denotes the standardized test statistic based
on all the data up to the kth interim analysis and K is the number of planned tests.
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Given the critical values, the nominal significance level for each interim analysis is
defined as

Pr(|Zk|> ck) = αk,

and the exit probability is defined as

Pr(|Z1|< c1, . . . , |Zk−1|< ck−1, |Zk|> ck) = πk,

with the requirement ∑K
k=1 πk = α .

The first step in a group sequential design involves the determination of the
critical values to maintain the type I error probability despite the interim analyses.
These adjustments for the nominal significance levels also have an implication
for the sample size requirements. After reviewing the sample estimation for a
normal data problem, we will describe the sample size estimation in terms of the
Fisher information and describe a very general framework for the estimation of the
maximum information for group sequential design based on the efficient score test.

The rest of this chapter is organized as follows. Section 2 reviews sample size
estimation for a fixed design based on normal data and generalizes it to estimation
of the fixed information based on the efficient score test for normal, time to event,
and dichotomous data. Section 3 reviews classical group sequential designs for
normal data along with the associated computational issues and estimation of the
maximum sample size. This section also introduces the notion of the inflation factor
based on the relationship between the sample sizes for the fixed design and the
group sequential design. Section 4 develops sample size estimation for information-
based group sequential designs in terms of the maximum information based on
the efficient score test and provides the theoretical justification for the use of the
inflation factor in determining the maximum information given the information
for the corresponding fixed design. Section 5 describes how information-based
group sequential analysis is performed based on the type I error spending function,
enabling the practical application of group sequential tests to a range of clinical
trials. Section 6 presents an example of information-based group sequential design
and analysis as applied to a phase III trial in cancer. Section 7 concludes this chapter
with a discussion and some concluding remarks.

2 The Fixed Design

In this section, sample size estimation for a fixed design based on normal data
will be reviewed, followed by generalization based on the efficient score test.
The information-based approach will be described for normal, time to event, and
dichotomous data for illustration.
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2.1 Normal Data

Consider a randomized trial of two treatments with equal allocation fractions.
Suppose the responses to treatment in the two groups are normally distributed with
means μE and μC for the experimental and control treatment, respectively, with a
common known variance σ2, and one is interested in testing the null hypothesis of
no treatment difference H0 : μE = μC against the alternative hypothesis H1 : μE �= μC,
or equivalently

H0 : δ = 0 versus H1 : δ �= 0,

where δ = μE−μC. With the standardized test statistic based on a total of n patients
under equal randomization

Z =
X̄E − X̄C
√

4σ2/n
,

where X̄E and X̄C denote the sample means, one would reject H0 if |Z| > zα/2, the
upper α/2 quantile of the standard normal distribution. The fixed design requires a
total sample size of

n =
4(zα/2 + zβ )

2σ2

δ 2
R

to detect the difference δR with power 1−β using a two-sided significance level α .

2.2 Efficient Score Test

In general, the comparison of treatment effects in a two-arm trial can be based on a
test given by the efficient score statistic for the parameter of interest θ ,

S ∼ N(θI ,I ),

where θ represents a treatment difference and I the Fisher information about θ
contained in S. In general, the efficient score statistic is derived from the likelihood
function L(θ |X) of the parameter θ given the data X . For regular problems, the
efficient score statistic S is the first order partial derivative of the log likelihood
function l(θ |X) = logL(θ |X), that is,

S =
∂ l(θ |X)

∂θ
,

and the Fisher information I is the expectation of the negative second order partial
derivative of the log likelihood function, that is,

I = E

{

−∂ 2l(θ |X)

∂θ 2

}

,

both evaluated at the true value of θ.
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The null hypothesis of no difference is usually H0 : θ = 0, and the alternative
hypothesis is H1 : θ �= 0. A treatment comparison based on the approximate normal
sampling distribution of S and critical value b, will have type I error probability α
and power 1−β to detect a specific treatment difference θR as long as

Pr(S > b|θ = 0) = α/2

and
Pr(S > b|θ = θR) = 1−β .

These two requirements are met by

I =
(zα/2 + zβ )

2

θ 2
R

and

b =
zα/2(zα/2 + zβ )

θR
= zα/2

√
I .

2.3 Fixed Information

With the normally distributed data, the efficient score statistic is given by

S =
n(X̄E − X̄C)

4σ

with the standardized treatment difference, that is, the effect size

θ =
μE − μC

σ

and Fisher information

I =
n
4
,

where n is the total sample size with equal randomization between the two
treatments. The total sample size n is thus

n =
4(zα/2 + zβ )

2

θ 2
R

=
4(zα/2 + zβ )

2σ2

δ 2
R

,

the right-hand side being the familiar sample size formula given in Sect. 2.1. Note
that the test statistic Z given in Sect. 2.1 is simply a standardized form of the efficient
score statistic

Z =

√
n
4

X̄E − X̄C

σ
= S/

√
I .
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With time to event data subject to right censoring, the comparison of the two
survival distributions is often based on the logrank test. Under the proportional
hazards assumption

λ (t|z) = λ0(t)exp(θ z),

with z = 0,1, respectively, denoting the control or experimental treatment, the null
hypothesis of no difference is H0 : θ = 0, where θ = logΔ is the constant log hazard
ratio. Under the proportional hazards model, the logrank test statistic is equivalent
to the efficient score statistic for the log hazard ratio θ with Fisher information
I = d/4, where d is the total number of events to be observed. Therefore, the total
number of events necessary to detect the hazard ratio ΔR between the two treatments
with power 1−β at a two-sided significance level α is given by

d =
4(zα/2 + zβ )

2

log2 ΔR
.

There are two approaches to the design of randomized trials with time to event
data: calendar time-driven duration trials versus event-driven information trials (Lan
and DeMets 1989). They are different in the way the end of a trial is defined. With
the duration trial, patients are followed over a fixed duration of follow-up for a
specified number of patients (a sample size in a traditional sense) enrolled during
a fixed duration of accrual (Lan and DeMets 1989; Lan and Lachin 1990; Kim
and Tsiatis 1990; Kim 1992; Kim et al. 1995). With the information trial, the trial
is concluded when a prespecified number of events have been observed (Lan and
DeMets 1989; Kim 1995; Kim et al. 1995).

With dichotomous data, comparison of the probability of “success” can again be
based on the efficient score statistic for the log odds ratio

θ = log
pE(1− pC)

pC(1− pE)
,

where pE and pC are the success probabilities for the experimental and control
treatment, respectively. The efficient score statistic for θ is

S =
n(p̂E − p̂C)

4
,

where n is the total sample size under equal randomization and p̂E and p̂C are the
estimated probabilities of success. In this setting, the Fisher information is

I =
np̄(1− p̄)

4
,
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where p̄ = (pE + pC)/2. Therefore, the total sample size necessary to detect the log
odds ratio θR between the two treatments with power 1−β under the null hypothesis
of no difference H0 : θ = 0 at a two-sided significance level α is given by

n =
4(zα/2 + zβ )

2

θ 2
R p̄(1− p̄)

.

This formula gives a smaller sample size estimate than the usual sample size formula
for a two-sample binomial problem given by either

n =
4(zα/2 + zβ )

2 p̄(1− p̄)

(pE − pC)2

or

n =
2{zα/2

√
2 p̄(1− p̄)+ zβ

√
pE(1− pE)+ pC(1− pC)}2

(pE − pC)2 ,

both of which are based on a normal approximation.

3 Classical Group Sequential Design

In this section, classical group sequential designs for normal data will be reviewed
along with the associated computational issues and estimation of the maximum
sample size. We also discuss the use of an inflation factor based on the relationship
between the sample sizes for the fixed design and the group sequential design.

Consider the normal data setting in Sect. 2. Instead of performing one analysis
after n subjects, suppose one plans to perform interim analyses of the accumulating
data up to K times after every n subjects. Then, for the kth interim analysis, one
would consider the partial sum

Sk =
k

∑
j=1

Yj ∼ N(δ �k, k),

where

Yj =
X̄E j − X̄C j
√

4σ2/n
∼ N(δ �,1)

with δ � = δ/
√

4σ2/n and X̄E j and X̄C j, the sample means of observations
accumulated between the ( j − 1)st and the jth interim analyses. Equivalently, one
could compute the standardized test statistic

Zk =
∑k

j=1(X̄E j − X̄C j)
√

k(4σ2/n)
=

Sk√
k

∼ N(δ �
√

k, 1)
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Table 3.2 Critical and
boundary values for
two-sided group sequential
designs with α = 0.05 and
K = 5

Pocock O’Brien-Fleming

k Critical Boundary Critical Boundary

1 2.41 2.41 4.56 4.56
2 2.41 3.41 3.23 4.56
3 2.41 4.18 2.63 4.56
4 2.41 4.83 2.28 4.56
5 2.41 5.40 2.04 4.56

Table 3.3 Nominal
significance levels and exit
probabilities for two-sided
group sequential designs with
α = 0.05 and K = 5

Pocock O’Brien-Fleming

k Nominal Exit Nominal Exit

1 0.0158 0.0158 0.00000504 0.00000504
2 0.0158 0.0117 0.00125 0.00125
3 0.0158 0.0090 0.00843 0.00765
4 0.0158 0.0074 0.0225 0.0167
5 0.0158 0.0061 0.0413 0.0244

and decide whether to stop or to continue to the next interim analysis, depending
on whether the partial sum Sk exceeds the boundary value bk or the test statistic Zk

exceeds the critical value ck.
Pocock (1977) suggested using a constant critical value at each interim analysis

and rejecting H0 when

|Zk| ≥ ck ≡ cP or equivalently |Sk| ≥ bk = cP

√
k,

whereas O’Brien and Fleming (1979) suggested using a constant boundary value at
each interim analysis and rejecting H0 when

|Sk| ≥ bk ≡ cO

√
K or equivalently |Zk| ≥ ck = cO

√
K/k.

With the overall significance level α = 0.05 and the number of repeated significance
tests K = 5, cP = 2.41 for Pocock group sequential test and cO = 2.04 for O’Brien-
Fleming group sequential test. Table 3.2 gives the critical and boundary values
for the two-sided Pocock and O’Brien-Fleming group sequential designs when
α = 0.05 and K = 5, while Table 3.3 gives the nominal significance levels αk =
2{1−Φ(ck)}, where Φ is the standard normal distribution function and πk are the
exit probabilities.

Figure 3.1 shows the critical values ck, k = 1 : K, for the two-sided group
sequential tests by Pocock (1977) and by O’Brien and Fleming (1979) when α =
0.05 and K = 5, while Fig. 3.2 shows the boundary values bk, k = 1 : K. Note that it
is difficult to reject H0 early with O’Brien-Fleming group sequential tests because of
larger critical values at earlier interim analyses, with the final test becoming similar
to a fixed sample test. It is easier to reject H0 early with Pocock group sequential
tests, however, the last critical value for Pocock group sequential tests can be much
larger than the critical value for the fixed sample test.
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Fig. 3.1 Critical values for two-sided group sequential designs with α = 0.05 and K = 5 (P for
Pocock and OF for O’Brien-Fleming)

3.1 Computational Issues

The computations required for Pocock and O’Brien-Fleming group sequential
designs can be performed using the recursive numerical integration procedure
by Armitage et al. (1969) under the null hypothesis, and by McPherson and
Armitage (1971) under the alternative hypothesis as described below. As noted in
Sect. 2, group sequential designs for comparison of normal outcomes between two
treatments in a randomized trial can be simplified to a sequential design for a one-
sample normal data.

Let, Yk denote the standardized test statistic for the kth interim analysis for the
classical group sequential test

Yk =
X̄Ek − X̄Ck
√

4σ2/n
∼ N(δ �,1)

introduced earlier, so that Y1, . . . ,YK are independently and identically distributed
with mean δ � and variance one. Note that Y1, . . . ,YK are independent since each Yk

is based on independent observations accumulated between the (k−1)st and the kth
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Fig. 3.2 Boundary values for two-sided group sequential designs with α = 0.05 and K = 5 (P for
Pocock and OF for O’Brien-Fleming)

interim analyses, and identically distributed because of equal increments in sample
size between successive interim analyses. Let Sk = ∑k

j=1 Yj denote the partial sum,

and Zk = Sk/
√

k its standardized statistic as before.
Denote by fk the probability density function of Sk in the sequential sampling.

Because of the independent increment structure in the partial sum Sk, the probability
density for Sk can be determined recursively using the convolution of the distribu-
tions for Sk−1 and Yk,

fk(s) =
∫ bk−1

−bk−1

fk−1(u)φ(s− u)du,

where f1 is the standard normal density function φ . Since the probability of stopping
at or before the kth interim analysis is

1−Pr(|S1|< b1, . . . , |Sk|< bk) = 1−
∫ bk

−bk

fk(u)du,
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the type I error probability is determined by

α = 1−
∫ bK

−bK

fK(u)du

under the null hypothesis. Alternatively, with the prespecified exit probability πk of
stopping exactly at the kth interim analysis given by

πk = Pr(|S1|< b1, . . . , |Sk−1|< bk−1, |Sk| ≥ bk)

=
∫ bk−1

−bk−1

fk−1(u){1−Φ(bk − u)+Φ(−bk− u)}du,

the overall type I error probability becomes α = π1 + · · ·+πK , as described by Slud
and Wei (1982).

3.2 Maximum Sample Size and Inflation Factor

As noted earlier, given the overall significance level α and the number of repeated
significance tests K, one can determine the critical values or equivalently the
boundary values for the chosen classical group sequential design. With the Pocock
group sequential design, one would determine the constant critical values ck ≡
cP(α,K) or alternatively the boundary values bk = cP(α,K)

√
k, k = 1 : K. With

O’Brien-Fleming group sequential design, one would determine the critical values
ck = cO(α,K)

√
K/k or the constant boundary values bk ≡ cO(α,K)

√
K. This is

accomplished by solving the equation

1−α =

∫ bK

−bK

fK(u)du

for either cP(α,K) or cO(α,K) using the computational procedure by Armitage et al.
(1969).

To design a randomized trial as a classical group sequential trial, one needs to
determine the number of patients n for two treatments under equal randomization
between successive interim analyses, which in turn determines the maximum sample
size for the chosen sequential design. Given the critical or the boundary values, the
power 1− β to detect the difference in mean between two treatments δR can be
determined as

1−β = Pr(|Zk|< ck,k = 1 : K).

Conversely, given the desired power 1− β to detect the treatment difference δR,
one can determine the value of δ �(α,K,β ) by solving the above equation using
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the recursive numerical integration procedure by McPherson and Armitage (1971).
Since δ �(α,K,β ) = δR/

√
4σ2/n, one then solves for n as

n =
4{δ �(α,K,β )}2σ2

δ 2
R

.

The maximum sample size for the group sequential design is then given by

nK =
4{δ �(α,K,β )

√
K}2σ2

δ 2
R

.

Since the sample size for the fixed design with K = 1 is

n =
4(zα/2 + zβ )

2σ2

δ 2
R

,

δ �(α,1,β ) = zα/2 + zβ .

For a classical group sequential design with K > 1, the maximum sample size
nK as derived above is

nK = 4{δ �(α,K,β )
√

K}2
(

σ
δR

)2

= 4(zα/2 + zβ )
2
(

σ
δR

)2

× {δ �(α,K,β )
√

K}2

(zα/2 + zβ )2 ,

a constant multiple of the corresponding sample size for the fixed design. This
constant multiple

F (α,K,β ) =
{δ �(α,K,β )

√
K}2

(zα/2 + zβ )
2

is referred to as the inflation factor. Note that with K = 1, that is, with the fixed
design, it reduces to one as δ �(α,1,β ) = zα/2 + zβ as noted above, leading to the
sample size for the fixed design. Kim and DeMets (1987,1992) provides the square
root of the numerators for the inflation factors for various group sequential designs.

Table 3.4 reproduces from Kim et al. (2003) the inflation factors for the group
sequential designs with the number of planned repeated significance tests, K =
2,3,4,5, for both Pocock and O’Brien-Fleming designs, with power, 1 − β =
0.8,0.90,0.95, at a two-sided test with significance levels α = 0.05,0.01. Note that
Pocock group sequential designs require an up-front commitment of 8–23% more
in sample size than the corresponding fixed design, while O’Brien-Fleming group
sequential designs require a minimal increase from the fixed design.

Under certain conditions, the inflation factor simplifies the sample size estimation
for many types of outcome data. If the test statistic has equal increments between
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Table 3.4 Inflation factors for two-sided group sequential designs (P for
Pocock and OF for O’Brien-Fleming

K

2 3 4 5

α 1−β P OF P OF P OF P OF

0.05 0.80 1.11 1.01 1.17 1.02 1.20 1.02 1.23 1.03
0.90 1.10 1.01 1.15 1.02 1.18 1.02 1.21 1.03
0.95 1.09 1.01 1.14 10.2 1.17 1.02 1.19 1.02

0.01 0.80 1.09 1.00 1.14 1.01 1.17 1.01 1.19 1.02
0.90 1.08 1.00 1.12 1.01 1.15 1.01 1.17 1.01
0.95 1.08 1.00 1.12 1.01 1.14 1.01 1.16 1.01

successive interim analyses and an independent increment structure, the maximum
sample size necessary for the group sequential design can easily be determined
simply by multiplying the sample size for the corresponding fixed design by the
inflation factor. This simple calculation follows from the analogy between the partial
sum process for the normal data and the efficient score statistics with fixed drift and
variance which is Fisher information for the fixed drift with equal increments. This
will be discussed in detail in the next section.

4 Information-Based Group Sequential Design

In this section, sample size estimation for the so-called information-based group
sequential designs is developed in terms of the maximum information based on
the efficient score test, followed by the theoretical justification for the use of the
inflation factor in determining the maximum information for the information-based
group sequential design given the information for the corresponding fixed design.

Suppose only one analysis is to be performed at calendar time T , as in a fixed
design, based on the efficient score test

S(T ) ∼ N(θI (T ),I (T )),

with drift parameter θ representing the parameter of interest and Fisher information
I (T ) or, equivalently, on the Wald test

Z(T ) =
θ̂ (T )

se{θ̂(T )} ∼ N(θ
√

I (T ),1).

In the Wald test, θ̂ (T ) denotes the maximum likelihood estimate of θ and se{θ̂ (T )}
the estimated standard error of θ̂ (T ), which satisfies

se−2{θ̂(T )}
I (T )

→ 1
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in probability. In testing H0 : θ = 0 at a significance level α against HA : θ �= 0 with
power 1−β to detect the treatment effect θ = θR, a normal approximation can be
used to show,

I (T ) =
(zα/2 + zβ )

2

θ 2
R

,

the fixed information as derived in Sect. 2.1.
For a general class of parametric and semiparametric models, a Wald test

computed at time t satisfies

Z(t) =
θ̂ (t)

se{θ̂(t)} ∼ N(θ
√

I (t),1).

Equivalently,

SW (t) =
√

I (t)Z(t) ∼ N(θI (t),I (t)),

is a Brownian motion process with fixed drift θ and variance given by the Fisher
information I (t), with

se−2{θ̂(t)}
I (t)

→ 1

in probability. This test statistics is thus equivalent to the efficient score statistic

S(t) ∼ N(θI (t),I (t)).

Therefore, the statistical information for the parameter of interest θ is the precision
of the efficient estimator of θ having the smallest variance which can be approxi-
mated by se−2{θ̂(t)}.

Suppose one plans to perform interim analyses and the final analysis in a
randomized, controlled trial at calendar times t1, . . . , tK . Then for the kth interim
analysis at time tk, one may compute either Wald test

Z(tk) =
θ̂ (tk)

se{θ̂ (tk)}

or the efficient score statistic S(tk) and terminate the trial early and reject H0 : θ = 0
if |Z(tk)| ≥ ck or |S(tk)| > bk, where ck and bk are the critical and boundary values
for the group sequential test, respectively, as in Sect. 3.

Typically, the joint distribution of the group sequential test statistics is multivari-
ate normal or at least asymptotically so, and subsequently group sequential methods
require multivariate numerical integration. If the increments in the test statistic
between successive interim analyses are independent, however, the multivariate
numerical integration reduces to univariate numerical integrations based on a simple
recursion involving a convolution of two random variables as in Armitage et al.
(1969) and McPherson and Armitage (1971). As shown by Scharfstein et al.
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(1997), any efficient-based test statistic that achieves a semi-parametric efficiency
bound – almost all test statistics used in practice – calculated at calendar times
t1, . . . , tK behaves like a standardized partial sum of independent normal variables
and thus has independent increments between successive interim analyses. More
specifically, under a general setting, the joint distribution of the vector of sequential
test statistics {S(t1), . . . ,S(tK)} is asymptotically normal with mean vector

{θI (t1), . . . ,θI (tK)}

and the covariance structure of an independent increment process:

Var{S(tk)}= I (tk)

and, for k ≤ l,

Cov[S(tk){S(tl)− S(tk)}] = 0.

This property of the sequential test statistics over time remains true even under
contiguous alternatives. Jennison and Turnbull (1997) showed the same for a general
class of regression models as well.

Given K, assume at least tentatively that the interim analyses will be performed
at calendar times t1, . . . , tK after equal increments of information, that is,

I (tk) =
kImax

K
,

where Imax =I (tK). Then with the information fraction τk =I (tk)/I (tK) = k/K
and η = θ

√
I (tK) = δ �

√
K the standardized efficient score statistic is

S(tk)
√

I (tK)
∼ N(ητk,τk).

The statistic is equivalent to

Sk√
K

∼ N(ητk,τk)

for the classical group sequential test for normal data described in Sect. 3. Because
of this equivalence in distribution, once the information for a fixed design is known,
the maximum information for the information-based group sequential design is
determined simply as

Imax =
(zα/2 + zβ )

2

θ 2
R

×F (α,K,β ),

where F (α,K,β ) is the inflation factor derived in Sect. 3.2.
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Note that the result above works only when there is an independent increment
structure in the test statistics and there are equal increments between successive
interim analyses.

5 Information-Based Group Sequential Analysis

In this section, the information-based group sequential analysis based on the type I
error spending function is described. This approach allows the practical application
of group sequential tests in the common situation in which the assumptions required
for the classical group sequential design are not feasible; interim analyses are often
inserted, adding to the prespecified number of analyses, and the increments of
statistical information between successive analyses are rarely equal.

As noted in Sect. 4, the efficient score statistic has an independent increment
structure. The information-based group sequential design described in Sect. 4
requires two other conditions, one on equal increments of information between
successive interim analyses and the other on the number of planned repeated
significance tests. In many long-term chronic disease clinical trials, the primary
outcome of interest is either time to event such as death with right censoring or
repeated measures taken at successive follow-up visits with potential missing data.
Typically, patients enter clinical trials serially in a way known as staggered entry.
As a consequence, it is generally unclear whether the requirement regarding the
independent increments between successive interim analyses is to be met, and there
is no guarantee that the interim analyses will be performed after equal increments
of statistical information. Also, it is likely that the actual number of repeated
significance tests performed would deviate from the prespecified number of repeated
significance tests. Therefore, flexible methods are required in group sequential
analysis.

To address these problems, Slud and Wei (1982) suggest that one prespecify exit
probabilities for group sequential tests as

πk = Pr(|Z1|< c1, . . . , |Zk−1|< ck−1, |Zk| ≥ ck),

such that ∑K
k=1 πk =α , the overall significance level. The problem with this approach

is the choice of the exit probabilities is arbitrary. Recognizing that both Pocock
and O’Brien-Fleming group sequential designs can be interpreted from the exit
probability perspective as indicated in Table 3.5 and in Fig. 3.3, Lan and DeMets
(1983) instead suggested specifying a type I error spending function, to allow
interim analyses at arbitrary calendar times in unequal increments of statistical
information or even sporadically, doing fewer than or more than the planned K
repeated significance tests.

The type I error spending function is defined as a monotonically increasing
function, α�(τ), of the information fraction τ , 0 ≤ τ ≤ 1, with α�(0) = 0 and
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Table 3.5 Cumulative exit
probabilities for two-sided
group sequential designs with
α = 0.05 and K = 5

k Pocock O’Brien-Fleming

1 0.0158 0.00000504
2 0.0275 0.00126
3 0.0365 0.00891
4 0.0439 0.0256
5 0.0500 0.0500
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Fig. 3.3 Cumulative exit probabilities and error spending functions (P for Pocock and OF for
O’Brien-Fleming; P-type for α�

2 (τ) and OF-type for α�
1 (τ))

α�(1)=α . Note that α�(τk)−α�(τk−1)= πk specifies the exit probability above. To
perform interim analyses using the type I error spending function, the information
fractions τk have to be estimated. In general, the information fraction is defined
as τk = I (tk)/Imax for the efficient score test as in Sect. 4. As a special case, τk

for both Pocock and O’Brien-Fleming group sequential designs is k/K, again as in
Sect. 4. In general, there is no direct relationship between the information fraction
and the calendar time of interim analysis. In fact, the information fraction is the
same as the time of the discretized Brownian motion process on a unit interval.
Subsequently, Kim and DeMets (1987) developed a general procedure for design of
such group sequential trials.
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For the Pocock and O’Brien-Fleming group sequential designs, Lan and DeMets
(1983) proposed, respectively, the following type I error spending functions,

α�
2 (τ) = α log{1+(e− 1)τ}

and
α�

1 (τ) = 2{1−Φ(zα/2/
√

τ)}
for one-sided tests. Figure 3.3 shows the plot of these two spending functions as
well as the cumulative exit probabilities for the Pocock and O’Brien-Fleming group
sequential designs. Note how close the graphs for α�

2 (τ) and α�
1 (τ) are, respectively,

to the plots of the cumulative exit probabilities for Pocock and O’Brien-Fleming
group sequential designs with α = 0.05 and K = 5.

Now consider a group sequential trial. According to the information-based
group sequential design with the overall significance level, α , the number of
planned repeated significance tests, K, and the power, 1−β , to detect a treatment
difference θR, one would determine the maximum information Imax and decide on
the type I error spending function α� that has the characteristics of the chosen group
sequential design. Instead of analyzing the data only once at the end of the trial, one
may compute the test statistics at calendar times tk, k = 1 : K, of interim analyses.
The strategy for stopping the trial early is to reject the null hypothesis H0 the first
time the test statistic is sufficiently large, that is,

|Z(tk)| ≥ ck or |S(tk)| ≥ bk

for Wald test Z(tk) or the efficient score statistic S(tk), respectively. The critical
value ck or the boundary value bk would be determined to satisfy

πk = α�(τk)−α�(τk−1) = Pr(|Z(t1)|< c1, . . . , |Z(tk−1)|< ck−1, |Z(tk)| ≥ ck)

= Pr(|S(t1)|< b1, . . . , |S(tk−1)|< bk−1, |S(tk)| ≥ bk).

Here, τk is estimated as the observed Fisher information for the efficient score
statistic divided by Imax or equivalently as

τk =
se−2{θ̂ (tk)}

Imax
.

A computational procedure very similar to that of Armitage et al. (1969) can be
used for determining the critical or boundary values. The only difference is that the
variances of the accumulating random variables in the partial sum are not the same.
Because of the independent increment structure, recursive univariate integration
can be used in place of a full multivariate normal integration. The computational
procedures for the type I error spending function approach have been implemented
in a suite of publicly available software as described in Reboussin et al. (2000).



3 Sequential Designs for Clinical Trials 75

6 An Example: CALGB 8433

In this section, an example of an information-based group sequential design and
analysis in a phase III randomized, controlled trial in cancer is described briefly,
illustrating the estimation of the maximum information based on the inflation
fraction for group sequential design and the type I error spending function approach.

The Cancer and Leukemia Group B (CALGB) trial 8433 (Dillman et al. 1990)
was designed to compare the standard treatment of radiotherapy, delivered over
6 weeks to the original tumor volume and involved regional lymph nodes, to an
experimental treatment with 5 weeks of cisplatin plus vinblastine prior to the same
radiotherapy in patients with stage III NSCLC. The rationale for the experimental
treatment was that up-front systemic chemotherapy might lead to initial tumor
shrinkage which would then improve the local control provided by radiotherapy and
potentially eliminate micrometastatic disease. The primary objective of the trial was
to compare overall survival on the experimental treatment to that on the standard
treatment. This trial was terminated early before reaching its accrual goal due to
appearance of a significant treatment difference between two treatments. Although
this trial was not originally designed as a group sequential trial, group sequential
analyses were implemented after patient accrual began and subsequently used as a
basis for the decision for early termination. The group sequential design and analysis
for this trial has been reported as a case study in a book chapter by Propert and Kim
(1992).

Under the proportional hazards assumption, Cox model for failure time data is
given by

λ (s|z) = λ0(s)exp(θ z),

with the baseline hazard λ0(s) at time s, a treatment indicator z, and the log hazard
ratio θ between the two treatments. The null hypothesis is H0 : θ = 0, that is, the
log hazard ratio is zero, indicating that the hazard of death on the two treatments are
the same, and the alternative hypothesis is H1 : θ �= 0, indicating otherwise. They
are equivalent to H0 : Δ = 1 and H1 : Δ �= 1, respectively, with the constant hazard
ratio Δ = exp(θ ) between the two treatments.

The sample size was obtained to achieve power 1−β = 0.8 to detect a constant
hazard ratio Δ = 1.5, based on using a logrank test at a two-sided significance level
α = 0.05. This hazard ratio represents a 50% improvement in median survival with
the experimental treatment over the standard treatment. By the fixed information
formula for time to event data as described in Sect. 2.3

d =
4(zα/2 + zβ )

2

log2 Δ
=

4(1.96+ 0.84)2

log2 1.5
= 190,

a total of 190 deaths on the two treatments were required to be observed during the
trial. The sample size in the traditional sense was then determined by assuming that
the analysis of the trial would take place after 80% of the patients would have died,
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Table 3.6 Summary of
group sequential analysis
in CALGB 8433

Logrank
k tk τk p-value αk Decision

1 Sep 1985 0.05 n/a 0.0013 Keep open
2 Mar 1986 0.08 0.021 0.0013 Keep open
3 Aug 1986 0.18 0.0071 0.0013 Keep open
4 Oct 1986 0.22 0.0015 0.0013 Keep open
5 Mar 1987 0.29 0.0015a 0.0013 Close
a
The p-value (0.0008) from the Cox model was used instead

in the decision for early termination of the trial

so that 190/0.8 or approximately 240 patients were required to be enrolled into the
trial, indicating that this trial was designed as a maximum information trial.

Based on previous experience in the same patient population, about 60 patients
were expected to be accrued per year. Therefore, the trial was expected to require
about 4 years of accrual with possibly 6 months to 1 year of additional follow-up to
obtain 190 deaths. When this trial was designed initially in 1983, it was planned as
a fixed design, and there was no provision for interim analysis and early stopping.
The CALGB policies for interim analysis for possible early stopping were amended
in 1986, coinciding with the emergence of treatment differences in CALGB 8433.

At the time of the first interim analysis, it was decided that an O’Brien-Fleming
type I error spending function, α�

1 (τ), described in Sect. 5 would be used for formal
sequential tests to take advantage of its flexible nature. However, to avoid extreme
conservatism during the early phase of the trial with limited statistical information,
α�

1 (τ) would be used with truncation at ck = 3 with αk = 0.0013. Since a formal
interim analysis was going to be performed, it was decided that the final analysis
would be performed with more information than would be necessary for the fixed
design to maintain the same power. This change in the trial from the fixed design
to the sequential design at power 1− β = 0.8 needs no more than 5% increase in
information from that for the corresponding fixed design. Therefore, the maximum
number of deaths to be observed were inflated to 190× 1.05= 200.

Table 3.6 summarizes the group sequential analysis of the trial leading to early
termination. Patient accrual to this trial began in May of 1984. Initial accrual was
slow, and the first interim analysis was not performed until the fall of 1985. The
sample size at this time (10 deaths in 50 patients) was too small to allow any
meaningful comparisons of overall survival by treatment. At the next regularly
scheduled interim analysis in the spring of 1986, the logrank test of the difference
in overall survival between the two treatments gave an observed significance of
p = 0.021. At the time, the median follow-up was only 6 months.

