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Preface 

Most applied optimization problems involve constraints: What is the maximum 
profit that a manufacturer can make given a limited number of machines and a 
limited labour force? What is the minimum amount of fuel that a fleet of trucks 
can consume while making a specified set of deliveries? What is the smallest 
amount of silicon needed to etch an electronic circuit while respecting limits on 
signal propagation time, inter-wire distance, etc.? Applications of constrained 
optimization are everywhere in industry, business, and government.  

Of course, the solution returned by an optimization algorithm must also be 
feasible: we want the best possible value of the objective function that satisfies all 
constraints and variable bounds. Some optimization algorithms are not even able 
to proceed towards optimality until a feasible solution is available. In addition, the 
optimization question can be converted to a feasibility question, and vice versa. 
And what happens when an algorithm is unable to find a feasible solution? How 
do we know what went wrong? How do we repair the model? Questions of 
optimization, feasibility, and infeasibility are inextricably linked. 

There has been a surge of important developments related to feasibility and 
infeasibility in optimization in the last two decades, a trend that continues to 
accelerate even today. New and more efficient methods for seeking feasibility in 
difficult optimization forms such as mixed-integer programs and nonlinear programs 
are emerging. The first effective algorithms for analyzing infeasible models have 
been discovered and implemented in commercial software. A community of 
researchers in constraint programming has begun to integrate their knowledge and 
approaches with the optimization community. Unanticipated spin-off applications of 
the new algorithms are being found. It’s an exciting time. 

The goal of this book is to summarize the state of the art in recent work at the 
interface of optimization and feasibility. It should serve as a useful reference for 
researchers, graduate students, and software developers working on optimization, 
feasibility, infeasibility, and related topics. Readers having a reasonable grounding 
in optimization (linear and nonlinear programming, mixed-integer programming, 
etc.) should have no difficulty following the material.  

Lightweight coverage of topics in constraint programming, with an emphasis 
on constraint satisfaction problems, is included to illustrate the extensive overlap 
and convergence in the two literatures. An ideal version of the book would cover 
topics in constraint programming in the same depth as topics in optimization, but 
this is beyond the scope of this project: collecting and organizing the wealth of 
new developments relating to feasibility and infeasibility in optimization. I hope 
the resulting book is useful to both optimizers and constraint programmers, and 
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that it helps accelerate the ongoing merger of the two communities merge into a 
stronger hybrid. 
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Introduction 

To be, or not to be: that is the question… 
From Hamlet by William Shakespeare 

 
Shakespeare certainly hit the nail on the head: the most basic question of all is 
whether or not something exists: an object, a person or a solution that satisfies a 
given set of constraints. For Shakespeare, human existence was a fundamental 
question of life; for this book, existence of a feasible solution is a fundamental 
question of optimization. 

Why such interest in feasibility and infeasibility in the context of optimization? 
Surely it is most important to find the best (i.e. optimum) solution, rather than just 
any feasible solution? The questions of feasibility and optimality are in fact two 
sides of the same coin. First, the existence of a feasible solution is a very 
fundamental question: before you can determine which solution is the best, you 
must first determine whether or not it is even possible for a feasible solution to 
exist at all. Second, it is easy to convert an optimization question to a feasibility 
question (and vice-versa), so the two questions are fundamentally the same. For 
example, you can pose the feasibility question as to whether or not a solution 
exists with an objective function value that is at least as good as a certain stated 
aspiration value. Over a series of iterations this aspiration value can be adjusted 
until we can definitely answer that no solution exists beyond a certain value. That 
last feasible solution is the optimum value of the objective function, found by 
answering a series of feasibility questions. 

Looking at this the opposite way, it is common practice to pose feasibility 
questions as optimization problems. This is the basic idea of any phase 1 
technique: create an objective function that measures the degree of violation of the 
constraints at any given point, and then minimize this function. If a value of zero 
can be found for this phase 1 optimization problem, then a feasible point exists, 
otherwise the model may not be feasible. 

Third, there are unique and interesting questions associated with feasibility and 
infeasibility in optimization. For example, given a set of constraints that a solver 
determines to be infeasible, provide a diagnosis of why this is so. This question 
has grown in importance in recent years as optimization models have grown larger 
and more complex in step with the phenomenal increases in inexpensive 
computing power. One approach to this question is to isolate an irreducible 
infeasible subset (IIS) of the constraints, i.e. a (small) subset of constraints that is 
itself infeasible, but becomes feasible if one or more constraints is removed. This 
helps focus the diagnosis and model repair efforts and is especially helpful in very 
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large models. This approach is well summarized by Greenberg’s aphorism: 
“diagnosis = isolation + explanation” (Greenberg 1993). A related diagnostic 
question is this: given an infeasible model, what is the smallest number of 
constraints to remove such that the remaining constraints constitute a feasible set? 
Another is: what is the best way to repair the infeasible system (e.g. what is the 
smallest set of changes that can be made to the constraint right hand sides such that 
the set of constraints becomes feasible)? 

Many of the algorithms used in answering these diagnostic questions depend on 
assessing the feasibility of numerous subsets of the original set of constraints. 
Hence those algorithms operate much more efficiently if the feasibility status of an 
arbitrary set of constraints can be determined quickly (which is of course a 
fundamental feasibility question itself). This is not difficult for sets of linear 
constraints, but it can be extremely difficult and time-consuming to determine 
feasibility status at all when there are nonlinear constraints or integer restrictions 
on some or all of the variables. Hence one focus of this book is algorithms for 
improving the speed with which the first feasible solution can be found (if one 
exists) for the more difficult cases in optimization. 

A fourth major reason for interest in feasibility-related algorithms is the many 
applications that have been found for them. Some of these applications are surpris-
ing: data classification, training of neural networks, radiation treatment planning, 
analysis of protein folding, automatic test assembly, applications in statistics, etc. 
Some of these are briefly reviewed in Part III. 

Finally, the question of feasibility or infeasibility is a major overlap between 
the field of optimization and the field of constraint programming. Constraint pro-
gramming, arising from computer science, has special strength in seeking a yes/no 
answer to the question of whether a solution exists for a stated set of constraints; 
this is identical to the feasibility question in optimization. However, because of 
their different roots and traditions, constraint programming researchers approach 
the question in a different way and with different techniques. The two fields have 
begun to merge in recent years, resulting in stronger hybrid techniques. Constraint 
programming techniques and their links with optimization are addressed at an ele-
mentary level. 

The emphasis in this volume is on algorithms and computational methods, spe-
cifically practical algorithms for solving the feasibility/infeasibility related problems 
that are the main subject. The book summarizes the main developments over the last 
twenty years or so, a very active period for the field, spurred by improvements in 
computing power and an increase in the size and complexity of optimization models. 
It should prove useful for academics teaching and conducting research in the field 
and their graduate students, as well as practitioners. 

As opposed to a mathematical treatment, we take the involvement of a computer 
as a given: modern optimization problems are normally of such scale and complex-
ity that they simply cannot be solved without using a computer. The essential ele-
ment in solving a feasibility or optimization problem via computer is an efficient and 
effective algorithm. The computer implementation of these algorithms introduces a 
number of practical issues and complications, such as tolerances. These are also 
dealt with as they arise. 
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A Note on Theorems: There is a significant amount of mathematical develop-

ment underlying the algorithms and computational methods that are the main topic 
of this book. To keep the focus on algorithms, proofs are generally included where 
a theorem relates to whether an algorithm functions as intended. However, where 
theorems relate to mathematical underpinnings, the proof is generally omitted in 
favour of a simple reference to the original publication containing the proof.



PART I: SEEKING FEASIBILITY 

There are several good reasons for wanting to be able to reach feasibility quickly 
in a mathematical program. Some solution methods are unable to proceed to 
optimality without first reaching a feasible solution (most commonly for nonlinear 
programs). Overall solution speed is increased in some algorithms if a feasible 
solution is available, e.g. branch and bound solutions of mixed-integer linear 
programs (MIP) models can be much faster if a feasible incumbent solution is 
available early to help prune the subsequent tree. For many models, a feasible 
solution is all that is required (e.g. in scheduling applications). Finally, many 
methods for analyzing infeasibility require the repeated solution of subsets of the 
model constraints. Such methods are greatly speeded if the feasibility status of sets 
of constraints can be decided quickly; reaching feasibility rapidly is very helpful 
in this effort. 

As we will see in Chapters 2–5, there is a wide variety of algorithms for seek-
ing feasibility for all model forms. Most recently, there has been a great deal of 
progress in algorithms for reaching feasible solutions quickly for nonlinear pro-
grams and for mixed-integer linear programs. 

one extreme (in which case a feasible solution is easy to find) to tightly con-

is infeasible). The hardest feasibility problems, on average, are those in the middle 
range where the model is neither lightly nor tightly constrained. In the middle range, 
a great deal of search effort may be required to arrive at a definite determination of 

the feasibility status of the set of 
constraints. This pattern holds 
for many problems, including 
the classic satisfiability problem, 

isfaction programs, the connec-
tion subgraph problem, etc. 

The transition from mostly 
feasible instances of models to 
mostly infeasible instances is 
generally a rather sharp “phase 
transition”. A typical diagram 

 
Fig. P1.1. Typical easy-hard-easy pattern for deter-
mination of feasibility status 

lightly        tightly 
constrained    constrained 

Effort to 
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feasibility 
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Conrad et al. 2007) have noticed that the difficulty of determining feasibility status 
is directly related to how tightly the problem is constrained. They have observed a 
typical “easy-hard-easy” pattern as the model moves from lightly constrained at 

strained at the other extreme (in which case it is easy to determine that the model 

graph colouring, constraint sat-

A number of researchers (Mitchell et al. 1992, Mammen and Hogg 1997, 



of the phase transition and the average computing effort to solve an instance is 
shown in Fig. P1.1. The computational effort to determine the feasibility status 
typically peaks in the region of the phase transition. 

Surprisingly, Conrad et al. (2007) also observe in their experiments that 
proving the infeasibility of infeasible instances can be much harder than proving 
optimality in the computationally difficult part of the problem space for their 
particular connection subgraph application. This is likely a side effect of the fact 
that finding a single feasible solution proves feasibility, but to prove infeasibility 
you need to investigate all possible feasible regions. In most combinatorial 
problems this usually necessitates some kind of full expansion of the search tree, 
e.g. the full expansion of the branch and bound tree for a MIP to show that all leaf 
nodes are infeasible. In contrast, a single feasible leaf proves that a feasible 
solution exists and also helps to prune the subsequent tree search for the optimum 
solution by providing a bound on the optimum solution. 

Model Reformulation 

It is natural to work directly with the original model as supplied by the modeler. 
However this may not be the best form of the model for the purposes of seeking 
either feasibility or optimality. A given constraint can sometimes be algebraically 
manipulated so that it has the same mathematical properties (in the sense of the 
combinations of variable values that satisfy it) but has much better characteristics 
for use in algorithms for seeking a feasible or optimal point. This is true for all 
model forms, but is especially true for the more difficult NLP and mixed-integer 
NLP forms. We assume throughout Part I that the model has been put into the 
most suitable form for feasibility-seeking before the listed algorithms are applied. 
We next describe some reformulations that render constraints easier to satisfy. 

Amarger et al. (1992) developed a system specifically for algebraically refor-
mulating nonlinear models so that they are easier to solve. Their REFORM system 
preprocesses models formulated in the GAMS algebraic modeling language 
(Rosenthal 2007) to produce reformulated GAMS code that has better solution 
properties. The reformulations normally have one of these effects: 
• Avoid functions that may be undefined, 
• Reduce the degree of nonlinearity, 
• Convexify a nonlinear model, or 
• Improve scaling of variables and constraints. 

Undefined functions caused by division by zero are avoided by multiplying 
the constraint through by the denominator. For example, x/( y – 1) ≤ 2 becomes 
x – 2 y ≤ – 2, which removes the undefined behaviour at y = 1, and simultane-
ously converts the nonlinear constraint into a simpler linear form. 

Undefined functions caused by logarithms and exponential exponents of non-
positive values are avoided by exponential transformations. Amarger et al. (1992) 
provide this example: log(x/( y – z)) ≤  d is transformed into x – (y – z) ed ≤ 0. Not 
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only is the undefined behaviour avoided, but the transformed constraint is linear 
when d is fixed. The constraint y – z ≥ 0 can also be added to the model if needed. 

As seen above, nonlinearity can also be removed or reduced by multiplying 
through by the denominator. Consider the frequently-occurring nonlinear ratio of 
two functions such as g1(x)/g2(x) ≤ b. This is reformulated as g1(x) – b⋅g2(x) ≤ 0 
by this tactic, which is linear if both g1(x) and g1(x) are linear. In addition, 
approximations that are less nonlinear are known for various commonly used 
functions, and these can be substituted where appropriate. Finally, some nonlinear 
terms can be substituted out. For example, if the variable x only ever appears in 
the term x3, even if this term appears in several different places, then x3 can be 
replaced everywhere by another variable e.g. w. The value of x can be recovered 
afterwards, when the value of w has been fixed, by solving the expression x = w1/3. 
This idea extends to longer terms as well, especially if they occur frequently. 

Convexifying the constraints of a nonlinear model greatly improves the ability 
of nonlinear solvers to find a feasible point. Posynomial functions (these have 
terms that are products of nonnegative variables with arbitrary exponents and 
positive coefficients) are easy to convexify by exponential transformations. For 
example, using the transformations x = e X, y = eY, and z = eZ, the nonconvex 
posynomial function x0.6/y + 1/z ≤ b is transformed to the convex function e(0.6X–Y) 

+ e–Z ≤ b. Using exponential functions can make even non-posynomial functions 
convex, for example log(x – a1) + log( y – a2) ≤ b is convexified to X + Y ≤ b using 
the transformations (x – a1) = e X and ( y – a2) = eY; this forms a convex feasible 
region if x and y appear only in this function, but the system is nonconvex if the 
transformation equalities must be included in the model because x and y appear 
elsewhere. In that case, the system is convex if the transformation equalities can be 
relaxed to (x – a1) ≥ e X and ( y – a2) ≥ eY (examples from Amarger et al. (1992)). 

Amarger et al. (1992) also point out the importance of proper model scaling. 
The general idea is to avoid having variable or constraint body values of widely 
differing scales (e.g. x1 has a range of 0.00001 to 0.00005 while x2 has a range of 
100,000 to 500,000). Keeping the variable and constraint values in the same 
general range avoids many numerical problems and improves the ability of solvers 
to reach both feasibility and optimality. Scaling is normally accomplished by 
multiplying variables and constraints by constant factors so that their ranges are 
approximately equalized. 

Tightening of the variable bounds is also very helpful, especially for nonlinear 
models, a topic we will return to in Secs. 5.6.1. and 6.1.1. Nonlinear solvers are 
much more likely to reach a feasible point if started near the feasible region, and 
tightening the variable bounds improves the chances of finding a good initial 
point. 

Special rules are also available to reformulate models containing binary or 
integer variables which result in simpler models for which it is faster to find an 
integer-feasible point. If there are simple bounds on variables such as x ≤ by where 
x is a continuous variable, y is binary, and b is a constant, then b can be reduced as 
tighter bounds on x are deduced (Amarger et al. 1992). Reduction rules are 
available for constraints composed entirely of binary variables, and of the form 
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∑ ∑
+ −

≤−
N N

kkjj byaya  

where N + and N − are disjoint sets of variable indices, and all of aj and ak are 
strictly positive constants. Crowder et al. (1983) show that the following deduc-
tions can be made: 
• If ba

N
k >−∑

−

 then the constraint cannot be satisfied and the model is 

infeasible. 
• If ba

N
j ≤∑

+

 then the constraint is always satisfied and can be removed from 

the model. 
• If ∑

−

+>
N

kj aba  then yj can never be equal to 1, and hence can be fixed to 0. 

• If ∑
−

+>
N

kk aba '  where ak’∈N −, then yk’ must be equal to 1 and can be fixed to 

that value. 
The bounds on integer variables can also be tightened as a by-product of the 

tightening of continuous variables. For example if an integer value has an upper 
bound of 7, but treating it as continuous during bound tightening shows a tight-
ened continuous bound of 6.8, then the integer bound can be reset to 6. 

Amarger et al. (1992) give several examples of models in which no feasible so-
lution can be found until the model is reformulated. 
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1 Preliminaries 

This chapter provides basic definitions and explanations that we need to get 
started.  Many related terms are defined in the online Mathematical Programming 
Glossary (Holder 2006). 

1.1 The Optimization Model 

A standard optimization model consists of an objective function, a set of con-
straint functions, bounds on the variables, and declaration of variable types, as 
shown in in Eq. 1.1: 

objective function:

( functional) constraints:
variable bounds:

variable types:

 {min, max}  f (x) 
subject to: 
    gi(x) {≤, =, ≥} bi, i =1…m 
    l ≤ x ≤ u 
    xj is {real, integer, binary},  j = 1…n 

(1.1)

Vectors and arrays are shown in boldface. The objective of the optimization is 
to find values for the variables that provide a maximum or minimum value for 
f (x), while respecting all of the restrictions on the values that variables can take, 
including the constraints, the variable bounds, and the variable types.   

There are m functional constraints (often referred to simply as constraints). The 
bi constant is often referred to as the right hand side (RHS) of the constraint while 
gi(x) is often referred to as the constraint body or left hand side (LHS).  The con-
straints may be doubly bounded, e.g. 

ii upperilower bgb ≤≤ )(x , but this is easily con-
verted to the form in Eq. 1.1 by using a pair of inequalities. It is common to see 
the functional constraints expressed in this doubly bounded format, in which case 
less-than inequalities are constructed by setting 

ilowerb , greater-than ine-
qualities by setting =

iupperb
ii upperlower b= . 

There are n variables which may have upper and/or lower bounds. The variable 

completely unbounded, or unbounded in one direction only).  A frequently-used 
variable bound is simple nonnegativity, i.e. xi ≥ 0. The lower and upper bounds 
can be omitted for binary variables since they are implied.  Binary variables are a 

= −∞

special case of integer variables, and hence most statements about integer 

∞  , and equality constraints by setting b 

bounds are constants, and may be ∞ and ∞ respectively (i.e. a variable may be −



The various classes of optimization models are obtained by suitable choices in 
Eq. 1.1.  For linear programs (LP), f(x) and the gi
xj are real-valued.  Because of the linear format, models are often written as matri-
ces in which the functional constraints form the rows and the variables form the 
columns.  Because of this, rows is often used as a synonym for functional con-
straints, and columns as a synonym for variables in linear models. 

For nonlinear programs (NLP), at least one of f(x) or one of the gi(x) is nonlin-
ear in form, and all xj are real-valued.  Mixed-integer linear programs (MIP or 
MILP) are linear programs in which at least one xj is integer or binary-valued and 
a least one variable is real-valued (for simplicity of reference, we will consider 
mixed-integer programs to include all combinations of at least one integer or bi-
nary-valued variable with any number of other real, integer, or binary variables).  

This work concentrates on the restrictions placed on the possible variable val-
ues by the constraints, the variable bounds, and the variable types.  For ease of ex-
position, we may use “constraints” to mean any of these restrictions, and will 
make it clear by context when we intend to refer specifically to functional con-
straints.  The objective function is often ignored, but can be important, e.g. when 

1.2 Measuring Infeasibility 

The most common measure of the infeasibility associated with an individual vio-
lated constraint is the difference between gi(x) and bi, i.e.: 

constraint type constraint violation 
gi(x) ≥ bi i i
gi(x) ≤ bi i i

i i i i

A similar measure applies to violated variable bounds: 

bound type bound violation 
xj ≥ lj j j
xj ≤ uj j j

j j j j j

In practice, most solvers do not consider an individual constraint or bound to be 
violated unless the constraint or bound violation, as defined above, exceeds some 
tolerance ε, frequently on the order of 1×10 .  The constraint or bound violation is 
defined to be zero for satisfied constraints and bounds. 

specific distinction is made. 
variables in this book can be taken to apply equally to binary variables unless a 

binary nonlinear programs, etc.   
Suitable definitions can also be created for mixed-integer nonlinear programs, 

objective function. 
considering how close the first feasible solution is to the optimum value of the 

b  – g (x) 
g (x) – b  

g (x) = b  |g (x) – b | 

l  = x  = u | l  x  | 

l  x 
x   u 

–
–
–

–6

(x) are all linear in form, and all 
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A function tolerance test as described above is easy to implement, but is se-
verely impacted by row scaling issues. Consider the following example: 

scaling factor constraint constraint violation at x = 3.5 
1 x2 ≤ 9 12.25 – 9 = 3.25 
10 10x2 ≤ 90 122.5 – 90 = 32.5 

1×10  (1×10 2  1.225×10  = 3.25×10

At a scaling factor of 1, the constraint violation is 3.25 at x = 3.5, well above the 
standard tolerance of 1×10 , hence the constraint fails the function tolerance test 
and is considered violated.  If the same constraint is multiplied by a scaling factor 
of 10, then the constraint violation also increases by the scaling factor, giving a 
constraint violation of 32.5, indicating a severely violated constraint, even though 
it is simply a scaled version of the original constraint evaluated at the same point.  
But if a scaling factor of 1×10  is applied, then the constraint violation is just 

, well below the standard tolerance, so the constraint is considered satis-
fied! This example shows that any constraint can be considered violated, severely 
violated, or satisfied, depending on its row scaling. 

vent the solver from treating constraints differently.  Any solver that uses a 
function tolerance test to assess the degree of infeasibility will work harder to sat-
isfy some constraints than others since some will appear to be more violated due 
to scaling issues.  It may even consider some constraints to be satisfied when they 
are in fact violated.  Issues such as this underlie the phenomenon of one solver 
considering a solution to an optimization model to be feasible while another con-
siders the identical solution to be infeasible. 

Greenberg (2003) points out that relative tolerances are also in common use.  
For example, if we have a value v compared to some referent value V, then v is 

r|V | where εr is the relative tolerance.  Absolute toler-
ances as described earlier can be combined with relative tolerances: v is close 

r a a
The two most common measures of the infeasibility of a set of constraints in 

continuous variables are: 

• The sum of the infeasibilities (SINF): the sum of the constraint violations over 
all of the constraints and bounds. 

• The number of infeasibilities (NINF): the number of constraints or bounds whose 
violations exceed the tolerance ε. 

It is possible to have SINF > 0 at the same time as NINF = 0 because some of the 
constraints are violated, but none by more than ε.  Note also that NINF is just as af-
fected by scaling issues as SINF because the scaling may affect whether or not the 
constraint violation exceeds ε, as shown in the example. 

The row scaling problem is avoided if infeasibility is measured in the variable 

distance between the current point and the closest feasible point, which is the 
space instead of the function space. Infeasibility can be measured as the Euclidean

enough to V if |v–V|≤ε |V|+ ε  where ε  is the absolute tolerance. 

close enough to V if |v –V|≤ε

3.25×10–7

–6

–6

–7)x  ≤ 9×10–7–7 –6 –7 –7 –  9 ×10

coefficients to about the same scale.  This alleviates the problem, but does not pre-

For this and other numerical reasons, most solvers scale the model prior to
solution by applying multipliers to the rows and columns to try to bring all of the 
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(1997, chapter 5)), among others.  In projection algorithms, the orthogonal projec-
tion of an infeasible point is defined as the closest feasible point (Xiao et al. 
2003).  As described later, the Euclidean distance from a given point to the closest 
feasible point on a linear constraint is easily obtained.  However it is much more 
difficult to obtain exactly for nonlinear constraints, though approximations are 
readily available. 

Chinneck (2004) defines the feasibility vector for an individual constraint as the 
vector extending from an infeasible point to its orthogonal projection on the con-
straint.  The length of the feasibility vector is identical to the Euclidean distance 
between an infeasible point and the closest feasible point on a single violated con-
straint.  This can be extended to define a measure for the total infeasibility of a set 
of constraints: the sum of the lengths of the feasibility vectors (SLVF).  As usual for 
numerical reasons, a tolerance ε may be applied to determine whether or not the 
constraint is violated.  In this case, NINF means the number of constraints whose 
feasibility vector lengths are longer than ε. 

As discussed extensively by Chinneck et al. (Chinneck 2004, Ibrahim and 
Chinneck 2005), the feasibility vectors (or their approximations in the case of 
nonlinear constraints) for a set of violated constraints can be combined in numer-

sensus vector is normally an approximation only, so the process can be repeated in 
a cycle, which has been proved to terminate under certain conditions (Censor and 
Zenios 1997).  However, the length of the consensus vector can also be used as an 
approximate measure of the total infeasibility of a set of constraints.   

As measures of infeasibility, the lengths of the feasibility and consensus vectors 
and SLVF have the desirable property of being immune to row scaling problems.  
However they can be affected by column scaling.  Fortunately, good column scal-
ing is usually simpler to achieve than row scaling, and has a more intuitive mean-

about the same impact in every dimension so that the Euclidean distance to feasi-
bility is about as accurate in every dimension. We will return to the use of these 
variable-space measures of infeasibility in Sec. 5.5. 

tion of infeasibility can be different if some or all of the variables are integer or 
binary valued, as in mixed-integer programming.  Now we must consider not only 
SINF, NINF, SLVF, or consensus vector length, but also how far the integer or binary 
variables are from integrality.  This integer infeasibility is defined in various ways, 
mainly for the purpose of selecting the next node in a branch and bound search 
tree (more on this in Chap. 3). One common definition is as follows: define the in-
teger infeasibility of an integer variable as the distance to the closest integer value, 
i.e. where xj is an integer variable that does not currently have an integer value, its 

j j j j j j

rounded down to the closest integer value, and ⎡xj⎤ is the value of xj rounded up to 
the closest integer value. 

extensively developed in recent years by Censor et al. (e.g. Censor and Zenios 
approach taken by projection algorithms, originated by Cimmino (1938) and 

ous ways to create a single consensus vector that can be applied to the current 
in feasible point to move it onto the closest feasible point in a single step.  The con-

ing. The variables should be scaled so that a given error (e.g. a 1% error) has 

Thus far we have considered models in continuous variables only. The defini-

integer infeasibility is the minimum of (x – ⎣x⎦, ⎡x⎤– x ), where ⎣x ⎦ is the value of x  

  1 Preliminaries 4



The integer infeasibility of the entire model is then taken as the sum of integer 

number of integer variables that do not have integer values at the current point. 
Note that tolerances also affect the decision as to whether an integer variable is 

relative tolerance is often used: 1,000,000.1 is close enough to 1,000,000 to be 
rounded to the integer value, but 1.1 is not close enough to 1 for a similar round-
ing.  For integer rounding decisions, it is common to consider v close enough to its 
integer rounding if ⎣ ⎦ vvv rε5.0 ≤+− .   

Other measures of infeasibility are available for specific classes of optimization 
models.  The duality gap can be calculated for linear programs; this is the differ-
ence between the primal objective function value for a primal feasible solution and 
the dual objective function value for any dual feasible solution, and can be used as 
a measure of distance from optimality.  When applied during a phase 1 solution 
this is another measure of the infeasibility of the current point. 

Different feasibility-seeking algorithms use different measures of infeasibility.  
This will be an important theme in Part I of this book. 

infeasibilities over all of the integer variables. Another measure is simply the 

considered to have an integer value or not. As Greenberg (2003) points out, a 
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2 Seeking Feasibility in Linear Programs 

equal zero) is always a basic feasible solution for an LP in a variation of canonical 
form that consists entirely of ≤ inequalities in which every element of b is non-
negative, and all variables are nonnegative. Similarly, network LPs in which the 
arc flow lower bounds are all zero admit the origin as a feasible solution. 

advanced methods of seeking feasibility are needed. In the simplex method, the 
most popular technique for reaching feasibility for general LPs is the two-phase 
method for reasons of numerical stability. The Big-M method, commonly pre-
sented in textbooks, is seldom used in implemented solvers.  

More recently, infeasible-path interior point methods have been developed that 
do not necessarily reach feasibility until they also reach optimality. These tech-
niques are beyond the scope of this book. See Wright (1997). 

While reaching feasibility in LPs may seem to be a well-understood problem, 
there are a variety of heuristics which can speed the process considerably, such as 
crash starts, warm starts, and crossover from an infeasible solution. 

2.1 The Phase 1 Algorithm 

Given a basic feasible solution, the simplex algorithm is efficient at moving to a 
better adjacent basic feasible solution. It simply repeats this operation until recog-
nizing that no further improvement is possible, and returns this final basic feasible 
solution as the optimum solution. As mentioned above, the difficulty with general 
LPs is that no basic feasible solution is immediately obvious except in very special 
cases. The phase 1 method addresses this problem by introducing nonnegative ar-
tificial variables into the problem so that a basic feasible solution is immediately 
available at the origin in the artificial space. A phase 1 objective function is also 
introduced which reaches its optimum value when the artificial variables are    

in this special form, e.g. includes equality or ≥ constraints, or has negative entries

A general linear program has the form {min, max} cx, subject to Ax {≤, ≥, =} b,   
l ≤ x ≤ u, where c is a 1× n row vector, x, l, u, and b are n × 1 column vectors, and 

feasible solution for certain linear programs. For example, the origin (all variables 

It is more difficult to find a first feasible solution when the general LP is not    

in b. In these cases, the origin is no longer available as a feasible solution, so more 

A is an m × n array, all consisting of real numbers. It is simple to find an immediate 



Without loss of generality, let us initially assume an LP in which all variables 
are restricted to be nonnegative, and all of the elements of b have nonnegative 
values. With these restrictions, the constraints that eliminate the origin as a basic 
feasible solution are the equality constraints and ≥ constraints that have strictly 
positive entries in b. To permit the origin as a feasible point, we introduce a non-

i

i i i i i i i

i i i i
The origin is a basic feasible solution for this phase 1 LP, hence the simplex 
method is able to initialize and iterate towards an optimum solution. 

If the phase 1 LP terminates at an optimum solution in which W = 0, then it has 
found a point at which the artificial variables can be dropped and all of the origi-

objective function. Ordinary simplex iterations then proceed to the optimum of the 

function is normally included in the phase 1 matrix and updated as a nonbinding 
row so that it is in proper form when it comes time to solve the phase 2 problem. 

On the other hand, if the phase 1 LP terminates at an optimum solution in 
which W > 0, then we know that the original LP is infeasible. W represents the 
sum of the violations of the equality and ≥ constraints, hence the size of W at the 
optimum solution is in some sense a measure of the size of the infeasibility. This 
notion can be generalized if the LP is fully elasticized (see Sec. 6.1.4). Other 
properties of the phase 1 solution, such as the dual prices of the slack variables, 
are useful in analyzing the cause of the infeasibility, as explained in later chapters. 

There are some minor potential difficulties if the phase 1 solution terminates 

have a value of zero and yet be in the basis. This can happen when the model has 
redundancies. However this is easy to recognize and handle. Dantzig and Thapa 
(1997, pp. 81– 82) list three ways to handle this problem, the simplest of which is 
to simply pivot the artificial variable out of the basis. This is done by choosing a 
nonzero element in a column for an original variable in the row for which the arti-
ficial variable is basic, and performing the pivot. 

Note that it is possible to formulate a phase 1 that includes only a single artifi-

 

then we are at feasible solution for the original problem Details follow. 
driven to their lowest possible values; if all artifical variables achieve a value of  zero,

xthe inequality a x ≥ b  is replaced by a
negative artificial variable y
(i)  + y ≥ b , and (ii) the equality  a x = b  

 for each such nonstandard constraint i, as follows  

process now initiates phase 2 at the current point by dropping all of the artifi-

is replaced by a x  + y = b . The phase 1 objective function is to minimize W  =Σ y .  

cial variable, however for implementation reasons this variant is not used in practice.

with W = 0 but the solution is degenerate. In this case, an artificial variable may 

See Nazareth (1987, pp. 147–149) for details. 

nal constraints are satisfied, i.e. a feasible point for the original problem. The solution

cial variables and the phase 1 objective function, and re-introducing the original 

original objective function. Note that for efficiency reasons, the original objective 
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2.2 The Big-M Method 

The Big-M method requires the introduction of the same artificial variables as in 
the phase 1 method described above. The difference lies in how the artificial vari-

which is used as a penalty to discourage the inclusion of any artificial variables in 
the basis. The method works towards feasibility and optimality simultaneously 
within a single phase by using an appropriate form of the objective function:  

• for maximization: max Z = cx – My, 
• for minimization: min Z = cx + My. 

As for the two-phase method described above, feasibility is recognized when 
all of the artificial variables are driven to zero. This may not happen until optimal-
ity is also reached. 

The practical difficulty with the Big-M approach is that the large multiplier in-
troduces numerical difficulties in the solution by dominating the calculations, 
however if the value of M is too small, then the procedure will terminate with an 
infeasible optimum solution. See Padberg (1999) for guidelines on choosing a 
suitable value for Big-M. Because of the numerical difficulties, the Big-M method 
is seldom used in practice. 

2.3 Phase 1 from Any Basis 

The phase 1 procedure given in Sec. 2.1 must start at the origin. A procedure that 
can be invoked from any given starting basis is preferable since it can be invoked 
when feasibility is lost (e.g. by accumulated rounding errors, or by changes to the 
model after it has been solved). As shown by Nazareth (1987), such a phase 1 pro-
cedure is possible if the upper and lower bounds on the variables are specifically 
considered (though this method applies equally well to singly-bounded or un-
bounded variables). 

Consider the usual equation format of the LP after any necessary slack and sur-
plus variables have been added: Ax = b. Partitioning the variables into the set of 
basic variables 0

Bx  and the set of nonbasic variables 0
Nx  at a given basis induces a 

similar partitioning of the A matrix into B0, the columns associated with the basic 
variables, and N , the columns associated with the nonbasic variables. The rewrit-
ten LP equation is then 

bxNxB =+ 0000
NB . 

Now the following relationship holds at any iteration:  
0000
NB xNbxB −= . 

either  its upper or lower bound. 
Given a basis, the values of the nonbasic variables are known (each nonbasic 

variable is at one of its bounds), and so all of the constant and variable values on 

The following phase 1 procedure considers that a variable can be nonbasic at   

ables are driven out of the basis. “Big-M ” refers to a large positive multiplier M, 

 0
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the right hand side of 0000
NB xNbxB −=  are known. Now we can solve for the 

values of the basic variables:  
)()( 0010

NB xNbBx −= − . 
Note that it may be numerically convenient to peg some of the nonbasic variables 

may be outside of their bounds during phase 1, i.e. the solution may be infeasible. 
The goal of the phase 1 procedure is then to drive all of the basic variables that are  
currently outside their bounds to within them.  

V as the set of basic variables that violate their lower bounds. Nazareth (1987) 
i  

 
and the phase 1 reduced costs reflect the rate of change of the sum of the infeasi-

0

normal manner towards feasibility. The cost component is reset to zero when a 
variable that is outside its bounds eventually satisfies them. 

When variables can violate their bounds, or can be nonbasic at either the upper 
or the lower bound, there are several conditions to consider when choosing the 
leaving basic variable during simplex iterations (see Greenberg (1978)):  

• A variable may be basic, outside its bounds and moving away from them, and 
hence will never be chosen as the leaving basic variable. 

• A variable may be basic, outside its bounds and moving towards them, in which 
case it may pass through the violated bound and become nonbasic at the 
opposite bound. 

• A variable may be basic and within its bounds, in which case it may become 
nonbasic at the first bound it meets. 
These conditions are checked when determining the leaving basic variable, and 

the basic variable that most restricts the change in the value of the entering basic 
variable is chosen as the leaving basic variable, as usual. Note that an entering ba-
sic variable may be decreasing in value. Any variables that satisfy their bounds are 
kept inside their bounds by this procedure, while variables that violate their 
bounds are gradually made to satisfy them. In other words, the number of infeasi-
bilities (NINF) is gradually reduced, eventually to zero if the LP is feasible. 

While this procedure is effective, the fact that it keeps a variable within its 
bounds once it satisfies them can be overly restrictive. In some cases it is prefer-
able to allow an entering basic variable to increase beyond the point at which the 
first currently-feasible basic variable encounters a bound because the overall sum 
of infeasibilities is still decreasing. When choosing the leaving basic variable, 
there are up to two thresholds associated with every basic variable: 
• No thresholds if the basic variable is currently outside its bounds and moving 

away from them. 

(Nazareth 1987)). After solving for the values of the basic variables, some of them 

0

at values between their bounds; these variables are called superbasic (see 

if i∈V , and c = 0 otherwise, then the sum of the infeasibilities is given correctly 

This means that whenever infeasibility is discovered, the cost vector c is replaced 
by the vector just described, and the simplex method is able to iterate in the 

shows that if the prices and reduced costs (π) are set to  c  =  1 if  i   ∈ V , c = –1  i 

Let us define V as the set of basic variables that violate their upper bounds, and 

bilities when a nonbasic variable is introduced into the infeasible basis B .  
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threshold, the variable contributes to the sum of the infeasibilities. 
• Two threshholds if the basic variable is currently outside its bounds and 

moving towards them. The first threshhold moves the basic variable into its 
feasible range, but is not blocking; beyond this threshold the variable no longer 
contributes to the sum of the infeasibilities. The second threshold is at the 
second bound and beyond this point the variable again contributes to the sum of 
the infeasibilities. 

A more advanced procedure for choosing the leaving basic variable first sorts 
all of the thresholds in order from smallest to largest. It then looks at the rate of 
change of the sum of the infeasibilities in the zone between each threshold. The 

crease in the sum of the infeasibilities at the possible expense of increasing NINF. 
It is also possible to combine the two goals by examining the thresholds to reduce 
the sum of the infeasibilities as much as possible while not increasing NINF. This 
is done by choosing the threshold that is latest in the sorted list that does not in-
crease NINF. Note that while you may pass through a threshold that causes a cur-
rently feasible basic variable to violate its bounds, a later threshold may cause a 
variable that currently violates its bounds to satisfy them, hence there is no net 
impact on NINF. 

Nazareth (1987) describes the practical details of an efficient implementation of 
this scheme, including ways to immediately eliminate variables from considera-
tion as the leaving basic variable, and ways to combine the calculations into a sin-
gle pass through the candidate variables. 

2.4 Crash Start Heuristics 

A crash start in the context of linear programming is a procedure for generating a 
high quality initial basis. It may not be feasible, but it should be as close to feasi-
bility as possible and have other helpful characteristics such as providing a nearly 
triangular matrix (which speeds the calculations). An LP with m independent rows 

where one slack variable is added for each row. The main operation in crashing 
the initial basis is selecting m of the variables to be in the initial basis. 

Sec. 2.3 and the phase 1 procedure iterates to feasibility. 

threshold dividing the last zone that shows a rate of decrease in the sum of the 
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infeasibilities from the first zone that shows a rate of increase in the sum of  
the infeasibilities identifies the leaving basic variable. This emphasizes the de-

and n original variables is normally converted to a form having n + m variables, 

The FortMP software (Ellison et al. 1999) describes a fairly standard crash 
procedure. The unit basis consisting of the slack variables is first set up, and then 

culated. Then an appropriate phase 1 cost structure is assigned, as described in 
Once the basis is selected, the current values of the basic variables can be cal-

A basic slack variable is a candidate for an exchange with a nonbasic original 
nonbasic original variables are gradually exchanged for basic slack variables.  

variable if the pivot element at the intersection of the row for the basic slack variable 

• One threshold if the basic variable is currently within its bounds. Beyond this 
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selected in previous exchanges have nothing but zeroes on the current pivot row. 
If the rows and columns in the revised basis are ordered in the same order as their 
selection into the basis, this leads to a triangular basis. 

The row selected for an exchange should have as few nonzero elements as pos-
sible in columns that are candidates for exchange into the basis, on the principle 
described above. A variable is then selected for exchange into the basis, and all 
other candidate nonbasic variables that have a nonzero pivot element in the current 

lected, a matrix update would be required). 

the selection is based on sparsity as described. According to Ellison et al. (1999), 

degree of restriction, from most to least (i.e. basic variables that have a smaller 

without bounds). Fixed columns are never selected for exchange into the basis. 
The crash procedure can also be adjusted, primarily by changing the tie-breaking 
rules, to reduce the amount of degeneracy in the crashed basis. 

If the phase 1 procedure uses artificial variables, then the crashing procedure 
can be designed to reduce the number of artificial variables in the basis. Only rows 
corresponding to basic artificial variables can be selected. The nonbasic variable is 
chosen so that the pivot element is of reasonable size; this helps avoid basis singu-
larity. In this same vein, most solvers include a parameter that allows the user to 
select a minimum size for any pivot, usually set as a minimum fraction of the larg-
est element in the column. 

2.5 Crossover from an Infeasible Basis 

Crossover normally refers to the process of moving from a feasible point provided 
by an interior point LP algorithm to a nearby feasible basis (the basic solution is 
desirable because it gives access to sensitivity analysis, etc.). However, if an ad-
vanced infeasible basis can be provided, e.g. by a crash procedure, then it is some-
times possible to crossover from that basis to a nearby feasible basis. This opens 
the possibility of using heuristic methods to generate an initial solution that is rea-
sonably close to feasibility and then crossing over to a nearby feasible basis. The 
FortMP software (Ellison et al. 1999) includes techniques for providing a close-to-

There are many ties for the selection of the row corresponding to the basic vari-
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the way in which ties are broken has a big impact on the feasibility of the final 
basis. Ties for the basic variable row are broken in favour of equality constraints 
(so that artificial variables are removed from the basis), and after that according to the 

range are exchanged first). Rows having free variables are never selected. Ties for 
the nonbasic variable column are broken by preferring to exchange variables that 

row are marked as unsuitable for exchange into the basis later (because, if se-

have the largest range, with first consideration being given to free variables (those 

able and the column corresponding to the nonbasic variable to be exchanged when 

feasible initial point and for the subsequent crossover. 

and the column for the nonbasic original variable is nonzero. To avoid the work 
involved in updating the matrix to check this condition, various heuristics are applied, 
using the fact that there has been no update to the pivot element if the variable columns 
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At a basis provided by a crash start, the solution is likely to include a certain 
number of superbasic variables (nonbasic variables that are not equal to one of 
their bounds, but instead lie between their bounds). So-called purify or push algo-
rithms are then used to move superbasic variables to either a basic or nonbasic 
status, i.e. to arrive at a feasible basis. In FortMP (Ellison et al. 1999) there are 
separate push algorithms to remove primal superbasic variables and to remove 
dual superbasic variables. Both function in essentially the same way. The main 
idea is to examine the effect on the basic variables when the value of a superbasic 

of its bounds before any basic variable does, then the superbasic is simply 
switched to nonbasic status. If a basic variable reaches one its bounds before the 
superbasic does, then a basis change is made, in which the basic variable is made 
nonbasic and the superbasic is made basic. 

The version of the crash heuristics that tries to eliminate artificial variables is 
preferred for use with the push heuristics since it helps reduce the amount of work 
during the push phase. In addition, during the push phase, any original variables 
that are at their bounds after the crash are temporarily fixed at those values. 

improving the output of the crash step before purifying. FortMP uses a successive 
overrelaxation (SOR) algorithm (Press et al. 1992), an iterative technique for solv-

dure has three steps: (i) apply the crash heuristic to create an approximately lower 
triangular basis, (ii) apply the successive overrelaxation algorithm to improve the 
point provided by the crash heuristic, and (iii) apply the push algorithms to cross 
over to a feasible basis. With luck the SOR procedure produces a feasible solution 
directly, which eases the crossover to a basic solution. If it does not produce a fea-

2.6 Advanced Starts: Hot and Warm Starts 

If the LP solution process is stopped for any reason, the current basis and associ-

information provides a hot start which allows the solver to begin where it left off 

restarted. This may happen because the conditions being modeled have changed, 
but it is an essential part of two important procedures. In solving mixed-integer 
programs via branch and bound, numerous LPs are solved in a tree-structured 
search for a solution that is both LP-feasible and integer-feasible. Each LP is iden-
tical to a previous LP except that a bound on one variable has been adjusted so 

An approximate solution that is even closer to feasibility can be supplied by 

sible solution, then the push algorithms may yet do so, though this is not guaranteed.

ing systems of linear equations (see Sec. 2.8), for this purpose. The overall proce-

without repeating the set of iterations, including the phase 1 feasibility-seeking 

ated information may be stored. If the solution process is restarted later, this stored 

It frequently happens that minor changes are made to the LP model before it is 
iterations, which originally generated the stored basis. 
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variable is adjusted (in a manner similar to examining the effect of an entering 
basic variable on the existing basic variables). If the superbasic variable reaches one 
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that the previous LP solution is rendered infeasible. In LP infeasibility analysis 

differ by the addition or removal of one or several of the constraints or bounds. In 
cases such as these where the next LP to be solved is substantially similar (but not 
identical) to a previous LP, then a warm start that makes use of the previous solu-
tion and basis may be effective. This usually means that you can arrive at a new 
feasible (and optimal) solution in only a few iterations. 

In warm-starting, if the changes made to the model have not rendered the 
warm-start point infeasible, then the primal simplex iterations just pick up where 
they left off and continue iterating to optimality. However, if the changes to the 
model have made the warm-start point primal-infeasible (normally by a change to 

quickly reach primal feasibility at the dual optimum point, normally in a small 
number of iterations. 

Warm-starting an interior point method is considerably more difficult, but pro-
gress is being made. See Yildirim and Wright (2002) and John and Yildirim 
(2006) for details. 

2.7 Seeking Feasibility and Optimality Simultaneously 

An option often provided in simplex-based LP solvers is the ability to seek feasi-
bility and optimality simultaneously. This is what happens when using the big-M 
feasibility-seeking algorithm, of course, but there are better ways to combine the 
two that avoid the numerical difficulties associated with big-M. 

The simplest approach is to use a composite objective that weights the objective 
function and a measure of infeasibility, normally the sum of the infeasibilities. The 
MINOS software (Murtagh and Saunders 1987) uses a composite objective of the 
form 

specified weight. If the LP solver reaches an optimum solution for that objective 
function while the original model remains infeasible, then w is reduced by a factor 
of 10, and up to five such reductions are allowed before the algorithm gives up. 

Infeasible-path interior point algorithms for linear programming have been the 
subject of a great deal of research in the past decade. Also known as primal-dual 
interior point methods, these algorithms maintain an interior point that satisfies all 
of the inequality constraints, but that do not necessarily satisfy all of the equality 
constraints at any point before the optimum is reached. Details are beyond our 
scope here, but see e.g. Andersen et al. (1996) or Wright (1997). 

(see Sec. 6.2), several algorithms require the solution of sequences of LPs that  

minimize σw(cx) + (sum of infeasibilities), where σ = 1 for a minimization 

a constraint or bound, or by the addition of one), then the warm-start point  
will still be dual feasible. The solver then switches to the dual simplex method and will

objective function and σ = –1 for a maximization objective function and w is a user-
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2.8 Projection Methods 

There is a rich and extensive literature on projection methods for finding feasible 
points for sets of constraints that form a convex set, of which sets of linear con-
straints are an important special case. The properties of these methods are well-
studied, including guarantees of convergence for sets of convex inequalities. An 
excellent reference on this class of methods is Censor and Zenios (1997). Projec-
tion methods, under the name of constraint consensus methods, are also used as a 
heuristic technique for reaching near-feasible points in general sets of nonlinear 
constraints for which the convexity properties are not known (see Sec. 5.5); con-

infeasible point, easily given by ai, the ith row of the constraint matrix A in the set 

constraint. This closest feasible point is called the orthogonal projection of the 
violated point, and is obtained by moving in the gradient or anti-gradient direction, 
as appropriate, to the limiting value of the violated constraint (see Sec. 1.2). The 
vector showing how to move from the current infeasible point to the orthogonal 
projection point onto an individual violated constraint is sometimes called the fea-
sibility vector (Chinneck 2004), and denoted by fvi for the ith constraint ci. As has 

i i i i i
2

• ∇ci (x) is the gradient of the constraint, and ||∇ci (x)|| is its length. 
• vi is the constraint violation |ci (x) – bi|, or zero for satisfied constraints, 
• di is +1 if it is necessary to increase c(x) to satisfy the constraint, and –1 if it is 

necessary to decrease ci (x) to satisfy the constraint. 

The squared term in the denominator seems unexpected, but is easily explained. 
i i i

i i
priate gradient or anti-gradient direction to reach feasibility; the product is 

i i i i
2

i
The feasibility vectors for the violated constraints are used in different ways in 

the numerous varieties of projection algorithms (Censor and Zenios 1997; Censor, 
Elfving and Herman 2001). In all variants, the feasibility vectors must be com-
bined in some way to arrive at an update vector; this final vector is sometimes 
called the consensus vector (Chinneck 2004). Some main algorithm variants are: 

• Sequential projection algorithms update the current point by finding and 
applying the feasibility vector for one violated constraint at each iteration. The 
process continues until feasibility is achieved. The simplest version is cyclic 
(see below), but other variants are possible, see control sequences below. 

d∇c (x) / ||∇c (x)|| is a unit vector in the gradient or anti-gradient direction, as nec-

denoted by || fv ||. 

essary to reach feasibility. V  / ||∇c (x)|| is the number of units to move in the appro-

All methods in this category employ some form of a projection for each vio-

direction. The main idea is to use the gradient of the violated constraint at the current 
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vergence cannot be guaranteed under these conditions, but the algorithms are 
remarkably effective. 

lated constraint, most commonly a projection in the gradient or anti-gradient 

v d∇c (x) / | |∇c (x)|| . The length of the feasibility vector for the i th constraint is 

been shown by Xiao et al. (2003) and others, fv  = v d∇c (x) /  ||∇c (x)||  where: 

of linear constraints Ax{≤, ≥, =}b, to calculate the closest point that satisfies the 
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• Simultaneous projection algorithms calculate the feasibility vector for every 

feasibility is achieved. 

feasibility vectors for the violated constraints is combined in a weighted 
average. Component averaging (Censor, Gordon and Gordon 2001) on the 
other hand, realizes that not all of the constraints contain all of the variables. 

movement in that dimension is calculated. 
• Control sequences may be used to adjust which constraints are assessed at each 

iteration. In a cyclic control sequence, a sequential algorithm assesses the con-
straints in a round-robin fashion. The control sequence may also be almost 
cyclic (constraints or sets of constraints appear in every cycle, but not 
necessarily in the same order) or repetitive (Censor and Zenios 1997). Control 
sequences may be applied to individual constraints or to sets of constraints. 

The most violated constraint control determines which constraint is 
currently most violated and uses that constraint in a sequential update 

which determines a set of constraints that is most violated and uses those 
constraints in a simultaneous projection algorithm. 

 Voting heuristics may be used to determine which subsets of constraints to 

for some component xj than negative values, then increase the xj component 
by the average value of only the positive xj components in the feasibility 
vectors. Several variants of voting methods are described in Sec. 5.5. 

either lengthening or shortening it. 
• Oblique projections may be used instead of orthogonal projections. 

 

• Relaxation parameters may be used adjust the length of the consensus vector, 

the constraints which contain a particular variable are considered when the 
The final movement vector is therefore computed component-wise, and only 

In the usual simultaneous projection algorithm, the complete set of –

–

–

example, if the feasibility vectors of more constraints have positive values 

three orthogonal feasibility vectors. 

algorithm. A similar idea applies in the case of the remotest set control 

violated constraint and then combine them using some form of weighting  
to determine a final update consensus vector. This process if repeated until 

A simple example showing several steps in a cyclic orthogonal pro jectionl

shows the consensus vector resulting from the component-wise combination of the 
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combine in a simultaneous algorithm (Ibrahim and Chinneck 2005). For 

projection algorithm for three equality constraints is shown in Fig. 2.1 . Fig. 2.2  



                                                                     2.8 Projection Methods 

Versions of these algorithms have been 
introduced by many authors. One of the 
earlier methods for linear equalities is by 
Kaczmarz (1937), a cyclic orthogonal pro-

linear constraints. Another influential early 
development was the relaxation method for 
linear inequalities due to Agmon (1954), 
Motzkin and Schoenberg (1954), which 
consisted of a cyclic orthogonal projection 
method with relaxation. See Censor and 
Zenios (1997) for complete coverage of all 
related methods. 

While projection methods could poten-
tially be used in a feasibility-seeking phase 
1 procedure for general linear programs, 
they have not been adopted for this purpose 
in commercial LP solvers (though a succes-
sive overrelaxation procedure is optionally 
used as part of a phase 1 procedure in at 
least one solver: see Sec. 2.5). Instead they 
have been applied in special-purpose feasi-

bility seeking applications in radiation therapy planning, image reconstruction, 

A variant of projection methods known as randomized thermal relaxation algo-
rithms is used in the context of finding a maximum cardinality feasible subset for 
an infeasible set of linear constraints (see Sec. 7.6 for details on the algorithm). 
Experiments with feasible models comprised of large numbers of linear inequali-
ties show that the method is capable of reaching feasibility or near-feasibility very 
quickly (Amaldi et al. 2005). 

 
 

 
 

Fig. 2.2. The consensus vector (solid) 
results from the component-wise aver-
aging of the three feasibility vectors 
(dashed) 

orthogonal projection method 
Fig 2.1. Several steps in a cyclic 

21 

jection method. Cimmino (1938) first sug-  
gested a fully simultaneous method for 

etc. many of which are convex nonlinear problems if not linear. 



 

3 Seeking Feasibility in Mixed-Integer Linear 
Programs 

Mixed-integer linear programs (MIPs or MILPs) are much harder to solve than 
linear programs. The requirement that some variables take on integer or binary 
values means that simple linear programming cannot be used directly since it 
yields fractional values for the integer variables. The initial temptation is to relax 
the integrality restrictions, solve as an LP and simply round the solutions for the 
integer variables to the closest integer values. This frequently causes constraint 
violations or yields non-optimum solutions, and hence is ineffective in general 
(though there are a few simple special cases such as assignment problems for 
which LP is guaranteed to yield integral solutions). 

