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Preface

What the book is about

In 1976 1 gave a new proof to the Grothendieck (two-dimensional)
inequality. The proof, pushed a little further, yielded extensions of the
inequality to higher dimensions. These extensions, in turn, revealed
‘Cartesian products in fractional dimensions’, and led in a setting of har-
monic analysis to the solution of the (so-called) p-Sidon set problem. The
solution subsequently gave rise to an index of combinatorial dimension, a
general measurement of interdependence with connections to harmonic,
functional, and stochastic analysis. In 1993 I was ready to tell the story,
and began teaching topics courses about this work. The notes for these
courses eventually became this book.

Broadly put, the book is about ‘dimensionality’. There are several
interrelated themes, sub-themes, variations on themes. But at its very
core, there is the notion that when we do mathematics — whatever mathe-
matics we do — we start with independent building blocks, and build our
constructs. Or, from an observer’s viewpoint — not that of a builder —
we assume existence of building blocks, and study structures we see. In
either case, these are the questions: How are building blocks used, or put
together? How complex are the constructs we build, or the structures we
observe? How do we gauge, or detect, complexity? The answers involve
notions of dimension.

The book is a mix of harmonic analysis, functional analysis, and prob-
ability theory. Part text and part research monograph, it is intended
for students (no age restriction), whose backgrounds include at least
one year of graduate analysis: measure theory, some probability theory,
and some functional and Fourier analysis. Otherwise, I start discus-
sions at the very beginning, and try to maintain a self-contained format.

xiii



xiv Preface

Although the book is about specific brands of analysis, it should be
accessible, and — I hope — interesting to mathematicians of other per-
suasions. I try to convey a sense of a ‘big picture’, with emphasis on
historical links and contextual perspectives. And I try very hard to stay
focused, not to be encyclopedic, to stick to the story.

The fourteen chapters are described below. Each except the first starts
with ‘mise en scéne’ (the setting of a stage), and ends with exercises.
Some exercises are routine, filling in missing details, and some are not.
There are some exercises (starred) that I do not know how to do. In fact,
there are questions throughout the book, not only in the exercise sec-
tions, which I did not answer; some are open problems of long standing,
and some arise naturally as the tale unfolds. We start at the begin-
ning (‘... a very good place to start ...’), and proceed along marked
paths, with pauses at the appropriate stops. We go first through integer
dimensions, and, en route, collect problems concerning the gaps between
integer dimensions. These problems are solved in the last part of the
book. Although there is a story here, and readers are encouraged to start
at the beginning, the chapters are by and large modular. A savvy reader
could select a starting point, and read confidently; all interconnections
are clearly posted.

I A Prologue: Mostly Historical

A historical backdrop and flowchart: how it came about, and how it
developed. There are very few proofs, and these few are very easy.

II  Three Classical Inequalities

Three inequalities: Khintchin’s, Littlewood’s, and Orlicz’s. These, which
are equivalent in a precise sense, mark first steps.

IIT A Fourth Inequality

Grothendieck’s fundamental inequality. Three proofs are given; all three
are elementary, and all three involve an ‘upgraded’ Khintchin inequality.
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1V Elementary Properties of the Fréchet Variation — an
Introduction to Tensor Products

The Fréchet variation is a multi-dimensional extension of the ['-norm
and is at the heart of the matter. Basic properties are observed. The
framework of tensor products is a convenient and natural setting for the
‘multi-dimensional’ mathematics done here.

V' The Grothendieck Factorization Theorem

A two-dimensional statement, an equivalent of the Grothendieck inequal-
ity, with key applications in harmonic and stochastic analysis (later in
the book). A multi-dimensional version is derived, but open questions
persist about ‘factorizability’ in higher dimensions.

VI An Introduction to Multidimensional Measure Theory

A set-function on a Cartesian product of algebras is a Fréchet measure
if it is countably additive separately in each coordinate. The theory
of Fréchet measures generalizes notions in Chapter IV. Some multi-
dimensional properties extend one-dimensional analogs, and some reveal
surprises. The emphasis in this chapter is on the predictable properties.

VII  An Introduction to Harmonic Analysis

A distinct introduction to a venerable area. Harmonic analysis in the
setting {—1,1}Y, viewed from the ground up, as it starts from inde-
pendent Rademacher characters and evolves to the full Walsh system.
The focus is on measurements of this evolution. In this chapter, mea-
surements calibrate discrete scales of integer dimensions, and involve
the Bonami inequalities and the Littlewood inequalities; measurements
gauge interdependence and complexity. Questions concerning feasibility
of ‘continuous’ scales are answered in later chapters.

VIII  Multilinear Extensions of the Grothendieck Inequality (via
A(2)-uniformizability)

Characterizations of Grothendieck-type inequalities in dimensions
greater than two. Proofs are cast in a framework of harmonic analysis,
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and are based, as in Chapter III, on ‘upgraded’ Khintchin inequalities.
Characterizations involve spectral sets that in a later chapter are viewed
as Cartesian products in fractional dimensions.

IX Product Fréchet measures

Product Fréchet measures are multidimensional versions of product mea-
sures. They are as basic and important in the general multidimensional
theory as are their analogs in classical one-dimensional frameworks.
Feasibility of these products is inextricably tied to Grothendieck-type
inequalities.

X Brownian Motion and the Wiener Process

In science at large, Brownian motion broadly refers to phenomena whose
measurements appear to fluctuate randomly. The Wiener process, in
effect a limit of simple random walks, provides a mathematical model ‘in
a first approximation’ (Wiener) for such phenomena. Framed in a clas-
sical probabilistic setting, the Wiener process and subsequent chaos pro-
cesses are viewed and analyzed from this book’s perspective. Among the
main themes are: (1) the identification of chaos processes with Fréchet
measures; (2) measurements of evolving stochastic interdependence and
complexity; (3) measurements of increasing levels of randomness in ran-
dom walks.

XI Integrators

A continuation of themes in the previous chapter. A generic identifica-
tion of Fréchet measures with stochastic processes; stochastic integration
in a framework of multidimensional measure theory. The Grothendieck
factorization theorem and inequality play prominently in the general
stochastic setting.

XII A ‘3/2-dimensional’ Cartesian Product

Analysis of the simplest example of a fractionally-dimensional Cartesian
product. Dimension is a gauge of interdependence between coordinates.
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XIII  Fractional Cartesian Products and Combinatorial Dimension

Precise connections between combinatorial dimension and exponents of
interdependence in frameworks of harmonic analysis and probability
theory. Existence of sets with arbitrarily prescribed combinatorial dimen-
sions (fractional Cartesian products, random sets).

XIV  The Last Chapter: Leads and Loose Ends

Some applications and assessments of ‘fractional-dimensional’ analysis
in multidimensional measure theory, harmonic analysis, and stochastic
analysis. Open questions and future lines.

Conventions and Notations

Whenever possible, I use language of standard graduate courses in anal-
ysis and probability theory. Choice of scalars alternates between real
and complex scalars, and is appropriately announced. Conventions and
notations are introduced as we go along; every now and then, I review
them for the reader.

Here are two examples of conventions that may not be standard, and
appear frequently. If n is a positive integer, then [n] denotes the set
{1,...,n}. Independence — a recurring theme in the book — appears
under several guises, and I explicitly distinguish between these. For
example, I refer to statistical independence (the mainstay notion in clas-
sical probability theory), and to functional independence (defined in the
sequel). And there are other notions of independence.
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I
A Prologue: Mostly Historical

1 From the Linear to the Bilinear

At the start and at the very foundation, there is the Riesz representation
theorem. In original form it is

Theorem 1 (F. Riesz, 1909). Every bounded, real-valued linear func-
tional o on C([a,b]) can be represented by a real-valued function g of
bounded variation on [a,b], such that

b
o) = [ fdg. Jeca) (1)
where the integral in (1.1) is a Riemann—Stieltjes integral.
The measure-theoretic version, headlined also the Riesz representation

theorem, effectively marks the beginning of functional analysis. In gen-
eral form, it is

Theorem 2 Let X be a locally compact Hausdorff space. Every bounded,

real-valued linear functional on Co(X) can be represented by a regular
Borel measure v on X, such that

alf) = /X fdv,  feCy(X). (1.2)

And in its most primal form, measure-theoretic (and non-triviall) details
aside, the theorem is simply
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Theorem 3 If « is a real-valued, bounded linear functional on co(N) =
co, then

laflh ==Y la(n)| < oo, (1.3)

and

a(f) = an)f(n), feco

n

where &(n) = ale,) (en(n) =1, and e,(j) =0 for j # n).

The proof of Theorem 3 is merely an observation, which we state in
terms of the Rademacher functions.

Definition 4 A Rademacher system indexed by a set E is the collection
{ry : x € E} of functions defined on {—1,1}¥, such that for z € F

re(w) = w(@), we{-1,1}F. (1.4)

To obtain the first line in (1.3), note that

N
sup { Z a(n) ry,

and to obtain the second, use the fact that finitely supported functions
on N are norm-dense in co(N).

PN e N} = [lalls, (1.5)

Soon after F. Riesz had established his characterization of bounded
linear functionals, M. Fréchet succeeded in obtaining an analogous char-
acterization in the bilinear case. (Fréchet announced the result in 1910,
and published the details in 1915 [Fr]; Riesz’s theorem had appeared in
1909 [Rifl1].) The novel feature in Fréchet’s characterization was a two-
dimensional extension of the total variation in the sense of Vitali. To
wit, if f is a real-valued function on [a, b] X [a, b], then the total variation
of f can be expressed as

sup{

fa< < my << by

o0

Z AQf(:L'n, ym) Tnm

n,m

a<~-<ym<-~<b}, (1.6)
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where A2 is the ‘second difference’,
A? f (@, Ym)
= f(xnvym) - f(xn—lvy'm) + f(xn—hym—l) - f(x'ruyrn—l)y (17)

and {7, : (n,m) € N’} is the Rademacher system indexed by N”.
The two-dimensional extension of this one-dimensional measurement is
given by:

Definition 5 The Fréchet variation of a real-valued function f on
[a,b] x [a,b] is

e << xy < -0 <D,

oo

D A2 f (@0, Ym) Ta&rm

n,m

1flle = sup{

<~--<ym<~-<b}. (1.8)

(T @ 7y, is defined on {—1, 1} x {—=1,1}N by
Tn ® Tm(w1,ws) = w1 (n)wz(m),
and || - [|oo is the supremum over {—1, 1} x {—1,1})
Based on (1.8), the bilinear analog of Riesz’s theorem is

Theorem 6 (Fréchet, 1915). A real-valued bilinear functional 3 on
C([a,b]) is bounded if and only if there is a real-valued function h on
[a,b] X [a,b] with ||h]|F, < oo, and

b b
B(f. ) = / / fegdh, feC(ab), geClab),  (19)

where the right side of (1.9) is an iterated Riemann—Stieltjes integral.

The crux of Fréchet’s proof was a construction of the integral in (1.9),
a non-trivial task at the start of the twentieth century when integration
theories had just begun developing.

Like Riesz’s theorem, Fréchet’s theorem can also be naturally recast
in the setting of locally compact Hausdorff spaces; we shall come to this
in good time. At this juncture we will prove only its primal version.
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Theorem 7 If 3 is a bounded bilinear functional on co, and B(€m, €, ) 1=
B(m,n), then

sup{

Z ﬁ(m,n) T @ Tn : finite sets S C N, T C N}

meS,neT o)
= [1Bllr, < o0, (1.10)
and
Bfg) = Y. (Z@m n )f(m)
m=1 =1

Il
N
E)
3
3
~_—
=
S

f€co, g€co. (1.11)

Conversely, if 3 is a real-valued function on NxN such that HﬂAHF2 < 00,
then (1.11) defines a bounded bilinear functional on cg.

The key to Theorem 7 is

Lemma 8 If = (3(m,n) : (m,n) € N?) is a scalar array, then

HBHF2 = Sup{ Z B(mv n) Ty Yn| : T € [—1, 1],
meS,neT
yn € [-1,1], finite sets S C N,T C N}. (1.12)

Proof: The right side obviously bounds ||3||s,. To establish the reverse
inequality, suppose S and T are finite subsets of N, and w € {—1,1}".
Then

”BHFz > Z B(man) Tm @ Ty s
neT mes oo
> Z Z B(m,n) rm(w)] . (1.13)

ne€T |meS
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If y,, € [-1,1] for n € T, then the right side of (1.13) bounds
Z(ZQWMMwﬁw/ z(zmmm%yﬂm.
neT \meS meS \neT
(1.14)

By maximizing the right side of (1.14) over w € {—1,1}, we conclude
that ||8||r, bounds

>

meS

If 2, € [-1,1] for m € S, then (1.15) bounds

z(zmmmwyﬁ

meS \neT

S Bmn) v

neT

(1.15)

Z B(mvn) Tm Yn

meS,neT

: (1.16)

which implies that ||3]| s, bounds the right side of (1.12). O

Proof of Theorem 7: If § is a bilinear functional on ¢y, with norm
18I := sup{|B(f,9)| : f € Bey, g € By}, then (because finitely sup-
ported functions are norm-dense in c¢g)

18Il = Sup{

Yn € [—1,1], finite sets S C N,T C N},

Z B(man) Tm Yn

meS,neT

DT € [-1,1],

and Lemma 8 implies (1.10).

Let fecoand gecy. If N €N, then let fy=f1(n) and gy=g1(y). (Here
and throughout, [N]={1,...,N}.) Because fy — f and gy — g as
N — oo (convergence in ¢g), and § is continuous in each coordinate, we
obtain A(fx,g) — B(f,g) and B(f,gn) — B(f,g) as N — oo, and then
obtain (1.11) by noting that 3(fx,gn) = SN_ SN 3(m,n)g(n) f(m).

Conversely, if (3 is a scalar array on N x N, and f and g are finitely
supported real-valued functions on N, then define

B(f,9) =D Blm,n)g(n)f(m). (1.17)
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By Lemma 8 and the assumption |||z, < co, 8 is a bounded bilinear
functional on a dense subspace of ¢g, and therefore determines a bounded
bilinear functional on ¢g. The first part of the theorem implies (1.10)
and (1.11).

Theorem 7 was elementary, basic, and straightforward — view it as a
warm-up. In passing, observe that whereas every bounded linear func-
tional on ¢g obviously extends to a bounded linear functional on {*°, the
analogous fact in two dimensions, that every bounded bilinear functional
on cg extends to a bounded bilinear functional [*° is also elementary, but
not quite as easy to verify. This ‘two-dimensional’ fact, specifically that
(1.11) extends to f and g in {*°, will be verified in a later chapter.

2 A Bilinear Theory

Notably, Fréchet did not consider in his 1915 paper the question whether
there exist functions with bounded variation in his sense, but with infi-
nite total variation in the sense of Vitali. Whether bilinear functionals
on C([a,b]) can be distinguished from linear functionals on C([a, b]?) is
indeed a basic and important issue (Exercises 1, 2, 4, 8). So far as I
can determine, Fréchet never considered or raised it (at least, not in
print). Be that as it may, this question led directly to the next advance.

Littlewood began his classic 1930 paper [Lit4] thus: ‘Professor
P.J. Daniell recently asked me if I could find an example of a function
of two variables, of bounded variation according to a certain definition
of Fréchet, but not according to the usual definition.” Noting that the
problem was equivalent to finding real-valued arrays

B = (B(ma n) : (m7 n) € NQ)

with ||G]lr, < oo and ||B]ly = Zm.nlB(m,n)| = oo, Littlewood settled
the problem by a quick use of the Hilbert inequality (Exercise 1). He
then considered this question: whereas there are § with || HF2 < o0
and ||3]|1 = oo, and (at the other end) |3z, < co implies ||z < oo
(Exercise 3), are there p € (1,2) such that

[8ll7, <00 =1Bllp < o0?
Littlewood gave this precise answer.

Theorem 9 (the 4/3 inequality, 1930).

[SUNRFEN

HBHP < oo for all B with HBHF2 < oo if and only if p>
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To establish ‘sufficiency’, that ||3|p, < oo implies \|ﬁ||4/3 < o0,
Littlewood proved and used the following:

Theorem 10 (the mixed (I!,/?)-norm inequality, 1930). For all
real-valued arrays 3 = (B(m,n) : (m,n) € N?),

Z(Z |3(m>n>l2) < KlBllr, (2.1)

m

where k > 0 is a universal constant.

This mixed-norm inequality, which was at the heart of Littlewood’s
argument, turned out to be a precursor (if not a catalyst) to a sub-
sequent, more general inequality of Grothendieck. We shall come to
Grothendieck’s inequality in a little while.

To prove ‘necessity’, that there exists 3 with ||3||p, < oo and

18|, = oo for all p < 4/3,

Littlewood used the finite Fourier transform. (You are asked to work
this out in Exercise 4, which, like Exercise 1, illustrates first steps in
harmonic analysis.)

Besides motivating the inequalities we have just seen, Fréchet’s 1915
paper led also to studies of ‘bilinear integration’, first by Clarkson and
Adams in the mid-1930s (e.g., [Cl1A]), and then by Morse and Transue in
the late 1940s through the mid-1950s (e.g., [Mor]). For their part, firmly
believing that the two-dimensional framework was interesting, challeng-
ing, and important, Morse and Transue launched extensive investiga-
tions of what they dubbed bimeasures: bounded bilinear functionals on
Co(X)xCo(Y), where X and Y are locally compact Hausdorff spaces. In
this book, we take a somewhat more general point of view:

Definition 11 Let X and Y be sets, and let C C 2X and D C 2Y
be algebras of subsets of X and Y, respectively. A scalar-valued set-
function p on C x D is an Fh-measure if for each A € C, p(4,-) is
a scalar measure on (Y, D), and for each B € D, u(-,B) is a scalar
measure on (X, C).

That bimeasures are Fs-measures is the two-dimensional extension of
Theorem 2. (The utility of the more general definition is illustrated in
Exercise 8.)

When highlighting the existence of ‘true’ bounded bilinear functionals,
Morse and Transue all but ignored Littlewood’s prior work. In their first
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paper on the subject, underscoring ‘the difficult problem which Clarkson
and Adams solve ..., they stated [MorTrl, p. 155]: ‘That [the Fréchet
variation] can be finite while the classical total variation ...of Vitali is
infinite has been shown by example by Clarkson and Adams [in [CIA]].
(In their 1933 paper [ClA], the authors did, in passing, attribute to
Littlewood the first such example [ClA, p. 827], and then proceeded to
give their own [ClA, pp. 837-41]. I prefer Littlewood’s simpler example,
which turned out to be more illuminating.) The more significant miss
by Morse and Transue was a fundamental inequality that would play
prominently in the bilinear theory — the same inequality that had been
foreshadowed by Littlewood’s earlier results.

3 More of the Bilinear

The inequality missed by Morse and Transue first appeared in
Grothendieck’s 1956 work [Gro2], a major milestone that was missed by
most. The paper, pioneering new tensor-theoretic technology, was diffi-
cult to read and was hampered by limited circulation. (It was published
in a journal carried by only a few university libraries.) The inequal-
ity itself, the highlight of Grothendieck’s 1956 paper, was eventually
unearthed a decade or so later. Recast and reformulated in a Banach
space setting, this inequality became the focal point in a seminal 1968
paper by Lindenstrauss and Pelczynski [LiPe]. The impact of this 1968
work was decisive. Since then, the inequality, which Grothendieck him-
self billed as the ‘théoreme fondamental de la théorie metrique des pro-
duits tensoriels’ has been reinterpreted and broadly applied in various
contexts of analysis. It has indeed become recognized as a fundamental
cornerstone.

Theorem 12 (the Grothendieck inequality). If 8 = (3(m,n) :
(m,n) € N?) is a real-valued array, and {x,} and {y,} are finite subsets
in B2, then

> B(m, n){xm,yn)| < K [1B]|5s, 3.1

n,m

where Byz is the closed unit ball in 12, (-, -) denotes the usual inner product
in 12, and kg > 1 is a universal constant.
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Restated (via Lemma 8), the inequality in (3.1) has a certain aesthetic
appeal:

sup{

[%mll2 < 1, lynllz < 1, finite SC N, T C N}

C X € l2,yn e 2

Z B(ma 1) (Xm, Yn)

meS,neT

Z B(m, n)xmyn

meS,neT

t Ty € R,

< Kg sup {

Yn ER, |zm| <1, |yn| <1, finite SCN, T C N}. (3.2)

So stated, the inequality says that products of scalars on the right side of
(3.2) can be replaced, up to a universal constant, by the dot product in a
Hilbert space. In this light, a question arises whether one can replace the
dot product on the left side of (3.1) with, say, the dual action between
vectors in the unit balls of I? and [9,1/p+1/qg =1 and p € [1,2). The
answer is no (Exercise 6).

Grothendieck did not explicitly write what had led him to his ‘théo-
reme fondamental’, but did remark [Gro2, p. 66] that Littlewood’s
mixed-norm inequality (Theorem 10) was an instance of it (Exercise 5).
The actual motivation not withstanding, the historical connections
between Grothendieck’s inequality, Morse’s and Transue’s bimeasures,
Littlewood’s inequality(ies), and Fréchet’s 1915 work are apparent in
this important consequence of Theorem 12.

Theorem 13 (the Grothendieck factorization theorem). Let X be
a locally compact Hausdorff space. If (8 is a bounded bilinear functional
on Co(X) (a bimeasure on X x X ), then there exist probability measures

vy and vy on the Borel field of X such that for all f € Co(X), g € Co(X),
16(f, 9| < wall B2 wollgllLz ws), (3.3)

where kg > 0 is a universal constant, and

181l = sup{IB(f, 9)| : (f,9) € Bey(x) X Beg(x)}-

This ‘factorization theorem’, which can be viewed as a two-dimensional
surrogate for the ‘one-dimensional’ Radon-Nikodym theorem, has a far-
reaching impact. A case for it will be duly made in this book.
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4 From Bilinear to Multilinear and Fraction-linear

Up to this point we have focused on the bilinear theory. As our story
unfolds in chapters to come, we will consider questions about extend-
ing ‘one-dimensional’ and ‘two-dimensional’ notions to other dimensions:
higher as well as fractional. Some answers will be predictable and obvi-
ous, but some will reveal surprises. In this final section of the prologue,
we briefly sketch the backdrop and preview some of what lies ahead.

The multilinear Fréchet theorem in its simplest guise is a straight-
forward extension of Theorem 7:

Theorem 14 An n-linear functional B on cq is bounded if and only if
I8, < oo, where 5(ki,...,kn) = B(ek,,...,er,) and

1B, = sup{

finite sets TlcN,...7TnCN}. (4.1)

Z 3(/{1,.‘.7kn)7‘]€1®~-~®7‘k”

k1€Ty,....kn €Ty

o0

Moreover, the n-linear action of 3 on cq is given by

Bftsenfa) = - (Zﬂkl,..., fn<n>)-~-f1<k1>,

k1
(fi,--- fn) € cox -+ xco. (4.2)

Though predictable, the analogous general measure-theoretic version
requires a small effort. (The proof is by induction.)

The extension of Littlewood’s 4/3-inequality to higher (integer)
dimensions is not altogether obvious. (So far that I know, Littlewood
himself never addressed the issue.) This extension, needed in a harmonic-
analytic context, was stated and first proved by G. Johnson and
G. Woodward in [JWol:

Theorem 15

HBHP < oo for all n-arrays B with HﬁAHFn < 0
2n

] d only if p> ——.
if and only if p > 1

‘One half’ of this theorem could be found also in [Da, p. 33]. For his
purpose in [Dal], Davie called on Littlewood’s mixed-norm inequality
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(Theorem 10), but did not need the 4/3-inequality. Nevertheless, he
stated the latter, and remarked in passing without supplying proof that
‘it [was] not hard to extend Littlewood’s result’ to obtain

5 n=1 ntl =
1Bll2n/(n+1) <372 n 2w |10k, (4.3)

(Davie did not state that (4.3) was optimal.)

Davie’s paper is interesting in our context not only for its connec-
tion with Littlewood’s inequalities, but also for a discussion therein of a
seemingly unrelated, then-open question concerning multidimensional
extensions of the von-Neumann inequality. This particular question
was subsequently answered in the negative by N. Varopoulos, who, en
route, demonstrated that there was no general trilinear Grothendieck-
type inequality. The latter result concerning feasibility of Grothendieck-
type inequalities in higher dimensions is a crucial part of our story
here, indeed leading back to questions about extensions of Littlewood’s
4/3-inequality. I will not dwell here or anywhere else in the book on
the original problem concerning the von-Neumann inequality. But I
shall state here the question, not only for its role as a catalyst, but also
because an interesting related problem remains open. It is worth a small
detour.

The von-Neumann inequality asserts that if 7' is a contraction on a
Hilbert space and p is a complex polynomial in one variable, then

(D) < [lplloc = sup{|p(2)] : |2| <1}, (4.4)

where ||-|| above denotes the operator norm. The two-dimensional exten-
sion of (4.4) asserts that if 77 and T are commuting contractions on a
Hilbert space, and p is a complex polynomial in two variables, then

[p(T1, To)|| < [lplloc := sup{lp(z1, 22)| : |21 < 1, |22 <1} (4.5)

(These inequalities can be found in [NF, Chapter 1].) The question
whether

[p(Tr, -, Tl < Mlploes

where n > 3, T1,...,T, are commuting contractions on a Hilbert space,
and p is a complex polynomial in n variables, was resolved in the negative
in [V4]. But a question remains open: for integers n > 3, are there
K, > 0 such that if T, ..., T, are commuting contractions on a Hilbert
space, and p is a complex polynomial in n variables, then

[p(Th, ..., To) | < Knllplloo? (4.6)
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Let us return to the general 2n/n+1-inequality in Theorem 15. The
arguments used to prove Littlewood’s inequality(ies) start from the
observation that Rademacher functions are independent in the basic
sense manifested by (1.5). The analogous observation in a Fourier-
analysis setting is that the lacunary exponentials {e®*"*: m € N} on
[0,27) := T are independent in a like sense. Specifically, if ¥,,a(m) 3" *
is the Fourier series of a continuous function on T, then ¥,,|&(m)| < oo
(cf. (1.5)). This phenomenon had been noted first by S. Sidon in 1926
[Sil], and later gave rise to a general concept whose systematic study
was begun by Walter Rudin in his classic 1960 paper [RU1]:

Definition 16 F C Z is a Sidon set if
feCp(T) = f el (F), (4.7)

where Cp(T) := {f € C(T) : f(m) =0 for m € F}.

Note that the counterpoint to Sidon’s theorem (asserting that {3* :
k € N} is a Sidon set) is that Placherel’s theorem is otherwise optimal;
that is,

felP(Z) for all f € C(T) = p>2. (4.8)
These two ‘extremal’ properties — Sidon’s theorem at one end, and (4.8)

at the other — lead naturally to a question: for arbitrary p € (1,2), are
there F' C 7Z such that

feli(F) for all f € Cp(T) < q>p? (4.9)
To make matters concise, we define the Sidon exponent of F' C Z by
op =inf{p:||f]l, < oo for all fe Cp(T)}. (4.10)

(Two situations could arise: either ||f||,, < oo for all f € Cg(T), or
there exists f € Cp(T) with || f|,, = oo. Later in the book we will
distinguish between these two scenarios.) Let E = {3* : k € N}, and
define for integers, n > 1

E,={#3" +...£3% : (ky,...,k,) e N"}. (4.11)
Transported to a context of Fourier analysis, Theorem 15 implies
. 2
felun,) for all f€Cp, (T) e q> % (4.12)
n

In particular,

1
OE, :2/ <1+E) , neN, (4.13)
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which leads to the p-Sidon set problem (see (4.9)): for arbitrary p €
(1,2), are there F' C Z such that op = p? The resolution of this
problem — it so turned out — followed a resolution of a seemingly unre-
lated problem, that of extending the Grothendieck inequality to higher
dimensions.

The Grothendieck inequality (Theorem 12) is a general assertion about
bounded bilinear forms on a Hilbert space: in Theorem 12, replace {2
by a Hilbert space H, and the inner product (-,-) in /2 by a bounded
bilinear form on H. A question arises: is there K > 0 such that for all
bounded trilinear functionals 3 on cg, all bounded trilinear forms A on
a Hilbert space H, and all finite subsets {x,} C By, {y»} C Bm, and
{Zn} - BHa

Z B(ma n, k) A(XkaYmaZn) < KHBHF?,? (414)

k,n,m

(Here and throughout, Bx denotes the closed unit ball of a normed linear
space X.) The question was answered in the negative by Varopoulos
[V4], who demonstrated the following. For H = 12(N?), and ¢ € [™°(N?),
define

Ay(x,y,2) = Z e(k,m,n) x(k,m) y(m,n) z(k,n),

k,m,n
(x,y,2z) € [(N?) x [2(N?) x [2(N?), (4.15)

which, by Cauchy—Schwarz, is a bounded trilinear form on H with norm
llolloo. By use of probabilistic estimates, Varopoulos proved the exis-
tence of ¢ for which there was no K > 0 such that (4.14) would hold
with A = A, and all bounded trilinear functionals 3 on co. But a ques-
tion remained: were there any ¢ € 1°°(N®) for which A, would satisfy
(4.14) for all bounded trilinear functionals 5 on c?

In 1976 I gave a new proof of the Grothendieck inequality [B13]. The
proof, cast in a harmonic-analysis framework, was extendible to multi-
dimensional settings, and led eventually to characterizations of projec-
tively bounded forms [Bl4]. (Projectively bounded forms are those that
satisfy Grothendieck-type inequalities, as in (4.14).) We illustrate this
characterization in the case of the trilinear forms in (4.15). Choose and
fix an arbitrary two-dimensional enumeration of E = {3* : k € N}, say
E = {my; : (i,5) € N’} (any enumeration will do), and consider

B = {(myj, mjr,mir) : (i, 4, k) € N°}. (4.16)
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We then have

Theorem 17 For ¢ € I°(N*), the trilinear form A, is projectively
bounded if and only if there exists a regular Borel measure y on T3 such
that

fi(mig, mge, mak) = (i, 5, k), (i,5,k) € N°. (4.17)

Therefore, the question whether there exist ¢ such that A, is not pro-
jectively bounded becomes the question: is £%/2 a Sidon set in Z3? The
answer is no.

In the course of verifying that 3 is not a Sidon set, certain combi-
natorial features of it come to light, suggesting that F%/? is a ‘3/2-fold’
Cartesian product of E. Indeed, following this cue, we arrive at a
6/5-inequality [B15], which, in effect, is a ‘3/2-linear’ extension of the
Littlewood (bilinear) 4/3-inequality. For a scalar 3-array 3 = (3(i, j, k) :
(i,4,k) € N*), define (the ‘3/2-linear’ version of the Fréchet variation)

Z B(i,J} k) rij @ Tk @ ik

i€8,j€T k€U

HﬁHF3/2 = sup{

oo

finite setsSCN,TCN,UCN}. (4.18)

(Rademacher systems in (4.18) are indexed by N2.) The 6/5-inequality is

Theorem 18
18l < oo for all 3-arrays (3 with ||,6A'||F3/2 < 00
if and only if p > 6/5.
Transporting this inequality to a setting of Fourier analysis, we let
Eyo = {£ my; £myj, £mg : (i,5,k) € N°}, (4.19)

where {mi;: (i,j) € N?} is an enumeration of {¢2™3""; k € N}, and
obtain that

OBy = g _ 2/ (1 + 1/ (g)) (cf. (412)).  (4.20)

The assertion in (4.20) is a precise link between the harmonic-analytic
index o, , and the ‘dimension’ 3/2, a purely combinatorial index. This
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link naturally suggests a formula relating the harmonic-analytic index
of a general ‘fractional Cartesian product’ to its underlying dimension,
and thus the solution of the p-Sidon set problem. This (and much more)
will be detailed in good time. The prologue is over. Let us begin.

Exercises

1. 1. (The Hilbert inequality). Prove that if (a,,) € B2 and (b,,) € B2
are finitely supported sequences, then

Z anbm/(m —n)| < K,

m#n

where K is a universal constant.

ii. Applying the Hilbert inequality, reproduce Littlewood’s proof
of the assertion (on p. 164 of [Li]) that there exist 3 = (8(m,n) :
(m,n) € Z*) such that ||3]|m, < oo but ||3]; = occ.

iii. Compute the infimum of the ps such that |3, < oo, where
is the array obtained in ii.

2. Here are two other proofs, using probability theory, that there exist
arrays 3 = (B(m7 n) : (m,n) € N?) with ||B||F2 < o0 and ||B|\1 = 00.
i. (a) Let {X, : n € N} be a system of statistically independent

standard normal variables on a probability space (X, 2, P).
Show that for every positive integer NN, there exists a
finite partition {A,, : m = 1,...,2"} of (X,%) such that if
3N(m,n) = %ElAan forn=1,...,Nandm=1,...,2"V,
and By(m,n) = 0 for all other (n,m) € N? (E denotes
expectation, and 1 denotes an indicator function), then

1657, < D and [|Byll = D log N,

where D > 0 is an absolute constant.

(b) Use (a) to produce (= (6(m,n): (m,n) e N?) such that
18]l 7, < oo but ||3]|; = oo (cf. Exercise 4 iv below). What
can be said about ||3|, for p > 17

ii. (a) For each N > 0, define
B (w,n) = ra(w)/N22V | we {~1,1}V, n e [N].

Prove that ||3x|/m < 1. Compute HBNHp for p > 1.
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(b) Use (a) to produce 3 = (3(m,n): (m,n) € N?) such that
18Il 7, < o0, ||4]l1 = oo, and ||3]], < oo for all p > 1.

(Do you see similarities between the constructions in Parts i and
ii? Do you see a similarity between the construction in Part ii and
Exercise 4 below?)

3. Verify that if 3 = (B(m,n) : (m,n) € N?) is a scalar array then

18112 < 118] .-
4. For N € N, let Zy = [N] (a compact Abelian group with addition

modulo N). Consider the characters
Xn(k) = 2™ /N € 7y, k € Zy,
and the Haar measure
1
k}=—, kelZn.
V{ } N7 € N
For f € I°°(Zy), define the transform of f by

fn) =3 FR)xn (k) v(k).
kE€EZNn
i. (Orthogonality of characters) For m € Zy and n € Zy, prove

0 otherwise.

ii. (Inversion formula, Parseval’s formula, Plancherel’s theorem)
Prove that for f € 1*°(Zy),

fm) =3 f(k) xu(n), n€Zy.
ke€ZN
Conclude that if f € I°°(Zn) and g € I°°(Zn), then
Y k) g(k) v(k) = Y f(k) §(k),
k€EZn kEZn

and that if f € L2(Zy,v), then

12y ) = 1 llz -

G2mi(mn/N)

iii. Prove that the 2-array (T : (m,n) € Zn xZy) represents
an isometry of 1?(Zy). Define

2mi(mn/N) |
B(mm):{ew if (m,n) € Zy X Zy
otherwise,

and verify that ||3] g, < 1.
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6.

Exercises 17
iv. Prove there exists a scalar array 3 with ||3]|p, < oo and
18]l = oo for all p < 4/3.

Prove that Littlewood’s mixed norm inequality (Theorem 10) is an
instance of the Grothendieck inequality (Theorem 12).
Let 3 be the scalar array defined in Exercise 4 iii. Let ¢ € (2, 00)

sup {

Yn € Bja, finite sets S C N, T C N}.

and evaluate

Z ﬁ(m»nxemvyn) :

meS,neT

What does your computation say about an extension of Littlewood’s
mixed norm inequality (Theorem 10)? In particular, prove that
the inner product in Grothendieck’s inequality cannot be replaced
by the dual action between vectors in the unit balls of [P and 19,
1/p+1/g=1and pe€l,2).

Prove that 3 is a bounded n-linear functional on ¢y if and only if

A i3k i3kn
Z ﬁ(kla"~7kn)elg o ,_‘613 on
kiy..oskn

represents a continuous function on T".

This exercise, providing yet another example of a function with
bounded Fréchet variation and infinite total variation, is a prelude
to the ‘probabilistic’ portion of the book.

A stochastic process W = {W(t) : ¢ € [0,00)} defined on a
probability space (Q,2(,P) is a Wiener process if it satisfies these
properties:

(a) for 0 < s <t < 00, W(t) — W(s) is a normal r.v. with mean
zero and variance t — s;

(b) for 0 < to <11+ <ty < 00, W(tk) —W(tkfl), k= 1,...,m,
are independent.

Let J denote the algebra generated by the intervals
{(s,t] : 0<s <t <1},

and let 1w be the set-function on A x {(s,t] : 0 < s <t < 1} defined
by

:U'W(Aa (S,t]) :E]-A(W(t)_w(s))v AEQ[, 0<s<t< L
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i. Extend pw by additivity to A x J.

ii. Prove that pw is an Fi-measure on 2 x J which is uniquely
extendible to an Fy-measure on 2 X B, where B is the Borel
field in [0,1].

iii. Prove that pw cannot be extended to a measure on the
o-algebra generated by 2 x ‘B.

Hints for Exercises in Chapter 1

. Here is an outline of a proof using elementary Fourier analysis.

First, compute the Fourier coefficients of h(z) = z on T. Let f(z) =
Y. f(n) €™ and g(z) = ¥,4(n) e be trigonometric polynomials,
and observe that

/T of (@)g(x)da

- (%: |f(n)|2>é <§n: |§(n)|2>

To prove the Hilbert inequality, use spectral analysis of fg, and
apply Parseval’s formula to the integral on the left side.

Littlewood let a, = b, = 1/y/]n|(log|n|)® for n € N, where
1/2 < a < 1, and then defined B(m,n) = apby/(m—n) for n £ m.

<l fllez gl

1
2

For N > 0, consider E; = {X; >0}, i€ [N], and then for s =

(81,--,8Nn) € {=1,1}, let

A, = ENNER .. NEY,

where EJ* = E; if s, =1, and E]' = (E;)¢ if s; = —1.

Cf. Plancherel’s theorem.
This exercise involves basic notions that are covered at length in

Chapter VII.
. See Remark iv in Chapter VI § 2.
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Three Classical Inequalities

1 Mise en Scéne: Rademacher Functions

Rademacher functions r,, n € N, are used here and throughout the
book as basic building blocks — there are none more basic! Their original
definition, by H. Rademacher in [R, p. 130], was this: if z € [0,1], and
¥ by (x)/2™ is its binary expansion, then

ro(x) =1-2b,(z), neN. (1.1)

(To remove ambiguity for dyadic rationals x, take b, (x) = 1 for infinitely
many ns.) This definition, still fairly pervasive throughout the literature,
is sometimes restated as

rn(z) = sign (sin 2"7z), n €N,
x € [0,1], z # dyadic rational. (1.1)

For example, see [Zy2, p. 6], [LiTz, p. 24|, [Kah3, p. 1], [Hel, p. 170].
In our setting, a Rademacher system indexed by a set E will mean a
collection of functions {r, : e € E}, defined on {—1,1}¥ by

re(w) = wle), e€E, we{-1,1}F. (1.2)

While the definitions in (1.1) and (1.2) are equivalent (Exercise 1), I
prefer the definition in (1.2) because it makes transparent underlying
structures that are germane to these functions. In this book, except
for occasional exercises and historical notes, elements of Rademacher
systems will always be functions whose domains are Cartesian products
of {—1,1}. Eventually we will distinguish between various underlying
indexing sets E, but in the beginning (and for a long while until further

19
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notice) we shall use the generic indexing E = N. We will denote {—1, 1}¥
by Q.

Analysis involving {r, : n € N} ultimately rests on two elementary
observations, each separately expressing a basic property of indepen-
dence. The first, which we shall formalize later as functional indepen-

dence, is (in this case) merely a restatement of the product structure
of

for every choice of signs €, = £1 (n € N), there exists w € Q

such that r,(w) = €, for every n € N. (1.3)

This implies that for all finitely supported {a,} C R

sup{ :wGQ}::

and therefore (Exercise 9),

= laal, (14)

00 n

Z an, Tn(w)

§ An Tn
n

sup {Z |ay| : finitely supported {a,} C C,

n

n

= C S 2. (15)

The second observation is based on a statistical structure that we
introduce in 2. Let us assume that a Rademacher function does not
‘favor’ either one of the two points in its range {—1, 1}, and then consider
Q as the probability space (2,2, P), where 2 is the o-algebra generated
by {ry : n € N}, and the probability measure IP is determined by

|7
1
P{r, =€, fornec F} = <§> , FCN, ¢, =xlforneF. (1.6)

(Here and throughout, | - | denotes cardinality.) The Rademacher func-
tions thus become statistically independent symmetric random variables
on (©,2,P). In particular, for all m € N, n; € N,... n,, € N,

1 |{l:j=mn}| iseven forall j €N,

1.7
0 otherwise, (1.7)

Erp -, :{
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where E denotes ezpectation (Exercise 1). We shall make strong use of
the relations in (1.7). Notice that the instance m = 2 is the statement
that {r, : n € N} is an orthonormal set in L2(Q, P); i.e.,

1 2\ 3
<Z|an|2> =|E Zanrn (1.8)
n n
2 The Khintchin L'-L? Inequality
If f € L(2,P), then
11z = (£l (2.1)

The reverse inequality is generally false; there exist f € L2(Q,P) such
that ||f|lt2 = 1 and | f||r2= = oo. However, the L' and L2 norms are
equivalent on the span of the Rademacher system. The latter assertion —
widely known as the ‘Khintchin inequality’ — is among the important
tools in modern analysis.

Theorem 1 (the Khintchin L!-1? inequality). There exists kx > 0
such that for every scalar sequence (a,) with finite support,

> (Z |an|2> . (2.2)

KKE

n

Proof: The instance m = 4 in (1.7) implies E 7y, rp,mpgrn, = 1
whenever two pairs of indices assume the same value, and otherwise,
Erp,mn,Tnsmn, = 0. Because there are three ways that two pairs
of indices can assume the same value ({n1 = na, n3 = ng},
{n1 =ns, no =n4}, and {n1 = n4, na =ns}), we obtain

4
E

= E Gy Qny Gng Gny BTy, Thy Thg Ty

n1,n2,n3,N4q

3) lanl’lam|> =3 (Z an|2) . (2.3)

n

n

IN
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Write

2 4
3 3

E -E (2.4)

n n n

Apply Holder’s inequality with exponents 3/2 and 3 to the right side of

(2.4), and obtain
2\ 2 1
> an < (E > an ) E|)) anm
n n n

Substitute (2.3) in (2.5), and deduce (2.2) (via (1.8)) with kg = V/3.
O

ol

4

E (2.5)

Remark (notes, mainly historical). In the argument above, the
Khintchin L'-L? inequality is derived from the L2-L* inequality in
(2.3), which, in turn, is derived from the instance m = 4 in (1.7).
The full strength of (1.7) (derived from the statistical independence
of the Rademacher system) implies L2-L?™ inequalities for all m € N
(Exercise 3). These L2-L2™ inequalities had been first stated in 1923
by A. Khintchin [Kh1, p. 112], en route to his law of the iterated loga-
rithm, and rediscovered in 1930 by Paley and Zygmund in their study
of random series [PaZyl]. Inequalities similar to Khintchin’s, involving
functions that would later be dubbed Steinhaus, were published in 1925
and 1926 by J.E. Littlewood [Lit1], [Lit2], [Lit3], who evidently was
unaware of Khintchin’s inequalities. We shall return to these matters in
Chapter VIIL.

Khintchin himself did not state the L'-L? inequality that today bears
his name. It had been stated first by Littlewood in [Lit3], in a form
somewhat different from Theorem 1, and later rephrased by him in [Lit4],
in the form of Theorem 1, in order to derive the mixed-norm inequality
that we will see in the next section. The proof above of Theorem 1 is
Littlewood’s; indeed, his ‘Rademacher functions’ are more akin to (1.2)
than to (1.1) (see [Lit4, pp. 169-70]). Be that as it may, the L'-L2
inequality involving the Rademacher system today bears Khintchin’s
name.

An equivalent formulation of the Khintchin L'-L? inequality — that
all functions in the L'-closure of the linear span of the Rademacher
system are square-integrable — was proved in 1930 by S. Kacmarz and
H. Steinhaus [KaSte, Théoréme 8]. Kacmarz and Steinhaus knew, by
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way of functional analysis that had just then begun developing, that
this assertion was equivalent to the L!-L? inequality [KaSte, p. 246)
(Exercise 2). But their proof of Théoréme 8, and thus the inequality,
was rather circuitous. Three years later, W. Orlicz [Or] stated the L1-1.2
inequality without proof, citing Khintchin’s 1923 paper [Khl] and
Paley’s and Zygmund’s 1930 work [PaZyl]. The paper by Paley and
Zygmund contained the full system of L2-L4 inequalities for all ¢ > 2,
but not an explicit statement of the L'-L? inequality. The proof of
the L'-L? inequality was apparently relegated to folklore sometime bet-
ween 1930 and 1933. More will be said of Orlicz’s paper [O] in the next
section.

3 The Littlewood and Orlicz Mixed-norm Inequalities

We define the Fréchet variation of a scalar array
8= (B(m,n) : (m,n) € N?)

to be

181l 7

= sup Z B(m,n) rm @ T, : finite sets S C N, T'C N »,

meS,neT Lo

(3.1)
where 7, ® 1, is the function on €2 x € defined by

Tm @ Ty (W1, wWa) = T (w1) 70 (w2)

for (w1, wsz) € Qx Q. We denote by F»(N,N) the class of all scalar arrays
f indexed by N? such that ||8]|r, < co.

Theorem 2 (Littlewood’s (I!,!?)-mixed norm inequality). There
exists kr, > 0 such that for every 8 € F»(N,N),

rllBle > Y (Z 1B(m, n>|2) , (3.2)

where k1, < c1kk. (c1 is defined in (1.5), and Kk is the constant in

(2.2).)
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Proof: We can assume that 3 has finite support. By an application of
(1.5), for all w € 9,

¢ Zﬁ(mm) Tm @ T > Z Zﬁ(m,n) rn(w)] . (3.3)
m,n I, m n
Therefore, by taking ezpectation on both sides of (3.3), we obtain
c1 Zﬁ(m,n) T @ Th > ZE Zﬂ(m,n) T . (3.4)
m,n Loe m n

An application of (2.2) implies

Z ﬁ(m, TL) Tm @ Tn

m,n

C1RK

zZ(Zﬂ(mm)F) . (35)

n

Lee m

O

Theorem 3 (the Orlicz (/2,/')-mixed norm inequality). There
exists ko > 0 such that for every 8 € F»(N,N),

rollBle = [ S0 (Z 1B(m, n>|) , (3.6)

and kg < K.

Proof: By the triangle inequality in 2,

1 1

Z(Zwmm)ﬁ) > Z(Zm(m,n)) . BT

which, by Theorem 2, implies (3.6) with kg < kL. O
Remark (what Orlicz did). In his 1933 paper [Or] (cited in the

Remark in the previous section), Orlicz established for p > 1, that if

Z frn is unconditionally convergent in LP([0,1],m) (3.8)

n

(m = Lebesgue measure), then for all N > 0,

1 N B
/0 (ZIW) dz < K, (3.9)
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and therefore,

g:l </01 fnlpdx)i < 0. (3.10)

(See Exercise 5.) The implication (3.9) = (3.10) is nowadays routine, via
the generalized Minkowski inequality (Exercise 4), but was not routine
during the 1930s. Orlicz established the implication (3.8) = (3.9) by
an application of the Khintchin L!'-L? inequality, and then gave a
detailed proof of the implication (3.9) = (3.10). Littlewood’s mixed-
norm inequality (3.2) is in effect an instance of the implication (3.8) =
(3.9), and (3.6) is an instance of the implication (3.8) = (3.10). Working
in a context different from Littlewood’s, Orlicz was apparently unaware
of the work in [Lit4].

4 The Three Inequalities are Equivalent

In §2 we proved the Khintchin L'-L? inequality. In §3 we used it to
deduce Littlewood’s mixed-norm inequality, and then applied the latter
to obtain the Orlicz mixed-norm inequality. The three inequalities are
in fact equivalent; any one is derivable from the other. To show this, it
suffices to prove

Theorem 4 If (3.6) holds for all 5 € F»(N,N), then for every finitely
supported sequence of scalars (an),

[N

H()E

n

> <Z Ianl2> : (4.1)

n

Proof: Let (a, : n € [N]) be a scalar sequence, and assume

N
E AnTn
n=1

This implies that for every choice of signs €, = +1, n=1,..., N,

E =1. (4.2)

N

§ €EnanTn

n=1

E =1 (4.3)
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(Exercise 6). Rewrite (4.3) as

Ny N
(5) Yo Do manra(w)| =1, ueq, (4.4)
we{—1,1}N [n=1

which implies (Exercise 7)

N N
(%) Z Zan o (W)rn (Wre(v)| <1, (u,v) € Q% (4.5)

we{—1,1}N n=1

Define
Blw,n) = ay ro(w)/2Y, we{-1,1}, ne{l,...,N}. (4.6)

After re-indexing, we substitute (4.6) in (3.6), and obtain, by (4.5),

2
N

: N 3
> > Jan ra(w)l/2Y :(Zmﬁ) < ko (4.7)
n=1

n=1 \we{-1,1}V

O

5 An Application: Littlewood’s 4/3-inequality

Littlewood used his mixed-norm inequality (Theorem 2) to prove that
the Fh-variation of a scalar array bounds, up to a constant, its [4/3-
norm. He also demonstrated that this assertion was sharp; that the
exponent 4/3 could not, in general, be replaced by exponents p < 4/3.
(We have already commented in Chapter I on Littlewood’s original
motivation behind this inequality; that it was a question raised by
Daniell (of the Daniell integral fame) concerning existence of functions
on [0,1]2 ‘of bounded variation according to a certain definition of Fréchet,
but not according to the usual definition’ [Lit4, p. 164].)

Littlewood’s 4/3-inequality, which we state and prove below, extends
to two dimensions the elementary, one-dimensional inequality in (1.5).
Later in the book, this inequality will be further extended to higher
dimensional frameworks, including framework of ‘fractional dimension’.
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Theorem 5
i. There exists 1 < A < (FL()FLL)% such that for all 8 € F»(N,N),
1Bllazz < A 1BlF,- (5.1)

(kL and ko are the respective constants in Theorem 2 and
Theorem 3.)
ii. There exist § € F5(N,N) such that |||, = oo for all p < 4/3.

Proof:
i. Let § € F5(N,N), and write

S 1Btm)E =3 (Z 1B8(n,m)|%|B(n, m>§> : (5.2)

n,m n

In the sum over m, apply Holder’s inequality with exponents 3 and
3/2, and then in the sum over n, apply Holder’s inequality with
exponents 3/2 and 3. The result is

1

S Bmm)s < (Y (Z ﬂ<n7m>|2)

1

2\ 3
S (Z 1(n, m>|> . (5.3)

n

To the left factor on the right side of (5.3), apply Littlewood’s (I*,{?)-
mixed norm inequality (Theorem 2), and to the right factor apply
Orlicz’s (12,1')-mixed norm inequality (Theorem 3). The result is

(Z 1B(n, m>|§) < (kokn)? || Bl - (5.4)

ii. Let n be a positive integer. Define

Ba(j k) = (1/n)F e2™/m (5K € [n] x [n], (5.5)
and (3,(j, k) = 0 for (j,k) ¢ [n] x [n]. Then,
1Ballr, <1 and  [|Ball, = nF =2, (5.6)

which implies the assertion (Exercise 8).
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Remark (about Littlewood’s original arguments). The proof
above of (5.1), which is somewhat different from the argument in [Lit4],
was shown to me by Sten Kaijser during my visit to Uppsala University
in the fall of 1977. Littlewood’s original argument implied the constant
2k1, in place of (kgkr)? on the right side of (5.1). The value of the best
constant is unknown. (Best constants will be discussed briefly in the
next section.)

The proof above that (5.1) is sharp (Theorem 5 ii) is Littlewood’s
original argument. It is based on the fact that the Gauss matrix

(1/v/n) ™98 (j,k) € [n] x [n], (5.7)

determines an isometry of 1?([n]) (Exercise 8). Indeed, the essence of
Theorem 5 ii is the existence of matrices (8(j,k) : (4,k) € [n] x [n])
such that [8(j, k)| = 1 for (4, k) € [n] x [n], and (1/4/n)0 represents an
operator on [%([n]) with norm independent of n.

6 General Systems and Best Constants

Analysis of {—1,1}" can be generalized in a framework consisting of a
set E, a collection of sets {D. : e € E}, and a system of projections
{Xe : € € E} defined by

Xe(x) =z(e), z€ H De. (6.1)

ecE

Specifically, we consider these generalizations of the Rademacher system.
Let m > 2 be an integer, and let T,,, denote the set of mth-roots of unity,

T, ={e™/m.j=0,...,m—1}, (i =+v-1). (6.2)

Denote the infinite product (T,,)Y by Q,,, and let
Sm = {x :n € N}

be the system of projections from 2, onto T,,. The functional inde-
pendence property (cf. (1.3)) is obvious:

if u, € T,, for n € N, then there exists x € Q,,
such that x'(z) = u, for n € N. (6.3)
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—1} < 00.
1,00

(6.4)

Lemma 6 (cf. (1.5)). For every integer m > 2,

Cm =

Z anXn

n

sup an| : finitely supported {a,} C C,
> lanl y

n

Proof: It can be assumed that m > 3. Let {a1,...,any} C C. By
applying (6.3), find z € Q,, such that
anXil (@) = lan| €, gn € [0,2/m], n=1,.. N (6:)

Then, by projecting a,x"(x) on the line bisecting the angle 27/m, we
obtain
N

> an X (@)

n=1

> (cos w/m) Z |an]. (6.6)

O

It is obvious that lim,, o ¢ = 1 (by (6.6)), but the values of the ¢,

appear to be unknown (Exercise 9).
We will consider also the ‘limiting case’ m = oo: in (6.1), let E = N
and

Dy =To :={*":t€[0,1]}, neN, (6.7)

and denote the corresponding system of projections by
Seo = {xn :n €N}

(The notation T for the circle group is temporary, and is used only
in this section.) Clearly, for all finitely supported C-valued sequences

(an)v
Z an Xn

n

= D lanl; (6.8)

Loo n

i.e., Coo = limy, o0 €y = 1.

Like the case Q={-1,1} (m = 2), we view €, for each m > 2
(including m = o0o) as a product of uniform probability spaces. That
is, let 2A,,, be the o-algebra generated by S,,; endow T,, with the uni-
form probability measure (Lebesgue measure in the case m = o0), and
let P,,, be the resulting infinite product measure on 2, (cf. (1.6)). If
m < oo, then S, is a system of statistically independent T,,-valued
random variables on (,,, 2,,, P.,) such that for every x € Sy,

; 0 ifj=1,....m—1
J — b b
E(x) = {1 if j _ (6.9)
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Similarly, if m = oo, then S, is a system of statistically independent
T-valued random variables on (s, Ao, Poo) such that for every x €
S and j € N,

E(x)’ =0. (6.10)
The system So, played key roles in Littlewood’s 1925 and 1926 papers
[Lit1], [Lit2], [Lit3], and in Steinhaus’s 1930 paper [Ste]. Elements of
Soo were dubbed Steinhaus functions by Salem and Zygmund [SaZy?2],
and this term has held (see [Kah3, p. 2]).

Khintchin-type L'-L? inequalities and resulting mixed-norm inequali-
ties can be obtained by arguments very similar to the proofs of
Theorems 1, 2, and 3 (Exercise 10). These inequalities assert that the
constants defined below are finite:

kk(m) =

sup{ ||(an)]l2 : finitely supported scalar sequence (ay,),

E Am X —1};
1
2

sup Z Z 183, 7)|? : finitely supported scalar arrays (3,
J

i

E

(6.11)

kL(m) =

STBlanr x| =1p:

i, Loo
Ko(m) =

sup Z Z |B(, )] : finitely supported scalar arrays 3,
J

i

Y B exy| =1
%]

Loe

(6.13)
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As in the case of the Rademacher system, the L'-L? and the respective
mixed-norm inequalities stated above are equivalent (see Theorem 4).
Precisely, we have

kx(m) < ko(m) < kL(m) < e, k(M) < oo. (6.14)

Remark (what is, and what is not known about the constants).
Let & (m), k¥ (m), and kg (m) be the respective constants defined by
the right sides of (6.11), (6.12), and (6.13) where the scalar field is R.
In [Lit2], Littlewood obtained sx(2) < v/3 (proof of Theorem 1), and
left open the problem of determining rk(2) (see [Hal]). S. Szarek was
the first to show, in his Master’s thesis [Sz], that xk(2) = kk(2) = V2.
Subsequent proofs establishing s (2) = v/2 (increasing in simplicity, but
none trivial) can be found in [H2], [To], and [LatO]. It is thus evident,
from (1.4) and the proofs of Theorems 1, 2, 3, and 4, that

V2 = kR(2) = kE(2). (6.15)

At the other end, in the case m = oo, J. Sawa computed ki (c0) = 2//T
[Saw] (also a Master’s thesis). Therefore, by (6.8) and (6.14),

2/ = ko(o0) = K1, (00). (6.16)

The values of kk(m) for 3 < m < oo, and the values of kr,(m) and xo(m)
for 2 < m < oo are unknown.

Exercises

1. (measure theory warm-up).

i. Verify that P defined by (1.6) determines a probability measure
on (02,2), where 2 is the o-algebra generated by {r, : n € N}.

ii. Verify that {r,, : n € N} is a system of statistically independent
symmetric random variables on (2,2, P), and deduce (1.7).

iii. Verify that if we use Rademacher’s original definition of his
functions [R], stated in (1.1), then {r, : n € N} is a sys-
tem of statistically independent symmetric random variables on
([0,1],B,m), where B is the Borel field of [0,1], and m is the
Lebesgue measure.

2. (functional analysis warm-up). Let (X, v) be a finite measure space,
and suppose {f, : n € N} is an orthonormal set in L2(X,v). Prove
that the following two assertions are equivalent:



32 II  Three Classical Inequalities

(a) there exists x > 0 such that for every finite sequence of scalars

(an),
> (Z Ianl2> ;

(b) the L!-closure and the L2-closure of the linear span of

{fn:neN}

<E

Zan fn

are equal.

3. i. Prove that for every integer n > 1 and finitely supported scalar
sequence (a,)

L

2n 2n (2 )' % %
mn).: n
< ()" (Shar)
’ k

o (r)

E

E ak Tk
k

IN

(After you establish this, compare your proof with the one on
p. 112 of Khintchin’s 1923 paper [K1], and the one on pp. 340-2
of Paley’s and Zygmund’s 1930 paper [PaZyl].)

ii. Prove that for all p > 2 and all finitely supported scalar
sequences (a,)

p % b
(E Sanr, ) Sﬁ(ZanF) |
n n

and conclude that for all p > 0, the LP-closure and the L2-closure
of the linear span of {r,, : n € N} are equal.

4. (the generalized Minkowski inequality). Let (X, u) and (Y,v) be
measure spaces. Suppose f is a measurable function on X x Y and
p € [1,00). Prove that

» i v
(/ (/ [f(z,9)| V(d$)> u(dy)> S/ (/ If(w,y)\pu(dy)) dv(dz).
X Y Y X
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(Compare your proof with Orlicz’s argument in [Or, p. 36], which
established a special case of this inequality.)

. In this exercise you will reproduce, in a slightly more general form,
the main results in [O]. (Compare your proofs with Orlicz’s original
arguments.) Let V be a normed linear space and let (x,:n€N)
be a sequence of elements in V. The series ¥,x, is said to be
unconditionally convergent if ¥,x, is convergent in V for every
rearrangement {x,} of {z,}.

i. Prove that if ¥,z, is unconditionally convergent, then there
exist K > 0 such that for all integers N > 0 and all choices of
signs €, = 1 for n € [N],

<K.
v

N
E €n Tp
n=1

ii. Let (X, p) be a measure space. Prove that if ¥, f,, is uncondi-
tionally convergent in LP(X, u) for p > 1, then for all N € N

N

/. (anu:)z) u(dz) < K,

n=1

where K is an absolute constant. From this, deduce Littlewood’s
(11, 1?)-mixed-norm inequality (Theorem 2).

iii. Let (X, u) be a measure space. Prove that if X, f,, is uncondi-
tionally convergent in LP(X, i) for p € [1,2], then

> (f. ) <o

From this, deduce the Orlicz (I2,[')-mixed-norm inequality
(Theorem 3).

. (probability theory warm-up). Prove that for all {a,} C C, N € N,
and choices of signs €, = £1, n € [N],

N N
E anTn ~d § €EnlnTn
n=1

n=1

(~q¢ means ‘has the same distribution as’).
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(This exercise verifies the implication (4.2) = (4.3), which can be
deduced also via harmonic analysis (Chapter VII), from the trans-

lation invariance of the Haar measure and functional independence

of the Rademacher system.)
7. Verify that (4.4) implies (4.5).

8. (harmonic analysis warm-up). For positive integers n, consider the
Abelian group Z, = {0,...,n — 1} with integer addition mod n.

The characters of Z,, are the functions
Xj: Ly, —{2€C: |2z|=1}, j€L,,
defined by

xj(k) = e*™ik/n ke,

To underscore that {x; : j € Z,} forms the dual group of Z,,, we
shall denote its underlying indexing set by Z,,. The transform f of

fel*(z,)is

)= () 3 10 0. e

k€Zn

i. (orthogonality of characters). For j € Z, and k € Z,,, prove

<%> Z X5(0) xk(l) = {(1) i)ftflejvﬁse.

€Ly

ii. For f € 1°(Z,,), prove (the inversion formula)

FO) =" fk) xe(l), 1€ Zn.

k€Zn

Conclude that if g € [°°(Z,,), then (Parseval’s formula)

() T s ati = ¥ ) i

JELn kE€Zn
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and therefore (Plancherel’s formula),

HfHLQ(Zn,V) = ||f”[2(Zn)’

where v is the Haar measure on Z,, i.e., the uniform probability
measure on Z,.

iii. Prove that ((1/y/n) €™9%/™ . (j k) € Z, x Z,) represents an
isometry of I([n]). That is, if x = (2;) € B2z, and y = (y;) €
Blg(zn>, then

xy)=> z; T = (1/v/n)>_ ¥/ g, gy
3.k 3.k

Conclude that ||5,]|r, <1, where 8, is defined by (5.5).
iv. Prove that there exist 3 € F5(N,N) such that ||8]r, < oo and
18]l, = oo for all p < 4/3.
9*. What are the values of ¢,, (defined in (1.5) and (6.4)) for n > 17
10. Verify the Khintchin L'-L? inequalities for S,,, m > 3 and m = co.
11. Verify ki (m) < ko(m).
12. i. Prove that for every m > 2 and n > 2 (including m = oo
and n = oo) there exist d,,, , > 0 such that for every finitely
supported scalar array (3,

A | > BGRXT @ X = (D080 X @ x;
gk J.k

L Lee

ii.* Let the d,, denote the best constants in the inequalities in
i. Note the relations between d,, n, &1,(m), ko(m), kr(n) and
ko(n). For example,

dm 2k1,(2) > K1L(m).

Can you prove dy, 2 £1(2) = kr,(m)?

Hints for Exercises in Chapter II

1. i. Mimic the construction of the Lebesgue measure on [0,1] by fol-
lowing these steps (see [Roy, Chapter 3)).
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3.

II  Three Classical Inequalities

Step 1 For F' C N finite, and ¢; = %1 for j € F, define the
cylinder set

0 =0(¢}jer) ={weQ:w(j)=¢;, j€ F}

Observe that cylinder sets are both open and closed in 2. Define

ro)= (1)

Denote the class of cylinder sets by €. For A C , define (the
outer probability measure P* of A)

P*(A) = inf {Z]P(on) {0, :neN}cC¢, U0, D A} .

For O €€, prove that P(O) = P*(O) (see [Roy, Proposition 1,
Chapter 3]).

Step 2 Prove that P* is countably subadditive (see [Roy,
Proposition 2, Chapter 3]).

Step 3 Following Carathéodory, say that £ C Q is measurable if
for each A C Q,

P*(A) = P*(AN E) + P*(A N E°).

Denote the class of measurable subsets of €2 by 991. Prove that 9t
is a o-algebra (see [Roy, Theorem 10, Chapter 3]).

Step 4 Prove that € C 9 (see [Roy, Theorem 12, Chapter 3]).

Step 5 Let A denote the o-algebra generated by €, and then let
P = P*|y. Prove that (2,2, P) is a probability space.

i. Review the derivation of (2.3).

ii. See Exercise 2.

4. Use LP-L? duality.

See [LiTz, pp. 15-16].
. Use the ‘characteristic function’ method, the statistical independence
of the Rademacher system, and the symmetry of its elements.
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8. iv. Extend the definition of £, in (5.5) to Z x Z by writing
Bm(J, k) = 0 for all negative integers j and k. For (j, k) € Nx N,
define

[ee)
B k) =D (1/m?)Bam (j — 2™ + 1, k—2™ + 1),
m=1
and then verify that § € F»(N,N) and ||8|, = oo for every

p<4/3)
11. See the proof of Theorem 4.
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A Fourth Inequality

1 Mise en Scéne: Does the Khintchin L'-L? Inequality
Imply the Grothendieck Inequality?

Grothendieck’s théoréme fondamental de la théorie metrique des produits
tensoriels appeared first in 1956, in a setting of topological tensor
products [Gro2, p. 59], and has resurfaced since that time in various
contexts under different guises. Its first reformulation was an elemen-
tary assertion that has become known as the Grothendieck inequality
[LiPe, p. 275]: if (amn) is a finitely supported scalar array such that

<1 (1.1)

§ Amn Zm Wn
m,n

for all scalar sequences (wy,) and (z,) in B¢ (the closed unit disk of C),
then for all sequences (x,,) and (y,) of vectors in Bjz (the closed unit
ball of 12),

Zamn<xm,yn> <K, (1.2)

m,n

where K is a universal constant and (-, -) denotes the usual inner product
in 12,

38
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This inequality can be restated concisely in terms of the Fréchet vari-
ation defined in (I1.3.1), and the norm

Z Bm,n)(Xm, ¥n)| :

meS,neT

18llg; = SUP{

{Xm} C Bz, {ym} C B2, finite sets S C N,T C N} (1.3)

(Exercise 1). Indeed, for all scalar arrays /3,

1817 < 118llge (1.4)

and the opposite inequality (with a constant) is

Theorem 1 (the Grothendieck inequality). There exists kg > 0
such that for all scalar arrays (3,

18]lg> < K 18 Fy- (1.5)

Later in the book we will use the following transcription of Theorem 1:
if H; and H» are Hilbert spaces, and 7 is a bounded bilinear functional
on Hy x Ha, then for all 5 € F5(N,N), and finite subsets

{Xm :m €S} C Hy, {ym:me€S}C Hy,

Z B(m,n) N(Xm,¥n)| < ka HﬁHFz ||7IH InaX{HX'mHHH ”yn”Hz}v
meS,neT

(1.6)

where ||n|| = sup{|n(x,y)| : x € By,,y € Bu,} (Exercise 2).

If you skipped Exercise 1.6, then now is the time to observe that
Littlewood’s mixed-norm inequality (Theorem II.2) is an instance of
Grothendieck’s: let {e, } denote the standard basis in [2, and note that

Zﬂ(m,n) e,

2

—

m

<Z/6’(m, n) emym>' Aym} € Blz}

<|8llg, < rc 18l (L.7)
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which, in particular, implies kg > kr. Therefore, by Theorem I1.4,
each of the three inequalities in the previous chapter — (1.2.2), (1.3.2),
and (I.3.6) — is implied by Theorem 1, and this naturally brings up
the question: can the Grothendieck inequality be derived from, say, the
Khintchin L'-L? inequality?

In the next two sections we give two elementary proofs of Theorem 1,
each based, in essence, on an ‘upgraded’ Khintchin L'-L? inequality. In
84 we formalize the property expressed by such an inequality, dub it
A(2)-uniformizability, and in §5 use it explicitly to give a third proof of
Theorem 1. The A(2)-uniformizability property will be used again, in
similar fashion, in the multidimensional framework of Chapter VIII.

2 An Elementary Proof

Because the Grothendieck inequality in the complex case follows, modulo
the ‘best’ kg, from the inequality in the real case, we will assume in this
and the next section that all elements in {2 have real-valued coordinates.
(No attempt is made here to compute ‘best’ constants.)

Our first step is to state an alternative representation of the standard
dot product (x,y) = X, x(n) y(n) in I2. Let

Dy ={(ny,...,npm):n; €N, ny <+ <npt, (2.1)

and fix a one-one correspondence between N and (J,~; Dogy1. (Any
correspondence will do.) Denote the correspondence by

n < (N1, ..., n2j41), (2.2)

where n € N, and (n1,...,n9;41) € UZO:1 Doy, 1. For a scalar sequence
x = (x(n) : n € N), let ¢x be the sequence whose nth entry is

(¢x)n = x(n1) - - x(n2j+1), (2.3)
where n < (n1,...,n2j11) (as per (2.2)). Then, for allx € 2 and y € I2,
(¢x, dy)

= > x(n1) - x(ngj+1)y(n1) - y(noj41). (2.4)

J=1(n1,...;n2;41)€D2;541
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For each j > 1,

> x(n1) - x(ngj1) y(n1) - y(no;+1)|
(n1,..,m2541)€D2j41
1

< o > [x(n1) - x(n2j41) y(n1) - y(n2;41)|

(2'7 + 1) (n1,eeymojy1)EN2IHL

yeeny 25

< (2 [y )5 (25)
(251! ’

and therefore,

o)

(ool < 3 iy Tl Iyl

= sinh([lx]l2 [y ll2) = lIx[l2 [lyl2- (2.6)

Let A be the function defined on I x I by

A(x,y) = (x,y) + (¢x, 0y), (x,y) €l® x % (2.7)
Define 0x = \/ﬁ, and rewrite (2.7) as

Lemma 2 For all x andy in Bz,

o0
(x,y) = Z )¥(sinh(1) — 1)* A(0Fx, 6*y), (2.9)
k=0
where the convergence of the series is uniform in Bp. (0F is the kth

iterate of 6.)

Proof: By iterating (2.8), we obtain for j =0, ...

j
(x,y) = Z F(sinh(1) — 1)* A(*x,6%y)
k=0
+ (=1)7 T (sinh(1) — 1)1 (97 %, 07 y). (2.10)

By (2.6), 6 is a map from B2 into Bj2, and, therefore, the second term
on the right side of (2.10) converges to 0 uniformly in Byz. O
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Lemma 3 If § is a scalar array, and {X,, : m € S} and {y, : n € N}
are finite subsets of Bz, then

> Blm,n) Alxm,yn)| < elBllr, (2.11)

meS,neT

Proof: In the ensuing argument, we assume all vectors have finite sup-
port (Exercise 3 ii). By the (statistical) independence of the Rademacher
system, for all vectors x and y,

Axy)=E 7 [Ja+ixtk)r) 7 [Ja+ivkr).  (212)
k k

(i =+/—1, and % denotes the imaginary part; see Exercise 3.) Note that

[T +ixkyr)

k

L, o
< —_
= eXp(QHXHZ)’ (2.13)

Lo

which follows from |1+ix(k)rk| = /1 + (x(k))? and log(1+(x(k))?) <
(x(k))2. By (2.12), (2.13), and Lemma L8,

> B(m,n) Alxm,yn)

meS,neT

Z B(m,n) E 7 H(l + ixp (k) )T H(l + iyn(k)rk)

meS,neT
> B(m,n) /O,”H(Hlxm ) [ [+ iyn(Rk)ra) | < Bl
meS,neT k
(2.14)
O

Proof of Theorem 1: Let {x,, : m € S} and {y,, : n € T} be finite
subsets of Bj2. Then,

Z B(m,n) (X, yn)

meS,neT

= Y Blm,n)) (~1)F(sinh(1) — DFA(0F%,, 0Fyn)
k=0

meS,neT
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(by Lemma 2)

<> (sinh(1) = DF| Y Bm,n) A(0Fx,,0%y,)

k=0 meS,neT

(6

< 5 siapp) 18l (b Lemma.3). (215)

3 A Second Elementary Proof

As in the previous proof, we first rewrite the dot product in /2 in terms of
a scalar-valued function defined on {2 xI? (cf. Lemma 2), and then verify
that this function satisfies a Grothendieck-type inequality (cf. Lemma 3).
To underscore similarities between the arguments in this and the previ-
ous section, we use the same notation whenever possible.

We fix a one-one correspondence between N and | J;—, N k7 and denote
it by

n < (ny,...,n;), (3.1)
where n € N and (ny,...,n;) € Up, N (cf. (2.2)). If

x = (x(n) :n € N)

is a scalar sequence, then ¢x will denote here the sequence whose nth
coordinate is

(%) = x(n1) -+ x(n;)/ /5, (3.2)

where n < (nq,...,n;) (cf. (2.3)). For x € [? and y € [2,

<¢x,¢y>:2% S x(n)x(ny) y(n). . y(n)

j=2"" (n1,...,n;)ENI

= D (ey))/it= e — (x,y) — 1. (3.3)

=2
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In particular,
g3 = el — 1|3 — 1 (3.4)

(cf. (2.6)). Let 6 = %, which, by (3.4), maps the unit sphere in 2

into itself. Define a function A on [? x I% by

A(x,y) = et —1 (3.5)

(cf. (2.7)), and rewrite (3.3)
(x,y) = A(x,y) = (e = 2) (6x,0y). (3.6)
(cf. (2.8)).

Lemma 4 (Exercise 4). If ||x]2 = |lyll2 = 1, then

(xy) =Y _(-1F(e—2)" A(6"x,6%), 3.7
k=0

where the convergence of the series is uniform in the unit sphere of I2.

Lemma 5 Let {x,, : m € S} and {y, : n € T} be finite subsets of the
unit sphere in 12. Then,

S Bmn) AGmyn)| < et DBl (38)

meS,neT

Proof: Let {Zy: k € N} be a system of (statistically) independent
standard normal random variables. Then, for x and y in the unit sphere
of {2,
E oi=x(k)Zy —iZy(k)Z) _ HE el tx(k) =y (k)} 2
k

= J[ e 0=y ®1/2 = =16l (3.9)
k

In this computation we used independence, and that for standard normal
random variables Z,

E(itZ) = exp(—t?/2), tcR. (3.10)
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By (3.5), (3.9), and Lemma 1.8,

> Bim,n) A(Xm,yn)

meS,neT

= X Bmm) e 1)

meS,neT

— Z ﬁ(m, n) (e E eiExm(k)Zk e—iZyn(k)Zk. _ 1)
meS,neT

<eB| Y Blmm) B0 S0z L),
meS,neT
< (de+ 1)|1BlF,- (3.11)

O

Proof of Theorem 1: Apply Lemmas 4 and 5 (and Exercise 1) exactly
as we applied Lemmas 2 and 3 in the previous section.

Remark (a summary). A crucial step in all ‘self-contained’ proofs
of the Grothendieck inequality, including Grothendieck’s own argument
(Exercise 10), is a representation of the dot product in [? by absolutely
convergent series of integrals of products of bounded functions. We shall
see, as the story unfolds, that feasibility of such representations is the
essence of Grothendieck’s théoréme fondamental. The two proofs given
here contain, respectively, these two representations: if ||x|l2 = 1 and
HyH2 =1, then

(x,y)
=) (1)’ (sinh(1) = 1) B % [J(+i@x)sri)2 [J+i@y)x o),
j=0 k k

(3.12)
_ ¢ ;
where 0 = T is defined by (2.3), and
x,y) = Z(_l)j (e — Q)jE(eiXk(é’]X)ka e~ iSk(O'Y)n Zi _ 1), (3.13)
j=0
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where 0 = ¢/+/e — 2 is defined by (3.2).

Each of these identities is based on an ‘upgraded’ Khintchin L!'-L?2
inequality (Exercises 8, 9), which we formalize in the next section.

4 A(2)-uniformizability

Definition 6 Let (X,v) be a finite measure space, and let H be a

closed subspace of L2(X,v).

i. H is a A(2)-space if there exists £ > 0 (a A(2)-constant of H) such
that for every g € H there are f € H* (the orthogonal complement
of H) with the property that g + f € L>°(X,v), and

lg + flle= < &llgllee- (4.1)

ii. H is a uniformizable A(2)-space if for every ¢ > 0 there exists § =
om(€) > 0 (a A(2)-uniformizing constant associated with H and ¢)
such that for every g € H there are f € H+ with the property that
g+ fel®(X,v),

llg + fllLe < 6[gllLz, (4.2)
and
[ fllLz < ellgllLe- (4.3)

The lemma below equates the A(2)-property with an L'-L? inequality.
The argument establishing this equivalence is nowadays routine, but
during the 1920s and 1930s, in the early stages of functional analysis, it
was news. For example, see Banach’s paper [Ban], and also Kacmarz’s
and Steinhaus’s paper [KaSte] and the references therein.

Without loss of generality, we will assume, here and throughout, that
the underlying measure space (X,v) in Definition 6 is a probability
space.

Lemma 7 (cf. Exercise I1.2; [KaSte, Théoréme 10]). A closed
subspace H of L2(X,v) is a A(2)-space if and only if there exists k > 0
such that for all h € H,

wlhllLe = [2]2; (4.4)

i.e., H is a A(2)-space if and only if H is a closed subspace of L'(X,v).
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Proof: Assume (4.4). Let ¢ € H. By the Cauchy—Schwarz inequality

and (4.4),
’/gl_z dv

This implies that

< kllglve [kl he H. (4.5)

h'—>/gi_zdy, heH,

determines a bounded linear functional on the L'-closure of H. There-
fore, by the duality (L')* = L, and by the Hahn-Banach theorem,
there exist F' € L°°(X,v) such that |F||L~ < x and for all h € H,

/(F —g)h dv =0. (4.6)

This means F — g € H, as required.

Conversely, suppose H is a A(2)-space. Denote by 7y the canonical
projection from L2(X, v) onto H. Let h € H be arbitrary. If g € L2(X, v)
and ||g|[r2 = 1, then there exist f € H* such that 75g + f € L>®(X,v)
and ||7gg + fllne < k. Therefore,

’/hg dv
Then,

1h|lL2 = sup{’/hg dv

Let L%(Q,P) = L% denote the LP-closure of the span of the
Rademacher system R. That L%—C is a A(2)-space follows, via Lemma 7,

< Al|Alles. (4.7)

= '/h(THngf) dv

cg € LA(X,v), ||glle = 1} <k |||l (4.8)

O

from the Khintchin L'-L? inequality, which — we recall — was derived in
the last chapter from an L2-LP inequality. (See Proof of Theorem II.1.)
An L2-LP inequality for p > 2 also yields, with a bit more work, the
A(2)-uniformizability property:

Theorem 8 If H is a closed subspace of L2(X,v) and H C LP(X,v)
for some p > 2, then H is a uniformizable A(2)-space.

Lemma 9 (Exercise 5). If H is a closed subspace of L2(X,v) and
H C LP(X,v) for some p > 2, then H is a A(2)-space.
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Proof of Theorem 8: The inclusion H C LP is equivalent to existence
of C, = C > 0 such that

lglle < Cligllee, g€ H (4.9)
(Exercise 5). Let e >0 and g € H. Define

. _2
h— {g if |g] < €77 |g]|L» (4.10)
0 otherwise.

Let ¢ = g — h. Then,

/ ol dv = / 2Pl dv < € g (4.11)

Let 7y and Tﬁ denote the canonical projections from L? onto H and
H* | respectively. Write
¢ =71(p) + T (0). (4.12)
From (4.9) and (4.11), we obtain
I ()llz < €C lgllie and |77 (9) |2 < €C gz (4.13)

By Lemma 9, H is a A(2)-space. Therefore, by (4.13), there exists f €
H-* such that

72 (@) + fllLee < kllTa ()L < k€ C gl (4.14)
where £ is a A(2)-constant of H. Observe that
h+71u(p) + f =g+ f —7i(#), (4.15)

and that f — 75 (@) € H*. From (4.15), (4.10), (4.9), and (4.14), we
obtain

lg + f = i (@)l = 7+ 71 (9) + fll=
< llees + 7 (9) + flle < (€377 +€x) C [lgllre.  (4.16)

Combining (4.14), (4.13), (4.11) and (4.9), we obtain

1f =75 (@)llz = If +71(0) = ¢llie < eCls+ Dllgle.  (4.17)
0

Corollary 10 L% is a uniformizable A(2)-space. Moreover, for an
absolute constant 0 < K < oo, and all p > 2 and ¢ > 0,

O2 (€) < K\/p e77. (4.18)
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Proof: To obtain the first assertion, it suffices to apply (11.2.3). To
obtain the second, apply the full system of the Khintchin inequalities
(Exercise I1.3), together with (4.16) and (4.17). O

Remarks:

i (credits). A version of Theorem 8 had been communicated to me
in a letter by Gilles Pisier, in September 1977, and appeared in
[Bl4, Lemma 2.2]. Pisier’s original proof was based on complex
interpolation. The simpler truncation argument given here (and in
[Bl4, Lemma 2.2]) was the result of a conversation I had (at Uppsala)
with Per Sjolin, also in September 1977.

ii (a constructive proof). The proof of Theorem 8 was non-
constructive. That is, in applying the hypothesis H C LP, we
concluded only existence of f € H* such that 7g(p) + f satis-
fied (4.14). Although this suffices to prove the Grothendieck inequ-
ality (Exercise 6), we shall describe below an explicit algorithm
a: H — HY (a A(2)-uniformizing map) such that for every g € H,

lg + a(g)llLe < dllglle and le(g)]lLz <€ [lgllee- (4.19)

The A(2)-uniformizing map «, which we use in §5 and later again in
Chapter VIII in a multidimensional context, is closely related to the
maps ¢ defined by (2.3) and (3.2) in the previous two sections.

Fix € > 0 such that that eC' < 1, where C is the constant in (4.9).
Let g1 = ¢g. Apply the truncation in (4.10) to produce hy = g1 + 1
such that

2
[PallLee < €7 C flgallL> and  [lpal2 < €C lga]lL2- (4.20)

We continue recursively. Let n > 1. Assume that we have produced
hn € L, g, € L2, and ¢, € L? such that h, = g,, + ©n,

hnllL= < €T7C(eC)" g1]li2, (4.21)
and

lenllLz < (€C)"llgallLa

Define g,+1 = 7u(pn), and apply (4.10) to gni1, thus obtaining
hn+1 = gn+1 + On+1 such that

[hnsilli= < €T7 Ol (pn) Lz < €77 C(eC) |91 |2 (4.22)
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and

lont1llre < eClira(en)lre < (€C)" | g1lLz. (4.23)

Observe that

S 1) hy =g+ (D) ra(en) + Y (-1 (). (4.24)
Jj=1 Jj=1
Letting n — oo in (4.24), we obtain
o0
> (=17 'hy —ngZ 1717 () (4.25)

=1

The series on the left side converges in L (X, v) (by (4.22)), and the
series on the right converges in L2(X,v) (by (4.23)). Moreover,

S0 S @/l (426)

1,00

and

Z Y ( (©5) S( ¢ >||g||Lz. (4.27)

— L2

The A(2)-uniformizing map o : H — H*' is defined by

o0
Z )77 i (w5), g€ H. (4.28)
Jj=1

The second assertion in Corollary 10, regarding dependence of uni-
formizing constants on e, remains valid; see (4.26) and (4.27) above.
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5 A Representation of an Inner Product
in a Hilbert Space

In this section we demonstrate that existence of an infinite-dimensional
uniformizable A(2)-space yields a representation of an inner product by
an absolutely convergent series of integrals of products of bounded func-
tions. This representation, which implies Theorem 1, is the prototype
of representations produced in §2 and §3 (cf. (3.12) and (3.13)).

Assume that L2(X,v) is separable, and that H C L2?(X,v) is an
infinite-dimensional uniformizable A(2)-space (e.g., H = L%(Q,P)). Fix
0 < e <1, and let 6 = dy(e) be a uniformizing constant associated
with H and e. Following the Remark in the previous section, we have a
well-defined map o : H — H*' such that if g € H then

g+ a(g)llL= < éllgll  and  [la(g)[[L> < €llg]|L2. (5.1)
Define (a mixed-norm space)

PL=) =3 (F) : f5 € LX), Y Ifill= <00 (5.2)

J

Theorem 11 There exists a map ¥ : > — [L(L>®) (i.e., for x € 12
Ux = {(¥x); : j € N}, (Ix); € L=(X,v), and 5;]|(¥x)|lLe < 00)
such that

L PR N 6:3)
and
ey) = Y177 [ (), Ty, (5.4
j=1

Proof: Fix unitary maps U : 12 — H and V : H+ — H (Exercise 7).
For x € [2, denote g¥ = Ux, and for j € N define

g1 =Valgy) and (¥x); = g5 + alg)). (5.5)
A recursive application of (5.1) implies (5.3), and

la(gN)lle = lgfalle < €llxll2, j €N (5.6)
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For x € [2 and y € I2, we obtain from (5.5)

(x,5) = / (%), (Ty)y dv / @ v, (5.7)

and

/Q;E dV:/(‘I’X)j(‘I’Y)j dz/—/g;‘ﬂﬁﬂ dv, j=2,....

(Because U and V are unitary.) By iterating (5.7), we obtain for n € N

n

) =3 (-1 / (Ux),(Ty); dv + (~1)" / T dv. (5.8)

By applying (5.6), we obtain

lim [ gh 193, dv =0, (5.9)

which implies (5.4). O

Proof of Theorem 1: Let {x,, : m € S} and {y, : n € T} be finite
subsets of Bj2. Then,

> Bmn) (X, ya)

meS,neT
—| X A S0 [ () ) ] (by (5.4)
meS,neT j=1

< Z Z ﬁ(m,n)/(\llxm)j(\llyn)j dv
j=1|meS,neT

<> [ ) ), 8y, | v
j=1 m,n

< 24(5 12 (5.10)
j=1

(by (5.5)), which implies kg < 1‘1:5:2. O

Remark (fine-tuning). Let (¢;)?2, be a non-increasing sequence
such that g = 1, and 1 > ¢; > 0 for j > 1, and let §; = du(¢;) be
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uniformizing constants associated with H and ¢;. Then, by applying
the Remark in §4, for every j € N there exists a A(2)-uniformizing map
aj : H— H* such that for g € H,

lg + ;@)L= < d;llgllL. and  la;(9)llL> < €llgllee- (5.11)

By making the appropriate (minor) adjustments in the proof of
Theorem 11, we obtain a map ¥ : {2 — [}(L>) such that

10wl < 05 eIz, 5 =1, (53)
and
xy) = (-7 [ (), . 64)

Applying this in the proof of Theorem 1, we deduce

Ko < YA€) (5.12)

j=1

6 Comments (Mainly Historical) and Loose Ends

A(2)-uniformizability of L% and of L%Zk}

In §2 and §3, we made use of

[+ ix(k)re), (6.1)

k

and
eiEk,x(k)Zk7 (62)

for real-valued x € Bjz. The device in (6.1), an L*-valued function
on 2, is a variant of a Riesz product. The measure-valued version of
such products (the case x € Bj) had appeared first in F. Riesz’s 1918
paper [Rig2] in a context of lacunary Fourier series, and, independently
in Rademacher’s 1922 paper [R, p. 137] in a context of Rademacher
series. The L*°-valued version first appeared in Salem’s and Zygmund’s
constructive proof [SaZyl] of a theorem originally proved by Banach
[Ban| (an analog of Corollary 9 in the case of lacunary Fourier series).
Riesz products and their variants will be used extensively in Chapter VII.
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The device in (6.2), also an L>-valued function on {2, is similar to the
device in (6.1). Its utility here was through the characteristic function
of a normal random variable. (See (3.11).)