In August of 1986, with τ3 = 0.18, the logrank p-value was 0.0071. As a result of
this interim analysis, a decision was made to perform an additional interim analysis
2 months later, for which a strong effort was made by the group to collect the most
up-to-date follow-up information available for patients on the trial. By October of
1986, an additional eight failures had been observed, increasing the information
fraction from 0.18 to τ4 = 0.22. With an increase in information fraction of 0.04,
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the observed significance for the test of the difference in survival had decreased
to p = 0.0015, which almost touched the truncated O’Brien-Fleming boundary
significance level of 0.0013. Despite the close proximity to the boundary, it was
decided that there was insufficient evidence to recommend closure of the trial and
that the next interim analysis would be performed as scheduled in March of 1987.

The March 1987 interim analysis led to the decision to close the trial to further
accrual. At that time, 163 out of the projected 240 patients had been accrued, and
follow-up data were available from 105 patients with the median follow-up of 8
months. The logrank p-value for this comparison was 0.0015 with a total of 56
failures representing an information fraction of τ5 = 0.29. In response to concern
that the observed treatment differences might be attributable to the differences in
the two treatment groups with respect to prognostic factors such as age or substage
of disease, a comprehensive analysis including use of the Cox (1972) proportional
hazards model was undertaken. The prognostic factors examined were comparable
between the two treatment arms. The results of the Cox analysis, controlling for
various prognostic factors known for NSCLC, gave an observed significance of
p = 0.0008. This analysis reaffirmed that the observed difference represented a real
treatment effect. This adjusted p-value had crossed the truncated O’Brien-Fleming
boundary, and it was unanimously voted to close the trial.

7 Discussion

The efficient score test for different types of outcome data in comparative clinical
trials provides a unified framework in which to develop a most general form of
group sequential designs. Recognizing the distributional similarity between the two-
sample normal test for normal outcome data in classical group sequential designs
and the efficient score test or equivalently Wald test, sample size estimation or
estimation of maximum information can be simplified based on the notion of the
inflation factor. Under the assumptions of the independent and equal increments
of statistical information between successive interim analyses, the standard method
for group sequential designs by Pocock (1977) and O’Brien and Fleming (1979) for
normal data can be directly applied to information-based group sequential design
and subsequent information-based group sequential analysis based on the type I
error spending function by Lan and DeMets (1983).

Once a fixed design is known for any setting, an information-based group
sequential design is automatic based on the efficient score test and the inflation
factor. After design is completed, interim analyses of accumulating data can be
implemented according to information-based group sequential analysis using the
type I error spending function approach, thus obviating the need to conduct
interim analyses after equal increments of statistical information and possibly
deviating from the planned number of interim analyses and the final analysis,
which is unavoidable in complex, large-scale clinical trials in chronic diseases, with
nonnormal outcome data.
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Chapter 4
Sample Size Reestimation for Confirmatory
Clinical Trials

Cyrus R. Mehta

1 Introduction

A phase 3 confirmatory clinical trial occurs at the culminating stage of clinical
drug development at a biopharmaceutical company. The cost of the entire drug
development program from discovery, through animal models, first-in-human test-
ing, phase 2 testing and, eventually, phase 3 testing, can cost over a 100 million
dollars. Regulatory approval for a new molecular entity (NME) hinges on the
success of at least two adequate and well controlled phase 3 clinical trials. With
so much at stake, it is essential that the phase 3 trial be adequately powered. This is
often not the case, however. It has been noted by Dr. Janet Woodcock, the Deputy
Commissioner at the Center for Drug Evaluation Research, FDA (2008) that one
in two clinical trials fail in phase 3 testing. Some of these failures must of course
be attributed to unsafe or ineffective compounds. There is, however, concern that
an appreciable fraction of these failures might be due to faulty design. For this
reason, the FDA (2004) has included adaptive designs in its Critical Path Initiative;
a wake-up call to the biomedical community to stem the alarming decline in the
number NME’s gaining regulatory approval by use of innovative approaches to
clinical drug development. An adaptive clinical trial is one in which the future
course of the trial can be altered, based on interim data obtained from the on-going
trial. Adaptive changes are of various types, including dose selection, population
enrichment, alteration of the randomization fractions, and sample size reestimation.
In this article, we focus on sample size reestimation as a way of reducing the risk
that a study might fail because it is underpowered.
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The standard approach for powering a study is to first estimate the underlying
treatment effect for the primary endpoint from past studies in similar settings and
use this estimate to compute the sample size needed for adequate power. Often,
however, there is uncertainty and debate about the magnitude of this estimate, as
also about the variability of the patient population, in the current study. This may
be due to limited experience with the new compound, small sample sizes in the
previous studies, changes in standard of care, lack of comparability between the old
and new patient populations, use of a different primary endpoint, and numerous
other factors. It is sometimes suggested that rather than attempt to estimate the
treatment effect prior to launching the study, it might be more useful to specify
the smallest treatment effect that is considered clinically meaningful and power the
study to detect this effect. This approach too has its drawbacks. Even assuming that
it is possible to identify the smallest clinically meaningful effect, the sample size
required to detect that effect might be unacceptably large thereby rendering the trial
infeasible. Designing for the smallest clinically meaningful effect has the additional
drawback that if the true treatment effect is larger, the trial might be substantially
overpowered. One option is to utilize the group sequential design whereby the trial
will be terminated early with a smaller sample size if in truth the treatment effect is
larger than the smallest clinically meaningful difference. In this article, we present
an alternative approach that could be used either in place of, or in conjunction with,
the group sequential approach. This is the adaptive approach, wherein an initial
sample size is specified on the basis of all available prior information. An interim
analysis is then conducted and if the results are reasonably promising, the sample
size is increased. In this method, the risk of an underpowered study is reduced since
there is an opportunity to review the initial sample size and adjust it based on data
from the study itself.

The major portion of this article consists of three case studies. These are
examples of confirmatory phase 3 adaptive clinical trials in which we were
involved right from the design stage. All three designs were approved by the FDA.
For reasons of confidentiality, the names of the trial sponsors and the medical
compounds being tested have not been divulged. We introduce the basic notation,
statistical methodology, and potential benefit of the adaptive approach in Sect. 2
through a schizophrenia trial with a continuous endpoint. In Sect. 3, we show
how the method can be used to extend a very large group sequential design for a
cardiology trial with a binomial endpoint. In Sect. 4, we extend the methodology to
a lung cancer study in which the primary endpoint is overall survival. Finally, we
discuss a number of important statistical and operational issues and summarize our
conclusions in Sect. 5.

2 Negative Symptoms Schizophrenia Trial

Consider a two-arm trial to determine if there is an efficacy gain for an experimental
drug relative to the clinical standard treatment for negative symptoms schizophrenia.
The primary endpoint is the improvement from baseline to week 26 in the Negative
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Symptoms Assessment (NSA), a 16-item clinician-rated instrument for measuring
the negative symptomatology of schizophrenia. Let, μt denote the difference
between the mean NSA at baseline and the mean NSA at week 26 for the treatment
arm and let μc denote the corresponding difference of means for the control arm.
Denote the efficacy gain by δ = μt − μc. The trial will be designed to test the null
hypothesis H0: δ = 0 versus the one-sided alternative hypothesis that δ > 0. It is
expected, from limited data on related studies, that δ ≥ 2 and σ , the between-subject
standard deviation, is believed to be about 7.5. In the discussion that follows, we
shall focus our attention on adaptive sample size adjustments due to uncertainty
surrounding the true value of δ . Even though the statistical methods discussed
here are applicable when there is uncertainty about either δ or σ , the adaptive
approach requires careful justification primarily when δ is involved. Adaptive
sample size adjustments relating to uncertainty about σ are fairly routine and
noncontroversial.

We shall consider fixed-sample, group sequential and adaptive design options for
this study. There are advantages and disadvantages to each option with no single
approach dominating over the others. We are interested, however, in exploring
whether the adaptive methodology can add value to the better established fixed
sample and group sequential approaches to trial design. We will see that an adaptive
design alleviates to some extent the problem of “overruns” encountered by group
sequential designs when the primary endpoint is observed after a lengthy follow-up
period as is the case here. Additionally, we will see that an adaptive design may, in
certain settings, have a more favorable risk versus benefit trade-off.

2.1 Fixed Sample Design

Since it is believed a priori that δ ≥ 2, we first create Plan 1, a single-look design
with 1−β = 0.8 power to detect δ = 2 using a one-sided level α = 0.025 test, given
σ = 7.5. The required sample size can be obtained from the well-known formula

N = σ2
[

zα + zβ

δ

]2

, (4.1)

where zu =Φ−1(1−u) and Φ(·) is the standard normal cumulative density function.
By substituting these design parameters into (4.1), it can be seen that Plan 1 will
be fully powered if a total of 441 subjects are enrolled. Efficacy is declared if the
standardized test statistic at the time of the final analysis equals or exceeds 1.96.

There is, however, considerable uncertainty about the true value of δ , and to a
lesser extent about σ . Nevertheless, it is believed that even if the true value of δ
were as low as 1.6 on the NSA scale, that would constitute a clinically meaningful
effect. We, therefore, create Plan 2, a one-sided level 0.025 test to detect δ = 1.6
with 0.8 power. Upon substituting the new value of δ into (4.1), it is seen that Plan 2
requires a total sample size of 690 subjects.
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Table 4.1 Operating
characteristics of Plan 1
and Plan 2

Plan 1 Plan 2

δ Sample size Power (%) Sample size Power (%)

1.6 441 61 690 80
1.7 441 66 690 85
1.8 441 71 690 88
1.9 441 76 690 91
2.0 441 80 690 93

The operating characteristics of Plan 1 and Plan 2 are displayed side by side in
Table 4.1 for values of δ between 1.6 and 2.0. Under Plan 1, we would enroll 441
subjects and hope that the study is adequately powered, which it will be if δ = 2
and σ = 7.5. If, however, δ = 1.6, the power drops from 80 to 61%. There is thus a
risk of launching an underpowered study for an effective drug under Plan 1. Under
Plan 2, we will enroll 690 subjects, thereby ensuring 80% power at the smallest
clinically meaningful value, δ = 1.6, and rising to 93% power at δ = 2.

If resources were plentiful, Plan 2 would clearly be the preferred option. The
sponsor must, however, allocate scarce resources over a number of studies and in
any case is not in favor of designing an overpowered trial. This leads naturally to
considering a design that might be more flexible with respect to sample size than
either of the above two single-look fixed sample designs. We will consider two
types of flexible designs; group sequential and adaptive.

2.2 Group Sequential Design

Sample size flexibility for late-stage trials is traditionally provided by utilizing a
group sequential design. Consider Plan 3, a group sequential design with one interim
analysis at which the trial may be terminated early for efficacy. Such a design can be
constructed to have 0.025 one sided type-1 error and 80% power to detect δ = 1.6
– the same as Plan 2. If, however, δ = 2, the trial has a high probability of stopping
at the interim look itself, rather than going all the way to the end. While this would
appear to be an attractive option, it is important to consider not just the saving in
study duration but also the saving in the actual number of subjects randomized to
the study. Since the efficacy endpoint for this trial will only be observed at week
26, the actual saving in sample size will be affected by the enrollment rate. In the
current study, it is anticipated that subjects will enroll at an average rate of 8 per
week. The number of subjects enrolled and the number of 26-week completers over
time are displayed graphically in Fig. 4.1.

Observe that there is a 26-week horizontal separation between the two parallel
lines depicting, respectively, the graph for enrollment and the graph for study
completion. This 26-week gap must be taken into consideration when evaluating
the savings achieved by utilizing a group sequential design.
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Fig. 4.1 Impact of enrollment rate and length of follow-up on trial completion

The two major design parameters to be specified for a two-look group sequential
design are the timing of the interim analysis and the amount of type-1 error to
be spent at that analysis. It was felt that data must be available for at least 200
completers before the trial can be terminated for efficacy so that an adequate safety
profile may be developed for the study drugs. Therefore, a suitable time point
for the interim analysis is week 51, when we will have enrolled 408 subjects
with data on 200 completers. Next, we must decide on the amount of type-1
error, α1, to spend at the interim look. It is generally held that the type-1 error
should be spent conservatively in the early stages of a trial so as to ensure that
results based on premature termination will be compelling and have the capacity
to alter medical practice (see Pocock 2005). A popular choice for this purpose is
the proposal of Haybittle (1971) to spend only 0.001 of the total available type-1
error at the interim look. This results in the conservative early stopping boundary
b1 = Φ−1(1− 0.001) = 3.09. In other words, if the standardized test statistic Z1

equals or exceeds 3.09 after 26-week data are observed on the first 200 subjects,
the trial may be stopped and efficacy declared. The overall type-1 error of the group
sequential design is preserved by adjusting the stopping boundary b2 at the final
analysis so as to satisfy the level condition

Pr(Z1 ≥ 3.09)+Pr(Z1 < 3.09,Z2 ≥ b2) = 0.025, (4.2)
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Table 4.2 Operating characteristics of Plan3 (group sequential) and Plan2 (fixed sample)

Plan3 (group sequential)

Expected sample size Plan2 (fixed sample)

δ
Probability of
early stopping (%) No overruns With overruns Power (%) Sample size Power (%)

1.6 5.7 665 677 80 690 80
1.7 7.1 658 673 85 690 85
1.8 8.6 651 669 88 690 88
1.9 10.1 643 664 91 690 91
2.0 11.7 635 660 94 690 94

where Z2 is the standardized test statistic at the final analysis after all enrolled
subjects have completed the full 26-week treatment period. The value of b2 that
satisfies (4.2) is b2 = 1.97, slightly larger than the critical value 1.96 for a level-
0.025 single look design. This more stringent critical value is sometimes regarded
as the penalty one must pay for the privilege of taking an interim look with the
possibility of early stopping. It results in a slight inflation of sample size, from 690
to 693, to match the 80% power of the single-look design.

To summarize, in Plan 3 the nominal critical value for early stopping is 3.09
standard deviations and the one sided p-value corresponding to this early stopping
boundary 0.001 which, if met, would indeed be compelling enough to justify
premature termination. Both Plan 2 and Plan 3 have the same power and almost
the same sample size commitment. However, under Plan 2, there is no possibility of
early stopping, whereas under Plan 3, it is possible to stop early and thereby save on
sample size. The probability of early stopping if δ = 1.6 is about 6%, and rises to
about 12% if δ = 2. Thus, the benefit of the group sequential design in this setting
appears to be small and moreover is accompanied by the problem of “overruns”
which we discuss next.

2.2.1 The Problem of Overruns

Care must be taken when estimating the actual sample size savings of a group
sequential design. Even if the early stopping boundary is crossed at week 51 on
the basis of the data from the 200 completers, we must still take into account the
additional 208 randomized subjects who enrolled between week 26 and 51 for whom
the week 26 endpoint will not yet have been attained. These additional 208 subjects
are referred to as the “overruns.” When the overruns are accounted for, the saving
in sample size due to early stopping is only 693− 408 = 285 subjects, rather than
693−200= 493 subjects. The power and expected sample size values of the group
sequential Plan 3 for different choices of δ are displayed in Table 4.2. The table
shows the impact of overruns on the expected sample size. For comparison, we
have also included corresponding power and sample size values for the fixed sample
Plan 2 in Table 4.2.
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It is seen from Table 4.2 that Plan 3 offers a modest benefit relative to Plan 2.
After accounting for the overruns, the expected sample sizes under Plan 3 range
between 660 and 677 for corresponding values of δ between 2 and 1.6, as compared
to a fixed sample size of 690 under Plan2. In terms of power, Plan 2 and Plan 3
are practically identical. For the current trial, a group sequential design with
conservative error spending offers no substantial advantage over a conventional
single look design with a fixed sample size. One is still faced with the dilemma
of committing excessive sample size resources up front to ensure adequate power at
δ = 1.6, with limited prospects of saving on sample size in the event that δ = 2.

Although in general group sequential designs do offer savings in expected sample
size, their actual benefit may be diminished if a study enrolls subjects very rapidly
but the primary endpoint can only be observed after a lengthy follow-up. In the
current example, we assumed that subjects are enrolled at the rate of 8 per week
and the endpoint is observed after 26 weeks of follow-up for each subject. This
resulted in 208 additional subjects being on-study who were not yet followed for 26
weeks at the time of the interim analysis. The efficiency loss due to an overrun of
this magnitude was difficult to overcome. If instead the enrollment rate were to be
halved to four subjects per week, and the endpoint were to be observed only after
12 weeks instead of 26 weeks, there would only be an overrun of 48 subjects, and
the resulting operating characteristics of the two group sequential designs would be
more favorable relative to the corresponding fixed sample design. The accrual rate
and the duration of follow-up are thus two extremely important design parameters
for a group sequential trial.

From an operational point of view, overruns pose an additional problem. If a
trial is terminated early, its results are typically unblinded to the investigators. In
this case, there is the risk that the investigators might no longer feel bound to treat
the overrun patients strictly as per protocol. With a large number of overruns, the
integrity of the study might be compromised because the dataset used for the final
analysis, unlike the dataset used for the early stopping decision, must include all
available data on all randomized subjects.

We next consider adopting an adaptive design for this study. This is a radically
different approach to trial design in which the difficulties encountered by group
sequential designs – rapid accrual, delayed endpoint, and large up-front commitment
of patient resources – can to some extent be mitigated.

2.3 Adaptive Design

To motivate the adaptive design, let us recall that although the actual value of
δ is unknown, the investigators are hopeful that δ ≥ 2. For this reason, Plan 1
was constructed to have 80% power to detect δ = 2. Plan 2, on the other hand,
was constructed to have 80% power to detect δ = 1.6, the smallest clinically
meaningful treatment effect. If there were no resource constraints, one would of
course prefer to design the study for 80% power at δ = 1.6 since that would imply
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even more power at δ = 2. However, as we saw in Table 4.1, this conservative
strategy carries as its price a substantially larger up-front sample size commitment
which is, moreover, unnecessary if in truth δ = 2. Plan 3 was, therefore, constructed
as a group sequential alternative to Plan 2. Plan 3 also has 80% power to detect
δ = 1.6 but there is a possibility of early stopping. We have seen, however, that
due to the overruns problem and the need to impose rather conservative criteria for
early stopping, the expected sample size saving realized by Plan 3 is small while the
up-front sample size commitment is large.

The above difficulties lead us to consider whether Plan 1, though powered to
detect δ = 2, might be improved so as to provide some insurance against substantial
power loss in the event that δ = 1.6. The adaptive approach is suited to this purpose.
In this approach, we start out with a sample size of 441 subjects as in Plan 1, but
take an interim look after data are available on 200 completers. The purpose of the
interim look is not to stop the trial early but rather to examine the interim data and
continue enrolling past the planned 441 subjects if the interim results are promising
enough to warrant the additional investment of sample size. This strategy has the
advantage that the sample size is finalized only after a thorough examination of
data from the actual study rather than through making a large up-front sample size
commitment before any data are available. Furthermore, if the sample size may
only be increased but never decreased from the originally planned 441 subjects,
there is no loss of efficiency due to overruns. An important paper by Proschan and
Hunsberger (1995) has shown, however, that such a data dependent sample size
increase will inflate the type-1 error unless appropriate adjustments are made at the
time of the final analysis. This is discussed next.

2.3.1 Preserving the Type-1 Error

The technical problem of avoiding inflating the type-1 error despite increasing the
sample size in a data-dependent manner has been approached from two different
points of view. One approach is based on combining the independent data from the
two stages using a prespecified combination function. The first papers to develop
this approach were by Bauer and Köhne (1994), Cui et al. (1999), and Lehmacher
and Wassmer (1999). Bauer and Köhne (1994) proposed to combine the p-values
from the two stages multiplicatively, in a manner analogous to meta-analysis (see,
e.g., Hedges and Olkin 1985). Thus, if p(1) and p(2) are valid p-values computed
independently from the two stages then, under the null hypothesis of no treatment
effect, they are uniformly distributed and their product is distributed as χ2 with 4
degrees of freedom. This property is preserved even if the sample size at the second
stage is altered on the basis of the data observed at the first stage. Cui et al. (1999)
proposed to combine the independent standardized (Wald) statistics from the two
stages rather than the p-values. They used prespecified weights and an additive
combination function. Specifically, suppose that the initial plan is to enroll n(1)

subjects at stage 1 and to enroll an independent cohort of n(2) subjects at stage 2.
Suppose that on the basis of the interim results at stage 1, the sample size of the
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second cohort is increased from n(2) to n(2∗). Let Z(1),Z(2), and Z(2∗) denote the
Wald statistics for the first stage data, second stage data, and second stage data with
altered sample size, respectively. Cui et al. (1999) have shown that the statistic

Z̃2 =

√

n(1)

n(1) + n(2)
Z(1) +

√

n(2)

n(1) + n(2)
Z(2∗) (4.3)

is N(0,1) under the null hypothesis. This result is exactly true for normally
distributed data with known variance, and asymptotically true for other settings
including the binomial approximation to the normal. The significance of (4.3) is
that one can perform the final analysis using the criterion Z̃2 ≥ zα to reject the
null hypothesis and, notwithstanding the data dependent increase in sample size at
stage 1, the type-1 error will not be inflated because

Pr(Z̃2 ≥ zα ) = α .

Lehmacher and Wassmer (1999) proposed to combine the p-values from the two

stage by the inverse normal combination function

p̃ = 1−Φ

⎡

⎣

√

n(1)

n(1) + n(2)
Φ−1

(
1− p(1)

)
+

√

n(2)

n(1) + n(2)
Φ−1

(
1− p(2∗)

)
⎤

⎦ (4.4)

and to reject the null hypothesis if p̃ ≤ α . Although they developed their results
independently, it is easy to see that the Lehmacher and Wassmer (1999) and the Cui
et al. (1999) methods are completely equivalent.

Observe from (4.3) and (4.4) that the data from the two stages are combined
with weights that depend on their prespecified sample sizes (n(1),n(2)) rather than
their actual sample sizes (n(1),n(2∗)). When n(2∗) > n(2), this implies that the Wald
statistic (or associated p-value statistic) from the second cohort is “down-weighted”
relative to the corresponding statistic from the first cohort. This has been a source
of controversy amongst statisticians both because of concerns that the resulting test
might lose some efficiency (Tsiatis and Mehta 2003; Jennison and Turnbull 2003)
and because it seems illogical that the data generated by subjects in the second
cohort should count less than that of subjects in the first cohort (Chen et al. 2004).
We shall return to these issues in Sect. 5 where we argue that their impact on actual
clinical trials is rather limited.

An alternative approach to preserving the type-1 error is based on calculating
the conditional error rate. This approach underlies the papers by Proschan and
Hunsberger (1995) and Müller and Schäfer (2001). The basic principle is that
the conditional type-1 error of the trial with the sample size adaptation must remain
the same as the conditional type-1 error of the original nonadaptive trial. Let, Z2

denote the Wald statistic for the cumulative data from both stages if there is no
sample size adaptation and Z∗

2 denote the corresponding Wald statistic if the sample
size of the second cohort is increased from n(2) to n(2∗) after observing Z1 = z1 at the
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first stage. The nonadaptive trial will reject the null hypothesis at level-α if Z2 ≥ zα .
In order for the adaptive trial to also operate at the same level, its critical value must
be adjusted from zα to c(z1) such that, under the null hypothesis δ = 0,

Pr(Z∗
2 ≥ c(z1)|z1) = Pr(Z2 ≥ zα |z1) . (4.5)

The above principle of preserving the conditional error rates can be applied to more
general adaptations than sample size increase. However, for the case of sample size
increase, it can be shown that the method of preserving error rates and the method
of combining the data from the two stages by prespecified weights are completely
equivalent (see, e.g., Gao et al. 2008).

2.3.2 Selecting the Criteria for an Adaptive Sample Size Increase

The operating characteristics of an adaptive design depend in a complicated way on
the criteria for increasing the sample size after observing the interim data. These
criteria may combine objective information such as the current estimate of δ or
the current conditional power with assessments of safety and with information
available from other clinical trials that was not available at the start of the study. The
adaptive approach provides complete flexibility to modify the sample size without
having to prespecify a precise mathematical formula for computing the new sample
size based on the interim data. However, for confirmatory trials, it is a regulatory
requirement that the precise sample-size reestimation rule be prespecified as far as
possible, subject of course to being overruled if there are safety concerns or other
matters requiring clinical judgement, at the time of the interim analysis. It is thus
instructive to investigate power and expected sample size by simulating the trial
under different values of δ and applying precise prespecified rules for increasing
the sample size on the basis of the observed interim results.

To this end, we create Plan 4, a design with 80% power to detect δ = 2 with a
one-sided level-0.025 test, based on a planned enrollment of 441 subjects. Plan 4
specifies, in addition, that there will be one interim analysis after 26 weeks of
follow-up data are available on the first 200 subjects enrolled. The purpose of the
interim analysis is not to stop the trial early but rather to examine the interim data
and decide whether a sample size increase is warranted. If no action were taken
at the interim look, Plan 4 would be identical to Plan 1. The timing of the interim
look reflects a preference for performing the interim analysis as late as possible but
nevertheless while the trial is still enrolling subjects since, once the enrollment sites
have closed down, it will be difficult to start them up again. Under the assumption
that subjects enroll at the rate of 8 per week, we will have enrolled 408 subjects by
week 51; 200 of them will have completed the required 26 weeks of follow-up for
the primary endpoint, and an additional 208 subjects will comprise the overruns.
Only the data from the 200 completers will be used in making the decision to
increase the sample size. After this decision is taken, enrollment will continue until
the desired sample size is attained. The primary efficacy analysis will be based on
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the full 26 weeks of follow-up data from all enrolled subjects so that there can be
no ambiguity regarding the statistical outcome. This may be contrasted with the
group sequential setting where the 208 overruns played no direct role in the primary
efficacy analysis at the time that an early stopping decision was implemented. Thus,
one may face an ambiguous situation should the data produced by these overruns
after they become completers lead to a reversal of the conclusion reached at the time
of early stopping.

It remains to specify a precise formula for increasing the sample size. While
there are an infinite number of ways to construct such a formula, it must address the
following three questions:

• For what range of interim outcomes should a sample size increase be contem-
plated?

• How should the magnitude of the new sample size be calculated?
• What should be the upper limit to the sample size increase?

The answers to these questions might be driven by both clinical and business
concerns, and will depend on the importance the investigators place on avoiding
a false negative outcome for the current trial.

Range of Interim Outcomes for a Sample Size Increase

It is convenient to partition the sample space of possible interim outcomes into three
zones; unfavorable, promising, and favorable. An adaptive strategy is built on the
premise that if the interim outcome lies in either the unfavorable or favorable zones,
it is unnecessary to alter the sample size. In one case, it would be risky to invest
further in what appears to be a failed trial, while in the other case the trial appears
slated to succeed anyway, without an additional sample size investment. Thus, an
adaptive sample size increase is only intended to help studies whose interim results
fall in a promising zone, between these two extremes. How might these three zones
be identified? One could use the interim estimate δ̂ or its standardized version
z = δ̂/se(δ̂ ) to partition the sample space into the three zones. Alternatively, one
could rely on the conditional power or probability of obtaining a positive outcome
at the end of the trial, given the data already observed. The conditional power
approach is favored by most practitioners because it has a meaningful interpretation
that is independent of the type of endpoint being measured, and incorporates both
the current estimate of treatment effect as well as its standard error. Conditional
power is a function of both δ , the underlying treatment effect, and z1, the interim
value of the Wald statistic. Since δ is unknown, it is usual and convenient to replace
it with the estimate δ̂1 obtained at the interim analysis. Conditional power is then
evaluated by the formula

CPδ̂1
(z1) = 1−Φ

(
zα
√

n(1) + n(2)− z1

√
n(1)√

n(2)
− z1

√
n(2)√

n(1)

)

. (4.6)
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For the present trial, we prespecify that a sample size increase will only be
contemplated if the conditional power at the interim look lies between 30 and 80%.
That is, the unfavorable zone is characterized by conditional power values at most
equal to 30%, the promising zone by conditional power values between 30 and 80%
and the favorable zone by conditional power values at least equal to 80%.

Computing the Required Sample Size Increase

Just as at the design stage of a trial, the sample size is determined by the desired
power (80%, say) to detect an anticipated value of δ , so also at the time of the
interim analysis the new sample size may be determined by the desired conditional
power (also 80%, say) to detect an anticipated value of δ . Now, however, data from
the actual trial are available, and may be used to update the anticipated value of δ
at which to power the trial. One could, if desired, incorporate prior beliefs, external
information and current data into a value of δ at which to power the study. For
simplicity, however, we shall use the estimate of δ obtained at the interim analysis
to recompute the sample size so as to achieve 80% conditional power. The new
sample size is obtained by searching for the value n(2∗) that will make the right-
hand side of (4.6) equal to 0.8. It is possible that this calculation could result in a
reduction in the total sample size. This is permitted by the statistical methodology
of adaptive designs. For the current example, however, we do not wish to decrease
the sample size. Therefore, if the recomputed sample size constitutes a decrease, the
original sample size of 441 subjects will be used.

Specifying an Upper Limit to the Sample Size Increase

Since resources are limited, there must be an upper limit to the sample size increase,
no matter what sample size is required to attain 80% conditional power. This
upper limit is usually restricted to between 50 and 100% of the original sample
size and is prespecified at the start of the trial. Larger sample size increases
are undesirable since they could yield statistically significant outcomes that are
clinically nonsignificant. For the current trial, we prespecify an upper limit of 882
subjects. That is, we are prepared to double our investment in the trial, but only if
the interim estimate of conditional power falls in the favorable zone.

Finally, the design specifications of the adaptive Plan 4 are as follows:

1. The initial sample size is 441 subjects, and has 80% power to detect δ = 2 with
a one-sided level-0.025 test.

2. An interim analysis is performed after data are available on 200 completers with
26 weeks of follow-up data.

3. At the interim analysis, the conditional power is computed using the estimated
value δ̂ as though it were the true value of δ . If the conditional power lies
between 30 and 80%, the interim outcome is deemed to be promising.
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Table 4.3 Operating characteristics of Plan 1 (fixed sample) and Plan 4 (adaptive)

Plan 1 (fixed sample) Plan 4 (adaptive)
Value of δ Power (%) Expected sample size Power (%) Expected sample size

1.6 61 441 67 509
1.7 66 441 72 507
1.8 71 441 76 506
1.9 76 441 81 502
2.0 80 441 84 499

All Plan 4 results are based on 100,000 simulated trials

4. If the interim outcome is promising, the sample size is recomputed so as to
achieve 80% conditional power at the estimated value, δ̂ . The original sample
size is then updated to the recomputed sample size, subject to the constraint in
item 5 shown below.

5. If the recomputed sample size is less than 441, the original sample size of 441
subjects is used. If the recomputed sample size exceeds 882, the sample size is
curtailed to 882 subjects.

2.3.3 Operating Characteristics of Adaptive Design

Due to the complex adaptive scheme for recomputing sample size, the operating
characteristics of Plan 4 can best be evaluated by simulation. Table 4.3 displays
power and expected sample size values for selected values of δ between 1.6 and 2.0,
based on 100,000 simulations of Plan 4. For comparative purposes, corresponding
power and sample size values for Plan 1 are also displayed.

The power of the adaptive Plan 4 has increased by 6% at δ = 1.6 and by 4%
at δ = 2 compared to Plan 1. These power gains were obtained at the cost of
corresponding average sample size increases of 67 subjects at δ = 1.6 and 57
subjects at δ = 2. The gains in power appear to be fairly modest, especially as
they are offset by corresponding sample size increases. However, Plan 4 offers a
significant benefit in terms of risk reduction, not reflected in Table 4.3. To see this,
it is important to note that the sample size under Plan 4 is only increased when
the interim results are promising; that is, when the conditional power at the interim
analysis is greater than 30% but less than 80%. This is the very situation in which it
is advantageous to increase the sample size and thereby avoid an underpowered trial.
When the interim results are unfavorable (conditional power ≤ 30%) or favorable
(conditional power ≥ 80%), a sample size increase in not warranted and hence the
sample size is unchanged at 441 subjects for both Plan 1 and Plan 4. But when the
interim results are promising (conditional power between 30 and 80%) the sample
size is increased under Plan 4 in an attempt to boost the conditional power back to
80%. It is this feature of the adaptive design that makes it more attractive than the
simpler fixed sample design.