In general, MIPs are solved by a solution space subdivision strategy, normally 
via a branch and bound or branch and cut algorithm. Branch and bound has a long 
history, dating to the 1960s (Land and Doig 1960) and has been extensively de-
veloped since then (e.g. Johnson et al. (2000)). The general steps of the method, 
summarized in Alg. 3.1, are fairly standard, but there are numerous variations in 
the details. Branch and bound generates a tree structure. At each node in the tree 
an LP-relaxation of the MIP which ignores the integrality restrictions is solved. If 
the LP relaxation solution does not provide integer values for all of the integer 
variables, the solution space is subdivided and the process continues. 

Two of the most important aspects of branch and bound are the selection of the 
next node for expansion (Step 5), and selection of the branching variable (Step 2). 
Both can have a significant impact on the speed of the solution. After solving the 
LP relaxation associated with the chosen node in Step 6, the list of candidate vari-
ables for branching is known: it consists of the integer variables that have frac-
tional values at the optimum solution of the LP relaxation. In Step 2, one of the 
candidate variables is chosen for branching, thereby creating two new child nodes. 
Each child node is created by adding a new variable bound to the model in the 
parent node. For example, if some variable xj is chosen for branching, then it must 
be an integer variable that has a fractional value f in the LP relaxation solution of 
the parent LP, i.e. kL ≤ f ≤ kU, where kL is the first integer below f and kU is the first 
integer above f. One child node is created by adding the variable bound xj ≤ kL to 
the model in the parent node, and the other child node is created by adding the 
variable bound xj ≥ kU to the model in the parent node. 

depth-first, in which one of the two just-created child nodes is always selected for 
expansion next (or failing that, the most recently created node). This has the ad-
vantage of providing an immediate advanced start based on the LP relaxation solution 

A common node selection scheme for solving MIPs via branch and bound is 



for the parent node, thereby increasing the overall speed of solution. There are 
several common ways to choose between the two child nodes: (i) branch down, in 
which the child node with the added bound xi ≤ kL is chosen next, (ii) branch up, 
in which the child node with the added bound xi ≥ kU is chosen next, and (iii) other 
schemes, e.g. based on whether f is closer to kL or kU. 

 
INPUT: Mixed-integer linear program.  
0. Incumbent solution = φ. List of unexplored nodes = φ. 
1. Root node is the original model. Solve the LP relaxation of the root node.  
 1.1 IF LP relaxation is infeasible THEN exit with “infeasible” outcome.  
 1.2 IF LP relaxation is integer-feasible THEN exit with relaxation solution as 
  optimum. 
2. Choose a candidate variable in the current node for branching. 
3. Create two child nodes from the current node by branching on the selected 
 variable and add these new nodes to the list of unexplored nodes. 
4. IF list of unexplored nodes is empty THEN: 
 4.1 IF incumbent = φ THEN exit with “infeasible” outcome. 
 4.2 Optimum is incumbent solution: exit with “optimal” outcome. 
5. Choose a node from the list of unexplored nodes for expansion. 
6. Solve the LP relaxation for the chosen node. 
 6.1 IF LP relaxation is infeasible THEN discard the node and go to Step 4. 
 6.2 IF LP relaxation is feasible and integer-feasible THEN: 
  6.2.1 IF LP relaxation objective function value is better than  
    incumbent objective function value THEN  
    replace incumbent with this solution.  
  6.2.2 Go to Step 4. 
 6.3 Go to Step 2. 
OUTPUT: MIP status (optimal or infeasible) and solution. 
 
Alg. 3.1. General steps in the branch and bound method for solving MIPs 

 

MIP solutions via branch and bound have several important characteristics. 
First, it is possible that the solution process will not terminate, as illustrated in 
Chap. 6 in Fig. 6.5 (this outcome is omitted from Alg. 3.1 for simplicity). Second, 
if the MIP is infeasible, this is proven only by a full expansion of the tree in which 
the LP-relaxation at every leaf node is infeasible. Finally, the branch and bound 
tree can vary widely depending on the choice of the node selection strategy, the 
branching variable selection strategy, and the branching direction. One of the 
themes of this chapter is setting these policies in ways that promote reaching fea-
sibility quickly. 

Branch and cut is an addition to branch and bound in which new functional 
inequality constraints are added to the model. These new constraints have the ef-
fect of eliminating part of the feasible region for the LP relaxation, including the 
current LP-relaxation solution, without eliminating any of possible integer solu-
tions. See e.g. Rardin (1998) for details. 
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Reaching MIP feasibility quickly is important for several reasons. In some 
cases, a feasible solution is the only goal. When optimality is the goal, very diffi-
cult models may terminate before reaching an optimum, so finding a feasible solu-
tion quickly increases the likelihood that the solver will at least be able to report a 
usable solution. Finding a feasible incumbent solution quickly permits early prun-
ing and hence the development of a smaller search tree. Feasible solutions are also 
needed so that local search heuristics such as relaxation-induced neighbourhood 
search (RINS) (Danna et al. 2005) can be used. Finally, some methods for analyz-
ing infeasibility in MIPs require the repeated solution of variations of the original 
MIP in which only the feasibility status of the variant MIP is required (see Sec. 
6.3); finding a feasible solution quickly terminates the assessment, thereby speed-
ing the analysis. 

This chapter reviews the state of the art in algorithms for seeking feasibility 
quickly in MIPs and binary programs. A useful comparison of the performance of 
a number of the methods described here is provided by Berthold (2006). 

3.1 Pivot-and-Complement and Pivot-and-Shift Heuristics 

The pivot-and-complement procedure (Balas and Martin 1980) can be applied to a 

the binary type. It has an initial phase that tries to find a “good” binary-feasible 

with the additional requirement that all slack variables be basic, other than those in 
the upper bounding constraints. The algorithm first solves the LP relaxation of the 
binary problem, and then pivots to move all of the relevant slack variables into the 
basis. Some details follow. 

j

i

nonbasic at either the lower bound (0) or upper bound (1). Forcing the slack vari-
ables to be basic forces all of the binary variables to be nonbasic and hence either 
0 or 1. It is assumed that all elements of c are integers. 

The simplex tableau at any point is represented as 
Iixaax

Jj jijii ∪∈−+= ∑ ∈
}0{,)(0  

where I and J are index sets for the basic and nonbasic variables and 0 is the index 
of the objective function row. 

Five types of operations help achieve binary feasibility: 

1. Type 1 pivots maintain primal feasibility of the LP relaxation while ex-
changing a nonbasic slack for a basic binary variable. The pivot occurs in the 

i = 1…m}. The two formulations are equivalent because binary variables can be 
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optimality, but we will restrict our attention to the feasibility-seeking initial phase. 
The heuristic relies on the fact that a pure binary program has an equivalent LP 

point for an inequality-constrained BIP. The complete algorithm works towards 

and c  is  1× n is  equivalent to max{cx | Ax + y = b, 0 ≤ x ≤ 1, y ≥ 0, y  basic for 

binary integer linear program (BIP or BILP) in which all integer variables are of 

A binary program max{cx | Ax ≤ b,  x   binary, j∈N}, where A is m × n, b is m× 1, 



nonbasic slack column q and a row p for a basic binary variable such that 

⎭
⎬
⎫

⎩
⎨
⎧
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2. Type 2 pivots maintain primal feasibility of the LP relaxation and do not 
affect the number of basic binary variables. A slack is exchanged for a slack 
or a structural variable is exchanged for a structural variable while reducing 
the sum of the integer infeasibilities, defined as ∑

∩∈

−
NIi

ii aa }1,min{ 00 ,  by a 
positive Δ. 

3. Type 3 pivots exchange a nonbasic slack for a basic binary variable while 
sacrificing primal feasibility. The slack variable must enter the basis with a 
positive value. 

4. Complements involve flipping the values of a set of 1 or 2 binary variables. 
During the feasibility-seeking initial phase, variables are complemented to 
reduce a measure of infeasibility defined as ∑

∈

−
Ii

ia },0max{ 0 . A set S of 

0,0max},0max{ 00 >Δ≥
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−−− ∑ ∑∑
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5. Rounding and truncating solutions. 

The initial search phase which tries to achieve a first binary-feasible solution is 
summarized in Alg. 3.2. Balas and Martin (1980) report very good results when 
the feasibility-seeking initial phase is paired with a standard branch and bound 
method. 

Pivot-and-shift (Balas and Martin 1986, Balas et al. 2004) is a later extension of 
pivot-and-complement that can handle general MIPs. The initial integer-feasibility 
seeking search phase is a staged rounding procedure. It runs through a cycle of 
rounding and pivot and shift procedures such as pivoting out basic integer vari-
ables, reducing the number of basic integer variables, improving the objective 
without increasing integer infeasibility, and reducing integer infeasibility. Small 
neighbourhood searches are also used.  

Let x be the current solution at any point in the procedure. Initially x is the op-
timum solution of the initial LP relaxation. As before, I and J are sets of basic and 
nonbasic variables respectively. I1 and J1 are the sets of basic and nonbasic integer 
variables. The integer infeasibility at x is defined as 

⎣ ⎦ ⎡ ⎤ },min{
1

ii
Ii

ii xxxxZI −−=∑
∈

. 

There are 3 types of pivots analogous to those for pivot-and-complement: 

• Type 1 pivots reduce |I1| while leaving the primal solution feasible. A nonbasic 
continuous variable is exchanged with a basic integer variable. 

• Type 2 pivots improve the objective function and remain primal feasible while 
leaving |I1| unchanged. A nonbasic continuous variable is exchanged with a 

i∈I

nonbasic binary variables of size 1 or 2 can be considered for complementing

 if 
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basic continuous variable, or a nonbasic integer variable is exchanged with a 
basic integer variable. 

• Type 3 pivots reduce ZI while leaving |I1| unchanged and maintaining primal 
feasibility. Continuous variables are exchanged with continuous variables or 
integer variables are exchanged with integer variables. 

All three pivots happen in a column chosen by the specific pivot rule, and the 
row selected by the minimum ratio rule. 

 
INPUT: inequality-constrained BIP. 
1. Solve the LP relaxation for the binary model.  
 IF solution is binary THEN exit successfully. 
2. IF a type 1 pivot exists THEN perform the type 1 pivot that yields the  
 largest objective function value and go to Step 4. 
3. IF a type 2 pivot exists THEN perform the first such pivot,  
 ELSE go to Step 5. 
4. IF current solution is binary THEN exit successfully, ELSE go to Step 2. 
5. Try rounding or truncating current basic solution to see if that yields a  
 feasible binary solution. IF yes THEN exit successfully. 
6. Perform a type 3 pivot that minimizes the value of the infeasibility measure. 
7. Search for a single nonbasic binary variable whose complementing reduces 
 the value of the infeasibility measure. 
 7.1 IF none exists THEN go to Step 9. 
 7.2 Complement the variable yielding the largest improvement in the  
  measure of infeasibility. 
8. IF the current solution is infeasible THEN go to Step 7.  
 8.1 Check whether rounding or truncating current solution yields a feasible 
  binary solution. IF yes THEN exit successfully, ELSE go to Step 2. 
9. IF there is a pair of nonbasic variables whose complementing reduces the 
 current value of the infeasibility measure THEN complement the first such 
 pair and go to Step 8. 
10. Exit with failure message. 
OUTPUT: Binary-feasible point or failure message. 

Alg. 3.2. The pivot-and-complement heuristic for binary programs (Balas and Martin 1980) 

A rounding procedure is carried out at certain times to see whether a nearby in-

strict the search to a local neighbourhood of a feasible solution and running a MIP 
solver for this restricted problem (see Fischetti and Lodi (2003)). However since 
there is no integer-feasible solution available, Balas et al. (2004) define a 
neighbourhood around a close-to-integer-feasible solution, specifically  

⎣ ⎦ ⎡ ⎤ α≤−−∈= },min{:{ 1 iiii xxxxIiS  
for a small α such as 0.1. xi

* denotes the value obtained from xi by rounding. The 
neighbourhood restriction is composed of the pair of constraints 

under certain conditions. This is normally done by imposing a linear constraint to re-
teger-feasible solution exists. A small neighbourhood search is also conducted
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The logic of the integer-feasibility seeking initial search phase is summarized in 
Alg. 3.3. In practice, the feasibility-seeking stage is run for a limited amount of 
time. If no solution is found, or if the integer solution is found by rounding and its 
value is 40% or more worse than the unrounded solution, then the heuristic is 
abandoned in favour of the feasibility-seeking routines in the commercial MIP 
solver Xpress (Dash Optimization 2006). 

 
INPUT: MIP model. 
0. Solve the LP relaxation of the original MIP. 
1. IF rounding is successful, THEN exit successfully. 
2. Continue making type 1 pivots as long as they are available. 
3. If rounding is successful, THEN exit successfully. 
4. Continue making type 3 pivots as long as they are available. 
5. IF there was at least one successful type 3 pivot THEN: 
  5.1 Continue making type 2 pivots as long as they are available. 
  5.2 Go to Step 3. 
6. Conduct a small neighbourhood search.  
  IF successful THEN exit successfully. 
7. Exit unsuccessfully. 
OUTPUT: Integer-feasible point or failure message. 

Alg. 3.3. The pivot-and-shift integer-feasibility seeking search phase (Balas et al. 2004) 

Empirical tests reported by Balas et al. (2004) show that combining the pivot-
and-shift heuristic with Xpress is quite effective in reducing the time to optimality 
for general MIP models. 

3.2 The OCTANE Heuristic 

Balas et al. (2001) developed the OCTAhedral Neighbourhood Enumeration 
(OCTANE) heuristic for generating feasible solutions for pure binary programs 
(all variables are binary) within a branch-and-cut framework. The heuristic uses an 
n-dimensional octagon circumscribing the n-dimensional cube to associate facets 
with binary solutions: each facet of the octagon is associated with exactly one 
fully binary solution. Given a fractional solution, usually from the current LP-
relaxation solution, directions for improvement from this point (i.e. closer to fea-
sibility in our case) are proposed. Movement in this direction crosses the extended 
facets of the octagon, and based on the binary solutions associated with these fac-
ets, heuristic solutions are proposed. The central idea is to explore the binary solu-

report good empirical results. 
tions that are in the neighbourhood of the current fractional point. The authors
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min{cx|Ax ≥ b, xi binary, i = 1…n}. 
Given a fractional solution x and a di-
rection from x, the heuristic works by 
finding the first k intersections with the 
extended facets defining the octagon 
around the unit cube. The binary points 
associated with the intersected facets 
provide a list of possible solutions that 
can be checked for binary feasibility. 

binary solutions that are generated are 
shown by the black dots. 

development of the algorithm is actually centred at the origin, with the binary so-
lutions offset by ½: 

.
22

:
⎭
⎬
⎫

⎩
⎨
⎧ ≤≤−ℜ∈=

1x1x nK  

The regular octagon K* circumscribing this n-dimensional cube is given by 

{ } .1,
2
1:*

⎭
⎬
⎫

⎩
⎨
⎧ ±∈∀≤ℜ∈= nn nK δδxx  

δδ δδ
The main steps in the heuristic are summarized in Alg. 3.4. Sophisticated pro-

cedures are used to reduce the effort in finding the first k intersected facets, see 
Balas et al. (2001) for details. Efficiencies are also introduced by avoiding the 
enumeration of facets that lead to infeasible binary solutions. 

 
INPUTS: a fractional point x. 
0. 
1. Choose a direction vector a and consider the half-line r = x + λa, λ ≥ 0. 
2. Find the first k facets of K* intersected by r and their corresponding 
  associated binary points. 
3. FOR each of the k binary points found in Step 2:  
  3.1 IF feasible THEN exit (success). 
4. Exit (failure). 
OUTPUTS: a binary-feasible point or a failure message. 
 
Alg. 3.4. Main steps in the OCTANE heuristic (Balas et al. 2001) 
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The OCTANE heuristic applies 
to binary programs of the form 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1. Two-dimensional octagon around 
unit cube 

1st intersection

2nd intersection 

x 

There is a one-to-one correspondence between the binary points at K + ½·1 and 

The unit cube K in the theoretical 

sketched in Fig. 3.1. The associated 

the facets δδ of K* + ½·1, given by x = ½δδ + ½·1. 

x = x – ½·1. 

A simple 2-dimensional example is 



Some important implementation details: 

• Using directions that begin only at the initial LP relaxation optimum is not 
particularly effective in reaching feasibility. It is more effective to vary the 
initial point as well, hence the OCTANE heuristic is used within a branch-and-
cut framework by running it at different nodes of the enumeration tree. The 
starting point is the LP relaxation optimum for the chosen node. 

• The best direction a is one that points inside the feasible region. Several 
different methods of constructing a are used: (i) the average of the extreme rays 
(normalized) of the cone C defined by the optimal basis of the LP relaxation for 
the node, (ii) the inward normal to the objective function, and (iii) the weighted 
average of the extreme rays of C that correspond to the nonbasic slacks with 
positive reduced cost at the current x, where the weights are given by the 
inverse of the reduced costs. Berthold (2006) proposes an additional direction, 
the average normal ray, that performs well in the tests he carries out. 

• A heuristic is used to determine the number k of intersections to investigate. If 
there is an inequality that is violated at all of the first 10 binary points returned 
by the heuristic, then the enumeration is abandoned. Otherwise at most 100 
intersections are enumerated. 

• The enumeration takes place in the fractional variable space. In other words, 
the binary variables at x are fixed and only the fractional variables are reset to 
binary values. 

• The OCTANE heuristic is not run at every node of the branch-and-cut tree. It is 
run for every node in the first five levels of the tree, and thereafter at every 
eighth node. 

The empirical results by Balas et al. (2001) show that OCTANE is competitive 
with pivot-and-shift, at least in terms of the number of branch-and-cut nodes. CPU 
time may be less, however but this could not be directly compared for implemen-
tation-related reasons. 

3.3 The Feasibility Pump 

Fischetti et al. (2005) developed the Feasibility Pump heuristic as a way of finding 
a feasible solution for a MIP problem without branch and bound. The method al-
ternates between LP-relaxations (which satisfy the linear constraints) and 
“nearby” integer-feasible roundings of the LP-relaxation solutions (which satisfy 
the integrality restrictions). The back-and-forth action gradually “pumps” the in-
termediate solutions towards a final integer-feasible outcome. The authors report 
very good results on binary MIP problems.  

The feasibility pump assumes a MIP of the form min{cTx | Ax ≥ b, xj integer 

j
all j∈I. A rounding x~  of a point x is given by setting jx~ = [xj] if j∈I, otherwise 
with the LP relaxation of this MIP. A point x is integer-feasible if x  is integer for 
∀j∈I} where A is an m × n matrix. P ={x | Ax ≥ b} is the polyhedron associated 
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jx~ = xj, where [·] represents rounding to the nearest integer value. Note that a 
point is integer-feasible if x = x~. 

The L1 norm is used to measure the distance between a given point x on the 
polytope P and an integer point (not necessarily integer-feasible for the original 
MIP):  

∑
∈

−=Δ
Ij

jj xx |~|)~,( xx . 

j j j
definition of the L1 norm is modified as follows: 

∑ ∑∑
=∈ <<∈
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and additional constraints are added to the MIP model: 

jjjjjjjjj uxlIjxxxxxx <<∈∀≥≥−+= −+−+ ~:,0,0,~ . 
With this formulation, given a rounded point x~ , the closest point x* on the poly-
tope P can be found by solving the LP 

}:)~,(min{ bAxxx ≥Δ . 
The feasibility pump heuristic then alternates between points x* that are LP-

feasible (but not integer-feasible) and rounded points x~  that are integer-feasible 
(but not LP-feasible) in the hope that the two trajectories of points will converge at 

 
INPUT: MIP model. 
0. x* ← solution of the LP-relaxation of the original MIP model. 
1.      x~←[ x*]. 
2. IF x~ = x* THEN exit with x* as a feasible solution for the MIP. 
3. x*← }:)~,(min{arg bAxxx ≥Δ . 
4. Go to Step 1. 
OUTPUT: an integer-feasible solution to the MIP, x*. 
 
Alg. 3.5. Simplified feasibility pump algorithm 
 

Note that limits on the process such as a maximum number of iterations or a 
time limit have been omitted from Alg. 3.5 for simplicity. The algorithm can fail 
to converge, so such safeguards are necessary. Stalling can happen when x~  and 
x* do not change between iterations, so further safeguards are added to the algo-
rithm as described below. 

When all integer variables are binary, Fischetti et al. assume that the functional 
j

−+
jj xx and  variables and reduces the distance evaluation to 

If the MIP includes bounds on the integer variables l ≤ x ≤ u   for all j∈I, then the 

a point that is both LP-feasible and integer-feasible. The steps in the basic feasibility
pump are summarized in Alg. 3.5. 

constraints include the bounds 0 ≤ x ≤1  for all j∈I. This obviates the need for the
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To avoid stalling in this binary case, a certain number of the binary variables are 
flipped, as described in Alg. 3.6. 

The inputs in Alg. 3.6 include a time limit TimeLimit, a maximum number of 
iterations MaxItns, and a parameter to control the number of binary flips in case of 
stalling T. In Step 1.4, if stalling is detected when the new rounding is identical to 
the old rounding, then in Step 1.5 a random number of variables with the largest 
integer infeasibilities are flipped. Not shown in Alg. 3.6 is a further anti-cycling 
mechanism: if there is cycling in the most recent R iterations, then a random per-
turbation is applied as follows. For each j∈I generate a uniform random value 
ρj∈[−0.3, 0.7] and flip jx~  if 5.0}0,max{|~| * >+− jjj xx ρ .  

Fischetti et al. (2005) report very promising results on a variety of binary MIP 
models. The feasibility pump compares favourably to the Cplex 8.1 root node heu-
ristics, reaching feasibility more often and with better optimality gaps. 

 
INPUTS: binary MIP, TimeLimit, MaxItns, T. 
0. Itn←0. 
  x* ← solution of the LP-relaxation of the original binary MIP model. 
  IF x* is integer THEN exit with x* as a binary-feasible solution. 
  x~←[x*]. 
1. WHILE time < TimeLimit and Itn < MaxItns DO: 
  1.1 Itn←Itn + 1. 
  1.2 x*← ~ . 
  1.3 IF x* is integer THEN exit with x* as a binary-feasible solution. 
  1.4 IF jj xxIj ~][: * ≠∈∃ ~

  j
~  with highest |~| *

jj xx − . 
2. Exit with failure message. 
OUTPUT: a binary-feasible solution x* or a failure message. 
 
Alg. 3.6. The feasibility pump for binary MIPs (Fischetti et al. 2005) 
 

Bertacco et al. (2005) extend these ideas to better handle general mixed-integer 
models. In addition, they use the information provided by the feasibility pump to 
drive an enumeration process. Their extended version of the feasibility pump algo-
rithm is given in Alg. 3.7. Note that the system bxA ~~

≥  represents the original 
system of inequalities augmented with the additional inequalities required to han-
dle bounds on the integer variables.  

The score calculated in Step 1.3.2.1 of Alg. 3.7 measures the likelihood that 
jx~ will move from its current value to 1~ +jx  if jj xx ~* >  or to 1~ −jx  if jj xx ~* < . If 

cycling is detected in Step 1.3.1 then this score is calculated for each integer vari-
able, and in Step 1.3.2.2 a random number of the variables with the largest scores 

1.5 ELSE flip rand (0.5T,1.5T) elements x

arg min{Δ(x, x) : Ax ≥ b}

 THEN x ←[x*]. 

32    3 Seeking Feasibility in Mixed-Integer Linear Programs 



are moved up or down accordingly. The cycling check in Step 1.3.2.3 initiates a 
restart in either of two cases: (i) x~  is unchanged from the previous iteration, or 
(ii) )~*,( xxΔ  has decreased by less than 10% over the last KK iterations, where 
KK is a prespecified parameter. 

The rounding function is also altered as a further anti-cycling measure. Normal 
rounding is defined by ⎣ ⎦τ+= jj xx ]~[

the range of zero to one. 
 
INPUTS: general MIP, MaxItns, T. 
0. Itn←0. 
  
  IF x* is integer THEN exit with x* as an integer-feasible solution. 
  x~←[x*]. 
1. WHILE 0)~,( >Δ xx and Itn < MaxItns DO: 
  1.1 Itn←Itn + 1. 
  1.2 x*← }~~:)~,(min{arg bxAxx ≥Δ . 
  1.3 IF 0)~,( >Δ xx  THEN: 

   1.3.1 IF jj xxIj ~][: * ≠∈∃  THEN 
~

   1.3.2 ELSE 
    1.3.2.1 FOR each j∈I define score |~| *

jjj xx −←σ  

j j
    1.3.2.3 IF cycling detected THEN perform random restart. 
  1.4 ELSE exit with x* as an integer-feasible solution. 
2. Exit with failure message. 
OUTPUT: an integer-feasible solution x* or a failure message. 
 
Alg. 3.7. The feasibility pump for general MIPs (Bertacco et al. 2005) 
 

Bertacco et al. (2005) execute the feasibility pump in two stages. They deal first 
only with the binary variables while ignoring the general integers. When this stage 
is complete they then deal with all integer variables (including the binary vari-
ables) simultaneously. Alg. 3.6 is used during the binary stage with minor changes 
to the restart operation. The binary stage is exited when either (i) a binary-feasible 
solution has been found, or (ii) )~*,( xxΔ  has not changed in the last KK iterations, 

)~*,( xxΔ

that is most likely near 0.5, but also has small probabilities of being elsewhere in 

x* ← solution of the LP-relaxation of the original binary MIP model. 

    1.3.1.1 x ←[x*]. 

    1.3.2.2 Move rand (0.5T,1.5T) components x  with largest σ . 

 where τ = 0.5. A random τ is used instead, 

the binary stage is used as the initial point in the second stage. 
d uring
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based on ω, a uniformly distributed random variable in (0,1), and defined as τ(ω) = 

where KK = 70 in their empirical tests. The point giving the smalles t

2ω  (1 – ω) if ω ≤ 0.5 or τ (ω) = 1 − 2ω (1–ω) if ω  > 0.5. This gives a value of τ 



A third stage applies if no integer-feasible solution has been obtained by the 
end of the second stage. This is an enumeration around x~ =[xB] where xB is the 
best solution available at end of Stage 2, i.e. the x* associated with the smallest 

)~*,( xxΔ . This is carried out using a general-purpose MIP solver applied to the 
original MIP, but with the objective function replaced by ),(min BxxΔ . 

The empirical results reported by Bertacco et al. (2005) for this version of the 
feasibility pump are comparable to those for the general purpose MIP solvers 
Cplex 9.1 (Ilog 2006) and Xpress Optimizer 16.01.05 (Dash Optimization 2006). 
Stage 1 which focuses only on the binary variables is surprisingly effective even 
though all tested models include at least one general integer variable. Not only 
does stage 1 increase the overall speed, but it frequently finds an integer-feasible 
solution for the entire model, including the general integer variables. Alg. 3.6 can 
be applied to general MIPs if the integer variables are converted to sums of binary 
variables. Experiments comparing Alg. 3.7 to Alg. 3.6 confirm that Alg. 3.7 is 
much faster for general MIPs. 

Achterberg and Berthold (2005) extend Alg. 3.7 so that it produces feasible so-
lutions that are closer to the optimum. This is accomplished by taking the objec-
tive function into account during the course of the algorithm. The main idea is to 
gradually reduce the influence of the original objective function and gradually in-
crease the influence of the )~*,( xxΔ  measure as the algorithm proceeds. See 
Achterberg and Berthold (2005) for details. 

3.3.1 The Feasibility Pump for Mixed-Integer Nonlinear Programs 

Bonami et al. (2006) adapt the feasibility pump heuristic for use in finding feasible 
solutions for inequality-constrained mixed-integer convex nonlinear programs 
(MINLP). Similar in approach to the feasibility pump for MIPs, the nonlinear ver-
sion alternates between solutions that satisfy the constraints in the continuous re-
laxation of the MINLP and points that satisfy the integer restrictions in a linear 
approximation of the NLP.  

The integer variables are denoted by the set x and the real-valued continuous 
variables are denoted by the set y. The starting point is a feasible solution for the 
continuous relaxation of the MINLP. A linear approximation to the NLP con-
straints is constructed at this initial point, and a complete MIP is solved to find a 
point )ˆ,ˆ( ii yx  that satisfies the linear approximation as well as the integer restric-
tions (though it will not satisfy all of the original nonlinear inequalities in general). 
Finally another NLP is solved to find a point ),( ii yx that satisfies the continuous 
relaxation of the MINLP at step i and that is closest to the MIP point. The process 
iterates between solving a MIP based on an updated linear approximation at the 
current point and solving an NLP to find the closest point to the MIP solution that 
satisfies all of the constraints in the continuous relaxation. The process is summa-
rized in Alg. 3.8. Note that it is not necessary to solve the continuous relaxation in 
Step 0 to optimality if only a feasible solution is needed. 
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The linear approximation to the NLP that is used in Step 1 uses a technique by 
Duran and Grossmann (1986). It is an outer approximation based on the lineariza-
tion of the nonlinear constraints around the points produced by the solutions of the 
continuous relaxations. This is a simple truncated Taylor’s series expansion 
around each continuous relaxation solution point, i.e.  
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trix for the constraints. Note that the set of linear constraints includes all of the 
linearizations around the continuous relaxation solutions from Step 0 through Step 
i-1. It is a valid assumption that the constraint linearizations from previous steps 
continue to apply if all of the constraint inequalities are convex. In this case, the 
continually growing set of linear approximations of the constraints simply makes a 
better and better outer approximation of the original nonlinear constraints. 

 
INPUT: MINLP model. 
0. Solve the continuous relaxation of the MINLP using an NLP solver to 
  obtain ),( 00 yx . i←1. 

1. Solve the MIP with objective function 
1

)1(min −− ixx  and constraints  

  based on the  linear approximation of the NLP at the points 
  ),)...(,( 00)1()1( yxyx −− ii  to obtain )ˆ,ˆ( ii yx . 
  IF the MIP is infeasible THEN exit with failure message. 
2. IF )ˆ,ˆ( ii yx  satisfies all of the original constraints THEN  

  exit with )ˆ,ˆ( ii yx  as a feasible point for the MINLP. 
3. Solve the continuous relaxation of the MINLP solver to minimize 
  

2
ˆ ixx − ,  obtaining the point ),( ii yx . 

4. IF ),( ii yx  satisfies all of the integrality restrictions THEN 

  exit with ),( ii yx  as a feasible point for the MINLP. 
5. i←i +1. Go to Step 1. 
OUTPUT: an integer-feasible point for the MINLP or a failure message. 
 
Alg. 3.8. The feasibility pump for convex mixed-integer nonlinear programs 
 

Other valid linear inequalities can be added to the MIP approximation when it 
is known that all of the constraints are convex. At each iteration we have )ˆ,ˆ( ii yx  
which is outside the convex feasible region formed by the convex constraints, and 
the associated closest point ),( ii yx
Thus the constraint 0)()ˆ( ≥−− kTkk xxxx  is a valid inequality: it represents the 

where g(x,y) ≤ b is the set of inequality constraints and J (x,y) is the Jacobian ma-
⎝
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 which satisfies all of the original constraints. 



hyperplane orthogonal to kk xx ˆ− k

ened version of the MINLP feasibility pump that adds this new cut to the lineari-
zation at each iteration. 

It is also possible that the set of nonlinear constraints forms a convex set even 
though some or all of the individual constraints are not everywhere convex. 
Bonami et al. show that the linear approximations to the constraints continue to be 
valid for any constraint gj(x,y) that is nonconvex, provided that it is at its limiting 

j j
slightly: they use the constraint linearizations derived only from constraints that 

),( yx . The additional inequalities added by the strengthened version of the feasi-
bility pump are always valid for every pair of points )ˆ,ˆ( ii yx  and ),( ii yx :  the cut 
construction works for any exterior point and its closest feasible point on the 
boundary of the convex feasible region. 

When the region defined by the constraints is nonconvex, then the feasibility 
pump can fail to find an integer-feasible solution even if one exists. This is be-
cause the linear approximations to the constraints may construct an infeasible LP 
or MIP. However, if a particular constraint qualification holds, then Bonami et al. 
prove that neither the basic nor the enhanced feasibility pump can cycle. The con-
straint qualification concerns those inequalities that hold with equality at the current 
point ),( ii yx .  If the gradient vectors for those constraints are linearly independent 
at ),( ii yx  then the constraint qualification holds. Note that this is different than 
for the original feasibility pump for MIPs, which can cycle, but is easily explained 
by the fact that a complete MIP is solved in Step 1 of Alg. 3.8. The essential fea-
ture of the feasibility pump for linear MIPs is that it entirely avoids solving the 
complete MIP. 

The computational results reported by Bonami et al. for a selection of convex 
MINLPs are excellent. In most cases the feasibility pump (basic or enhanced) 
finds a feasible solution within a second. 

The authors also propose an optimizing version of the feasibility pump which 
iteratively adds constraints based on the objective function that require the next 
solution to be better than the current one. The subproblems that are solved are also 
slightly different in that they include the original objective function as well; see 
Bonami et al. (2006) for details. 

The convexity of the individual constraints and the convexity of their intersec-
tion may be difficult to assess analytically. Techniques for empirical evaluation of 
the convexity of both constraints and regions are available however, see Sec. 5.2. 

 through x .  Bonami et al. propose a strength-

are everywhere convex, or that hold with equality at the linearization around 

value, i.e. g (x,y) = b . They use this fact to alter the feasibility pump algorithm 

36    3 Seeking Feasibility in Mixed-Integer Linear Programs 



3.4 Branching Variable Selection by Active Constraints 
Methods 

Patel and Chinneck (2006) develop a new approach to selecting the branching 
variable that shows significant improvement over existing state of the art methods 
in finding the first integer-feasible solution in a MIP quickly. Changing the policy 
for branching variable selection can have a dramatic effect on the speed to first 
feasible solution. For example, for the MIPLIB2003 (Achterberg et al. 2006) mo-
mentum1 model, Cplex 9.0 with all default heuristics turned on times out after 
28,800 seconds, while one of the active constraints methods reaches a feasible 
node in just 67 nodes and 74.61 seconds. 

Most branching variable selection methods choose the candidate variable that 
maximizes the degradation of the objective function value at the optimal solution 
of the child node LP relaxation (Benichou et al. 1971, Dakin 1965, Eckstein 1994, 
Gauthier and Ribiere 1977, Linderoth and Savelsbergh 1999). This gives a tighter 
bound on the unsolved nodes. As pointed out by Linderoth and Savelsbergh 
(1999), most branching variable selection methods either estimate degradation in 
the objective function value of the LP relaxation or provide bounds on the degra-
dation. Many estimation methods are based on pseudo-costs introduced by 
Benichou et al. (1971). None of these methods focus on finding an integer-feasible 
solution quickly. 

Strong branching (attributed to Bixby by Linderoth and Savelsbergh (1999)) 
performs a number of dual simplex pivots to get a better lower bound on the deg-
radation in the objective function value at the LP relaxation optimal solution of the 
child nodes, prior to selecting a child node for expansion. Branching variable se-
lection can also be based on Special Ordered Sets (Beale and Tomlin 1970).  

In contrast to objective-oriented methods, the active-constraints methods rec-
ognize that the solution point in an LP relaxation is determined by the constraints 
that are active at the optimum. To move the optima of the child nodes as much as 
possible, choose the candidate variable that has the most impact on the active con-
straints in the parent node LP-relaxation optimum solution, instead of choosing the 
variable that has the most impact on the objective function. The general idea is 
that the child node relaxation optima should be far apart, so that they are as dis-
similar as possible in the hopes that one of the child nodes will never be expanded.  

The active constraint methods are related to the concept of surrogate con-
straints due to Glover (1968, 2003). In the most basic form, a surrogate constraint 
is any linear combination of a set of linear constraints. When the constraints are all 
inequalities, their linear combination yields a single linear knapsack inequality. 
This gives a heuristic method for estimating the impact of a variable on the objec-
tive function by calculating the ratio between the objective function coefficient 
and the constraint coefficient for each variable in the resulting knapsack constraint 
(the “bang for the buck”). Various weightings of the individual constraints can be 
used in constructing the linear combination. Numerous sophisticated methods for 
selecting the weightings and applying the heuristic have been developed. 
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The set of “active constraints” includes all equality constraints and all inequali-
ties that hold with equality at the current point (Greenberg 1996b). This means 
that all tight inequalities are included among the active constraints, both those as-
sociated with nonbasic variables, and those that are tight due to degeneracy. The 
point in question is the optimum point for the current LP relaxation. 

The active constraints methods estimate the impact that an individual candidate 
variable has on the active constraints by looking at two components: (i) how much 
influence the variable has within a particular active constraint, and (ii) how much 
a particular active constraint can be influenced by a single variable.  

Measures of the influence of a variable within an active constraint include (i) 
simple presence of a candidate variable in an active constraint, (ii) magnitude of 
the coefficient of a candidate variable in an active constraint, and (iii) normaliza-
tions of (ii) e.g. by the sum of the magnitudes of all of the coefficients in the ac-
tive constraint (or the sums of the magnitudes of the coefficients of just the integer 
variables, or of just the candidate variables). 

Measures of how much an active constraint can be influenced include (i) equal 
valuation for each active constraint, (ii)  inverse of the sum of the magnitudes of 
all of the coefficients in the active constraint (or the sums of the magnitudes of the 
coefficients of just the integer variables, or of just the candidate variables), or (iii) 
inverse of the number of variables in the active constraint (or the number of inte-
ger variables or the number of candidate variables). 

A weight wij is assigned to candidate variable j in active constraint i, based on 
some combination of the measures mentioned above. The variable having the 
highest total weight over all of the active constraints is chosen as the branching 
variable. Variations on the basic schemes include biasing the weights using the 
dual costs of the active constraints, looking at the single highest wij instead of the 
total weight, and a voting scheme. Ties are broken by selecting the variable with 
maximum infeasibility (defined as minimum distance from integrality); if still 
tied, the variable with the lowest solver-determined index is chosen. 

Patel and Chinneck (2006) developed and tested 20 methods using various 
combinations of the measures listed above, but reported on a smaller subset of the 
best-performing methods, described below. Several methods not presented here 
have comparably good results and some omitted methods have inferior overall re-
sults, but perform spectacularly well on individual models. 

The following MIP example is used to illustrate the different schemes: 
maximize z = 3y1 – 4x1 + y2 – 2y3  
subject to: P: 8y1 + y2 – y3 ≤ 9  

 Q: -x1 + 2y2 + y3 ≤ 5  
 R: 3y1 + 4x1 + 2y2 ≤ 10  
 x1, y1, y2, y3 ≥ 0  
 x1 real; y1, y2, y3 integer  
The LP relaxation optimal solution at the root node of the branch and bound 

tree is z(y1, x1, y2, y3) = z(0.8125, 0, 2.5, 0) = 4.9375. The candidate branching 
variables are y1 and y2. P and Q are the active constraints at the LP relaxation op-
timum and their dual costs are 0.375 and 0.3125 respectively. 
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Method A uses a simple count of the number of active constraints in which a 
candidate variable occurs. For candidate variable j in active constraint i, wij = 1 if 
the candidate variable appears in the active constraint, and wij = 0 if the candidate 
variable does not appear in the constraint. The total weight is a simple count of the 
number of active constraints that the candidate variable appears in. In the example, 
the weights of the candidate variables are found as follows: 

Active constraint i wi(y1) wi(y2) 
P 1 1 
Q 0 1 

Total: 1 2 
y2 has the highest total weight and is selected as the branching variable.  
Method B recognizes that constraints are relatively easier or more difficult to 

influence via a single variable. This effect is estimated by noting the sum of the 
magnitudes of the coefficients of all of the variables in the active constraint. The 
weight associated with a particular active constraint, instead of being 1 as in 
Scheme A, is taken as 1 /∑j|aij|, where the coefficient of variable j in constraint i is 
aij. Active constraints with many coefficients of large magnitude thus have lower 
weights since they are likely less influenced by a single variable. wij = 0 if candi-
date variable j does not appear in active constraint i. In the example, the weights 
of the candidate variables are found as follows: 

Active constraint i ∑∑∑∑j|aij| wi(y1) wi(y2) 
P 10 0.1 0.1 
Q 4 0 0.25 

Total:  0.1 0.35 
y2 has the highest total weight and so is selected as the branching variable. 
Method L adjusts the relative weight of each active constraint according to the 

number of integer variables in the constraint. The idea is that constraints that have 
many variables are less influenced by changes in a single variable because the 
other variables may be able to compensate. The weight associated with a particu-
lar active constraint is taken as 1/NI

i where NI
i is the number of integer variables 

in constraint i. wij = 1/ NI
i if candidate variable j appears in constraint i and wij = 0 

if candidate variable j does not appear in active constraint i. In the example, 
method L yields the following weights: 

Active constraint i NI
i wi(y1) wi(y2) 

P 3 0.333 0.333 
Q 2 0 0.5 

Total:  0.333 0.833 
y2 has the highest total weight and is selected as the branching variable. 
Method M is identical to method L except that NI

i is replaced by NF
i, the num-

ber of fractional or candidate variables in constraint i. In the example, method M 
yields the following weights: 

Active constraint i NF
i wi(y1) wi(y2) 

P 2 0.5 0.5 
Q 1 0 1 

Total:  0.5 1.5 
y2 has the highest total weight and is selected as the branching variable. 
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Method O considers both the size of the coefficient associated with a candidate 
variable in an active constraint and the number of variables. The idea is that larger 
coefficients indicate a greater impact on the active constraint while more variables 
indicate a smaller impact. The weight associated with candidate variable j in ac-

ij ij
I
i

I
i

straint i, and wij = 0 if candidate variable j does not appear in active constraint i. In 
the example, method O yields the following weights: 

Active constraint i NI
i wi(y1) wi(y2) 

P 3 2.667 0.333 
Q 2 0 1.000 

Total:  2.667 1.333 
y1 has the highest total weight and is selected as the branching variable. 
Method P is identical to method O except that it considers only the candidate 

variables in the active constraint. The weight associated with candidate variable j 
ij ij

F
i ij

pear in active constraint i. In the example, method P yields the following weights: 
Active constraint i NF

i wi(y1) wi(y2) 
P 2 4.000 0.500 
Q 1 0 2.000 

Total:  4.000 2.500 
y1 has the highest total weight and is selected as the branching variable. 

weight in an individual active constraint is selected as the branching variable. 
When applied to scheme M for example, the resulting scheme is designated HM. In 
the example results for method P above, the highest individual weight of 4.000 be-
longs to variable y1 in active constraint P, hence y1 is chosen as the branching 
variable by method HP. Patel and Chinneck (2006) concentrate on methods HM 
and HO in their experiments. 

The empirical results for the active constraint methods are very good. Versions 
of the algorithms were built into a framework that calls Cplex 9.0 as the MIP 
solver except when a branching variable must be selected. In a first experiment, all 
of the Cplex internal heuristics are turned off to approximate a basic branch and 
bound arrangement. Fig. 3.2 provides a performance profile using the total number 
of simplex iterations as the metric for comparison. As shown in the figure, the ac-
tive constraint methods are in general much faster than Cplex 9.0 in reaching fea-
sibility, though some solutions were not completed within the imposed time limits, 
mostly for implementation reasons. It is also possible that the active constraints 
method is not a good match for the model in some cases. 

tive constraint i is w  = |a | / N  where N  is the number of integer variables in con-

in active constraint i is w  = |a | /N   and w  = 0 if candidate variable j does not ap-
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Method H looks for the maximum impact of a candidate variable on a single 
active constraint when using a particular method. The variable having the largest 



See Patel and Chinneck (2006) for performance profiles using the number of 
branch and bound nodes as the performance metric. The active constraints meth-
ods use far fewer branch and bound nodes than Cplex 9.0. 

In a second experiment, all of the many Cplex 9.0 internal heuristics are turned 
on. These heuristics sometimes have unpredictable effects; its own internal heuris-
tics cause worse results for Cplex itself in about half of the models not solved by 
the root node heuristics. This underscores the need for expert advice in choosing 
combinations of heuristics and matching them carefully to the model at hand. Ac-
tive constraints methods B, L, and P give good results in the small study con-
ducted by Patel and Chinneck, and are the best candidates for further integration 

P is interesting in that it is very quick on those models that it completes success-
fully, but it has a higher rate of premature termination. This again emphasizes the 
need to carefully choose the variable selection scheme based on the characteristics 
of the model. 

The active constraints methods do not have a negative impact on the quality of 
the first feasible solution returned (as measured by the optimality gap) compared 
to Cplex 9.0. In fact they return a higher quality first feasible solution more often 
than not, sometimes consistently so (method P returns a lower optimality gap than 
Cplex 9.0 for 78% of the compared models in the first experiment). 
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Fig. 3.2. Simplex iterations performance profiles with Cplex internal heuris-
tics off (Patel and Chinneck 2006) 
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with the internal Cplex heuristics in order to yield more consistent results. Fig 3.3 
provides performance profiles based on the number of simplex iterations. Method 



Research on active constraints methods is ongoing. A main goal is to determine 
how to match a model to the best active constraints method for its solution. Work 
is also ongoing to determine the best active constraints method to apply at a par-
ticular node in the branch and bound tree, based on the characteristics at the node. 

3.5 Conflict Analysis 

A common technique in constraint programming is constraint learning or nogood 
learning in which the cause of infeasibility at a node in the search tree is used to 
construct additional constraints that are added to the model to steer the subsequent 
development of the tree away from generating the same infeasibility again (see 
Chap. 4). This improves the efficiency of the search for a feasible solution.  

Achterberg (2007) adapts these ideas for MIP by creating conflict constraints 
that are added to the MIP. Conflict constraints can be created for sets of bound 
changes that conflict with the original bounds. It is important for efficiency rea-
sons to involve as few bounds as possible. Finding a minimum-cardinality Irre-
ducible Infeasible System (IIS) (see Part II) would be ideal, but Achterberg opts to 
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Fig. 3.3. Simplex iterations performance profiles with all Cplex 9.0 heuris-
tics turned on (Patel and Chinneck 2006)

keep the time requirements low by simply analyzing the available dual solution
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non-binary variables in the conflict set. After some experimentation, Achterberg 
concludes that most improvement is gained by adding only conflict constraints 
that include only binary variables. For binary variables, the resulting conflict con-
straint expresses the fact that at least one of the binary variables must have a dif-
ferent value. Adding this constraint prevents the re-occurrence of this infeasible 
combination of binary variables in another branch of the search tree. 

For feasible MIP instances, the solution time using Achterberg’s method is 
generally increased due to the added work for finding and constructing the conflict 
constraints, and for assessing them thereafter. However for infeasible MIP in-
stances, the solution time is generally reduced. 

Similar ideas are proposed by Davey et al. (2002) in the context of intelligent 
backtracking for binary linear programs. This is discussed in detail in Sec. 11.7. 
See also related work by Sandholm and Shields (2006). 

3.6 Market Split Problems 

njxmiab jj iji ...1for}1,0{where,...1for =∈== ∑xa  and ai is the ith row of the 

stances of the market split problem constructed in a particular way are exception-
ally difficult to solve. The Cornuéjols-Dawande instances are constructed for a 

ij
interval [0,99] and the right-hand side coefficients are set as  

miad
n

j iji ...1,
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Aardal et al. (2000) present a generalized version of the market split feasibility 
problem: is there a solution x that satisfies Ax = d, l ≤ x ≤ u, where x,d,l,u∈Zn, 
A∈Z 

i
solve this problem. Briefly, they look for an initial basis such that a solution vector 
xd for the basis satisfies Axd

0 0
sis reduction techniques are used to find these in polynomial time. In some cases 
the solution xd directly satisfies all of the variable bounds, but otherwise it is 

d 0 0

m× n

address the problem of splitting the sales between two divisions of a large company 

  x

ducts to n vendors. Vendors can be assigned to either division with the goal

known that A(x

information. He applies a kind of deletion filter (see Sec. 6.1.2) to the dual in an
effort to find a small infeasible subsystem. There is some difficulty in dealing with 

such that 

Williams (1978) introduced market split integer programming problems that 

split fraction  b (0 ≤ b≤ 1)  for one division, the  problem is to find

A matrix defining the constraints. Cornuéjols and Dawande (1998) showed that in-

of achieving a specified market split for every product. Given a market

given m by setting n  = 10(m-1). The a  coefficients are randomly chosen from the 
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= d, but does not necessarily satisfy the variable 

such that a particular market split fraction is achieved. The company sells m pro- 

bounds, along with n–m linearly independent vectors x  for which Ax =  0. The ba-

row a  of A is 1, and A has full row rank. They use a basis reduction approach to 

+ λx ) = d for an integer multiplier λ and a vector x  for which 

, and m ≤  n? Further, the greatest common divisor of the elements of any 



0 0

0
Empirical testing of the basis reduction algorithm by Aardal et al. (2000) shows 

that LP-based branch and bound solvers are able to solve market share problems 
much faster using the reformulation described above, which branches on the λ 
variables instead of the original x variables. This approach is also able to solve 
larger versions of the problem. 
 

Ax  = 0.  Branching then occurs on integer linear combinations of x  vectors that 
satisfy Ax  = 0. See Aardal et al. (2000) for details. 
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4 A Brief Tour of Constraint Programming 

prove that no such solution exists, hence it has a great deal of overlap with the 
subject of this book. Indeed, a main thrust of research on the constraint satisfac-
tion problem is achieving a feasible solution as quickly as possible. As will be 
seen, a number of the techniques used in constraint programming are related to 
methods well known in optimization, yet others are novel. In recent years, con-
straint programming and mathematical programming (i.e. optimization) have be-
gun to cross-fertilize, developing more capable hybrid methods along the way. See 
Chinneck (2002a) for example. For an excellent up-to-date summary of how opti-
mization and constraint programming have merged, see the book Integrated 
Methods for Optimization by John Hooker (2007). Lustig and Puget (2001) also 
provide a concise explanation of the relationship between mathematical program-
ming and constraint programming. 

This chapter presents a very brief summary overview of constraint program-
ming based on material by Bartak (1999), Kumar (1992), Dechter and Rossi 
(2002), Russell and Norvig (2002) and Miguel (2001), among others. References 
to the original publications on the techniques described herein can be found in 
those sources. This topic deserves an in-depth treatment in light of the subject of 
this book, possibly in a companion volume of about the same size, but that is a 
project for another time and an author more versed in the subject matter. The pur-

straint programming literature. The reader is urged to investigate further. 
In the most general sense, constraint programming is language allowing the 

declaration of a set of constraints defined over a set of variables, and the associ-
ated computational systems that seek to find a feasible solution or to prove that 
none exists. More recently (e.g. the OPL language (Van Hentenryck 1999)), con-
straint programming systems also tackle optimization. The earliest general sys-
tems were for logic programming, consisting of Boolean literals that can take on 
true/false values and a set of logical statements (i.e. constraints) involving these 
literals and their negations. The goal in logic programming is to find a set of truth 
values for the literals that proves the goal assertion is true, or to show that no such 
assignment of truth values exists. Confusingly, logic programming is sometimes 
referred to as LP, which optimizers would of course take to mean “linear pro-
gramming”. Constraint Logic Programming (CLP) extends basic logic program-
ming to include continuous variables and much more general types of constraints, 

A main motivation in constraint programming, especially in the constraint 
satisfaction problem, is to find a feasible solution to a stated set of constraints, or to 

pose of this brief tour is simply to make the reader aware of the rich body of 
algorithms relevant to issues of feasibility and infeasibility that is available in the con-



including linear and nonlinear mathematical constraints as well as other forms. 
Certain special constraints are particularly useful for capturing common restric-
tions in a graceful, declarative manner, such as the alldiff constraint that specifies 
that a set of variables must all have different values. 

The fundamental constraint satisfaction problem is defined over a set of vari-
ables, each having a domain of possible values. A variable domain is normally a 
discrete set, e.g. binary, integer, or simply members of a set such as various cities, 
or a set of letters from the alphabet. A distinction is sometimes made between 
constraint satisfaction and constraint solving in which a variable domain can also 
be continuous. It would be unusual to find a constraint satisfaction or constraint 
solving problem that included no discrete variables: this would amount to a stan-
dard linear or nonlinear programming problem in the optimization literature.  

The set of constraints restricts the values that the variables can assume in the 
usual way. Constraints are sometimes represented in a graph format, e.g. with a 
square representing the constraint being linked by arcs to circles which represent 
the variables. Reasoning may be performed on this graph. Constraints may be 

solutions are preferred over others; these would normally be dealt with via an ob-
jective function in an optimization formulation. 

The major techniques for solving a constraint satisfaction problem are back-
tracking search, propagation, and local search, as well as numerous special-
purpose heuristics. Most of these techniques have a direct counterpart in common 
use in optimization. 

and bound solution tree: one variable is considered at each node of the solution 
tree, and child nodes are created for each value assigned to that variable. A com-
plete solution, feasible or infeasible, is reached only at a leaf node of the tree. 
Backtracking search implies a depth-first exploration of the search tree that back-
tracks when an infeasible leaf is reached (normally signaled when none of the val-
ues in the domain of at least one variable are legal, given the assignments made 
thus far). As in branch and bound optimization, the efficiency of the backtracking 
search is greatly affected by the ordering of the variables and their values, and by 
the backtracking method (i.e. node selection in branch and bound terminology). 
Propagation of variable values, discussed later, also improves efficiency by reduc-
ing the domains of other variables as a consequence of fixing a particular variable 
value at a node. 