In Exercises 8 and 9, you will use (6.1) and (6.2) (separately) to prove
that L% and L% Zu} (L2-closure of the span of a system of independent
standard normal variables {Z}}) are uniformizable A(2)-spaces.

Is the Grothendieck Inequality Equivalent
to A(2)-uniformizability?

We have shown that existence of infinite-dimensional uniformizable
A(2)-spaces implies the Grothendieck inequality. A question arises: does
the Grothendieck inequality imply the existence of an infinite-dimensional
uniformizable A(2)-space? Indeed, because the corresponding weaker
statements — the Littlewood mixed-norm inequality, and that L%
is a A(2)-space — are derivable from each other (through Theorem I1.4),
a tempting guess is that the Grothendieck inequality and A(2)-
uniformizability are equivalent in the same sense.

More about the Inequality

Grothendieck’s original formulation of his inequality involved tensor
norms in a then-new setting of topological tensor products. Recogniz-
ing the importance of his discovery, Grothendieck dubbed it le théoréme
fondamental de la théorie metrique des produits tensoriels [Gro2]. Alas,
the significance of this 1956 theorem was not immediately apparent. Its
importance was underscored twelve years later, in Lindenstrauss’s and
Pelczynski’s seminal 1968 paper [LiPe] cast in a framework of absolutely
summing operators. (It is here that I first learned about the théoréme
fondamental.) Avoiding the explicit use of tensors, Lindenstrauss and
Pelczynski rewrote Grothendieck’s theorem and proof, the key to which
was this elementary identity: for x and y in the unit sphere S,, in R",

™

g (17 / sl w) sign(y. u) a(du)), (6.3)

arc cos(x,y) =

where o is the normalized rotation-invariant measure on S,. (The role
of arc cos(z,y) is analogous to that of A(x,y) in §2 and §3.) The next
step was to apply the cosine Taylor series to both sides of (6.3), and thus
obtain a representation of the standard dot product in R" in terms of
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an absolutely convergent series of integrals of bounded functions. You
are asked to reproduce these arguments in Exercise 10.

The various proofs and interpretations of the inequality that have
since surfaced in different settings of analysis attest to the universality of
Grothendieck’s result. These proofs will not be surveyed here; a partial
account can be found in Pisier’s book [Pi3]. The three proofs given in
this chapter, based on the notion of A(2)-uniformizability, originated in
a proof I gave in 1976 in a framework of harmonic analysis [Bl3].

Possibly the best known open problem regarding the Grothendieck
inequality is the computation of the smallest kg in (1.5); a discussion
can be found in [Pi3]. Possibly the most important problem concerns
multidimensional extensions of the inequality; this issue will be visited
later in the book.

A(p)-sets

The Khintchin L2-L? inequalities for p > 2, as well as the L'-L? inequal-
ity, were viewed in the 1920s and 1930s as new tools, as means to specific
ends. (We have seen applications in Chapter II, in this chapter, and will
see more in later chapters.) Eventually however, attention turned to
general phenomena exemplified by the Rademacher system. In his 1960
classic paper [Rul], Walter Rudin introduced the following notion cast
in a setting of Fourier analysis on the circle group [0, 27).

Definition 12 Let p € (0,00). E C Z is a A(p)-set if for some ¢ €
(0,p) there exists 0 < K < oo such that for every E-polynomial f (a
polynomial with spectrum in E),

[flle < KI|f[|Lo- (6.4)

(By an argument similar to the one used in Exercise 4, if (6.4) holds
for some q € (0,p), then it holds for all ¢ € (0,p) with constants K
depending on ¢; Exercise 11.) This definition can be naturally recast in
the setting of this chapter:

Definition 13 Let (X, v) be a probability space. A closed subspace H
of L2(X,v) is a A(p)-space for p € (1, 00) if there exist 0 < K < oo such
that for all f € H

K[ fllr = 1l (6.5)

(i.e., LP-closure of H = L!-closure of H).
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The connections between A(p)-sets, A(p)-spaces, and the classical
Khintchin inequalities are evident; see Exercises 11.2, I1.3.

Rudin’s paper [Rul] left an indelible mark on harmonic analysis, and
indeed on analysis at large, not only by the theorems in it, but also for
raising the ‘right’ questions, some of which are unanswered to this day.
I will state two of these unsolved problems, which seem to have bearing
on A(2)-uniformizability.

In [Rul], Rudin produced for all integers n > 1, A(2n)-sets that are
not A(q) for all ¢ > 2n. He then raised the question, which became
known as the A(p)-set problem, whether for p ¢ {4,6,...} there exist
A(p)-sets that are not A(q) for all ¢ > p. In 1974, Bachelis and Ebenstein
proved that if p € (1,2) and a spectral set E is a A(p)-set, then E is
a A(q)-set for some ¢ > p [BaE] (Exercise 12). In 1989, Jean Bourgain
demonstrated that for every p > 2 there exist A(p)-sets that are A(g)-
sets for no ¢ > p [Bour]. In his autobiography, Rudin wrote: ‘{Bourgain]
has told me that he regards [the solution to the A(p)-set problem]| as
the most difficult problem he has ever solved, and he was quite dis-
appointed that A(p)-sets were not mentioned in the lecture (given by
Caffarelli) that described the work for which he won the Fields medal,
at the Zirich Congress in 1994’ [Rud4, p. 178]. The gap between the
Bachelis—Ebenstein theorem and the Bourgain theorem remains an open
question:

Problem 14 (‘the A(2)-set problem’). Does a subspace H of L?(X, v)
exist such that H is a A(2)-space, but H is a A(q)-space for no ¢ > 27

A second open problem concerns the stability of the A(2) property.
It is easy to see that if p > 2 and H; and H; are mutually orthogonal
A(p)-spaces, then H; @ Hy (the L2-direct sum of H; and Hs) is also a
A(p)-space. Whether this holds also for p = 2 is unknown:

Problem 15 (‘the A(2)-set union problem’). Let H; and Hy be
mutually orthogonal infinite-dimensional A(2)-spaces. Is H;® Hs a A(2)-
space?

Proposition 16 (Exercise 13). Let Hy and Hy be mutually orthogonal
uniformizable A(2)-spaces. Then, Hy® Hs is a uniformizable A(2)-space.

Alas, it is unknown whether every A(2)-space is uniformizable. Notice
that a negative answer to Problem 14 would imply, by Theorem 8, that
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every A(2)-space is uniformizable. But in this case, there would be no
need to invoke A(2)-uniformizability to solve Problem 15. For, if we knew
every A(2)-space to be A(q) for some ¢ > 2, then we would conclude (by
an easy argument) that the direct sum of any two A(2)-spaces is also a
A(2)-space.

2.
3.

Exercises

. Verify that in the definition of ||3| 4, in (1.3), the unit ball of ? can

be replaced by the unit sphere of 2.
Verify that (1.6) is a restatement of the Grothendieck inequality.
i. Verify (the identity in the proof of Lemma 3)

A(x,y)=E 7% H(l +ix(k)ry) Im (H(l + iy(k)rk)> .

k k

ii. Prove that we can do without the assumption in the beginning of
the proof of Lemma 3, that the x,, and y, have finite support.
In particular, show that the infinite product [], (1+ix(k)ry) con-
verges almost surely (), and represents a function in L>®(£2, P)
satisfying the estimate in (2.13). Then verify that (2.12) holds
for every x € [? and y € I2.

4. Prove Lemma 4.

. (functional analysis warm-ups)

i. Let H be a closed subspace of L%(X,v), and let p > 2. Prove
that the inclusion H C LP is equivalent to existence of C' > 0
such that for all g € H,

lgllLe < CllgllLz-

ii. Prove Lemma 9.

. Show that the Grothendieck inequality can be verified by applying

Theorem 8, as it stands, without using an explicit A(2)-uniformizing
map .

. Prove that if L2(X,v) is infinite-dimensional and H C L2(X,v) is

a uniformizable A(2)-space, then H+* is infinite-dimensional.

. Use the device [],,(1 4+ ix(n)ry) to establish directly (by construc-

tion) that L% (£, P) is a uniformizable A(2)-space.
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9. i. Let {Z, : n € N} be a system of independent standard normal
variables on a probability space (X, v). Let H be the L2-closure
of the linear span of {Z,, : n € N}. Use the map

ief_l
fel - JeH

to prove that H is a uniformizable A(2)-space.

ii. By applying a theorem proved in this chapter, give a second
(faster) proof of the fact that H in Part i is a uniformizable
A(2)-space.

10. i. Prove the identity in (6.3).

ii. By applying the cosine series to both sides of the identity, obtain
a representation of the dot product in R", and then prove the
Grothendieck inequality.

11. Prove that if (6.4) holds for some ¢ € (0,p) then it holds for all

q € (0,p).

12.* Prove that if H C L2(X,v) is a A(p)-space for p € (1,2), then H is

a A(q)-space for some g > p.

13. Prove that if H; is a uniformizable A(2)-space, and Hy is a

A(2)-space orthogonal to Hi, then Hy @ Hy is a A(2)-space. (Cf.

Proposition 16.)

Hints for Exercises in Chapter III

3. i. This involves elementary ‘harmonic analysis’, which will be for-
malized in Chapter VII: first expand the product [T, (1+ix(k)ry),
take the imaginary part, and use the statistical independence of
the Rademacher system.

ii. Show that J], (1 +ix(k)r) converges almost surely if and only if
eZsx(B)k converges almost surely. Use the Three Series theorem
in classical probability theory.

4. This is a transcription of the proof of Lemma 2.

5. Review the argument verifying (I1.2.3) = (I1.2.1).

6. See Remark ii in §4. This exercise can be done after reading §5.

10. i. It can be assumed that x and y are unit vectors in R%, and that
integration can be performed over S;. This assumption leads
to a proof of (6.3) that is simpler than the original argument
used by Grothendieck in his Resumé, and later by Lindenstrauss
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and Pelczynski in their 1968 paper [LiPe]. This simpler, ‘two-
dimensional’ argument appears in [LiTz, p. 68]. (It was shown to
me in 1974 by S. Drury.)
13. Use a geometric series argument to show that if ¢ € H; then there
exist G € L*°(X,v) such that 74, (G) = ¢g and 74, (G) = 0.



IV

Elementary Properties of the Fréchet
Variation — an Introduction
to Tensor Products

1 Mise en Sceéne: The Space Fj(N,...,N)

In this chapter we focus on the norm that played prominently in the
previous two chapters, and will continue to play prominently throughout
the book.

Definition 1 (cf. II.3.1). Let Xy,..., Xy be sets. The Fj-variation
(Fréchet variation) of a scalar-valued function § defined on X; x - - - x X},
is

Z B(x1, ... k) Ty Q-+ QT

r1€S51,..., €Sk

1817 = SUP{

finite sets S CXl,...7SkCX;€}, (1.1)

where {r;},cx, are Rademacher systems indexed by X;, ¢ € [k]. The
space of scalar-valued functions 5 on X; X - - - x X}, such that ||| s, < o0
is denoted by Fi(Xi,...,Xk). (When Xi,..., X, are arbitrary, or
understood from the context, we write Fy, for Fj(X1,..., Xk).)

The Fj-variation appears in the literature sometimes as the norm of
a k-linear functional on ¢y, sometimes as the k-fold I'-injective tensor
norm, and sometimes (in harmonic analysis) as the sup-norm of a func-
tion with spectrum in a k-fold Cartesian product of Sidon sets. Here,
starting from first principles, we begin with the Fréchet variation, and
in due course will identify it at the appropriate junctures with the afore-
mentioned norms.

60
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The Banach space (Fy, || - [|F,) (Exercise 1) is an extension to higher
dimensions of I! (= F}), the classical space of absolutely summable
functions. Some properties of F}, are routine extensions of those of i1,
but some properties manifest surprising, non-trivial ‘multidimensional’
features that in the ‘one-dimensional’ case may be unnoticed, uninter-
esting, or altogether absent. (We have already encountered one such
surprise: the ‘two-dimensional’” Grothendieck inequality, which extends
a rather trivial ‘one-dimensional’ observation, but itself is anything but
trivial!). In this chapter, laying down the groundwork, we derive gen-
eral basic properties that form the mainstay of the multidimensional set-
ting. We leave surprises to later chapters. After we collect some essential
tools, we will introduce basic notions of tensor products. These naturally
appear in our context through the characterizations of F} as the space
of bounded k-linear functionals on cg, and (equivalently) as the space
of bounded linear functionals on the k-fold projective tensor product of
co. These characterizations, extensions of the simple ‘one-dimensional’
duality (co)* = 1!, are at the very heart of the subject, and will be
extremely useful in the course of our work.

A study of the Fréchet variation inevitably involves the analysis of
Rademacher systems indexed by Xi,..., Xg. In later chapters, we will
focus on the underlying indexing sets, and, in particular, will distinguish
between various indexing schemes, but for work in this chapter, the
generic X1 = --- = X}, = N will do. As work progresses, we will occa-
sionally use slight alterations of this indexing. Specifically, we will apply
the (obvious) observation that if 5 € Fi(N,...,N) and N > 0, then
B 1[njxnx...xn is an element of Fj,_1([N] x N,...,N) (in Definition 1,
X1 =[N]xN, Xo=---= X1 =N). We will use also instances of the
observation, which is easy to verify, that for positive integers ji,...,Jm
such that j; + -+ jm, = k,

Fn(N' ... N™) C Fi(N,...,N). (1.2)

2 Examples

At the very outset, confirming that Fréchet variations fundamentally
depend on the underlying dimension, we note that inclusions in (1.2)
are proper containments:

Fe G Fopr, k=1,.... (2.1)
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Indeed, that containments are proper — certainly believable, but not all
that easy to verify — is the launching point of the subject. The instance
Fy g F, was observed first by Littlewood, in the introduction to his
classic paper [Lit4, p. 164], through a quick application of the Hilbert
inequality. Later in his paper, he proved a sharper assertion by use of a
Gauss matrix (Theorem II.5 ii):

Ba(j k) = (1/n) 2™K/m (5 k) € [n] x [n], (2.2)

whence

180l 7ol im)) < 15 (2.3)
and
18nll 22 (m)xm)) = I1Bnll = V12,

which imply Fi(N x N) & F>(N,N) (Exercise IL.8).
To verify the case k = 2, we define

Bl k1) = (1/n?) UM (k1) € [n] x [0] x [n],  (2.4)

and observe that
180l 5 (] . [n)) < 1 (25)
and
1Ballajs = .
An application of Littlewood’s 4/3-inequality (Theorem I1.5 i) implies

A1Ballpa(taf2,pal) = 18allays =, (2.6)
and, therefore, F5(N*,N) G F5(N,N,N) (Exercise 2 i).

The full statement Fj, & Fjpyy for all & > 1 is a consequence of
the multidimensional extension of Littlewood’s 4/3-inequality, which we
derive in Chapter VII (Exercise 2 ii): that there exist Ax > 0 such that
for all £ > 1, and all g € F,

AellBllee = 1802k (ks (2.7)

and there exist § € F, such that ||3||, = co for all p < 2k/(k + 1).
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Remark (type Fj). The inequalities in (2.7) imply a statement sharper
than (2.1). Let X be an infinite set, and k € N. We say that a scalar-
valued function [ defined on X is of type Fy if there exist bijections 7
from X* onto X such that Bor1 € Fj(X,...,X). If 8 is of type Fy, then
B € 1?(X) (Exercise 3). Clearly, if 3 is of type F}, then 3 is of type Fy 11,
and an application of (2.7) implies that there exist 3 of type Fj11 that
are not of type Fy. More about type will be said later in the book.

3 Finitely Supported Functions are Norm-dense
in Fk(N, e 7N)

That finitely supported functions are norm-dense in Fj(N) is easy to
verify, but its multidimensional analog, that functions on N¥ with finite
support are norm-dense in Fj(N,...,N), requires more work. To begin,
we formalize a basic fact (Exercise 4):

Lemma 2 (cf. Theorem 1.8). For 8 € F(N,...,N),

Z B(ny,...,ng) z}“--wfbk :

n1€T,...,np €Ty

28l p, = Sup{

|T;| < oo, 2% € Be, i€ [K], nGN}. (3.1)

The next lemma also formalizes a basic fact. Here and throughout,
a rectangle in N* will be a k-fold Cartesian product of subsets of N;
k-disjoint rectangles will mean rectangles whose respective edges on the
coordinate axes are pairwise disjoint.

Lemma 3 Let {C; : j € N} be a collection of k-disjoint rectangles in
N*, and S = U2, C;. Then, for all B € Fi(N,...,N),

1815]lm, < 2%(18] .- (3-2)

Proof: Let 7y, ..., m denote the canonical projections from N* onto N,
and let

Fl[Cj]:Ajh ey Wk[Cj]:Ajk, jeN
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By k-disjointness, {A;1: jeN}, ..., {4, : j€ N} are collections of
pairwise disjoint sets. We will use the Tjy-valued random variables
X? (j € N) on the probability space (Q,Pr), which were defined in
Chapter II §6. Let By C N,..., Br C N be finite sets, let ¢ € Q, and
define

&) =x5(t) 14, (n), neN, jEN, i€ k] (3.3)
By (11.6.9),

E& e =1s(ni,... o), (na,...,mk) € NP, (3.4)

ny

where E denotes expectation with respect to Py,. Fixw; € Q (= {—1,1}),
i € [k], and by Lemma 2 obtain

21181 .

>

Z ﬂ(nla s 7nk’)§;1 (t) T nk (t)rnl (wl) © Ty, (wk)

ni€B1,...,n, EBy

(3.5)
By averaging (3.5) over t € Qy, and applying (3.4), we deduce

QkHﬁ“Fk

>

Z Bna,...,ng)ls(na, ... ng)rn, (W) -7y, (Wk)

ni€B1,..., ni€By

(3.6)

Now maximize (3.6) over BiCN,..., By CN, and w1 € Q,...,wr € Q.
O

The third needed fact is

Lemma 4 Let {C; : j € N} be a collection of k-disjoint rectangles in
N*, and S = U2, C;. Then, for all B € Fy(N,...,N),

D816, s < 281815 - (3.7)

=1
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Proof: Let Ty; x --- x Ty; € Cj, j € N, be finite rectangles. Fix
wij € Q,...,wi; €8, and 6; € Be, such that

5j Z ﬁ(nlv"'vnk) Tﬂl(wlj)"’rnk(wkj)

n1€T1j,...,nk €Ty

= > Blna,.... k) Ty @ ®@rn|| . (3.8)

n1€T1 ... ,np€Tk; Loo

Because the C; are k-disjoint, we can choose w; € Bj~, way € Q,...,
wi € £, such that for all j € N,

wl(n) :53' rn(wlj), TLETIJ',
LUQ(TL) :rn(ng)7 TLEng,
wi(n) = rp(wkj), n € Ty;.

Let N > 1, and A1 = U;-Vlelj, ey Ak; = U;-Vlekj. By (38),

N
Z Z Bna,...,ng) Thy @ -+ @ Th,
j=1

n1€T1j,....,nk €Tk, Loo

= > Bn,...,nx) Ls(ng, ..., np)wi(ny) ... wi(ng)
n1€AL,...,nEAL
< 2%|8 14 . (3.9)
To obtain (3.7), maximize the left side of (3.9) over T x --- X T};. [

Lemmas 3 and 4 imply

Lemma 5 Let
RE, ={(n1,...,ng):n1 > N,...,n), >N}, NeN. (3.10)
Then, for all B € Fy(N,...,N),

Jim 6 g |15, = 0. (3.11)

Proof: If there exist § > 0 and N; T oo such that

nf{||8 Lax |lr, -5 €N} >4, (3.12)
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then there exists a collection of k-disjoint rectangles {C;} such that
inf{||3 1¢,||r, : j € N} >0, (3.13)

which, by Lemmas 3 and 4, contradicts ||3]|r, < oo. O

The main result of the section is

Theorem 6 Finitely supported functions on N*¥ are norm-dense in
Fr(N,...,N). In particular, if 5 € Fy, then

Jim 18 Ly = Bllp, =0, (3.14)

Proof (by induction). The case k = 1 is the assertion that finitely
supported functions are norm-dense in I*(N).

Let £ > 1, and assume (the induction hypothesis) that (3.14) holds
with £ — 1 in place of k for all § € Fy_1. Let 8 € Fy, and fix € > 0. By
applying Lemma 5, let Ny > 0 be such that for all N > Ny,

18 1ps s, < c. (3.15)

By applying the induction hypothesis, we let Ky > Ny be such that for
all K Z KQ,

18 LinseNo],(na..oni) @lK =13 | Fie_1 ([No] XN, .. )

< I8 LnyelNo], (n2yoo i) K11} | Fr (VoL N,y <6

<B Litny,on;—1)@NI~ s €[Nols (g s 21K~} | P (N, [N, <€

18 Li(ny,omi—)@Ne—1 e Nol} |1 (... [No] )
<NB i(ny, o mi—)@NE—1 meiNo]} I Fe ... [NoL ) < € (3.16)
Then, by applying (3.15) and (3.16), we deduce
18 1nps = Bl < (2k 4 1)e (3.17)
for all N > K, (Exercise 5). O
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4 Two Consequences
A Fubini-type Property

That every § € F;(N) determines a bounded linear functional on [*°(N)
is obvious. The multidimensional analog, which we prove below, is not
quite as trivial. En route, we observe a ‘Fubini’-type property that will
be used extensively throughout the book.

Corollary 7 Every 8 € Fi(N,...,N) determines a bounded k-linear
functional B on 1°°. Specifically, for all f1 € I°°,..., fr € 1°°, and all
permutations T of [k],

B(fl,...,fk) = Z (Z ﬂ(nl,...,nk)fk(nk)> fl(nl)

ni=1 nr=1

= Z ( Z ﬂ(nlw--:nk‘) f'rk(nTk)> "'f'rl(nTl)’ (41)

nr1=1 Nyp=1
and
BUf1s- - i)l < 25 falloo - Il fiellos- (4.2)
Proof: We prove the case k = 2, and relegate the general case to
Exercise 6. Let 3 € F5(N,N). For f and g in [*°, define
Brog = {B(m,n)f(m)g(n) : (m,n) € N*}. (4.3)

By Lemma 2, g4 € F2(N,N), and

[1Bregllrz < 4l flloo llglloo [15]lE,- (4.4)

Therefore, it suffices to prove that if 3 € F»(N, N) then ¥2° 3%, 3(m, n)
exists, and

Z Zﬂ(m,n) = Z Z B(m,n). (4.5)

n=1m=1

For wy € 2, and Ny € N,

N Ny oo | N
DD Bmn) ra(w)| < 1Y Bmn) ra(w)| <2 [18llk,  (4.6)
m=1 |n=1 m=1 |n=1
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and therefore,

oo Ny

Ny
33 ) raten)] = 3 (z som.n ) o) <2 181,
m=1n=1 n=1 \m=1 (47)
By maximizing (4.6) over w; € €, we obtain
Ny [e%s)
SIS Bimm)| <4 18l1s,: (4.8)
n=1|m=1

Letting N1 — oo in (4.8), we conclude that 392 ,X5°_, B(m,n) exists,
and

<4 |Bllr,- (4.9)

2. D Blm.m)

We proceed to verify (4.5). By Theorem 6, for every e > 0 there exists
N € N so that ||81(n)xn] — B]|r, < €. Therefore, by (4.9),

Z Z BLinx vy (m, ) — B(m, n))| < 4, (4.10)

n=1m=1
and
Z Z x[N](m,n) — B(m,n))| < 4de.
m=1n=1
Obviously,
ZZ VN 2251 (N]x[N] (112, 10). (4.11)

n=1m=1

Therefore, by combining (4.10) and (4.11), we obtain

S Bmn) =Y > Blm,n)| < 8, (4.12)

m=1n=1 n=1m=1

which implies (4.5). a
Fi.(N,...,N) has the Schur Property

Recall that a sequence (x,) in a Banach space X converges weakly to
z € X if f(zx,) — f(z) for all f € X*. Norm convergence and weak
convergence are obviously the same in finite-dimensional spaces, but
there are (many!) infinite-dimensional Banach spaces where they are
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not equivalent. A classical theorem by J. Schur [Shu2] states that weak
convergence and norm convergence are equivalent in Fy(N). (If weak
convergence and norm convergence in a Banach space X are equivalent,
then X is said to have the Schur property.) Below we prove, by induction,
the multidimensional version of Schur’s theorem.

We begin with Schur’s ‘one-dimensional’ result:

Theorem 8 ([Shu2]). If a sequence (o, : n € N) in Fi(N) converges
weakly to o € Fy(N), i.e., if

nlLH;O i an(m)f(m) = i a(m)f(m) for all f €1, (4.13)
m=1 m=1

then lim,,_, oo ||an - O‘”Fl =0.

Proof: It suffices to prove that if a,, — 0 weakly, then ||a, ||, — O.
Suppose it is false, i.e., suppose a,, — 0 weakly and ||, ||, = 1 for all
n € N. Because finitely supported functions on N are norm-dense in
F;(N), it can be assumed that each a, has finite support. For each K €
N, weak convergence and norm convergence are equivalent in Fj ([K]).
Therefore, for each K € N,

Tim 1 gqgenr, = 0. (4.14)

Suppose support a; = [K]. Let n; =1 and K; = K. By applying (4.14)
with K = K, fix no > n; such that

11k, |7 < (4.15)

i
Let K3 € N be such that support ay,, C [K2]. Continuing recursively, we
obtain increasing sequences of integers 1 =ny < --- < n,, < ---, and
0=Ko< Ky << K, <---such that for i > 1, support a,,, C [K;],
and

1

11,y |7 <

R (4.16)

Denote E; = {K;—1 + 1,...,K;}. By (4.16) and the assumption
HanillFl =1,

3 .
HlEzaniHF1 > Za ieN. (417)



70 IV Properties of the Fréchet Variation

Let f € [°°(N) be so that f(j) an,(j) = |an, ()] for j € E;. Then, by
(4.16) and (4.17),

— 1
Zam(j) fG)| > 3 for all i € N, (4.18)
j=1

which contradicts the assumption that «,, — 0 weakly. |

The argument above verifying Schur’s theorem rests on two facts: (1)
F1([K]) satisfies the Schur property for every K € N; (2) finitely sup-
ported elements in Fj(N) are norm-dense in F;(N). The inductive argu-
ment below, which verifies the extension of Schur’s theorem, is similar:
the induction hypothesis corresponds to (1), and Theorem 6, corresponds
to (2).

Theorem 9 Suppose (B, : n € N) is a sequence in Fy(N,...,N), 8 €
Fr(N,...,N), and

nan;oﬂAn(f1,~--7fk) =0(f1,-- fr)

for all fr el ... frel™. (4.19)
Then, limy, o0 ||Bn — BllF, = 0. (See (4.1) for the meaning of ‘hat’ in
(4.19).)

Proof (by induction). The case k = 1 is Schur’s theorem. Let k& > 1,
and suppose the assertion is true in the case k — 1. In proving the
inductive step, we assume (without loss of generality) that 8 = 0, and
(by Theorem 6) that each (3, has finite support in N*. Suppose the
inductive step fails; that is,

lim Bo(f1,...,fu) =0 forall f €1°,..., fr €1, (4.20)

and |||, = 1 for all n € N. For N € N, denote
In=1-1p. (4.21)

(RY; is defined in (3.10).) For each N € N, 3, Jy € Fj,_1 (Exercise 7).
By applying the induction hypothesis, we obtain lim, oo [|8n IN||F,_, =
0, which implies

lim [|3, Jn|F, = 0. (4.22)
n—oo
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Suppose that support 3; C [N]*. Let n; = 1 and N; = N. By (4.22),
there exists ny > nq such that

1
1Bns Iny I, < (4.23)

1
Continuing recursively, we obtain increasing sequences
fn1<...<fn7n<...7

and 0 < Ny < -+ < N,, < --- such that support 3,, C [N;]¥ for i > 1,
and

k
1 .
18n: In, 1 lF < (Z) for i > 1. (4.24)
Initialize Ny = 0, and define for ¢ € N,

Ei={N;i_1+1,...,N;}*. (4.25)

Because By, (In, + 1g,) = B, and ||Bn, ||, = 1, we obtain from (4.24)
that for all 4 > 1,

1

k
Hﬂm ]‘EiHFA; >1- <Z) . (426)

By applying (4.26), we let fi; € Bi=,..., fx; € Bi~, i € N, be so that
\F
o B 1Bt k) frGn) - fralie) > 1 - (Z) . (4.27)
(J1,--Jk)EE;
Moreover, for each j € [k] and i € N, fj; is chosen to have support in

{Ni_1+ 177Nz} Let fl = E;?ilfliv--'v fk = Efilf]ﬂ Then, fl S
Biw,..., fu € Biw. By (4.24) and (4.27),

|an(f17’fk)‘

Z (ﬁn, JNi—l)(-j17"".jk) flz(.]l)sz(.]k)

> (4.28)

N —

for all ¢ € N, which contradicts (4.20). d
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Remarks:

i (historical comments). That finitely supported functions on N*
are norm-dense in Fj, (Theorem 6) appears to be, variously phrased,
part of the folklore of functional analysis; I have not been able to
track down a first reference. Its two-dimensional prototype, that
operators of finite rank are norm-dense in the space of operators
from cg into !, was known to the founding masters, and indeed
was implicit in Littlewood’s paper [Lit4]. The elementary argu-
ment establishing it is known among functional analysts as a ‘gliding
hump’ argument.

That summations in (4.1) can be freely interchanged was first
verified by Littlewood in the case € F5(N,N) [Lit4, pp. 167-8].

Like Theorem 6, the extension of Schur’s theorem to Fy for k > 1
has become folklore. I first saw a version of it (without proof) in
[Mey2, (6.2.5)] (Exercise 8). Generalizations of this extension in a
framework of topological tensor products appeared in [Lul], [Lu2].

ii (a preview). In a framework of harmonic analysis, the separability
of F is equivalent to the (so-called) Rosenthal property of k-fold
Cartesian products of Sidon sets. This will be explained and dis-
cussed in Chapter VII.

5 The Space Vi(N,...,N)

That I1(N) is the dual space of cg(N) — a simple instance of the Riesz
representation theorem — is at the very foundation of (linear) functional
analysis. A question arises: can Fj(N,...,N) be analogously realized as
a dual space? It is here, in answer to this question, that tensor products
naturally appear.

Let Xi,..., Xy be sets. Let fi € co(X1),..., fr € co(Xk), and con-
sider their formal product f; ® --- ® fi, which we call an elementary
tensor. The k-fold algebraic tensor product of cg is the class of all finite
combinations of elementary tensors,

C0®"'®C0

= {Zflj ® -+ ® fr; : finite sum 27 and f;; € Co(Xi)}. (5.1)

J
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This construction is completely general: given sets Ay, ..., A, we view
their respective elements as basic building blocks, ‘cement’ them, and
then define A; ® --- ® A to be the set of all finite combinations of
these ‘cemented products’. Aiming further, we of course expect that
structures in Ay, ..., Ay will lead to new structures in A ®---® Ag. In
our present setting, we let A1 = --- = Ap = cg. Specifically, we view
members in ¢g ® - - - ® ¢g as functions on X;x - - xXg,

Zflj @@ frj | (w15, 78) = qu‘(l’l) < S (@),

(l’l,...,xk)GXlX“-XXk, (52)

and then consider two elements in ¢y ® - - - ® ¢g equivalent if each repre-
sents the same function on X; X - - - x Xj.. From now on (slightly abusing
notation), we let co®- - -®co denote the resulting set of equivalence class
representatives.

For 7 € ¢ ® - - - ® ¢g, define

I7llvi = inf § > I fajlloo - I fjalloo 1 7= f1; @+ @ fij o (5.3)
j J

which defines a norm on ¢y ® --- ® ¢g. The closure of ¢y ® --- ® ¢g
under this norm is denoted by Vi (Xy,...,Xk). This closure comprises
all Cauchy sequences in (cp @ -++ ® co, || - |[v,) with the usual equiva-
lence relation: two Cauchy sequences are considered equivalent if their
difference converges to zero in the Vj-norm.

If 7 €co®:---Rco, then ||7]|y, > ||7|lco. Therefore, if (¢;) is Cauchy
in (cpg® -+ ®co,| - [lv,), then it is Cauchy in c¢o(X7 x -+ x X), and
@; — f uniformly, where f € co(X7 % -+ xX}). This naturally defines
an injection from Vi (Xy,..., X)) (Cauchy sequences in (cp ® - -+ ® co,
Il - llvi.)) into co(Xq x --- x Xg). Indeed, we claim that two Cauchy
sequences ¢ and ¥ in (cp ® --- ® ¢, || - ||v,) that converge uniformly
to the same function on X;x --- xXj represent the same element in
Vie(X1,...,Xg). To verify this, by passing to subsequences we can
assume

¢ = zn:goj:neN . Y= i:Qj:neN :
J=1 j=1

pjECHR - @ co, 6j€C0®"'®C07j€N, (54)
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D leslvi <00, D 1165llvi, < oo, (5.5)
j=1 j=1
and
D i)=Y 0;(x) forall x € Xy x - x Xp. (5.6)
j=1 j=1
By (5.6),

n—1

n—1 e} e}
Sei=d 0 =D ei-> 0
j=1 7j=1 j=n j=n

Vi Vi
< Z@j + Zej
j=n j=n

Vie Vi

o0 [e o]
<D llesllve + D 1851w (5.7)
j=n j=n
which proves the claim, and thus Vj,(X1,..., X;) C co(X1 X -+ x Xi).
After we verify the duality (Vi)* = Fj (Proposition 11 below), we will
note that this inclusion is proper.

The following proposition characterizes those ¢ € co(X1 X -+ x Xj)
that belong in V4 (X1,..., Xk).

Proposition 10 (Exercise 10). If ¢ € co(X1 X -+ x X}), then

@l = inf{ D fiilloo - fjklloo = (an, - )
J

= qu(?ﬁ) < frg(xe), fiy € CO(Xi)}, (5.8)

and
Vk(Xl,. . .,Xk) = {(]5 S Co(X1 X oo X Xk) : H¢HVk < OO}

Next we verify that Fj, (X1, ..., Xx) is the dual space of Vi (X7, ..., X).
For convenience, we let X; = -+ = X}, = N. Given 8 € Fi(N,...,N),
we consider [ (defined in (4.1)) as a scalar-valued function of elementary
tensors f1 @ -+ ® fr Eco® -+ ® co,

Blfr®-® fu) == Bf1,---, fr)

oo o0
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and extend ﬁ to cp ® - - - ® cg by linearity. That is, let 7 € ¢ ® - - - ® g,
represent it by X, f1; ® - -+ ® fi;, and then define

Br) = Zé(fu ® - ® fij) (5.10)

To verify that (5.10) is well-defined, we need to check that if
i1 ® - @ P

is any other representation of 7, then
D B @@ fis) =Y Blp1; ® - @ prj). (5.11)
J J
To confirm this, observe that if ¥;01; ® -+ ® gr; € co ® -+ ® ¢p, and

Zglj(nl) - gri(ng) =0 for all (ny,...,ng) € N¥, (5.12)
J

then
> Blgy @@ gry) =0, (5.13)
i

(Because ¥; is a finite sum, this follows simply from (5.9).)
fr=%fi;® - ® frj and § € Fi(N,...,N), then by Lemma 2,

1B(r)| < Z_ 1B(f1; @+ @ fij)l

< 2%Bllm Y I fasllse - 1 fxilloo- (5.14)
J
Therefore, 3 is continuous on (co ® - - @ co, || - ||, ), and thus extendible
to a continuous linear functional on V4(N,...,N) with norm bounded
by 2%(|8]| -
Conversely, if € Vi(N,...,N)*  then
u(fr @@ fi)l < lullvellfr @ ® fillv,-
But
[fr@--@ fillvi = [l filloo - - 1 filloos (5.15)

which follows from the definition of the Vi-norm and the triangle inequal-
ity (see Exercise 15). Therefore, p determines (a fortiori) a bounded
k-linear functional on coX --- xc¢p, whose value at (fi,...,fx) €
co X +++ X ¢ is pu(f1 ® -+ ® fi), and whose norm is bounded by |[|u||v
We summarize:
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Proposition 11 FEvery § € F(N,...,N) determines a bounded linear
functional 5 on Vi(N,...,N) such that for ¢ € Vi(N,...,N),

B@)=> ... > Bna,....,nk) d(na,...,m). (5.16)

ni=1 nEp=1

Moreover, ||| Ve < 2%16|| &, -
Conversely, if p € Vi(N,...,N)*, and

/B(n17"'7nk) :)u(e’lh ® "'®enk)
for (ny,...,nx) € N¥, then 8 € Fp(N,...,N) and ||Bllr, < |ullv,-
({em} is the standard basis in co(N) : en(m) = 1 and e, (j) = 0 for
m# )
Remarks
i (examples). We have already noted that
Vi(N,...,Ng) Cco(Nx---xN):=V(Nx--- xN).

More generally, we note that for all k£ > 1,
Viri(N, ..., N) c Vi(Nx N, ...,N), (5.17)
and that, like (2.1), these containments are proper.

The Case k = 1. Define

puljs k) = 2 S for GoR) €] x ], (5.18)
and
en(j, k) = 0 for (j, k) & [n] x [n].
Then,
7.k

where (3, is defined in (2.2). Therefore, by (2.3), and by duality
(Proposition 11),

lenllve > Vn, (5.20)
which implies Vo(N,N) & ¢o(N x N) (Exercise 9).
The Case k = 2. Define
0, (4, ke, 1) = e 2MGHRD /i for (4, k1) € [n] % [n] x [n],  (5.21)
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and
On(d,k,1) =0 for (5,k,1) & [n] X [n] x [n].
Then,
D005k, DB, k1) = v/, (5.22)
7.k,

where (3, is defined in (2.4). Therefore, by (2.5) and duality,

105 llvs v,y > V7. (5.23)

To estimate the Vo(N? N)-norm of 6,,, we suppose § € F»(N? N),
8]l < 1, and note

D 0n(, k. 1) B k1) < anmz (G, kD)
l

Jik,l

ol o

Z(Zwmz ) < k1, (5.24)
k

where the last inequality follows from Littlewood’s (1!, I?)-mixed norm
inequality (Theorem II.2). Therefore (again by duality),

10nllvs (2 ) < KL (5.25)

By combining (5.23) and (5.25), we obtain V3(N,N,N) G V3(N? N)
(Exercise 9).

The General Case. The multi-linear extensions of Littlewood’s 4/3-
inequality (previewed in §2 and proved in Chapter VII) are equiva-
lent, by duality, to the statement:

1757 (NF) € Vi (N, ...,N) for all k > 1, (5.26)

and there exist ¢ € 17(N*) for all ¢ > =% such that o € Vi(N,...,N).
In particular, these inequalities 1mply that the inclusion in (5.17) is
proper for every k > 1.

The proof in Chapter VII that for all ¢ > 2k/k — 1 there exist
¢ € 19(N*) and ¢ ¢ Vi(N,...,N) is non-constructive. Therefore, the
preceding argument, which establishes that (5.19) is proper for all
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k > 1, unlike the constructive proofs above in the cases k = 1,2, is
indirect. The question whether constructive proofs can be given in
the cases k > 2 is largely open. (More about this will be said in
Chapter VII and Chapter X.)

ii (type Vi). As in §2, we notice that (5.26) implies a statement
stronger than Vi g Vi. Let X be an infinite set. We say that
© € co(X) is of type V; if for all bijections 7 from X* onto X,
por € Vi(X,...,X). If ¢ € co(X) is of type Vi, and B € 1?(X)
is of type F) (defined in §2), then by Proposition 11, the ‘sum’
>, B(x) p(z) is well-defined. This implies that ¢ € 1*(X) is of type
Vi for all k > 1 (cf. Exercise 3). By (5.26), every ¢ € I?*/kF=1(Y)
is of type Vi, and for every k > 1 there exist ¢ of type Vj that are
not of type Viy1. Later in the book, we will extend the notion of
‘integer-valued’ type to ‘type o’ for arbitrary «a € [1,00).

iii (convolution algebras — a preview). It is easy to see that with
pointwise multiplication on N* both Vj, and F}, are Banach algebras
(Exercise 11).

It is also easy to see that with the additive structure in N, F;(N)
is a convolution algebra:

n—1

(Br*Ba)(n) =Y Bi(n— k) Ba(k), (5.27)
k=0
and

181 % Bl < Bl M| B2llFys B1 € Fi(N), B2 € F1(N).

The analogous convolution structure in F»(N,N) is not quite as
obvious. For 8; and (35 in F5(N,N), define

—

n—1

(81 * B2)(m,n) = , Bi(m —j,n —k) Ba(j, k). (5.28)

0

3

<
Il
o
e
Il

Question: Is 31 x 2 € F»(N,N)?

We will verify in the next chapter, by use of the Grothendieck
inequality (restated below) and the Grothendieck factorization
theorem (proved in Chapter V), that the answer is affirmative.

In Chapter IX we will prove that the corresponding question in the
three-dimensional case has a negative answer.
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iv (the dual of F}, is a tilde algebra). Let Vi (N,...,N) = V}, denote
the space of ¢ € [°°(N*) for which there exist sequences (; : j € N)
in V}, such that

lim ¢i(n) = p(n), ne N, (5.29)

j—o0
and

lim sup [[;[|v;, < oo.
j—o00

We norm V, by

el = i {limsup ol = im i) = pla). n e} (530
j—o00

Equipped with [| - ||y, and pointwise multiplication on N*, Vi is a
Banach algebra. Moreover,

Vi(N,...,N) = F(N, ..., N)*. (5.31)

The k-fold projective tensor product of [*° is

& .- QI° = {QS € 1®(N*) : ¢(n) = ;(flj ® ® frj)(m),

k
D 1 fiilloo = fxglloo < 00}- (5.32)
j=1

The proper inclusion [® &+ & [*® & Vi(N,...,N) was first noticed
by N. Varopoulos [V2]. (In this connection, note that if D is the
diagonal {(n,...,n) : n € N} ¢ N¥| then 1p € Vi(N,...,N) but
1p €1®° ®---& I°°; Exercise 12).)

Tilde algebras, as such, were first defined (somewhat differently)
and studied in [V2] and [KatMc]; detailed discussions of these can be
found in [GrMec, Chapters 11, 12]. In [V2], Varopoulos showed that
Vi (defined above) was the ‘multiplier’ algebra of Vi (N, ..., N),

Vi(N,...,N)
={pcl®(N"):¢ e Vi(N,...,N) for all p € Vi(N,...,N)}
(5.33)
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(Exercise 13). In [V2], the right side of (5.33) was denoted by M,
and then in [V3] by N. In both [V2] and [V3], the symbol V}, was
used to denote the algebra of uniform limits of sequences in balls of
Vi; that is, in Varopoulos’s terminology, Vi meant N Nco. In this
book, Vj, denotes the algebra of pointwise limits of sequences in balls
in Vj; that is, Vi here denotes the dual space of Fy.

The algebras Vi, will be revisited in a harmonic-analytic set-
ting in Chapter VII, and then in a framework of multidimensional
Grothendieck-type inequalities in Chapter VIII.

v (a dual formulation of the Grothendieck inequality). Let
H, and H; be Hilbert spaces, and suppose 7 is a bounded bilinear
functional on Hy; x Hy. Let S C By, and T C By, be finite sets,
and let ¢ denote the scalar function on S x T defined by

o(x,y) =n(x,y), xeb8, yeT. (5.34)

By Proposition 11, the Grothendieck inequality — as stated in
(II1.1.6) — is equivalent to

18llva(s,m) < Kallnll- (5.35)

This, in essence, was Grothendieck’s original formulation of his
inequality in [Gro2].

6 A Brief Introduction to General
Topological Tensor Products

We have noted that the first step in producing a k-fold algebraic tensor
product is completely formal: we start with sets Aj,..., A, consider
elementary tensors a1 ® - - - ® a, where a1 € Aq,...,ax € Ak, and define
the algebraic tensor product A; ® --- ® Ay to be the set consisting of
all finite (formal) combinations of elementary tensors. Let us now take
Aq, ..., Ag to be normed vector spaces, and think of the formal combi-
nations 7 = X;a1; ® - Q@ ag; € A1 ®--- ® Ay, as functions on the k-fold
Cartesian product of the respective dual spaces of A1, ..., Ag,

T(x1,. .., xK) = ZM(CLU) e xg(agg),

(1,... @) € AT x -+ X A}, (6.1)
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As in the case ¢g ® - - - ® cg, we identify two elements in A7 ® -+ Q@ Ay
if they determine the same function on A} x --- x A}. We denote the
resulting set of equivalence class representatives also by A; ® --- ® Ay,
and refer to it as the algebraic tensor product of Ay, ..., Ax. The norms
in Ay,..., Ay give rise to Schatten’s greatest crossnorm [Scd],

I7lle = iﬂf{ D lagjlla, - llanlla, 7= a; @@ ak‘j}v
J

J
TEA® - ® Ay, (6.2)

and the completion of A1 ® --- ® Ay in this crossnorm is denoted by
A1®- - ®Ay. Nowadays, || - |4 is usually called the projective tensor
norm, and the corresponding completion A4;& --- ®Ay, is called the pro-
jective tensor product of Ay, ..., Ag.

The identification of bounded k-linear functionals on A; X --- x Ay
as bounded linear functionals on A;& ---®Aj, generalizes the duality
Vie(N,...,N)* = Fi(N,...,N) (Proposition 11):

Proposition 12 (Exercise 14). Let £ be a bounded k-linear functional
on Ay X -+ X Ag, i.e., £ is linear in each coordinate, and

sup{|¢(a1,...,ax)| a1 € Ba,,...,ar € Ba,} = ||€]| < oc. (6.3)

Then,

&(7) :Zf(a1j7-~-7akj)7 TEA R - R Ay,
J

T:Zalj@)"'@akj, (64)
J

is a well-defined function on A1 ® --- @ Ak, and determines a bounded
linear functional on A1® - - QA,.

Conversely, if € is a bounded linear functional on A1® - @Ay, then
& determines a bounded k-linear functional on Ay X --- X Ay, defined by
g(a17'~'7ak) :E(al ®---®ak).

Remark (greatest and least crossnorms). A norm | -
A} ® - ® Ay, such that

on

a1 @ @ak| = llailla, -+~ llarlla,, a1 € Ay,... ax € Ak, (6.5)
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was dubbed a crossnorm by R. Schatten [Scl, Definition 3.3]. The pro-
jective tensor norm defined in (6.2) (cf. (5.15)), and the ‘k-linear func-
tional’ norm (cf. (6.1))

I7llg = sup{|7(z1,...,2x)| : (z1,...,2k) € BAI NEEER' BAZ}’
TEA R - ® Ay, (6.6)

are crossnorms on A; ® -+ ® Ag. The latter norm, defined in (6.6),
is known as the k-fold injective tensor norm, and the completion of
A1 ® - ® Ag in this norm is the injective tensor product A1 ® - - @ Ag.

The projective tensor norm on A; ® --- ® Ay and the injective tensor
norm on A} ® --- ® A} are dual to each other. This means: for all
TEA R - ® Ay,

I

lo =sup{lo(r)| 10 € Ay @--- @A, |ollg <1}, (6.7)

and forall o € A7 ® --- ® A,

llollg =sup{lo(T)] : T € A1 ® - ® Ay, HTH® <1} (6.8)

The projective and injective tensor norms are, respectively, the greatest
and the least among crossnorms that are dual to each other, and were
so dubbed by R. Schatten [Scl, §3].

The Vi-norm is the greatest crossnorm on cy ® --- ® cg, and the
Fy-variation is the least crossnorm on I' ® --- ® ' (Exercise 15). That
Vi(N,...,N) is the same as co®---®co is obvious, and the (dual)
assertion

F.(N,...,N)='&-.- &l (6.9)

is a consequence of the norm-density of the algebraic tensor product
@ @l in Fy(N,...,N) (Theorem 6).

7 A Brief Introduction to Projective Tensor Algebras

Let X1,..., Xj belocally compact Hausdorff spaces, and let Cy(X1),. ..,
Co(Xk) be the respective Banach algebras of scalar-valued continuous
functions vanishing at infinity, with the usual sup-norm |- || and point-
wise multiplication. By the Riesz representation theorem,

Eif1j @@ fuj
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and X;01;®- - ®@pp; in Co(X1)®- - -®@Co(X}) are equivalent in the sense
of (6.1) precisely when they determine the same function on X7 x- - - x Xy;
that is, when

D fa@n) o Fuilwn) = i) - pug @),

(xl,...7xk)6X1><~~-><Xk. (71)

By the Stone—Weierstrass theorem, the algebraic tensor product
Co(Xl) R Q Co(Xk) is norm-dense in Co(X1 X X Xk)

The projective tensor product Co(X;)® ---®Co(X},) consists of all
¢ € Co(X71 X -+» x Xi) such that

I6llg = inf{ D frsllo - frslos :

=1

Oz, .., x5) = Zflj(x1)~~fkj(ack),x1 e Xy,...,x € Xk} < o0.
j=1

(7.2)

(Cf. Proposition 10, and the discussion preceding it; Exercise 16.) The
projective tensor product Co(X;)®---&®Co(X}) is a Banach algebra
with pointwise multiplication, and is usually denoted by Vi (X7, ..., X),
and its norm by [|-||v,. (V is for Varopoulos.) Bounded linear functionals
on Vi (X, ..., Xx), which (by Proposition 12) are bounded k-linear func-
tionals on Co(X7) x -+ x Co(Xg), have sometimes been referred to as
k-measures and sometimes as multi-measures — bimeasures for k = 2. This
terminology will not be used here. In Chapter VI we prove that a
bounded k-linear functional on Co(X7) x -+ x Co(X) can be repre-
sented by a set-function p defined on the k-fold Cartesian product of
the Borel fields in Xy, ..., X}, which is a measure separately in each
coordinate. Such p will be called here Fy-measures.

The following is a restatement of the Grothendieck inequality in a
framework of projective tensor algebras.

Theorem 13 If X and Y are locally compact Hausdorff spaces, then
(the Grothendieck constant)

kg =sup{||7|lv, : T=%; f; ® g; € Co(X) ® Co(Y),

1S5 £512) 2 ool (251951%) 2 lloo < 1} < 00, (7.3)
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Proof: Fix an integer n > 0, and suppose f;€Co(X) and g; € Co(Y)
(j € [n]) satisty

n

SMIf@P <1, Y lgwP <1 for (z,y) € X xY. (7.4)
i=1 i=1

We need to verify

d heg| <k (7.5)
i=1 v

where k > 0 is an absolute constant. For € X and y € Y, define x € [2
and y € 2 by

fi(x) and y(j)=g;(y), J€ln], (7.6)

y()=0, j>n.

x(j)

x(j)
Then,

N
> @) = (). (x.7)

In (II1.3.12), the expectation E in each summand can be realized as
a finite sum over a finite uniform probability space. Therefore (in the
notation of Chapter III), for j > 0,

E 7 [ +10"x)k r) 2 [ J(L+1(07y)k 72),
k k
(x,y) € X x Y’ (78)

is an element in Co(X) @ Co(Y), and its Va-norm is bounded by e (by
Lemma I11.3). By applying (7.7), (7.8), and Lemma II.2, we obtain

< )
4—e+el
Vo

N 2e
Y ey — = (7.9)
j=1

O
Remarks

i (the meaning of (7.4) = (7.5)). While every finite sum of ele-
mentary tensors 7 = X;f; ® g; is (by definition) in V5(X,Y), the
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computation of its Vo-norm is often a non-trivial task. Indeed, the
obvious estimate

Yofiegl <3 Ifillelgilie (7.10)
J J

Va

is generally useless (do you see why?), and an effective estimation of
its Vo-norm requires other, more ‘efficient’ representations of 7. And
that is the gist of the Grothendieck inequality: under the assumption
in (7.4), while 357, [ fj|lcc |9l o could be arbitrarily large, there exist
representatives X;¢; ® 0; of 7 such that

N
> leilloo 165ls0 <, (7.11)

j=1

where k > 0 is independent of N. The computation of kg in (7.3) —
an open problem to this day — is in effect the problem of finding the
‘best’ representatives of ¥; f; ® g; in Co(X) ® Co(Y).

(more crossnorms). The implication (7.4) = (7.5) is the statement
that two norms on Cy(X) ® Co(Y) are equivalent: the first is the
Va-norm, and the second is also a crossnorm, an instance in a family
of crossnorms that will play a key role in the next chapter.

Let p = (p1,--.,pn) € [1,00]™. For p € Co(X1) ® - -® Co(Xo)(Xn),

define
1/p1 1/pn
(Z | fr1 p1> p,,,>
k

HSOHQn,p = lnf{
‘p:ka1®"'®fk7z}~ (712)
k

g

oo o0

(If (ay,) is a scalar sequence, then (X|ay|>)Y/ > stands for ||(ax)| co-)
If p=(p1,...,pn) €[1,00]" is a conjugate vector, which means

1 1

4 <1, (7.13)

D1 DPn
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then || |4, , is a crossnorm, and |- ||g, , < ||-|lv,. In this framework,
the implication (7.4) = (7.5) (the Grothendieck inequality) is the
assertion that for n = 2 and p = (2,2), there exists & > 0 such that

H@H!h,(z.g) < ||S0||V2 < k”@”gz,(z,z)?

¢ € Co(X) ® Co(Y). (7.14)

Moreover, the case n = 2 and p = (2,2) is the only such case (in
non-trivial settings) where the g-norm and the V-norm are equivalent
(Exercise 17).

8 A Historical Backdrop

Tensor products are historically linked to two major developments in
twentieth-century physics: general relativity and quantum mechanics.
In the first, the tensor calculus that had been invented by Ricei ([RiLe],
[Eis]) provided a natural setting for Einstein’s theory of general rela-
tivity [Weyl], and in the second, tensors and direct products were key
notions in H. Weyl’s mathematical formulation of quantum mechan-
ics, the so-called ‘new-physics’ [Wey2]. In these two contexts, tensors
were scalar quantities indexed by Nk, and direct products — the precur-
sors of tensor products — were Cartesian products of finite-dimensional
Fuclidean spaces. In this primal phase, both tensors and direct products
appeared as purely algebraic entities, without any ‘functional analytic’
attributes.

In the next phase, bringing then-new functional analysis to bear on
Weyl’s constructs, F.J. Murray and J. von Neumann investigated opera-
tors defined on direct products of Hilbert spaces (e.g., [MuvN1], [vN2],
[Mu2], [MuvN2], [Kad]). Their seminal papers, which ‘rank among the
masterpieces of analysis in the twentieth century’ [Die2, p. 90], were
written at Princeton during the 1930s and early 1940s, and were largely
motivated by von Neumann’s prior mathematical work in Europe. The
young von Neumann, a Privatdozent in Berlin and Hamburg during the
late 1920s, had then embarked on ‘axiomatizing’ quantum mechanics
[vN1]. Later at Princeton, von Neumann’s joint papers with Murray
were again motivated by the ‘new physics’. Alas, heeding the call of
the times, von Neumann shifted his interests during the war years away
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from direct products of Hilbert spaces to more pressing projects ([Mal,
[He)).

The next stage, immediately following Murray’s and von Neumann’s
work, was R. Schatten’s study of crossnorms on direct products of
Banach spaces [Scl], [Sc2], [Sc3]. While Murray had already previously
noted instances of such norms (in [Mul, Chapter 3]), Schatten was first
to view them in their full generality. Specifically, he was first to iden-
tify the projective tensor norm as the greatest crossnorm and its dual
as the least crossnorm [Scl, Lemma 4.2, Theorem 4.1]. He also was
first to observe the fundamental duality stated in Proposition 12 [Sc3,
Theorem 1.2]. The latter paper [Sc3], arriving at the Transactions four
days after the war in Europe had officially ended, was quickly followed
by two sequels, coauthored with von Neumann [ScvN1], [ScvN2]. This
work was summarized in Schatten’s 1950 book A Theory of Cross-Spaces
[Sch4].

Moving to a broader context, motivated by L. Schwartz’s distributions
[Schw] as well as Schatten’s direct products, mathematicians in post-
war France, notably A. Grothendieck, focused on products of locally
convex spaces [Diel]. It was here that the term produit tensoriel was
introduced, replacing the term produit direct [Bou, Chapter 11I]. This
also was the setting for Grothendieck’s groundbreaking Sao Paulo paper
[Gro2], arguably the most significant advance in this subject at that
time. An account of Grothendieck’s early work appears in [Diel], and
a more complete description of his researches in functional analysis can

be found in [DiU, pp. 253-60].
Grothendieck’s mathematics — its language, notation — had encoun-

tered some resistance at first, but attention eventually was drawn to the
profound results expressed in it. Twelve years after the appearance of
Grothendieck’s Sao Paulo article, Lindenstrauss and Pelczynski wrote
in the introduction to their 1968 Studia paper: ‘Though the theory of
tensor products constructed in Grothendieck’s paper has its intrinsic
beauty we feel that the results of Grothendieck and their corollaries can
be more clearly presented without the use of tensor products’ [LiPe,
p. 275]. Be that as it may, in a paper that has since become a classic,
Lindenstrauss and Pelczynski changed Grothendieck’s bilinear function-
als to linear maps, and then applied his results in their own study of
absolutely summing operators (Exercises 18, 19).

Around the same time that Grothendieck’s results were applied to
Banach spaces, N. Varopoulos uncovered, independently, basic connec-
tions between tensor algebras and harmonic analysis. Using these in
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works [Herz], [V1] that won him the 1968 Salem prize, Varopoulos
applied tensor-theoretic machinery to solve several outstanding prob-
lems in harmonic analysis. The proximity of tensor analysis to harmonic
analysis, about which more will be said in Chapter VII, was the crux of
the matter, and it was here that tensor products entered a mainstream.

A Brief Critique and a Preview

Historically, the first constructions of tensor products involved products
of finite order (in Murray’s and von Neumann’s 1936 paper [MuvN1]),
as well as products of unbounded order (in von Neumann’s 1938 paper
[vN2]). But then in Schatten’s and Grothendieck’s works, the focus
was on two-fold products; analysis in two dimensions was evidently per-
ceived typical, routinely extendible to higher dimensions [Grol,
pp. 50-1]. (Grothendieck did not consider the problem of extending
his ‘théoreme fondamental’ to higher dimensions.) Later yet, a focus
on two-dimensional settings indeed became natural in Lindenstrauss’s
and Pelczynski’s subsequent view of bilinear functionals as operators
(Exercises 17, 18). But dimensionality is very much part of the story —
the raison d’etre of this book — and a question arises: how is ‘dimension’
of a k-fold product moticed precisely? This question has already been
briefly addressed in §2, by use of Littlewood’s 4/3-inequality, and will
be addressed again, at length, in later chapters.

Exercises

1. Prove that the Fréchet variation is a norm, and that (F, |- ||r,) is
a Banach space.

2. 1. Prove (2.5), and then conclude that F>(NxN,N) & F5(N,N,N).
ii.* Prove by explicit constructions that for k > 2,

Fr(N,...,N) G F1(N?, ... ) N).

(Presently, I know how to prove this only by non-constructive
arguments; see Chapter VII §11 and Chapter X §5, Remark ii.)
3. Prove that if a scalar-valued function 3 on a set Y is of type F},
(defined at the end of §2) for some k, then 38 € I2(Y).
4. Prove Lemma 2. Can you improve the constants on the left side of
(3.1)? (Cf. Exercise I11.9.)
5. Verify the estimate in (3.17).
6. Prove Corollary 7 in the general case.
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7. Referring to the start of the proof of Theorem 9, verify that 3,Jn €
Fr_1.
8. The following concepts are due to Y. Meyer.

Definition 1 [Mey2, p. 243]. A bounded sequence of vectors
(x; : 7 € N) in a normed linear space V is a Sidon sequence if there
exists k > 0 such that for all n € N,

EIY e x| =) lagl.

j=1 v =t

Definition 2 [Mey2, pp. 250—1]. A normed linear space V is a
Sidon space if every bounded sequence of vectors in V' either has a
Cauchy subsequence or has a Sidon subsequence.

i. Prove that F(N,...,N) is a Sidon space (cf. [Mey2, p. 251]).
ii. Verify that every Sidon space has the Schur property (cf. [Lul,
p. 285]).

9. Complete the proofs outlined in Remark i §5: construct (1) ¢ €
co(N?) such that ¢ ¢ V5(N,N), and (2) ¢ € V5(N? N) such that
¢ ¢ V3(N,N,N).

10. Prove Proposition 10.
11. Prove that Vi and Fj with pointwise multiplication on N* are
Banach algebras.
12. i. Prove that equipped with the Vj-norm (defined in (5.32)) and
pointwise multiplication, Vi is a Banach algebra and

Vi(N,...,N) = Fi(N,...,N)*.
ii. Verify that the k-fold projective tensor product of [*° is
1@ &1 ={ ¢ el>™NF):
®--® {¢ (N%)
k
¢(m) = (f1; @@ fi;)0), Y 1 fijlloo - 1 frslloo < OO}-
j=1 j=1

iii. Let D = {(n,n) : n € N}. Prove that 1p € Vo(N,N) and
1p €1° & 1.
Below you will verify an observation by Varopoulos [V2], that

Va(N,N) N co(N?) 2 Va(N,N). (E.1)



90

13.

14.
15.

16.

17.
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iv. Show there exists a sequence of bidisjoint finite rectangles in
N? {4; x Bj : j € N}, and {¢; € co(A; x B;) : j € N} such
that [|¢;lg = 1 for all j € N and [[¢;]|oo | 0.

v. Let ¢ = ¥;14,xB,9;, where |¢;]lg = 1 for all j € N, and
|¢illoo | 0. Prove that ¢ determines a bounded linear functional
on ' & I', and hence is in V3(N,N), but ¢ & V5(N,N).

vi.* Suppose ¢ € 1% & 1®° Nco(N?). Is ¢ € Vo(N,N)? (Compare
with (E.1) above.)

Prove that Vj, consists of all ¢ € [°°(N¥) such that ¢ ¢ € Vi(N,...,N)

for all p € Vi(N,...,N).

Prove Proposition 12.

Let coo(N¥) denote the linear space of scalar-valued finitely sup-
ported functions on N*. Obviously,

coo(N¥) = coo(N) @ - -+ @ coo(N).

Prove that || - ||m, and || - ||y, are crossnorms on cgo(N) ® ---
® coo(N), which, respectively, are the smallest and largest among
crossnorms on coo(N) ® -+ ® cgo(N), each of whose dual norms is
also a crossnorm.

(Ideas involving general crossnorms appeared first in [Scl]. Look at
this paper, preferably after you do this exercise. The requirement
that dual norms be crossnorms is essential; see [ScvN1, Appendix].)
Verify the assertions in the beginning of §7 concerning (7.1) and
(7.2).

i. Prove that if p € [0,00]" is a conjugate vector, then || - ||y,  is a

crossnorm, and || - ||y, , < || [lv;, on Co(X1) @ -+ @ Co(Xp).

ii. Verify that if (p,q) is a conjugate vector and 2 < ¢ < oo, then

the norms || - and || - ||y, are not equivalent.

92,5,

In Exercises 18 and 19 below, you will note the equivalence

between a notion stated in the language of p-summing operators [LiPe],

and a notion stated in terms of tensor products.

Let A and B be normed linear spaces. If £ is a bounded bilinear
functional on A x B, then associate with £ the bounded linear map T
from A into B* such that for a € A, T¢a in B* is determined by

Tea(b) = &(a,b) forall b e B. (E.2)
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If T is a bounded linear map from A into B, then associate with T the
bounded bilinear functional &7 on A x B* such that

ér(a,b*) =0b"(T,a), ac€ A, b* € B (E.3)

Then, [|¢]| = [[Te|| and [[T[| = [[&2[l (1T = sup{l|Tal[5 : [lalla =1}, and
|l€]| is defined in (6.3)).

Definition 1 [LiPe, Definition 3.2]. Let A and B be normed linear

spaces, and let T" be a bounded linear map from A into B. For p > 1,
define

ap(T) = sup{ (Z |Tai|f’) :
i=1

n 5
S“P{ (Zla*(a»”) ra*eA*, |la*| < 1} <la €A i€, ne N}.
i=1

(E.4)
If a,)(T") < o0, then T is said to be p-absolutely summing.

As indicated in [LiPe, p. 284], this definition had been foreshadowed by
[Grol, Définition 8, p. 160], [Sap], and framed by Pietsch [Pie] in the
general form stated above. It is easy to see that for p; < po,

Qp, (T) 2 Qpy (T) (E5)

Definition 2 Let A and B be normed linear spaces, and let £ be a
bounded bilinear functional on A x B. Forp > 1 and 1/p + 1/¢=1,
define

(€) = Sup{lﬁ(zjaj ® bj)l :

Yja; ®bj € A® B, sup Yjlaj(z)|P <1, sup Xbi ()T <1 5.
TEA* ||z||=1 yEB*,|lyll=1

(E.6)
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18. i.

ii.

19. i

ii.

iii.

iv.
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Let A and B be normed linear spaces. Let T be a bounded
linear map from A into B, and let £ be the corresponding bi-
linear functional on A x B* defined in (E.3). Prove that for all
p > 1, ap(T) = 7p(&r). Conclude that if £ is a bounded bilinear
functional on A x B and T¢ is the corresponding operator from
A into B* defined by (E.2), then 7, (&) = ap(T%).

Let K7 and K5 be locally compact Hausdorff spaces. Prove that
every bounded linear map from Cy(K) into M (K3) (Borel mea-
sures on K») is 2-absolutely summing.

Verify that Littlewood’s mixed-norm inequality (Theorem II.2)
is equivalent to the statement: the injection from I' into 12 is a
1-absolutely summing map.

Verify that the Grothendieck inequality (Theorem II1.1) is equiv-
alent to the statement: every bounded linear map from I* into I
is 1-absolutely summing.

Prove that if ¢ € [1,2], then every bounded linear map from [
into (7 is 2-absolutely summing.

What is an equivalent formulation of Orlicz’s inequality
(Theorem II.3) in terms of bounded linear maps from [*° into 197

. Can you deduce the Grothendieck inequality from the statement

that every bounded linear map from {* into 12 is 2-absolutely
summing?

(Following Exercises 17 and 18 (or before, if hints are needed), read in
[LiPel; specifically, see Theorems 4.1 and 4.3 therein.)

Hints for Exercises in Chapter IV

1. A normed linear space is complete if and only if every absolutely

summable series therein is summable.

2. i. Using harmonic analysis on Z,, (cf. Exercise I1.8), note that for all

scalar-valued functions f,g and h on Z,,

> (1/n?) ST F () g(R)R() = Y FDIDA).

(k1) €EZpy X Loy X Loy €7,

8. i. An outline of a proof in the case F; =’



12.

14.
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Suppose that the sequence (c;) in ! has no limit points. With-
out loss of generality, assume the «; are finitely supported and
|lils = 1 for all 4 € N.

There exist a subsequence (o, ) and 6 > 0 such that if F,, =
support (o, ) and T, = F,\ U;:ll F;, where \ denotes comple-
mentation, then

levi, 1, [|1 = 6. (E.7)

The proof of this claim, which is a ‘gliding hump’, uses a diagonali-
zation argument.

Show the following. If (x;) is a Sidon sequence in the unit ball
of a Banach space X, and (y;) C X such that ||z; — y;]| < 1/2 for
all ¢ € N, then (y;) is a Sidon sequence. Therefore, if we can find
0 € (1/2,1] such that (E.7) holds, then we are done. Otherwise,
suppose the ‘best’ § in (E.7) is in the interval (1/2™,1/2™71] for
m > 1. We can assume [|o;, 1p\p 1 < 1/2™7F for all n > 2. By
‘rescaling’ the argument in the case § € (1/2,1], (as,1p,\p) is a
Sidon sequence. Because we can find a convergent subsequence of
(i, 1), we are done.

Now prove that Fi(N,...,N) is a Sidon space for all £k > 1 by
induction on k.

This can be verified by proving that 1p is not continuous on SN x SN,
where AN is the Stone Cech compactification of N. (This proof was

shown to me by F. Gao.)
You need to verify that £ in (6.4) is well-defined. Here is the proof

in the case k = 2. Suppose A and B are normed linear spaces and
{a;} C A and {b;} C B are finite subsets such that

Zaj(x) bi(y) =0, (z,y) € A* x B*.

Fix Hamel bases {e, ;v € U} in Aand {f, :v € V}in B. Let SCU
and T' C V be finite sets such that

aj; = Zaju €y, bj = Z ij fv.

uesS veT
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Observe that

Zaj(x) biw)= D | D aubj | eu(@)f(y) =0,

ueS,weT 7
(z,y) € A* x B*,
which implies that for each v € S and v € T, Xj;a;, bj, = 0. Then,

g(ajabj) = Z Aoy ij g(etufv)v

ueS,weT

and therefore,

Zﬁ(aj,bj) = Z Z aju ij §(eu,fv) =0.

ueS,weT 7

17.ii. For arbitrary N > 0, you need to produce § in the unit ball of
F3(N,N) and ¢ € V5(N,N) such that [|¢||, .., < 1 and |B(¢)] >

N. Let 8, be defined by (2.2). If (x;) and (y) are finite sequences
in the respective unit balls of [P and 9, then define

e(3, k) = (%, yk) ij m), (j,k) € N?,

and note that [[¢|lg, , ., < 1. Put x; = e;, where e;(j) =1, and
e;(m) =0 for m # j. Then,

©) =D Balisk) D ej(m) ye(m) =D > Bulis k) ya(d)
Jik m E o

and therefore,

s =

sup{|B. ()| : {yx} C Bia} = Z ST 1BaGi k)P | =t/

J
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The Grothendieck Factorization Theorem

1 Mise en Scéne: Factorization in One Dimension

In this chapter we prove that if X and Y are locally compact Hausdorff
spaces, then every bounded bilinear functional on Co(X) x Co(Y') deter-
mines a bounded bilinear functional on a product of two Hilbert spaces
[Gro2, pp. 59-62]. Known as the Grothendieck factorization theorem, it
is a two-dimensional extension of

Theorem 1 If X is a locally compact Hausdorff space, and & is a
bounded linear functional on Co(X), then there exists a probability mea-
sure v on the Borel field in X so that

O MM llLzwy,  f € Co(X), (L.1)
where [|€]| = sup{[E(f)] : [| flloo <1}

Proof: By the Riesz representation theorem, there exist a Borel mea-
sure pe on X and a Borel-measurable function ¢, such that ||pe|lm =
€]l [l =1 on X, and

€= [ 1@ ela) Ingldn). FeCox).  (12)
where |p¢] is the total variation measure. By Cauchy—Schwarz,

€O < 1Flaquey el ?,  f € Co(X). (1.3)
To obtain (1.1), replace ¢ in (1.3) by v = |ue|/||€]]- O

95
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2 An Extension to Two Dimensions

Theorem 2 If X and Y are locally compact Hausdorff spaces, and
¢ is a bounded bilinear functional on Co(X) x Co(Y), then there exist
probability measures v1 and vy on the respective Borel fields of X andY
such that

1E(f, 9 < walléll 11 £z llgliizw.),
feCy(X), geCo(Y), (2.1)

where [[§]| = sup{[S(f,9)] : [fllc < L llgllc <1}, and k¢ is defined in
(IV.7.3).

Proof: To start, we consider the direct sum Co(X) @ Co(Y'), wherein
linear structure and norm are given by

a(fi,91) +0(f2,92) = (af1 +bf2,a91 +bg2), a€C, becC, (22)

and
1(f, 9)Il = max{|[ fllos [lglloc}- (2.3)
By the Riesz representation theorem,
(Co(X) ® Co(Y))* = M(X) ®M(Y), (2.4)
and
(s p2)l = Nlpallve + ezl (w1, p2) € (Co(X) @ Co(Y))". (2.5)

We assume (without loss of generality) ||€]| = 1, and consider two sets.
The first is

We = {(Zplfu? Zklgel®) : Sefr @ gp € Co(X) @ Co(Y),
IEEkfr @ gr)| > ka), (2.6)

which is convex in Co(X) @ Co(Y) (Exercise 1), and the second is

O={(f,9) € Co(X)@Co(Y):
sup{f(z), g(y) : (z,y) € X xY} < 1}, (2.7)

which is both open and convex in Co(X) & Co(Y).
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By Theorem IV.13 and Proposition IV.12, W and O are disjoint.
Therefore, by the Hahn—Banach theorem (e.g., [Tr, Proposition 18.1]),
there exists (u1, p2) € M(X) @ M(Y) such that

/ f(@) pu(dz) + /Y o(y) pady) < 1 forall (f.g) €0, (28)

/ f(x) pa(dz) / 9(y) po(dy) > 1 forall (f,g) € We. (2.9)

Because O contains all (f, g) € Co(X)®Co(Y) such that f < 0and g <0,
(2.8) implies that pu; and po are non-negative measures. Because O
contains the real-valued functions in the open unit ball in Co(X)®Co(Y),
(2.8) implies also

il + g2l < 1. (2.10)

Now take arbitrary f € Co(X) and g € Co(Y'), and suppose £(f, g) is
non-zero. Then,

\g(f, )|(|f|2 lg?) € We. (2.11)

Therefore, by (2.10) and the definition of W,

€9 < o ( J1@P @) + [ o) pe dy)) (2.12)

For all ¢ > 0 and d > 0, (2.12) can be rewritten as

c d
) < ke (1B + Slollig ) (213

In particular, this implies p1 # 0 and ps # 0. In (2.13), put ¢ =
ll9llL2(us) and d = || fllL2(y,), and obtain

(9] < 266 (1 llL2(un 912 ua) - (2.14)

Define probability measures v1 = p1/||p1||m and vo = po/||u2|lm. From
(2.10) we obtain

.1
(lpaline ezl ® < 5 (2.15)

(by the ‘arithmetic-geometric mean’ inequality), and therefore from
(2.14),

1E(f,9) < kel fllLzen) 119112 ) (2.16)
[
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Remark (a historical note). Dubbing Theorem 2 a factorization
theorem reflects the view of bounded bilinear functionals £ on
Co(X) x Co(Y) as bounded linear maps T¢ from Coy(X) into M(Y).
(See (IV.E.2) and (IV.E.3).) Restated in the language of linear maps,
Theorem 2 asserts that T¢ and the restriction of its adjoint to Cy(Y") can
be ‘“factored’, respectively, through L2(X, v;) and L2(Y, v5). Specifically,
this means there exists a bounded linear map

Te : L3(X, 1) — M(Y), (2.17)

such that T; = TEI, where I is the canonical inclusion map from Cg(X)
into L2(X,v1). A similar statement holds regarding the restriction of
the adjoint (7¢)* to Co(Y).

Theorem 2 suggests a general question: if A, B and H are Banach
spaces, and & is a bounded bilinear functional on A x B, then is there a
bounded linear map V: A — H such that

¢Va,b), (a,b)e Ax B, (2.18)

determines a bounded bilinear functional on V[A] x B? Equivalently, if
Te is the bounded linear map from A into (B)* determined by ¢, then
can T¢ be ‘factored’ throught H? That is, are there bounded linear maps
ViA—HandU: H— (B)* such that T, = UV?

This question, with emphasis on Hilbert spaces H, was first studied
by Grothendieck in [Gro2]. Eleven years later, working in a framework
of Banach spaces, A. Pietsch observed a general connection between
factorization and p-summing operators [Pie, Theorem 2], known today
as the Pietsch factorization theorem. (See Exercises IV.18, IV.19, and
Exercise 2 in this chapter.) Indeed, the proof above of Theorem 2 uses
a key idea from the proof of Pietsch’s theorem.

Factorization, as such, was pioneered by Lindenstrauss and Pelczynski
in their 1968 classic Studia paper [LiPe]. (See Chapter IV §8.) A concise
survey of progress in this area up to the early 1980s can be found in [Pi3];
a detailed and more recent treatment can be found in [DiJTon].

3 An Application

In this section we answer the question stated in the previous chapter
(Remark ii §5) regarding convolution in F5(N,N). The answer to this
question will be further amplified in the more general setting of
Chapter IX.
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Theorem 3 If 5, € F5(N,N), By € F5(N,N), and for (m,n) € N?

m—1n—1
(BuxBa)(m,n) = DN Bilm—j, n—k)Ba(i,k),  (3.1)
j=0 k=0
then 1 x B2 € F5(N,N), and
181 % Belle, < 4 (kG)?[1Billm, (162l (3:2)

The key to the theorem is the following

Lemma 4 Suppose 3 € F»(N,N), and let p; and s be scalar-valued
functions with finite supports in N2. Define

$(j: k) = Y B(m.n) pi(m,j) ga(n, k), (k) eN>. (3.3)
Then,
Illv. < 4 (5c)?lIBllE lrlloo ll2loo- (34)

Proof: Because 3 is a bounded bilinear functional on ¢g(N) x co(N), by

Theorem 2 there exist probability measures 11 and vy on N such that
for all f € ¢o(N) and g € co(N),

B9 = |>_B(m,n) f(m) g(n)

m,n

4 ke |1Blle [1f L2y 11912 ws)- (3.5)

That is, 3 determines a bilinear functional on L2(N, v1) x L2(N, 1), with
norm bounded by 4k¢|| || F,-

Assume |o1]leo = |l@2llc = 1, and view {p1(-,4) : 7 € N} and
{pa(-, k) : k € N} as finite sets in the respective unit balls of L%(N, )
and L2(N, v2). Then, by applying the Grothendieck inequality (as stated
in (IV.5.37)) to (3.5), we obtain

I6llv, < 4(kc)® |18l 5 (3.6)
[

IN

Proof of Theorem 3: For arbitrary finite sets S C Nand T'C N, and
for arbitrary wy € {—1,1}" and wy € {—1,1}", we estimate

Z Z Z (m—j,n—k) Ba(4,k) | rm(wi) re(w2)|. (3.7)

meS,neT 7=0 k=0
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To this end, rewrite (3.7) as

Z B2(]7k) (Z ﬂl(m_j7n_k) 1[m](.7+ 1)
7,k

Ls(m) rm(wr) 1k +1)1p(n) rn(wg)) ’ (3.8)

We change indices in the second sum to v =m — j and v = n — k, and
rewrite (3.8) as

> B, k) (Z Br(u,v) Ly (3 +1)
ik

u,v

As(u+7) rutj(wi) Losr)(k+1)1r(v + k) m+k(¢d2)> ‘
(3.9)

The second sum (over u and v) is a function (in j and k) with finite
support, which we denote by ¢. By applying Lemma 4 with 5; = 3, and
©1, 2 defined by

01(u,J) = Lpyy)(G+1) 1s(u+5) rurj(wr),
a(v, k) = g (k+1) Ip(v 4+ k) 7oyr(wa),
(u,j) €N?, (v,k) € N?, (3.10)

we obtain ||¢|lv, < 4(kg)?||f1l|r,- By duality (Proposition IV.11), we
conclude that (3.9) is bounded by 4(kc)?||51] 7, ||82]lF, and obtain the
theorem. O

4 The g-norm

The key step in the proof of Theorem 2, that We NO = 0, is the applica-
tion of the Grothendieck inequality (Theorem IV.13). A natural question
is whether the Grothendieck inequality is implied by Theorem 2. The
answer is yes.

We assume Theorem 2 with x > 0 in place of kg, and proceed to
deduce the Grothendieck inequality from it. Suppose f; € Co(X) and
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g; € Co(Y) for j = 1,...,n, and

n n

SIHP = Dolwl?| =1 (4.1)

J=1 o J=1 .

That is, [|X7_, f; ® gjllg,,2,2) < 1. (For definition of the g-norm, see
(IV.7.12).) If £ is a bounded bilinear functional on Co(X) x Co(Y), then

1D fiwg || <D lEf @)
j=1

=1

n

< KIEN | Do il lgsllee

j=1

[N

n 2 n
<wléll [ D512 S gilteon | < sl (42)
j=1

j=1

(The second inequality follows from Theorem 2; the third from Cauchy—
Schwarz, and the fourth from the generalized Minkowski inequality and
(4.1).) Therefore, by duality (Proposition IV.13),

n
Y fieg| <= (4.3)
=1 va
which implies Theorem IV.13.

The equivalence of Theorem 2 and the Grothendieck inequality is an
instance of a general relation between ‘factorizability’ (in the sense of
Theorem 2) and the g-norm. The following is essentially a restatement
of the Pietsch factorization theorem [Pie] (Exercise 2).

Proposition 5 Let X and Y be locally compact Hausdorff spaces, and
let £ be a bounded bilinear functional on Co(X) x Co(Y). If p € [1,00),
and q > p/p — 1, then the following two assertions are equivalent.

i. There exist v > 0 and probability measures vy and vy on the
respective Borel fields of X and Y such that

(Dl < M llLe s l9llLags),
F€Cy(X), g€ Co(Y). (4.4)
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ii. There exist K > 0 such that

€@l < Kliellgs, .0 © € ColX)®Co(Y). (4.5)
Proof: We deal first with the case p € (1,00).

i=1ii. Let p = Xk [k ®gr be an arbitrary member of Cy(X)®Co(Y).
Then,

(zeen)

<) ek @ gl
k

N

< Y Wklliown) lgeliags)
k

y (Z |fk|ip(,1>> <Z |gk|gq<yz))
k k
v / (Z |fk<z>”> v1(da) / (Z |gk(y>q> va(dy)-
X k Y k

(4.6)

(The second inequality is by (4.4); the third is by Hélder, and the fourth
is by the generalized Minkowski inequality.) Because v; and vs are
probability measures,

q

IN
]

IA

B
Q=

€@l < v (kal”)

k

(Z |gk|q> BNCX
k

oo oo

which implies (4.5) with x < .
ii = i. The argument follows the outline of the proof of Theorem 2.
Let We(p, q) be the set in Co(X) & Co(Y') defined by

We(p,q) = {(Zklfel”s Zilgrl?) :
Sefr @ gr € Co(X) @ Co(Y), [E(Zxfr @ gk)| > K} (4.8)

Because 1/p+ 1/q < 1, We(p, q) is convex in Co(X)®Co(Y") (Exercise 1).
The definition of O is the same as in (2.7). By (4.5), the sets We(p, q)
and O are disjoint, and therefore there exist non-negative measures p; €
M(X) and pe € M(Y) that satisfy (2.8), (2.9), and (2.10). If f € Co(X)
and g € Cy(Y) are arbitrary and £(f, g) # 0, then

m(lﬂp, 919 € We(p,q). (4.9)
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Therefore,

1€(f.9)] < ”(Hf”ip(m) + llgl iq(,@)) (4.10)

For every ¢ > 0 and d > 0, (4.10) can be rewritten as

S| < m((e/dD) 1 f2ogy + (@/c?) llgllag,)  (411)

By putting ¢ = ||g|lLa(u,) and d = || f||rr(uy). and by defining

v = pi/llpllm, ve = po/||lpalln,

we obtain (4.4) from (4.11) with v < 2k (Exercise 3).
The proof in the case p =1 and ¢ = oo is similar (Exercise 4). O

5 The g-norm in the Multilinear Case

Following linear and bilinear factorizations through Hilbert spaces
(Theorems 1, 2), the question arises whether bounded trilinear function-
als on Co(X) x Co(Y) x Co(Z) can be similarly factored. The answer is
no. Let X =Y =[0,2n7), and Z = Z. Define

&(fo9.0) = Y f(n) g(n) h(n),

neZ

(f,g,h) € C(X) x C(Y) x Co(2). (5.1)

(The ‘hat’ above denotes the usual Fourier transform.) Then, & is a
bounded trilinear functional on C(X) x C(Y') x Co(Z), and for all prob-
ability measures v, V5, and v3 on the respective Borel fields of X, Y, and
Z,and all 1 <p < oo, 1 <g<oo,and 1 <r < oo (Exercise 5),

sup{[£(f, 9, )| = [ fllLeny = llgllLacy = [[7]

While Theorem 2 does not extend (in the obvious way) to higher

dimensions, the connection between the g-norm and factorizability in
two dimensions (Proposition 5) extends (essentially verbatim) to the
multidimensional setting.

Proposition 6 (Exercise 6). Let Xi,...,X, be locally compact
Hausdorff spaces, and let £ be a bounded n-linear functional on
Co(X1) X -+ x Co(Xy,). Let p= (p1,-..,0n) € [1,00]" be a conjugate
vector; i.e., 1/py + -+ 1/p, < 1. Then, the following are equivalent.



104 V' The Grothendieck Factorization Theorem

i. There exist v > 0 and probability measures vy,...,v, on the
respective Borel fields of X1, ..., X, such that

€15 )l < A llees @y - [ fnllien @,

(f1,7fn)ECO(X1) X e XCO(Xn) (53)
ii. There exists k > 0 such that for all p € Co(X1) ® -+ ® Co(X,),
1€ < &llellg,.p- (5.4)

Let p € [1,00]™ be a conjugate vector, and let
Gnp =Gnp(X1,...,X,)

denote the closure of Cy(X;) ® --- ® Cy(X,,) in the gy p-(cross)norm.
(See Remark ii in Chapter IV §7.) For example, G 2.2y = V2 (by the
Grothendieck inequality), and G, q) & Vo for p <2, ¢ > p/p—1,
and infinite X; and X5 (Exercise IV.17 ii). Because G,, p is norm-dense
in Vo (X1,...,X) and || - [lg.p < || - |lv, (Exercise IV.17 i), we have
(Gnp)* C Vp(X1,...,X,)* (Proposition IV.12). Proposition 6 implies
the following characterization of (G, p)*.

Corollary 7 Suppose £ € V,,(Xq,...,Xp)*. Then, £ € [Gppl|* if and
only if there exist probability measures vy, ..., Vv, on the respective Borel
fields of Xq,..., X, so that

1€l = sup{l€(fr® - ® fu)l : 1 fillLrswyy < 1, J € [n]} < oo.
(5.5)

Remark (an open question). In Chapter VIII, we prove a multi-
linear extension of the Grothendieck inequality, asserting that there exist
Kn > 0 such that for all n-linear functionals £ on Co(X1) X - - - x Co(X},)
and for all ¢ € Cp(X) ® -+ ® Co(K,,),

@) < mnllEll lIellg,.c2.....2)- (5.6)

However, this inequality cannot be applied in Proposition 6, because
p = (2,...,2) is not a conjugate vector. The following is open.

Question: Let £ be a bounded n-linear functional on Co(X7) X -+ X
Co(Xy). Is there a conjugate vector p and k = k(&,p) > 0 such that for
all p € Co(X71) @ -+ @ Co(X,),

@) < slellg,,? (5.7)
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(For example, in the case of the trilinear functional & in (5.1), p =
(2,2,00) and k(§,p) =1.)

Exercises

. Let £ be a bounded bilinear functional on Co(X) x Co(Y). Verify

that if p € [1, 00] x [1, 00] is a conjugate vector, then W (p) (defined
in the proof of Proposition 5) is a convex subset of the direct sum
Co(X) @ Co(Y).

. The following is Pietsch’s factorization theorem [Pie], as stated in

[LiPe, Proposition 3.1]. (For definitions, see Exercises IV.18 and
Iv.19).)

Let A and B be Banach spaces, and let T be a bounded linear
map from A into B. Let E* denote the weak* closure of the set of
extreme points of the unit ball in B*. Prove that T is p-absolutely
summing if and only if there exists k > 0 and a probability measure
u on the Borel field of E* such that for all x € A

1Tzllp < &llzllLe &=, (E.1)

where x on the right is viewed as a continuous function on E*.

In verifying the implication i = ii in Proposition 5, we conclude that
k <7, and in verifying ii = i we obtain v < 2k. Improve the latter
inequality; e.g., can you prove v = k?

4. Prove Proposition 5 in the case p =1 and ¢ = oc.

Let X =Y =[0,27),Z = Z. Define

§(f9.h) = Y f(n) §(n) h(n),
nez
(f,g,h) € C(X) x C(Y) x Co(Z).