Table 4.4 displays the probability of falling into the unfavorable, promising, and
favorable zones at the interim look, along with the power and expected sample
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Table 4.4 Operating characteristics of Plan 1 and Plan 4 conditional on interim outcome

Power conditional Expected
Interim Probability of on interim outcome sample size

δ outcome interim outcome (%) Plan 1 (%) Plan 4 (%) Plan 1 Plan 4

1.6 Unfavorable 33 27 27 441 441
Promising 26 61 83 441 696
Favorable 41 87 87 441 441

1.7 Unfavorable 29 32 32 441 441
Promising 26 65 86 441 694
Favorable 45 90 90 441 441

1.8 Unfavorable 26 36 36 441 441
Promising 26 69 89 441 690
Favorable 48 91 91 441 441

1.9 Unfavorable 23 41 41 441 441
Promising 25 72 91 441 689
Favorable 52 93 93 441 441

2.0 Unfavorable 20 44 44 441 441
Promising 24 76 93 441 685
Favorable 56 95 95 441 441

All results are based on 100,000 simulated trials

size, conditional on falling into each zone, under both Plan 1 and Plan 4. The table
highlights the key advantage of the adaptive Plan 4 compared to the fixed sample
Plan 1; that is, the ability to invest in the trial in stages, with the second stage of the
investment being required only if promising results are obtained at the first stage.
This feature of Plan 4 makes it far more attractive as an investment strategy than
Plan 1 which has no provision for increasing the sample size if a promising interim
outcome is obtained. Suppose, for example, that δ = 1.6, the smallest clinically
meaningful treatment effect. The trial sponsor only commits the resources needed
for 441 subjects at the start of the trial, at which point the chance of success is
61%, as shown in Table 4.3. The additional sample size commitment is forthcoming
only if promising results are obtained at the interim analysis, and in that case the
sponsor’s risk is substantially reduced because the chance of success jumps to 83%,
as shown in Table 4.4. Similar results are observed for the other values of δ .

The probabilities of entering the unfavorable, promising, and favorable zones at
the interim analysis, displayed in Table 4.4, are instructive. Consider again the case
δ = 1.6. At this value of δ , there is a 26% chance of landing in the promising zone
and thereby obtaining a substantial power boost under Plan 4 as compared to Plan 1.
That is, 26% of the time the adaptive strategy can rescue a trial that is underpowered
at the interim look. The chance of entering the favorable zone is 41%. That is, 41%
of the time the sponsor will be lucky and have a well powered trial at the interim
look without the need to increase the sample size. The remaining 33% of the time,
the sponsor will be unlucky and will enter the unfavorable zone from which there is
no sample size increase, and the chance of success is only 27%. These odds improve
with larger values of δ .
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3 Acute Coronary Syndromes

We designed a two-arm, placebo controlled randomized clinical trial for subjects
with acute cardiovascular disease undergoing percutaneous coronary intervention
(Mehta et al. 2007). The primary endpoint is a composite of death, myocardial
infarction, or ischemia-driven revascularization during the first 48 h after random-
ization. We assume on the basis of prior knowledge that the event rate for the placebo
arm is 8.7%. The investigational drug is expected to reduce the event rate by at least
20%. The investigators are planning to randomize a total of 8,000 subjects in equal
proportions to the two arms of the study. It is easy to show that a conventional fixed
sample design enrolling a total of 8,000 subjects will have 83% power to detect a
20% risk reduction with a one-sided level-0.025 test of significance. The actual risk
reduction is expected to be larger, but could also be as low as 15%, a treatment
effect that would still be of clinical interest given the severity and importance of the
outcomes. In addition, there is some uncertainty about the magnitude of the placebo
event rate. For these reasons, the investigators wish to build into the trial design
some flexibility for adjusting the sample size. Two options under consideration are,
a group sequential design with the possibility of early stopping in case the risk
reduction is large, and an adaptive design with the possibility of increasing the
sample size in case the risk reduction is small. In the remainder of this section, we
shall discuss these two options and show how they may be combined into a single
design that captures the benefits of both.

3.1 Group Sequential Design

We first transform the fixed sample design into an 8,000 person group sequential
design with two interim looks, one after 4,000 subjects are enrolled (50% of
total information) and the second after 5,600 subjects are enrolled (70% of total
information). Early stopping efficacy boundaries are derived from the Lan and
DeMets (1983) O’Brien-Fleming type error spending function. Let us denote this
group sequential design as GSD1. The operating characteristics of GSD1 are
displayed in Table 4.5. The first column of Table 4.5 is a list of potential risk
reductions, defined as 100× (1− ρ)% where ρ = πt/πc, πt is the event rate for
the treatment arm, and πc is the event rate for the control arm. The remaining
columns display early stopping probabilities, power and expected sample size. Since
the endpoint is observed within 48 h, the problem of overruns that we encountered
in the schizophrenia trial is negligible and may be ignored.

Table 4.5 shows that GSD1 is well powered, with large savings of expected
sample size for risk reductions of 20% or more. It is thus a satisfactory design
if, as is initially believed, the magnitude of the risk reduction is in the range
20–25%. This design does not, however, offer as good protection against a false
negative conclusion for smaller risk reductions. In particular, even though 15% is
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Table 4.5 Operating characteristics of GSD1, a three-look 8,000-person group sequential design

Probability of crossing efficacy boundary

Risk reduction At look 1 At look 2 At final look Overall Expected
100× (1−ρ) (%) (N = 4,000) (N = 5,600) (N = 8,000) power (%) sample size

15 0.074 0.183 0.309 57 7,264
17 0.109 0.235 0.335 68 7,002
20 0.181 0.310 0.330 82 6,535
23 0.279 0.362 0.275 92 6,017
25 0.357 0.376 0.222 96 5,671

Table 4.6 Operating characteristics of GSD2, a three-look 13,853-person Grp sequential design

Probability of crossing efficacy boundary

Risk reduction At look 1 At look 2 At final look Overall Expected
100× (1−ρ) (%) (N = 6,926) (N = 9,697) (N = 13,853) power (%) sample size

15 0.167 0.298 0.335 80 11,456
17 0.246 0.349 0.296 89 10,699
20 0.395 0.375 0.196 97 9,558
23 0.565 0.329 0.099 99.3 8,574
25 0.675 0.269 0.054 99.8 8,061

still a clinically meaningful risk reduction, GSD1 offers only 57% power to detect
this treatment effect. One possibility then is to increase the up-front sample size
commitment of the group sequential design so that it has 80% power if the risk
reduction is 15%. This leads to GSD2, a three-look group sequential design with a
maximum sample size commitment of 13,853 subjects, one interim look after 6,926
subjects (50% of total information) and a second interim look after 9,697 subjects
(70% of total information). GSD2 has 80% power to detect a risk reduction of 15%
with a one-sided level-0.025 test.

Table 4.6 displays operating characteristics of GSD2 for risk reductions between
15 and 25%. Notice that by attempting to provide adequate power at 15% risk re-
duction, the low end of clinically meaningful treatment effects, we have significantly
over-powered the trial for values of risk reduction in the expected range of risk re-
ductions, 20–25%. If, as expected, the risk reduction exceeds 20%, the large up-front
sample size commitment of 13,853 subjects under GSD2 is unnecessary. GSD1 with
an up-front commitment of only 8,000 subjects will provide sufficient power in this
setting. From this point of view, GSD2 is not a very satisfactory design. It commits
the investigators to a very large and expensive trial to provide adequate power in the
pessimistic range of risk reductions, without any evidence that the true risk reduction
does indeed lie in the pessimistic range. Evidently, a single group sequential design
cannot provide adequate power for the “worst-case” scenario, and at the same time
avoid overpowering the more optimistic range of scenarios. This leads us to consider
building an adaptive sample size reestimation option into the group sequential de-
sign GSD1, such that the adaptive component will provide the necessary insurance
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for the worst-case scenario, and thereby free the group sequential component to
provide adequate power for the expected scenario, without a large and unnecessary
up-front sample size commitment.

3.2 Adaptive Group Sequential Design

We convert the three-look group sequential design GSD1 into an adaptive group
sequential design by inserting into it the option to increase the sample size at look 2,
when 5,600 subjects have been enrolled. Denote the modified design by A-GSD1.
The rules governing the sample size increase for A-GSD1 are similar to the rules
specified in Sect. 2 for the schizophrenia trial, but tailored to the needs of the current
trial. The idea is to identify unfavorable, promising and favorable zones for the
interim results at look 2, based on the attained conditional power. Sample size should
only be increased if the interim results fall in the promising zone. Subject to an
upper limit, the sample size should be increased by just the right amount to boost
the current conditional power to some desired level (say 80%). The following are
the design specifications for A-GSD1:

1. The starting design is GSD1 with a sample size of 8,000 subjects, one interim
look after enrolling 4,000 subjects and a second interim look after enrolling 5,600
subjects. The efficacy stopping boundaries at these two interim looks are derived
from the Lan and DeMets (1983) error spending function of the O’Brien-Fleming
type.

2. At the second interim analysis, with data available on 5,600 subjects, the
conditional power is computed using the estimated value ρ̂ as though it were the
true relative risk ρ . If the conditional power is no greater than 30% the outcome
is deemed to be unfavorable. If the conditional power is between 30 and 80%,
the outcome is deemed to be promising. If the conditional power is at least 80%,
the outcome is deemed to be favorable.

3. If the interim outcome is promising, the sample size is recomputed so as to
achieve 80% conditional power at the estimated value ρ̂ . The original sample
size is then updated to the recomputed sample size, subject to the constraint in
item 4 shown below.

4. If the recomputed sample size is less than 8,000, the original sample size of 8,000
subjects is used. If the recomputed sample size exceeds 16,000, the sample size
is curtailed at 16,000 subjects.

Some features of this adaptive strategy are worth pointing out. First, the sample
size is recomputed on the basis of data from 5,600 subjects from the trial itself.
Therefore, the estimate of ρ available at the interim analysis is substantially more
reliable than the estimate that was used at the start of the trial to compute an initial
sample size of 8,000 subjects. The latter estimate is typically derived from smaller
pilot studies or from other phase 3 studies in which the patient population might not
be exactly the same as that of the current trial. Second, a sample size increase is only
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Table 4.7 Operating characteristics of GSD1 (group sequential) and A-GSD1 (adaptive group
sequential) designs

Risk reduction GSD1 (group sequential) A-GSD1 (adaptive group sequential)

100× (1−ρ) (%) Power (%) Expected sample size Power (%) Expected sample size

15 57 7,264 63 8,357
17 68 7,002 74 8,010
20 82 6,535 86 7,324
23 92 6,017 94 6,496
25 96 5,671 97 5,989

All results for A-GSD1 are based on 100,000 simulated trials

requested if the interim results are promising, in which case the trial sponsor should
be willing to invest the additional resources needed to power the trial adequately. In
contrast, GSD2 increases the sample size substantially at the very beginning of the
trial, before any data are available to determine if the large sample size is justified.

3.3 Operating Characteristics of Adaptive Group
Sequential Design

Table 4.7 displays the power and expected sample size of the adaptive group
sequential design A-GSD1. For comparative purposes, corresponding power and
sample size values of GSD1 are also provided. If there is a 15% risk reduction,
A-GSD1 has 6% more power than GSD1 but utilizes an additional 1,093 subjects
on average. It is seen that as the risk reduction parameter increases, the power
advantage and additional sample size requirement of A-GSD1 are reduced relative
to GSD1.

The power and sample size entries in Table 4.7 were computed unconditionally,
and for that reason do not reveal the real benefit that design A-GSD1 offers
compared to design GSD1. As discussed previously in the schizophrenia example,
the real benefit of an adaptive design is the opportunity it provides to invest in the
trial in stages with the second stage investment forthcoming only if promising results
are obtained at the first stage. To explain this better, it is necessary to display power
and expected sample size results conditional on the zone (unfavorable, promising
or favorable) into which the results of the trial fall at the second interim analysis.
Accordingly, Table 4.8 displays the operating characteristics of both GSD1 and A-
GSD1 conditional on the zone into which the conditional power falls at the second
interim analysis. The table reveals substantial gains in power for A-GSD1 compared
to GSD1 at all values of risk reduction if the second interim outcome falls in the
promising zone, thereby leading to an increase in the sample size. Outside this zone,
the two designs have the same operating characteristics since the sample size does
not change. If the second interim outcome falls in the unfavorable zone, the trial
appears to be headed for failure and an additional sample size investment would be
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Table 4.8 Operating characteristics of GSD1 (group sequential) and A-GSD1 (adaptive group
sequential) designs conditional on second interim outcome

Second Probability Power conditional on Expected
Risk reduction interim of interim second interim outcome sample size

100× (1−ρ) (%) outcome outcome (%) GSD1 (%) A-GSD1 (%) GSD1 A-GSD1

15 Unfavorable 36 15 15 8,000 8,000
Promising 24 57 81 8,000 12,068
Favorable 40 94 94 6,152 6,160

17 Unfavorable 27 19 20 8,000 8,000
Promising 24 64 87 8,000 11,938
Favorable 50 96 96 5,992 5,989

20 Unfavorable 16 29 29 8,000 8,000
Promising 20 73 93 8,000 11,758
Favorable 64 98 98 5,721 5,721

23 Unfavorable 9 40 40 8,000 8,000
Promising 14 81 96 8,000 11,553
Favorable 77 99 99 5,440 5,435

25 Unfavorable 5 48 48 8,000 8,000
Promising 11 85 98 8,000 11,465
Favorable 84 99.6 99.5 5,250 5,238

All results are based on 100,000 simulated trials

risky. If the second interim outcome falls in the favorable zone, the trial is headed
for success without the need to increase the sample size. Thus the adaptive design
provides the opportunity to increase the sample size only when the results of the
second interim analysis fall in the promising zone. This is precisely when the trial
can most benefit from a sample size increase.

3.4 Adding a Futility Boundary

One concern with design A-GSD1 is that it lacks a futility boundary. There is thus
the risk of proceeding to the end, possibly with a sample size increase, when the
magnitude of the risk reduction is small and unlikely to result in a successful trial.
In particular, suppose that the null hypothesis is true. In that case, we can show
that the power (i.e., the type-1 error) is 2.5% and the expected sample size under
A-GSD1 is 8,256 subjects. It might thus be desirable to include some type of futility
stopping rule for the trial. In this trial, the investigators proposed the following
futility stopping rules at the two interim analysis time points:

1. Stop for futility at the first interim analysis (N = 4,000) if the estimated event
rate for the experimental arm is at least 1% higher than the estimated event rate
for the control arm.

2. Stop for futility at the second interim analysis (N = 5,600) if the conditional
power, based on the estimated risk ratio ρ̂ , is no greater than 20%.
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Table 4.9 Operating characteristics of the A-GSD1 design with and without a futility boundary

A-GSD1 with no futility boundary A-GSD1 with futility boundaryRisk reduction
100× (1−ρ) (%) Power (%) Expected sample size Power (%) Expected sample size

0 2.5 8,293 2.5 5,411
15 63 8,357 59 7,438
20 86 7,324 83 6,839
25 96 5,989 94 5,897

All results are based on 100,000 simulated trials

Table 4.10 Operating characteristics of A-GSD1 design with and without a futility boundary,
conditional on the second interim outcome

Second Probability Power conditional on Expected
Risk reduction interim of interim second interim outcome sample size
100× (1−ρ) (%) outcome outcome (%) No fut (%) With fut (%) No fut With fut

0 Unfavorable 92 0.5 0.1 8,000 4,850
Promising 6 15 15 12,926 12,788
Favorable 2 65 61 6,911 7,053

15 Unfavorable 36 15 5 8,000 5,711
Promising 24 81 80 12,068 11,892
Favorable 40 94 93 6,160 6,207

20 Unfavorable 16 29 10 8,000 5,910
Promising 20 93 92 11,758 11,637
Favorable 64 98 98 5,721 5,765

25 Unfavorable 5 48 17 8,000 6,100
Promising 11 98 97 11,465 11,345
Favorable 84 99.5 99.5 5,238 5,268

All results are based on 100,000 simulated trials

The impact of the futility boundary on the unconditional operating characteristics of
the A-GSD1 design are displayed in Table 4.9. The inclusion of the futility boundary
has resulted in a dramatic saving of nearly 3,000 subjects, on average, at the null
hypothesis of no risk reduction. Furthermore, notwithstanding a small power loss of
2–3%, the trial continues to have well over 80% power for risk reductions of 20%
or more. The trial suffers a power loss of 4% if the magnitude of the risk reduction
is 15%, the low end of the range of clinical interest. In this situation, however, the
unconditional power is inadequate (only 63%) even without a futility boundary. To
fully appreciate the impact of the futility boundary on power and expected sample
size, it is necessary to study the operating characteristics of the trial conditional on
the results of the second interim analysis. These results are displayed in Table 4.10.
It is seen that the presence of the futility boundary does not cause any loss of power
for trials that enter the promising or favorable zones at the second interim analysis.
Additionally, the presence of the futility boundary causes the average sample size
to be reduced substantially in the unfavorable zone while remaining the same in the
other two zones. In effect, the futility boundary terminates a proportion of trials that
enter the unfavorable zone thereby preventing them from proceeding to conclusion.
It has no impact on trials that enter the promising or favorable zones.
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4 Nonsmall Cell Lung Cancer

A two arm double-blind multi-center randomized clinical trial was recently initiated
for subjects with advanced metastatic nonsmall cell lung cancer with the goal of
comparing the industry standard control therapy to a new therapy. The primary
endpoint was overall survival (OS). The study was powered to detect a 25%
improvement in median survival, from 7.4 months on the control arm to 9.25 months
on the experimental arm, which corresponds to a hazard ratio of 0.8. A group
sequential design was adopted with an efficacy boundary derived from the Lan and
DeMets (1983) O’Brien-Fleming type spending function and a futility boundary
derived from the γ-spending function of Hwang et al. 1990 with parameter γ =−5.
It was decided, with the help of the East (2008) software, to keep the study open
for a maximum of 732 OS events, with one interim analysis after 440 events (60%
of the total information), whereby a 1-sided level-0.025 group sequential logrank
test would have 85% power to detect a hazard ratio of 0.8. As this was an event-
driven trial, sample size did not play a direct role in the above power calculation.
Nevertheless, the rate of accrual, duration of accrual, and duration of follow-up
would affect the total study duration or time needed to obtain 732 events. Again,
with the help of East, it was determined that by enrolling 950 subjects over a 2-year
period and following them for an additional 7 months, the required 732 OS events
would be expected to arrive by the end of the follow-up period.

Now, the assumption of 7.4 months for median survival on the control arm was
based on published results from a previously completed large, well-controlled trial.
It was felt, however, that due to improvements in standard of care, the median
survival might now be as high as 7.8 months. If that were the case, the underlying
hazard ratio would be 0.84, and the power would drop to about 65%. For this
reason, it was decided to permit an adaptive increase in the number of events up
to 50% (from 732 to 1,098), if the interim results fell into the promising zone, here
defined as conditional power between 50 and 85%. The magnitude of the increase
in events was to be the amount needed to recover 85% conditional power. It was
decided that the sample size would be increased in the same ratio as the increase in
events.

For time to event trials, the test statistic following an adaptive increase in the
number of events has a different form than that displayed in (4.3). This is because
some of the patients enrolled in the first cohort will still be censored at the time
of the interim analysis. To properly account for the data from the two stages, we
rely on the fact that the logrank statistic, if properly standardized, has independent
increments. To be specific, let Dmax be the maximum number of events required to
achieve 1−β power. Let, D1 denote the number of events at the time of the interim
analysis. Let, Z1 be the logrank statistic observed at the interim look. Let, Z2 be
the logrank statistic we would observe at the final analysis if there were no adaptive
change in the maximum number of events. Now suppose that, based on the observed
Z1 = z1, the maximum number of events is increased from Dmax to D∗

max. Let, Z∗
2 be

the logrank statistic at the final analysis, where the number of events is D∗
max. Define
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Table 4.11 Operating characteristics of classical and adaptive group sequential designs

Classical group sequential Adaptive group sequential
Hazard ratio Power (%) Expected events Power (%) Expected events

0.80 85 617 87 656
0.81 81 630 83 670
0.82 76 641 78 684
0.83 71 649 73 693
0.84 64 657 68 701

All Plan 4 results are based on 100,000 simulated trials

the information fractions t1 =D1/Dmax and t∗2 =D∗
max/Dmax. To preserve the type-1

error of the test for H0, we must use the weighted statistic

T2 =
√

t1Z1 +
√

1− t1

{√
t∗2 Z∗

2 −
√

t1Z1
√

t∗2 − t1

}

. (4.7)

Notice that the weights for the two cohorts are based on the prespecified events
D1 and Dmax. The formula for conditional power at the interim analysis is likewise
different from (4.6), reflecting the fact that some subjects enrolled in the first
cohort are still censored at the time of the interim analysis. The conditional power
formula is

CPδ̂1
(z1) = 1−Φ

[
zα
√

Dmax − z1
√

D1 − δ̂1
√

r(1− r)
√

D∗
max −D1

√
Dmax −D1√

Dmax −D1

]

,

(4.8)

where δ̂1 is the estimate of the log hazard ratio at the interim, and r is the
randomization fraction (here equal to 0.5). For additional details concerning the
derivation of (4.7) and (4.8) refer to Wassmer (2006).

The operating characteristics of the lung cancer trial are displayed in Tables 4.11
and 4.12 for underlying hazard ratios between 0.8 and 0.84. Table 4.11 displays the
overall operating characteristics while Table 4.12 displays them by zone. In each
table, the classical group sequential design and the adaptive group sequential design
are compared.

The results follow a similar pattern to what was observed in the previous two
examples. Table 4.11 shows that the adaptive design produces a very modest gain
in terms of overall power, ranging from 2% at a hazard ratio of 0.8–4% at a hazard
ratio of 0.84. The cost in terms of additional expected events is likewise modest.
Table 4.12, however, shows that there is a gain of between 10 and 13% power if
the interim outcome falls in the promising zone. This is the appeal of the adaptive
design. Consider, for instance, the prospects for a successful trial if the true hazard
ratio is 0.84. The interim outcome will fall in the unfavorable zone 38% of the
time, in which case the prospects for a successful trial are equally bleak for both the
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Table 4.12 Operating characteristics of Plan 1 and Plan 4 conditional on interim outcome

Probability Power conditional
Hazard Interim of interim on interim outcome Expected events

ratio outcome outcome (%) Classical (%) Adaptive (%) Classical Adaptive

0.80 Unfavorable 21 49 49 705 706
Promising 17 83 94 732 951
Favorable 62 98 98 556 556

0.81 Unfavorable 25 44 44 701 701
Promising 18 80 92 732 952
Favorable 57 07 97 565 565

0.82 Unfavorable 29 39 39 697 697
Promising 19 77 90 732 955
Favorable 51 96 96 575 575

0.83 Unfavorable 34 35 35 692 691
Promising 20 74 87 732 957
Favorable 46 95 95 583 583

0.84 Unfavorable 38 30 30 687 686
Promising 20 71 84 732 958
Favorable 42 94 94 591 591

All results are based on 100,000 simulated trials

classical and adaptive designs, but so are the expected number of events. The interim
outcome will fall in the favorable zone 42% of the time, in which case the prospects
are excellent for both the classical and adaptive designs, and so are the expected
number of events. The remaining 20% of the time, the interim outcome will fall in
the promising zone and this is where the adaptive design will help by boosting up
the power from 71 to 84%. The expected number of events, hence, other related
resources like sample size and study duration will also increased in the promising
zone. Presumably the power gain justifies the use of these additional resources.

5 Concluding Remarks

The statistical methodology that permits sample size reestimation based on an
interim estimate of the treatment effect has been available for about 10 years and has
gradually made its way into actual confirmatory clinical trials. All three examples
discussed in the current paper are based on real trials whose designs were accepted
by the FDA, and all have been activated subsequently. The recently released
FDA Draft Guidance for Industry on Adaptive Design (2010) is an indispensible
document for sponsors who are considering the adaptive route for their confirmatory
trials. It classifies adaptive approaches into those that are generally well-understood
and those that are less well understood. Group sequential designs and blinded
sample size reestimation fall into the category of well-understood methods while
sample size reestimation using unblinded estimates of the treatment effect falls into
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the category of less well understood methods. This is not to suggest that the latter
methods are disallowed. Rather, the guidance document says that these methods
should be used when other better understood methods are unable to meet the primary
study objectives. In our context, this implies that one should be able to provide a
valid reason for including the option for unblinded sample size reestimation at an
interim look in preference to using a conventional design that fixes the maximum
sample size at the outset. The usual reason is that even after a thorough review of all
relevant prior data, there is still some uncertainty regarding the true treatment effect
and population variability. Sometimes a group sequential design powered to detect
a small but clinically meaningful treatment effect will resolve this difficulty. We
have seen, however, that overruns, large up-front commitments, and conservative
boundaries for early efficacy stopping are often deterrents to the group sequential
approach.

The reason for the FDA’s classification of unblinded sample size reestimation
into the “less well understood” category has nothing to do with the statistics. The
validity of the statistical methodology is accepted. The FDA’s real concern is the
possibility of operational bias. Operational bias might be introduced into the study
if the interim results were somehow revealed to the investigators and led to selective
withdrawal of patients from the study before they had completed their full course of
treatment. The only way to prevent this type of operational bias is by creating good
operating procedures that are built into an interim analysis charter and are strictly
followed. Such procedures are already in place for group sequential designs, and can
be modified for the specifics of the adaptive setting. To this end, it is customary to
set up an independent statistical center (ISC) for creating the interim analysis report
and an independent interim analysis review committee (IARC) whose task it is to
review the interim analysis report and implement the sample size reassessment in
accordance with the interim analysis charter. If the study already has a functioning
data monitoring committee (DMC), that committee or a subset of that committee
could fulfill the role of the IARC. The IARC charter would, however, differ from
that of a traditional DMC. This charter should describe how the interim data are
to be transferred to the ISC, what the interim analysis report should contain, who
may have access to that report, the precise rules for altering the sample size, and
the procedure to be followed in making the sample size recommendation to the
sponsor. Access to the charter must be restricted to the ISC, the IARC, and only
those employees of the sponsor organization who were involved in the trial design.
Everyone with access to the charter should be required to sign a confidentiality
agreement in order that the precise rules governing sample size reestimation may
not be disclosed to the outside community.

Even with good operating procedures in place to prevent premature disclosure of
interim results, the mere fact that a sample size increase was implemented cannot
be hidden from the sites enrolling subjects. Concerns have been raised that this
knowledge alone could modify investigator behavior. It is difficult, however, to
anticipate how investigators would interpret this knowledge. Some might feel that
the chances of the trial succeeding have improved while others might take it as a sign
that the initial estimate of treatment effect was too optimistic. A discussion about
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the rationale for the adaptive design, its potential for reducing the risk of running an
underpowered study, and the need to maintain the same pattern of patient enrollment
throughout the study might be an important agenda item at an investigator meeting.
It would likewise be important to educate the Institutional Review Boards about
the adaptive nature of the design, stressing that while the actual sample size is not
known at the outset, the maximum sample size if an adaptation takes place has been
fixed. In this sense, the uncertainty about the sample size of an adaptive design is
similar to the uncertainty about the sample size of a group sequential design or of
any event driven trial in which the number of events but not the sample size is known
in advance.

Additional discussion concerning these operational issues is provided in a
White Paper published by the PhRMA Adaptive Working Group (2007). The
FDA has adopted a “wait-and-see” attitude to gain more experience with the risks
and benefits of unblinded sample size reestimation. However, a well prepared
submission that addresses both the statistical and operational issues and backs them
up with simulations and a detailed charter stands an excellent chance of regulatory
acceptance.

In the early years following publication of methods for unblinded sample size
reestimation, concerns were raised about their efficiency relative to conventional
group sequential methods. These concerns arose because the type-1 error of an
adaptive design can only be preserved by use of a weighted statistic like (4.3)
with prespecified weights. This violates the sufficiency principle. Tsiatis and Mehta
(2003) demonstrated that for any adaptive design with sample size modification
requiring the use of the weighted statistic (4.3), one could construct a group
sequential design utilizing the usual sufficient statistic that would stop earlier with
higher probability of rejecting the null hypothesis if δ > 0 and also stop earlier with
higher probability of accepting the null hypothesis if δ < 0. Jennison and Turnbull
(2003) demonstrated a similar result empirically by creating a group sequential
design with the same power function as an adaptive design and then demonstrating
by simulation that it would have a smaller expected sample size. These results are
of great theoretical interest but of limited practical value for sponsors of industry
trials. They produce appreciable efficiency gains only if there are no overruns, a
large number of interim analyses, a large up-front sample size commitment and
aggressive early-stopping boundaries. Sponsors are usually unwilling or unable to
impose these conditions on their trial designs. Furthermore, the analyses of Tsiatis
and Mehta (2003) and Jennison and Turnbull (2003) do not capture the essential
appeal of the adaptive approach which is to invest limited resources initially and
to invest more only after seeing interim results that are promising. Most adaptive
designs have only two stages, increase the sample by at most a factor of 2, and that
too, only if the results fall in a promising zone. It has yet to be demonstrated that
there is any appreciable loss of efficiency due to the use of the weighted statistic in
these settings.

When the Tsiatis and Mehta (2003) paper was reviewed, a referee raised an
additional objection to the use of the weighted statistic (4.3). It was pointed out that
if the sample size is increased following an interim analysis, then the contribution
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of subjects in the second cohort will be down-weighted relative to the subjects in
the first cohort. This is evident from (4.3) where, although the sample size of the
second cohort is n(2∗), the weights combining the data from the two stages use n(2).
Conversely, if the sample size of the second cohort is reduced, then the data from
the first cohort will be down-weighted. This type of down-weighting would appear
to be the price one must pay for altering the sample size in a data dependent manner.
It turns out, however, that the price is rather small, and in some cases nonexistent. A
paper by Chen et al. (2004) proved that if the sample size is only increased when the
conditional power CPδ̂1

(z1) is at least 50%, it is not necessary to use the weighted
statistic. One can use the conventional statistic and the type-1 error will be preserved
notwithstanding the data dependent sample size increase. Subsequently, Gao et al.
(2008) and Mehta and Pocock (2010) were able to relax this condition so that the
promising zone may begin at conditional power values as low as 30% depending on
the magnitude of the sample size increase. We have observed, through simulations in
East (2008), that for the three examples in the current paper that there is no inflation
of type-1 error if the conventional statistic is used following an adaptive sample
size increase. Indeed, the promising zone for the lung cancer example starts at 50%
conditional power, and therefore satisfies the Chen et al. (2004) criterion.

It has been argued by Bauer and Koenig (2006) that the use of conditional power
based on δ̂1 should be avoided because the estimate lacks precision. Our examples
have shown, however, that it works well in practice. Recall that the goal at the
interim analysis is not to estimate δ with great precision but to merely ascertain
whether the current results show promise. Thus, an interim estimate that falls inside
the promising zone suggests that the initial choice of δ might have been a bit
optimistic, and now is the time to improve the chances of a successful outcome
by increasing the sample size to detect a more modest but still clinically meaningful
true effect, if it does exist. One can, if preferred, represent the promising zone in
terms of z1, δ̂1, or CPδ̂1

, since these statistics are all transformations of one another.
We have focused throughout this article on situations in which the sample size

is increased. In fact, the methods discussed here will preserve the type-1 error for
either a sample size increase or a sample size decrease. However, the FDA Adaptive
Guidance Document (2010) makes it clear that from a regulatory perspective, the
use of adaptive designs for decreasing the sample size will not be permitted. In its
place, they advocate the use of group sequential designs with futility boundaries.

Although the focus of this article has been clinical trials sponsored by pharma-
ceutical companies, these designs could be equally useful in government sponsored
trials run by the cooperative groups. Moreover, the cooperative groups have the
flexibility to either expand or reduce sample sizes, since the participating treatment
sites are on long-term grants and are associated with a single coordinating center.