There are several useful heuristics for improving efficiency when selecting the 
branching variable. The minimum remaining values heuristic (sometimes called 
the fail-first heuristic) chooses the variable that has the fewest remaining legal 
values as the branching variable. This helps prune the search tree at higher levels, 
avoiding fruitless exploration of hopeless nodes. The degree heuristic selects the 
variable that appears in the largest number of constraints on other variables whose 
values have not yet been assigned. 

a single variable), binary (a constraint relates two variables), or higher-order  
(a constraint relates several variables). Preference constraints indicate that certain 

categorized as unary (a possible value is simply excluded from the domain of  

variables one at a time. This results in a solution tree that is reminiscent of a branch 
Backtracking search builds up a solution gradually by setting the values of 
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fewest values for the other unassigned variables that appear in constraints that the 
two variables share. The idea is to retain the greatest chance for a feasible solution 
at a descendant node. 

Propagation is the use of the constraints to eliminate possible values from the 
domains of the variables by logical implication, and is similar to the techniques 
used in presolving for optimization (see Sec. 6.1.1). Propagation is typically ap-
plied just after a variable value is fixed, and also, as in optimization, before the 
backtracking search even begins. In forward checking each variable that appears 
in a constraint with a variable x whose domain has just been reduced (either by 
fixing as part of the backtracking search, or as a logical consequence of propaga-
tion) is checked to see whether its domain has been reduced due to the domain re-
duction in x. This process may result in a cascade of variable domain reductions, 
and can shorten the backtrack search considerably in some cases. 

If all of the constraints are binary (i.e. relate just two variables), then it is easy 
to construct a graph in which each node represents a variable and each arc repre-
sents a constraint that relates the two variables that it connects. Given this graph, 
constraint implications can be propagated via arc consistency. This is a directional 
concept. Given a binary constraint connecting some variable x and some variable 
y, the x to y arc is consistent if, for every value in the domain of x there exists 
some consistent value in the domain of y. Arc consistency is checked in both di-
rections. If not consistent, an arc can often be made consistent by removing a 
value from the domain of the variable at the tail of the arc, or the process may 
show that consistency is not possible, in which case infeasibility of this node in 
the search tree is proved. MAC (maintaining arc consistency) algorithms check the 
arc consistency after each variable assignment, and reduce variable domains as 
necessary to achieve consistency for all arcs.  

As for the usual propagation processes, checking and maintaining arc consis-
tency can entail a long cascade of variable domain reductions. There are a variety 
of arc consistency algorithms known as AC-1 through AC-7 that vary in the de-
tails concerning which arcs are rechecked during the cascade of domain reduc-
tions, and hence in the extent of CPU and memory required. 

k-consistency is a generalization of arc consistency. A problem is k-consistent if 
for any set of k-1 variables a consistent value can be assigned to a related kth vari-
able. 2-consistency is the same as arc consistency. If the values assigned to any 
pair of related variables always allow a consistent value for a related third vari-

tency checking and simply exploring the search tree. A constraint graph is 

and path-consistent is the same as strong 3-consistency. 
There are several algorithms for backtracking when the search tree arrives at an 

inconsistent leaf node. The simplest approach is to backtrack to the preceding 

make this choice. This heuristic chooses the variable value that eliminates the 
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When the branching variable is chosen, the next decision is which of its possible
values to branch on first. The least constraining value heuristic can be used to 

able, then the problem is 3-consistent. The higher the value of k the greater the 
effort in checking consistency, so in practice there is some trade-off between consis-

strongly k-consistent if it is also j-consistent for all j < k. Node-consistent is the 
same as strong 1-consistency, arc-consistent is the same as strong 2-consistency, 



variable and choose a different value from its domain. In contrast, intelligent back-
tracking focuses on backtracking to the causes of the failure, the so-called conflict 
set. A conflict set is defined in various ways, but always includes the idea that it is 
a subset of the variables and constraints in the problem that contribute to the in-
consistency at the leaf node in the search tree. Intelligent backtracking realizes 
that it is much more efficient to backtrack to the variables involved in the conflict 
set rather than simply the last variable instantiated. When conducting a tree search, 
it is obvious that the last variable assigned is part of the conflict set. A conflict set 
can be constructed in various ways, for example, the conflict set for a given vari-
able, normally the one that just caused the node failure, could consist of all of the 
previously-assigned variables that share a constraint with it. 

Conflict-directed backtracking takes this idea one step further. It first identifies 
a minimal conflict set, and then backtracks on this step. A minimal conflict set is a 
set of constraints that is infeasible, but becomes feasible if any single constraint is 
removed. This is identical to the concept of an Irreducible Infeasible Subset (IIS) 
of constraints that is the main focus of Chap. 6. We will return to methods of find-
ing minimal conflict sets in constraint satisfaction problems in Sec. 6.5. 

Constraint learning (sometimes called nogood learning) techniques use the in-
formation in the conflict sets to add constraints to the problem so that the tree 
search will not repeat the mistake after backtracking. 

dividual problems. If the graph has a tree shape, then the solution process is 
greatly simplified since backtracking is not required. One class of methods seeks 
to reduce more complex problem structures to constraint trees by eliminating or 
collapsing nodes. This can happen at any point during the tree search phase: it 
may be simple to reduce the remaining constraint graph after a particular variable 
is assigned a value, for example. The overall graph can also be subdivided into 
tree-structured parts which are solved independently and then combined. 

In backtracking tree search, variables are assigned values one at a time. In con-
trast, local search methods work with complete solutions in which all variables 
are assigned values. Of course the complete solution is inconsistent because the 
process halts when the first feasible solution is found. The idea is to adjust the 
values of some of the variables until a feasible solution is reached. The min-
conflicts heuristic is the most common: given a variable, choose the new value that 
results in the fewest conflicts with other variables. This process continues until 
feasibility is reached. In hill-climbing the variable value is chosen so that the 
number of violated constraints is reduced. 

As will be familiar to optimizers, local search methods may be randomized to 
avoid becoming trapped at a local minimum. Stochastic local search methods such 
as random walks choose a random value from the domain of a variable and also 
randomly apply the min-conflicts heuristic. Well-known local search methods 
from the optimization literature such as tabu search (e.g. Glover (1990)) or simu-
lated annealing (Kirkpatrick et al. 1983) may also be applied. 

process. For example, there may be disconnected components that can be solved as in-

The structure of the constraint satisfaction problem, as represented by its
variable and constraint graph, provides information that helps direct the solution 
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4.1 Branching in the Satisfiability Problem 

The satisfiability (SAT) problem is a particular form of constraint satisfaction problem. 

Nadel (2002). 
As a special type of constraint satisfaction problem, solutions for SAT and 

MAXSAT make use of backtracking tree search, notably the Davis-Putnam-
Logemann-Loveland algorithm (Davis and Putnam 1960, Davis et al. 1962). This 
operates by choosing a Boolean literal, assigning a truth value to it, and simplify-
ing the formula by propagating the newly-chosen value. If the formula is now true, 
then the search exits with success. Otherwise the branch assigning the opposite 
value of the chosen literal can be followed. If the formula is not yet true or false, 
then another literal can be chosen in a recursive manner. Simplifications include 
checking for literals which appear everywhere unnegated or everywhere negated, 
in which case the appropriate value can be assigned (set to true if unnegated eve-
rywhere or set to false if negated everywhere). Another simplification identifies 
clauses that have just one literal, in which case the true/false value that the literal 
must take is known (in the example above, C is the only literal in the fourth 
clause, and hence must be false to make the clause true). 

A number of interesting rules for the selection of the branching variable have 
been developed to improve the speed in finding a feasible solution. Examples of 
branching literal selection rules include the following (Lagoudakis and Littman 
2001):  

• MAXO (maximum occurences) selects the literal that occurs the most often in 
the satisfiability formula. The idea is that the literal has a widespread effect. 

• MOMS (maximum occurrences of minimum size) selects the literal that 
appears the most often in all clauses of minimum size (i.e. all clauses that have 
the smallest number of literals). The idea is that the literal has a widespread 
effect on the most tightly constrained clauses. 

• MAMS combines MAXO and MOMS by adding their scores for each literal 
and selects the literal having the highest total. 

• Jeroslaw-Wang calculates the weight for each literal l as ∑
∈

−

j

j

Clj

n

:

2 where nj is 

the number of literals in clause Cj. This gives small clauses more weight; the 
literal with the largest weight is selected. 

 
satisfies the constraint, or to prove that no such assignment exists. For example 
gations. The goal is to find an assignment of true/false values to the literals which  
junction of clauses in which each clause is a disjunction of literals or their ne- 
It is defined over Boolean literals or their negations and consists of the con-

(A∨B)∧(¬A∨C∨D)∧(¬B∨¬D)∧(¬C) true? I  n t  he m aximu  m satisfiability  (MAXSAT)
problem, the goal is find a true/false assignment for each literal such that the

is there a true/false setting  for  each l iteral th at m akes the logic statement

maximum number of clauses is satisfied. Many difficult problems can be trans-
formed to SAT or MAXSAT, hence solution methods for these problems have been
studied intensively. A good survey of solution approaches is available in 
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• UP (unit propagation) makes a test assignment for each unassigned literal and 
counts the number of unit propagations that are triggered. The literal that 
triggers the most unit propagations is selected. This is a computationally 
expensive method. 

• In GUP (greedy unit propagation), if a test assignment causes feasibility or 
infeasibility then it is selected, otherwise the rule is the same as for UP. 

• SUP (selective unit propagation) tries to reduce the number of literals that are 
tested via the UP rule. It does this by first running all four of MAXO, MOMS, 
MAMS and Jeroslaw-Wang to produce a set of up to four candidate literals. 
The final selection among the candidate literals is made by the UP rule. 

These branching rules are particularly interesting since they show promise for 
use in branch and bound for solving MIPs. This is the subject of ongoing research 
by the author. 

50 4 A Brief Tour of Constraint Programming 



 

5 Seeking Feasibility in Nonlinear Programs 

We are concerned here with seeking feasibility in models that include at least one 
nonlinear constraint; the form of the objective function is irrelevant.  For ease of 
reference we will refer to nonlinear programs (NLPs) with this concept in mind. 

Finding a feasible point quickly is important because many optimization algo-
rithms require one before they can even initialize (e.g. the Generalized Reduced 
Gradient algorithm (Abadie and Carpentier 1969, Lasdon and Waren 1978, Drud 
1994), feasible sequential quadratic programming (Lawrence and Tits 2001), or 
methods of feasible directions (Lasdon 1970)), and so reaching feasibility is an 
important goal in itself.  Additionally, a feasible solution is sometimes all that is 
required by the modeller, and using an algorithm that treats optimization and fea-
sibility simultaneously may be computationally wasteful.   

Finding a feasible point in an NLP can be notoriously difficult.  There may be 
multiple disconnected feasible regions for example, possibly at extreme distances 
from each other.  Many feasibility-seeking algorithms rely on optimizing a phase 
1 objective that minimizes a penalty function, reaching zero at a feasible point.  
This is just as tricky as solving any NLP, and is subject to the same difficulties, 
such as the possibility of multiple local optima, including some which trap the 
phase 1 solution process, but which are not actually feasible points.  It may be dif-
ficult to solve for the intersection of nonlinear constraints, or difficult to get cor-
rect derivatives. 

Unless the constraints have specific properties (e.g. form a convex set), there is 
no guarantee that a particular algorithm will be able to find a feasible point when 
started from an arbitrary initial point.  This means that it is very difficult to con-
clude that a given model is infeasible: it may simply mean that you have not 
started your solver in the right place.  The best approach is to use knowledge about 
the problem such as a previous solution to a similar problem or logical reasoning 
to provide the solver with a “good” initial point.  As the joke goes, the best way to 
solve an NLP is to start at the optimum.  If that approach fails, the only recourse 
may be to start the solver in many different places, i.e. a multi-start or scatter 
search approach, hoping that it will be able to reach feasibility from one of those 
initial points. 

There are a few relatively simple cases however.  A feasible point is easily 
found if each constraint is everywhere convex or everywhere concave and the col-
lection of constraints forms a convex set, for example.  However the general prob-
lem of finding a first feasible point quickly in any given LP is very difficult. 

Many NLP solvers use a penalty function approach to guide the search towards 
the feasible region.  Penalty functions evaluate the constraint violations at the current



penalties forms the objective function in this unconstrained problem (see Sec. 5.1).  
The minimum of the penalty function in a feasible model is zero; a point having 
this value of the penalty function satisfies all constraints.  However, the success of 
this, or any other approach, depends heavily on the characteristics of the nonlinear 
functions, such as their convexity or concavity.  These characteristics can be esti-

likely to be convex and full-dimensional, then simple bootstrapping methods can 
be used to find an initial feasible point (Sec. 5.3). 

In the more general case, modern NLP local solvers are reasonably effective at 
reaching feasibility if given an initial point that is sufficiently close to a feasible 
region.  A variety of methods now exist for choosing a good starting point, includ-
ing single point heuristics (Sec. 5.4), and methods for improving the initial point 
prior to passing it to the NLP solver (Sec. 5.5).  When single-start methods fail, 

More sophisticated bootstrapping methods are also available for nonlinear models 
with special structure (Sec. 5.8).  Finally, relatively slow global optimization 
methods that fully explore the variable space can be used to find a feasible point 
as a last resort (Sec. 5.9). 

5.1 Penalty Methods 

A very common approach to finding a feasible solution for a set of nonlinear con-
straints is to minimize an unconstrained function that assigns a nonnegative pen-
alty for each constraint violation at a given point.  The idea is to work towards the 
minimum of the penalty function in the hopes of reaching a point at which the to-

i i

penalty function be monotonic, i.e. if the violation (see Sec. 1.2) of some con-
straint i at point x1 is greater than the violation at point x2, then pi(x1) > pi(x2). 

Common choices for the penalty function are the sum or sum of squares of the 
constraint violations: 

i i i

i i i i i i i i i i i i

i
bi−gi(x)})2 for gi(x)≥ bi , pi(x)= (max{0, i i

2
i i

i i i
2

i i

tal penalty function value is zero, i.e. a feasible point.  In general, penalty functions
have the form p (x) = 0 if x satisfies constraint i, and p (x) > 0 if x violates cons-
traint i (see e.g. section 14.5 of (Rardin 1998)). It is also important that the 

g (x)≥ b , p (x)= max{0, g (x)−b} for g (x) ≤
• Sum of constraint violations penalty function: p  (x)= max{0, b −g (x)} for 

 b , and p (x)= |g (x)−b | for  g (x)=b . 

,
• Sum of squared constraint violations penalty function: p (x )= (max 

{0 g (x)−b }) for g (x) ≤ b , and
p (x)= |g (x)− b |  for g (x) = b . 

mated empirically via methods described in Sec. 5.2.  If the feasible region is 

point and calculate a penalty based on the degree of violation; the sum of the 

multiple starting points must be tried.  The first step in a multistart method (Sec. 5.7) 
is determining a good region in which to launch trial starting points (Sec. 5.6).    
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Elwakeil and Arora (1995) report that none of these penalty functions domi-
nates on the small and well-behaved models they studied. 

A penalty function minimization can be carried out as a phase one procedure 
whose sole purpose is to find a feasible point.  Alternatively, a penalty function 
term with an appropriate sign can be added to the objective function so that the so-
lution works towards feasibility and optimality simultaneously.  In this case, the 
combined expression has this form: 

∑±=
i ipfF )()()(minormax xxx μ  

where f (x) is the original objective function.  The positive μ parameter is chosen 
so that an optimal solution to the combined function F(x) yields a feasible and op-
timal solution to the original constrained problem.  Penalty functions that have this 
property are called exact.  In general the sum of squared violations penalty func-
tions are not exact, but the simple sum of violations penalty functions are. 

Solution algorithms for unconstrained nonlinear functions (e.g the penalty func-

but will be found in any standard textbook on nonlinear programming.  A sequen-
tial approach is often used in which a sequence of unconstrained problems is 
solved with the value of μ increased after each iteration. 

Elwakeil and Arora (1995) carry out an empirical evaluation of several penalty 
i i

i = p + 1

i = p + 1

i =  p+ 1

i = p + 1…m} they evaluate five different penalty functions: 

tion by itself or combined with the original f (x)) are beyond the scope of this book, 

methods.  Given a set of constraints defined as S = {x | g (x)=0, i =1…p; g (x) ≤ 0, 

strictly inactive constraints, and r > 0 is a penalty parameter that is decreased 
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5.2 Determining the Characteristics of an NLP 

Many algorithms for solving NLPs, including finding an initial feasible point, de-
pend on the model having specific characteristics such as including only quadratic 
nonlinear constraints or the feasible region consisting of a convex set defined by 
the constraints.  While algebraic properties such as quadratic constraints are easy 
to check, shape properties such as constraint convexity and concavity and the con-
vexity of the resulting feasible region (if it exists) are much harder to determine 
analytically.  For a brief review of convexity and concavity properties of func-
tions, see Greenberg (2003a) or Greenberg and Pierskalla (1971). 

As pointed out by Pardalos (1994), “there is no known computable procedure to 
decide convexity”, let alone the other shape possibilities.  It is easy to check the 
shape of functions of one or two variables by visual inspection of a plot, but more 
sophisticated methods are required for functions of higher dimension. 

An airtight conclusion about the convexity/concavity of a nonlinear function 
can sometimes be obtained by analytic evaluation of the function statement.  This 
is the approach taken by the Dr. AMPL tool (Fourer and Orban 2007), which op-
erates on a model written in the AMPL mathematical programming language 
(Fourer et al. 2003).  AMPL represents the constraints and the objective function 
internally as a directed acyclic graph in which the leaf nodes are either constants 

etc.).  Given the graph and a set of rules that govern the convexity of combinations 
of terms, traversing the graph from leaves to root can prove that a given function 

• f and g convex implies that f + g  is convex, 
• fg is convex when both have the same monotonicity and f and g are 

nonnegative and convex (or f and g are nonpositive and concave), 
• e f is convex if f is convex, 

and nonpositive), 

• f  is nonconvex in general but xe  is convex. 

Similar rules are included for all of the operators in the AMPL language.  If a 
complete traversal of the graph for a function encounters only rules that preserve 
convexity, then the function is proven to be convex. 

If the convexity-proving rules do not apply, then a different tack is taken to try 
to disprove convexity by showing negative curvature in the Hessian matrix of the 
function.  This involves solving at least one, if not several, nonlinear optimization 
problems of the form  

dxddxd )()(min 2
2
1 ff TT ∇+∇  

using a trust-region method.  If negative curvature is found, then convexity of the 
function is disproved, but if negative curvature is not found, then there is no defi-
nite conclusion at all.  However in studies of the shape properties of the objective 
functions for a number of NLPs, this approach returned a definite outcome in most 

or variables, and the internal nodes are operators (such as +, –, /, exponentiation, 

• cosh( f ) is convex if f is linear or f is convex and nonnegative (or f is concave 
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is convex.  Examples of convexity proving rules include (Fourer and Orban 2007):  



next. 
It is possible to gain a good idea of the shape, and the extent of the shape (e.g. 

highly concave or just barely concave) via empirical sampling approaches.  Early 
work on sampling approaches concentrated mostly on the discovery of redun-
dancy.  Boneh’s PREDUCE system (Boneh 1983) is mainly for the identification 
of redundant constraints, but it also discovers several general characteristics of 
NLPs such as boundedness, convexity, and the dimensionality of the feasible re-
gion.  Information on the size of the facets of the feasible region and the bounds 
on the variables is also provided.  Chinneck (2001, 2002) developed extensive 
sampling techniques and associated software (MProbe) for estimating the shape 
properties of nonlinear functions and assembling this information into conclusions 
about the shape of any possible feasible region.   

A brief review of the techniques used in MProbe follows.  The first step is to 
bracket a region of interest (normally the feasible region, if one exists) to create a 
sampling enclosure in which samples are taken.  The first and simplest way to do 
this is to use the upper and lower bounds on the variables in the NLP, creating a 
sampling enclosure in the shape of a box.  Uniform sampling is simple to conduct 
inside a box-shaped enclosure.  However the results of the sampling analysis are 
more accurate the more closely the sampling enclosure surrounds the region of in-
terest, so for this reason Chinneck develops additional forms of sampling enclo-
sures as described later. 

Given a sampling enclosure such as a box, the next step is to estimate the shape 
properties of individual constraints (convexity, concavity, etc.) via sampling.  
Convexity and concavity of functions are defined as follows.  Construct a line 
segment by connecting any two points in the variable space.  Estimate the value of 
the function at any point on the line segment by interpolating the function values 
at the two end points.  A function is convex if the interpolated values at all points 
on every such line segment are greater than or equal to the actual function value at 
the same point.  A function is concave if the interpolated values at all points on 
every such line segment are less than or equal to the actual function value at the 
same point. 

These basic definitions provide a way of estimating function shape via sam-

point. Defining the difference as (interpolated value) – (actual function value), 
convexity will show as a positive difference, concavity as a negative difference, 
and linearity as zero difference.  Random line segments are constructed by con-

The difference information collected over a large number of random samples is 
presented as a histogram, which provides useful information on the extent and 
range of convexity and concavity.  Different thresholds are used to help identify 
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cases.  If the indeterminate case when convexity can be neither proved nor dispro- 
ved, other methods must be applied, such as the sampling methods described 

pling.  The function’s variable space is sampled in a region of interest by ran-
domly scattering line segments, and then comparing the interpolated value at 
various points on the line segment with the actual value of the function at the same 

necting two uniformly distributed random points in the sampling enclosure. Dif-
ference calculations are made at a specified number of points arranged at fixed 
intervals along the line segment, as illustrated in Fig. 5.1. 



candidates for approximation by more convenient functions.  As is necessary in 
numerical calculations, a small tolerance ε= is needed in any assessment of the 
equality of two floating-point numbers.  A difference histogram with all entries 
within ±ε= indicates a completely linear function.  A somewhat larger tolerance 
εalmost helps to identify functions that are “almost” concave or “almost” convex.  
Functions whose difference histograms include values in these tolerance regions 
may be candidates for approximation. 

For the purpose of feasibility-seeking we are interested in only the following 
shape outcomes, which can be distinguished by the MProbe sampling approach:  

• linear: all differences are within ±ε=. 
• convex: all differences are above –ε= and at least one is above ε=. 
• concave: all differences are below ε=, and at least one is below –εalmost. 
• convex and concave: at least one difference is above εalmost, and at least one 

difference is below –εalmost. 

Other combinations of the tolerances provide outcomes such as convex almost 
linear, almost convex, concave almost linear, almost concave, convex and concave 
almost linear.  These are useful in determining which constraints are candidates 
for approximation via a simpler shape and reinsertion in the original model.  Strict 
definitions can be obtained by setting εalmost equal to ε=.  See Chinneck (2002) for 
details on how the same samples for testing function shape also provide informa-
tion on function value ranges, multidimensional “slope”, etc. 

Once the shapes of the individual constraints are estimated via the sampling 
procedure, conclusions can be drawn about how well a simple solver algorithm 
such as steepest descent will be able to find a feasible point, and about the shape 
of the feasible region, if it exists, i.e. whether it forms a convex set or not.  A con-
vex set of points is defined as one in which the straight line connecting any two 
points in the set is contained entirely within the set.     

concave 

x 

f(x) 

convex 

segment 
end point 

segment 
end point 

3 equally-spaced evaluation 
points 

Fig. 5.1. Function shape is assessed via difference measurements along the 
line segment (Chinneck 2002) 
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The constraint re-
gion effect is the effect 
that each individual 
constraint has on the 
possibility of a convex 
feasible region, and is 
deduced from the em-
pirical function shape 
and the constraint type 
(≤,≥,=), as follows: 

• Convex region effect: 
contributes to a 
convex constrained 
region.  This is given 
by (i) any linear 

• Nonconvex region effect: given by all constraints whose empirical shape is not 
“convex” or “almost convex”. 

A convex region effect is reported when the function shape combines with the 

region for the variables in the constraint (see Fig. 5.2 for some one-dimensional 
concave function examples).  The individual constraint region effects are now 
combined to assess the shape of the overall feasible region, if it exists. 

The constrained region refers to the interaction of the constraints within the 
sampling enclosure.  This is a broader concept than the feasible region, which, if it 

ble region itself requires that only feasible points be sampled; however it is virtu-
ally impossible to randomly generate feasible points, especially when there are 
equality constraints.  Instead, we can draw various conclusions by combining the 
independently evaluated region effects of the individual constraints. 

the feasible region, if one exists.  Assuming that the independent constraint region 
effects are evaluated correctly, the three primary conclusions that can be drawn 
are: 

• If all constraints have convex region effects: a gradient-based phase 1 
feasibility seeking algorithm will accurately determine the feasibility of the 
constraint set.  Further, a feasible region, if one exists, will be a convex set.  
The constrained region shape is denoted as “convex”. 

Convex Region Effect: 
single contiguous 
feasible region for  
f(x) > b 

Nonconvex Region 
Effect: two 
noncontiguous feasible 
regions for f(x) < b 

x 

f(x) 

feasible feasible 

feasible 

b 

b 

 
Fig. 5.2. Examples of convex and nonconvex region ef-
fects (Chinneck 2002) 

exists, is a subset of the constrained region.  To assess the convexity of the feasi-

sampling enclosure.  In some cases, conclusions are also drawn about the shape of 

• Almost convex region effect: given by (i) almost linear equality constraints 

constraint, (ii) convex  
inequalities of ≤ type,

   (iii)  concave ineq-
ualities of ≥ type.

The conclusions are based upon how a standard gradient-based phase 1 feasibility-
seeking algorithm is likely to perform if started at an arbitrary point in the 

constraint type (≤,≥, =) in a way that results in a single contiguous convex feasible 

(ii) almost convex inequalities of ≤  type, (iii) almost concave inequalities of  ≥  type. 
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• If some constraints have convex region effects and some have “almost convex” 
region effects, and none have a nonconvex region effect: the constraints having 
an “almost convex” region effect are good candidates for approximation to 
improve the behavior of a gradient-based phase 1 feasibility-seeking algorithm.  
Appropriate approximation also means that a feasible region, if it exists, will be 
a convex set.  The constrained region shape is denoted as “almost convex”. 

• If there is at least one constraint having a nonconvex region effect:  a gradient-
based phase 1 feasibility-seeking algorithm may not perform well.  No 
conclusions can be drawn about the shape of a possible feasible region (the 
nonconvexity may occur in a portion of the sampling enclosure that is rendered 
infeasible by the action of another constraint, so any feasible region might still 
be a convex set).  The constrained region shape is denoted as “nonconvex”. 

The most significant fact arising from the determination of a convex con-
strained region shape is that a steepest descent algorithm for a phase 1 formulation 
is guaranteed to accurately determine the feasibility of the system.  This is due to 
the fact that for each individual constraint the constraint violation, and hence the 
phase 1 measure, grows steadily higher as you move away from the feasible re-
gion for that constraint.  Hence, combining the constraints, there is no possibility 
of a local minimum in the phase 1 measure.  If the set of constraints is feasible, 
then the local minima are also the global minima where the phase 1 measure 
reaches zero.  If the set of constraints is infeasible, any local minimum will have a 
nonzero phase 1 measure.  Hence finding any local minimum will accurately de-
termine the feasibility status of the set of constraints. 

An entirely different approach to identifying the shape properties of a nonlinear 
model is to build it in such a way that favourable shape characteristics are guaran-
teed.  This is the main idea of disciplined convex optimization (Grant 2004, Grant 
et al. 2006) which provides a library of function “atoms” and a set of rules to al-
low a modeler to build up a model that will have a convex feasible region. 

5.2.1 Convex Sampling Enclosures 

For the most accurate function shape estimates, the sampling enclosure should 
tightly bound the region of interest.  Boxes defined by bounds on the variables are 
easy to construct and to sample uniformly, but they may not bound the region of 
interest tightly.  A better alternative is to construct a general convex enclosure by 
choosing appropriate constraints from the model.  There are two disadvantages: 
increased complexity of the sampling procedures, and finding an initial point 
within the sampling enclosure. 

Random sampling procedures of the type described previously require a full-
dimensional convex sampling enclosure.  Finding such an enclosure is straight-
forward if box enclosure sampling is already available.  First sample in the box 
enclosure and identify all inequalities that have a convex region effect in the box.  
These constraints, along with the variable bounds forming the box, then form the 
convex sampling enclosure.  One pitfall in determining a general convex enclosure 
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in this manner is the possibility that an implied equality may eliminate the full-
dimensionality of the resulting enclosure. 

Sampling inside this new convex enclosure may in fact show that other con-
straints that previously showed nonconvex region effects when sampled in the 
original box actually have convex region effects when sampled in the smaller con-
vex enclosure.  They can then be added to the list of enclosing constraints.  A 
large cardinality convex sampling enclosure is built up in this manner. 

Equality constraints (even if linear) are excluded from the convex sampling en-
closure due to the virtual impossibility of satisfying them during sampling.  Con-
straints that have effectiveness of 1.0 (see Sec. 6.1.7) are also not permitted as part 
of the sampling enclosure since they are impossible to satisfy.  The hit-and-run 
methods described below depend on the ability to generate an initial point that is 
feasible relative to the enclosure constraints.  The convexity of the enclosure is 
also essential to ensure uniform sampling via hit-and-run methods. 

In the current MProbe implementation a first feasible point inside the convex 
enclosure is identified via the bootstrapping method described in Sec. 5.3. 

Hit-and-run meth-
ods (Berbee et al. 
1987) allow sam-
pling of the inte-
rior and perimeter 
of a general full-
dimension convex 
enclosure.  Starting 
at an arbitrary 
Point 0 (x0) that is 
feasible relative to 
the enclosure, a 

spanning line segment is created by generating a random ray rooted at x0.  Point 1 
(x1), the point at which this ray meets the first enclosure constraint, is noted, as is 
Point 2 (x2) the point at which the oppositely directed ray meets the first enclosure 
constraint.  x1 and x2, the two hit points, define a spanning line segment. 

There are various options for choosing a new x0 for generating the next span-
ning line segment.  It can be chosen at a random point on the last spanning line 
segment, or at a fixed point on the last spanning line segment (e.g. the center).  In 
a stand-and-hit algorithm, x0 is a single fixed point.  The ray direction from x0 is 
constructed by choosing a random point on the unit hypersphere surrounding x0, 
though other choices are also possible.   

An illustration of hit-and-run sampling is given in Fig. 5.3.  Inequality con-
straints A-D constitute a convex sampling enclosure.  Constraint E is not part of 

1 

2 
3 

A B 

C 

D 
E 

Fig. 5.3. Hit-and-run sampling in a convex enclosure (Chin-
neck 2002) 

Methods 
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the convex sampling enclosure, so the usual data can be collected about it (con-
straint shape, effectiveness, etc.).  The dark squares indicate the various x0 points 
used to generate hitting rays; the numbers indicate their order of use. 

5.2.3 Approximating Nonconvex Feasible Regions 

setpoint, i.e. how much flexibility the operating point has for movement within the 
feasible region.  The general approach is to approximate the convex hull of the 
feasible region. 

Banerjee and Ierapetritou first sample the feasible region using a genetic algo-
rithm to help guide the sample point placement.  An approximation to the feasible 
region is then obtained via the α-shape technique, which eliminates space between 
feasible sample points using a sphere of radius α.  At sufficiently large values of α 
this amounts to a convex hull of the feasible region, though in general this is not 
achieved.  The feasible sample points are joined to create a polygonal outer ap-
proximation of the feasible region, i.e. the resulting nonconvex polygon will likely 
contain some infeasible regions. 

Now the feasibility of candidate points can be determined by a simple tech-
nique: generate a random ray from the candidate point and determine the number 

else it is exterior to it. This simplifies the assessment of the feasibility of points 
when the evaluation of the original constraint functions is expensive. 

The method proposed by Banerjee and Ierapetritou is suitable only for models 
of low dimension having few constraints.  See also the paper by Goyal and Iera-
petritou (2003). 

5.3 Bootstrapping in a Convex Constrained Region 

As defined in Sec. 5.2, a convex constrained region consists entirely of constraints 
which have a convex region effect.  Finding an initial feasible point x0 in a convex 
constrained region consisting entirely of inequalities is important for two reasons.  
First, real problems may have a convex constrained region, so reaching feasibility 
quickly is important for this class.  Second, an initial feasible point is needed to 
initiate hit-and-run sampling for assessing the shape and other characteristics of 
constraints in the resulting convex sampling enclosure. 

Given an initial x0 that is feasible relative to the enclosure constraints; the fea-
sibility of subsequent x0’s is maintained thereafter by the hit-and-run method and 
the convexity of the enclosure.  Alg. 5.1 uses this property in an efficient boot-

Banerjee and Ierapetritou (2005) address the problem of approximating the
feasible region in the face of constraints that render it nonconvex. The specific
application in this case is the operation of chemical processes, and a main goal is 
determining how much flexibility the process has for deviation from an initial 

of crossings it has with faces of the approximating polygon.  If the ray crosses poly-
gonal faces an odd number of times, then it is interior to the feasibility polygon, 
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strapping method that adjusts an initial point to satisfy a monotonically increasing 
number of the constraints until a feasible point is reached.  Random points are 
generated and tested against the constraints; when a constraint is satisfied all sub-
sequent random points also satisfy that constraint because the hit-and-run method 
is used to generate the later random points.  Feasibility relative to all of the enclo-
sure constraints is built up gradually. 

The model is deemed infeasible if no generated point satisfies all of the enclo-
sure constraints simultaneously.  A reasonably large number of points should be 
sampled before this conclusion is reached.  Note that the procedure becomes more 
and more accurate in its sampling as constraints are moved from the NotSat set to 
the Sat set. 

The shape of the sampling enclosure can make it difficult to find an initial fea-
sible point. Long and thin sampling enclosures are especially difficult because the 
x0 launch point tends to stay in one region of the sampling enclosure and does not 
tend to move along the length of the sampling enclosure.  This is because the 
probability of a random ray being oriented along the length of the thin enclosure is 
very small.  Hence only one part of the enclosure is sampled, and if the feasible 
region is not in that part, then an initial feasible x0 cannot be found. 

This difficulty occurs in practice.  Many models have tight bounds on some 
variables along with variables that are unbounded or have very large bounds.  The 
initial sampling box is then extremely long and thin, as are the subsequent sam-
pling enclosures built up during the operation of Alg. 5.1.  It is possible, however, 
to take advantage of the fact that these very common long and thin enclosures are 
axis-aligned. 

The solution is to bias the ray-generation probabilities so that there is a much 
higher probability of generating a ray that points along the length of the long and 
thin enclosure.  In the case of axis-aligned enclosures this is easy to do by multi-
plying the search direction vector produced by a random hypersphere around x0 by 
the lengths of the variable ranges.  This converts the hypersphere to an axis-
aligned hyperellipse that has a much larger probability of generating rays that are 
oriented along the long axes of the enclosure.  Another option is to generate search 
directions by simply choosing two points in the variable box (even during Step 2 
of Alg. 5.1).  The search direction is then set as the difference of the two points.  
This also has a much higher probability of generating rays that are oriented along 
the long axes of the enclosure.  The greater efficiency of both methods as com-
pared to random hypersphere directions has been shown experimentally (Chinneck 
2002).  The MProbe software described in Section 5.2 uses the random hyperel-
lipse directions method.  

There is no such remedy for long thin enclosures that are not axis-aligned.  If 
an enclosing box that aligns with the long axes of the enclosure can be found, then 
similar random hyperellipse or box-direction methods can be applied.  However a 
technique developed by Chinneck (2002) to approximate the prime analytic centre 
(PAC) can be used to at least drive the x0 hit-and-run launch point away from sat-
isfied constraints and towards relatively unexplored areas of the enclosure.  This 
technique uses the prime analytic centre objective function, also called the loga-
rithmic barrier function: 
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INPUTS: NotSat: the set of inequality constraints having convex region ef-
fects. 

 
Step 1 (initialization): 

Sat = the set of variable lower and upper bounds. 
Do the following a specified number of times: 
 Generate a random point x0 satisfying Sat using box sampling. 
 IF any constraints in NotSat are satisfied at x0 THEN: 
   Move the satisfied constraints from NotSat to Sat; go to Step 2. 
Issue an infeasibility message and exit. 

 
Step 2 (satisfy general inequalities): 

Do the following a specified number of times: 

 Generate a random line segment satisfying Sat from x0 using  
  the hit-and-run method. 
 Select a random point on the line segment, label this x0. 
 IF any constraints in NotSat are satisfied at x0 THEN: 
  Move the satisfied constraints from NotSat to Sat. 
Issue an infeasibility message and exit. 
 

OUTPUTS: a point satisfying all of the constraints having convex region  
 effects or a failure message. 

Alg. 5.1. Bootstrapping procedure to achieve initial feasibility of a convex con-
strained region (Chinneck 2002)  

0 0
higher values of the PAC objective function over all necessary constraints are 
closer to the PAC.  At the same time, higher values of this barrier function corre-
spond to points that are farther away from the limiting values of the inequalities.  

x0 point can then be assessed by evaluating the PAC objective function us-
ing only the satisfied subset of the constraints.  An x0 having a higher value of the 
logarithmic barrier function indicates a point that is farther away from any satis-
fied constraints.  See Chinneck (2002) for details on how necessary constraints are 
identified for use in moving towards the PAC. 

This suggests a method of moving away from satisfied constraints and towards 
unexplored areas of the sampling enclosure.  As x0’s are generated, the highest 
value of the PAC objective function associated with any x0 is recorded.  If a pro-
posed x0 has a greater value of the PAC objective function than the existing best 
value, then the new x0 is accepted and the best value is updated.  Otherwise, the 

 IF NotSat = φ THEN exit (success). 

didate 

At an intermediate stage of the bootstrapping process, some subset of the 
constraints are satisfied, and these can be used in the PAC objective function. A can-

where Bx < b (Caron et al. 2002) to evaluate x  points.  Candidate x  points with 
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new x0 is rejected, and the old x0 is again used to generate the next hitting rays.  
The PAC objective function barrier-like repelling effect on the placement of sub-
sequent x0’s moves the sampling towards unexplored areas of the enclosure.  This 
method tends to keep the x0 from becoming stuck in “corners” of the sampling en-
closure. 

This constitutes a method that is somewhere between hit-and-run and stand-
0

into longer and longer stays at particular points.  Satisfaction of an additional con-
straint may cause some movement.  Performance is improved when the new x0 
candidates are generated by taking the midpoint of the last spanning line segment, 
rather than a random point on the last spanning line segment. 

In practice, the crux of nonlinear programming is the initial-point placement.  As 
the joke goes, the best way to solve a nonlinear programming problem is to start at 
the optimum.  The joke is equally true for the feasibility problem: the best way to 
reach feasibility in an NLP is to start at a feasible point.  A better result is usually 
obtained if information about the nature of the problem, external reasoning, or 
previous solutions of similar problems is available to guide the placement of the 
initial point.  Many nonlinear solvers are able to find a feasible point if given an 
initial point that is close to feasibility, but may fail if the initial point is far from 
feasibility.  If no external information is available to guide the initial-point place-
ment, various heuristics can be used. 

Some solvers provide a nonlinear crash heuristic to set the initial point, see e.g. 
the procedure used in MINOS (Murtagh and Saunders 1987), but details differ be-
tween implementations and are often confidential.  A widely-applied heuristic (re-
ferred to here as the standard heuristic) is as follows: 

• if the variable is doubly bounded: set at midpoint, 
• if the variable is singly bounded: set on the bound, 
• if the variable is unbounded in both directions: set at zero. 

There are two main problems with the standard heuristic for initial-point 
placement.  First, it sets many variables to zero, which can cause numerical errors, 
e.g. for a constraint that includes a term such as 1/x.  Second, since many variables 
are given similar bounds by the modeller (e.g. unbounded or singly bounded), 
many of the variables are also given the same initial values.  This can also cause 
numerical errors, e.g. in constraints that include terms like 1/(x1 2

For these reasons, Ibrahim and Chinneck (2005) developed a simple modification

5.4 Initial-Point Placement Heuristics 

–x ). 

to the standard heuristic that superimposes a random perturbation Δ on the initial 
values proposed above. The randomized standard heuristic operates as follows: 

and-hit.  x  usually moves fairly frequently at the beginning, but gradually settles 
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Δ is a uniformly distributed random number between 0 and 1 (or suitably 
smaller if the bounds on the variable define a smaller range). Note that a positive 
perturbation is applied when the variable is unbounded in both directions.  This 
avoids numerical problems caused by some functions (e.g. square root) when the 
variable really should have been specified as nonnegative, or even as positive (e.g. 
the derivative of the square root blows up at zero). The randomized heuristic 
avoids many of the numerical problems associated with the original heuristic 
while retaining its main features. 

Ibrahim and Chinneck (2005) carried out a study of a number of initial-point 
placement heuristics: 

• Random placement of initial points within the variable bounds. 
• The origin (all variables set at 0.0). 
• The standard heuristic. 
• The randomized standard heuristic. 

The points provided by these heuristics are compared with the initial points 
supplied with the models by determining the frequency with which a variety of 
nonlinear solvers are able to reach feasibility when launched from these points.  
Tests are carried out over a large number of models from the CUTE test set (Bon-
gartz et al. 1995).  Initial points are provided for most of these models; unspecified 
variables are set to zero. 

In these experiments, the origin and the standard heuristic most frequently pro-
vide a point that is immediately feasible, while random points and points provided 
by the randomized standard heuristic are the least likely to be immediately feasi-

most frequently permits a nonlinear solver to reach feasibility?  The experimental 
results show that the randomized standard heuristic is much more effective than 
the competing alternatives in providing an initial point from which a variety of 
nonlinear solvers are able to reach feasibility, closely approaching the success fre-
quency given when the modeler-supplied initial points in the CUTE set are used.  

The ordering of the heuristics, from least to most effective in terms of provid-
ing initial points that allow solvers to reach feasibility, is the same as given in the 
list above.  The randomized version is significantly more effective than the stan-
dard heuristic.  The success rates for reaching feasibility from the provided initial 
points vary, depending on the solvers: 
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• if the variable has a single upper bound: set at bound − Δ, 
• if the variable is unbounded in both directions: set at zero + Δ, 

• if the variable is doubly bounded: set at midpoint + Δ, 
• if the variable has a single lower bound: set at bound + Δ, 

models. The much more important question is: which of the initial point heuristics 
ble. This simply reflects the fact that the origin is a feasible point for many 



5.5 Constraint Consensus Methods for Approximate 
Feasibility 

The initial point supplied to a nonlinear solver may originate from knowledge of 
the model, from a previous solution to a similar model, or may be generated by an 
initial point heuristic such as described in Sec. 5.4.  It may even be generated ran-
domly by a naïve modeler.  It is certainly possible to pass this initial point directly 
to the solver, but better results can be obtained if the initial point is instead passed 
to an inexpensive point improvement algorithm first.  The point output by the 
point improvement algorithm is then finally passed to the full-scale, accurate, 
computationally expensive solver.  The overall process can be more effective and 
much faster if the point improvement algorithm is reasonably accurate, and if in-
expensive point improvement computations can be substituted for expensive full-
scale solver iterations.   

There are relatively complex feasibility-seeking procedures to be used as part 
of a solver phase-one procedure (e.g. Elwakeil and Arora (1995)).  However there 
are few inexpensive methods for improving a given initial point, not necessarily 
all the way to feasibility.  Chen and Kostreva (1999) describe a feasible directions 
method that is limited to solving nonlinear inequalities, for use prior to optimiza-
tion via the method of feasible directions.  Gertz et al. (2004) describe an approach 
that computes an affine scaling step by solving a system of linear equations related 
to a Newton iteration.  Their algorithm is specifically for interior point methods in 
that it also provides initial values of other multipliers and parameters used by such 
methods. 

The Constraint Consensus methods (Chinneck 2004, Ibrahim and Chinneck 
2005) are point improvement algorithms that are effective at moving from a point 
that is very far away from feasibility to a point that is very near to feasibility.  
They are also very cheap, consisting almost entirely of function and gradient 
evaluations without line searches, GRG iterations, LP approximations, matrix in-
versions etc.  As such they are ideal point improvement algorithms and are in fact 
the only algorithms in this class. 
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• The standard heuristic: solvers find feasible points for 60.2% to 74.9% of the 
models. 

• The randomized standard heuristic: solvers find feasible points for 79.2% to 
90.0% of the models. 
The randomized standard heuristic is clearly the preferred initial-point place-

ment heuristic. 

• Random placement: solvers find feasible points for 36.4% to 71.4% of the 
models 

• The origin: solvers find feasible points for 59.3% to 74.9% of the models. 



The Constraint Consensus algorithms are variations of projection algorithms 
(Sec. 2.8) that rely on the Euclidean distance to feasibility to gauge the extent of 
infeasibility (see Sec. 1.2).  The feasibility vector for an individual constraint is 
defined as the vector extending from an infeasible point to its orthogonal projec-
tion (closest feasible point) on the constraint (Chinneck 2004).  As described in 
Sec. 2.8, both the direction and the distance of movement necessary to achieve 
feasibility for an individual constraint are captured by the feasibility vector.  Add-
ing the feasibility vector to an infeasible point yields the closest point that satisfies 
the constraint, i.e. the orthogonal projection.  The length of the feasibility vector is 
called the feasibility distance.  The gradient-projection feasibility vector described 
in Sec. 2.8 is exact for linear constraints, but just an estimate for nonlinear con-
straints, and is naturally affected by the curvature of the constraint at the estima-
tion point.  However it can be used quite effectively in a heuristic method for 
reaching feasibility in NLPs, as shown below. 

The individual feasibility vectors for all of the violated constraints are com-
bined to arrive at the consensus vector that is actually used to make the updating 
move from the current point.  This is done in a component-averaging manner: only 
the violated constraints that include a particular variable in c(x) are able to “vote” 
on the movement in that dimension.  In the original basic version of the algorithm 
the movement in each dimension is obtained by averaging the relevant component 
of each eligible feasibility vector; the resulting consensus vector specifies both the 
direction and distance of movement. The current point is updated by applying the 
consensus vector.  The process iterates until the stopping conditions are met. 

Fig. 5.4 provides an example of the update step in the simplest component-
averaging simultaneous constraint consensus algorithm.  The two feasibility vec-
tors are shown as dashed arrows; the consensus vector is the solid arrow. Note that 
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Fig. 5.4. Example iteration of the Constraint Consensus method (Chinneck 2004) 
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the feasibility vector is exact for linear constraint A, but just an estimate for 
nonlinear constraint B.  Both feasibility vectors contribute to the consensus vector 
vertical component, but only the feasibility vector for constraint B contributes to 
the consensus vector in the horizontal component.  Note that feasibility will be 
achieved in the next iteration of the method: only linear constraint A is violated af-
ter the update, and hence the Constraint Consensus method will make an exact 
move to satisfy it at the next iteration, thereby reaching the feasible region. 

The algorithm terminates successfully if the length of every feasibility vector is 
less than the feasibility distance tolerance α, and unsuccessfully if either (i) the 
first condition is not met and the length of the consensus vector is less than the 
movement tolerance β or (ii) a preset number of iterations μ is exceeded.  When 
successful, the final point is within an estimated Euclidean distance α of satisfying 
every constraint, where α might be quite large (e.g. 100) depending on the pur-
pose at hand (e.g. finding the order of magnitude of a suitable starting point for the 
nonlinear solver).  The movement tolerance β is used to detect situations in which 
the algorithm gets stuck or is proceeding very slowly. 

The basic Constraint Consensus method is shown in Alg. 5.2.  NINF is the num-
ber of violated constraints (“Number of INFeasibilities”) at the current point, sj is 
the sum of the feasibility vector components in the jth dimension, nj is the number 
of violated constraints that involve variable j, and t is the consensus vector.  For 

Inputs: 
• a set of I constraints c1…cI, in J variables x1…xJ 
• an initial point x, 
• a feasibility distance tolerance α, 
• a movement tolerance β, 
• a maximum number of iterations μ. 

1. Repeat μ times: 
j j

1.2. For every constraint ci: 
1.2.1. If ci is violated then: 

1.2.1.1.  Calculate feasibility vector fvi and the feasibility dis-
i

i
• NINF = NINF + 1. 
• For every variable xj in ci: nj ← nj +1; sj ← sj + fvij 

1.3. If NINF = 0, then exit successfully. 
1.4. For every variable xj: 

1.4.1. If nj ≠ 0 then tj = sj/nj, else tj = 0. 
1.5. If ||t|| ≤ β then exit unsuccessfully. 
1.6. x ← x + t. 
1.7. If any xj exceeds its bounds, reset onto the nearest bound. 

2. Exit unsuccessfully. 

Alg. 5.2: The basic Constraint Consensus algorithm (Chinneck 2004) 

1.1. NINF = 0; for all j : n  = 0, s  = 0. 

tance || fv || 
1.2.1.2.  If || fv || > α then: 
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simplicity, details of how the basic algorithm tolerates numerical errors are not 
shown.  Briefly, the algorithm ignores constraints that experience a numerical er-
ror at the current point (e.g. divide by zero) and carries on, hoping that the prob-
lem will not recur at the newly updated point.  If the algorithm returns a final point 
at which at least one constraint experiences a numerical error, then the termination 
is deemed unsuccessful.  See Chinneck (2003) for details. 

The basic constraint consensus method treats all of the eligible feasibility vec-

or shortest feasibility vector.  It may also be valuable to consider the number of 
constraints voting for a movement in the positive versus negative direction in a 
particular component.  This is the basis of the algorithm variations developed by 
Ibrahim and Chinneck (2005) and described below. 

Inputs: 
• a set of I constraints c1…cI, in J variables x1…xJ 
• an initial point x 
• a feasibility distance tolerance α 
• a movement tolerance β 
• a maximum number of iterations μ 
•  mode (near, far) 

1. Repeat μ times: 
1.1. NINF = 0; k = 0; for all j in x: nj = 0, sj = 0, zj = 0.  

1.3. For each constraint ci: 
1.3.1. If ci is violated then: 

1.3.1.1. Calculate feasibility vector fvi and feasibility dis-
i

1.3.1.2. i
1.3.1.2.1. NINF = NINF  + 1 
1.3.1.2.2. For each variable j in ci: 

• sj = sj + fvij ; nj = nj  + 1 
• i  

i  
o k = i 
o z ← fvi 

1.4. If NINF = 0, exit successfully with final point x. 
1.5. For each variable xj: 

1.5.1. If xj appears in ck then tj = zj. 
1.5.2. Else if nj≠0 then tj = sj / nj, else tj = 0. 

1.6. If ||t|| < β, then exit unsuccessfully. 
1.7. x ← x + t 
1.8. If any xj exceeds its bounds, reset onto nearest bound. 

2. Exit unsuccessfully. 

Alg. 5.3. Feasibility-distance based Constraint Consensus (FDnear, FDfar) (Ibrahim 
and Chinneck 2005) 

tance || fv ||. 
If || fv || > α then: 

and (|| fv || > fd )) then: 
If ((mode = near) and (|| fv || < fd)) or ((mode = far) 

1.2. If mode = near then fd = , else fd = 0. ∞
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The feasibility-distance based variations use the length of the feasibility vector 
associated with each violated constraint to determine the consensus vector.  In the 
“near” mode used in the FDnear algorithm, the consensus vector is set equal to 
the shortest feasibility vector on the assumption that it is better to move to satisfy 
the smallest violation first because this keeps the point in a region where the gra-
dients are good approximations of the functions.  In the “far” mode used in the 
FDfar algorithm, the opposite assumption is made and the consensus vector is set 
equal to the longest feasibility vector because this is likely to provide the most 
rapid movement towards feasibility.  In both cases, dimensions that do not appear 
in the selected shortest or longest feasibility vector are set by averaging as in the 
basic constraint consensus scheme.  Details are shown in Alg. 5.3, where fd is the 
maximum or minimum feasibility distance, and z is the shortest or longest feasibil-
ity vector.  The FDfar approach is related to the “remotest set control” class of 
projection algorithms (Censor and Zenios 1997, p. 80). 

Inputs: 
• a set of I constraints c1…cI, and J variables x1…xJ 
• an initial point x 
• a feasibility distance tolerance α 
• a movement tolerance β 
• maximum number of iterations μ 

1. Repeat μ times: 
1.1. NINF = 0; for all j: s+

j = 0, s−j = 0, n+
j = 0, n−j = 0. 

1.2. For each constraint ci: 
1.2.1. If ci is violated then: 

1.2.1.1. Calculate feasibility vector fvi and feasibility distance 
|| fvi||. 

1.2.1.2. If || fvi|| > α then 
1.2.1.2.1. NINF = NINF  + 1 
1.2.1.2.2. For each variable j in ci: 

• If  fvij > 0 then s+
j = s+

j + fvij and n+
j ← n+

j + 1 
• If  fvij < 0 then s−j  = s−j + fvij and n−j ← n−j + 1 

1.3. If NINF = 0 then return successfully with final point x. 
1.4. For each variable xj: 

1.4.1. If n+
j = n−j and (n+

j + n−j) > 0 then tj = (s+
j + s−j) / (n+

j + n−j) 
1.4.2. Elseif n+

j > n−j then tj  = s+
j / n+

j 
1.4.3. Else tj = s− / n−j 

1.5. If ||t|| < β, then exit unsuccessfully. 
1.6. x ← x + t 
1.7. If any xj exceeds its bounds, reset onto nearest bound. 

2. Exit unsuccessfully. 

Alg. 5.4 Average direction-based (DBavg) Constraint Consensus (Ibrahim and Chin-
neck 2005) 

j  

5.5 Constraint Consensus Methods for Approximate Feasibility      69



The direction-based algorithms conduct a “vote” on whether to move in the 
positive or the negative direction for each dimension prior to deciding how far to 
move.  In some variants, the direction vote is the simple count of how many vio-
lated constraints would prefer an increase in a dimension versus how many would 
prefer a decrease in that dimension.  In other variants, the vote is settled by the 
size of the largest proposed movement in the positive versus negative direction: 
whichever direction has the largest proposed movement wins the vote.  Once this 
vote settles the question of whether to increase or to decrease in the dimension, 
there are several ways to decide how far to move. 