Verify € is a bounded trilinear functional on C(X) x C(Y") x Cy(Z)
(cf. Exercise IV.2 i), and show that for all probability measures
v,vy and vz on X, Y, and Z, and all 1 < p < 00,1 < g < 00, and
1 <r<oo,

sup{|£(f, g, h)] = |If]

Prove Proposition 6.

Lo(v1) = [19llLa(y) = [RllLrs) = 1} = oo.
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Hints for Exercises in Chapter V

2. Consider

W= {QEC(E*): 9= a(T) Y lail?, Y ITwill = }
i=1

i=1
where the x; are viewed as continuous functions on E*, and then
observe that W is convex and disjoint from

O = {ge C(E"): sup{g(t) :t € E*} < 1}.
Apply the argument as in the proof of Proposition 5.
4. To obtain i = ii, instead of applying in (4.6) the generalized

Minkowski inequality, interchange the order of summation and
integration. To obtain ii = i, replace Co(X) & Co(Y") by Co(X).



V1

An Introduction to Multidimensional
Measure Theory

1 Mise en Scéne: Fréchet Measures

In this chapter we outline rudiments of multidimensional measure theory,
a general framework that we use and further develop in later chapters.

Usual ‘one-dimensional’ measure theory starts with a set X, an algebra
of subsets C C 2%, and a scalar measure on C. The multi-dimensional
theory starts, similarly, with a scalar-valued set-function on a Cartesian
product of algebras:

Definition 1 Let X;,...,X,, besets, and let C; C 2%1,...,C, C 2%~
be algebras. A scalar-valued set-function p defined on the Cartesian
product Cy X --- x Cy, is an F,-measure if for each k € [n] and every
AjeCy, j#k,
plooos A5, A ), AeCCh,
T (L1)

kth coordinate

is a scalar measure on C}%. Such p will be generically called Fréchet
measures, or F-measures.

The space of F,,-measures on Cy X- - -xC,, is denoted by F},(C1, ..., Cyp).
If C; = 2%, then F,(--, 2%, ) is denoted by Fy,(--, X;, --).

The space F,(Cy,...,C,) is a generalization of F,(N,... N), which
was defined in Chapter IV (Definition IV.1). That Definition 1 above
is consistent with the definition in Chapter IV §1 follows from a basic
theorem that we will soon establish.

By and large, properties of Fréchet measures depend on the ambient
dimension. This will become apparent as the theory unravels. We will
encounter two kinds of properties as we learn the subject. The first kind

107
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comprises properties that extend those of scalar measures, more or less

the way we expect, and the second consists of surprises, distinct ‘multi-
dimensional’ characteristics that are not easily guessed. In this chapter,
we focus on general properties of the first kind. The more exotic features

of Fréchet measures will be revealed in later chapters.

i

ii

2 Examples

(‘trivial’ examples). Let o(C; X --- x C,,) denote the o-algebra
generated by C7 x --- x Cy, and observe that every Fj-measure (a
scalar measure) on o(Cy X --- X Cy,) is a fortiori an F,-measure on
Cy X -+ X Cy.

(‘true’ examples). We note that the definition of F,,(Ny,...,N,)
in Chapter IV is subsumed by Definition 1 above. For n = 1, if
B € F1(N) according to Definition IV.1, then define

np(A) = Z B() 1a(j), A C N, (2.1)

and observe that ug is countably additive on 2Y. Conversely, if p €
F1(N) according to Definition 1, and 3,(j) = p{j} for j € N, then
By € IYN); ie., 3, € F1(N) according to Definition IV.1. If n > 1,
and 8 € F,(N,...,N) according to Definition IV.1, then let

pup(Ar, ... Ay)

=S (30 UL A Gr) 1, Ga) | -
J1 Jn
Ay CN,...;A, CN, (2.2)

which is well-defined by Corollary IV.7. Moreover, summations on
the right side of (2.2) can be interchanged without affecting the
left side (also by Corollary IV.7). Therefore, to verify that pg €
F.(N,...,N) according to Definition 1, it suffices to check that us
is countably additive in the nth coordinate. Suppose {B;} is a count-
able collection of pairwise disjoint subsets of N. Then

{M(Ab . ,Anthj)}j
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is absolutely summable, and therefore (by the case n = 1),

o0
Z ,u/g(Al, ey Anfl, B]) = Up (Al, ey Anfl, U;‘;lB]) . (23)
j=1

The converse (p € F,,(N,...,N) according to Definition 1 implies

(gt nd) s Grsoooydn) €N} € Fo(N,...,N)  (24)

according to Definition IV.1) will be an instance of a general theorem
that we prove in the next section (Exercise 1).

Suppose (X1,C4),...,(Xn, Cy,) are measurable spaces, and each
Cj is infinite. Fix countably infinite subsets Fy C X1,...,E, C X,
and assume that for each j € [n], there exists a collection
{B; : ¢ € E;} of pairwise disjoint elements in C; such that = € B,.
Let 8 € F,,(En, ..., E,), and define (via Corollary IV.7)

pp(Ar, .. Ay) = > B(x1, .. )00, (A1) - 0s, (Ay),

1€E,...,xn€E,

A eCh,..., A, € Cy. (25)

(0z(A) = 1 for z € A, and 6,(A) = 0 for x ¢ A.) Then, ug €
F.(Cy,...,Cy). In particular, if 8 ¢ I*(Ey x -+ X E,), then ug does

not extend to a scalar measure on o(Cy X --- x C,). We similarly
verify that for all n > 3 (Exercise 2),
Fn,1(0(01 X CQ),‘..,Cn) g Fn(C’h,Cn) (26)

(examples from harmonic analysis). In the ensuing discussion
we assume the reader has (at least) some knowledge of harmonic
analysis. Let B denote the usual Borel field of the circle group T =
[0,27). Let A be an infinite subset of Z, and define

pa(A,B) = > 1a(k)ip(k), A€B, BeB. (2.7)
keA

Then, pa determines a bounded bilinear functional on L2(T,m) x
L2(T,m), which, slightly abusing notation, we write as

keA

(f,9) € L% T, m) x L3(T,m), (2.8)
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where m is a normalized Lebesgue measure on (T, B). Observe that
ua € Fo(B,B) (Exercise 3 1). Also observe that the transform fia is

faa(n,m) = uA(ci"'7cim‘) = {1 n= m,. neA (2.9)
0 otherwise.
By the characterization of idempotent measures (in [Ru3,
Chapter 3]), pa defined in (2.7) is extendible to a scalar measure
on o(B x B) if and only if A is an element in the coset ring of Z.
For instance, if A = {3* : k € N} (not in the coset ring), then pp
does not determine an Fj-measure on (B x B) (Exercise 3 ii).

Here is a variation on this theme. Define

WA BC) = D7 dalk) 1s(k) 1o(k),
kEZ
Ae®B BeB, CCZ. (2.10)

Then, p € F3(%B,B,Z), but p is neither in Fr(o(B x B),Z) nor in
Fy(B, (B x 2%)). Note (in Exercise 4) that the transform i defined
onZ x Z x T is

. . . itn _
filn,m,t) = M(eln-,el'rn~7elt-) _ {e n = m,'t eT (2.11)
0 otherwise.

(an example from stochastic analysis). Consider a Wiener pro-
cess W = {W(¢) : t € [0,1]} on a probability space (£2,,P). (See
Chapter X §2.) For A € 2, consider

E 14 W(t), telo1], (2.12)

which defines a continuous function with total variation bounded by
1 (Exercise 5 i). Let B denote the Borel field in [0,1]. Then, for
each A € 2, there exists a scalar measure u(A,-) on B, such that
for all J = [s,¢] C [0,1],

WA, J) =B 14 AW(J) := E 14 (W(t) — W(s)). (2.13)

Moreover, for each B € B, u(-,B) is a scalar measure on 2 and
u(-, B) < P, which can be verified via the extension theorem in §4
(Exercise 5 ii). Therefore, p € Fy(2, B).

We claim p is not extendible to an Fj-measure on o (2l x B). Let
n be a positive integer, and let Ji, = [k/n, k+1/n),k=0,...,n—1.
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Then,
sup{z (A )l s {4} € A, Tila, < 1}
ik

=sup {Z eikE 14, AW(Jg) : {Ai}i C2, Bila, <1, e = il}
ik

n—1
= sup {ZE (Z €ik lAi) AW(Jg) s {Ai}i C A, Xida, <1, e = il}
k=0

A

n—1 n—1
=D BIAW() =) V/2/m = \/2n/m. (2.14)
k=0 k=0

(For k = 0,...,n — 1, AW(Jy) is Gaussian with mean zero and
variance 1/n.) Because n is arbitrary, the ‘total variation’ of p is
infinite, and hence our claim.

The Fy-measure in (2.13) — the so-called white noise — exemplifies
a general correspondence between Fréchet measures and stochas-
tic integrators, which we analyze in Chapter X and Chapter XI.
In the ‘one-dimensional’ case, this correspondence reduces to the
usual identification (through the Radon-Nikodym theorem) of ran-
dom variables in L (9, 2, P) with scalar measures that are absolutely
continuous with respect to P.

3 The Fréchet Variation

If C is an algebra of sets, then a C-partition will mean a collection of
pairwise disjoint elements in C. If C1,...,C, are algebras of sets, then
a (Cy x -+ x Cp)-grid will mean an n-fold Cartesian product of finite
Ci,...,Cy-partitions. If Cy,...,C, are arbitrary or understood from
the context, then we will refer simply to partitions and grids.

Recall that a Rademacher system indexed by a set 7 is the collection
of functions r,, a € 7, defined on {—1,+1}" by

ro(w) = w(a), aer, we{-1,+1}".

If 71,...,7, are indexing sets, and (aq,...,ay) € 71 X --+ X T, then
Tay &+ Qrg, denotes the function on {—1,4+1}™ x -+ x {—1,+1}™,
whose value at (wy,...,wy) is rq, (W1) -+ Ta, (Wn).
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Throughout, X1,...,X,, are sets, and C; C 2%X1,...,C,, C 2% are
algebras.

Definition 2 The F),-variation of u € F,(C1,...,Cp) is

Il mucen,..on) = llullF,
= sup Z WEL,...,En)re, ® - QrE, cgrid v p. (3.1)
(E1,..En) €y Loo
(rgy,--.,7E, in (3.1) are elements of Rademacher systems indexed by

the partitions whose Cartesian product is the grid v.) F,,-variations will
be generically referred to as Fréchet variations.

For n =1, F1(C) is the space of scalar measures, and the Fj-variation
is (equivalent to) the total variation norm: for p € M(X,C) (= F1(C)),

HMHFL S ”HHtotal variation S 2”/,6“}71 (32)

A classical theorem — the cornerstone of the one-dimensional theory —
asserts that if /1 is an F'-measure on a measurable space (X, C'), then the
Fy-variation of  is finite; e.g., [DunSchw, Corollary II1.4.6]. (Measurable
space (X, C) means that C is a o-algebra.) Specifically, (Fy(C), || - [|7,)
is a Banach space. In this section we establish the multi-dimensional
version of this theorem: if Cy,...,C),, are o-algebras, then || - ||z, is a
norm and (F,(C1,...,Ch), || - ||lF,) is a Banach space.

The proof is based on a measure-theoretic ‘uniform boundedness’ prin-
ciple [Ni], a basic device that has over the years enjoyed several proofs
(e.g., [DunSchw, Theorem IV.9.8], [DiU, p. 33]). The argument verify-
ing it below was shown to me by S.J. Sidney.

Theorem 3 (The Nikodym boundedness principle [Ni]). Let
(X,20) be a measurable space, and let § be a family of scalar measures
on A. If sup{|pu(A)| : p € F} < oo for every A € A, then

sup{[u(A)[ : A € A p € F} < oo
ie., sup{||pllm : p € F} < 0. (3.3)
Proof: For A € 2, define

m(A) = sup{|u(A)| : p € §}, (34)
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and
Ma =sup{|m(B)|: Be A,B C A}.

Claim: Suppose B € A and Mp = oco. Then, for every ¢ > 0, there
exists A € A such that A C B, m(A) > ¢, and Mp\ 4 = 00.

Proof of Claim: Let D € A and ¢ € § be such that D C B and
|w(D)| > ¢+ m(B). Then, either Mp = oo or Mp\p = co. Note that
m(B\ D) = |u(B) = u(D)| = |u(D)| = |u(B)]
> c+m(B)—|u(B)|>c.

If Mp = oo, then define A = B\D, and if Mp\p = oo, then define
A=D.
Suppose the theorem is false; that is, assume

m(A) <oco forall Ae, (3.5)

and Mx = oco. By the claim, we choose inductively Ay, Ao, ..., pairwise
disjoint members of A, and {u;} C F such that
(1) lim m(Ag) =o0; (i) lim |pk(Ax)| = oo;
k—o0 k—o0
(iil) Mx\(A1U...UAg) =00 for ke N. (3.6)

We initialize k; = 1. Because X392, |u(Ax)| < oo for each p € §F, we
can select inductively (by applying (3.6) (ii)) an increasing sequence of
integers (k;) such that

‘/‘I’kj+1 (Akj+1)‘ > .7 +1+ Egzlm(Aki)a (37)
and
Sl (A0 < 1. (3.8)
i=kj+1
Let A =Uj;Ay,. Then, for every j > 2,
m(A) = |ux, (A)]
Jj—1 oo
> ik, (Ar) =) Ly (A = D L, (Ag,)|
i=1 i=j+1
Jj—1 -1 s
> G o mA) = 3 e, (An) = D e (4] > -1
i=1 =1 i=kji1

which contradicts (3.5). |
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An F),-measure p is said to be bounded if

sup{|u(En, ..., Ep)| : (Er,...,Ey) €Cr X - x Cp} < 00. (3.9)

Corollary 4 If C4,...,C, are o-algebras, then every F,-measure on
Ci1 x --- x C, is bounded.

Proof (by induction). The case n = 1 is classical. Let n > 1, and
assume the assertion in the case n — 1. Let p € F,(C4,...,C,). Then,
for every A € C,,,

w(eyoooyyA) € Frumq(Chy .o, Cry). (3.10)
By the induction hypothesis for A € C,,
sup{|u(A1,..., An_1, A)] : (A1,..., Ap_1) €C1 X+ X Cp_1} < 0.
(3.11)
By applying Theorem 3 with § = Cy x --+ x C,,_1, we deduce
sup{|p(A1,..., An)|: (A1,...,An) €Cr x -+ x Cpr} <oo.  (3.12)
O

The main theorem of this section is

Theorem 5 If (X1,C1),...,(X,,Cy) are measurable spaces and
e Fn(c’l7"‘acn)7
then ||p||F, < oo.

A key to this theorem is the following elementary

Lemma 6 Let (ak,. k,) be a scalar array. For every N € N, there exist
Ty, C [N],..., T, C [N] such that

E Ak ... ky,

(K1, kn ) €T X - X Ty,

1 n
> (1) Z Aky . ke Thy @ - O T, . (313)

(kla“wkn)e[N]" Lee
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Proof (by induction on n). The case n = 1 is the statement that for
every set of scalars {ay : k € [N]} there exists T C [N] such that

N

> %Z\m. (3.14)

k=1

D

keT

If n > 1 and {ay,. 1, } CC, thenlet w; € {~1,1}V ... w, € {-1,1}V
be such that

E Oky.. kpThy @ Tk,
(K1seeeskn ) E[N]™ Lo

= > Ay Ty (1) -7, (wo)| . (3.15)
(k1,...,kn)€[N]™

By the case n = 1, there exists 71 C [N] such that (3.15) is bounded by

4 Z Z Aoy on Tho (W2) -+ T, (W) ]| - (3.16)

k€Tt \(ka,....kn)E[N]P—1

Interchange summations in (3.16), and then, by applying the induction
hypothesis, obtain 7o C [N],...,T,, C [N] such that (3.16) is bounded
by

vy <4 5 ) |
(k2y.oskn )ETo X - X Ty, ki1€Ty
O

Proof of Theorem 5: Assume the assertion is false. Then, for every
¢ > 0 there exist u € F,,(Cy,...,Cy) and a grid 7y X -+ X 75, such that

Z (AL, Ap) Ta, @@ T4, >c (3.17)
(A1,...,Ap)ETIX X T Loo

By Lemma 6, there exist Ty C 71,...,T, C 7, such that

> p(Ay X - x Ap)| > e/2m. (3.18)

A €Ty,...,Ap€T,



116 VI Multidimensional Measure Theory

IED=U{A:AeT} x --xU{A: AeT,}, then |u(D)| > ¢/2™, and
this contradicts Corollary 4.

Corollary 7 (Exercise 6). If Cy ,..., C, are o-algebras, then
(Fr(C1y. ooy Co)y |l - lE,) is a Banach space.

4 An Extension Theorem

We have shown in the previous section that the Fréchet variation of an
F-measure on a Cartesian product of o-algebras is finite. In this section
we prove the converse: if the Fréchet variation of an F-measure p on a
Cartesian product of algebras is finite, then p determines an F-measure
on the Cartesian product of the corresponding o-algebras. This gener-
alizes a classical, ‘one-dimensional’ theorem, known in the literature as
the Carathéodory-Hahn—Jordan theorem (e.g., [Dul, Theorem 5.6.3]).

Theorem 8 Let Cy,...,C, be algebras of sets in X1,...,X,, respec-
tively, and let u € F,(Cy,...,Cy). Then, p is uniquely extendible to an
F,-measure fi on 0Cy X -+ x aCy, if and only if ||u||F, < co. Moreover,

lull £, on.....on) = Bl Focy.....00) (4.1)

(cC := o-algebra generated by C ).

Proof: Necessity follows from Theorem 5.

Sufficiency is proved by induction on n. The case n = 1 is the
Carathéodory—Hahn—Jordan theorem. Let m > 1, and assume the
assertion in the case n — 1. Let p be an F,-measure on C; X --- X C,
such that ||u||F, < oco. Then, for each (Ag,...,A4,) € C2 X -+ x Ch,
(-, Aa, ..., A,) is extendible to a scalar measure on cC;. Denote this
extension also by p. Observe that

Sup{\,u(Al,Ag,... ,An)‘ : (Al,AQ,... ,An) S O’Cl X CQ X oo X Cn}
<l

Fu(C1yeeesCn)- (4.2)

Claim: For each A € 6Cp, (A, ...,) € F_1(Ca,...,Cy).
Proof of Claim: Let

S={A€aCy:ulA-...,) € Fo1(Ca....Co)}.  (4.3)
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Then, S is an algebra containing C. To show that S is a o-algebra, we
need to verify that if {E;} is a countable collection of pairwise disjoint
elements in S, then u(U;E;, -, ...,-) is countably additive in each of the
n — 1 coordinates. We prove that u(U;E;,-,...,-) is countably additive
in the nth coordinate. (The argument establishing countable additivity
in the other n — 2 coordinates is identical.) Denote £ = U;E;. Let {A;}
be a collection of pairwise disjoint elements in C), such that U;A; € C,,,
and proceed to verify

oo

WE, ... UjA) = u(E, ..., A)). (4.4)
j=1
Because p is a scalar measure in the first coordinate,
P(E, .. U A) =Y u(Ei, ... UjA;). (4.5)
i=1

Because E; € S for all i € N,

Z/L(Ei,...,UjAj)IZ ZM(EZ,,A]) . (46)
i=1 i=1 \j=1
By (4.2) and Lemma 6,
sup Z w(E,...,Ey)rp, ®---Qrg,
(E1,....En)€Ey Leo

(0C1 x Cy x -+ x Cy) — grid 7} <|\pllr,. “4.7)

(The last line requires a small argument that you are asked to provide
in Exercise 7.) By (4.7) and Corollary IV.7, we can reverse summations
on the right side of (4.6). Therefore, because p is a measure in the first
coordinate, we obtain

o0

i ;u iy Aj) i(i )

(4.8)

which proves (4.4), and completes the proof of the claim.
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The induction hypothesis together with the claim imply that for each
A€ oCy, u(A,-...,-) is extendible to an F,,_j-measure fi on cCy X - -
x oCy,. The assertion that u(-, As,..., A,) is a scalar measure on oC}
for all (Ag,..., A,) € 0Cqy x -+ x 0C,, is verified by mimicking the proof
of the claim above (Exercise 8).

Uniqueness and (4.1) are verified by induction (Exercise 9). O

5 Integrals with Respect to F,-measures

For a g-algebra C C 2%, let L>°(C) denote the space of bounded
scalar-valued C-measurable functions on X. Equipped with the supre-
mum norm || ||« and pointwise multiplication, L>°(C) is a commutative
Banach algebra. Observe also that C-simple functions on X are norm-
dense in L>°(C). Throughout this section we assume n > 2, and that
fori=1,...,n, C; C 2% is a o-algebra.

Lemma 9 For p€ F,(Cy,...,Cy) and f € L>(C,,), define

pr(Asg, ... Ay) = (z) p(dx, Ag, ..., Ay),
X1

(A27...,An)602><---><C’n. (51)

Then, piy € Fu_1(Cs,...,Cy) and

Foor < 2 fllso NIl

1 Fo- (5-2)

Proof: It suffices to prove the case n = 2. The finite additivity of pz(-)
is obvious. We need to show that for a countable family { A} of pairwise
disjoint sets in Cy,
(@) p(de, U2 Ag) = > [ f@) p(de, Ap). (5.3)
X X

Let (p;) be a sequence of simple functions on (X;,C7) converging
uniformly to f. Then,

/X i) u(de, UP Ay)

SN f(z) p(de, U1 Ax), meN, (5.4)

j—0o0 X1
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and

| i@ e Uian —— [ 1) p@e . 69)

j—o00 X1
The convergence in (5.4) is uniform in m (cf. Exercise 6). Therefore
(e.g., [Ru2, Theorem 7.11]),

lim lim [ py(e) p(de, U, Ay)

Jj—00 m—00 X,
= lim lim ;(x) p(de, UfL Ag) . (5.6)
m—ooj—oo [y

The lemma holds in the case of simple functions, and therefore, by (5.5),
the left side of (5.6) equals [y f(z) p(dz, 32, Ax). By (5.4) and finite
additivity, the right side of (5.6) equals 32,7, [y f(2) p(da, Ay). This
proves (5.3).

The estimate for simple f

sl < 20 flloo [lulle  (cf. (3:2)) (5.7)

implies the same in the general case. (For real-valued f,

g e < A flloollell -

For complex-valued f, the constant 2 in (5.7) can be made smaller; see
Exercise 11.9.) U

Let p € F(Cy,...,Cp), and f1 € L=(Cy),..., fn € L>(C,). For
J € [n—1], we obtain pypg..0f € Fn_j(Cji1,...,Cn) by recursion:
if j = 1, then py, € Fr_1(Ca,...,Cy) is provided by Lemma 9; if
1 < j < n, then we apply Lemma 9 to f; and uyg..gf,_,, and thus
obtain pif,g..0f € Fnj(Ciy1,...,Cn),

pho-ef; (At An)
:/x,- [i®@) ppeopn . (de, Ajr, ..o An),
(Ajs1, .., An) € Cjpq1 X - x Cy. (5.8)
For j =n, pf g..gf, is the integral

HfH®-@f, = /fl @@ fndp

- / Fal2) pipreay (). (5.9)
Xn



120 VI Multidimensional Measure Theory

The recursive construction that ends with (5.9) yields the n-fold
iterated integral

/f1®...®fn du = /Xl f1(961)(... (/an Fac1(@n_1)
() T T

and the estimate

\/fl ©--®f du’ < 2 filloe - ool (5.11)

The recursive definition of [ fi ® -+ ® f,, dp does not depend on the
order of the steps leading to (5.9). That is, it does not depend on the
order of the iterated integrals in (5.10). To verify this, it suffices to check
a ‘Fubini’-type property (cf. Corollary IV.7) in the case n = 2:

Theorem 10 Let JURS F2(01702)7 f1 S LOO(Cl), and f2 S LOO(CQ)
Then,

[ = [ n ( [ ) . daz) ) ()

fatea) [ @) wan, ) (@)

X
= [ £ . (5.12)

Proof: The assertion clearly holds in the case of simple functions.
Therefore, if ()) is a sequence of simple functions converging uniformly
to fa, then, by Lemma 9,

i [ uten) ) b)) (o)

k—oo X,

lim Or (2) ( . fi(z1) p(dey, ')) (da2)

k—o0 X

~ [ e (

X

Ji(z1) p(day, -)) (dz2). (5.13)

X1
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Also by Lemma 9, pyg, P2 in the F;(Cy)-norm. Therefore,
s — 00

i [ f1<x1>( [ (o) u(~,dx2>> (dey)

k—o0

- fl(:rl)(xh(m) u(dm,-)) (dm),  (5.14)

X1

which, combined with (5.13), proves the assertion. O
Remark (approximations by simple functions). If
p1 € LOO(Cl), o, Pn € L”(Cn)

are simple functions, then the integral [ @1 ®- - ® @, dp is a finite sum.
This implies

Proposition 11 (Exercise 10). If u € F,(C1,...,Cy), and fi €
L>®(Ch),..., fn € L®(C), then for all € > 0 there exist simple functions
w1 € L®(Ch),...,pn € L=(C,,) such that

‘/f1®"’®fnd,u*/<,01®'”®<pndu <e. (5.15)

6 The Projective Tensor Algebra V,(Cy,...,C,)

Consider the algebraic tensor product L*°(C}) ® --- ® L*°(C,,) under
the equivalence determined by pointwise evaluation on X; X --- x X,,.
(See Chapter IV §6, §7.) Let V,,(C4,...,C,) be the closure of L>(C1) ®
---® L*(C,,) in the projective tensor norm, which is defined in (IV.7.2)
(where Co-functions are replaced by bounded measurable functions). Let
S(C) denote the space of scalar-valued C-measurable simple functions
on (X, C) equipped with the supremum norm. Then (Exercise 11 1),

Vo (Cy,...,Cn) = S(C1)&---RS(C). 6.1)
If Y, 01, ®+ ®@nj € S(C1) ® -+ ®S(Cp) and
Z%j(ﬂfl)'“%j(wn) =0

for all (z1,...,2,) € X1 X -+ X Xp, (6.2)
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then for every p € F,,(C1,...,Ch),
E:/@u®-~®¢mdu:0 (6.3)
J

(Exercise 11 ii). In particular, this implies that if ¢ € S(C1)®---®S(Cy),
and ¢ = Zj 015 ® -+ ® @nj, then

/deui:Z/@lj@"'@@nde (6.4)
J

does not depend on the pointwise representation of ¢ by elements in
S(Cy)® - ®8(Cy). Moreover,

‘/QS du‘ < 2"g

sllulle, - (6.5)
Therefore, by passing to limits, we conclude that the integral [ ¢ du
exists for all ¢ € V,,(Cy,...,Cy) and p € F,(Cy,...,C,), and that it
satisfies (6.5).

The verification that [ f1 ® - ® f,, du defined in the previous section
is the same as the integral defined above is relegated to Exercise 12.

Remark (a problem). We noted that all functions in V,,(C1,...,Cy)
are canonically integrable with respect to all u € F,(Cy,...,C,). How
to characterize functions on X x- - - x X, that are ‘canonically integrable’
with respect to a given p € F,(Cy,...,C,) (that is, how to describe
‘L1(p)’) is an open (-ended) question. This problem, which in the one-
dimensional case is resolved by the classical Radon—Nikodym theorem,
is in essence the question: how do we differentiate, in a Radon—-Nikodym
sense, in dimensions greater than one (Exercise 13)?

7 A Multilinear Riesz Representation Theorem

In the previous section we observed that the integral with respect to
uw € F,(Ci,...,C,) determines a bounded n-linear functional on
L*>®(Cy) x --- x L*(C,,). In this section we prove a converse.

Let X1,..., X, belocally compact Hausdorff spaces, and let 24, ...,2,
be their respective Borel fields. Recall that a scalar-valued function &
on Co(X1) x---xCo(X,) is a bounded n-linear functional if it is linear
in each coordinate and

€1 := sup{{I€(fr, -, fu)l} [ falloe < 1oy I fnlloe <1} < o0. (7.1)
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(Generality is not sacrificed here, for we can view elements in the com-
mutative Banach algebra L>°(C) as continuous functions on the maximal
ideal space of L*°(C).)

Theorem 12 If £ is a bounded n-linear functional on Co(X1) X - --
x Co(Xy), then there exists a unique pe € F,(Ay,...,2,) such that

i) = [foeo fu de
(f1,---5fn) €Co(X1) x -+ x Co(Xy), (7.2)
and

lellm, < SN < 2%[lpell .- (7.3)

Proof: The proof is by induction on n. The case n = 1 is the classical
Riesz representation theorem. We will prove here the case n = 2, which
is typical (Exercise 14).

Denote X1 :)(7 XQZK Qll =2 and Q[QZEB

Step 11If f € Co(X), then &(f,-) := &;(-) is a bounded linear functional
on Cy(Y), and hence, by the Riesz representation theorem, there exists
a unique regular measure pg, on B such that

£4(g) = / o(y) ne,(dy), g€ Co(Y), (7.4)

and

lltae s 11 () < [I€]I- (7.5)

Step 2 If B € B, then

defines a bounded linear functional on Co(X) with norm bounded by ||£]|.
(Boundedness is implied by (7.5), and linearity follows from the linearity
of £.) Therefore, for each B € B, there exists a regular measure p (-, B)
on 2 such that

e, (B) = / f(2) peldz, B), (7.7)
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and ||pe (-, B)||py 2y < |I€]l. More generally, if 6 = Sray 1p, is a simple
function in the unit ball of L>°(8), then ¥ax pe(-, By) is the represent-
ing measure of the functional

e / 6(y) e, (dy) = / F(2)Skax pe(de, By), f€Co(X), (7.8)

and || Xgak pe (s Be)llmy oy < lI€])-

Step 3 Let {4} C A and {Bj;} C B be countable collections of pairwise
disjoint sets, and let 3 = (ug(A; x By) : (j, k) € N?). Then,

181l F v,y < NI (7.9)

Proof of Step 3: Fix arbitrary finite sets S C N and T' C N, and fix
arbitrary w € {—1,1} and n € {—1,1}". In (7.8), put

f= Ejesrj(w)lAj and 6 = Zperri(n) 1p,.

Then,

] [ s e, B

=| > pelAy,Be) ri(w) re(n)| < €] (7.10)

JjESKET

Step 4 If {By} is a countable collection of pairwise disjoint sets in 9B,
then 322, e (-, Bi) € F1 ().

Proof of Step 4: Let {A,} be a countable collection of pairwise disjoint
sets in 2. Because p (-, Bi) is a measure for each k € N, we have

oo

D one(UiA;Br) = > [ > pe(Ay, Br) | - (7.11)

k=1 k=1 \j=1
By Step 3 and Corollary IV.7,

o0

DD one4yx By | = (Z pe(Aj X Bk)) : (7.12)

k=1 \j=1 j=1 \k=1



A Multilinear Riesz Representation Theorem 125

Step 5 Let {By} be a countable collection of pairwise disjoint sets in
5. Then,

> el Br) = pe (-, UrBy).
k=1
Proof of Step 5: Let f € Cy(X). By Step 4,

f(z) pe(dx, By) —— | f(x)X72;pne(da, By), (7.13)
;/ 1223 k nﬁoo/ k=1H¢ k

and by Step 1,

> [ @) nelde B = 3 i, (B) e, (U B)
k=1 k=1

= [ 1@ neln By, (1)
Because f is arbitrary, this implies Step 5.

We now put the steps together. By Step 2, pe(- x B) € Fy(2) for
each B € B. By Step 5, pe(A x ) € F1(B) for each A € 2; that
is, pe € Fo(UA x B). By the definition of integration with respect to
pe € Fo(A x B), Steps 1 and 2 imply

£(f.g) = / f®gdue, (f.9) € Co(X) x Co(Y), (7.15)

and ||€]| < 4||pellr,. The reverse inequality [|€]] > ||pellr, follows from
(7.9). Uniqueness (pe = 0 implies £ = 0) follows from uniqueness in the
case n = 1. U

Theorem 12 implies a characterization of V,,(Xy,...,X,)*, which
generalizes the characterization in Proposition IV.11. To see this, we
first observe (as in Chapter IV, in the case X; = --- = X,, = N) that
every pu € F,(Uy,...,2,) determines a bounded linear functional £, on
VX1, X)) if @ € Vi(Xn, ., X)) and ¢ = 37 f1; @+ @ fy such
that 3, [ lloo -« | fnglloo < 00, then

§ule) = Z/flj ® @ fny dp, (7.16)
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and ||€,]| < 2"||ullF,- (See §6.) In the opposite direction, if
é- € Vn(Xla R} X’n)*7

then by Theorem 12, there exists pe € F,(%4,...,2,) such that the
linear action of £ on V,,(X1,...,X,) is given by (7.16) with ye = p1, and
lleellr, < |I€]]. We summarize:

Theorem 13 (cf. Proposition IV.11). If X;,..., X,, are locally com-
pact Hausdorff spaces with respective Borel fields U1, ...,2,, then,

V(X1 X)) = Fu(2A, ..., 20). (7.17)

8 A Historical Backdrop

Bounded bilinear functionals on C([0,1]) had been characterized first by
Fréchet in [Fr], and later were dubbed bimeasures by Morse and Transue
[Mor]. A bilinear Riesz representation-type theorem, identifying these
bimeasures as bona fide set-functions, was stated and proved first by
Ylinen in [Y1, Theorem 6.6], where they were also called bimeasures. In
general multidimensional settings, which began attracting attention in
the mid-1980s, the terms used were multimeasures or polymeasures (e.g.,
[GrY], [Do]), but I prefer F,-measures, mainly because these register the
ambient dimension.

Multidimensional measure theory, as such, began with this definition
by Fréchet [Fr]: for a scalar-valued function w on [0,1]%, let

[ull = Sup{

€; = £1, 0; = £1, partitions p,T}, (8.1)

Z A2u(x,;7yj)e,;6j :

TiEP,Y;ET

where
p={0<z < <zp <1y, 7={0<y <o <yp <1},
and the ‘second difference’ A? is given by
A*u(zi, ;)
= w(@i, y;) — (i1, y) + w(@io1, yj-1) — (@i, y-1)-  (8.2)
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(The connection between (8.1) and Definition 2 in §3 should be evident.)
Fréchet constructed in [Fr] a Riemann—Stieltjes double integral with
respect to such u, and used it to represent bounded bilinear functionals
on C([0,1]). This generalized F. Riesz’s prior characterization of bounded
linear functionals on C([0,1]) [Rifl]. (See Exercises 15, 16, 17.)

While measure theory (in one dimension) got off to a quick start in
the beginning of the twentieth century, the bilinear theory was far slower
to develop. Sustained interest in any area requires non-trivial examples,
and indeed hardly anything at all had transpired in two dimensions until
first Littlewood [Lit4], and then Clarkson and Adams [ClA] produced
functions u = wu(z,y) with finite variation in the sense of Fréchet, i.e.,
|lu|]| < oo, and infinite variation in the sense of Vitali, i.e.,

sup ZA2u(xi7yj)eij : €;; = £1, partitions p,7 » = oo. (8.3)

%)

(See Exercise 1.2.) Littlewood’s examples and inequalities [Lit4], fore-
shadowing the probabilistic aspects of the subject, were in hindsight
more illuminating than the constructions in [ClA]. Littlewood himself,
for reasons unknown, did not pursue this further. On the other hand,
Adams and Clarkson (only briefly acknowledging Littlewood’s prior
examples, and paying no attention to his inequalities [C1A, p. 827, p. 837])
continued to investigate the Fréchet variation largely in a context of
then-current integration theories (e.g., [ACI1], [ACI2], [Cl]).

Following the work of Adams and Clarkson, Morse and Transue
continued essentially in the same spirit. Recognizing that bilinear func-
tionals were fundamentally different from linear functionals, they con-
centrated on extending the classical ‘one-dimensional’ theory to two
dimensions. Their work consisted of two series of papers. In the first,
staying within Euclidean settings, they made precise an analogy
between distribution functions on the line and functions with bounded
Fréchet variation on the plane [MorTrl], [MorTr4], and then investi-
gated Stieltjes integral representations of bilinear actions on function
spaces [MorTr2], [MorTr3]. In a second series of papers [Mor], [MorTr5],
[MorTr6], [MorTr7], they replaced Fréchet’s setting [0,1] x [0,1] with a
general Cartesian product K7 x Ko, where K; and Ky were locally com-
pact Hausdorff spaces, and considered bimeasures on K1 x K. These, in
their context, were scalar-valued functions A on Co(K;) X Co(K32) such
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that for each g € Co(K32), A(-,g) was a bounded linear functional on
Co(K1), and for each f € Co(K1), A(f,-) was a bounded linear func-
tional on Co(K3). (That every bimeasure on K; X Ko determined an
Fsr-measure on the two-fold Cartesian product of the respective Borel
fields (Theorem 12) was nowhere stated in their work. As far as I
can determine, a general bilinear Riesz representation-type theorem first
appeared in [Y1].) Like their predecessors Adams and Clarkson, Morse
and Transue were guided largely by ‘one-dimensional’ measure theory,
which was then the state of the art. But notably, they were also moti-
vated by a firm belief that ‘multi-dimensional’ issues were more chal-
lenging and interesting than their ‘one-dimensional’ antecedents. In that
respect — I daresay — they had it right.

Morse and Transue recognized at the very outset an important dif-
ference between the two-dimensional and the one-dimensional theories;
that there was no Hahn-type decomposition A = AT — A~ for bimea-
sures A [MorTr6, §10]. To negotiate around this obstacle, in search for
a concept of ‘absolute integrability’ in two dimensions, they considered
the following notion. Let A be a bimeasure on K3 X K». For p and ¢ posi-
tive l.sc. (lower semicontinuous) functions on K7 and Ks, respectively,
define

A*(p,q)
= sup{|A(u, )| : (u,v) € Co(K1) x Co(K2),|ul <p,|v| <q}, (8.4)

and then, for positive functions A and k on K; and Ks, respectively,
define

A*(h, k)
=inf {A*(p,q¢) : h<p,k<g,p>0and ¢ >0 arel.sc.}. (8.5)

Their extensive studies of A*, which they dubbed ‘superior integral’,
were based on a view of it as a two-dimensional extension of the usual
Lebesgue integral. (See the survey article [Mor], which previewed
[MorTr5], [MorTr6], [MorTr7].) Alas, Morse and Transue were miss-
ing basic tools. Like Adams and Clarkson, they paid scant attention
to Littlewood’s prior work [Lit4], which throughout their papers was
mentioned only once [MorTr4, p. 106] (cf. Exercise 18). In this respect,
Littlewood’s 4/3-inequality (Theorem II.5) could have pointed them to
p-variations, which extend the usual total variation norm in the ‘one-
dimensional’ setting. But Morse’s and Transue’s most significant miss
was the natural role of tensor products in the study of bimeasures;
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specifically, that bilinear functionals on Co(K7) x Co(K2) were linear
functionals on the projective tensor product Co(K;) ® Co(Ks). (Ideas
involving tensor products had been introduced by von Neumann and
Schatten [Sc4] at the very same geographic location, just prior to the
researches by Morse and Transue. See Chapter IV §8.) But for this miss,
their attention might have been directed to Grothendieck’s work in the
early and mid-1950s, work that plays prominently in the bilinear setting
(see Chapter IX). The Grothendieck factorization theorem, in particu-
lar, would have been useful in their investigations of the superior integral
A* (Exercise 19).

Exercises

1. Prove directly, without invoking the Nikodym boundedness princi-
ple (Theorem 3), that if 4 € F,,(N,...,N) according to Definition 1,
then

{ul{g1}, - n)) s (G1y -+, 5n) €N} € Fu(N,...,N)

according to Definition IV.1.
2. Referring to (2.5), prove that if 3 ¢ I'(Ey x --- x E,), then ug is
not extendible to a scalar measure on o(Cq X -+ x Cy,).
More generally, assuming results cited in the remark in Chapter IV
§2, verify that F,_1(c(Cy x C2),...,Cp) & Fo(Ch,...,Cy) for all
n > 3.
3. This exercise refers to the definition of pa in (2.8).

i. Prove that pa € F>(%5,B).

ii. Prove directly, without appealing to the characterization of idem-
potent measures, that if A = {3% : k € N}, then u, does not
determine an Fj-measure on o(B x B).

4. This exercise refers to the definition of yx in (2.10).

i. Prove that p € F5(%8,%8,Z), but p ¢ F>(c(B x B),Z) and
¢ Fo(B,0(B x 27)).

ii. Prove that /i (given in (2.11)) is not in Va(Z, (Z x T)); that is, ji
is not the pointwise limit on Z x Z x T of a uniformly bounded
sequence in Va(Z, (Z x T)). This also implies the assertion in i
above, that p ¢ Fy. Do you see why?
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5. Let W = {W(¢) : t € [0,1]} be a Wiener process on a probability
space (Q,2,P).
i. For each A € 2, define
fa(t) =E 1,W(), t¢e€]0,1].

Prove that f4 is a continuous function of bounded variation on
[0,1], with total variation bounded by 1.
ii. Prove that p defined in (2.13) determines an Fh-measure on
A x B.
6. Prove Corollary 6.
7. Referring to (4.7), prove that

6l 7, o nn..in) S IBIEL(01.Co...00)-
8. Referring to the end of the proof of Theorem 8, let
S = {(A2,7An) S 0'02 X e X O'Cn : /,L('7A27...,An) S Fl(Cl)}

Prove that S = oCs x --- x 0C,,.
9. This exercise refers to the end of the proof of Theorem 8.

i. Prove the uniqueness of the extension. That is, show that if
w1 € Fp(oCh,...,0Cy), pa € Fr(cCy,...,0Cy), and p1 = po
on Cp x --- x Cy, then p; = py on 6Cy X - -+ x 0Cy,.

ii. Prove (4.1).

10. Verify Proposition 11.

11. Let V,(Ci,...,C,) be the projective tensor algebra L>°(C)®
- ® L®(Cy), where (X1,C1), ..., (Xn,Cy) are measurable spaces,
and let S(C') denote the space of scalar-valued C-measurable simple
functions on (X, C) equipped with the supremum norm.

i. Prove that
Vo (Chy .o, Cn) = S(Ch) &---& S(C).

ii. Prove that if 01, ® --- @ ¢pn; € S(C1) ® --- ® S(C,,) and
Y015 ® - ® @i =0, then for all p € F,,(Cy,...,Cy),

Z/¢1j®“'®sﬁnj dp = 0.
J

12. Verify that the integrals [ f; ® -+ ® f,du defined in §5 and §6 are
equal.
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13. Let (X1,C1),...,(Xn,Cr) denote measurable spaces. Let pu €
F,(Cy,...,C,) and ¢ € L*(Cq) ® -+ ® L>*(C,,). Define a set
function [ ¢ dp by

¢d/// E17 L) n) = 1E'1><~--><En¢d,u/7
(E

e BR) €CLx - % Ch.

i. Verify that [ ¢ dp determines an F,,-measure on Cy X - - X Cp,

and
H [oa] <ol uls,
Fy

ii.* Denote by LF, (u) the closure of

{/¢>du:¢>eL°°(Cl)®~-~®L°°(Cn)}

in F,,(Cq,...,Cy). Can you, somehow, associate with every
A € LF,(u) a function f defined on X; x -+ x X,,, such that
for (El,...yEn) ey x---xCy,

MEy, ..., E,) = /1E1><~~~><Enf dp

makes sense?

14. Supply the details in the general inductive step in the proof of
Theorem 12.

15. In this exercise, by applying results of this chapter, you will con-
struct the double Stieltjes integrals obtained by Fréchet in his 1915
paper [Fr].

Let k be a real-valued function on [0,1]? such that ||k|| < oo (see
(8.1)). Let w € C([0,1]) and v € C([0,1]). First prove that

/1u(t) dk(s,1), s € [0.],
0

is a function of bounded variation on [0,1], where d; denotes Stieltjes
integration in ¢. Then show

/Olu(t) dt/olv(S) dk(s,t) = /Olv(s) ds /Olv(t) dyk(s, t).
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16. In this exercise you will obtain the extension to two dimensions
of the usual formula relating a Riemann—Stieltjes integral to a
Lebesgue—Stieltjes integral.

Suppose k is a real-valued function on [0,1]> which is left-
continuous in each variable separately, and satisfies ||k|| < co. Prove
that there exists u € F3(%B,%), where B denotes the usual Borel
field in [0,1]2, such that

k(s7t) = N((Oa 5]7 (07 t])a

and

/u®v du = /Olu(s) ds/olv(t) dyk(s, )
= /01 u(t) dt/o1 v(s) dsk(s,t)

for all (u,v) € C([0,1]) x C([0, 1]), where the integral on the left side
is defined in §5, and the integrals on the right side are the iterated
Stieltjes integrals obtained in Exercise 15.

17. In the first part of this exercise you will deduce Fréchet’s repre-
sentation of bounded bilinear functionals on C([0,1]), and in the
second part you will deduce a result obtained in [MorTrl]; see
[Mor, p. 346].

i. Let A be a real-valued bounded bilinear functional on C([0,1]).
Prove there exists a real-valued function k on [0,1]? such that
Ik]] < oo, and

Au,v) = /01 u(s) ds /01 o(t) dik(s,t)

_ /Olv(t) dt/olv(s) dsk(s,t)

for (u,v) € C(]0,1]) x C([0,1]).
ii. Prove that k (in i) can be chosen so that it is left-continuous in
each variable separately. Then verify

Ik = |A|| := sup{|A(u,v)|: v and v in the unit ball of C([0,1])}.
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18. By applying results in Chapter IV, you will derive here a result
of Morse and Transue concerning the Fréchet variation; see [Mor,
Theorem 2.1]. To facilitate comparison with Morse’s and Transue’s
work, I will adopt here their notation.

Let k be a real-valued function defined on [0,1] x [0,1], and
denote (temporarily) its Fréchet variation ||k| by P(k). For s €
[0,1], let X5 = (0,s] x [0,1]. Denote the Fréchet variation of the
restriction of k to X by P(k, Xs). Prove that if P(k) < oo, then
lim, o+ P(k,Xs) =0.

Morse and Transue billed the theorem above as one of the deep results
in the bilinear theory [Mor, p. 351]. Although this specific theorem was
not explicitly stated in Littlewood’s 1930 paper [Lit4], its proof was
implicit there; see [Lit4, pp. 167-8].

19. Let K7 and K5 be locally compact Hausdorff spaces with respective

Borel fields B and Bs. Let A* be defined by (8.4) and (8.5).

i. Does A* determine an Fy-measure on B; X Bo?

ii. Show that there exist probability measures v on (K7,%1) and A
on (Ks,%B3) such that A* < v x A, where v x X is the product
measure, and A* < v X A means that if v x A(A x B) = 0 for
A€ B, and B € By, then A*(14,15) = 0.

Hints for Exercises in Chapter VI

—_

. Assume that the assertion is false, and apply Lemma 6.

3. ii. Use the Khintchin L'-L? inequality; specifically, that the trans-
form of every measure on (T x T,o(B x B)) with spectrum in
{(3%,3%) : k € N} is square-summable.

4. i If g € Fy, then p can be ‘factored’ in the sense of Chapter V.
Use an argument similar to the one used in Exercise V.5.

ii. Cf. Remark iv in Chapter IV §5.
5. 1. For hints, browse through Chapters X and XI.

ii. This can be shown by applying Theorem 8, but it also can be
proved directly.
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The case n = 1 is classical. It is clear that || - |, is a norm for all
integers n > 0. To verify that (F,, ||-||,) is a Banach space for n > 1,
first note that if p € F,,, then for all (44,...,4,_1) € C1x---xCp_1,

l(Ars - Anes)lm o) < llplles

which follows from the definition of the Fréchet variation. Observe
the same regarding Fi(C;) for j =1,...,n—1. Now suppose ()
is Cauchy in (F,,| - ||r,). Then, there exists a scalar-valued set
function g on Cy X - -+ x Cy, such that for A; € C4,..., A, € Cy,

T p(Ar, e An) = p(As, o Ay)

By applying this observation and the case n = 1, conclude that
we Fy.



VII

An Introduction to Harmonic Analysis

1 Mise en Scene: Mainly a Historical Perspective

A recurring construct in previous chapters was based on this simple
blueprint:

given sets F1,...,Ey, and 1 € F1,...,xn € E,, form products 21 ® - - ® xp,
and consider the class 1 ® - - - ® E, comprising all linear combinations of such
products.

At the very outset, if nothing is known or assumed about the ‘building
blocks’ xz1,...,x,, then their product 1 ®---®x, is merely a formal
object, and not much more can be said. If something is known about
Fy, ..., E,, then meaning could be ascribed to 1 ®- - -®x,,, and analysis
of F1 ® -+ ® E, would proceed accordingly. In our specific context, we
considered Rademacher functions and their products. We considered the
set of independent functions R = {ry} on = {—1,1}N, and viewed the
elements in the n-fold R ® --- ® R as functions on Q™. An underlying
theme has been that Rademacher functions are basic objects from which
all else is constructed, a notion that can be formulated effectively in a
framework of harmonic analysis. And that is our purpose in this chapter:
to learn and analyze this framework, as it is built from the ground up.
Loosely put, harmonic analysis is about representing general pheno-
mena in terms of familiar phenomena. The subject’s beginnings —
in the mid-eighteenth century, about ninety years after the invention of
the calculus — were rooted in the notion that arbitrary functions could
be represented by series of sines and cosines. This idea, which had
appeared first in D. Bernoulli’s solution to the vibrating string prob-
lem [Be], encountered some initial resistance. The contested points were

135
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largely conceptual: what is an arbitrary function, and what is its repre-
sentation? Historical accounts of speculations about these and related
issues can be found in [Dug]. (See also [GraR, pp. 243-53|, and the
introduction in [Cars].)

The official debut of Fourier analysis is usually marked by Joseph
Fourier’s extensive use of trigonometric series in his researches of heat,
which had appeared first in an 1807 Memoir, then an 1811 Prize Essay,
and finally in his 1822 classic Théorie Analytique de la Chaleur. While
Fourier’s priority in the use of trigonometric series was indeed challenged
by some of his contemporaries ([Her, pp. 318-21], [GraR, pp. 243-53]), it
was Fourier’s name that eventually became associated with the subject.
For so it was, largely through his insight and tenacity, that an elusive
eighteenth-century idea became the foundation of a thriving enterprise.
Detailed accounts of Fourier’s work and unusual life story, cast in the
tumultuous French political scene in and out of academe, can be found
in [GraR] and [Her].

The vast subject emanating from the study of trigonometric series falls
under the headings Fourier analysis and harmonic analysis: the first, a
homage to Fourier, refers to the classical theory as well as areas close
to it; the second, honoring a plucked string, refers to a much wider field
including Fourier analysis and related mathematics. A broad survey
that traces ideas of harmonic analysis in various contexts, some fairly
far flung, can be found in [Mac].

Framed in a neo-classical setting, Fourier analysis begins with the
Fourier—Stieltjes transform fi of a Borel measure p on the circle group
T := [0, 27),

a(n) = [Fe_it”,u(dt)7 n € Z. (1.1)

A central problem is to characterize these measures in terms of their
transforms. Specifically, how is p € M(T) reconstructed from its
Fourier—Stieltjes series

Slul =Y fu(n)e™? (1.2)
nez

More generally, how are properties of u reflected by properties of [i?
The normalized Lebesgue measure on T plays here a fundamental role,
primarily because the exponentials e, n € Z, form a complete ortho-
normal set with respect to it. This (in a nutshell) is the foundation of
the classical theory (Exercise 1). Detailed accounts of Fourier analysis
from varying viewpoints in (neo-)classical settings can be found in [Kat],
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[Ko], and [Zy2]; a concise account of select highlights can be found in
[Hel]. All four were written by grandmasters.

Ideas underlying Fourier analysis extend well beyond trigonometric
series. During the 1930s, a general locally compact group was proposed
as a generic framework for harmonic analysis at large [PaWi2], [We]. In
the commutative section of this framework, a compact Hausdorff space
G equipped with a continuous Abelian group operation stands for the
circle group T; continuous characters of G, i.e., continuous functions

v:G—{zeC:|z| =1}, (1.3)
such that
V(@ -y) =v(@)(y), (z.y)€CGxG,

correspond to exponentials, and Haar measures on G (positive
translation-invariant Borel measures) stand for Lebesgue measure. The
main problems here, like those in the classical setting, focus on repre-
senting objects (e.g., measures) defined on G in terms of the characters
of G. An accessible account of harmonic analysis on general Abelian
groups, also told by a grandmaster, can be found in [Ru3]. Further
studies, detailing some of the researches on the subject’s frontiers, can
be found in [GrMc].

In this chapter we outline rudiments of harmonic analysis in G = Q :=
{—1,+1}N. This primal setting, equipped with minimal and transpar-
ent structures, is considerably simpler than the circle group T. Yet, it
illustrates effectively the workings of general principles. Starting with
the Rademacher system R = {r; : j € N}, a set of basic characters on
), we learn about Q) from the ground up. We view the full character
group Q) as an increasing union of k-fold products of R,

Q= J{r e G- dn) € NFRU {ro}, (1.4)
k=1

and analyze the evolving complexity of its constituent systems
. . k
{rjy..rjp : (41, -, Jx) € N¥},

as it depends on k. The increasing complexity of these systems is the
main theme of this chapter.

Focusing on the group €2, we begin from first principles. To underscore
the generality of what is done here, further along we shall allude also to
general compact Abelian groups, and recast results in that setting. We
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expect that readers eventually become familiar with the material found
in (at least) the first two chapters in [Ru3].

2 The Setup
A Compact Abelian Group and its Dual

To start, we equip Q := {—1, +1}" with the usual Tychonoff product
topology, and obtain a compact Hausdorff space, wherein the result-
ing Borel field, denoted here by 2, is the o-algebra generated by the
Rademacher functions. For w = (w,) € Q and n = (n,,) € Q, we define
the product w -7 € Q by

(W-Mn=wn Mn, neN, (2.1)

and obtain, from the definition of the product topology, that (w,n) —
w - n is a continuous function from Q2 x Q onto 2. Endowed with these
structures, 2 becomes a compact Abelian group.

We denote by € the set of continuous characters of . That is, Q
comprises all continuous non-zero scalar-valued functions y on € such
that

x(w-n) =xw) x(n), (w,n)€xQ. (2.2)

Let R = {ry : n € N} be the usual system of Rademacher functions on
), and let ¢ denote the function on 2 that is identically 1. Define

W =A{rj, -7, 51> >jx >0, ke N} (2.3)
Then, W is a countable Abelian group under pointwise multiplication
of functions, and rq is its group-identity.

Proposition 1 Q=w.

Proof: It is clear that W C €.
We prove the reverse inclusion. Let ey be the group-identity in 2, i.e.,
eo(n) =1 for all n € N. If x is a continuous character of €, then,

X(@)? = x(w?) = x(eo) =1, weQ (2.4)

Therefore, x takes values in {—1,+1}. For n > 1, define e,, € 2 by

-1 ifn=m
e”(m):{1 if n # m. (25)
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Then, lim, o€, = ep (in the product topology). Because x is
continuous, there exists N > 0 such that x(e,) = 1 for all n > N.
Let F = {n: x(e,) = —1}. Observe that gp{e,} (= group generated by
the e,,) is dense in 2, and that

Xw) =[] rn(w), wegpfent. (2.6)

Therefore,

X = H T (2.7)

O

Remark (a leitmotif). The Rademacher system R is a basic indepen-
dent set from which ) is synthesized. When referring to independence,
we need to make precise what we mean by it. In Chapter II §1 we noted
that R is functionally independent, a notion that will be revisited later
in this chapter. We noted also that R is statistically independent with
respect to a probability measure that will soon be recalled. And now,
with group multiplication in W, we notice that the Rademacher system
is also algebraically independent. This means: if

i =10, 0< j1 <o < ks (2.8)

then £ = 1 and j; = 0. That is, every w € W can be represented
uniquely as a product of distinct elements in R.

Convolution

Next we observe that the multiplicative structure in €2 naturally gives
rise to a multiplicative structure in the space of Borel measures M({2).

If f is a measurable function on 2 and w € €2, then let f, denote the
function defined by f,(n) = f(n-w), n € Q. Fix Borel measures p and
von Q. If f e CQ), then w — [, fu(n) p(dn) defines a continuous
function on €, and

fo [ ([t ntan) ey, rec@. o

defines a continuous linear functional on C(f2), whose norm is bounded
by ||v|am||lpllar- By the Riesz representation theorem, there exists a
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unique Borel measure v x g on  — dubbed convolution of v and
1 — such that

/f )+ i(dw) /(/ Lo ) V(dw). (2.10)

Then, vxp = pxvand ||v*pu|apr < |v|lar ||pllar- Thus, M(2) equipped
with convolution and the total variation norm becomes a commutative
Banach algebra (Exercise 2).

Proposition 2 (Exercise 3). If p € M(Q), v € M(2), and A € A,
then

v p(A) = /Q,u(A-w) v(dw) = /QV(A cw) p(dw). (2.11)

Transforms

For p € M(Q), define its W-transform /i by
plw) = /Qw(n) p(dn), weQ (cf. (1.1)). (2.12)

Proposition 3 (Exercise 4). For all 1 and v in M(),

(nxv)(w) = fi(w) D(w), w e
The W-series of u € M(Q) is
Sl =Y f(w) w(cf. (1.2)), (2.13)
we

which, at this juncture, is merely a formal object. A question naturally
arises: in what sense does S[u] represent p?

Haar Measure

The question concerning representations of 1 € M() is of special interest
when p is absolutely continuous with respect to a Haar measure, a posi-
tive translation-invariant measure on (2, 2). Existence of such measures
in general, by no means obvious, is guaranteed by a basic theorem due
to A. Haar [Ha2]. In our specific setting, the normalized Haar measure
on {2 is the probability measure P defined in Chapter IT §1. That is,

P(A-w)=P(A), A, weQ, (2.14)
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and P is the only probability measure with this property (Exercise 5). To
underscore connections between probability theory and harmonic analy-
sis on €, we will denote integration with respect to P — here and through-
out the chapter — by E (ezpectation).

By a standard application of the Radon—Nikodym theorem, absolutely
continuous measures with respect to P can be naturally identified with
elements of L' (Q, P). The W-transform of f € L*(Q, P) is the transform
of the measure fdP,

fw) =B wf, (2.15)

and the convolution of f and g in L!(Q, P) is the Radon—Nikodym deriva-
tive with respect to P of the convolution (fdP)  (¢9dPP). We summarize.

Proposition 4 (Exercise 6). If f € LY, P) and v € M(Q), then
(fdP) xv < P, and

fxv:i= % = /{;fw v(dw), (2.16)

where the integral on the right side is the element in L(Q, P) represented
almost everywhere (P) by the function [, f.(n) v(dw), n € Q.
In particular, if fcLY(Q,P) and g € LY(Q,P), then for almost all
€ (,P),

d(fdP x gdP)

fxgtn) = HEZIT ) =B gy, (217)

and

(fx9)" (w) = E{Ey fy(w n} = f(w) §(w), weQ (2.18)
(E, and E, denote integrations with respect to P(dn) and P(dw),

respectively.)

The importance of the Haar measure stems from the orthogonality
relations: if w and w’ are characters on €2, then

1 w=uw
E = 2.19

o { 0 w#w. (2.19)
(To verify (2.19), write w and w’ as products of Rademacher functions,
and then apply (11.1.7).) This implies that if f is a W-polynomial, i.e.,
f = Xwer a,w where F' is a finite subset of 2, then

flw) = {8“’ Z ;? (2.20)
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In particular, if f and g are W-polynomials, then
Efg =) f(w) j(w), (2:21)

and therefore,

(EIf?)2 == [fl2 = [Ifll2 = (Z aw|2> : (2.22)

weF

The formula in (2.21) is known as Parseval’s relation. In the next section
we will verify that (2.22) holds for all f € L2(€,P); specifically, that
f + f determines a unitary equivalence between L2(Q2,P) and [2(£2).

3 Elementary Representation Theory

In this section we make precise how p is represented by S[u]. The results
and methods used to derive them are classical, and indeed typical of
results and methods in any setting, not only (2.

Definition 5 A summability kernel (ky, : n € N) on 2 is a sequence of
scalar-valued continuous functions on 2 with these properties:

E ky, =kn(ro) =1, neN; (3.1)
sup ||knllLr < oo; (3.2)
neN
lim E |k,1yc| =0 for every neighbourhood V of ey. (3.3)

n—oo

(V¢ denotes the complement of V.)

Proposition 6 (Exercise 7). If (k, : n € N) is a summability kernel
on Q, and B is any one of the spaces C(Q), LP(Q,P) for 1 < p < oo,
then for all f € B,

lim (k, = f) = f, convergence in the B-norm. (3.4)
n—oo

The key to the proposition is

Lemma 7 (Exercise 7). If B=C(Q2), or B=LP(Q,P) for1 <p < oo,
then for all f € B,

Iflls = lfullz, weQ, (3.5)
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and

lim f, =f, convergence in the B-norm. (3.6)

w—eq

In order to obtain p € M(2) as a limit of partial sums of S[u], we
verify that Riesz products form a summability kernel:

Proposition 8 Let
n=]](+7;), neN (cf. (IIL6.1)). (3.7)
j=1
Then, (R, : n € N) is a summability kernel on .

Proof: By the statistical independence of {r,},

n n
=E [J(+r) :H (1+7) = (3.8)
j=1 j=1

which verifies (3.1). To verify (3.2), note that R, > 0, and therefore
|Ru|l: = Rn(ro) =1 for all n € N.

To verify (3.3), let V be a neighbourhood of ey, and, without loss of
generality, assume V = {(1,...,1,wky1,-..) : (Wgt1,-..) € Q}. Then,
for all w & V there exist j € [k] such that 1+ r;(w) = 0. Therefore,
E R,1y. =0 for all n > k. O

For each n € N, define

W(n):{rjl'”rjn:Ogjlg"'<jn§n}7 (39)

which is the support of R, (cf. (3.7)). Note that W (n) ¢ W(n+1), and
U W (n) = W. For u € M(Q2), we consider the partial sums (cf. (1.2))

> w)w, neN. (3.10)
weW (n)

Corollary 9
i. If B=C(Q) or B=LP(Q,P) for 1 <p < oo, then for all f € B,

Z f w—>f, convergence in the B-norm.  (3.11)
weW (n)
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ii. If fe L°°(Q P), then

Z f(w) w —>f weak™ convergence in L=°(Q,P).  (3.12)
weW (n)

iil. If p € M(Q), then
Z a(w) w——p, weak™ convergence in M(Q). (3.13)
n—oo

weW (n)

Proof: We expand the Riesz product R,

R, =1+ Z i+ Z Tj o Ty o T Ty,

1<j<n 1<j1 << jp<n
(3.14)

and note that R, = 1y (n). By Proposition 3, for € M(9),
Ruxp= Y fiw)w (3.15)

weW (n)

Therefore, Part i follows from Propositions 6 and 8.
To prove Part ii, observe that if f € L>°(Q,P) and g € L*(£2,P), then

E g(R.*xf)=E (g*Ry)/. (3.16)
Therefore, by Part i,
Eg(R,xf)—E gf. (3.17)

The proof of Part iii is similar: if x € M(Q) and f € C(Q), then
/ F@) (R 5 ) () = / o R(w) p(dw), (3.18)
and therefore (again by Part i),

/f (B % 1) dw—>/f (3.19)
0

Corollary 10 If p € M(Q), and ji(w) = 0 for all w € W, then p = 0.
In particular, W is a complete orthonormal system in L2(Q,P), and

£l = (Z If(w)2> , felX(QP). (3.20)

weW
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The formula in (3.20), widely known as Plancherel’s Theorem, is at the
very foundation of classical harmonic analysis (see Exercise 1).

For p € M(R2), we define the spectrum of p to be the support of its
W-transform:

spect p:={w € W : fi(w) # 0}. (3.21)

Measures with finite spectrum are naturally identified as continuous
functions on €, and will be called W-polynomials. (Polynomials with
spectrum in E C W will be called E-polynomials.) Corollary 9 implies
that W-polynomials are norm-dense in C(€2) and L?(Q, P) for p € [1, c0),
and weak™-dense in L°°(Q2,P) and M(Q).

Corollary 11 (Exercises 8, 26). If f € L}(Q,P) then f € co(W).

Remarks:

i (a word of caution). The assertion in Proposition 6 is false in the
instances B = L*>°(Q,P) and B = M(Q2). For, if f € L>*°(Q,P) and
ZwEW(n) f(w) — f in the L*®-norm, then f represents a continuous
function on Q. Similarly, if © € M(£2) and ZwEW(n) fw)w — pin
the M(Q2)-norm, then pu is absolutely continuous with respect to P.
Indeed, the gist of the proposition below is that Lemma 7, the key
to Proposition 6, fails in these two cases:

Proposition 12 (Exercise 9).

(1) feL®(Q,P) isin C(Q) if and only if limy,_¢, || fw — fllL= = 0.
(2) € M(Q) is in LY(Q,P) if and only if im,, ¢, ||ptw — ptflar = 0
(1o is defined by pu,(A) = p(w-A)).

ii (a preview). Corollary 11 (usually referred to as the Riemann-
Lebesgue lemma) states that f — f is a continuous injection from
L1(9,P) into co(W). This injection is not surjective. If it were, then
L'(©,P) would be isomorphic to co(W), and L>(Q,P) would be
isomorphic to I}(W), which is impossible. (I! is separable, whereas
L is not!) Of particular interest are spectral sets E C W with the
property that for all ¢ € co(F) there exist f € L}(Q,P) such that
f |E = ¢. The latter property, known as Sidonicity, is a statement
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of functional independence, and will be discussed at length later in
the chapter.

4 Some History

Elements of R were originally defined as functions on the interval [0,1]
[R]; see (II.1.2). This view of R, still fairly common, implies that
elements of W also could be viewed as functions on [0,1]. (See (2.3).)
These same functions on [0,1] were introduced first by J. Walsh [W], ess-
entially via the Haar system [Hal], without mention of the Rademacher
system. In his work [W], Walsh noted that ‘the chief interest of the set
¢ [comprising his newly discovered functions] lies in its similarity to the
usual (e.g., sine, cosine, Sturm—Liouville, Legendre) sets of orthogonal
functions, ... [W, p. 5]. He proved that ¢ was complete, and observed
some local properties of p-series that strongly resembled properties of
classical Fourier series.

R.E.A.C. Paley was the first to notice that Walsh’s functions were the
products of Rademacher’s functions, and that they could be naturally
ordered according to this scheme: let n = 2" + ...+ 2™* be the binary
expansion of a positive integer n, and define the nth Walsh function to be

Wn = Tmi+1"" " Tmp+1- (41)

Using this ordering, Paley investigated basic similarities between the
classical Fourier series and the series X, a,w,, and, en route, discovered
also new properties, which effectively foreshadowed the concept of
martingales [Pa] (Exercise 11). A student of Littlewood, Paley was
25 years old when his paper [Pa] was published. He died a year later in
a skiing accident in the Canadian Rockies [Har].

That Walsh functions on [0,1] can be viewed as characters of Q) was
observed first by N. Fine [Fil], [Fi2]. (From here on, we will refer
to elements in W as Walsh characters and to their correspondents on
[0,1] as Walsh functions, and to elements in R as Rademacher charac-
ters and to their correspondents on [0,1] as Rademacher functions.) This
equivalent view of Walsh’s functions is based on the measure-preserving
map o from (2,2, P) onto ([0,1], B, m) defined by

o0
ow) =Y (1-wmn)/2", we (4.2)

n=1
(B = Borel field in [0,1], m = Lebesgue measure), and the fact that
if w is a Walsh function on [0,1], then w o o is a Walsh character on
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Q (Exercise 10). Therefore, results about W that involve only measure-
theoretic properties can be easily shuttled between ([0,1],%,m)
and (Q,2,P). For example, the completeness of Walsh functions in
L2([0,1],m), first observed in [W], can be quickly obtained from
Corollary 10, which asserts completeness of Walsh characters in L2(Q, P).

The bare-bone representation theory outlined in the previous section
is but a very small portion of a very large body of results that deal
with convergence of Fourier series and other Fourier-type series. (See
Zygmund’s treatise [Zy2].) Indeed, Corollary 9 is but one of several
resolutions of the ‘representation’ problem. The two theorems below,
established about forty years apart, are prominent examples of funda-
mental results in this area.

Theorem 13 ([Rim, p. 230], [Zy2, Vol. 1, p. 253], Exercise 12).
For all f € LP(T,m), p € (1,00),

n
Z f(j) eIt mﬂ convergence in the LP-norm. (4.3)
j=—n

Theorem 14 [Car], [Hu]. For all f € LP(T,m), p € (1, ],

i f(j) et mf(t) for almost all t (m). (4.4)

j=—n

Theorem 13 is due to M. Riesz (F. Riesz’s brother), and is standard
fare in books on classical harmonic analysis (e.g. [Kat, Chapter III],
[Hel, Chapter 5]). Theorem 14, proved first by Lennart Carleson in the
case p = 2, settled a long-standing problem concerning pointwise rep-
resentation of a function f by its Fourier series S[f]. This problem, in
essence going back to the time of Fourier, had been unresolved prior to
Carleson’s theorem even in the case f € C(T); see [Zy2, Vol. I, preface].
The analog of Theorem 13 for Walsh series was obtained by Paley
[Pa], and analogs of Theorem 14 were obtained by P. Billard [Bi] and
P. Sjolin [Sj].

5 Analysis of Walsh Systems: A First Step
For k € N, we consider the k-fold products of elements in {r,, : n € N},

Wk-:{rnl"'rnk10§”1§"'§”k}" (51)
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We refer to W, as the Walsh system of order k, and will continue to use
R to denote the Rademacher system. Clearly, Wy, C Wj; and

oo
Q=w=|J W (5.2)
k=0
It is evident — certainly in a heuristic sense — that Wy (= RU{ro}) is the
‘least’ complex system, and, at the other end, W is the ‘most’ complex.
It is also apparent that the complexity of Wy increases as k increases. A
fundamental question arises: how can we gauge precisely, starting with
W1, the evolving complexity of W37
We begin by observing a property enjoyed by every Wy, but (obvi-
ously) not by W. Specifically, we will prove that for all £ € N, if a
bounded measurable function has spectrum in Wy, then the function is
necessarily continuous.
Throughout, we use the following notation. If Space(2) denotes a
subspace of M(Q), and E C W, then

Space () = Spacey, = {v € Space(f?) : spect v C E}. (5.3)

(This notation is used also in the general setting, where a compact
Abelian group G and its dual G stand for 2 and W, respectively.) We
will verify by induction on k that

L%k =Cw,, kel (5.4)
The case k=1 is

Proposition 15 If f € LY, then

o @)= 1fll <2 1 fllu (5:5)

weR

In particular, Ly, = Cw,.
Proof: Let f € LY. Fixw € , n € N, and consider the Riesz product
n
Fo= ][0 +7w) r)). (5.6)
j=1

As in the proof of Proposition 8,

HFwHL1 :Fw(ro) =1 (5.7)
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Also observe

1n B (w) = {w(w) ifwe{r,...,m} (5.8)
0 otherwise.
Therefore,
D Fr) ri@)| = B fE| < || flliee | Fulle < ||l (5.9)
j=1

Then by maximizing (5.9) over w € Q and n € N, we obtain (5.5) (cf.
(I1.1.4), (I11.1.5)). By (5.5), Z?:l f(rj) r; — f uniformly on €, implying
that f € C(Q2). Therfore, L3 C C(). O

The counterpoint to Proposition 15 is

Proposition 16 (Exercise 13). For all f € L>*(Q),

1f e = (1 fllee = 1 fll2 == <Z f(w)IQ) : (5.10)

weWw
Moreover, (5.10) is best possible: there exist f € C(Q) such that
1

1 £llp == (Z |f(w>|P> —o Jorallp<o. (5.11)

weW
The first assertion in Proposition 16 follows easily from Plancherel’s
theorem (cf. (3.20)). The proof of the second part, that (5.10) is best
possible, is not quite as easy (Exercise 13). Notice the gap between the
*-norm in (5.5) and the {2-norm in (5.10). Later in this chapter, we will
fill and calibrate this gap with Walsh systems of increasing order.

Remark (how it began). The properties exemplified by Proposition 15
first attracted attention in the classical setting T = [0, 27). Consider the

space of continuous functions on T with absolutely convergent Fourier
series, commonly denoted as

A(T) = {f e C(T): f € 1*(Z)}, (5.12)

and normed by

Iflla = 1/11,  f € A(T). (5.13)
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Equipped with the A-norm and pointwise multiplication on T (convolu-
tion on Z), A(T) is a Banach algebra. Notice that

A(T) G C(T) G L=(T, m). (5.14)

(The quickest way to obtain the proper inclusions in (5.14) is to argue
that if A(T) = C(T), then C(T) = L°°(T, m); see Exercise 14.) Address-
ing an issue implicit in (5.14), S. Sidon was the first to observe infinite
sets B2 C Z such that

Ap(T) = Cp(T) = LY (T, m) [Sil], [Si2]. (5.15)

Specifically, by using the products introduced by F. Riesz [Rif2], Sidon
proved that if £ = {\;} CZ T, M<-- <A < Ajp1 <---, and

qE = inf{)\j/)\j,1 1 j € N} > 1, (516)

then E satisfies (5.15). Sets £ C Z' with gg > 1 are sometimes called
Hadamard sets [Zy2, Vol. 1, p. 208], and sometimes lacunary sets [Kat,
Chapter V]; we shall use the latter term. In general, spectral subsets E
of G (the dual of a compact Abelian group G) such that

Ap(G) = Cp(G) (5.17)

are called Sidon sets [Rul, p. 204]. (See Remark ii in §3, and also
Exercise 15 i.)

In our setting, A(Q) = {f € C(Q) : f € IY(W)}, and (5.5) becomes
the statement

Ar(Q2) = Cr(®) = LF (. P), (5.18)

i.c., R Q) is a Sidon set. Indeed, the proof of Proposition 15 is nearly
identical to the argument in [Si2] verifying that a lacunary set satis-
fies (5.15). (The use of algebraic independence of R in the proof of
Proposition 15 is analogous to the use of lacunarity in Sidon’s proof.)

Here is an interesting aside. If E C Z™ is lacunary (and hence Sidon in
Z), and {w; : j € N} is the Paley ordering of W (defined in (4.1)), then
{w; : j € E} is Sidon in W. This was established by G. Morgenthaler
[Mo, §7], also by use of Riesz products. I do not know the answer to
this question: if £ C Z* is Sidon, then is {w; : j € E} a Sidon set in
W? (See Exercise 19.)
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Note the implication
Ap=Cp=Cg=L%, ECZor ECW (Exercise 15 ii). (5.19)

(This implication works easily and equally well in any Abelian group
setting.) Demonstrating that the reverse implication is not true, Haskell
Rosenthal was first to observe non-Sidon sets £ C Z such that Cg(T) =
L¥(T,m) [Ro]. Spectral sets E (in any group) such that Cp = LY
are thus called Rosenthal sets. In the next section we verify that Wy is
Rosenthal for every k € N, and in Exercise 16 you will verify that W5
(and therefore Wy, for every k > 2) is not Sidon. In §12 we will observe
the same phenomenon in every discrete Abelian group.

6 W, is a Rosenthal Set

We first do the groundwork. Let Ry = {ro}, and for k € N, define
Ri={rp, - rn, :0<ng < <mng} (6.1)

(k-fold products of distinct Rademacher functions). Then, R; N Ry = ()
for j # k, and

k
Wi =JR; (6.2)
j=0
(k-fold products of Rademacher functions). For i = 0,..., and m =
i+ki+k+1,..., define
Tr’flﬁi:{rm---rnk:i<n1<~~-<nk§m}. (6.3)

k
For convenience, we denote Tm o by Ty,

Lemma 17 For all f € LE,

[ fllee =sup< || D flw) w| :meN}. (6.4)

weTk Loo

Proof: Fix w € Q and m € N. Consider the Riesz product (cf. (5.6))

ﬁ (1+7j(w (6.5)
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The spectral analysis of F,, implies that if r,, ---7,, € T,’fL, then

(cf. (5.8))

Eo(rpy o rny) =Ty (W) -y (w). (6.6)

Therefore (because ||, |11 = F,(ro) = 1),

> fw) ww)| = BFF] < If e~ (6.7)

weTk

which implies that the right side of (6.4) is bounded by || f]|re-

To verify the reverse inequality, let g be a W-polynomial; that is, for
some N € N,

spect g C{rp, - ruy :0<ny <--- <ny < N} (6.8)

Then,

Bfgl=| Y f(w)gw)|=|Bg > flw)w

weTk weTk

< gl sup< || Y- fw) w||  :meNy, (6.9)

weTk Lo

which implies, by the density of W-polynomials in L(Q, P), that || f ||
is bounded by the right side of (6.4). 0

For k € {2,3,...} and i € N, define
Liy={we€Ry:w=rirj-rj:1<jo<--<Jr} (6.10)

The L; j are pairwise disjoint, and Ry = Ufil L; .

Lemma 18 Fork € {2,3,...} and i € N, there exist p; € M(Q) such
that ||l = 1 and

1 wa S Li,k

fuifw) = {0 if w € Ri\Li . (6.11)
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Proof: Define ¢; € Q by €;(i) = —1, and e;(j) = 1 for j # i. Consider
the Riesz product (cf. Exercises 17 and 18)

ﬁ 1+e(j (6.12)

Then, ||p|lm = 1, and for w € Ry,

R -1 we sz

Then, pu; = px p — p/2 satisfies (6.11). O

A subset E C R is said to be the generating set for D C Ry, if F is
the smallest set such that

Dc{w - w,:w €E,...,w; € E}. (6.14)

Subsets D; C Ry, j = 1,..., are said to be strongly disjoint if their
respective generating sets are pairwise disjoint.

For the proof of the lemma below, we recall the framework in
Chapter II §5. Let T} denote the set of kth roots of unity (a subset
of {z € C:|z| =1}), and let Q = (Ty)N. Let P; denote the probability
measure on (x, which is the infinite product of the uniform probability
measure on Ty. For n € N, let x,, be the projection from 2 onto the
nth coordinate. Then, {x, : n € N} is a system of statistically indepen-
dent T}-valued random variables on (Q,P;) such that (x,)* = 1 and
E(x») =0, j€[k—1] and n € N. (See (11.6.10).)

Lemma 19 Suppose {D; : j € N} is a collection of finite and strongly
disjoint subsets of Ry. Then, there exists ¢, > 0 (depending only on k)
such that for all f € L% and N € N,

N
al|d Y Fwyw| <l (6.15)

j=lweD;, Loo

Proof: Assume k > 2. Let v, = xn + X,,/2, and observe that for every
neN,

i Ck ifi=k
E () _{0 ifi=1,... k-1, (6.16)
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where
%%1 k odd
= k 6.17
Ck <k/2>2ik+2k%l k even. ( )

Let E; be the generating set of D;, j € N. Fix s € {), and define

Hy= [ +ms)rs) - [T A+v)m) -+ T @+vn(s)r:). (6.18)

i€E = i€EN
Then, Hy is a non-negative W-polynomial such that
1 H |1 0.8y = H(ro) = 1. (6.19)

The spectral analysis of H, implies the following. If j € [N] and w € Dj,
then

Hy(w) = 7;(s)". (6.20)

Otherwise, if j € [N], w € Ry, and w ¢ Dj, then either H,(w) =0 or

Hs(w) = ’Yl(s)il e 'VN(S)iNv (621)

where 0 < i, < k and Efy:lin = k.
We now ‘average’ Hy over s € € (with respect to Py),

F = Hy Pk(ds). (6.22)
Qp

The function F' is a non-negative W-polynomial such that

Fw)=Ew | H,Py(ds)= [ Hy(w)Py(ds), weW. (6.23)
Qk Qp

Therefore, by (6.19), | F|l.: = F(ro) = 1. By (6.16), (6.20), (6.21), and
the (statistical) independence of the v, if w € Ry then

ﬂm:{% weD;, jeN] (6.24)
0 otherwise.

Therefore, for f € LF ,

N
|33 fw)w| = If % Fllix < [ fll~- (6.25)
j=lweD; Loo

O
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Lemma 20 Suppose D; C Ry, j € N, are finite and strongly disjoint.
Then, for f € I*°(Ry) and N € N,

N N
DD B wl|  <4>0 N Blw) w| (6.26)
=1

weD; Loo j=lweD; Lo

Proof: Because the D; are strongly disjoint, for w; € Q and j € [N]
there exists w € 2 such that

> Bw) wiw) = Y Bw) ww), jeN (6.27)

(Exercise 20 i). For j € [N], let w; be such that

Yo B w| =] Blw) wlw)|. (6.28)
weD; Loo weD;

By applying (6.27) and Lemma VI.6 (in the case n = 1), we choose
S C [N] so that

> Blw) wws)| = Blw) w(w)

Jj=1|weD; Jj=1|weD;

<4 Bw) ww)| <4|D>0 > Blw) w|| . (6.29)

jeES weD; jeESwED; Loo

Let p € M(Q) (a Riesz product) be such that ||u|m = 1, and

R {1 weDjandjes
filw) = {o weD;andjg s (6.30)
(Exercise 20 ii), and obtain
N
YD Bww| = |ax (DY Bww
JjESwWED; Loo j=lweD; Leo
N
<D0 B w| (6.31)
Jj=lweD; Lo

We obtain (6.26) from (6.28), (6.29), and (6.31). O
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Theorem 21 For allk € N, LE = Cg,.

Proof (by induction). The case k = 1 is Proposition 15. Let k > 1
and assume LE = Cg,_,. Let f € L% , and define

fm = Z frny - Tny) Tny -+ Tne, mEN, (6.32)

m<ny...<ng

By Lemma 18,

f=fme Lzol,k:U"'ULwL,k:’ (633)
and by the induction hypothesis, f — f,, € C(Q) (Exercise 21). There-
fore, to conclude that f € C(Q), it suffices to verify the following.

Claim: lim,,— o || fim|lLe = 0.

Proof: Suppose the claim is false. Then, by Lemma 17, there exist
0 > 0 and increasing sequences of integers (I;) and (m;) such that for
all j e N, lj <mj; < lj+1 and

> fw)w| > (6.34)

weTk
777 Loe
The sets ﬂ’;_hlj (j € N) are strongly disjoint, and therefore by Lemma 19

and Lemma 20,

2 X fwwl <430 3 fw)w

weTk J=lweTk
773 Lo AR 1,00
< @/ el fllue, (6.35)
which contradicts (6.34). U

Finally, we need the following lemma in order to ‘piece together’
Theorem 21 for R;, j =1,...,k, and conclude that W, is a Rosenthal
set.

Lemma 22 Let j € [k]. There exist p1; € M(Q) such that

1 iwaRj

fuj(w) = {0 if we W\R;. (6.36)
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Proof: Consider the Riesz product

P ﬁ (1 + %rn> . (6.37)

n=1

Then, ||p|lm = 1, and for i € [k],
plw) =1/2" w € R;. (6.38)

Let P be a real-valued polynomial of degree k defined on [0,1], such that
P(0) =0 and

1 ifi=j

P(1/2') = {0 if i # j and i € [k]. (6.39)

Write P(z) = Y2F_ a, 2™ (z € [0,1]), and then define the measure

n=1

k
pi=Plp) =Y an p", (6.40)
n=1

where p" is the n-fold convolution of p. By (6.38) and (6.39), fi; satisfies
(6.36). O

Theorem 23 L, = Cw,.

Proof: Let f € Ljy, . By Lemma 22, we can write f = fi + - + fi,
where f; € L§ for j =0,... k. By Theorem 21, f € Cy,. O

7 Restriction Algebras

In this section we collect preliminaries concerning algebras of restrictions
of transforms. These algebras will play prominently in the rest of the
chapter (see Exercise 15).

For FF C W, consider

B(F) = M(Q)" /{ji: p € M, iy = 0}
= {p €I®(F):3 p € M(Q) such that ji|r = p}. (7.1)

(ft|F is the restriction of j to F.) The B(F')-norm of ¢ € [*°(F) is the
quotient norm,

lellpr) = mf{llplv - p e M(Q), flr = ¢} (7.2)
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Similarly, define
A(F) = LYQ,P) /{f : f € LY, P), flr = 0}
={pecy(F):3 feLQP) such that f|lr =} (7.3)
The A(F)-norm of ¢ € co(F) is

lellacey = inf{]|flu : f € LHQ,P), flr = o} (7.4)
Equipped with pointwise multiplication and these quotient norms, B(F')
and A(F') are Banach algebras.

The following proposition is a summary of basic properties. Its proof,
a mix of functional and harmonic analysis, is left to the reader.

Proposition 24 (Exercise 22). Let F C W.
i. Cp(Q)* = B(F). Specifically, ¢ € B(F') defines the functional

o [ fdu=lin Y fwetw), fecr®. (@)
Q0 k—o0
weFNWy
where p € M(R) and filp = ¢. Conversely, if ¢ € Crp(Q)*, then
there exist ;1 € M(Q) such that

filp(w) = o(w), weF, (7.6)
and the action of ¢ on Cg(Q) is given by (7.5).

ii. A(F)* =L (Q,P). Specifically, f € L¥(Q,P) defines the functional

prBfg=lim Y f(w)g(w), ¢eAPF), (7.7)

&S]
wEFNWy

where g € LY(Q,P) and §lr = . Conversely, if v € A(F)* then
> wer V(w)w is the W-series of f €L (Q,P), whose action on A(F)
is given by (7.7).

iii. A(F) is an isometrically closed subalgebra of B(F'). Moreover, finitely
supported functions on F are norm-dense in A(F).

iv. Let p € I°°(F). Then, ¢ € B(F) if and only if there exists a sequence
of finitely supported functions (¢; : j € N) on F such that

Jlggo Pj (w) =¢(w), weF, (7.8)

and

sup{[|¢;llp(r) : j € N} < oc.
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In particular, for ¢ € [°(F),

¢l = inf {hmsup oyl s : {95} C AP,
JA)OO

Jlggo wj(w) = p(w) for we F} . (7.9)

8 Harmonic Analysis and Tensor Analysis

In this section we identify restriction algebras involving products of
Rademacher systems with the tensor algebras defined in Chapter IV.
We first consider the n-fold Cartesian product R™ (a subset of W™), and
then will transport results to the n-fold product R,, (a subset of W).

Proving grounds will be the compact Abelian group " = Q x---xQ,
whose normalized Haar measure is the n-fold product measure P" =
P x --- x P, and whose dual group is W™ =W x ... x W. Characters
on (2" are elementary tensors

w1 R - Qwy, w; €W, jen] (8.1)

Because €2 can be naturally identified with the n-fold Cartesian product
Q x - x €, the analysis of Q™ can be carried out within 2 proper. To
be precise, let Py, ..., P, be pairwise disjoint infinite subsets of N, and
denote Q) = {—1,1}%%, i € [n]. Then, following a bijection between P;
and N, we identify Q) with Q, and write (slightly abusing notation)

Q=00 x ... x Q" = ",

Again (only slightly) abusing notation, we let P; denote also the corres-
ponding system of Rademacher characters (j < r; for j € P;), and then
let W be the subgroup of Q generated by P; U {ro}. Then,

{w(l) ™ M e WD ) ¢ W(")} =W. (8.2)

The aforementioned bijections between P; and N (identifying © with
Q@) also give rise to bijections between W and W@, i € [n]. We
denote these bijections by 7, : W& — W, i € [n], and obtain a one-one
map 7 from W onto W x --- x W,

w— 1(w) = (1 (w(l)), . ,Tn(w(”))), w e W, (8.3)
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where w = w™® ... w™ and w® e WO . w e W™, The spaces
LP(2,P) and C(Q2) are identified, respectively, with LP(Q",P")
and C(Q"): if f € LP(Q,P), then

Y fw) r(w) (8.4)

weW

is the W™-series of an element in L?(Q",P") with the same norm;
similarly, if f € C(Q), then (8.4) represents a continuous function on
Q" with the same norm (Exercise 23).