An important issue that has not been discussed at all is how to provide a valid
point estimate and confidence interval for the combined data in which an adaptive
sample size change was made. This is a more difficult problem and research is still
on-going. We refer the reader to articles by Mehta et al. (2007), Brannath et al.
(2009) for recent results.
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In this article, we have discussed both the motivation and statistical methodology
for unblinded sample size reestimation in confirmatory trials. We have shown
through real examples, that a major benefit of this type of adaptive design is that it
reduces the risk of running an underpowered study without a large initial investment.
The two-stage nature of the investment, with the second installment being obligated
only if the interim results have significantly increased the odds of success, often
makes the adaptive design more attractive than a conventional design. A major
additional benefit of the adaptive approach is flexibility. The adaptive methodology
controls the type-1 error even if the prespecified criteria for increasing the sample
size are overruled at the interim analysis. This might be desirable for a variety of
reasons both internal and external to the current trial. For example, in addition to
observing a promising outcome at the interim analysis, the safety profile for the
test drug might turn out to be far superior to what was originally anticipated, and
this might make the new drug more competitive in the marketplace. One could,
therefore, justify increasing the sample size by a larger amount than that determined
by the prespecified rules, and thereby further reduce the chances of a false negative
outcome. Another possible situation in which one might overrule the prespecified
criteria for sample size change would be if compelling results from other clinical
trials on comparable populations, treated with the same class of drugs became
available and caused the sponsor to revise the value of δ at which to power the
current study. Ideally, one would wish to adhere strictly to the prespecified criteria
for sample size change since the operating characteristics of the design would
change if they were overruled. This would certainly be the preference of regulatory
authorities. As a practical matter, however, it is not possible to anticipate every
contingency under which a sample size change is desirable. It is a strength of the
adaptive approach that the validity of the statistical test at the end of the trial is
not affected by unanticipated developments arising over the course of the clinical
trial that necessitate making changes to the prespecified criteria for sample size
adaptation.

Finally, for confirmatory trials, regulatory approval must be secured in advance
through a special protocol assessment (SPA) or an end-of-phase-2 meeting. For
this purpose, the sponsor is required to submit the protocol, the charter, and the
simulations backing up the statistical validity of the proposed adaptive approach.
The charter should address all logistical and operational issues. An adaptive design
might not always be the right choice. The more established fixed sample and
group sequential designs should always be evaluated alongside an adaptive design.
Simulations play a crucial role in understanding the operating characteristics of
an adaptive design and deciding whether it is an appropriate choice for the trial
under consideration. There should be a tangible, quantifiable benefit arising from
the decision to take the adaptive route.
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Chapter 5
On Stopping a Randomized Clinical Trial
for Futility

Jay Herson, Marc Buyse, and Janet Turk Wittes

1 Introduction

Many modern Phase 3 clinical trials incorporate formal planned interim analyses.
For reasons of ethics and efficiency, sophisticated stopping rules, based on accu-
mulating efficacy data, allow trial sponsors to take various actions at interim time
points under the stewardship of an independent data monitoring committee (DMC)
(Ellenberg et al. 2002; US Food and Drug Administration 2006; International Con-
ference on Harmonisation 1998; Herson 2009). At these interim times the sponsor
may terminate the trial because the accumulated data have demonstrated superiority
or inferiority of an experimental treatment over a control. The investigators or
sponsor might also elect to terminate the trial because of futility, that is, because
the interim data imply a very low likelihood of observing statistically significant
superior efficacy if the trial continues to termination, or the anticipated superiority
at the end of the trial is deemed disappointing. They may specify an effect size that
is not of clinical interest and define a trial to be futile if it clearly shows that the
effect of the new treatment is less than that size. In this case, the final report from a
trial that stops early can include an explicit statement of the effect size the trial has
ruled out.
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Another purpose of interim analysis may be to recalculate the sample size so
at the end of the trial the power will be adequate to reach statistical significance
for some effect size of interest (perhaps not the original protocol-specified effect
size) at the end of the trial. This chapter will focus on testing practices for futility;
other chapters in this book cover sample size recalculations and interim analyses for
efficacy. Chuang-Stein et al. (2006) review methods of sample size recalculation.

Clinical trialists involved in trials sponsored by government agencies such as the
United States National Institutes of Health (NIH) or the British Medical Research
Council (MRC) in nonregulatory settings and by industry in globally-regulated
settings, have accrued sufficient experience with futility methods to allow rethinking
their role and use. Sponsors, regulators, investigators, investors, and DMC members
now often request inclusion of a formal futility boundary as part of the interim
analysis of confirmatory trials. Many recent trials have either terminated early for
futility or have had protocols with formal futility stopping rules (see Table 5.1).
Futility analyses do not often appear in exploratory trials but Lee and Feng (2005)
have made the case for including futility stopping rules in randomized Phase 2
protocols in oncology. Emerson et al. (2007) provide a comprehensive discussion
of sequential designs that shows the relationship between sequential analysis and
stochastic curtailing.

This paper presents the rationale and current methods for futility analysis,
describes their advantages and disadvantages in various settings, and provides
suggestions for implementing – or not implementing – futility guidelines. We argue
that while futility boundaries may sometimes be useful, they may lead to premature
termination of a trial, and therefore to equivocal results. In particular, we caution
against stopping for futility in settings where early stopping of a trial is likely to
miss a late effect of treatment, either beneficial for a new product or harmful for a
product already in use. We encourage the use of confidence intervals for reporting
the estimated effect sizes in studies that stop for futility so that clinicians can
interpret the data in terms of the size of effect that the study has ruled out. While
this point may be obvious to statisticians, many reports of trials that stop for futility
fail to report the results fully.

2 Inclusion of a Futility Boundary in a Protocol

2.1 Trial and Sponsor Characteristics Favorable to Inclusion

Several considerations may justify including futility analyses in clinical trials. First,
exposing patients to the potential side effects of a therapy in a clinical trial that
has little chance of demonstrating efficacy may be undesirable, or even unethical.
The decision to stop for futility would usually emerge from a planned interim
analysis using statistically justified stopping rules that provide a guideline for futility
(Proschan et al. 2006). Futility guidelines are often useful in trials where harms
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Table 5.1 Recent examples of trials either terminated early for futility or having protocols with
formal futility stopping rules

Disease Reference Method of futility analysis

Cardiovascular
disease

Teerlink et al. (2005) Stochastic curtailing and
conditional power
calculations

Mas et al. (2006) Safety considerations and
conditional power

Pulmonary
disease

US National Heart, Lung
and Blood ARDS
Clinical Trials
Network(2004)

Group sequential boundary

Curley et al. (2005) Group sequential boundary
Robbins et al. (2008) Unplanned conditional power

analysis
Orthopedics Kiel et al. (2007) Conditional power and beta

spending function
Neurology Gorelick et al. (2003) Conditional power
Infectious

disease
Abraham et al. (2005) Conditional power

Abraham et al. (2003) No formal method specified
Hematology Bussel et al. (2007) Group sequential boundary
Kidney disease Singh et al. (2006) Group sequential boundary
Oncology Geyer et al. (2006) Group sequential boundary

Ajani et al. (2008) Group sequential boundary
Stadler et al. (2005) Bayesian method
Spriggs et al. (2007) Stochastic curtailment
Gennari et al. (2006) Bayesian, not preplanned
Lanciano et al. (2005) Planned but based on

unfavorable results in
experimental group, no
formal statistical method
used

Lorigan et al. (2007) Planned based on interim
results, no formal statistical
methods used

are likely (e.g., anticancer, antidiabetes, cox-2 inhibitors). A second reason is that
inclusion of a nonbinding futility guideline can motivate complete DMC discussion
of the importance of observed safety differences between treatments when the
futility criteria are met. Without a prespecified guideline, DMC members may feel
that the treatment difference in safety profile is acceptable or expected and they
may see no reason to defend a decision to continue the trial. Trials with short-term
outcomes lend themselves to futility boundaries because delayed effects of therapy
would not be encountered. Examples would be 3-day pain outcome for analgesics,
30-day mortality in sepsis, or a 14-day anti-infective trial.
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The typical oncology add-on trial that compares treatment A to A+B, where A
is an active control and B is an experimental therapy, also lends itself to a futility
guideline because even in the absence of a toxicity burden by treatment B, a two-
drug regimen is difficult to justify.

Another reason to include a futility guideline might simply be financial: a
pharmaceutical company may be reluctant to continue to commit large investments
in a therapy that is likely to be less beneficial either to patients, to the company, or
to both, than originally anticipated. Similar conditions may apply to government-
sponsored trials – once the likely results of a trial are apparent to a DMC,
expenditure of public monies to address other questions might be preferable to
continuing the trial. In cases where a commercial sponsor has an active pipeline
of drug candidates ready for testing futility analyses might add efficiency to drug
development.

2.2 Trial and Sponsor Characteristics Less Favorable
to Inclusion

In several situations, futility guidelines are less desirable (see Table 5.2). For exam-
ple, if the intervention is in current use, such as in estrogen–progestin hormone
replacement therapy, and the DMC judges that stopping for futility would be
unlikely to change practice (Wittes et al. 2007), futility guidelines may not be useful.
A controversial or novel intervention (e.g., genomic treatment selection in oncology,
drug-eluting stents, or even a trial that compares an oral and injectable formulation
of the same product) might require a complete trial to be persuasive.

Another reason for not including a futility boundary would be in trials studying
time to event when the effect of the intervention may take years to manifest
itself. Examples of interventions with late benefits are lipid-altering in coronary
disease (Robins et al. 2001), and immunotherapies in cancer (Loughlin 2008; Gray
et al. 2008). Trials that stop because the observed effect size is very small may miss
long-term effects.

Trials with time-to-event outcomes and rapid enrollment, for example, those with
a short treatment phase and a long follow-up such as in vaccine trials, do not lend
themselves to futility stopping. Here, at the time of an interim analysis perhaps all,
or almost all, patients will have been enrolled so that termination for futility has
little utility.

Some trials, like those involving implantable medical devices (e.g., vagus
nerve stimulators for epilepsy and depression, mechanical and biosprosthetic heart
valves), may have a learning curve for investigators rendering a futility analysis
inappropriate.



5 On Stopping a Randomized Clinical Trial for Futility 113

Table 5.2 Inclusion of a futility guideline in a protocol

a. Trial and sponsor characteristics favorable to including futility guidelines

• Issues related to safety are anticipated
• To motivate complete DMC discussion of borderline issues related to safety when a futility

guideline is crossed
• Trials with short term outcomes
• Trials using add-on design comparing A vs. A + B where A is active control and B is

experimental treatment
• Financial reasons – sponsor may not want to continue to invest in a trial not showing

obvious benefit at interim
• A full pipeline of drugs is ready for testing

b. Trial and sponsor characteristics less favorable to including futility guidelines

• Intervention is in current use and persuasive evidence would be needed to change practice
• A trial for a novel intervention would likely need a complete trial to be persuasive to

clinicians and regulators
• Time to event outcomes when effect of treatment may take years to manifest
• Time to event outcomes and rapid enrollment, such as vaccine trials, because all patients

are likely to be enrolled at the time of interim analysis
• Trials that may involve a learning curve for investigators (e.g., surgical techniques involved

with implantable medical devices)

3 Factors Influencing a Decision to Terminate for Futility

While early termination of a clinical trial for superiority is relatively straightforward,
futility analysis is complicated because, even when the efficacy data from the
trial have reached a futility boundary, a DMC may be reluctant to recommend
early stopping or the investigators (or sponsor) may choose not to stop the trial.
Statistical methods for futility stopping may be “binding” or “nonbinding” with
the latter appearing most frequently in protocols. When the futility guideline is
nonbinding, the DMC will typically consider a range of factors in making a decision
for recommending termination. DMCs may also choose to overrule terminating
for superiority but many DMCs feel more pressure, ethically and scientifically, to
terminate in that case than in futility analysis because when futility is indicated,
unless the safety profiles differ, the data are consistent with both treatments groups’
providing similar benefit.

Below, we now summarize some reasons for deciding whether or not to
recommend terminating a trial when futility guidelines are reached. In each case
we distinguish situations where the DMC has the tools to make a decision on its
own and those in which the DMC will need some dialog with the investigators
or a sponsor representative not involved with the trial to aid in making its
decision.
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3.1 Reasons to Terminate for Futility

Several factors might lead a DMC to recommend terminating a trial when a futility
guideline is reached. The most obvious is a treatment difference in safety large
enough to make continuing the trial unethical. Also, secondary endpoints may
show consistent and reliable trends against the experimental treatment. External
information may become available showing that similar interventions (e.g., drugs
of the same therapeutic class) fail to show efficacy for this indication. Conversely,
external information may show that competing drugs showing larger treatment
effects than planned or expected from this trial have raised the efficacy bar for this
indication. In such a case, a lack of effect in the present trial would probably not
call for early termination, but would raise a red flag as to whether the new drug or
intervention was applied properly.

Other reasons to terminate would require input from sponsor representatives that
might not be known to DMC members. Financial considerations might make it
imprudent to continue on this path. If a sufficient pipeline of drugs is available for
testing, the sponsor may wish to move on. Even a seemingly unimportant benefit-
risk differential might cause a sponsor to terminate development of that product
or that indication. For example, a trial for seasonal allergic rhinitis might reach a
futility boundary but the only safety difference is that the experimental treatment
has a 10% incidence of transient headache while the active control group has no
cases and other competing treatments do not have this side effect. The sponsor may
see an obvious marketing burden with this product and wish to terminate. Once
again because these reasons to terminate involve business decisions the DMC will
have to consult with a sponsor representative not involved with the trial such as a
pharmacovigilance officer or the steering committee.

3.2 Reasons Not to Terminate for Futility

Several reasons may make a DMC reluctant to recommend terminating for futility.
First, the data may exhibit time trends. For example, eligibility requirements
may have changed during the trial, where an initiative was started to enroll
more patients of a certain type such as African-American patients or those in a
diagnostic subgroup such as stage 2 patients in a trial for stage 2/3 melanoma
patients or where previously unrepresented patient types are now enrolling because
competing trials have ended. Levy (2004) argued against stopping for futility in
the ARDS trial (US National Heart, Lung and Blood Institute ARDS Clinical
Trials Network 2004) where he noticed that treatment groups were unbalanced at
baseline for certain prognostic factors. In addition, the ARDS trial used statistically
sophisticated methods to impute missing data. Some DMCs might be uncomfortable
with recommending terminating a trial where futility was determined on the basis
of such imputed data. In some trials, data quality may be suboptimal and or a
smaller than desirable number of centers may have had site monitoring. Secondary
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outcomes might be showing benefit and external information on similar therapies
may have shown beneficial results for this indication. For a time-to-event endpoint,
such as time to progression, if all or almost all patients are already enrolled in the
trial, the DMC may feel it prudent simply to wait for the final analysis before making
a recommendation to terminate. In trials using a presumed surrogate endpoint for the
interim analysis of futility but not in the final analysis (e.g., progression-free survival
used for futility at interim and overall survival for the final analysis), DMCs may be
reluctant to recommend termination if the members feel that the two endpoints have
low correlation, as has been demonstrated for progression-free and overall survival
in advanced prostate cancer (Sternberg et al. 2009). In industry-sponsored trials,
when futility boundaries are crossed consultation with a sponsor representative
might yield additional reasons not to terminate. The sponsor may feel that a
complete trial might be useful to gain approval in other countries. Continuing the
trial might allow the sponsor to learn more about response to treatment in important
subgroups and allow collection of information vital for planning new trials. See
Table 5.3 for some factors involved in a decision to terminate for futility.

As described in the following section, the statistical method most appropriate to
assess futility during the trial may also depend, in part, on the characteristics listed
in Tables 5.2 and 5.3.

4 Methods of Futility Analysis

Statistical methodology for futility analysis has at least three flavors. One, which has
both classical and Bayesian varieties, is based on stochastic curtailment; a second
is based on group sequential analysis; a third uses an outcome different from the
primary outcome to assess futility.

Deterministic curtailment, introduced by Alling (1963, 1966), is the process of
ending a trial early when no matter whatever the next observations may be, the
result in terms of rejection or nonrejection of the null hypothesis cannot change.
For example, suppose an experiment with a planned sample size of N requires r
successes to reject the null hypothesis. If n observations have been made and r
successes have already occurred, then no matter what the next (N − n) observations
are, the null hypothesis will be rejected. Thus, stopping the trial at n leads to the
certain conclusion that the null hypothesis will be rejected. (Of course, the observed
proportion of successes is not an unbiased estimate of the underlying proportion.)
Lan et al. (1982) extended deterministic curtailment by adding a probabilistic
element to Alling’s method – stochastic curtailment is stopping a trial early with
the ability to assign a probability of rejecting or not rejecting the null hypothesis.
Although philosophically different, conditional and predictive power, which is
discussed below, both belong to the class of methods of stochastic curtailment. Both
seek to compute a probability of rejecting the null hypothesis at the end of the trial
conditional on accumulated data and certain assumptions. The result of a conditional
or predictive power calculation is a probability of a statistically significant result at
the end of the trial.
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Table 5.3 Factors influencing a decision to terminate for futility

a. Reasons to terminate for futility

Decisions to terminate that can usually be made by DMC independent of sponsor

• A disturbing difference in safety profile is observed
• Secondary endpoints show consistent and reliable trends against experimental treatment
• External information arises on lack of efficacy of similar therapies for this indication
• The efficacy bar has been raised as external information becomes available indicating that

competing therapies are achieving effect sizes larger than those planned or expected in this
trial

Decisions to terminate usually requiring DMC interaction with sponsor representative

• Financial reasons not to continue to invest in this drug
• Sponsor has another promising therapeutic candidate waiting
• Benefits and risks not favorable for modest toxicity – the drug has side effects that while

not serious are annoying to the patient and are not present in other drugs for this indication
on the market

b. Reasons not to terminate for futility

Decisions not to terminate that can usually be made by DMC independent of sponsor

• Patient characteristics change over the course of the trial. Change may be due to factors
such as modifications in eligibility requirements, a decision to target patients of different
types such as African-Americans or Stage 2 patients, sicker patients entering early in the
trial, different centers entering the study at different times

• Baseline imbalances in prognostic factors
• Data may be of questionable quality
• Site monitoring may be insufficient
• Primary efficacy endpoint requires considerable imputation of missing data
• Secondary outcomes are suggestive of patient benefit from experimental treatment
• External information arrives on benefit of similar therapies for this indication
• The outcome measures some time-to-event and all patients are enrolled
• The interim analysis of futility is based on a presumed surrogate outcome for the primary

efficacy outcome that will be analyzed. The DMC members do not believe these endpoints
to be sufficiently correlated.

Decisions not to terminate usually requiring DMC interaction with sponsor representative

• Sponsor feels the data can be used to gain approval in other countries
• Sponsor staff want to learn more about treatment effect in certain subgroups of patients
• Sponsor staff can use the data from a complete trial to plan new trials

Group sequential futility methods use some of the Type II error rate to test the
alternative hypothesis in a manner analogous to group sequential efficacy methods
that use some Type I error rate to test the null hypothesis. They specify a priori
an effect size too small to be of clinical interest and then create a group sequential
boundary such that, if crossed, the data have demonstrated – with, of course, some
use of Type II error rate – that the true effect is less than the size deemed to be of no
clinical interest.
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The third approach we discuss is completely different in spirit – it bases its
conclusion on a biomarker believed to be highly predictive of the outcome of
interest. A Phase 3 trial studying whether or not the intervention is effective on a
long-term clinical outcome may stop early if the effect on a intermediate endpoint
is too weak to be consistent with a clinically important effect on the outcome of
interest, whether or not the intermediate outcome is a good surrogate for the long-
term endpoint.

The following sections describe these methods in more detail. We shall assume
throughout this chapter that the hypothesis of interest is one of treatment difference,
rather than of equivalence or noninferiority of the experimental treatment as
compared with the control group. For an example of a trial that addressed futility in
the context of a noninferiority hypothesis, see Cairns et al. (2008).

4.1 Conditional Power

Techniques based on conditional power consider projecting the outcome of the
trial conditional on the data observed thus far and incorporating some assumptions
concerning the true effect size that will operate during the remainder of the trial.

To calculate conditional power, we start with the B-value (Lan and Wittes 1988)
B(t), where t is the information time of the study (0 ≤ t ≤ 1), z(t) is the observed
z-value at time t, and B(t) = z(t)t1/2. Let θ , which is called the “drift parameter,”
denote the expected value of the z-score at the end of the trial; that is, E{B(1)}= θ .
Note that z(t) = μ̂(t)/SE[μ̂(t)] = t1/2θ . Therefore, E{B(t)}= θ t or θ =E{B(t)}/t.

Thus, B(1) = z(1); in other words, the B-value at the end of the trial is identical
to the z-value at the end of the trial. Under a constant effect size θ , or drift, B(t)
increases linearly but z(t) does not so that the B-value is a more natural statistic to
monitor than is the z-value.

As Proschan et al. (2006) describe, the conditional mean of B(1) given B(t) = b
has a simple geometric interpretation. If the drift size is θ (and constant over the
life of the trial), then the conditional mean of B(1) can be depicted as the endpoint
of a line segment that starts at (t,b) and extends to the end of the trial with slope θ
(see Fig. 5.1). Superimposing on this conditional expectation a normal distribution
with mean b+θ (1− t) and variance (1− t) on its side, conditional power is the area
above the point (1, zα/2). In other words, conditional power is the probability that
the study will show statistical significance if it continues to its planned end and if
the future effect size θ is constant.

In general, if the drift is constant over time, the conditional power at time t is:

CP(t) = 1−Φ[(zα/2 −{b+θ (1− t)})/(1− t)1/2]. (5.1)
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Fig. 5.1 Given a trial with data through information time t and a B-value B(t) = b, the B-value
at the end of the trial, B(1), has a normal distribution with mean b + θ (1 − t) and variance
(1− t). For a two-tailed test at level α , conditional power is then represented by the area of the
crosshatched region above 1.96 (from Proschan et al. 2006). Reprinted with permission of Springer
Science+Business Media LLC

Under the alternative hypothesis, θ = θA. Substituting θA in (5.1) gives the
conditional power under the original alternative.

Under the null hypothesis, θ = 0. Therefore, the conditional power under the null
becomes simply:

CP(t) = 1−Φ[(zα/2 − b)/(1− t)1/2]. (5.2)

Under the current trend,

CP(t) = 1−Φ[(zα/2 − b/t)/(1− t)1/2]. (5.3)

A criticism often leveled at conditional power is that these three projections – under
the null, under the alternative, and under the current trend – do not exhaust the
possible future trajectories the data may take. This criticism fails to account for
the flexibility conditional power allows, for one is not restricted to these three drift
parameters. Many data monitoring committees find it useful to look at a range of
drift parameters. As shown in Fig. 5.2, the conditional power is sensitive both to t
and to drift. Nor is one restricted to projecting a constant drift; if there is reason
to believe the effect size is likely to change in time, one can adapt the formulas to
account for such change.

Some protocols suggest a threshold probability below which a DMC is en-
couraged to recommend stopping the trial. Obviously, if the conditional power
against reasonable alternatives fell below the Type I error rate, everyone would
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Conditional Probability Under The Null Hypothesis

Conditional Probability Under The Original Alternative Hypothesis
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Fig. 5.2 Conditional power as a function of t and the z-score. Conditional power is not necessarily
a monotonic function of information time t . For z-scores close to the critical value, conditional
power is very sensitive to t (from Proschan et al. 2006). Reprinted with permission of Springer
Science+Business Media LLC

consider the trial futile. We have seen protocols that recommend stopping the trial
with conditional powers in the 40–50% range. In our opinion, these conditional
powers are usually much too high; our own preference is to continue the trial unless
the conditional power against reasonable alternatives is quite low (we prefer the
15–25% range). All this raises a question: what is a reasonable alternative? If the
experimental condition is such that one can scientifically justify a belief in a constant
drift parameter over the life of the trial (or proportional hazards if the trial is studying
a time-to-event variable), then we suggest taking the optimistic end of the 80% ob-
served confidence limit, projecting on the basis of that estimate, and recommending
stopping only if the conditional power is below 20%. Pepe and Anderson (1992)
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have also suggested using the optimistic end of a confidence interval to assess
futility. A DMC contemplating recommending early stopping for futility should
play out a host of reasonable alternatives consistent with the data and with prior
hypotheses before recommending stopping for futility. Once a trial has ended,
restarting it or beginning again is extremely difficult.

4.2 Predictive Power

Predictive power, a Bayesian alternative to conditional power, is essentially con-
ditional power integrated over a distribution of future effect sizes. Rather than
looking at a single drift parameter, Spiegelhalter et al. (1986) suggested averaging
the conditional power over the distribution of the drift parameter. Before beginning
the trial, the investigators specify a prior distribution for the treatment effect.
An equivalent approach is to specify a prior distribution for the drift parameter θ .
At the time of an interim analysis, the conditional power is averaged over the
posterior distribution π of θ given the B-value. Predictive power accounts for the
current data not only through CP(t) but also through the posterior distribution of θ
(Freedman and Spiegelhalter 1989). Formally, the predictive power is:

PP(t|b) =
∫

CP(t,θ )π{θ |B(t) = b}dθ .

4.3 Group Sequential Designs

A group sequential method is another approach to assess futility. In group sequential
designs, stopping boundaries can be calculated for efficacy (i.e., rejection of the
null hypothesis H0 : θ = 0), as well as for futility (i.e., rejection of the alternative
hypothesis HA : θ = θA; Emerson and Fleming 1989). The error spending function
methodology introduced by Lan and DeMets (1983), which consists of defining an
α-spending function to terminate a study early if HA is true, can be extended to
define a β -spending function to terminate a study early if H0 is true. Pampallona
and Tsiatis (1994) have considered the general case in which an α-spending and
a β -spending function are defined to ensure simultaneously that the Type I error
does not exceed the prespecified significance level α and that the Type II error
does not exceed the prespecified β (i.e., the power of the trial remains above 1-β ).
In such an approach, different stopping boundaries (or spending functions) can
be adopted for efficacy and futility. It is often desirable to choose very conservative
efficacy stopping boundaries (so that the trial is stopped early for efficacy only
in the presence of extreme treatment benefits), but such conservatism may not
always be warranted in the choice of futility stopping boundaries. In cases where
investigators and sponsors can agree on a clinically unimportant effect size, the
Emerson and Fleming (1989) method can be adapted to exclude that size.
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4.4 Phase 3 Trial with Futility Determined By a Phase 2 Endpoint

Some Phase 3 trials embed a Phase 2 endpoint as a stopping rule for futility.
In oncology, for example, if the objective response rate or some other early sign
of activity falls below a predefined threshold (e.g., complete or partial response rate
less than 10%), the likelihood that the treatment has enough activity to improve
long-term clinical outcomes such as progression-free survival or overall survival
may be too low to warrant continuation of the trial. An example from ophthalmology
comes from the wet form of age-related macular degeneration where the primary
outcome of many Phase 3 trials is visual acuity at 12 months. If few patients exhibit
regression of leakage at 3 months, many investigators would question the value of
continuing such a trial.

The above two examples use surrogate, or Phase 2, data to terminate a Phase 3
trial that is not likely to be successful for a primary efficacy endpoint that would
require longer patient follow-up. This approach has the advantage of allowing a
recommendation about terminating for futility earlier than is required for recom-
mending termination for efficacy. Some researchers have suggested embedding a
Phase 2 trial into a Phase 3 trial so that the transition between the two phases
is operationally seamless – as opposed to performing a randomized Phase 2 trial
followed by a separate Phase 3 trial. The simplest version of this approach consists
of using a classical Phase 2 design to screen for activity based on response, and to
calculate the sample size required for the final analysis based on the final outcome
of interest. Since the purpose of the Phase 2 trial is only to stop for futility on
the basis of lack of activity, no adjustment in the overall α level is required. One-
stage or two-stage Phase 2 designs may be used (Fleming 1982; Simon 1989; Bryant
and Day 1995; Sargent et al. 2001), as well as a “selection” design if several
experimental arms are simultaneously screened (Simon et al. 1985). In all cases,
the Phase 2 and the Phase 3 portions of the trial are designed independently of each
other. Inoue et al. (2002) present a Bayesian method for expanding a Phase 2 trial
to Phase 3 in oncology.

A different approach that is particularly useful in selecting one or more doses
of a new investigational agent is to use an inferentially seamless design in which
several doses are tested in the Phase 2 portion of the trial, and then to select only the
most promising ones to continue in the Phase 3 portion (Bretz et al. 2009). Various
designs have been proposed for this purpose, with or without adaptations of some
design aspects at the end of the Phase 2 (Thall et al. 1988; Inoue et al. 2002; Jennison
and Turnbull 2006). All these designs control of the overall significance level of the
trial. Their main purpose is to stop some (but not all) doses, rather than to stop the
trial for futility. For a concise review, see Jennison and Turnbull (2007).
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4.5 Which Method to Use

The choice of a statistical futility method for a particular trial should depend on
the characteristics of the trial, the concerns of regulators and Institutional Review
Boards/ethics committees, and the comfort levels of sponsors and investigators.
In general, conditional power is most useful when the parties involved agree on the
extrapolation curve or when the choice of curve is deemed to make little difference
in the outcome of the analysis. Predictive power is most useful when reliable prior
knowledge from previous trials can be specified. Examples might include overall
survival for breast cancer and colorectal cancer trials and titer response in anti-
infective trials. A Bayesian approach to trial design and early stopping may also be
quite effective in pediatric indications for which trials in adults have already been
performed and provide a reasonable prior distribution for the anticipated effect of
treatment. This approach is sometimes called “bayesian borrowing” (Malec 2001).
We do not recommend predictive power for antidepressants, antihistamines, or
antiepileptic drugs where considerable variation is seen from trial to trial (although
true Bayesians might argue that the solution is to use a very diffuse prior). Group
sequential methods might be used where there is little justification for conditional
or predictive power or little agreement on how to implement these methods. Such
might be the case for emerging interventions for which there is little experience, for
example, such as targeted therapies in oncology that operate on novel pathways.
Group sequential methods would also be used when investigators and sponsors
feel it desirable for the interim futility analysis to be methodologically similar to
interim efficacy analysis and when they agree on meaningful values of the efficacy
parameter that are clinically unimportant. Reaching such agreement is a long-
standing problem in the design of noninferiority trials where sample size is tied
to this specification (D’Agostino et al. 2003). Using a Phase 2 endpoint for early
stopping of a Phase 3 trial has considerable appeal partly because it requires fewer
assumptions than other methods. Although seamless methods have considerable
potential there is, at present, too little experience to render an evidence-based
judgment of their utility.

5 Practical Considerations for Futility Analyses

5.1 Lag in Treatment Effect and Minimum Follow-Up

Several clinical issues occur in practice that may render formulaic interim analyses
for futility misleading. To begin with, many treatments have a lag in effect. This lag
may give the false impression that the efficacy of the experimental treatment is sim-
ilar to that of the control at the time of interim analysis. The VA-HIT trial (Robins
et al. 2001) provides a good example of such a lag. The trial compared gemfibrozil
to placebo with respect to the occurrence of fatal and nonfatal myocardial infarction.
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Fig. 5.3 Incidence of death from coronary heart disease and nonfatal myocardial infarction in
the gemfibrozil and placebo groups (from Rubins et al. 1999). Reprinted with permission of the
Massachusetts Medical Society

Participants in the trial were men with normal LDL-cholesterol levels but low levels
of HDL-cholesterol. The hypothesis underlying the trial was that the HDL-raising
effect of gemfibrozil would lead to a decreased risk of nonfatal myocardial infarction
or death due to coronary heart disease. Lipid-altering drugs, however, may take
months or even years to change the coronary arteries in a manner sufficient to lead
to a meaningful reduction in observed risk. The designers of the trial built a lag to
the effect of gemfibrozil into their sample size calculation. Thus, after 2 years, the
event rates in the gemfibrozil and placebo groups were nearly identical, the Data
Safety Monitoring Board did not recommend stopping. By the end of the trial, the
curves had separated noticeably (22% risk reduction, P = 0.006, Fig. 5.3).

For other indications demonstrating that efficacy observed early can be main-
tained over time may be important. In these cases, futility analyses may be scheduled
even after an intervention provides some evidence of efficacy and safety. Trials
studying treatment of venous ulcers, for example, may show evidence of complete
epithelization of the wound, but the durability of the healing is the ultimate outcome
for assessing efficacy (Falanga and Sabolinski 1999). In such cases, efficacy would
be defined as “heal and hold” (i.e., complete epithelization maintained for, say, 3
months). Futility analysis would be applied to the “heal and hold” outcome rather
than the “heal” outcome.