The DBavg method decides the direction of movement in a dimension by a 
simple count of the number of votes for positive or negative movement, and the 
magnitude of the movement is decided by averaging the projections in the winning 

Inputs: 
• a set of I constraints c1…cI, and J variables x1…xJ 
• an initial point x 
• a feasibility distance tolerance α 
• a movement tolerance β 
• maximum number of iterations μ 

1. Repeat μ times: 
1.1. NINF = 0; for all j: s+

j = 0, s−j = 0, n+
j = 0, n−j = 0. 

1.2. For each constraint ci: 
1.2.1. If ci is violated then: 

1.2.1.1. Calculate feasibility vector fvi and feasibility distance 
i

1.2.1.2. i
1.2.1.2.1. NINF = NINF  + 1 
1.2.1.2.2. For each variable j in ci: 

• If  fvij > 0 then 
o n+

j ← n+
j + 1 

o If  fvij > s+
j then s+

j ←fvij 
• Else if fvij < 0 

o n−j ← n−j + 1 
o If  fvij < s−j then s−j ←fvij 

1.3. If NINF = 0 then return successfully with final point x. 
1.4. For each variable xj: 

1.4.1. If  n+
j = n−j  then tj = (s+

j + s−j) / 2 
1.4.2. +

j > n−j then tj = s+
j 

1.4.3. Else tj = s−j 
1.5. If ||t|| < β, then exit unsuccessfully. 
1.6. x ← x + t 
1.7. If any xj exceeds its bounds, reset onto nearest bound. 

2. Exit unsuccessfully. 

Alg. 5.5. Maximum direction-based (DBmax) Constraint Consensus (Ibrahim and 
Chinneck 2005) 

|| fv ||. 
If || fv || > α then 

Else if n
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direction, as shown in Alg. 5.4.  s+
j and s−j are the sums of the feasibility vector 

components in the positive and negative directions for variable j and n+
j and n−j are 

the number of violated constraints that vote for movement in the positive and 
negative directions for variable j. 

In the DBmax variant, the direction vote is decided by the size of the largest 
proposed movement in each of the positive and negative directions: the largest 
proposed movement determines both the direction and the size of the component 
in the consensus vector.  See Alg. 5.5.  This is again related to the “remotest set 
control” projection algorithm but is applied in a component-wise manner. 

In the bound-type direction-based variant DBbnd, the direction vote is settled 
by a simple count of the number of votes for an increase or a decrease in the com-
ponent.  The size of the movement in each component depends on the types of 
constraints that include that variable.  Movements in the selected direction sug-
gested by equality constraints are totaled; for inequalities only the largest move-
ment in the selected direction is added because the largest movement will satisfy 

=+
j and n=−

j 
rections for the jth variable recorded by violated equality constraints and  max+

j 
and max−j  represent the largest positive and negative feasibility vector components 
for the jth variable in violated inequality constraints. 

While all of the constraint consensus methods deal well with constraint scaling, 
they are vulnerable to discrepancies in variable scaling.  The effect of uneven 
variable scaling could be more pronounced in the DBmax and DBbnd variants, so 
care should be taken with variable scaling prior to application of these heuristics. 

Ibrahim and Chinneck (2005) carry out a very large empirical study of the Con-
straint Consensus variants.  The DBmax variant exits successfully the most often 
at all values of α (with FDfar a close second), while FDnear is consistently the 
worst.  It’s clear that focusing on the larger violations gives the best performance. 

The real test is whether the points returned by a Constraint Consensus algo-
rithm, whether the algorithm concludes successfully or not, provides a useful start-
ing point for a full-scale nonlinear solver.  Here the results of empirical tests by 
Ibrahim and Chinneck (2005) are unequivocal.  Applying a Constraint Consensus 
method prior to launching a nonlinear solver has two effects: (i) it significantly in-
creases the probability that a nonlinear solver will reach a feasible point, and (ii) it 
dramatically reduces the number of nonlinear solver iterations required to reach 
feasibility.  In fact, combining the randomized standard initial point heuristic with 
the FDfar Constraint Consensus variant gives success rates that are close to and in 
some cases better than the success rates obtained when very good modeler-
supplied points are used to launch the solver.  Obtaining an improved point by ap-
plying a Constraint Consensus algorithm is always a good thing to do prior to 
launching a nonlinear solver.  

n
all of the inequalities.  The resulting total is then reduced to an average. See Alg . 5.6. 

 represent the number of votes for the positive and negative di-
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Inputs: 
• a set of I constraints c1…cI, and J variables x1…xJ 
• an initial point x 
• a feasibility distance tolerance α 
• a movement tolerance β 
• maximum number of iterations μ 

1. Repeat μ times: 
1.1. NINF = 0; for all j: s+

j =0, s−j =0, n+
j =0, n−j =0, n=+

j =0, n=−
j =0, 

max+
j = 0, max−j =0. 

1.2. For each constraint ci: 
1.2.1. If ci is violated then: 

1.2.1.1. Calculate feasibility vector fvi and feasibility distance 
i

i
1.2.1.2.1. NINF = NINF  + 1 
1.2.1.2.2. For each variable j in ci: 

• If fvij > 0 then  
o n+

j ← n+
j +1 

o If cj is an equality constraint then s+
j ← s+

j + fvij 
and n=+

j ← n=+
j +1 

o Else if fvij > max+
j then max+

j ← fvij 
• If fvij < 0 then 

o n−j ← n−j +1 
o If cj is an equality constraint then s−j ← s−j + fvij 

and n=−
j ← n=−

j +1 
o Else if  fvij < max−j then max−j← fvij 

1.3. If NINF = 0 then return successfully with final point x. 
1.4. For each variable xj: 

1.4.1. If max+
j ≠ 0 then 

1.4.1.1.  s+
j ← s+

j + max+
j 

1.4.1.2.  n=+
j ← n=+

j +1 
1.4.2. If max−j ≠ 0 then 

1.4.2.1.  s−j ← s−j + max−j 
1.4.2.2.  n=−

j ← n=−
j + 1 

1.4.3.  If n+
j = n−j then 

1.4.3.1.  tj = (s+
j + s−j

=+
j + n=−

j) 
1.4.4. Else if n+

j > n−j then tj = s+
j/n=+

j 
1.4.5. Else tj = s−j/n=−

j 
1.5. If ||t|| < β, then exit unsuccessfully. 
1.6. x ← x + t 
1.7. If any xj exceeds its bounds, reset onto nearest bound. 

2. Exit unsuccessfully. 

Alg. 5.6 Direction-based and bound-based (DBbnd) Constraint Consensus (Ibrahim 
and Chinneck 2005) 

|| fv ||. 
1.2.1.2. If || fv || > α then 

)/(n
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One caveat is in order.  Most of the Constraint Consensus variants tend to pro-
duce output points that are on or very close to the limiting values of inequality 
constraints.  This can be a problem for solvers that use barrier methods.  A small 
adjustment of the output point to move it away from the limiting values of the 
constraints should be applied prior to submitting the point to a barrier-method 
solver.  

5.6 Finding a Good Sampling Box for Multistart 

If single-start methods are unsuccessful in providing the solver with an initial 
point from which it can reach feasibility, then multistart methods must be tried.  
Multistart methods typically provide the solver with random starting points within 
the hyperbox defined by the variable bounds.  The efficiency of the multistart 
method can be greatly increased if it is given a sampling box that is highly likely 
to include a feasible point, i.e. a smaller and more focused hyperbox within the 
variable bounds.  This section addresses the issue of finding a good sampling box 
that is likely to include a feasible point. 

The first step in finding a good sampling box is to apply logical presolving 
methods to tighten the variable bounds prior to solving the model (see Sec 6.1.1).  
Following that, there are two other ways to provide a more focused sampling box; 
these are the subject of this section.  First, random sampling methods can be used 
to heuristically tighten the variable bounds (Sec. 5.6.1), then a heuristically-
effective sampling box within those bounds can be used initially (Sec. 5.6.2) 

5.6.1 Tightening the Variable Bounds 

The variable bounds provided by the modeler may define a box that is far larger 
than the feasible region(s) for the NLP.  The first step in defining a good sampling 
box for multistart methods is to tighten the bounds as much as possible.  Sampling 
can also be used for this purpose.  Chinneck (2002) describes several techniques 
of this type, which have been implemented in the MProbe software.  Consider 
nonlinear inequality constraints first.  At random points inside the initial sampling 
enclosure, the feasibility of the nonlinear inequality is evaluated.  The values of 
the constraint variables are noted at any points that satisfy the inequality.  Over 
numerous feasible sample points, the minimum and maximum value pair is re-
corded for each variable.  On exit, each minimum/maximum pair provides an 
overtightening of the bounds on the variable.  It is an overtightening because the 
probability of attaining the true maximum and true minimum of each variable in 
this way is small.  The probability of serious error is greatest when the variable 
bounds are unduly large or unbounded.  The process is illustrated in Fig. 5.5a. 

Each constraint determines a range for the variables that appear in it.  The inter-
section set of the ranges for each variable, as determined by the constraints that it 
appears in, forms the tightened set of bounds on that variable.  Since the variable 
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ranges are (over)tightened, it may happen that the range returned for a variable by 
one constraint does not overlap with the range returned for the same variable by a 
different constraint.  Because of the overtightening, it is possible that a feasible 
value for the variable exists in the gap between the two non-overlapping intervals.  
For this reason, when two intervals do not overlap, the interval that is returned 
consists of the gap between those intervals.  Infeasibility is not assumed. 

Nonlinear equality constraints can also be handled this way.  The equality is 
first treated as a ≤ constraint and appropriate variable ranges are constructed, then 
it is treated as a ≥ constraint and a second set of variable ranges is constructed.  
The intersection of the two ranges is returned as the final tightened range after 
sampling the equality constraint.  Fig. 5.5b illustrates this process. 

Unbounded variables can cause difficulties for nonlinear interval analysis via 
sampling.  This is because the feasible region for the constraint may comprise only 
a tiny portion of the variable box when the constituent variables are unconstrained, 

20

pling then turns up no feasible points for the constraint, so that the variable ranges 
cannot be tightened.   

When the range tightening methods described above are unsuccessful, the op-
posite approach may work: expanding boxes instead of shrinking them.  The main 
idea is to start with a very small sampling box and to expand the bounds in several 
stages, looking for the approximate scale of the variables.  The initial small box is 
centered on the origin.  If the variable is unbounded in both directions, then the 
initial range extends from –1 to +1.  If the variable is nonnegative unbounded, 
then the initial range extends from 0 to +1.  This temporary sampling box is called 
a nucleus box. 

For each nonlinear constraint for which no feasible points have been found, 
various nucleus boxes are sampled, usually at the scale of 1 as above, then increas-
ing powers of 10 (101, 102, …105).  The largest box that registers any feasible 

x 

y 

x 

y 

(a) (b) 

 
Fig. 5.5. Nonlinear interval analysis via sampling tightens the bounds on variable y. 
(a) inequality constraint.  (b) equality constraint (Chinneck 2002) 

even when “unbounded” is numerically defined as ±1× 10 , for example.  Sam-
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sample points for the constraint is used to reset the bounds on the variables in the 
constraint.  In the case of equality constraints, the nucleus box is accepted if it reg-
isters at least one point at which the functional value is less than the constant, and 
at least one point at which the functional value is greater than the constant (or the 
low probability event that the point satisfies the equality constraint). 

It is possible that the bounds will be overtightened by this procedure, but they 
could also be undertightened.  Some manual adjustment may be desirable. 

Nonlinear range cutting is another sampling heuristic that works by examining 
possible cuts on the edges of the variable range.  For a given variable, a cut is pro-
posed (as large as 90% of the total variable range if the range is very large, more 
commonly 30% of the variable range).  The cut is accepted if, after sufficient 
samples, at least one of the constraints that use the variable has not been satisfied 
at any of the sample points.  This method is similar to the range analysis described 
above, but operates on the infeasible zone of the constraint rather than the feasible 
zone. Equality constraints are considered satisfied in the test cut zone if they regis-
ter at least one point at which the functional value is greater than the constant and 
at least one point at which the functional value is less than the constant, or the low 

probability event that a sam-
ple point satisfies the equality 
constraint.  See Fig. 5.6 for 
an illustration. 

Thus far, the sampling 
methods operate by examin-

Accuracy is improved by using the end points of the spanning line segments 
since these are at the extreme edges of the enclosure-feasible region.  Overtighten-
ing of the variable bounds remains a possibility, but it is much less likely because 
of the use of the spanning line segment endpoints.  All of the sample points used 
in resetting the maximum and minimum values are on the boundary of the enclo-
sure-feasible region. 

The MProbe software combines the various sampling techniques as follows:  
1. One pass of presolving-style range tightening 
2. Range sampling, one constraint at a time. 
3. For those constraints which registered no feasible points during nonlinear 

range sampling, find a nucleus box. 

test constraints 
in candidate cut 
zone 

Fig. 5.6.  Range cutting (Chinneck 2002) 

4. Nonlinear range cutting. 
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ing a single constraint at a 
time. Bound tightening is more
effective when the feasibility
of all of the conastraints is
considered simultaneously at 
a given poin t . This idea is dif-

ficult to incorporate in a random sampling approach given the presence of equality
constraints.  However, when a general convex sampling enclosure (see Sec. 5.2) is
in use, the hit-and-run method guarantees that all of the sampling enclosure inequ-
alities are simultaneously feasible. It is then simple to record the minimum and
maximum values of the variables over all of the points sampled by the hit-and-run
method.   



MProbe also permits the use of three other techniques under user control: man-
ual adjustment of variable bounds, the classic presolving techniques available in 
AMPL (Fourer et al. 2003), and convex enclosure sampling (Sec. 5.2). 

Amarger et al. (1992) describe a method for tightening the variable bounds that 
makes use of the algebra defining the constraint functions.  Each constraint is first 
analyzed for monotonicity in each variable it contains by inspection of the expres-
sion tree for the constraint.  A variable is monotonic in the constraint if the con-
straint body is monotonically increasing or decreasing as the variable increases in 
value.  The expression tree is a graph with variables and constants at the leaves 

analysis of the variable interactions within the constraint. 
The analysis then concentrates on the subset of constraints that contain only 

variables that are monotonic in the constraint, called monotonic constraints.  
Monotonic equality constraints are converted to a pair of oppositely-oriented ine-
qualities.  The procedure then finds the points that minimize and maximize the 
value of each constraint body.  For example, if increasing x causes a monotonic 

bound.  However it is usual that many variables have only one bound (e.g. are 
nonnegative).  If the variables are simply nonnegative but not bounded above in 

A series of bound-tightening iterations follows next.  For each monotonic ine-
quality, inspect each variable xj it contains.  If some other variable is unbounded at 

j j

j j
set at the value that minimizes the constraint.  This will result in a new upper or 
lower bound on xj, possibly tighter than the existing bound.  If it is a new upper 
bound and is less than the value of xj that maximizes the constraint, then reset the 
upper bound on xj and the value of xj that maximizes the constraint.  If it is a new 
lower bound and is greater than the value of xj that maximizes the constraint, then 
reset the lower bound on xj and the value of xj that maximizes the constraint.  A 
small epsilon is used to ignore bound updates that are too small. 

If at least one bound is updated by this procedure, then the process is repeated.  

5.6.2 Best Heuristic Sampling Box 

Even when tightened as much as possible, the variable bounds may still be quite 
large, so it is reasonable to look for an even smaller sampling box.  As for heuris-
tic initial-point placement, there are certain regions that are more likely to yield a 

and mathematical operators (+, –, /, ≤, etc.) at the nodes; this permits a systematic 

able for which N  = 0, solve the constraint for the value of x  with all other variables 
the minimum point for the constraint, then set N  =1, else set N = 0. F or every vari-

mum value of g(x, y) occurs when x is at its lower bound and y is at its upper 

our example g(x, y), then the minimum value of g(x, y) occurs at (x, y) = (0,∞). 

Sec. 6.1.1); the major difference is the pre-selection of the subset of monotonic
the usual cascade of bound tightening that takes place during presolving (see 
The set of bounds is gradually tightened in this way.  This process is similar to

constraints on which to operate due to their favourable properties for this operation. 

feasible point than others.  For example, Lasdon and Plummer (2006) showed 
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increase in g(x, y) while increasing y causes a monotonic decrease, then the mini-



2 4

raised solver success rates.   
The success of the randomized standard initial point heuristic shows that the 

small random region around the point supplied by the standard initial-point 
placement heuristic (Sec. 5.4) often provides a good starting point.  Hence it is 
reasonable to expect that a larger box around that point will give good results for 
multistart. MacLeod and Chinneck (2007) investigated the size of the smallest box 
around the standard heuristic point that frequently includes the closest feasible 
point.  Over a wide selection of models from the CUTE set, they determined that 
the average distance from the standard heuristic point to the closest feasible point 
was less than 1×104 per dimension for 98.3% of the models, and a maximum dis-
tance to the closest feasible point of less than 1×104 was recorded over all the di-
mensions for 97.4% of the models.  Increasing the box beyond a distance of 1×104 
from the standard heuristic initial point in each dimension showed very slow im-
provement per order of magnitude. 

Given these results, the following initial multistart sampling box is recom-
mended:  

• If a variable is not bounded, bounds are ±1×104, 
4

4

• If there are two bounds: 
4 4

C +1×104) 
If separated by less than 2×104, bounds are (L, U). 

MacLeod and Chinneck (2007) use this initial set of bounds in a multistart 
sampling procedure described in Sec. 5.7.  The full procedure includes a method 
for expanding and shifting the sampling box as conditions warrant. 

 

5.7 Multistart Methods 

Single-start methods select a single initial point to submit directly to a nonlinear 
solver, or to a Constraint Consensus method whose output is then passed along to 
the nonlinear solver.  For very difficult NLPs, the feasibility-seeking process may 
fail when started at any given initial point, hence another one must be chosen, per-
haps several more, before feasibility can be attained.  This is the premise of 
multistart methods.  In naïve multistart, the nonlinear solver is launched at random 
starting points within the variable bounds.  For difficult problems, the solver ter-
minates unsuccessfully when started at most points in space, so this is inefficient 
and time-consuming.  Newer multistart methods, in contrast, try to estimate which 
areas are most likely to contain a feasible point, and launch points there.  As de-
scribed in Sec. 5.6, one approach is to try sampling within a known promising 

• If there is a single lower bound L, bounds are (L, L + 2 ×10 ), 
• If there is a single upper bound U, bounds are (U− 2 ×10 , U), 

If separated by more than 2 ×10  with centre C, bounds are (C −1×10 , 

empirically that limiting the sampling box to ±1×10  or ±1×10  around the origin 
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sampling box; another approach is to learn where the promising launch areas are 
as the multistart process proceeds. 

There are a variety of multistart methods for NLPs, but few that focus specifi-
cally on finding a feasible solution quickly.  Most multistart methods focus on 
finding an optimum solution to the NLP, though this can be useful for finding a 
feasible solution when a phase-one type objective function is substituted in place 
of the original objective.  A brief summary of optimum-seeking multistart NLP 
methods follows. 

Variations on genetic algorithms (Michalewicz et al. 1994, Michalewicz and 
Nazhiyath 1995) are available, but can only reliably handle nonlinear constraints if 
the feasible region is known to be convex; this cannot be guaranteed in practice.  
In fact, the most difficult NLPs are likely to be nonconvex.  Further, genetic algo-
rithms can handle only very small models. 

 Scatter Search (Glover et al. 2000, 2003) uses an initial set of reference solu-
tions, often generated randomly.  Members of the reference set are combined in 
various nonconvex ways to create new solutions, which may be heuristically im-
proved before being considered for inclusion in the updated reference set.  Scatter 

linking (Glover et al. 2000, 2003) adds the exploration of trajectories between 
good solutions, on the theory that even better solutions may be located in between.  
Elements of one solution are progressively added to the other, with optional local 
improvement searches every few steps.   

Glover, Laguna and Martí (2004) describe OptQuest, a commercial implemen-
tation of scatter search and path relinking that can handle nonlinear inequalities in 
conjunction with a local nonlinear solver.  Ugray et al. (2006) provide the results 
of empirical tests of OptQuest for global optimization problems of moderate size.  

The Greedy Randomized Adaptive Search Procedure (GRASP) (Resende and 
Ribeiro 2003a) keeps a restricted list of the best known candidate solution compo-
nents, and then randomly selects among them to build a possible solution.  Local 
searches are generally performed around candidate solutions. GRASP can also be 
combined with path relinking (Resende and Ribeiro 2003b).  Meneses et al. (2005) 
apply GRASP to box-constrained nonlinear objective functions with good results. 

The Efficient Global Optimization (EGO) method (Jones et al. 1998) samples a 
select few points of an expensive function and fits a surface to them. Successive 
samples are biased towards two kinds of areas: those that are strongly predicted to 
have better function values and those where the uncertainty of the function is so 
large that a better function value is quite possible, regardless of the predicted 
value. One of the key insights is the use of an initial Latin hypercube sample in 
order to start with a minimal amount of uncertainty. An initial sample of around 
10 times as many points as the number of dimensions is recommended, which may 
be impractical to evaluate for truly expensive functions or very large models. 

(ideally) only used once per local optimum. Clusters of points believed to be in the 
same region of attraction (i.e. near the same optimum) are identified, and only one 
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search has been empirically tested on bound-constrained multimodal NLPs 
(Laguna and Martí 2005) with good results, but only for very small models.  Path re-

Some ideas from global optimization are useful in a multistart approach. Elwakeil
and Arora (1996) define a clustering method as one in which local search is 



point per cluster is used to initialize an expensive local search.  Results show that 
the local search performance tends to depend heavily on dimension.  Many global 
optimization methods (e.g. (Tu and Mayne 2002a, 2002b)) solve a series of quad-
ratic sub-problems at each step to identify these clusters, which can be quite ex-
pensive, and is not practical for very large models.  Tu and Mayne (2002a) report 
that multistart with clustering outperforms non-clustering multistart in terms of the 
number of local searches conducted, the number of minima found, the identifica-
tion of the global minimum and the number of the function evaluations required. 

Invoking a local solver is expensive, so it is important for multistart methods to 
avoid unnecessary invocations by filtering points before they are passed to the 
solver.  An acceptance-rejection technique can be used to launch a local solver 
only when the initial point is thought to be promising. In general, the filtering be-
comes more severe as the algorithm progresses. Extensions of this general ap-
proach are used in the Zooming and Domain Elimination method of Elwakeil and 
Arora (1996) and the “multistart nonlinear programming” (MSNLP) software 
(Lasdon et al. 2004). 

In addition to using acceptance-rejection filters, MSNLP incorporates a method 
of spherical approximation of the regions of attraction of the local minima. The 
distance filter compares each generated trial point to the set of best known solu-
tions, and rejects it if it is within a solution’s estimated basin of attraction (analo-

the basin of attraction by using the distance from the starting point for each re-

this solution has rejected too many trial points. Further extensions initialize the ra-
dius to be slightly smaller than the calculated radius, and dynamically adjust the 
basins so they do not overlap. The general idea is similar to the repulsion algo-
rithm (Sepulveda and Epstein 1996), except that with repulsion every new point is 
made use of by ‘pushing it away’ from the previously solved points in whose ba-
sins it lies. This is perhaps more computationally intensive than outright rejecting 
a point and moving on, depending on the problem characteristics. 

The MSNLP merit filter, similar to the classic acceptance-rejection technique, 
compares the penalty function value of a candidate launch point to a certain 
threshold. Whenever a point with the new lowest value of the penalty function is 
discovered, the threshold is set to this value. If the threshold has rejected too many 
points in a row (the default value is 20) it is relaxed by a certain fraction.  After a 
stage 1 in which n1 points are generated and their penalty function values evalu-
ated, stage 2 begins with the best point found in stage 1. This point is passed to the 
local solver, and the filters initialized with the result. In this stage n2 points are 
generated one by one. If any point passes the two filters, the local solver is 
launched from it. The filters are updated based on the result and the next iteration 
begins. Note that the point returned by the local solver may not actually be locally 
optimal (or even feasible). Iterations are halted when a certain target value of the 
objective function is obtained, or when progress has slowed. 

We now turn our attention to two multistart methods designed specifically for 
finding feasible points quickly in NLPs. 
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gous to the clusters in clustering methods). It obtains an estimate of the radius of 

turned solution. This radius is dynamically increased if another starting point 
returns the same solution from a greater distance, and decreased if the radius around 



5.7.1 MSNLP Feasibility Mode 

Lasdon and Plummer (2006) adapt the MSNLP concepts for the specific task of 

of MSNLP uses the L1 exact penalty function as a quality metric for evaluating 
candidate starting points, i.e.  
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where f(x) is the original objective function, viol(gi(x)) is defined as the absolute 
violation of the ith constraint, and wi is a positive penalty weights for the ith con-
straint.  Variable bounds are never violated. 

The main adaptation in the new feasibility mode is the replacement of the L1 
exact penalty function by a new measure of infeasibility that is designed to be 
nearly invariant under changes in scaling of the constraint functions.  Constraints 
have the form li≤gi(x)≤ui.  The new measure is the sum of the constraint violations 
over all of the constraints, sinf(x), where the violation of an individual constraint 
viol(gi(x)) is defined as follows: 

i i i i i 

i i i i i i
 0 otherwise 

The feasibility mode of MSNLP bases all of its merit evaluations on this new 
sinf (x), keeps the points with the best values of sinf(x) in the list of local solutions, 
and terminates when the first feasible solution is found. Lasdon and Plummer 
(2006) report good results using MSNLP modified in this way to seek feasible so-
lutions to a number of difficult NLPs.  They also empirically evaluate a number of 
methods for generating initial points; a uniform sampling within the variable 
bounds does very well on most problems, in fact better than more advanced sam-
pling techniques.  Of course the point filtering algorithms severely restrict the 
number of starting points from which a full-scale nonlinear solver is launched. 

5.7.2 Multistart Constraint Consensus 

Constraint Consensus methods (Sec. 5.5) are ideal for use in a multistart algo-
rithm.  They are inexpensive and relatively quick at returning a point that is ap-
proximately feasible, hence they are well suited for the space exploration portion 
of a multistart algorithm.  MacLeod and Chinneck (2007) develop this idea in their 
Multistart Constraint Consensus (MCC) algorithm. 

 (l  g (x))/(1+ abs(l )) if   g (x) < l
viol(g (x)) =  (g (x)-u )/(1+ abs(u )) if   g (x) > u  

reaching a feasible point in a nonlinear program.  The original optimization form 

−
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2. Latin hypercube sampling in the heuristic initial sampling box defined in 
Sec. 5.6.2. 

3. Weighted random multistart. 

Given its high rate of success in previous testing (Ibrahim and Chinneck 2005), 
the randomized standard initial point heuristic (Sec. 5.4) is a natural choice to 
generate the first initial point during phase 1.  If that is not successful, then the 
second phase uses Latin hypercube sampling in the heuristic box defined around 
the standard heuristic point (see Sec. 5.6.2).  If that is also unsuccessful, then Con-
straint Consensus is used in a phase 3 scheme which samples the variable space to 
continually update weights that control where subsequent samples will be placed. 

The main innovation is in the phase 3 system for sampling within the solution 
space and updating the probability map for the placement of the next initial trial 
point.  A Constraint Consensus algorithm is started at each new sample point.  The 
final consensus vector in a particular solution sequence is not used to update the 
current point, but is instead used just to indicate the quadrant that the updating 
process wishes to move into.  The overlap of the quadrants indicated by several 
different final consensus vectors provides the weighted probability map to guide 
the placement of the next initial point.  Fig. 5.7 illustrates this process.  There are 
three discontiguous feasible regions in Fig. 5.7, shown by the elliptical shapes.  
The last two consensus vectors for 5 different Constraint Consensus invocations 
are shown.  The tail of the last consensus vector is called a marker point, which is 
used to divide the plane into quadrants; the last consensus vector in each Con-
straint Consensus sequence, called the pointer (shown as an arrow in the figure), 
indicates the quadrant which is most likely to contain a feasible point.  In Fig. 5.7, 
all of the final consensus vectors indicate quadrants that contain a feasible point. 

For k marker points there will be k+1 zones (or bins)  in each dimension, and if 
there are n dimensions, then there will be (k+1)n boxes.  It is obviously impractical 
to assign a probability to each individual box due to the combinatorial explosion 
as the number of dimensions increases, so the MCC algorithm takes a different 
tack: it assigns probabilities to each bin along each axis.  In this way there are just 
n(k+1) probabilities to assign.  A new sampling point is built up by determining 
the new value in the x1 dimension using the weighted probabilities for the bins 
along the x1 axis, then the new value in the x2 dimension using the weighted prob-
abilities for the bins along the x2 axis, etc. 
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improved via the application of a Constraint Consensus method.  If the point out-
put by the Constraint Consensus method meets certain criteria, then a local solver 
is launched.  If the local solver reaches a feasible solution, then the process is 
halted successfully.  The ordered phases are: 

1. The randomized standard initial point. 

MCC uses a phased approach to generating initial points for the local solver.  In 
each phase a particular method is used to generate initial points which are then 



The weight of each bin in each dimension is based on the number of pointers 
that cross that bin.  This is illustrated in Fig. 5.8 which depicts the bins, marker 
points (thick dots) and pointers (thick arrows on the axis) for a single dimension. 
Each pointer indicates either a positive or a negative direction.  A pointer adds a 
vote to every bin in the direction it indicates, until it encounters an oppositely-
oriented marker. The long arrows above the axis line in Fig. 5.8 indicate the extent 
of the votes made by each pointer, and the numbers beneath the axis line indicate 
the vote totals for each bin. 

The votes can be used to establish the weights for the bins in several ways.  The 
simplest approach is to set the weight wi for bin i as wi=vi/V, where vi is the num-
ber of votes for bin i and V=Σvi over all i.  Once the bins and weights are known, 
the next point is chosen using the weighted probabilities.  For each axis, choose 
bin i with probability wi, then choose a uniformly distributed random point in the 
chosen bin. As implemented (MacLeod and Chinneck 2007), MCC uses a rela-
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tively small number of marker points and hence a small number of votes and bins.  
To compensate, exaggerating the differences between the weights in different bins 
gives generally better results.  This is done by setting vi to the square of the num-
ber of votes in the bin, but otherwise following the procedure above. 

There are two special cases.  First, it may happen that the pointer indicates nei-
ther the negative nor the positive direction in a certain dimension.  In this case, a 
vote is placed in each of the two bins immediately bordering the marker point on 
either side.  The rationale is that a zero pointer indicates that the immediate area 
around the marker point meets the criteria for feasibility for the current dimension, 
so sampling nearby is to be encouraged.  Pointers voting towards the marker point 
extend their votes only to the marker point and not past it. 

The second special case is when Constraint Consensus fails, or the local solver 
has been launched and fails.  It is obviously desirable to promote less sampling in 
this region, so a negative vote is placed in each of the two bins immediately bor-
dering the marker point on either side.  This raises the possibility of a negative 
vote total for a bin.  If the largest negative vote total is –d in some bin i, then the 
vote total in every bin is adjusted upward by d.  This sets the vote total in bin i to 
zero, meaning that it will not be chosen for sampling in the next iteration.  It is 
also possible to adjust the vote totals so the minimum number of votes in any bin 
is 1 in order to retain a small possibility of sampling in low-probability spaces. 

Note the contrast between the MCC weighted sampling scheme and that used 
by MSNLP (Lasdon and Plummer 2006).  MSNLP concentrates on excluding ar-
eas that have already been searched, while MCC concentrates on identifying at-
tractive areas for sampling that are likely to contain a feasible point.  MSNLP uses 
hyperspheres for subdividing space, which assumes that all dimensions can be 
treated equally, which is not appropriate for models whose dimensions have dif-
ferent scales or different size intervals between upper and lower bounds.  Hyper-
spheres are also unable to cover space completely without overlapping, an issue 
that becomes more pronounced at higher dimensions. The rectangular areas used 
in MCC do not have this problem. 

MCC maintains a list of exactly N marker points at all times; a new point may 
replace an existing point if it meets these criteria: (i) fewer constraints evaluated at 
that point result in errors (e.g. overflow), and (ii) if two points have the same num-
ber of errors, the point whose longest feasibility vector is the shortest is better.  
The second criterion is equivalent to the smallest α that this point satisfies (the 
magnitude of all feasibility vectors will be less than or equal to this value).  When 
a new point is better than an existing marker point, then it replaces the worst 
marker point and the bins and vote totals are recalculated.  If the new point has the 
same longest feasibility length as the current worst point, it replaces it to avoid 
stagnation of the point set.  MacLeod (2006) concluded that N=5 works well after 
a small study. 

Sampling actually takes place inside the sampling box which is normally 
smaller than the box defined by the variable bounds.  It is initially set to the box 
around the standard heuristic point as defined in Sec. 5.6.2.  The sampling box is 
adjusted as evidence accumulates that it may be useful to sample outside the cur-
rent box.  The initial heuristic sampling box is unlikely to be the best choice for 
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the sampling activities over the entire running time of the algorithm: it may be too 
big for some models while for others it may not actually encompass a feasible 
point.   

The core region in the sampling box extends from the lowest marker point to 
the highest marker point in each dimension, but the sampling box should extend 
above and below these boundaries to some extent to handle the case where point-
ers indicate votes beyond the extreme upper or lower marker point.  The sampling 
box is extended out from the core region by a fixed amount below the lowest 
marker point and above the highest marker point in each dimension.  The fixed 
size assigned to the bin at each extreme edge in each dimension is found as fol-
lows.  Mag is defined as the magnitude of the initial starting box (normally 104).  

mension x extends from d1−edgewidth to d1 and the highest bin extends from dN to 
dN+edgewidth, where d1 and dN are the lowest and highest marker values in that 
dimension. 

If a newly generated and accepted point constitutes a new extreme marker in 
any dimension, the sample box expands accordingly in that dimension.  Similarly, 
if the highest or lowest marker value in a dimension is eliminated when its point is 
replaced, the sample box will shrink in that dimension.  The sample box is appro-
priately reduced if necessary to avoid sampling outside the variable bounds, but 
otherwise edgewidth remains a constant size to mitigate focusing too tightly on 
one area.  This helps to avoid getting trapped in infeasible local minima. 

An adaptive procedure is also used to dynamically adjust the feasibility dis-
tance tolerance α if the Constraint Consensus invocations frequently fail using the 
existing tolerance.  If there are more than ρ consecutive Constraint Consensus in-
vocations that do not trigger a local solver launch, then α is increased.  The new 
value of α is set to the length of the longest feasibility vector in the best of the N 
marker points.  Recall that the best marker point is the one whose longest feasibil-
ity vector is the shortest, hence this is equivalent to the smallest α that would trig-
ger any of the current marker points to launch the local solver.  There is no 
mechanism for reducing α. 

An empirical study (MacLeod and Chinneck 2007) shows that Multistart Con-
straint Consensus is very effective in reaching feasibility for very difficult models.  
It is far more effective than naïve multistart.  Simply adding a Constraint Consen-
sus improvement phase to the points selected by a naïve multistart greatly im-
proves its success rate, as expected (see Sec. 5.5).  However Multistart Constraint 
Consensus is needed for the most difficult models.  In a sample of 151 models, 
phase 1 of MCC solves 70.6% of the models, phase 2 solves 21.0%, and phase 3 
solves the remaining 8.4%.  As expected, the more complex phase 3 is needed 
only for the more complex models. 

Edgewidth is defined as 2× mag/N. At any given iteration, the lowest bin in di-
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5.8 Bootstrapping Method of Debrosse and Westerberg 

Bootstrapping methods (see Sec. 5.3) find a feasible point by generating an initial 
point that satisfies some subset of the constraints, and then adjusting the current 
point such that additional constraints are satisfied.  Once a constraint has been sat-
isfied, it is not violated in any subsequent step.  In an ideal algorithm, the number 
of satisfied constraints increases monotonically until all are satisfied. 

Debrosse and Westerberg (1973) provide some useful theorems concerning the 
feasibility of nonlinear systems of constraints and describe a bootstrapping method 
which produces one of two possible outcomes: (i) a feasible point or (ii) a minimal 
infeasible set of constraints (later termed an IIS: see Chap. 6).  The method they 
propose is suitable for highly structured models in which each constraint involves 
only a few variables, which makes the set of constraints easily ordered by prece-

i

j
The Debrosse and Westerberg bootstrapping method relies on identifying 

points at the intersection of subsets of the constraints.  When dealing with ine-
qualities, this means points at the intersection of the limiting values of the ine-

Theorem 5.1: Intersecting surfaces (Debrosse and 

quality constraints, each proper subset Pi of constraints 
whose limiting surfaces intersect simultaneously deter-
mines a surface.  Find a point on each such surface such 

i
(such a surface is called a surface of maximal intersec-
tion).  The system is infeasible if and only if none of the 
points satisfies all p constraints.■ 

Note that there is the possibility of multiple intersections of a given subset of 
constraints, in which case more than one surface is determined.  In an n-
dimensional system, some of these surfaces may be redundant (dimensionality is 

The general idea of Theorem 5.1 is illustrated in Fig. 5.9, which depicts an in-
feasible system of 3 inequalities.  In the absence of multiple intersections due to 
curving and recrossing of the constraints, each of the dots represents a point on a 
surface of maximal intersection.  Each of those points is defined by the intersec-
tion of two of the inequalities, but does not intersect the third.  In addition, each of 
the points violates that third inequality.  Hence the system is infeasible. 

Consider the opposite case, in which one of the inequalities has the opposite 
sense.  We would have the same points on the surfaces of maximal intersection, 
but now not all of the points will violate the third inequality. Hence the system is 
feasible. 

 
Fig. 5.9.  Theorem 5.1 

quality constraints g (x) ≤  0 in multiple dimensions.   

−

Westerberg 1973, Theorem 1).  For a set P of p≥  2 ine-

(x) = 0 and ine-dence.  They consider a system consisting of equality constraints f

not intersect with any other constraints. Some of their important theorems follow.
qualities.  A main technique is finding intersections of subsets of constraints that do 
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greater than n–m) or degenerate (dimensionality is less than n   m). 

that the surface intersects none of the constraints in P \P 



nected and intersects none of the constraints in M\P, then either M is feasible, or 
there exists at least one constraint i ∈ M\P such that P ∪ i is infeasible.■ 

A multiple constraint is a constraint that has multiple intersections and thereby 
creates more than one limiting surface. 

Theorem 5.3: IIS along a line (Debrosse and 
Westerberg 1973, Lemma 2). Given a line, if a 

tiple constraints on the line.■ 
Debrosse and Westerberg consider a “line” to 

include a curve.  If you are restricted to staying 
on the line, and there are no multiple constraints, 
then it should require just two intersecting con-
straints in addition to the line itself to cause 

infeasibility, one with a feasible region to the “left” and another with a feasible re-
gion to the “right”, with no overlap of the two feasible regions.  If an IIS has more 
than two constraints in addition to the line, then it implies that there are constraints 
that have multiple intersections with the line, creating discontiguous feasible re-
gions.  See Fig. 5.10 for an example of a line plus 4 inequalities that constitutes an 
IIS.  By inspection, removing any one of the 4 inequalities creates a feasible re-
gion on the darker line.  As required by the theorem, two of the constraints have 
multiple intersections with the line. 

Theorem 5.4: IIS in n dimensions (Debrosse and Westerberg 1973, Lemma 3).  
Given a set of constraints P having p members and no multiple intersections or 
multiple constraints, and that constitutes an IIS, then (a) there is at least one set 
Pj j j
(b) the feasible region of Pj is connected, and (c) the feasible region of Pj is not in-
tersected by constraint j.■ 

The various restrictions on P mean that a linear system qualifies, and the theo-
rem is easily understood for a linear system. 

Theorem 5.5: IIS cardinality in n dimensions (Debrosse and Westerberg 1973, 
Theorem 2).  In an n-dimensional space, if a set of n+p constraints forms an IIS 
where p>1, then there is at least one multiple intersection or multiple constraints 
in the set.■ 

This is a close cousin of Thm. 6.14 which states that the maximum cardinality 

be multiple intersections or multiple constraints to form the “extra” feasible re-
gions, which is possible only with nonlinear constraints. 

Theorem 5.6: Number of point evaluations to establish infeasibility (Debrosse 
and Westerberg 1973, Theorem 3). We are given a set P of p constraints and wish 
to determine whether P is infeasible.  Consider a proper subset M of P which has 
m members, and which defines a surface S by the intersection of all m members.  

 
Fig. 5.10. Theorem 5.3 

−

of an IIS in a linear system is n + 1.  For more constraints to be involved there must 

Theorem 5.2: Nonlinear turnabout (Debrosse and Westerberg 1973, Lemma 1). 

straints.  If every constraint p forms some part of the boundary of P, and P is con-
Consider a set M of m constraints and a feasible proper subset P of p con-

set of p > 2 inequalities creates an IIS in conjunc-
tion with the line, then there are at least p   2  mul-

 = P-{ j} such that the feasible region of P  is bounded by all p – 1 constraints in P , 

86      5 Seeking Feasibility in Nonlinear Programs 



one constraint from P \M have no simultaneous intersections.■ 
The point of this theorem is simply to reduce the number of simultaneous equa-

tion solutions that must be carried out.  It follows from Thm. 5.1. 
The authors also define structural infeasibility of a set of equations. This occurs 

when some subset of the equations has fewer variables than equations, and none of 
the equations are redundant. 

Debrosse and Westerberg construct an algorithm based on these theorems.  A 
simplified version for inequality constraints only that ignores multiple intersec-
tions and constraints (and the cycles they can cause) is shown in Alg. 5.7.  The 
bootstrapping characteristic is apparent in Step 2 in which further constraints are 
added to the set of constraints already satisfied.  The algorithm then attempts to 
satisfy the added constraints or to identify an IIS from among the constraints in the 
current hypothesis set H. 

No instructions are given as to the best way to construct the initial point in Step 
0, or which subset of violated constraints to incorporate into the hypothesis set in 
Step 2.  A further difficulty is that an enumeration of subsets is required in Steps 8 
and 11, of which there are potentially very many. 

The algorithm can be modified to handle equality constraints.  The main differ-
ence is that all of the equality constraints are included in the hypothesis set at all 
times.  This affects the results in that the set of constraints output in Step 14.1 of 
Alg. 5.7 may not be an IIS. 

5.9 Global Optimization 

Global optimization methods are designed to reliably reach the proven global op-
timum of a nonlinear function.  Such methods generally use some form of branch 
and bound, which subdivides the solution space in an exhaustive search (Pintér 
1998).  Areas of the solution space that cannot contain a feasible solution are 
gradually eliminated, while more promising areas are subdivided further for closer 
examination.  This is a time-consuming process, though provably correct, hence 
not especially suited for speedy identification of feasible points in NLPs.  It is 
generally practical only for relatively small models.  A widely available imple-
mentation is the BARON solver (Sahinidis 1996, 2000). 

Global optimization methods are particularly useful when other methods, in-
cluding extensive application of multistart methods, are unable to locate a feasible 
point.  Global optimization can then be applied to make a definite determination as 
to whether the model is feasible or infeasible. 

 

−We must evaluate a point on S if and only if all p   m subsets determined by M plus 
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H is a set of constraints called the hypothesis. 
GIVEN: a set of inequality constraints, some or all of which may be nonlinear 
0. Generate an initial point x. 
1. Determine the set V of constraints violated at x, and the set S of constraints 
 satisfied at x. 
2. H ← S ∪ {subset of V}. 

 3.1 Try to find a new point x that satisfies all constraints in H. 
 3.2 IF there is no feasible point x THEN go to Step 4. 
 3.3 Determine the set V of constraints violated at x, and the set S of constraints 
  satisfied at x. 
 3.4 IF V = ∅ THEN exit with x as a feasible solution. 
 3.5 Go to Step 2. 
4. IF there exists a proper subset H’ of H that is structurally infeasible THEN: 
 4.1 H← H’; go to Step 4. 
5. Find n, the number of dimensions in H. 

l

l r
9. FOR each Er(k) on list Ll: 
 9.1 IF Er(k) feasible at some point x THEN: 
  9.1.1 Delete Er(k) from Ll. 
  9.1.2 IF x satisfies all constraints in H\Er(k) THEN: 
   9.1.2.1 H is disproved; go to Step 15. 

l

l
 possible for entries on list L
 l

13. Form a list T of infeasible subsets of H in the order found in the last list Lq, 
 then L , L  etc., plus H itself. 
14. For each set Ti on the list T: 
 14.1 Test feasibility of Ti by testing it against all of the points evaluated  
   during Step 9.  IF infeasible, THEN exit with Ti as an IIS. 
15. IF all constraints satisfied at point x, THEN exit with x as a feasible solution. 
16. Go to Step 1. 

 
Alg. 5.7.  Bootstrapping method by Debrosse and Westerberg (1973) 

3. IF |H| ≠ n + 1 THEN: 

8. L  = {all subsets of H of size r}; label subsets E (k), k = 1,2,… |H|! /r!( |H|  r)! −

l – 1 taken |H| – r +1 at a time.  Place each resulting set 

q–1 q–2

6. IF |H| > n THEN r = n ELSE r = |H| − 1. 
7. Let l = 1 and establish empty list L . 

11. Let l  l+1 and establish new list L  by filling it with all set intersections  
10. IF |L | < |H| – r +1 THEN H is proved so go to Step 13. 

12. r  r – 1; go to Step 9. 
intersection containing exactly r – 1 constraints into list L . 
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PART II: ANALYZING INFEASIBILITY 

As mathematical models grow larger and more complex, infeasibility happens 
more often during the process of model formulation, and is harder to diagnose 
than ever before. A linear program may have hundreds of thousands or even 
millions of constraints: which of these are causing the infeasibility and how should 
the problem be repaired? In nonlinear programs the issue is even more vexed: the 
model may be truly infeasible, or the solver may just have been given a poor 
starting point from which it is unable to reach feasibility. 

Some form of automated or semi-automated assistance in diagnosing and 
repairing infeasibility is necessary in the face of the scale and complexity of 
modern optimization models. Fortunately, algorithmic tools have been developed 
in recent years. There are three main approaches. The first is the identification of 
an Irreducible Infeasible Subset (IIS) of constraints within the larger set of 
constraints defining the model. An IIS has the property that it is infeasible, but 
becomes feasible if any one or more of its constraints are removed; it is irreducible 
in that sense. Identifying an IIS allows the modeler to focus attention on a small 
set of conflicts within the larger model. Further refinements of the base algorithms 
try to return IISs that are of small cardinality, or that are easier for humans to 
understand. Other issues include trade-offs between the speed of identifying an IIS 
and the cardinality of the IIS that is returned. 

The second main approach to analyzing infeasibility is to identify a Maximum 
Feasible Subset (MAX FS) of constraints within the larger set of constraints 
defining the model. This naturally focuses the analysis on the constraints that do 
not appear in this subset, i.e. the minimum cardinality set of constraints that 
must be removed so that the remainder constitutes a feasible set. Identifying a 
maximum feasible subset is an NP-hard problem, so the methods for doing so 
are clever heuristics. 

Both of these approaches to analyzing infeasibility focus attention on a small 
part of a large model so that the modeler can determine how to repair it using hu-
man understanding of the meanings of the constraints. However the third approach 
seeks to suggest the best repair for the model, where “best” can be defined in vari-
ous ways that can be handled algorithmically, e.g. the fewest changes to constraint 
right hand side values. The suggested repair can of course be accepted, modified, 
or rejected by the human modeler. 

Many of the methods for analyzing infeasibility that are described in Part II 
depend on the ability of a solver to determine the feasibility status (feasible or 
infeasible) of an arbitrary set of constraints with very high accuracy. This ability is 
by and large available for linear programs, but it is much more problematic for 



nonlinear programs and for mixed-integer programs. In those cases, we may have 
to settle for the identification of an infeasible subset that is not irreducible (but is 
significantly smaller than the original set of constraints one hopes), or a minimal 
intractable subset (MIS) which is a minimal subset of constraints that causes a 
solver to report infeasibility under stated solver parameter settings (initial point, 
tolerances, etc.). For this reason, there are differing expectations for the success of 
the general analysis algorithms depending on the type of optimization model.  
However there are methods that are special to each type of model. 

As you will see in Part II, effective algorithms for the analysis of infeasibility in 
linear programs and linear networks exist, and have been implemented in most 
commercial LP solvers. The situation is not yet so positive for nonlinear and 
mixed-integer programs, but research in this area is active and ongoing, with fre-
quent new developments. Significant breakthroughs are likely in the relatively 
near future, especially as improved algorithms for reaching feasibility quickly 
reach maturity (see Part I). 

Some of the algorithmic tools are best integrated directly into the solvers rather 
than into separate analysis software. This is the case for many of the infeasibility 
analysis algorithms since they make use of data that is available during the solution 
or re-solution of the problem. This is certainly the case for several of the algorithms 
for analyzing infeasible linear programs that use information from the final phase 1 
basis, and thereafter from bases produced by repeated solutions of slightly differing 
versions of the model. Algorithms in this class benefit from the use of hot-starts 
based on the immediately previous solution. 

Infeasibility analysis is part of larger efforts in computer-assisted analysis of 
complex optimization models originated by Greenberg (1981a, 1981b, 1983). He 
developed software such as ANALYZE (Greenberg 1983) which provides tools 
for the manipulation and analysis of linear programs. PERUSE (Kurator and 
O’Neill 1980) was another early system which permitted interactive query of the 
LP matrix and solution. MProbe (Chinneck 2001) is a more recent system that 
provides various tools for general probing of optimization models, particularly 
nonlinear programs. Practical approaches to infeasibility analysis in particular date 
to the 1970s, notably in the Refinery and Petrochemical Modeling System by Bon-
ner & Moore (1979). Other model-specific approaches for infeasibility analysis 
were developed by Harvey Greenberg as part of his Intelligent Mathematical Pro-
gramming System (IMPS) project originating in the early 1980s (see Greenberg 
(1987c, 1991) for a description of the IMPS project and Greenberg (1996b) for a 
summary of relevant literature).  In contrast, the IIS isolation approach developed 
in Chap. 6 is independent of the particular model and has been developed for gen-
eral solvers applicable to any LP. 

The eventual goal in computer-assisted analysis is the development of a 
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complete environment supporting optimization modeling, similar to the environ- 
ments enjoyed by general software developers that include debuggers, profilers
and other useful tools. This is an essential part of the verification and validation
of optimization models. There has been significant progress in the development
of techniques and tools supporting the debugging of complex optimization
models. Most modern LP solvers now include routines for isolating IISs for
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instance, and model debugging is now included as a topic in modern textbooks
on optimization. For example, see the textbook by Pannell (1997) for an excellent
discussion of how to debug a linear program, including infeasibility analysis.



6 Isolating Infeasibility 

When faced with infeasibility in a very large optimization model, such as a linear 
program containing thousands of constraints, it is immensely helpful to be able to 
narrow the focus of the diagnostic effort. The focus is narrowed as much as possi-
ble if you are able to isolate an irreducible infeasible set (IIS) of constraints from 
among the larger set defining the model. An IIS has this property: it is itself infea-
sible, but any proper subset is feasible. It is irreducible in the sense that every 
member contributes to the infeasibility. IISs are also known as irreducible incon-
sistent sets or minimal infeasible subsystems. Where the subset is infeasible, but is 
reducible, it is simply called an infeasible subset (IS) of constraints. A simple IIS 
consisting of three linear inequalities is shown in Fig. 6.1. 

Greenberg (1992) performed an empirical com-
parison of three methods of LP infeasibility analysis 
and concluded that the isolation of IISs “performed 
consistently above midrange, and it never failed to 
provide useful information. It frequently gave an im-
mediate diagnostic.” See also Greenberg (1993) for 
further study of the value of isolating IISs during the 
diagnostic process. 

After isolating an IIS, it can then be examined to 
see whether the model really is infeasible, or to determine which of the IIS mem-
bers must be repaired. Human understanding of the model is necessary to make 
this decision. It may be that there are multiple infeasibilities in a model, hence IIS 
isolation is typically used in a cyclic manner: (1) isolate an IIS, (2) determine a re-
pair for this IIS, (3) if the model is still infeasible, go to step (1). 

Practical methods for isolating IISs in linear programs were developed during 
the 1990s and are now included in most commercial LP solvers. However it is still 
difficult to reliably isolate IISs in MIPs, NLPs, and other optimization model 
forms, mainly due to the difficulty in ascertaining the feasibility status of a set of 
constraints with perfect accuracy. 

There are several practical issues related to IIS isolation. Many isolation meth-
ods require multiple solutions of slight variations of the original model, so speed 
can be an issue. For linear programs, basis re-use alleviates this problem to a great 
extent, fortunately, but it continues as a problem in other model forms. A second 
practical issue is how easy it is for the human modeler to understand the IIS that is 
isolated. The same infeasibility can sometimes be reflected in multiple different 
IISs, some of which are easier to understand than others. Heuristic methods are 

 
 
 
 
 
 
 

Fig. 6.1. Simple linear IIS 
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available to return IISs that are generally easier to understand, e.g. that have fewer 
complex row constraints and more column bounds. 

IISs may also overlap, i.e. share at least one common constraint, or be organ-
ized into distinct clusters (Chinneck and Dravnieks 1991), i.e. maximal sets of 
IISs such that each IIS overlaps at least one IIS of the cluster. Where there are 
many overlapping IISs and clusters, it may prove useful to identify a minimal car-
dinality IIS set cover (i.e. the smallest set of constraints to remove such that the 
remainder constitute a feasible set), as described in Sec. 7. 