The identification of restriction algebras as tensor algebras extends to
higher dimensions the observation

A(R) =co(R) (R is a Sidon set; cf. Exercise 15). (8.5)

Specifically, for every ¢ € co(N) there exist f € L}(Q,P) with the pro-
perty that f(r;) = ¢(j) for all j € N. The extension of (8.5) is

AR™) = co(R) &---® co(R) = Vi(R, ..., R). (8.6)

To establish it, we first identify finitely supported 5 € F,,(R,...,R) as
R™-polynomials,

fs= Z Blwy, ..., wp) W1 @ -+ @ Wy, (8.7)

and obtain (from definitions)

187, = I fslluee- (8.8)

Next we will require the duality V,(R,...,R)* = F,(R,...,R)
(Proposition IV.11); that is, 8 € F,(R,...,R) is the bounded linear
functional 5 on V,, given by

B(‘P) = Z Bwi, ... wn) p(wy,. .., wn),

(w1,...ywn)ER®
0 € Vu(R,...,R), (8.9)
and
18117, < 1Bl < 27118, - (8.10)

Finally, we will use the observation that R™ is a Rosenthal set in W™,
which can be verified as follows. Let P = P;--- P,, where Py,..., P,
are pairwise disjoint infinite subsets of the Rademacher system R.
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Through (8.3), identify P with R", and then through (8.4), identify
Ly (Q,P) with L, (2", P™), and Cp(Q) with Crn (Q™). Because P C R,
is a Rosenthal set (Theorem 21), we conclude
L35 (@7, P") = Cpn (Q). (8.11)
Proposition 25
i. Vo(R,...,R) = A(R™). In particular, for all p € co(R™),
1ellva(r,....r) < llellacrny < 2%(I¢llva,(r,...R)- (8.12)

ii. B fg determines an isometry from F,,(R, ..., R) onto Cgn(Q").
iii. Fp(R,...,R)* = B(R™). In particular, (a) for ¢ € B(R"™), there
exists (pr) C Vo(R, ..., R) such that

dklirr;owk(wl,...,wn) =o(wi,...,wn), (wi,...,w,)€R", (8.13)
an

sup [lok v, < [lellsrm); (8.14)
keN

(b) conversely, if ¢ € I°(R™), and if there exists (¢r) in the unit
ball of Vo (R, ..., R) such that limy_. pr = @ (pointwise on
R™), then ¢ € B(R™) and ¢l prr) < 27

Proof:

i. Let ¢ be a finitely supported function on R X --- x R. By applying
duality, (8.8), (8.10), and Proposition 24, we obtain

IBlE, < 1}

llellv, r,....r)

Ssup{
:sup{

= llellacm).- (8.15)

Z p(wi, ..., wn)B(wi, ..., wy)

Z @(wlv"'vwn)f(wlv'“vwn)

(w1y.eey wp ) ER™

R™-polynomials f, || f||Lee < 1}

Similarly, by (8.8) and (8.10),

lellarny < 2" ellv,(r.....R)- (8.16)
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Part i follows from norm-density of finitely supported functions in
Vo(R,...,R) and A(R").

ii. By duality and Part i, A(R")* = L¥. =V, = F,, and, because
R" is Rosenthal, F, (R, ..., R) is canonically isometric to Cgn(Q2")
((8.7) and (8.8)).

iii. The first assertion follows from duality (Proposition 24) and Part
ii. To verify the assertion in (a), use weak* density of finitely sup-
ported functions on R™ in B(R"™) (Cgrn(Q™)*), i.e., for ¢ € B(R"),
there exists a sequence (py) of finitely supported functions on
R x -+ x R converging pointwise to ¢, and [|oi||prr) < [0l Brm)
(Proposition 24 iv). Each ¢ is in V,,(R,..., R), and by (8.8),

||SDICHVn Ssup{ Z @k(wlv'"awn)ﬁ(wla"~7wn) .
(w1,...;w,)ER™
/QGFN(R7“'7R)7 Sl}
—sup{ Z op(wi, ..., wy) flwy, ... w,)|:
(w1,...,wn)ER™

[ €Cre(2"), | fllLe < 1}
= |lekll B(rn)- (8.17)

To verify (b), note that the unit ball of V,,(R, ..., R) is weak* dense in
the unit ball of its second dual, which is F},(R, ..., R)*, and then apply
Part ii together with the equality Cg» (Q™)* = ( ™). |

Having the tensor-theoretic representations of Cg» (€2) and A(R™), we
proceed to the analogous representations of Cr, (2) and A(R,,).

An n-array 8 € [°°(N") is symmetric if for every 7 € per[n] (permu-
tations of [n]),

B(it, . in) = Blirt, - yirn), (i1,...,in) € N (8.18)

it is said to vanish on diagonals if 5(j1,...,Jn) = 0 for all (j1,...,Jn) €
N™ such that [{j1,...,jn}| < n (i-e., at least two of the n coordinates
have the same value). Define F,,;(N,...,N) to be

{B € F,(N,...,N) : 8 symmetric and vanishes on diagonals}, (8.19)
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and note that it is a closed subalgebra of F,(N,...,N) (pointwise
multiplication on N™ and F,,-norm). For F' C N", we denote the algebra
of restrictions to F of elements in V,,(N,... N) by

and endow it with the quotient norm. Consider
D”:{(j17"'7jn)GNn:O<j1<"’<jn}> (821)

and identify it (canonically) with R,, = {r;, ---7;, : (j1,...,Jn) € Dn}.
If f is an R,-polynomial, then define §y € F,,(N,...,N) by

ByGe-n) = { S ) W dal=n

0 otherwise.

Theorem 26

i. The linear map f — By in (8.22) determines an isomorphism from
Cr, () onto F,,,(N,...,N). In particular, for f € Cg, (),

[l < (1/n) I8¢l < (2€)™ [1f[lLee- (8.23)
ii. A(Ry,) = Valp, . In particular, for ¢ € co(Ds),
lelar,) < lellvain, < (2€)" llellacr,)- (8.24)
We need three lemmas. The first is a polarization device.
Lemma 27 (The Mazur—Orlicz identity [MazOrl, p. 63]). Sup-
pose B € Fp(N,...,N) is symmetric, and p1 € [*(N),..., ¢, € [*(N).
Then,
A 1 A5 n
B(p1y. ..y on) = ) Eri-omB(851my @j, - 80015 05). (8.25)
(If B € Fp(N,...,N), then B denotes the corresponding n-linear func-
tional on 1>°(N).)

Proof: By the symmetry of 3,

/6(@11"'7@71) :ﬁ(¢T1a-~~7@Tn)a TE per[n]. (826)
By the linearity of /5’7

E 1 Tn B(E;‘lzlrj (pjw'-vE?:lTj QOJ)

= > B ) By ey (8.27)
(J15--50n) E€[N]™
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Note that

1 {1, - dn}t =[]
Eri-corpry -or; = L 8.28
! 7 n {O otherwise. ( )

Therefore, by (8.26),
B rvn B (S e Sy )

Z B(@Tl?"”(ng'ﬂ) :n! B(sﬁl,...,wn). (8'29)

TE per[n]

O

The second lemma formalizes a fact used extensively in previous sections.

Lemma 28 If 0 € [*°(N) is R-valued, then there exists pu € M(Q) such
that

IEL(TIjl U Tjn) = 9(21) e 9“%)7 Tj Ty, € Ry, (830)
and

[l < 116115, -

Proof: The required measure is the Riesz product

n= 16 H(”wu ). (8.31)

The third lemma is a consequence of the preceding two.

Lemma 29 Let p; € I®(N),..., ¢, € [®°(N). There exist p € M(Q)
such that

ry, - -org) = 01(d1) - 0n(fn), T4 Ty, € Ry, (8.32)
and

el < (2€)™ fleenlloo - -+ llepn oo (8.33)

Proof: Assume (without loss of generality) that ||¢;]cc = 1 for each
Jj € [n]. Assume also that the ¢; are real-valued. We argue by duality
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(Proposition 24). Let f be an R,-polynomial and let 3¢ be defined by
(8.22). By symmetry,

Bf(‘Ph .- ~a99n) =n! Z f(rjl "'Tjn) ‘Pl(.jl) . "Qpn(jn)- (8'34)

J1<<jn

By Lemma 28, if § € [*°(N) is real-valued, then
|Bf(07"'76‘)| = |n! Z f(rjl"'rjn) 0(j1) -+ 0(in)
J1<+<Jn
< 10115 11 lloo- (8.35)
By (8.34) and Lemma 27,
m)* > fryori) 1) - alin)

1< <
=Er -7, Bf(E;-T:lrj Djseeey D5y Tj P5)- (8.36)

By (8.35), for every w € Q,
B (SF_1ri(@) @5y Sy (@) )] < 0™ nl || f e (8.37)

Therefore, by (8.36),

Z f(rjl i) 01(01) - on(n)

J1<-<jn

n’l’L
< oy Il < e® [ £llee. (8.38)

Because f is arbitrary, this implies the lemma for real-valued ¢;. The
complex case follows by treating separately real and imaginary parts.

|
Proof of Theorem 26:
i. If fis an R,-polynomial, then,
[flle < (1/n) (1Bl < e[ fllLe, (8.39)

where the inequality on the right follows from Lemma 29 (see (8.38)),
and the inequality on the left is obvious. Therefore, because finitely
supported elements in F),, are norm-dense in F,, (Theorem IV.6),
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the linear map f +— [ determines an isomorphism from Cg,, (2) onto
Fop(N,...,N).
ii. The assertion follows by duality from (8.39). O

Remarks:

i (R, is Rosenthal < F,, is separable). Proposition 25 i implies
(by duality)

L. (Q",P") = F,(R,...,R), (8.40)

which (because R™ is Rosenthal) implies

Cprn(Q") = F,(R,...,R) (Proposition 25 ii). (8.41)
This proves that finitely supported functions on R X --- X R are
norm-dense in F, (R, ..., R). That F, is separable — we recall — was

verified from first principles in Chapter IV (Theorem IV.6).

The argument is reversible: in (8.40), apply the fact that finitely
supported functions are norm-dense in F, (R, ..., R) (Theorem IV.6),
and conclude that R™ is a Rosenthal set in W”. With additional
effort we can, similarly, obtain that R,, (and hence W,,) is Rosenthal
in W: following the proof of Theorem 26, deduce

L%On(Q7 ]P)) = Fnd (N7 s 7N)7 (842)

and then, by using norm-density of finitely supported symmetric
functions in F,(N,...,N), conclude that L (Q2,P) = Cg, ().
(See Exercises 24 and 25.)

ii (tilde algebras). Recall (Chapter IV §5, Remark iii) that the tilde
algebra V, (N, ..., N) = V,, comprises all ¢ € [°°(N") for which there
exist {pr : k € N} C V,, such that

lim pi(j) = o), §eN, (5.43)
and

limsup |||y, < oo.
k—o0

The norm in V,, is

lell, = nt {tmsup loul, = Jim ) = ). Je "} (841

—00
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By Proposition 25 iii, the tilde algebra V,, is the Banach algebra of
restrictions of transforms to R™:

V(N,...,N) = B(R"). (8.45)

We will use this equality in the next chapter, in characterizations of
multilinear Grothendieck-type inequalities.

iii (credits). Connections between harmonic analysis and tensor analy-
sis were discovered by Varopoulos [Herz]. (See Chapter IV §8.) The
equivalences between restriction algebras and tensor algebras in
Proposition 25 were brought to light in [V3].

An isomorphism similar to Cg, () = F,,»(N,...,N) (Theorem 26 1)
was first shown by A.M. Davie in [Da, Lemma 2.1] by a combinatorial
device analogous to the Mazur—Orlicz identity in Lemma 27. (See Ex-
ercise 27.) We will revisit the isomorphism Cg, () = Fro(N,...,N)
in Chapter XI §5.

9 Bonami’s Inequalities: A Measurement
of Complexity

Thus far we have shown that Liy (Q2,P) = Cw, (©2) for all n € N, a
property that distinguishes Walsh systems of finite order from the full
Walsh system. In this and the next two sections we will distinguish
between the W,, themselves.

We begin with the Khintchin inequalities, which follow from the sta-
tistical independence of R (Exercise I1.3): for all R-polynomials f,

Ifllee < VP (£l p>2. (9.1)

In Chapter X we will interpret the constants’ growth @ (,/p) in (9.1)
as yet another manifestation of independence. Here we verify that this
constants’ growth is best possible:

Lemma 30 (cf. Exercise 28). For every positive integer k,
k k

21>l =E=VE|D | - (9.2)
J=1 j=1

Lk L2
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Proof: Consider the Riesz product (cf. (3.7))

k
Fr =] +r, (9.3)
j=1
and observe that
k
EFY rj=k (9.4)
j=1
Also note that
[Fillir =1 and ||Fyllp> = 2F/2. (9.5)
Therefore, for every ¢q € (1,2),
k/ 11 .
| FllLe < 2%/P, » + i 1 (Exercise 29). (9.6)

In (9.4) apply Holder’s inequality with exponents ¢ = k/(k — 1) and
p =k, use (9.6), and conclude

k k
k=EF Y r<2|) . (9.7)
=1 j=1

Jj= Lk

O

Proposition 31 (n-dimensional Khintchin inequalities; Exer-
cise 31). For alln €N, and all f € L3, (", P"),

e < ™2 1 flleay p> 2. (9-8)

Moreover, for all k € N,

k
2 N e, || =k
i in=1 "
k
— /2 Z Ty @ @7, : (9.9)

L2

that is, the constants’ growth @(p™/?) in (9.8) is best possible.
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Proof: (by induction on n). The case n = 1is (9.1) and Lemma 30.
Let n > 1, and let f be an R™-polynomial. Then,

P

Hf“fp =E Z f(ri17“'7rin)ril QT

i1seerin

=Euw,..0n <Ew1 Z ( Z f(rh yoesTig )Tiz (WQ) Ty, (wn)) Tiy (Wl)

i1
2\ p/2
SpP/2 By, <Z )

i1
P> 2/1’) p/2

)

Z Fiysmi rig(wa) -y, (wn)

f(T'il PR vrin)riQ (wz) T (w")

<pr/? (Z (szmwn

i1

p/2
SPP/Q pp(nl)/Q( Z f(Ti17-<-7Tin)|2>

11seeesln

=2 |IfI17, [-10pt) (9.10)

The first inequality in (9.10) is a consequence of (9.1); the second is a
consequence of the generalized Minkowski inequality via the interchange
of By, W, and Y i and the third inequality follows from the induction
hypothesis.

To obtain (9.9), note that

k k n k n
S oreoen, =Don =Dl o )
i1, 0n =1 Lk(Qn) Jj=1 Lkn(Q) J=1 Lk
and then apply Lemma 30. ]

Next, by using A(R,,) = Vu|p, (Theorem 26 ii), we transport the
n-dimensional Khintchin inequalities involving R™ to the setting W,,.
These inequalities were established first by Aline Bonami [Bonl], [Bon2],
by combinatorial methods.
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Theorem 32 (Bonami’s inequalities). For all integers n > 1, and
all f € L3y, (Q,P),

I fllee <2 ep™? || fllzs p>2. (9-12)

Moreover, the constants’ growth in (9.12) is optimal: for all o < m/2,

sup{[|fllus /" 1 p > 2, f € Bz, } = oo. (9.13)

Proof: Let f be an R,,-polynomial,

F=3 flri-ori) o, (9.14)
i1 <<
Fix s = (s1,...,8,) € Q", and define

fo= D flri-eori) ri(sn) o (sa) iy o (9.15)

By Theorem 26, there exist Fy € L'(2,P) such that
Fs(ril sy Y =1, (81) o, (Sn), iy T, € spect f, (9.16)
and

[Folle < e (9.17)

(In the application of Theorem 26, the factor 2™ in (8.24) can be dropped
because the right side of (9.16) is real-valued.) Observe that

f:Fs*f37 (9.18)
and therefore,

IFITe = I1Fs * fallto < IFGlIT2 1S ITe < ™IS ITs- (9.19)

By integrating (9.19) over s € (Q",P"), and then interchanging integra-
tions, we obtain
p)

(9.20)

D ST @) ra, @) i (1)o7, (s0)

i< <im

L <e™ Ew (Es
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An application in (9.20) of the n-dimensional Khintchin inequalities
implies

P/2
1f11Ts Se"pp"p/2< > f(?“z‘l"'m)IQ)

1< <ip
=" P/ ||f|Le, (9.21)

which verifies (9.12) in the case f € L% (9, P).

Let f € Ly (Q,P), and write f = ¥J_f;, where f; € L%j (Q,P) for
j =0,...,n. Then, by (9.21) (applied to each f;) and the Cauchy-
Schwarz inequality,

n n
e < D Ufillue <D e? p772) fllie
j=0

=0

2

< Doe¥p? | ISl < 2e"p"2 (I fllae (922)
j=0

To verify (9.13), notice that R,, contains a copy of the n-fold Cartesian
product R™: let Pi,..., P, be infinite pairwise disjoint subsets of R,
consider P - - - P,, and apply (9.9). O

Remarks:

i (history). The case p = 2m, m € N, in (9.1) was proved first by
A. Khintchin in his classic 1923 paper [Kh1, pp. 111-12]. Khintchin
needed this to deduce exponential tail-probability estimates for the
distribution of the deviation from n/2 of the number of 1s among
the first n digits in the binary expansion of a random point in ([0,1],
Lebesgue measure). He concluded from these estimates that if p(n)
denotes the aforementioned deviation, then

u(n) = 7((n log log n)%) almost surely. (9.23)

This was the first half of Khintchin’s celebrated law of the iterated
logarithm. A year later he published the full statement:

. 1(n) _ ‘
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The first half of the law follows from Khintchin’s inequalities, while
the second half corresponds to Lemma 30. K. Chung called this
law of the iterated logarithm ‘a crowning achievement in classical
probability theory’ [Ch, p. 231].

In a 1926 paper [Lit3], interfacing complex and harmonic analysis,
Littlewood established inequalities nearly identical to (9.1), wherein,
in place of Rademacher functions, he used independent T ..-valued
random variables uniformly distributed in [0,1] [Lit3, Lemma 3].
(Too :={2 € C: |z| = 1}; see (I1.6.7).) These random variables were
later dubbed ‘Steinhaus functions’ by Salem and Zygmund [SaZY1,
p. 285]; see Chapter II §6. The two sets of inequalities, involving
separately the Rademacher system and the Steinhaus system, turn
out to be equivalent: each is derivable from the other. (This will
be shown in §12). Unaware of Khintchin’s prior work, Littlewood
obtained his inequalities by a combinatorial argument very similar
to Khintchin’s, but going a little further, Littlewood deduced the
L2-LP inequalities for all p > 2, and, by use of a convexity argument
[Lit3, Lemma 2], derived also the L'-LP inequalities for all p € (1, 2]
(cf. Chapter II).

The inequalities in (9.1) for the Rademacher functions were
(re)proved in a joint 1930 paper by Paley and Zygmund [PaZyl,
Lemma 2], who, like Littlewood, were unaware of Khintchin’s 1923
inequalities. Paley and Zygmund did not state the connection
between Littlewood’s inequalities involving the Steinhaus system
[Lit3, Lemma 2], which they knew, and those involving the
Rademacher functions in their own paper. (Three decades later,
Zygmund, without citing [Kh1], called (9.1) ‘a classical result of the
Calculus of Probability’ [Zy2, p. 380].) These inequalities, including
the L!-LP inequalities for p € (1,2] are commonly known today as
the Khintchin inequalities.

Theorem 32 implies

Liy, (U P) =Lj, (2,P), neN, pe(1,00). (9.25)

This property of a spectral set, that every L!-function with spectrum
therein is in LP for p > 1, was first noted by Sidon for lacunary
sets in ZT and p = 2 [Si3], and independently by Zygmund [Zy1],
also in the case of lacunary sets but for all p > 1. In this regard,
Littlewood’s 1926 paper [Lit3] was crucial for the Khintchin-type
inequalities needed by Zygmund (cf. [Zyl, p. 140]); see Exercise 30.
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(This very same 1926 paper [Lit3] led also to Littlewood’s 1930 paper
[Lit4], much about which has been said in previous chapters.) The
various studies during the 1940s and 1950s of lacunarity wis a wvis
the property in (9.25) were eventually recounted and summarized in
Zygmund’s 1959 treatise [Zy2]. Among these studies, of particular
interest (to us) is Salem’s and Zygmund’s constructive proof [SaZyl]
of Banach’s 1930 theorem, that if F' C Z7 is lacunary and ¢ € I?(F),
then there exist f € C(T) such that f|z = ¢ [Ban, p. 212]. Indeed,
the same device (an L*°-type Riesz product) used to construct such
an f € C(T) in [SaZyl] was used in Chapter III, in the proof that
L% (2, P) is a uniformizable A(2)-space; see (I11.6.1).

The first systematic study of the property exemplified by (9.25)
appeared in Walter Rudin’s ‘Trigonometric series with gaps’ [Rul],
arguably among the most influential works in harmonic analysis in
the latter half of the twentieth century. (Some of its highlights have
already been discussed in Chapter III §6.) In that paper Rudin intro-
duced the notion of A(p)-sets, casting it in the setting of Z
(Definition II1.12). The same notion, of course, can be viewed equally
well in any Abelian group setting [Ru3]. (This notion was further
generalized by A. Figa-Talamanca and D. Rider in a framework of
non-Abelian compact groups [FigRid].)

Definition 33 Let G be a compact Abelian group. A spectral set
F C Gis a A(p)-set for p € (1,00) if

Li(G) = LA(G). (9.26)

Equivalently, F C G is a A(p)-set if there exists kp > 0 (A(p)-
constant) such that for all F-polynomials g,

lgllee < Ep llgllr- (9.27)

(In Rudin’s original formulation, the range of p was (0, 00); here, for
our purposes, it suffices to consider p € (1,00).)

Underscoring the significance of the constants in (9.27), Rudin demon-
strated k, = @(,/p) for all Sidon sets. He proved this growth to be
optimal, and then raised a fundamental question: does k, = &(,/p)
characterize Sidonicity? The question was answered in the affirmative
seventeen years later by Gilles Pisier [P1].
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ii

Following Rudin’s 1960 paper [Rul], the next major advance was
Aline Bonami’s landmark work [Bonl], [Bon2] (her Ph.D. disser-
tation) dealing with non-Sidon A(p)-sets and associated growths of
A(p)-constants. Her work was motivated by the following question: if
G is a compact Abelian group and ¢ € (1, 2], then which ¢ € loo(é)
have the property that for all f € LY(G),

> o) [f()P < o0? (9.28)

'yGG

Notice that F C G is A(p) if and only if (9.28) is satisfied with
¢ =1p for all f € LY(G), 1/¢+ 1/p =1 (Exercise 31). In her 1968
paper [Bonl], working mainly in the group {—1, 1}, Bonami proved
Theorem 32 by an intricate combinatorial argument, producing k,s
somewhat sharper than those obtained in the proof above (but with
same growth). In her 1970 article [Bon2], which has become a classic,
she generalized and extended this result.

(a measurement of complexity). Bonami’s inequalities suggest
the following measurement. For F' C W, let

77F(a) = Sup{”f| L"/pa ‘D> 27f € BL%(Q,P)}> a> Oa (929)

and then define
op = inf{a: np(a) < co}. (9.30)

If F is finite, then dp = 0, in which case ng is the relevant measure-
ment. If 6p = o and nr(a) < oo, then we say that dp = « ezactly;
otherwise, if np(a) = oo, then we say that dp = « asymptotically.
If F is infinite, then 0p € [1/2,00]. Observe that dy = oo, and
if £ C W is infinite and statistically independent, then dp = 1/2
ezactly (cf. (9.1) and (9.2)). Bonami’s inequalities state
n

ow, = 5 exactly, n € N. (9.31)
I view dp as a measurement of complexity, a notion I have thus far
used in a heuristic sense. Making this precise in Chapter X, we will
interpret the d-scale as a gauge of statistical interdependence in a
probabilistic context.
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iii (a preview). Bonami’s inequalities, as stated in (9.31), naturally
lead to the question whether the d-scale is ‘continuous’: for arbitrary
z € (1/2,00), are there F C W such that §p = 27 In Chapter XIII, we
will resolve this and related questions by constructing Walsh systems
of ‘non-integer order’.

10 The Littlewood 2n/(n + 1)-Inequalities: Another
Measurement of Complexity

In the previous section we detected the complexity of W,, by a measure-
ment that conveys a degree of statistical interdependence; we shall revisit
this measurement in Chapter X. Next, we will detect the complexity of
W, by yet another measurement, which, in effect, marks a degree of
functional interdependence.

We begin with the basic property of the Rademacher system that we
have already used and highlighted several times (e.g., (II.1.5), Remark
in §2, Proposition 15, Remark in §5):

Il o= [f@)| < eallfllee, forall f € Cw,(Q), (10.1)
weWy

where ¢; denotes the best constant in the inequality (Exercise I1.9).
Obviously, || flli > ||If]lL= for all f € C(Q), and therefore || f||; cannot
be replaced in (10.1) by Hpr where p < 1. The theorem below extends
these two observations to Walsh systems of finite order.

Theorem 34 For alln € N, and all f € Cyw, (),
nt1

2n
"'+1> < cnllflloos (10.2)

||f||2n/(n+1) = < Z \f(w)

weW,

where ¢, > 0 depend only on n.
Moreover, (10.2) is sharp: there exist f € Cw, () such that || f]|, = oo
for allp < 2n/n+ 1.

The theorem has two parts: the inequality in (10.2), which we prove
in this section, and the optimality of (10.2), which we will prove in the
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next section. To prove (10.2), we need n-linear extensions of Littlewood’s
(bilinear) 4/3-inequality [Lit4] (Chapter II §5), and to this end, we obtain
below n-linear extensions of Littlewood’s and Orlicz’s bilinear mixed-
norm inequalities.

Lemma 35 (cf. Theorems II.2, I1.3). For all integers n > 1, and
f € CR”(Qn)f

[N

NN TS (z |f(w1,...,wn)|>

(w2,...,wn)ER™ T \wi1€ER

(10.3)

Proof: The case n =1 is (10.1). Let n > 2, and note (an extension of
Littlewood’s (I',1?)-mixed norm inequality):

cr [[flluee
Z Z Z f(wlw-wwn)w2®"'®wn
w1 ER | (wa,...,w,)ER1 Loo(Qn—1)
> Z Ewg...wn Z f(wl’”'vwn) w?(wl)"'w(wn)
w1 €ER (wa,...,w,)ERN 1

A\

(S fmm?) 0

(wa,...,wp)ER"=1 \w1ER

where the first inequality follows from (10.1), and the third follows from
the (n — 1)-dimensional Khintchin L'-L? inequality (Exercise 32). An
application of the generalized Minkowski inequality to (10.4) implies
(10.3) (an extension of Orlicz’s (I2,1')-mixed norm inequality). dJ

Theorem 36 (the Littlewood 2n/(n+1)-inequality). For alln € N,
and all f € Crn(Q"),

¢ ntil
[ fll2n/nt1 < 272 || fllLee. (10.5)

Proof: (by induction on n). The case n = 1 is (10.1). Let n > 1,
and define

¢ = sup{|| fllan/ms1 : f € Bapn@m}- (10.6)
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Assume that ¢,,—1 < 00. Let f € Crn(Q2") be a polynomial. Then,

2n—2

(Cnal[fllLe)

2n—2
Z sup Z Z f(wlv'~~7wn) wl(w)
wes (wa,...,w,)ER™ 1 w1 ER
22
= Z E"-’ Z f(wla--~7wn) wl((d)
(w2,...;wn)ER" 1 w1 €R
n—1

SUCEEDS (Zﬂwl,...,wn)?)

(wa,...,wn)ER™ 1 \wi€ER

(10.7)

The first inequality in (10.7) is a consequence of the induction hypo-
thesis; the second is obvious, and the third follows from the Khintchin
L272/7-12 inequality. (In the latter inequality, we use the L'-I.?
Khintchin constant, which is v/2; see Remark i below.) Next, we write

Z |f(w1,...,wn)|n2$1

(W1,..ywy ) ER™

~ 2n—2 A 2
= Z Z |f (w1, ... wn)| 7 [f(w, ... w,)| 7.

(Wayoswn)ERP—1 w1 ER
(10.8)
On the right side of (10.8), first apply Holder’s inequality to the sum
over wy with exponents (n+ 1)/(n — 1) and (n + 1)/2, and then apply
Holder’s inequality with exponents (n+1)/n and n+ 1 to the sum over
wa, ..., w,. These two applications of Holder’s inequality result in

S fwr . w)

(w1,...,w,)ER™

n
n—1N 74T

285 <Z|.f<w1,...,wn>|2>

> (Z |fwr, ... ,wn)l) : (10.9)

W2,..., W
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Apply (10.3) and (10.7) to (10.9), thus obtaining

[ Fll2n/tnr1y < (€1)7 (2¢n-1) "% || fllr.ee- (10.10)

Using the estimate ¢; < 2 in (10.10), we obtain
(en)™/(cp—1)" "t <27, (10.11)
which (by ‘telescoping’) implies ¢, < 2(*+1)/2, O

Remarks:

i (better constants). To obtain the estimate ¢, < 2("*1/2 we used
the LP-L? inequality

1 1
P\ » 2

N N
i | B> ajr; > (> la;*] . NeN, (10.12)
j=1 j=1

which we applied in (10.7) with p = 2—2/n and the estimate x, < v/2
(the Khintchin L'-L? constant). It was shown by U. Haagerup [H1]
that the best constants k, in (10.12) satisfy

Ky <2772, pe(0,2). (10.13)
More precisely, Haagerup showed that there exists pg, whose approxi-
mate value is 1.847. .., such that (i) if p < po then s, = 21/P=1/2
and (ii) if p > po then k, (computed in [H1]) is strictly less than
21/p=1/2_ Using (10.13) in the third line of (10.7), we deduce

n—1

en V2 (e1)7 (cn1) ", (10.14)

thus obtaining an estimate sharper than (10.5),
en <a(V2)F W > 1 (10.15)

The value of ¢,, n € N, is unknown.

ii (history in brief). The 4/3-inequality first appeared in Littlewood’s
1930 paper [Lit4]. Its first application, since its discovery by
Littlewood, was in R. Edward’s and K. Ross’s 1974 work [ERos]
on p-Sidon sets. (More will be said about p-Sidon sets in the next
section.) The n-linear extension of Littlewood’s inequality was first
noted by A.M. Davie, who had no use for it [Da, (2.2)]. It was
also noted, independently, by G. Johnson and G. Woodward in their
paper on p-Sidon sets [JWo], which followed Edwards’s and Ross’s
work [ERos]. In Davie’s paper, the inequality was stated without
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proof, and in Johnson’s and Woodward’s paper it was derived by an
n-dimensional version of Littlewood’s original argument. The induc-
tive argument above, starting from the case n = 1, is different from
theirs, and yields sharper constants.

iii (Theorem 36 is best possible). In his paper [Lit4] Littlewood
observed, by use of the Gauss matrix, that the 4/3-inequality (the
case n = 2) was sharp; see Chapter II §5. In order to highlight
the harmonic analysis implicit in Littlewood’s original argument, we
recast it below in the framework of this chapter.

Lemma 37 For every k € N, there exists a {—1,1}-valued 2-array (3
indexed by [2F] x [2¥], such that

18ll7, < 2%+, (10.16)

Proof: Consider the compact Abelian group {—1,1}*, and denote it by
Q(k). Its dual group is

{rj, -1 0<j1 <o < <k}, (10.17)

which we denote by W (k). (We have already encountered W (k) in the
beginning of the chapter; see (3.9).) Define

Blw,w) =ww), weW(k), weQk). (10.18)

Let f be an arbitrary scalar-valued function on Q(k), | f|le < 1, and
consider its transform

flw)=(@1/2%) > fw) Blw,w), weW(k). (10.19)

weQ(k)

By Plancherel’s theorem, if g is a scalar-valued function on W (k) such

that
Y lgw)l’ <1,
weW (k)
then
S s =12 Y Y fww) )] <1
weW (k) weW (k) weQ(k)

(10.20)
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If h is a scalar-valued function on W(k), ||hllcc < 1, then put
g = (1/V2F)h in (10.20). Enumerate Q(k) and W (k) by [2¥] (any enu-
meration will do), and deduce (10.16). O

Corollary 38 There erist f € Cgre(Q2) such that ||f\|p = oo for all
p<4/3.

Proof: Let A, C R (k € N) be pairwise disjoint sets such that |A| = 2*.
Fix k and take (any) two enumerations of Ag: one by Q(k), and the other
by W (k). Then, by applying Lemma 37, produce fi € Ca, x4, (%) such
that for (wy,ws) € Ay x Ag

[ felleee <1, and | fr(wy,wo)| = 1/2%%/2, (10.21)
Note
1fill = 25G=2), p > o, (10.22)
Define
F=> f/, (10.23)
k=1
and conclude that f € Cge(Q?), and Hpr = oo for all p < 4/3. O

The 2-array ( in (10.18) is analogous to the Gauss matrix in
Littlewood’s proof (cf. (IL.5.5)). A similar construction, producing the
same effect, can be given in the case n = 3. Fix an integer £ > 1, and
define a {—1, 1}-valued 3-array 5, by

Ba (w1, w2, w3) = wz(wr) wz(wa),
w3 € W(k‘), wy € Q(k‘), wo € Q(k‘) (1024)

Let f and ¢ be scalar-valued functions on Q(k), ||fllcc <1, |l9llec < 1,
and let h be a scalar-valued function on W (k), ||h||cc < 1. Then,

(1/2%) > Ba(wr, w2, w3) f(w1) g(wa) h(ws)

w1 €Q(Ek),w2€Q(k),wseW (k)

> fw) gw) hw)| < Ifll2 1912 1-]los

weW (k)

< [ fllse lglloo [172]loo- (10.25)
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The equality above follows by inversion of the transform; the first
inequality follows by Cauchy—Schwarz, and the second inequality fol-
lows by Plancherel. We conclude

3_
11/2%) Ballry <1, 11(1/2%%) Ball, = 2°G72) for p>0, (10.26)

and proceed, as in the proof of Corollary 38, to construct f € Cgs(Q23)
such that || f||, = oo for all p < 3/2.

These are the only explicit constructions I know. In the next section
we establish by an indirect argument that the 2n/(n+ 1)-inequalities are
optimal for all n € N. In Chapter X we will give a direct proof, based
on random constructions. Otherwise, for n > 4, I do not know any
‘deterministic’ constructions verifying that the Littlewood 2n/(n + 1)-
inequalities are best possible.

We conclude the section with the proof of the first half of Theorem 34:

Proof of (10.2). Let f € Cg, (Q) be a polynomial, and define f €
Cr» (") by

(F) (wi, ... .wp) = f(wy - wy), (wi,...,w,) €R™.  (10.27)
(f corresponds to B € F,(R,...,R) in (8.22).) By Theorem 26,
IFllee < nt (2e)" || £l (10.28)
Then, by Theorem 36,
()= (| Fllzn/mrr = 1(F) " ll2n/nsr < (V2)"™ 0l (20)" [|f 1< (10.29)

By Lemma 22, if f € Cw, (), then f = X7 f; where f; € Cg, (), and
there exists a constant K, > 0 such that /,|[[%7_ fjllLe > || fxl[L= for
k=0,1,...,n. By applying (10.29) to each f;, we obtain

¢ ntl n-l n n
[ Fllzn/ni1 < Kn(n+1)20 (n)) 5 (vV2)" 1 (2e)" [|f|l=.  (10.30)

11 p-Sidon Sets

In this section, the inequalities in (10.2) are shown to be sharp. The
arguments will be carried out in a framework of p-Sidon sets, described
below, and work will continue in the setting of Q. (In the next section,
all that has and will have been done — the Rosenthal property, Bonami’s
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inequalities, and Littlewood’s inequalities — will be officially transcribed

to the general Abelian group setting.)

Proposition 39 (Exercise 33). The following are equivalent for F C
W, pel,2], and1/p+1/q=1: (i) L¥(Q) C IP(F); (ii) Cp(Q) C IP(F);
(iii) there exist ¢ > 0 such that for all F-polynomials g,

gl < Cliglluee; (11.1)

(iv) l19(F) C A(F); (v) there exist { > 0 such that for all finitely sup-
ported ¢ € A(F),

lellacry < Cllellq- (11.2)
Definition 40 For ' C W and t € (0,00), let
Cr(t) =sup{[|glle : g € Bero)} (11.3)
and define the Sidon exponent of F' to be
op = inf{t: (r(t) < co}. (11.4)
If o = p, then F is said to be p-Sidon. If (p(oF) < 0o, then
orp =p exactly (F is exactly p-Sidon), (11.5)
and if (p(oF) = 0o, then
o =p asymptotically (F is asymptotically p-Sidon). (11.6)

Remarks:

i (about the terminology). The statement that F' is Sidon, in the
sense of §5, is equivalent to the statement that F' is exactly 1-Sidon
in the sense of Definition 40. We shall use both terms ‘Sidon’ and
‘exactly 1-Sidon’ interchangeably.

According to Definition 40, the assertion ‘F' is p-Sidon’ means:

(Cp) C 1! for all t > p, and there exist f € Cp
such that f ¢ 1! for all t < p.
In Edwards’s and Ross’s paper [ERos|, the assertion ‘F is p-Sidon’

meant that F' satisfied (any one of) the properties in Proposition 39.
For our purposes, I prefer Definition 40.
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We have shown, so far, that W is exactly 1-Sidon (easily!), that W5 is
exactly 4/3-Sidon, and that W is exactly 3/2-Sidon (n = 2 and n = 3 in
Theorem 34, Remark iii in §10). We have also shown that for all n > 1,

2n
— . 11.7
(2 ) < (1.7
In this section we prove
Cw, (t) = oo for all t < 2n/(n + 1),

and thus verify that W, is exactly (2n/(n + 1))-Sidon. To this end, we
use

Theorem 41 Let F C W and t > 1. For all F-polynomials g and all
s>1,

lgllLe < Cr(t) Vs [1gll2e/(3e—2)- (11.8)
Proof: We write g =3 a7 (an F-polynomial), and assume
Z |a7|2t/(3t72) =-1.
yEF
For u € {—1,1}F, define
Gu=y_(a))" ry(u) 7, (11.9)
yeEF

where a = t/(3t — 2), and {r, : v € F} is the Rademacher system
indexed by F. By assumption, Y - |(a,)!~*|"/(*=1) = 1, and therefore,
by Proposition 39, there exist p,, € M(Q) such that

[l < Cr(t) (11.10)
and
() = (ay)' "% 74(w), 7y EF.
For such measures ji,,,

Gu * oy, = G, (11.11)

and therefore

lgllte = llgu*pulis < Cr@)° lgullts- (11.12)
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By integrating (11.12) with respect to the Haar measure on {—1,1}*
applying Fubini’s theorem, and the Khintchin inequalities, we obtain

S

lgllis < Cr(D)* Bu Eu | (ay)" 4 (u) v(w)
YEF

= (r(t)" Eu By | _(ay)* (1) y(w)

Corollary 42 For alln € N,

2n
n+1’

and (therefore) W,, is exactly 2n/(n + 1)-Sidon.

Cw, (t) =00, t< (11.14)

Proof: Fix t < 2n/(n+1). Let k£ > 1 be an arbitrary integer, and let

k
g= > T, @81, (11.15)
1 yeerin=1
By (9.9),
2" |lgllueany = k" = vk ”gH2t/(3t72)k%7%7%~ (11.16)

By combining (11.16) and (11.8), we obtain

2n—tn—t
t

Cw, (t) = 27"k (11.17)

By assumption, n/t — n/2 — 1/2 > 0, and therefore the right side of

(11.17) is an unbounded function of k, which implies (11.14).
By combining (11.7) with (11.14), we obtain oy, = 2n/(n+1) exactly.
U

Remarks:

ii (alternative proofs). In Chapter X we produce by random con-
structions f € Cyy, such that [|f|, = oo for all p < 2n/(n + 1)



iii

iv
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(Remark i in Chapter X §5). I do not know any deterministic con-
structions of such f € Cyy, for n > 3. (See Remark iii in §10.)
(who did what and how). The key idea in the proof of
Theorem 41 is due to Rudin, who showed in [Rul] that A(s)-constants’
growth of every Sidon set is @(y/s) (the case t =1 in (11.8)).

The first allusion to p-Sidonicity — without dubbing it so — was in a
1972 work by M. Bozejko and T. Pytlik [BozPy], where Theorem 41
was obtained by extending Rudin’s aforementioned argument in the
case t = 1; see [BozPy, Theorem 2]. Two years after Bozejko’s and
Pytlik’s paper had appeared, Edwards and Ross published their own
study of ‘p-Sidon sets’ [ERos]. In it they showed that if E and F
are disjoint spectral sets such that F and F' are infinite, and £ U F'
is dissociate (e.g., E U F lacunary in Z, or EU F = R in W), then
E - F is exactly 4/3-Sidon. (Dissociate sets will be defined in the
next section.) To verify (Cp.r) C %3, Edwards and Ross applied
Littlewood’s 4/3-inequality, and to verify that there exist f € Cp.p
such that f ¢ It for all ¢t < 4/3, they used the (indirect) proof of
Corollary 42 in the case n = 2. (Although in this case, to show
the latter, a direct construction would have done just as well; see
Remark iii in §10.) The n-fold version of Edwards’ and Ross’s result —
that Ey - - - E,, is exactly (2n/(n+1))-Sidon whenever Ey, ..., E, are
pairwise disjoint infinite spectral sets whose union is dissociate — was
established by G. Johnson and G. Woodward [JWo]. They deduced
CEyB,(2n/(n + 1)) < oo by extending Littlewood’s 4/3-inequality,
and obtained (g, .., (t) = oo for t < 2n/(n + 1) via the proof of
Corollary 42 above. The requirement that the E; be disjoint was
removed in [Bl2].

Lemma 30, which provides a crucial step in the proof of
Corollary 42, is due to A. Bonami [Bonl, Théoréme 1]. As far as I can
determine, its first use in an argument like the proof of Corollary 42
appeared in [Fig, Lemma].

(applications and a preview). We can now expeditiously verify
that for all n € N,

F,(N*...,N) G F, 1 (N,...,N),

and (equivalently via duality)

Voi1(N,...,N) G V,(N?, ... N). (11.18)
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(See Remarks in Chapter IV §2 and §5.) The argument is this. By
Corollary 42, there exist scalar-valued functions 4 on N**! such that
B € Fpp1(N,...,N)and |||, = oo for all p < 2(n+1)/(n+2). But,
again by Corollary 42, such § cannot be in F,(N?,... N).

More generally, Corollary 42 implies that if Y is any countably
infinite set, then there exist 3 € I2(Y) of type F,, 11 but not of type
F,,; equivalently, there exist ¢ € co(Y) of type V,, but not of type
Vig1. (For definitions of type, see Chapter IV §2 and §5.)

The focus of the projective tensor algebra V,, is on the question:
can a function in n independent variables be represented as an abso-
lutely convergent series of n-fold elementary tensors, each of whose
n factors is a function, respectively, of each of the independent vari-
ables. This question is an instance of a more general problem. Let

U={S;:j=1,...,n} (11.19)

be a cover of [m]; that is, S; C [m], and U{S; : j € [n]} = [m]. For
S C [m], let mg denote the canonical projection from N™(= NI™)
onto NS; that is,

75(i, .. im) = (ix 1k €S), (i1,...,im) € N™ (11.20)

(For convenience, subsets S C [m] are enumerated in increasing
order: S=(k1,ka,...), 0 < ky < ky < --- < m.) We consider those
¢ € co(N™) that can be represented (pointwise on N™) as

o= Z@&l) omg, -0 omg,
«

0D € co(NY), ..., 00 € ¢o(N°"), aeN, (11.21)

L7

where

D6 oo -+ 165 [l oo < o0 (11.22)
«@

We define [|¢||y;, to be the infimum of (11.22) over representations
of ¢ by (11.21), and let Vi7(N™) denote the algebra consisting of all
¢ € co(N™) with ||¢|lv, < co. Notice that in (11.21), a function ¢ in
m independent variables is represented by an absolutely convergent
series of n-fold elementary tensors, each of whose n factors is, respec-
tively, a function of one of n interdependent variables. In Chapter XII
and Chapter XIII we will gauge the degree of this interdependence
by the ‘combinatorial dimension’ of a ‘fractional Cartesian product’
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based on U. Indeed, by using this gauge, we will distinguish between
the algebras Vi; that are based on different covers U of [m].

To illustrate the issues that arise here, let us consider the case
m = 3, and covers

U ={(1),(2),3)}, U2={(1,2),3)}, Us ={(1,3).(2)},
Us ={(2,3),(1)}, Us ={(1,2),(2,3),(1,3)},
Us = {(1,2,3)}. (11.23)
Then,
Vi, C Vi, C Vi, € Vg (= co(N?)),  j=2,3,4. (11.24)

Whereas each of Vi, Vi, and Vy, is isomorphic to Va(N,N), they
are distinct in the sense that there exists ¢ € Vi, such that ¢ &
Vu,,3 = 3,4. (Do you see why?) Note also (an instance of (11.18))
that Vy, & Vu,,J = 2,3,4. Questions concerning the remaining
inclusions Vy, C Vy, C Viyg,J = 2,3,4, lead to new issues that will
be resolved in Chapter XII by the use of a Littlewood-type inequality
in ‘dimension’ 3/2.

(a measurement of complexity). Corollary 42 provides, in effect,
a calibration of Plancherel’s theorem. If f € L>(Q, P), then || f||r, >
| fll2, which generally cannot be improved (Proposition 16): there
exist f € C(Q) such that ||f|\p = oo for all p < 2. But if f € Liy (=
Cw, ), then ¢, fllLe > Hszn/("H), which also cannot be improved
(Corollary 42): there are f € Cy, () such that || f], = oo for all
p < 2n/(n +1). In this connection, ow, = 2n/(n + 1) registers the
complexity of W,.

By ‘complexity’ I mean — roughly speaking — the ‘engineering
effort’ needed to construct a set by using basic ‘building blocks’. (See
the first comment in Section 1 of this chapter.) We also could think
of complexity — again heuristically speaking — as ‘interdependence’
between elements in a given set. The distinction between these two
‘characterizations’ is that in the first we are handed ‘building blocks’
and we build, whereas in the second we are given the set and observe
the interdependence of its elements. In either case, we want mea-
surements of ‘effort’, or ‘interdependence’. In our specific context, I
view (r and the Sidon exponent op as these measurements.

To make this precise, let us consider a completely general notion
of independence. Suppose X,Y, and Z are sets (with no a priori
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vi

structures). Suppose f is a function from X onto Y, and g a function
from X onto Z. Speaking heuristically, when we say that f and g
are independent, or that there is no interaction between them, we
mean essentially this: for any x € X, knowledge of f(x) implies no
information about g(z), and knowledge of g(x) implies no information
about f(z). Translating this into mathematics we say that f and g
are functionally independent if for every y € Y and z € Z there exists
2 € X such that f(z) =y and g(x) = z. (Convince yourself that the
latter indeed conveys independence.)

Definition 43 Let X be a set, {Y,, : a € A} a family of sets, and let
fa be a function from X onto Y,, o € A. The system {f, : « € A}
is functionally independent on X if

oo
for all (y,: v € A) € H Y,, there exists z € X
acA
such that f,(z) =y, for all a € A. (11.25)

Functional independence appears under different guises in various
contexts (Exercise 34). In our context it appears as 1-Sidonicity.
To see this, consider characters v of a compact Abelian group G as
functions on M(G),

p—i(y),  pe M(G), (11.26)

and recall that F C G is exactly 1-Sidon if and only if there exists
¢ > 0 such that for every (y, : v € F) in By (), there exist measures
w in the ¢-ball of M(G) such that for all v € F,

(7) = - (11.27)
In this light,

F C G is exactly 1-Sidon if and only if there exists ¢ > 0 such that F is
Sfunctionally independent on the (-ball of M(QG).

Now in place of Bj=(py in the discussion above, consider the more
‘restrictive’ Bja(p) for ¢ € (2,00). Then, the subsequent measurement
¢r(q) and the index o will register an increasing level of complexity
in F, above that of functional independence.

(more about functional independence vis-a-vis Sidonicity).
Functional independence is tied to the underlying domain of the
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functions in question. (We expect this from any notion of indepen-
dence, however it is defined.) Suppose {f, : @ € A} is a system of
functions from X onto Y, that X’ C X, and that each member of
{fa : @ € A} also maps X’ onto Y. If {f, : @ € A} is functionally
independent on X', then it is a fortiori functionally independent on
X, but the reverse implication need not hold, and thus the question:
what is the smallest domain X’ on which {f, : @ € A} is function-
ally independent? (Smaller X’ convey ‘stronger’ independence.) In
a context of harmonic analysis, every finite spectral set F' is Sidon,
and therefore functionally independent on sufficiently large balls of
measures. The size of these balls can be viewed as an estimate on
the ‘amount’ of functional independence in F'. Indeed, the smallest
¢ such that F is functionally independent on the ¢-ball of M(G) is
the Sidon constant (r(1) of F'.

Sidon sets in general Abelian groups I' are (by definition) function-
ally independent on balls of measures. In W, the Rademacher system
is functionally independent on  (extreme points in Byj(q)), which
conveys a ‘stronger’ notion of independence. In Z, while obviously
no two exponentials can be functionally independent on T (extreme
points in By(ry), if E C Z is sufficiently lacunary (e.g., ¢z > 3),
then E is ‘almost’ functionally independent on T. (See Exercise 15
iii.) Specifically, this implies: if F C Z is lacunary (¢g > 1), then for
some ¢ > 1, F is functionally independent on the (-ball of the space
of discrete measures on T [Mé]. This, again, conveys a notion of
independence ‘stronger’ than 1-Sidonicity. Indeed, there exist Sidon
sets in Z that are not even finite unions of lacunary sets [Rul]. In
general, the ‘strongest’ independence property that can be ascribed
to Sidon sets is that exact 1-Sidon sets are functionally independent
on balls of continuous measures. (This follows from the proof in [Dru]
that a finite union of Sidon sets is Sidon.)

(the p-Sidon set problem). Corollary 42 leads to the question:
are there spectral sets F' with o = p for arbitrary p € (1,2)? This
question, like the corresponding problem concerning the J-scale
(Remark ii §9), will be resolved in Chapter XIII by constructions
of Walsh systems of ‘fractional order’.

(two open questions). Rudin’s question [Rul, Section 3] whether
A(s)-constants’ growth @ (1/s) is equivalent to Sidonicity was affirma-
tively answered by Pisier [Pil]. (See also [MaPi].) Notably, Pisier’s
theorem in a general group setting had been deduced first in © [Bon2,
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p. 350], from a purely combinatorial characterization of Sidonicity in
W [MM]:
F CcW Sidon < F = finite union of
algebraically independent sets (Remark in §2). (11.28)
(Whether there are ‘purely combinatorial’ characterizations of Sidon
sets in general groups is an open (-ended) problem of long standing;
e.g., see [Pi2].) Two questions arise:

1. Is there a characterization of p-Sidon sets in W that is analogous

to (11.28)?
2. Does @ (4/s) in (11.8) characterize p-Sidonicity? That is, does the
implication
sup{|g|lLs/v/s : s > 0, spect g C F, ||§]lat/3e—2) = 1} < 00

= (p(t) < o0 (11.29)

hold for all t € (1,2)7
ix (the p-Sidon set union problem). It is unknown whether for
arbitrary subsets F; and Fy of a discrete Abelian group T,

orup, = max{op ,0m,}- (11.30)

The question whether (11.30) holds in the instance op, = op, =1
exactly had been first raised by Rudin [Rul, Remark 2.5 (2)], well
before the notion of p-Sidonicity was framed, and was answered in
the affirmative by S. Drury [Dru]. The answer to Rudin’s union ques-
tion subsequently provided, via D. Rider’s reformulation of Drury’s
solution [Rid], one of the two key ingredients in Pisier’s solution
(seven years later) to yet another of Rudin’s problems, whether
@ (\/p) growth of A(p)-constants characterized Sidonicity. (The
other ingredient was metric entropy [MaPi].) Notably, the Sidon
set union problem was first solved in the simplest setting W =
[MM], some three years prior to its resolution in an arbitrary group
setting, but the p-Sidon set union problem is still unresolved even
in W.

12 Transcriptions

In the last section of this chapter we indicate how Walsh systems and
their properties arise in a general setting.
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We let G denote a compact Abelian group with normalized Haar mea-
sure m, and let I(= @) denote its discrete dual group. The reader
familiar with material in the first two chapters of [Ru3] should easily
be able to transcribe rudiments (definitions and the like) from €2 to G.
Specifically, definitions and preliminaries involving restriction algebras
in §7, definitions of the Rosenthal property in §5, and indices involving
A(q)-sets and p-Sidon sets in §9 and §11 can be recast essentially verba-

tim in the general setting.
Dissociate Sets — Definition and Examples

Following Hewitt and Ross [HewRos, 37.12], we say E C I is dissociate
if E satisfies the following property: for every n € N, if v1,...,7, are
distinct elements in E, and

(y1)" -+ (ym)*" = identity element of T (12.1)

where k; € {—2,—-1,0,1,2} for j € [n], then

(71)" = -+ = (y,)" = identity element of T. (12.2)

This purely algebraic property manifests independence. In a harmonic-
analytic context, we view elements of dissociate sets as basic ‘building
blocks’ in G much the same way we view Rademacher characters in
Q. (Clearly, the Rademacher system is dissociate.) Every infinite dis-
crete Abelian group contains an infinite dissociate set (e.g., see [HewRos,
Theorem 37.18]).

Besides the Rademacher system, other canonical examples of dis-
sociate sets are: lacunary sets £ C Z%1 such that g > 3 (§5), and
the systems S,,, m > 3, defined in Chapter IT §6. The systems S,, are
generalizations of R: for m > 3, Q,, = (T,,)Y is a compact Abelian
group (T,, = mth roots of unity with the uniform probability mea-
sure), whose discrete dual is generated by Sy, just as Q is generated by
R. We have already noted in Chapter II §6 that S,, is a system of
statistically independent T,,-valued random variables on €2,,. It is also
functionally independent on Q,, (see (I1.6.3) and Remark iv §11), and
algebraically independent in Qm; the latter means that for £ = S,, and
I =Q,,, if (12.1) is assumed with

kj € {—m,—m+1,...,0,...,m—1,m}, (12.3)
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then (12.2) holds. The limiting case m = oo is of particular interest to
us. In this case, Qs is the infinite product TV, endowed with the usual
product topology and coordinate-wise addition; the Haar measure is the
infinite product of the normalized Lebesgue measure in each coordinate,
and (TV) = @ Z (= integer-valued sequences with finitely many non-
zero terms) equipped with coordinate-wise integer addition. The action
of n=(ny) €®Zont=(t)c TV is given by

t — exp(27mi(n,t)) = exp(2wiXiny tx). (12.4)

The system Sy := S, known as the Steinhaus system (Chapter II §6,
Remark i §9), can be identified with the canonical basis {e; : j € N}
in® Z (ej(j) =1 and ej(n) = 0 for n # j): the jth element of
S = {e; : j € N} is the character x; on TV given by

x;(t) = exp(2miXie; (k) ty) = exp(2nit;), t=(t,) € TV. (12.5)

The decisive advantage of the Steinhaus system, which we will uti-
lize in Chapter XII and Chapter XIII, is that it is fully algebraically
independent (m = oo in (12.3)), and therefore easier to handle than
Sm, 2<m < oo.

Riesz Products

Throughout the section, E will denote a dissociate set in I'. We assume
E is countably infinite, and enumerate E = {v; : j € N}. We denote
the identity element in I' by ~o; i.e., 70 = 1.
For real-valued 6 € Bje(y), and N € N, consider the finite Riesz
product
5 Y5 + 7
roy =1 (0 +0) 2572 (12.6)

=1

whose spectral analysis implies

Rn(70) =1, (12.7)

and, because Ry > 0,

n%mwzémmmw:mmbL (12.8)
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Also, denote

Dy ={(3)" -+ (i) * :0<in < --- < i, < N,k € [N],&; = £1,5 € [K]},
(12.9)

and obtain

; _ [ @/25) (i) 06k) x€Dn, x=(3)" o (3,)*
v = {0 k X & DN, x # - (12.10)

By (12.8) and (12.10), there exists a positive Borel measure p € M(G)
such that p = weak™ imy_.00 RN, |tt]lm = fi(70) = 1, and

Ay -+ i) = (1/2%) 0(in) - - 0(i),
0<ip <---<ig, keN. (1211)
We denote

H(O“’ WJQFW), (12.12)

and call it a Riesz product. This measure implies the analog of Lemma 28,
where G replaces €2 and F replaces R.

Restriction Algebras and Tensor Algebras

For n € N, consider (the analog of R,,)

E, = {’yil-"’yin < < <in}. (1213)

By use of Riesz products and polarization (Lemma 27), we obtain that
if f is an E,-polynomial,

= _ Z F iy ) Yin Vi (12.14)

105l
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and
- : FOis i) i i in} =0
Uyeeyln) = " 12.15
Ar(in ) { 0 otherwise, ( )
then f — B¢ determines an isomorphism from Cg, onto Fi,»(N,...,N).

This implies

A(E,) = Vy|p, (cf. Theorem 26), (12.16)

where D, is the tetrahedral set defined in (8.21).

The Rosenthal Property

The dual of A(E,) is L% (G, m) (Proposition 24), and that of V,[p,

0

is Fo(N,...,N) (Chapter IV §5). Therefore, by (12.16), Ly (G,m) =
F.»(N,...,N). Scalar-valued functions with finite support on N™ are
norm-dense in F,,;(N,...,N) (Theorem IV.6), and therefore

L% (G,m) = Cg, (G) (cf. Exercise 25, and Remark i§8).

Bonami’s Inequalities

Transcribed to the general setting, Theorem 32 asserts

0p, = g exactly, neN. (12.17)

(For definitions see Remark ii §9.) A key to the transcription is

Proposition 44 Let G and G’ be compact Abelian groups with respective
Haar measures m and m', and respective dual groups T' and T'. If E =
{v; : 7 € N} is dissociate in T, and F = {x; : j € N} is dissociate in T”,
then

ng, (a) < 12" np, (a), a>0. (12.18)
Proof: (cf. Proof of Theorem 32): Let

F=>0 fi i)V i

1yeensl
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be an E,-polynomial. For each x € G’, consider

fo= Do FOe i) X (@) X (®) vy Y (12.19)

seesln

By (12.16), for each x € G’ there exist p, € M(G) such that

fio (Yiy + Yin) = X (@) - X, () iy -+ i, € spect o (12.20)

and
ellv(e) < 127, (12.21)

where 12" in (12.21) is a composite of polarization constants and Riesz
product-norms. Then,

= Jfe* o, (12.22)

and

1By < btalZagn 1 eIy < 1277 el 2> 2. (1223)

By integrating both sides of (12.23) over G’ with respect to m’, applying
Fubini’s theorem, and the definition of ng, (a), we deduce

1f e (e < 127 g, (a) p°1£l2, (12.24)
which implies (12.18). O

We prove (12.17) via Proposition 44 and Bonami’s inequalities
(Theorem 32). Notice that Proposition 44 implies that the Khintchin
inequalities (obtained in [Kh1]), and the Khintchin-type inequalities
involving the Steinhaus system (obtained in [Lit3]) are equivalent in
the sense that any one set of inequalities can be derived from the other.
(See Remark i §9.)

p-Sidonicity

The transcription of Corollary 42,

op, = nl exactly, n €N, (12.25)
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follows from (12.16) and Proposition 39 (rephrased in the general
setting).
Exercises
1. Define the Fourier transform of f € L}(T,m) (m = normalized

10.

11.

Lebesgue measure) by
f(n) = (1/27r)/ e M f(Hym(dt), n € Z.
T
Prove that if f € L2(T, m), then

(Z If(n)l2> = [I£1le2,

nez

thus verifying that the partial sums of the Fourier series 3, f (n) et
converge to f in L2(T,m).

. Verify that convolution in M(2) is commutative, and

s vl < el v, e M(Q), v e M(Q).

. Prove Proposition 2.
. Prove Proposition 3.
. Prove that the probability measure P, which is defined in Chapter IT

81, is the unique normalized Haar measure on ).

. Prove Proposition 4.

i. Prove Lemma 7.

ii. Prove Proposition 6.

. Prove Corollary 11.
. Prove Proposition 12.

Show that the binary digit expansion of z € [0,1] gives rise to
the measure-preserving map o : (2,2, P) — ([0,1],B,m) defined
n (4.2). Verify that if w is a Walsh function on [0,1], then wo o is
the corresponding Walsh character on €.

Paley’s work in [Pa] foreshadowed the theory of martingales. If you
are familiar with martingales, then this exercise is merely a historical
note. Otherwise, I urge you to learn about them (at the very least
for the purpose of this exercise); e.g., [Tu, Chapter 7], [Bu], [Ga].
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Let {w; : j € N} be Paley’s enumeration of the Walsh functions.
For f € L([0,1],8,m), let

ontl_q

fo= Z f(wj)wj, n € N.

j=2n

Observe that if o is the measure-preserving map in Exercise 10, then

frnoo= Z (foo')A(w) w,

weW (n+1)\W(n)
where W (n) is defined in (3.9).

i. Prove that (¥7_; f; : n € N) is a martingale sequence.
ii. Deduce from the Burkholder—-Gundy martingale inequalities that
for all p € (1, 00),

Byl Zalful*llie < I£1Es < CollZnlful®|le,

where B, > 0 and C}, > 0 are numerical constants depending
only on p; compare this with [Pa, Theorem V].
iii. Prove that if f € L'([0,1],B,m), then ¥7_, f; — f a.e. (m) on
[0,1].
12. i. Prove that Theorem 13 is equivalent to the following assertion:
for f € LP(T, m),

S F0) | <Glfle. meN, (B

j=—n -

where C}, > 0 depends only on p.
ii. Show that (E.1) is false for p = 1, and false also if we replace
LP(T,m) by C(T).
13. i. Show that for all 1 < p < 2 and all K > 0, there exist
W-polynomials g such that | g;|lL < 1, and ||g;]|, > K.
ii. Show that there exist f € C(€) such that ||f||p = oo for all
p€[L,2).
14. Prove that A(T) & C(T) & L*°(T, m).

In the exercises that follow, G denotes a general metrizable compact
Abelian group with a normalized Haar measure m, and I' denotes its
countable discrete dual. The first two chapters in Rudin’s book [Ru3]
suffice, but if you have not yet read through them, then take G = Q; all
that is needed here has been done in this chapter.
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The following restriction algebra is officially introduced in §7. Define

A(E) =LYG,m)/{f e LY(G,m) : f =0 on E}.

A(E) is the quotient L' (G, m) modulo the ideal
{feL}YG,m): f=00n E}.
Equipped with the quotient norm
If1£lacm) = nf{llgle: - 9 € L', §le = fle},
it is the Banach algebra of restrictions of f € L'(G, m) to E.
i. Show that E is Sidon if and only if A(E) = co(E).

ii. Show that if E' is Sidon, then Cg = L% .

iii. Part ii leads to a simple proof of (5.18): the functional inde-
pendence property of the Rademacher system in (I1.1.3) easily
implies Ar(2) = Cgr(Q2), and this, by ii above, implies (5.18).
A similar proof can be given in T, once you verify — as you do

below — an ‘approximate’ functional independence property for
a lacunary E = {)\;} C Z* with g5 > 3. (See (5.16).)

a. Prove that there exists 0 < 6 < 1 such that for all {6;} C T,
there exists € T such that

lelfs — %] <5, jeN.

b. Without use of Riesz products, prove that E is Sidon.

You have already noticed, for example in Exercise 15 i, that £ C T’
is a Sidon set if and only if there exists ¢ > 0 such that for all
E-polynomials f

Clfllee > 11l

Use this, in conjunction with any of the constructions in Chapter IV
§2, to prove that Ws (and hence Wy, for every k > 2) is not a Sidon
set.

Let {un} € M(G), and assume that lim,,_ fin(y) = ¢(7) for all
v € I'. Prove that there exists u € M(G) such that i = ¢ if and
only if sup{||un|| : n € N} < o0.



FExercises 199

18. For real-valued ¢ in the unit ball of {*°(N), define

19.

20.

21

22
23

i

iii.

iv.

ii.
i

il.

if

if

n

pn = [+ 00) 7).

j=1

. Show that if w = rj, ---7;, then fi,(w) — @) - ¢(r) as
n — oo.

. Show there exists p, € M(Q2), which is called a Riesz product
and is written as an ‘infinite product’

(o)

oo = L1+ 00) 7). (E.2)

j=1
such that if w € W and w =rj, ---r;,, then

Po(w) = @(j1) - ¢(jk)-

Let ¢ € [°°(N) be R-valued such that |||l < 1, and let p, be
the corresponding Riesz product. Prove that p, < P if and only
if ¢ € I2(N).

Prove that the converse to Corollary 11 is false: there exists p €

M(€2) such that i € co(W), but p is not absolutely continuous

with respect to P.

i. Let W = {w; : j € N} be the Walsh system enumerated by
Paley’s ordering. Prove that if E C Z* is a lacunary set, then
{w; : j € B} is Sidon in €.

* Let E C Z" be a Sidon set. Is {w; : j € E} a Sidon set in W?

Referring to the proof of Lemma 20, verify (6.27).

Construct the Riesz product p € M(€2) that satisfies (6.30).

. Verify the first step in the proof of Theorem 21. That is, show that

f €Ly (,P) and f, is defined by (6.32), then f — f,, € C(Q2).

. Prove Proposition 24.
. Verify that (8.4) is a W"-series of f € LP(Q",P") (resp., f € C(Q™))

and only if f € LP(Q,P) (resp., f € C()).

24. Suppose A C G and m(A) > 0. Prove that A - A contains a non-
empty neighborhood of e (identity element of the group G).

25

se

. Prove that E C G is a Rosenthal set if and only if L¥(G,m) is a

parable Banach space.
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26.

27.

28.

29.

30.
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i. A spectral set E C I' is said to be a Riesz set if Mg(G) =
LL(G,m). The origin of the definition is a classical result due
to the brothers F. and M. Riesz, that Z* is a Riesz set in Z
[Hel, p. 106]. The first general study of such sets appeared in
[Mey1].
Prove that E is a Riesz set if and only if Mg(G) is separable.
ii.* By using a key result from HP-theory, R. Dressler and L. Pigno
proved in [DrP] that if E C Z is Rosenthal, then E is Riesz.
Prove the general result: if £ C I' is Rosenthal, then F is Riesz,
where T" is a discrete Abelian group. Little is known; even the
case I' = W has not yet been resolved.
In this exercise you will verify a combinatorial formula (used by
Davie in [Da, Lemma 2.1]), and then apply it to prove Lemma 29.

i. Let ¢1,...,p, be scalar-valued functions defined on [n]. For
S C [n], define ¢s = >,cg @1. Prove

n

S D) () = S0 S Gs(1) - gs(n),

TEper[n] m=1 é‘C:[T:JI
where per[n] denotes the set of permutations of [n].
ii. Establish Lemma 29 by using Part i.

Prove Lemma 30 by a combinatorial argument, showing that for
every positive integer k,

i
2 J
L=k j=1,...,2k

k
ZTj = Z E’I“il"‘TiQka.
j=1

(Compare your effort in this exercise with the proof of Lemma 30.)
Let (X, v) be a finite measure space. Let f be a scalar-valued mea-
surable function on X. Show that for every ¢ € (1,2)

2 1 1
| fllLza)) 7, i L.

_2
ey < (flluae) 7 ( .

Use the Khintchin inequalities to deduce the results in a and b
below (proved first by Littlewood in [Lit3]).
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a. Suppose (a,) € Bj2z). Then for every p > 2, there exists (a,,) €
By (z) such that

> apape™ € LP(T)  [Lit3, Theorem 1].
nez

Proof of a.

i. Consider the random series
Sw = Zrn(w) an €™, we (Q,P),
nez

where the Rademacher system above is indexed by Z, and 2 =
{-1,1}2. Let {K; : j € N} denote the usual Féjer kernel; see
[Kat, Chapter I]. Define

Ay = {w € QIS * Killuaery < 100 p ).

Prove there exist ¢, > 0 (depending only on p) such that

]P(Aj) > Cp.

ii. Prove that there exist w € Q and increasing sequences of positive
integers (IN;) such that

1S, % K, lLe(ry < 100 p2,  j € N.

Conclude that S, € L?(T).

b. Suppose (a,) € co(Z), and Y, ayane™ € LYT) for every
sequence of scalars (a;,) such that |a,| = 1, n € N. Then,
(an) € I2(Z); [Lit3, Theorem 2].

Proof of b.

i. Prove

rweNy <oo.
LY(T)

sup

Zrn(w) a, e
n

ii. Prove b.
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31. Let I" be a discrete Abelian group, p > 2, and 1/¢+ 1/p = 1. Prove

that F' C I' is a A(g)-set if and only if for all f € LI(T"),

D> () If (NP < 0.

yel

32. i. Prove the n-dimensional Khintchin L2-L? inequality, and show
that the best constant in the inequality is 27/2.
ii.* Prove the Khintchin L'-L? inequality in the case W,,. What
is the best constant for this inequality?
33. i. Prove Proposition 39.
ii. Prove that if p > 1, then (Cp) = [P only if F is finite.
iii.* For p > 1, does (Cp) C IP imply that F is a Rosenthal set?
34. Show that the usual notion of linear independence of vectors in the
framework of linear algebra can be rephrased in terms of functional
independence.

Hints for Exercises in Chapter VII

1. Use the norm-density of trigonometric polynomials in C(T) (the
Stone-Weierstrass theorem), which implies that {ei™ : n € Z} is a
complete orthonormal set in L2(T,m).

3. Establish it first for cylinders

A(F;(e5) ={(wj) € Q:wj =¢;,j € I},

where F C N is finite, and €¢; € {—1,1}, j € F. Note that 14 is
continuous on 2.

4. Apply (2.9).

5. P is translation-invariant. If p is a translation-invariant probability
measure on £ and p # P, then there exists a non-empty cylinder A
such that pu(A) # P(A). This, by translation invariance, leads to a
contradiction.

7. i. Verify it first for simple functions.

ii. First show that

[k f = fllz < Ey [kal)] [fy = fli5,



11.

12.

13.

14.

15.
17.
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and then split the right side into two integrals: one over a judi-

ciously chosen neighbourhood V of e, and the other over V°. A

similar argument in the framework of T appears in [Kat, p. 10].
First note that the assertion is trivial for W-polynomials, and then
use the norm-density of W-polynomials in L(Q,P). This is the
analog of the classical Riemann-Lebesgue lemma on T and R: f €
LY(T,m) = f € ¢o(Z), and f € LY(R,dz) = f € ¢o(R); e.g., [Kat,
p- 13], [Roy, Exercise 16, p. 94].
The assertion in (1) is not as trivial as it appears. The sticking
point is that members of L>°(f2,P) are equivalence classes deter-
mined by the P-null sets. Use the observation that if f € L>°(Q,P)
and lim,, .., || fw — fllLe = 0, then {k, * f} is equicontinuous. To
prove (2), observe that if € M(Q) and limy,_¢, ||ptw — pllm = 0,
then (by an argument like the one used in Exercise 7) k, x u — p in
iii. The assertion that X7_, f; — f in L! follows from Corollary 9.
(The statement in iii had been proved first by Kaczmarz [Ka], and
extended later by Paley in [Pa, Theorem IX].)
ii. To establish the first statement, use

Z et~ log n,
= |
together with the de la Vallée Poussin Kernel; see [Kat,
p. 15, p. 50]. To establish the second statement, use the relation
above and duality.
i. For real-valued ¢ € Bjz, consider [T}_, (1 +ip(j)r;); cf. (I11.2.13).
ii. Let (p;) be a sequence in [1,2) converging to 2, and (g; : j € N) a
sequence of W-polynomials with pairwise disjoint spectra, such
that [|g;[|lLe < 1 and [|g;]l,, > 27 for every j € N. Let f =
Zjil gj/3%; cf. [Kat, pp. 99-100].
The quickest argument I know uses A(T) = C(T) = C(T)
L*°(T,m). A constructive argument is an instance of the preceding

exercise.

iii. For hints, or to see where results of this type lead, consult [M¢].
To show the ‘only if” direction, observe that if fi,,(vy) — () for all
v €T, then p,, — p weak* in M(G), and apply a uniform bounded-
ness principle. To prove the other direction, use the Riesz represen-
tation theorem. For example, see [Kat, Exercise 1.7.9].
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18. Browse through Zygmund’s treatise [Zy2]; there you will find the
proofs (and much more!).
19. i. Assume first gz > 3, and verify that the Riesz product

po = [T+ 00) w)),

JjEE

where —1 < ¢(j) < 1 for j € E, is a well-defined measure on €2,
and p,(w;) = ¢(j) for all j € N. To this end you need to show
that the lacunarity of E implies that {w, : j € E'} is algebraically
independent in W. See [Mo, p. 498].

20. i. By assumption, the D; are generated by mutually disjoint blocks
of Rademacher characters, and, therefore, functions spanned by
these blocks are ‘functionally’ independent.

ii. Apply the hypothesis that the D; are strongly disjoint; cf. (6.18).

22. Exercise 17 is a special case. See the proof of Proposition 26. The

following basic tenet of functional analysis is used (here and through-
out): if X is a Banach space and H is a closed subspace of X, then
the dual space of the quotient X/H is the annihilator H+ of H in
X*, and the dual space of H is X*/H*.

25. One direction is easy. To prove the other direction, let {g;} be a

dense subset of LY. Fix f € LY, and fix € > 0. Define

Aj={z € G ||fs — gjllLe <€},

where f, is the translate of f. Then, G = UA;, and therefore there
exists jo such that m(A4;0) > 0. Therefore, Ajo - Ajo contains an
open neighborhood of e¢ € G. You have just set the stage for
an application of Exercise 9. Note that your proof in Exercise 9,
properly adapted, works in a setting of general groups.

26. i. Use the strategy of the previous exercise.

30. 1i. in the proof of a. Apply Fubini’s theorem, and the Khintchin

LP-12 inequality,

B 80 % Kl = [ BulSow K dt <77

ii. in the proof of b. Assume the assertion is false. By use of
approximate identities, produce w € €2 such that

Z (W) ane™ & L1(T).
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iii. in the proof of b. By i, Fubini’s theorem, and the Khintchin
L'-L? inequality,

oo > E,

LY(T)

Zrn(w) a, e
= ) dt > (1/v/2) (ZWZ) 2 .

/(E

32. i. Induction does it.

33. i. The implication ‘ii = 1ii’ follows by the norm-density of
F-polynomials in Cp(€2). Conversely, if iii fails, then construct
f € Cp(f2) such that f & IP. The equivalences ‘i < iv’ and
il < iv’ follow by duality: Cp(Q)* = B(F), A(F)* = L¥(Q),
and (IP)* = 19; see Proposition 24. The implication ‘ii = i’ follows
from Corollary 9 ii.

Z (W) ay ™

n




VIII

Multilinear Extensions of the Grothendieck
Inequality (via A(2)-uniformizability)

1 Mise en Scéne: A Basic Issue

The Grothendieck inequality, a fundamental statement about bilinear
functionals, can be expressed equivalently in several ways. In previous
chapters we have noted:

(a) Grothendieck’s original formulation [Gro2, p. 59];

(b) Lindenstrauss’s and Pelczynski’s restatement of it [LiPe, p. 275] (see
Theorem II1.1);

(¢) Theorem IV.13 (cf. (V.4.3));

(d) The inequality in (IV.5.37), which is akin to Grothendieck’s original
formulation;

(e) The factorization theorem Theorem V.2.

The equivalences (a) < (b) < (c) < (d) are based on the duality
V5 = Fy, and are easy to verify; each of the four assertions conveys the
same phenomenon, generically referred to as the inequality. The equiv-
alence of the inequality and (e), a result of convexity (Proposition V.5),
is not quite as obvious. We recall:

The Inequality (cf. (IV.5.37))

Let H be a Hilbert space, and let n be a bilinear functional on H.
Consider the norms

1l s, := sup{ln(x,y)| : x € Bu,y € Bu}, (L.1)

206
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and

Inllpb, = sup{l|n|exF|lvs(e,F) : finite subsets E C By, F C By}
(1.2)
The Grothendieck inequality is the assertion

Mo, < ke lInlls., (1.3)

where kg > 0 is a universal constant. The opposite inequality ||7]/, <
I7]/pb,, is obvious. (Here and throughout, |- ||, will denote in the given
context the usual norm of an n-linear functional, and || -||pp, will denote
a norm conveying a Grothendieck-type inequality.)

The Factorization Theorem (cf. Theorem IV.2)

Let K7 and K5 be locally compact Hausdorff spaces. Let 1 be a bilinear
functional on Cy(K7) x Co(K32), with its (usual) norm

Hn”.fz = SUP{|7I(f79)| : f € BCU(K1)7g € BCU(KZ)}' (14)

Given probability measures v and v» on the respective Borel fields of
K1 and K>, define

Hn”(vl,Vz)
=sup{|n(f,9)| : f € Bra,) N Co(K1),9 € Brep,) NCo(K2)},
(1.5)
and
Inll¢ = inf{||nl/(,,v.) : Probability measures v1, 15} (1.6)
The Grothendieck factorization theorem is the assertion
[nlle < ke lInllz., (1.7)

where kg > 0 is a universal constant. The opposite inequality ||7]/, <
[Inlls is easy to verify.

The equivalence of the inequality and the factorization theorem (with
the same constants kg) is a ‘two-dimensional’ phenomenon that does
not extend, as such, to dimensions greater than two (see Exercise V.5).
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Indeed, questions about multidimensional extensions of the Grothendieck
inequality and factorization theorem deal with three ostensibly separate
issues: the first concerns extensions of the inequality; the second con-
cerns extensions of the factorization theorem; and the third concerns
relationships between multilinear Grothendieck-type inequalities and
multilinear factorization. We have already touched on the second and
third issues in Chapter V, and will return to them in later chapters. In
this chapter, we consider the first issue: extensions of the Grothendieck
bilinear inequality to dimensions greater than two.

2 Projective Boundedness

To begin, we formalize a notion that conveys, in effect, a multidimensional
Grothendieck inequality:

Definition 1 Let 1 be an n-linear functional on a Hilbert space H.
Define

Vi (F1,....Fy) Fz C BH, |E| < o0, 7 S ['I’L]}
2.1)

[nllpb,, = sup{[[nlFx...xp, |

If |[9]lpn, < oo, then 7 is said to be projectively bounded; otherwise, if
[11lpb, = oo, then 7 is projectively unbounded.

Following the identification of tensor algebras as restriction algebras
(Chapter VIII §8), we can restate the definition in the language of har-
monic analysis. Let n be an n-linear functional on a Hilbert space H. If
E C By and Rg denotes the Rademacher system indexed by E, then let
¢n,E be the scalar-valued function on the n-fold product Rg X --- X Rg
defined by

O E(Tzys s T2,) =01, T0), (Tay,...,72,) € RE. (2.2)

Proposition 2 (Remark ii in Chapter VII §8; Exercise 1 1i). Ifn
is an n-linear functional on a Hilbert space H, then

1 n
(3) suwlioneloy : £ c BnlEl < o} < lnlhn,

<sup{||¢n.ellBry) : E C Bu,|E| < oo}. (2.3)
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(B(R%) is the algebra of restrictions to R} of transforms of Borel mea-
sures on {—1,1}F))

Proposition 3 (Exercise 1 ii). An n-linear functional n on a Hilbert
space H is projectively bounded if and only if ¢ g € B(RE) for all
countably infinite sets E C Byy.

Note that ||-||pb,, defines a norm on the space of projectively bounded
n-linear functionals on H, and that the resulting normed linear space
is a Banach space. For future use, we record also completeness with
respect to weak convergence:

Proposition 4 (Exercise 1 iii). If (9, : m € N) is a sequence of
n-linear functionals on a Hilbert space H such that

Hm 7 (X1, .03 Xn) = 0(X1,. .0, Xn), (X1,...,%,) € H?, (2.4)

m— 00

then
[llpv, < T inf {9, |[pp,, - (2.5)
m—0o0
If n is an n-linear functional on H, then

1l g, == sup{ln(x1, ..., )| = (x1,..%n) € B} < [nllpp, - (2.6)

Our focus is on the opposite inequality. We obviously have that every
bounded linear functional on H is projectively bounded. That every
bounded bilinear functional on H is projectively bounded (not quite
as obvious) is precisely the Grothendieck inequality. In this chapter
we consider the question: what are the projectively bounded n-linear
functionals for n > 37 We establish a characterization, and will obtain
as a consequence that there exist bounded n-linear functionals that are
projectively unbounded.

3 Uniformizable A(2)-sets

The notion of A(2)-uniformizability, the key to the proof of the (bilinear)
Grothendieck inequality in Chapter I1I, can be rephrased in a framework
of harmonic analysis:
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Definition 5 (cf. Definition IIL.6). Let G be a compact abelian
group, and let G be its dual group. A spectral set E C G is a uniformiz-
able A(2)-set if for every 0 < e < 1 there exists § = dg(e) and a map
Y I2(E) — L°°(G) so that for all x € I?(E),

(i) »x)"(v)=x(), vek
(i) ([Pl < bllxl|2;

=

(i) (960 pellz = ( D[ (M) <elzfl (3.1)

v¢E

e and § are said to be A(2)-uniformizing constants of E associated with
the A(2)-uniformizing map . (E€ denotes the complement of E in G.)

In this chapter we work in the setting G = Q", where Q = {—1,+1},
and its dual group G = W™, where W is the system of Walsh characters.
Here and throughout, we write LP(Q™) for LP(Q™",P") (1 < p < o0),
where P" is the n-fold product of P (Haar measure on ).

Lemma 6 For every integer n > 0, R™ is a uniformizable A(2)-set.

Proof: (see Remarks i, iii below). Observe that R™ is a A(p)-set
for all p > 2 (Definition VII.33, Proposition VIL.31), and then apply
Theorem II1.8 and Remark ii §4. O

Remarks:

i (a constructive proof of Lemma 6). To ease notation, we iden-
tify 12(R"™) with [2(N"), and construct a A(2)-uniformizing map
on [2(N").

We first verify Lemma 6 for n = 1 (cf. Exercise IIL.8). Fix
0 < e < 1. Let x € I2(N) be a vector with real-valued coordinates,
and define

a(x) = 2 i\|>:||2 11 (TO + ie ﬁiﬁ‘ﬂiq) (Exercise 2).  (3.2)
j=1

Then, 91 (x) € L>°(Q) is a real-valued function such that

exp(e2/2)

[rle < L2 (33)
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The spectral analysis of ¢ (x) yields
oo
=2 x() 7
j=1

oo
+ Z 6/HX” Z X(jl) o 'X(j2k+1) T Thansn

k=1 0<g1 < <Jok+1
(3.4)
and therefore,
(x) " (rj) =x(j), jeN. (3.5)
We estimate
D (x)” (w))?
w¢R
o0
<> (e/lIxll2)* > Ix(j1) - x(jzk41) [
k=1 0<j1<--<J2k+1
2 (Ak+2 411112
< (/93 gy S < g (3.6)

By combining (3.3), (3.5), and (3.6), we conclude that R is a uni-
formizable A(2)-set, and

Or(e) :== xp(e/4). (3.7)

2
5 < —=
1> Je €
We proceed by induction. For n > 1, let x € I?(N") have real-
valued coordinates, and let

,l/)n71 . l2(Nn71) s Lw(anl)

be the A(2)-uniformizing map provided by the induction hypothesis.
Specifically, assume

[Pn—1(x(G, Dl < 0na %0, )l2s T EN, (3-8)

where 1, _1(x(j,-)) is a real-valued element in L°°(2"~1) such that
1/)n,1(X(j7 k)) ) (rku s 77“7%71) = X(ja k):

k= (ki,..., kn1) e N"7L (3.9)

and

Y [noa(x0,)) (P < € %0, (3.10)

,yéRn—l
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To simplify notation, denote

Yn-1(x(5,)) = f5, jEN (3.11)
By (3.8), .
Zlﬂfjﬂioo < (0n-1)* [Ix[I3- (3.12)
Define
() = -z, Xl I (m + iegfﬁ ® rj> (cf. (3.2)).
j=1 ’ (3.13)

By (3.12), 1, (x) € L>(2") is real-valued, and
Wl <6 SB35, (314)

The series expansion of ¥, (x) is
o0
x) =Y fi®r
j=1

(_1)k (6/6n71”x“2)2k Z fjl "'fj2k+1 QTjy " Tiagyr

1 0<g1 < <Jokt1

+

WK

B
Il

(3.15)
By an application of (3.9) to the first sum on the right side of (3.15),
Un (%) (Thys - 7Thy) =x(k), k= (k1,...,k,) €N".  (3.16)

Next, estimate

[¢n(x) " |(rmyll3 < Z”fij"*l)C”%

+ ) (e/Fnr Ix]2)* Yo Iale e lee (3.17)
k=1

0<j1< - <Jok+1
Observe that
Z ”fjl“iz'“”szmrl”iz

0<j1< - <Jok+1
2k+1

Qkﬂ Zuf]HLz . (3.18)
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By (3.9), (3.10) and (3.11),

Z”JCJHLZ < (1+€) x5 (3.19)

The estimates in (3.17), (3.18), and (3.19) imply

146 () reme 13
- 9 | 4 2k+1
+ €
< |x||2 - )* :
< e lx[12 + (0n-1 [[xll2/€) kz:l 2k+ ( o

S(E+ 1+ ) +eh)/on ) x5 (3.20)

This proves the case where the vectors x are real-valued. The com-
plex case is obtained by treating separately real and imaginary parts.

Corollary 7 (Exercise 3). The A(2)-uniformizing map
Yy (N) - L2(Q)
constructed above is weak * continuous. Specifically, if

lim x;(k) = x(k) for x; € Bpzyny, X € Bpyny, and k € N”,
J—00
then
Jim B 4 (x))g = B Ya(x)g. g € L (Q"). (3.21)

(about Corollary 7). Adding to Definition 5 the requirement that
A(2)-uniformizing maps v : 12(E) — L>®(G) be weak* continuous
produces an ostensibly stronger notion of A(2)-uniformizability. To
wit, the proof of Lemma 6, based on Theorem III.8 and the obser-
vation that R" is a A(p) set for p > 2, does not directly yield the
assertion in Corollary 7. I do not know whether A(2)-uniformizability
alone, with no further structural conditions, implies the existence of
weak™ continuous A(2)-uniformizing maps.

(A quick non-constructive proof). Suppose we do not insist on
explicitly defined A(2)-uniformizing maps. That is, suppose
Definition 5 is rephrased (cf. Definition I11.6): E C G is a uniformi-
zable A(2)-set if for every 0 < e < 1 there exists 6 = dg(€) such that
for every x € 1?(F) there exists f € L>°(G) with these properties:

(i) f(v) =x(7), 7 € E;
(i) [IfllLee < 8lIx|2;

(ii) 1 fleell2 = (g0 [FOI?) " < ello]lz
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Then, we obtain that R" is a uniformizable A(2)-set by taking f €
L>*(Q") that satisfies (i) and (ii) above (the Khintchin L!-L.2
inequality for R™), and then convolving it with a Riesz product
(Exercise 4).

iv (A(2)- uniformizing constants of R"). The constructive proof in
Remark i implies that dgn(e) is @ (e7"*'/2). A modification of the
proof implies that for every k > 0 there exists Cy > 0 such that

Sgn(€) < Cp e /®) (Exercise 5). (3.22)

4 A Projectively Bounded Trilinear Functional

In Chapter III we proved the Grothendieck bilinear inequality by
using the A(2)-uniformizability of R, and in this chapter we use the
A(2)-uniformizability of R™ to derive analogous inequalities in higher
dimensions. To ease our way into the multilinear framework, where
notation is inevitably more complicated, we first derive an archetypal
trilinear instance. Then, generalizing this instance, we shall identify
within certain classes of multilinear functionals those that are projec-
tively bounded.