124 J. Herson et al.

5.2 Time Patterns

In some trials, patients recruited early differ from patients recruited later. Very often
the sicker patients enter early and the less sick, or more recently diagnosed, enter
later. Such difference can also occur if a protocol amendment changes eligibility
requirements during the trial.

In trials that use a complex regimen or that employ a medical device, the
investigators have a learning curve that may affect efficacy directly or indirectly.
An example of a direct effect is learning the best way to instruct psychiatric patients
on using a vagus nerve stimulator (Rush et al. 2005). An indirect effect may be
through developing strategies to reduce toxicity so that fewer doses are missed,
such as reducing the incidence of endophthalmitis in patients treated for age-related
macular degeneration (Gragoudas et al. 2004).

5.3 Unreliability of Early Data

Early in the trial, important prognostic factors may be unbalanced because the
sample size is small, and therefore the balance of baseline factors between treatment
arms is highly influenced by the play of chance. If the prognostic factors happen to
favor the control group, a DMC may be reluctant to recommend stopping the trial
for futility for fear of missing an effect that may manifest itself after the chance
imbalances have resolved. In some cases, the DMC may also be concerned about
the completeness and reliability of the data. In on-going trials, it is almost inevitably
the case that the data the DMC reviews are neither clean nor complete. Hence, the
DMC may feel that the data upon which futility would have to be declared are too
unreliable to make a recommendation to stop early. We illustrate these issues in the
case study of Sect. 5.8.

5.4 Different Outcomes for Futility and Efficacy

In practice, the approach to futility will depend on the study. In futility analyses,
complications occur when a different outcome is preferred for futility than for
efficacy. This inconsistency may not pose a problem if the preferred futility outcome
fulfills most of the properties of a surrogate for the efficacy outcome (Burzykowski
et al. 2005); however, few surrogate outcomes have been established, and therefore
stopping for futility is often decided on the basis of an intermediate endpoint that
may or may not be a good predictor of the clinical endpoint. In rheumatoid arthritis
trials, the FDA usually requires the Ritchie score (Lewis et al. 1988) as the primary
efficacy outcome. Investigators, however, may consider morning stiffness the most
important clinical outcome for the product. Similarly, sponsors may judge morning
systems as the most important outcome for marketing. Therefore, the investigators,
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or the sponsor, might want to terminate for futility on the basis of morning stiffness
even though the latter has not been formally established as a surrogate for the Ritchie
score.

In trials that use an active control to study a new treatment for seasonal allergic
rhinitis, the primary efficacy outcome might be a score computed from symptoms
in a patient’s diary but the desirable variable for futility might be occurrence of
moderate or worse headache because the investigators, or sponsor, might judge that
an experimental treatment that cannot show improvement over the active control in
headache would not be clinically important or viable in the market regardless of its
efficacy with regard to average symptom score. Here, the designers of the trial might
want to schedule the futility analysis earlier than the interim analysis of efficacy so
as to limit the expense of the trial for a product that lacks sufficient clinical interest
or market potential.

5.5 Delayed Endpoints

Most cancer trials, especially in the adjuvant setting, cannot stop for futility before
recruitment has ended because the clinical outcomes, disease-free survival (DFS)
and overall survival (OS), take a long time to occur. In such cases, futility would
only affect the need to follow the patients further, but would not result in savings in
terms of sample size.

Generally speaking, when overall survival time is the primary efficacy endpoint,
interim analyses are unlikely to lead to early stopping for futility even if the null
hypothesis is true. Goldman et al. (2008) considered using intermediate outcomes
in this case. They investigated trials with overall survival as the primary outcome but
with DFS and a composite outcome (OS or DFS, whichever occurs first) used for
futility analysis. In this situation they simulated clinical trials using data consistent
with the results of actual Southwest Oncology Group trials in advanced pancreatic
cancer, advanced head and neck cancer, local prostate cancer, and local breast
cancer. For all diseases studied, the authors found considerable utility in using these
alternative endpoints for futility in terms of probability of early termination under
the null hypothesis and average sample size. Pepe et al. (2009) suggested futility
analysis to terminate trials of potential biomarkers when accumulating data indicate
that the marker has inadequate sensitivity, specificity, or both.

5.6 Timing of Futility Analyses

In Sect. 5.4, we considered futility analysis that uses a Phase 2 endpoint in a Phase 3
trial with a Phase 3 primary efficacy outcome. In those trials, we assumed that if
the Phase 2 futility variable did not point to trial termination then the trial would
continue to its complete sample size. In this section, we consider the case where a
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protocol calls for interim analysis of both futility and superiority. These analyses
need not occur at the same time even if available software sometimes makes the
simplifying assumption that they do. The investigators or sponsor might want to
test superiority before or after deciding on futility especially if different outcomes
are used for each. The interim analysis for superiority seeks a difference so large
that continuation of the trial would be unnecessary to reject the null hypothesis.
Some people consider continuation in such cases unethical. In an oncology trial
where survival time is the primary efficacy endpoint sponsors might prefer to
decide about futility after enough deaths have occurred on each treatment arm to
be reasonably certain that further data would not change the decision.

Another approach for oncology trials might use 12-month survival for futility
analysis but overall survival time as the primary efficacy variable. Here, if the
12-month survival meets some of the criteria for being a surrogate for survival
time, the futility analysis would be scheduled after enough patients had at least
12 months of follow-up but the interim analysis of efficacy would take place after
the required number of deaths had occurred, which could be earlier or later than the
futility analysis.

Similarly, in an osteoporosis trial, a futility analysis of bone mineral density
could be performed before an interim analysis of fracture incidence. The latter will
require large sample sizes and considerable follow-up time while analysis of bone
mineral density could occur much earlier. An intervention that appears futile on
the basis of bone mineral density, which may be considered a “quasi-surrogate” for
fracture, could stop early saving patient exposure and money. Similarly, an early
analysis of ejection fraction might be relevant in a trial for studying prevention
of myocardial infarction in heart failure patients. In trials of drugs with major
toxicities, such as some drugs used in HIV, an analysis of viral load prior to an
interim analysis of development of AIDS could be considered.

5.7 Binding vs. Nonbinding Futility Analyses

Throughout this chapter, we have danced around the words “guideline” rather than
“boundary” to refer to the predetermined futility criteria. If the criteria to stop for
futility are truly binding, then the “upper” or “superiority” boundary can be nudged
down to account for the possible sample paths that are no longer in the rejection
region leading to a gain in power (see, e.g., Lan and Trost 1997; Mehta 2005). When
a boundary is declared binding, then the trial must stop for futility if the boundary is
crossed. In that case, we are truly talking about a “boundary,” and neither the DMC
nor the sponsor has the option to ignore the fact that the boundary has been crossed.
We strongly discourage binding futility boundaries because a committee needs to
act on the basis of its collective judgment guided by, not determined by, statistical
boundaries. Even if one could, we consider constraining the decisions of a DMC
inappropriate. Upon observing that a futility boundary has been reached a DMC may
opt to recommend continuing the trial anyway because the members see value in
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continuing or they may feel there are still issues, like messy data, that preclude a
firm recommendation to terminate. Alternatively, the DMC may declare that the
futility boundary has been reached but the investigators or sponsor may choose to
continue the trial anyway. In these cases, the “boundary” is indeed a “guideline.”

In many trials sponsored by industry, the DMC reports directly to the industry
sponsor, not to the investigators. In such cases, considerations about continuing
a trial may relate in large measure to regulatory requirements and to marketing
potential. For example, if the trial is multinational and the DMC reports to the
sponsor, not to the investigators, and if the sponsor feels optimistic about approval
of the drug in countries that use criteria different from those in the United States,
the sponsor may wish to continue the trial even if the futility boundary is crossed.
In other cases, the sponsor may judge that the drug still has marketing potential
because of a favorable side effect profile compared to competing drugs. The sponsor
may want to continue the trial to collect further data on safety and efficacy within
subgroups of patients to plan a new trial. Conflict may arise between the DMC
and the sponsor if the DMC recommends terminating the trial because the futility
boundary was crossed and the sponsor brings up reasons, such as those just
enumerated, to continue. We recommend specifying nonbinding guidelines in the
trial protocol, in which case the DMC can decide whether or not to recommend
stopping the trial based on risk-benefit considerations and not on business criteria.
In many trials, the DMC speaks only to the investigators, not directly to the sponsor.
(We are reminded of the John Bossidy’s 1910 toast, “And this is good old Boston;
The home of the bean and the cod; Where the Lowells talk to the Cabots; And the
Cabots talk only to God”).

In such cases, the considerations about stopping for futility differ from the
considerations discussed above. A DMC needs to understand to whom it reports
and what criteria it should use in considering early termination for futility.

As the trial progresses, the investigators or sponsor may feel a different projection
method is more appropriate than the one written into the Statistical Analysis Plan.
The method may be changed as long as the investigators and sponsor have not been
unmasked or told that the futility boundary has been crossed. Indeed, the revised
method may yield higher, or lower, conditional power than the original method.
Although this reason for continuing is statistical in nature, it does not lead to any
more bias than any of the other methods.

If the boundary has been crossed but the DMC recommends not stopping,
the DMC should not inform the investigators or sponsor that the boundary was
crossed until the end of the trial. For this reason, the DMC must be aware of the
investigators’ and sponsor’s attitude toward the product being studied so that this
decision is deemed not to be diametrically opposite to the one the investigators, or
sponsor, might have made had there been no DMC. In trials sponsored by a large
pharmaceutical company where the DMC reports directly to the sponsor, rather
than to the investigators, the DMC can usually reveal the futility situation to a
high-level executive not associated with the day-to-day operations of the trial. In a
small company that has no other product on the market and a limited or nonexistent
pipeline, this decision may be more difficult and the DMC would need some idea of
the sponsor’s likely position.
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Table 5.4 Results of two planned interim analyses and the final analysis –
see text for a description of the trial

Treatment arm

Placebo Active

Failures for primary endpoint
First interim analysis 2/28 (7%) 9/31 (29%)
Second interim analysis 8/57 (14%) 15/59 (25%)
Final analysis 20/90 (22%) 18/90 (20%)

Deaths
First interim analysis 0/28 (0%) 6/31 (19%)
Second interim analysis 8/57 (14%) 9/59 (15%)
Final analysis 24/90 (27%) 12/90 (13%)

Table 5.5 Distribution of poor prognostic factors at two planned interim
analyses and the final analysis – see text for a description of the trial

Treatment arm

Placebo Active

Factor of poor prognosis # 1
First interim analysis 5/28 (18%) 12/31 (39%)
Second interim analysis 14/57 (25%) 20/59 (34%)
Final analysis 23/90 (26%) 28/90 (31%)

Factor of poor prognosis # 2
First interim analysis 2/28 (7%) 10/31 (32%)
Second interim analysis 13/57 (23%) 15/59 (25%)
Final analysis 20/90 (22%) 21/90 (23%)

Some sponsors may insist on a binding futility rule because if this product has a
high probability of a negative outcome, the sponsor may wish to divert resources
to other products in the pipeline. In our experience, DMCs that report to the
investigators rarely use binding futility rules.

5.8 A Case Study

We now use an actual case study to illustrate some of the problems DMCs may face
when they review interim analyses for futility. We have disguised the disease and
treatment of the case study and modified the data slightly to preserve anonymity,
but the situation described here is otherwise real. The disease in question was life-
threatening and the standard therapy was known to have limited efficacy. The trial
randomized 180 patients in a 1:1 ratio to receive an active drug or placebo. All
received standard therapy as well. Tables 5.4 and 5.5 show the observed numbers of
events for the primary outcome (failure to control the disease or death) and all-cause
mortality, as well as the distribution of the most important prognostic factors for this
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disease, at the times of the two planned interim analyses and the final analysis. At the
first planned interim analysis, the difference between the randomized groups crossed
the predefined futility boundary for the primary endpoint analysis, and more deaths
were reported in the active treatment group (no death in the control group vs. 6 in
the treated group, unadjusted P= 0.025). The DMC carefully reviewed these results,
but the small numbers of events (Table 5.4) and the imbalances in the factors known
to have strong prognostic impact in this disease (Table 5.5) led them to recommend
continuation of the trial. At the second planned interim analysis, the difference
observed for the primary outcome again crossed the predefined futility boundary,
but the number of deaths in the two groups was almost the same (8 vs. 9 deaths,
unadjusted P= 0.85). The DMC were still unimpressed by the difference in failures,
given that the numbers of deaths were now similar in the two groups. In view of the
absence of effective treatment for this frequently fatal disease, they reasoned that
missing a potentially active therapy would be the least desirable outcome of the
trial, and they recommended again its continuation. At final analysis, there were
fewer deaths in the active treatment group (24 deaths in the control group vs. 12 in
the treated group, unadjusted P = 0.025) even though the study failed to meet its
primary objective.

Although this case study is anecdotal, it does show the extent to which a DMC
may have to (or wish to) overrule predefined guidelines, if these were not carefully
reviewed and discussed before the trial began. In the present example, one could
indeed wonder (with the benefit of hindsight) whether it was wise to plan a first
futility analysis based on only one-third of the information in a relatively small
trial. Chance at such an early stage plays too large a role for almost any futility
boundary to lead to a convincing recommendation to stop the trial. This example
also illustrates that the DMC and the sponsor may value a negative result quite
differently. Finally, the case study shows the extent to which data quality and other
happenstances in trial conduct (such as accidental imbalances) form an integral part
of the DMC’s assessment, even thought the statistical boundaries cannot explicitly
account for them.

5.9 The Role of Data Monitoring Committees

DMCs play a vital role in interpreting a futility analysis. Thus far in this chapter we
have used the word “recommend” when we have spoken of the actions of the DMC,
for those running the trial, not the DMC, are responsible for taking action. Crucial
to its role is the method the DMC uses to report its recommendations. With regard
to reporting, we have personally been involved in three types of trials. As shown
in Fig. 5.4, communication flow can be quite complicated. In some trials, the DMC
reports directly to the investigators, or an executive committee of the investigators;
these DMCs never report to the sponsor whether the sponsor is an industrial firm,
a government agency, or a not-for-profit organization. In this type of trial, when
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Fig. 5.4 Communication flow to report results of futility analysis

the DMC reports its recommendations, the investigators and the DMC discuss the
recommendations and the investigators report their decision to the sponsor.

On the other extreme are trials in which the DMC reports directly to the sponsor
and has no relationship to the clinical investigators. This type of trial is typical of
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industry-sponsored trials aimed at regulatory approval of a product or an expansion
of a label of an already marketed product. The discussion of whether, and how, to
implement the DMC’s recommendations occurs between the DMC and the sponsor.

In the third type of trial, a hybrid of these two, the DMC reports to a
joint committee of investigators and sponsor, often called a Steering Committee.
Although the DMC reporting lines may differ as shown in Fig. 5.4, the role of the
DMC is essentially the same in all cases. It must ensure that the difficult decisions
about continuing or stopping a trial are made consistent with sound science and
in a manner totally independent of the self-interests of investigators and sponsor.
The deliberations of the DMC should be regulated by a charter that clearly specifies
the DMC’s responsibilities for interpreting interim analyses, including futility
analyses. The charter should specify if the futility analysis is binding or nonbinding.
If the latter, some scenario planning would be desirable so that the DMC members
and the decision-makers can be on the “same page” regarding relevant issues in
deciding if termination for futility is necessary. The charter should indicate precisely
whom to contact if the DMC recommends termination. If the DMC reports to the
investigators, the charter should describe how the communication should occur.
If the DMC reports to the industry sponsor, the charter should be unambiguous
in describing who in the organization should be the contact. See Herson (2009) for
a description of best practices for communications between sponsors and DMCs
when the DMC reports directly to a sponsor.

6 Public Disclosure in Industry-Sponsored Trials

Public companies are required to disclose all material facts that may affect the
value of the shares of their stock. Therefore, the law may require the sponsor
to disclose the result of a futility analysis if the DMC reports it to the sponsor,
regardless of the outcome and regardless of what action will be taken. Reaching
a futility guideline and not stopping the trial can have disastrous effects on the
valuation of a small public company. Continuing the trial after a public announce-
ment of the futility criterion’s being satisfied could raise the ire of patients and
investigators. If the company is private, the group of investors on the board of
directors would want management to report to them anything management knows
about the trial. Thus, the outcome of a futility analysis could have a similar effect in
a private company. For these reasons, we strongly recommend that if data cross
the prespecified boundary but the DMC decides not to recommend termination,
the DMC should simply tell the sponsor that it is recommending continuation of
the trial. Only after the trial is over should the DMC inform the sponsor that a
monitoring guideline had been reached. The DMC should be prepared to justify its
reason for not having recommended stopping.

In the case of a publicly supported trial (e.g., the NIH in the US or the MRC in
England), the sponsor need not inform the public at the time a trial is not stopped
even though the futility boundary has been crossed (but see Sect. 5.7).
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The fact that the DMC may make recommendations that are contrary to
the prespecified guidelines is one reason why the sponsor (either industry or a
government agency) must indemnify members of the DMC.

Closely related to public disclosure is reporting of futility analysis in the
publication of trial results. A trial report and publication should indicate if the
protocol included a planned futility analysis, if an ad hoc futility analysis was
conducted instead of a planned futility analysis, what group conducted the analysis
(most likely a data coordinating center), the statistical methods used (if any), the
result of the futility analysis and what action (if any) was taken. This type of
reporting is not routinely implemented. In a correspondence to a journal editor,
Anderson (2007) claims that the paper by Hochman et al. (2006) reporting the
results of a cardiovascular trial should have indicated that the trial was stopped for
futility but, in reply, Hochman et al. (2007) claim that the trial’s data monitoring
committee did not in fact recommend terminating the trial for futility. This uncer-
tainty is confusing to readers interpreting the data. Also, in reporting results if a
trial is terminated for futility, the trial report should provide a complete enumeration
of safety concerns. Trials terminated for futility may be considered “negative” but
this should not preclude publication of results. The existence of the trial and its
termination will be important information for researchers designing new trials and
for those performing meta-analyses or writing systematic reviews.

7 Ethics

The investigators, the sponsor, and the DMC should read the informed consent
document carefully to ensure that the participants in the trial understand that the trial
may continue even when the data strongly suggest that the experimental treatment
may not be shown to be more effective than the control arm.

Suppose the protocol specifies a futility boundary for efficacy but the investi-
gators, the sponsor, or the DMC opts not to terminate the trial when the futility
boundary is reached. An ethical problem appears if, at the end of the trial, the
experimental treatment is found to be no better than placebo. The problem could be
worse in a trial comparing an experimental treatment to an approved active control
if the experimental treatment proves less effective than the active control. Futility
should not be specified as the only termination criterion in active control trials unless
investigators and sponsors are confident that the experimental treatment will not be
shown to be inferior to active control.

In active control trials, the investigators and sponsor must decide before the trial
begins whether the patients will be offered crossover treatment if a futility boundary
is reached. Patients may want this flexibility if the treatments have different safety
profiles, and the DMC may wish to consider the possibility of patients being crossed
over in their assessment of futility. There is a growing literature on the ethics of
early termination of clinical trials for futility as well as efficacy (Ashcroft (2001);
Boyd (2001); Cannistra (2004); Evans and Pocock (2001); Iltis (2005); Lievre et al.
(2001); Psaty and Rennie (2003); Trotta et al. (2008)).
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8 Conclusions

The decision to include a planned interim futility analysis in a clinical trial protocol
is complex. No “one size fits all” solution exists. We three authors object in
principle to binding futility analyses. A protocol should include a futility analysis
if there is a clear rationale for one – ethical issues, safety concerns are expected,
rapidly developing competitive drugs, and an extensive pipeline of drugs for the
same indication or if a futility result would have a profound effect on the practice
of medicine. The previous sections have included some guidance for choosing a
statistical method of futility analysis. In our experience, conditional power and
group sequential methods work well. Predictive power can be used when Bayesian
expertise and defendable prior information exists. Using a Phase 2 endpoint for early
termination when this endpoint appears to signal poor efficacy results has not been
used often but has considerable promise. In planning a trial investigators should
certainly consider confounding issues such as lags in treatment effect, time patterns
in data such as learning curves in treatment implementation, and differential quality
in early compared to later data. The investigators, the sponsor, or the DMC may
overrule futility decisions where confounding of this type is apparent.

Three examples illustrate the process of deciding on a futility analysis plan: a
randomized clinical trial testing a drug for breast cancer, an anti-infective drug, and
a mechanical heart valve implant. For a drug for breast cancer, futility analysis is
useful if safety is a concern or a large pipeline of other candidate drugs is on the
horizon. Conditional power would be a reasonable choice for a futility method.
Assuming that overall survival is the primary efficacy endpoint for such a trial,
investigators may want to use 12-month survival as the futility endpoint since, if
overall survival were used for futility, with rapid accrual and long survival times, all
patients may already be enrolled at the time of futility analysis. Anti-infective trials
have short follow-up times (typically 14 days) and large sample sizes. A futility
analysis early in the trial could result in considerable savings in cost and effort for
the sponsor should the data point to futility. Here, conditional power, predictive
power, or group sequential methods would probably all work well and yield similar
results. Trials of a mechanical heart valve implant would be characterized by a short
treatment phase and long follow-up. In a trial comparing a new valve design with
an approved product, all patients are likely to be enrolled at the time of futility
analysis. If the data raise no safety concern, investigators, the sponsor, and the
DMC may want the trial go to completion even if a futility boundary were reached.
In such cases, participating surgeons may have a learning curve in implanting the
experimental device so futility analysis, if included at all, should not occur too soon.
A group sequential approach to futility might be appropriate in this case if incidence
of thromboembolic events were the primary outcome because regulators have a good
idea of acceptable levels for such events (Grunkenmeier et al. 1994).

Decisions on recommending stopping for futility will often rest on the shoul-
ders of the DMC. There is no substitute for adequate pretrial training of DMC
members in the methods to be used, especially if these involve sophisticated
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statistical tools as discussed in this chapter and other chapters in this book
(Mehta 2010). In such cases, the sponsor is responsible for organizing pretrial
meetings with the DMC to describe various scenarios that might occur during the
trial and what actions might be taken. Herson (2009) indicates that it would be
useful if organizations such as the Drug Information Association, Regulatory Affairs
Professionals Association, Association of Clinical Research Professionals, British
Institute for Regulatory Affairs, etc. provided DMC member training courses where
potential DMC members could be certified for service on DMCs.
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Chapter 6
Molecular Gene-Signatures and Cancer
Clinical Trials

Mei-Ling Ting Lee

1 Introduction

Over the last 10 years, the process to develop molecular biomarkers and genomic
tests for assessing the risk of cancer and cancer recurrence has been evolving.
High-throughput technologies have increased the rate of discovery of potential
new markers and facilitated the development of composite gene signatures that
provide prognostic or predictive information about tumors. The traditional method
to assess the risk of cancer recurrence is based on clinical/pathological criteria.
The conventional design has been challenged, especially when the diseases may
be heterogeneous due to underlying genomic characteristics.

Recently, there has been an increase in cancer clinical trials using gene signatures
to assess cancer aggressiveness. For example, in some breast cancer studies, it was
hypothesized that by using newly developed gene-signature tools one can identify
subgroup of patients who will respond significantly to postsurgery (adjuvant)
chemotherapy. Future treatments can then be designed to the individual person
receiving it, and therefore spare the side effects of treatment to a large subgroup of
potentially nonresponsive patients. On the other hand, a parallel goal is to identify
what is the best treatment for patients: chemotherapy or hormonal therapy.

It is important to note that, if one of the major goals of using genomic biomarkers
is to move closer to individualized treatment, the biomarkers or gene signatures need
to be both prognostic and predictive.

Many studies with genomic biomarker and clinical investigations have been
conducted in the past few years. In this article, we review these investigations and
reproducibilities of the results.
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2 Phases, Guidelines, and Study Design in Development
of Genomic Biomarkers

Pepe et al. (2001) defined phases for biomarker development for early detection
of cancer. Phase 1 is for small preclinical exploratory studies and biomarker
discovery; important questions to be asked in phase I are safety of treatment and/or
pharmacokinetics for dosing. In Phase 2, a clinical assay based on specimens
that can be obtained noninvasively is developed and evaluated for its clinical
performance; Phase 2 asks whether there is any effect on surrogate measurements
of the clinical outcome and whether the study should progress to Phase 3. Phase 3
is used more often in cancer to examine the sensitivity and specificity of a marker
in predicting relapse. There are several markers now used this way, including BCR-
Abl in CML, a number of blood chemistries used in myeloma, the gene signatures
in breast cancer, etc. Phase 4 is to conduct prospective screening and to evaluate
the sensitivity and specificity of the test on a prospective cohort. In Phase 4, a
positive test may trigger a definitive diagnostic procedure which may be invasive
and more expensive. A large cohort with long-term follow up is needed for Phase 4.

Skates and others (2003) discussed calculations of the risk of ovarian cancer from
serial CA-125 values for preclinical detection in postmenopausal women. The CA-
125 marker remains quite controversial. In cancer research, the validation and use
of putative markers is a very difficult problem. Following the standard process of
phase 1–4 may not be sufficient. Novel models that capture the association more
precisely have a very large role.

Phase 5 evaluates the overall benefits and risks of the new diagnostic test on
screened population. The phase structure has been adopted by the Early Detection
Research Network (EDRN) and other research projects. Feng et al. (2004) discussed
strategies and issues for genomic and proteomic biomarker discovery and validation.
They recommended that biomarker development and evaluation should follow an
orderly process and emphasized that although most biomarkers may not go through
Phases 4/5 before their clinical adoption, these two phases are necessary so as to
reduce the burden of health care cost and the potential harm to the affected public.

Brazma et al. (2001) published guidelines on minimum information
about a microarray experiment (MIAME). This guideline has been widely
adopted as a set of standards for microarray data. Simon (2005, 2007)
developed guidelines for developing and validating therapeutically relevant genomic
classifiers. Food and Drug Administration (2008) posted guidelines for industry
on definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics,
genomic data and sample coding categories (E15); and a submission standard
on genomic biomarkers related to drug response (E16). (See http://www.fda.gov/
downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073
162.pdfandhttp://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatory
Information/Guidances/UCM174433.pdf).

Pepe et al. (2008) discussed standards for study design for evaluation of the
accuracy of a biomarker used for classification or prediction. They propose a

http://www.fda.gov/ downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073
http://www.fda.gov/ downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073
162.pdf and http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatory
Information/Guidances/UCM174433.pdf
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prospective-specimen-collection, retrospective-blinded-evaluation (PRoBE) design
in which biologic specimens are collected prospectively from a cohort that
represents the target population that is envisioned for clinical application of
the biomarker. Specimens and clinical data are collected in the absence of
knowledge about patient outcome. After outcome status is ascertained, case patients
with the outcome and control subjects without it are selected randomly from the
cohort and their specimens are assayed for the biomarker in a fashion that is blinded
to case-control status.

3 Emerging Molecular Gene-Signatures

After the previous update in 2000 (Bast et al. 2001), the American Society of
Clinical Oncology (ASCO) published the 2007 update of recommendations for the
use of tumor markers in breast cancer. Thirteen categories of breast tumor markers
were considered in this 2007 guideline, six of which were new for the guideline.
One of the new topics is multiparameter gene expression analysis for breast cancer.
In this 2007 ASCO update, Harris et al. (2007) reported four assays, namely,
the Oncotype DX, the MammaPrint test, the Rotterdam Signature, and the Breast
Cancer Gene-expression Ratio. The other five new topics in the guidelines include
urokinase plasminogen activator and plasminogen activator inhibitor1, cyclin E,
proteomic analysis, bone marrow micrometastases, and circulating tumor cells as
markers for breast cancer. The update also reported that some of the markers in the
new categories do not have sufficient evidence to support routine use in clinical
practice. Summarized below are descriptions of the four new multi-gene assays
discussed in the ASCO 2007 report, as well as breast cancer gene expression ratio
and the gene-expression grade index (GGI).

• Strategies in the Development of Molecular Gene-Signatures
Several genomic biomarkers and gene signatures have been investigated in the
past few years. Dowsett and Dunbier (CCR Focus 2009) gave a thorough sum-
mary and review of traditional and emerging markers in personalized therapy for
breast cancer. Among many methods that have been investigated, Sotiriou and
Pusztai (2009) summarize three strategies for the development of a gene-expression
prognostic signature in breast cancer: (1) top-down data-driven; (2) bottom-up
hypothesis-driven; (3) candidate gene approach. They reported that the “top-down”
data-driven approach was used in the development of MammaPrint (Agendia)
where gene-expression data from cohorts of patients with known clinical outcomes
are compared to identify genes that are associated with prognosis without any a
priori biologic assumption. In the “bottom-up” hypothesis-driven approach, gene-
expression patterns that are associated with a specific biologic phenotype or a
deregulated molecular pathway are first identified and then subsequently correlated
with the clinical outcome. The GGI also uses the bottom-up approach. The third
strategy they considered is the “candidate-gene approach” where selected genes of
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interest on the basis of existing biologic knowledge are combined into a multivariate
predictive model. The Oncotype DX (Genomic Health) uses the candidate-gene
approach for estimating outcome.

• MammaPrint (70-Gene Signature)
MammaPrint is a gene expression profile using a DNA microarray platform
marketed by Agendia in the Netherlands. The test requires a sample of tissue that is
composed of a minimum of 30% malignant cells. MammaPrint has received FDA
clearance and is available in Europe and the United States.

The MammaPrint assay was developed on the basis of research conducted
at the Netherlands Cancer Institute in Amsterdam and collaborating institutions
(vant Veer et al. 2002; van deVijver et al. 2002). Using microarray technology and
samples from lymph node-negative breast cancers, a dichotomous risk classifier was
developed. Of 117 patients, 78 sporadic lymph-node-negative patients were selected
to search for a prognostic signature in their gene expression profiles. Forty four
Patients remained free of disease after their initial diagnosis for an interval of at least
5 years (good prognosis group), and 34 patients had developed distant metastases
within 5 years (poor prognosis group). Using supervised classification method,
approximately 5,000 genes were selected from the 25,000 genes on the microarray.
The correlation coefficients of the expression for each gene with disease outcome
were calculated. Two hundred and thirty one genes were found to be significantly
correlated (correlation coefficient <−0.3, or >0.3) with disease outcome (distant
metastases within 5 years). These 231 genes were ranked and the top 70 genes
were selected. To initially validate the 70-gene profile, an additional set of tumors
from patients free from distant metastases for at least 5 years after diagnosis and 12
tumors from patients with metastases within 5 years of diagnosis were analyzed.
The 70-gene profile accurately predicted disease outcome in 17 of 19 patients,
thereby confirming the initial performance of the prognostic classifier (Mook et al.
2007). A retrospective validation of the 70-gene profile was performed by the same
research group using a consecutive series of 295 breast cancer patients (144 lymph
node positive and 151 lymph node-negative, Cardoso et al. 2008).

Buyse et al. (2006) discussed an independent, albeit still retrospective, validation
study of the MammaPrint 70-gene signature. Researchers used frozen archival
tumor material from 302 node-negative patients from five non-Dutch cancer centers
in three countries (the United Kingdom, Sweden, and France), who had similar
characteristics to the Dutch initial series; all patients were 60 years or younger
at diagnosis, were diagnosed before 1999, and had lymph nodenegative T1 or T2
breast cancer, and the great majority had not received adjuvant systemic therapy.
The median follow-up of the TRANSBIG series was 13.6 years, which is much
longer than the original series. Frozen samples were sent to Amsterdam for gene
expression profiling using a custom-designed chip that assesses the mRNA expres-
sion of the 70-genes in triplicate (MammaPrint), and tumors were classified as high
risk if the correlation coefficient for the average expression of the 70-gene profile
was less than 0.4. Importantly, researchers in Amsterdam had no knowledge of
the clinical outcome data. Central pathology review of ER status and grade was
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carried out at the European Institute of Oncology (Milan, Italy) for nearly 80% of
samples, and an independent audit was performed for all the clinical and pathologic
data collected from the centers. Only an independent statistical office in Brussels,
Belgium, had access to both the genomic and the clinico-pathologic data, and
performed the validation analyses. The results of this validation study confirmed
that the 70-gene profile was able to discriminate between patients at significantly
high risk of distant metastases and death and patients with considerable low risk,
and hence good prognosis, with hazard ratios of 2.79 (95% CI, 1.60–4.87) and 2.32
(95% CI, 1.35–4.0), respectively, for distant diseasefree survival (DDFS) and OS.
The Mamma Print test was approved by FDA in 2007.