The concept of infeasibility isolation is relatively old, though it was not devel-
oped to any extent until recently. Carver (1921) first mentions irreducibly incon-
sistent systems of linear constraints, but the first theorem on infeasible systems of 
linear constraints dates to Fourier (1827). Motzkin (1936) and Fan (1956) devel-
oped additional useful theorems for linear systems. Debrosse and Westerberg 
(1973) describe a procedure that can find minimal sets of infeasible constraints for 
nonlinear constraint sets under specific conditions. Van Loon (1981) describes a 
way to recognize minimal infeasible sets of linear constraints, but does not pro-

dressed the idea of searching for minimal substructures in infeasible LPs, but 
noted that how to find them was unclear. 

Practical methods for isolating infeasibilities in linear programs were first de-
veloped by Chinneck and Dravnieks (1991). It is these algorithms and their vari-
ants that appear in modern LP solvers. Research continues at present on adapting 
these methods, and developing entirely different approaches, for isolating infeasi-
bilities in other optimization forms such as MIPs and NLPs. 

6.1 General Logical Methods 

For this reason, many of the general logical algorithms described in this Section 
are currently applicable only to linear systems. However there is hope that they 
will eventually be applicable to other classes of optimization models as better al-
gorithms for accurately determining feasibility status in those other classes appear. 
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A number of the basic methods for isolating IISs do not depend on any properties 

mine the feasibility status of an arbitrary set of constraints in some model forms.

vide a method for finding them in an efficient manner. Greenberg (1987a) ad-

In practice, we can rely on this ability only for sets of linear constraints.

set of constraints is feasible or infeasible. It is quite difficult to accurately deter-

Numerical difficulties, usually related to the feasibility tolerances, can arise even
for linear constraints, but this is fortunately relatively rare. Accurate assessment of

of the optimization model itself. Instead they are purely logical, requiring nothing 

the feasibility status for nonlinear programs can be quite difficult, and can even be

more than the ability to evaluate constraints or to determine whether a set or sub-

problematic for mixed-integer programs. 



6.1.1 Logical Reduction of Models and Presolving 

The usual goal of presolving or pre-processing an optimization model is to sim-
plify it prior to applying a solution algorithm (Holder 2006). In the process of 
simplification, infeasibility may be discovered; hence this technique is of interest 
here. Standard presolving techniques include the removal of null constraints or 
variables, and the conversion of constraints containing a single variable into vari-
able bounds that are possibly tighter than those currently in effect. This is usually 
followed by a series of bound tightening actions and simple tests to detect infeasi-
bility. 

The main idea in bound tightening is the detection and propagation of simple 
reductions, such as replacing a fixed variable with its value everywhere in the 

tightening procedures are based on work by Brearly, Mitra, and Williams (1975). 
Consider the following simple example: 

  constraint row: x1 + x2 ≤ 10 
  variable bounds: 4 ≤ x1 ≤ 12, 7 ≤ x2 ≤ 20 
The row bound is first tightened by substituting the variable bounds into it: the 

lower limit on the constraint row left-hand side is obtained when both of the vari-
ables are at their lower bounds: (4 + 7) = 11. This contradicts the constraint row 
right-hand side, so the conclusion is that the LP is infeasible. In general, the logi-
cal reduction can also work in the other direction, i.e. the tightening of the bound. 
Consider the upper bound on x2 implied by the constraint row and the bounds on 
x1: an upper bound on x2 is obtained when x1 is at its lower bound in the constraint 
row, implying an upper bound on x2 of 6 (i.e. 4 + x2 ≤ 10 ⇒ x2 ≤ 6). In general, 
this tightened bound might then propagate to other constraints, causing a sequence 
of further bound reductions. 

Andersen and Andersen (1995) formalize bounds reduction by defining the up-

∑ ∑
∈ ∈

+=
i iPj Mj

jijjiji ualag   

and 

∑ ∑
∈ ∈

+=
i iMj Pj

jijjiji ualah  

where Pi = {j|aij>0} (i.e. “plus” signs on the coefficients) and Mi = {j|aij < 0} (i.e. 
“minus” signs on the coefficients). Given these definitions, we have 

∑ ≤≤
j ijiji hxag  

for every constraint i. 
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per and lower bounds on constraints as follows:  

model, which may give rise to a cascade of further simplifications. Most bound 
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Bound tightening is not specifically designed for the analysis of infeasibility, so 
it can detect infeasibility only some of the time. Chinneck (1996a) shows that the 
presolver in a leading commercial LP solver is able to detect infeasibility in only 3 
of 19 infeasible models tested. A similar conclusion about presolve procedures for 
analyzing infeasibility is reached by Andersen and Andersen (1995). When 
presolving does detect infeasibility, but provides a poor explanation of its cause, it 
is often a good idea to re-run the solution with the presolver turned off so that one 
of the more advanced IIS isolation routines described later in this chapter can run 
instead. 

If infeasibility is detected during presolving, diagnosis may not be easy because 
a very long chain of reductions leading to the infeasibility may be reported. At a 
minimum, the rows and columns mentioned in the trace of the reductions can be 
used to provide an infeasible isolation, but it is often too large to be useful. How-
ever, bound reduction is available in many commercial solvers and modeling sys-
tems and may occasionally provide a useful analysis of infeasibility. 

Here are the presolving inspections that can detect infeasibility in linear pro-
grams outlined by Andersen and Andersen (1995): 

• If a row is empty (i.e. aij = 0 for j = 1...n for some consraint i) but bi is nonzero, 
then the row cannot be satisfied. 

• If the bounds on a variable conflict (i.e. lj > uj) then these bounds cannot be 
satisfied. 

• As described above, the bounds on the variables in a constraint may imply 
bounds on the constraint that conflict with the specified constraint bounds, in 
which case the constraint cannot be satisfied. As the model is reduced by 
various logical presolve operations, these revised bounds are checked for 
conflicts with the original bounds. The constraint cannot be satisfied  if  hi < bi 
and the constraint is of the form ai x ≥ bi or ai x = bi, or if b i < gi and the 
constraint is of the form ai x ≤ bi or ai x = bi. 

A number of researchers have developed presolving techniques that can detect 
dual infeasibility (e.g. Andersen and Andersen (1995), Mészáros and Suhl (2003)). 
This is equivalent to primal unboundedness and hence is not considered further 
here. 

As shown in Chap. 4, logical reduction is a main theme in constraint program-
ming, under the name constraint propagation. The detection and analysis of infea-
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sibility is also an important theme in constraint programming, a topic we will revisit
in Sec. 6.5. 

The logical reduction of the model by such techniques is not limited to linear 
constraints: it can be used on nonlinear constraints as well. For example, the 
AMPL modeling system (Fourer et al. 2003) has a presolver that it applies to all 
model forms. Presolving can be especially effective in MIP models, in which case 

further tightening. 
the bounds on integer variables can be rounded to integer values, introducing 



 
INPUT: an infeasible set of constraints. 
FOR each constraint in the set: 
1. Temporarily drop the constraint from the set. 
2. Test the feasibility of the reduced set: 
   IF feasible THEN return dropped constraint to the set. 
   ELSE (infeasible) drop the constraint permanently. 
OUTPUT: constraints constituting a single IIS. 
 
Alg. 6.1. The deletion filter 
 

Theorem 6.1: Deletion filter functionality (Chinneck 1997a). The deletion filter 
returns exactly one IIS. 

Proof: The initial set of constraints input to the deletion filter is infeasible, and 
constraints are removed only when the reduced set of constraints remains infeasi-
ble without them. The only constraints retained in the set are those whose removal 
renders the set feasible. Hence these must be members of an IIS, by definition. 
There is only a single IIS because if there were two or more IISs, you would be 
able to remove at least one constraint from the set and it would remain infeasible. 
■ 

The main idea of the deletion filter is to remove constraints from the set one at 
a time. If a constraint is removed, and the remainder of the model is still infeasi-
ble, then the constraint is not necessary to the infeasibility and can be removed 
permanently. On the other hand, if a constraint is removed and the model becomes 
feasible, then that constraint is necessary to the infeasibility and is replaced. A 
simple example illustrates the action of the algorithm: consider a set of constraints 
{A,B,C,D,E,F,G} which contains the embedded IIS consisting of the constraints 
{B,D,F}. The members of the IIS are shown in boldface below. The deletion filter 
considers the effect of dropping each constraint: 

1. Remove A: {B,C,D,E,F,G} infeasible. A deleted permanently. 
2. Remove B: {C,D,E,F,G} feasible. B reinstated. 
3. Remove C: {B,D,E,F,G} infeasible. C deleted permanently. 
4. Remove D: {B,E,F,G} feasible. D reinstated. 
5. Remove E: {B,D,F,G} infeasible. E deleted permanently. 
6. Remove F: {B,D,G} feasible. F reinstated. 
7. Remove G: {B,D,F} infeasible. G deleted permanently. 
8. Output: the IIS {B,D,F} 
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6.1.2 The Deletion Filter 

Chinneck and Dravnieks (1991) introduced the deletion filter, shown in Algorithm 
6.1. If the solver is able to accurately determine the feasibility status of an arbi-
trary set of constraints, then the deletion filter guarantees the identification of ex-
actly one IIS after a single pass through the set of constraints. This is an essential 
property possessed by very few of the IIS isolation methods. 

Where there are several IISs in the model, exactly one is returned because the 
testing set will remain infeasible when elements of any other IISs are removed. 
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several IISs in the model, then the IIS whose first member is tested last remains 
intact while members of the other IISs are tested. Since the set remains infeasible 
while constraints from other IISs are tested, those constraints are eliminated. Thus 
the IIS whose first member is tested last is isolated. ■ 

6.1.3 The Additive Method 

The additive method is the opposite of the deletion filter: starting with an empty 
set of constraints, constraints are added until infeasibility is triggered, which 

of constraints is then primed by emptying it of all constraints except those that 
have been implicated in this manner and the process repeats.  

Tamiz et al. (1995, 1996) introduced the additive method to the optimization 
community, though it was discovered earlier in the constraint programming 

“deviational variables” (equivalent to elastic variables, see Sec. 6.1.4) and an 
elastic objective function to decide feasibility status of the intermediate test sets of 

 

C: ordered set of constraints in the infeasible model. 
T: the current test set of constraints. 
I: the set of IIS members identified so far. 
 
INPUT: an infeasible set of constraints C. 
0. T←∅, I←∅. 
1. T←I. 
  FOR each constraint ci in C: 
   T←T ∪ ci. 
   IF T infeasible THEN 
    I←I ∪ ci. 
    Go to Step 2. 
2. IF I feasible THEN go to Step 1. 
  Exit. 
OUTPUT: I is an IIS. 
 
Alg. 6.2. The additive method 
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it based on methods from LP goal programming. Their development uses 
community (see Sec. 6.5). Tamiz et al. named it GPIIS because they conceived  

shows that the last added constraint is involved in the infeasibility. The testing set 

Which IIS is returned depends on the order in which the constraints are tested. The 
deletion filter always returns the IIS whose first member is tested last (because the 
testing set remains infeasible to this point). 

Theorem 6.2: Deletion filter IIS selection (Chinneck 1997a). The deletion filter 
returns the IIS whose first member is tested last. 

Proof: As long as one IIS remains intact in the set of constraints, then test con-
straints are dropped permanently because the set remains infeasible. If there are 

constraints. This apparatus is not necessary, though, because the main feature of 
the method is the adding in of constraints as the algorithm proceeds and the testing 
of the feasibility of the resulting set. Alg. 6.2 shows the simpler version of the 
algorithm without the elastic variables and elastic objective function. 



2. {A,B,C,D,E,F} infeasible: I = {F} is feasible. 
3. {F,A}, {F,A,B}, {F,A,B,C} all feasible. 
4. {F,A,B,C,D} infeasible: I = {F,D} is feasible. 
5. {F,D,A} feasible. 
6. {F,D,A,B} infeasible: I = {F,D,B} is infeasible. Stop. 
7. Output: the IIS {F,B,D} 

The additive method also guarantees the identification of a single IIS, even 
when several are present in the original infeasible set. 

turns a single IIS. 
Proof: Constraints are added to I only when their addition to T changes its 

status from feasible to infeasible (i.e. at least one complete IIS is in T), thus each 
constraint added to I must be part of all of the IISs just created in T. Assume ck has 
just been added to I. Because T is “primed” with I at the beginning of Step 1, the 
FOR loop in Step 1 will not proceed beyond ck –1 because at that point T would be 
identical to the previous T and hence infeasible, causing exit from the loop (and 
the addition of ck –1 to I). Thus the maximum number of iterations of the FOR 
loop decreases by 1 each time it is entered. In fact, the FOR loop in Step 1 is ex-
ited as soon as a complete IIS is in T, which may happen well before ck –1.  

When there is a single IIS in T, each subsequent constraint added to I is a mem-
ber of the same IIS, hence Step 2 will eventually cause the algorithm to exit with I 
containing a single IIS. When there is more than one IIS in the current T, the sub-
sequent pass through Step 1 will either (a) identify another element common to all 
of the multiple IISs in T, or (b) complete one of the IISs before the others, elimi-
nating some of the elements of the other IISs from further consideration because 
they are past the current ci in the list, thereby also eliminating the other IISs them-
selves from eventual output. Thus T eventually contains only a single IIS, which 
will be recognized and output by Step 2. ■ 

Theorem 6.4: Additive method IIS selection (Chinneck 1997a). The additive 
method isolates the IIS whose last member is tested first. 

Proof: The loop in Step 1 of Alg. 6.2 is exited the first time that T becomes in-
feasible or equivalently, the first time that a complete IIS is in T. Thus, while parts 
of various IISs may be added to T as it builds up, the process exits only when the 
last member of any IIS is added to T. Therefore the IIS whose last member is 
tested first is isolated. ■ 

Theorem 6.4 shows that, as for the deletion filter, which IIS is isolated by the 
additive method is affected by the ordering of the constraints. The advantage of 
the additive method is that it may require fewer tests of feasibility, and tests of 
smaller sets of constraints, especially when the IIS that is isolated is small com-
pared to the cardinality of C. 
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Theorem 6.3:  Additive algorithm (Chinneck 1997a). The additive algorithm re-

A simple example will illustrate the workings of the algorithm. Consider an IIS 
{B,D,F} embedded in {A,B,C,D,E,F,G}. The members of the IIS are shown in 
boldface: 

1. {A}, {A,B}, {A,B,C}, {A,B,C,D}, {A,B,C,D,E} all feasible. 



analysis of infeasible MIPs. A generalized and improved version of the algorithm 
appears in Alg. 6.3. 

First note that the main effect of the algorithm is nothing more than a dynamic 
reordering of the constraints. If the constraints had been ordered originally as they 
are after the dynamic reordering (i.e. if the constraints had been ordered as …ci, 
temp…, then obviously all of the sets tested from ci through the last constraint in 
temp would have been feasible (we know this because the current point is feasible 
for all of the constraints in temp). Thus Theorem 6.3 continues to hold. 

There are two main efficiency improvements in Alg. 6.3. First, the dynamic re-
ordering eliminates some feasibility tests, and makes it much more probable that a 
given feasibility test will result in infeasibility. This is good because every infea-
sible outcome identifies another member of the IIS. The second efficiency im-

C: ordered set of constraints in the infeasible model. 
T: the current test set of constraints. 
I: the set of IIS members identified so far. 
 
INPUT: an infeasible set of constraints C. 
0. T←∅, I←∅. 
1. T←I. 
  FOR each constraint ci in C: 
   T←T ∪ ci. 
   IF T infeasible THEN 
    I←I ∪ ci. 
    C ← C \{ck | k > i} 
    Go to Step 2. 
   ELSE 
    temp ← {ck | k > i, ck satisfied at current point} 
    Reorder C by inserting temp just after ck. 
    T←T ∪ temp. 

2. IF I feasible THEN go to Step 1. 
  Exit. 
OUTPUT: I is an IIS. 
 
Alg. 6.3. The dynamic reordering additive method 
 

provement comes from the truncation of the set C that occurs after an infeasible 
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    i←i + |temp|+1 
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Guieu and Chinneck (1999) introduced an improved variant of the basic addi-
tive method, called the dynamic reordering additive method. The main insight is 
that some of the feasibility tests can be avoided as follows: if an intermediate test 
subproblem is feasible, then scan all of the constraints past the current constraint 
just added, and add to T all constraints that are satisfied by the current solution 
point. The original version by Guieu and Chinneck (1999) was specific to the 



While there is some cost associated with checking whether constraints farther 
along in the list are satisfied at the current solution point, this is usually negligible 
compared to the cost of conducting another feasibility test. 

Finally, there is one additional small efficiency improvement that is omitted 
from the algorithm statements for clarity. Under most circumstances, the first fea-
sibility test is only conducted when two constraints have been added since at least 
two are needed to cause infeasibility. However this may not be true for certain 
nonlinear constraints.  

6.1.4 The Elastic Filter 

Useful information about an infeasible model can be obtained if the constraints 
can be violated in a graceful manner. For example, in the familiar linear pro-
gramming Phase 1 procedure, nonnegative artificial variables (ai) are added to all 
equality and ≥ constraints (see e.g. Winston and Venkataramanan 2003), which al-
lows those constraints to be violated so that an initial basic “feasible” solution can 
be established. This initial solution is feasible in the space consisting of the origi-
nal plus artificial variables, but not in the space consisting of just the original vari-
ables. The LP Phase 1 objective is to minimize the sum of the artificial variables, 
i.e. minimize W = ∑ai, via standard linear programming (see Sec. 2.1). 

If W reaches a minimum value of zero, then all of the artificial variables are 
themselves zero, hence a feasible solution has been found for the original model, 
and the LP solution now proceeds to Phase 2, the solution of that original model. 
If the minimum value of W is not zero, then at least one of the artificial variables 
cannot be forced to zero, so the corresponding constraint remains violated in the 
original variable space, and the LP as a whole is determined to be infeasible. 

Viewed in the space of the original variables, the linear equality and ≥ con-
straints are able to stretch, or violate their original bounds: the value of the associ-
ated artificial variable corresponds directly to the size of the adjustment of the 
right hand side needed to provide a feasible solution in the original variable space. 

This idea can be extended to allow all forms of constraints to adjust in all direc-
tions, as originally described by Brown and Graves (1975). A fully elastic pro-
gram adds a nonnegative elastic variable (or variables) si (or si’ and si”) to every 
constraint. This allows a solver to find a “feasible” solution for the original infea-
sible model. The rules for adding elastic variables are as follows: 
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outcome of a feasibility test. The truncation means that the algorithm does not 
have to check constraints for satisfaction beyond the constraint that just triggered 
feasibility. Constraints beyond the ci that triggered infeasibility are obviously not 
part of the IIS: it is completely contained in the current infeasible T, hence those 
later constraints can be safely ignored. Note that the truncation is not necessary in 
the basic additive method in Alg. 6.2 because no constraints beyond the ci that 
triggered infeasibility are ever added to T. 

 



integer restrictions cannot be elasticized, so elastic filtering can be applied only to 
LPs, NLPs, and the linear part of MIPs. In this sense it is slightly less general than 

programming. All constraints are initially elasticized, but since the original model 
is infeasible, at least one constraint must stretch to achieve a feasible solution for 
the elastic program. The elastic variables are removed from any constraints that 
stretch; this enforces the constraint in the next round. The cycle repeats until 
enough elastic variables have been removed that the partly-elastic model becomes 
infeasible. At this point the de-elasticized constraints constitute a small infeasible 
set that is not necessarily an IIS, but that has some very desirable properties. The 
details of the algorithm are shown in Alg. 6.4. 

 
INPUT: an infeasible set of constraints. 
1. Make all constraints elastic by incorporating nonnegative elastic variables si. 

3. IF feasible THEN 
  Enforce the constraints in which any si > 0 by permanently removing 

  Go to step 2. 
 ELSE (infeasible) 
  Exit. 
OUTPUT: the set of de-elasticized enforced constraints contains at least one 

 IIS. 
 
Alg. 6.4. The elastic filter 
 

As described in Alg. 6.4, the elastic filter identifies constraints which must be 
part of some IIS because they have stretched. Because these stretched constraints 
are then de-elasticized, some other member of the IIS must stretch in the next it-
eration. The process halts when all of the members of at least one IIS have been 
enforced, which renders the partly-elastic model infeasible. The deletion filter or 
additive method can then be applied to the output set to identify a single IIS. We 
assume that the solver is perfectly accurate in minimizing the elastic objective 
function. In practice this currently limits the application of the elastic filter to lin-
ear programs since we cannot guarantee to find the global minimum of an NLP 
and we cannot elasticize the integer restrictions in a MIP. 

The elastic filter (Chinneck and Dravnieks 1991) makes extensive use of elastic 
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the deletion filter and the additive method. 

    their elastic variable(s).

2. Solve the model using the elastic objective function. 
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nonelastic constraint elastic version 
Σjaijxj ≥ bi Σjaijxj + si ≥ bi 
Σjaijxj ≤ bi j ij j i i
Σjaijxj = bi j ij j i i i

An elastic constraint “stretches” (violates its original bounds) when one of its 
elastic variables takes on a positive value. Stretching is resisted by the elastic 
objective function (minimize Σisi) which replaces the original objective function. 
This is similar to a textbook phase 1, except that elastic variables are added to all 
constraints, and equality constraints are elasticized in both directions. Note that 

Σ a x  – s  ≤ b  
Σ a x  + s ’ – s ” = b  



Note that the output is not necessarily an IIS; a single IIS must be identified by 
applying the deletion filter or the additive method to the output. 

Lemma 6.5: Elastic stretching 1 (Chinneck 1997a). Each elastic program (or 
partly elastic program) in Alg. 6.4 stretches only elastic constraints which belong 
to an IIS. 

Proof: The cost of stretching a constraint is strictly positive when the elastic 
objective function is used, and only IIS constraints need to be stretched to achieve 
a feasible solution for any elastic (or partly elastic) program, hence only con-
straints belonging to an IIS will stretch. ■ 

Lemma 6.6: Elastic stretching 2 (Chinneck 1997a). The elastic filter will 
stretch at least one previously unstretched elastic constraint from each IIS in the 
current constraint set at each iteration of Step 2 of Alg. 6.4. 

Proof: In Step 2 of Alg. 6.4, the solver must stretch at least one elastic member 
of each IIS to achieve a feasible solution, otherwise the algorithm exits during 
Step 3. By Lemma 6.5, any stretched constraint will be a member of an IIS, and 
because any stretched constraints are enforced during Step 3, the stretched con-
straint will not have stretched previously. ■ 

Theorem 6.7: Elastic filter termination (Chinneck 1997a). The output set of 
Alg. 6.4 will contain at least one IIS. 

Proof: By Lemma 6.6, Alg. 6.4 will not terminate prematurely and will add at 
least one constraint to the output set at each iteration. Since each IIS is composed 
of a finite number of members, Alg. 6.4 will terminate in a finite number of steps, 
when all of the members of at least one IIS have been enforced, creating an infea-
sible LP which will be detected during Step 3, causing exit. Because this output 
set is infeasible, it must contain at least one IIS. ■ 

Note that the output set may contain more than one IIS, and may also contain 
partial IISs. The deletion filter or the additive method must be applied to the out-
put set to guarantee the isolation of a single IIS. 

Theorem 6.8: Elastic filter iterations (Chinneck 1997a). The number of elastic 
filter iterations (i.e. elastic programs solved in Step 2 in Alg. 6.4) is at most equal 
to the cardinality of the smallest-cardinality IIS in the input set. 

Proof: By Lemma 6.6, at least one constraint from each IIS is stretched at each 
iteration of Step 2 of Alg. 6.4. Let k be the cardinality of the smallest-cardinality 
IIS in the input set. Then in at most k iterations of Step 2, all members of the 
smallest-cardinality IIS will have been enforced, rendering the partly-elastic 
model infeasible and causing exit during Step 3. ■ 
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Consider again the small example in which the IIS {B,D,F} appears in the set 
of constraints {A,B,C,D,E,F,G}. Let us assume that our hypothetical solver 
stretches just one constraint in the IIS at each iteration. The members of the IIS are 
shown in boldface for clarity, and elasticized constraints are underscored: 

1. {A,B,C,D,E,F,G} is feasible, B stretches, so is de-elasticized. 
2. {A,B,C,D,E,F,G} is feasible, F stretches, so is de-elasticized. 
3. {A,B,C,D,E,F,G} is feasible, D stretches, so is de-elasticized. 
4. {A,B,C,D,E,F,G} is infeasible. 
5. Output: the set {B,F,D}.  



6.1.5 Speed-ups: Treating Constraints in Groups 

The basic versions of both the deletion filter and the additive method treat the con-
straints in the model one by one. However Chinneck (1995) suggested that the 
speeds of both algorithms can be improved by considering constraints in groups 
and this idea was implemented for the analysis of infeasible MIPs by Guieu and 
Chinneck (1999). For example, during deletion filtering, constraints could be 
dropped in groups of size k. If the reduced model remains infeasible, then there is 
a savings of k – 1 feasibility tests. If dropping the group causes feasibility, then re-
instate all k constraints and repeat the deletion filter over that set of k constraints 
dropping individual constraints one by one; this results in 1 extra feasibility test 
compared to the basic method. The efficiency of the method depends on how often 
the model remains infeasible after dropping a group vs. how often dropping a 
group results in feasibility. The choice of group size is obviously important. 

A similar idea applies in the case of the additive method, except that the trigger 
for repeating the analysis with a group size of 1 is that the addition of a group 
causes infeasibility.  

Guieu and Chinneck (1999) looked at several variations of grouping, as listed 
below for the case of deletion filtering of MIPs. In all cases below, when the test 
subset is feasible, the algorithm backtracks and re-tests the individual constraints 
in the group. The group size is then reset as shown for the next group test. k is the 
group size. 

• Fixed Group Size. k is fixed by user. 
• Additive Adaptive Grouping A.  

Set k = 2. 
IF test subset is infeasible THEN k ← k + 2. 
ELSE k = maximum[k – 2, 1] 

• Additive Adaptive Grouping B. 
Set k = 2. 
IF test subset is infeasible THEN k ← k + 2. 
ELSE k = 2. 

Set k = 1. 
IF test subset is infeasible THEN k ← k × 2. 
ELSE k = maximum[integer(k /2),1]. 
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• Multiplicative Adaptive Grouping A. 
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– 
– 
– 

– 
– 
– 

– 
– 
– 

The practical significance of the elastic filter derives from Theorem 6.8, which 
provides a lower bound on the size of the smallest IIS in the input set. Assuming 
that exactly one member of each IIS is stretched during each iteration of the elastic 
filter, its output set will contain a smallest-cardinality IIS. This is a very desirable 
property because small cardinality IISs are much easier for humans to diagnose. 
While this assumption does not hold in general, it does hold quite often in 
practice, so the elastic filter provides a very good heuristic for isolating small-
cardinality IISs. We will return to the use of the elastic filter to find useful 
infeasibility isolations in a later chapter. 



As suggested by Guieu and Chinneck (1999), Atlihan and Schrage (2006) use 
binary search to generalize the grouping idea. M is the original set of inconsistent 
constraints. As the algorithms proceed, the constraints are divided into several 
subsets: 

•  I  : set of constraints already shown to be in the IIS. 
• D : set of constraints that contains at least one IIS member. 
• S : set of constraints that is likely to contain an IIS member (though S may    

contain no IIS members). 
• R : set of removed constraints. The constraints in R are definitely not in the IIS. 

Elastic programming is used extensively to assign the constraints to the differ-
ent subsets. For example, the set of stretched constraints after an elastic solution 
helps identify constraints that are definitely or likely to be part of the IIS that is 
eventually isolated. 

 
INPUT: an infeasible set of constraints M. 
0. T = M; I = R = S = ∅. 
1.  IF |T | ≤ 1 THEN: 
  1.1. I ← I + T. 
  1.2. IF I is infeasible THEN exit. 
  1.3. T ← S; S ← ∅. 
  1.4. IF |T | ≥ 2 THEN go to Step 1. 
  1.5. T2 ← T; T1 ← ∅. 
 ELSE 
  1.6. Split T into T1 and T2. 
2. IF {I + S + T1} is feasible THEN: 
  2.1. S ← S + T1 
  2.2. T ← T2 
 ELSE 
  2.3. R ← R + T2 
  2.4. T ← T1 
3. Go to Step 1. 
OUTPUT: I is an IIS. 
 
Alg. 6.5. The depth first binary search filter 
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• Multiplicative Adaptive Grouping B. 
Set k = 1. 
IF test subset is infeasible THEN k ← k × 2. 
ELSE k = 1. 

For the specific MIP experiments in (Guieu and Chinneck 1999), the most effi-
cient grouping algorithm proved to be a fixed group size of k = 4. Further experi-
mentation is needed to determine whether this choice is a good general choice, or 

optimization types or with specific characteristics. 
whether other grouping algorithms or sizes are better for models of other 

– 
– 
– 



IIS {B,D,F} appears in the set of constraints {A,B,C,D,E,F,G,H}. The members of  
the IIS are shown in boldface: 
 
• T = {A,B,C,D,E,F,G,H}; I = R = S = ∅. 

1 2 

• {I + S + T1 } = {A,B,C,D} is feasible, so S←{A,B,C,D}, and T←{E,F,G,H}. 
• Split T into T1 = {E,F} and T2 = {G,H}. 
• { I + S + T1 } = {A,B,C,D,E,F} is infeasible, so R←{G,H}, and T←{E,F}. 
• Split T into T1 = {E} and T2 = {F}. 
• { I + S + T1 } = {A,B,C,D,E} is feasible, so S←{A,B,C,D,E}, and T←{F}. 
• |T | ≤ 1, so I←{F}. 
• I feasible, so T←{A,B,C,D,E}; S← ∅. 
• Split T into T1 = {A,B,C} and T2 = {D,E}. 
• { I + S + T1 }={F,A,B,C} is feasible, so S←{A,B,C}, and T←{D,E}. 
• Split T into T1 = {D} and T2 = {E}. 
• { I + S + T1 }={F,A,B,C,D} is infeasible, so R←{G,H,E}, and T←{D}. 
• |T | ≤ 1, so I←{F,D}. 
• I feasible, so T←{A,B,C}; S← ∅. 
• Split T into T1 = {A,B} and T2 = {C}. 
• { I + S + T1 }={F,D,A,B} is infeasible, so R←{G,H,E,C}, and T←{A,B}. 
• Split T into T1 = {A} and T2 = {B}. 
• { I + S + T1 } = {F,D,A} is feasible, so S←{A}, and T←{B}. 
• |T | ≤ 1, so I←{F,D,B}. 
• I is infeasible, so exit with I = {F,D,B} as the output IIS. 

As this example shows, the DFBS algorithm has characteristics of both the de-
letion filter and the additive method, both with grouping. If the subset { I + S+ T1 } 
tested in Step 2 is feasible, then constraints are added to the testing set S in Step 
2.1, but if { I + S + T1 } is infeasible, then constraints are permanently deleted in 
Step 2.3. In both cases, half of the constraints in the testing set T are either added 
or deleted. 

• Split T into T = {A,B,C,D} and T = {E,F,G,H}. 
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The crux of the algorithm is Step 1.6 where the testing set is subdivided. The 
simplest subdivision algorithm is to divide the set in half. We will illustrate 
the working of the algorithm using binary subdivision (where the set cannot be
equally subdivided we make T1 the larger set), and a small example in which the   

Atlihan and Schrage’s Depth First Binary Search Filter (DFBS) uses a dynamic 
group size, the simplest form of which drops half of the constraints remaining in 
the set that is known to contain at least one constraint belonging to the IIS that is 

Note that the IIS isolation via the DFBS algorithm requires 10 feasibility tests 
in this small example vs. the 8 that would be required by a straight deletion filter 
or the 15 required by a straight additive method. This is because the IIS constitutes 

being isolated. The general DFBS algorithm is given in Alg. 6.5. 



that the stretched constraints after an elastic solution are known to be involved in 
some IIS, hence it is better to focus attention on those stretched constraints while 
deleting other constraints if possible. A subset of constraints that includes a 
stretched constraint then becomes the focus of a binary search. The details are 
shown in Alg. 6.6. 

 
Di: set that contains at least one IIS member. 
 
INPUT : an infeasible set of constraints M. 
0. k = 0; S = M; R = ∅; Di = ∅; for all i ≤ k. 
1. IF S = ∅ and | Di| = 1 for all i ≤ k THEN  
  1.1. I = D1 ∪ D2 ∪ … Dk; exit. 
2. IF |S| = 1 and |Di| = 1 for all i ≤ k THEN  
  2.1. T←S; T2←T; T1← ∅. 
 ELSE 

i 1 k
  2.3. Split T into T1 and T2. 
3. 
  the constraints in T2 are elasticized. 
4. IF feasible THEN 
  4.1. Form the set T3 as a subset of the set of stretched constraints. 
  4.2. IF T = S THEN 
    4.2.1. k←k + 1; Dk ← T3; S←S \ T3. 
   ELSE 
    4.2.2. Dk←T3; S←S∪T \ T3. 
 ELSE 
  4.3 IF T = S THEN 
    4.3.1. R←R∪T2; S←S \ T2. 
   ELSE 
    4.3.2 Dk←T1; R←R∪T2. 
5. Go to Step 1. 
OUTPUT: I is an IIS. 
 
Alg. 6.6. The generalized binary search filter 

 

  2.2. T←S or T←D  ∈ {D , …, D } such that |T | ≥ 2. 
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a large portion of the model and is well distributed within the list of constraints. In 
a larger model where the proportion of IIS members is smaller and the members 
closer together in the list, the DFBS algorithm can be much more efficient. Atli-
han and Schrage (2006) show that if there are k constraints in the IIS that is iso-
lated, then DFBS requires fewer feasibility tests than a deletion filter if 

2 2
in advance. They also introduce a few simple modifications to the splitting rules 

Atlihan and Schrage (2006) also introduce another constraint grouping algo-
rithm called the Generalized Binary Search Filter (GBF). The main idea here is 

based on the relative size of |I | and |M | to improve this value somewhat. 

k·log (|M |) < |M |, or k < |M | / log (| M |),  though of course k cannot be known 

Solve elastic program consisting of the constraints M \ R in which 



• T3 = {F}. 
• T = S so k=1; D1 = {F}; S = {A,B,C,D,E,G,H}. 
• T = {A,B,C,D,E,G,H}; T1 = {A,B,C,D}; T2 = {E,G,H}. 
• Solve elastic program {A,B,C,D,E,F,G,H}: infeasible. 
• T = S so R = {E,G,H}; S  = {A,B,C,D}. 
• T = {A,B,C,D}; T1 = {A,B}; T2 = {C,D}. 
• Solve elastic program {A,B,C,D,F}: feasible, D stretches. 
• T3 = {D}. 
• T = S so k = 2; D2 = {D}; S = {A,B,C}. 
• T = {A,B,C}; T1 = {A,B}; T2 = {C}. 
• Solve elastic program {A,B,C,D,F}: infeasible. 
• T = S so R = {C,E,G,H}; S = {A,B}. 
• T = {A,B}; T1 = {A}; T2 = {B}. 
• Solve elastic program {A,B,D,F}: feasible, B stretches. 
• T3 = {B}. 
• T = S so k = 3; D3 = {B}; S = {A}. 
• |S| = |D1| = |D2| = |D3| = 1 so T = {A}; T2 = {A}; T1 = ∅. 
• Solve elastic program {A,B,D,F}: infeasible. 
• T = S so R = {A,C,E,G,H}; S = ∅. 
• S = ∅ and |D1| = |D2| = |D3| = 1 so I = {F,D,B} and exit. 

The GBS algorithm solves 6 elastic programs en route to finding the IIS, as 
compared to a maximum of 3 elastic programs and 3 deletion filter iterations for 
the usual elastic filter followed by deletion filter. Again, the relative efficiency 
depends on the size and placement of the IIS in the set of constraints. 

To better understand how the GBS algorithm operates, look at the sequence of 
elastic programs solved in the small example. This shows how the binary search 
gradually identifies elements that must be part of the IIS. 

There are various possibilities for selecting T in step 2.2. T could be selected as 
the subset of largest cardinality, which leads to many subsets Di. Because the 

this gives a more accurate (i.e. higher) lower bound earlier. 
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To illustrate the workings of the algorithm, consider the IIS {B,D,F} that ap-
pears in the set of constraints {A,B,C,D,E,F,G,H}. As before, when called to split 
the set T into two subsets T1 and T2, we do so equally, or give T1 the extra member 
in case |T | is odd. The members of the IIS are shown in boldface and elasticized 
constraints are underlined: 

• M = {A,B,C,D,E,F,G,H}. 
• k = 0; S = {A,B,C,D,E,F,G,H}; R = ∅; Di = ∅ for all i ≤ k. 
• T = {A,B,C,D,E,F,G,H}; T1 = {A,B,C,D}; T2 = {E,F,G,H}. 
• Solve elastic program {A,B,C,D,E,F,G,H}: feasible, F stretches. 

number of subsets k is a lower bound on the cardinality of the IIS being isolated, 



sufficiently different from the last one that the previous basis is not very useful in 
providing an advanced start. 

6.1.6 Speed-ups: Combining the Additive Method and the Deletion 
Filter 

The three basic methods described so far can be combined in several ways to pro-
duce faster and more effective isolation methods. We have already seen how all 
three can be combined in the Generalized Binary Search algorithm (Alg. 6.6). The 
same principle will hold later when we introduce methods specialized for different 
classes of mathematical programs such as LPs. 

As suggested by Guieu and Chinneck (1999), the additive and deletion methods 
are very easily combined: simply run the additive method until feasibility is first 
detected and then change to the deletion filter for the final IIS isolation. Details of 
the additive/deletion algorithm are given in Alg. 6.7. 

 
C: ordered set of constraints in the infeasible model. 
T: test set of constraints. 
 
INPUT: an infeasible set of constraints C. 
0. Set T = ∅. 
1. FOR each constraint ci in C: 
   Set T = T∪ ci. 
   IF T infeasible THEN go to Step 2. 
2. FOR each constraint ti to t  in T: 
   Temporarily drop the constraint ti: 
   Test the feasibility of the reduced set: 
    IF feasible THEN return dropped constraint to T. 
    ELSE (infeasible) T←T \ ti. 
OUTPUT: T is an IIS. 
 
Alg. 6.7. The additive/deletion method 

|T |–1
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In both the DFBS and GBS algorithms there are also various ways to subdivide 
T into T1 and T2 where required. This can be done in a straightforward binary 
manner as in the worked examples, or randomly. In GBS it can also be done based 
on criteria such as the number of times a constraint has been previously stretched 
(e.g. if a constraint has stretched relatively frequently, then we may assign it to T2 
to encourage an infeasible result and the augmentation of the set R of removed 
constraints). 

Atlihan and Schrage (2006) show empirically that the DFBS and especially the 
GBS grouping strategies can be very effective, particularly for nonlinear and 
mixed-integer programs. They are less advantageous for linear programming 
where basis re-use is more of a factor in overall speed; in general they require 
fewer feasibility tests, but they take longer because the next feasibility test is 



Feng (1999) describes a method for isolating IISs based on sampling the solution 
space randomly. A simple example in Fig. 6.2 illustrates the concept. There are 4 

tuples associated with the sample points. 
 

 
Fig. 6.2. Identifying an IIS by sampling 

An IIS is found by solving the associated set covering problem: find the small-
est cardinality set of constraints (columns in the set covering matrix) such that all 
of the tuples are covered. The solution to this set covering problem yields the 
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Set covering matrix 
over (A,B,C,D): 
a (0,1,0,1) 
b (0,0,1,1) 
c (1,0,1,1) 
d (0,1,1,0) 
e (0,0,1,0) 
f (0,1,0,0) 
g (1,1,1,0) 
h (1,0,1,0) 
i (1,1,0,0) 
j (1,0,0,0) 

value that indicates whether the associated constraint is satisfied (value is 0) or 
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4-tuple is associated with each sample point. Each entry in the 4-tuple is a binary 

6.1.7 Sampling Methods 

violated (value is 1). A set covering matrix is constructed from the complete set of 
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Note that the deletion filter in Step 2 of Alg. 6.7 does not test the final 

constraint in T. It is already known that this constraint is part of the IIS being 
isolated since it triggered infeasibility during the additive method hence there is no 
need to test it. The worst-case time complexity of the additive/deletion method 
occurs when C itself constitutes an IIS. In this case there will be m additive 

can be significantly more efficient than either the deletion filter or the additive 
method by itself. 

last IIS constraint in C: if it occurs early in C then the additive/deletion method 

method feasibility tests followed by m–1 deletion filter feasibility tests for a total 
of 2m –1 feasibility tests. In practice, efficiency is affected by the location of the 

linear inequalities A through D, and a set of 10 sample points a through j. A 



solve. For this reason, the method 
has not been used in practice, 
though it is of theoretical interest. 

MProbe software (Chinneck 2001, 
2002) samples the functions defin-
ing an optimization model within ei-

the constraints that defines a convex 
envelope. One of the measures returned for each constraint is its 
fined as the fraction of sample points that violate the constraint. If an inequality 
constraint reports an effectiveness of 1.0 then no sample points satisfied the con-
straint, and the model is most likely infeasible; see Fig. 6.3. For equality con-
straints, a constraint effectiveness of 1.0 is returned in either of two cases: (i) if the 
function value is greater than the right-hand side constant at all sample points, or 
(ii) the function value is less than the right-hand side constant at all sample points. 

Note that an IIS is not isolated by this sampling method. However, the con-
straint reporting an effectiveness of 1.0 is isolated as a constraint that cannot be 
satisfied relative to the bounds and constraints that define the sampling enclosure, 
and hence is a good candidate for further analysis. 

sampling 
enclosure 

 
Fig. 6.3. Sampling indicates infeasibility rela-
tive to constraint 

effectiveness, de-

difficult to verify in practice. Third,  

As described in Sec. 5.2, the 

the resulting set covering matrix may

ther a box enclosure, or a subset of 

be very large, and hence difficult to 
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of them is violated at every point in the solution space? The effectiveness of the 
method is of course very dependent on how well the sample points cover the solu-
tion space. 

Sampling methods have a number of major limitations that restrict their use in 
practice. First, the result returned very much depends on whether a suitable subset 
of the relevant subspaces was sampled. For instance, if the sample point j were 
missed in the example, then the smallest cardinality set cover returned would 
be {B,C}, which is clearly not an IIS. This implies that a great number of sample 
points are needed, though steps can be taken to reduce the number. Second, 
the method is restricted to models composed entirely of inequalities and cannot 
handle equality constraints, or even implied equalities generated by inequalities. 
Third, the method is restricted to convex constraints, a condition that may be 

smallest cardinality IIS under certain conditions. It is easy to verify by inspection 
in this small example that (i) the smallest cardinality set cover is {A,B,C}, and 
that (ii) this is the only IIS in the model. If the sampling points provide good cov-
erage of the sample space, then the associated set covering problem is really an-
swering this question: what is the smallest set of constraints such that at least one 



tial phase 1 itself. The ratios seen in practice are generally consistent with theo-
retical analyses presented by Chinneck and Dravnieks (1991). Of course the a / b 
ratio achieved for a particular model depend on factors such as the relative cardi-
nality of the IIS vs. the entire set of constraints in the LP and the combination of 
IIS isolation algorithms applied. 

There are a number of IIS isolation methods that are specific to linear programs 
in that they take advantage of the properties of linear systems. Some of these 
methods provide a very significant improvement in the speed of IIS isolation. 
Such methods are the subject of this section. 

We will refer several times to a handy collection of infeasible linear programs 
that is available online in the netlib collection (Chinneck 1993). The basic charac-
teristics of these models are shown in Table 6.1. The models cover a range of 
sizes, characteristics, origins, and difficulty (both to solve and to analyze). The 
infeasibility is original in a number of the cases, but is introduced in many of the 
models by adjusting a constraint in a feasible model to cause infeasibility. Some 

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 details are available in the online readme file. 
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provided both by pivoting and interior point methods. All of these elements have a 
role to play in the development of efficient and effective methods for the analysis 
of infeasible LPs. 

All of the methods described in Sec. 6.1 are also effective for linear programs. 
On first glance it may seem that these methods are relatively slow, given that they 
may require the solution of a significant number of LPs. However they can be sur-
prisingly fast due to the advanced start that each LP solution provides for the next.  

Chinneck (1994) compares (a) the computer time needed to find an IIS (after 
phase 1 has completed) to (b) the computer time needed to identify infeasibility in 
the first place (i.e. the phase 1 time) for his modified version of the MINOS LP 
solver. For the combination of methods used in his study (sensitivity filter, elastic 
filter, deletion filter), the ratio a / b  is frequently very small. In other words, it is 

6.2 Methods Specific to Linear Programs 

Analysis of infeasibility is easiest when the constraints are restricted to linear 
forms and associated variable bounds in real-valued variables, i.e. linear programs. 
For one thing, it is known that the maximum cardinality of any IIS is n + 1 when 
there are n variables in the linear model (Chvátal 1983, p. 146). We are also able 
to make use of sensitivity analysis, alternative forms of the LP, and information 

often much faster to isolate an IIS after phase 1 has ended than to complete the 



Table 6.1. Characteristics of the netlib infeasible LPs 
 

Model  
 

Rows 
 

Columns 
 

Nonzeroes  
bgdbg1 349 407 1485 
bgetam 401 688 2489 
bgindy 2672 10116 75019 
bgprtr 21  34 90 
box1 232  261 912 
ceria3d 3577 824 17604 
chemcom 289  720 2190 
cplex1 3006 3221 10664 
cplex2 225 221 1059 
ex72a 198 215 682 
ex73a 194 211 668 
forest6 67  95 270 
galenet 9  8 16 
gosh 3793 10733 97257 
gran 2569 2520 20151 
greenbea 2505 5405 35159 
itest2 10 4 17 
itest6 12 8 23 
klein1 55 54 696 
klein2 478 54 4585 
klein3 995 88 12107 
mondou2 313 604 1623 
pang 362 460 2666 
pilot4i 411 1000 5145 
qual 324 464 1714 
reactor 319 637 2995 
refinery 324 464 1694 
vol1 324 464 1714 
woodinfe 36  89 209 

6.2.1 The Reciprocal Filter 

Chinneck (1997b) defines the reciprocal filter, which applies when a variable or a 
row constraint has a pair of distinct upper and lower bounds. 

Theorem 6.9: The reciprocal filter (Chinneck 1997b). In the absence of simple 
upper and lower bound reversal, if a variable or row constraint has distinct upper 
and lower bounds and one of the bounds is involved in an IIS, then the other 
bound cannot be involved in the same IIS. 

Proof: An IIS can be rendered feasible by stretching one of its members until a 
feasible point is reached. The constraint stretching creates at least one point that 
satisfies the stretched version of the constraint and all of the other members of the 
IIS, thereby rendering the IIS feasible. Since this new point already satisfies the 
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other bound on the constraint, there is no need to stretch the other bound in order 
to satisfy the other members of the IIS, hence it cannot be a member of the IIS.  

The reciprocal filter depends on the fact that bound constraints are linear and 
parallel. It can be used to eliminate the second bound on a constraint as soon as 
the first bound is identified as being part of the IIS being isolated. This may re-
duce the number of feasibility tests in the deletion filter and the additive method. 

6.2.2 The Sensitivity Filter 

Chinneck and Dravnieks (1991) presented the sensitivity filter as a way of quickly 
eliminating many constraints that are not involved in the infeasibility detected by 
the phase 1 LP solution. It uses the fact that a phase 1 solution of an infeasible LP 
is a partially elastic program, and will of necessity stretch a constraint by assign-
ing nonzero values to one or more of the artificial variables, in the same way that 
an elastic program stretches a constraint by assigning nonzero values to one or 
more elastic variables. A phase 1 (or elastic) solution of an infeasible LP will thus 
be sensitive to an infinitesimal adjustment of the RHSs of the stretched constraints 
or the constraints that oppose them to cause the stretching. But the phase 1 objec-
tive function will never be sensitive to an infinitesimal adjustment of the RHS of a 
constraint that is not in the IIS(s) detected by the phase 1 solution. The sensitivity 
filter is summarized in Alg. 6.8. 

 
C: ordered set of constraints in the infeasible model (includes both  
 functional constraints and variable bounds. 
 
INPUT: an infeasible set of constraints C. 
1. Solve the phase 1 LP. 
2. For every ci in C: 
   2.1 If the reduced cost of ci is 0, then C = C \ ci. 
OUTPUT: C contains at least one IIS. 
 
Alg. 6.8. The sensitivity filter 
 

Theorem 6.10: Functional constraints found by sensitivity filter (Murty 1983). 
The set of functional constraints having nonzero shadow prices in the optimal tab-
leau of a phase 1 LP which reports infeasibility contains all of the functional con-
straints in a least one IIS. ■ 

Roodman (1979) provides a similar argument and is listed as a reference by 
Murty. 

Theorem 6.11: Nonnegativity constraints in IISs (Murty 1983). Original vari-
ables having nonzero reduced costs in the optimal tableau of a phase 1 LP solution 

The important fact resulting from Theorems 6.10 and 6.11 is that the output set 
of constraints following a sensitivity filter is still infeasible because it still contains 
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for an infeasible LP identify nonnegativity constraints that are involved in IISs. ■ 

■



one or more IISs. Further it is usually of much reduced size since all of the con-
straints that are not involved in the detected infeasibility will have been removed. 
However the output is not guaranteed to include a single IIS: it must be further 
processed by the deletion filter or the additive method to guarantee this. 

The sensitivity filter has several important properties. First, it is very inexpen-
sive, involving only the inspection of the results of a phase 1 LP solution. Very 
large numbers of constraints are immediately eliminated from further considera-
tion. Second, the output set is not guaranteed to include all of the constraints in all 
of the IISs in the model (Chinneck and Dravnieks 1991, Observation 7). This hap-
pens because the phase 1 LP is partly elastic, and stretches constraints to reach the 
optimum phase 1 solution in the expanded space created by adding artificial vari-
ables. See the example in Fig. 6.4, in which constraint B stretches from its original 
position in the left diagram to its final position at B’ after the phase 1 solution as 
shown in the right diagram. Constraint A, which is in the IIS {A,B}, has a reduced 
cost of zero after the phase 1 solution and so is removed by the sensitivity filter. 

 

 
 

Fig. 6.4. The sensitivity filter 
 
It is possible to identify more constraints that are part of some IIS by using an 

extension of the sensitivity filter. Additional implicated constraints can be found 
by examining the LP basis inverse matrix B . The nonzero elements in a row of 
B  corresponding to a basic artificial/elastic variable index the constraints whose 

of the constraints so indexed may not have been identified by the sensitivity filter, 
and hence can be added to the output set. Constraints may be in this situation be-
cause the effect of increasing a certain elastic variable is exactly counterbalanced 
by a decreasing effect on another elastic variable, hence the net reduced cost is 
zero. 

Where there is degeneracy in the solution of the phase 1 elastic LP, as indicated 
by a basic variable with a value of zero, there may be additional constraints that 
are tight, and which form part of an IIS, but which are not included in the output 
set produced by the sensitivity filter. These constraints are indexed by the nonzero 
elements in the row of B  belonging to the basic variable with value zero. These 

A B

C

D

B' A

C

D

Original. Two IISs: 
{A,B}, {B,C,D} 

After phase 1. 
One IIS: {B’,C,D}

–1

–1 

–1

RHSs affect the final value of the corresponding artificial or elastic variable. Some 
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constraints can also be added to the output set of the sensitivity filter (Chinneck 
and Dravnieks 1991). 

The sensitivity filter is easily combined with other IIS isolation procedures to 
produce faster hybrid methods, as we will see later in this chapter. Further, it has 
the property that it tends to isolate larger IISs when applied immediately following 
the initial phase 1 that recognizes infeasibility. Fig. 6.4 is an example of this phe-
nomenon: the smallest cardinality IIS is {A,B}, and yet the larger IIS {B,C,D} ap-
pears in the output set and will be positively identified after further analysis. This 
probably happens because the overlapped constraints in a cluster are the cheapest 
to stretch because they eliminate more than one IIS at a time, and the larger IISs 
require a larger stretch on average, so the smaller IISs are bypassed. We return to 
this characteristic in Sec. 6.2.7 when we are concerned with finding IISs that are 
easiest to understand. 

6.2.3 Pivoting Methods 

Pivoting methods rely on a series of theorems that permit the use of simple pivot-
ing to identify the constraints in an IIS. Van Loon (1981) developed the first such 
pivoting method. His method relies on two main theorems about infeasibility in 
systems of linear inequalities: 

Theorem 6.12: IIS matrix rank (Motzkin 1936). Where there are p rows in an 
IIS, the coefficient matrix of the IIS has rank p – 1. ■ 

Van Loon presents a stronger version of this theorem based on an earlier theo-
rem by Fan (1956): 

p × n matrix (nonnegativity constraints included in Ax ≤ b), is irreducibly incon-

exist numbers λi > 0 such that ∑ =
=

p

i ijia1
0λ  and ∑ =

p

i iib1
λ < 0. ■ 

Van Loon also notes the following result derived from these theorems (Chvátal 
(1983) subsequently provides a proof). This simplifies the search for a set of con-
straints that meet the conditions described in the previous two theorems. 