Let H = I>(N?). Forx € H, y € H, and z € H with finite support,
define

n(xy,2) =Y x(i,j) y(j, k) 2(i,k), (x,y,2) € H”. (4.1)
4,7,k

Lemma 8 17 determines a bounded trilinear functional on H.
Specifically,

Inll¢, :=sup{ln(x,y,2)| : (x,y,2) € Bu x By x Bu} =1.  (4.2)

Proof: Three successive applications of the Cauchy—Schwarz inequality
to the sums over i, j, and k, respectively, imply that for x € H, y € H,
and z € H,

D 1% ) ¥ (5. k) 26 k)| < [xll2 [[y]l2 |22

04,k
Denote the canonical basis of H by {e;; : (i,7) € N*} (ie., e;;(k,1) =
1if (4,4) = (k,1),and e;;(k,l) = 0 otherwise), and observe that for
(iaj7 k) € N3a n(eij7ejk:eik) =1 U
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By fixing an enumeration W = {w; : j € N} of the Walsh characters
(any enumeration will do), we view 7 as a bounded trilinear functional
on [?(W?), and then, by applying Parseval’s formula, we realize it as a
bounded trilinear functional on L2(02):

Lemma 9 For f € L%(Q?), g € L3(Q?), h € L2(Q?),

fg iL Z.f w27wj w]awk)h(whwk)
1,5,k
= / fwi,w2) g(wa,ws) h(wl,wg)P3(dw1,dw2,dw3).
@ (4.3)

Proof: If f, g, and h are W2-polynomials, then (4.3) is obtained by three
successive applications of Parseval’s formula. The general case follows by
density of polynomials in L2. O

Lemma 10 If Ey, E> and E3 are finite subsets of Bre~(q2), then

17 £y x B2 x B3 Vs (81,2, 55) < 1 (4.4)

Proof: Because Ei, Es, and Es are finite, 7|g, xm,x 5, 18 obviously
in V3(E1, Eq, E3). We verify (4.4) by duality. Let 8 € (V3)*; ie
B is a bounded trilinear functional on co(E4) X co(E2) X co(E3), and
18llv; = [IB]lz; (Chapter IV §5). The evaluation of 8 at n|r, x &, x B,
is

ﬂ(n|E1><E2><E3) = Z /8(61C ®6g ®5h) U(f»ﬁa il)a (4'5)

(f,9,h)EE1xE2x E3

where 07,84, and ), are the indicator functions of {f},{g}, and {h},
respectively. Apply (4.3), and estimate

> B35 ® 89 ® 8) n(f.g.h)

(f,9,h)EE1 X Egx E3

Z B(of ® g ® 5h)/ Fwi,w2)g(w2, ws) h(w,ws) P?(dws, dws, dws)

(fs9:h)
D B @86 ® ) f(wr,wa)g(ws,ws) hlwi,ws) [P

</,
(f:9:h)

< 1Bllv;-

(dwl,dwg, dws)

(4.6)
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The last estimate is obtained as follows. Fix (wy,ws,ws3) € Q3. Write

> B(S5 @ 8y ® 64) f(wi,w2) gwa,ws) h(wr,ws)

(f,9,h)EE1xE2x E3
=[At®@uwv), (4.7)

where
t(f) = flwr,w2), u(g) = g(wa, ws),
U(h’) = h(wlﬂw?b)a (fagvh) € By x EZ X E37

and obtain (4.6) by integrating the inequality [3(t @ u ® v)| < [|B]lv;
over Q3. U

Next, we verify that 7 is projectively bounded by representing
n(x,y,z) as a convergent series whose summands have the form
N(fxs Gys ha), where (fx, gy, hs) € L®(02) x L>®(Q?) x L>®°(0?). This
series representation will be deduced from the A(2)-uniformizability of
R2. To start, enumerate the complement of the Rademacher system
in W,

WA\R := R° ={xx : k € N}. (4.8)
(Any enumeration will do.) Choose a one-one correspondence between
the Rademacher system R = {ry : k € N} and R°,

Tk < Xk: Tk € R, Xk € R (4.9)

(Any correspondence will do.) We denote the two-point set {0, 1} by D.
For s = (u,t) € D x D, denote |s| = max{u,t}, and for s € (D x D)"
define

sl =D Is() (4.10)
j=1
(s=(s(1),...,s8(n)), and s(j) € D x D for j =1,...,n). Fix

0<e<1/7.

By Lemma 6 (the case n = 2), we can choose a A(2)-uniformizing map

g =1 2(N?) — L>®(Q?) (4.11)
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associated with e and dg2(e) = § (as per Definition 5). We identify
12(N?) with I2(R?).
Let x € By. For s € D x D and (j, k) € N?, define

xs(d, k) = ()" (5, s (4.12)

where

(Vi>k)s = (4.13)

We proceed recursively. Suppose n > 1, and that x, € 1(N?) has been
obtained for every s € (D x D)"~1. Fors € (D x D)™, write s = (s2,s1),
where s € (D x D)"~! and s; € D x D, and let

Xs = (X52)517 (414)
where (xg,)s, is defined by (4.12) with xg, in place of x. That is,
xs(j, k) = w(xsz)A('ij'Vk)Slv (J, k) € N2, (4.15)

Lemma 11 For x € By, s € (D x D), and n > 1, let x5 € I>(N?)
be defined recursively by (4.12) and (4.14). Then,

X(s,(0,0)) = Xs; (4.16)

P(xs) " (rj,re) = %s(4, k), (4, k) € N (4.17)
xsll2 < €l; (4.18)

[9(xs) || < 6 €l; (4.19)

s 2 < €. (4.20)

Proof: By (4.15) and (3.1) (i),

x(s,(0,0))(jv k) = w(xs) ) (ij Tk) = Xs(j7 k)v (]7 k) € N27 (4'21)

which verifies (4.16) and (4.17).

The statement in (4.18) is proved by induction on n. The case n =1
follows from (4.12), (3.1) (i) and (3.1) (ii). Let n > 1 and s = (s2,s1),
where sy € (DxD)" !tands; € DxD. If s = (s, (0,0)), then |s| = |sa];
by (4.16) and the induction hypothesis,

%52, 0.0 ll2 = [[3s, [l2 < €2 = €lol. (4.22)
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For any other s, by (4.15), (3.1) (iii), and the induction hypothesis,

sl = [ Y [0(xe) " (s
(4,k)EN?
< ||xg,ll2 S € €l =€, (4.23)

The statements (4.19) and (4.20) follow, by (4.18), from (3.1) (ii)
and (iii). O

Let 74, m, and 7, denote the projections from D3 onto D? defined by
7o (t, u,v) = (u,t), mp(t,u,v) = (u,v),
mo(t,u,v) = (t,v), (t,u,v) € D?. (4.24)

For integers k > 1, let t € (D3)%, and write t = (t(j) : j € [k]), where
t(j) € D3. Define

7.t = (mat(l), ..., mt(k)); (4.25)
7ept and 7r.t are defined similarly. Denote D3 = D ~ (0,0, 0).

Theorem 12 Let 1 be the trilinear functional on H? defined in (4.1).
Let ¢ : 2(N?) = L>®(Q2) be a A(2)-uniformizing map for R? with uni-
formizing constants 0 < € < 1/7 and dr2(e) = 6. Then, for (X,y,z) €
BH X BH X BH,

nxy,2) = (=" Y n(r,e) s U¥me) s $(Era) ),
k=0 te(D3)k

(4.26)
where the series on the right side converges uniformly in B3;.
Proof: Let (x,y,z) € B}. By the first identity in (4.3),
(%) 6(y) " (z) ")
- > P(x" (w1, w2) ¥(y) " (w2, ws) P(z) " (wi,ws).

(w1,w2,w3)EW3

(4.27)
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By splitting the sum in (4.27) into a sum over R3 and a sum over its
complement (R3)°, we obtain

D W) (riry) (y) (ry,ma) (2)" (ry )

(i,5,k)EN3
= 77(¢(X) " 1/’()’) "y w(z) A)
- Z Y(x)" (11,72) ¥(y) " (12,73) ¥(2) " (71,73). (4.28)

(v172,78) E(R?)e
By (3.1) (i), for all (i,7) € N°,
Y(x) " (ri,rj) = x(3,4),  ¢(y) (risry) =y (3, 7),
¥(z)" (ri,rj) = 2(i, j)- (4.29)
By the definitions in (4.12) and (4.24),

V(%) (11:72) V()" (2 73) ¥(x) " (11, 73)

(71,72,73)E(R3)°

= NXnus Yrys: Zmes)- (4.30)

seD3

Combining (4.29) and (4.30), we rewrite (4.28) as

7](X7Y7Z) = W(w(x) ) ) 1/1(3’) ) ’ 1/’(2) A) - Z 7](X‘n'as?y77bs7 Zﬂ'cs)' (431)

seD3
Claim: Forn > 1,
n—1
77(X7Y7Z) = Z(_l)k Z U(¢(Xwat)A7¢(Y7rz,t)A7¢(Z7rct)A)
k=0 te(D3)k
+(_1)n Z U(Xn-au Yot zﬂ'ct)' (432)

te(D3)n

Proof of Claim (by induction). The case n = 1 is the statement in
(4.31). Let n > 1 and assume (4.32). Let t € (D3)". By applying (4.31)
with x. ¢ in place of x, y,¢ in place of y, and z,_¢ in place of z, we
obtain

n(Xﬂ'at7 Yruts Z‘rrct) = n(’(/}(x‘n’at) ) w(Y‘mt) ) ) 1/)(Z7rct) A)

_Z Xﬂ' t) TaS) y‘n’bt)ﬂ'b57 (zﬂ'ct)ﬂ'cs)' (4'33)
seD3
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The recursion in (4.14) and the definition in (4.25) imply

(Xﬂ'@t)ﬂ'@s = X, (t,8)» (Yﬂ'bt)ﬂ'bs = Ymu(t,s)s (zrct)ﬂcs = Zgx.(t,s)»

where t € (D3)" and s € D3. Therefore, the second term on the right
side of (4.32) can be rewritten as

(_l)n Z 77(X7rat7 Yty zﬂ'(;t)

te(D%)n

D" > (n(l/)(xmt)Aallf(ymt)ﬁib(zmt)A)

te(D3)"

- Z n(xwa(t,s),: Yy (t,8),5 Zﬂ'c(t,s)))

seD3
= (D" Y W (Kmt) U (Fmt) Y (Zrt) )
te(D3)"
+(_1)n+1 Z n(xﬂ'at7y7rbt7z7rct)' (4'34)
te(ﬁ3)n+l

By (4.34) and the induction hypothesis, we obtain (4.32) with n + 1 in
place of n, and the claim follows.
Lemma 8 and (4.18) imply that for all n > 0 and t € (D3)",

N(Xruts Yot Zret)| < Kot ll2 Vsl 1Zell2
< elmatl elmotl (lmet], (4.35)
For all t € (D?®)",

|7eat| + |7wot| + |7wet] > n, (4.36)

and therefore, by (4.35),
D Gt Yyt Zee)| < (T€)™ (4.37)

te(f)S)n
The assertion in (4.26) is obtained by applying (4.37) in (4.31), and
letting n — oo. a

Corollary 13 7 is projectively bounded. In particular,

3

1)
R (4.38)

where € and § = dp2(€) are A(2)-uniformizing constants of R2.
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Proof: We estimate ||9| g, x £, x B5 || v4 (B4, Es, B5), Where E1, Eo and E3 are
arbitrary finite subsets of By. For k >0 and t € (D3)k, define

By = {¢(Xnot) 12 € Er}, Eog = {¢p(Ympt) 1y € Ea},
e = {t(zms) " = € Bs). (4.39)

Then, by (4.19) and Lemma 10,

H77|E1t><E2t><E3t”Vs(Eu,Ezt,Eat) < 536|"at| Glﬂ-bt‘ e‘ﬂ-c”' (440)

Therefore, by an application of (4.40) to (4.26),

1715y x Bs x B3 |1 Vs (B4, 22, 15)

00
< Z Z ||77|E1t><E2t><E3tHV3(E1t7E2taE3t)

k=0te(D3)*
3 - |wat] _|mwpt]| _|7wct] °
<4 o b i < 4.41
By Y i dnii < £ )
k=0te(D3)*
which implies the estimate in (4.38). O

5 A Characterization

We build on the main result of the previous section. Let H = [2(N?)
and ¢ € [2(N*). Define

no(x,y,2) = Y ol k) x(i,5) y(j, k)z(i, k),
1,7,k
(x,y,2) € H. (5.1)

Then, 7, is a well-defined bounded trilinear functional on H, and
Inellr, < ll¢llo (see Lemma 8). In this section we answer the ques-
tion: when is 1, projectively bounded?

We consider the Rademacher system indexed by N?, whose underlying
domain is Q = {—1,1}". We denote it by

R={ry:(i,j) € N*}, (5.2)
and define (a subset of R?)

RU = {(’I“ij,T‘jk,Tik) : (i,j7 k) S Ns} (53)
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Theorem 14 The trilinear functional n, on H defined in (5.1) is pro-
jectively bounded if and only if ¢ € B(RY).

The assertion that a scalar-valued ¢ defined on N® is in B(RY) means
there exist u € M(Q3) such that

‘P(@% k) = ﬂ(rijyrjkvrik:)7 (imjv k) S N37 (54)

and its B(RY)-norm is the infimum of ||u|m over all such y; see
Chapter VII §7 for definitions and basic facts.

To prove necessity (¢ € B(RY) = [|ny||pbs < 00), we identify B(RY)
as a tilde algebra. (See Remark ii in Chapter VII §8.) Let Vi (N?) denote
the set of € co(N®) that can be written as

@(ia]’v Z Qm eml Z .7 0m2(j7 k) 0m3(iak)a
m=1
(i,4, k) € N?, (5.5)

where 0,y € Beywe) for m € Nand [ € {1,2,3}, and Y7 7°_, || < oo
The norm in Vi (N™) is

lellvy, = inf { Z || : representations of ¢ by (5.5) } (5.6)

m=1

(cf. (VIL.8.21) and (VIL.8.22)). Then, Vi;(N®) is the algebra of pointwise
limits of sequences uniformly bounded in Vi;(N®). Elements in Vi (N?)
are normed by

lell, =t {sup lonlv : Jin_pm(w) = pla). ner ). 61

The algebra Vi;(N?) can be realized also as the algebra of restrictions of
elements in V3(N?, N?, N?) to

= {((6,4), (G, k), (5, k) : (5,4, k) e ¥} C N2 x N2 x N2, (5.8)

Similarly, we identify V;(N?) as the algebra of restrictions of elements
in Va(N?, N2 N?) to NV, (V7 (N?) is complemented in V3(N? N?, N?); see
Exercise 6.) By Proposition VII.24, V5(N? N2, N?) and V5(N? N? N?%))
are canonically isomorphic to A(R3) and B(R3?), respectively. This
implies
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Lemma 15 (Exercise 7).

i. Vir(N®) ds canonically isomorphic to A(RY). Specifically, if ¢ €
Vi (N®), then there exists f € L'(Q3) such that

So(iaja k) = f(rij7rjk’a7"ik:)7 (i7j: k) S N37 (59)
and

[£lles < 2° flellvy - (5.10)

Conversely, if ¢ € A(RY), then there exists a representation of p,

o0
Q(riji ik i) = Y Om Om1(i,5) Oma(d, k)Oma(i, k),
m=1
(i,5,k) € N°, (5.11)
such that 0., € B2y form € N and € {1,2,3}, and
o0
Z lom| < |l@llacryy- (5.12)
m=1

ii. Vo (N%) is canonically isomorphic to B(RV). Specifically, if ¢ €
Vi (N™), then there exists p € M(Q3) such that

Q‘Q(iaja k) = ﬂ(riﬁ rjkvrik)ﬂ (iaja k) € N37 (513)
and
el < 2% el - (5.14)

Conversely, if o € B(RY), then there exists a sequence (py : k € N)
in Viy(N®) such that

‘p(rijvrjk774ik) = kli»rgo ‘Pk(iajv k)a (ivj7 k) € Ngv (515)
and
sup{|lexllvy : k € N} < lollprv).- (5.16)

Proof of Theorem 14: We first prove that if ¢ € B(RY), then n,, is
projectively bounded.

Step 1 Suppose

o(i, . k) = 01(i, §) 02(3,k) 0s(i, k), (i,4,k) € N*, (5.17)
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where 0; € B, n2), | € {1,2,3}. Let E; be a finite subset of By,
l€{1,2,3}. Let

F={x0,:xeE}, [e€{1,2,3}, (5.18)
where
(x60) (i, 5) = x(i,5) 0,(3, ), (i,5) € N*. (5.19)
Then, F; x F5 x F3 C By. By Corollary 13,
1M0llva (21, 2. 82) = [nllvary o) < K, (5.20)
where K > 0 is an absolute constant (cf. (4.38)). This implies
M llpb, < K. (5.21)

Step 2 Suppose ¢ € Vi7(N?). Write

)
Y= Z Um Pm; (522)
m=1

where ¢, € B ns) is an ‘elementary tensor’ of the type defined in
(5.17), and Y-, |am| < oo. Then,

Mo = D Qm T, (5.23)
m=1
and by Step 1,
M llpb, < Z W llng,, lpb, < K Z |- (5.24)
m=1 m=1

Step 3 Suppose ¢ € B(RY). Then, by Lemma 15, there exists
{¢r : k € N} C Vi7(N?) such that

i, k) = lim (@5 k), (i.5,k) € N, (525)
—00

and

sup{||kllvy: k € N} < [lollp(rv). (5.26)
By (5.26) and Step 2,
1Mok llpbs < Kllollprry, k€N (5.27)

By (525)7 limg—, 00 N (va’ Z) = Ww(xvy’ Z)7 (X,y7Z) € Buy X Bu X By.
Then, by (5.27) and Proposition 4 (Exercise 1 iii),

176 llpbs < Kl 5r0)- (5.28)
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Next we prove the sufficiency part in Theorem 14 (||ny|lpb, < 00 =
¢ € B(RY)). Let E={e;;: (i,j) € N} be the basis in H = [(N?),

D ={G Camion, (5.29)
Define (cf. (2.2))
Do 8(Tirgis Tingas Tisjs) = Np(€irjis €ingns €ings )y
(Pivjvs Tisjas Tisjs) € B> (5.30)
By Proposition 3,
6n,..£llB(r2) < N llpbs» (5.31)
and by (5.29),
(i, g, k) if i1 =1i3=1,
P B (Tinjis Tinjas Tigjs) = ﬁzzzg (5.32)
0 otherwise,

which imply [l¢llprvy < [106lpb, -

Corollary 16 (cf. Exercise 6). 1zv € B(R?).

Proof: Let o(i,j, k) =1 for (i,4,k) € N®. Then, ¢n,.5 = 1gu, where
b5 is defined in (5.30), and computed in (5.32). By Corollary 13, n,
is projectively bounded, and by (5.31), 1zv € B(R3). [

6 Projectively Unbounded Trilinear Functionals

To verify existence of bounded trilinear functionals that are projectively
unbounded, we use the implication ||n,pb, < 00 = ¢ € B(RY) in
Theorem 14 (the easy direction).

Theorem 17 RV is not Sidon; i.e., there exists o € 1°°(N*) such that
¢ ¢ B(RY).

Proof: We will prove that the A(q) constants’ growth of RV is no
better than (P’(qz?’/‘l)7 and thus deduce, from the instance t = 1 in
Theorem VII.41, that RV is not a Sidon set.
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For m € N, let

fm = Z T @ Tk @ Tik, (6.1)
(i,4,k)€[m]?

and consider the Riesz product

Ru= J] Q+rpe J] Q+rpe [[ @+ry). (62

(i,5)€[m]? (i,5)€[m]? (i,5)€[m]?
Then, ||Ry |l =1,
| Rinlliz = 25™°  (cf. (VIL.9.5)), (6.3)

and therefore,

| Ryl < 23 /4 (6.4)

for p € (1,2) and 1/g+1/p = 1 (Exercise VIL29). Also, because R,, = 1
on the support of f,

E Ry frn| = m® = m? | fon]| 12 (6.5)
By applying Holder’s inequality to the left side of (6.5) with
2

p=m?/(m*—1) and ¢=m

and applying (6.4), we obtain

3
m2|| fnllz < 2° | fin

Lm2; (66)

which implies that the A(q) constants’ growth of RV is no better than
7 (g*). O

Remarks:

i (a preview). In Chapter XII we will prove that the A(q) con-
stants’ growth of RV is precisely @ (¢*/*), and thus obtain that RV
is, in essence, a ‘3/2-dimensional fractional Cartesian product’. (Cf.
Bonami’s inequalities in Chapter VII §9.) To wit, the spectral set
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RY will foreshadow a general notion of a fractional Cartesian product
and a measurement of combinatorial dimension, which we formally
introduce in Chapter XIII.

ii (credits). That a Grothendieck-type inequality need not hold in
dimensions greater than two was shown first by Varopoulos in [V4,
Proposition 4.2]. This discovery underscored that analysis in dimen-
sions greater than two is fundamentally different from analysis in two
dimensions. Specifically, Varopoulos proved by an application of the
Kahane-Salem—Zygmund probabilistic estimates that there exists
cpel“(N?’) such that 7, fails a trilinear Grothendieck-type inequal-
ity. A result in the opposite direction, demonstrating (non-trivial)
trilinear functionals that do satisfy a Grothendieck-type inequality,
appeared first in [B13]. The characterization in Theorem 14 appeared
in [Bl4]. The proof here of Varopoulos’s original result, that there
exist projectively unbounded 7, is different from the proof in [V4].

7 The General Case

For a set Y and a positive integer m, let m1,..., T, denote the usual
projections from Y onto Y,

(Y1, Ym) =Y, Y1,---,Yym) €Y, 1 € [m]. (7.1)
If S C [m] and S # 0, then g will denote the projection from Y™ onto
Y'S defined by

TS ym) = (Wi 1 €85), (Y- ym) € Y™ (7.2)
Here and throughout, in keeping with standard notation, we write Y™
for YI™. For A € Y™, let ms[A] = {7s(y) : y € A}, and for y € Y5,
let g {y} ={uecY™:n5(u) =y}
Let U = {Si,...,S,} be a cover of [m] consisting of non-empty
ordered subsets of [m], such that every j € [m] appears in at least
two elements of U; that is,

U S, = [m], (7.3)

and

Hp:jeSptl =22 jelml (74)
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(We allow repetitions in U; e.g., U = {(1),(1)}.) For each p € [n], let
H,, be the Hilbert space lz(NS”). That is, we take a separable Hilbert
space and index its basis by N°#. For ¢ € [°°(N™), define

Mo (X1, %n) = Y @(1) X1 (g, 1) -+ Xp (5, 1), (7.5)
leNm
for xy € Hy,..., x, € H, with finite support. Note that the trilinear

functional 7, in (5.1) is the instance U = {(1,2), (2,3), (1,3)} in (7.5).

Lemma 18 (cf. Lemma 8). If p € I°°(N™), then 1, v determines a
bounded n-linear functional on Hy X --- X Hy,, and

g0l := sup{lng,v(x1s- - %n)| s xp € B, p € [n]} < [l¢lloc. (7.6)

Proof: By Holder’s inequality, it suffices to prove (7.6) in the case
Np,U = Nu, where ¢ = 1. In this case we denote 7, 7 := ny. The proof
is by induction on m. For m =1,

le

leN

< il - xnlln < lxallz- - lixnllz - (7.7)

Let m > 1, and write

Z Xl(ﬂ’sll) s Xn(ﬂ-Snl)

leN™

Z Z 7r51 n(ﬁsnl) . (7.8)

keNjem (K}

For k € N, the sum Zleﬁl{k}, after relabeling coordinates, is a sum

over N™~ 1. Therefore, by the induction hypothesis,

o=

. xims ) xalns, D) < ] > @] - (79)

lem, ' {k} =1 \jers, [ ' {k}]
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If S, = (m) for some p, then

(S

Yoo P | = xRl (7.10)

jems, [ {k}]

Also, if m ¢ S, then

[NE

Yo RGP = lxl. (7.11)

jems, [mn ' {k}]

By applying (7.9) to (7.8), we obtain

2=

> x(ms ) xalms, D <D T] S Ix0)P

ten keNP=1 \ jens, [m; ' (k)]

[N

= II x> I Yoo O] . (712

{p: m¢Sp} keN{p: meSp} \ jens, [r, ' {k}]

By the case m =1,

> 11 Y @)

keN{p: meSp} \ jens, [, {k}]

D=

< I |X X =P

{p: meSp} \ k€N jerg [m,'{k}]

= I Il (7.13)

{p: meS,}

By combining (7.12) and (7.13), we obtain (7.6). O
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For S C [m], let Rg denote the Rademacher system indexed by N¥,
and let Q¢ = {-1, +1}NS denote its underlying domain. Define (cf. (5.3))

RY = {(rag,ts---7ns,1) 11 EN™} C Rg, x -+ X Rg,. (7.14)

Following the correspondence [ « (r,rsll, .oy Trg, 1) between N™ and
RU, we say that a scalar function ¢ on N™ is in B(RY) if there exists
w€ M(Qg, x -+ x Qg, ) such that for all [ € N,

o) = ilrag sy mg 1) (cf. (5.4)). (7.15)

The main result of this chapter is

Theorem 19 (cf. Theorem 14). |[nuellpnr, < 00 < ¢ € B(RY).

In the next section we prove that 1y, is projectively bounded for
¢ = 1, and use this result in §9 to establish the general implication
¢ € B(RY) = ||nuellpb, < co. The converse, that ||ny,q|ph, < o0
implies » € B(RY), will also be verified in §9.

1

8

We write ny for ny,,. In order to prove that |[ny|pn, < oo, we will
obtain a representation of 7y generalizing the representation in
Theorem 12, and to this end, we first generalize the representation in
Lemma 9 (the case U = {(1,2),(2,3),(1,3)}). The key observation,
which we generalize below, is simply that the representation in Lemma 9
consists of three successive convolutions.

For p € [n], following an enumeration of the Walsh system W by N,
we identify [2(N°7) with (2(W5?). By Plancherel’s theorem, we realize
nu as an n-linear functional on L2(Q%, P51) x ... x L2(Q5~ P5):

nU(flv-“vfn) = Z fl(ﬂslw)"'fn(ﬂsnw)a

w=(w1,...,Wm ) EW™

f1 € L2(Q5 P5Y), ..., f, € L2(Q5  PS). (8.1)
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(For S C [m], P¥ denotes the |S|-fold product measure P x --- x P on
05) If € € Q, and f is scalar-valued on QF, then we let f|w7_§ denote
the restriction of f to m; 1{¢}. If f € LI(QS) and j € S, then f7 will
denote the W-transform of f with respect to the coordinate indexed
by j. (For w € W, f(w) is a function on Q5\7}.) Define

Li=max{p:1€5Sy},..., L, =max{p:me Sy}, (8.2)

and
Ay={p:1eS,\{L},..., An ={p:me S,\{ln} (8.3)
Let f1 € L2(Q%),..., fo € L2(Q%). For j € [m] and k € Aj, let

& €. For p=1,...,n, denote

fim ‘W'rn:HkEAmgkm p=ln

£ =<ty m¢ .S, (8.4)
Tolwm=¢mm pE Apn.
We continue recursively: for 1 < ¢ < m, if f(l‘H """" m)7._.’ Y(Li+1 ,,,,, m)
are functions on QSN L-ml - QS \G ™} respectively, then for
p=1,...,n,
i+1,...,
) l(z'z_ m)‘wz—nkeAifm p=1
film) = ézfi """ ™) i¢S, (8.5)
fighL ’“"7n)‘wi=£pi p € A;.

. . . 1,....m . .
This recursion ends with f; ), p=1,...,n, which we view as func-

tions on Q41 x -+ x Q4™ . To record for future use that these functions
depend on U, we write

fllewm) = Tuf p=1,... 0. (8.6)

Lemma 20 (cf. Lemma 9). If f; € L2(Q%),..., f, € L2(Q%"), then

nU(f17"'7fn) = Z fl(ﬂ51w)"'fn(7rsnw)

w=(wy,..., W, )EW™

- /&QAIXMXQAWL (1:[ TUfp) &) (P x - x PAm)(dE).  (8.7)
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Proof: We prove (8.7) by induction on m. If m = 1, then /1 = n and
Ay = [n—1]. In this case the right side of (8.7) is the n-fold convolution
of f1,..., fn evaluated at the identity element ey of £2:

[ ) fua ) FulIGZ 6 Bl dE)
= (frx-x falleo) = D fi(w) - fu(w). (8.8)
weWw

Let m > 1, and assume (8.7) in the case m — 1. The right side of (8.7)
is an integral over Q41 x - - . x Q4m-1 with respect to PA x .. PAm—1
of

I s /Q | Tufi, I s d]PAm>. (8.9)

{p: m¢Sy} " {p: p€An}
In particular,
/ Ty fi,, H Tu fp dpin
QAm
{p: PEAM}

is the multi-fold convolution on €2 of f;, with f, (p € A,,), evaluated at
eo € Q. Let U’ be the cover of [m — 1] obtained by replacing each S € U
with S" = S\{m}, and let Ty be defined by (8.6), where U is replaced
by U’. Then,

[_ruh, I Tus,aet

{p: p€An}

=> I Twfrw). (8.10)

weW {p: meS,}
If m ¢ Sp, then
Tu fp = Tu fp. (8.11)

Following a substitution of (8.10) and (8.11) in (8.9), we rewrite the
right side of (8.7) as

E / | | Ty fp
QAL X xQAm—1
wew {p: m¢S,}

I 7ofrw) | dpt ... xdpt=—. (8.12)
{p: meS,}
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For each w € W, apply the induction hypothesis to each of the sum-
mands in (8.12), thus obtaining that the right side of (8.7) equals

> > [ fets,w T] G (rsw

W EW w=(w1 ..o,y _1)EW™=1 {p: mgSp} {p: meSp}

= Z Si(rs, W)+ fu(ms, w). (8.13)

W=(W1,. W ) EW™ 0

Corollary 21 (cf. Corollary 10). If Ey,..., E, are finite subsets of
the respective unit balls of L°(Q%1),... L>°(Q%), then,

1m0 12y x--x B Vi By, ) < 1 (8.14)

Proof: If (fi,...,fn) € F1 X -+ X E,, then Ty fi,...,Tyfn are in
the respective unit balls of L>(Q5), p = 1,...,n. (See (8.6).) The
estimate in (8.14) follows by duality. (Review the argument used to prove
Corollary 10.) a

We enumerate R° by N (as in (4.8)), where R is the Rademacher
system R indexed by N and R denotes its complement in W, and (as
in (4.9)) we fix a one—one correspondence between R and R°. Let D =
{0,1}, and S C [m]. For (s;: s;€D, i € S) = s in D?, define |s| =
max{s; : i € S}, and for (s(j) : s(j) € D?,j € [k]) = s in (D%)*, define

k
ls| = Z Is()| (cf. (4.10)). (8.15)
Let
Vs : P(N®) = L= (QF) (8.16)

be a A(2)-uniformizing map of R® provided by Lemma 8, associated with
uniformizing constants 0 < € < 1 (to be specified later) and dgs(e) =
6. (I*(R®) is identified with I2(N®); R is the Rademacher system indexed
by N, and Lemma 8 is invoked in the case n = |S|.) For j € Nand s € D,
define

T ifs=0
v](s)—{xj s 1 (8.17)
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Forl=(l;:j€S)e N ands = (s;:j€S)€ D% define
(Y)s = (v1,(s) s j €5)  (cf. (4.13)). (8.18)

Let X € Bpa(sy. For 1€ N® and s € D9, define

zs(l) = Ps(x) " (W)s  (cf. (4.12)). (8.19)

We proceed recursively. For n > 1, assume z, € [2(N”) has been
obtained for every s € (D)""!. Let s € (D°)", write s = (sg,51)
where sy € (D%)"~! and s; € D, and define

Xs = (Xsy)s;  (cf. (4.14)). (8.20)
Specifically, (8.20) means that for I € N,
xs(l) = ¥(Xs,) " (W)s,  (cf. (4.15)). (8.21)

The lemma below generalizes Lemma 11.

Lemma 22 (Exercise 8). For x € Bp(ys), let x5 € 12(N®) be defined
recursively by (8.18) and (8.20). Then,

X(s,(0,...,0)) = Xs} (8.22)

¢(XS) ) (TFS(T]'U' . '7rjm)) = XS(,/TS(jlv s 7jm))7

(1,5 Jm) €N (8.23)
xsl2 < €l (8.24)

9 (xs) [ < 6 €l; (8.25)

sz < el*l. (8.26)

The theorem below generalizes Theorem 12.

Theorem 23 Let U = {S1,...,S,} be a cover of [m] satisfying (7.3)
and (7.4), and let ny be the n-linear functional on Hy X -+ x H,, defined
by (7.5) with ¢ = 1, where Hy, = 2(N%), p=1,...,n. Let

Py P(N?) 1 L®(Q%), p=1,...,n, (8.27)
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be A(2)-uniformizing maps associated with 0 < € < 1/(2™ — 1) and
Spsp(€) = 8,. Then, for (x, ... x") € By, x--- x By,

o, x ) =3 DR YT e 07w D)),
k=0 te(Dm)k (828)
where series on the right side converges uniformly in By, X --- XBpy, .

(For S C [m] and t = (t(1),...,t(k)) € (D™)¥,

st = (rst(1), ..., mst(k)).) (8.29)

Proof: (cf. Proof of Theorem 12). By (8.1),

no(@(xM) "))
> ) (rs,w) - (x ™M) (rg, W), (8.30)

weWwm

Split the sum on the right side of (8.30) into a sum over R™ and a sum
over its complement:

> W) (rg,w) - p(x™) (s, W)

weR™
=nu (M), ex) )
- Y @EW) (s, w) - (x ™) (s, w)). (8.31)

we(R™)e

By the definition in (8.18), and by (8.23) (the case s = (0,...,0)), we
rewrite (8.31) as

nU(X(l)v---vx(n)) :ﬁU(i/)(X(l))Av---ﬂﬂ(x(n))A)* Z n(XSrls?lsa"'a 5\'7;)" )

sebm
(8.32)
By iterating the identity in (8.32), we obtain for N > 1,
N-—-1
o, xM) =3 N e ) ) )
k=1 te(Dm)k
+ (DY 3T e X ) (8.33)

tE(E'"’/)N
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(cf. Claim in the proof of Theorem 12). By Lemma 15 and (8.24), for
all N > 1 and t € (D™)N (cf. (4.35)),

1 n 1 n
o (oo xS Ol < D e I
< elmsitl L lmsatl (8.34)
For t € (D™)V,
> ws,tl > N, (8.35)

and therefore, by (8.34),

S e X Ol < (@7 =)oY (of. (4.37). (8.36)
te(Hm)N

The theorem follows by applying (8.36) in (8.33), and letting N — oco.
1

Corollary 24 (cf. Corollary 13). Let € and ,, p=1,...,n, be the
A(2)-uniformizing constants in Theorem 20. Then,

S1- 6,
< —7" 8.37
HnUHan =1_ (mel)é ( )
Proof: Apply Corollary 21 and (8.26) to the representation of ny

in (8.28). O

9 Proof of Theorem 19

We first identify B(RY) as a tilde algebra. Let Vi;(N™) denote the space
of those ¢ € ¢o(N™) that can be represented as

e(l) = Zai Oir(ms, 1) - Oin(7s, 1),
i=1

leN", 6, € B, sy for i € Nand p € [n], Z || < o0,
i=1

(9.1)
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and norm it by

llellvy, = inf {Z |av;| : representations of ¢ by (9.1)} . (9.2)
i=1

The space Vy(N™) is the algebra of restrictions of elements in
V(N1 N®") to NY, where

NY ={(ng,L,...,ms, ) : le N"} C N® » ... x N, (9.3)

That is, Vi (N™) is the quotient V;,(N°, ... N°") modulo the ideal

{o e V(N ... N%): o(j) =0 for all j € NV}, (9.4)

(In Exercise 9 you are asked to prove that V;,(N°, ... N%") is isomorphic

to the direct sum of Viy(N™) with the ideal in (9.4).)
We define Viy(N™) to be the algebra of pointwise limits of bounded
sequences in Vi (N™), normed by

lellg, = inf{suplwlvU ¢ Jim ei() =p(),le N’”} (cf. (5.7)).
J
(9.5)

In the language of harmonic analysis, Vi;(N™) and Vi (N™) are restric-
tion algebras:

Lemma 25 (cf. Lemma 15; Exercise 10).

i. Vyp(N™) = A(RY). Specifically, if ¢ € Viy(N™), then there erists
f e LY Q™) such that

o) = f(rag - 27mg, 1), LENT, (9.6)

and

[l <27 l@llv - (9.7)
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ii.
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Conversely, if ¢ € A(RY), then there exists a representation
@(Tﬂsll, .. ,Tﬂsnl) = Z ag Op1(ms, ) -+ Opn(ms, ), Le N™  (9.8)
k=1

such that Ok, € B, (ysp) (k €N, p € [n]), and

oo

Z || < [l acryy- (9.9)

m=1

Vo (N™) = B(RY). Specifically, if ¢ € Vy(N™), then there exists
€ M(Q™) such that

So(l) :/jl’(rﬂ'sllﬂ"'7r775nl)7 le Nmi (9'10)
and
el <27 [lellg,- (9.11)

Conwversely, if ¢ € B(RY), then there exists a sequence (¢; : j € N)
in Vu(N™) such that

(p(’f'ﬂ.sl Iy« 77”7rs" l) = ]11,120 QOJ(l), l S Nm, (912)
and
sup{|lp;llvy : 7 € N} < [lollprv)- (9.13)

Proof of Theorem 19: Suppose ¢ € B(RY). As in the proof of
Theorem 14, we verify ||ny,,||pb, < 0o in three steps.

Step 1 If

o(l) = 01 (mg, 1) - On(1s, 1), LeN™, (9.14)

where 0, € B, (nspy. P € [n], then, by Corollary 24,

016

<L Tm 9.15
Imv,ellpb, < 1= (@ = 1) (9.15)

Step 2 If ¢ € Vy(N™), then, by Step 1,

51 Om
L T L (9.10)
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Step 3 If ¢ € B(RY), then, by Lemma 25 and Proposition 4,
510
mv.ellpb, < (m) el 5(rv).- (9.17)
Conversely, we verify that if ||y, pb, < 0o, then ¢ € B(RY). Let
E, = {ex : k € N°»} (9.18)

be the standard basis in [2(N°?), p € [n]. Define
oo (Thers -+ 5Ty ) = MU (Cheys - s e,), kpe€ NSP, p€n]. (9.19)

By assumption, ¢y, , € B(Rs, X --- X Rg,); in particular,

P00, |B(RS, x - xRS, ) < 2" 10,6 [lpba- (9.20)

By the definition of ny,,,

o(l) if ms,l=ky,p € [n],le N™
.o - ’ 21
d)’WU,gp (Tkl ) ) Tkn) { 0 OtheI'WiSe, (9 )
which implies
Ilze) < I6no B0, xxrs,) <2 Invglon, - (9.22)

Remarks:

i (upgrading Theorem 19). When ¢ € B(RY), an integral rep-
resentation of 7y, based on (8.28) implies a property ostensibly
stronger than |ny.e||pn, < oo (Exercise 11 ii). To see this, we first
restate the definition of tilde algebras (see Chapter III §8,
Remark iii). Let K7,..., K, be compact Hausdorff spaces, and let

Vo (K1, ..., K,) consist of those f € L>®(K; x --- x K,,) for which
there exist sequences (i : k € N) in V,,(Ky,..., K,), such that

lim @g(ty, ..., tn) = f(t1, ..., tn),
k—o0
(t1,. ., tn) € Ky X - X K, (9.23)

and

lim sup ||¢lv, < oo.
k

—00
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(L (K x -+ xK,,) is the space of all bounded Borel-measurable
functions on Ky X --- x K, and the definition of V,,(K1,..., K,)
can be found in Chapter IV §7.) We norm V,, (K3, ..., K,) by

11y, = int{ imsup [y, :
k—oo

klim i = f pointwise on K X -+ x Kn}. (9.24)

We consider the case n = 2, which is archetypal. We take K to be
the unit ball in [? equipped with the weak topology, and let 1 be
defined by
oo
n(x,y) =>_x(j) y(j), (xy)€l®xP (9.25)

j=1

(Note that n is not continuous on K x K.) Let ¢ be the A(2)-
uniformizing map in (3.2). Then, the function on K x K defined
by

nP(x)",¥(y) ") = /91/J(X)(w) Y(y)(w) P(dw)
=E ¢(x) ¥(y), (x,y)€K xK, (9.26)

is in Va(K, K ). Therefore, by applying the representation of n
in Theorem 23 in the (simplest) instance U = {(1),(1)} (see
Chapter IIT), we obtain

nlx> € Vo(K,K) (Exercise 11 i). (9.27)

In the multidimensional framework, we have

Theorem 26 1v,y|By, x--xBu, € Va(Bu,,...,Bu,) & ¢ € B(RY).

ii (a characterization?). Let 7 be a bounded trilinear functional on
a Hilbert space H. Let E = {e;: i€N} be a basis in H, and write for
(x,y,2) € H? (Exercise 12)

n(X7Y7z) = Z Aijk X(Z) y(.]) Z(k}), (928)

.5,k
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where
Qijk = n(eiv ej7 ek:)7 (i7j7 k) € N37 (929)

and

> ai x(i) y(5) (k)

4,k

NILTDOO Z aijr x(i) y(j) z(k)
(i,5,k)EIN]?

(o ol oo o)

DD aik x(0) y(j) z(k). (9.30)

i=1 j=1k=1

By Proposition 3, if 7 is projectively bounded, then

(a’ijk : (ivjv k) € NB) € B(R3)7

where R is the Rademacher system indexed by N; that is, there exists
u € M(Q3) such that

/l('f‘i, Tjalrk) = Qjjk, (Z'mjv k) € N37 (931)

il < 2% [ll b -

I do not know whether the converse holds:

Problem (Exercise 13). Suppose 7 is a bounded trilinear functional
on H and

nlgs € B(R®). (9.32)

Is n projectively bounded?

Here is a plausible approach to an affirmative answer (7). Suppose
there exists p € M(Q?) such that fi|g = n|gs. Let (x,y,z) € BY.
By A(2)-uniformizability, we obtain f, € L*(Q), f, € L>®(Q),
f» € L>(Q) with L*®-norms bounded by an absolute constant, so that

fu(ri) = x(i), fy(ri) =y (i), fo(ri) = 2(i), i € N, (9-33)
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and Hfz'R“”Zv ny\RcHz, Hfz|Rc||2 are ‘small’. Observe
W(X,y,z) = /sfm ®fy ® f.du
Q
- > Fa(wr) fy (wa)f(ws) fi(wr,wa, ws).

(w1, wa,w3)EW3~R3

(9.34)

(It is not difficult to make sense of the second term on the right side
of (9.34).) The main obstacle is the feasibility of a recursion based
n (9.34). Specifically, can n(x,y,z) be represented by an absolutely
convergent series whose summands are multiples of [,; fo @ f, @ fodpu?

ili (a preview). Let ny,, be the trilinear functional considered in §5:

My, 2) =Y (i, j.k) x(i,5) y(j. k) z(i, k),
7,7,k
x € I}(N?), y € I3(N?), z € I>(N?), (9.35)

where ¢ €1°(N?), and U={(1,2), (2,3), (1,3)}. The same functional
can be viewed also as a bounded 4-linear functional on I2(N) x ?(N) x

I2(N?) x I2(N?):

nu’,e W X,y,z ng { .]7 (.7) y(]v k) Z(ivk)v
1,5,k
w € I2(N), x € (N), y € I}(N?), z € I>(N?), (9.36)

where U" = {(1),(2),(2,3),(1,3)}. (See (7.5).) If |9y ollpby, < 00,
then ||nu,ellpbs < oo (Exercise 14). A question naturally arises:
does the converse hold? The answer will become evident in
Chapter XIII, as a corollary to the solution of the p-Sidon set problem
(Chapter VII §11, Remark vii).

Exercises

1. i. Verify Proposition 2.
ii. Verify Proposition 3.
iii. Verify Proposition 4.
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2. Let x € I2(N) have real-valued coordinates, and consider

n

F, = H(ro +ix(j) rj), neN (E.1)

j=1

i. Show that ||F,[|L~ < exp(3]|x]|2).
ii. Show that if k € [n] and 0 < j; < -+ < ji < n, then

Fn("‘jl .. 'Tjk) = 1k X(jl) . X(]’C)
Otherwise, if
wE Ay, oy, 0< g1 <00 < <ny m€ [n]}U{ro}

(cf. (VIL3.9)), then F,(w) = 0.
iii. Prove there exists ¢(x) € L*°(Q,P), denoted as the infinite
product

h(x) = H(ro +ix(j) ) (E.2)

(L°°-Riesz product), such that ¢ (x) " (r9) = 1 and

$(x)" (g, ) = 1° (1) - x )
0<ji < - <jg, keN.
3. Verify Corollary 7.

4. Recall that a subset F of a discrete Abelian group G is a A(2)-set
if there exists k > 0 such that for all f € L%,(G),

1 flle < Kl (E.3)

(Definitions II1.13, VII.33). The assertion that R C W is a A(2)-
set is the classical L'-L? Khintchin inequality (Chapter II); that
R" C W™ is a A(2)-set for all n € N follows by induction and
Minkowski’s inequality (Exercise VIL.32).

i. Prove that F C G is a A(2)-set if and only if for every ¢ € I*(F)
there exists f € L°°(G) such that

and

[fllLe < Ellll2.
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10.

11.

iii.

ii.

ii.

iii.

i.

i.

i.

*
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Prove that R™ is A(2)-uniformizable by applying i, and the
Riesz product

(e ()T ()0):

Is every A(2)-set A(2)-uniformizable?

. Show that for every integer m > 1 there exists p € M(€2) such

that

flr =1 and fi|g, =0 for j =2,...,m.
Fix an integer m > 1. In the definition of ; in (3.2), replace €
by €'/2™ and then convolve the resulting v, by p € M(Q) such
that fi|lr = 1, and fi|g; = 0 for j = 2,...,2m. Deduce that
Sr(e) is @ (e'/2m).
Prove that for every k& > 0 there exists C, > 0 such that

Spn(e) < Cp /R,

. Let U = {(1,2),(2,3),(1,3)}. Prove that if ¢ € V3(N* N? N?),
then 1yv¢ is also in V3(N? N? N?). In particular,

1w @llvg (e w2 w2y < llellvs v v w2y -

Prove Lemma 15.

ii.* Find the ‘optimal’ constant in (5.14). For example, can you

show

1l < 2% Jlollvy ?

. Prove Lemma 22.
. Prove

V(N5 NS»)

=Vu(N™ @ {p e Vo(N,... N°): 0p(j) =0, je NV}, (ES5)

where @ denotes a Banach algebra direct sum.

Verify Lemma 25.

ii.* Can the constants’ growths in (9.7) and (9.11), which depend

on n, be improved?

Let n be the usual dot product in [? (defined in (9.26)). Prove
that 7|k xx € Va(K, K), where K is the unit ball in I2 equipped
with the weak topology.
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ii.* Obtain njgxx € VQ(K, K) directly from the Grothendieck
inequality. More generally, is it true that if n is a projec-
tively bounded n-linear functional on a Hilbert space H, and
K is the unit ball of H equipped with the weak topology, then
Nign € VoK, ..., K)?

Verify (9.30).

Verify that an affirmative answer to the open problem in Remark ii

89 implies Theorem 19.

Prove that if |[ny ,llpp, < 00, then [Ny, llpb, < 00, where ny» , is
defined in (9.36) and ny,, is defined in (9.35).

Hints for Exercises in Chapter VIII

i. See definitions and Remark ii in Chapter VII §8.

ii. Necessity follows from Proposition 2 and Exercise VII.17. Con-
versely, if ||n||pp, = oo, then for every K > 0 there exists a finite
set T' C By such that

Inllv,, (... 7y > K.

By taking arbitrarily large Ks and corresponding T's, produce
E C By such that ¢, g ¢ B(R"). Apply Proposition 2 and the
‘dual’ version of Lemma VII.20.

iii. See Proposition 3 and Exercise VII.17.

Review the appropriate sections in Chapter III.

It suffices to verify (3.21) for W™-polynomials. If x; — x weakly,

then lim; o0 ¥ (x;5) " (7) = ¥n(x) " () for v € W™,

i. Consider the restriction algebra

L=(G) /A : f € L=(Q), flr = 0} := Q= (F),
and verify that LL(G)* = Q*°(F); cf. Proposition VII.24.
iii.* See Chapter III §6.

i. See Lemma VII.22. 5
It suffices to prove that the indicator function 1yv is in Va(N?, N? N?).
To show this, consider the Riesz product

H(To +7i(€1)r;(§2)rij) ® H(?"o +7i(€2)r;(€3)ris) ® H(?‘o +7i(§1)75(€3)7Ti5)s
7,7 7,7 1,7

(€1,&2,63) € Q3

and average it over (£, &2, €3) € Q2 (cf. Lemma 9, Exercise VI.12 iii).
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7. Recall the following. If ¢ € co(N? x N? x N?) and
d((i1,2), (41, j2), (K1, k2))

= Z O O (i1,%2) Oma(J1,J2) Oms(k1, k2),

m=1

((ihiQ)v (j17j2)7 (kh kZ)) S N2 X N2 X NZ,

where Y777 || < oo, and b,,, € B,y for m € N and p €
{1,2,3}, then there exists f € L1(02?) such that

f(rhjmrizjzarisja) = ¢((i17j1)7 (i2aj2)a (i37.j3))a
((i1, 1), (i2, j2), (i3, j3)) € N* x N* x N?,

and

Il <2° ) lanl.

m=1
Conversely, if ¢ € A(R?), then there exists a representation

oo

‘:b(r’iljnrizjzvris%) = Z Qm eml(il,jl) 9m2(i2aj2) 9n13(i37j3)a

m=1
((i1, 1), (i2, j2), (i3, j3)) € N* x N* x N?,

such that 0,,,, € Be 2y for m € N and p € {1,2,3}, and

o0
> o] < [[0]lars)-

m=1

Now obtain A(RY) as a quotient of A(R?), and Vi (N®) as a quotient
of V3(N? N? N?).

8. Review the proof of Lemma 11.

9. Let p € V(N1 ... ,NS"), and write ¢ = 1yvp + (¢ — 1yvp). Show
that 1yv € V,, (N1, ... N%"). You can establish this by generalizing
the argument used in Exercise 6; you can use the systems discussed
in Chapter II §6, or the ‘fractional’ convolution operation defined in
(8.7). You can obtain (E.5) also as a byproduct of the proof of the
‘easy’ direction in Theorem 19; cf. Corollary 16. However, the proof
generalizing Exercise 6 is more direct and yields better constants.
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See Exercise 7.

This problem may become more tractable when we show in
Chapter XIIT that NV is a ‘fractional Cartesian product’ with
‘combinatorial dimension’ dim NY. A reasonable conjecture is
that best constants in (9.7) and (9.11) are bounded by gdimN¥
Exercise 7 ii is an instance of this problem.

For each n > 1, consider

n

m(x,y) =Y x(j) y(j), (xy) €K xK,
j=1

and prove that |\7],L||V2(K7K) < ¢, where c is an absolute constant.
To this end, use Theorem 23 in the case m = 1, n = 2, and
U={(1),(1)}. See Theorem IV.13.

ii. In the two-dimensional case, use the Grothendieck factorization

theorem. I do not know the answer to the question in the
n-dimensional case for n > 3.



IX

Product Fréchet Measures

1 Mise en Scéne: A Basic Question

Product measures pervade analysis from the foundations up. In our
context for example, in harmonic analysis they are the key to convo-
lution, and in probability theory they underlie the notion of statistical
independence. And of course there are other examples in various other
settings. The feasibility of product measures is guaranteed by this clas-
sical result:

Theorem 1 If i is a scalar measure on a measurable space (X,2) and
v is a scalar measure on a measurable space (Y,B), then

uxv(Ax B)=u(A) v(B), Ac, BeB, (1.1)
determines a scalar measure on the product space (X xY,o(2A x B)).

A basic question arises: are products of Fréchet measures also feasible?

Definition 2 Let (X1,21),..., (X, %n), (Y1,B1), ..., (Ys,B,) be mea-
surable spaces. For u € F,(24,...,2,) and v € F,(B1,...,B,), define

X V((AhBl)v"'v(AnaBn)) ::U’(Ala7An) V(Bl7"'aBn)7
(Ao A €2 X - x 2y,
(B1,...,Bpn) € B1 x -+ x By, (1.2)

If 4 x v determines an F,-measure on (2 x B1) x -+ x o(A,, X By,),
then we write u x v € F,(c(21 X By),...,0(2A, x B,)), and refer to
WX v as a product F-measure.

248
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That product Fj-measures are always feasible is a straightforward
matter (Theorem 1), and that product Fy-measures are always feasible
(not quite as obvious) follows from the Grothendieck inequality and
factorization theorem. In dimensions n > 2, the absence of a universal
n-linear Grothendieck inequality implies existence of F),-measures p and
v such that p x v € F,. Indeed, the main lesson in this chapter is
that product F-measures are inextricably linked to Grothendieck-type
inequalities.

2 A Preview

In this section, we illustrate in a simple setting the connection between
Grothendieck-type inequalities and product Fréchet measures.
For a scalar array A = (a;;) of finite rank, define

|Ally,, = sup Za” s tj| : (si) € B, (t;) € B ¢,
0,
p € [2,00]. (2.1)

For scalar arrays A = (a;;) and B = (b;;) with finite rank, we define the
tensor product

(A ® B)zmjn = Qg5 bmn7 (imjv m, TL) € N47 (22)

and view it as a bilinear functional acting on scalar-valued functions
defined on N?: for = = (24,,) and y = (y;n),

(A® B)(z,y) = Z aig bmn Tim Yjn- (2.3)
i,7,m,n
(In a context of multilinear algebra, A ® B is sometimes called a
Kronecker product; e.g., see [L, Chapter 12].) For p € [2, o0],

E 27 bmn Tim Yjn| *

ijmn

|A® Blls,, = sup {

(Tim) € B2y,  (Yjn) € BZP(NQ)}- (2.4)

We note two relations involving these norms. The first is elementary,
but the second relation requires the intervention of the Grothendieck
theorems. (See Exercise 1 for other relations.)
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Theorem 3 If A and B are matrices with finite rank, then

||A®B||f2,2 < HA||f2,2||BHf2,27 (25)
and
IA® Bllfo . < 8& 1Al g2 1Bl o e (2.6)
where kg is the Grothendieck constant. (To underscore in this section
that the case p = oo is but instance, we use the notation || - |y, .. Else-
where in the book, || - ||z, stands for |- ||, ..-)

Proof: To verify (2.5), let x = (z4) € Bj2(n2) be arbitrary, and estimate

Z Zaij bmn Tim,

7 | i,m

2 2

J

:Z;

§ bmn§ Q5 Tim
m %

2
< |1BII%, . I1Al17, .- (2.7)

< 1BI7,. >

J

E Qi5 Tim

T,m

To prove (2.6), we first deduce from the Grothendieck factorization
theorem that there exist probability measures 7 and 5 on N such that
for all h € L2(N, ;) and g € L2(N, 1),

> aghli) 9(j)

ij

< kGlAl fo o l1PllL2 01 19112 (1) - (2.8)

That is, A defines a bilinear functional on L2(N, v ) x L2(N, v1 ) with norm
bounded by kg ||Al|f, .- Next, welet (vin) € Be w2y and (yjn) € Be,n2)
be arbitrary, and consider the subsets {h,,} and {g,} of the respective
unit balls in L2(N, ;) and L?(N, v5), where

hm(i) = Xim, gn(j) = Yjn, (i,j,m,n) €N (2'9)

Then, by the Grothendieck inequality,

§ A5 bmn Tim Yjn

1,7, Mm,n

Z bmn A(hmv gn)

< 6G1IB oo | All 2 - (2.10)
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Remark (an overview). The assertion in (2.5) is immediate from
the definition of || - |4, ., but going up a notch, if we consider A ® B as
a bilinear functional acting on the ‘mixed norm’ space

1°(1?) = {(:UU) : sgp Yilwy)? < oo} , (2.11)

then an assertion analogous to (2.5) is a restatement of the Grothendieck
inequality (Exercise 1 i).

The statement in (2.6) requires the Grothendieck factorization theorem
and the Grothendieck inequality. The argument verifying it is essentially
the same as the argument we use in a later section to prove the analogous
assertion in the general measurable setting.

Next we show that Theorem 3 cannot be extended in the obvious way
to dimensions greater than two. For a 3-array A = (ayj;) of finite rank,

1 Alls,, = Sup{ Zaijk s tj ug| : (s;) € Bip, (t5) € B, (ug) € BZP}7
ijok
p € [2,00]. (2.12)

For A = (a;;) and B = (b, define
(A ® B)i1j1k1i2j2k2 = Qjy 41k bi2j2k27 (ila.jla kla 7:27j27 k?) S N67 (213)
and for A and B with finite rank,

”A @ BHfs,p = sup Z ai1j1k1bi2j2kzmi1i2yj1j2 Rk

i1,41,k1,12,52,k2

(zij) € By, (Yig) € By, (2i5) € Bzv(NZ)}- (2.14)

Theorem 4

i. For every K > 0, there exist 3-arrays A and B such that

[Allfs2 <1 [1Bllgs, <1, and [[A® Bljg, , > K.

ii. For every K > 0, there exist 3-arrays A and B such that
[All 5,00 <15 1Bllf5,00 <1, and [A@ Bl|g, .. > K.
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Proof: For Part i see Exercise 2.

To prove Part ii, we first note that Theorem VIII.14 and
Theorem VIII.17 imply existence of trilinear functionals 1 on [?(N) x
I(N) x 1*(N) such that |9z, . <1, and

lIn] g2 HV3(E,E,E) = 00, (2.15)

where E = {e;} is an orthonormal basis of [2. Write ¢n(i,7,k) =
n(e;,ej,ex) for (i,5,k) € [2V] x [2V] x [2V] and N € N, and conclude
from (2.15) that for every K > 0 there exists N € N such that

N lvs (123,127, 12v)) > K- (2.16)

Next we view 7 as a trilinear functional on C(2x) x C(Qn) x C(2n),
where 0y is the compact Abelian group {—1,1}": enumerate Qx =
{w; : j € [2V]}, and define

Alf,g.h) = Y nleiej er) fwi) §lws) hiws),

(i,3,k)€[2N]3
(f,g,h) € C(QN) x C(Qn) x C(n). (2.17)
Then,
A, 9, < [If 2 llgllee 12l
< I flle@mllgllc@m 1llc@n) (2.18)
which implies ||A| s, .. < 1. Enumerate Qn = {w; : i € [2V]}, and let
agk = AL} Ly Lwd)s
(1,,K) € 2] x V] x [2V],
agk =0, (4, k) € 2V] x 2] x 2], (2.19)
Define
2y =wi(w;), (i,5) € 2V] x [2V], (2.20)

whence the characters w; € Qx (i € [2V]) can be written as

wi =Y wij 1wy, (2.21)
J
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and

77(91'1791'2791'3) = A(wil,wm wig)

= Z jrjags Lirjr Tigja Lisjs- (222)
J1,J2,73
Then, by (2.16) (via duality), there exist B = (by) so that | By, . = 1,
and

Z bivizis Z Ujrjogs Tirgy Tiaja Tisjs| > I, (2'23)
i1,i2,i3 J1,J2,:33
which implies | A ® By, . > K. O

3 Projective Boundedness

Projective boundedness, viewed in Chapter VIII in a framework of Hilbert
spaces, can be considered also in a framework of F),-measures:

Definition 5 (cf. Definition VIIL.1). Let (X1,24),...,(X,,2U,)
be measurable spaces. For p € Fn(i,...,A,), F1I C Bre@,),---
Fn C BLoo(an>, let

ou(fireeifu) = /f1®~--®fndu,

(fly"'mf’ﬂ) EF1X"'><Fn, (31)
and define

[eellpb, = sup{ll@pllv, (...  Fi C Bresqa,), |[Fi| < 00, i € [n]}.
(3.2)

If ||ullpb, < oo, then p is said to be projectively bounded. The class of
projectively bounded F,-measures is denoted by

PBF, = PBF, (%, ...,%,).

A projectively bounded form in a Hilbert space setting (defined in
Chapter VIII) conveys, in effect, a general Grothendieck-type inequality.
Every projectively bounded functional on a Hilbert space can be natu-
rally realized as a projectively bounded Fréchet measure (Exercise 3,
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cf. (2.17)). For this reason we sometimes refer (somewhat loosely) to
projective boundedness as a Grothendieck-type inequality.

The linear space PBF,, equipped with || - ||pp, is a Banach space,
and (PBFy,| - llpb,) C (Fu,| - |lF,) is a norm-decreasing inclusion
(Exercise 4). In one dimension we obviously have PBF; = Fj, but in
higher dimensions,

PBF, = F, (3.3)

and
PBF, & F,, n >3, (3.4)

which have been previewed in the previous section, are not quite as ob-
vious.

The theorem below is the link between product Fréchet measures and
Grothendieck-type inequalities.

Theorem 6 Let (X1,24),..., (X, An), (Y1,B1),...,(Yn,B,) be mea-
surable spaces. If p € PBF,(21,...,2U,), then u x v € F,, for all v €
F,(B1,...,B,). Conversely, if By, ..., B, are infinite o-algebras, and
u X veEF, foreveryv € F,(B1,...,B,), then u € PBF,(2Ay,...,2,).

Two lemmas are needed for the proof: the first follows from the exten-
sion theorem Theorem VI.8, and the second is essentially a restatement
of the projective boundedness property. For p € F,(2y,...,2,) and
v E F,(B1,...,B,), define ||uxv|

F, to be the supremum of

> X V(AL B, (Any Ba))Tag s, @ -+ ©74,8,,

(A1,...,Ap)E,(By,...,Bn)EP I

(3.5)

taken over all grids e of X; x .-+ x X, and B of Y7 x --- X V..
(The Rademacher systems above are indexed respectively by grids of
X; xY;, i € [n].) Justifying this definition of |u X v||F,, we note below
that (3.5) is precisely the F,,-variation of the product F-measure u x v,
whenever the latter exists:

Lemma 7 p x v determines an F,-measure on

o(Ap X By) X - X o(Ay, X By,)
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if and only if ||pxv||F, < o0o. If uxv € Fp(o(A1xB1),...,0(AnxBy)),

then ||u x V||, in (3.5) is the Fy-variation of p X v.

Proof: Necessity follows from Theorem VI.5.

To prove sufficiency, we first extend by finite additivity the domain of
pxvtoa(@y X By) x - xa(@l, xBy) (a(A x B) := algebra generated
by (2 x 9B8)). By Theorem 1,

uXxve F,(a(A; X B1),...,a(A, X B,)) (Exercises 5,6). (3.6)

Then, because the right side of (3.5) is finite,

It X vl B, (@@ xB1),s 0 (@ x B )) < OO (3.7)

By Theorem VI.8, u x v € F,(c(21 X B1),...,0(, x B,)), and its
F,-variation equals the right side of (3.5). U

Let S(2) denote the space of A-measurable simple functions on (X, ).
(See Chapter VI §6.)
Lemma 8 (Exercise 7 i). If p € F,(y,...,2,), then

lellpb, = sup{ll@pllvi(my,....Fa)  Fi C Bsaw), |[Fil < 00,i € [n]}.
(3.8)

(See (3.1) for the definition of ¢,,.)
Proof of Theorem 6: For i € F,,(y,...,2,), f1 € LR xBy),...,
fn €L, x B,), let

¢f1-~-fn,;u(y1a--~ayn) :/fl(xl,yl)---fn(xn,yn)u(dxl,...7dmn),

(Y1, -yYn) €Y1 X -+ X Y. (3.9)

The definition of ¢y, .., is essentially the same as that of ¢, in (3.1):
Yy,...,Y, here play the role of Fiy,..., F, in (3.1). By Lemma 8, if
B1,...,B, are infinite, then

[114llpb,,
= sup{l|os fuinllvi(,,..m,) : fi € S() © S(Bi), [ filloo <1, i € [n]}
(Exercise 7 ii). (3.10)
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Suppose ||pl|pb, <00, and v € F,(B1,...,By). Let a1,...,an,81,..., 0,
be finite partitions of X1,..., X, Y1,...,Y,, respectively, and let o« =
a1 X -+ X a, and B = 1 X -+ X 3, be the resulting grids. Fix w; €
{—1,1}*5 and define

foo= > rapw) laxp, i€ [n]. (3.11)
(A,B)ea; x3;

By the duality V) = F,,

> X V(A1 B, (Any Ba))ray sy (1) -7 a, B, (n)
(A1, Ap)€E,(By,...,Bn)EPB

= ’/¢fw1~-~fun:u dv

SNsey o Sonilva IWIE, < llellow, [V 7. (3.12)

which implies

e xvlle, <llullps, 717, (3.13)
By Lemma 7, p X v € F,(0(21 X B1),...,0(2A, x By)).

Conversely, suppose puxv € F,(c(21 XxBy),...,0(A, xB,)) for every
v € F,(B1,...,B,). Then, there exists 0 < K < oo such that

I xvlF, < Klvr, (3.14)

for all v € F,,(B1,...,B,) (Exercise 8). For i € [n], let
fi= Y, aaplaxs (3.15)
(A,B)Eai X B

be simple functions on X; x Y;, where «; is a partition of X; and ; is a
partition of Y;. Let v € F,,(B1,...,B,) be arbitrary. By (3.14),

‘/¢f1---fn;u dv

= > ux V(A1 BY), - (An, Bn)) aay, -+ 04,8,
(A1,...,An)€x, (B1,....,Bn)EB

< 2%[ux v

F, |f1||oo o anHoo

< 2K le, 1 filloo - L fnllso- (3.16)
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By the duality V7 = F},, this implies
651 fasmllv < 27K (| filloo -+ [1fnlloos (3.17)

which, by (3.10), proves ||u||pp, < co.

4 Every u € F; is Projectively Bounded

Theorem 9 (cf. Lemma V.4). If (X;,2;) and (X2,%Us) are measur-
able spaces and p € Fp(A1,As), then

ellpn, < 458 lullr, (4.1)

(kg := the Grothendieck constant).

Proof: By Lemma 8, it suffices to verify that if i C Bg,) and Fy C
Bg(a,) are finite, then
Hd)HHVz(Fth) < 4Hé H/’LHFz (42)

To this end, let D; be a finite partition of X; and let Dy be a finite
partition of X5 so that every f € F; and g € F5 can be written as

F=> @1, g=>Y 9 1a (4.3)
deD, deDs
(f(d) and g(d) denote the constant values that f and g assume on d.)
Then,

¢u(frg) = ST uldi x do) f(dh) g(da),

dyXda€D1 XDy
fer, geFy, (4.4)

determines a bilinear functional on C(D;) x C(Dz) such that

1Pullz, <4 llusllr,- (4.5)

By the Grothendieck factorization theorem, there exist probability mea-
sures v; on D and v on Dy such that

sup{|¢,.(f 9)| : f € Br2(uy), 9 € Breg,)} < 4k [l r- (4.6)
To obtain (4.2), apply the Grothendieck inequality as stated in (I11.1.6),
or equivalently in (IV.5.37), with H; = L%(Dy,v1), Hy = L2(Ds,vs),
and n = ¢,. U]
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5 There Exist Projectively Unbounded F3;-measures

Theorem 10 If (X,A), (Y,B), and (Z,€) are measurable spaces with
infinite A, B, and €, then there emists p € F5(2A, B, &) with
l1tllppy = o0

We first prove a quantitative version of this theorem. Let (2, denote
the finite Abelian group {—1,1}™, and let Q,, denote its dual. Define
(a variant of the Gauss matrix)

o(w,w) = ww), we L, we Q. (5.1)

FOI' (RS lz(Qm) and ﬂ € l2(Qm)7
1
>y gm P(w,w) a(w) Bw)| < [lallz (|52 (5.2)
(W,w) EQm XU,

V1/2"p o ® (3 defines a bilinear functional on C(2,,) x C(Qy,):

S oelww) atw) 4w f(w) o)

(w,w)EQm X U,

(f,9) € C(Q)m x C(Qm), (5.3)
whence
1 1
H\/Wsﬁfx@ﬁ < \/27,1%04@5
Fo (S X Q) f2
< |lell2llBllz (Exercise 9). (5.4)

Lemma 11 For all scalar-valued functions p on Qm,

lloll2 < llp- ‘Pva(Q,,,,,’Qm) <V2 lloll2, (5.5)

where

prp(w,w) = p(w) p(v,w), (w,w) € Lp X Q.

Proof: The inequality on the right side of (5.5) follows from the
Littlewood mixed (I!,12?)-norm inequality (Exercise 10).
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To obtain the inequality on the left side, let a € BP(Q,n) be arbitrary,
and from (5.4) deduce

Y ) aw)|=| Y pw) el L)

om
WwEm (w,w)EQmXQm

ap
<llo-elvya,.0m) ‘Qmeh <o el a0 (5.6)
The desired inequality follows by maximizing (5.6) over a € B), @ U

For a scalar-valued function p on ), define the Fy-measure ftp ON
Q. X Qpy X

,LLp(A,B,C) = Z p(w) w(wﬂ")) j—A(w)iB(w) j_c(u)),

(w,w)EQm X Qi

ACQp, BCQy, CC Q. (5.7)

The lemma below is a quantitative version of Theorem 10.

Lemma 12 ||upl|p, < llpllec and [ pllpn, = [p]2-
Proof: If f € C(Q,,), g € C(Q), and h € C(Q,,), then

[roaonan) = X o) et i) i)

(w,w)eﬁm X

Y p(w) fw) §(w) hiw)

wEQm
< llplloe 1£1l2 13llz 1PN,y
< lolloo I llctan) lgllo@ny Itlo, ) (5:8)

which implies ||g,||m < ||plloo- The transform fi, is

fip (w1, wa, w) = /w1 ® wr @ w dup,

(w1, wa,w) € Dy X Dy X Q. (5.9)
By an elementary computation,

p(w) p(w,w) if wy =wy =w

[ w 7w 7w - .
fip w1, w, ) {0 otherwise.
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In the definition of projective boundedness, let Fy; = Fy = 2, (charac-
ters on §,), F5 = Q,, (characters on €,,), and deduce
ltplloby = iollvy (@, .00 00 (5.11)

Therefore, by (5.10) and Lemma 11,

H/’LPHPbg 2 Hﬂp”vs(fzm,{)mnm) > lp- SDHVZ(QWQm) > [|pll2- (5.12)

O

Proof of Theorem 10: (Exercise 11). For m € N, let 4,, C X,
B,, CY,C,, C Z be finite sets so that |A,,| = |Bn| = |Cn| = 2™, and
{An}, {Bm},{C} are pairwise disjoint. We identify A,, and B,, with

Qum, and Cp, with ,,, and then, by applying Lemma 12 with p = 1, we
obtain p,, € F5(Anm, B, Cr) (cf. Chapter VI §2 ii) such that

lpmllps <1 and |[mllpn, > 2% (5.13)

Each such pu,, determines an F3-measure on A x B x €, which we denote
also by fim:

(A, B,C) = > fiam(a,b,¢) 14(a)1p(b) 1o(c),

a€A,,,bEB,,,ceCy,
(A,B,C) €A x B x €. (5.14)

Note that these extensions of the u,, satisfy (5.13). Let p = Sy, o /m?2.
Then, p € F5(2, B, €), and

illpby 2 [ltmllpb, /m? > 2% /m?, m € N. (5.15)

6 Projective Boundedness in Topological Settings

Let X1,..., X, belocally compact Hausdorff spaces, and let B4,...,B,
denote their respective Borel fields. As usual, V,(Xq,...,X,) denotes
the completion of the (algebraic) tensor product Co(X;) ® - - ® Co(X,,)
in the projective tensor norm, and, similarly, we let V,,(B1,...,%,,) be
the projective tensor norm-completion of S(B1) ® -+ @ S(By). (See
Chapter VI §6, §7.) If X;,...,X,, are compact, then

C(Xy x - x X)) NV, (B1,...,B,)

=V,(X1,...,X,) [S, Theorem 4.3]. (6.1)
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(I do not know whether (6.1) holds with non-compact Xi,..., X, and
Cyp in place of C (Exercise 12).)

Let Yi,...,Y, be locally compact Hausdorff spaces with respective
Borel fields €4, ...,¢&,. For

[ Fy(By, ... B,) and f € V(X)X Yi,..., X0 x Yy),
define (cf. (3.1), (3.9))

¢f;p,(yl7 s J/n) = /f(xlvylv s 7xn7yn) :u(d$17 B '7dxn)7
(Y1, Yn) €Y1 X oo X V. (6.2)
Proposition 13 If
w€ PBF,(B1,...,B,) and f € Vo (X1 x Y1,..., X, xYy),
then ¢f,, € Vo(Y1,...,Y,), and

l6s:ullv., < I fllv. lellpn, - (6.3)

Proof: Let g = g1 ®- - -®g,, be an elementary tensor in C.(X1xY7)®- - -
®Cc(X,,xY,,) (Ce := continuous functions with compact support). Then,
Ggip € Ce(Y1 x --- xYy,). If X and Y are locally compact spaces, then
V2(X,Y) is dense in Co(X x Y) (Exercise 13), and, therefore, for each
k € [n] there exist sequences (p;; : j € N) in S(B) ® S(€) such that
lim; o ¢r; = gr (uniform norm limit). Denote §; = ¢;1 ® -+ @ @jn.
Then,

lim g, = ¢g;  (uniform norm limit). (6.4)
J—)OO
Note that (¢g,;, : j € N) is Cauchy in V,,(Cy,...,&,), and (Exercise 14)

190;:llvacer..en) < l@itlloe - l@inlloo llEllon, > 7 € N. (6.5)

Therefore,

(ZSQ?M S CC(Yl X - X Yn) ﬂV,L(Qﬁl,.. ,Q:n)

By (6.1), ¢g;p € Vi (Y1,..., V), and by (6.5),

[bg:ullv < llgalloo -~ lgnlloe lellpn,- (6.6)
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Suppose f € V(X1 x Y1,..., X, x Y,,), and write
F=> "o (6.7)
k

where g = g1x ® - -+ ® gnk are elementary tensors in Co(X1 X Y1) ® - -+
® Ce(Xn x Yy,) (kK €N), and

v < @+ €D lginllos - lgnrlloo (6.8)

k
(arbitrary € > 0). Then

bfin = Z Dgins (6.9)
k
and (6.3) follows from (6.6) and (6.8). O

Corollary 14 If u € PBF,(%81,...,8B,), v € F,(¢1,...,&,), and
fevu(Xixn,...,X, xY,), then

/f d(p x v) (6.10)

= / (/f(xlayla cee 7$n7yn)lu(d'rl7 s 7d$’n))y(dy17 cee 7dyn)
We are naturally led to

Definition 15 Let Xi,...,X,, be locally compact Hausdorff spaces
with respective Borel fields B4,...,8,,. Let Y7,...,Y, be locally com-
pact Hausdorff spaces, and denote 7 = (Y1,...,Y,). We say that p in
F,(B1,...,B,) is T-projectively bounded if

[llzpn,, = sup 1@ ppllv, (vi,....v.) <00, (6.11)

where the supremum is over elementary tensors f in the unit ball of
Co(X1 xY1)®---®Co(X, xY,,), and ¢y,, is defined by (6.2). The class
of T-projectively bounded F-measures on By x --- X B, is denoted by
TPBF,(B1,...,B,).

The proof of Proposition 13 yields
PBF,(B1,...,8,) C TPBF,(B1,...,B,). (6.12)

I suspect the inclusion is proper, but cannot prove it.
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Remarks:

i (a general iterated integral?). If u € PBF,(B1,...,B,), v €
F,(€,...,¢,), and f € V,(c(B1x&),...,(B,xE,)), then, by
Theorem 6, the integral [ f d(uxv) is well-defined. (See Chapter VI
§6.) A natural question arises: can f be integrated iteratively, as in
the topological setting (Corollary 14), first with respect to p and
then v? The question reduces to this: for p € PBF,(B1,...,B,),
and B € (T(SBl X 61)7...,En S 0'(%1 X @1), is

/ 1g,(z1,91) .- 1E, (T, yn) p(dry, ... dzy),

(Y153 Yn) €Y1 X - X Y, (6.13)

an element of V,(€4,...,€,)? (I do not know the answer.)

ii (is projective boundedness stable under products?).

Lemma 16 (Exercise 15 i; cf. Lemma 7). Let Xq,...,X,,Y1,...,Y,
be locally compact Hausdorff spaces with respective Borel fields B4, ...,
B, 1,8, p€ EF(By,...,B,), and v € F,(&q,...,&,). Then,
uxveF,(c(B1x&),...,0(B, x&,)) if and only if

sup{ / Opp dv

Proposition 17 (Exercise 15 ii; cf. Theorem 6, Corollary 14).
Suppose X1,..., X, Y1,...,Y, are locally compact Hausdor(f spaces with
respective Borel fields B1,...,8,,&1,...,&,. Let u € F,(B1,...,B,).

5f:f1®"'®fmfjeBCU(ijYj)aje[n} < 0.
(6.14)

i |pllrpb, < oo if and only if px v € F(0(B1 X €1),...,0(By, x &)
forallv e F,(€q,...,&,).

ii. If||,u||7-pbn <00, VE F,(€,...,&), f eV (X1 xYy,....,X,, xY,),
then

/f d(pxz/):/(/f du> d, (6.15)
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and

‘/f d(p > v)| < 2% [|fllv. llullzpp, 7] 7. - (6.16)

Proposition 18 (Exercise 15 iii). Suppose Xi,...,X, are locally
compact Hausdorff spaces with respective Borel fields 9B1,...,B,, and
let 7= (X1,...,X,). If p and v are T-projectively bounded F,-measures
on By X --- X By, then pu X v is T-projectively bounded.

I do not know whether the same is true in the measurable setting:
Suppose (X1,24),..., (Xn, ), (Y1,B1),...,(Yn,B,) are measurable
spaces, ft € PBF,(1,...,2,), and v € PBF,(B1,...,B,). suxve
PBF,(c(2; X B1),...,0(2, x B,))?

7 Projective Boundedness in Topological-group Settings

In this section, Xi,...,X,, are locally compact Abelian groups with
respective Borel fields B4,...,%,. Let pu be a bounded n-linear func-
tional on Cp(X7) x --+ x Co(X,,) represented as an F,-measure ; on
By X -+ x B, (Theorem VI.12), and define its transform

ﬂ(/yla-”f}/n) = /’71®"'®’7nd,uf7
(717'“7771)6XI><"'XXTL' (71)

(Notice that the intervention of the multilinear Riesz representation
theorem is essential: it provides the extension of the n-linear functional
wto L®(By) x -+ x L*(B,,), making possible the evaluation of x at

(’yl,...,’yn) EXl X ---XXn.)

Proposition 19 (Exercise 16).

i If u € Fru(B1,...,B,), then fi is bounded and uniformly continuous
on Xl X oo X Xn separately in each coordinate.

iil. If p € Fo(B1,B2), then fi is bounded and uniformly continuous on
X1 X .X2.

A fundamental issue arises in the harmonic-analytic setting: is con-
volution in Fy(o(B1x---xB,,)) extendible to F,(B1,...,B,)? We give
two equivalent definitions of convolution in the multidimensional frame-
work (Exercise 17), each mimicking a standard definition in the one-
dimensional case.
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The first extends the construction in [Ru3, pp. 14-15]. If
w € PBF,(B1,...,%8,) and v € F,,(By,...,B,),

then, by applying Theorem 6, we define % v to be the F,,-measure

/’L*V(E17""E’n)

- /1E1 (fL']_ + yl) o ]-En(xn +yn)/l X V(d(wlayl)) e 7d(xn7yn))7

FE 6%1,..‘7En€%n. (72)
The second definition extends the construction in [Kat, p. 41]. Sup-
pose p € TPBF,,(B1,...,B,), where 7 = (X1,..., X,,) (Definition 15),

and v € F,(B1,...,8B,). (The stipulation u € 7PBF,, is ostensibly
weaker than y € PBF,,.) Define a linear functional ¢ on V,,(X1, ..., X,),

qﬁ(f)z/</f(x1+y1,...,mn+yn) ,u(dacl,...,d:rn)) v(dy1, ..., dyn),

FeEVL(XL, ..., X). (7.3)

Then (cf. Proposition 17),

[6(HI < If v lellzpo,, 1114, (7.4)

or
[6(N1 < 2" [ fllv. el zpb,, V1] 7, (7.5)
(Il”|l £, == the norm of v in V). Define v to be the F,,-measure on

By x --- x B, representing ¢. This definition of convolution leads to

Definition 20 (Exercise 18). Let Xi,..., X, be locally compact
Abelian groups with respective Borel fields 9B, ...,%,,. For

p€ Fy(By,...,%8,), elementary tensor f € Co(X7) ® -+ ® Co(X2),
denote

rin(yrs - yn) = /f(951 T Y- T+ yn)pu(da, . da),

(y17~"7yn)€X1X"’XXna (76)
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and define

lllgpb, = sup{[|¥sullv, : elementary tensors

feC(X1 xX1)®-®Co(Xp x Xp), [ flloo <1} (7.7)

If ||ie]lgpb, < 00, then p € Fip(By1,...,By) is said to be g-projectively
bounded, and the class of such p is designated by gPBF,,(B1,...,B,).

If p € gPBF,, and v € F,,, then pu v is the F,,-measure representing
the bounded linear functional in (7.3). Note that

(nxv) =i v (Exercise 19). (7.8)

Indeed, we can start with (7.8) as the definition if there exists A €
F,(B1,...,%B,) such that A = i ¥ for p € F,,(B1,...,B,) and v €
F,(B1,...,B,), then the convolution p v is defined to be this A.

Proposition 21 (Exercise 20). p € gPBF,(B1,...,%B,) if and
only if for every v € F,(B1,...,B,,) there exists A € F,(By,...,B,)
such that X\ = fi 0. (Elements of gPBE,,(B1,...,B,) will be called
convolvers.)

By Theorem 9, gPBF2(B1,B2) = F3(B1,B2), which implies that
convolution in Fy(c(%B1,B2)) is canonically extendible to F5(B1,Bs).
However, the three-dimensional case is fundamentally different (cf.
Theorem 10):

Lemma 22 For all K > 0 there exist discrete measures on X1 X Xo X X3
such that ||p||m, < 1 and [|pllgpb, > K.

Proof: For every K > 0, there exist N > 0 and p € F3([N], [N], [N])
such that ||p||p, < 1 and ||ppp, > K (Theorem 4 ii, or Lemma 12).

This means: there exist scalar 3-arrays p = {fiqy. : (2,y,2) € [N]3},
and 2-arrays a € Bie(|nj2), b € Bio([n]2), ¢ € Bieo(|n]2), such that

[ullm <1, (7.9)

and

| Pab.cspnllva(vy, v, ivy) = K, (7.10)
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where

¢a,b,c;u(i7ja k) = Z Hayz Qi byj Czks (i7j7 k) S [N]3 (7~11)
(z,y,2)€[N]3

Suppose F; and G are disjoint and mutually independent N-subsets of
Xl7 l= 17 27 37

Fi={sp:5€[N]}, Gi={tp:je[N]}, 1=1,23  (7.12)

(Mutually independent subsets F' and G means that if 21 +s1 = z2 + s
for (z1,s1) and (29, s2) in F x G, then x; = 22 and $; = s5.) Define a
discrete measure on X; X Xo x X3 by

B= Z Hayz 5(31;178;,27323)' (7'13)
(z,y,2)€[N]?

By (7.9), |lptll 7y (3, ,8,,85) < 1. Because F; and Gy are mutually indepen-
dent (I =1,2,3), there exist f € Co(X1), g € Co(X2), and h € Cy(X3)
such that for (i, ) € [N]?,

f(Sil + tjl) = CLij, g(SiQ + tjg) = bz‘j, h(Sig + tjg) = Cij. (714)
Then,
¢a,b,c;u(i7j7 k) = qlf@g@h;u(til,tj%tki%)a (i,j, k) € [NP» (715)

where ¢ p .y, is defined in (7.11) and VU tgggn;u is defined in (7.6). By
(7.10), [|¥ rog@hullvs = K, and therefore ||p|gpn, > K. O

Corollary 23 (Exercise 21). If X1, Xs, and X3 are infinite locally
compact Abelian groups with respective Borel fields B1,Bo and B, then
convolution in Fy(o(B1 x Ba xBs)) is not extendible to F5(B1, Bo, B3).

Remarks:

i (are containments proper?). Let Xi,..., X, be locally compact
Abelian groups with respective infinite Borel fields B4, ...,%B,. We
have already noted (cf. (6.12))

PBF,(B1,...,8,) C TPBF,(B1,...,B,) C gPBF,(B1,...,B,).
(7.16)
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That PBF,(B1,...,B,) & gPBF,(B1,...,B,) is a consequence
of constructions in the previous chapter. (See the next section.)
However, I do not know (and only suspect) that both inclusions
in (7.16) are proper.

The Banach spaces gPBF, and 7PBF, equipped with convo-
lution are Banach algebras (Exercise 22), but I do not know that
PBF,(B1,...,%B,) equipped with convolution is also a Banach
algebra.

It is easy to verify that

Fl(O'(%1><"-X%n))CPBFn(%l,...,%n) (717)

for n > 1, and, therefore, that every Fj-measure on o(B1x:--xB,,)
is a convolver in F,(B1,...,B,). In the case n = 2, every Fs-
measure on B X B is a convolver in F5(B1,Bs)(= PBF(B1,B2)),
but this does not extend to higher dimensions [BlCag]: there
exists u € Fo(o(B1 x Ba),Bs) such that pu ¢ gPBF3(B1,Bs, Bs)
(Exercise 23).

(credits). The feasibility of convolution of bounded bilinear func-
tionals (bimeasures) on Co(X) x Co(Y'), where X and Y are locally
compact Abelian groups, was first observed in [GrSchl, §2]. (The
key was an answer by Pisier [GrSchl, p. 91] to a question concern-
ing a characterization of Fourier transforms of bimeasures [GrMc,
p. 313].) The two definitions of convolution in F, based on (7.2) and
(7.3) are different from the one in [GrSchl, §2], and resemble the
definition in [GiISch].

That convolution could not be extended from Fj(o(2 x B x €))
to the entire space F5(, B, <), where A, B, are the Borel fields
of locally compact infinite Abelian groups, was shown in [GrSch2,
Theorem 6]. The proof in [GrSch2], like the proof here (Exercise 21,
23), was based on a quantitative version of this phenomenon; see
[GrSch2, pp. 23-5]. The quantitative versions obtained here are
tied to projectively unbounded Fj-measures (Theorem 10), which,
in turn, can be obtained either from Lemm 12 (cf. Exercise 23 iv),
or from the failure of a trilinear Grothendieck-type inequality (as in
the proof of Theorem 4 ii).