• Oncotype DX (21-Gene Recurrence Score)
Large clinical trials have demonstrated the benefit of tamoxifen and chemotherapy
in women who have node-negative, estrogen-receptor positive breast cancer. How-
ever, since the likelihood of distant recurrence in patients treated with tamoxifen
alone after surgery is about 15% at 10 years, at least 85% of patients would
be overtreated with chemotherapy if it were offered to everyone. It has been
shown that the likelihood of distant recurrence in patients with breast cancer who
have no involved lymph nodes and estrogen-receptor-positive tumors is poorly
defined by clinical and histopathological measures. Using the reverse-transcriptase-
polymerase-chain-reaction (RT-PCR) technique, Paik et al. (2004) reported that the
results of the assay of 21 prospectively selected genes in paraffin-embedded tumor
tissue correlated with the likelihood of distant recurrence.

The Oncotype DX (Genomic Health) uses the 21 candidate-gene approach
to estimate clinical outcome. The Oncotype DX was used for patients with
node-negative, tamoxifen-treated breast cancer who were enrolled in the National
Surgical Adjuvant Breast and Bowel Project clinical trial B-14 (entitled “A Clinical
Trial to Assess Tamoxifen in Patients with Primary Breast Cancer and Negative
Axillary Nodes Whose Tumors Are Positive for Estrogen Receptors”). The levels
of expression of 16 cancer-related genes and 5 reference genes were used in a
prospectively defined algorithm given by Paik et al. (2004) to calculate a recurrence
score (RS) and to determine a risk group (low: RS<18; intermediate: 18≤ RS ≤30:
or high: RS≥31) for each patient. This algorithm was established in a training
set comprising mainly samples from the tamoxifen-alone arm of the NSABP-B20
trial and then validated in the tamoxifen arm of NSABP-B14. Genes associated
with proliferation and endocrine responses are strongly represented. Although the
recurrence score is a continuous measure of risk, it is conventionally used to identify
three risk groups. Within the NSABP B-20 trial with a median follow-up of 10.9
years, the low-, intermediate-, and high-risk groups of tamoxifen-treated patients
were associated with distant recurrence rates of <10%, 10–30%, and >30%,
respectively. The recurrence score has been found to predict distant recurrence
independent of age and tumor size, and is predictive of overall survival. With the use
of the RT-PCR assay, Oncotype DX measures the expression of ER and HER2, as
well as that of ER-regulated transcripts and several proliferation-related genes. Most
of these genes are associated with outcome, and several can be assessed with the use
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of conventional methods. Sparano and Paik (2008) reported that the Oncotype DX
assay has been ordered for more than 40,000 patients and by approximately 6,000
different physicians since it became commercially available in January 2005.

• Rotterdam 76-Gene Signature
Using Affymetrix Human U133a GeneChips, Wang et al. (2005) analyzed frozen
tumor samples from 286 lymph-node-negative patients who had not received
adjuvant systemic treatment. They randomly divided the 286 samples (ER-positive
and ER-negative combined) into a training set and a testing set. Based on a training
set of 115 tumors, they identified a 76-gene signature consisting of 60 genes
for patients positive for estrogen receptors (ER) and 16 genes for ER-negative
patients. In an independent test set of 171 lymph-node-negative patients who had
not received adjuvant systemic treatment, they found that this 76-gene signature
showed 93% (52/56) sensitivity and 48% (55/115) specificity with AUC of 0.694 for
the corresponding ROC curve. They claimed that this 76-gene signature provides
a powerful tool for identification of patients at high risk of distant recurrence,
and hence is useful for individual risk assessment in patients with lymph-node-
negative breast cancer. The gene profile was informative in identifying patients
who developed distant metastases within 5 years (hazard ratio 5.67 with 95% CI
[2.59–12.4]), even when corrected for traditional prognostic factors in multivariate
analysis (5.55 [2.46–12.5]).

• Breast Cancer Gene Expression Ratio
The Breast Cancer Gene Expression Ratio test (AvariaDx Inc, Carlsbad, CA) is a
quantitative RT-PCR-based assay that measures the ratio of the HOXB6 and IL17BR
genes. It is marketed as a marker of recurrence risk in untreated ER-positive/node-
negative patients. The ratio of HOXB6:IL17BR genes was first reported by Ma et al.
(2004, 2006) as predicting poor outcome in ER-positive patients treated with
tamoxifen. The genes were discovered using an oligonucleotide array based on
frozen material (Agilent Technologies, Santa Clara, CA) and subsequently validated
by quantitative RT-PCR in archived material from the same tumor specimens.

• 97-Gene Gene-Expression Grade Index (GGI)
Perou et al. (2000) originally reported a cluster of genes that correlated with cellular
proliferation rates and was noted to have considerable variation between subgroups.
Performing a supervised analysis, Sotiriou et al. (2006) defined a gene-expression
grade index (GGI) score based on 97 genes. These genes were mainly involved in
cell cycle regulation and proliferation and were consistently differentially expressed
between low- and high-grade breast carcinomas. The GGI is an algorithm derived
to evaluate the degree of similarity between a tumor sample and histologic grade.

The genomic test of MapQuant DxtM (Ipsogen, Marseilles, France and new
Haven, CT, USA) is based on the genomic grade index (GGI). It directly measures
the expression of the 97 genes that best characterize high-grade vs. low-grade
tumors. Its company website claims that this test can resolve these “grade 2” tumors
into either “grade 1” or “grade 3” tumors in 80% of cases.



6 Molecular Gene-Signatures and Cancer Clinical Trials 145

• Other Gene Signatures
In addition to the above mentioned gene signatures, there are some other com-
mercially available gene signatures, including Theros Breast Cancer indexsM
(Biotheranostics, San Diego, CA). Sotiriou and Pusztai (2009) reviewed some of
these gene signatures in breast cancer.

4 Trial Designs for Validation of Predictive Biomarkers

Biomarkers associated with disease outcome are referred to as prognostic markers
and biomarkers associated with drug outcome are referred to as predictive markers.
Mandrekar and Sargent (2009a,b) discussed clinical trial designs for predictive
biomarker validation. In many cases, because of time and cost, retrospective
validation is done using data from previously well conducted randomized con-
trolled trials. Amado et al. (2008) reported that wild-type KRAS is required for
panitumumab efficacy in patients with metastatic colorectal cancer. This is an
example of a marker that has been successfully validated using data collected from
previous randomized trials. As a result of these studies, the label for panitumumab
monotherapy for colorectal cancer has been restricted to a subgroup of patients with
wild-type KRAS in Europe. On the other hand, the gold standard for predictive
marker validation is a prospective randomized clinical trial. Summarized below are
three prospective validation categories of designs and innovative adaptive designs
reported by Mandrekar and Sargent (2009a,b).

• Targeted or Enrichment Designs
The targeted (enrichment) design is based on the paradigm that not all patients
will benefit from the study treatment, but rather that the benefit will be restricted
to a subgroup of patients who express (or not) a specific molecular feature. All
patients are screened for the presence or absence of a marker (or gene signature),
and only those with (or without) certain molecular features are included in the trial.
Romond et al. (2005) employed an enrichment design and enrolled only human
epidermal growth factor receptor 2 (HER2)-positive patients. They demonstrated
that trastuzumub combined with chemotherapy significantly improved disease-
free survival among women with surgically removed HER2-positive beast cancer.
Subsequent analyses from NSABP B-31 (Paik et al. 2007; Perez et al. 2007) have
raised the possibility of a beneficial effect of trastuzumab in a more broadly defined
patient population.

• Unselected Designs
In the unselected design, all patients meeting the eligibility criteria (which does
not include the status of a biomarker characteristic) are entered into the trial.
Mandrekar and Sargent (2009a,b) note that the ability to provide adequate tissue
may be an eligibility criterion for these designs, but not the specific biomarker result.
These designs can be broadly classified into sequential testing strategy designs,
marker-based designs, or hybrid designs, which are differentiated from each other
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by the protocol specified approach to the prespecified type I and type II error rates
(influencing sample size), analysis plans (including a single hypothesis test, multiple
tests, or sequential tests), and randomization schema.

• Hybrid Design
When there is compelling prior evidence demonstrating the efficacy of a certain
treatment for a marker-defined subgroup, it would be unethical to randomly assign
patients with that particular marker status to other treatment options. Thus, patients
in the other marker-defined subgroups are assigned the standard-of-care treatments.
All patients are screened for marker status in this design. This design is powered to
detect differences in outcomes only in the marker-subgroup that is randomized to
treatment choices based on the marker status. Three large phase 3 marker validation
trials have been launched with a hybrid design: the ECOG 5202 trial, the TAILORx
trial, and the MINDACT trial.

• Adaptive Designs
In addition to the above designs, some novel statistical designs have been proposed
recently. Freidlin and Simon (2005) proposed an adaptive design for randomized
clinical trials of targeted agents in settings where an assay or signature that identifies
sensitive patients is not available at the outset of the study. The design combines
prospective development of a gene expression-based classifier to select sensitive
patients with a properly powered test for overall effect. Wang et al. (2007) proposed
an adaptive accural design and outlined a strategy to adaptively modify accural to
two predefined marker-defined subgroups based on an interim futility analysis. Jiang
et al. (2007) considered a biomarker-adaptive threshold design that is similar to
the sequential testing strategy designs. Using a Bayesian hierarchical framework
and based on outcomes from the accumulated data in the trial, Zhou et al. (2008)
introduced an outcome-based adaptive randomization design to randomly assign
patients to treatments in an adaptive fashion based on biomarker status.

5 Recent Examples of Cancer Clinical Trials
with Genomic Biomarkers

5.1 MINDACT Trial

The Breast International Group (BIG), created in 1996 by European oncologists,
involves research participants based in European countries, Canada, Latin America,
Asia and Australasia. As an expansion of BIG, TRANSBIG is an international
network that was created to promote translational research and international col-
laboration. The TRANSBIG consortium includes institutions in 21 countries from
Europe and Latin America who are preparing a randomized clinical trial for the use
of DNA chips to help determine therapies for lymph node-negative breast cancer
patients (Hampton 2004). The first TRANSBIG molecular-based adjuvant trial for
node-negative breast cancer patients is called MIcroarray for Node negative Disease
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may Avoid Chemo-Therapy (MINDACT). It has been coordinated by the European
Organisation for Research and Treatment of Cancer (EORTC) (see http://www.
eortc.be/services/unit/mindact/MINDACT websiteii.asp)

The MINDACT trial (EORTC 10041/ BIG 3-04) is a Phase 3 clinical trial
conducted under the BIG and TRANSBIG network. With accrual started in February
2007, the trial will accrue 6,000 early breast cancer patients, either node-negative or
with 1–3 positive lymph nodes.

Cardoso et al. (2008) review the MINDACT trial that compares the 70-gene
signature MammaPrint (Agendia) with traditional clinical-pathological methods for
assessing the risk of breast cancer recurrence in women with early breast cancer.

The EORTC website lists the following statistical design for primary tests in
the MINDACT trial. In the group of patients who have a low-risk gene prognosis
signature and high-risk clinical-pathological criteria, and who were randomized to
use the 70-gene risk and thus receive no chemotherapy, a null hypothesis of a 5-year
DMFS of 92% will be tested. With 6,000 patients accrued overall, this group has an
expected size of 672 patients. With an accrual of 3 years, and a total duration of 6
years (so 3–6 years follow up for each patient), a one-sided test at 97.5% confidence
level has 80% power to reject this hypothesis if the true 5-year DMFS is 95%. In the
setting of the first randomization several other tests, comparing overall efficacy and
chemotherapy assignment probabilities between the two prognosis methods, as well
as within specific subgroups of discordant prognosis, will be important in assessing
the value of prognosis according to the 70-gene signature.

It is hypothesized that using the genomic test in addition to traditional methods
will result in more accurate risk assessment such that in the future 10–20% of
patients could safely avoid adjuvant chemotherapy and its potential side effects.
The MINDACT trial is the first in which microarray technology is being evaluated
in a large, prospective clinical trial as a prognostic test to direct clinical decisions
(Hampton 2004). In November 2008, with the accrual of the first 800 patients, the
MINDACT trial reached its first milestone of the “pilot phase.” The preliminary
results of this phase demonstrate that the trial is logistically feasible. With an
average accrual rate of 120 patients per month, the trial is expected to finish
recruitment by the end of 2012 (EORTC Report 2009–2010).

In the MINDACT trial, mandatory fresh tumor samples for microarray analysis
are stored for biobank and proteomic analysis. Also a representative paraffin tissue
block has to be sent for central histopathology review and for the production of
tissue microarrays. Optional blood sample collection may be performed for genetics
and proteomics and for future research projects. Results of this trial could serve as
a model for studies of microarrays as prognostic tools for many diseases.

Node-negative breast cancer patients who are particularly at risk of cancer recur-
rence can voluntarily participate in the MINDACT study. Patients who will undergo
chemotherapy are randomly selected; a procedure that is important for the validity
of the study and which provides the framework for determining whether the new
genetic signature reliably indicates the risk of breast cancer relapse. All patients,
whether receiving chemotherapy or not, are to be closely monitored. In the future, it
is expected that 20% of women will be spared strenuous chemotherapy without any
compromise in outcome.

http://www.eortc.be/services/unit/mindact/MINDACT_websiteii.asp
http://www.eortc.be/services/unit/mindact/MINDACT_websiteii.asp
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5.2 TAILORx Trial

Sparano and Paik (2008) reviewed the development of the 21-gene assay (Oncotype
DX, Genomic Health) and its clinical validation in the TAILORx trial.

The TAILORx trial is a Phase III randomized study of adjuvant combination
chemotherapy and hormonal therapy versus adjuvant hormonal therapy alone in
women with previous resected axillary node-negative breast cancer with various
levels of risk for recurrence. Activated in 2006 and coordinated by ECOG
(NCT00310180), the multicenter Trial Assigning Individualized Options for
Treatment (TAILORx) was among the first to test the feasibility of a prognostic tool
in clinical application. Using RT-PCR, the 21-gene assay was developed specifically
for patients with ER-positive breast cancer and has been shown to predict distant
recurrence.

In this trial, doctors will use a test called the Oncotype DX Breast Cancer
Assay, which measures the activity of a set of genes in breast tumor tissue, to
determine which women will receive adjuvant chemotherapy in addition to hormone
therapy. With a null hypothesis of no difference, this trial uses a noninferiority
design to determine whether patients with a recurrence score between 11 and 25
derive benefit from adjuvant chemotherapy with a larger type I error (one-sided,
10%) and smaller type II error (5%) than usual. A decrease in the 5-year disease-free
survival (DFS) rate from 90% with chemotherapy to 87.5% or lower on hormone
therapy alone would be considered unacceptable. All patients in the TAILORx trial
will provide blood samples for banking and future research.

As of October 10, 2010, a total of 6,906 patients were randomized. The accrual of
the TAILORx trial was hence closed (personal communication from Robert Gray).
For details about the TAYLORx trial, see the trial webpage at http://www.cancer.
gov/clinicaltrials/ECOG-PACCT-1.

5.3 SWOG S8814-INT0100 Trial

Under the hypothesis that the 21-gene recurrence score assay (Oncotype DX by
Genomic Health) is prognostic for women with node-negative, ER-positive breast
cancer treated with Tamoxifen alone and that a high RS predicts a large, additional
chemotherapy benefit, the Southwestern Oncology Group conducted a phase III trial
for postmenopausal women with node-positive ER-positive breast cancer (Albain
et al. 2007). The two primary objectives of this trial were to determine if the
recurrence score (1) provides prognostic data for disease free survival in the
Tamoxifen-alone control arm and (2) predicts a group that does not benefit from
chemotherapy followed by Tamoxifen, despite positive nodes.

The Southwest Oncology Group (SWOG)-8814, INT-0100 study was a phase 3,
open-label, parallel-group, randomized controlled trial. Enrolled patients were
randomly assigned in a 2:3:3 ratio to one of three drug regimens: (1) tamoxifen

http://www.cancer.gov/clinicaltrials/ECOG-PACCT-1.
http://www.cancer.gov/clinicaltrials/ECOG-PACCT-1.


6 Molecular Gene-Signatures and Cancer Clinical Trials 149

alone (20 mg per day orally) for 5 years; (2) six cycles of CAF (cyclophosphamide
orally on days 1-14, doxorubicin intravenously on days 1 and 8, and fluorouracil
intravenously on days 1 and 8) followed by tamoxifen (CAF-T); or (3) CAF with
concurrent tamoxifen (CAFT). There were 367 specimens (40% of the 927 patients
in the tamoxifen and CAF-T groups) with sufficient RNA for analysis. The re-
currence score was prognostic in the tamoxifen-alone group (p = 0.006; hazard
ratio [HR] 2.64, 95% CI 1.33–5.27, for a 50-point difference in recurrence score).
Results from the SWOG S8814 trial show that the recurrence score is prognostic
for tamoxifen-treated patients with positive nodes and predicts significant benefit
of CAF in tumors with a high recurrence score. A low recurrence score identifies
women who might not benefit from anthracycline-based chemotherapy, despite
positive nodes (Albain 2010).

5.4 ECOG E5202 Trial

The Eastern cooperative oncology group (ECOG) launched the randomized phase 3
study E5202 in patients with stage II colon cancer. Based on two molecular markers,
patients with stage II colon cancer at a high risk for recurrence after surgery are
randomly assigned to one of two arms: 5-FU, Leucovorin and Oxaliplatin with
(versus without) bevacizumab. Patients with low risk for recurrence after surgery
will not receive any adjuvant therapy; they were subject to observation only.
The trial was opened nationally in August 2005, a total of 3,610 patients were to be
accrued for this study within 5.8 years (http://www.cancer.gov/clinicaltrials/ECOG-
E5202). Mandrekar and Sargent (2009a,b) mentioned that the design of ECOG
E5202 trial will not allow for a determination of the benefit of bevacizumab in
the low-risk strata. However, if the outcomes in the absence of treatment are as
favorable as predicted in that group, no postsurgical therapy would generally be
recommended.

Following the announcement of the negative results for bevacizumab in the
Roche AVANT trial, however (in addition to the earlier negative results in NSABP
C-08 study), ECOG had to stop the randomization and treatment with bevacizumab
in E5202. Accrual is currently suspended while they decide if it would be worth
accruing more patients to address marker-driven endpoints. By November 2010,
a total of 1,008 low-risk and 918 high-risk patients have been entered in E5202
(personal communication from Robert Gray).

6 Comparisons of Gene Signatures

On the basis of a single data set of 295 samples and applying different gene-
expression models, Fan et al. (2006) conducted pairwise comparisons of five
gene-expression models: intrinsic subtypes, 70-gene profile (van deVijver et al.
2002; vant Veer et al. 2002), wound response, recurrence score (Paik et al. 2004),

http://www.cancer.gov/clinicaltrials/ECOG-E5202
http://www.cancer.gov/clinicaltrials/ECOG-E5202
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and the breast cancer gene expression ratio. Despite the absence of gene overlap,
the different gene models yielded similar predictions. They found that, although
these gene signatures had little overlap in gene identity, the results were highly
concordant. Comparisons showed that their sample predictions agreed in 77% of
patients with ER+ cancer and 81% of all patients. These analyses suggest that
even though there was very little gene overlap (the 70-gene and recurrence-score
profiles overlapped by only 1 gene: SCUBE2) and different algorithms were used,
the outcome predictions for the majority of patients with breast cancer would be
similar.

Using the published TRANSBIG independent validation series of node-negative
untreated primary breast cancer patients, Haibe-Kains et al. (2008) compared three
gene expression signatures, the 70-gene, the Rotterdam 76-gene, and the 97-gene
GGI. They reported that the three evaluated signatures had similar capabilities of
predicting distant metastasis free survival.

Dowsett and Dunbier (2008) examined five prominent gene expression signatures
and three emerging single biomarkers. They reported that, despite the fact that
the GGI is composed almost exclusively of proliferation genes, the GGI scores
correlate with the well-known luminal A and B classifications and to the risk groups
produced using the OncotypeDx assay, the MammaPrint assay, and the 76-gene
Rotterdam signature. This overlap in groupings could perhaps be seen as even
more surprising given that the Rotterdam signature does not contain any of the
genes in either Oncotype DX or MammaPrint, and was developed using patients
unselected for age, tumor size, grade, or estrogen-receptor/progesterone-receptor
status, with development of metastatic disease within 5 years as a supervision
criterion. However, given that proliferation-associated genes feature strongly in all
of these signatures, this association may reflect the dominance of proliferation as a
prognostic factor in breast cancer.

Wirapati et al. (2008) conducted a meta analysis involving breast cancer gene
studies. Results exhibited similar prognostic proformance.

7 Statistical Considerations

7.1 Flaws to Be Avoided in Microarray Studies

Using MEDLINE search and hand screening, Dupuy and Simon (2007) conducted
a review of microarray studies for clinical outcomes published through 2004.
Ninety studies were identified and their descriptive characteristics were presented.
The statistical analyses for 42 studies published in 2004 were examined in detail.
They found that 21 of them contained at least one of the following three basic
flaws: (1) in outcome-related gene finding, an inadequate control for multiple
testing; (2) in class discovery, a spurious claim of correlation between clusters and
clinical outcome, made after clustering samples using a selection of outcome-related
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differentially expressed genes; (3) in supervised prediction, a biased estimation of
the prediction accuracy through an incorrect cross-validation procedure. Based on
the common mistakes they found from these studies, they gave thorough guidelines
and a check list of “Do’s and Don’t” for statistical analysis and reporting for clinical
microarray studies. (Ransohoff 2007; Ransohoff et al. 2008) also emphasized that
cross-validation cannot replace the need for totally-independent assessment.

7.2 Statistical Hypotheses in Adaptive Designs

In addition to the designs reviewed above, some innovative statistical designs have
been proposed that use adaptive methods. In conventional clinical trials, the overall
treatment effect is to be considered in the entire randomized study population.
Wang et al. (2005) and Simon and Wang (2006) investigated two aspects of clinical
trials involving genomic biomarkers. Wang et al. (2007) investigated approaches to
evaluation of treatment effect in randomized clinical trials with genomic subgroups.
They use a genomic biomarker (either single gene or composite signature) to
classify patients into two mutually exclusive subgroups: namely, patients in the
genomic marker positive group (g+); and patients in the genomic marker negative
group (g−). In this setting, the overall treatment effect Δ is defined as the average
effect for the entire randomized study population derived by weighting the treatment
effect in each genomic subgroup by its sample size fraction. The treatment effect in
the genomic marker positive subgroup g+ is Δg+. The authors then consider the
following hypotheses for the overall population:

• H0a: Δ = 0.
• H1a: Δ > 0.

Similarly, in the genomic marker positive subset group g+, they define the following
hypotheses:

• H0g+: Δg+ = 0
• H1g+: Δg+ > 0

When the genomic subset is prospectively planned a priori, the authors consider the
following composite hypotheses for the study:

• H0 = H0a
⋂

H0g+: {Δ = 0 and Δg+ = 0}
• H1: {Δ > 0 or Δg+ > 0}.
The composite null hypothesis here is the intersection of the previous two null
hypotheses, namely, the hypothesis that neither all patients nor the g+ subset of
patients benefit from the new treatment.

Using a bivariate normal model and other methods, the authors then compare the
adaptive design method with the nonadaptive-design method. Empirical type I error
probabilities and power comparisons are presented. They suggest that it is desirable
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to test the prespecified genomic subset, regardless of the outcome of testing for all
eligible patients. Instead of the conventional approach that H0g+ is tested only if
H0a is rejected, they suggest building a multiplicity adjustment rule such that H0a is
tested only if H0g+ is rejected.

They report that if H0a is rejected, but H0g+ is not, the treatment effect is
asserted for all patients studied and subgroup effects are reserved for checking
the consistency of the effect. When only H0g+ is rejected, the treatment effect
appears to be only in the genomic subset and the genomic biomarker may be
predictive of therapeutic response. When both H0a and H0g+ are rejected, the
genomic biomarker is likely to have a prognostic therapeutic effect if there is no
qualitative interaction between the therapy and the genomic biomarker. However,
if a qualitative interaction exists and depending on the prevalence of the genomic
biomarker, the genomic biomarker may be considered predictive of treatment effect.

The above adaptive design considered by Wang et al. (2007) assumes that the
patients can be accurately classified into two groups. When the binary genomic
marker gives imperfect classification of a diagnostic assay, Maitournam and Simon
(2005) discussed the impact on the efficiency of targeted clinical trials in terms of
number of screened patients to meet planned numbers of subjects in the g+ and
g− subgroups for randomization. They modeled assay specificity and whether a
treatment effect is expected for the less responsive group of patients.

7.3 Predictive Analysis of Clinical Trials

A predictive biomarker is a biological measurement made before treatment to
identify which patient is most likely or least likely to benefit from a particular
treatment. Simon (2010a,b) proposed that the development of treatments with
predictive biomarkers requires major changes in the standard paradigms for the
design and analysis of clinical trials. He outlined a prediction based approach to
the design and analysis of randomized clinical trials. Freidlin and Simon (2005)
also considered an adaptive signature design. Their threshold designs are adaptive,
not with regard to sample size or randomization ratio, but rather with regard to
the subset in which the new treatment is evaluated relative to the control. In the
adaptive threshold design, they assumed that a predictive biomarker score was
prospectively defined in a randomized clinical trial comparing a new treatment
to a control. The score is not used for restricting eligibility and no cut-point for
the score is prospectively indicated. Freidlin et al. (2010) demonstrated that the
power of this approach can be substantially increased by embedding the classifier
development and validation process in a K-fold cross-validation. On the other
hand, risk prediction procedures are valuable tools for disease prevention and
management. Uno et al. (2007, 2011) proposed methods for evaluating prediction
procedures.
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7.4 Multiple Testing, Sample Size and Power Calculations

Both the TAILORx and MINDACT trials discussed above are prospective clinical
trials, but many studies use genomic convenient samples. Wang et al. (2007)
investigated statistical issues in evaluating pharmacogenomics-based clinical effect
for confirmatory trials and discussed the issue of imbalance, confounding, bias,
design efficacy loss, type I and type II errors that may occur in the evaluation
of convenient samples. While many studies published promising results and more
comparison/validation studies are under way, it is important to emphasize that the
dataset that is to be used for the validation study should not be obtained from
the dataset used to develop the gene sets. Also, it is important to evaluate gene
signatures on their original platform and compute them with the original algorithms
on an independent population. Other important basic issues involved in microarray
studies, including multiple testings, false discovery rates, sample size and power
calculations, and machine learning methods are summarized in Simon et al. (2003)
and Lee (2004).
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Chapter 7
Targeted Clinical Trials

Stephen L. George and Xiaofei Wang

1 Background and Introduction

Randomized clinical trials (RCTs) are the most reliable scientific tool for the
identification of safe and effective therapies for cancer. Indeed, it can be argued
that such trials are indispensible for this purpose. The design and analysis of
these trials are generally aimed at differences in overall population parameters.
The trials compare outcome measures such as response rates, progression-free
survival (PFS), disease-free survival, and overall survival (OS) for patients assumed
to be representative of the population under study, determined by the specified
eligibility criteria on the trial. Although no assumption of homogeneity of the
patients studied or of the relative effects of treatment is required, major conclusions
and, for new agents, subsequent regulatory approvals are generally based on the
overall population. For example, a conclusion might be that some new therapy
is better than a standard therapy in some population with respect to PFS, if the
observed hazard ratio is significantly less than unity (in favor of the new therapy),
even if the “average” benefit on other scales (e.g., difference in the PFS medians)
is quite small. This is a legitimate and reasonable approach, one that has over time
yielded major advances in cancer treatments. However, if the eligibility criteria are
sufficiently broad, a generally desirable feature of traditional RCTs, unrecognized
heterogeneity may have a substantial effect on the power of the trial (Betensky
et al. 2002; Zhang et al. 2006). Indeed, there may be reasons to suspect that the
treatment under study might benefit only a subset of patients in the population and
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that any observed difference is due solely or largely to the results in this subset.
If this is true and if such patients can be reliably identified beforehand, major
benefits could accrue by targeting the subset population rather than the broader one.
Benefits include more efficient clinical trials, avoidance of unnecessary treatment of
patients who will not benefit from treatment, faster drug development times, and so
on. Indeed, the concept of “personalized” medicine is predicated on the existence
of such exploitable patient differences. Of course, the reliable identification of the
subset population, assuming such exists, is not easy, but is of critical importance
(George 2008).

The purpose of this chapter is to explore issues in the design and analysis of
targeted clinical trials, in which a prespecified subgroup of patients, often based
on a putative predictive biomarker, is identified and targeted for special attention.
One important class of targeted designs involves “targeted” therapy, in which a
particular biologic pathway is targeted by the therapy. In this case, patients who,
say, overexpress a particular marker may be more sensitive (or less sensitive) to
the targeted therapy than those who do not. However, the concept of a targeted
clinical trial is applicable more broadly than to clinical trials of targeted therapy.
Other examples of targeted subgroups include patients who are identified as being
at especially high (or low) risk of failure for the therapies under study, whether or not
these are targeted therapies, and patients who are identified as sensitive (or resistant)
to certain classes of standard agents. The relative efficiency and other comparative
performance characteristics of various designs in these settings will be explored and
illustrated with specific examples.

2 Prognostic and Predictive Biomarkers

It is common to make a distinction between “prognostic” markers and “predictive”
markers (Conley and Taube 2004; Lee et al. 2009). A prognostic marker is one that
can be used to separate patients with a better prognosis from those with a worse
prognosis when given some standard treatment. A predictive marker, on the other
hand, is one that can be used to identify subsets of patients for whom the effect
of some new treatment, relative to a standard or control treatment, varies among
the subsets. Such a biomarker can thus be used to guide therapy for patients and
to design clinical trials more efficiently. Given the recent explosion in techniques
for molecular analysis and the strong interest in personalized medicine, there is no
shortage of claims that a given biomarker is predictive for the use of specific agents.
Some examples of these markers and the agents or therapies for which they are
claimed to be predictive are given in Table 7.1.

These include estrogen receptor (ER) positivity and tamoxifen in breast cancer
(Jordan 2006), HER2 receptor overexpression for trastuzumab in breast cancer
(Madarnas et al. 2008) and in advanced gastric cancer(Van Cutsem et al. 2009)
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Table 7.1 Some putative predictive markers

Marker Agent Cancer type

Estrogen receptor Tamoxifen Breast
HER2 Trastuzumab Breast, gastric
HER2 Lapatinib Breast
EGFR Gefitinib NSCLC
Cox-2 Celecoxib NSCLC
CD133 Sorafanib, erlotinib NSCLC
K-RAS Cetuximab, panitumumab Colorectal
Androgen receptor Dasatinib Prostate

and for lapatinib in breast cancer (Madarnas et al. 2008; Finn et al. 2009),
EGFR mutations for gefitinib in lung cancer (Mok et al. 2009), Cox-2 expression
for celecoxib in advanced NSCLC (Edelman et al. 2008), CD133+ circulating
hematopoietic progenitor cells for sorafenib plus erlotinib in NSCLC (Vroling
et al. 2009), K-ras mutations for cetuximab (Karapetis et al. 2008) and panitumumab
(Amado et al. 2008) in advanced colorectal cancer, and an androgen receptor sig-
nature for dasatinib in castration-resistant prostate cancer (Mendiratta et al. 2009).
There are many other such examples and the list is growing rapidly. Not all of the
claims made for a predictive biomarker are based on the same strength of evidence.
Indeed, one of the difficulties in this field is the lack of consistent application of
accepted principles of methodology in the design and analysis of such studies.
Although it is beyond the scope of this chapter to discuss these methodology issues
in detail, there has been considerable work in this area (Biomarkers Definitions
Working Group 2001; Pepe et al. 2001; Simon 2005a,b; Ransohoff 2007; Wang
et al. 2007; Pepe et al. 2008; Simon 2008a, b, 2009; Taube et al. 2009; Wang and
Zhou 2010; Wang et al. 2009) and guidelines have been proposed for the levels of
evidence to be used to assess the clinical value of a tumor marker (Hayes et al. 1996;
Locker et al. 2006; Harris et al. 2007). These are widely used but also widely
ignored. In addition, several journals have incorporated rules for reporting the results
of marker studies, the REMARK criteria (McShane et al. 2005; Hayes et al. 2006).