Theorem 6.14: IIS dimension (Chvátal 1983, p. 146). Every unsolvable system 
of linear inequalities in n variables contains an unsolvable subsystem of at most 
n + 1 inequalities. ■ 

Van Loon (1981) introduces a further theorem that establishes conditions under 
which the tableau developed by various simplex variants will recognize the condi-
tions described in Theorem 6.13. For the system Ax + y = b with y ≥ 0, solve the 
system in terms of a single slack variable y1, thus treating the corresponding row 
as if it were the objective function of an LP. We use this notation in the following 

1
1 B N

1

trix of A after the removal of row 1 (the row for which s1 is the slack variable), b1 
is the vector b without b1, B is the columns of A1 corresponding to the basic vari-
ables, and N is the columns of A1 corresponding to the nonbasic variables. 

sistent if and only if (i) there exist p – 1 linearly independent rows, and (ii) there 

theorem: y  is the vector y without y , x  is the vector of m–1 basic variables, x  is 
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Theorem 6.13: IIS conditions (Fan 1956). The system Ax ≤ b, x,b ≥ 0, A is a 

the vector of n – m + 1 nonbasic variables, A  is the remaining (m – 1)×n subma-



Theorem 6.15: Recognizing an IIS (Van Loon 1981). The system Ax + y= b, 
y ≥ 0 is an IIS if and only if there is a slack variable, say y1, such that the sys-
tem can be solved with respect to y1 and a set xB of basic variables as follows: (1) 
y1 = u – (w1)Ty1, (2) xB = B b1− B NxN − B  y1, with u < 0 and w1 > 0. ■  

Thm 6.15 allows an LP solver to recognize an IIS. Van Loon’s search for tab-
leaux that meet these conditions is undirected, and will in general enumerate many 
bases that do not provide any information about the cause of the infeasibility. 
Greenberg and Murphy (1991) point out that his method could be extended to find 
IISs more efficiently by pivoting through alternative bases. 

Gleeson and Ryan (1990) improve on Van Loon’s approach by developing a 
method that avoids uninformative bases and enumerates only those bases that cor-
respond to IISs (in the absence of degeneracy). Their method rests on Thm. 6.16, a 
variant of Farkas’ Theorem of the Alternative, and polyhedral theory. 

Theorem 6.16: Efficient IIS pivoting (Gleeson and Ryan 1990). Let A be a ra-
tional m×n matrix and let b be a rational m-vector. Then the indices of the IISs of 
the system Ax ≤ b are exactly the supports of the vertices of the polyhe-
dron P = {y∈Rm | yTA = 0, yTb ≤ –1, y ≥ 0}. ■ 

Gleeson and Ryan apply Dyer’s method (Dyer 1983) to efficiently enumerate 
all of the bases of the system established in Thm. 6.16, and an IIS is identified at 
each basis (though the same IIS may be identified multiple times if there is degen-
eracy). All of the IISs in a model are identified in this manner. A very similar re-
sult is reported by De Backer and Beringer (1991) based on Fourier’s theorem 
(Fourier 1827). 

While Gleeson and Ryan’s method is much more efficient than van Loon’s, 
theoretical comparisons (Chinneck and Dravnieks 1991) show that it is likely to be 
much slower than the filtering methods when only the first IIS is desired. Much of 
the speed disadvantage is due to the necessity of converting equality constraints to 
oppositely signed pairs of inequalities, which causes a blow-up in model size. In 
comparison to the filtering methods, Gleeson and Ryan’s method operates at a 
disadvantage in any system that has numerous nonnegativity constraints and 
equality constraints. This is true of many general LPs, and especially true for net-
work LPs. 

 Parker and Ryan (1996) modify Gleeson and Ryan’s method slightly by 
showing that you can construct a cone instead of a polyhedron and identify IISs 
based on the extreme rays of the cone: 

Theorem 6.17: IIS cone (Parker and Ryan 1996). Let Ax  ≤  b denote an incon-
sistent set of inequalities. Then the IISs are in 1 – 1 correspondence with the ex-

m T T

nonzero components of any extreme ray of P’ index an IIS. ■ 
The motivation for the work by Gleeson and Ryan (1990) and Parker and Ryan 

(1996) is not to identify a first IIS quickly: it is instead to identify a minimum-
weight cover of the set of IISs. When the weights are all identical, this is the same 
as the minimum-cardinality IIS set cover, i.e. the smallest set of constraints to re-
move from the LP such all of the remaining constraints constitute a feasible set. 

–1 1– –1
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treme rays of the cone P’ = { y ∈R  | y A = 0, y b < 0, y ≥ 0}. In particular, the 



This is an important question that we will return to in Chapter 7. Still, the pivoting 
methods can be used to isolate individual IISs. 

6.2.4 Interior Point Methods 

Greenberg (1996a) shows how to use an interior point method solution of an 
infeasible LP as a filter that separates constraints into two sets: (i) those that 
might be part of some IIS, and (ii) those that cannot be part of any IIS. This is an 
improvement over the sensitivity filter which cannot always identify all of the 
constraints that are part of some IIS. 

Ai x ≥ bi for i∈ I}. X (S) = {x| x is feasible in S}.The dual system 
d

i 
d

i ∈ d

slackness, i.e. Ai x = bi for all i∈σ(π). The solutions are strictly complementary if 
i i

Theorem 6.18: Strictly complementary partition (Greenberg 1996a). If S is 
d

Further, the support partition is the same for all strictly complementary solutions.■ 

0 0
i i

some IIS of S \S(I )}. S\S(I ) is the set of violated constraints at the interior point 
solution, and it is separated into two parts by the strictly complementary solution: 
those that might be part of some IIS, and those that are not part of any IIS. This 
partition can be used to eliminate the inequalities that are not part of any IIS. 

6.2.5 Speed-ups: Combining Methods 

As we saw in Section 6.1.6, the deletion filter and the additive method can be 
combined to create a hybrid method that may be faster than either method by it-
self. The opportunity for combining methods is even greater when the IIS isolation 
methods that are specific to LP are considered. 

Combining the deletion and sensitivity filters results in the deletion/sensitivity 

be used in a backtracking scheme to find other IISs. 
 

support set σ (π) = {i| π > 0}. If x∈X(S) and π S  then we have complementary 

, is S  = {π ≥ 0, πA = 0, πb ≥ 0}. Define LP: max πb subject to πA = 0, π ≥ 0

the set of indices for which the coordinate is positive. A solution in X(S ) has the 

If the optimal solution to LP is obtained by an interior point method, then the 
optimal partition, say π , is strictly complementary. Now σ(π ) = {i| A x ≥ b  is in 

consistent, there exists a strictly complementary solution, (x, π) ∈ X(S) × X(S ). 

A x > b  for all i∉σ (π). A strictly complementary solution induces a support parti-

Following Greenberg (1996a), let S ={

πb ≤ 1, π = 0 for i ∈ I. The support set σ(v) of a nonnegative vector v is 

filter, one of the quickest ways to isolate an IIS. As shown in Alg. 6.9, the sensitiv-
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Ax ≥ b} be a finite collection of inequali-

ity filter is applied whenever an intermediate deletion filter test proves infeasible. 
The deletion/sensitivity filter has the useful property given in Thm. 6.19 that can 

ties. S(I) = {

tion, σ (π)∪ σ(Ax − b) on the indices of the inequalities. 



INPUT: an infeasible set of linear constraints. 
1. Solve the phase 1 LP. 
2. Sensitivity filter the phase 1 result. 
3. FOR each constraint in the set: 
  3.1 Temporarily drop the constraint from the set. 
  3.2 Test the feasibility of the reduced set: 
   3.2.1 IF feasible THEN return dropped constraint to the set. 
   3.2.2 ELSE (infeasible) 
    3.2.2.1 Drop the constraint permanently. 
    3.2.2.2 Apply the sensitivity filter. 
OUTPUT: constraints constituting a single IIS. 

 
Alg. 6.9. The deletion/sensitivity filter 

 
Theorem 6.19: Deletion/sensitivity filter (Chinneck 1994). Assume a sensitivity 

filter is applied to the phase 1 final basis which originally signals infeasibility. 
During a subsequent deletion/sensitivity filtering, any constraint removed by the 
deletion filter, along with any constraints removed by the sensitivity filter in the 
same iteration, are part of a different IIS than the output IIS. 

Proof: The initial sensitivity filter following the phase 1 solution which signals 
model infeasibility retains only constraints which are part of some complete IIS in 
the sensitivity filter output. If a constraint is subsequently removed by the deletion 
filter, then it must be part of a different IIS than the final IIS eventually isolated by 
the deletion/sensitivity filter. Any constraint removed by the sensitivity filter in 
the same iteration must be part of an IIS with the deletion filtered constraint, oth-
erwise the phase 1 objective function would continue to be sensitive to it. ■ 

The sensitivity filter can also be combined with the additive method to yield the 
additive/sensitivity method. This has a very beneficial effect on the speed of the 
algorithm. The sensitivity filter is simply applied each time the additive method 
discovers an infeasible set, and is applied to the current test set T. Any constraints 
that can be eliminated from T are also eliminated from C, and hence are not in-
cluded in the additive testing on the next round. This is especially effective the 
first time that the additive method detects infeasibility in T because numerous non-
IIS constraints may have been added to T prior to the infeasible outcome. See Alg. 
6.10 for details. 

The sensitivity filtering step continues to be useful even after the first infeasible 
outcome in the additive method. The final constraint that triggered the original 
infeasibility may be a member of several overlapped IISs, all of which appear in T. 
If infeasibility is encountered a second or subsequent time, the algorithm may be 
homing in on a particular IIS in the IIS cluster, meaning that there now exist 
members of partial IISs in T, which will then be eliminated by the sensitivity filter. 
After the first sensitivity filter, a result similar to Thm. 6.19 is also available for 
the additive/sensitivity method. 
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C: ordered set of constraints in the infeasible model. 
T: the current test set of constraints. 
I: the set of IIS members identified so far. 
 
INPUT: an infeasible set of constraints C. 
0. Set T = I = ∅. 
1. Set T = I. 
2. FOR each constraint ci in C: 
   Set T = T ∪ ci. 
   IF T infeasible THEN 
    Apply the sensitivity filter to T. Constraints dropped from T are 
     likewise dropped from C. 
    Set I = I ∪ ci. 
    Go to Step 2. 
3. IF I feasible THEN go to Step 1. 
  Exit. 
OUTPUT: I is an IIS. 
 
Alg. 6.10. The additive/sensitivity method 
 

The various independent methods can be combined in a variety of ways to im-
prove overall speed, or to provide improved characteristics such as the identifica-
tion of smaller IISs. Some possible combinations, including those mentioned so 
far, are: 

• Additive/deletion method 
• Deletion/sensitivity filter 
• Additive/sensitivity method 
• Combine reciprocal filter with any method suitable for LP 
• Elastic filter followed by deletion or deletion/sensitivity filter 
• Elastic filter followed by additive or additive/sensitivity method 
• Etc. 

6.2.6 Guiding the Isolation 

The modeler normally brings additional knowledge to the task of identifying the 
cause of infeasibility. He may know, for example, that one part of the LP has been 
well-tested and running reliably for a long time and hence is a very unlikely 
source of difficulties, and hence would like to steer the IIS isolation away from 
that part of the model. Or he may know that a complex new portion has been re-
cently added and so is the most likely source of infeasibility, and so would like to 
steer the IIS isolation towards that part of the model. 
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is treated during a deletion or deletion/sensitivity filter. Codes include (i) eliminate 
immediately, before the IIS search begins, (ii) encourage elimination from IIS, 
(iii) discourage elimination from IIS, and (iv) never eliminate. The “encourage” 
and “discourage” codes are most useful in guiding the IIS search away from reli-
able portions of the model and towards suspect portions. Name masking can be 
used to apply guide codes to many similarly named constraints simultaneously. 
This is useful, e.g. in protecting large well-trusted portions of the model. 

The guide codes influence the deletion or deletion/sensitivity filter as follows: 

1. 
comes feasible, issue a message and exit. 

2. 

courage elimination” or not specially coded. 
3. 

tion” or not specially coded. 
4. 

not apply the sensitivity filter. 
5. 

these. 

Note that the output may not be an IIS under two conditions, both of which are 
brought to the user’s attention. In Step 1, constraints that are essential to the IIS 
may be removed immediately, rendering the model feasible. In Step 5, constraints 
that should be dropped may be protected from doing so, so the output is not an IIS. 
The sensitivity filter in Step 5 is only a partial solution to this difficulty. If there is 
a single IIS in the constraints remaining after Step 4, then it will reliably indicate 
which protected constraints could be dropped to yield that IIS. On the other hand, 
the protected constraints could contain additional complete IISs which will not be 
identified as candidates for elimination by the final sensitivity filter. It is for this 
reason that the “never eliminate” code should normally only be applied to well-
tested parts of the model. 

As we will see in the next section, there is an important distinction between the 
functional constraints (or rows) and variable (or column) bounds in isolating IISs 
in LPs. It is usually much easier to understand an IIS that has few rows, regardless 
of the number of column bounds involved. For this reason, MINOS(IIS) allows 
special guidance for the treatment of the column bounds via the IIS PROTECTION 
parameter. In the first mode, column bounds are protected as much as possible; 
they can be eliminated only by a deletion test. In the second mode, column bounds 
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Fortunately it is straightforward to guide the model in various ways. The ex-
perimental code MINOS(IIS) (Chinneck 1990, 1996a) demonstrates this: it allows 
the user to tag individual constraints with codes that influence how the constraint 

Remove all constraints coded for immediate removal. If the model be-

Deletion filter all constraints coded as “encourage elimination”. If the 
sensitivity filter is applied, removed only the constraints coded as “en-

Deletion filter all constraints not specially coded. If the sensitivity fil-
ter is applied, remove only constraints coded as “encourage elimina-

Deletion filter all constraints coded as “discourage elimination”. Do 

Do not deletion filter the constraints coded as “never eliminate”. In-
stead, run a sensitivity filter on these constraints simply to identify the 
constraints that could possibly be removed; alert the modeler about 



2. Elastic filtering. 
3. Column protection options. 
4. General guide codes. 

Methods nearer the top of the list take precedence over those lower in the list. 
For example, the column protection options operate by making wholesale settings 
of guide codes on all of the constraints in the model to encourage the removal of 
row constraints and discourage the removal of column bounds. Implementation 
details make it difficult for the elastic filter to follow the guide codes, though 
guiding the elastic filter is certainly possible to some extent.  

Guiding the elastic filter would use the fact that a constraint that is never de-
elasticized will definitely not appear in the output IIS; constraints that are de-
elasticized may appear in the output IIS, though this depends on the final filtering 
by the deletion filter or the additive method. This implies a rank-ordering of 
the stretched constraints to de-elasticize after each elastic program solution: 
(1) constraints coded “discourage removal”, (2) constraints not specially 
coded, (3) constraints coded “encourage removal”. At each opportunity to 
de-elasticize constraints, choose all of those from the non-empty group that is 
highest in this list. Constraints coded “never remove” will of course simply be in-
cluded in the output of the elastic filter. 

Weighting approaches can also be used to guide the isolation in various ways. 
For example, the usual elastic objective of minimizing the sum of the elastic vari-
ables can be replaced by the objective of minimizing a weighted sum of the elastic 
variables. The elastic variables associated with constraints that should be hon-
oured as much as possible can be given higher weights. In the same way, weights 
ci can be applied to an objective function introduced in the alternative system in 
Thm. 6.16 as suggested by Bruni (2005). The new objective to minimize Σcjyj in-
fluences which set of constraints is returned as the initial IIS. 

6.2.7 Finding Useful Isolations 

A modeling error resulting in infeasibility is often reflected in several different al-
ternative IISs, not all of which are equally easy for humans to understand. Which 
of the several IISs is reported to the user can have a major impact on the speed of 
diagnosis. Experiments with users show clearly that the IIS having the fewest row 
constraints is the easiest to understand, and hence the most useful. For example, 
one model generated two IISs: one involving 12 rows (of 2393 bounded rows) and 
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are protected until all of the rows have been deletion filtered, then the columns are 
deletion/sensitivity filtered (even if sensitivity filtering was not initially enabled). 

In MINOS(IIS), the use of guide codes conflicts with some of the other IIS iso-
lation approaches, such as the elastic filter. Hence there is a strict hierarchy of 
methods as follows: 

1. IIS set covering (see Chapter 7). 



model or a class of constraints for further analysis, e.g. the blending units, or per-
haps the crude oil supply limits in a refinery model. Variable bounds are rapidly 
verified and are therefore of less consequence to the analysis process. The analyst 
would rather accept more variable bounds in the IIS in return for fewer rows. In 
general, minimizing the number of rows in an IIS also tends to reduce the number 
of variable bounds involved because the smaller number of rows interacts with 
fewer variables. A side effect of minimizing the number of rows is usually a re-
duction in the total size of the IIS. 

Chinneck (1996a, 1997b) raised the issue of finding IISs that have few rows in 
infeasible LPs, and discovered that combining and controlling the IIS isolation al-
gorithms can result in methods that usually return IISs that have few rows. One in-
teresting result of the analysis was the observation that the sensitivity filter, which 
greatly increases the speed of IIS isolation, tends to return IISs of larger cardinality. 

One way to find the minimum row-cardinality IIS is to enumerate all of the IISs 
in the model, and then choose the one having the fewest rows. Unfortunately, 
Chakravarti (1994) showed that the number of IISs in an infeasible LP could be 
exponential in the worst case. This means that, in general, the minimum row-
cardinality IIS cannot be found in polynomial time by enumeration methods. 
However Parker and Ryan show that their method of generating IISs while solving 
the IIS set covering problem (see Sec. 7.2) can indeed identify small cardinality 
IISs in reasonable amounts of time, and hence that this approach has some value 
in practice. However, their empirical results show that their enumeration method 
finds a smallest IIS that is larger than the IIS found by the heuristic methods de-
veloped below in about two-thirds of the cases studied, and never returns an IIS 
having fewer rows than the heuristic methods. Further, it requires more time. 

Mindful of the difficulties in enumerating IISs, Chinneck (1997b) instead takes 
a heuristic approach which does not guarantee to find the minimum row-
cardinality IIS, but often finds IISs with a small row-cardinality. The heuristic 
method makes use of the filtering algorithms described earlier. Their inherent 
characteristics affect their ability to isolate IISs having few rows. We will review 
the relevant characteristics of each method next. 

As shown in Thm. 6.2, the deletion filter returns the IIS whose first member is 
tested last. Obviously, it is not possible to predict in advance the ordering of the 
constraints that will return the IIS having the fewest rows. However, a general 
heuristic can be formulated based on this behaviour: order the constraints so that 
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68 columns, and another involving 1 row and 93 columns. Although the first IIS is 
smaller in terms of the total number of constraints involved, the second is much 
easier to interpret and to diagnose. In another model, one IIS involved all 323 of 
the bounded rows, while another involved only 76, effectively confining further 
analysis to about one quarter of the original model. 

It is not surprising that analysts prefer IISs having few rows. Column bounds 
are easy to understand, but rows tie together both variables and other rows in 
complicated ways. Limiting the number of rows reduces the complexity of the 
subsequent human analysis. A small number of rows helps to pinpoint part of the 



deletion filter returns IISs having the most rows on average, while the reverse 
deletion filter returns IISs having the fewest rows on average. 

Similar thinking applies to the additive method. To make sure that few rows are 
included in any output result, include all of the variable bounds in the testing set at 
all times, while rows are added one by one as usual. The algorithm will eventually 
terminate with the output of a minimal set of row constraints plus all of the col-
umn bounds. We will see how to deal with the excess column bounds presently. 

As shown in Thm. 6.4, the additive method isolates the IIS whose last member 
is tested first. Hence, as for the deletion filter, exactly which IIS is returned de-
pends on the ordering of the constraints. For both algorithms, assuming a random 

IIS is unlikely to be returned. For the deletion filter, this is because some members 
of the largest IIS are likely to be eliminated before the first member of a smaller 
IIS is encountered. For the additive method, this is because an entire small IIS is 

these methods will have reasonably good average case ability to identify IISs hav-
ing few members (or having few rows when the algorithm is modified as de-
scribed above). 

The sensitivity filter greatly increases the speed of IIS isolation, but it has the 
unfortunate side effect of tending to find IISs that have larger numbers of rows. 
Why does this happen? It is mainly due to the operation of the phase 1 objective 
function, which normally attempts to minimize the sum of the artificial variables. 
The effect is to “stretch” some constraints by setting their artificial variables to 
positive values, in effect moving the constraints as shown in Fig. 6.4. The final 
positions of all of the constraints determine which ones the phase 1 objective is 
sensitive to, and hence which ones are retained by the sensitivity filter for further 
analysis: the phase 1 objective will always be sensitive to any stretched constraints 
(as it will be to all of the active constraints).  

The important fact is that the phase 1 process tends to stretch the constraints 
that give the greatest reduction in the overall phase 1 objective function value per 
unit of stretch, i.e. the constraints that are involved in the most IISs. Consider two 
IISs that overlap on a single constraint: is it cheaper to stretch two constraints, one 
from each IIS, or just the single overlapped constraint? Fig. 6.4 illustrates this 

forward deletion filtering empirically: over 14 tested IIS isolation procedures, the  
demonstrates the superiority of reverse deletion filtering over the normal 

distribution of the members of the IISs through the list of constraints, the largest 

likely to appear in the testing set before an entire large IIS. Hence we expect that 
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rows as possible. In the MINOS linear programming code (Murtagh and Saunders 
1987) that underlies Chinneck’s MINOS(IIS) code (Chinneck 1994), variables are 
ordered as follows: (i) the original model variables, then (ii) the slack/surplus 
variables for the rows. Deletion testing proceeds by removing and reinstating the 
bounds on these variables as appropriate. Hence proceeding in the natural order of 
the variables is detrimental to isolating IISs that have few rows. It is better to 
proceed by first deletion testing the bounds on the slack/surplus variables for the 
rows, followed by the bounds on the original variables. Since this is the reverse of 

rows are eliminated before column bounds in an attempt to eliminate as many 

the natural ordering of the variables found in many LP solver codes (such  
as MINOS), it is referred to as reverse deletion filtering. Chinneck (1997b) 



The elastic filter has the especially useful property described in Thm. 6.8: the 
number of elastic filter iterations (i.e. elastic programs solved) is at most equal to 
the cardinality of the smallest-cardinality IIS in the input set. Assuming that ex-
actly one member of each IIS is stretched during each iteration of the elastic filter, 
its output set will contain a smallest-cardinality IIS, plus parts of all of the larger 
IISs. The smallest cardinality IIS will be found when the elastic filter output set is 
subjected to the deletion filter or additive method for positive identification of a 
single IIS. There is no guarantee that exactly one member of each IIS is stretched 
during each elastic solution, but experimentation shows that this does happen very 
frequently. 

If the goal is to find IISs having few rows, then a simple modification of the 
elastic filter can assist. Since enforced constraints appear in the output set, enforce 
only the variable bounds that stretch in each elastic program solution. Row con-
straints are enforced only when there are no stretched variable bounds in the elas-
tic solution. This process can be speeded considerably simply by starting the entire 
elastic filter process with all of the variable bounds already enforced. This then 
produces an output set that has a small number of row constraints, plus all of the 
variable bounds. We now deletion filter just the row constraints in the output set. 

At this point, the output set has a minimal set of row constraints, plus the full 
complement of variable bounds, exactly the same situation as in a reverse deletion 
filter before the variable bounds are tested or in the modified additive method. 
From here forward, no further row constraints will be removed since all are defi-
nitely part of the IIS being isolated. This is the usual outcome of the strategy of 
column protection (Chinneck 1997b), i.e. preserving all of the variable bounds un-
til a minimal set of row constraints has been identified. Column protection is very 
helpful in identifying IISs that have few rows. Further, once a minimal set of row 
constraints has been identified, sensitivity filtering can be safely used to remove 
large numbers of variable bounds quickly, greatly speeding the overall process. 

The modified elastic filter described above performs very well in empirical 
tests (Chinneck 1996a, 1997b), giving results about as good as those for the re-
verse deletion filter and the modified additive method. The modified elastic filter 
has a significant speed advantage over the other two methods for larger models, 
but is slower on the smaller models. 
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effect. The smallest value of the phase 1 objective is achieved at the point defined 
by the intersection of constraints B’ (the stretched version of constraint B), C, and 
D: these are the constraints that will be retained by the sensitivity filter. Since the 
phase 1 process tends to stretch as few constraints as possible (since this is 
cheaper), this means that more members of the larger IISs tend to stay in place, 
with the overlapped constraints tending to move. The side effect is that the smaller 
IISs are bypassed as in Fig. 6.4. This effect is demonstrated empirically by 
Chinneck (1997b): while the reverse deletion filter is among the best methods for 
finding IISs having few rows, the reverse deletion/sensitivity filter is among the 
worst. The inclusion of the sensitivity filter has negative consequences. 



Another approach to reducing the number of rows in an IIS is to aggregate the 
rows by simply summing them to yield a single row (Chinneck 1996b). This can 
be especially effective in network LPs where the large number of row constraints 
obscures a very simple diagnosis: incompatible input and output restrictions linked 
by many flow conservation equations. Aggregation of the row constraints con-
denses the “bridge” of equations connecting the conflicting input and output re-
strictions. Consider the following network example (Chinneck 1996b): 

 
Rows in the IIS: 
c125: – x50 + x379 – x380 = –1825 
c126: – x379 + x380 – x382 = –2535 
c127: – x381 + x382 + x383 – x384 = –1658 
c128: – x30 – x383 + x384 + x387 – x459 = –15466 
c147: – x69 + x435 – x437 = –338 
c148: - x435 + x437 + x438  x439 = –1037 
c149: – x438 + x439 + x440 

–

c151: – x443 + x444 + x446 – x448 = –1954 
c153: – x446 + x448 + x449 – x450 = – 4255 
c154: - x449 + x450 + x451 – x453 = – 5155 
c155: – x451 + x453 + x454 – x455 = –1274 
c156: – x454 + x455 + x456 + x457 – x458 – x463 = –1454 
c157: – x387 – x456 + x458 + x459 = –6401 
c158: – x457 + x463 + x464 – x491 = –14 
c165: – x475 + x477 + x478 – x479 = –246 
c166: – x478 + x479 + x480 – x482 = –232 
c167: – x480 + x482 + x483 – x484 = –61 
c168: – x483 + x484 + x485 – x486 = –1536 
c169: – x485 + x486 + x487 – x488 = –3648 
c170: – x487 + x488 + x489 – x490 = –3676 
c171: – x464 – x489 + x490 + x491 = –1848 
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c150: – x440 + x442 + x443 – x444 = –16 
– x442 = –5713 
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identified. It can be applied thereafter. 
The best methods for finding IISs that have few rows are: (a) reverse deletion 

fied additive method (with sensitivity filter enable after a minimal set of rows is 
returned), and (c) modified elastic filter, followed by the reverse deletion filter 
(with sensitivity filter enabled after the rows are deletion filtered). The modified 
elastic filter is best for large models, the other two are best for smaller models. 

(ii) Do not use the sensitivity filter until a minimal set of row constraints has been 
deletion filter, the modified additive method, and the modified elastic filter. 

filter (with sensitivity filter enabled after the rows are deletion filtered), (b) modi-

To summarize, the following two general principles assist in finding IISs that 
have few rows: (i) Protect the variable bounds from elimination until a minimal 
set of row constraints has been identified. This is the main principle in the reverse 



Aggregation has been used for some time to analyze infeasibility in general LPs 
(e.g. (Murty 1983)), but it is especially useful for the pure portion of network 
models. 

6.2.8 Analyzing Infeasible Network LPs 

The most straightforward approach to analyzing an infeasible network LP is to 
simply treat it as you would an infeasible general LP, applying the various IIS iso-
lation techniques described previously (Chinneck 1996b). Aggregation can be ap-
plied to the resulting IIS to improve ease of understanding. However a number of 
more specialized methods are also available for ordinary flow-conserving net-
works. These rely almost exclusively on the supply and demand balancing proce-
dures by Gale (1957), Fulkerson (1959), Hoffman (1960), and Ford and Fulkerson 
(1962). 

As an example, the main theorem by Gale states that the total demand over a 
network is feasible if and only if for every subset S of nodes, the total demand 
over the complement of S is less than the total capacity of the arcs that cross from 
S to its complement. The proof depends mostly on the minimum cut theorem. 
Note that it applies to individual nodes as well as any larger collection of nodes. 
These balancing rules are used to construct more sophisticated analysis procedures 
such as those by Greenberg (1987b, 1988) and by Aggarwal et al. (1988). 

As Greenberg and Murphy (1991) point out, the guidance provided directly by 
the Gale-Fulkerson-Hoffman flow balancing algorithms is often insufficient to 
clearly identify the cause of the infeasibility. More exact localization is needed. 
Greenberg (1987a, 1988) combines the flow balancing results with logic about 
network behaviour to yield heuristics that give better localization of infeasibility. 
New specific tests such as path and cycle generation are combined with methods 
akin to bound reduction and similar techniques described in Sec. 6.1.1. These heu-
ristics improve the usefulness of the base flow balancing techniques, but there is 
no guarantee that an IIS will be isolated, or that the resulting reductions will be 
helpful in understanding the infeasibility, as for all logical reduction/presolving 
methods. These techniques are available in the ANALYZE software (Greenberg 
1993a). 
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Column Bounds in the IIS: 
x30 <= 12509 
x50 <= 12509 
x69 <= 14434 
x475 <= 14434 
x477 >= 0 
Aggregated IIS Rows: 
– x30 – x50 – x69 – x475 + x477 = – 60342 
 
While diagnosis of the infeasibility is difficult in the full IIS, it is straightfor-

ward using the aggregated row and the column bounds: the column bounds con-
flict with the aggregate effect of the rows.  



A related modeling error for networks is nonviability (Chinneck 1990a, 1990b, 
1992), a structural condition in which the only feasible flow for some of the arcs is 

method is the best approach for analyzing networks (Chinneck 1996b). 

6.2.9 Software 

and commercial LP solvers after their introduction in the early 1990s. A brief sur-
vey of some of the noteworthy software follows below. See also the earlier survey 
by Chinneck (1997a). Note that presolving (which may occasionally detect infea-
sibility, but does not provide a useful analysis of the cause) is universally available 
in commercial LP solvers. 

CLAUDIA is a proprietary LP solver produced by BP Oil International (Main 
1993a, 1993b). Earlier versions performed various analyses of infeasible LPs, and 
IIS isolation was added in the mid-1990s. CLAUDIA uses a nonstandard phase 1 
procedure in which an infeasible row called the control row is selected as the 
objective function and pivoting is carried out to induce feasibility in the control 
row subject to the other nonviolated constraints. Infeasibility is recognized when 
the control row cannot be rendered feasible. This is similar to the elastic filter 
except that any row constraints that are initially satisfied are immediately 
enforced, whereas in the elastic filter constraints are enforced only after they have 
been violated once. 
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zero. This condition can also be diagnosed using IIS isolation, as described in Sec. 9.2. 
Detecting and analyzing nonviability as well as infeasibility in an integrated 

Infeasibility isolation routines were rapidly adopted in both academic prototypes 
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Aggarwal et al. (1988) apply the Gale-Fulkerson-Hoffman theorems in a 
maximum flow algorithm to develop a method for identifying a witness set of 
nodes for which the net supply and the total outflow capacities conflict. They re-
fine the procedure so that it is able to identify a minimal witness set. Note that this 
isolation is not as precise as an IIS since the LP constructed from the witness set 
of nodes and incident arcs will in general include constraints that do not appear in 
the associated IIS. Conversely, a minimal witness is easily obtained from an IIS 
simply by listing the nodes whose equations appear in the IIS. 

Straightforward flow balancing is not effective for more advanced network 
forms such as generalized or processing networks in which flow conservation is 
not guaranteed. These are still LPs however, so the general IIS isolation tech-
niques described earlier can be used. 

MINOS(IIS) (Chinneck 1994, 1996a; Chinneck and Saunders 1995) is Chinneck’s 
research code that incorporates all of the IIS isolation filtering algorithms for

nations. It also includes routines for finding the minimum cardinality IIS set cover
(see Chap. 7). It includes routines to guide the isolation as described in Sec. 6.2.6
and for finding IISs that have few rows as described in Sec. 6.2.7, and for producing
output IIS files that can be read by the ANALYZE software described below. The
The earliest version of MINOS(IIS) was produced around 1989.

LPs: the deletion, sensitivity, elastic and reciprocal filters, and their various combi-



balancing constraints, recognized by the naming convention, can be treated 
differently during the analysis than constraints in other classes. 

LINDO is a commercial LP solver. Its debug command applies a deletion filter 
to infeasible LPs, though variable bounds are not tested, so the output is not a true 
IIS. It further tests each member of the output “IIS” to determine how much effect 
it has on removing all of the infeasibility in the entire model via the procedure out-
lined in Sec. 7.8.1. This results in a labeling of each IIS member as being “neces-
sary” (i.e. necessary to that particular IIS) or “sufficient” (i.e. sufficient to remove 
all infeasibility in the model). The IIS isolation routines in LINDO date to about 
1993, but binary search grouping strategies (see Sec. 6.1.5) have recently been 
added. Primal unboundedness is also analyzed in LINDO using IIS isolation ap-
plied to the dual. See Sec. 9.1 for further information. 

CPLEX is a commercial LP solver that offers a choice of two methods of isolat-
ing IISs: (i) a deletion/sensitivity filter applied to the rows and then the columns, 
and (ii) an elastic filter followed by the first method. Method (i) is preferred if an 
IIS is needed quickly, and method (ii) is preferred if an IIS having fewer rows is 
needed. An aggregation of the rows can also be produced. These IIS isolation rou-
tines date to version 3.0, released in 1993. Cplex version 10.0 (released 2006) in-
cludes a conflict refiner that uses groups and preferences to allow some guidance 
of the IIS isolation process, similar to the guide codes described in Sec. 6.2.6. 

IBM’s OSL LP solver incorporated the IIS filtering routines in 1995, but is no 
longer available. 

Tamiz et al. (1995, 1996) built additive method routines into the FortLP LP 
solver (Mitra and Tamiz 1988). There are several versions of the basic additive al-
gorithm, differing mainly in implementation details. 

PROFLOW (Chinneck 1996b) is a computer tool for formulating, analyzing, 
and solving network LPs of many forms, including processing networks. 
MINOS(IIS) is used as the solver, hence IISs can be isolated if the network is in-
feasible. PROFLOW uses infeasibility analysis to isolate the cause in the case of 
nonviability (see Sec. 9.2). 

Xpress-Optimizer (Dash Optimization 2006) has included the ability to isolate 
IISs in LPs since 1997. It uses a combination of the filtering algorithms to isolate 
IISs and will also try to find IISs having a small number of rows. In addition, it 
can search for several IISs at once. 
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A sensitivity filter is applied to the final infeasible control row to yield a set of 
mutually incompatible constraints (MIC), but note that this is not necessarily an 
IIS. Variable lower bounds of zero are ignored during processing and are not re-
ported by CLAUDIA. A straight deletion filter can be applied to the MIC to iso-
late an “IIS”. However, since the “IIS” may omit needed variable nonnegativity 
constraints, it may not be a true IIS. 

Another routine examines the effect on the total infeasibility of dropping indi-
vidual constraints. Constraints are then rank-ordered in terms of their impact on 
the total infeasibility and presented to the analyst. This idea is a precursor of 
Chinneck’s minimum cardinality IIS set covering heuristic (see Chap. 7). 

Some analysis of the MIC members can be done using agreed-upon naming 
conventions, providing added diagnostic power. For example, material flow 



6.3 Methods Specific to Mixed-Integer Linear 
Programming 

The sole work on methods for isolating IISs in mixed-integer linear programs is 
by Guieu and Chinneck (1999), hence this is the main subject of this section. We 
will use the term MIP to refer to mixed-integer linear programs as well as fully in-
teger or binary programs, and any combinations thereof. The model must include 
at least one integer or binary variable, along with linear constraints and variable 
bounds. 

Of course, the biggest difference between MIP and LP is the addition of the in-
teger (or binary) restrictions on some or all of the variables. This has far-reaching 
effects, not only on the analysis of infeasibility, but on the very algorithms used to 
optimize the model. As shown in Chap. 3, MIP models are typically solved by a 
branch and bound procedure which has characteristics that make infeasibility 
analysis difficult. First, infeasibility is not detected until the branch and bound tree 
is fully expanded, with every leaf node reporting infeasibility. Little useful infor-
mation is available when infeasibility is detected. There is no single overall LP so-
lution that can be subjected to a sensitivity filter for example; instead there is a 
large set of infeasible LPs, one at each leaf. Second, if the model is insufficiently 
constrained, the branch and bound solution may not terminate. An example of 
nontermination is given in Fig. 6.5. These characteristics have a severe negative 
impact on the ability to isolate an IIS. 

Note that these characteristics also exist if a branch and cut solution method is 
applied. 
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The Frontline Systems solvers, available as Microsoft Excel add-ins, have in-
cluded the ability to find IISs in infeasible LPs via the filtering methods since 
1997. See Fylstra et al. (1998). 

The XA solver from Sunset Technologies finds IISs using the filtering methods; 
see e.g. Holmström et al. (2006). 

ANALYZE (Greenberg 1993a) is a general purpose tool for manipulating and 
analyzing linear programs. It includes a number of routines that are helpful in 
analyzing infeasible LPs, including bound tightening, path and cycle tracing for 
infeasible networks, row aggregation, a form of sensitivity filtering, and tools for 
syntax-based explanation. While it is not able to isolate IISs directly, it can read 
IIS output files produced by MINOS(IIS) and apply the tools mentioned above to 
provide a deeper analysis of the infeasibility. 

Another consequence of nontermination is that the branch and bound tree may 
grow very large, possibly exceeding the available memory. It may also happen 
that a model will eventually terminate, but requires an excessive number of itera-
tions to do so. For example, imagine that the two parallel constraints in Fig. 6.5 
are angled very slightly towards one another so that they eventually cross at a 
great distance from the origin. It may take a great number of iterations before 



There is one degenerate case in which it is simple to identify an IIS: when the 
initial LP relaxation is itself infeasible, an IIS can be isolated simply by using the 
techniques for analyzing an infeasible LP. In the rest of this section we assume 
that the initial LP relaxation is feasible, but the entire MIP is not. An example of 
an infeasible MIP whose LP relaxation is feasible is shown in Fig. 6.6. 

Few useful tools for analyzing infeasible MIPs are currently available. 
Savelsbergh (1994) describes a bound-tightening presolve procedure for MIPs 
(implemented in the MINTO solver (Nemhauser et al. 1994)) that may detect 
infeasibility as a side effect of the reformulation. Backtracking the complete set of 
reformulation operations may then isolate a set of constraints and integer 
restrictions that cause the infeasibility. However, there is no guarantee that the 
presolver will detect infeasibility, or that the backtrack of the reformulation 
operations will provide any useful information. Greenberg also uses related 
bound-tightening methods for dealing with binary variables in the reduce 
command of his ANALYZE software (Greenberg 1993a). These methods all fall 

                   131

into the class of general logical methods for model reduction discussed in Sec.6.1.1 
and have the same drawbacks for diagnosing infeasibility. 

all-integer point 
LP-relaxation 
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minimize x+y 
x,y are integers 
x,y nonnegative 

 
Fig. 6.5. The branch and bound solution fails to terminate (Guieu and Chinneck 
1999) 

  

infeasibility can be determined. If the constraints are angled very slightly away 
from each other, it may likewise require a great number of iterations before a 
MIP-feasible point is reached. 

6.3 Methods Specific to Mixed-Integer Linear Programming 



IIS. Guieu and Chinneck (1999) develop methods for isolating small ISs in MIPs 
while hoping to identify IISs as often as possible. 

A MIP consists of constraints divided into three sets: 

• LC: the set of linear constraints (or rows), 
• BD: the set of variable bounds (upper and lower bounds, if any), 
• IR: the set of integer restrictions. Variables in IR are restricted to taking on 

integer values while variables not in IR are real-valued. Some integer variables 
may be binary, having a solution restricted to the set {0,1}.  

We denote the presence of an integer restriction on a variable xi by [xi]. Binary 
variables are treated as integer variables with a lower bound of 0 and an upper 
bound of 1. An IIS for a MIP consists of a subset of the constraints in LC, BD, and 

The entire MIP consists of a linear objective function plus the complete set of 
constraints {LC,BD,IR}. In an ordinary linear program, the set IR is empty. In an 
integer linear program, all of the variables are in IR. In a mixed integer program, 
at least one variable is in IR, and at least one variable is not in IR. The LP-

subset of constraints {LC,BD}. Since the LP-relaxation has fewer restrictions, its 
feasible region is larger. 

IR. In the non-degenerate case the IIS must include at least one member of IR. 
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methods are the only ones that are appli-
cable to MIP, but they assume that the 
solver is able to decide the feasibility 
status of a set of constraints with perfect 
accuracy (see Sec. 6.1). Given that the 
branch and bound solution of a MIP may 
not terminate, this assumption is not ful-
filled. 

To avoid nontermination, an upper 
limit can be imposed on the computa-
tional resources expended on a particular 
model variant (e.g. an upper limit on the 
number of branch and bound nodes de-
veloped, or the amount of memory con-
sumed). This limits the deletion filter and 
the additive method to the identification 
of an Infeasible Subset (IS), rather than an 

feasible 
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Fig. 6.6. An infeasible MIP with feasible 
LP relaxation (Guieu and Chinneck 
1999) 

Guieu and Chinneck (1999) investigate the application of the deletion filter and 
the additive method to the problem of isolating IISs in infeasible MIPs, along with 
their various combinations and speed-ups such as grouping. These general purpose 

relaxation of a MIP is created by considering only the objective function plus the 



 
LC0, BD0, IR0 are the original sets of constraints. 
 
INPUT: an infeasible MIP. 
0. status←“IIS”. 
 0 0
 IF T is infeasible, go to Step 2. 
 T←T∪IR0. 
1. FOR each irk∈IR0: 
  IF T \{irk} is infeasible, T←T\{irk}. 
  ELSE IF T \{irk} exceeds computation limit THEN  
   status←“IS”, label irk dubious. 
2.  FOR each lck∈LC0: 
  IF T \{lck} infeasible, T←T \{lck}. 
  ELSE IF T \{lck} exceeds computation limit THEN  
   status←“IS”, label lck dubious. 
3. BD1←BD0\{BDs on variables not in lc∈T}. 
 T←(T \BD0)∪BD1. 
 FOR each bdk∈BD1: 
  IF T \{bdk} is infeasible, T←T \{bdk}. 
  ELSE IF T \{bdk} exceeds computation limit THEN  
   status←“IS”, label bdk dubious. 

 
Alg. 6.11. The (IR-LC-BD) deletion filter for MIPs 
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 T =LC ∪BD . 

OUTPUT: If status =“IIS”, T is an IIS, else T is an IS. 

To avoid dubious constraints as much as possible it is preferred that all vari-
ables be both upper and lower bounded. For the same reason it is also preferred 
that the variable bounds stay in place as long as possible during deletion filtering. 
Because the size of the branch and bound tree tends to increase with the number of 
integer restrictions it is preferable to try to eliminate IRs before LCs or BDs. This 
helps in generating smaller branch and bound trees as the deletion filter proceeds. 

but it is not known whether it is also an IIS. It may be possible to apply post-
processing tests to the output IS to see whether the dubious constraints can be 
eliminated to yield a true IIS, but appropriate tests are not known at this time 
(other than increasing the computation limits and re-running the deletion tests on 
just the dubious constraints). 

that does exceed a computation limit, that particular constraint is labeled dubious 
and is retained in the output set. This guarantees that the output set is infeasible. If 
there is at least one dubious constraint in the output set, then it is definitely an IS, 

                   

6.3.1 A Deletion Filter for MIPs 

Applying a straightforward deletion filter to an infeasible MIP necessitates the 
solution of |LC| + |BD| + |IR| MIPs, which is very time consuming, but guarantees 
the identification of a single IIS if no subproblem is aborted because it exceeds a 
time or memory limit. When the removal of a constraint generates a subproblem 

6.3 Methods Specific to Mixed-Integer Linear Programming



indeterminate state until sufficient constraints are added to render the test set 
infeasible. If no indeterminate subproblems are encountered in the course of the 
isolation, then it is known that the output set is an IIS, but if at least one 
subproblem exceeds a computation limit, then the output set is an IS (it may also 
be an IIS, but this is not known). 

original problem is an IIS. In this case, the method solves n+1 MIPs during the 
first iteration, one for every constraint in the model plus one MIP for the test of I. 
During the next iteration, n MIPs are solved, etc. The overall worst case time 

2

model in stages as in Alg. 6.12, the worst-case time complexity is reduced to 
2 2

in Alg. 6.13. Note that the reordering applies only within the class of constraints 
currently being tested. 

 
 

 
 

complexity is then ½(|IR| + |LC| + |BD|)  MIP solutions. However, by considering the 

A dynamic reordering version of the additive method is also possible, as shown 
2 ½(|IR|  + |LC|  + |BD| ) MIP solutions. 

The worst case time complexity of the additive method occurs when the entire 
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6.3.2 Additive Methods for MIPs 

In adapting the additive method for MIPs, there is again a choice of the order in 
which the classes of constraints are added. Given our assumption that the initial 
LP relaxation is feasible, it makes sense to proceed as though the sets LC and BD 
have already been added without causing infeasibility. This leaves only the mem-
bers of IR to be tested. Hence the additive method for MIPs, shown in Alg. 6.12, 
begins by testing the addition of members of IR to LC∪BD. 

Unlike the deletion filter, the additive method is not able to directly identify 
dubious constraints. This is because the test set is maintained in a feasible or 

A similar algorithm can be constructed for the LC-IR-BD ordering during dele-
tion filtering. Since linear constraints are removed first with this ordering, some 
variables will no longer be represented in the reduced set of linear constraints after 
they are deletion tested, and hence the bounds and integer restrictions on those 
variables can be removed before they are deletion tested. 

Step 3 avoids testing any bounds on variables that are not present in the set of LCs 
remaining after Step 2. 

Given the preferences to eliminate IRs early and BDs late, this suggests that the 
deletion filter should operate on the constraint sets in the order IR-LC-BD. A dele-
tion filter that uses this ordering of the constraints is shown in Alg. 6.11. Note that 



C: ordered set of constraints in the original infeasible MIP (IR0∪LC0∪BD0). 
T: the current test set of constraints. 
I: the set of IS members identified so far. 
 
INPUT: an infeasible MIP. 
0. status←“IIS”, I←φ. 
 IF LC0 ∪BD0 is infeasible, go to Step 2b. 
1. T←I ∪LC0 ∪BD0. 
 FOR each irk∈IR0: 
  T←T ∪{irk}. 
  IF T exceeds computation limit THEN status←“IS”. 
  ELSE IF T infeasible THEN: 
   I←I ∪{irk}. 
   IF I ∪LC0 ∪BD0 exceeds computation limit THEN status←“IS”. 
   ELSE IF I∪LC0∪BD0 infeasible, go to Step 2. 
   Go to Step 1. 
2. a. IF I ∪BD0 exceeds computation limit THEN status←“IS”. 
     ELSE IF I∪BD0 infeasible, go to Step 3. 
 b. T←I ∪BD0. 
 c. FOR each  lck∈LC0: 
  T←T ∪{lck}. 
  IF T exceeds computation limit THEN status←“IS”. 
  ELSE IF T infeasible THEN: 
   I←I ∪{lck}. 
   IF I ∪BD0 exceeds computation limit THEN status←“IS”. 
   ELSE IF I ∪BD0 infeasible, go to Step 3. 
   Go to Step 2b. 
3. a. IF I exceeds computation limit, status←“IS”. 
     ELSE IF I inconsistent, exit. 
 b. BD1←BD0\{BDs on variables not in lc∈I}. 
 c. T ←I. 
 d. FOR each bdk∈BD1: 
  T←T∪{bdk}. 
  IF T exceeds computation limit THEN status←“IS”. 
  ELSE IF T infeasible THEN: 
   I←I ∪{bdk}. 
   IF I exceeds computation limit THEN status←“IS”. 
   ELSE IF I infeasible, exit. 
   Go to Step 3c. 

 
Alg. 6.12.  The basic additive method for MIPs 
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OUTPUT: If status =“IIS”, I is an IIS, else I is an IS. 
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C: ordered set of constraints in the original infeasible MIP (IR0∪LC0∪BD0). 
T: the current test set of constraints. I: the set of IS members identified so far. 
INPUT: an infeasible MIP. 
0. status ←“IIS”; I ← ∅. 
 IF LC0 ∪BD0 infeasible, go to Step 2b. 
1. T←I ∪LC0∪BD0. 
 FOR each irk∈C: 
  IF ir k unmarked, T←T ∪{irk}, ELSE skip to next iteration. 
  IF T exceeds computation limit THEN status ← “IS”. 
  ELSE IF T infeasible THEN: 
   I ← I ∪{irk}; C ← C\{irj| j > k}. 
   IF I ∪LC0 ∪BD0 exceeds computation limit THEN status ←“IS”. 
   ELSE IF I ∪LC0 ∪BD0 infeasible, go to Step 2. 
   Go to Step 1. 
  ELSE temp ←{irj | j > k, irj∈C, irj satisfied}. 
   T←T ∪temp; mark all members of temp. 
2. a. IF I ∪BD0 exceeds computation limit THEN status ←“IS”. 
 0
 b. T ← I ∪BD0. 
 c. FOR each lck∈C: 
  IF lck unmarked, T←T ∪{lck}, ELSE skip to next iteration. 
  IF T exceeds computation limit THEN status ←“IS”. 
  ELSE IF T infeasible THEN: 

k j 
   IF I ∪BD0 exceeds computation limit THEN status ←“IS”. 
   ELSE IF I ∪BD0 infeasible, go to Step 3. 
   Go to Step 2b. 

j j j
   T←T∪temp; mark all members of temp. 
3. a. IF I exceeds computation limit, status ←“IS”. 
 
 b. BD1  ←BD0\{BDs on variables not in lc∈I}. 
 c. T←I. 
 d. FOR each bdk∈BD1: 
  IF bdk unmarked, T←T ∪{bdk}. 
  IF T exceeds computation limit THEN status ←“IS”. 
  ELSE IF T infeasible THEN: 
   I←I ∪{bdk}; BD1 ←BD1  \ {bdj | j > k}. 
   IF I exceeds computation limit THEN status ←“IS”. 
   ELSE IF I infeasible, exit. 
   Go to Step 3c. 
  ELSE temp ←{bdj | j > k, bdj∈BD1, bdj satisfied}. 
   T←T ∪temp; mark all members of temp. 
OUTPUT: If status =“IIS”, I is an IIS, else I is an IS. 
 
Alg. 6.13. Dynamic reordering additive method for MIPs 
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   I ← I ∪{lc }; C←C  \{lc | j> k}. 

  ELSE temp ←{l c |  j  > k, lc ∈C, lc  satisfied}. 

ELSE IF I ∪BD  infeasible, go to Step 3. 

ELSE IF I inconsistent, exit. 



6.3.3 An Additive/Deletion Method for MIPs 

An additive/deletion method is also available for MIPs, as shown in Alg. 6.14. 
The basic additive/deletion method proceeds by adding IRs to LC0∪BD0 until 
infeasibility is triggered, and then switches to the deletion filter to complete the 
isolation of the infeasibility. The status of the output set as an IS or IIS is deter-
mined only during the deletion filtering portion of the algorithm, which is able to 
identify dubious constraints. During the additive portion of the algorithm, inde-
terminate subproblems are treated in the same manner as feasible subproblems. 
Alg. 6.14 is easily modified to incorporate the dynamic reordering version of the 
additive method in Step 1. 

The time complexity of the additive/deletion method derives partly from the 
time complexity of the additive method as applied to the IRs, and to the time com-
plexity of the deletion filter as applied to the LCs and BDs. The worst case time 
complexity is O(|IR|2+|LC|+|BD|) MIP solutions. 

T: the current test set of constraints. 
I: the set of IS members identified so far. 
 
INPUT: an infeasible MIP. 
0. status←“IIS”; I←∅. 
 IF LC0 ∪BD0 infeasible THEN go to Step 2a. 
1. T←I ∪LC0∪BD0. 
 FOR each irk∈IR0: 
  T←T∪{irk}. 
  IF T infeasible THEN: 
   I←I ∪{irk}. 
   IF I ∪LC0∪BD0 infeasible THEN go to Step 2. 
   Go to Step 1. 
2. a. T←I∪LC0 ∪BD0. 
 b. FOR each lck∈LC0: 
  IF T \{lck} infeasible THEN T←T \{lck}. 
  ELSE IF T \{lck} exceeds computation limit THEN  
   status←“IS”, label lck dubious. 
3. BD1←BD0\{BDs on variables not in lc∈T}. 
 T←(T \ BD0)∪BD1. 
 FOR each bdk∈BD1: 
  IF T \{bdk} infeasible THEN T←T \{bdk}. 
  ELSE IF T \{bdk} exceeds computation limit THEN  
   status←“IS”, label bdk dubious. 
OUTPUT: If status=“IIS”, T is an IIS, else T is an IS. 
 
Alg. 6.14. Basic additive/deletion method for MIPs 

 

137                   6.3 Methods Specific to Mixed-Integer Linear Programming



6.3.4 Using the Information in the Initial Branch and Bound Tree 

A great deal of information is contained in the original branch and bound tree that 

the subsequent IIS isolation. We develop three theorems in this regard. 
Some initial definitions are needed. A leaf node of a branch and bound tree is 

either a node in which all of the IRs are satisfied (i.e. it is an integer-feasible solu-
tion), or one in which the LP-relaxation is infeasible. An intermediate node is a 
node that is not a leaf node. For an intermediate node K, IRK is the set of all IRs 
satisfied by the LP-relaxation at that node. BBBDK is the set of BDs added by the 
branch and bound procedure at some node K (intermediate or final). 

Theorem 6.20: IRs at intermediate nodes (Guieu and Chinneck 1994). An in-
feasible MIP does not have any IISs whose integer part is identical to the IRK at 
any intermediate node. 