Product F-measures had been previewed in the stochastic frame-
work of [Bl6], and appeared in general multidimensional settings
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in [BI8]. The convolution of projectively bounded F,-measures on
locally compact Abelian groups was noted also in [BI8].

8 Examples

If Xy,...,X, are compact Abelian groups with respective Borel fields

B1,...,B,, Haar measures my,...,m,, and dual groups X'h ey X,
then the evaluation of p € F,(B1,...,B,) at an (X1 x -+ x X,,)-
trigonometric polynomial f (necessarily an element of V,,(X1,...,X,))

/f dp = > Fl@1, .. dn) p(E1, .. 2n).  (8.1)

(il,...,in)eX’l XX Xn

This representation (Parseval’s formula) extends to arbitrary f €
Vo(X1,...,X,,), provided f is convolved with a summability kernel (k;)
in L'(X; x---x X,, m), where m = my x---xm,, (cf. Definition VIL5):

/fdu

= lim > Ei(r, . @n) (1, dn) p(E1, ... dn).
e (£1,..,2 yeXyx-xX

o " (8.2)

If p acts boundedly on L2(X;x --- x X,,,m), then (a fortiori) it acts

boundedly on V,,(X7,...,X,), and, in this case, we can dispense with

the summability kernel on the right side of (8.2):

[ran= X fened) o) (63

(#1500 @n)EXT X x Xy

where the sum on the right side is performed iteratively. We use this
comment and results of the previous chapter to produce examples of
F,-measures that are convolvers but are not projectively bounded.

Take n = 3, and assume that X, Y, and Z are infinite compact
Abelian groups with respective Borel fields 2, B, and €. Choose count-
ably infinite spectral sets £ C X , F C Y, and G C Z , and enumerate
them

E = {&;:(i,j) eN}, F={g:(i,j) €N},

G = {%;:(i,j) € N*}. (8.4)
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For ¢ € 1°°(N?), define

pe(A,B,C) =Y (i, j, k) 1a(dy) 1o(g) 1o(Za),
1,7,k

Aed, Be®B, Ced. (8.5)
Then (Exercise 24), p, € F5(,8,€), ||pollr < @], and

[ dne =Y elisih) flog i za). f WX Y.2). (50)

5,k

Consider the spectral subset of X x ¥ x Z (cf. (VIIL5.8))
EY = {(&4, 9%, 2a) : (1,4,k) € N%}. (8.7)
We redefine (for bookkeeping purposes)
@(‘fija?—}jhéik) = (p(imja k)a (iajv k) € NS, (88)

and deduce from (8.6)
fip = @ 1pv. (8.9)

Theorem 24

i. py is a convolver for every ¢ € 1°(N®).
ii. There exists ¢ € l“(N?’) such that p, is not projectively bounded.

Proof: Let v € F5(2, B, €) be arbitrary, and consider

B(Ei, D i) o= D0, 5, k) = fup(Eig, Dis Zin )0 (35 Gy, 2 )
(i,4,k) € N3 (8.10)

Now observe that fi,0 = R fty. This proves Part i. (See (7.8)
and the comment following it.)

To prove Part ii, produce ¢ € [*°(N?) such that ¢ ¢ B(RY), as per
Theorem VIII.17, and apply Theorem VIII.14. 1
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Remarks:

i

ii

(a characterization?). If X;,..., X,, are compact Abelian groups
with respective Borel fields By, ...,%B,, and u € PBF,,(B1,...,B,),
then 1 € V,L()A(l, e ,)A(n) (Exercise 25). Is the converse true? This
is an open question closely related to the problem in Remark ii,
Chapter VIII §9.

(L2-factorizability and complete boundedness). A bounded
n-linear functional p on Co(X1) X -+ x Co(X,,), where X7,..., X,
are locally compact Hausdorff spaces, is said to be L2-factorizable if
there exist 0 < K < oo and probability measures vy, ..., v, on the
respective Borel fields of X7, ..., X, such that

\/fl ® - ® fu dt < K [ Allzen - allteon.

f1 S Co(Xl), .. .,fn S Co(Xn) (811)

Every bounded bilinear functional on Co(X1)xCo(X2) is projectively
bounded and L2-factorizable. (See §1.) In higher dimensions, matters
are fundamentally different: if n > 2, then there exist L2-factorizable
n-linear functionals that are projectively unbounded (Exercise 26). 1
do not know whether every projectively bounded n-linear functional
is L2-factorizable.

A bounded n-linear functional 1 on Co(X;) x - -+ x Co(X,,) is said
to be completely bounded if there exist a Hilbert space H,
*-representations m : Co(X1) — F(H),..., 7, : Co(X,) — F(H),
x € H, y € H, such that

/f1®"'®fn d:u:<7T1(f1)-~-7rn(f'n)X7Y>v (8'12)

where (-,-) := inner product in H, and #(H) := bounded lin-
ear operators on H. (See [ChrEfSin, Corollary 3.2].) If p is L2-
factorizable, then p is completely bounded, and for n > 2, there
exist completely bounded i that are not L?-factorizable [Sm]. Follow-
ing Theorem 24, because p, defined in (8.5) is L*-factorizable for
every o € [°(N?) (cf. Exercise 26), there exist completely bounded
n-linear functionals that are projectively unbounded. I do not know
whether every projectively bounded n-linear functional is completely

bounded.
If X1,...,X, are locally compact Abelian groups, and pu, v are

completely bounded n-linear functionals on Co(X7) x -+ X Co(X,,),
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then the convolution pu*v exists and is a completely bounded n-linear
functional [Y2], [ZSch]. It is unknown whether every completely
bounded n-linear functional is a convolver.

Exercises
1. i. For scalar matrices A = (a;;) and B = (by;) of finite rank, define

1A ® Bllf,,(2,00)

= sup { E [ bmnTim Yijn

i,7,m,n
Verify that

ssup Zi|wim|? < 1, sup Zjlyjnl® < 1}.
m n

[A® Blif,,2.00) < Kl All o o [1Bll 2,

where 0 < K < oo is an absolute constant, is equivalent to the
Grothendieck inequality.
ii.* Prove or disprove: for all p € (2, 00),

[A® Bllg,, < Kp [[All g, 1Bl 2,0

where K, > 0 depends only on p.
2. Let A= (a;) and B = (b;;) be scalar matrices. Define A- B = (c¢;)
by
cij = ai by, (i,j) € N%.
(The matrix A - B is called the Schur product of A and B [Schul].)

i. Prove that [|4- Bl < [ Allf.|Blls...

ii. It is demonstrated in [V4, Proposition 3.1] that the assertion in
i cannot be extended to the trilinear case; i.e., for every k& > 0
there exist scalar 3-arrays A = (a) and B = (b;) such that
HA||f32 <1 HBHfsz <1, and ”A B”faz > K.

Prove Theorem 4 i by this result.

3. i. Let n be a bounded n-linear functional on
L2(X1,v1) % - x L2 X, ),

where v; is a finite positive measure on (X;,2;) (¢ € [n]). Verify
that

7](1A17"‘71An)7 (Al,...,An)EQhX--'XQ[n, (El)
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defines an F,,-measure on 2; X --- x 2, which we denote also
by n. Show that if f; € L>°(X;y),..., fn € L>(X,,), then

n(f1,~~-7fn):/f1®-~-®fn .

(Left side is the action of n on L2(X1,11) x -+ x L2(X,,, vy),
and right side is the integral with respect to the F),-measure n
defined in (E.1).)

Conclude that if n is a projectively bounded n-linear
functional on L2(Xy,11) x --- x L?(X,,v,), according to
Definition VIII.1, then 7 is a projectively bounded F),-measure,
according to Definition 5.

ii.* Can every projectively bounded F,-measure be realized as a
projectively bounded multilinear functional on a Hilbert space?

. Verify that [|-||pp, defines a norm, that (PBF,, | - ||, ) is a Banach
space, and that [jul, < ljully, for 4 € Fy.
. Verify (3.6): show that the extension of 4 X v to

a(QIl X %1) X X a(an X %n);

where puxv is defined by (1.2), is an F,-measure on a(23xB1)x- - -X
a(A, x B,).

. In this exercise you will verify that Theorem 1 is essential for the
proof of Lemma 7. Specifically, you will establish existence of
o-algebras 2 and B and a finitely additive positive set-function
pon a(UA x B) such that

1€ Fy(A,B), (E.2)
(hence p has finite total variation), but
& Fi(a( < B)). (E3)
(The example was shown to me by J. Schmerl.)

i. Let B denote the usual Borel field in [0,1], and let A denote
Lebesgue measure on B. Let X C [0,1] be such that

ANX # 0 and ANXC 0 for all A€ B with A(A) > 0.

Establish existence of such sets X, which are necessarily
non-measurable.
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ii. Let Y=X°¢ and denote Bx = {XNA: AeB}and By ={YNA:
A€ ®B). fE € By and F € By, then define u(E,F) =
MANB), where E=XNA (A€ ®B)and F = XNB (B e B).
Verify that u is well-defined and that u € F»(Bx, By ).

ili. Let D = {(z,z) : € [0,1]}. Prove that there exists a collection
of pairwise disjoint rectangles {I x Ji : k € N}, such that

[0,] x [0,1\D = | J I x Ji.
k

Let By, = I N X and F, = Jy NY, and observe that X x Y =
U, Er % Fy, and that p(Ey, Fy,) =0 for all k € N.
7. i. Prove (Lemma 8): if € F,,(/4,...,%,), then
1ellon,, = sup{ll@pllv..(m.....p) = Fi © Bsqay), [Fil <00, € [n]}.
ii. Prove (3.10) (in the proof of Theorem 6):

HNHpbn

=sup{llos,...fpullv, (B,...8,)  fi € S(A) ® S(Bi), || fillo < 1,4 € [n]}.

8. Verify that if p x v € F,(c(2 x B1),...,0(2, x B,)) for every
v € F,(B1,...,B,), then there exists K > 0 such that for every
Ve Fn(%ha%n)

luxvlr, < K|v|E,.

9. Verify (5.3): if o € 12(Q,,) and 3 € 12(Q,,,), then

> \/gw(ww) a(w) Bw)| < lledlz [1Bll2-

(W,w) EQm X,

10. Prove the inequality on the right side of (5.5).
11. i. Verify that the p,, defined in (5.14) satisfy (5.13).
ii. Verify that if u = 3., tm/m?, then p € F3( x B x €), and
(5.15) holds.
12* Let X1,...,X, be locally compact, non-compact Hausdorff spaces
with respective Borel fields 91, ...,%,,. Prove or disprove

Co(X1 x -+ x Xp) NV, (B, ..., By)
=Vo(X1,...,X,) (cf. Exercise IV.12 vi).

13. Verify the following (in the proof of Proposition 13).
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15.

16.

17.

18.

19.

20.
21.

22.
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i. If g is an elementary tensor in C.(X1 X Y1) ®--- @ Co (X, X Ya,),
then ¢g.,, € Co(Y1 x -+ x Yy,), where ¢y, is defined in (6.2).

ii. If X and Y are locally compact Hausdorff spaces then V(X,Y)
is dense in Co(X x Y).

Let Xq,..., X, Y1,...,Y, belocally compact Hausdorff spaces with
respective Borel fields 9B1,...,%8,,¢&,...,&,, and suppose pu €
PBF,(B1,...,%B,). For ke[n], let (p;: j€N) be Cauchy sequences
in S(B) ® S(¢k), and denote ¢; = pj1 @ -+ @ pj,. Prove that
(hpjip = 7 € N) is Cauchy in V,(Y1,...,Y,).

i. Prove that if Xy,...,X,,Y7,...,Y, are locally compact
Hausdorff spaces with respective Borel fields B4, ...,B,,, &4, ...,
Cpy € F(B1,...,B,),and v € F,(Cq,...,E&,), then p x v €
F,(0(B1 X €1),...,0(B, x &,)) if and only if

sup{‘/qﬁf;H dv

=8 ® fu, fj € Boyx,xv;)J € [n]}

(EA)

is finite.
ii. Prove Proposition 17.

iii. Prove Proposition 18.

i. Prove Proposition 19.

i* FAor n >3 aIAld w€ F,(B1,...,B,), is f jointly continuous on
X1 x - x X7

Verify that convolution defined by (7.2) is the same as the definition
of convolution based on (7.3).
Prove || - |lg,, (defined in (7.7)) is a norm, and (9PBF, || - [|gpb,,)
is a Banach space.
Verify (uxv) = i o for all u € gPBF,, and v € F,.
Prove Proposition 21.
Use Lemma 22 and Proposition 21 to show that if X7, X5, and
X3 are infinite locally compact Abelian groups, then convolution
in Fi(o(B1 X Ba x B3)) cannot be extended to the entire space
F5(B1, B2, B3).
Prove that the Banach spaces gPBF,, and 7 PBF,, equipped with
convolution are Banach algebras.
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23.

24.

25.

26.

1.
2.
4.
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Fix an integer m > 1, and define p in F5(Qy, Qm, Qm) by

wA B,C)= Y 1aw) 1p(w) le(w)/2%.

WEQ,
ACQy, BCQp, CC . (E.5)

i. Verify that u € Fy(22,,9,) with ||ul|m, < 1, and therefore

p € F3(Qu, Q7QO) with H:U'HFS <L
ii. Verify

//:l‘(w17w27w) = wl(w) w2(w)/2%7w1 S Qm7w2 S QWM w e Q’H’L'
(E.6)

e A 2

iii. Prove that H“”Va(flm,ﬁm,ﬂm) > on/2,

iv. Prove that for every K > 0 there exists a discrete measure p with
finite support in X7 x Xy x X3 such that ||| g, (o(3, x8,),85) < 1
and [|pllpn, > K. Conclude that there exist Fh-measures on

o(B1 X By) x B3 which are not convolvers in F5(B1, Ba, B3s).

Prove that the set-function p, defined in (8.5) is an F3-measure on
A x B x €, that ||, m < |l¢]le, and that

/fd.ugo:ZQO(ivjvk) f(‘%iﬁyjkvéik)? fEVg(X,Y,Z)-
ik
Prove that if X1,...,X,, are compact Abelian groups with respec-
tive Borel fields Bq,...,8B,, and u € PBF,(B1,...,B,), then
i€ Vn(X1, ..., X,).
Prove there exist L2-factorizable trilinear functionals that are pro-
jectively unbounded.

Hints for Exercises in Chapter IX

ii*. Interpolation?

i. An instance of Theorem 3.

The first assertion is straightforward. So is the second: if (u;) is
Cauchy in PBF,, then it is Cauchy in F},, and hence converges to
some p € F,. Then pu € PBF,, — by the definition of projective
boundedness, and because V,, = V,, when underlying domains are
finite.



7.

13.

14.

15.

16.

23.

Hints for Exercises 277

i. Use the norm-density of S(2) in L>°(2A). The norms in V and V
are the same when the underlying sets are finite.
ii. Index F; C Bgeo(q,) by elements in B;.

. Uniform boundedness principle.
. The Plancherel Theorem.
10.

Verify the dual formulation of Littlewood’s mixed norm inequality:
for finite sets E and F', and ¢ € [*®(E x F),

||¢HV2(E,F) < \/imax {Z |¢(67f)|2 : f € F}

eckE

(v/2 = the Khintchin constant). In this formulation, let F = W,
F=Q,and ¢ =p- .

i. Use basic properties of integrals with respect to F-measures.

ii. Apply the Stone—Weierstrass theorem.

Show that if o = 1 ® --- ® ¢, is an elementary tensor such that
i € S(Br) ® S(€) (k € [n]), then

[foe

Ve <llealloe -+ llnlloo [l1llpp, -

i. Formally, [ ¢y, dv = [([ f du) dv. If (E.4) holds, then

[([)e

determines a bounded n-linear functional on Co(X; X Y7) X « -+ %
Co(X, x Yy,), and hence there is an F-measure on (B x €;1) X
- x 0(B,, x €,), which is p x v. The converse follows from
Joppdv=[fdpxv).
ii. See proof of Theorem 6; cf. Corollary 14.
iii. Apply Lemma 16 and Proposition 17.
The first part of the proposition can be obtained from a standard
convergence theorem. Use the Grothendieck factorization theorem to
prove the second part. (Is the use here of the factorization theorem
necessary?)
See [BlCag].

i. Compare with Lemma 11.
ii. Compare with (VIL.10.24).
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iii. Use V5" = F3, and that if (w1, ws,w) = w1 (w) we(w) /227, then
18Il < 1. See (VIL.10.25).
iv. Use iii; c¢f. Lemma 22. See Exercise 21.

24. See Lemma VIII.8 and (VIIL5.1). Observe that

/ Fogohdu, =3 ¢liik) fiy) 65m) ),

1,7,k
feCX), geC(Y), heC(2),

and apply Plancherel’s theorem.
25. Cf. (5.10) and (5.11).
26. See examples in §8.



X

Brownian Motion and the Wiener Process

1 Mise en Scéne: A Historical Backdrop and Heuristics

The Wiener process — a stochastic process with independent Gaussian
increments — was originally conceived as a probabilistic model for
Brownian movement, and has been, ever since, among the most influen-
tial mathematical constructs in the twentieth century. For our pur-
poses, we used it in Chapter VI §2 to produce a canonical example of an
Fsr-measure that cannot be extended to an Fj-measure. In this chapter
and the next, we examine and develop ideas underlying this example.
We begin here with some of the history and heuristics behind Brownian
motion and the Wiener process. (In this book, ‘Brownian motion’ or
‘Brownian movement’ will refer always to a physical phenomenon, and
the “Wiener process’ to Norbert Wiener’s mathematical model of it.)

From Brown to Wiener

In the sciences at large, Brownian movement generically refers to hap-
hazard, erratic, difficult-to-predict trajectories of particles. Such move-
ments exhibited by tiny particles suspended in liquid first became known
to naturalists in the seventeenth century, soon after the invention of the
microscope, and for a long time were thought to be vital — always mani-
festing life. Refuting that ‘vitality’ was the cause, the botanist Robert
Brown recorded in 1827 that erratic movements, such as those observed
by his colleagues and predecessors, were in fact performed by inorganic as
well as organic particles. He guessed these particles to be nature’s most
basic constituents, and referred to them as ‘active molecules’ [Br]. Brown
almost got it right. Today it is commonly known that the particles he

279
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observed were not bona fide molecules, but that their movements were
caused by invisible sub-microscopic molecular activity. In nineteenth-
century science, however, the idea that matter was physically constituted
from atoms and molecules in perpetual motion, though widely believed,
was still an unproven notion, the so-called atomic—molecular hypothe-
sis. Indeed, this notion, proposed first by the philosopher Democritus
(465-400 B.C.), led to centuries of speculations, with growing numbers
of proponents of ‘atomism’ on the one side, but also with some illustri-
ous opponents on the other. First among the skeptics, in antiquity, was
the philosopher Aristotle, and last, in the modern era, was the scientist—
philosopher Ernst Mach — the same Mach of the speed-of-sound fame.
(Ernst Mach also had doubts about ether, whose existence, like that
of atoms, was widely accepted by nineteenth-century physicists...)
Aristotle’s opposition to ‘atomism’ stemmed from his belief that we
could accept reality only of that which we could experience through
our senses. Mach’s skepticism was essentially the same: an ardent
phenomenonologist, he demanded physical proof that atoms actually
existed. And so it was, in this very context, that a plausible explana-
tion for Brownian motion became an important pivotal issue [Ny], [Bru,
Chapter 15].

Siding with the atomists, a young Albert Einstein — then a clerk in the
Swiss patent office — proposed in a landmark 1905 paper a statistical—
mechanical model for Brownian movement based on the assumption that
[Eil, pp. 3-4]
the suspended particles perform an irregular movement — even if a very slow
one — in the liquid, on account of the molecular movement of the liquid.*

After deriving and solving a diffusion equation for the ‘suspended par-
ticles’, Einstein obtained that probability distributions of the ‘irregular
movement’ were Gaussian, and deduced a simple formula relating cer-
tain physical constants to the average displacement of a particle. He
concluded with the hope [Eil, p. 18]

that some enquirer may succeed shortly in solving the problem suggested
here [verifying his model, and, specifically, determining atomic and molecular
dimensions].

Soon after Einstein’s paper had appeared, Jean Perrin provided experi-
mental proof, based on Brownian movement and Einstein’s model of it,
* Otherwise, but for his obvious belief in atomic structures, young Einstein was

deeply influenced by Ernst Mach’s then-maverick ideas about physics, and, in
particular, about space-time; see [Ei2, p. 21].
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that atoms and molecules were in fact ‘real’ entities [Pel], [Pe2], [Ny,
Chapter 4]. Einstein was awarded the 1921 Nobel physics prize for the
first of his three celebrated 1905 papers (Annalen der Physik, Vol. 17),
for theoretical work on the photoelectric effect; the citation by the prize
committee only obliquely mentioned his third paper (about special rela-
tivity), and ignored altogether the second paper (about Brownian move-
ment) [Ber, p. 188]. Perrin was awarded the 1926 Nobel physics prize
for his experimental work on Brownian movement and atomic measure-
ments. A detailed account of the key role of Brownian motion in the
experimental verification of the atomic—molecular hypothesis is found in
[Ny]; a briefer account can be found in [Bru, Chapter 15].

Underscoring the significance of the atomic—molecular hypothesis
itself, Richard Feynman offered, somewhat darkly, this tribute [Fey,
pp. 1-2].

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only
one sentence passed on to the next generations of creatures, what statement
would contain the most information in the fewest words? I believe it is the
atomic hypothesis (or the atomic fact, or whatever you wish to call it) that
all things are made of atoms — little particles that move around in perpetual
motion, attracting each other when they are a little distance apart, but repelling
upon being squeezed into one another.

On the mathematical side, the first study of Brownian movement from
a purely probabilistic viewpoint appeared in Louis Bachelier’s University
of Paris doctoral thesis, submitted in 1898 and defended in 1900 [B1].
In his dissertation, Bachelier made no mention of haphazard motions
observed in contexts of physical science. Rather, he was inspired by
price fluctuations on the Paris stock exchange, which led him to a mathe-
matical model of time-dependent randomness. The model, although
flawed, was in hindsight a precursor to later constructs by others; see
[B2, Chapter XII-XIV]. Bachelier’s work in probability theory, with the
Bourse as his laboratory, should have been seminal, but, alas, attracted
little notice from his contemporaries. Interesting comments by Paul
Lévy about Bachelier’s results (and Lévy’s own) can be found in [Lé4,
pp. 97-98]; see also [Man, pp. 392-5].*

* The Bourse is of course a physical context. In a biographical sketch of Bachelier
[Man, pp. 392-5|, Benoit Mandelbrot suggests that focus on the stock market
might have tainted Bachelier’s mathematics; 1’Académie would have been more
receptive to Bachelier’s ideas had they been cast in then-traditional settings of
physical science.
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Unlike Bachelier’'s work, Norbert Wiener’s study of Brownian
movement was decidedly motivated by physics [Wi2, pp. 131-133]. Cit-
ing Einstein and Perrin in his 1923 work on Differential-Space, Wiener
noted the

physical explanation of the Brownian movement. . .that it is due to the hap-
hazard impulses given to the particles by the collisions of the molecules of the
fluid in which the particles are suspended [Wi2, p. 133].

He then constructed a model: a Gaussian stochastic process representing
the seemingly random movements of these particles. The construction
of this process was, at the time, a major mathematical breakthrough.
We explain below the motivation behind Wiener’s model, and defer its
precise definition and construction to the next section.

Heuristics

Say we are observing haphazard movements of particles. Our goal: model
these movements. We consider one such generic particle p, which we
dub Brownian, and suppose it is free. That is, we assume the only
forces acting on p are imparted by an ambient environment — all forces
are hidden, and all acting in a very complicated manner. Also, to sim-
plify matters, we suppose the particle p is moving continuously along
a straight line. (Think of p’s position on this line as the x-coordinate
of an actual Brownian particle in three-dimensional space.) We let the
particle’s position at time ¢ = 0 be the origin, and ask: what can be said
about its position X = X (t) at time ¢ > 07

We concede that we do not know, and are unable to determine the
particle’s extremely complex dynamics. Our perceptions, based on ‘zero
knowledge’, are that

(i) at any instant, p moves to the right or to the left with equal like-
lihood, and

(ii) p’s trajectories over disjoint time intervals appear unrelated.

These two assumptions about Brownian particles and their trajectories
are meant at the very outset in an intuitive sense, and will soon be made
precise. Particles and their trajectories about which we assume i and ii
will be called Brownian. We also presume that

(iii) p’s ‘statistics’ over time intervals of equal length are the same.
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The third surmise (time-homogeneity) also stems from ‘zero knowledge’:
knowing (and assuming) nothing about forces acting on p, we imagine
that Brownian motion is statistically the same in every time interval
of the same length. (In iii, ‘statistics’ could mean ezpected distance
traveled by p, variance of its increments, or probability distributions of
its increments.)

We model these perceptions in a probabilistic framework. To begin,
we think of X (¢) as a real-valued random variable with finite variance.
We assume that EX () = 0 (assertion i); that increments over disjoint
time intervals are uncorrelated (assertion ii, Exercise 1),

E(X(t1) = X(51))(X (t2) — X(s2)) = 0,

O§81<t1§82<t2<00; (11)

and that the variance of X (t) — X (s) is a function of ¢t — s (assertion iii),

Var(X(t) — X(s)) =v(t—s), 0<s<t<oo, (1.2)

where v is a non-negative function on [0,00). From (1.1) and (1.2) we
conclude that

VarX (t) = ct for all ¢ > 0, (1.3)

where ¢ > 0 is a numerical constant (Exercise 2).

To derive VarX (t) = ct for all t > 0, we used a mild, indeed a minimal
interpretation of assertions i, ii, and iii. Let us now apply the more
stringent interpretation, that path increments over disjoint time intervals
are statistically independent random variables. This, in a probabilistic
context, is the most extreme interpretation of assertion ii (and, insofar
that modeling ‘reality’ is our objective, the simplest and most naive. .. ).
We fix time ¢t > 0, fix an arbitrary integer n > 0, and imagine X (¢) to be
‘approximately’ the result of a simple random walk clocked by discrete
time t/n, 2t/n,...,jt/n,...,(n —1)t/n: at time jt/n, j=0,...,n —1,
we imagine the particle moving a distance s, to the right or to the
left with probability 1/2, the moves are independent, and s,, = +/ct/n
(cf. (1.3)). Then, X (t) is ‘approximately’

X, (t) = w/as/nzrj, (1.4)
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where {r; : j € N} is the usual Rademacher system. (See Chapter VII.)
Taking n — oo, we obtain by the Central Limit Theorem that X,, con-
verges in distribution to a Gaussian r.v. with mean 0 and variance ct,
and think of this limit as X (¢).

Remarks:

i (a Gaussian from the viewpoint of physics). The perception
that a Brownian particle’s position is a Gaussian random variable
follows, as we have just seen, from the Central Limit Theorem, via
statistical analysis based on ‘zero knowledge’. This perception is
a cornerstone to Wiener’s mathematical model of Brownian motion,
which Wiener himself viewed as ‘a first approximation’ [Wil, p. 295].

A Gaussian model of Brownian movement can be derived also in
a context of statistical mechanics from ‘idealized’ physical princi-
ples. This indeed was Einstein’s observation in his 1905 paper on
Brownian movement. We briefly describe such a derivation (cf. [Re,
pp. 483-4]). Let n(z,t) be the linear density of Brownian particles
at time ¢ > 0 and position z. (For simplicity, as before, consider
Brownian movement in one dimension.) Let J(z,t) (flux) be the
average number of Brownian particles per unit time crossing a point
x at time ¢. Conservation of mass implies

on oJ
F il (1.5)
If we assume also that flux is proportional to the spatial derivative
of the density,
on

(constant D > 0), then, by combining (1.6) with (1.5), we obtain

the diffusion equation
on_ o
ot Ox?

whose solutions involve Gaussian kernels.

(cf. [Eil, p. 15, equation (I)]), (1.7)

The assertion in (1.6), a simple and ‘ideal’ assumption on which
Einstein’s model rests, is analogous to the independence-of-Brownian
increments assumption in the statistical context.

ii (a Gaussian from the viewpoint of information theory). Like
assumptions i and ii, the time-homogeneity in iii stems from ‘zero
knowledge’: with no information about ambient forces acting on the
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Brownian particle, we cannot but surmise that Brownian movement
is statistically the same in every time interval of the same length.
A simple analogy is that a uniform probability measure is a model
for random sampling from a finite set. A rigorous justification for
this model — usually glossed over in elementary courses — is that
the uniform probability measure on a finite set, among all prob-
ability measures on the set, has maximum entropy [I3, p. 17]. Here
we view the entropy of a distribution, in the sense of Shannon, as
a gauge of the ‘amount’ of information contained in the distribu-
tion: greater entropy means less information. Indeed, by applying
the maximum entropy method to find the distribution of displace-
ments of a Brownian particle (under a hypothesis that we have no
information about the particle’s dynamics), we conclude that the
distribution is Gaussian [Sh, pp. 56-7].

2 A Mathematical Model for Brownian Motion

By a stochastic process (or simply a process) we mean a collection of
random variables indexed by a prescribed set. The underlying prob-
ability space (€,.%P) will always be complete, the random variables
real-valued, and the indexing set until further notice will be the unit
interval [0,1]. If X = {X(¢) : ¢t € [0,1]} is a stochastic process, and [0,1]
denotes a time scale, then we call X(t),t € [0,1], a sample-path; other-
wise, we refer to it as a random function. We can think of a stochastic
process X also as a function of two variables,

X =X(t,w), tel01], we . (2.1)

But, unless specifying otherwise, we follow the usual convention, writing
X (¢) for X (t,w). (In a probabilistic context, the sample point w € § is
almost always implicit.)

Definition 1 A stochastic process W = {W(¢) : t € [0,1]} on a prob-
ability space (2,94 P) is a Wiener process if

W(0) =0 a.s. (P); (2.2)

for [s,t] C [0,1], W(t) — W(s) is a Gaussian random

variable with mean 0 and variance t — s; (2.3)
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for every partition {0 <t; < --- <t, <1} of [0,1],
W(ts) — W(t1),..., W(t,) — W(t,_1) are statistically

independent random variables. (2.4)

A Wiener process is a model for Brownian movement: the sample
space () represents the ensemble of all possible paths of a Brownian
particle, and W(t) (¢ € [0,1]) is its (P) random trajectory; properties
(2.2), (2.3), and (2.4) reflect the heuristics in the previous section. Notice
that continuity of sample paths is not part of the definition; sample-path
continuity will be a consequence of the model. (Recall that continuity of
Brownian trajectories was built into the heuristics that led to Gaussian
distributions.)

First on the agenda is the question: does such a model exist?

A Construction of a Wiener Process

We start with a countably infinite system of independent standard
Gaussian variables on a probability space (§,.%P), and let H be the
L2(9, P)-closure of the linear span of this system. Every element in H is
Gaussian with mean 0 (Exercise 4 1). We let U be a unitary map from
L2([0,1],m) onto H, where m denotes Lebesgue measure on [0,1], and
define

W(t) = U]-[O,t]7 t e [0,1] (25)

Then, W={W(t): t€[0,1]} is a Wiener process. Properties (2.2) and (2.3)
are evident. Property (2.4) follows from this general fact: if Y7,...,Y,
are mutually orthogonal Gaussian variables with mean 0 such that every
element in the linear span of {Y1,...,Y,} is Gaussian, then Y7,...,Y,
are independent (Exercise 4 ii).

This realization of a Wiener process, which is due to S. Kakutani, is
a characterization (cf. [Kakl], [Kak3, pp. 241-2]). That is, if W is a
Wiener process, then it can be realized as

W(t) = U]-[O,t]> te [0,1], (26)

where U is a unitary map from L2([0,1],m) onto the L2-closure of the
span of a countably infinite system of independent standard Gaussian
variables. We will prove this in the next section, immediately after we
define the Wiener integral.
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Remark (the Wiener space). In §5 we will demonstrate, by using
stochastic series representations, that if W is any Wiener process, then
sample-paths of W are almost surely continuous. Indeed, we expect
sample-path continuity from a model of Brownian movement. And
therein lies Wiener’s achievement: a construction of a process satisfying
(2.2), (2.3), and (2.4), and the sample space is Cr([0,1]) (the space of
real-valued continuous functions on [0,1]).

Here is an outline of such a construction. Forn e N, 0 <¢; < --- <
t, <1, and Borel sets A; CR,...,A,_1 CR, define

C(tla ce 7tn;A17' . '7An71)

={g € Cr([0,1]) : g(t2) — g(t1) € A1,...,g(tn) — g(tn_1) € Ap_1},
2.7)

and then define
c= {C(th s 7tn;Al7 cee ’An*l) :

neN, 0<t <---<t, <1, Borel sets 41 CR,...,A,_1 CR}.
(2.8)

It is easy to verify that % is closed under finite intersections, and that
complements of elements in % are finite unions of elements in &

Next, to construct a probability measure on o % (= o-algebra gene-
rated by %), we consider

_ 1 —t2
G2 (A) = ﬁ/Aexp (ﬁ) dt, Borel set A C R, (2.9)

and define for C = C(ty,...,tn; A1,..., An_1) €
PW(C) = H 557%*%’71("4]'*1)' (210)
Jj=2

After verifying that Pw is well-defined and countably additive on #
(which requires some work!) we conclude, by the Carathéodory exten-
sion theorem (e.g., [Roy, pp. 295-7]), that Pw is extendible to a prob-
ability measure on o %

A Wiener process W on the probability space (Cr([0,1]),0 %, Pw) is
defined by

W(t,w) =w(t) —w(0), w e Cg([0,1]), t € [0,1]. (2.11)
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Property (2.2) is evident, and properties (2.3) and (2.4) follow from (2.9)
and (2.10), respectively.

This construction (detailed, for example, in [Hi, pp. 44-51]) is based
on Wiener’s original insight: the realization of Cg([0,1]) as a product
space with a probability measure on it determined by a product of
Gaussian measures. It was this view of Cg([0,1]) that eluded Paul Lévy
in his own quest for ‘la fonction du mouvement brownien’; see [Lé4,
pp. 97-100]. Wiener dubbed this probability space differential-space.
He imagined a Brownian path to be synthesized from statistically inde-
pendent ‘differences’ sampled from Cg([0,1]) (cf. (1.4) and (2.5)); and
hence the term differential-space. Today Py is called the Wiener mea-
sure, and (Cgr([0,1]), 0 %, Pw) is called the Wiener space.

3 The Wiener Integral

The next question is: can a function on [0,1] be integrated, in some
reasonable sense, along sample-paths of a Wiener process? Notice that
the question considered in the previous section — does a Wiener process
exist? — can itself be restated as a question about the feasibility of an
integral: write (formally)

1
W(t) :/ 1[0,t] dW,
0

and ask whether the right side exists as a limit, in some appropriate
sense, of sums of ‘differences” AW (cf. (1.4)). (Wiener himself imagined
Brownian motion as this limit; see [Wil, p. 294], and also §12 in this
chapter.)

We first observe a natural obstacle to integration in the usual Riemann—
Stieltjes sense. For the purpose of the proof below, we take for granted
that sample-paths of a Wiener process are almost surely continuous.
(This will be verified in §5.)

Proposition 2 On every subinterval of [0,1], almost all (P) sample-
paths of a Wiener process have unbounded variation.

Proof: Let W be a Wiener process, and define

W,.; =W(@/n)—W({(j—-1)/n), neN, je[n].
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We claim that

n
. 2 _
lim D (W ;)° =1, (3.1)
j=1
where the limit is taken in the L2(£2, P)-norm. To verify this, write
2 2
n n 1
E Zl(wn,j)Q ~-1| =E Zl [(Wm)2 — E} . (32
i= j=

The random variables (W,, ;)2, j € [n], are independent and have mean
1/n. Therefore, the right side of (3.2) equals

> B[ - 1] =3 B - (1)] C69)

. n
Jj=1

Because the W,, ; are Gaussian with mean 0 and variance 1/n, we have
E(W, ;) =3/n% j € [n]. Therefore,
2

n

E(Y (We)?—1] =

=1

; (34)

S

which implies (3.1).

Because sample-paths of W are almost surely continuous, we con-
clude from (3.1) that they almost surely have infinite variation over [0,1]
(Exercise 5). The same proof applies to any subinterval of [0,1]
(Exercise 6). a

Remarks:

i (what does infinite variation mean?). According to the propo-
sition above almost all sample-paths in Wiener’s model have infi-
nite variation, while a trajectory of a physical particle, no matter
how erratic, surely has finite variation. In fact, it can be further
shown that, although a physical particle has always finite velocity,
almost all sample-paths of W are nowhere differentiable [Wi2, §4],
[DvErKak]. This seems paradoxical, but all is in order: in a prob-
abilistic framework, nowhere differentiability means uncertainty. To
wit, the haphazardness perceived in (physical) Brownian movement
becomes the assumption underlying the probabilistic model, that a
Brownian particle’s direction cannot at any instant be predicted;
that all directions are equally likely. (Review the heuristics in §1.)
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This assumption implies — formally, at least — that there are no
tangent lines to the graph {(¢t, W(¢)) : ¢ € [0,1]}; and hence nowhere
differentiability. In this sense, Proposition 2 is a statement about
inability to predict Brownian motion, and not about the motion
itself.

ii (quadratic variation). The left side of (3.1) is the quadratic varia-
tion of W at t = 1. The main step in the proof of Proposition 2, that
this variation is finite and non-zero, contains the argument that the
Fy-measure associated with W (recalled in Remark iv below) cannot
be extended to a bona fide measure (see also Exercise 7.)

In a broader context of stochastic integration, the quadratic vari-
ation is key to the Ité integral: an integral of a random function (of
W) with respect to W [I1]. This integral and this quadratic varia-
tion, of which more will be said in §8 and the next chapter, are at
the very foundation of adaptive stochastic integration (e.g., [Pr]).

According to Proposition 2, we cannot integrate along sample-paths
of W in the usual Riemann-Stieltjes sense. Instead, we use a functional-
analytic approach. Let f be a step function on [0,1].

F=Y a1y, (3.5)

where the J; are pairwise disjoint subintervals of [0,1]. Define

Tw(f) = a; AW(I) (3.6)

(AW(J) := W(t) — W(s), where J C [0,1] is an interval with end-points
s <t). The AW(J;) are independent Gaussian random variables with
mean 0 and variance m(.J;), and therefore, Iw(f) is Gaussian with mean
0 and variance

1
Elfw(H = 3 Jaif* m() = [ 1717 at. (37
Z 0
Therefore, (3.6) defines an isometry from the space of step functions in
L2([0,1],m) into L2(Q,P), and because step functions are norm-dense in
L2([0,1], m), this isometry is uniquely extendible to L2([0,1],m). Its eval-
uation at f € L2([0,1],m) is, by definition, the Wiener integral Iy (f).

Proposition 3 (Exercise 8). For f €L2([0,1],m), Iw(f) is a Gaus-
sian random variable with mean 0 and variance | f||2.. Moreover, for
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all f and g in L2([0,1],m),

/0 F(Dg(t)dt = B T (f)Tw(g). (3.8)

We now can verify that Kakutani’s construction of a Wiener process
is a characterization:

Proposition 4 Let W = {W(¢) : t € [0,1]} be a Wiener process on
(Q,4P). Then, there exists a system {X; : j € N} of independent
standard Gaussian r.v. on (Q,.%P), and a unitary equivalence U from
L2([0,1],m) onto the L2(Q,P)-closure of the linear span of {X; : j € N},
such that

W(t) = Ul[O,t]a t e [0,1} (39)

Proof: Let {e; : j € N} be an orthonormal basis of L?([0,1],m), and
let

Xj :Iw(ej), VESB\B (310)

By Proposition 3 and Exercise 4 ii, the X; are independent standard
Gaussian variables. Define Ue; = X;. Then,

Uf =Iw(f), feL*[0,1],m). (3.11)

To verify (3.11), expand f =3, ¢; e;, and obtain

Uf = Z Cj Xj = ZC]' Iw(ej) = IW Z cj€; |, (312)
J J J

where each of the series above converges in the respective L2-spaces. In
particular,

Ul[oﬁt] = IW(I[O,t]) = W(t) (3.13)

O

Remarks:

iii (a new integral). The Wiener integral Iw(f) is a stochastic
integral of a deterministic integrand (an integrand that does not
depend on w € ) with respect to a random integrator (a stochastic
process). It appeared first in various guises in Wiener’s papers on
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Brownian motion, where its construction was not quite as transpar-
ent as it is today; see commentaries by K. It6 and J.-P. Kahane [Wi3,
pp. 513-19, 558-63].

For every continuous function f there exists a sequence of
partitions

T = {0 Sthip < <tppp = 1} (3.14)

whose mesh goes to 0, such that

ng

Z; F(ti) [W(tig) = W(ti11)] = Fw(f) almost surely (P).

(3.15)
We cannot conclude the stronger property (integrability in the
Riemann-—Stieltjes sense), that (3.15) holds for all sequences of par-
titions whose mesh goes to 0.
(an Fy-measure). We revisit the Fh-measure constructed in
Chapter VI §2 iv. Let W be a Wiener process on a probability
space (2, % P). For A € &/and B € % (Borel field in [0,1]), define

p,w(A,B):E 1A IW(]-B)a AE&/, Be % (316)

(This agrees with the definition of p in (VI.2.13) for intervals B.)
Then, for all A € 4 uw(A4,-) is a scalar measure on ([0,1],.%) that
is absolutely continuous with respect to Lebesgue measure (because
| Tw(18)||2 = (m(B))Y/?). Similarly, for all B € %, uw(-,B) is a
scalar measure on (§2,.27) that is absolutely continuous with respect
to P (by the definition of pw). In particular, pw € Fa(2.% ) and
|uwllm = /2/m (Exercise 9). Observe that pw is not extendible to
a scalar measure on o(/x %) (as per (VI1.2.14)).

If f is a bounded measurable function on ([0,1],.%), then
(Exercise 10)

d

W= gp [ 50 ) (3.17)

(white noise). For a Borel set B C [0,1], define
AW (B) := Iw(1p), (3.18)

which obviously extends the definition of AW(J), where J is an
interval. If By, ..., By are pairwise disjoint Borel subsets of [0,1], then
AW(By),...,AW(By) are independent Gaussian variables with
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mean zero and variances m(By),..., m(By), respectively. The ran-
dom set-function AW(-) is sometimes called white noise (e.g., [Nu,
p. 8]), and I, too, will use this terminology.

(a generalized Wiener process and its associated Fa-
measure). The following set-indexed process was proposed by S.
Kakutani [Kakl] as a generalization of the Wiener process. In the
definition of W, replace [0,1] by a locally compact Abelian group G,
and replace the Lebesgue measure on [0,1] by a Haar measure m on
G. Then, a generalized Wiener process AW on G is a collection of
random variables indexed by the Borel field % in G,

AW = {AW(B) : Be€ %}, (3.19)
with the following properties:

for every B € %, AW(B) is Gaussian with

mean 0 and variance m(B); (3.20)

if {B;} is a collection of pairwise disjoint sets in .7,
then {AW(B;)} is a statistically independent
system, and if m(U;B;) < oo, then

AW(U;B;) = Z AW(B;) (convergence in L?(Q,P)). (3.21)

Kakutani called this process generalized Brownian motion. Its con-
struction is nearly identical to the one in §2: let U be a unitary
map from L?(G, m) onto the Hilbert space spanned by independent
standard Gaussian variables, and define

AW(B) =Uly, BEe % (3.22)

If f € L?(G,m), then Uf is the ‘Wiener integral’ of f with respect
to AW (cf. Proposition 4). In the specific case [0,1]?, the process
defined by

Ul[O,s]X[O,t]a (Sat) € [071]27 (323)
is the (so-called) Brownian sheet [CW].

The definition of the Fh-measure puaw associated with a general-
ized AW is the same as that of the Fy-measure in (3.16):

paw(A,B)=E 1, Uly, A€ Be.Z (3.24)
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If G is infinite, then paw is not extendible to a scalar measure on
o(o/ x #) (Exercise 11).
The construction of paw is reversible. That is, we start with the
definition: pu € Fy (., %) is a Wiener Fy-measure if
for each B € %, u(-, B) < P, and the Radon—Nikodym
derivative du(-, B)/dP is a Gaussian r.v. with mean
0 and variance m(B); (3.25)

for every collection of pairwise disjoint sets {B;}
in %, {du(-, Bj)/dP} is an orthogonal
system in L%(Q,.%P). (3.26)

Then, a generalized Wiener process (in the sense of Kakutani) asso-
ciated with a Wiener Fh-measure y is

AW = {du(-, B)/dP: B € %}. (3.27)

(The association between stochastic processes and Fréchet measures,
of which (3.27) is an instance, will be studied in the next chapter.)
(stochastic series of W). Given an orthonormal basis {e; : j € N}
of L2([0,1],m), we obtain from Proposition 4 a series representation
of W,

=

vi

oo

W)= (/ e;(r) dz) Iw(ej), (3.28)
= Vo
which converges in L2(£2, P) uniformly for all ¢ € [0, 1] (Exercises 12,
13).  Such a series based on the classical trigonometric system
was first considered by Wiener [Wi4, p. 570]. (See also [PaZy2,
Chapter IX].) In this case, we take the orthonormal basis to be the
normalized cosine system, and expand

o0 . .
sin wjt
Ljo.4(s) ~t+ V2 E ﬂ;r] COS TJs. (3.29)
Jj=1

From (3.28), we obtain

>, sin 7jt
W(t) ~tXo + V2 ; 7 X;, (3.30)
where

X; = Iw(V2 cos mjs), j €N, (3.31)
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and
Xo = W(1). (3.32)

The series in (3.30), known as the Fourier—Wiener (sine) series [Kah2,
p. 150], converges in L2(Q,P) for all ¢ € [0,1], and in L2([0,1],m)
almost surely (P). After some groundwork in the next two sections,
we will establish that a subsequence of partial sums of this series
converges uniformly on [0,1] almost surely, and thus conclude that
sample-paths of a Wiener process are almost surely continuous.

4 Sub-Gaussian Systems

In this section we formalize a notion of independence based on measure-
ments of decay of tail-probabilities P(|X| > z) as z — oo. We start
with

Definition 5

i. X € L2(Q,P) is a sub-Gaussian variable if there exists 0 < A < oo
such that

lim exp(Az?) P(|X| > || X||r2) < oo. (4.1)

ii. I c L%(Q,P) is a sub-Gaussian system if every X € LZ4(Q,P) is
sub-Gaussian. (As in Chapter VII, L% (2, P) denotes the L2-closure
of the linear span of F'.)

Lemma 6 (see [Kah3, p. 82]). Suppose X € L2(,P), || XL < 1.
The following are equivalent.

i. X is sub-Gaussian;
ii. there exists 0 < B < oo such that

sup{[| X|lLs//p:p > 1} < B; (4.2)
iii. there exists 0 < C' < oo such that

t@oE exp(t|X| — Ct?) < oo; (4.3)
iv. there exists 0 < D < oo such that

E exp(D|X]?) < oo. (4.4)
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Proof: ii = iii. Estimate

E exp(t|X]|) = Z t" E|X|"/n! (Taylor series expansion of exp)
n=0
<) (B*#*)in?/n! (p=nin (42))
n=0
< exp(8B%t?) (n%/n' <2n/ (g)') . (4.5)

iii = i. For t > 0 and z > 0,
P(|X| > x) exp(tz) < E exp(¢|X]), (4.6)
and, by (4.3), for sufficiently large ¢ > 0,
P(|X| > z) < exp(Ct* — tx). (4.7)

Put ¢t = 2/2C in (4.7), and obtain (4.1) with A =1/4C.
i = iv. Take D < A, and, for sufficiently large k > 0, estimate

E exp(D|X|*) = /OOO P(exp(D|X|?) > z) dx

<k+ /:O 2~ %44z < 0. (4.8)
iv = i. Estimate
P(|X| > x) < exp(—Dz”) E exp(D|X|*)
< exp(—Az?) (4.9)

for sufficiently large x, where 0 < A < oo is chosen appropriately.
i = ii. Assume p > 1, and estimate

o o0
E[X|P = / P(|X|P > z) doe < K/ GXp(—Agjz/p) da
0 0

= Kp/n/A /Ooo(\/A/w) a1 exp(—A2?) dz, (4.10)

for some K > 0. The last integral is the (p — 1)st moment of a Gaussian
r.v. with mean 0 and variance 1/2A. Therefore, E|X|P is @(pP+1)/2),
and ii follows. U
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Remarks:

i

ii

(an Orlicz norm). Consider the Orlicz function
b1(z) = exp(z?) —1, x>0, (4.11)
and the corresponding Orlicz norm
IYlls, = inf{p>0:E i ([Y|/p) <1}, ¥V €LQ.9).  (412)

We denote the Orlicz space comprising all Y € L°(Q,.%7) such that
Y]], < oo by Lg, (,P). (See [LiTz, Vol. II, p. 120].)
By Lemma 6, F' C L?(Q2,P) is sub-Gaussian if and only if

L%.(Q,P) C Ly, (2, P). (4.13)

Equivalently, F C L2(,P) is sub-Gaussian if and only if there exists
K > 0 such that

1 XTlg, < KX |2 (4.14)

for all X € span(F).

(a sub-Gaussian system conveys independence). Suppose a
measurement of a certain quantity, whose true value is pu, is per-
formed N times. Let y; be the jth measurement, and denote the
jth error by

zji=y;—fp, j=1,...,N. (4.15)

If the NV measurements are independent — in some heuristic sense —
then we expect these errors to cancel out, and therefore expect ¥;x;
to be small. Conversely, if the N trials are, to some degree, inter-
dependent — again, in some heuristic sense — then we expect fewer
cancellations, and thus expect 3;z; to be correspondingly larger
(Exercise 14). To make this precise in a ‘statistical’ setting, suppose
this procedure (N repeated measurements) is performed K times,
and that K is large. Let Q be the set of the K outcomes, each an
N-tuple (z1,...,2y), and let P be the uniform probability measure
on Q (P(z1,...,2n) = 1/K). Consider the projections

Xj(l‘l,...,ijv):l'j, jE[N], (1'17...,(EN)EQ. (416)

In this scenario, viewing these X; as random variables, we assess
cancellation of errors by the tail-probabilities
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and think of (4.17) as a gauge of interdependence of the N measure-
ments: smaller P(|X;X;| > ) mean less interdependence.

Now consider a general probability space (Q2,P), and {X; : j € N}
an orthonormal system in L2(§2,P). In general, tail-probabilities can
be estimated by Chebyshev’s inequality,

P> a; X;|>a| <1/a® forall 2 > 0,and all (a;) € B,
J
(4.18)

estimates that could be sharper, but no sharper than sub-Gaussian.
Precisely, this means that for all a > 2,
> Z‘) : Zj\aj\2 = 1} =0.

(4.19)

inf {hm (—1/x%) log ]P(

r—00

> a; X;
i

(See [Rul, Theorem 3.4] and Lemma 6.) We view orthonormal sub-
Gaussian systems {X; : j € N} as independent systems.

Because every finite set of sub-Gaussian variables is obviously a
sub-Gaussian system, this notion of independence based on tail-
probability estimates needs further fine-tuning. For an orthonormal
system F' = {X,} (finite or infinite) of sub-Gaussian variables, define

(cf. (4.19))
> l‘) : Zj|aj|2 = 1}

(4.20)

cp = inf {hm (—1/2?) log P(

r—00

> a; X;
j

F is sub-Gaussian if and only if there exists K > 0 such that K < cg
for all finite subsets S C F. Equivalently (cf. (VIL.9.29)), we define

NF = sup ﬂ@wnxnm/\/ﬁ . X espan F, || X[z = 1}, (4.21)

and

op =sup{||X||¢, : X €span F, || X||2 =1}. (4.22)
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By Lemma 6, cp > 0 <& np < 00 < op < 0. Any one of these

constants can be viewed as a gauge of the ‘independence’ manifested

in F.

iii (examples).

1. A system of statistically independent standard Gaussian vari-
ables {X; : j € N} is sub-Gaussian: every element in the L%
closure of the span of {X; : j € N} is Gaussian with mean 0
(Exercise 4 i), and every standard Gaussian variable X satisfies

Eexp(s|X|) < E(exp(—sX) + exp(sX))

< 2exp(s?/2), s>0. (4.23)

2. The Rademacher system {r;:j€N} is sub-Gaussian. This, by
Lemma 6, 1is equivalent to the Khintchin inequalities
(Exercise 11.4),

%

dajrll <Byp Dl | . p>2 (4.24)
j=1 j=1

Lp

To prove directly that {r; : j € N} is sub-Gaussian, observe that
if X =3%% ja;7;, and s € (—00,00), then (Exercise 15)

N N
Eexp(sX) = H Eexp(sa;r;) = H cosh(sa;)
j=1 j=1
< exp(s?[|X[2). (4.25)

More generally, by the Burkholder-Gundy inequalities, every
martingale-difference sequence (X;) with sup || XL~ < oo is
sub-Gaussian. (See Exercise VII.11.)

3. Every Sidon set is sub-Gaussian. This follows from Lemma 6
and Theorem VII.41. (In Theorem VIIL.41, let t = 1, and replace
the Walsh system W by any discrete Abelian group.)

These examples illustrate three ostensibly separate notions of
‘independence’: statistical, functional, and sub-Gaussian. The first is
at the heart of classical probability theory; the second was discussed
in a framework of harmonic analysis in Chapter VII (in connection
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with Sidonicity), and the third is the essence of this section. Every
statistically independent, Lg, (€2, P)-bounded system is sub-Gaussian
(Exercise 16), but sub-Gaussian systems need not be statistically
independent (e.g., Sidon sets). In a framework of harmonic analysis,
every sub-Gaussian system of characters is Sidon [Pil], and there-
fore can be viewed as functionally independent; see Chapter VII
§11. Whether functionally independent systems can be viewed as
sub-Gaussian systems, and how to view sub-Gaussian systems as
functionally independent systems are open (-ended) questions.

5 Random Series

The idea of random series is, arguably, the single important concept
that brought probability theory and classical analysis together. It first
appeared at the end of the nineteenth century, in the work of Emil Borel
[Bor], but not quite in the form known today ([Kah3, p. 37]). Random
series in their present-day guise were pioneered during the 1920s and
1930s by the grandmasters Khintchin, Kolmogorov, Lévy, Littlewood,
Rademacher, Steinhaus, Paley, Wiener, and Zygmund (e.g., [PaWiZy]).
In the beginning, the focus was mainly on Rademacher series,

er(w) fi, we {-1,+1}", (5.1)

where (f;) was a prescribed sequence of functions. But it soon became
apparent (e.g., [Lit3], [Ste2]) that Rademacher functions could be
replaced, to good effect, by the so-called Steinhaus functions (see
Chapter VII §9, Remark i): uniformly distributed, {z € C: |z| = 1}-
valued, statistically independent random variables (Chapter II §6).
These functions were dubbed Steinhaus in a seminal paper [SaZy?2] (dedi-
cated to Steinhaus), where Salem and Zygmund — building on Paley’s
and Zygmund’s previous work — established fundamental properties of
series ‘randomized’ by Rademacher as well as Steinhaus systems.

In a subsequent phase, building on Salem’s and Zygmund’s work,
J.-P. Kahane focused on random series involving statistically indepen-
dent Gaussian variables [Kahl]. This indeed was a major step —
certainly from this chapter’s viewpoint — primarily because every Wiener
integral can be represented as a random Gaussian series (Exercise 17).
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In particular, properties of sample-paths of a Wiener process could then
be deduced from general properties of series randomized by statistically
independent Gaussian variables.

In this section, building on work of Kahane, Salem and Zygmund, we
consider series randomized by sub-Gaussian systems. For applications
to a Wiener process, we could just as well take statistically indepen-
dent Gaussian variables, but the more general approach taken here will
become useful at a later point, in the analysis of more general stochastic
processes. The lemma and theorem below are the main tools. The esti-
mates in Theorem 8 in the case of statistically independent sub-Gaussian
systems are the Kahane—Salem—Zygmund estimates [Kah3, pp. 68-9],
which are of paramount importance.

In the lemma below, (S,v) is a finite measure space, and T a linear
subspace of L>°(S,v). For 0 < u < 1, we consider

p(T,u) = inf{oA{|f| = ul| fllLe} : f €T} (5.2)

Lemma 7 Let {X; : j € N} C L*(Q,P) be an orthonormal sub-Gaussian
system. Suppose p(T,u) = p > 0 for some u € (0,1]. Let {f;} be a finite
subset of T such that

SR <1, (5.3)
j Lo

and consider (the random function) p =73, f; ® X;. Then, the random
variable

IpllLe = esss;lp E fi(s) X; (5.4)
sE€ -
J

is sub-Gaussian. In particular, for all 0 < A < ¢;x;y, there exist L >0
such that

P(|lp|lLe > x) < exp(—Au®2?), x> L. (5.5)

v(S)
p
Proof: By (5.3) and the definition of c{x,} (in (4.20)), there exists

L > 0 such that for all s € S,

P{¢ : [p(s,€)| > o} = Euligp(s.0) >0} (@)

< exp(—Az?), = > L. (5.6)
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(For clarity’s sake, we make explicit the appearance of sample points £
and w in Q.) Integrating (5.6) over S with respect to v, we obtain

E, < /S Lig:lp(s.)[>0} (@) V(d5)>

= /(Ewl{s:\ms%s)w}(w)) v(ds)
S

< v(89) exp(—Az?). (5.7)
For w € Q, define
Iy ={teS:|p(t,w)] = u|p(-,w)llLe=}- (5.8)
Then, for all s € S, w € Q, and = > L,

12, (8) Yelp(s.0)1>a3 (@) 2 11, (8) Lgifp( @)l >a/up (@) (5.9)
Therefore, by (5.7) and the definition of p,

) exp-4r) = Bu [ Lepieion(@) vlas)
> E, ( /1  Lemeopa©@) V(d8)>
> pP{E:Ip(- L= > x/ul, (5.10)
which (because p > 0) implies (5.5) (Exercise 18). O

Let S = [0,1], and v = Lebesgue measure. For N > 0, Py below
will stand either for the space of trigonometric polynomials on [0,1] of
degree N, or the space of Walsh polynomials of degree N (the span of
{wy,, : n < N}, where {w,, : n € N} is the Walsh system enumerated in
(VIL.4.1)).

Theorem 8 If {X; : j € N} C L*Q,P) is an orthonormal sub-
Gaussian system, then there exists C' > 0 such that for all finite sets

{fj}CPN7

>CIDILP| N2 <1/N. (511
- j Lo

Wl

PLdfieX;
J

L
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Proof: Let Py be the space of trigonometric polynomials of degree V.
In order to estimate p(Pn,-) (defined in (5.2)), we first estimate the
modulus of continuity of

N
f@) = (a; cos 2mjz + b; sin 2mjz). (5.12)
j=0

For z € [0,1] and y € [0, 1],

[f(x) = f(y)l
N
< 1rg]r;_ang\fﬂcos 2mjx — cos 2mjyl, |sin 2mjx — sin 27jy|} ZO(|(1]‘| + 1b51)
j=
N
< 27N |z —y| > (laj| + b))
j=0
1
N 2
< 27N |z —y| V2N | Y la* + [b]?
j=0
< 2V N3 fllu~ | — ol (5.13)

Suppose || f|lLe = |f(zo)|, and let § = 1/47v/2 N3/2. By (5.13), for all
t € (xg— 0,z +9),

|f(zo)l <2 |f(1)], (5.14)
which implies
1
p (PN, 5) >1/27V2 N2, (5.15)
Apply Lemma 7 with u = 1/2 and z = C(In N)%7 for an appropriately

chosen C' > 0.

‘We now consider the space Py of Walsh polynomials of degree N, and
let f € Py,

N
f = Zajwj. (516)
7=0

Consider the measure preserving equivalence between ([0, 1], Lebesgue
measure) and ({—1,1 N, normalized Haar measure). (See Chapter VII
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84 and Exercise VIL.10.) We view f as a Wg-polynomial defined on
{—1,1}", where

logo(N) — 1 < K <log,(N), (5.17)

and spect f C {rj, -+ 7 1 0<j3 <--- <jg <K} Forue {—1,1}¥
and v € {—1, 1},

N
|f(u) = f(v)| < @Z%SXN{IMJ-(U—U)—lI}ZIajI- (5.18)
Therefore, if

V={te{-1,1}":t(j) =1 for j € [K]}, (5.19)

then v(V) > 1/N, where v is the Haar measure on {—1, 1}, and f(z) =
f(z+1) for all t € V. In particular,

p(Pn,1) > 1/N. (5.20)
Apply Lemma 7 with u =1, 2 = C(ln N)/2, and C > 0 chosen
appropriately. U]
Corollary 9 (cf. [Kah3, pp. 84-5]). Let {X; : j € N} C L?(,P) be
an orthonormal sub-Gaussian system, and let
B ={2F2F+1,... 21 1}, k=0,1,....

Suppose (aj : j € N) is a scalar sequence such that

=

Sk = Z la;|* | (k=0,1,...) is a decreasing sequence, (5.21)

> sk < oo (5.22)

k

ok
Then, {23:1 a; X;sin 2mjt + k = 0,...} converges uniformly on [0, 1]
almost surely. In particular, the random series Z;; a; X;sin 27t rep-
resents almost surely a continuous function on [0, 1].

Proof: Consider the random trigonometric polynomials

pe(t) = Y a; X sin 2mjt, (5.23)
JEB,k
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and the events

[N

B = ¢ lpkllue = 2C {25 > Jayl? , k=0,1,..., (5.24)
JEB,k
where C' > 0 is the numerical constant in (5.11). By Theorem 8,
Z;QP(E]C)<OO,

and therefore (by the Borel-Cantelli lemma), P(lim Ej) = 0. Therefore,

W=

(Ipkllue : k € N) is @ 2% Z |a;|? almost surely (P). (5.25)
JECK

Because Byr = (J{B; : j = 2%, ... 21 — 1} and (si) is a decreasing
sequence, we have

w

V)
E
T
-

—_
|

STaP] = DD Isal| <2%sa, kel (5.26)

JEB,k n=2k

By (5.22), Yx2Fsyx < oo, which implies, via (5.25) and (5.26), that
Yk|pk|lLe < oo almost surely (P), and hence the corollary. O

Corollary 10 The sample-paths of a Wiener process are almost surely
continuous.

Proof: Apply Corollary 9 to the Fourier—Wiener series (stated in (3.30)).
O

Remarks:

i (another proof that Theorem VII.36 is sharp). In Chap-
ter VII §11, we verified by an indirect argument that the Littlewood
2n/(n+1)-inequalities are best possible. Here we give a direct proof
based on Corollary 9.
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Fix n € N. Let m > n be an arbitrary integer. Consider the
W,,-polynomial

f = Z Tir  Thns (527)

0<j1 < <gn<m

whose degree (relative to the Paley ordering in (VII.4.1)) is 2™. Ran-
domize f by a Rademacher system indexed by N" (a sub-Gaussian
system),

fo= Y e @) o, we{-LIY, (5.28)

0<j1 < <jn<m

and then deduce from (5.11) the existence of w € {—1,1}" such
that

I follLe < C [|fllz(In 2™)% < C(In 2)2 |spect f|2m?2. (5.29)
Then for ¢ € [1,2),

2n—tn—t
2t

I folle/ Il fullL= = [spectf| = /C(In 2)3m? > K, m (5.30)

where K, > 0 is a numerical constant that depends only on n (cf.
(VIL11.16)). By (5.30), if t < 2n/(n + 1), then || f,|l¢/|| fullL= can
be made arbitrarily large by increasing m. Therefore, (w, (t) = oo.
(Cf. Corollary VII.42; see also Exercise 19.)

(there is more...). That W(t), t € [0,1], is almost surely continu-
ous is among the most basic observations about sample-paths of a
Wiener process. For various fine properties of these paths —and much
more! — I refer the reader to any of several books about ‘Brownian
motion’; e.g., [Dur], [Hi], [KarSh], [Lé3], [Ne], [Pet], [RevYor].
(Throughout an extensive mathematical literature, with some not-
able exceptions (e.g., [K2], [Ne]), ‘Brownian motion’ has become an
alias for a Wiener process. In all other scientific writing, ‘Brownian

motion’ and ‘Brownian movement’ generically refer to a physical
phenomenon. So far as I can determine, Paul Lévy was first to
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refer to Wiener's model for Brownian motion as ‘Brownian
motion’.)

6 Variations of the Wiener F)-measure

Let pw be the Wiener Fy-measure on .7 x .% defined in Chapter VI §2
and recalled in Remark iv §3 (in this chapter). In Chapter VI, we used
pw as an example of an Fy-measure that cannot be extended to a scalar
measure on (/X .%). Specifically, we verified in (V1.2.14) that the total
variation of pw is infinite:

lewllmy

:= sup { ZlMW(Aijk” 138514, <1, Bglp, <1, {A;} € {Bi} C %}

gk

= 00. (6.1)

On the other hand, because |puwl|lr, is finite (||pwllr = V2/7;
Exercise 9), Littlewood’s 4/3-inequality (e.g., (I1.5.1)) implies that the
‘4/3-variation’ of uwy is finite. Specifically, consider

l[w [l (p) = sup { (Z |MW(AJ7BK)|p) :

7,k
Elej <1, ¥plp, <1, {AJ} C . {Bk} C %}, (6.2)

and conclude that ||uwl/a/3) < 2/v/m. A question arises: can 4/3
be replaced by a smaller exponent? (A similar question motivated
Littlewood’s 1930 paper [Lit4]; see Chapter I §2.) In this section we

obtain sharp estimates on the variation of pyw, which imply
by = 1inf{p: llw |l ) < oot =1 (6.3)

(while, according to (6.1), ||uw]| 1) = o0).
To start, we fix a continuous, non-decreasing convex function ¢ on
[0, 00), such that ¢(0) = 0,lim; o ¢(t) = 0o, and

o(t) = exp(—1/t?), t¢€ (0, \/g} (6.4)
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(1/2/3 is the inflection point of exp(—1/¢2)). In particular, ¢ is an Orlicz
unction. Denote by O, the set of finitely supported scalar arrays (b,

%} J
such that

> ellbikl) < 1. (6.5)
7.k

Theorem 11

sup {

Elek < 1,{Aj} C %{Bk} C P, {b]k} S ng} < Q0. (66)

> pw(Aj, By) b
J.k

: Ele]. <1,

Lemma 12 Let {Y}} be an orthonormal sub-Gaussian system. There
exists B > 0 (depending only on {Yy}) such that if (cji) is a scalar array
satisfying

D olel? < 1flog g, j=2,..., (6.7)
k
then
Esup|Y ¢ Yi| < B. (6.8)
32 |5

Proof: By assumption, cgy;) (defined in (4.20)) is positive. We fix
0 < C < ¢qy;}- Then, for sufficiently large K > 1/+/C, we have

Z cik Y
%

Esup

oo
I/ P(U]“Ek Cjk Yk| > t}) dt
Jj=>2 0

oo
< K+/ IP(UJ“Ek Cjk Yk| > t}) dt
K

o [e%¢}
<K+ Z/ exp(—Ct? log j) dt == B < c0.  (6.9)
j=2"K

The equality above is routine; the second estimate follows from (6.7)
and the definition of ¢{v;}, and the third estimate is a calculus exercise
(Exercise 20). a
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Proof of Theorem 11: Let {A;} C . and {By} C % each be a
collection of pairwise disjoint measurable sets. Denote dj = /m(By)
and Y, = (1/dp)AW(By), k € N. Then, {Y,} is an orthonormal sub-
Gaussian system. (AW is the white noise defined in (3.18).) Note that

,uw(Aj,Bk) = dkElAij. (610)

Fix an arbitrary (b;;) € O,. By rearranging the j, we can assume that
forj=1,2,...,

> e(bil) < 1/5. (6.11)

k

Without loss of generality we can assume |bjr| < /2/3 (Exercise 21),
and then obtain from (6.11) and the definition of ¢ that

s 1] < (108 )}, G =2, (6.12)
Therefore (because X |d|? = Zpm(By) = 1), we have

> lbjk dil* < 1/log j, j=2,.... (6.13)
k

We rewrite, and then estimate:

> uw(Aj, Bi) k| = | (drE1a,Yi) bjk
gk 7.k

= ZElAj ijk dy Yy
7 !

< Esup

ijk di, Yy

k

< B, (6.14)

where the equalities follow from (6.10), and the inequality from (6.13)
and Lemma 12. O

Define
0(x) = 2/{log(1/x)}? for z € (0,1), and A(0) = 0. (6.15)
Then, by a computation (Exercise 22), there exists 0 < § < 1 such that
0(z) <2 ¢*(z), z€(0,9), (6.16)

where ¢* is the complementary function to . (See [LiTz, Vol. I, p. 147].)
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Corollary 13

sup { Ze(‘MW(AjaBk)D : Ele] < 1’
j,k

Eklgk <1, {A]} C .9 {Bk} C %} < 00. (617)

In particular, ||pwl|(p) < oo for allp > 1, and hence

by = 1. (6.18)

Proof: Apply Orlicz space-duality, (6.16), and Theorem 11. O

Next we verify that (6.17) is best possible. To this end, fix an arbitrary
integer k£ > 0, and consider the intervals J; = [(i — 1)/k,i/k), i€[k].
Define

E; = {AW(J;) > 0}, i € [K]. (6.19)
For s = (s1,...,8,) € {—1,1}*, let
As=E*NEZ---NEF, (6.20)
where E}* = E; if s, =1, and E}" = (E;)¢ if s; = —1. Clearly,
{A, s € {-1,1}"}

is a partition of Q. Also observe (Exercise 23)

[ (As, Ji)| = \/%(1/2'“\@)- (6.21)

For v > 0, define
0., (z) = z/{log (1/x)}"/2, x e (0,1), (6.22)

whence 0; = 0. Using (6.21), we estimate

20l (As, JI) = ;\/z(l/k% 2k)/{1og\/§k; Qk}w

> Ck(-"/2, (6.23)

where C > 0 is a numerical constant. We summarize:
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Theorem 14

sup { > 0, (luw(Ai, By))) : 25 1a, <1,

]
3 ]‘Bj <1, {AJ} C 9 {Bj} C %} < o0 (624)

if and only if v > 1.

Remark (a measurement of complexity). The sharp result in
Theorem 14 marks an extremal instance on a scale of like sharp results
dealing with (that which we call) a-chaos [B1Kah]; we shall come to
these later in the chapter. Indeed, I view Theorem 14 as a quantitative
statement expressing precisely that the Wiener process is ‘least com-
plex’ among stochastic processes within a certain class; or, that it mani-
fests the simplest form of ‘randomness’. This measurement, conveying
‘least complexity’ in a stochastic framework, is analogous to 1-Sidonicity,
which conveys ‘least complexity’ in a harmonic analysis framework.
(Cf. Chapter VII §11.)

7 A Multiple Wiener Integral

In this section we define a multiple integral with respect to the Wiener
process, an n-dimensional construct that had first appeared — albeit
disguised — in Wiener’s 1938 article The homogeneous chaos [Wib,
pp. 917-18], and reappeared — redefined and clarified — in the works of
Cameron and Martin [CaM], 1t6 [I12], and Kakutani [Kak2]. (See [Wi3,
pp. 612-13].) I will follow Itd’s construction of this integral, which is
sometimes called the multiple Ité integral, and sometimes the multi-
ple Wiener—Ité integral (e.g., [KarSh, p. 167], [Nu, p. 7]). I shall refer
to it here as the multiple Wiener integral, and to its computation by
iterated integrations (described in the next section) as the iterated Ité
integral. To facilitate the exposition, I first will consider the archetypal
case n = 2.
We start with the symmetric functions in L2([0,1]2, m?),

L7 = L2([0.1]*, m?)

= {f e L2([0,1]%,m?) : f(s,t) = f(t,s), (s,t) € [0,1]*}. (7.1)
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Let S, = S,([0,1]%) denote the space of the standard symmetric step
functions on [0,1]2 that vanish on the diagonal; these are ‘step functions’
of the form

N
fIZLL,‘j 1Ji 1]_7., (72)

i
Jj=1

where

i—1 4

) for (i, §) € [N]?.

ajj = aj, a; =70, andJi:[N’N

Because m?{(s,s) : s € [0,1]} = 0, we can assume without loss of gene-
rality that every f € L2 (an equivalence class of functions) is represented
by a function that vanishes on the diagonal {(s, s): s€[0,1]}, and obtain
that S, is norm-dense in L2 (Exercise 25). For f € S,, define

N
Lw,(f) =Y ay AW(J;) AW(J,). (7.3)

Lemma 15 (Exercise 24). The definition in (7.3) does not depend on
the representation of f by (7.2). Moreover,

E|Iw, (N)I* = 21 f 2 me)- (7.4)

This lemma and the norm-density of S, in L2 imply that the map Iy,
from S, into L2(2,P) is uniquely extendible to a bounded linear map
Iy, from L2([0,1]%,m2) into L2(Q,P). We refer to Iy, as the two-fold
Wiener integral.

To obtain the two-fold Wiener integral of any f € L2([0,1]%,m?), we
consider its symmetrization

fls.t) = (5) 60) + 109, (7.5)
which is obviously in L2, and then define
Iw, (f) = Tw, (f)- (7.6)

Proposition 16 (cf. [I12, (I.3)], Proposition 3). For all f and g in
L2([0,1], m?),

2 / F(s) () m(ds) m(dt) = BLw, (HIws(g).  (7.7)
[0,1]2
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Proof: If f and g are in S,,

N N
f = Zailellev g = Zbij]-Ji]-Jj7 (78)
then
Elw, (f)Iw,(9)
N N
=E | ay AW(J,) AW(J;) Z iy AW(J;) AW(J;)
=E(2) a; AW(L) AW() | |2 by AW(T) AW(J;)
i>i J>i
N
=2 ay by /N? =2 / fg dsdt. (7.9)
im1 (0,12
This implies, by the definitions in (7.5) and (7.6), that (7.7) holds for
all f and g in L2. U]

The construction of a multiple Wiener integral in the general case
n > 2 is similar. Let S,, = S,([0,1]") denote the linear subspace of
L2([0,1]",m™) consisting of the standard symmetric step functions on
[0,1]™ that vanish on the (Z) ‘hyper-diagonals’. These are the functions
f on [0,1]™ given by

N
f= Z @iy i Ly, 1, (7.10)
i1rin=1
where J; = [(i — 1)/N,4/N) for i € [N], such that a;,. ;, = ai,. i, for
all m € per[n], and a;, . ;, = 0 whenever [{i1,...,i,}| <n. For f € S, .,
define
N
Kv,(H)= Y .., AW(J;,) - AW(J;,). (7.11)

By symmetry, if f € S, 5, then

Ly, (f) =n! > iy AW( ;) - AW(J; ) | . (7.12)

1<i1 < <in <N



314 X Brownian Motion and the Wiener Process

Because {AW(J;,) - AW(J; ) : 1 < i3 < -+ < i, < N} is an ortho-

gonal system in L2(Q,P), and E|AW(J;,)---AW(J;, )|? = 1/N" for
1<i; <---<i, <N, we obtain

E|lw,(f)I* = (n})? > lanaP/NT

1<i3 <+ <in <N
= ! |12 - (7.13)

Now consider the symmetric functions in L2([0,1], m™),

LZ([0.1]", m™)

={fe L2([0,1]”,m") D f(s1y-c vy 8n) = f(Sn1se-ySan), ™ E per[n]},
(7.14)

and obtain, from (7.13) and the norm-density of S, ,, in L2([0,1]", m™)

(Exercise 25), that Iy, is uniquely extendible to L2([0,1]”, m").
Given an arbitrary f € L2(]0,1]*, m"), we take its symmetrization

1
f(s1,..0,8n) = aZf(s,ﬂ,...,s,m), (7.15)
where ¥, is the sum over all permutations of [n], and define

Iw, (f) == Iw,.(f). (7.16)

Proposition 17
i. (¢f. Proposition 3). For all f and g in L2([0,1]", m™),

n! /[O b F(s) g(s) m™(ds) = E Iy, (f) Tw,(9)- (7.17)

ii. For all integers k > n > 0, and for all f€L2([0,1]",m") and g €
L2([0,1]%, m*),

E Iw, (f) w,(g) = 0. (7.18)
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Proof: The proof of Part i is similar to the proof of Proposition 3. To
verify Part ii, note that for every N > 0, the spans of {AW(J;,)---
AW(JZ”) 1l << <y < N} and {AW(JZI)AW(JZk) :

1 <i; < -+ < i < N} are orthogonal. Therefore, (7.18) holds for
all f€S,, and g € S, %, which implies (7.18) in the general case. [

Remark (about symmetry). The role of symmetry in the definition
of the multiple Wiener integral is explained by the observation that for
all arrays (a;),

2
N
E|) a; AW(J;) AW(J;)

j=1

N
2
= Y (ay+ap)™ + 3> af/N*+2 Y ayay/N
1<i<j<N j=1 1<i<j<N

(7.19)

(Notice the symmetric summands.) Indeed, in the course of the defi-
nition, attention can be restricted with the same effect to symmetric
functions only. To make this comment precise, we consider the equiva-
lence relation in [0,1]™ defined by

(t1, . ytn) ~ (t),..., 1)) (7.20)

if and only if there exists a permutation 7 of [n] such that

te1 =ty tan = . (7.21)

Denote the set of equivalence class representatives by D,, := [0,1]"/ ~,
which for convenience we take to be

Dy ={(t1, . tn) 1 0<t; <o <t, <1} (7.22)

We equip D,, with structures inherited from [0,1]™ via the canonical quo-
tient map; denote the Borel field in D,, by By, and the Lebesgue mea-
sure restricted to it by m”. Let ¢ be the quotient map, ¢ : [0,1]" — D,,.
If f is a function on D,,, then let f; be the function on [0,1]" defined
by

fo(t) = (fo@)(t), tel01]" (7.23)

fo is clearly symmetric.
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Observe that L2(D,,,m?) is a natural domain of the multiple Wiener
integral: for f € L2(D,,,m?), define

) (f) = (1)) Iw, (fy)- (7.24)

If f€L?(D,,m?) and g € L2(D,,,m?), then

l /D () gfe) mi(s) = /[o,l]n fo(8) gols) m7(ds),  (7.25)
and therefore (cf. (7.17)),
[ 168) ats) mitas) = B 1) 17 ) (7.26)

That is, the multiple Wiener integral I\(,g) is a unitary map from

n

L2(D,,, m”) into L2(, P) (while Iy, : L2([0,1]", m") — L2(Q, P) is not!).

8 The Beginning of Adaptive Stochastic Integration

Ité concluded his landmark paper [[2] with the observation that the
multiple integral Iy, (f) could be computed iteratively. Specifically, he
noted that for all f in L2([0,1]", m"),

Iw, (f)

1 tn ta
=n!/ (/ < (/ 1, ... tn) dW(dtl)) ~->dW(dtn—1)>dW(dtn),
0 0 0

(8.1)

where the iterated integrals on the right side of (8.1) had been defined
in his previous paper [I1] — also a landmark. We refer to the right side of
(8.1) as the iterated Ité integral. The gist of Itd’s observation was that
if f € L2([0,1])%,m?), then one could meaningfully define the iterated
stochastic integral

/ < / 1o (s) f(s.0) dW(ds)) AW (dt), (8.2)
[0,1] [0,1]
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where the integrator is a Wiener process and the integrand is the Wiener
integral-valued process

IW(]-[O,t](')f('7t))v te [071]' (8'3)

The integral in (8.2) (defined in [I1]) marked the start of the subject
of adaptive stochastic integration — or, as it is sometimes called, non-
anticipative stochastic integration.

To illustrate ideas, we will verify the equality in (8.1) in a simple but
archetypal case. For t € [0,1], let f = 1{g4x[0,q, Obviously a symmetric
element in L2([0,1], m?). For an integer N > 0, let K = K(N,t) be the
integer such that

K-1 K

<t< N (8.4)

Denote J; = [(i —1)/N,i/N). As N — oo, the sequence (indexed by N)
> AW(]) AW(J))

1<i<j<K

K K
=Y AW(L) AW(;) = Y (AW(J

1 i=1
1

—(w (K>)2 - i(AW(Ji))Q, NeN,  (85)

i=1

)-norm to Iw,(f). But, we also have

P
< < )) e (W)’ (8.6)

K

D (AW ——t, (8.7)

. N—o0
i=1

converges in the L%(,

and

where both are L?-norm limits. The first limit follows from

lim W(K/N)=W(t) in L*(Q,P) (Exercise 26),

N—o0

and the second is the quadratic variation (Remark iii §3 and Exercise 6 ).
Therefore, the 2-fold Wiener integral of 1jg 42 is

Tw, (Lo .2) = (W(1)* —t. (8.8)
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On the other hand, the iterated integral of 1 4«0, is
1 v
/ (/ 1[0,t] (u) l[oyt](v) dW(du)) dW(dv)
0 0

_ /0 ' 10.4(0) ( /0 ) dW(du)) AW (dv)

= /otW(v) AW (dv) = <%> (W(t)? - 3, (8.9)

where the last equality is an instance of It6’s formula [I1, pp. 523-4]
(Exercise 27).

These computations illustrate a fundamental distinction between
stochastic and non-stochastic integration. Specifically, it is the respec-
tive presence of the second terms on the right sides of (8.8) and (8.9).
In (8.8), the second term appears because the ‘diagonal’; a null set in
([0,1]2,m?), has a non-negligible effect in (2 x [0,1]%,P x m2) (cf. (8.5)
and (8.7)). In (8.9), the second term appears because second order dif-
ferences, negligible in the ordinary calculus, give rise to the quadratic
variation in the stochastic calculus (e.g., (3.1)). In the next chapter, we
further explain this distinction in terms of the Grothendieck factoriza-
tion theorem.

The multiple Wiener integral gives rise to a stochastic process para-
meterized by D,

L) (Lo Lion))s  (f1s--vstn) € Dy, (8.10)

which we revisit in §11, §14, and again in the next chapter. In the case
n =2, (8.8) implies that for (s,t) € Dy,

, 1
I3 (1o 10.) = <§) (Tw, (Ljo,412) — T, (L1s,412))

— (5) W02~ 1= (W) - W) -5+ 1)

— W) W(s) — (%) W) - 5. (8.11)

An interesting problem is to derive a similar formula for the process in
(8.10) in the case n > 2 (Exercise 28).
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Remarks:

i (n-dimensional white noise?). Recall the definition (by induc-
tion) of the standard n-fold difference operation. If f is a function
on [0,1], and J is an interval with end-points 0 < u < v < 1,
then Af(J) = f(v) — f(u). For n > 1, if f is a function on
[0,1], J1,..., J, are intervals in [0,1], and

fr (b, tnm1) = Alf (B, - ta—1, )] (),
(t1,. o tn1) €[0,1]"7H (8.12)
then define
AT, Jn) =AY (Tr e Te). (8.13)

We view A™f as a function on n-cubes Q = J; x --- x J, C [0,1]™,
and (slightly abusing notation) sometimes write

AF(Q) = A" f(J1, ..., Jn). (8.14)
Now recall the white noise AW,
AW(B) :=Iw(1p), Be€ %, (8.15)

which is a random set-function whose definition extends that of
the usual increment AW(J) over an interval J C [0,1]. In the
n-dimensional case, if J; C [0,1], ¢« = 1,...,n, are pairwise disjoint
intervals, then

Iy, Lnx.xs,) = AW(JL) - AW(J,)
=AW (] x - x Jy) (8.16)

where W (¢y,...,t,) := W(t1)---W(t,). In general, however,
notice that

IWn(]-[O,sl]X~--><[O,Sn])7 (81,...,Sn) c [O,l]n, (817)

isnot(!) the same as AW ([0, 51]x---x[0, 5,]) = W(s1) - - - W(s,).
This indeed is a basic feature of the It6 calculus. (For example,
see (8.11) above.) A question arises: can an n-dimensional integral
with respect to ‘dW(d¢;)...dW(dt,)" be defined — extending the
usual one-dimensional Wiener integral — so that the resulting
‘n-dimensional white noise’ extends A"W()(Q), where Q is an
n-fold Cartesian product of intervals? We answer this question (in
the affirmative) in the next chapter.



320 X Brownian Motion and the Wiener Process
ii (the Wiener Chaos). Consider the subspaces of L2(£2,P)
Hy = {Iw, (f) : f € L2([0.1]", m")}, n>1, (8.18)

which are known as the nth Wiener Chaos, or the Wiener Chaos of
order n (e.g., [Nu]).

The first part of Proposition 17 implies that H,, is norm-closed
in L2(Q,P), and the second part states that the H, are mutually
orthogonal. The complete orthogonal decomposition

®nH, = L*(Q,P) (the Wiener Chaos decomposition), (8.19)

where Hy = {constants}, follows from the norm-density of | J.—, H,,
in L2(Q,P). The latter had been established first by Wiener [Wib5,
Section 12], and subsequently clarified in [CaM] and [I2]. A detailed
proof of (8.19) can be found in [Nu, Chapter 1].

The Wiener Chaos decomposition is analogous to the decom-
position

&,L% (2,P) =L*Q,P), (8.20)

where Q = {1, 1}, P = the normalized Haar measure on , and R,,
is the set comprising all products of n distinct Rademacher charac-
ters; see Chapter VII. Analogies between the summands L%n and
H,, will be made precise in the next two sections.

9 Sub-a-systems

In this and the next section we formalize a scale calibrated by tail-prob-
ability types, which mark degrees of ‘interdependence’. (See Remark ii
§4.) We start with an extension of Lemma 6.

Lemma 18 (Exercise 29). Suppose X eL2(Q,P), || X||z < 1. Let
a > 0. The following are equivalent:

1. there exists 0 < A < oo such that

lim exp(Aza) P(|X| > #||X||12) < oo; (9.1)
r—00

ii. there exists 0 < B < oo such that

sup{|| X||L»/p*/? : p > 2} < B; (9.2)
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iii. there exists 0 < C' < oo such that
Iim E exp(t|X|* — Ct?) < oo; (9.3)
— 00

iv. there exists 0 < D < oo such that

E exp(D|X|%) < o0. (9.4)

Definition 19 (cf. Definition 5).
i. X € L2(Q,P)is a sub-a-variable if X satisfies (any of) the statements
in Lemma 18.
ii. Fc L%Q,P) is a sub-a-system if every X € LZ(Q,P) is a sub-a-
variable. (a =1 is the sub-Gaussian case in Definition 5.)

Remarks:

i (an Orlicz norm). Consider the Orlicz function
da(z) = exp(x%) -1, x>0, (9.5)

and the corresponding Orlicz norm ||Y||y,,Y € L%(Q,.%7). (¢1 was
defined in (4.11).) Denote the corresponding Orlicz space

{Y e L%Q,.%7) : ||V, < oo}
by Ly, (2, P). By Lemma 18, F C L?(Q,P) is a sub-a-system if and
only if
L% (QLP) C Ly, (2, P). (9.6)
ii (examples).
1. If {X; : j € N} is an orthonormal sub-a-system, then
{(X;, @ ®@X,, : (j1,.--,5n) € N"} CL2(Q",P") (9.7

is a sub-na-system (Exercise 30).