One important aspect of the study of biomarkers is the appropriate assessment
of the marker and, for binary markers constructed from continuous measurements,
the categorization into marker positive and marker negative groups. For example,
in the HER2 case noted above, the usual definition of HER2 positivity requires
an immunohistochemistry (IHC) score of 3+ and positive fluorescence in situ
hybridization (FISH) (Gown 2008). Alterations at the DNA (amplification) and
protein (overexpression) level usually occur in concert, and both FISH and IHC
can be accurate methods to assess these alterations. But, as with all such assays, the
tests are not perfect and the presence of false positives or false negatives and the
inevitable missing data issues have implications for clinical trial design efficiency
as discussed more below.
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Table 7.2 Hazard rates M− M+ Pooled

Trt 0 λ0(t) λ0(t)eβ2 λ (p)
0 (t)

Trt 1 λ0(t)eβ1 λ0(t)eβ1+β2+β3 λ (p)
1 (t)

Hazard ratio eβ1 eβ1+β3 λ (p)
1 (t)/λ (p)

0 (t)

2.1 Statistical Models

To clarify the definitions of prognostic and predictive markers, consider a simple
proportional hazards model for a time-to-event outcome such as OS or PFS with
two treatments and a single binary biomarker:

λ (t) = λ0(t)exp {β1X1 +β2X2 +β3X1X2}, (7.1)

where λ (t) is the hazard function for an event, λ0(t) is the baseline hazard function,
X1 is the treatment indicator (0 for the control treatment, 1 for the experimental
treatment), X2 is the biomarker indicator (0 for marker negative, 1 for marker
positive), and X1X2 is the interaction term. The hazard rates and resultant hazard
ratios are given in Table 7.2.

Thus, β1 is a measure of the treatment effect (the log of the treatment hazard
ratio when X2 = 0),β2 is a measure of the prognostic effect of the marker (the log
of the marker hazard ratio when X1 = 0), and β3 is a measure of the predictive
effect of the marker (a measure of the statistical interaction between treatment
and biomarker, an expression of the differential treatment effect of the marker).
A marker is said to be prognostic if β2 �= 0 and predictive if β3 �= 0. The most
obvious way to test the predictive ability of a biomarker is to test H0 : β3 = 0 using
standard statistical procedures. Unfortunately, such a test is generally underpowered
unless the interaction is quite strong (Peterson and George 1993). Other statistical
procedures have been proposed to check on the predictive strength of a marker
(Bonetti and Gelber 2000; Byar 1985; Royston and Sauerbrei 2004; Vittinghoff and
Bauer 2006; Pepe 2005).

In general, a marker may be prognostic and predictive, prognostic but not
predictive, predictive but not prognostic, or neither prognostic nor predictive as
indicated in Table 7.3.

To illustrate these possibilities more concretely, consider model (1) above with
λ0(t) = 0.115, and time measured in months, corresponding to an exponential
time to failure distribution with a median of approximately 6 months, similar to
the expected median survival in patients with stage IV nonsmall cell lung cancer
(NSCLC). Also, suppose that β1 = −0.40, corresponding to a treatment effect
(hazard ratio) of approximately 0.67 in marker negative patients. Figure 7.1 gives the
four possibilities from Table 7.2 with β2 = 0.50 and β3 =−0.60 for the cases where
these quantities are not zero. These choices correspond to a situation in which, in
the control patients, the M+ patients have a worse prognosis than M- patients (since
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Table 7.3 Prognostic and
predictive biomarkers

β2 β3 Prognostic? Predictive?

0 0 No No
�= 0 0 Yes No
0 �= 0 No Yes
�= 0 �= 0 Yes Yes
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Fig. 7.1 Prognostic and predictive biomarkers

β2 > 0) and in which the treatment advantage for the experimental treatment is larger
in M+ patients than in M- patients (since β3 < 0).

To be useful in designing targeted clinical trials, a marker must be predictive. It is
neither sufficient nor necessary that it be prognostic. An important prognostic factor
may be useful in setting eligibility criteria (e.g., by identifying particularly high-
risk patients who might benefit from treatment) but, as seen above, the prognostic
strength of a marker by itself is irrelevant to the issue of whether the treatment effect
varies by marker subgroup. Also, even a predictive marker may not be very helpful
if the predictive effect is not sufficiently strong. For example, if the treatment effect
varies by biomarker category, but only slightly, this may or may not be helpful in
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designing different regimens for the marker subgroups or in conducting targeted
clinical trials. However, if the predictive value of the biomarker is high, particularly
if the treatment effect is restricted exclusively to one of the biomarker categories, it
is possible to gain substantial efficiency through the use of targeted designs. These
concepts are made more precise in the next section.

3 Designs for Targeted Clinical Trials

It is intuitively obvious that if we have a reliably measured predictive biomarker,
one that can readily distinguish patients likely to benefit from a therapy from those
unlikely to benefit, we should be able to design much more efficient clinical trials.
Issues related to this topic have been explored by many authors (George 2008;
Simon 2008a,b; Simon and Maitournam 2004; Maitournam and Simon 2005; Jiang
et al. 2007; Freidlin and Simon 2005; Hoering et al. 2008; Zhou et al. 2008;
Mandrekar et al. 2005; Mandrekar and Sargent 2009a,b; Freidlin et al. 2008, 2010;
Sargent and Allegra 2002; Sargent et al. 2005; Simon and Wang 2006). In this
section, we discuss various designs that might be used in this setting and compare
and contrast these designs with respect to hypotheses that can be tested, relative
efficiency and related performance characteristics, and other issues. For simplicity,
we assume, as above, that there are two treatments to be compared (control (C) and
experimental (E)) in a randomized clinical trial and two biomarker groups (marker
negative (M−) and marker positive (M+)) that are of interest. It is arbitrary how
the marker groups are labeled and whether it is in the M+ or M− patients that the
experimental treatment might be expected to do better, although in many examples,
the M+ patients have both a worse prognosis and a larger treatment effect. More
complex scenarios than two treatments and a single binary marker are of course
possible, but the salient points can be made without the distractions of the added
complexity.

3.1 Classes of Designs

There are four general types of designs that will be considered in this section:

• Traditional design – patients randomized without regard to the marker
• Targeted design – M+ patients randomized, M− patients not studied
• Biomarker stratified design – patients randomized within strata (M− and M+)
• Strategy design – patients randomized between two strategies (biomarker-

directed, nonbiomarker-directed)

Variations of these basic design types are possible. For example, one might wish to
expand a targeted design to include M− patients, treated with the control treatment,
rather than simply excluding them from the trial. This would allow an evaluation
of the prognostic, but not the predictive, effect of the biomarker. Also, in an
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Fig. 7.2 Traditional RCT
design

RANDOMIZE

Experimental RxControl Rx

effort to increase efficiency, we will describe some “enrichment” strategies that are
applicable to traditional designs and to biomarker-stratified designs.

3.2 Hypotheses Tested

The questions that can be addressed and hypotheses that can be tested with
the various designs noted above are not identical. Relative efficiency issues are
important but when two designs are not addressing the same questions and testing
the same hypotheses, relative efficiency needs to be interpreted carefully. The types
of hypotheses that can be addressed by the designs defined above are discussed in
this section. Relative efficiency issues are discussed in the subsequent section.

3.2.1 Traditional Clinical Trial

Figure 7.2 gives the schema for a traditional clinical trial designed to compare an
experimental treatment with a control treatment.

In a traditional clinical trial, patients are randomly assigned to the two treatment
groups and the hypothesis tested is the equality of the treatments with respect to
some primary outcome variable (often, OS or PFS in cancer clinical trials), typically
without measurement of the biomarker at all. Of course, if the biomarker is not
measured, obviously it is not possible to test prognostic or predictive hypotheses
concerning the marker. However, if the biomarker is measured, such a trial differs
from a biomarker-stratified design primarily in that the biomarker is not used as a
stratification variable, although it may be used in the analysis. Thus, it would be
possible to test hypotheses in a similar fashion to the biomarker-stratified design,
with a potential loss of some efficiency because of the lack of stratification. The
timing of measurement of the biomarker, assuming it is measured in a traditional
design, is perhaps the major difference between a traditional and biomarker stratified
design. In a traditional design, the biomarker may be measured at leisure without
the time pressure required when it is required as a stratification variable. Indeed, as
long as appropriate biological specimens are collected prior to the trial, retrospective
assays, even those not planned initially, may be carried out. For such retrospective
analyses, missing data may be a serious problem. Also, since the assays are
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Fig. 7.3 Targeted RCT
design Biomarker Assay
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conducted after randomization, perhaps even after some of the primary outcomes
are known, care must be taken to avoid introducing substantial bias.

3.2.2 Targeted Clinical Trial

Figure 7.3 gives the schema for a targeted clinical trial designed to compare an
experimental treatment with a control treatment.

In a targeted clinical trial, patients are randomized between treatments only in the
M+ group, since it is felt beforehand, presumably based on theoretical grounds and
reliable empirical evidence, that these are the only patients who might benefit from
the experimental treatment – or at least that there is likely to be very little benefit
in the M− patients. In the basic targeted clinical trial formulation, M− patients
are excluded from study, so the only possible hypothesis concerns the treatment
effect within the M+ patients. As with a traditional design, when the marker is not
measured, no hypothesis about the prognostic or predictive effect of the biomarker is
possible. Such a trial would only be undertaken if one is reasonably confident about
the lack of treatment effect in M− patients. In some settings, it may be reasonable
to include M− patients, all treated with the control treatment. This would allow a
test of hypothesis about the prognostic effect of the biomarker, but not the predictive
effect, since no M− patients would receive the experimental treatment.

3.2.3 Biomarker Sratified Clinical Trial

Figure 7.4 gives the schema for a biomarker-stratified clinical trial designed to
compare an experimental treatment with a control treatment.

In this design, the biomarker is used as a stratification variable, ensuring reason-
able balance among treatments within the two biomarker groups (M+ and M−).
Hypotheses about treatment effect as well as both the prognostic and predictive
effect of the biomarker are possible. This design provides the best opportunity to
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Fig. 7.4 Biomarker-stratified RCT design
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test all of the relevant hypotheses about treatment effect and the prognostic and
predictive effect of the biomarker.

3.2.4 Strategy Clinical Trial

Figure 7.5 gives the schema for a strategy clinical trial designed to compare a
biomarker-based strategy approach with an alternative approach that does not use
the biomarker to define treatment.

In a strategy design, patients are randomly assigned either to a strategy of
using the biomarker in determining treatment assignment (a biomarker-directed
strategy) or to a strategy of not using the biomarker in determining treatment
(a nonbiomarker-directed strategy). The primary objective is to compare strategies,
not treatments directly, although the treatment effect can be tested as a secondary
objective in the no strategy arm if randomization is used as in Fig. 7.5. The primary
interest is a pragmatic one of fundamental importance: Does the strategy of using
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the biomarker information to determine treatment allow us to improve the outcome
in a population of patients compared to not using the information? The details
on the nature of the two strategies determine the specific hypotheses that can be
tested. In one version of a strategy design, the one given in Fig. 7.5, the biomarker-
directed strategy consists of giving the experimental treatment to M+ patients and
the control treatment to M− patients, the nonbiomarker strategy randomizes patients
to the two treatments in a 1 − γ : γ ratio without regard to the biomarker value,
where γ is the prevalence of M+ patients. The reason for randomization of the
treatment assignment in the nonmarker-directed strategy, rather than treating all
patients with the control therapy, is that if all patients were assigned to the control
group, the biomarker-strategy group will do better if there is a treatment effect
favoring the experimental therapy, regardless of whether the biomarker is predictive
or not. But if the marker is not predictive, using a nonmarker-directed strategy of
randomizing 100γ % of the patients to the experimental therapy will work as well
as the biomarker-strategy approach.

One difficulty with a biomarker-strategy design is that it requires a fairly large
number of patients to address the primary objective of the trial. This is a direct result
of the large overlap in treatment-biomarker subgroups within the two strategies
being compared.

3.3 Relative Efficiency and Other Performance Characteristics

3.3.1 Sample Size and Number of Events

Even though the designs discussed above have varying objectives, it is of interest
to investigate their relative efficiency. The most common measure of efficiency of
a design is the required sample size, the number of patients required to meet the
objectives (George 1984). For a clinical trial with full information on the primary
endpoint available on each patient shortly after entry on study, the relative sample
size required by two different designs is undoubtedly the most important measure
of efficiency. However, in most phase III clinical trials in cancer, the primary
endpoint is a time-to-event outcome such as PFS or OS. In this case, a more
important consideration is the number of events, not the sample size. For example,
the number of events required to compare two treatments with a 1:1 randomization
and using a logrank test (two-sided, α-level test) in a proportional hazards setting is
(George 2010)

(
1
d1

+
1
d2

)−1

=

⌊
(zα/2 + zβ )

2

(lnΔ1)2

⌋

, (7.2)

where �x� denotes the smallest integer ≥ x,di is the number of events on treatment
i = 1,2,zx is the upper 100(1−x) percentile of the standard normal distribution, and
Δ1 �= 1is the specified hazard ratio for which we desire the power of the test to be
1−β . If di

∼= D/2, where D is the total number of events, (7.2) can be rewritten as
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D =

⌊
4(zα/2 + zβ )

2

(lnΔ1)2

⌋

. (7.3)

For a stratified design with two strata (M+ and M−), the required total number of
patients N to be entered (Palta and Amini 1985) may be written as

N =
4(zα/2 + zβ )

2

{(γV1 lnΔ1 +(1− γ)V2 lnΔ2)/
√

γV1 +(1− γ)V2}2
, (7.4)

where Δi is the hazard ratio in the ith stratum (i = 1 for M+ and i = 2 for M−),
γ is the prevalence of M+ patients, and Vi is the probability of an event in the ith
stratum. Thus, for the required number of events in a stratified design, the analogue
to (7.3) is

D =

⌊
4(zα/2 + zβ )

2

(γ lnΔ1 +(1− γ) lnΔ2)2

⌋

. (7.5)

Thus, the relative number of events required by the stratified design relative to the
targeted design restricted to M+ patients is

Ds

Dt
=

(lnΔ1)
2

(γ lnΔ1 +(1− γ) lnΔ2)2 = (γ +(1− γ)θ)−2, (7.6)

where θ = lnΔ2/lnΔ1, or in terms of the model (7.1), θ = β1/(β1 +β3). In the
situations we are considering here, it is natural to suppose that 0≤ θ ≤ 1, where θ =
0 corresponds to no treatment effect in the M− patients and θ = 1 corresponds to an
identical treatment effect in M+ and M− patients. Under the above assumptions, the
required number of events in a stratified design is always greater than the number of
required events in a targeted design (i.e., Ds/Dt ≥ 1). The magnitude depends on the
prevalence γ of M+ patients and the treatment effect θ in the M− patients relative
to the M+ patients. For low prevalence and small θ ,Ds/Dt can be quite large.
If θ = 0, the ratio is Ds/Dt = γ−2, if θ = 1,Ds/Dt = 1.

For illustration, we apply these results graphically to a specific clinical trial with
a biomarker-stratified design, CALGB 30506, a phase III trial for stage I NSCLC
patients in which 1,296 patients after surgical resection were to be randomized with
equal probability, using a biomarker-stratified design, to adjuvant chemotherapy
versus observation (Wang et al. 2009; Freidlin et al. 2010). Although the design
was subsequently amended to drop the biomarker stratification, the original design
and objectives of CALGB 30506 are used here since they are appropriate for our
discussion. The randomization was stratified by risk group based on the model (High
vs. Low) and pathological stage (IA vs. IB). Figure 7.6 gives the original design
schema for this study.
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Fig. 7.6 CALGB 30506
design
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The design assumptions were: equal allocation to chemo versus observation,
an accrual rate of 288 randomized patients per year, the hazard rate (events per
100 patient years) for the low-risk patients on the observation arm is a constant
0.077,θ = 0.45, and γ = 0.36. In terms of model (7.1), these assumptions corre-
spond approximately to λ0(t) = 0.077,β1 =−0.203,β2 = 0.728, and β3 =−0.245.
Figure 7.7 gives plots of the log10 of the ratio of the required number of events for a
stratified design to the required number of events for a targeted design as a function
of θ for three different prevalence values: low (γ = 0.10), medium (the design
assumption, γ = 0.36), and high (γ = 0.90). For the particular design assumptions
on this trial (θ = 0.45,γ = 0.36), the ratio of required events is approximately 2.38.

The time required to achieve the required number of events for these two types
of design is discussed in the next section.

3.3.2 Time to Completion of the Trial

Although the number of required events always favors a targeted design over a
stratified design under the above assumptions, the lower accrual rate may require a
longer accrual period and follow-up time to achieve the requisite number of events.
Thus, the time to completion of the trial may be longer for a targeted design than
for a stratified design. This “time to completion” metric is an important one in
comparing designs in trials with a time-to-event outcome measure. It depends on
the prevalence, prognosis, and relative treatment effect in the marker subgroups.
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Fig. 7.7 Number of events for a stratified design relative to a targeted design

One problem with such a metric is that it is not uniquely defined by the required
number of events. Thus, for a specified number of events, D, one could enter N = D
patients and follow all until failure or, since this might take a very long time, one
could enter N > D patients, and follow these patients until there are D events. In
a targeted design we can write N = D/V , where V , the combined probability of
an event (Schoenfeld 1981), depends on the accrual time necessary to accrue N
patients (a function of the accrual rate) and the follow-up time necessary to achieve
the required number of events (a function of treatment hazard rates and censoring
rates). To illustrate howV is calculated in a specific situation, suppose that the failure
distributions for the two treatments are exponential with hazard rates λi(i = 1,2),
patients are accrued at a rate of a patients per year, the accrual period is T years,
follow-up after the accrual ends is τ years, and there is no loss to follow-up. In this
case, we can write V as (George and Desu 1974)

V = 1− 1
2

2

∑
i=1

exp(−λiτ)− exp(−λi(T + τ))
λiT

. (7.7)
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The planned length of study is thus T + τ years with the accrual and follow-up
periods chosen so that D events are likely to occur during this time period. We can
use any T and τ so long as T is large enough that at least D patients are entered
and T + τ is long enough that there will be D events observed during this period.
At one extreme, the minimum sample size required is equal to the required number
of events, D, all patients followed to failure (assuming no loss to follow-up). That
is, we let T be approximately D/a, so that the expected number of patients accrued
will be D. But this strategy requires the longest follow-up time of any strategy to
achieve D failures (George 2010; George and Desu 1974). The expected time until
the last patient fails, a quantity related to the expected value of the nth order statistic
from an exponential distribution (Xiangwei et al. 2003), is approximately D/a+
loge D/λ1Δ, where Δ = λ1/λ2, which is often so large as to be impractical. At the
other extreme, one could enter patients continuously until the required number of
events is obtained. This strategy produces the shortest time to achieve the requisite
number of events (George and Desu 1974), but can lead to a very large sample
size, particularly in situations with rapid accrual and low hazard rates, and with a
high percentage of patients still in follow-up with no event at the time of the final
analysis.

Obviously, some kind of compromise approach is needed between the two
extremes discussed above. Although we desire a reasonably short time until the
study is completed, it is also desirable to keep the excess number of patients entered
over the required number of events to be relatively small. There is no unique way to
do this. One approach is to fix the required follow-up time τ and solve for T so that
the expected number of events (aTV) at T + τ is equal to the required number. The
expected accrual (required sample size) using this approach is simply aT.

For a biomarker-stratified design with two strata (M+ and M−), the procedures
are similar. The expected number of events for any given T + τ is aT(γV1 +(1−
γ)V2). To put the competing designs on a comparable basis, one could fix τ as above,
and solve for the required T , following the steps described above for a targeted
design, mutatis mutandis.

Figure 7.8 gives the relative total time to completion of the study, T + τ , where
τ = 3 years, for a stratified design compared to a targeted design using the
assumptions made for Fig. 7.7. As can be seen in Fig. 7.8, for moderate to large
θ and for a small prevalence γ , this ratio can be less than 1.0. That is, the time
to completion of a stratified design may be less than the time to completion of
a targeted design, even though the required number of events is higher. For the
specific assumptions used in CALGB 30506, θ = 0.45 and γ = 0.36, this ratio is
slightly above 1.0. Although not presented here, the results presented in Fig. 7.3 are
not sensitive to the choice of τ , the curves are quite similar for choices of τ ranging
from 0 to 10 years.
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Fig. 7.8 Ratio of time required to achieve the required number of events for a stratified design
relative to a targeted design

3.4 Other Considerations in Selecting Designs

In addition to the important considerations of hypotheses that can be tested and the
relative efficiency considerations discussed above, there are other, more practical
considerations that are important in devising an appropriate targeted clinical trial
design. One of these is the complexity of the design. A clinical trial design that
is simple to explain to potential participants and clear in its objectives is generally
preferable to a more complex design, even if the more complex design has some
advantages in scientific objectives or relative efficiency. The accrual rate may be
adversely affected if the trial is difficult to explain. Thus, for example, the strategy
design described above may present difficulties of this type.

Another practical difficulty in many of the biomarker-based designs considered
here is that the marker must be assessed prior to registration on the trial. This
obviously requires an assay that can be carried out quickly and leads potentially
to a problem of missing data. If the assay sometimes leads to missing results, for
whatever reasons, how are patients handled on the trial whose marker status is
unknown – or whose marker status is unable to be determined quickly enough?



172 S.L. George and X. Wang

4 Examples of Designs

In this section, two recent clinical trials will be discussed to illustrate some of
the previous concepts. The trials considered are in two areas: gefitinib (Iressa) in
NSCLC and trastuzumab (Herceptin) in breast cancer.

4.1 Gefitinib (Iressa) Trials in NSCLC

The presence of activating mutations in the kinase domain of the epidermal growth
factor receptor (EGFR) gene was first reported in 2004 (Yamamoto et al. 2009).
In nonAsian patients with NSCLC, the percentage of patients with EGFR mu-
tations is around 20%, but is much higher in female nonsmokers than in other
patients. Asian patients have a higher percentage of mutations, around 50%, than
other patients. Tumors exhibiting such mutations are highly sensitive to EGFR
tyrosine kinase inhibitors. The first such TKI to be approved by the FDA was
gefitinib (Iressa), which was approved in 2003 for patients with NSCLC under
accelerated approval regulations. The approval was based on the basis of a small
overall response rate, approximately 10%, in patients with advanced disease who
were refractory to standard chemotherapy regimens. Follow-up studies failed to
confirm any survival benefit for patients treated with gefitinib in unselected patient
populations.

The mechanism of action of gefitinib suggests that targeting patients with
EGFR mutations, or testing in a population with a highly enriched percentage
of patients with such mutations, might be more productive than testing in an
unselected population. The results of a recently reported trial, the Iressa Pan-Asia
Study (IPASS), dramatically illustrate this point (Mok et al. 2009). IPASS was a
traditional, phase III, multicenter, randomized, open-label, clinical trial comparing
gefitinib with carboplatin plus paclitaxel as first-line treatment in clinically selected
patients in East Asia who had advanced NSCLC. The primary hypothesis to be
tested was that the gefitinib treatment was not inferior to the carboplatin–paclitaxel
treatment with respect to the primary end-point, PFS. Testing for EGFR status prior
to study entry was a not part of the study design, although patients were asked to
provide consent for the use of their tumor samples in assessing EGFR status as
part of subsequent planned exploratory analyses of EGFR and other biomarkers.
Eligibility was restricted to East Asian patients with adenocarcinoma who were
nonsmokers or former light smokers, restrictions certain to produce a relatively high
percentage of patients with EGFR mutations (and a high percentage of females).
Over 1,200 patients were enrolled, approximately 80% female and 60% with EGFR
mutations, the latter percentage based on the 36% of patients who had evaluable
EGFR data.

The overall results indicated that gefitinib was superior to carboplatin–paclitaxel
with respect to PFS (hazard ratio (HR) = 0.74). Further, in the subgroup of 261
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patients who were positive for the EGFR mutation, the advantage for gefitinib was
dramatic (HR = 0.48). Remarkably, in the subgroup of 176 patients who were
negative for the mutation, the results were reversed: PFS was significantly longer
among those who received carboplatin–paclitaxel (HR= 2.85). A formal treatment-
EGFR interaction test was highly significant (p < 0.001).

4.2 Trastuzumab (Herceptin) Trials in Breast Cancer

The human epidermal growth factor receptor 2 (HER2) gene was identified in 1985
(Haq and Geyer 2009), and very soon thereafter amplification of this gene was
demonstrated to be an important negative prognostic factor in breast cancer and
to represent an important molecular subclass of breast cancer with a distinct clinical
profile and response to systemic therapy (Bedard et al. 2009). Approximately
25% of patients with breast cancer cells overexpress this receptor or have a high
gene copy number. These patients tend to relapse sooner and have shorter OS
(Hudis 2007). Trastuzumab (Herceptin) is a monoclonal antibody directed against
HER2 and a number of large clinical trials have shown a striking benefit for the use
of trastuzumab as an adjuvant treatment for HER2-positive breast cancer patients
(Madarnas et al. 2008; Slamon et al. 2001). In 2006, based on the combined results
of two of these trials (Romond et al. 2005), NSABP B31 and NCCTG N9831, the
FDA granted approval to trastuzumab as part of an adjuvant treatment regimen also
containing doxorubicin, cyclophosphamide, and paclitaxel. Subsequent analyses
have demonstrated that the benefit of trastuzumab is not limited to HER2 positive
patients (Paik et al. 2008), emphasizing the importance of critically assessing the
common assumption that the effect of a targeted agent is limited to patients who
express the target.

5 Summary

Targeted clinical trials are likely to become increasingly more common in clinical
cancer research. As emphasized in the topics covered in this chapter, these trials
will need to be designed carefully to be certain that they address the correct
hypotheses and are as efficient as possible. A biomarker-stratified design is likely
the best choice when there is substantial uncertainty about the treatment effect in the
marker subgroups. If there is substantial evidence that the treatment effect is limited
primarily to a subset of patients defined by the marker, then a targeted design can be
highly efficient. But there is no design that will be optimal in all cases and careful
consideration of the issues described in this chapter will be required in specific
cases.
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Chapter 8
Design Issues for Quality of Life Studies
Subject to Dropout

Diane L. Fairclough

1 Introduction

Whenever a statistician is asked to participate in the design of a study in which
dropout is anticipated either because of mortality/morbidity, side effects, or lack
of efficacy, there are design issues that do not have simple solutions. The primary
concern is that the missing data cannot be ignored if one wishes to obtain an
unbiased estimate of the outcome. This chapter focuses on the questions that must be
asked and options that the statistician has for the design of this kind of study when
the outcome measure differs for subjects who continue on the study in contrast to
those who dropout. Typical outcomes include quality of life, health status, symptom
severity, or other measures that require the patient’s participation (e.g., pulmonary
function measures, 6-min walk, testing for infection or measures of compliance).
While the title of this chapter refers to health-related quality of life (HRQoL), all
the issues are relevant to any patient reported outcome. I will for simplicity generally
refer only to HRQoL as the outcome measure.

There is not one simple strategy that is appropriate for all studies. A number
of reasons complicate the choice of an appropriate design and analysis plan. This
chapter provides an overview of the issues that will arise during the design of a trial
in the context of two disease settings. While these two examples do not exemplify
all possible scenarios, they do provide insight into the thought process that must
occur when designing a trial with dropout.

D.L. Fairclough (�)
Department of Biostatistics and Informatics, Colorado School of Public Health and Colorado
Health Outcomes Program (COHO), School of Medicine, University of Colorado Denver
e-mail: Diane.Fairclough@ucdenver.edu

D. Harrington (ed.), Designs for Clinical Trials: Perspectives on Current Issues, Applied
Bioinformatics and Biostatistics in Cancer Research, DOI 10.1007/978-1-4614-0140-7 8,
© Springer Science+Business Media, LLC 2012

179

Diane.Fairclough@ucdenver.edu


180 D.L. Fairclough

Fig. 8.1 Expected trajectories for two example trials. The solid line indicates the experimental
arm of each trial

1.1 Examples

1.1.1 Migraine Prevention Trial

The first example is a placebo controlled trial for individuals with frequent
migraines intended to reduce the frequency and severity of migraine attacks. During
the first month (the titration period), the dose of the experimental drug is slowly
increased to minimize side effects. In the second 2 months (the maintenance period),
the expected impact of the drug will be measured. In addition to measures of the
frequency and severity of migraine episodes, assessments will include a measure of
the impact of migraines with three components (HRQoL measures). The expected
trajectory of the HRQoL response is illustrated in Fig. 8.1 (left). The response is
expected to increase through out the titration period as a result of both a true effect
as well as a placebo effect. During the maintenance period, it is expected that the
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scores will plateau in the active treatment arm and decrease slightly in the placebo
arm. Dropout may be related to the patient’s perceived lack of efficacy (which is
likely to be related to the outcome) or to side effects (which may or may not be
related).

1.1.2 Advanced Cancer Trial

The second example is a trial of patients with advanced cancer comparing standard
therapy with standard therapy plus an experimental drug. The experimental drug is
expected to delay disease progression but result in more side effects during the early
phase of treatment. The primary outcome will be the time to disease progression.
Health-related quality of life measures have been added to the trial to assess the
impact of both toxicity and disease burden on the patients. The expected trajectories
are displayed in Fig. 8.1 (right). Dropout occurs when either the toxicity of treatment
is intolerable or there is progressive growth of the tumor indicating that treatment is
no longer effective. In both cases, one would expect measures of quality of life,
health status, and symptom burden to be worse in subjects who can no longer
continue on the trial.

2 Initial Steps

2.1 Aims, Goals, and Audience

Defining the goals and aims of the HRQoL component of a trial is a critical step
in the design of the trial, but one of the most challenging steps. It is often the
role of the statistician to focus the research team on this task as the information
drives the design and analysis components of the trial. This task may be easiest
when the HRQoL measures are the primary endpoint. For example, in the advanced
cancer trial, the primary aim of the trial may be to extend the time to progression
of disease or death. The aim of the HRQoL component may be to demonstrate that
the more aggressive therapy does not achieve the survival benefits at the cost of the
patient’s HRQoL or it may be to demonstrate a concurrent HRQoL benefit. In the
migraine prevention trial, the primary aim of the trial may be to reduce the frequency
and severity of migraines with the goal of the HRQoL component to demonstrate
additional benefits as a consequence of the reduced frequency and severity. In both
these examples, if the primary aims are not attained then the HRQoL endpoints are
not of clinical interest. This suggests that gatekeeping strategies in which families
of hypotheses are tested sequentially may be appropriate for controlling the type I
error rates (Dmitrienko et al. 2003; Hommel et al. 2007; Fairclough 2009).
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There is also a step of explicitly defining the trial endpoints. It is not sufficient to
propose a hypothesis such as “The experimental treatment X will improve HRQoL
compared to standard therapy C.” Which domains of the HRQoL measure are
relevant? Is the focus on the difference at a particular time point or is the interest in
the entire trajectory of change? In the advanced cancer trial, one might define the
HRQoL endpoint as the average difference between the two treatment trajectories
over the first 3 months as a measure of overall HRQoL. In the migraine prevention
trial, the focus is on the expected benefit after the drug has been titrated to its full
dose. Thus, one might focus on the 12-week assessment or possibly the average of
the assessments after 4 weeks ignoring the 2-week assessment.

The goals of a trial go beyond simple statements of aims and general hypotheses.
The goal may be to inform clinical practice, support drug approval, or obtain
marketing claims. In the first goal, the analysis may focus on understanding the
trajectories of patients within treatment groups or other subgroups (e.g., survivors).
In contrast, the analyses for the second and third goals focus on comparisons
between the regimens. Dropout is a threat to both of these goals. The analysis
strategies may, however, differ.