Proof: At an intermediate node K, the current set of constraints is 
LC∪BD∪IR∪BBBDK. Since the node is intermediate, the LP-relaxation is feasi-
ble, or equivalently, LC∪BD∪IRK∪BBBDK is MIP feasible. An IIS having IRK as 
its complete integer part must have as its linear part either LC∪BD∪BBBDK or 
some subset of it, but no such IIS can exist because it is already known that 
LC∪BD∪IRK∪BBBDK is MIP feasible.  

Theorem 6.21: Sensitivity filtering leaf nodes (Guieu and Chinneck 1999). If a 
sensitivity filter is applied to every leaf node, and all original LCs and BDs having 
nonzero reduced costs are marked, then the set IR∪{marked LCs}∪{marked 
BDs} is infeasible. 

Proof: The unmarked LCs and BDs are not marked because they are not tight 
in any of the leaf nodes. Hence those unmarked LCs and BDs could have been re-
laxed in the original MILP and the same branch and bound tree would still have 
proven infeasibility of the modified MILP.  

Some further definitions are needed. A path in a branch and bound tree is a set 
of branches leading from the root to a leaf in which each branch is labeled with the 
name of the integer variable that was branched on. The set of active IRs (AT) is the 
union of all of the IRs for the branched variables in any of the paths in a branch 
and bound tree. 

Theorem 6.22: Branched variables (Guieu and Chinneck 1999). For an infea-
sible MIP, the set LC∪BD∪AT is infeasible. 

Proof: Given the MIP LC∪BD∪AT, a branch and bound tree identical to the 
original branch and bound tree can be generated, arriving at the conclusion that 
LC∪BD∪AT is infeasible.  

Notice also that each path provides an interesting candidate for an IS: the con-
straint set LC∪BD∪{IRs on variables in the path}. This candidate for an IS is 
more likely to prove infeasible because the set of branches in the path terminates 
at an infeasible node. There is no guarantee that the candidate IS is actually infea-
sible, however, since the path may consist partly or entirely of one-sided branches 
(i.e. a particular variable is branched upon only in the higher-valued direction or 
only in the lower-valued direction).  

initially discovers that the MIP is infeasible. Some of this information is useful in 
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 Where the MIP has multiple IISs, it may be possible to develop a different 
branch and bound tree for the same model (perhaps by varying parameters such as 
the bounding rule or branching variable selection rule) in which different sets of 
LCs, BDs and IRs can be eliminated using these three theorems. This happens 
when a different IIS drives the development of the branch and bound tree. 

Thms. 6.20 – 6.22 suggest a preprocessing of the MIP after it has been found in-
feasible but before the infeasibility isolation algorithms are applied. Thm. 6.21 al-
lows the initial elimination of any unmarked LCs or BDs. Thm. 6.22 allows the 
initial elimination of any IRs that do not appear in AT.  

Each path in the original branch and bound tree provides a candidate for the set 
of IRs in an IS. This set can be pruned by comparing the sets of IRs associated 
with the paths with the sets of IRs associated with the nodes. Any IR set associ-
ated with a node (and any subset of such a set) cannot be the entire IR set in an IS 
in conjunction with LC∪BD by Thm. 6.20. 

These ideas can be combined as shown in Alg. 6.15. For efficiency, as new 
IRPi are discovered during the initial branch and bound solution, they can be 
checked against the current IRN*. Similarly, as new IRNi are discovered, the cur-
rent members of IRP can be checked against it and its subsets. This would, how-
ever, slow the solution in the case of a feasible MIP. 

 
IRP: IRPi is the set of IRs defined by the variables in path i.  
 IRP = {IRPi|i = 1 to (number of  paths)}.  
IRN: IRNi is the set of IRs defined by the satisfied IRs at an intermediate node i. 
 IRN = {IRNi|i = 1 to (number of intermediate nodes)}.  
 IRN* = IRN ∪{all proper subsets of members of IRN}. 
LCM: the set of marked LCs. 
BDM: the set of marked BDs. 
 
INPUT: a MIP, feasibility status unknown. 
1. Solve the MIP. Compile the sets AT, IRP, IRN, LCM, BDM while solving. 
 If feasible, exit. 
2. IRP←IRP\(IRP∩IRN*). 
 Order IRP from smallest to largest cardinality. 
3. FOR each IRPi∈IRP: 
  IF LCM∪BDM∪IRPi is infeasible THEN  
   IRP’←IRPi. 
   Go to Step 4. 
 IRP’←AT. 
4. Isolate an IIS or IS in LCM∪BDM∪IRP’ using any algorithm. 
OUTPUT: an IIS or IS. 
 
Alg. 6.15. Using information from the original branch and bound tree 
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6.3.5 Speed-ups 

tion needs for the deletion filter, the additive method and the additive/deletion 
method. This is an effective strategy in this case, as shown in Sec. 6.3.6. 

The settings of the MIP solver have a great influence on the speed of the solu-
tion. Since the IIS isolation algorithms require the solution of numerous test MIPs, 
it is worthwhile determining the MIP solver settings that provide quick solutions 
for the intermediate test MIPs. Two solver settings have the most influence on the 
speed of the MIP solution: the method of node selection and the method of 
branching variable selection. 

The two most common methods of node selection are best-bound and depth-
first. Since determining that a MIP is infeasible requires a complete expansion of 
the branch and bound tree, neither method is likely to be faster for infeasible 
MIPs. However, when the MIP is feasible, it is likely that a depth-first node selec-
tion will reach feasibility faster. In addition, depth-first node selection allows re-
use of the final LP basis from the parent node, which will be near-feasible for the 
child nodes. Since we need only to determine feasibility status when examining 
the test MIPs, depth-first node selection may be preferred. 

A number of branching variable selection schemes are possible, including use 
of estimates of the branching variable impact on the objective function, a simple 
list ordering, user-defined priority weighted ordering, and the variable that is most 
infeasible. See Chap. 3 for details. 

The original objective function does not play a useful role during infeasibility 
analysis. It may even slow the infeasibility isolation by the way in which it guides 
the development of the branch and bound tree. Speed improvement may be possi-
ble by replacing the original MIP objective by one that tends to decide feasibility 
status more rapidly. 

When a subproblem is MIP-infeasible (but LP-relaxation feasible), two child 
nodes are generated, each having a new bound added based on the branching vari-
able xk, whose non-integer value in the parent node is α. The typical form of the 

k k k

k k

speed the decision of feasibility status in the test subproblems. 

6.3.6 Conclusions from Empirical Studies 

Guieu and Chinneck (1999) carried out an extensive study of the methods de-
scribed above. Atlihan and Schrage (2006) studied their binary grouping strategies 
applied to the deletion filter (see Sec. 6.1.5) for infeasible MIPs. The conclusions 
arising from these studies are summarized here. 

The test set collected by Guieu and Chinneck consists of 20 infeasible MIPs; 
Atlihan and Schrage used the same models. The infeasibility in two of the models 

k

Grouping of constraints is a useful strategy for reducing the number of MIP solu-
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x –s = ⎡α⎤. A new objective function can then be introduced: minimize Σs  over all 
of the slack variables introduced during branching. The effect is to drive the MIP 
towards feasibility in a manner analogous to an ordinary LP phase 1, which should 

added constraint (with nonnegative slack variable s  included) is: x +s = ⎣α⎦ or 

is original, with unknown cause. The remaining 18 models were taken from the 



MIPLIB 3.0 set (Bixby et al. 1996) and altered to be MIP-infeasible with a feasi-
ble initial LP relaxation. This was done by adding a constraint constructed from 
the objective function that requires it to take a value midway between the objec-
tive function value of the initial LP relaxation and the final MIP-feasible objective 
function value. Further details about the experimental setup are available in Gueiu 
and Chinneck (1999). 

The results of the experiments by Guieu and Chinneck are summarized in 
Table 6.2. Methods in the Table are sorted by decreasing number of average 
LP iterations for the IS isolation process to run. Numbers are averages over the 20 
test models. The column #dubious LC|BD (#IISs) reports the average number of 
dubious constraints in each category along with the number of cases having no 
dubious constraints (i.e. an IIS is reported); this is omitted in favour of comments 
on the results in the case of the additive methods which cannot detect dubious 
constraints. The columns #IR, #LC and #BD report the average number of each 
class of constraint in the output IS.  

Some very general conclusions can be drawn from these small experiments. 
First, notice that the deletion filtering methods always complete: there are no cases 
that time out whereas the two additive-only methods time out on 3 models. Note 
that the much smaller numbers of LP iterations and nodes reported for the two ad-
ditive-only methods results from the fact that the timed-out models are omitted 
from the averages. Second, the IR-LC-BD deletion filter is faster than the LC-IR-
BD deletion filter, as expected: LP iterations are reduced by 44%. Third, grouping 
improves speed: LP iterations are reduced by 35% for the IR-LC-BD filter when a 
standard group size of 4 is used. Fourth, the dynamic reordering additive/deletion 
method is quick: LP iterations are reduced by 22% compared to the IR-LC-BD de-
letion filter. Based on these results, a grouped version of the dynamic reordering 
additive/deletion method should be tested. 

Table 6.2. Summary of results for IS isolation methods for MIPs 

Method #dubious  LC|BD
(#IISs) 

#IR #LC #BD #B&B 
nodes 

#LP iterations 

LC-IR-BD  
deletion filter 

17|181.9 
(5) 

16.1 131.8 289.6 499153.8 3401931.4 

IR-LC-BD  
deletion filter 

16.4|185.3 
(5) 

11.5 153.8 321.4 344796.8 1913248.4 

dynamic reorder-
ing additive/ 
deletion method 

0.3|8.1 
(3) 

7.9 135.4 308.6 124512.4 1487990.6 

IR-LC-BD dele-
tion filter with 
group size 4 

16.4|186.1 
(5) 

11.5 153.4 311.6 189561.1 1246078.1 

basic  
additive method 

4 IISs, 3 models 
timed out 

8.9 49.7 142.0 172687.8 982255.4 

dynamic  
reordering  
additive method 

4 IISs, 3 models 
timed out 

7.6 40.5 145.2 130067.6 396176.2 
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Atlihan and Schrage (2006) tested a binary grouping deletion filter (see Sec. 6.1.5) 

ods. This amounts to an LC-IR-BD deletion filter with binary grouping on the lin-
ear constraints, but halted after the linear constraints have been deletion tested. 
Their results show that the generalized binary search deletion filter (Alg. 6.6) and 
the basic deletion filter perform similarly in terms of CPU time, though the basic 
deletion filter requires fewer MIP solutions for 70% of the models. The depth-first 
binary search deletion filter performed relatively poorly.  

While using different machines and solvers, the Atlihan and Schrage results can 
be roughly compared with those in Table 6.2 by looking at the average number of 
simplex iterations. Because Atlihan and Schrage deletion test only the linear 
constraints, their average simplex iterations for the basic deletion filter are lower 
(218644.5) than for the full LC-IR-BD deletion filter in Table 6.2 (3401931.4), as 
expected. The average iterations for their best method, the generalized binary 
search deletion filter, applied to only the linear constraints (1714413.9) is 
surprisingly worse than two methods in Table 6.2: the dynamic reordering 
additive/deletion method (1487990.6) and the IR-LC-BD deletion filter with group 
size 4 (1246078.1). This is likely due to the fact that both of these faster methods 
are geared to eliminating IRs early, which greatly speeds the subsequent MIP 
solutions. 

Note that IISs are found only relatively rarely in Table 6.2, generally for only 

nificantly in the size or composition of the ISs returned, which are relatively large. 
This may be an artifact of the way in which the infeasibilities were constructed for 
these test models. Atlihan and Schrage report that all of their tested algorithms 
(basic deletion filter, DFBS and GBS) report an irreducible set of linear con-
straints in 18 of the 20 test cases (note that this is not the same as an IIS which 
would include irreducible numbers of BDs and IRs as well). The average number 

that the original models have the following average statistics: 79.5 IRs, 237.6 LCs, 
and 518.0 BDs.  

The use of the information in the branch and bound tree (as per Sec. 6.3.4) was 
also investigated. Results were mixed, with this approach proving extremely help-
ful for some models, but also worsening the results significantly for some other 
models. However the techniques can probably be implemented in a manner that 
will be significantly faster in practice. 

Perhaps the most important conclusion is that these IS isolation techniques are 
extremely slow. Consider that the average number of simplex iterations needed for 
the initial solution of the models is just 1718.7 and the average number of branch 
and bound nodes is 436.5. The repeated solution of MIPs is very time consuming: 
there is as yet no hot start technique as there is in linear programming. Certainly 

3–5 of the 20 models. Most often the result is an IS. The methods do not vary sig-

of LCs in their output sets is lower than in the four top rows of Table 6.2. Note 
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applied to the same 20 models, but with the significant difference that they do not 
attempt to remove IRs or BDs. Only linear constraints are removed by their meth-



infeasible MIP can run overnight and provide a suitable reduction in the size of the 
problem that the analyst must deal with. 

Given that the deletion filter based methods are the most robust, and that they 
produce IS isolations of about the same size, the best method for use in practice is 
simply the fastest one, in this case the IR-LC-BD deletion filter with group size 4. 
The dynamic reordering additive/deletion method with grouping may prove faster, 
but has not been tested. 

The isolation of IISs in MIPs is fertile ground for further research with 
immense practical pay-offs. 

6.3.7 Software Survey 

As described in Sec. 6.3.6, Guieu and Chinneck (1999) built academic prototype 
software to carry out various combinations of the deletion filter and the additive 
method with several types of grouping. Their software used the Cplex 3.0 callable 
library to carry out the MIP solutions. 

Two commercial solver systems claim infeasibility analysis systems for MIPs. 
The “conflict refiner” in Cplex 10.1 (Ilog 2006) apparently uses variations on the 
deletion filter to identify small conflict sets, and is described as a generalization 
and extension of the IIS finder. It includes some features for guiding the isolation 
(see Sec. 6.2.6) such as treating constraints in groups, assigning weights etc. 
which can be applied to LP models as well. The LINGO modeling system (Lindo 
Systems Inc. 2007) also claims the ability to isolate small infeasible subsets in 
MIPs, again using the deletion filter and additive method. See Atlihan and Schrage 
(2006) for further information.  

We are interested here in isolating infeasibility in models that include one or more 
nonlinear constraints, and consisting entirely of continuous variables, generically 
termed nonlinear programs or NLPs for ease of reference. Note that we are spe-
cifically excluding nonlinear systems in which only the objective function is 
nonlinear while all of the constraints are linear; infeasibility in such systems is 
easily isolated using the methods for linear systems. 

Isolating infeasibility in nonlinear programs is significantly harder than for 
linear systems simply because it can be extremely difficult to determine the 
feasibility status of an arbitrary set of nonlinear constraints. A particular solver 
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the recent development of faster methods for reaching MIP feasibility (See Chap. 
3) will help, but overall speed will continue to be a major stumbling block. Still, it 
is often useful to substitute machine time for human time: an IS analysis of an 



There exist some special classes of nonlinear programs for which the feasibility 
status is frequently determined correctly (though this cannot be guaranteed due to 
the possibility of numerical difficulties). A quadratically-constrained quadratic 
program (QCP) is a nonlinear convex generalization of an LP and hence the de-
termination of feasibility status is less difficult. This makes the subsets isolated by 
the deletion filter and the additive method more likely to be true IISs. Since an 

proximations, this improved ability to isolate IISs is especially welcome. 
We will concentrate here on local NLP solvers applied to general sets of con-

straints that include at least one nonlinear constraint. Feasibility status is more 
definitely determined by global optimizers, which normally use a space-covering 
strategy similar to branch and bound. The deletion filter and the additive method 
can be used with good success in conjunction with global optimizers; their use and 
related issues will be similar to their application to MIPs (see Sec. 6.4.4). How-
ever global optimizers are very slow and the state of the art in practice is still the 
use of local solvers. As we will see below the state of the art consists mostly of 
adapting the deletion filter from LP for use with local solvers for NLPs. Variations 
on the additive method are also used for Quadratically Constrained Quadratic pro-
grams. Curiously, the pure elastic filter has not yet been adapted for use with 
NLPs, though this would be straightforward development. 

Debrosse and Westerberg (1973) develop a number of relevant theorems relat-
ing to IISs in systems of nonlinear constraints. These are given in Sec. 5.8 in the 
context of their bootstrapping method for reaching feasibility quickly. 

6.4.1 Deletion Filtering 

Chinneck (1995) studied the use of the deletion filter to isolate IISs in NLPs. 
Many factors affect the ability of a solver to decide feasibility status correctly, in-
cluding the NLP algorithm and its implementation, the tolerances chosen, the ini-
tial point selected, the termination criteria, method of approximating derivatives, 
etc. The main difficulty in using the deletion filter for NLPs is the inability of lo-
cal solvers to accurately determine the feasibility status of the NLP in all cases. 
However the decision error happens in one way only: a solver may declare that a 
feasible model is infeasible, but it will never declare that an infeasible model is 
feasible, issues of tolerance aside. The incorrect declaration of infeasibility gener-
ally happens when the solution process becomes trapped at an infeasible local 

important class of solvers for general NLPs make use of successive quadratic ap-
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may determine that an NLP is infeasible when it is in fact feasible: the solver is 
just unable to find a feasible point. For local NLP solvers, the determination of 
infeasibility is always indefinite: you can only become more confident by trying 
different starting points or solver settings, but you can never be completely 
confident that the status is truly infeasible. Note, however, that if a feasible point 
is found, the status is definite. 



reason, the deletion filtering algorithm can only guarantee the identification of a 
Minimal Intractable Subsystem (MIS), rather than an IIS. 

An MIS is formally defined as follows. A Minimal Intractable Subsystem 
(MIS) of constraints in an NLP is a minimal set of constraints causing a given 
NLP solver to report infeasibility under a given set of parameter settings (includ-
ing initial point, tolerances, termination conditions, etc.). 

A further complication is that the removal of one or more constraints can result 
in a mathematical error, e.g. taking the square root of a negative number, or divid-
ing by zero. This is especially  serious as  constraints  are dropped  during deletion 
filtering. Consider this infeasible set of constraints: 1,0,0 −≤≥=− yxxy . When 
the bound on x is dropped during deletion filtering, a mathematical error occurs. 
Strictly speaking, this is simply a special kind of infeasibility, but it does cause 
practical difficulties. Operational definitions are given below. 

A model is judged infeasible in the ordinary sense when the solver decides that 
it is infeasible without encountering a mathematical error. A model is judged in-
feasible due to mathematical error when the solver decides that it is infeasible be-
cause it is requested to perform an illegal mathematical operation such as dividing 
by zero. Modern compilers are able to detect and recover from illegal operations 
without difficulty. 

When a constraint is temporarily removed during deletion filtering, the solver 
will decide that the reduced model is in one of three states: (1) feasible, (2) infea-
sible in the ordinary sense, or (3) infeasible due to mathematical error. The dele-
tion filter tries to keep the model in state (2) as constraints are removed one by 
one, always reinstating a constraint whose temporary removal causes the reduced 
model to enter states (1) or (3). Constraints whose removal places the reduced 
model in state (3) are called guards and are specially identified on output. 

The modified deletion filter for NLPs is given in Alg. 6.16. In general, whether 
the isolated MIS is also an IIS is not known. However, if the constraints in the 
MIS are all linear, then it is easily shown that the MIS is also an IIS.  

Elastic filtering is also easily adapted to the nonlinear case, but the reduced set 
of constraints that is output must still be deletion filtered to guarantee the identifi-
cation of a single MIS. There is at present no nonlinear analog of sensitivity filter-
ing. For these reasons, only the nonlinear deletion filter has been implemented. 
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not happen because every candidate feasible point is checked against the con-
straints and feasibility is declared only if all constraints are satisfied. 

 The one-way error in deciding feasibility status has a particular effect on the 
deletion filter. The solver may decide that the reduced model remains infeasible 
when a certain constraint is temporarily removed, when in fact the model has be-
come feasible but the solver is unable to detect this. The deletion filter will then 
incorrectly drop the constraint permanently when it should be reinstated. For this 

minimum of a phase 1 penalty function. Incorrect declaration of feasibility does 



INPUT: an infeasible set of constraints, at least one of which is nonlinear. 
FOR each constraint in the set: 
 1. Reset the initial point and solver parameters. 
 2. Temporarily drop the constraint from the set. 
 3. DO CASE: 
  i. Solver reports feasibility:  
   Return dropped constraint to the set. 
  ii. Solver reports infeasibility in the ordinary sense: 
   Drop the constraint permanently. 
  iii. Solver reports infeasibility due to mathematical error: 
   a. Mark dropped constraint as a guard. 
   b. Return dropped constraint to the set. 
OUTPUT: constraints constituting a single MIS (including  guards). 
 
Alg. 6.16. The deletion filter for NLPs 
 

There are four possible cases when Alg. 6.16 is applied: 

1. The model is feasible and this is correctly detected by the solver. 
Infeasibility analysis is not needed. 

2. The model is feasible, but is reported infeasible by the solver and an MIS is 
isolated. 

3. The model is infeasible, and an MIS is isolated which is also an IIS. 
4. The model is infeasible, and an MIS is isolated which is not an IIS. 

Case 1 is straightforward. The difficulty lies in distinguishing between cases 
2–4. Knowledge of the physical meaning of the model is required to make a 

a subset of the model that is intractable to the solver in use with the current initial 
point and parameter settings. Assuming the modeller will continue using the same 
solver, the isolation provides a smaller subset of the model for further experimen-
tation with other initial points, parameter settings, etc. Sometimes the problem is 
easily diagnosed by inspection, once the MIS shows where to look. 

When the MIS contains at least one nonlinear constraint it is important to im-
prove confidence about whether the model is really infeasible (cases 3 and 4), or is 
actually feasible (case 2). One simple approach is to submit several new initial 
points to the solver operating on the reduced problem formed by the MIS, as de-
scribed in Alg. 6.17. This is faster than trying new initial points on the perhaps 
much larger original problem. 

 

definite diagnosis, but the isolation provided in cases 2–4 is still very helpful. It is 
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INPUT: An MIS from an infeasible NLP. 
Make the MIS the current constraint set. 
DO until satisfied: 
 Postulate and record a new initial point. 
 Apply solver to test feasibility of current constraint set using  
  the new initial point; record final point. 
 IF final point feasible THEN 
  Apply solver to test feasibility of complete original constraint set  
   using the feasible point as initial point. 
  IF complete original constraint set feasible THEN 
   Record the final feasible point and exit with appropriate message. 
  ELSE (complete original constraint set infeasible) 
   Find MIS in complete original constraint set and record it. 
   Make current constraint set the union of the current constraint  
    set and the new MIS. 
OUTPUT: Either (1) a feasible point for the original problem,  or  
 (2) one or more MISs and a list of infeasible initial and final point pairs. 
 
Alg. 6.17. Using the MIS 

 

New initial points can be postulated in a number of ways, either by inspection 
of the current constraint set (note that the dimensionality is likely to be lower than 
in the original problem), or randomly. If output (2) of Alg. 6.17 is returned, then 
the sets of initial and final points can be used to form an idea of the regions of 
attraction of the MIS(s) in the model. The algorithm can then be restarted with 
initial points placed more appropriately. Human insight and knowledge of the 
physical meaning of the model are needed here. 

If sufficient initial points are used, with the solver reporting infeasibility each 
time, then confidence is increased that the model really is infeasible. For further 
confidence, it may be appropriate to adjust the other solver parameters (e.g. toler-
ances, methods of approximating derivatives, etc.), or even to change solvers alto-
gether and repeat the process. 

Chinneck (1995) developed prototype software to implement Alg. 6.16 based 
on the local solvers MINOS (Murtagh and Saunders 1987) and LSGRG (Smith 
and Lasdon 1992). The modified version of LSGRG, named LSGRG(MIS), was 
used to analyze some small examples. It is instructive to consider the infeasible 
NLTEST1 model: 
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NLTEST1 is sketched in Fig. 6.7. Applying LSGRG(MIS) directly to 
NLTEST1 using the initial point (5.5,5.5) and the default settings of all parameters 

147                   6.4 Methods Specific to Nonlinear Programming   



isolates MIS1:{row1, row2, x1 ≤ 6}. This is an example of case 4 in which the MIS 
is not an IIS. Fig. 6.8 shows the surface formed by the absolute sum of the con-
straint violations and explains why this happens: NLTEST1 has an infeasible local 
minimum at (7.236,5) which traps the phase 1 solution. The absolute sum of the 
constraint violations plotted for the MIS alone, shown in Fig. 6.9 shows a similar 
infeasible local minimum. From the given initial point, the MIS is a minimal set of 
constraints creating an infeasible local minimum which traps the solver. 

 

 

Fig. 6.7. Constraints in NLTEST1 

Fig. 6.8. Sum of the absolute constraint violations in NLTEST1 
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Fig. 6.9. Sum of absolute constraint violations for NLTEST1 MIS1 

Using an initial point of (0,4) leads LSGRG(MIS) to isolate a different 
1

to the above. By inspection of Fig. 6.8, it is obvious that any initial point having 
1 1

sult in the isolation of MIS1. The symmetry of NLTEST1 places the ”saddle 
1

A related feasible problem is created by eliminating the lower bound on x1. 
Using the initial point (5.5,5.5) again leads LSGRG(MIS) to isolate MIS1 (an 
example of case 2), but using the initial point (0,4) leads to the correct conclusion 
that the model is feasible (an example of case 1). Analysis of the MIS found when 

point such that it satisfies all of the constraints in the MIS; this should help 
achieve feasibility. 

This example illustrates the difficulty of correctly deciding feasibility when 
constraints have multiple intersections, as predicted by Debrosse and Westerberg 
(1973). 

6.4.1.1 Speeding the Isolation by Grouping Constraints 

Nonlinear solvers are not able to make use of advanced starts in the same way that 
LP solvers can. However, in the context of the deletion filter or the additive 
method, it is possible to re-use the final point from one solution as the initial point 
for the next solution. Unfortunately, this “point-chaining” can lead the isolation 

x

MIS2:{row1, row2, x ≥  4} due to the symmetry of the IIS. The reasoning is similar 

<  5 will result in the isolation of MIS2, and any initial point having x > 5 will re-

of the two zones of attractions of the infeasible local minima created by the MISs. 
ridges” in Figs. 6.8 and 6.9 along x  = 5, with the saddle ridge demarking the border 

(5.5,5.5) is used as the initial point may lead to a new placement of the initial 
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process astray. This happens, for example, when the final point of a feasible sub-
problem is outside the zone of attraction of the original MIS. 

Speed-ups via the binary search grouping methods were studied by Atlihan and 
Schrage (2006) for various classes of NLPs, including QCPs, second order cone 
programs (generalizations of QCPs), and general NLPs. The constraints in second-
order cone programs (SOCPs) are defined as 

midxcbxA i
T
iii K10 =∀≤−++  

where ci, bi, and x are real vectors, the Ai are real matrices of appropriate dimen-
sions, and di are scalars. LPs and QCPs are special cases of SOCPs. For convex 
QCQPs and SOCPs, the sensitivity filter may apply but it often fails because op-
timal dual prices are usually in the interior of the dual space. This means that the 
deletion/sensitivity filter can also be applied to these model forms. 

Atlihan and Schrage show that the generalized binary search algorithm gives 
the best overall results in terms of isolating IISs more frequently than MISs when 
compared to the depth-first binary search and the simple deletion filter. For the 
QCP models, IISs are isolated in 22 of 30 models tested, for the second order cone 
programs, IISs are isolated for 37 of 46 models tested. Only MISs are isolated for 
the 11 general NLPs tested. The sensitivity filter can also be applied in the case of 
QCPs and SOCPs, and this speeds the solution process as well as identifying 
slightly more IISs. The generalized binary search is also usually the fastest of the 
methods. Other grouping approaches, such as fixed sizes, or adaptive methods can 
also be applied. Empirical studies to identify the best approach should be done. 

One obvious speed-up is the use of the much faster linear IIS isolation methods 
if it should happen that an infeasible set of constraints consists entirely of linear 
constraints. 

6.4.2 IIS Isolation by the Method of Debrosse and Westerberg 

The algorithm by Debrosse and Westerberg (1973) for finding a feasible initial 
point for a set of general nonlinear con-
straints is described in Alg. 5.7 of Sec. 
5.8. If the algorithm is not able to find a 
feasible point, then it outputs an IIS, 
providing that it is able to correctly solve 
for the intersections of arbitrary subsets 
of the constraints. To illustrate the appli-
cation of Alg. 5.7 to an infeasible set of 
constraints, we repeat here Example 3 
from Debrosse and Westerberg (1983), 
which is shown in Fig. 6.10. 

There are four constraints A, B, C, 
and D, of which constraint B is nonlinear. The numbers in Fig. 6.10 indicate the 
various constraint intersections that are solved in the course of the algorithm. 
Table 6.3 shows the steps that Alg. 5.7 carries out. 

 
Fig. 6.10. Example of method of Debrosse 
and Westerberg 

A

B 

C 

D 

7 

6 
4 

5 

3 
2 

1 
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As shown in the table, several of the intersection points are found more than 
once. In addition, the enumeration of subsets is shown. The number of subsets 
enumerated grows substantially with the cardinality of H. 

Table 6.3. Example IIS isolation by method of Debrosse and Westerberg (1973)  

 
As described in Sec. 5.8, this algorithm is suited only for models that are highly 

structured such that each constraint involves only a few variables. By inspection 
of Fig. 6.10 and Table 6.3 you can see the difficulty that is caused by the inability 
to find all of the intersections of a set of constraints. If the solver does not find the 
second intersection of constraints B and C, then it will eventually wrongly identify 
{A,B,C} as an IIS. This difficulty is even more pronounced for very complex con-
straints that have multiple intersections that are difficult to enumerate. 

Note that if an MIS is first isolated by some other method, it is possible to ap-
ply the method of Debrosse and Westerberg directly to it. The algorithm should 
run much more quickly on the small portion of the model isolated by the MIS. The 
difficulties of structure, equality constraints, and multiple intersections remain 
however. 

6.4.3 Methods for Quadratic Programs 

Obuchowska (1998, 1999) developed an adaptation of the deletion filter for the 
specific case of systems of convex quadratic inequalities. She considers the case 
of quadratically constrained quadratic programs (QCQP), whose constraints are 
defined as  

}},1{,:)(|{ 2
1 mIibxBxxaxQxR ii

TT
ii

n K=∈≤+=ℜ∈=  
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0,1  A,B 1 C 
2 A,B,C    
9.1  A,B 1 (again) C 
9.1  A,C 2 B 
9.1  B,C 3 A 
2nd pt  B,C 4 D  (H disproved) 
1,2 B,C,D    
9.1  B,C 3 (again) A (H disproved) 
1,2 A,B,C: cycle detected. No alternative standard H.  New H is A,B,C,D. 

(Cycle recovery routine not shown in Alg. 5.7) 
9.1  as before: 

(A,B), (A,C), 
(B,C) 

1,2,3,4 C,B,A,D 

9.1  A,D 5 C 
9.1  B,D 6 C 
9.1  C,D 7 B 
14.1 Exit with {A,B,C,D} as an IIS. 
 

hypothesis 
set H 

constraints 
being solved 

resulting 
point x 

steps constraints violated  
  xat



i
and the n-vectors ai are real-valued. 

Obuchowska’s algorithm is a straightforward deletion filter, except that a set of 
candidate members of the IIS is found in advance, and these are tested and re-
moved if their deletion does not render the set of constraints feasible. This initial 
set of candidate IIS members is the set of so-called killing constraints, defined as 
“a maximal subset of constraints that may have an impact on the feasibility status 
of the system after some perturbation of the right-hand sides”. An algorithm for 
finding the set of killing constraints in O(mn min(m,n)) operations is given 
(Obuchowska 1998). 

More formally, the killing constraints are defined as follows (Obuchowska 
1998): the kth inequality belongs to the set K of killing constraints if there exist 
values  

b ik
'''

such that the system  
IibxQ ii ∈≤ ,)( '  

is infeasible and the system  
''' };{\,)( kkii bQkIibxQ ≤∈≤  

is feasible, or conversely. 
It turns out that the set of killing constraints is the same as the set of implicit 

equalities, defined as follows: an inequality 0≤saT
i  in the system 

IisaIisB T
ii ∈∀≤∈∀= ,0;,0  

is an implicit equality if 0=saT
i  for all s satisfying the system. A related theorem 

shows that if the system has no implicit equalities, then it is feasible and there are 
no killing constraints. This sets up Alg. 6.18 for identifying the set E of implied 
equalities. 

 
INPUT: a set of quadratic inequality constraints as defined above. 
1. k  = 1; E0 = I. 
2. Find the set Ek of all implied equalities in the system 
  11 ,0;,0 −− ∈∀≤∈∀= k

T
iki EisaEisB  

3. IF |Ek| = 0 THEN the system is feasible and K = ∅; exit. 
4. IF Ek = E  THEN K=Ek; exit. 
5. k = k +1; go to Step 2. 
OUTPUT: the set K of killing constraints (implied equalities). 
 
Alg. 6.18. Finding the set of killing constraints 
 

Obuchowska (1998) elucidates some properties of implied equalities, killing 
constraints and IISs in Thm. 6.23.  

where the matrices B  are n × n, real-valued, symmetric and positive semidefinite, 

2

k–1
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> −∞ and b > −∞, i ∈ I  

Theorem 6.23: Implied equalities, killing constraints, and IISs (Obuchowska 
1998, Lemma 3.1). Where T  is an IIS: (a) Every inequality in the system



TisaTisB T
ii ∈∀≤∈∀= ,0;,0  is an implicit equality. (b) For every 

T
ii

is 

α
αIIS

that the set of constraints is first reduced by running Alg. 6.18 to identify the kill-
ing constraints. 

 
INPUT: an infeasible set of quadratic inequality constraints as defined above. 
1. Run Alg. 6.18 to find the set of killing constraints K. 
2. FOR every constraint j in K: 
  3.1 IF the system Qi(x) ≤ bi, i∈K\{ j} is infeasible THEN: 
   3.1.1 K←K\{ j} 
OUTPUT: the set K is an IIS. 
 
Alg. 6.19. Deletion filtering for inequality-constrained QCQP 
 

Obuchowska has tested Alg. 6.18 on a few small problems, but does not report 
any test results for Alg. 6.19. Neither of the algorithms has been implemented or 
tested on a commercial scale. 

As mentioned in Sec. 6.4.1.1, Atlihan and Schrage (2006) apply various con-
straint grouping algorithms for isolating IISs in Quadratically Constrained Quad-
ratic programs using the deletion filter and a combined deletion filter and additive 
method. They report good results for these methods. 

6.4.4 Methods for Space-Covering Global Optimizers 

Dravnieks and Chinneck (1997) considered how to isolate an IIS within a global 
optimization system. The underlying global optimizer is a space-covering branch 
and bound system in which the variable space is iteratively subdivided into 
smaller and smaller multidimensional boxes. A given box may have one of the fol-
lowing statuses: (i) infeasible if it can be proven that every point in the box vio-
lates at least one constraint, (ii) feasible if it can be proven that every point in the 
box satisfies all of the constraints, (iii) indeterminate if the box is not known to be 
feasible or infeasible. Proofs of feasibility or infeasibility of a box make use of in-
terval calculations of the maximum and minimum values of the constraint func-
tions over the box, which are then compared to the constraint limits. Infeasibility 
of the entire model is proven when all boxes are infeasible. 

When infeasibility of the entire model is proven, the global optimizer outputs a 
list of the constraints that were used to prove infeasibility of each individual box 
along with the original variable bounds. This list is then submitted to a deletion 

k∈T  the

⊂ K .■ 

in QCQP (Obuchowska 1998). The distinction from an ordinary deletion filter is 

U

s ≤ 0, ∀i ∈T \{k}  contains  inequalities  that  are

Thm. 6.23 sets up Alg. 6.19, a variation on deletion filtering for isolating IISs 

 not   implicit inequalities in the system. (c) Any IIS belongs to K, that  
 system  B s = 0, ∀i ∈T \{k}; a
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filter. Because the global optimizer is able to determine the feasibility status of an 
arbitrary set of constraints with perfect accuracy, the deletion filter will function 
correctly, and an IIS will be produced. However the process is very slow since it 
requires the solution of numerous global optimization problems, and hence is suit-
able only for small models. The limit applies mainly to the number of dimensions 
since this has the biggest impact on how many boxes will be generated. 

In one small example described in the paper, an alternative objective function 
that is more oriented to the feasibility problem proves helpful. The inclusion of a 
local optimizer to search for feasible points in boxes is also recommended. 

6.4.5 Software Survey 

Chinneck (1995) developed academic prototype software implementing the 
deletion filter for NLPs which used LSGRG to carry out the NLP solutions. Two 
commercial solver systems claim to have infeasibility analysis systems for NLPs. 
The LINGO modeling system (Lindo Systems Inc. 2007) claims the ability to 
isolate small infeasible subsets in NLPs, mentioning quadratic systems in 
particular, and uses combinations of the deletion filter and the additive method. 
See Atlihan and Schrage (2006) for further information. Frontline Systems Inc. 
(2007) makes similar claims for their solver platform. 

6.5 Methods Specific to Constraint Programming 

Bruni (2005) considers the problem of finding a minimally unsatisfiable subfor-
mula (MUS) in the clauses defining a conjunctive normal form (CNF) formula. A 
CNF formula is conjunction of clauses Cj in which each clause is a disjunction of 
Boolean variables. Each variable can take a true or false value (αj) or can be ne-
gated (¬αj). For a set of i = 1…n variables over j = 1…m clauses, and with Ij the 
set of variables in Cj, a CNF statement has the form )][(

...1 jIimj j

α¬∨∧
∈=

. When the 

CNF formula has no solution (i.e. there is no set of true/false values for the vari-
ables that will make the statement true), then it can be valuable to find an MUS. 
This is a subset of the clauses in the original formula that has the property of being 
unsatisfiable while any proper subset is satisfiable. There is a direct analogy to the 
concept of an IIS. 

Bruni uses Thm. 6.16 (see Sec. 6.2.3) to identify an MUS in specific cases in 
which the structure of the polytope defined by the linear relaxation of the CNF 
satisfiability problem has certain properties. The conversion of the CNF to a linear 
system proceeds as follows. A disjunctive clause has a set of positive (i.e. not 
negated) variables π and a set of negative (i.e. negated) variables ν. For the clause 
to be true, we require: 
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π νi i ii xx 1)1( , xi are binary (6.1)

Where |ν| is the number of negated literals, this can be rewritten as: 

1|| −≤− ∑∑ ∈∈
ν

πν i ii i xx , xi are binary (6.2)

form, and ν(B) is the m-vector of the negated literals, then the CNF formula can 

linear relaxation of this system is then: 

i (6.3)

Thm. 6.16, hence the alternative form can be constructed, and IISs identified from 
the supports of the alternative system. 

Note, though, that the original system is binary, while Thm. 6.16 applies only 
to the continuous linear system. Hence an IIS discovered in this manner may not 
necessarily correspond to a MUS. This leads to the following theorem. 

Theorem 6.24: Non-equivalence of IIS and MUS via Farkas’ Theorem (Bruni 
2005). Consider the two systems of linear inequalities Eqn. 6.2 and the alternative 
version of Eqn. 6.3 (not shown). If the alternative version of Eqn. 6.3 is feasible, 
then Eqn. 6.2 is infeasible, and the supports of the alternative version of Eqn. 6.3 
(when restricted to clausal inequalities) identify MUSs of Eqn. 6.2. However if the 
alternative version of Eqn. 6.3 is infeasible, then Eqn. 6.3 is feasible, but it is un-
known whether Eqn. 6.2 is feasible or not.■ 

Bruni further defines the integral-point property as a class of polyhedra which, 
if non-empty, contain at least one integral point. This strengthens Thm 6.24 into 
the new Thm. 6.25. 

Theorem 6.25: Farkas’ Theorem for polytopes having the integral-point prop-
erty (Bruni 2005). If the polyhedron for Eqn. 6.3 has the integral-point property, 
then the following hold. If the alternative version of Eqn. 6.3 is infeasible, then 
Eqn. 6.2 is feasible. If the alternative version of Eqn. 6.3 is feasible, then Eqn. 6.3 
is infeasible, and each IIS given by the supports of the alternative version of Eqn. 
6.3 (when restricted to clausal inequalities) identifies an MUS of Eqn. 6.2.■ 

Several classes of propositional CNF formulae have the integral-point property, 
including Horn, renamable-Horn, extended Horn, Balanced and Matched, hence 
Thm. 6.25 is quite useful. Bruni (2005) presents computational results which show 
this. 

De Siqueira N. and Puget (1988) introduce a prototype of the additive method 
(see Sec. 6.1.3) for use in logic programming. Clauses are tested in a specific 
order. There are three steps in their algorithm, as follows. (1) There is a clause that 
has always failed during the proof of infeasibility; remove this clause from the 
original set and add to the set P. (2) If P is infeasible, then exit with P as a 
minimal infeasible set. (3) Find a solution to the set of clauses in P, apply this 
solution to the set of clauses remaining in the original set, and go to step 1. Note 

B(x) ≤ ν(B) − 1, 0 ≤ x ≤ 1, for all x, where x  are continuous 

Where B is the m × n {0,1,–1} matrix whose rows correspond to clauses in this 

be converted to the binary linear system B(x) ≤ ν(B) − 1. The continuous-variable 

This is now a standard linear program that matches the first form required in 
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that the solution found in step 3 will necessarily cause failure of the reduced 
original set during step 1. This is very similar to the additive method (Alg. 6.2) 
except for the use of the specific solution found in step 3. 

Some general constraint logic programming (CLP) languages extend ordinary 
logic programming to include linear constraints. In this case, methods for finding 
IISs in linear programs can be used when the model proves infeasible. De Backer 
and Beringer (1991) find IISs for the purposes of intelligent backtracking, using a 
method similar to that of Gleeson and Ryan (1990); this idea is extended by 
Holzbaur et al. (1996). Burg et al. (1994) present a method of finding minimal 
conflict sets (i.e. IISs) which are also used for intelligent backtracking. In 
constraint logic programming, constraints are processed one at a time. Burg et al. 
maintain the current set of constraints in a special solved form achieved by 
Gaussian operations. The solved form appears to be similar to van Loon’s form, 
and the “minimal conflict sets” appear to be isolated in the same manner.  

Bakker et al. (1993) rediscover the deletion filter in the context of constraint 
satisfaction problems. They name their algorithm DOC for “Diagnosis of Over-
determined Constraint satisfaction problems”. 

Junker (2001) introduces three variants of an algorithm for finding minimal 
conflicts in general constraint satisfaction problems, i.e. IISs, among the con-
straints defining the problem. This is an extension of the work by de Siqueira N. 
and Puget (1988) to general constraint satisfaction problems. The RePlayXplain 
variant is identical to the additive method (Alg. 6.2). The RobustXplain variant is 
equivalent to carrying out the additive method until infeasibility is detected, fol-
lowed by a reverse deletion filter (see Alg. 6.7). Finally, the QuickXplain algo-
rithm is a variant of the additive method with binary grouping (see e.g. Alg. 6.5). 

Hemery et al. (2006) work towards increasing the efficiency of isolating mini-
mal unsatisfiable cores (MUCs), which are equivalent to IISs. They describe a 

equivalent to the deletion filter, and a dichotomic method equivalent to a binary 
search (see Sec. 6.1.5) for finding MUCs. Several ideas are used to improve effi-
ciency, such as using the dom/wdeg heuristic (Boussemart et al. 2004) to order the 
variables when assigning values. Dom/wdeg selects the variable that occurred 
most frequently in the constraints that were most often violated during previous 
steps. An additional efficiency is to first reduce the original set of constraints by 
eliminating all constraints containing no variables whose range was reduced dur-
ing the filtering steps. In other words, the initial set of constraints is condensed to 
those constraints that were used to eliminate some values from the domain of any 
variable; this is the wcore process. Wcore produces an infeasible set, but it is not 
necessarily irreducible. Still it is normally smaller than the original set of con-
straints and hence provides an advanced start for the process of isolating a MUC. 
This is similar to Thm. 6.22 introduced by Guieu and Chinneck (1999). 

Isolating IISs (or minimal conflict sets or minimal cores or minimal unsatifiable 
sets) has been a preoccupation of both the mathematical programming and the 
constraint programming communities for some time. Until recently, however, the 
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velopments in the other community. Similar ideas were re-invented numerous 
times. Some of the pioneering papers on several subjects are listed below. 

• The additive method. De Siqueira N. and Puget (1988) develop a prototype of 
the additive method for the case of conjunction of clauses. Tamiz, Mardle and 

finalized in Chinneck and Dravnieks (1991). Bakker et al. (1993) rediscover the 
deletion filter for constraint satisfaction problems. 

• Additive/deletion filter. Guieu and Chinneck (1999) show how the additive 
method and the deletion filter can be combined into a single method. Junker 
(2001) introduces a QuickXplain variant on the additive/deletion algorithm. 

• Pivoting methods. Gleeson and Ryan (1990) show how IIS pivoting can be used 
to isolate IISs. De Backer and Beringer (1991) develop similar methods for 
constraint programming. 

• Constraint grouping. Chinneck (1995) suggests that the deletion filter and the 
additive method could be improved by treating constraints in groups. Guieu and 
Chinneck (1999) introduce several specific grouping algorithms for the deletion 
filter and the additive method for mathematical programs. Junker (2001) 
introduces binary grouping for constraint satisfaction problems. Atlihan and 
Schrage (2006) introduce binary grouping for mathematical programs.  

• Advanced subset of constraints. Guieu and Chinneck (1999) introduce the 
concept that only the variables that have been branched on in the solution of an 
infeasible MIP form an infeasible set in conjunction with their bounds and 
integer restrictions and the complete set of linear constraints (Thm. 6.22). This 
can be refined if each leaf node is analyzed via a sensitivity filter. Hemery et al. 
(2006) introduce the wcore concept which eliminates some of the original 
constraints during the search for an IIS based on the fact that they have not 
been used to reduce the range of any variables. 
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two communities operated largely in isolation, and so neither was aware of the 

Jones (1995, 1996) introduce the additive method for use in linear programming. 
Junker (2001) expands on the concept for general constraint programs.

• The deletion filter. Dravnieks (1989) introduces the deletion filter, the sen- 
sitivity filter for linear programming, and the elastic method. This work is 



 

7 Finding the Maximum Feasible Subset of Linear 
Constraints 

When a linear program is infeasible the usual first tactic is to isolate an IIS via the 
methods described in the previous chapter. However there is a complementary 
approach that has analytic value: find the smallest number of constraints to 
remove such that the remaining constraints constitute a feasible set. The removed 
constraints in some sense contribute to the infeasibility most heavily. Consider 
two overlapped IISs: {A,B,C} and {C,D,E} in a larger model with some number 
m of constraints in total. To eliminate all infeasibility from the model, we can 
remove one constraint from each IIS, say A from the first IIS and E from the 
second, leaving a feasible set of size m – 2. However, we can also remove all 
infeasibility by removing just the single constraint C, which destroys both IISs 
simultaneously and leaves a maximum cardinality feasible set of size m – 1. The 
single removed constraint C contributes to infeasibility in both of the IISs in the 
model, and hence is a better focus for the initial diagnostic effort. 

Nothing in the previous paragraph restricts this concept to sets of linear 
constraints. However the current state of the art is indeed limited to methods for 
linear systems. For this reason we restrict our attention in this chapter mainly to 
linear constraints. There is wide scope for extending the methods to other forms of 
optimization problems. 

The problem of finding the maximum cardinality feasible subset in an infeasible set 
of linear constraints is known most commonly as the maximum feasible subsystem 
problem (MAX FS) (Amaldi et al. 1999). The problem can also be viewed as 
finding the minimum number of linear constraints to remove such that the retained 
constraints constitute a feasible system, which is known as the minimum 
unsatisfied linear relation problem (MIN ULR) (Amaldi 1994). The two problems 
have complementary objective functions. In addition, all infeasible systems have 
one or more IISs, so an infeasible set of constraints can be made feasible by 
deleting at least one member of every IIS it contains. Finding the smallest 
cardinality set of constraints to cover all IISs is known as the minimum-cardinality 
IIS set-covering problem (MIN IIS COVER) (Chinneck 1996c), which is identical to 
MIN ULR. 

For our purposes, MAX FS, MIN ULR, and MIN IIS COVER are the same problem 
and the terms will be used interchangeably. Several authors have shown that these 
problems are NP-hard (Sankaran 1993, Chakravarti 1994, Amaldi and Kann 
1995). Amaldi and Kann (1995) showed that the problem is also NP-hard for ho-
mogeneous systems of inequalities (both strict and nonstrict) and binary coefficients.
Amaldi and others (Amaldi 1994, Amaldi and Kann 1995, Amaldi et al. 1999) 



time approximation scheme unless P = NP. Until relatively recently there has been 
little development of algorithms for actually solving the MAX FS problem, but heu-
ristic methods are now available, with more under development, spurred by sev-
eral important applications in fields such as radiation therapy planning, machine 
learning, signal processing, etc. 

Note that the solution to a MAX FS, MIN ULR, or MIN IIS COVER problem is not 
usually unique. Consider a system having two IISs {A,B,C} and {B,C,D}; there 
are two MIN IIS COVER solutions of size one: {B} and {C}, and hence two different 
associated MAX FS sets {A,C,D} and {A,B,D}. 

A closely related problem arises when the individual constraints are assigned 
weights. Now the problem is to find the minimum (or maximum) weight set of 
feasible constraints; see Parker (1995) and Parker and Ryan (1996). 

It would be helpful to know in advance the number of distinct IISs in the 
model, though determining this is as difficult as solving the MIN IIS COVER prob-
lem itself. However a simple lower bound on the number of IISs is readily found 
using the deletion/sensitivity filter given in Alg. 6.9 (Chinneck 1994). Recall that 
this algorithm runs a sensitivity filter if a constraint is permanently dropped during 
the deletion filter. The sensitivity filter will remove the members of any IISs that 
overlap on the constraint just dropped permanently, unless they are also part of 
another IIS not yet eliminated. If k constraints are permanently removed by the de-
letion filter part of the deletion/sensitivity filter (i.e. at Step 3.2.2.1 of Alg. 6.9), 
then the model contains at least k + 1 IISs, if not more. The cost of running the de-
letion/sensitivity filter is relatively small, so it is not usually expensive to deter-
mine this lower bound, especially if the total number of constraints involved in 
IISs is small compared to the total number of constraints in the model. 

Note carefully that a maximum feasible subsystem is a different concept 
than a maximal feasible subsystem. If a feasible subsystem is maximal, the 
addition of any further constraints renders it infeasible. A maximum feasible 
subsystem is a maximal feasible subsystem of largest cardinality. It is easy 
to construct maximal feasible subsystems by a simple inversion of the dele-
tion filter (Alg. 6.1). Start with a single constraint, and add constraints one 
by one. When a newly added constraint triggers infeasibility, discard it. This 
is the grow method used by Bailey and Stuckey (2005) to find maximal fea-
sible subsystems. This also suggests a simple, though inefficient, way to find 
maximum feasible subsystems: run the grow algorithm numerous times, ran-
domizing the order of the constraints between each run, and return the larg-
est cardinality feasible subsystem found over all of the runs. 
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have also extensively analyzed the approximability of MAX FS, showing that it 
can be approximated within a factor of 2, but that it does not have a polynomial-
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7.1 Exact Solutions 

Though MAX FS is known to be NP-hard, it can be formulated for exact solution. 
Only relatively small instances can be solved this way since the exact solutions 
require exponential time to run. 

7.1.1 An Exact Solution via MIP 

An exact solution via mixed-integer linear programming has been suggested sev-
eral times, e.g. by Greenberg and Murphy (1991). Here is a variation of the formu-
lation given by Parker (1995): 

Minimize  Z = Σyi 
i i i

  a i x ≥ bi − Myi for all constraints i of type ≥ 
  a i x = bi + My i’ – My i” for all constraints i of type = 

where the y, y’ and y ” are binary variables, and M is the usual “big-M ” large 
positive value. Further, all variable bounds are included in the set of constraints 
shown above, or they can optionally be included separately in the normal way, but 
then the solution will consider only the functional constraints. In the usual manner, 
if a binary y variable takes the value 1, then the corresponding constraint is effec-

dicated by the constraints whose corresponding y (or y’ and y ”) variable(s) are all 
zero. The MIN ULR or MIN IIS COVER is given by the constraints having a corre-
sponding y, y’ or y ” variable whose value is 1. The conversion to a weighted version 
of problem is straightforward: simply add appropriate weights in the objective 
function. 

As Parker (1995) points out, there are several difficulties with this formulation. 
Incorrect selection of the value of M can lead to the incorrect conclusion that the 
model is still infeasible, or can cause fractional values or numerical instability. In 

els in which all of the variables are bounded as 0 ≤ xj ≤ uj for all j, a reasonable 

choice for M is
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Bordetski and Kazarinov (1981) also describe a branch and bound solution to an in-
teger programming formulation for finding the maximum weight feasible subsystem 
of constraints in an infeasible set of inequalities. 

tive on larger models for reasons of both speed and accuracy. Numerical difficulties 
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tively loosened and has no effect due to the effect of adding or subtracting M. After
solving this MIP, the maximum cardinality feasible subset of constraints is in-

addition, the solution can be quite slow. Amaldi et al. (2007) suggest that for mod-

with this approach are evident in the empirical studies by Amaldi et al. (2005). 