2. The Walsh system W, is a sub-a-system if and only if o > n
(Theorem VII.32).

3. Let {X, : j € N} be a system of statistically independent stan-
dard Gaussian variables, and define (the ‘Gaussian’ analog of R,)

Gn=1{Xj, - X;, :1<j1 < < ju} (9.8)

Then, G, is a sub-a-system if and only if o > n.
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That G, is not a sub-a-system for @ < n is easy: merely
observe that there exists a numerical constant K,, such that for
all p > 2,

X1 XnllLe > K, pZ. (9.9)

The non-trivial part of the assertion, that G, is a sub-n-
system, was proved first by M. Schreiber [Sch] via a combi-
natorial argument similar to the proof used independently by
A. Bonami in the case of the Walsh system of order n. (See
[Bon2, p. 367].) That G,, is a sub-n-system can be proved also by
applying (so-called) decoupling inequalities to {X;, ® --- @ X, :
(J1,---,Jn) € N'}; cf. Example 1 above. (A detailed treatment
of decoupling inequalities can be found in [d1PG].) Yet another
proof (shown to me by E. Giné) makes use of Bonami’s inequali-
ties and the Central Limit Theorem (Exercise 31).

10 Measurements of Stochastic Complexity

In this section we define an index of stochastic complexity, a measure-
ment that we have already seen in a different but equivalent form in a
context of harmonic analysis. (See Chapter VII §9.)

For Y € L%(Q,P) and s > 0, denote

c(Yss) =ylijnio((—1/ys) log P(|Y] > y)), (10.1)
and define (cf. (4.20))
5(Y) =1/sup{s : c(Y3s) > 0}. (10.2)
Equivalently,
1/6(Y) =;i%r;o log(—log P ([Y'| > y))/log y
= sup{s : [V]lo, < oo} (10.3)

(The Orlicz function ¢q/, is defined in (9.5).) Observe that Y is a sub-
~-variable for all v > 2§(Y") and for no v < 26(Y).

Here are some canonical examples: if ||Y ||~ < oo, then §(Y) = 0; if
IY]|Lr = oo for some p > 2, then §(Y) = o0; f Y = X3 --- X,,, where
the X; are standard independent Gaussian variables, then §(Y) = n/2.
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For a subspace H of L2(£2,P), define
cu(s) =inf{c(Y;s): Y € H, ||Y]|L2 <1}, (10.4)
and then define the index (cf. (VIL.9.29))

0 = 1/sup{s:cu(s) > 0}. (10.5)
Equivalently,
og =inf{6(Y):Y € H, |V <1} (10.6)

If H is infinite-dimensional, then 1/2 < § < oo; see [Rul, Theorem 3.4].
We distinguish between CH(5;11) > 0, in which case d is said to be ezact,
and cg(65) = 0, in which case §p is said to be asymptotic.

IfH, = L%V’L(QJP’) (W, is the Walsh system of order n), then

n

O, = g exactly. (10.7)
(See (VII. 9.31)) This is analogous to

Proposition 20 If H,, is the nth Wiener Chaos (defined in (8.18)), then

om, = g exactly. (10.8)

.....

Iw, (f) =n! > iy AW(T;,) - W( ) |- (10.9)
1<i1 < <in <N

Because G, is a sub-n-system,

N 3
w, (Dl <K p% [ > ai, ., |?/N"
DY yeeny Tp=1
< K p¥|flli: (10.10)

for all p > 2. This verifies (by Lemma 18 and the definition of the Orlicz
norm)

12w, (N)llo, < K" [1f ez (10.11)
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(K and K’ depend only on n.) That Iw, (f) is a sub-n-variable for
every f € L2([0,1]",m") follows from the norm-density of S,, in
L2([0,1]*,m"), and (10.10). In particular,

S, > g (10.12)

To verify the opposite inequality, let J; C [0,1],i = 1,...,n, be pair-
wise disjoint intervals, and define f = 1, «...x,. Then,

Iw, (f) = AW(J1) - - AW(Jy), (10.13)
and c¢(Iw, (f);s) =0 for all s > 2/n (Exercise 32). 0

Corollary 21 For every integer n > 1,
i. Hy is norm-closed in the Orlicz space Ly, (Q,P); in particular, H,
is norm-closed in LP(Q,P) for all p > 2; '
ii. {|X|P:X € Bpu,} is uniformly integrable for all p > 1;
ili. H, s a A(2)-space (Definition 111.6, Lemma I11.6), i.e., there exists
K, > 0 such that

I XLz < Ky | X||Lr for all X € Hy; (10.14)
iv. H, s closed in probability.

Proof:

i. The assertions follow from the definition of the Orlicz norm, (10.10),
and the equivalence ii < iv in Lemma 18 (Exercise 33).
ii. By Holder’s inequality, (10.10), and Lemma 18,

E [XP 1{xp>my

IN

(EIX )2 (B{|X[7 > m})"/?
1 2/pn
< K(2p)? exp —§Cm Py (10.15)

which implies the assertion.

iii. The L'-L? inequality follows from Part i (e.g., Theorem II.1).

iv. It suffices to verify that if X; € H, for j € N, and X; — 0 in
probability, then X; — 0 in L?(Q,P). To this end, observe that if
Y € L2(Q,P) and A € (0,1), then

P{Y > AEY} > (1-\?)

(10.16)
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([Kah3, p. 8]). By putting ¥ = |Xj;| in (10.16), and then applying
(10.14), we obtain

P{X;[ > A KX e} > (1= M)K2 jeN, (10.17)

n
which implies || X;||p2 — 0.
O

Remark (about the inequality in (10.16)). Each of the properties
of H, stated in Corollary 21 was first noted by M. Schreiber in [Sch].
However, the crucial application of (10.16) (or a variant of it) was only
implicit in Schreiber’s argument verifying that H, is closed in probabil-
ity. (See [Sch, p. 861] and Exercise 34.)

The importance of the inequality in (10.16) is underscored in Kahane’s
book [Kah3, p. 281]. A special case of it — an instance of (10.17) —
appeared first in Paley’s and Zygmund’s 1932 paper [PaZy2, Lemma 19];
the general inequality was stated and proved in Salem’s and Zygmund’s
1954 paper [SaZy2]. (See [SaZy2, Lemma 4.2.4].)

11 The nth Wiener Chaos Process
and its Associated F-measure

Let Dy, = {(t1,...,ty) : 0 < t; < --- < t, <1}, and denote by By, the
Borel field in D,,. Consider the nth Wiener Chaos process (cf. (8.10))

Wt ootn) = I (Lo Ljon))s  (brseeestn) € Dy (11.1)

For A€ .o/ and B € BM, define
pw, (A, B) := E14Ly) (1p), (11.2)

and note that pw, is an Fh-measure on .o/ x Ban (Exercise 35).

That pw, cannot be extended to an Fy-measure on o (.2/x Bm) follows
from the case n = 1, which was verified in Chapter VI §2 and also in §6
in this chapter. In particular, we have ||puw, ||y = oc. (The definition of
ltw,, ||y is practically the same as in (6.2): replace .Zin (6.2) by Boy.)
On the other hand, because ||pw, |7 < oo, Littlewood’s 4/3-inequality
implies ||pw, ||(a/3) < co. As in the case n = 1, a question arises: what
is Ly, = inf{p: ||pw, [l < oo}?
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The analysis is similar to that of uw in §6. Let ¢, be an Orlicz
function such that

9 5
— _4+—2/n _c
on(t) = exp(—t ), te (0, <2+n>

(2/(2+n))™/? is the inflection point of exp(—t=2/"). Let I, (N?) be the
corresponding Orlicz space, and denote its unit ball by O,,,.

; (11.3)

Theorem 22 (cf. Theorem 11).

sup {

{A7} C M {Bk} - Ba’ru {b]k} S Ogon} < 0. (114)

> pw, (A, Br) b
ik

ZEj].A]. S 17 Ek]‘Bk S 1,

Proof: (Exercise 37). Fix (b;;) € Oyp, and let {A;} C ./ and {B;} C
B, be finite collections of pairwise disjoint measurable sets. Without

loss of generality, assume |b;x| < (2/(2+n))"/?, and, by rearranging the
7s, also
> enlbi) <174, j=1,.... (11.5)
k
Then,
sup [bye| < (1/log NE i=2. (11.6)

By Proposition 20, there exist L > 0 and K > 0 such that for all scalar
sequences d = (dg),

(

This implies

S d Iy (15,)| > x> <exp(—K(z/|ld||os)*), «>L. (1L.7)
k

> iw, (A, Br) bk > bk Bla, 1) (15,)
gk 7.k

IN

E|> 14, b Iy (1s,)
i k
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IN

> bk Ly (1p,)

k

/OOOP ij{ >x} dz

c+;/:op< >x)da:

o0
c+ Z/ exp(—K x%log j) da < oo,
j e

Esup
J

> bk 1) (15,)
k

IN

> bk I (1s,)
k

IN

(11.8)

for an appropriate choice of ¢ > 0. ]
Consider the instance v = n in (6.22),
0, (z) = z/{log (1/x)}% for = € (0,1), and 6,(0) =0, (11.9)

and obtain 0 < 7 < 1 such that

On(x) <2 ¢ (x), =€ (0,n), (11.10)

where ¢Z is the complementary function of ¢,. Then, by (11.10) and
the Orlicz space-duality l,- = (,,)*, we deduce

Corollary 23 (cf. Corollary 13).

sup { D Onlliw, (A Be)) s £51a; <1, Bylp, <1,
7.k

{A;} c % {By} C Bm} <oo. (11.11)

In particular, ||pw, ||p) < oo for all p > 1.

To verify that 6, is optimal, let k& be an arbitrary positive integer,
define J; = [(i — 1)/k,i/k), i € [k], and

Qiyiyy =iy X oo X i, 0<iy <+ <ip < k. (11.12)

n?



328 X Brownian Motion and the Wiener Process
Then Qi,..4, € Bgn, and

LY (g, ) = AW(Ji,) - AW(J;,). (11.13)

Let E; C Q (i € [k]) be defined by (6.19), and the correspond-
ing partition {As: s € {~1,1}*} of Q be defined by (6.20). Then
(Exercise 36),

lpw, (As, Qiy )| = [EL4 , AW (J;,) - - AW(J;,, )|

n

2\ % /1\% [1\" , _

Therefore, if v > 1, then
> 0 (l1w, (As, Qiy i)

se{—1,1}*,1<i; < <in<k

R I OO MO LR

se{—1,1}k1<i;<---<in<k
>C, k7, (11.15)

where C,, > 0 depends only on n. We summarize:

Theorem 24 (cf. Theorem 14).

sup { ZG»YH/LWH(A]',B;C)D 12514, <1, ¥ilp, <1,
3k

{A;} ¢ {By} C Bm} <oo  (11.16)

if and only if v > n.

Remark (measurements of complexity). I view the estimates on
variations of pyw, in Theorem 24 as measurements of stochastic com-
plexity in W,,, measurements that are analogous to those involving the
Littlewood 2n/(n + 1)-inequalities in a framework of harmonic analysis.
(See Chapter VII §10, §11.) The extremal case n = 1 in Theorem 14
conveys that a Wiener process is stochastically ‘least complex’.
Theorem 24 is an instance of the result in [B1Kah], that variations
of F-measures associated with ‘a-chaos’ processes are controlled by the
Orlicz functions 6y, € [1,00). The ‘a-chaos’ processes, which are
general continuous-time models for random walks whose steps have pre-
scribed degrees of interdependence, will be motivated and introduced in
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the next three sections; their analysis will be continued in the next and
the last chapters.

12 Mise en Sceéne (§1 continued): Further
Approximations of Brownian Motion

In designing a model for movements of a Brownian particle, Wiener
intended to

treat the Brownian movement, in a first approzimation [my italics|, as an
effect due to ...a series of impacts received by a particle, dependent only on
the time during which the particle is exposed to collisions. .. [Wil, p. 295].

He imagined Brownian movement (in a first approzimation) to be a
limit of simple random walks, a view that calls for the intervention of
the Central Limit Theorem. (A view of Brownian movement as a simple
random walk was subsequently reinterpreted, and further studied by
others; e.g., see [K1].) In Wiener’s construct, the z-coordinate of a
Brownian path was a random function w € Cg([0,1]), sampled according
to a prescribed probability measure (the Wiener measure), so that for
every partition {tg =0 < t; < --- < t, = 1} of the time interval [0,1]
the Brownian displacements

w(ts) —w(ticy), weC(0,1),i=1,....n, (12.1)

were statistically independent Gaussian variables with mean 0 and
variance ¢; — t;—1, i€[n]. The construction of the Wiener measure on
Cr([0,1]) — the essence of the model — reflected hypotheses that Brownian
displacements were independent of one another, and that on average they
were the same over time intervals of equal length. (Review §1 and §2.)

Let us reexamine these assumptions. Loosely put, the notion that two
events are independent means that the two events appear unrelated: the
occurrence of one appears to have no bearing on the occurrence of the
other. It was this intuitive sense of independence, and no more, that
was expressed in Einstein’s proposed explanation of Brownian movement
[Eil, pp. 12-13]:

Evidently it must be assumed that each single particle executes a movement
which is independent of the movement of all other particles; the movements of
one and the same particle after different intervals of time must be considered
as mutually independent processes, so long as we think of these intervals of
time as being chosen not too small.
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Notably, Einstein did not explicitly apply an assumption of indepen-
dence in his analysis, but invoked an analogous ‘idealized’ physical prin-
ciple that led to Gaussian distributions of Brownian displacements. (See
Remark i §1.)

Wiener, too, considered independence first in an intuitive, undefined
sense. In his introduction to ‘differential-space’, Wiener recalled that
[Wil, p. 296]

FEinstein’s . . . assumption is that the displacement of a particle in some interval
of time small in comparison with those which we can observe is independent,
to all intents and purposes, of its entire antecedent history. .. [and that]...we
may regard the Brownian movement as made up ...of a large number of very
brief, independent impulses acting on each particle. . .

Brownian displacements were subsequently viewed in Wiener’s frame-
work as statistically independent random variables.

The second important assumption underlying Wiener’s model is that
Brownian movement is homogeneous in time; this means — broadly put —
that whatever happens on average in a given time interval happens on
average in every time interval of the same length. A supposition of time-
homogeneity, which can be justified in a statistical-mechanical context
by an ‘ergodic’ argument (e.g. [Re, p. 584], [Bo, pp. 49-51]), is in
effect an admission that we have no knowledge about molecular colli-
sions. In Wiener’s mathematical setup, time-homogeneity is expressed
precisely by the assumption that displacements over time intervals of
equal length are identically distributed random variables. This and the
assumption of statistical independence, together with the (physically
plausible) assumption that Brownian trajectories are continuous, lead
via the Central Limit Theorem to Gaussian Brownian displacements —
and hence the Wiener process.

The assertion that Brownian displacements are statistically indepen-
dent symmetric random variables with distributions homogeneous in
time conveys an idealized view: the assertion does not convey an intrinsic
property of Brownian movement, but, rather, an observer’s perception
of the movement. The Wiener process is a model based on extremal
assumptions of ‘least stochastic complexity’ and ‘zero knowledge’. Still,
the model has been consistent with empirical observations. To wit, while
molecules colliding with a Brownian particle could not be separately
tracked in sub-microscopic regions, their cumulativez effects could be
detected on microscopic levels [Bo, pp. 49-51]. A classical example of
such an effect is the average distance A traveled by a Brownian particle
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in time ¢. In his 1905 ‘Brownian Movement’ paper, after obtaining a
Gaussian distribution of Brownian displacements, Einstein predicted

A= eV, (12.2)

where ¢ was a composite of physical constants [Eil, pp. 12-18].* This
relation, which was experimentally confirmed by J. Perrin [Pel, §29,
§30], is of course implied also by Wiener’s model:

EW(t)| = % (12.3)

T

But this relation follows also from more general, stochastically more
complex models (e.g., see Exercise 2). A Wiener process is but an extre-
mal idealized construct: a limit of simple random walks. Indeed, when
modeling ‘random walks’ observed in the real world, an independence-
of-steps hypothesis does not convey an intrinsic, physical feature; only
that observers of ‘random walks’ are baffled by them. No one believes
(T trust...) that walks in the real world have independent steps, but
rather, that steps depend somehow on ‘hidden variables’, and are some-
how interdependent. The problem is: how can interdependence-of-steps
be modeled, gauged, and detected?

13 Random Walks and Decision Making Machines

Let us change the paradigm from movements of a generic Brownian
particle to a stroll of a drunk. Here is an old tale commonly told to
illustrate a simple random walk. A drunk leaves a pub, and walks along a
road for an hour. Every 1/N hours, he takes a step of length 1/v/N to the
right or to the left with equal probability, and, a simple-minded fellow,
he takes the steps independently in time. (The step’s length 1/ VN -
normalization — is the result of rescaling based on (1.3).) With the pub as
the origin at time ¢ = 0, the drunk’s position at time t = 1/N,2/N, ... 1
is a random variable

tN
X, (w) = Tlﬁ Sorw), we{-1,+1}Y, (13.1)
j=1

* To derive his formula (12.2), Einstein computed the ‘square root of the arithmetic
mean of the squares of displacements...’; see equation (11) in [Eil, p. 17]. He
should have evaluated directly the absolute value of the mean (cf. (12.3)), thereby
obtaining a slightly different evaluation of Avogadro’s number; see [Eil, p. 18].
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where w is any one of the possible 2V paths which occurs with prob-
ability 1/2V, and r; (w)/VN = w(j)/VN is the step at time
(J—1)/N.

Let us embellish the story. In this version, the drunk possesses a
‘Decision Making Machine’ (DMM), and steps to the right or to the left
according to it. The machine consists of NV labeled switches 1,..., N
inside a sealed box, and N labeled light bulbs 1,..., N on a panel. A
randomizing device inside the sealed box turns each of the N switches
‘on’ or ‘off” independently with probability 1/2. The randomizing device,
activated by a push of a blue button on the panel, produces a state
w € {—1,+1}" of the DMM: w(j) = +1 means that switch j is ‘on’, and
w(j) = —1 means that it is ‘off’; the DMM’s state remains fixed until the
next push of the button. The light bulbs are wired to switches so that
bulb j is lit precisely when switch j is ‘on’. Equipped with this DMM,
our drunk starts from the pub, pushes the blue button, and walks: at
time (j —1)/N, j=1,..., N, he takes a step to the right if bulb j is lit,
and to the left if it is not. His position X; at timet = j/N,j=1,..., N,
is again given by (13.1), but in this tale, w € {—1,+1}" is a state of
the DMM, produced by a push of a button and fixed throughout the
walk.

We now retell the story with a more complex ‘Decision Making Mac-
hine’. This model has N switches labeled 1,..., N, and Ny := (N) +

1

(g) + -+ (],\C’) light bulbs labeled 1,..., Ni, where k > 1 is a given

integer. We fix a one-one correspondence between the light bulbs and
all subsets of switches of cardinality < k,

AjC[N], 0<|A7‘§k‘, jZl,...,Nk, (132)
and define
€A,

Switches are wired to the bulbs so that bulb j is lit if and only if x; = 1.
(Such circuits are always feasible; e.g., see [En, §1.6].) Equipped with
this DMM, the drunk pushes the blue button, and leaves the pub. He
takes a step of length 1/4/Ny, every 1/N, hours (normalization); at time
(j —1)/Ng, j=1,..., Ng, to the right if bulb j is lit, and to the left if
it is not. The drunk’s position at time ¢, no longer a result of a simple
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random walk, is given by

tN}

Xt(w) = 1/\/17/62)(3’((”)7 we {_1:+1}N>
j=1

t =1/Np,2/Ng, ..., 1, (13.4)

where w € {-1, +1}N denotes the DMM’s state, produced by a push of
a button and fixed throughout the walk. In particular, after one hour,
the drunk’s position is

k
X1 (w) =1//Ny Z Z iy (W), (W), we {=1,1}V.

m=1 1<l1 <<l <N
(13.5)
In the general tale, the drunk walks with a DMM that has N switches
labeled 1,..., N, and n light bulbs labeled 1,...,n, where 0 < N < n
are arbitrary integers. Distinct non-empty sets Aj,..., A, of switches
are designated, and the n light bulbs are wired to the N switches so that
bulb j is lit if and only if

xiw) =[] riw) =1, j=1,....n. (13.6)
i€A;
The clock is calibrated by 1/n hours. At time j/n, j =0,...,n— 1, the
drunk takes a step of length 1/4/n to the right if bulb j is lit, and to the
left if not. His position at time ¢t = 1/n,2/n,...,11is

Xi(w) = % ij(w), we{-1,+1}V. (13.7)

I refer to (13.7) as a random F-walk, where F' = {Ay,..., A,} C 21N,
We note two extremal scenarios.

1. A; ={j}, j=1,...,N. This is the standard simple random walk,
the simplest possible.

2. F consists of all non-empty subsets of {1,...,N}, i.e., kK = N in
(18.5). This is the most complex F-walk possible. At the end of
this stroll, the drunk will ‘almost always’ be found near the pub
(Exercise 38).

General F-walks, falling anywhere between these two cases, manifest
varying degrees of ‘stochastic complexity’. We expect that this ‘com-
plexity’” will be related, somehow, to the ‘combinatorial complexity’ of
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the underlying F c 2N]. In the next section, we consider the instance
F ={A C[N]:0 < |4] <k}, the degree of whose ‘combinatorial com-
plexity’ is marked by k. In the last chapter, after having introduced the
notion of combinatorial dimension in Chapter XIII, we will consider the
more general case F' C {A C [N] : 0 < |4| < k}, where k is a fixed
positive integer.

Remarks:

i (is it realistic...?). In a more feasible tale, the DMM is a small,
hand-held computer with a screen that flashes ‘right’ or ‘left’ in
a time sequence. This replaces the light bulbs of the prototype.
Switches and wires are replaced by logic boards, and the ‘on/off’
states are determined by pressing a blue ‘random’ key. An added
feature, making the tale more poignant, is that the number N of
‘switches’ as well as the collection F of sets of ‘switches’ can be
preset (say, by the bartender). Otherwise, the story is the same: the
drunk presses the blue key, and walks.

Still, is it realistic? The walk is determined by a DMM’s ran-
domly selected state, which is fixed throughout the walk. The drunk
adheres to a pre-selected plan, ostensibly unaffected by unforseen
events (barking dogs, honking cars, taunting passers-by, neurons
misfiring. .. ). But therein lies the paradigm. We, observers of ran-
dom walks, have records only of paths, time-frame by time-frame,
and no knowledge of the many events that affected them. We thus
imagine a DMM'’s sealed compartment containing interdependent
variables — subsets of switches — whose values determine the walk.
All is hidden from view. A practical problem is: can we gauge, using
only data about the drunk’s path, the underlying ‘hidden’ complex-
ity of the drunk’s walk? This question is largely open-ended. We
shall return to it in the last chapter.

ii (a continuous time-model?). Returning to the classical paradigm,
we ask: if a Brownian particle executes a linear random F-walk,
then what is a corresponding stochastic process that models the
walk in continuous time? The Wiener process is such a model in
the case k = 1. In the next section we will answer the question for
F ={A C [N]:0 < |A| <k}, and, in particular, will note that
the kth Wiener Chaos gives rise to a continuous-time model for the
corresponding random F-walk. In the last chapter, we will answer



«a-Chaos 335

the question for F* € {A C [N] : 0 < |A| < k}, where k is a fixed
integer. The question in the general case is open.

14 «o-Chaos: A Definition, a Limit Theorem,
and Some Examples

Wiener’s view of Brownian motion is based on an application of the
Central Limit Theorem to simple random walks — a key application
that motivates the definition and construction of the Wiener process.
To imagine, in the same way, similar stochastic constructs that would
model random F-walks, we require limit theorems.

First, let us formalize the measurements defined in (10.1) through
(10.6):

Definition 25 (cf. Definition 19). X € L%(Q,P) is an a-variable,
a € [0,00), if

20(X) = a. (14.1)
If 20(X) = v and || X, < 00, then X is an exact a-variable; otherwise,
if || X ||, = oo, then X is an asymptotic a-variable. In either case, if

26(X) = o, E|X|? =1, and EX = 0, then X is said to be a standard
a-variable.

For example, a bounded variable is a 0-variable; a Gaussian variable
is an exact l-variable, and a k-fold product of independent Gaussian
variables is an exact k-variable.

Theorem 26 For every integer k > 1, there exists an exact standard
k-variable Y(;,y such that

N o
1/(k) Z T T mY(k) in distribution. (14.2)

1<h <<y <N

Proof: We denote (for convenience)

N
ZN,k: 1/(}{7) Z rll---rlk, (143)
1<li <<l <N
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and, by induction on k, verify that Zy ; converges in distribution to an
exact standard k-variable. The case k = 1 is the Central Limit Theorem.
For k = 2, write

ZN72:% 1/(2) jZN‘Irj QN/\/@, (14.4)

and then apply the Central Limit Theorem to the right side. For k > 2,
write

N N k k—1
Zng = (1/k) 1/<k) S| D dni Zni1,  (14.5)

j=1 i=2

where (dy;)nen I8 a sequence of real numbers and limy_,oo dy; = 0,
i =2,...,k—1. Apply the Central Limit Theorem to the first term
on the right side of (14.5), and the induction hypothesis to each of the
other k — 2 terms (Exercise 39). 0

We return now to Brownian trajectories, and, as in previous discus-
sions (cf. §1), imagine them to be random walks. We keep the three
(heuristic) assumptions stated in §1, but do not presume that the ‘walk’
is simple. We fix ¢ > 0, and calibrate the time interval [0, ¢] by n sub-
intervals of equal length ¢/n. If X (t) is the particle’s position at time ¢,
then

X() —f:X (% t) _x (% t) - \/?f:l Y, (14.6)

where ¢ > 0 is an absolute constant, and the Y; are orthonormal. (See
(1.3) and Exercise 2.) Now assume that for some fixed integer k > 0,
(14.6) is a random F-walk, whose underlying ‘combinatorial complexity’
is k on every scale. (See comments following (13.7).) That is, for all

n=(}),
N
X(t)=,|c t/(k) 1§11<Z_<lk§an ST (14.7)

(cf. (1.4)). Then, by letting N — oo, we obtain from Theorem 26 that
X (t)/+/ct is an exact standard k-variable. This motivates
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Definition 27 (cf. Definition 1). A stochastic process
X={X(¢):te[0,1]}

on a probability space (£2,.%4P) is an a-chaos process, « € [1,00), if X
satisfies the following:
i. E|X(t)]?> = Kt (constant K > 0) and EX (t) = 0 for all ¢ € [0,1];
ii. X has orthogonal increments, i.e., if Jy,Jo are disjoint intervals
in [0,1], then EAX (J1)AX(J2)=0 (AX(J):=X(t) — X(s), where
0 < s <t <1 are the end-points of an interval J);
iii.
5H(X) = sup{éspan{AX(Ji)} : intervals JZ C [0,1], EilJi < 1} = 04/27
where

H(X) = L*(Q,P)-closure of | ] span{AX(J;): 51, <1}.

An a-chaos X is eract if cy(x)(2/a) < oo, and is asymptotic if
cr(x)(2/a) = cc.

In the next chapter we will observe that if a process X is an a-chaos,
then

ux(A,J) =E1,AX(J), Ae€.9 interval J C [0,1], (14.8)

determines an Fy-measure on ./ x .%. (This is easy. You can verify it
now, or note it in the next chapter.) In particular, a-chaos processes
are ‘integrators’ in the same sense that the Wiener process (an exact
1-chaos) is an ‘integrator’. We will also note, by transcribing arguments
in §5, that almost all sample-paths of an a-chaos process are continuous.

The total variation of pux is infinite (proof similar to the argument
that the total variation of py is infinite), but

llexlle, = sup { > 0, (Ipx(Aj, Bp)l) : £1a, <1,
7,k

Elek <1, {AJ} C {Bk} C %} < 00 (149)

for all ¥ > «, which implies ||pux||p) < oo for all p > 1 [B1Kah]. The
proof of (14.9) is similar to that of ||uw, ||lg, < oo, where W, is the nth
Wiener Chaos process. (See Corollary 23.) I do not know whether for
every a-chaos X, |ux|lo, = oo for all ¥ < a (cf. Example 1 below).
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FEzamples

. Let 7 be a measure-preserving one-one map from ([0,1],. %, m) onto

(Dnv Ban,‘“?), and define
(A, B) = pw, (A, 7[B]), A€ BeZ, (14.10)

where pw, is the Fh-measure on ./ X By, determined by (11.2).
Then, p is an Fy-measure on .2/ x % such that p(-, B) < P for all
B € .%, and ||pllo, < oo if and only if v > n (Theorem 24). Define

~ d
Wn(t) = aP

W, is an exact n-chaos, and Ky, = # where py, is determined by
(14.8). (See next chapter for details.)

(u(-[0,4]), te0,1]. (14.11)

. Consider a unitary map U from L*([0,1],m) onto Lg (Q,P.) (See

(9.8) for the definition of G,,.) Define
X(t) = Ul[O,t]a te [071] (1412)

Then, X is an exact n-chaos (cf. Kakutani’s realization of W in §2).
We can replace the system G,, by W,, (the Walsh system of order
n), and, similarly, obtain yet another example of an exact n-chaos.

Questions

. Do a-chaos processes exist for non-integer a? This problem should

by now have a familiar ring. It is related to the question whether
we can meaningfully define a non-integer complexity of a random
walk, and obtain a limit theorem (like Theorem 26). The question
is related to problems in Chapter VII concerning p-Sidon sets and
Bonami’s inequalities, and will be resolved in the last chapter.

. How do we gauge stochastic complezity of a random walk correspond-

ing to a general collection of subsets A C 2IN1? (See Remark ii §13.)
The problems that arise in connection with this question are only
partly solved. They are closely related to Rudin’s A(p)-set problem
[Rul], and to Bourgain’s solution of it [Bour]. (See Chapter III §6
iv.) These issues will be discussed in the last chapter.

. How can we detect the stochastic complexity of Brownian movement?

This is a practical question, evoking a recurring theme of the last
three sections: that Wiener’s model, based on a simple random walk,
is only a ‘first approximation’ to Brownian motion in the ‘real world’.
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The problem is this: given a large sample of Brownian paths — tracks
of physical particles, or foreign currency fluctuations, or walks of
drunks — how can we estimate the degree of complexity of the under-
lying process? I believe that such estimates could, somehow, be tied
to the variations of the associated Fréchet measures, say in the spirit
of Theorem 23. (More of this will be said in the next and the last
chapter.)

Exercises

. Let (9, P) be a probability space. If X € L2(Q,P) and Y € L%(, P)

are uncorrelated, then find a sense in which X and Y are func-
tionally independent. (For a definition and discussion of functional
independence, see Remark iv in Chapter VII §8.)

. Suppose a process X = {X(¢) : t € [0,00)} has the following

properties:

(1) EX(t) =0 for all ¢ € [0, c0);

(2) if S1 < tl < S92 < tz, then E(X(tl)—X(Sl))(X(tg)—X(Sg)) = 0;
(3) there exists a non-negative function v on [0, 00) such that

EX(t) - X)) =v(t—s), 0<s<t<oo.

Prove that v(t) = ct for all ¢t € [0,00), where ¢ > 0 is a numerical
constant.

. Prove from first principles that under the strongest possible inter-

pretation applied to assumptions i, ii, and iii in §1, and the

assumption that Brownian trajectories are continuous, the prob-

ability distribution of the displacement X (¢) of a Brownian particle
at time ¢ is Gaussian with mean 0 and variance c t, where ¢ > 0 is

a numerical constant.

i. Let H be the L2(Q,P)-closure of the linear span of a system
of independent standard Gaussian variables. Prove that every
X € H is Gaussian with mean 0 and variance || X ||?,.

ii. Prove that if Y7,...,Y;, are mutually orthogonal Gaussian vari-
ables with mean 0 such that every element in the linear span of
{Y1,...,Y,} is Gaussian, then Yi,...,Y,, are statistically
independent.

Complete the proof of Proposition 2; that is, show that

n
> (W )’ —=1 in L*(,P) (E.1)

=1
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implies that almost all sample-paths of W have infinite variation
over [0,1].
6. i Fort e (0,1],let m, = {0 =tos < trp < - <tpk = t}, k €
N, be partitions whose mesh goes to 0 as k — co. By a modifi-
cation of the proof of Proposition 2, establish that

ng
> W(tin) = Witio1x)] ——t in L2(Q, P).
1=1 o

(It can be shown with additional effort that the convergence
above is almost sure (IP). This is a theorem due to Paul Lévy;
e.g., [Doo, p. 395].)

ii. Prove that on every subinterval of [0,1], almost all (P) sample-
paths of W have infinite variation.

7. For the purpose of this exercise, you can assume Paul Lévy’s result
concerning the almost sure convergence of the quadratic variation.
Before we state the problems, we formalize few (neo)- classical
notions. Let p={p1,...,pr} be a k-partition of N, |p;| = -+ =
|px| = 00, and enumerate p; = {n;; : j € N},i =1,..., k. Consider
the binary digit expansion of = € [0,1], = = 72, b;(x)/27, and
define the mappings from [0,1] onto [0,1]

T () =D by, (2)/2, i=1,... .k,
j=1

which are bimeasurable with respect to algebras generated by the
dyadic intervals. (In this exercise, if z is a dyadic rational, then
b;(x) = 0 for all but finitely many j.) Consider 7, = (75, ..., Tpy)s
which is a one-one map from [0,1] onto [0,1]*.

We say that a continuous function f on [0,1] has type Fy, if there
exists a k-partition p of N such that fo7; 1 is a function with
bounded Fj-variation on [0,1]*; this means that the k-fold difference
AF(f o7, 1) determines an Fj-measure on .%# ", where Zis the usual
Borel field in [0,1]. (Review definitions in Chapter VL.).

i. Prove that if a continuous function f on [0,1] has type Fy, then

sup {Z [Af(J)|P : standard partition 7 of [O,l]} < 00,
Jem

2k

< —_—
P=r
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(By a standard partition we mean here a finite partition that
consists of contiguous intervals.)

ii. Prove that almost all sample paths of a Wiener process W do
not have type Fy, for all K > 1. What does this say about sample
paths of a Wiener process?

Verify that if f€L2([0,1],m), then its Wiener integral Iy (f) is a
Gaussian random variable with mean 0 and variance | f||Z., and
conclude that

/0 £(t) g(t) dt =B Tw(f) Twl(g).

Let puw € Fa(oZ # ) be the Wiener Fy-measure defined in (3.16).
Verify that

||MW||F2 = Sup{ ZMW(Aj7Bk) Tj KT : Elej < 17
T L
_ 2
Splp, <1, {4;} C o {By} C Zy = =

Let pw be the Wiener Fr-measure defined in (3.16). Verify that for
all bounded Borel-measurable functions f on [0,1],

L) =S [ f(t) pw(az).

(This exercise is a preview of the next chapter.)
Let pu be a (generalized) Wiener Fa-measure defined by (3.25) and
(3.26). Prove that if G is an infinite locally compact Abelian group,
then pw cannot be extended to a scalar measure.
Prove that the stochastic series of W stated in (3.28) converges in
L2(Q,P) uniformly in ¢ € [0,1].

i. (the Walsh—-Wiener series). Consider the stochastic series

representation of W given by

W(t) = i (/[0 . wj(z) dac) X;, telo1],

where {w;} is the Paley enumeration of the Walsh system
(Chapter VII §4), and {X,} is a statistically independent sys-
tem of standard Gaussian variables. Prove that f[o 1 w;(z) dz is
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14.

15.

16.

17.

18.
19.

20.
21.
22.
23.
24.

25.

26.
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@(1/4) (can you compute f[O,t] wj(z) do explicitly?), and obtain
another proof that almost all sample-paths of a Wiener process
are continuous.

ii. (the Haar-Wiener series). State explicitly the stochastic series
of a Wiener process based on the normalized Haar system in
L%([0,1],m) (e.g., [LiTz, Vol. 1, p. 3]). (Paul Lévy used the Haar
system to give his own construction of the Wiener process; see
[Lé3, Chapter I]. So far as I can determine, a representation of
the Wiener process by the Haar-Wiener series appeared first in
[Ci].)

Here is an ‘exercise’ that may seem out of place in a mathematical

monograph, but try it anyway!

Ponder the difference between these two statements: (1) two
events are truly independent, in the sense that one really has noth-
ing to do with the other; (2) two events are perceived independent
because we are unable to process, deterministically, information
about interdependencies between them.

(Re)prove the classical Khintchin inequalities by showing that the

Rademacher system is sub-Gaussian. (This proof of the Khintchin

inequalities is due to E. Stein [St, Appendix D].) (See (4.25).)

Prove that every statistically independent system of variables that

are uniformly bounded in the Orlicz space Ly, (€2, P) is sub-Gaussian,

where ¢, is defined in (4.11).

Show that every Wiener integral can be represented by a series of

statistically independent standard Gaussian variables.

Verify that all the sets in the proof of Lemma 7 are measurable.

In Remark i in §5 we proved Corollary VII.42. Verify the stronger

statement: that Theorem VII.36 is best possible.

Verify (6.9).

Justify the assumption prior to (6.12) in the proof of Theorem 11.

Verify (6.16).

Verify (6.21).

Verify that the integrals in (7.3) and (7.11) do not depend on the

representations of the step functions f in (7.2) and (7.10), respec-

tively. Then verify (7.13) for standard symmetric step functions f

that vanish on ‘hyper-diagonals’.

Prove that S, , (standard symmetric step functions vanishing on

‘hyper-diagonals’) is norm-dense in L2 ([0,1]", m"™).

Verify (8.6).
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27. (It6’s formula [I1, p. 523]) Let g be a twice-differentiable real-valued
function on R with a continuous second derivative. Let

29.

31.

T={0=ty<t1 < <tp_1 <t,=1}

be a partition of [0,1], denote ||7|| = max{|t; —¢;—1|:j=1,...,n},
and consider the Riemann sum

Rw(gim) = 39/ (W(tj-1))(W(t5) = W(t1)-

Prove that
/ g (W) dW := lim Rw(g;m)
0 ll=ll—0
= (WD) = g(WO) ~ 5 [ 4" (Wee) a.

where the limit above is in L2(€2, P).
28.*% i. Obtain a general formula, analogous to (8.11), for the n-process

iii.

(a process indexed by n parameters) defined in (8.10).

. For f € 12([0,1]2, m?), represent the process

]W(]-[O,t] f('7t))’ te [Oal]a

by a stochastic series, and then represent the (iterated) Ito
integral

/[0 | Dl S.0) AW (@)

by a series whose summands involve Wiener integrals. In like
fashion, state the n-process in (8.10) in terms of stochastic series.
Verify explicitly that the two formulae obtained in i and ii — for
the multiple integral and the iterated integral — agree in the case

=147 Lo,

Prove Lemma 18.
30. Verify that if {X; : j € N} is a sub-a-system, then {X; ®---® X}, :

(J1y---

,Jn) € N"} is a sub-na-system.

Let {X;:j€N} be a system of statistically independent standard
Gaussian variables. By use of the Central Limit Theorem and
Bonami’s inequalities, prove that

Gn:{le ...Xjnl 1 § j] <L < ]n}

is a sub-n-system.
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32.

33.

34.

35.
36.

37.
38.

39.

1.

X Brownian Motion and the Wiener Process

In the last step of the proof of Proposition 20, show that for pairwise
disjoint intervals J; C [0,1], ¢ € [n], and f = 1), x...xJ,.,

Iw,(f) = AW(J1) - AW(Jy),

and then verify that c(Iw, (f);s) =0 for all s > 2/n.

Supply the missing details in the argument verifying Part i of
Corollary 21.

i. Show that for 1 < p < oo, Y € LP(Q,P), and X € (0,1),

(B Y)"

P{Y > AEY} > (1))

ii. Suppose H C LP(Q,P) is a A(p)-space, 1 < p < oo; that is,
H is a closed subspace of LP(,P), wherein the LP-norm and
the L'-norm are equivalent. (See Chapter IT1.) Prove that H is
closed in probability.

Verify that the set-function py,, defined in (11.2) is an Fy-measure
on .o/ x B(m.

Verify (11.5).

Fill in the missing details in the proof of Theorem 22.

Prove that if the drunk’s walk in (13.8) is generated by A = 2V,
then for all but one state of the DMM, the drunk returns to the pub
at the end of the walk.

Fill in the missing details in the proof of Theorem 26.

Hints for Exercises in Chapter X

The two functions defined on L2(Q,P) by
Z—EXZ and Z—EYZ, Zcl?(Q,P),

are functionally independent.

. First prove that if ¢ is a real-valued Lebesgue-measurable function

on R, and ¢(z + y) = ¢(z) + ¢(y) for all x € R and y € R, then
¢(x) = cz for all x € R, where ¢ is a numerical constant. Show that
v is monotone and that v(t — s) = v(t) — v(s).
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This is an opportunity to review the Central Limit Theorem.

i. Use characteristic functions.

ii. Show that the multidimensional characteristic function of the
joint distribution of Y1, ..., Y, is the product of the characteristic
functions of the Yj.

Assume that almost all sample-paths are continuous. The assertion

in (E.1) implies

ng
Z(Wnk7j)2 —— 1 almost surely (IP) for some ny T co.
= k—o0

Now apply

ng
W .
Z| nk:]|— maXJ|A

W|Z m” 7

and almost sure sample-path continuity.

ng,J

i. Here you need to review notions concerning the Fréchet varia-
tion in Chapter VI, and the Littlewood 2k/(k + 1)-inequalities
in Chapter VII.
ii. Use the quadratic variation. A meaning of ‘F} type’ is proposed
in Chapter XII §4, Remark iii.
If (Z;: jeN) is a sequence of Gaussian variables with mean 0 con-
verging to Z in L2(Q,P), then Z is Gaussian with mean 0 and vari-
ance lim;_, || Z;]|L2. Use characteristic functions.
Compute the L'-norm of a standard Gaussian variable.
Cf. (V1.2.14).
i. This is a computation; e.g., see [Fil, §3].
ii. T recommend that you (at least) browse through [Cil.
The point of the exercise is that there is indeed a difference between
(1) and (2), which all too often is blurred in scientific writing.
See (4.25).
You can assume that {X;} is a system of symmetric, statistically
independent variables uniformly bounded in Ly, (2, P). It suffices to
prove that there exist A > 0 and L > 0 with the following property:
if X =3;a;X; € span{X;} and ;|a;|> = 1, then

Eexp(t|X|) < exp(At?) for all ¢t > L.
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22.

24.

25.
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30.
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Using symmetry, statistical independence, and uniform boundedness
in Ly, (©2,P), show that

E exp(t|X;a;X;]) <2 E exp(t¥;a; X;)

= HE exp(ta; X;) < Hexp(At2a§) = exp(At?),
J J

for some A > 0.
For computations involving complementary functions, see [LiTz,
p. 147]. Like Exercise 20, this too requires a small amount of calculus.
{AW(L;)---AW(;,) : 1 <43 < --- < i, < N} is an orthogonal
system in L2(Q, P).
Because elements in L2 are equivalence classes determined by the
m”-null sets in [0,1]", and because m"™(D) = 0 for every ‘hyper-
diagonal’ D, we can assume without loss of generality that every
f € L2 vanishes on all diagonals.
Extend the proof of Lemma 6.
Use induction and the generalized Minkowski inequality.
It suffices to show that there exists K > 0 such that for all N > 0
and all scalar n-arrays a = (aj,..5, : 1 < j1 <+ < jn < N)

p

El Y 4 XX, | < EKp? alh p>2.
1<j1<-<jn <N

To this end, first partition the Rademacher system into N pairwise
disjoint subsystems {T(J)Z i € N}, j =1,...,N. By the Central

i

Limit Theorem, for each j € [N],
1 <
ﬁ Z ng) m X in distribution.
=1

Denote Zny = 3 1< <...cj, <N @jroju Xjr =+ Xj,, and prove that

k k
i # > gy ...jin (Z r§’1)> (Z rl(]"))
i=1 -1

1<j1<-<jn<N

k—> Zn in distribution.
oo
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Let Ty denote the kth element of the sequence above. Verify, by
Bonami’s inequalities, that {7} is uniformly integrable, and there-
fore

khm E|Tk|p = E|ZN|p.

Now apply Bonami’s inequalities to Ty. Consult [Dul, Chapter 9]
for justification of these steps.
34. 1. Modify slightly the argument in [Kah3, p. 8.
ii. Review the proof of Corollary 21 iv.
35. Matters relating to this exercise are explained in the next chapter.
36. Cf. Exercise 23.
37. Review the proofs of Lemma 12 and Theorem 11.
38. Use elementary harmonic analysis.



X1

Integrators

1 Mise en Scéne: A General View

In Chapter X §1, we started with three assumptions — three perceptions —
about a Brownian particle’s trajectory: (i) its direction at any instant
cannot be determined; (ii) displacements over disjoint time intervals are
unrelated; (iii) ‘statistics’ of displacements over time intervals of equal
length are the same. In a framework of probability theory, the strongest
interpretation of these perceptions implies that a Brownian particle’s
position X (¢) at time ¢ € [0,1] is Gaussian with mean 0 and variance ct.
Specifically, we argued in Chapter X §1 that if Brownian displacements
are statistically independent, symmetrically distributed random vari-
ables with distributions homogeneous in time, then {X(¢) : t € [0,1]}
is necessarily a Wiener process (Definition X.1). A Wiener process,
however, conveys an idealized view: while haphazard and difficult to
predict, Brownian displacements are not, in reality, independent of one
another. At the end of Chapter X, imagining Brownian motion to be a
random walk, we departed from the classical model, and viewed sta-
tistical independence as the first and indeed simplest instance on a
scale of stochastic complexity. This view — under assumptions of time-
homogeneity, finite variance, and prescribed ‘randomness’ — led us to
a-chaos processes. The case a = 1, exemplified by a Wiener process,
is a continuous-time model for the simple random walk, and the case
a > 1, exemplified for integer a by the Wiener homogeneous chaos,
is a continuous-time model for walks that manifest greater levels of
‘randomness’.

In this chapter we study a general class of stochastic processes,
which includes the a-chaos, but also much more. We make no a priori

348
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assumptions about time-homogeneity, finite variance, or levels of
‘randomness’. We require only that processes be integrators:

Definition 1 A real-valued process X = {X(¢): t € [0,1]} on a prob-
ability space (2,94 P) is an integrator if

E|X(t)| < oo, te€][0,1], (1.1)
and for all A € .o/ the variations of the functions
ga(t) =E14X(t), t€]0,1], (1.2)
are bounded uniformly in .27 i.e.,
sup{||lgallsv : 4 € ¥} < 0. (1.3)

If for each A € 4 g4 is continuous on [0,1], then X is said to be a
continuous integrator, and if g4 is right-continuous, then X is said to be
a right-continuous integrator.

The motivation for the definition is this. Imagine that a Brownian
particle’s position X (¢), t € [0,1], is obtained as a sum of displacements
over successive time intervals,

X(t)=> AX(J), (1.4)

where J;, ¢ € [N], are pairwise disjoint time intervals whose union
is [0,¢], and AX(J) := X(u) — X (v) is the displacement over a time
interval J with end-points 0 < u < v < t. This realization of Brownian
movement as a ‘random walk’ — the synthesis of X from its increments —
is at the heart of the matter. At the very least, we expect this realization
to be consistent: that X (t) be the same for any choice of time intervals
Ji, i € [N], whose union is [0,t]. More generally, we expect realizations
by finite sums of displacements to be the same as realizations by infi-
nite sums. This leads to a basic question: can X(t) be realized as an
‘integral’

X(t) = /[O o (1.5)

The gist of Definition 1 is that if X is an integrator, then the integral
on the right side of (1.5) is well-defined, and if X is a right-continuous
integrator, then (1.5) holds. Indeed, if X is a right-continuous integra-
tor, then for every t€[0,1], X (¢) can be consistently and independently
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synthesized from its displacements, which means: if {J; : ¢ € N} is any
collection of pairwise disjoint intervals such that J;~, J; = [0,¢], then

X(t) = iAX(JZ-), (1.6)

where the series on the right side converges weakly in L!(Q,P). Note
that this expresses a notion of ‘time-independence’: if {J; : i € N} is any
collection of pairwise disjoint intervals, J;=, J; = [0,t], Y € L>®(Q,P)
is arbitrary, and 7 is any permutation of N, then

[e o]
EYX(t) =Y EYAX(J.), (1.7)

i=1
i.e., position at time ¢ depends (weakly in L!(Q2,P)) only on the set of
displacements {AX(J;): ¢ € N}, and not on the time-sequence of the
displacements. Eventually we shall view this particular notion of in-
dependence as a left end-point on a scale of interdependence that is
calibrated by ‘dimension’. But for the time being, and for a long while,
we will be focusing on the ‘one-dimensional’ integrators of Definition 1.

2 Integrators and Integrals

Work in this chapter will be carried out in the setting of the multi-
dimensional measure theory that was developed in previous chapters.
We start by rephrasing Definition 1 in the terminology of this setting.
(See Chapter IV.)

Lemma 2 (Exercise 1). A process X={X (t): t€[0,1]} on a probability
space (2,4 P) is an integrator if and only if

X[ = sup{|[{E14; AX(Jk)}jx

[y @ 8514, <1,

Yply, <1, Aj € o intervals Jy C [0,1]}

= sup {E

keN, ¥¢_1, <1, s¢€ {—1,1}N} < 0.

k
N AX(Jy) a(s)| :
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We consider the question: how are functions on [0,1] integrated with
respect to an integrator X ?

Approach 1 (functional-analytic). For step functions
f:Za,- ].Jz.7 (22)
i

define
Ix(f) = Zai AX(J;). (2.3)

Then, by Lemma 2,
E[Lx ()] <2 [Iflo I XTI, (24)

which implies that Ix is uniquely extendible to an L!(£2,P)-valued
bounded linear map defined on the sup-norm closure of the space of
step functions. We view this map as integration with respect to X.

Notice that, while Ix (f) is well-defined for all continuous functions f,
it is not obvious how to integrate by this approach an indicator function
1p, where B € %is an arbitrary Borel subset of [0,1].

Approach 2 (measure-theoretic). For A € ./ consider the function
Gx(A) on [0,1] defined by

Gx(A)(1) = E1,X(1),

Gx(A)(t) = llrg E1,X(s) forte[0,1), (2.5)
and then let
ux (A, 1) =Gx(A)(t) — Gx(A)(s), I=(st]C]0,]. (2.6)

(E14X(-) has bounded variation, and hence Gx(A)(t) exists for every
t € [0,1).) Let @ be the algebra generated by {(s,t] : 0 < s < ¢ < 1},
and extend px by linearity to ./x @ Henceforth, if X is a process such
that Gx (A)(t) exists for all A € »7and t € [0,1], then px will denote
the corresponding set-function defined by (2.6).

Lemma 3 If X is an integrator, then ux € Fo(%4 @), and
lbx| By ey = 11X

Proof: For each A € % Gx(A)(+) is right-continuous and has bounded
variation. This implies that pux (4, -) is a measure on .
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To establish that px (-, O) is a measure on (£2,.%7) for every O € 4 it
suffices to verify that Gx (-)(¢) is a measure on (€2, .7) for every ¢ € [0, 1).
Let {A; : j € N} be a collection of pairwise disjoint elements in .%/ and
denote A = U;A;. We need to verify

ZGX = Gx(A)). (2.7)

Let (s; : j € N) C (¢t,1) be a decreasing sequence converging to ¢, and
let Jx = (Sg, sg—1]- Then,

> Gx(Apm) =) Jim BLa, X (si)

Jj=1

—i{ElA X(s1) <Z Ely, AX(Jk))}

k=2

=E14X(s1) i (Z Ely,, AX(Jk)) . (28)

j=1 \k=2
By Lemma 2,
{ElAjAX(Ik)} < FQ(N, N) (29)

Therefore, we can interchange summations (Corollary 1V.7),

> (i El, AX(J,C)) i iElAjAX(Jk)

j=1 k=2 \j=1

= iElAAX(Jk):E].AX(Sl)7Gx(A)(t)7 (210)
k=2

and thus obtain (2.7) from (2.8).

The statement ||ux| v = | X]|| follows from (2.1) (Exercise 2).
O

Corollary 4 X is an integrator if and only if px determines an
Fy-measure on /% B, and ||px || g0z = | X]|-

Proof: Apply Theorem VI.8. |
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Corollary 5 (Exercise 3). If X is an integrator and px denotes the
associated Fo-measure on o/ x % determined by (2.6), then for all B €
B, ux(-,B) < P.

Conversely, if p is an Fy-measure on &/ X % such that p(-, B) < P
for all B € %, and X (t) = du(-,[0,t])/dP for t € [0,1], then X is an
integrator and px = p.

Corollary 5 leads to

Definition 6 For an integrator X and fe€L*([0,1],.%) (:= Banach
algebra of all bounded Borel measurable functions on [0,1]),

d
fdX = — ) px (-, de). (2.11)
[01] dP Jjo,1)

This definition is made possible by Lemma V1.9, which implies that

FO) ux(A,dt), Ae (2.12)
[0.1]

is a measure on (2,27 ), and by Corollary 5, which implies that this
measure is absolutely continuous with respect to P. By Lemma VI.9,

/ fdx
[0,1]

ie., f +— f[O,l] f dX is a bounded linear map from L*([0,1],.%) into
LY(Q,P).

B < 20X 1o (2.13)

Proposition 7 If X is an integrator and f € C([0,1]), then

Ix(f) = fdX.
[0.1]

Proof: Let A € o and note that if ¢ is a step function,
n
p=> a;ily, (2.14)
i=1
whose discontinuity points are continuity points of G x(A), then

/[0 . o(t) px (A dt) = El, zn:ai AX(J;) = Elalx(p).  (2.15)
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Let f € C([0,1]), and let (¢; : j € N) be a sequence of step functions
converging uniformly to f, such that discontinuity points of each ¢; are
continuity points of Gx(A). Then,

Aumwwmmw-» £ px(Ad). (216)

J=ee Joa]

Also,
Ix(¢j) —— Ix(f) (convergence in L'(€,P)). (2.17)
J—00
Therefore,
El4Ix(f) = o f(t) px (A, dt), (2.18)
0,1

and by taking Radon—Nikodym derivatives, we obtain
Ix(f) = fdX. (2.19)
(0,1]
O

If X is an integrator and f € L>°([0,1],.%), then we define the indefi-
nite integral [ fdX to be the process

(/f dX) (t) == /[O 1]f logdX = [ fdX, te[01]. (2:20)

[0,¢]

Proposition 8 (Exercise 4). If X is an integrator and
feLl>(0,1],2),
then [ fdX is an integrator, and || [fdX|| < 2| X|||| f]lso-

Remarks:

i (Riemann v. Lebesgue). The distinction between the two inte-
grals in Approach 1 and Approach 2 is analogous to the distinction
between Riemann—Stieltjes integration with respect to a monotone
function, and Lebesgue—Stieltjes integration with respect to its right-
continuous ‘version’. Observe that if X is a right-continuous inte-
grator, then

Ix(Lsig) = X(8) = X(s) = 5pex - s:])

- / 1oy dX: (2.21)
[0,1]
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in particular (cf. (1.5)),

X(t) - X(0) = Ix (L) = /[ g ax (2.22)
0,1

(‘white noise’). Approach 2 leads to the ‘white noise’ associated
with an integrator X (cf. (X.3.18)), which extends (2.22):

‘A’X(B) :/ 13 dX, Be % (2.23)
[0,1]

If X is right-continuous, then ‘A’X(J) = AX(J) for every interval
J C [0,1], and we drop the quotation marks around A. A question
arises: in what sense does ‘A’X(-) determine a measure on .%? For
every A € &, E14‘A’X (") is a scalar measure on .%, which is imme-
diate from definitions, but more can be said. We will return to this
question later in the chapter.

(‘randomness’). Given our objectives (and biases. .. ), we deem an
integrator X interesting when px cannot be extended to a bona fide
scalar measure on o(/x@). For, if ux does determine an Fj-measure
on o (27X @), then stochastic integration with respect to X proceeds,
more or less routinely, in the usual ‘one-dimensional’ framework of
measure theory. A simple example of such a processis X = Z® f,
where Z € L1(Q,P) and f is a function of bounded variation on [0,1].
In this case,

px = ZdP x df. (2.24)

In general, the verification that px cannot be extended to a scalar
measure — the only practical way I know — is a check that its total
variation is infinite; i.e., that

sup{[{E14; AX (J) }jkllin ey 1 Bjla; <1,

Yl <1, Ay € Jp € OF = |ux |y

= sup{EZ|AX(Jk)| (Xl <1, Ji € ﬁ} =o00. (2.25)
k
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If [|ux]l(1) = oo, then the expected variation of sample-paths of X
is infinite; i.e.,

00 = sup {EZ IAX(Jy)|: Sply, <1, Ji € (}
k

< Esup{z IAX(Jy)|: Skly, <1, Ji € /} (2.26)
k

which conveys haphazardness (cf. Chapter X §3, Remark i). This
suggests

Definition 9 A process X = {X(t): t€0,1]} on a probability
space (2, #P) is a random integrator if ux € Fo( x %) and
x|y = oo

A recurring theme in this chapter is that measurements involv-
ing variations of px reflect levels of ‘randomness’ in X; or levels of
‘stochastic complexity’. To be precise, we define

Ox == inf{p uxlp) < oo}, (2.27)

where

1

1exll(p) = sup { (Z |HX(Aijk)p) :

7,k
Ej]-Aj <1, Ek]-Bk, <1, {AJ} C Y {Bk} C %} (228)

We call £x the Littlewood indez, and view it as a gauge of ‘random-
ness’ in X. By Littlewood’s inequality, x < 4/3, and if X is a
random integrator (according to Definition 9), then 1 < £x < 4/3.
Integrators X for which £x = 1 can be brought into sharper focus.
For example, if X is an a-chaos, o > 1 (Definition X.27), then the
variations of px are controlled by the Orlicz functions 6., defined
in (X.6.22): [|uxllo, < oo for all ¥ > a, and ||ux|lse, = oo for all
v < a. (See (X.14.9), and also §4 in this chapter.) Specifically,
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Theorem X.14 — the assertion that ||uwllg, < oo and [|uwlle, = oo
for all v < 1 — conveys precisely that a Wiener process is stochasti-
cally the ‘least complex’ among continuous-time models of random
walks. Observe that for every a-chaos X,fx = 1 (while ||px|/1) =
00). We will note in §4 that for every p € (1,4/3] there exist inte-
grators X such that /x = p.

3 Examples

i. L2-bounded processes with orthogonal increments. These are
processes X such that

E|X(t)|* := Fx(t) < oo, te€0,1], (3.1)

and

EAX(I) AX(J) =0,
intervals I C [0,1], J C [0,1], INJ = 0. (3.2)

For convenience, we assume Fx (0) = 0. For such X, if J is an inter-
val with end-points 0 < s < t < 1, then E|AX (J)|? = Fx (t)—Fx(s);
in particular, F'x is monotonically increasing on [0,1] (Exercise 5).
Let Ax be the positive regular Borel measure on [0,1] determined by
F‘X7 i.e.,

Ax () = Fx (t) — Fx(s*), J= (s [0,1]. (3.3)

Proposition 10 If X is an L?-bounded process with orthogonal
increments, then X is an integrator, and

px <P xAx. (3.4)
((3.4) means that if P(A)=0 or Ax(B)=0, then ux(A,B)=0.)

Proof: To verify that X is an integrator, let {.J,,} be a finite col-
lection of pairwise disjoint intervals in [0,1], let u € {—1,1}Y, and
estimate

E

< < X (@W)2- (35)

> AX () ra(u)

> AX () (u)

L2
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To verify (3.4), note that for each A € .
gLy [ X, gec(o), (36)
(0,1]

is a bounded linear functional on C([0,1]), which we represent by a
regular Borel measure 34 on [0,1]. Then, S4(-) = ux(A,-) (Notice
that for all g € C([0,1]),

[ a0 atn = [ gft) ux(a.a0).)
[0,1] [0,1]
The linear action
g [0.1] g(t) ﬂA(dt)v g S C([Oa 1]): (37)

is uniquely extendible to a bounded linear functional on L2([0,1], Ax),
which we denote by 54 (Exercise 6 i). Then,

Ba(lp), Be€ % (3.8)

defines a measure on .%, which we denote also by ﬁ 4. This measure
equals G4 (Exercise 6 ii). If B € .%, then,

lux (A, B)| = |8a(B)| = [Ba(1p)| < [|BallV/Ax(B), (3.9)

which proves px(4,-) < Ax.
To verify ux (-, B) < P, observe that {B € %: ux(-,B) < P} is
a o-algebra that contains {(s,t]: 0 < s <t < 1}. O

Because X is an integrator, we obtain by the measure-theoretic
approach an integral |, [0.1] f dX for every bounded Borel-measurable
function f on [0,1].

An integral with respect to X can be obtained also by a
functional-analytic approach that mimics the construction of the
Wiener integral (in Chapter X §3). Let Sg, [0,1] denote the space of
step functions whose points of discontinuity are points of continuity
of Fx. If f € Sk [0,1], f =", a;1,,, then define (Exercise 7)

Ix(f) =) ai AX(Jy). (3.10)
=1
For all f € Sg,[0,1],

E|Lx (AP = 1fE200) (3.11)



FEzamples 359

i.e., (3.10) determines a linear isometry from Sr, [0,1] into L?(Q,P),
and, because Spg,[0,1] is dense in L2([0,1],Ax), this isometry is
uniquely extendible to a linear isometry from L2([0,1],Ax) into
L3(Q,P). We view Ix as an integral with respect to X. (It is the
Wiener integral in the case X = W.)

Proposition 11 (Exercise 8; cf. Proposition X.3). Let X be
an L2-bounded process with orthogonal increments.

i. For f € 12([0,1],Ax) and g € L2([0,1], \x),

f®)g(H)Ax (dt) = Elx (f)Ix(g)- (3.12)

[0,1]

ii. Let {e;: j €N} be an orthonormal basis of L2([0,1], Ax), and
define

If f € L2([0,1], Ax) and f(j f[01 (s)Ax(ds), then
k
S F0) XG)——Ix(f) inLAQE).  (314)

Jj=1

Proposition 12 For an L2-bounded process X with orthogonal
increments, define

H(X) = {Ix(f) : f € L*([0.1], Ax)}. (3.15)

i. H(X) is a norm-closed subspace of L2(Q,P).
il. If H(X) is a A(2)-space (i.e., || Z||L2 < k|| Z]|L2 for ZeH (X)),
then H(X) is closed in probability.

iii. If H(X) is a A(2)-space and Fx is continuous, then X is a
random integrator.

Proof: Parts i and ii are exercises (Exercise 9).
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To verify iii, suppose Y1, = 1jg,1j, and estimate

1

i) 22—
;E\AX(JZ)I = maxE|AX(J;)]

>_(EIAX()])?

K
> E|AX(J;)]?
~ max E|AX(J;)] ; IAX (R

2
- mi}gé()l()(m (3.16)
Because Fx is continuous, we can choose {Ji} such that
m]?XE\AX(Jk)\
is as small as we like, and conclude ||px||(1) = oco. O

Proposition 13 Let X be an L2-bounded process with orthogonal
increments.

i. If f € C([0,1]), then

Ix(f) = £ dX. (3.17)
[0.1]

ii. If Fx is right-continuous and f € L>°([0,1], %), then

Ix(f) = fdX.
[0,1]

Proof:

i. This follows from Proposition 7 (Exercise 10).
ii. If Fx is a right-continuous function, then X is a right-continuous
integrator. Therefore, if ¢ € Sp, [0,1], then

IX(@)—/[O 1}(de. (3.18)

Let feL>([0,1],.%). Let (p;: jeN) be a sequence of step functions
in Sp, [0,1] converging to f in the L?(Ax)-norm. Then,

/ ©; dX — Ix(f) (convergence in L*(£2, P)). (3.19)
[0.1]
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We can assume that ¢; — f a.e. (Ax), and also that ||¢;|lec <
2||flloo for j € N. Let A € &/ be arbitrary. By Proposition 10,
for every € > 0 there exist ¢ > 0 such that if Ax(B) < ¢ then
|ux|(A, B) < €, where |ux|(A,-) is the total variation measure
of ux(4,-). By Egoroft’s theorem, there exists B € % such that
Ax(B) < 6, and ¢; — f uniformly on [0, 1]\ B. Therefore, there
exists NV > 0 such that for all &k > N,

/M k() — FO] x](A, d)
:/ [ok(t) — FO] ] (A, d)

/ lon(t) — F(0)] x| (A, dt)
< e+ 3¢ ]l (3.20)

Therefore, by (3.19),

ElA/ ;X — El, | fdX =El.Ix(f). (3.21)
[0,1] [0,1]

The assertion follows by taking Radon—Nikodym derivatives.

Remarks:

i (when is X random?). We briefly comment on the conditions
in Proposition 12 iii that imply randomness. Let {X}, : k € N} C
L?(Q,P) be an orthogonal set such that Y ;- [[Xx/|?. < oo, and
let Ji, = (1/(k +1),1/k], k € N. Define

Z L,(0Xe =Y Xi, te0]], (3.22)

kt>1

in which case AX(Jy) = Xy, and

t)=> |Xklf2, te01]. (3.23)

kt>1
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Then, X is L2-bounded with orthogonal increments, Fy is not
continuous, and

lixllay =D I Xkl (3.24)
k=1

Now observe that there exist orthogonal sequences (X : k € N)
such that || Xk||z = | Xk|lt: = 1/k for k € N, and H(X) is not
a A(2)-space. This illustrates that neither continuity of Fx nor
the condition that H(X) is a A(2)-space are necessary for X to
be random. On the other hand, H(X) a A(2)-space does not, by
itself, imply that X is random: if {X}} is finite, then H(X) is
(trivially!) a A(2)-space, but X is not random (Exercise 11).

(sample-path properties). If X is an L2-bounded process with
orthogonal increments, and ¢ € [0,1] is a continuity point of Flx,
then

oo
X(t) = Ix(1pg) =Y _1pg()
Jj=1

(convergence in L%(Q,P). (3.25)

To learn about sample-paths of X from series representations, we
need to know more about X. For example, consider L2-bounded
processes X with orthogonal increments such that

Fx(t)=ct, telo1]. (3.26)

We refer to such X as homogeneous integrators (see Exercise X.2).
For a homogeneous X, we can take {cosmjs: j=0,...} to be a
basis for L2([0,1], Ax), and obtain

sin 5t

X(t):thoJrki r X(), (3.27)

=1

where b > 0 and k > 0 are numerical constants, and X (j) =
Ix(cos mjt), 7=0,... (cf. (X.3.30)). In this case, if more is
known about ‘interactions’ between displacements of X (more
than orthogonality), then more can be learnt about sample-paths
of X from the series representations in (3.27). For instance, if
H(X) is a A(g)-space for some ¢ > 2 (L% and L2-norms are
equivalent in H (X)), then stochastic series representations imply
that sample-paths of X are almost surely continuous. (See next
section.)
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ii. L'-bounded additive processes. A process X is LP-bounded
if E|X(t)|P < oo for all t € [0,1], centered if EX(t) = 0 for all
t € [0,1], and additive if {AX (J;)} is statistically independent for
every finite collection {.J;} of pairwise disjoint intervals in [0,1].

Proposition 14 If X is a centered L'-bounded additive process,
then X is an integrator.

Proof (Exercise 12): First note that if ¥ and Z are indepen-
dent random variables and EZ = 0, then E[Y + Z| > E|Y|. Next,
by replacing the process X with X — X, where X is a statistically
independent copy of X, we can assume that X is a symmetric pro-
cess. If {J;} is a finite collection of pairwise disjoint intervals, and
u € {—1,1}", then

Z ri(u) AX(J;)

%

E < E[X(1) - X(0)]. (3.28)

=E|Y AX(J)

d
L?-bounded martingales.

Proposition 15 If X = {X(¢) : t € [0,1]} is an LP-bounded martin-
gale process, 1 < p < 2, then X is an integrator.

Proof (Exercise 13): If {J;} is a finite collection of pairwise dis-
joint intervals, and v € {—1,1}", then by the Burkholder-Gundy
inequalities (e.g., [Bu, (3.3)]),

P P
(E > riu) AX(Ji)> <E|> ri(u) AX(J;)

3 P
<C, E (Z |AX(J;)] ) <ec, E ZAX (3.29)
O

4 More Examples: a-chaos, A(g)-processes,

p-stable Motions
If X is homogeneous, then for all Z € H(X),

P(|Z| > x) < | Z)Ez/2*, x>0, (4.1)

and if X is an ezact 1-chaos, then for all Z € H(X),

P(|Z| > x) < exp(Kz?/||Z|?2), for sufficiently large z > 0.  (4.2)
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The gap between the estimates in (4.1) and (4.2) can be calibrated on two
scales: one scale marked by exponential tail-probability estimates, which
start at (4.2), and another scale marked by polynomial tail-probability
estimates, which start at (4.1). Both calibrations are discussed below.

a-chaos, o € [1,00)

These are the processes proposed in the previous chapter as models for
random walks with prescribed degrees of combinatorial complexity. (We
have argued for the integer « case in Theorem X.26, and will deal with
the non-integer case in the last chapter.) Recall that if X is a-chaos,
a € [1,00), then for all Z € H(X) and all v > «, there exists K, > 0
such that for sufficiently large = > 0

B(|Z] > 2) < exp(K,a* /| Z]7) (4.3)

for all Z € H(X), and these estimates are best possible, i.e., there exist
Z € H(X) such that (4.3) fails for all v < « (Definition X.27). Following
an interpretation of tail-probability estimates as measurements of inter-
dependence (Chapter X §4, Remark ii), we view the a-chaos processes
as random integrators whose stochastic complexity is marked precisely
by a.

Every a-chaos X is a homogeneous integrator, H (X)) in Definition X.27
is the same as H(X) in (3.15), and the definition can be restated thus
(Exercise 14): A homogeneous process X is a-chaos if and only if

Estimates on variations of Fréchet measures associated with a-chaos X
are given in (X.14.9); in particular, £x = 1. (See (2.27).)

We say E C L2(Q2,P) is an a-system if dspan(m) = @/2; we call E exact
if cspan(E)(é;)in(E)) > 0, and asymptotic if CSPRU(E)(és;}zn(E)) =0 IfX
is a-chaos, then {X (j): j € N} (defined via (3.13)) is an a-system, which
is exact if and only if X is an exact a-chaos. (For definitions of afore-
mentioned indices, see (X.10.1)-(X.10.6).) Conversely, if {X,;:j €N} C
L%(Q,P) is an orthonormal a-system, and U is a unitary map from
L2([0,1], m) onto the L*(2,P)-closure of span {X;}, then {Uljgy: t €
[0,1]} is an a-chaos (Exercise 17). (Cf. construction of a Wiener process
in Chapter X §2.)
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Sample-path continuity of a-chaos can be verified by an argument
similar to the one used in Chapter X, in the case of the Wiener process
(1-chaos). It can also be obtained as an instance of a more general the-
orem asserting sample-path continuity of A(g)-processes. To underscore
ideas, however, we will first outline the proof in the case of a-chaos —
useful in its own right — and then sketch the analogous argument in the
case of A(g)-processes.

Lemma 16 (cf. Lemma X.7; Exercise 15). Let (S,v) be a finite
measure space, and let T be a subspace of L°(S,v). Assume that for
some u € (0,1],

p(T,u) = p = nf{p{[f| = ul fllL<}: f €T} >0. (4.5)

Let {Y; : j € N} C L%Q,P) be an orthonormal sub-a-system, a €
[1,00). If {f;} C T satisfies

SRR <1, (4.6)
i

I,0©

then [|pl|Le := esssup,cg | >, fi(s) Yj| is a sub-a-variable. In particu-
lar, for all A < cgpan(y;}(2/a), there exists L > 0 such that

P(||pllL= > z) < V([)S) exp(—A(uz)?®), x> L. (4.7

Corollary 17 (Exercise 15). If {Y;:j€N} C L*(Q,P) is an ortho-
normal sub-a-system, and {f;} is a finite collection of trigonometric
polynomials of degree N, then

1

2

P> fiey; >ANTILR] (N2 <IN, (4.8)
J L= ([01]) i Lo
where A >0 depends only on cypanfy;}(2/a).

Corollary 18 (Exercise 15). Let {Y;: jeN} C L2(Q,P) be an ortho-
normal sub-a-system, and define blocks of integers

Bp = {[2""),[2¢" 1+ 1,...,2*D* ] — 1}, k=0,1,....  (4.9)



366 XI Integrators

(Here [-] is the ‘closest integer’ function.) If a C-valued sequence (a;)
satisfies

Sk = Z la;|>| , (k=0,1,...) is decreasing, (4.10)
JjEBg

and

D sk < o0, (4.11)

k
then, Z;‘;l a;Y;sin 2mjt represents almost surely (P) a continuous func-

tion on [0,1].

Corollary 19 (Exercise 15). For every a € [1,00), sample-paths of
a-chaos are almost surely continuous.

A(q)-processes, q € (2,00)

We begin with definitions, some old and some new (cf. Chapter 11T and
Chapter VII). A subspace H C L2(£,P) is a A(q)-space (q > 2) if

€r(q) = sup{||Z|
If £(s) < oo for some s > 2, then
A =supq{s: &m(s) < oo} (4.13)

If A\ = ¢, then we say that H is a A\(¢q)*-space (‘lambda-g-sharp space’).
As usual, we distinguish between £x(Ag) < 0o, in which case H is an
exact A(q)¥-space, and &g ()\pr) = 0o, in which case H is an asymptotic
A(q)#-space. Analogously, an orthonormal system {Y; : j € N} C
L2(Q,P) is a A(g)-system if €span{y;1(q) < 00, and a A(q)¥-system (exact
or asymptotic) if Aspanfy;} = ¢-

Lo Z€H, ||Z|p2 <1} < oo (4.12)

Definition 20 A homogeneous process X is a A(g)-process (¢ > 2) if
H(X) is a A(q)-space. Similarly, a homogeneous X is a A(q)#-process
(exact or asymptotic) if H(X) is a A(q)*-space (exact or asymptotic,
respectively).

If X is a A(q)#-process then dp(x) =0, and if X is a-chaos then
Arxy=o0. If X is a A(q)-process, then {X(5)} is a A(g)-system. Con-
versely, if {X;} is a A(g)-system and U is a unitary map from L2([0,1], m)
onto the L?(Q,P)-closure of span{X;}, then {Uljyy) : ¢ € [0,1]} is a
A(g)-process (Exercise 18).
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We sketch a proof that sample-paths of A(g)-processes are almost
surely continuous.

Lemma 21 (Exercise 16). Let (S,v) be a finite measure space, and
T a subspace of L=(S,v) with p(T,u) = p > 0 for some u € (0,1]. (See
(4.5).) Let {Y;: jeN} C L*(Q,P) be an orthonormal A(q)-system, and
denote § = &pangy;1(q). If {fj} C T satisfies

MUHP <1 (4.14)
i L
then

Plph > ) < (90)) @/t a>0. (@)

where ||pllLe = esssupes | 32; fi(s) Yjl-

Corollary 22 (Exercise 16). If {Y;: jeN} C L2(0,P) is an ortho-
normal A(q)-system (¢ > 2), and {f;} is a collection of trigonometric
polynomials of degree N, then

PO fiovil >z|> IfiP < AN/a9. (4.16)

Loo J Loe
(A >0 depends on &span(y;y(q)-)

Corollary 23 (cf. Corollary 18). Suppose {Y;: jeN} C L2(Q,P) is
an orthonormal A(q)-system (q > 2), and

By = {[k*],[k?]+1,...,[(k+ D% -1}, k=0,1,....  (417)
Suppose (a;) C C satisfies

2

Sk = Z la;|* | . k=0,1,..., is decreasing, (4.18)
JEBk

and

[ee)
Z log k)si < 0. (4.19)
k=1
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Then, Z;‘;l a;Y; sin2mjt represents almost surely (P) a continuous

Junction on [0,1].

Proof (Exercise 16): For k =1,..., let

Cp={2F2F +1,... 2k — 1}, (4.20)
pi(t) = Z anYp,sin2mnt, (4.21)
neCy,

and

1
2
k
Ep =kl = 29k ( > |an2> : (4.22)

neCy

By Corollary 23, P(Ex) < A/k9, k=1,..., and therefore

1
2
lpkllLe = @ 24k < Z |an|2) almost surely (PP), (4.23)

neCy

which implies the desired conclusion. O

Corollary 24 (Exercise 16). Forq > 2, sample-paths of A(q)-processes
are almost surely continuous.

Because an a-chaos process is a A(g)-process for (all) ¢ > 2,
Corollary 24 implies Corollary 19.

Remark i (other approaches).

In this section we have outlined one of several approaches — via
stochastic series — to the question whether sample-paths of a given
process are almost surely continuous. Detailed discussions of this
general question, based on ‘entropy’ and ‘majorizing measure’
approaches, can be found in [LeT, Chapter 11]. A classical treat-
ment based on Kolmogorov’s 1934 theorem regarding sample-path
continuity can be found in [Bil, Theorem 12.4]. Kolmogorov’s theo-
rem asserts that if X = {X(¢) : ¢t € [0,1]} is a separable process such
that for some @ > 0 and p > 1, and all intervals J C [0,1],

E|AX(J)|* < length(.J)?, (4.24)

then the sample-paths of X are almost surely continuous (e.g.,
[LeT, Corollary 11.8]). Note that Kolmogorov’s theorem implies
Corollary 24.
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A ‘stochastic series’ approach is useful in identifying other
sample-path properties of a-chaos and A(q)-processes (e.g., [CTow]).

Next we consider the Littlewood index of A(g)-processes.

Theorem 25 If g € (2,00) and X is a A(q)-process, then

{x <(q+2)/(g+1).
Two mixed-norm inequalities are needed for the proof. The first is

Lemma 26 If ¢ € (2,00) and X is a A(q)-process, then for all
p>q/(qg—1),

sup { > (Z |E1AjAX(Bk)|>p :

j k

Sila, <1, Slp, <1, A €. By € %} <K, (4.25)

where K > 0 depends only on g (xy(q)-

Proof: Without loss of generality we assume E|X(t)|? = ¢, i,
E|Ix(f)|* = || f||}2 for all f€L?([0,1],m). Fix finite partitions {4;} C .7
and {By} C %, and denote Y3, = AX(By)/v/m(Bg). Then, {Y;} is a

A(q)-system with
gspan{Yk}(q) = ’f < gH(X) (q) (426)

Using duality to prove (4.25), we will verify that if

Y 11
> (sup \bjk|> <1, —+-=1, (4.27)
~\ & p v
J
then
> bjx E14,AX(By)| < K. (4.28)

Jrk
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To this end, we rearrange the js so that

SUP‘bjkV} Sl/Ja jzla"'7 (429)
k
and, for convenience, denote djj, = b;r/m(By). Then

(Z d]-f) <1/5%, (4.30)
k

and therefore,

> bk B14,AX(By)| = |>_Ela, > dji Yi
7 k

gk

<E) 1y
J

Z djr Yy
&

:/OOO]P LJJ{ >t} dt
g1+;/loolp< >t> dt

<14¢7 (/qu dt>21/ﬁ =K < . (4.31)
1

J

< Esup
J

Zdjk Y.
A

Z dji Vi
%

Zdjk Yy
&

O

Remark

ii (an extension of the Orlicz (I2,!!)-mixed norm inequality).
If X is an integrator, then |[{E14,AX (Bg)|lp,mvn) < [ X], and the
Orlicz inequality (Theorem II.3) implies

Z(DEM,AX(BM) <K IXIP = 2XI (@432)
j k

Lemma 26 implies that if X is a A(g)-process, then we can do better
than (4.32).
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The second mixed-norm inequality is a restatement of the Littlewood
(I*,1?)-inequality in the present context. In the setting here, we prove
it directly without the use of the Khintchin L'-L? inequality
(cf. Theorem II.2).

Lemma 27 If X is a homogeneous process and || X (1)||Lz = 1, then

sup { Z (Z |E1AJ.AX(B;C)|2> :

7 k
Zlej <1, Ek:]-B;C <1, Aj €, By € (’/}7} <1. (433)

Proof: Fix finite partitions (A;) C .«/and {By} C .Z. Suppose {b;i} C
C satisfies

M

sup <Z |b.,-k|2) <1, (4.34)
J k

and estimate

ijk El4,AX(By)| <> |E ijk 1a, | AX(By)
k

U
Proof of Theorem 25: By Lemmas 26 and 27, it suffices to verify
2 p—1
1\ pi1 L

2 p—1

(4.36)
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for all scalar arrays (a;;) and p > 2. We rewrite the left side, and then
apply Holder’s inequality to the sum over k with exponents p + 1 and

(r+1)/p,
+2 2
D lagl 7 =" Jagel 7 fagn
ik ik

P
pH1

SZ(ZWF) <Z|ajk|> . (4.37)
J k k

We obtain (4.36) by applying Holder’s inequality to the sum over j with
exponents (p+1)/2 and (p+1)/(p — 1). O

Remarks:

ili (continuous time-models for random walks?). We already
have noted that a-chaos for integer « are continuous-time models
for random walks with prescribed combinatorial complexity (in the
sense of Chapter X §13). In the last chapter of the book we will
extend this observation to all a € [1,00). (Existence of a-chaos in
the integer « case is noted in Exercise 17; existence in the non-integer
case will be established after combinatorial dimension is introduced.)

Whether A(g)-processes are continuous-time models for walks with
a prescribed combinatorial complexity is an open (-ended) question
that I will briefly discuss at the end of the book. Existence of A(g)?-
processes, unlike existence of a-chaos, is easy to verify (Exercise 18).

iv (is Theorem 25 sharp?). For every ¢ > 2 there exist A(q)%-
processes X such that {x=(q + 2)/(¢ + 1). Constructions of these
processes fundamentally depend — at present — on Bourgain’s solu-
tion of Rudin’s ‘A(g)-set problem’. I do not know whether {x =
(q+2)/(q + 1) for every A(q)*-process X.

v (¢ < 27). A homogeneous process X is a A(2)-process if H(X) is
a A(2)-space (Definition IT1.6, Lemma II1.7), and a A(2)#-process if
X is a A(2)-process and £p(xy(q) = oo for all ¢ > 2 (Exercise 18).
How to extend and implement a notion of a A(g)#-process in the
case ¢ € (1,2) is not obvious. One such extension is given below.

p-stable motion, p € (1,2]

The idea of p-stable laws is due to Paul Lévy [Lé2]. An introduction to
stable laws, including some physical motivation for them, can be found
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in [La]. A more detailed exposition, including an introduction to stable
processes, can be found in [Br]; a recent study appears in [SamTa].

A process X is called a p-stable motion, p € (0, 2], if X is additive and
for all J = (s,t] C [0,1],

E exp iyAX(J) = exp ((s —t)|y|’, yeR, (4.38)

for some ¢ > 0; see [SamTa, p.113]. A construction of p-stable
motion follows from Kolmogorov’s extension theorem; e.g., [SamTa, 3.2]
(Exercise 19). Basic features of p-stable motion in the case p < 2 are fun-
damentally different from those in the case p = 2 (the Wiener process);
e.g., [CamMi] and [SamTa, p. 151].

Here we restrict attention to p € (1,2]. In this range, a p-stable motion
X is an integrator (Proposition 14), and we obtain via the measure-
theoretic approach,

/ Fax =3[ p) uxadn, Fel®(01.2).  (4.39)
[0,1] dP Jio 1)

We can use also a functional-analytic approach. For step functions
f=>0a;1,,, define

Ix(f) = Zn:ai AX(J:), (4.40)

and note that for each such f,

E oxp iylx (f) = oyl | flpm). vER.  (441)

The linear map Ix can be extended to LP([0,1], m) so that (4.41) holds.
In particular,

I x ()@ = el fllee@my, £ € LP([0,1],m), 7€ [1,p), (4.42)

where ¢ > 0 depends on ¢, p, and r (Exercise 20 i).

Proposition 28 If X is a p-stable motion, p € (1,2], then

)= [ Faxe Fero ) (4.43)

Proof: Because X is a continuous integrator,

ux(A,J)=El4 AX(J), Aec.% interval J C [0,1], (4.44)
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and by (4.42), there exists ¢ > 0 such that

lux(A,B)| <cm(B)r, Ac.%, Be % (4.45)

Therefore,
px <P xm, (4.46)
which implies (4.43) (cf. Proposition 13; Exercise 20 ii). O

Proposition 29 Let X be a p-stable motion, p € (1,2], and define
H(X) = {Ix(f) : f € LP(0,1], m)}. (4.47)
Then

i. H(X) is a A(r)-space for every 0 < r < p, i.e., H(X) is a closed
subspace of L"(Q,P), and for all ¢ < r, the L"- and LY-norms are
equivalent in H(X);

il. H(X) is closed in probability;

iii. X is a random integrator.

Proof (Exercise 21): The first assertion follows from (4.42). The
second is an immediate consequence of Exercise X.34. The third asser-
tion follows from (4.42). O

We now show that variations of Fréchet measures pux associated with
p-stable motions X, p € (1,2), are controlled by the Orlicz norm || - [|,,
where 6, is defined in (X.6.22) [BlTow]. In particular, estimates on these
variations imply £x = 1 (Exercise 22).

The argument used to prove this is similar to the proof of
Theorem X.11. To start, observe that there exists k£ > 0 such that

P(X(1)| > z) <k/zP, x>0, (4.48)

and, for convenience, assume k = 1. Suppose {By} C % is finite, and
Yxlp, < 1. Then, by (4.41), AX(By)/m(By)'/? has the same distribu-
tion as X (1). Define

Yoo {AX(Bk) if [AX(By)| <1 (4.49)

0 if |[AX(By)| > 1,
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and X, = AX(By) — Xj. By (4.48),

1
0

< <L) m(Bx), q>p, (4.50)

and

E|X;| = P(AX(By)| > 1) +/OOIP’(\AX(BJC)| > z) dz

< (ﬁ) m(By). (4.51)

The X are independent and symmetric, and therefore, by the
Khintchin inequalities, if (bg) is a scalar sequence, then

Z b X
k

q

q 2
<¢*E (Z |bx Xﬁ) : (4.52)
k

E

Lemma 30 There exists k, > 0 such that for all scalar sequences

b= (br),
(E Zbk X5

Proof: Let m > 1 be an integer, and estimate

E(Zbk Xk|2> = D (ol e P BXe P X
k

9\ 1
> <hp q [Ibllec, g >2. (4.53)

2 ()

n=1j1+-+jn=m

. ( Z [bry 272 -+ |bg, |27 B X, | ~~~E|an|2j") (by independence)
k1

si > (jl'f”_jn) (Zwkﬁ-fl E|Xk|2j1>....

n=1ji1+-Fjn=m k

) (Z ‘bk|2j" Ele:an)
k
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(22p)mi > G0

n=1j14+jn=m

( b |211 m Bk)) (Z|bk|2j" m(Bk)> (by (4.50), with ¢ = 2)

k

mom m ) )
<(5) % T (e

n=1ji1++jn=m

2 " 2m = m m+1 2 2m
s(—H) IS ™ < m (—Qip) HES (4.54)

n=1
Above, >, . denotes a free sum over (ki,...,ks) € N?, and
PR denotes the finite sum over all n-subsets {ji,...,jn} of

positive integers such that j; + - - 4 j, = m. To deduce the second line
in (4.54) from the first, we use the decomposition

U{kl,... ) eN™: [{ki,...,km}| = n}. (4.55)
Kk, - km} = n means that there are n distinct elements in {k1,...,
km}.) Then, for n =1,...,m, we partition

{(B1, ..o k) €N™ 2 [{ke, ... ki }| = n}

according to the number of times j;, ¢ = 1,...,n, that coordinates
appear in (k1, ..., kn); that is, partition the aforementioned set accord-
ing to {j1,...,Jn} such that j; +--- + j, = m. For each such partition,
the multinomial (Jlmjn) is the number of ways that m (integer-valued)

variables can be assigned n values with respective ji, ..., j, repetitions.
For g > 2, let m be the integer such that m > ¢/2 > m — 1, and then
deduce (4.53) from (4.52) and (4.54). O

The lemma implies that there exists K > 0 such that for sufficiently
large > 0 and all scalar sequences b = (by),

P(Zbk X,

k
(cf. Lemma X.18). Consider the Orlicz function ¢o defined (in (X.11.3)),

> x> < exp(—K/||b]loc) (4.56)

os(t) = exp(—1/t), te <0, ;] (4.57)
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and the set O, of finitely supported scalar arrays (bjx) such that

Z¢2(|bjk|) <L (4.58)
Jik

By applying an argument nearly identical to the one used in
Theorem X.11 (only the ‘arithmetic’ is different), we obtain

sup {

Yplp, <1, {AJ} C .9 {Bk} C %, {bjk} S Oq,} < 00.