2.2 Prevention of Missing Data

Clinical investigators may not fully understand the bias that arises from missing
data, so the statistician may need to raise the issue and promote strategies to reduce
the prevalence of missing data. There are a number of steps that can be taken
during the initial design phase. I divide these steps into primary and secondary
prevention. Primary prevention includes steps to prevent or minimize dropout. These
steps include having very clear instructions about when and how to approach the
participant, what assistance is allowed when there are literacy or language barriers,
how to follow-up when an assessment is missed or the participant stops treatment.
It is important to be explicit about how long after the targeted time of assessment
an assessment is allowed. More relaxed criteria will reduce missing data, but may
have less clear interpretations. State the procedure to be followed when treatment is
stopped early. Dropout may also be affected by modes of data collection, the design
of data collection forms, and training of study personnel.

Secondary prevention involves obtaining auxiliary information that can help with
the characterization of the missing data and sensitivity analyses. It is important to
know why dropout occurred and if it is related to the outcome(s) of interest. The
first task is to make sure that the reason for dropout is collected and the second
is to identify wording that will help classify dropout as related or unrelated to
the treatment or disease. In the migraine trial, it would be helpful to know if the
participant is dropping out due to lack of efficacy, side effects, or for unrelated
reasons (moving away, problems with transportation). Auxiliary information takes
many forms which may be tailored to the analysis strategy. In a trial where the
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participant may become unable to complete the assessment (e.g., Alzheimer’s
Disease), it may be of value to obtain concurrent information from a caregiver.
Adding a very brief assessment of 3–5 key questions between major assessment
points may be a possibility; it is also important to have a strategy for attempting to
convert refusals to partially completed assessments. In some cases, administrative
data (e.g., pharmacy records) may be correlated with the outcomes. Use of auxiliary
information is discussed further in later sections.

During the planning of the study, the following questions are typical of those that
should be addressed.

• What are the likely causes of attrition or dropout?
• When do you expect attrition to begin and what is the likely rate over the course

of the study?
• What patient factors, including the outcome measures, do you expect to be most

strongly related to dropout?
• Are there other sources of information that are associated with the HRQoL

outcomes that can be collected after the HRQoL assessments are discontinued?

2.3 Timing of Assessments

The timing of assessments is an important design issue in studies with potential
dropout. First, we wish to balance participant burden with the need to adequately
characterize the trajectory of the outcome over time. Generally, this requires more
frequent assessments during the early phase when there is typically more change
in the outcome due to the initial response to therapy. More frequent assessments,
especially in the early phase, may increase the likelihood of obtaining changes
related to the reason for dropout thus making the assumption that follow-up data is
missing a random conditional on the already observed data more credible. Consider
the migraine prevention trial in which the initial proposal is to assess the patient at
baseline and then every 4 weeks for 3 months. If dropout is anticipated in the first 4
weeks, adding an additional assessment at 2 weeks may help to differentiate those
who are dropping out due to nonresponse from other reasons.

A final issue is when to discontinue assessments. This is particularly relevant
in the advanced cancer trial. If at 6 months, you expect that roughly a third of
the patients will have died, it is not useful (and may raise ethical concerns for
an Institutional Review Board) to continue to collect HRQoL assessments unless
there is a very specific reason clearly identified in the protocol aims. There is no
magic rule to determine exactly where to make that cutoff, but some common sense
will identify a point beyond which the data will become too sparse to provide
reliable estimates. Exploratory analyses of the impact of dropout on power (see
Sect. 5) are likely to be informative and help provide cogent arguments to your
colleagues.
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3 Longitudinal Studies

3.1 Repeated Measures vs. Growth Curve Models

There are two major strategies for analyzing data from longitudinal studies: repeated
measures models and mixed effects/growth curve models. This is relevant to studies
with dropout because some of the strategies for sensitivity analyses are only
applicable to one of these methods. The two approaches can be differentiated based
on how time is conceptualized.

In a repeated measures model, time is conceptualized as an ordered categorical
variable. This type of design is typical of studies that have distinct phases:
pretherapy, during-therapy, and posttherapy. Assessments are classified into distinct
ordered categories. If assessments can be classified into distinct windows around the
planned assessment times (0, 4, 8, and 12 weeks) one might also adopt a repeated
measures model. It important to note that if two or more assessments are classified
into any one of the ordered categories all but one will need to be excluded from the
analysis or the definition of the categories modified. The models have the general
form:

Yit = Xitβ + εit , Var[Yit ] = Var[εit ] = Σi, (8.1)

where i indicates the ith subject and t the tth assessment (ordered category of
time). Xit indicates the covariates measured on the ith subject at the tth assessment,
including indicators of the ordered categories of time. Σi has a general (unstructured)
form that allows heteroscedasticity over time and different correlations of each pair
of assessments on the ith subject. Analysis of repeated measures models using
maximum likelihood estimation is widely available in most statistical software
packages: SAS and SPSS Mixed procedures and the R gls function in the nlme
module.

In mixed effects/growth curve models, time is conceptualized as a continuous
variable. Generally, these studies have three or more assessment times, all of which
can be included in the analysis regardless of how close they are to other assessments.
These models are particularly appropriate when treatment is continuous, without
distinct phases, as in the advance cancer trial. The models have the general form:

Yit = Xitβ +Zitdi + εit , (8.2)

Var[Yit ] = Var[Zitdi + εit ] = ZitGZ′
it +Vi, (8.3)

where i indicates the ith subject and t the tth assessment. Xit indicates the covariates
that define the average trajectory or fixed effects and Zit indicates the covariates
that define between the subject variation and random effects. The variance of the
random effects, G, typically has a general (unstructured) form and the variance
of the residual errors typically is assumed to be homoscedastic and uncorrelated,
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Vi = σ2
e I. Analyses of mixed effects models using maximum likelihood (restricted

maximum likelihood) estimation is widely available in most statistical software
packages: SAS and SPSS Mixed procedures, R lme function in nmle module, and
Stata xtmixed.

3.2 Summary Measures

Measures that summarize information across time are particularly useful in longi-
tudinal studies, especially when there are multiple outcome variables. They reduce
the multiple comparisons problem and often facilitate interpretation. If the migraine
trial has four follow-up assessments, one during the dose titration period (2 weeks)
and three during the maintenance period (4, 8, and 12 weeks), then there are
potentially four separate tests for each of the outcome measures. However, if we
expect the effect of treatment to plateau and specify that our measure of effect is
the average of the assessments during maintenance minus baseline, we now have a
single measure and test. Alternatively, we might expect it to take the entire 12 weeks
to see the benefit that would reflect long-term usage of the medication and define
the summary measure to be the change from baseline to 12 weeks. In the advanced
cancer trial, we could reduce the number of tests for the 5 follow-up assessments at
2, 8, 16, 24, and 32 weeks to either the average rate of change if we expected the
change to be linear or to the area under the curve (AUC) if we expected nonlinear
changes.

There are two ways to compute these summary measures. The first is to express
them as a linear combination of the parameters for the analysis of the longitudinal
data, θ̂ =Cβ̂ . All of the summary measures specified above would then be estimable
as a function of the estimates of β . This has the advantage that if the estimates of
β are unbiased, estimates of these summary measures are unbiased and specific
rules for handling dropout only need to be identified in the context of the model.
The other strategy is to define a function of the individual measures, θi = f (Yit)
and then perform a univariate analysis. The advantage of the latter approach is
that the analysis of the univariate measures is simple and the results may be more
interpretable for clinicians. The challenge is in setting up the rules for handling
cases with dropout and assessing the impact of various missing data mechanisms.
In the migraine study, for the first proposed measure, one might propose that f (Yit)
is the average of the available maintenance assessments (4, 8, and 12 weeks) minus
baseline. This ignores the 2-week data and excludes anyone who drops out early
from the analysis. For the second measure (the difference at 12 weeks), everyone
not completing the study would be excluded. Similarly, in the advanced cancer trial,
estimates of slope would only be available for those with at least two measures and
estimates of the AUC would require some method of accounting for the time on
study for all patient who dropout. Identifying the rules for all cases a priori and
justifying the choices is more challenging than is initially apparent.
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4 Missing Data and Options for Sensitivity Analyses

Little and Rubin (1987) provided a classification of missing outcome data based on
the dropout process. The dropout process is missing completely at random (MCAR)
when dropout is independent of both the observed (Y obs

i ,Y aux
i ,Xi) and unobserved

(Y mis
i ) outcome data. It is missing at random (MAR) if dropout is independent

of the unobserved data, given the observed data. Finally, the dropout process is
missing not at random (MNAR) if dropout depends on the unobserved data after
conditioning on the observed data. The important message is that for maximum
likelihood (restricted maximum likelihood) and Bayesian estimation methods, if the
dropout is MCAR or MAR and all the observed data is included in the estimation
procedure, then the missing data is ignorable. This has two implications. First, one
should avoid methods that do not use all the observed data (Y obs

i ,Xi). Second, if
we can attempt to convert a problem to the MAR assumption by augmenting the
observed data with auxiliary information (Y aux

i ), methods based on likelihood and
Bayesian estimation (multiple imputation, mixture models, and shared parameter
models) will be unbiased. Unfortunately, it is not possible to prove that missing
data are ignorable (MAR vs. MNAR in the context of likelihood estimation). Thus,
sensitivity analyses are strongly recommended when nonignorable dropout is a
concern.

Missing covariates result in the exclusion of all observations for a subject for
time-independent covariates (e.g., gender, race/ethnicity, insurance status) or the
exclusion of a particular observation for time-dependent covariates. A parallel logic
exists for this type of missing data, but it is possible to test how the outcome measure
depends on the missingness of covariates when the outcome measure is observed.
When covariates have missing values, the analyst should carefully consider the
proportion of subjects/observations that are excluded from the analysis and the role
of the covariates in the analysis. Covariates with missing values should be dropped
from the analysis unless the proportion of observations/subjects excluded is very
small, or the covariate is essential to the test of a hypothesis.

An additional caution concerns the use of generalized estimating equations
(GEE). Without any adjustments, the GEE methods are based on the assumption
that dropout is MCAR, a more restrictive assumption than that for likelihood-
based methods. The adjustments only relax the assumptions to MAR and while
theoretically sound are difficult to implement (Rotnitzky et al. 1998; Tsiatis 2006;
Kang and Schafer 2007).

4.1 Last Observation Carried Forward

Use of last observation carried forward (LOCF) is still a commonly practiced
method of analysis, though its use is being questioned more frequently. For example,
the Food and Drug Administration’s draft guidance on patient reported outcomes
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raises concerns about this approach (Food and Drug Administration 2006). It is
often claimed that it is a conservative method. However, most studies that utilize
this method fail to perform an exploratory analysis (e.g., plots of trajectories by
time of dropout) to verify that assumption. In some cases, it actually may lead to
increased type I errors by giving an advantage to treatment regimens where patients
with early dropout may appear to have a better response. Except in settings where
there is a history of trials where the conservative assumption is true, proposing
this as an analysis strategy is risky. An additional concern is when LOCF is used
in a setting where a true longitudinal analysis is proposed; it is unclear how this
strategies influences the estimation of the covariance structure and test statistics.

4.2 Multiple Imputation

Multiple Imputation (Rubin 1987, 1996) (MI) relies on the assumption that data are
MAR conditional on observed information: the observed outcome (Y obs

i ), patient
characteristics (Xi), and auxiliary information (Y aux

i ), sometimes referred to as a
surrogate outcome. All but the auxiliary information can be incorporated in the
repeated measures or mixed effects models of the available data. So, if there is no
auxiliary information that is at least moderately correlated with the outcome, the
use of MI techniques will not improve on linear mixed models when nonignorable
missing data is a concern (Barnard and Meng 1999; Norton and Lipsitz 2001).

Multiple imputation was originally developed for cross-sectional studies and has
been adapted to longitudinal studies. Initially, the technique appears straightforward,
but when one gets down to the details in a longitudinal study, it quickly becomes
complicated. The first decision is which of the numerous MI models to use. The
fact that there are multiple choices is a good indication that none are ideal for all
settings. Most require a monotonic missing data pattern. This would occur if there
was no missing information in the baseline covariates and the assessments over time
(including both Y obs

i and Y aux
i ) can be ordered in a way that once one of the outcomes

was missing, no additional data was obtained. Only the MCMC-based methods relax
this requirement but impose a multivariate normal covariance structure (Schafer
1997). Most methods are based on regression techniques and use information about
the relationship between observed variables but ignore information about dropout.
The exception is approximate Bayesian Bootstrap (ABB) which uses information
about the propensity of each variable to be missing but ignores the correlations
between variables. The final challenge is how to handle the multiple measures
over time especially in the presence of nonmonotonic patterns. For example, in
the migraine study, does one impute the missing values separately for each of the
outcomes or does one fill in values for all sequentially across time?
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4.3 Pattern Mixture Models

Pattern mixture models (Little 1993) are a popular strategy for attempting to address
dropout. The basic idea is that p strata are defined based on the dropout patterns,
strata specific parameters are estimated within each pattern (β̂ (p) and Σ̂ (p)) using
the maximum likelihood methods described previously, and finally the overall
parameters, β̂ , are calculated as weighted sums of the strata-specific parameters.

Yi|M(p) ∼ N(Xiβ (p),Σ (p)
i ) p = 1, · · · ,P (8.4)

β̂ =
P

∑π̂ (p)β̂ (p), (8.5)

where π̂ (p) is the proportion of individuals in the pth strata. Because the weights are
estimates, the variance is obtained by bootstrapping or an approximation based on
the delta method: Var(π̂ (p)β̂ (p))≈ π̂2(p)Var(β̂ (p))+ β̂ 2(p)Var(π̂ (p)).

There are two assumptions associated with these models. The first is that within
each strata, the missing data are MAR or ignorable. This first assumption identical
to the assumption made in linear mixed models, but relaxes the assumption to
a subset of the data. The second is that the restrictions required to estimate all
the parameters for repeated measures models or the extrapolations used in the
growth curve models are reasonable approximations of the truth. This latter problem
often leads investigators to pool strata to facilitate estimation, but this brings
into question the validity of the MAR assumption within these larger stratum.
Unfortunately, the assumptions cannot be tested. It is strongly recommended that the
estimated trajectories for each strata be plotted, thus allowing the reader to assess
the plausibility of the restrictions.

Specifying the patterns and the restrictions in the study protocol is challenging
when the actual trajectories are unknown. This is a critical problem when the trial is
intended for approval of new drugs or new indications of approved drugs or when
the trial is intended to be the definitive (and unlikely to repeated) investigation of
treatment options. One can attempt to anticipate the likely trajectories, but there
can be unexpected complications. Even when one can examine the unblinded
trajectories, the solutions are not easy to identify. The migraine prevention trial
illustrates a case where a pattern mixture model may be feasible. Let us say that
we have chosen to define the outcome as the average of the assessments during
the maintenance phase (4, 8, and 12 weeks) minus baseline. If we are to have
at least one assessment during the maintenance phase, the first step we would
need to make is pool strata for subjects for whom the last assessment is the week
0, 2, or 4. Thus, we are assuming that within this group data are MAR. Then,
we might specify that the change from baseline is estimated as the average of
the available maintenance assessments. Figure 8.2 illustrates the estimates of the
observed trajectories. In this case, the prespecified plan would have been reasonable.
But as a counter example, let us consider the advanced cancer trial. Figure 8.3
presents the estimated trajectories for patients with less than 5 weeks, 4–25 weeks
and greater than 25 weeks of follow-up as indicated by the time to the last HRQoL
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Fig. 8.2 Observed trajectories for the migraine prevention trial in strata defined by length of
follow-up for the placebo arm (left) and the experimental arm (right)

assessment. Even with this information, it would be difficult to identify and defend
a strategy to estimate parameters that would characterize the trajectory within each
strata and could then be combined across strata. Those with early dropout clearly
have a rapid rate of decline, and linear extrapolation over the entire time frame of
the trial would likely lead to expected values outside the range of possible scores.
A similar problem would arise for the data for patients who dropout between 5 and
25 weeks. A choice to extrapolate the slope just prior to dropout would result in
very different projections; the decline over time in the standard therapy arm (left)
would seem reasonable, but extrapolating the sharp increase in the experimental
arm (right) would be clinically counter intuitive. Daniels and Hogan (2000) suggest
an alternative parameterization with centered indicator variables that simplifies the
programming.
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Fig. 8.3 Observed trajectories for the advanced cancer trial in strata defined by length of follow-up
for the standard therapy arm (left) and the experimental therapy arm (right)

4.4 Joint and Shared Parameter Models

An alternative strategy that is applicable in some trials with dropout is to model the
outcome of interest and the auxiliary data (Y aux

i ) in a joint model. The auxiliary data
may be either another longitudinally measured variable, or a variable associated
with the dropout mechanism such as time to death. The longitudinally measured
auxiliary data could be assessments from a caregiver who can continue to provide
evaluations when the patient is no longer able to, a very brief set of key questions
that are measured more frequently, or a surrogate measure. In both cases, the hope
is that by conditioning on the auxiliary data, the missing data is ignorable (MAR)
conditional on the observed and auxiliary data.

The joint and shared parameter models link the outcome of interest and the
auxiliary data through the correlation of the data, generally through the random
effects. Two equivalent parameterizations have been proposed for models that
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include time to an event, such as dropout or death (Schluchter 1992; DeGruttola
and Tu 1994; Touloumi et al. 1999). Both use the same general mixed-effects model
for the HRQoL outcome:

Yi = Xiβ +Zidi + ei. (8.6)

They differ in the manner in which time is related to the random effects for the
HRQoL outcome. In the first alternative, the model for time to the event is

f (Ti) = μT + ri. (8.7)

The two models are joined by allowing the random effects (di) to covary with the
residual errors of the time model (ri) and thus with time to the event itself.

[
di

ri

]

∼ N

([
0
0

]

,

[
D σbt

(σbt)
′ τ2

])

. (8.8)

[
Yi

f (Ti)

]

∼ N

([
Xiβ
μT

]

,

[
ZiDZ′

i +σ2I Ziσbt

σbtZ′
i τ2

a

])

. (8.9)

In the second parameterization, the random effects (di) are included in the time to
event model:

f (Ti) = μT +λ di+ ti. (8.10)
[

Yi

f (Ti)

]

∼ N

([
Xiβ
μT

]

,

[
ZiDZ′

i +σ2I ZiDλ
λ DZ′

i λ Dλ ′+ τ2
b

])

. (8.11)

The two models are equivalent as the parameters of one can be written as a
function of the parameters of the other model: σbt = λ D and τ2

a = λ Dλ ′ + τ2
b .

Both alternatives have specific uses. The first alternative is more intuitive when
the focus is on the HRQoL outcome. In contrast, the second alternative expresses
the time to the event as a function of the longitudinal random effects. The second
alternative allows one to use the SAS NLMixed procedures to obtain maximum
likelihood (ML) estimates of the parameters. These models have been a popular
area of research and this simple model has been extended to alternative models for
the time to dropout (Vonesh et al. 2006; Li et al. 2007; Rizopoulos et al. 2009) and
competing causes of dropout (Law et al. 2002; Elashoff et al. 2007; Jaros 2008).

The approach is very similar when the outcome of interest (Yi) and the auxiliary
information (Y ∗

i ) are both measured longitudinally. The trajectories of the observed
and auxiliary information are related through the random effects and possibly the
residual errors:

Yi = Xiβ +Zidi + ei

Y ∗
i = X∗

i β ∗+Z∗
i d∗

i + e∗i
[

di

d∗
i

]

∼ N

([
0
0

]

,

[
D1 D12

(D12)
′ D2

])

and
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eit
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0

]

,
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σ1 σ12

(σ12)
′ σ2

])

. (8.12)
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The timing of the assessments does not have to be the same for the two measures.
The auxiliary information could be measured more frequently than the outcome of
interest. As an example, consider a trial where a pulmonary function test or 6-min
walk is the primary measure of interest. Some patients, particularly those who are
doing poorly, may be unable to perform the test. However, they may be able to
answer a short series of questions assessing their ability to perform physical daily
activities. If changes in the brief questions, Y ∗

i , are correlated with changes in the
outcome of interest, Yi, there will be partial information about the response that can
reduce the bias do to the missing assessments.

4.5 Analysis of Blinded Data

The proportion of subjects who drop out and other characteristics of the data drive
the need for a sensitivity analysis and the choice of the alternative models. If the
proportion of subjects who dropout is small (generally <5%), the missing data will
have little impact on the analysis. Other characteristics may drive the choice among
the alternative models. For example, if there is minimal variation in the random
effects, particularly random effects associated with change over time, the joint and
shared parameter models will be difficult to implement as it will be difficult to
estimate correlations between entities with little variation. Plots such as Figs. 8.2
and 8.3 would facilitate the implementation of a pattern mixture model. Obviously,
this information is not available at the time the analysis plan in the protocol is
written. But a strategy that might be considered is to propose the analyses that
are anticipated and also propose to examine data pooled across treatment groups
before it is unblinded for the rates of dropout, trajectories within groups defined by
dropout and variance of the random effects pooled over the treatment groups to see if
the proposed sensitivity analyses seem reasonable. While there is still no guarantee
that problems will not arise, the investigators can report that any modifications to
the analysis plan were made prior to the unblinding of the data, thus less suspect to
manipulation.

4.6 HRQoL After Death or Discontinuation of Therapy

The issue of interpreting HRQoL after death is controversial. With the exception
of utility (preference) measures,1 attempting to estimate HRQoL after death does
not have a conceptual basis. However, in any analysis that compares HRQoL
outcomes across intervention groups, there is either implicit or explicit imputation
of these missing values. This is most obvious in the context of the EM algorithm for

1These measures are defined as having a value of 1 for perfect health and 0 for death.
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maximum likelihood estimation. In the E-step, the sufficient statistics are functions
of the observed data and the conditional expectation (imputed values) of the missing
data. The point is that missing values after death cannot be entirely ignored in
the context of the analysis. Some might argue that any analysis that includes
measurements after death is not interpretable. But this same logic would exclude the
analysis of any outcome except survival, including measures of symptoms (pain) or
physical function (6-min walk), in populations with any mortality. I would suggest
that analyses in populations with mortality are useful, but that the analyst needs
to pay careful attention to the underlying assumptions and should supplement the
primary analysis with additional models that explore the sensitivity to plausible
alternatives.

Some of the same concerns exist for trials where the measurement of the outcome
is discontinued after therapy is terminated. In the advanced cancer trial, treatment
using the trial drugs will be discontinued if progression of the disease (growth of
the tumor) or unacceptable toxicity is observed. If the assessment of the outcome
is discontinued at that point, similar issues exist with respect to the estimation
and interpretation of the future trajectory of those individuals. If the assessment
continues, but other treatment is initiated, the interpretation of the results becomes
more complex. In the context of the advanced cancer trial, I would argue from
an intent-to-treat perspective that assessment should be continued and included
in the analysis recognizing that HRQoL is likely to decline due to the symptoms
associated with the progressive disease or initiation of even more aggressive and
toxic therapy. The same arguments would not apply to the migraine prevention trial,
where discontinuation of therapy is likely to be a consequence of toxicity or lack
of efficacy which would have negative impact on HRQoL and switching to a new
therapy a potentially positive impact. The strategies to address these concerns will
vary across settings and will include careful documentation of the causes of dropout,
description of trajectories within selected subgroups and sensitivity analysis using
plausible assumptions.

5 Sample Size Estimation

Sample size (or power) estimation for longitudinal studies is a challenge. The
presence of missing data further complicates the process. None of the routines
in the statistical packages that compute sample size address this problem. This is
partially due to the number of unknown quantities that need to be specified because
of the longitudinal nature of the study. These include the differences between
the intervention arms at each of the repeated assessments under the alternative
hypothesis as well as all the covariance parameters. When specifying the differences
under the alternative hypothesis, one might consider both the expected differences
(generally based on pilot data) or various scenarios that would be compelling
enough to change clinical practice. The specification of the expected differences
will be affected by a number of factors including the expected mechanism of action.
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For example, an intervention of limited duration might produce the greatest effect
shortly after the intervention with diminishing effect over time. In contrast, another
intervention might produce a small effect initially with an increasing difference
over time. Complete specification of the covariance structure will require pilot
data. When pilot data does not exist, there are possible simplifications including
defining the effects and covariance assuming a standard deviation of 1 and a constant
correlation of the repeated assessments. For HRQoL and other patient reported
measures, the correlations are generally in the range of 0.4–0.8.

Given the lack of routines for sample size calculations in longitudinal studies in
statistical packages, what are the options? The first is to choose a simple outcome
measure (e.g., the last assessment), calculate the sample size needed pretending that
the data would be analyzed using a two sample t-test and then inflate that number
to account for dropout by dividing by the proportion of subjects expected to have a
final assessment. The procedure is simple, but generally overestimates that required
sample size.

The second strategy relies on the specification of an endpoint that is a linear
combination of the parameters describing the longitudinal trajectory, such as those
described in Sect. 3.2. The procedure involves specifying (1) the hypothesis as a
linear function of the parameters (H0 : θ =Cβ −G = 0), (2) the expected difference
under the alternative hypothesis of the outcome measure (Ha : δθ = Cβ − G),
(3) the expected rate of dropout Between each assessment, and (4) the correlation or
covariance of the assessments over time (Σ ). If the sample size is sufficiently large,
then the distribution of the test statistic for the hypothesis can be approximated by a
univariate normal distribution. For incomplete data, the relationship for a two-sided
test with type I and II errors of α and β can be written as

(zα/2 + zβ )
2 =

δ 2
θ

Var(Cβ̂ )
, Var(Cβ̂ )≈C

N

∑
n=1

(X ′
i Σ−1

i Xi)
−1C′. (8.13)

When missing data occurs solely as a function of dropout, Xi = Xk for N pk subjects
in the same treatment group who dropout between two assessments, where N is
the total sample size and pk,k = 1, . . . ,K is the proportion of subjects with the
design matrix Xk. Xk may include indicator variables for the planned assessments
or functions of time depending on the planned analysis as described previously in
Sect. 3.1. Then, ∑N

n=1 X ′
i Σ−1

i Xi can be rewritten as N ∑K
k=1 pkX ′

kΣ̂−1
k Xk. Solving for

N yields:
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The calculation of
[

∑K
k=1 pkX ′

kΣ̂−1
k Xk

]−1
is possible with programs that handle

matrix mathematics. A second alternative is possible if you can input the covariance
structure into the procedure or function that maximizes the likelihood and stop the
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algorithm after the very first iteration as with the SAS Mixed procedure.2 Other
adaptations for tests with multiple degrees of freedom, small sample sizes, and
intermittent missing data are possible (Fairclough 2009).

The final option involves simulation of Xi and may be useful when the missing
data pattern includes intermittent missing data or the timing of assessments varies
across individuals.

5.1 Migraine Example

Consider the Migraine Prevention Trial with five assessments over time. The
first step is to identify the endpoint and it’s expected value under the alternative
hypothesis. The expected differences between the two groups at 0, 2, 4, 8 and
12 weeks are 0, 6, 6, 10, and 12 points, respectively (Fig. 8.1 (left)). Let us
assume dropout is strictly monotonic and that 5% of the sample drops out after
each assessment, with 80% completing all assessments. Then, we assume that the
standard deviation is 20 and the correlation between assessments is 0.5 (a lower
bound for most HRQoL measures).

Using the first strategy, if our endpoint is the change from baseline to the 12-week
assessment, then we may simplify the problem to the comparison of the 12-week
assessments, where δθ is 12 points. Using standard software for a two sample test
(α = 0.05, two-sided test, 90% power), we would need a total of 120 subjects with
the 12 week assessment. Inflation for 80% dropout by 12 weeks would require a
total of 150 subjects to be enrolled.

If we wish to use the second strategy and a repeated measures analysis (see
Sect. 3.1) was planned with a cell mean model, the design matrix, Xi, will consist of
indicator variables for each time (t) and treatment arm (k) combination. β will be a
vector of the T K corresponding means, μtj. C is then defined to generate θ . In this
simple example, if

β = (μ0A μ2A μ4A μ8A μ12A μ0B μ2B μ4B μ8B μ12B)
′

and C = (1 0 0 0− 1 − 1 0 0 0 1), then θ =Cβ = (μ12B − μ0B)− (μ12A − μ0A) or
the treatment difference in the change from baseline to 12 weeks. With monotone
dropout, there will be ten unique design matrices (five for each treatment arm).
Table 8.1 summarizes the expected proportions with each pattern of dropout and the
corresponding value of pk for a 1:1 and 1:2 allocation to treatment group A and B.
Utilizing all the data, assuming equal allocation and using the asymptotic approxi-
mation, the total sample size is 136 subjects, roughly a 10% reduction compared to
the first strategy. If the correlation of assessments over time is increased (ρ = 0.6),
the sample size is reduced to 110 subjects. For an alternative endpoint (average of

2Examples are available on http://home.earthlink.net/∼dianefairclough/Welcome.html.
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Table 8.1 Proportion of subjects (pk) with unique design ma-
trices for 1:1 and a 1:2 allocation to treatment group A and B

Week of assessment Allocation

Pattern Group 0 2 4 8 12 1:1 1:2

1 A X 0.025 0.0167
2 A X X 0.025 0.0167
3 A X X X 0.025 0.0167
4 A X X X X 0.025 0.0167
5 A X x X X X 0.400 0.2667
6 B X 0.025 0.0333
7 B X X 0.025 0.0333
8 B X X X 0.025 0.0333
9 B X X X X 0.025 0.0333
10 B X x X X X 0.400 0.5333

4, 8, and 12 weeks – baseline), C = (10− 1/3− 1/3− 1/3− 101/31/31/3) and
δθ = (6+ 10+ 12)/3− 0 = 9.33. The sample size estimates are 140 and 112 for
ρ = 0.5 and 0.6, respectively. Given that we are at best making educated guesses
about the dropout rate, the expected trajectories and the correlation, it would be wise
to examine a number of likely scenarios.

5.2 Advanced Cancer Trial

As a second example, let us assume that the sample size for the trial has been
determined by the primary endpoint to be a total of 300 patients. The question of
interest is what is the power to detect a clinically relevant difference (say δθ = 5
points) in the change from baseline to the end of the study for the primary HRQoL
measure. We are specifically interested in the last three assessments, 24, 36, and 48
weeks because we expect roughly half of the subjects would have progressed by 48
weeks. Also assume that the standard deviation is expected to be 15 points and the
correlation of assessments over time to be approximately 0.6. The proportion with
HRQoL assessments is projected to be 100, 95, 09, 80, 70, 50, 30% at 0, 2, 8, 12,
24, 36, and 48 weeks. The power to detect the difference of interest is 0.81, 0.72,
and 0.55 at 24, 36, and 48 weeks, respectively. If the correlation among assessments
over time is 0.5, the power is reduced to 0.73, 0.62, and 0.47 respectively. The results
suggest a diminishing value of assessments after 24 weeks if the criteria is solely
based on the power to detect the hypothesized difference.
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6 Summary

Designing a clinical trial in which more than a small rate of dropout is expected
is very challenging. The issues are the same for most patient-reported outcomes as
well as other measures that require the study subject direct participation (pulmonary
function tests, 6-min walk, grip strength). Early involvement of the statistician
increases the likelihood that the analytic challenges and barriers in interpretation
of results can be reduced.

Clearly, prevention of missing data is the primary goal, but in many settings
(e.g., dropout due to death), it is not possible to eliminate the problem. When every
effort to eliminate preventable missing data due to administrative causes has been
implemented, it will be rare that one does not have some suspicion that dropout in
most individuals is related to the outcomes of interest and thus clearly not MCAR
and possibly not MAR. Analysis plans should employ methods that make the least
restrictive assumptions (thus avoiding all methods that assume MCAR). In most
cases, the best strategy will be to employ likelihood based/Bayesian methods that
utilize all the available data as the primary analysis, supplemented by sensitivity
analyses using pattern mixture models, joint/shared parameter models or multiple
imputation to assess the sensitivity of the results to alternative assumptions. There
is a common theme underlying all of these alternative models; specifically, each
in some manner tries to convert the analysis to one where conditional on either
auxiliary data or the specification of strata, the data can be considered MAR. The
choice between the various methods will depend on the availability and form of
the auxiliary data; so it is critical that strategies for obtaining auxiliary data are
incorporated into the design of the study.
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