ZElej S 1,

> bk Bla, Xy
J.k

(4.59)
Next, we consider
O2(z) = x/log (1/z), x € (0,1), (4.60)
and note that there exists 0 < § < 1 such that
ba(z) < 2 @3(2), € (0,0), (4.61)

where @3 is the complementary Orlicz function to w2. We conclude that

sup { D 02(ELa, AX(By)]) s B51a, < 1,
7,k

Selp, <1, {A;} €. {Bi} C %} < 0. (4.62)

Indeed, the left side of (4.62) is bounded by

sup{ZHQOElAijD 1814, <1, Silp, <1, {A;} € {Bi} C %)}

gk

+Sup{Z|E1AjX;;| 8514, <1, Silp, <1, {A;} C o {Bi} cyﬁ}
Gk

(4.63)

By (4.59) (via Orlicz space duality), the first term is finite, and by
(4.51), the second term is finite.
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Remarks:

vi (is (4.62) best possible?). For an arbitrary integer m > 0,

consider the intervals B, = [£=1 £) & € [m], and the partition
{As : s € {—1,1}"} of Q defined in (X.6.20). If X is a p-stable
motion, p € (1,2], and E|X(1)| = 1, then

IE14 AX(By)| = 1/(2™m?). (4.64)
For v > 0, define (as in (X.6.22))
0,(z) = x/{log (1/2)}"/?, € (0,1), (4.65)

and estimate

S 0,(IBLy, AX(B)]) = Y (1/2™m¥)/{log 2™ m» }7/?

s,k s,k
> Cm~ (P t2-20)/2p, (4.66)

where C' > 0 depends only on p. This implies

sup { > 0,(|E14,AX(By)|) : £14, <1,

.
for all v < (2p — 2)/p.

Problem: Close the gap between (4.67) and (4.62).

vii (what does p-stable motion model?). The main reason — as far
as I can determine, the only reason — for calling additive processes
that satisfy (4.38) p-stable motions is that the instance p = 2 and
~v = 1/2 has been widely referred to in the mathematical commu-
nity as ‘Brownian motion’. (See Definition 2.1 in [RosWo] and the
comment following it; also see Chapter X §5, Remark ii.) I have not
seen any arguments, say based on a ‘random walk’ paradigm, that
make a convincing case for choosing p-stable motion as a continuous-
time model for physical Brownian movement. (Sample-paths of
p-stable motion are almost surely continuous only in the case p = 2;
otherwise, for p < 2, a p-stable motion is a pure jump process;
e.g., [SamTa, p. 151].) Concerning epistemological issues that arise
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here — what do p-stable motions model? — 1 refer the reader to [La,
pp. 73-5] for a physical interpretation of p-stable distributions in a
context of ‘inverse attraction laws’ (Exercise 23).

5 Two Questions — a Preview
We return to general integrators, and consider these two questions:

1. Can more than bounded measurable functions be integrated with
respect to an integrator?

2. How is integration carried out in dimensions greater than one?

In the next section we will verify that if X is an arbitrary integrator,
then there exists a probability measure vx on [0,1] such that every f €
L2([0,1], vx) is canonically integrable with respect to X. If X is an L2-
bounded process with orthogonal increments, then vx = Ax/||Ax|m,
where Ax is determined by (3.3). For example, if X is an a-chaos
or a A(g)-process, then vx = Lebesgue measure. Similarly, if X is a
p-stable motion (p € (1,2]), then vx = Lebesgue measure, and every
f € L?([0,1],m) is canonically integrable with respect to X. The general
case will require the Grothendieck factorization theorem.

The second question, concerning feasibility of a ‘multidimensional
integral’

/[0 7 f(s1,...,8,) dX1(dsy) - --d X, (ds,), (5.1)

where X7,..., X, are integrators and f is a function on [0, 1]", points
in several directions. We can ask whether (5.1) is feasible as an iterated
integral (e.g., (X.8.1)); or, whether (5.1) is feasible as a ‘one-dimensional’
integral via an Fs-measure associated with the n-process X1 ® --- ® X,
(a process indexed by n parameters); or, whether (5.1) is feasible as
an integral iterated over Cartesian products of [0,1], the sum of whose
respective dimensions is n. (Note that the latter case falls between the
first two.) And there are also questions about the approach we take: do
we use a ‘functional-analytic’ approach, a ‘measure-theoretic’ approach,
or do we merge the two? We shall deal with these questions in later
sections. In this section, we illustrate some typical issues that arise in
the two-dimensional case.
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We start with integrators X and Y, ‘step’ functions

f= ijle7 (5.2)
J

where {R;} is a finite collection of pairwise disjoint rectangles, and a
definition of a two-dimensional integral

Ixey(f) = ij AX(K;) AY (J;), (5.3)

where R; = K x J;, and K; and J; denote intervals. We can rewrite f
as a standard step function on [0,1]2,

f= a1 1y, (5.4)
%]

where J; = [%, %), and obtain

Ixgy(f) = Zaij AX(J;) AY (J;). (5.5)

If X =Y = W (the Wiener process), and f is in S,, the space of
standard symmetric step functions vanishing on the diagonal (a;; = a;;
and a;; = 0 in (5.4)), then

ITwew (f)liz@p) = Tw, (Hlrz@r = V2 [ flizqogme,  (5.6)

and therefore, because S, is norm-dense in L2 ([0, 112, m?), Iwew/(f) can
be defined for every f € L2([0,1]%2,m?). (m2({(t,t) : t € [0,1]} = 0 is
essential here; see Chapter X §7.)

To integrate, similarly, with respect to general integrators X and Y,
we need (at the very least) the norm estimates

xey (Hle < Kllflle,  f € So, (5.7)

where K > 0 depends only on X and Y. Notice, however, that an
obvious use of (5.7) — taking norm-limits — does not go very far. Follow-
ing a measure-theoretic approach, we define

uxgy (4, K x J)=Els AX(K) AY(J),
A€, KxJC Da, (5.8)
where Dy = {(s,t) : 0 < s < t < 1}. We observe that the L'-L®
norm-estimate in (5.7) implies that pxgy determines an Fp-measure on

X Bgyo, where B,o denotes the Borel field in Dy, and then obtain an
integral with respect to X ® Y via integration with respect to puxgy.
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Let us illustrate the issues that arise in the case X =Y, and X an

L!'-bounded additive process.

Lemma 31 Suppose {X;: jeN}

and {Y;: jeN} are mutually indepen-

dent systems of independent symmetric random variables such that for

all N € N,
N N
Y X <1 and DV <L (5.9)
j=1 L1 Jj=1 L1
Then, for all (a;;) € 1°°(N?) and N € N,
N
i=1 wJ

j=1

L1(Q2,P?)

Proof: By independence, symmetry, and (5.9), for all s € {—1,—H}N

and N € N,

N
ZTJ(S) X;

L1(Q,P)

N
<1 and Zr]-(s) Y;
j=1

<1

L1(Q,P)
(5.11)

Taking expectations over s€{—1,+1}", interchanging the order of inte-
grations, and applying the L!-L? Khintchin inequality, we obtain

N
> OIXP
j=1

and

N

PR s

j=1

By independence and symmetry,
tc{-1,+1}N and N € N,

L1(Q2,P?)

1

2
< V2,

L1(Q,P)

[SE

<V2.

(5.12)
L1(Q,P)

for all (a;;)€l®(N?), se{—1,+1}",

N

> airi(s)ri(t) X @ Y;

i=1
j=1

L1(Q2,P?)
(5.13)
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Taking expectation over s and ¢ on the right side of (5.13), interchanging
the order of integrations, and applying Hélder’s inequality, we obtain

[N

N N
2
> ai; X; @Y <D Jai; Xi @ Y5
i=1 i=1
i=1 L1(Q2,F?) i=1 L (@2 P2

grrg%x|aij| Z:|X ® Y;)?
= L1(Q2,p?)
1
N 2 N 2
= max |a;;| > OIxGP PR s
7 j=1 j=1
L1(Q,P) LY(Q,P)
(5.14)
An application of (5.12) to the last line implies (5.10). O

The lemma implies that if X is an L'-bounded additive process, and
X is an independent copy of X, then for all (a;;) € 1°°(N?),

Z aij AX(J;) AX(J;) < K max |ag], (5.15)

i,
=1 L1(Q2,P?)

where K > 0 depends only on X. To obtain (5.7) in the case X @ X,
we use the decoupling inequality

N
xex(HllLiep < K [|Dai; AX () AX(J)) , (5.16)

i=1

=1 L1(Q2,P2?)

where f € S, is represented by (5.4) and K > 0 depends only X. This
inequality is an instance of the following general theorem.

Theorem 32 ([McTal], [Kw], [dIPG, Chapter 6]; Exercise 24).
Let {X; : j € N} be a system of independent symmetric random variables.
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Then, for all ¢ > 0 and integers n > 0, there exist K1(q,n) = K1 > 0
and Ks(qg,n) = Ko > 0 such that for all finite tetrahedral
n-arrays (aj,.. 5, 0 <ji <---<j, <N)CC,

1 n
Kol 30 g, X XY

Jn
0<j1 < <jn<N La(Qn Bn)

< Z gy g Xjy o X,
0<j1<+<jn<N La(Q,P)
<K, Yoo g XY x( o (317)
0<j1 < <jn<N La(Qn,Pn)

where {Xj(-l)}7 ce {X](")} are independent copies of {X;}.

Remarks:

i (about ‘decoupling’). The inequalities in (5.17) address in a
framework of probability theory this general question:

if n is a symmetric n-linear functional on RY, then what
relationships exist between norms involving n(x1,...,zy)
(x1 €eRY, ... 2z, € RY), and n(z,...,z) (x € RV)?
(5.18)

Among the early works addressing this question (in a framework
of functional analysis) are two 1935 papers of Mazur and Orlicz
[MazOrl], [MazOr2], where the following was established:

Proposition 33 (The Mazur—Orlicz identity [MazOr1, p. 63];
Lemma VII.27). If n is a symmetric n-linear functional on RV,
then

n(z1,...,x,) = ] Eri---ry, 77(2;7:17"3- Tj,.. .,Z?erj xj),

.z, €RN. (5.19)
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The Mazur—Orlicz identity (a polarization formula) implies that if

Inll = sup{n(x1,...,25) : (x1,...,2,) € By x--- x By}, (5.20)
and

[Inll« = sup{n(z,...,z):z € Bn}, (5.21)

where By is the [®-unit ball in RY, then
n"L .
7l < llnll < —+limll - (Exercise 25). (5.22)

We have already made good use of this norm-equivalence in
Chapter VII, in a framework of harmonic analysis.

Theorem 32 falls naturally under the heading of (5.18). For, sup-
pose 7 is a tetrahedral, symmetric n-linear functional on RV, (Here
tetrahedral means: if {e; : j € [N]} is the standard basis in R", then
n(ej, ... €,) =0 when (ji1,...,7,) € [N]", and [{j1,...,jn}] <n.)

Let Py,...,Pxy be symmetric probability measures on R, and con-
sider the product measure P =P; X --- X Py on RY. Define
1
[nllg = (Bln(zy, ... 20)|?)7, (5.23)
and
1
[nll«q = (Eln(z, ..., z)|")7, (5.24)

where the expectation in (5.23) is over ((R™)",P"), and the expecta-
tion in (5.24) is over (RY,P); cf. (5.20) and (5.21). The inequalities
in (5.17) can then be rephrased as

Killnllg < lnll«q < Kallnllg- (5.25)

The norm-equivalence in (5.25) was first obtained by Bonami in
the case where each of Pq,...,Px has bounded support ([Bon2,
pp. 366-7]), and by Schreiber in the Gaussian case ([Sch2,
Theorem I1.1]). Neither Bonami nor Schreiber were interested in
general decoupling, as such. Bonami was motivated by problems con-
cerning A(p)-sets, and Schreiber was motivated by questions regard-
ing the Wiener Chaos. General decoupling inequalities were first
established — and so dubbed — by McConnell and Taqqu [McTal],
who were motivated primarily by feasibility of double integrals with
respect to p-stable processes [McTa2]. McConnell and Tagqu estab-
lished the right side in (5.17). Subsequent proofs of the left side, as
well as more general inequalities, appeared in [Kw] and [dIP]. The
latest on decoupling can be found in [dIPG, Chapter 6].
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ii (a preview). The proof of (5.7) in the case that X and Y are
mutually independent, centered, L'-bounded additive processes was
based here on the L!'-L? Khintchin inequality (Lemma 31). The
proof of (5.7) in the general case rests on the feasibility of product
F5-measures, which is inextricably tied to the Grothendieck factori-
zation theorem and inequality (Chapter IX).

6 An Application of the Grothendieck
Factorization Theorem

Theorem 34 Let X = {X(t) :t € [0,1]} be an integrator.
i. There exists a probability measure v on ([0,1], %) such that

/ fdx
[0.1]

where kg is the Grothendieck constant. (A probability measure v for
which (6.1) holds will be called a Grothendieck measure of X.)

ii. If v is a Grothendieck measure of X, then

E < kel X[ f 2wy, f € C([0,1]), (6.1)

[ fdX, feLl>([0,1],2), (6.2)
[01]

is uniquely extendible to a bounded linear map from L2([0,1],v) into

LY(Q,P).

Because C([0,1]) is norm-dense in L2([0,1],v), Part i of Theorem 34
implies immediately that the restriction to C([0,1]) of the L(Q,P)-
valued map in (6.2) is extendible to L2([0,1],). To establish Part ii,
however, we must also verify that (6.2) agrees with this extension’s
restriction to L°°([0,1],.%). To this end we need

Lemma 35 If X is an integrator and v is a Grothendieck measure of
X, then for all A € & px(A,") < v.

Proof: (cf. Proof of Proposition 10). For A € .%

El, / gdX, gec(o.1), (63)
[0,1]
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defines a bounded linear functional on C([0,1]), i.e., a regular Borel
measure on [0,1]. This measure, which we denote by (4, is the same
as ux(A,-). Because v is a Grothendieck measure, the linear functional

g [ ]g(t) ﬂA(dt)a g€ C([07 1])7 (64)
0,1
is uniquely extendible to a bounded linear functional 34 on L2([0,1],v).
Then,

Ba(1p), Be %, (6.5)
defines a measure on .%. This measure, which we temporarily denote by
i, is the same as 54. To see this, let g € C([0,1]) be arbitrary, and let
(¢; : j € N) be a sequence of .Zsimple functions converging uniformly
to g. Then,

[0,1] J=ee Jo,1]
and (because p; — ¢ in L%([0,1],v))
/ ©j dp ,—>BA(9)‘ (67)
[0.1] e

Therefore,

/ g du=falg) = / o(t) Ba(dt), (6.8)
[0,1]

(0,1]
which implies p = (4.
Therefore, for all A € &/ and B € .%,

lux (A, B)| = |Ba(B)| = |Ba(18)| < [|Ballv/v(B), (6.9)
which proves the lemma. |

Proof of Theorem 34: We view the linear map defined by (2.11) as a
bounded bilinear functional on L>(Q,P) x C([0,1]),

(Y, f) —» EY fdX, (Y, f) e L>(Q,P) x C([0,1]). (6.10)
[0,1]

The Grothendieck factorization theorem implies existence of a probabil-
ity measure v on % such that

EY / fdx
[0.1]

(Y, f) € L=(, P) x C([0,1]), (6.11)

< ral XY Teee [ fllez )

which verifies Part i.
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To verify ii, note that the bilinear functional in (6.10) is uniquely
extendible to a bilinear functional on L>°(Q,P) x L2([0,1],v) with norm
bounded by kg|/X||. Denote this bilinear functional by 3. Then, for
ge L2([071]’ v),

B(la,g), A€ (6.12)

defines a measure on ./that is absolutely continuous with respect to P;
denote this measure by 8, (Exercise 26). Define

d
[ gax= 5o geri (o) (6.13)
[011] dP
By use of Lemma 35, we obtain that (6.13) in the case g € L°°([0,1], %)
is consistent with the definition in (2.11) (Exercise 27). O
Remarks:

i (examples of Grothendieck measures). If X is an integrator,
then there exists a probability measure v on [0,1] such that f[O,l] fdXx
can be defined for every f € L2([0,1],v). If X is a p-stable motion
then v = m (Lebesgue measure). If X is square-integrable with
orthogonal increments then v = Ax. These measures are obtained
directly, without the intervention of the Grothendieck factorization
theorem. In the case of L'-bounded additive processes and LP-
bounded martingales, p € (1,2), I know of the existence of such
v only by applying the Grothendieck theorem (Exercise 28).
(stochastic series). Let v be a Grothendieck measure of an inte-
grator X, and let {e,: n €N} be an orthonormal basis of L2([0,1], v).
Define

=

i

X, :/ e, dX, neN (cf. (3.13)). (6.14)
[0,1)
If f € 12([0,1],v) and f = ¥, f(n)e,, then

J

where the series on the right converges weakly in L'(Q,P)
(Exercise 29).

fdx = i f(n) X, (6.15)
1] n=1

)
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iii (‘white noise’). A set-function M from % into LO((,.s7) (scalar
valued .#4measurable functions on ) is a stochastic measure on

([0.1],-%) if
M U B, | = Z M(B;) almost surely on (Q2,.%4P)  (6.16)
J Jj=1

whenever ¥;1p, = 1, B; € %, j € N (cf. [KwWo, Chapter 7]).
This set-function M is an LP-valued stochastic measure if the series
on the right side of (6.16) converges in LP(£2,P), and a weak-L!
stochastic measure if it converges weakly in L (€2, P). It follows from
definitions that if X is an integrator, then ‘A’X (defined in (2.23))
is a weak-L! stochastic measure. If X is a p-stable motion, then
AX is an L"-valued stochastic measure for every r < p, and if X is
an L2-bounded process with orthogonal increments, then AX is an
L2-valued stochastic measure. In the general case, Theorem 34
implies that if X is an integrator, then ‘A’X is an L!-valued stochas-
tic measure (Exercise 30).

7 Integrators Indexed by n-dimensional Sets
Let X = {X(t): t€]0,1]"} be an n-process. Let
U={Sy:p=1,...,m}
be a partition of [n], and define

ST ATX(QY % x QU () -, ()|

11,0fm

| X |l = sup {E

finite collections {Qgp)}i of pairwise disjoint boxes in[0,1]%,
u, € {~-1,1}N, pe [m]} (7.1)

If | X || < oo, then X is said to be a U-integrator. (The n-fold difference
A™ was defined in Chapter X, Remark i §8, a boz in [0,1]% is a |S,|-fold
Cartesian product of intervals.)

The definition of || X||y can be rephrased thus. For a set Y, and S C
[n], consider the projection from Y™ onto V¥ defined by

WY,S(ylw“ayn) ::y|S:(yi:i€S)a y:(yh"‘vyn)eyn' (72)
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When Y is arbitrary, or understood from the context, we denote my,s by
7r5, and ’/Tg} by m;. For p=1,...,m, we consider Rademacher systems
:i e N7} indexed by N°. Then (Exercise 31),

1X(lv

= sup {E

finite collections {J’}; of pairwise disjoint intervals,

Do AKX X I g (W) Ty, ) ()|

i=(i1,--+yin)

up € {=1,1}*,p € [m], j € [n]}- (7.3)

There are two extremal instances. At one end, we have U = {{1},...,
{n}}, in which case we write

| X|fn) := sup {

finite collections {Ji(j )}i of pairwise disjoint intervals,

Z A"X(J(l) LeX JZ(:Q)TH (Ul) Ty, (u") :

.....

uj € {(-1,1}%, je [n]}; (7.4)

if | X ||y < 00, then X is said to be an [n]-integrator. At the other end
we have U = {[n]}, in which case we write

[ X = [|X]} = sup {E

u € {—1,+1}",{Q;}; finite collections
{Q;}; of pairwise disjoint boxes in [0,1]"}; (7.5)

if || X|| < oo, then X is said to be an integrator. Notice that if an n-
process is an integrator then it is a fortiori a U-integrator for every
partition U of [n].
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If an n-process X is a U-integrator and |U| = m, then X gives rise to
an F,,1-measure. To see this, first define

Gx(A)(t1,...,tn) := lim E1aX (u1,...,un),

+
U=ty e Un —

(t1,...,tn) €[0,1)", A€ (7.6)

where limits on the right side are taken iteratively, in any order. At the
very outset we need to check that the definition of Gx in (7.6) is indeed
feasible. Let us verify this in the case n = 2. Fix (s,t) € [0,1)2, and
sj | sand t; | ¢ monotonically decreasing sequences converging to s and
t, respectively. Define I; = [s;,s;_1) and J; = [t;,t;—1). Denote the
first-order differences in the second and first variables, respectively, by
AQX(S, J]) = )((S7 t]‘_l) - )((S7 tj),
and

AlX(I“ t) = X(Sifl,t) - X(Sht)
Then,

iA (i E1,A X (I; t)) (J5)

= iAQ (EIAX(sl,t) — lim E14X(u, t)) (J5)

u—st

I
=

14X (s1,t1) — lir?+ E14X(s1,v) — lim+ E14X (u,t1)
v—

u—=s

+ lim . E14X(u,v)

u—st v—t

A iElAAX(S;Jj) (IZ)

=2

o

-
/|
v

E14A2X (I; x J;). (7.7)

o
WK

[|
o
[|
v

J K3
The justification for interchanging limits in (7.7) is provided by
Corollary IV.7. (Note that {E14A%2X (I; x J;)} € F2(N,N).) The feasi-
bility of the definition of Gx for n > 2 can be verified by induction on
n (Exercise 32).
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Next, for half-open intervals J; C [0,1], j € [n], we define
ux (A, Ju, .o dn) = ATGx (A)(J1 X -+ X Jy); (7.8)
equivalently,
ux(A,By,...,Bp) = A"Gx(A)(By X -+ X Bp),
half-open boxes B, C [0,1]°7, p € [m)]. (7.9)
(Half-open box := Cartesian product of half-open intervals.)
Proposition 36 (Exercise 33; cf. Corollary 4). Let U ={S, : p =
1,...,m} be a partition of [n]. An n-process X is a U-integrator if and

only if px determines an F,1-measure on /X Bg, X - - X .ZBs, (:@Sj =
Borel field in [0,1]5-7). Moreover, | X ||y = HMX”Fm«l»l(L:/r%Sl ,,,,,, Fs,,)"

All that was done in §2 in the one-parameter case can be recast in
the multi-parameter setting. Specifically, if an n-process X is a U-
integrator, and f; € L>°([0,1]%,.%s,), ..., fm € L>®([0,1]%", Zs, ), then
the integral of fi ® - -+ ® fp, with respect to X is defined by

/ f1®®fde
[0,1]"

d
-4 / Fit) - fnltn) pix (o dts - dt) |, (7.10)
0B \ Jio.yn
and
E /[01] 1@ ® frn dX| 2™ XUl filloo - - [ fmlloo-  (7.11)

In the ‘one-dimensional’ case, if X is an integrator, then (by the
Grothendieck factorization theorem) there exists a probability measure
v (a Grothendieck measure) on o(.%™), such that

/ fdx
[0.1]"

E < w6l XIf ey, f € C([0,1]"). (7.12)

Therefore,

S / fAX, feL®([0,1", o(F™), (7.13)
[0,1]»
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extends to a bounded linear map from L2([0,1]",v) into L1(Q,P) (cf.
Theorem 34). An L%-extension in the general multi-parameter case is
quite another matter. For example,

/ 1p, ® - ®1p, dX, By € Zs,,...,Bn € %s,, (7.14)
[0,1]

is a ‘weak-L!(Q, P) stochastic F},-measure’, but I do not know that more
can be said (Exercise 34).

Remarks:

i (Littlewood index of U-integrators). Extending (2.27) and
(2.28), we define the Littlewood index of a U-integrator X to be

Cx = inf{q: |px|l(q < oo}, (7.15)

where

1
q
1 m
i Ny :—sup{< 3 |ux<Aj,B,i3,~-7B,£,,}>q) :

partitions {4;} C {B,(Cp)} C %s,, p€ [m]} (7.16)

The Littlewood inequalities (Chapter X §10) imply

2(m+1)
Ix < AT 7.17
XS (7.17)
where |U| = m. Moreover, there exist U-integrators X such that

lexllq = oo for all ¢ < 2(m + 1)/(m + 2). We thus observe
(Corollary 37 in the next section) that if U and V are partitions
of [n], and |U| > |V, then there exists an n-process X which is a
U-integrator but not a V-integrator.

ii (the meaning of it...). In this chapter we address the issue:
how are stochastic processes realized as sums of ‘increments’? In

the multi-parameter framework, if X is an n-process, (t1,...,t,) €
[0,1]™, and {Ji(l)}i is a finite collection of pairwise disjoint intervals
whose union equals [0,¢;], j = 1,...,n, then (clearly)

ARX((0, 0] > - x [0,8,]) = Z AnX(Jz‘(ll) X oo X J.(n)).

tn
U1,yin

(7.18)
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The issue is: can the right side of (7.18) be replaced by infinite sums?
(Cf. §1.)

If U={51,...,Sm} is a partition of [n], and X is a right-continuous
U-integrator (i.e., || X|lv < oo and Gx(A4) = E14X), then for all
countably infinite collections of intervals {Ji(j ) i€ N}, each of
whose respective unions equals [0,¢;], j=1,...,n,

A"X([0,t1] % - x [0,8a]) = S0 YD ATX (I xx T,
S1 Sm
(7.19)

where ) ¢ means ZZJ jes» and the series converge weakly in LY(Q,P).
If X is not an integrator (i.e., if || X|| = c0), then there exists a grid
Zof [0,1]",

T = {thn : (’il, .. ,’Ln) c Nn}
= (I % x T iy i) €N, (7.20)

and a one-one map 7 from N onto N”, such that
o0
> A"X(B,,)) (7.21)
=1

does not converge (weakly in L1 (2, P)) to A" X (]0,1)") (Exercise 35).
This means that the outcome of X at ‘time’ (1,...,1), which is
synthesized from increments AX(B), B€ %, as per (7.19), depends,
somehow, on ‘time’-locations of increments.

(the ‘dimension’ of a 1-process). Much of what we do in this
chapter is based on a natural association of stochastic processes
with F-measures. In the one-parameter case, given a 1-process
X = {X(t): t€]0,1]} on a probability space (2,.%P), such that
E|X(t)| < oo for all t € [0,1], we consider

ux(A,I) =E14AX(J), half-open interval J, A€ .o (7.22)

which we extend to a set-function px on .7/x @ (&= algebra gene-
rated by the half-open intervals in [0,1]): for each Je@ px(-,J) is a
measure on (€2,.%/), and for each A € .7 pux(A,-) is finitely additive
on 7 A question arises: does px enjoy a property stronger than
finite additivity on @7
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So far in the one-parameter case, we focused on those px that
determine F-measures on .&/X .%. For these, a well-defined ‘ X-noise’

AX(B) = 3

= — . [
= p #x(~B), BeZ (7.23)

extends
AX(J)=X(@#)—X(s), J=(st]C[0,1], (7.24)

and has the property that for every B € Zand all {B; :i € N} C %
such that ¥;1p, =1p,

AX(B) = i AX(B;)

weak convergence in L!(€,P). (7.25)

The latter — we ventured in §1 — is a statement of ‘time-independence’:
every time-rearrangement of the underlying ‘increments’ leads to the
same outcome. Conceivably, however, it may happen that pux does
not determine an Fr-measure on .%/x .%, but still manifests more than
finite additivity in the second coordinate.

Let & be the collection of all dyadic half-open intervals in [0,1],
and let @(2) = @ be the algebra generated by Z. Consider the
binary expansion

o0
t=>b;(t)/2', telo1], (7.26)
j=1
where (for reasons that will become apparent) we choose the finite
expansions of dyadic points (see Chapter IT1§1). Let p = {p1,...,pn}
be a partition of N, each of whose elements is infinite. We enumer-
ate p; = {ki;: jeN}, i = 1,...,n. Each p; gives rise to a ‘dyadic
projection’ from [0,1] onto [0,1], which we denote also by p;:

pi(t) = ibku (t)/27, telod], i=1,...,n, (7.27)
whence
p(t) = (pl (t)a s 7pn(t))v te [071}7 (7'28)

is an injection from [0,1] onto [0,1]" (‘space-filling curve’). If D;€Z,
then p;[D;] € &, i =1,...,n,and p; ' [Di]N---Np, D] € O(2).
In particular, if D € &, then

pi [ [DII M-+ 11 5 pa[D]] = D. (7.29)
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(Therein lies the reason for choosing finite binary expansions of
dyadic points.) We consider

ix,p(sJ1, -y ) = px (o pr AT O -0 ),
JLEO.. . JuE O (7.30)

and define (temporarily) the ‘dimension’ of X to be the smallest
integer n > 0, such that there exists a partition p = {p1,...,pn} of
N for which px , determines an F,,i-measure on ./x .%™. (In the
last chapter, ‘dimension’ will register continuously in [1, 0].)

Given a 1-process X, we define its Littlewood index to be

Lx :=inf{q: [|ux](q) < oo}, (7.31)
where

1
q

lkexll(q) := sup { (Z lx (Aj, Ok)|q>
k

partitions {A;} C &4 {Ox} C (0/(0/)} (7.32)

(This definition is consistent with the definitions stated in (7.15) and
(7.16); Exercise 36.) The Littlewood inequalities (Chapter X §10)
imply that if X is ‘n-dimensional’, then
2(n+1)

n+ 2
and that there exist (via Theorem X.8) ‘n-dimensional’ 1-processes
X with ¢x =2(n+1)/(n+2) (Exercise 37).

Let X be a 1-process whose dimension equals n > 1. Then, there
exists a partition p = {p1,...,pn}, such that pux , € F,41, but px
does not determine an Fy-measure on .%/x .%. Suppose D € Z, and
{J,Ei) : k € N} is an @partition of p;[D], i = 1,...,n. Then,

Ix < : (7.33)

ZD) = {p TN p I (R ) € N7

= {Akl...kn : (kl, ey k’n) S Nn} (734)
is an @partition of D (an n-grid of D). Then (because pix p € Fry1),
for all rearrangements 74, ..., 7, of N,

o0 oo
AX(D) =Y. Y AX(Ark,.rk,), (7.35)

k1=1 kn=1
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where the iterated series converge weakly in L!(Q,P). But, because
ux & Fy, there exist dyadic intervals D, n-grids

G= {Ak'l-nk'n : (klv .. ,k/‘n) € Nn}

of D, and one-one maps 7 from N onto N", such that
> AX(Ary) (7.36)
m=1

do not converge (weakly in L'(2,P)) to AX (D). This conveys, in
effect, a dependence of the outcome AX (D) on the time-sequence of
the increments AX(A), A € Z(D). (Cf. Remark ii above, and the
discussion following Definition 1.)

Regarding integration with respect to ‘n-dimensional’ 1-processes
X, note that if pux,, € F,41, and f is a bounded #measurable
function on [0,1] such that f o p=! € V,,(%,..., %), then

/ fdx
[0.1]

d
= di]P) (/[0 1)n f o pil(th ce ’tn)/’LX;Ely---yEn(.7dt1’ ce 7dtn)> .

(7.37)

8 Examples: Random Constructions

If U and V are partitions of [n| and |U| < |V|, then by applying
Theorem X.8 and the Littlewood inequalities in Chapter X §10, we
observe, via random constructions, n-processes X that are V-integrators,
but not U-integrators. We sketch such a construction in the case n = 2,
U ={{1,2}}, and V = {{1}, {2}}, which is typical; constructions in the
general case follow practically the same blueprint.

Let {Ji: j € N, k € [27]} be a collection of pairwise disjoint intervals,
whose union is [0,1]. Fix j € N, and let Q; = {—1,1}/. By Theorem X.8,
there exist {—1, 1}-valued arrays (g, kqw : (K1, k2, w) € [27] x [27] x Q;),
such that

Z €krkow Thy @ Thy @ Ty <K 22j, (8.1)

(k1,k2,w)€[27] % [27]xQ; Loo
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where K >0 is an absolute constant. (For application of Theorem X.8,
notice that Walsh polynomials with spectrum in

{1k, @ rhy @7 ¢ (1, k2, w) € [27] x [27] x Q;}
have degree at most 3 - 22j.) For (s,t) € [0,1]2, let
Ej(s,t) = {(k1, k2) : Iryj X 5 € [0,8] x [0,2]}, (8.2)

and then define a 2-process X; on the uniform probability space €2; by

X0 = (/K 2) Y ety

(k1,k2) € Ej(s,t)

(s,t) € [0,1]%, w € Q;. (8.3)
If (k1, k2,w) € [27] x [27] x €, then
El,y A"X;(Iky; % Inyj) = (1/K2%) €p, k0 (8.4)
By (8.1),
1X;llv <1 and [Jux, [l > (1/K) 2775 (8:5)

We view the X; as independent processes on the product probability
space ) = H;i1 ;, and then let

X = ZXj/jZ. (8.6)

(X, is defined on the jth factor of €2.) By (8.5), || X||v < oo, and
3j—2qj
liexll) > llnx; Il /52 > (/K227 (8.7)
which implies [|ux|/(;) = oo for all 0 < ¢ < 3/2. In particular, this
implies that X is a V-integrator, but not a U-integrator.
A similar construction implies

Theorem 37 (Exercise 38). If U and V are partitions of [n] and
|U| > |V, then there exists an n-process X such that | X ||y < oo and
[ X]lv = oo.

9 Independent Products of Integrators

Suppose an n-process X and an m-process Y are mutually independent
integrators. Then, X®Y is (obviously) a

{{1,...,n},{n+1,...,n + m}}-integrator.
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In this section we verify the stronger conclusion, that X ® Y is an inte-
grator. (X ® Y is the (n + m)-process defined by (X ® Y)(s,t) =
X(s) Y(t), (s,t) €[0,1]" x [0,1]™.)

If @ C [0,1]™ and P C [0,1]™ are boxes, then

A" (X @ Y)(Q x P) = A"X(Q) @ A™Y (P). 9.1)

We will prove that there exists K > 0 such that if {Q;} and {P;} are
finite collections of pairwise disjoint boxes in [0,1]™ and [0,1]™, respec-
tively, then for all (a;;,) € 1°°(N?)

E|Y i A"X(Q)) @ A™Y (Py)| < K[| (aj0) - (9-2)
.k

From this we will conclude that pxgy is a product F-measure on
A X Bptm, where By = (S X Byy), and thus obtain the multi-
ple integrals

/ £(s,t) dX (ds) dY(dt)
0,1+

d

e (01" ™, D). (9.3)
Here are two instances of (9.2) that are easy to verify.

1. Let X and Y be mutually independent L2-bounded 1-processes with
orthogonal increments. Then for all (a;x) in the unit ball of 1°°(N)?,

2 2

E|) ajn AX(IHAY(Jo)| | SE|Daj AX(L)AY (Ji)
gk I

<> AFx(I;) AFy(Jy)
ik

< (EIX(1)] — E[X(0)*)(E[Y (1) - E[Y(0)]). (9-4)

(See §3 for notation and basic facts.)
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2. Let X and Y be mutually independent 1-processes that are
L!-bounded, centered, symmetric, and additive. Then, (9.2) follows
from Lemma 31.

The general case requires the Grothendieck factorization theorem
and inequality.

Theorem 38 If X and Y are mutually independent integrators, then
X ®Y is an integrator, and

HX®Y = [IX X [y, (9-5)

where pux X py is a product Fy-measure. Furthermore, if vi is a
Grothendieck measure of X and vy is a Grothendieck measure of Y,
then the product probability measure 11 X v is a Grothendieck measure
of X®Y.

Proof: We consider (without loss of generality) 1-processes X and Y,
redefined on the product probability space (2 x Q,0(#'x .7),P x P):

X(8)(wr,wa) = X(s)(w1), V() (wi,wa) = Y (t)(w2),

(5,t) € [0,1]%, (w1, ws) € 2 x Q. (9.6)
For A € ¢ Ay € 9 and intervals J; C [0,1],J2 C [0,1],

pxey (A1 x Az, J1 x Ja) = px (A1, J1) py (As, J2). (9.7)

By Theorem IX.6 and Theorem IX.9, puxgy determines a product
Fy-measure pix X pry on o(&/x o7) x o(# x %), which proves the first
part of the theorem.

To verify the second part, we show that if v is a Grothendieck measure
of X and 1y is a Grothendieck measure of Y, then there exists K > 0
such that for all f € C([0,1]?),

E < K| Fllez s XYL (9-8)

/ fAdX ®Y)
[0.1)2
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To this end, let Z 6;5 14,1, be a simple function on 02, where the
A; and B; are respectlvely pairwise disjoint, |d;;] < 1, and observe for

fe C([OJ]Q),

Zéilellgj (/ fd(X®Y)>
i 0,12

= %:51] /[0 f(s,t) pxey (A; x By, d(s,t))

]2

=1 4 /[0 f(s,t) px(Ai,ds)uy (Bj,dt)
i

]2

N /[0,1] ZJ: (/[071} zi:%‘ f(s,t) ﬂX(Ai7d5)> py (Bj,dt)| .
(9.9)

Consider the bilinear functionals 8; and Sz on ¢o(N) x C([0,1]) defined
by

fr(erg) = /01 5 ali) o(s) px (),

Blosg) = [ FTali) o) pr(5,49),

a € ¢o(N), g € C([0,1]). (9.10)

Because v is a Grothendieck measure of X, and 15 is a Grothendieck
measure of Y, 31 determines a bounded bilinear functional on ¢o(N) x
L2([0,1], v1) with norm || ]|, and B2 determines a bounded bilinear func-
tional on co(N) x L2([0,1], v2) with norm ||3s]|. By the Grothendieck
factorization theorem, there exist probability measures A; and Ay on N
such that for all & € ¢o(N) and g € C([0,1]),

1B1(, 9) < ke llallzonlgliiz ey 161,

1B2(c, 9)| < K llallLzag) 19lL2 wa) |52 l- (9-11)
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Fix orthonormal bases for L2(N, ;) and L2([0,1], 1), and let 3; be the
representing matrix of 3 in these bases. For ¢ € [0,1], let

(f(i,t) : n € N) € I2(N)

be the representing vector of f(-,t) relative to the basis in L2([0,1], 1),
and for jEN, let (§(1n,7) : meN) € I2(N) be the representing vector of
(8;5 i € N) in L2(N, \). Denote

Fo(t) = f(,t) and Gu(j) = Y fi(n,m)s(rn, j), (9.12)

and write
/[0 DILHLUPNERE
= Bi(n,m) f(a,1)5(m,5) = Fult) Gu(j). (9.13)

n

Then,

/[0711 ; </[o,11 2 bu 151 ”X(Aivds)) oy (B, dt)

Ba (Zﬂ: Fr® Gn>

< k6 182l ) IFalliz @ llGallzag) - (9.14)

n

From the first line in (9.11) and the definitions of G,, and F,,, we obtain

1
2
<§ |Fn|%2(u1)> = [IfllL2 @i xvs ) (9.15)
n

and

<Z|Gn|iz(xz>) < rc |15l

n
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Therefore, by applying the Cauchy—Schwarz inequality to the right side
of (9.14), we have

1
2

1
2
< rc [|Bell (ZHFnHiQ(m)) (ZIIGnIimQ))
n n

< 6 1B 1B=IS Nz xva) (9.16)

which (maximized over all 3, . 6;514,1p;) implies (9.8). 0

10 Products of a Wiener Process

We have just proved that an independent product of integrators is an
integrator (Theorem 38), and the question arises: what can be said about
products of integrators when factors are not assumed to be independent?

In this section we consider the instance where each factor is the same
Wiener process, and restrict out discussion to the case n = 2. Define
the product process W := W @ W to be

W (s,t) = W(s)W(t), (s,t) € [0,1]% (10.1)
Then, for intervals I C [0,1] and J C [0,1],
APWE(I x J) = AW(I)AW(J). (10.2)

To verify that W(2) is an integrator, observe that for all finite collections
{J;} of pairwise disjoint intervals in [0,1], and all finite scalar arrays

(azk),

2\ 2
E|Y aj AW() AW < [ B[ ajn AW(I;) AW(J)
J.k gk
2\ 2

< | ED ajn AW(J;) AW(J,)

j>k
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2\ 2

+ B> aj AW(T;) AW(J)

k>j

ol

2

+ | E Zajj AW(J]')Q

J

< 2|(az0) oo + ll(az)lloe > (BIAW(I)I)? < 5]l (age)lloe-  (10.3)

J
(We used above the following facts: {AW(J;) AW(Jg) : j < k} is an
orthogonal system, E[AW(.J;) AW(J,)|> = length J; length Ji, (j < k),
and E|AW(J;)|* = 3 length J7; see Chapter X §7.). Therefore,

e (A, T x J) = E1 A2WO (I % J)

=E1,AW(I)AW(J), intervals I,J, A€ .o (10.4)

determines an Fy-measure on .%/x %, where % = o(#x .#). Then, we
obtain the integral

/ f(s,t)dW (ds)dW(dt) := / fd(W®)
[0.1]?

[0,1]2
d
= diIP’ 0.1)° f(S,t)/LW(2)(',d(S,t))7
feL®(0,1 ). (10.5)

Notice that f[o 12 Fd(W®) is not always the same as the two-fold Wiener
integral Iy, (f). Indeed, notice ((X.8.11))

IWg(l(O,s]]-(O,t]) = W(S)W(t) —sAt, (S,t) € [0,1}2, (106)

(A = minimum), while ((10.2))
/[O . 10,9104 AWP) = W(s)W(2). (10.7)

The discrepancy between (10.6) and (10.7) is explained in the remark
immediately following the proposition below.
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Proposition 39 Let mp denote the normalized Lebesgue measure on
the diagonal D = {(s,s) : s € [0,1]} (i.e., f[O’I]Q f(s,t) mp(d(s,t)) =
f[O,l] f(s,s)m(ds), f € L>([0,1)%, %).)

Then, vy = (m? +mp)/2 is a Grothendieck measure of W),

If v is any other Grothendieck measure of W), then v(D) > 0. In
particular,

AW (D) ::/ 1p dW®) =1. (10.8)
[0.1]2

Proof: Let f be a step function on [0,1]2, and write it as
f=2_2 ey,
i=1 j=1
where J; = [i/n,i+1/n), i=0,...,n— 1. Then,

/ £ dW®) Zza” AW(J;) AW(J;)
[0.1]2

=1 j=1

E

<E|Y ay AW() AW()| +E|D i AW(J;)?

i i=1
1
2\ 2
n
i i=1
2 n
<D laiPm? )+ D lasl/n < 201 F L2y o)) (10.9)

i#j i=1

which implies that vy is a Grothendieck measure of W2,

To prove (10.8), consider D,, = (J;—, J; x J;, and note that D =
Mo~y Dy Then, because pwe € Fo( %) and pwe (-, B) < P for
Be %,

ElA/ 1Dnd(W2)—>E1A/ 1p dW®P), Aec.oZ (10.10)
[0,1]2 e [0,1]2
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But

/21D d(W?) = ZAW )’ ——1in L*(Q,P) (10.11)

(quadratic variation; cf. (X.3.1)), which verifies (10.8), and, therefore,
that v(D) > 0 for every Grothendieck measure v of W), O

Remarks:

i (Iw,(f) v.f[()’l]g f d(W®)). The statement in (10.8) explains the
difference between the two-fold Wiener integral and the integral
defined in (10.5): the definition of Iy, is based on the completion
of step functions in the || - ||L2(w2)-norm, while, according to the
proposition above, the ‘correct’ norm is || - HLE(VW(E))' For then, the

two-dimensional white noise A2W (),

AW (B) ;:/ 15 d(W®), Be %, (10.12)
(0,12

extends (as it should!)

AW (B; x By) = AW(B;) AW(By),
B, € %, By € % (10.13)

(See Remark i in Chapter X §8.)

ii (the Itdé integral via the measure-theoretic approach). Let
us consider a definition of fol WdAW as an L2(2, P)-limit of Riemann
sums. Let m, = {0 =19 < t; <--- <t, = 1} be a partition of [0,1],
and write

= (W(t])2 - W(tyfl)z) - Zw(tj) (W(tj) - W(tjfl))
= W(1)? =Y W(t;) (W(t;) = W(t;-1)) (10.14)
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We also can write

ZW(tj—l) (W(tj) = W(tj-1))

- % (W(1)2 =D (Wi(ty) - W(tjl))Q) . (10.15)

j=1

If the mesh of 7, tends to 0 as n — oo, then the right side of (10.15)
converges in LZ(Q,P) to W(1)2/2 — 1/2 (Chapter X §3, Remark ii).
This, by definition, is the Itd integral fol WdAW. (Similarly,
[y WdW = W(t)?/2 — t/2.)

Observe now that (10.14) can be rewritten as

Z W(tj—1) (W(t;) = W(tj-1))

:/ (Z L0, 4] ®1[t71¢a]) dW®
(0,2 \ 4

Therefore, if f, = E?:l Tjo,,) @ L,_, 1,1, and f(s,1) = 1jg.4(s),
then f, — f in L2([0,1)%, »w ), and by Proposition 39,

1
/ Lp,¢)(t) AW = / W dW. (10.17)
[0,1]2 0

The integral on the left side of (10.17), which can be written
(formally!) as

/ 1, () AW = / ( / L(o,4(t) dW(ds)> dW(dt)
[0,1]2 [0,1] [0,1]

= [ W) aw(dy), (10.18)
0.1]
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is not the same as f[o 12 1[0781(15)d\7\7(2)7 although we could (again
formally) think of the latter also as f[o 1 W(t) dW(dt). Indeed,

/ 11,4 (t) dw®
[0,1]

1
=3 / L2 (s,t) AW + / 1p(s,t) AW® |,
2\ Jioap (0,12

(10.19)

whereas

/[o 1]2 Lo (t) dw

_1 / Loy(s, ) AW® — / 1o (s,1) AW® ).
2\ Jioap [0,1]2
(10.20)

The left side of (10.20) can be evaluated also as follows. Start with

Z W(t;) (W(t;) — W(tj-1))

= /[0 " (Z 1[o,tj](8)1[tjl,tj](t))dW(ds) dW(dt)

- % (W(1)2 + i(w(ta‘) - W(tj—l))Q) (10.21)

j=1
(cf. (10.16)). Define g,, = Z;L:1 1j0,6,)®1(s,_, 1, and g(s,t) =1, 4(s).
Then, g, — g in L2([0,1]%, vy ), and therefore, by Proposition 39,

1
/ L4 (t) AW® = W(1)2/2+
[0’1]2 2

1
= / WdW + 1. (10.22)
0
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Notice the difference between the integral obtained by taking limits
of Riemann sums on the left side of (10.14) (resulting in the Ité
integral), and the integral obtained by taking limits of the Riemann
sums on the right side of (10.21).

If we use the ‘average’ of the integrand over [t;_1,t;] in the
Riemann sums (instead of the evaluation at the left end-point, or
the right end-point), then we obtain

MH(Z )+ W(tj-1)/2)

Jj=1
(Wit,) wm_l))) —W()?/2. (1023)
Stochastic integrals obtained by taking ‘averages’ of integrands in
Riemann sums are known as Stratonovich integrals (e.g., [IkW,
p. 101]).

Construction and analysis of f[O,l]" de(”) for arbitrary n > 1
follow similar lines (Exercise 39).
(products of L'-bounded additive processes). Let us con-
sider the n-fold product process X (™ of an L!'-bounded additive
process X,

XMty t) = X () X(ta),
(t1, ... t) € [0,1]™ (10.24)
Define the polyhedral set (cf. Chapter X §11)
Dn:{(tl,...,tn)logtl <<ty < 1},

and the polyhedral Borel field Bypn in it. To simplify matters,
assume X is right-continuous. (Otherwise, start with (2.5) and pro-
ceed accordingly.) Define

fixxon (A, Jy X - x Jy) = B1LAAX (Jy) - AX (),
A€ boxes J; X --- X Jy € By, (10.25)

and deduce, via (the n-dimensional version of) Lemma 3, and the
decoupling inequalities in Theorem 32, that py ) EFa (. B(mg). An
integral of f € LOO(Dn,Ban) with respect to X( is defined by
integration with respect to pxx). Notice that unless more is known
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about higher moments of the increments of X, the polyhedral set
(D, Byy) cannot be replaced by the “full box’ ([0,1]",.%,).

We obtain, again by an application of decoupling inequalities
(Theorem 32), that the restriction of the n-fold product (vx)™ to
Bm, where vy is a Grothendieck measure of X, is a Grothendieck
measure for X ().

We define the integral (cf. (10.18); Exercise 40)

X dX
(0,1

- / (/ Lo,4)(5) dX(ds)) dX(dt) — X(0)* + X(0)X(1)
[0,1] [0,1]

= a5 ([ 100 ixe (a6, - X0 + XOX (),

(10.26)

11 Random Integrands in One Parameter

In this section we touch on the large issue of non-deterministic inte-
grands, which, broadly put, is the question: what processes are ‘canoni-
cally’ integrable with respect to an integrator X7

The instance X = W was considered first by K. Ito, who, motivated
primarily by questions about diffusions, integrated (deterministic) func-
tions of W with respect to dW. (E.g., see Remark ii in the previous
section.) In particular, underscoring a fundamental distinction between
the usual calculus and the stochastic calculus, he obtained

1

oo aw = o)~ g(w(o) - 5 [ 9w e
0 0

(the Ité formula), (11.1)

where ¢ is real-valued, twice-differentiable with a continuous second
derivative. (See Chapter X §8 and Exercise X.27).

1to’s integral led to a construct that has become the focus of adaptive
stochastic integration: an integral fol Y dM, where M is an L2-bounded
semi-martingale, and Y is an M-adapted process. (That Y is M-adapted
means that Y'(¢) is M (¢)-measurable for every t € [0,1]; or equivalently,
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that for every ¢t € [0,1] there exists a scalar-valued Borel-measurable
function ¢; such that Y(t) = @:(M(¢)) (cf. [Wil, p. 36]).) I will not
dwell here on the intricacies and uses of adapted stochastic integration,
and refer the reader to any one of several books (e.g., [KarSh], [M], [Pr]),
where the subject is expansively developed. (An abridged treatment can
be found in [ChWil].) In this section, moving away from adaptability,
I will describe two ‘non-adapted’ stochastic integrals, where ‘functional
dependence’ of integrands on integrators is not an a priori assumption.
Both integrals are based on a measure-theoretic approach to stochastic
integration.

Via Riemann Sums

Let X and Y be integrators. The issue whether Y can be integrated
with respect to X can be viewed as the question: is the product process

XY ={X(s)Y(t): (s,t) € [0,1]*} (11.2)

an integrator? For, if the answer is affirmative, then (cf. (10.26))

/ Ydx = ( / 10.(t) dY(ds)+Y(0)>dX(dt)
[0,1] [0,1] [0,1]

- /[0 12 Lpo.s)(Hd(X @ Y) + X(0)Y(0) = X(1)Y(0)

=5, Tt mxey (. ds,0) + XOY(0) = XY 0

(11.3)

The first equality in (11.3) is a formal statement based on the realization
of Y as a ‘sum’ of its increments. The second equality is a definition
motivated by the following. At the outset, we want f[o 1] YdX to be a

limit (say, weakly in L*(Q,P)) of Riemann sums
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We assume (without loss of generality) that X (0) = Y (0) = 0, and then
write these sums as (cf. (10.16), (10.22))

Zy(t]‘—l) (X(t5) — X(tj-1))

n

Z 0,65 4] @ Ly 47 | AX @Y)

Jj=1

(0,12

=X(1 —Y(t;-1))

/ Z 1[t.‘i—17tj] & 1[0,tj] d(X®Y).
0112\ j=1

(11.4)

(Sum by parts, or draw a picture.) As the mesh of partitions approaches
0, the integrals on the first line of (11.4) converge (weakly in L*(Q, P)) to
f[o,l]g 1j0,4)(s)d(X®Y"), and integrals on the third line of (11.4) converge
to f[o’l]g 1j0,4(s)d(X ® Y) (Exercise 41). In particular, we obtain an

‘integration by parts’ formula
Y dX = X(1)Y (1) - A2 (X @ Y)(D) — X dy,  (11.5)

[0,1] [0,1]
where
A2(X @ V)(D) = / 1p d(X @),
[0,1]2

D ={(s,s):s€[0,1]}. (11.6)
We have already obtained, according to this definition, the integral
f [0,1] Y dX, where X and Y are mutually independent. This, in effect, is

a counterpoint to the adapted Ito-type integral. Indeed, by Theorem 38,
we obtain (under the assumption X (0) =Y (0) = 0)

/[O,l] Y(t) dX(dt) = /M ( /M Lio.0)(s) dY(ds)) dX(dt)

_ /[O |l (s) ¥ (ds) ax (@

= % (/[071]2 Ljo,0)(s) MXXMY(‘vd(Svt)))
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- /[0 1) (/[0 1](1 ~ Lo,y (t)dX(dt)> dY (ds)

= X(1)Y(1) - A*(XY)(D) — X (s) dY (ds). (11.7)
[0.1]

(Notice the intervention here of the Grothendieck factorization theorem
and inequality.)

Via Stochastic Series

Suppose a 1-process X is an integrator with Grothendieck measure vx.
IfY = Z®f, where Z € L®(Q,P) and f € L2([0,1],vx), then for A € .

/ 14(w) Z(w) F(£) px(dw, db)
Qx[0,1]

~ [ 141 2 (/ one dt))

:/Q 1a(w) Z(w)( ; 1]fdx> dP = (4).  (11.8)

Then, 7 is a measure that is absolutely continuous with respect to P.
We define

/ zafax =Y _z [ jrax (11.9)
[0,1] dP [0,1]

If X is L2-bounded with orthogonal increments, then we can take Z €
L2(Q,P); in this case, vx = Ax. (See §3, and Remark i in §6.) If Y =
Z?Zl Z;®f;, where (Z;) is a sequence in L*° (€2, P) and (f;) is a sequence
in L2([0,1], vx ), then

/ Y dX = ZZ fj dX. (11.10)
[0, [0.1]

If Y can be represented by Z;C:1 Z;®f;, and Z;’;l Z; f[o,1] f; dX con-
verges in some sense (say, weakly in L'(£2,P)), then we can define the
latter to be the integral of Y with respect to X. Of course, to make this
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precise, we need to specify how Y is represented as a ‘sum of elementary
tensors’, each integrable with respect to X. For example, if Y is repre-
sented by

Y=Y Z;®f; pointwise a.e. (Px vx), (11.11)
j=1

where

oo
S 12l fillLzx) < oo,

j=1

(that is, Y € L°(Q, P) ® L2([0,1], vx); e.g., Chapter IV §6, §7), then

/ Y dX = sz/ fj dX, (11.12)
[0’1] j:l [011]

where the series on the right side of (11.12) converges in the L!(Q, P)-
norm. Moreover, || [0,1] YdX in (11.12) does not depend on the represen-
tation of Y by (11.11) (Exercise 42).

We have just defined integrals where integrands are represented by
series, each integrable with respect to a given integrator. We can turn
this definition around, and consider integrals obtained from series rep-
resentations of integrators. Recall that if Z € L1(Q,P) and ¢ is a func-
tion of bounded variation on [0,1], then Z ® ¢ is an integrator, and
pzee = ZdP x de (Remark ii in §2). In this case, the processes that
are naturally integrated with respect to Z ® ¢ are ‘functions’ Y on
Q x [0,1], such that Y (w,-) is in L1([0,1],d¢) for almost all w (P), and
f[o,l] Y (-,t) dp(dt) is in L}(€, |Z| dP). For then,

/ (/ Y(w,t) d(p(di)) 14 Z(w) P(dw) :=n(4), Ae. (11.13)
o \Jjo,1]

determines a measure on (2,.7), n < P, and

Y dZ®y):= j—]g) =7 < Y(-,¢) dcp(dt)) . (11.14)
[0,1] [0,1]

In similar fashion, we can take integrators 27:1 Z; @ ¢j, where the Z;
are in L' (2, P), and the ¢, are functions of bounded variation on [0,1].
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In this case, if Y is a process such that Y (w, ) € L'([0,1], dg,) for almost
all w (P), and f[o 1 Y(-,t) dp;(dt) € LY(Q,]Z;| dP), j =1,...,n, then

n

/ Y d(ijle ® ;) = ZZ]'/ Y(-,t) dp,(dt). (11.15)
[0,1]

7j=1 [071]

If n = oo above (i.e., if an integrator X can be represented by an infinite
series Z;’;l Z; ® ¢j), and if the proposed integrand Y is canonically
integrable with respect to each of the summands Z; ® ¢;, and if the
right side of (11.15) converges in some sense to an element in L(Q,P),
then the latter can be viewed as an integral of Y with respect to X.

Because every integrator X can be represented by stochastic series
(Remark ii in §6), we can make matters more concrete. Suppose vx is
a Grothendieck measure of X, and {e; : j € N} is an orthonormal basis
for L2([0,1], vx). Then consider

X; = e; dX (:= Z;, above), (11.16)
[0,1]

and

o3(t) = 10 () = /[  Toads) ei(9) vx(@s), jEN (L)

and observe (cf. (6.15))

x(A,B) =) pix,04,(A,B), A€ Be% (11.18)

Jj=1

If Y={Y(t): t€]0,1]} is canonically integrable with respect to each
Ux;®¢,, then the issue of integrability of ¥ with respect to X becomes
the question: does the limit

ji:;/[o,u Y d(X; @ ¢;) = g;X]/[ Y (-, t) dg;(dt) (11.19)

0,1]

exist, say weakly in L!(Q,P)?

We can merge these two approaches: the first based on series rep-
resentations of integrands, and the second based on series represen-
tations of integrators. First suppose X and Y are integrators with
the same Grothendieck measure v, and then write the partial sums of
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their respective stochastic series relative to a given orthonormal basis of
L2([0,1],v),

0= e0X, S.(N0=2e0Y. (1120

Then,
/ ) dX = ZY/ ¢; dX, by (11.10), (11.21)
[0,1]
and
Yd(Sn(X)):ZXj/ Y (-, ) dp;(dt), by (11.15).
[0,1] = [0,1]
(11.22)
By (6.15),
/ @; dX = Z% Xy, (11.23)
[0,1]
and
/ Y (-, t) dgj(dt) = > ¢r(4) Vi, (11.24)
[0,1] k=1

where the respective series on the right sides converge weakly in L1(£2, P),
and for (j,k) € N?

&, (k) = /[0 | o) e5(5) ) v(ds) v(@). (1125

Then,
Su(Y) dX = " ¢i(k) Y; Xx, (11.26)
[0,1] j=1k=1
and
[ ]Y d(Sn(X) =D > ¢lh) Vi X;. (11.27)
0,1 -
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If either of the series in (11.26) and (11.27) converges weakly in L!(Q, P),
then both series converge to the same limit, which we consider to be
J 01 Y dX.

Remarks:

i (a comparison of the two integrals). The ‘Riemann sums’

approach yields
1

W AW = W(1)%/2 — -, (11.28)

[0,1] 2

which is the It6 integral; see §10.

Taking the ‘stochastic series’ approach, consider a series of W
associated with a given orthonormal basis {e;: j€N} of L2([0,1], m)
(cf. (X.3.33)),

Z@J G (11.29)
where

Cj :/ €; dW, ] S N, (1130)
(0.1]

and
o5(t) = /[ Toals) mids). - t€ (01 (11.31)
0,1
(The Lebesgue measure m is a Grothendieck measure for W.) Then,

by (11.26),

(0,1]

Su(W) AW =33 " 6,(k) ¢ G- (11.32)
j=1k=1

(¢ (k) is defined in (11.25).) We have ¢;(j) =0 for all j € N,

> S Ieif <.

and therefore, lim,,_, fo 1) Sn(W)dW exists in L%(Q,P). Applying
‘integration by parts’, we obtain

S, (W) dW = W(1)? — W d(S,(W)), (11.33)
[0,1] [0,1]
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and (because lim,,_, o f[0_1] S (W) dW = lim,, f[o 3y W d(Sn (W)
in L2(Q,P)),

lim S, (W) dW = W(1)?/2, (11.34)

n—oo [011]
which, in this case, is a Stratonovich integral (cf. (10.23)).
(interchange of limits?). Observe that f[o,l] Sy (W)dW obtained
via (11.21) is the same as f[o,l] Sn(W)dW obtained via ‘Riemann
sums’ in (11.3). To see this, it suffices to verify (Exercise 43) that the
2-process (; ¢; ® W is an integrator (¢; and (; are defined in (11.30)
and (11.31)), and

/ o5 G AW = / 1o (0) d(¢; @5 @ W)
[0,1] [0,1]2

d
=T S 100D Hesaw (- d (s, )
= Cj %0 ]‘Pj de ] € N. (1135)
1

Specifically, this implies that limit operations and integrals cannot
always be interchanged. For,

: 1
/ W dW = lim S,(W)dW = W(1)2/2 — =,  (11.36)
[0,1] [0,1] 2

but
lim S, (W)dW = W(1)?/2,

e J0.]

where limits are in L2(£2, P). This (again...!) is the effect of the diag-
onal:  the quadratic variation of S, (W) over the diagonal
D = {(s,s) : s € [0,1]} is zero, whereas the quadratic variation
of W over D is positive. Put another way, Lebesgue measure m? is a
Grothendieck measure of S,,(W) ® W and m?(D) = 0, but for every
Grothendieck measure v of W ® W, v(D) > 0 (Proposition 39).

(some other ‘named’ non-adapted integrals). The first con-
struction of a non-adapted integral via series is due to Skorohod [Sk].
In the Skorohod integral [Sk], the integrator is a Wiener process,
and integrands are in L2([0,1] x 2, m xP). The idea is to represent



418

XI Integrators

the integrand Y € L2([0,1] x Q, m xP) by the Wiener Chaos-series
(Remark in Chapter X §8),

H=3 1), (11.37)
7=0
where Y;(t) € H; = {Iw,(f) : f € L*([0,1]9,m?} for every ¢ € [0,1],
and then define

/0 Y dW := Z/ ) dW(dt), (11.38)

where convergence is in L2(Q2,P). A crucial step in this definition
is to consider the jth summand on the right side of (11.38) as a
multiple It6 integral, iterated j + 1 times. For example, notice that
Skorohod’s and It6’s fol WdAW are the same (simply because W(t) €
Hy, te [0,1])

A second definition of a non-adapted integral based on series was
given by Ogawa [O1], [02], who, so far that I can determine, was
unaware of Skorohod’s (prior) integral. In Ogawa’s construct, the
integrator is also W, and the integrand is a process Y = {Y(¢) :
t € [0,1]} such that f[o 1Y ( ()] m(dt) < oo a.s. (P). An ortho-
normal basis E={e;: j €N} of L?([0,1],m) is chosen, and Y is
expanded

Y => e; Vu(e;), (11.39)
j=1

where Yz (e;) f[o 1 () m(dt). If the series

g /[0 : e;(t) dW (11.40)

converges in probability, then the limit is the Ogawa integral relative
to E. For example, in the simple case Y = W, the Ogawa integral
of W with respect to dW relative to every orthonormal basis E
is the same as the integral obtained by the series in (11.34). In
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particular, Skorohod’s and Ogawa’s integrals need not be equal.
Nualart and Zakai called a process Y Ogawa integrable if Y is inte-
grable in Ogawa’s original sense (above) relative to every orthonor-
mal basis of L2([0,1],m), and dubbed (11.40) in this case an intrinsic
Ogawa integral [NuZ2].

Relationships between integrals of It6, Skorohod, Ogawa, and
Stratonovich were investigated in [NuZl], [NuZ2]. Recent exposi-
tions of these and related matters can be found in [Nu] and [M].

Exercises

. Verify Lemma 2.
. Complete the proof of Lemma 3 by showing ||pux| () = || X].
. Verify Corollary 5.

i. Prove Proposition 8.
ii. Show that if f and g are in L°°([0,1]), then

/[071]‘(} ‘ (/ / dX> :/[071]9 fax. (E.1)

iii. (Do this after reading §6.) Let v be a Grothendieck measure of
an integrator X. Show that if f€L.2([0,1],v), then the indefinite
integral

(/f dX> (t) ::/ Logf dX = fdx, telo1]
[0,1] [0,¢]

is an integrator, that | [ f dX|| < kg ||f|lL2]|X |, and that if g €
L>°([0,1]), then (E.1) holds. What is a Grothendieck measure
of [ fdX?

. Prove that if X is an L2-bounded process with orthogonal incre-

ments, and Fx (t) = E|X (¢)|?, t € [0,1], then Fx is monotonically
increasing on [0,1].

. In this exercise you will supply the details missing from the proof of

Proposition 10.
i. Prove that the linear action defined in (3.7),

g g(t) Ba(dt), g€ C([0,1]),
[0,1]
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is uniquely extendible to a bounded linear functional B4 on
L2([0,1], Ax).
ii. Verify that 54(1p), B € .%, is the measure on .% that equals (4.

7. Prove that (3.10) does not depend on the representation of the step
function in it.
8. Prove Proposition 11.
9. Prove Proposition 12.
10. Prove Proposition 13 i.
11. Let X be a process defined by (3.22).

i Verify that ||,ux|‘(1) = 220:1 HXkHLl
ii. Prove that there exist mutually orthogonal elements X, k € N,
such that | Xg|lL2 = [|Xk|lL: = 1/k (k € N), and H(X) is not a
A(2)-space.
ili. Prove that there exists an integrator X such that H(X) is an
infinite-dimensional A(2)-space, but X is not random (according
to Definition 9).

12. Supply the missing details in the proof of Proposition 14.
13.  i. Supply the missing details in the proof of Proposition 15.
ii. Prove that if X = {X(¢) : ¢ € [0,1]} is an L*-bounded martin-
gale process, then E|X (t)|, ¢ € [0,1], is a monotone function.
iii.* Is every L'-bounded martingale process an integrator?
14. Verify that a homogeneous process X is a-chaos if and only if (4.4)
holds.
15. Prove Lemma 16, Corollaries 17, 18, and 19.
16. Prove Lemma 21, Corollaries 22, 23, and 24.
17. 1. Let {X; : j € N} be an exact a-system (asymptotic a-system),
and let U be a unitary map from L2(]0,1],m) onto L{X }( P).
Prove that X = {Uljg4 : t € [0,1]} is an a-chaos (resp., asymp-
totic a-chaos). Conclude the existence of exact n-chaos.
ii. Prove that the n-process W,, defined in (X.14.11) is an exact
n-chaos.
18. Let {X; : j € N} be an exact A(g)#-system (asymptotic A(q)#-
system), and let U be a unitary map from L2([0,1],m) onto

Lix,;(Q,P).

Prove that {U1p 4: t€[0,1]} is an exact A(q)#-process (resp., asymp-
totic A(q)#-process). Conclude that for all ¢ > 2 there exist exact
and asymptotic A(q)#-processes.
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19.* Can the Kakutani construction of a Wiener process (Chapter X
§2; cf. Exercise 17 i) be modified to produce a p-stable motion for
peE (1,2)?
20. Let X be a p-stable motion, p € (1,2].
i. Verify that the linear map Ix defined in (4.40) is extendible
to LP([0,1],m) so that (4.41) holds. Conclude that for every
r € [1,p), there exists ¢ > 0 such that

x ()@ = cllfllueey, f € LP([0,1],m).

ii. Provide the missing details in the proof (of Proposition 28) that
Ix(f) = f[O,l] fdX for all f e L>([0,1]).
21. Provide the details in the proof of Proposition 29.
22. By using (4.53), prove ‘quickly’ that if X is a p-stable motion for
€ (1,2), then £x = 1.

23. In the spirit of the heuristic discussion in Chapter X §1, interpret
a p-stable motion as a stochastic model indexed by a spatial para-
meter for a ‘force field’ associated with an ‘inverse attraction’ law.

24. Suppose { X : j € N} is a system of symmetric p-stable independent
variables. Prove (5.17) for n = 2 by use of the two-dimensional
polarization identity,

1<i<j<N 1<i<j<N

= Y X+ X)X + X))

1<i<j<N
1<i<j<N 1<i<j<N

where {X;} is an independent copy of {X}.
25. Let 1 be a symmetric n-linear functional on R™. Define

[nll = sup {n(z1,...,zn) : (z1,...,2n) € By X --- X By},
and
H77||* = SUP{n(ma v 7$) HES BN}7

where By denotes the [®-unit ball in RY. Prove that

n’l’L
ol < llll < llmlls-
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26. Let 8 denote the bilinear functional on L*(Q,P) x L2([0,1],v)
defined by (6.10) in the proof of Theorem 34. Prove that for g €
L2([0,1], v),

ﬂ(lAvg)a A E,}%

is a measure on ./ that is absolutely continuous with respect to P.
27. Prove that the definition in (6.13) is consistent with the definition
in (2.11).
28* Produce explicit Grothendieck measures for L'-bounded additive
processes and LP-bounded martingales, p € (1,2).
29. Let X be an integrator, v a Grothendieck measure of X, {e, :
n € N} an orthonormal basis of L2([0,1],v), and X,, = f[O,l] e, dX
(n € N). Prove that if f € L2([0,1],v) and f =" f(n)e,, then

[e o]

fdx =Y f(n) X,

[0,1] ne1

where the series converges weakly in L(Q, P).

30. i. Show that if X is a p-stable motion, then AX is an L"-valued
stochastic measure for every r < p, and that if X is an L-
bounded process with orthogonal increments, then AX is an
L2-valued stochastic measure. In the general case, verify that if
X is an integrator, then ‘A’X defined by (2.23) is an L!-valued
stochastic measure.

ii. Prove that if X is an L!-bounded additive process, EX(¢) = 0
for all t € [0,1], and By, ..., B, are pairwise disjoint Borel sets
in [0,1], then ‘A’X(By),...,'A’X(B,) are independent.

31. Verify that the definitions of || X || given in (7.1) and (7.3) are the

same.

32. Verify that the iterated right-limits in (7.6) are feasible.

33. Prove Proposition 36.

34* If an n-process X is an U-integrator, where U = {S1,...,S5,} is a

partition of [n], then for all A € .

E].A/ 1, ®---®1p, dX, DB € Ps,,...,Bn € Zs,,,
[0,1]™
is an F,,-measure on Hs, X -+ X Hs, . In the case n = 1, the

Grothendieck factorization theorem implies a stronger statement,
but what can be said in the case n > 17 (See Remark iii in §6.)
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38.
39.

40.

41.
42.

43.
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Verify that if an n-process X is not an integrator, then there is a
grid of [0,1]

&

= {leln : (il,. . ,’Ln) S Nn}
= (I % x T iy i) €N,

and a one-one map 7 from N onto N" such that Z]Oil A"X(B;;)
does not converge weakly in L1(Q2,P) to A”X([0,1)").

Verify that the definition of the Littlewood index in (7.31) is
consistent with the definition in (7.15).

Verify that there exist ‘n-dimensional’ 1-processes X with £x =
2(n+1)/(n+2).

Prove Theorem 37.

Let W) be the n-process defined by

W (g, b)) = W(ty) - W(tn),  (t1,...,t,) € [0,1]™

i. Prove that W(™ is an integrator.

ii.* State explicit Grothendieck measures for W),

Let X be an L!-bounded additive process, and EX(¢) = 0 for all
t € 10,1].

i. Prove that px ) defined by (10.25) gives rise to an element in
FQ (V% Bnu)~

ii. Prove that if vx is a Grothendieck measure for X, then the
restriction of the n-fold product (vx)™ to By, is a Grothendieck
measure for X,

ili. Verify that (10.26) can be viewed as an assertion about limits
of Riemann sums.
Verify (11.4), and deduce the ‘integration by parts’ formula in (11.5).

Prove that the definition of f[o 1] YdX by (11.12) does not depend
on the representation by (11.11) of the integrand Y.

Prove that ({; ;) ® W is an integrator, where ¢; and ¢; are defined
in (11.30) and (11.31), and that

/ ;G dW:Cj/ @; dW.
[0,1] [0,1]

)
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Hints for Exercises in Chapter XI

4. i. Foreach A€ .« Ely fB f dX determines a measure on .%.
ii. If A € & then ElA(f f dX)(-) is right-continous.
9. 1ii. See Corollary X.21 iv.
11. ii. Let Q = [0,27) with P = normalized Lebesgue measure. Let
Xjp (w) = felkw,

iii. By the use of a lacunary sequence in Z, choose {X}, : k € N} such
that H(X) is an infinite-dimensional A(2)-space, and || Xk|rz =
Xkl = 1/k2.

12. Consider Y and Z on (2, P) x (92, P), such that Y (w;,ws) = Y (w;) and
Z(w1,ws) = Z(w2), (w1,ws) € 2 x Q. Fix UeL>®(Q,P), ||U|lL- =1,
such that E|Y|=|EYU]|, view it on 2x € so that U(w1,ws) = U(w1),
and observe that

EY +Z| > |[EU(Y + 2)|

(Y(wl) + Z(wg))IP(dW1) P(dwg) = ‘EUY| = E‘Y‘

QX0

Verify that if X is a symmetric L'-bounded additive process, and
e; = x1 for j € N, then

E| Y ¢AX( <E|X(1) — X(0)].

ZAX

J

To this end, show that ZN €;AX (I;) has the same distribution as
S i—1AX(I;) by computing the respective characteristic functions.

If X is an L!-bounded additive process such that EX (¢) = 0 for all
t € [0,1], then consider X — X, where X is a statistically independent
copy of X.

14. The definition of H(X) in Definition X.27 and the definition of
H(X) in this chapter are the same. If X is an L2-bounded process
with orthogonal increments, then H(X) is the closure in L2(Q,P) of
span{AX (J;): intervals J; C [0,1], >, 15 <1}

15. Review the proofs of analogous results in Chapter X.

16. Cf. previous exercise.
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21.
22.

23.
24.

26.

27.

29.

30.
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Let X be a symmetric random variable such that E|X|? = 1 and
E|X|P = oo for all p > ¢q. Observe that if {X;} is an independent
system where each X; has the same distribution as X, then {X;} is
a A(q)*-system.

ii. Provide the missing details in the proof (of Proposition 28) that
Ix(f) = fo 4y fdX for all f € L>([0,1]). (Cf. Proposition 13 ii.)

Cf. Proposition 12.

Use duality. For arbitrary ¢ > 2, let (bj) € Bja have finite sup-

port, and show, by two applications of Hdélder’s inequality, that

‘Zj,k bjkElAij‘ < K, < o0, where the X}, are defined in (4.50)

and K, depends only on q.

Read [La, pp. 73-5].

Observe that X; —Q—X'i has the same distribution as 21/ X;, and then

apply the triangle inequality. This elementary argument appears in

[McTal, p. 944] , and is attributed to Pisier.

If f € C([0,1]) and f; — g in L2([0,1],v), then B(f,-) converge

uniformly to 5(g,-) on bounded subsets of L>°(Q, P).

Because the two definitions are the same for f € C([0,1]), it is enough

to show that if f; — g in L2([0,1],v), where fr € C([0,1]) (k € N)

and g € L*°([0,1], %), then

i) px(A,dt) — g(t) nx(A,dt), Ae.
0,1] 0,1]

If fr — g in L2([0,1],v), then f; — g uniformly on [0,1]\B, where
v(B) is as small as desired. Apply Lemma 35.

o fo (&)

i. If X is an integrator, B; € %, j € N, and ¥;1p, = 1p, then,
¥9_11p, — 1p in L?([0,1],v), where v is a Grothendieck measure
of X, and

Estimate

EY ) f(n)X,|=
n==k

o0
Z =‘A’X(B), convergence in L'(Q,P).
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ii. Show

E (exp(is1*'A’X(By) - -exp(isp, A’ X (By))

= [ E exp(is;*A’X (B;)).
j=1

32. Use induction. Mimic the proof in the case n = 2.

33. Cf. Corollary 4. Extend the proof of Lemma 3. In this regard, see
Adams’s and Clarkson’s paper [CLA].

36. Use the fact that if ux determines an Fy-measure on .%/'x ¢, then it
is a regular measure in the second coordinate.

37. Use Theorem X.8 together with the Littlewood inequalities
(Chapter X §10). First carry out constructions, as in §8, in a frame-
work of © x [0,1]", and then ‘pull back’, by use of p~!, to Q x [0,1].

42. Review the material about tensor products in Chapter I'V.
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A ‘3/2-dimensional’” Cartesian Product

1 Mise en Scéne: Two Basic Questions

The n-fold Cartesian product of a set E,
E":=Ex---xE={(x1,...,2,) : x; € E,i € [n]}, (1.1)

is commonly viewed as an n-dimensional set, where dimension means
simply the number of unrestricted samplings from E. If m is an integer,
0<m<mn, be E, and

F = TiyeeosTmybyo b i, €E i €M)y, (1.2)
——
n—m

then F' is an m-dimensional subset of E™. Again, dimension here means
the number of degrees of freedom in the definition of F: the first m
coordinates are chosen freely, without restriction, and the last n — m
coordinates are fixed. Typically, if 0 < m < n, and 6 is a function from
E™ into E™~™, then its ‘graph’,

F={(z1,...,%m,0(x1,...,2m)) : (x1,...,2m) € E™}, (1.3)

is an m-dimensional subset of E™: there is no restriction on the first m
coordinates, but once chosen, these coordinates determine the remaining
n —m coordinates. Dimension of F in this basic context is an index of
interdependence between n samplings from E subject to the requirement
that the outcome (an n-tuple) be in F.

A question arises: given an arbitrary subset F' of E™, can we gauge,
precisely and meaningfully, an index of interdependence of coordinates in
F'? Rephrasing this question, can we precisely and meaningfully deter-
mine a ‘dimension’ of F'?7 In a basic sense, we view the dimension of

427
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a set as the number of degrees of freedom enjoyed by points in the set,
a number that has been traditionally viewed as an integer. And thus a
second question arises: could dimension be, realistically, a fraction?

In the next chapter, we shall answer these questions in full, both in
the affirmative. In this chapter, easing our way into fractional dimen-
sions, we analyze an archetypal example that will serve as a guide, and
eventually be seen as a 3/2-dimensional Cartesian product.

2 A Littlewood Inequality in ‘Dimension’ 3/2

For every n € N,

llg]l, < oo for all g € Cw, () if and only if p > 2n/(n + 1)

(Theorem VII.34). (2.1)

This result, which is in effect a calibration of Plancherel’s theorem, sug-
gested this definition: if F' is an arbitrary spectral set, then let

Cr(t) = sup{[|gllt : g € Beg }, (2.2)
and
op =inf{t: (p(t) < oo}
(Definition VII.40, Remark iv, Chapter VII §11).

The index o is said to be ezxact if (p(op) < oo, and asymptotic if
(r(op) = 0. If op = p, then F is p-Sidon (exact or asymptotic), and p
is the Sidon exponent of F. In this terminology, (2.1) becomes

2
ow, = _:Ll exactly, n € N, (2.3)

which, ‘modulo decoupling’, is the Littlewood 2n/(n + 1)-inequality

ORpn = exactly, (Theorem VII.36). (2.4)

n
+1
The p-Sidon set problem — do p-Sidon sets exist for arbitrary pe|[1,2]? —
becomes the question: ifp € [1, 2n/(n+ 1))\ {1, 4/3,..., 2n/(n+ 1)},
then are there F' C R™ such that op = p? (See Chapter VII, Remark vi
§11.)
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In this section we produce F' C R? such that op = 6/5. We use
the following construction that played prominently in Chapter VIII,
in the analysis of a trilinear Grothendieck-type inequality: index the
Rademacher system by N2,

R= {Tij : (l,j) € NZ} (25)

(rij(w) =w(i,j), we {-1, 1}N2 := ), and define

RY = {ri; @ rjr @it 2 (6,5, k) € N°}; cof. (VIIL5.3). (2:6)

(The meaning of U, merely a superscript in (2.6), will later become
clear.)

Lemma 1 For all f € Cru(Q3),

1

Z <Z|f(7“7:j®7“jk®7“¢k)2> < e1V2 ||l oo, (2.7)
i\ k

where ¢y := Cr(1) (the Sidon constant of R).

Proof: Let f be an RY-polynomial, and estimate

1 fllee

sup

Z Frig @ik @ rag) rij(w1) ri(w2) i (ws)
wi,w2,ws3

0,4,k

(1/c1) sup Z

w2,w3 T
2V

(1/e)y /
i 792

Y

Z flrig @ rji @ rig) rin(ws) rig(ws)

k

v

D Fri @ rik @ rik) rik(ws) rik(ws) P(dwn) P(dws)
k

\Y

(1/e1V2) Z (Ek: |F(rij @ s ®Tz‘k)|2> : (2.8)
]

The last inequality follows from the Khintchin L'-L? inequality applied
to {rij ® rjx : j € N} for each (i, k) € N°. 0
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Lemma 2
i. If (biy : (i,7) € N?) is a 2-array of scalars, then

3
4
4
PIE
iJ

1
1 1
3 2

<3 ;wﬁ Z(Xijbiﬂ) . (29)

i J

[N
)=

ii. If (i : (i, 5, k) € N®) is a 3-array of scalars, then

é 3
Y olagl® | < Z(Zl%’kF) :

.5,k i,J k

ole

[N

2 | 2 laal?
J

. Z(Zmijk?); é‘

Gk o\ i
(2.10)
Proof: Part i has been verified in Chapter II, en route to Littlewood’s

4/3-inequality ((I1.5.3) in the proof of Theorem IL5 i).
To verify Part ii, write

6 2
> aiel® =" laijrl*laij

.5,k .5,k

5. (2.11)

On the right side, apply Holder’s inequality to the summation over k,
and the two factors in the summand with exponents 5 and 5/4:

Z ICLijk|g < Z (Z aijk|2> <Z |aijk|> :
i.j k k

.,k

(2.12)
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On the right side of (2.12), apply Holder’s inequality to the summation
over ¢ and j, and the two factors in the summand (each a sum over k)
with exponents 5/2 and 5/3:

Yo lagklt < Z(§|aijk2>; Z(gam)g -

.5,k ] v 2]

o

(2.13)

Apply (2.9) to the second factor on the right side of (2.13) with b;; =
Zk |ai;,|, obtaining

1\ 2
2
S el < z(zw) |
k

4,5,k i3

SIS

3 (3 (3 ) %

i j k

[N

> (Z %‘M)Q : (2.14)

j i k

Applying Minkowski’s inequality to the second and third factors on the
right side of (2.14), we obtain

o

o

1
2
Z |ai 5 < Z (Z aijk|2>
k

.3,k Y

(SIS
SIS

2 | 2 laal?
J

ik

10> (Z |az‘jk2> ; (2.15)

jok
which implies (2.10). a

These two lemmas imply
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Corollary 3
cRu(g) < V3 Ca(l). (2.16)

Lemma 4

Cru(t) = oo for all t < g (2.17)

Proof: We give two proofs: one based on random constructions, like
those used in Chapter X to prove (gn(t) = oo for t < 2n/(n + 1)
(cf. Remark i in Chapter X §5), and the other based on Theorem VII.41,

Cr(t) Z sup{llglle/va: g € LE, [9l2e/e-2) =1, ¢ > 2}, (2.18)

used in Chapter VII also to prove (gn(t) = 0o for ¢t < 2n/(n + 1)
(cf. Corollary VIL.42).

i. Let m be a positive integer. By Theorem X.8, there exists a {—1,+1}-
valued 3-array (€ : (i,7,k) € [m]®) such that if

fo=@/m2) 3T e i ®iE ® ra, (2.19)
(1.7, R Elm]?
then
[ fmlleo < K, (2.20)

where K > 0 is a numerical constant. (For the application of
Theorem X.8, note that the degree of polynomials with spectrum
in {rij @ rjr @ry: (i,4,k) € [m]*} is at most 23m2.) Then
A 3_5
I fmlle/l| fmlloo > m*™2 /K, (2.21)

which is unbounded for t < 6/5, and (2.17) follows.
ii. Let m be a positive integer, and consider the Riesz product

Ro=[[+rpe [[a+rpe [[a+ry). (222
ij=1 ij=1 ij=1

Then, |Rm || = 1, ||Rm |12 = 23™°/2, and therefore for all ¢ > 2,

11
|RunllLe <25™°/9, = 4= =1 (cf. Lemma VIL30).  (2.23)
P oq

Let

hm = Z Tij 034} Tk R Tik, (224)
(i,5,k)€[m]*
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and then, by Holder’s inequality and (2.23), obtain

3m

2
m3 = |E Rphm| <279 ||Aml| L. (2.25)

Put ¢ = m? in (2.25), and conclude from (2.24) and (2.18) that

A 1 6-5¢
G (0) 2 il N ey > (5 ) m*5F, (220

which implies (g (t) = oo for all t < 6/5.

Combining Corollary 3 and Lemma 4, we obtain

Theorem 5

6
TRV = ¢ exactly. (2.27)

Remark: (a ‘3/2-dimensional’ set). Theorem 5 signals that RY
behaves like a 3/2-fold Cartesian product of R. Indeed, viewing the
Littlewood 2n/(n + 1)-inequality as a precise statement tied to the

dimension of R", we could define the ‘dimension’ of any spectral set
F by

dmF =0p/(2 —0oF). (2.28)
Then, dim RY = 3/2. But this is cheating. For, we must define the
‘dimension’ of F' C R" intrinsically, using only ‘set-theoretic’ informa-
tion about F', and then establish the formula in (2.28). Notice, in this

regard, that the definition in (2.6) is completely general: if E is any
countably infinite set indexed by N2,

E={(zij): (i,j) € N}, (2.29)
then we can define
BY = {(ig, 2, wax) + (i, k) € N°}. (2.30)

In due course we will prove that the ‘dimension’ of EV — intrinsically
defined — equals 3/2.
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In the next section we further bolster the case that the ‘dimension’ of
{(risrimsran) = (6,5, k) € N°} is 3/2.
3 A Khintchin Inequality in ‘Dimension’ 3/2

We consider the n-dimensional Khintchin inequalities, which were among
the main motifs in Chapter VII and Chapter X. Recall that in
Chapter VII we expressed these inequalities by

Opn = g exactly

(Proposition VIL.31, (VIL.9.30), (VIL.9.31)), (3.1)
and in Chapter X, rephrasing (3.1), we dubbed R" = {r;, ® ---®r;, :
(j1,---,Jn) € N"} an ezact n-system, i.e.,

o g exactly ((X.10.6), (X.10.7), Definition X.25).  (3.2)

(The measurements dp and Jr,,. denote the same index; the notation
used is largely a typographical decision, and depends on the context.)
We recall: if F' is a spectral set, then

nr(a) =sup{||fllLe/p* :p>2, f € BL%}, a>0, (3.3)
and
o0p = inf{a:nr(a) < oo} ((VIL.9.29) and (VIL.9.30)), (3.4)

measurements that can be cast also in functional-analytic and prob-
abilistic frameworks; see Chapter X §9, §10, §14. The assertion in (3.1)
leads (via ‘decoupling’) to Bonami’s inequalities,

dw, = g exactly ((VIL.9.31)), (3.5)

which in turn lead to the question (Remark iii in Chapter VII §9): for
non-integer a € (1,00), are there spectral sets F' such that dp = «/27
(Ost