Subject to a x ≤ b  + My  for all constraints i of type ≤ 

While the exact big-M MIP formulation is useful for small models, it is not effec-



7.1.2 An Exact Formulation via Equilibrium Constraints 

As shown by Amaldi (2003), MAX FS can be formulated as a mathematical 
program with a linear objective function, bilinear constraints and real variables, 
which is known as a linear program with equilibrium constraints (LPEC). The 
formulation is as follows: 

}1,0{
},,{..

max
1

∈
=≥≤

∑ =

i

iii

m

i i

y
byyts

y

xai  

Note that ai denotes the row of the A matrix corresponding to the ith constraint. 
The binary variables yi take the value 1 if the equation is included in the feasible 
subset and the value 0 if the variable is excluded. The MAX FS objective is 
straightforward: maximize the sum of the yi. The binary restriction on the yi can be 
relaxed and replaced by 0 ≤ yi ≤ 1 without harm since any nonzero value of yi in 
that range simply amounts to a scaling of the linear constraint, and the objective 
function will drive any yi to 1 if it is able to take any nonzero value at all. 

The continuous version of the formulation constitutes a nonlinear global 
optimization problem which can be tackled via global solvers, or by standard NLP 
local solvers (though these latter may not return a globally optimum solution). The 
ability to solve mathematical programs with equilibrium constraints has improved 

this approach, but it is still relatively slow. 
An equivalent formulation for sets of inequalities that has better properties for 

solution was developed in the machine learning community. Mangasarian (1994) 
introduces a slack variable si and a nonnegative variable yi for each inequality to 
arrive at the following LPEC: 
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This is perhaps more naturally written as follows: 
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in recent years (see e.g. Ferris et al. (2005)), which has increased the viability of 



The effect of this formulation is to ensure that yi is zero only when si is zero, i.e. 
i i j

because they represent the coefficients in the separating hyperplane equation (see 
Sec. 10.1 for details). The two bilinear relationships can be included in the 
objective function with penalty terms, yielding a bilinear objective function 
subject to linear constraints. Mangasarian (1994) solves this using a sequential 
linear approximation procedure.  

The solution procedure is improved by Bennett and Bredensteiner (1997), who 
add a parametric control element, δ. Modifying their development to align with 
the notation above yields: 

[ ]

0sx

1y0
sbAx

1yssbAxy
sy,

≥ℜ∈

≤

≤≤
+≤

−+−−

∑ =

,

..

)()(min

1
n

m

i iy

ts

δ

 

The Frank-Wolfe algorithm for uncoupled bilinear programs is used to solve this 
problem. It must be solved a number of times to determine the smallest value of δ 
for which the objective function can reach a value of zero. A secant method is 
used in an outer loop to adjust the value of δ until the objective function is able to 
reach zero. 

Mangasarian (1996) proposes an alternative formulation in which the step 
function associated with including or excluding a constraint is approximated: 
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i i i
term in the objective function likewise goes to zero. The larger the violation of 
constraint i, the larger zi becomes, and the closer the corresponding term in the 
objective function approaches 1. The nonnegative parameter α controls the quality 
of the approximation. This is again solved by successive linear approximation. 

Empirical results reported by Mangasarian (1994, 1997) and Bennett and 
Bredensteiner (1997) show that the parametric variants are more effective. Still, 
the inherent nonlinearity of these models makes it difficult to solve them to 
optimality, and hence to guarantee that MAX FS is solved optimally. 
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The δ parameter specifies an upper bound on the number of violated constraints. 

when the ith constraint a x ≤ b  is satisfied. Note that the x  are unrestricted in sign 

When z  is zero, the ith constraint a x ≤ b  is satisfied, and the corresponding 



7.2 IIS Enumeration and Covering 

Parker (1995) and Parker and Ryan (1996) outline a method of enumerating the 
IISs in an infeasible system of linear inequalities, and then solving a set-covering 
problem over the IISs to solve the minimum weight IIS set cover problem (equiva-
lent to MIN IIS COVER when the weights are all equal to 1). The basic theorems that 
allow the enumeration of the IISs are given in Sec. 6.2.3. The number of IISs can 
potentially be exponential in the size of the model (Chakravarti 1994), so some at-
tention must be paid to the efficiency of the method. Parker and Ryan (1996) ad-
dress the efficiency issue by generating IISs one at a time, making sure to find 
new IISs that are not covered by the current MIN IIS COVER solution.  

Parker and Ryan’s algorithm is shown in Alg. 7.1. There is one binary variable 
yi for each constraint i. If some IIS Jk consists of constraints 3, 7 and 11 for exam-
ple, then the associated set cover constraint is y3 + y7 + y11 ≥ 1 to indicate that at 
least one of the three constraints must be removed from the model to render it fea-
sible. There is a similar constraint for each IIS Jk in the set of IISs J. 

 
di: the ith constraint in the model, ci: weight on ith constraint,  
yi: binary variable (one per constraint), Jk: the kth IIS in the set J of IISs. 
 
INPUT: an infeasible set of linear inequalities P. 
1. Identify an initial set of IISs J (J may be empty). 
2. Solve the minimum weight IIS set covering problem: 
   minimize ∑ciyi 
   subject to ∑yi ≥ 1 for di∈Jk, for all IISs Jk∈J. 
  Let T index the elements of the optimal cover. 

  ELSE find an IIS that is not covered by T and add it to J. 
  Go to Step 2. 
OUTPUT: T is the minimum weight cover. 
 
Alg. 7.1. Minimum-weight IIS set covering algorithm (Parker and Ryan 1996) 
 

In terms of efficiency, there are three crucial elements in Alg. 7.1. The first is 
the solution of the integer program in Step 2. Some speed-up is achieved by 
substituting a quick set-covering heuristic in place of the full integer programming 
solution during all but the final iteration. The full integer programming solution is 
then run only once when the heuristic method returns a cover such that P \ T  is 
feasible, in order to determine whether a smaller weight cover exists. Parker and 
Ryan’s method can thus be converted to a polynomial-time heuristic by omitting 
the final full integer programming solution. 

The second crucial step is the generation of new IISs in Step 3. The algorithm uses 
a column generation strategy and it is generally not necessary to enumerate all IISs in 
order to cover them. In fact, it is possible that one constraint appears in all IISs and is 
found right away, so that the algorithm does not have to generate any other IIS. In the 
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3. IF P\T feasible THEN exit. 



worst case, the IISs are all disjoint, in which case the algorithm must generate 
them all. Two methods are used to enumerate IISs, one based on visiting the 
extreme points of a specially constructed polytope (Thm. 6.16), and another based 
on the extreme rays of a specially constructed polyhedral cone (Thm. 6.17). 
Heuristics are applied in an attempt to find new IISs having little overlap with IISs 
already in J to reduce the number of integer programming solutions needed during 
Step 2. 

The third crucial element is the limitation of the method to linear inequalities. 
Equalities are handled by converting each one into a pair of oppositely-oriented 
inequalities. This may cause a blow-up in the number of inequalities. Hence the 
suitability of the method may depend on the number of equality constraints in the 
system. Parker and Ryan extend Thm. 6.17 to deal with this problem, yielding a 
new theorem, as follows. 

Theorem 7.1: Supports of a general infeasible linear system (Parker and Ryan 
1996). Given the inconsistent system S = {x ∈ Q n | Ax ≤ b, Cx = d, L ≤ x ≤ U }, 
the indices of the IISs of S are exactly the supports of the vertices of the polyhe-
dron P = { y,w,v,z ∈ Q m | yTA + wTC + v – z = 0, yTb + wTd + vTU – zTL = –1, y,z,v 
≥ 0, w unrestricted}.■ 

Further, if x is bounded only by nonnegativity, then Thm. 7.1 can be simplified 
as follows. 

Theorem 7.2: Supports on a general infeasible linear system with only 
nonnegativity bounds (Parker and Ryan 1996). Given the inconsistent system S = 
{x ∈ Q n | Ax ≤ b, Cx = d, x ≥ 0}, the indices of the IISs of S are exactly the supports of 
the vertices of the polyhedron P = { y,w ∈ Q m | yTA + wTC ≥ 0, yTb + wTd = –1, y ≥ 0, w 
unrestricted}.■ 

Thm. 7.2 means that the nonnegativity bounds do not need to be handled ex-
plicitly: you need only check the slack variables in the solution of the alternative 
system to determine whether a nonnegativity constraint forms part of the IIS. 

There are some numerical issues when the right hand side of the second con-
straint in the alternative system in Thms. 7.1 and 7.2 is set to –1. Parker and Ryan 
(1996) present a solution to this difficulty by replacing the –1 right hand side by a 
new value determined by various parameters in the model.  

Parker and Ryan conduct an empirical evaluation of three variations of their 
method using the standard test set of infeasible LPs (Chinneck 1993). The times 
reported are reasonable. For most problems the vast majority of the solution time 
is spent on identifying IISs in Step 3 of Alg. 7.1, with relatively little time spent 
on solving the set covering problem in Step 2. 

enumeration of IISs, and then follows with a frequency-based heuristic to solve 
the resulting set-covering problem. It uses the additive method (Sec. 6.1.3) to find 
the individual IISs. See Alg. 7.2. 
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Tamiz et al. (1995) describe an algorithm that starts with a heuristic 



INPUT: an infeasible set of linear constraints C. 
0. pass = forward. 
  CoverSet = ∅. 
1. Use the additive method to find an IIS I and write it out. 
  Delete the first member of I from C. 
  IF C is infeasible THEN go to Step 1. 
  IF pass = forward THEN 
   Reinstate the original constraint set C. 
   Reverse the order of the constraints in C. 
   pass = reverse. 
   Go to Step 1. 
2. Compare IISs found in Step 1 to eliminate duplicates, forming the set D  
   of distinct IISs. 
3. Find f, the most frequent constraint in D, and add it to CoverSet. 
  D = D\{IISs having f as a member}. 
  IF D = ∅ THEN exit. 
  Go to Step 3. 
OUTPUT: CoverSet is a small set of constraints covering the IISs 
 

 

Algorithm 7.2 suffers from the method used to isolate distinct IISs. The for-
ward and reverse passes of the additive algorithm are not efficient ways of gener-
ating all possible IISs compared to the method used by Parker and Ryan since 
some IISs may be omitted while others may be isolated twice. An expensive Step 2 
must also be used to eliminate the duplicates. Finally Step 3 is simply a standard 
set covering heuristic, likely similar to the fast heuristic used at intermediate steps 
by Parker and Ryan. 

netlib set of infeasible LPs (Chinneck 1993). Their criteria for the selection of this 
subset are not stated. They are able to find a true minimum cardinality IIS set 
cover in 14 of the 16 models examined (the exceptions are reactor and greenbea). 
Pfetsch (2002, 2005) advances Parker and Ryan’s approach by using a branch-
and-cut approach to improve the solutions of the intermediate set-covering MIPs. 
The main idea is to add a cut after each intermediate LP-relaxation is solved that 
separates the rows corresponding to IISs that are covered in the current solution 
from the rows corresponding to IISs that are not yet covered. Since this is NPhard, 
various heuristics are used. Cuts are of three types: (i) inequalities derived from 
IISs, (ii) special inequalities due to Balas and Ng (1989), and (iii) Gomory cuts 
(e.g. Nemhauser and Wooley (1988)). Cuts are stored in a pool and are added to 
the LP relaxation if violated. In addition, Pfetsch applies a preprocessing step to 
find small IISs, and uses a primal heuristic for possibly decreasing the cardinality 
of any covers found at intermediate steps. 

The preprocessing step discovers simple small-cardinality IISs. IISs of 
cardinality 2 (i.e. parallel but oppositely-oriented inequalities) are found when 
constraints have the same left-hand-side bodies but different constants, and a 
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Tamiz et al. (1995) present empirical results for 16 of the 29 models from the 

Alg. 7.2. The constraint frequency heuristic for the IIS cover (Tamiz et al. 1995) 



mismatch in their orientations. Individual constraints are also scanned for 
infeasibility relative to the bounds on their variables. IISs identified during this 
step are used to set up the first covering MIP, but the method proceeds without 
difficulty if no IISs are found during this step. 

The primal heuristic is applied after every k branch and bound nodes and oper-
ates as follows. Suppose that we have a current cover S. Initially set S’ = S. Sort 
the elements of S’ in increasing order of the fractional values of the associated 
variables in the covering LP-relaxation. Remove each member of S’ in this order 
and check whether the reduced version of S’ is still an IIS cover. If the reduced S’ 
is no longer an IIS cover, then return the member and continue, else drop the 
member permanently. 

Details on the cuts are available in the original publications (Pfetsch 2002, 
2005). Empirical results show good results, though solution times are quite long. 
Chinneck’s heuristic methods (see Sec. 7.4) give better or equivalent results in 
most cases in much shorter times. Codato and Fischetti (2004, 2006) introduce 
further cuts, termed combinatorial Benders’ cuts, which are useful in this context.  

Finally, simple (though inefficient) heuristics can be created based on deletion 
filtering or the additive method. Simply choose a random ordering of the con-
straints, isolate an IIS, and make note of it. Repeat the process until no new IISs 
are discovered in several iterations. Now solve a set-covering problem based on 
the IISs discovered. Note that if the sensitivity filter is applied after each randomi-
zation of the constraint ordering then certain IISs may not be discovered and so 
the resulting IIS set cover may be incomplete (see Sec. 6.2.2). 

7.3 Phase One Heuristics 

Any LP Phase 1 solution for an infeasible LP results in a set of constraints that are 
satisfied and a set that are violated. The set of violated constraints provides an IIS 
set cover, though generally not a minimum cover. However this Phase 1 cover 
does provide an upper limit on the cardinality of the MIN IIS COVER. Chinneck 
(1996c) summarizes these insights in the following observation. 

Observation 7.1: Elastic program cover (Chinneck 1996c). Upon termination 
of an elastic program, the set of stretched constraints is an IIS set cover, and the 
number of stretched constraints is an upper bound on the cardinality of the set 
cover.■ 

Most phase 1 procedures are some variation of an elastic program (see Sec. 
6.1.4) in which extra nonnegative elastic or artificial variables introduce added 
dimensions which allow the constraints to “stretch” in the original dimensions to 
accommodate infeasibility. The main differences in the variations involve which 
subsets of constraints are elasticized and whether the minimum sum of the con-
straint violations is the only Phase 1 stopping condition. Common measures of the 
infeasibility of a solution include the sum of the infeasibilities (SINF), i.e. the sum 
of the nonnegative artificial or elastic variables, and the number of infeasibilities 
(NINF), i.e. the number of violated constraints. 
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Several versions of elastic or Phase 1 programs are in common use, some of 
which are listed below.  
• Standard elastic program. All row constraints are fully elasticized, including ≤ 

type, ≥ type, and = type (elasticized by adding two elastic variables). The 
variable bounds are not elasticized. The objective is to minimize SINF.  

• Full elastic program. Same as standard elastic program, but the variable bounds 
are also elasticized. 

• Simple Phase 1. As usually described in textbooks on linear programming, arti-
ficial variables are added only to constraints of the ≥ and = types. Just a single 
nonnegative artificial variable with coefficient +1 is added to each equality 
constraint. The objective is to minimize SINF. 

• MINOS Phase 1. Wolfe (1965) describes a Phase 1 procedure that considers 
both SINF and NINF in deciding whether an LP is infeasible. The MINOS LP 
solver (Murtagh and Saunders 1987) permits arbitrary upper and lower bounds 
on the variables, so the model is fully elasticized. However the procedure usu-
ally terminates when it recognizes that NINF cannot be reduced any further, so 
SINF may not be at its minimum value upon termination. As an implementation 
detail, note that MINOS keeps direct track of the constraint violations and 
hence does not explicitly include artificial or elastic variables. 
Any of these is sufficient to produce an IIS cover. While you might expect that 

the chances of returning a smaller IIS cover are improved if more constraints are 
elasticized, this is not always the case, as shown below (see Table 7.1). 

A second simple observation can be made, as follows. 
Observation 7.2: Single member cover (Chinneck 1996c). If an elastic program 

reports a single stretched constraint, then that constraint constitutes a minimum 
cardinality IIS set cover.■ 

The smallest possible IIS set cover cardinality is 1, which indicates that the 
cover constraint occurs in all IISs in the model. Hence if the model is infeasible 
and the Phase 1 or related procedure returns a cover of size 1, then it must be a 
minimum cardinality cover. This fact was also noted by Parker and Ryan (1996). 

Chinneck (1996c) carried out a series of tests on various algorithms for finding 
MIN IIS COVER, including the MINOS Phase 1 procedure and the standard elastic 
program. The test set consisted of the infeasible models in the netlib repository 
(Chinneck 1993). The unassisted MINOS phase 1 reported a single violated 
constraint for 14 of the 29 models: bgetam, box1, ceria3d, cplex2, ex72a, ex73a, 
forest6, galenet, gosh, klein1, pang, pilot4i, qual, vol1. This single violated 
constraint is reported as the minimum IIS cover (Observation 7.2).  

The results for the 15 remaining models are presented in Table 7.1. The true 
minimum cardinality is also included for comparison. Results in boldface indicate 
cases in which the Phase 1 method found the true MIN IIS COVER. The Phase 1 
methods do find the true MIN IIS COVER with reasonable frequency over this test 
set (18 of 29 cases, or 62%). If they do not find a minimum cardinality cover, they 
often provide a cover that is not very much larger. 

168   7 Finding the Maximum Feasible Subset of Linear Constraints 



Table 7.1. IIS cover cardinality on difficult LPs for two Phase 1 methods (Chinneck 1996c) 

Model Minimum cover cardinality  
(Parker and Ryan 1996) 

MINOS Phase 1cover Standard elastic 
program Phase 1 cover 

bgdbg1  12 23 13 
bgindy  1 14 1 
bgprtr  1 2 2 
chemcom  1 11 12 
cplex1  1 211 212 
gran  not calculated 244 473 
greenbea  2 3 2 
itest2  2 2 2 
itest6  2 3 4 
klein2  1 3 5 
klein3  1 4 19 
mondou2  3 3 5 
reactor  1 3 2 
refinery  1 3 6 
woodinfe  2 2 2 

 

7.4 Chinneck’s SINF-Reduction Heuristics 

Chinneck (1996c, 2001a) develops a set of heuristic methods for MIN IIS COVER 
based on several observations in addition to the two mentioned above. The most 
important observation follows. 

Observation 7.3: Reduction in elastic objective function value (Chinneck 
1996c). The elimination of a constraint that is a member of the minimum-
cardinality IIS set cover should reduce elastic SINF more than the elimination of a 
constraint that is not a member of the minimum-cardinality IIS set cover.■ 

The removal of a constraint that is a member of the minimum cardinality set cover 
normally eliminates more than one IIS, hence its removal should reduce the elastic 

objective function value more than the 
removal of a constraint that is not a 
member of the minimum cardinality IIS 
set cover, whose removal will eliminate 
fewer IISs. Consider Fig. 7.1 which has 
IISs {A,B,D} and {A,C,D} with two 
different minimum cardinality IIS set 
covers: {A} and {D}. Eliminating either 
one of constraint A or D will reduce the 
elastic objective function to zero, while 
eliminating either constraint B or C will 
reduce the elastic objective function value, 
but not to zero. Hence either {A} or {D} 
should be removed by Observation 7.3. 

 
 
Fig. 7.1. Example infeasibility 

D

C B A 
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In fact, the removal of constraint C has no effect on the value of the elastic ob-
jective function because the elastic program returns a solution in which constraint 
C is not stretched or tight. Minimizing the elastic objective function makes it 
cheaper to choose one of these three options: 

• constraint A stretches to the intersection of B and D, 
• constraint D stretches to the intersection of A and B, 
• constraint B stretches up to C, and then A or D or both stretch. 

Constraint C does not stretch because, to achieve a feasible point, B would first 
need to stretch to meet C and then would have to continue to stretch along with C 
until reaching the intersection of A and D. The cost of stretching B and C simulta-
neously is twice the cost of stretching a single constraint. Thus C will not be tight 
upon termination of the elastic program. This leads to the fourth observation. 

Observation 7.4: Elastic sensitivity (Chinneck 1996c). Constraints to which the 
elastic objective function is not sensitive do not reduce the elastic objective func-
tion value when removed from the model.■ 

Observations 7.1–7.4 underlie Alg. 7.3, a heuristic algorithm for solving MIN IIS 
COVER. The algorithm takes a greedy approach: the most promising candidate is 
added to the cover set at each iteration of Step 2. The basic mechanism is to test 
each eligible constraint by temporarily removing it from the set of constraints to 
determine the new value of elastic SINF. As per Observation 7.3, the constraint 
whose temporary removal most reduces elastic SINF is added to the cover set and 
removed permanently. To reduce the number of constraints tested, the algorithm 
uses Observation 7.4 to omit testing any constraints to which the elastic objective 
is not sensitive.  

Observation 7.2 provides an early exit from the algorithm where appropriate. 
The steps marked as optional in Alg. 7.3 boost the speed of the basic algorithm by 
noting when the cover set can be completed by a single constraint. The optional 
steps are easily implemented if the solver provides NINF as a matter of course, but 
can be ignored if NINF must be calculated by a time-consuming comparison of 
each constraint left hand side and right hand side. 

Alg. 7.3 specifies the use of a procedure which returns elastic SINF. However, 
any phase 1 procedure can be used to detect infeasibility before Alg. 7.3 is ap-
plied, and the process can be terminated at that point if NINF = 1. The speed of 
Alg. 7.3 is greatly improved by using the advanced start facilities available in 
most modern LP solvers. Each elastic LP starts at the terminal point generated by 
the previous elastic LP. 

Note that variable bounds are also tested during Step 2, even if the variable 
bounds are not elasticized, as in a simple phase 1 or a standard elastic program. 
Variable bounds are added to CoverSet whenever their elimination provides the 
lowest value of elastic SINF, just as for row constraints. 
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INPUT: Constraints defining an infeasible system of linear constraints. 
0. CoverSet = ∅. 
 Set up elastic LP. 
1. Solve elastic LP. 
 IF NINF = 1: 
  Add the single violated constraint to CoverSet. 
  Exit. 
 HoldSet = {constraints to which elastic objective is sensitive}. 
2. MinSINF = ∞. 
 CandidateSet = HoldSet. 
 FOR each constraint in CandidateSet: 
  Delete the constraint. 
  Solve elastic LP. 
  IF elastic SINF = 0 THEN: 
   Add constraint to CoverSet. 
   Exit. 
  IF elastic SINF < MinSINF THEN: 
   Winner = currently deleted constraint. 
   MinSINF = elastic SINF. 
   HoldSet = {all constraints to which elastic objective is sensitive}. 
    IF NINF = 1, NextWinner = single violated constraint.  (optional) 
    ELSE NextCand = ∅.          (optional) 
  Reinstate the constraint. 
3. Add Winner to CoverSet. 
  IF NextWinner ≠ ∅ THEN:         (optional) 
  Add NextWinner to CoverSet.         (optional) 
  Exit.              (optional) 
 Delete the Winner constraint permanently. 
 Go to Step 2. 
OUTPUT: CoverSet is a small set of constraints covering the IISs. 

 
Alg. 7.3. Heuristic 1 for MIN IIS COVER (Chinneck 1996c) 

 

Alg. 7.3 is easily altered to find minimum weight IIS covers by assigning 
weights to the elastic variables in the elastic objective function. Constraints as-
signed higher weights will tend to be included in CoverSet because their elimina-
tion gives a greater reduction in the elastic objective function value. 

Empirical results (see Table 7.2) show that Alg. 7.3 is very effective in practice, 
but as a heuristic, it cannot guarantee to identify a minimum cardinality IIS in all 
cases. This is illustrated by the example in Fig. 7.2. The constraints are: 
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 B0: –x1 + x2 ≥ 2  
 B1: –x1 + x2 ≥ 3 
 C0: –0.25x1 + x2 ≤ 2.75 
 C1: –0.25x1 + x2 ≤ 1.75 

 
Assuming a full elastic program, the 

elastic objective function is initially sensi-
tive to the outermost constraints A2, B1, 
and C1. The spacing between the two con-
straints in the B and C sets is equal to one, 
the space between A1 and A2 is 11, so 
SINF is most reduced by removing A2. By 
inspection of Fig. 7.2, this leads to a cover 
of cardinality 3, even though smaller cov-
ers of cardinality 2 exist (either {B0,B1} 
or {C0,C1}). The cover reported for this 
problem by a software implementation of 
Alg. 7.3 is {A2,C1,C0}, with the members 
found in that order. This cover is not of 
minimum cardinality, and is also not 

minimal. In a minimal cover, every member of the cover set is needed in order to 
eliminate all of the infeasibility in the model. Similar pathological cases are 
unlikely in practice since it depends on there being a great deal of redundancy 
with a particular pattern. 

Alg. 7.3 is affected by the elastic programming variant that is used because the 
variants will report different values of SINF for a given set of constraints. The dif-
ferent variants elasticize different subsets of the constraints, and hence Alg. 7.3 
will make different decisions concerning which constraint to drop permanently in 
Step 3. A full elastic program is preferred for any implementation of Alg. 7.3 
since this will prevent any artificial distortion of SINF.  

While the MINOS phase 1 procedure does not guarantee to minimize SINF, it 
does work towards minimizing NINF until it recognizes that it cannot be reduced 
to zero. This behaviour can be used to identify set cover candidates by looking for 
the greatest drop in NINF when a constraint is removed, rather than the greatest 
drop in SINF as in Alg. 7.3, with the drop in SINF used to break ties between can-
didates with equivalent drops in NINF. Since the MINOS phase 1 permits literal 
constraint violations rather than using elastic variables, Step 2 of Alg. 7.3 must 
test violated constraints in addition to constraints to which the phase 1 objective 
function is sensitive. Since the MINOS phase 1 provides both NINF and SINF, the 
steps marked optional in Alg. 7.3 are naturally included. 

 
 
Fig. 7.2. A pathological counter-
example (Chinneck 1996c) 
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 A0: x1 + x2 ≥ 8 
 A1: x1 + x2 ≥ 9  
 A2: x1 + x2 ≥ 20 



Alg. 7.3 is extremely effective, so any modifications should ideally delete the 
same constraints, and in the same order. In the best case, we would like to directly 
identify the correct constraint for removal at each iteration, and place only that 
single constraint in CandidateSet. While this is not possible, the two observations 
following below allow the assessment of each potential candidate quickly without 
solving an LP. This permits the addition of only a very few of the most promising 
candidate constraints to CandidateSet for testing via LP solution. Very often, the 
first constraint on the list is indeed the correct constraint for removal. 

Observation 7.5: Estimating SINF reduction for violated constraints (Chinneck 
2001a). For constraints that are violated in the original model (i.e. whose elastic 
variables are stretched in an elastic solution), a good predictor of the magnitude of 
the drop in SINF that will be obtained by deleting the constraint is given by the 
product (constraint violation) × |(constraint sensitivity)|.■ 

When converted to a full elastic program, “constraint violation” in the original 
model is given by the value of the elastic variable associated with a constraint. If 
there are two elastic variables associated with a constraint, as for equality and 
range constraints, then the constraint violation is the maximum value of the two 
elastic variables. “Constraint sensitivity” refers to the reduced cost of the variable 
associated with the constraint. The absolute value of the constraint sensitivity is 
used because the sign, determined by the constraint sense (≤, ≥, =), is irrelevant 
since all violations are relaxations of the constraint, regardless of constraint sense. 

Having a nonzero elastic variable in the elasticized model is equivalent to 
changing the right-hand-side value of the constraint in the original model. Thus 
the product in Observation 7.5, obtained from the elastic version of the model, is 
the same as operating on the original model to estimate the change in the objective 
value caused by relaxing the right hand side by the amount given by the nonzero 
elastic variable. As shown in elementary texts on simple sensitivity analysis, this 
is a perfectly accurate estimator of the change in SINF, provided that the basis in 
the original model does not change. Of course, the basis in the original model does 
change when an active constraint is deleted, so Observation 7.5 provides an un-
derestimate of the change in SINF. Chinneck (2001a) carries out a small study of 
the accuracy of the estimates provided by Observation 7.5 on two difficult classi-
fication problems and concludes that the maximum-product heuristic is remarka-
bly accurate in predicting ΔSINF: it is over 95% accurate in 87% of the cases ex-
amined, and over 90% accurate in 94% of the cases examined. 

Observation 7.5 suggests a revision to Alg. 7.3. In Steps 1 and 2, instead of set-
ting HoldSet = {constraints to which the elastic objective function is sensitive}, 
find HoldSet as follows: 
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Chinneck (2001a) later studied how to improve the speed of Alg. 7.3 by 
reducing the number of candidate constraints tested, i.e. the size of CandidateSet, 
which is normally determined by the number of constraints to which the elastic 
objective function is sensitive. New observations lead to new criteria for inclusion 
in CandidateSet; objective-function sensitivity is no longer the single sufficient 
criterion.  



2(k) requires the use of a fully elastic version of the original model (i.e. variable 
bounds must be elasticized as well as rows). This is straightforward in solver im-
plementations that already permit literal constraint violations during their Phase 1 
procedure (by violating the bounds on the variable associated with the constraint), 
but it may require the explicit addition of elastic variables in other solver imple-
mentations.  

Concentrating solely on the violated constraints is often successful because the 
elastic objective function is itself trying to minimize SINF, hence it tends to vio-
late the constraints that cause the least increase in SINF. However, in some models 
having numerous infeasibilities, it may be possible to obtain a larger drop in SINF 
by deleting a constraint that is not currently violated. Observation 7.6 describes an 
indicator for identifying satisfied constraints that are good candidates for deletion. 

Observation 7.6: Identifying candidate satisfied constraints (Chinneck 2001a). 
For constraints that are satisfied in the original model (i.e. their associated elastic 
variables are zero), a good predictor of the relative magnitude of the drop in SINF 
that will be obtained by deleting the constraint is given by |(constraint 
sensitivity)|.■ 

This observation allows an ordering of the set of satisfied constraints for possi-
ble inclusion in CandidateSet. Observation 7.6 does not provide a direct estimate 
of the size of the drop in SINF expected when the constraint is deleted, only the 
relative size (i.e. a constraint with a larger |sensitivity| is expected to provide a lar-
ger drop in SINF). 

Observations 7.5 and 7.6 can be combined to provide another variant of Alg. 
7.3. In Steps 1 and 2, instead of setting HoldSet = {constraints to which the elastic 
objective function is sensitive}, find HoldSet as follows: 

1.  Select the violated constraints, and arrange them in order from largest to 
smallest value of the product (constraint violation) × |(constraint sensitivity)|. 

2. Fill HoldSet with the top k elements of the ordered list (or all of the elements 
of the list if there are fewer than k). 

3. Select the satisfied constraints to which the elastic objective function is sen-
sitive, and arrange them in order from largest to smallest |(constraint sensi-
tivity)|. 

4. Add the top k elements of this ordered list to the bottom of HoldSet (or all of 
the elements of the list if there are fewer than k). 
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1. Select the violated constraints, and arrange them in order from largest to smallest 
value of the product (constraint violation) × |(constraint sensitivity)|.  

2. Fill HoldSet with the top k elements of the ordered list (or all of the elements 
of the list if there are fewer than k). 

Chinneck (2001a) refers to this variant as Algorithm 2(k), where k refers to the 
length of the candidate list. Empirical results using this algorithm are presented 
later. Note that a list length of 1 is frequently successful. Because we wish to es-
timate the effect of every constraint via the product in Observation 7.5, Algorithm 



a full elastic SINF minimization. The implementation would normally proceed as 
follows: 

1. Native phase 1 method detects infeasibility and records the NINF and IIS 
cover. 

2. Convert to full elastic version of model. 
3. Minimize SINF in fully elastic model (using an advanced start provided by 

the native phase 1 solution) and record the NINF and IIS cover. 

The smallest NINF provided by the native phase 1 or the elastic phase 1 then 
acts as a stopping condition for any more advanced algorithm. 

Alg. 7.4 combines all of these observations into a generic framework. The pos-
sible selection criteria for inclusion in HoldSet include (i) phase 1 objective func-
tion sensitivity (as in Alg. 7.3), (ii) high values of the product for violated con-
straints (i.e. Algorithm 2), or (iii) both high values of the product for violated 
constraints and high phase 1 objective function sensitivities (i.e. Algorithm 3). 

Chinneck (1996c, 2001a) conducted a number of empirical tests of Algorithms 7.3 
and 7.4. Results for 14 of the more difficult infeasible LPs in the netlib set (those for 
which the MINOS phase 1 does not find a single-member IIS cover) are summa-
rized in Table 7.2. Numbers in boldface indicate solutions that return an IIS cover 
of true minimum cardinality, “NINF” indicates the cardinality of the IIS cover, 
and “LPs” indicates the number of LPs solved (excluding the initial phase 1 solu-
tion that signalled infeasibility). The results for Algorithms 2(k) and 3(k) are for 
simply using the selection criteria for those models directly in Alg. 7.3. The results 
for “Alg. 7.4 with 3(7)” are derived by combining the two phase 1 results in Table 
7.1 with the results of Algorithm 3(7) to infer the outcome (Alg. 7.4 with 3(7) was 
not actually implemented). The SafetySet established during Step 0 of Alg. 7.4 is 
actually used for mondou2. If Alg. 7.4 is combined with the Algorithm 2(1), 2(7), 
or 3(1) selection criteria, the SafetySet is used even more often. 
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Chinneck (2001a) refers to this variant as Algorithm 3(k), where k refers to the 
length of each of the two lists. Note that a list length of k implies the solution of 
up to 2k LPs to identify the winning candidate. 

We can also improve on Alg. 7.3 by taking better advantage of Observation 7.1 
to provide a safety exit when the more advanced algorithms perform poorly. Be-
cause the cardinality of the IIS cover provided by the phase 1 procedure is already  
known, any subsequently applied algorithm can be halted when its cover cardinal-
ity exceeds the cardinality of the IIS cover already provided by the phase 1 proce-
dure. 

Further, more than one phase 1 procedure would probably be applied in a prac-
tical implementation because the solver-native phase 1 procedure is unlikely to be 



INPUT: Linear constraints defining an infeasible model. 
0. CoverSize = 0, CoverSet = ∅, SafetySize = 0, SafetySet = ∅. 
 If native phase 1 procedure detects feasibility, then exit. 
 SafetySize = (cardinality of native phase 1 cover). 
 SafetySet ← {members of native phase 1 cover}. 
 IF SafetySize = 1 THEN: 
   CoverSize = 1. 
  CoverSet ← SafetySet. 
  Exit. 
 Set up elastic LP. 
 Solve elastic LP using advanced start from the native phase 1 solution. 
 IF (elastic cover cardinality) < SafetySize THEN: 
   SafetySize = (cardinality of elastic phase 1 cover).  
   SafetySet ← {members of elastic phase 1 cover}. 
 If SafetySize = 1 then: 
   CoverSize = 1. 
  CoverSet ← SafetySet. 
  Exit. 
 HoldSet = {constraints meeting selection criteria}. 
1. MinSINF = ∞. 
 CandidateSet ← HoldSet. 
 FOR each constraint in CandidateSet: 
  Delete the constraint. 
  Solve elastic LP. 
  IF SINF = 0 THEN: 
   Add constraint to CoverSet. 
    CoverSize = CoverSize + 1. 
   Exit. 
  If SINF < MinSINF then: 
   Winner = currently deleted constraint. 
   MinSINF = SINF. 
   HoldSet ← {constraints meeting selection criteria}. 
    If NINF = 1, NextWinner = single violated constraint.  
    Else NextWinner = ∅.  
  Reinstate the constraint. 
2. Add Winner to CoverSet. 
 CoverSize = CoverSize + 1. 
  IF NextWinner ≠ ∅ THEN: 
  Add NextWinner to CoverSet. 
   CoverSize = CoverSize + 1. 
  Exit. 
 Delete the Winner constraint permanently. 
 IF CoverSize ≥ (SafetySize – 1) THEN: 
   CoverSet ← SafetySet. 
   CoverSize = SafetySize. 
   Exit. 
 Go to Step 1. 
OUTPUT: CoverSet is an IIS cover of cardinality CoverSize. 
 
Alg. 7.4. Heuristic 2 for MIN IIS COVER (Chinneck 2001a) 
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The gran model is omitted because it causes numerical difficulties. The list 
length for Algorithms 2 and 3 can be set as desired. Shorter lists are faster, but 
longer lists are more accurate. With a sufficiently long list, Algorithm 3 is equiva-
lent to Alg. 7.3. Experimentation with shorter lengths showed that a length of 7 is 
quite effective, particularly for Algorithm 3. Results with list lengths of 1 and 7 
for Algorithms 2 and 3 are given in Table 7.2. 

Table 7.2. Comparison of algorithms on difficult infeasible LPs (Chinneck 2001a) 

 Alg. 7.3 Alg. 2(1) Alg. 2(7) Alg. 3(1) Alg. 3(7) Alg. 7.4 
with 3(7) 

model NINF LPs NINF LPs NINF LPs NINF LPs NINF LPs NINF 
bgprtr 1 1 1 0 1 0 1 0 1 0 1 
itest2 2 7 2 1 2 2 2 2 2 6 2 
mondou2 3 384 7 6 5 25 6 11 5 53 3 
reactor 1 25 1 0 1 0 1 0 1 0 1 
woodinfe 2 47 2 1 2 2 2 2 2 4 2 
bgdbg1 12 645 12 11 12 65 12 22 12 142 12 
bgindy 1 1 1 1 1 1 1 1 1 1 1 
chemcom 1 2 1 1 1 1 1 1 1 1 1 
greenbea 2 404 2 1 2 6 2 2 2 13 2 
itest6 2 10 4 4 2 7 4 7 2 8 2 
klein3 1 53 9 9 1 7 4 8 1 7 1 
cplex1 1 213 211 210 211 1455 4 8 1 9 1 
klein2 1 17 3 2 3 7 2 4 1 11 1 
refinery 1 36 3 2 3 9 3 4 2 18 2 
# min NINF 14  8  10  8  12  13 
avg. NINF 2.2  18.5  17.6  3.2  2.4   
avg. LPs  131.8  17.8  113.4  5.1  19.5  

 
As expected, Alg. 7.3 requires the most LP solutions on average (131.8) while 

Algorithm 3(1) requires the fewest (5.1). These average results are skewed by 
cplex1. In 12 of the 14 models, Algorithm 2(1) requires the smallest number of LPs. 
Algorithms 2(1) and 3(1) are both very quick in comparison to Alg. 7.3. It is 
instructive to look in detail at the 4 models that require more than 100 LPs for 
solution by Alg. 7.3. In most cases, Algorithms 2 and 3 solve far fewer LPs than 
Alg. 7.3 (the exception is cplex1), and are reasonably accurate. 

Algorithms 2 and 3 are slightly less accurate than Alg. 7.3. Algorithm 2 does 
poorly on cplex1, in terms of both accuracy and speed. Ignoring cplex1 gives 
Algorithm 2(1) an average of 3.0 LPs (instead of 17.8), and Algorithm 2(7) an 
average of 10.2 LPs (instead of 113.4). A corollary observation is that a change of 
algorithms can have a dramatic impact on accuracy for a particular model. Alg. 
7.3 and 3(7) are the only ones able to achieve the true MIN IIS COVER for cplex1. 

Table 7.2 is broken into five groups. The MIN IIS COVER in models 1–5 is found 
by one or both of the two phase 1 procedures applied. In fact, the MINOS phase 1 is 
the only procedure to find a MIN IIS COVER for mondou2. Because of this, Alg. 7.4 
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finds the true MIN IIS COVER for all five of these models in conjunction with any of 
the Algorithm 2 and 3 candidate selection criteria. This argues for the inclusion of 
the MINOS-style phase 1 procedure in Alg. 7.4, as does the excellent performance 
of the MINOS phase 1 on the other 14 models for which it found single-member 
IIS covers. 

The MIN IIS COVER is found by all of the algorithms for models 6–9 in Table 
7.2, including the fast short-list versions. The reduction in the number of LPs 
solved as compared to Alg. 7.3 is dramatic for bgdbg1 and greenbea. This 
underlines the effectiveness of the new algorithms. 

Models 10 and 11 of Table 7.2 require a longer list length to find a MIN IIS 
COVER. Each of the four short-list algorithms requires about the same small num-
ber of LPs to arrive at a solution, but smaller cardinality solutions are returned by 
Algorithms 2(7) and 3(7). This argues for the longer list lengths in Algorithms 2 
and 3. 

Algorithm 3 is the best approach for models 12 and 13 of Table 7.2. Even with 
a list length of 1, a cover of cardinality 4 is found for cplex1 using Algorithm 3 
versus a cover cardinality of 211 using Algorithm 2. Algorithm 3(7) finds the true 
MIN IIS COVER in both cases. This argues for the use of the selection criteria of Al-
gorithm 3 in the framework of Alg. 7.4. 

Finally, a MIN IIS COVER is not found using any heuristic method for the last 
model in Table 7.2. However, the best result, provided by both the MINOS phase 
1 and by Algorithm 3(7), is very close to the optimum at only 1 greater than the 
true minimum cardinality. 

These empirical results indicate that an effective version of Alg. 7.4 would in-
corporate a MINOS-style phase 1 procedure, and would use the selection criteria 
of Algorithm 3 at list length 7. This provides a significant speedup for general LP 
problems with little loss in accuracy: it fails to find a MIN IIS COVER only for refin-
ery, and the cover is too large by just 1 member in that case. This algorithm is 
about 7 times faster than Alg. 7.3 on average. 

For maximum speed at reasonable accuracy, use Alg.7.4 with selection criteria 
from Algorithm 3(1). This does not give a poor result on any of the test models. 
On the five models for which this combination does not achieve a MIN IIS COVER, 
the maximum distance from optimality is 3, and the average is 1.8. This algorithm 
is about 25 times faster than Alg.7.3 on average, and dramatically faster on many 
models.  

Sadegh (1999) modifies Alg. 7.3 by substituting a minimax solution for the 
minimization of the sum of the elastic variables. This is easily done by adding 
constraints requiring that every elastic variable be less than some value β, and sub-
stituting the objective function min β. Sadegh reports good results on a number of 
test problems. 
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7.5 Two-Phase Relaxation-Based Heuristic 

formulation (Sec. 7.1.1) often results in numerical difficulties for large models, 
but works well when the problem is small or moderate in size. This observation 
leads them to develop an interesting two-phase algorithm. In the first phase, a heu-
ristic is applied to isolate a feasible subset, which is then frozen. In the second 
phase, the exact big-M MIP or other methods are used to expand the initial feasi-
ble set as much as possible. This has the pleasing feature of reducing the size of 
the problem in the second phase sufficiently that a big-M MIP can be effective. 
The success of the method hinges on the pairing of the methods applied in the two 
phases. 

bounded, which is easily transformed into a version in which all variables are 
nonnegative and upper-bounded. It is also straightforward to adapt the method for 
general linear constraints. 

The most important new first phase heuristic is a linearization of the exact 
nonlinear bilinear formulation of the MAX FS problem seen in Sec. 7.1.2. This uses 
a substitution of the new variable zij for the bilinear terms yi xj, with further 
restrictions added so that zij is a closer approximation of yi xj. The resulting 
linearization is: 
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An optimum solution to this model does not guarantee that the yi variables, 
which are binary in the original LPEC formulation, will all have binary values. 
However it does provide a reasonable heuristic for identifying a large feasible sub-
system, i.e. all of those constraints for which yi = 1 are satisfied at the resulting 
point x. 

relaxation described above, as well as for a linear relaxation of the big-M MIP 
formulation, the inequalities for which y i < 1 in the solution are not always 
inconsistent with those for which yi = 1. This means that the feasible subsystem 
returned by the relaxation can possibly be augmented by further constraints, and 
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Amaldi et al. (2007) observe that the exact solution for MAX FS using a big-M MIP 

Amaldi et al. develop the method for the case in which all variables are 

The important observation made by Amaldi et al. (2007) is that for the linear 



this is where the second phase of the two-phase method comes into play. Note, 
though, that it is equally true that some of the constraints for which yi = 1 in the 
relaxation solution may not belong to any maximum feasible subsystem, i.e. are 
wrongly included in the first phase feasible subsystem when the goal is to find a 
maximum cardinality set. Since the feasible subsystem returned by the first phase 
solution is frozen, there is no way to remove these constraints later, even if it 
would allow a larger feasible subsystem to be constructed. 

The overall logic of the two-phase algorithm is summarized in Alg. 7.5. The 
output feasible subset consists of those constraints for which yi = 1 in the first 
phase solution plus those constraints identified during the second phase procedure. 

 
INPUT: an infeasible set of linear inequalities. 
First Phase: 
 1. Solve a relaxation of MAX FS to obtain a solution y. 
 2. I1←{i: yi = 1, i = 1 … m} 
Second Phase: 
 3. Solve an exact formulation of MAX FS in which yi = 1 is fixed for all i∈ I1. 
OUTPUT: a feasible subset. 

The authors apply their two-phase method, written in the AMPL language 

formulation is always used for the reduced-size second phase problem, various 
methods are used for the first phase: 

A linearization of the big-M formulation. 
The linearization of the bilinear LPEC formulation described above. 
An ordinary LP phase 1 procedure (see Sec. 7.3). 

The two-phase variations are compared with several complete methods: 

A re-implementation of Chinneck’s first SINF-reducing algorithm (Alg. 7.3) 
in AMPL. 
A branch-and-cut algorithm (Pfetsch 2002). 
A combinatorial Bender’s cut algorithm (Codato and Fischetti 2004). 

These methods are compared over a variety of random models as well as mod-
els derived from linear classification and machine learning instances and problems 
arising in digital video broadcasting. Different methods dominate in the different 
test sets, and various tradeoffs between solution speed and accuracy are seen. 

For the complete methods, a straightforward application of the big-M MIP ex-
act formulation to the entire problem is not able to reach optimality for very large 
models, as expected. However it frequently reaches a very good incumbent solu-
tion within the imposed time limits, which can then be used as a heuristic solution. 
The branch-and-cut method provides excellent results on the random test set, the 
only set to which it is applied. The combinatorial bender’s cut algorithm performs 
very well on the single test set to which it is applied, though it fails completely on 
several of the larger instances. The SINF-reducing algorithm (Alg. 7.3) performs 
very well throughout most of the tests, though it times out on several of the ex-
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(Fourer et al. 2003) over several combinations of methods. While the exact big-M 
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Alg. 7.5. Overall logic of the two-phase relaxation-based heuristic (Amaldi et al. 2007) 



tremely large digital video broadcasting problems whereas the two-phase methods 
and the exact big-M method are able to reach heuristic solutions at an incumbent 
before timing out. 

The size of the feasible system produced during the first phase varies according 
to the method applied. The big-M relaxation gives the largest feasible subsystems 
for the random instances and some of the machine learning instances, but is domi-
nated by the other two methods in some of the other test sets. It’s an open question 
as to whether it is better to find a larger rather than a smaller feasible subsystem 
during the first phase. A small first-phase feasible subsystem gives the exact algo-
rithm more room to maneuver during the second phase, but by the same token 
may make the second phase problem too large for exact solution. The true test is 
in the result returned after the completion of the second phase algorithm. 

Generally speaking, the two-phase method with a bilinear relaxation first phase 
provides the best results over all of the data sets, though the SINF-reducing algo-
rithm (Alg. 7.3) outperforms on the small classification dataset. The two-phase 
method with big-M relaxation first phase provides results that are almost as good 
as those produced by the bilinear first phase method, but is also much faster. The 
two-phase method with ordinary LP phase 1 first phase is dominated.  

7.6 Randomized Thermal Relaxation Algorithms 

systems of linear inequalities. More specifically, because the systems that they 
consider are so large (up to tens of millions of inequalities) they are content with 
solutions that are simply large feasible subsystems when it is not possible to ob-
tain the true MAX FS. The randomized thermal relaxation (RTR) algorithm de-
scribed in this section can be considered as a heuristic phase 1 procedure that tries 
to maximize the number of satisfied inequalities. 

randomized variants of projection algorithms (see Sec. 2.8) to iteratively attempt 
to satisfy as many of the inequalities as possible. When the algorithm halts, the set 
of constraints currently satisfied constitutes the approximate solution to MAX FS. 
The projection variant they use is based on the thermal perceptron heuristic (Frean 
1992) which iteratively relaxes all violated inequalities except for one, while mov-
ing orthogonally to the selected constraint to reduce its violation. This is similar to 

the selection of the constraint to consider and the decision to accept an update. De-
tails follow. 

Constraints are of the form aix ≥ bi, i = 1…m. At iteration i, constraint ki is cho-
sen randomly, and the current point xi is updated as follows: 

ikiii axx η+=+1 with 
probability pi > 0 if constraint ki is violated, or xi+1 = xi otherwise. The randomized 
acceptance of an update is similar to the basic method in simulated annealing 
(Kirkpatrick et al 1983), and along with the random selection of a constraint for 
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Amaldi et al. (2005) consider the problem of solving MAX FS for extremely large 

The approach taken by Amaldi et al. (2005) for these very large models is to use 

a sequential projection algorithm (Censor et al. 2001), but with randomization in 

update helps avoid roundoff difficulties. The thermal variant gradually shifts 



straints with small violations as the updating process proceeds, with the idea that 
as much feasibility as possible should be retained near the end of the process, 
rather than continually concentrating on very large updates which can seriously af-
fect the number of violated constraints. Here again we see the interaction between 
reducing the sum of the infeasibilities (i.e. SINF ) and the number of violations 
(NINF). 

The shift in attention from large to small constraint violations is controlled by a 
temperature schedule, another feature borrowed from simulated annealing. The 
temperature ti is a positive number that starts at a large value and gradually re-
duces, e.g. t0 = 1000, and ti+1 = ti × 0.0001. The update step length ηi is determined 
by the violation of the selected constraint vi = max{0, }ikk ii

b xa−  and the current 
temperature as follows: ii tvi

i e
t
t /

0

−=η i

near the start of the process, large violations yield large updates, but when ti is 
small near the end of the process, only small violations yield significant updates. 
The best solution xbest seen so far, in terms of the maximum number of satisfied 
constraints, is retained. After a preset number of iterations, xbest is returned as the 
approximate solution to MAX FS. Variations of these randomized thermal relaxa-
tion (RTR) methods are obtained by (i) changing the rule by which an inequality is 
selected for update (randomly, with or without replacement), (ii) changing the rule 
by which ηi is determined, and (iii) changing the rule by which pi is set. 

best al-
most surely solves MAX FS optimally after a finite number of iterations. The termi-
nation proofs use very long update sequences and very slow temperature decrease 
schedules, however empirical results are much better than might be expected from 
the proofs. Some modifications are implemented in practice: 

• After each cycle of m randomly chosen inequalities, t0 is reset as follows: 
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• The maximum number of iterations is preset and is used to reduce the tempera-

ture as follows: 01 t
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• When an update yields a new point in which some of the variables fall outside 
of their bounds, those variables are projected back onto the bounds before pro-
ceeding. 

• Good sub-optimal solutions are found by using a block-iterative update in 
which the update direction is given by a convex combination of the ak from the 
violated inequalities in the block. The block size is decreased as the iterations 
proceed. 

• A search is conducted along the line segment between xi and xi+1 to find the 
point that satisfies the most constraints. 

. Using this relationship, when t  is large 
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attention from selecting constraints with large violations towards selecting con-

Amaldi et al. (2005) provide probabilistic termination guarantees that x



• When there has been no improvement for a predetermined number of iterations, 
a local search is conducted by altering the values of individual variables to sat-
isfy more constraints. This can also be done in a grouped manner. 

• A preprocessing step similar to an LP presolve is applied to identify constraints 
that cannot be satisfied within the current variable bounds, constraints that are 
always satisfied within the current variable bounds, and variables that can be 
fixed to their upper or lower bounds (possibly with suitable changes to b). 

network planning, protein folding potentials, and discriminant analysis. They 
compare their RTR method to a big-M based MIP solution (see Sec. 7.1.1) using 
Cplex 8.1 (Ilog 2006). The value of M is easily determined from the problem, but 
is very large, which negatively impacts the MIP approach due to numerical 
difficulties. A two hour time limit is imposed on the MIP solutions. Despite the 
generous time allowed for the MIP solutions, Cplex is able to solve only relatively 
small instances, and RTR performs about as well as Cplex over these small 
instances. Over the larger instances, Cplex is generally not able to complete at all 
within two hours, though it occasionally returns a first solution within that time. 
RTR, on the other hand generally returns high quality solutions very quickly, and 
occasionally improves these somewhat if given more computation time. 

six large feasible instances having 200,176 to 401,115 inequalities and 301 variables. 
RTR is able to satisfy almost all constraints within a relatively short time (less than 75 
seconds in all cases, usually closer to 30 seconds on a 2.8 GHz PC). The number of 
unsatisfied constraints is very small in most cases, ranging between 0 and 6, with 
an average of 2.5 unsatisfied inequalities over the 6 instances. 

for 5000 iterations, at which point a MIP is formulated in which only the currently 

This MIP is then solved to optimality. This is a two-phase algorithm (Sec. 7.5) in 
which the first phase is solved by RTR. The results are again very promising, with 
the hybrid method producing near-optimal results in just a few seconds in most 
cases. The results are compared to both Cplex and a new Combinatorial Bender’s 
Cuts method (Codato and Fischetti 2004). The latter method proves slightly better 
overall, but uses the entire two-hour time limit on several of the instances. 
Instance sizes are relatively small in these experiments: 169 to 1066 inequalities. 

The randomized thermal relaxation methods are an excellent approach for heu-
ristically solving MAX FS for very large sets of linear inequalities. 

7.7 An Interior-Point Heuristic 

large sets of linear inequalities that makes use of the properties of interior-point 
LP solvers. Specifically, for a null objective function, interior point algorithms 
find a point near the analytic centre of a set of linear inequalities, i.e. the point that 
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Amaldi et al. (2005) report on experiments in digital video broadcasting 

In an interesting experiment, Amaldi et al. also apply their RTR algorithm to a set of 

unsatisfied constraints have the possibility of relaxation via the inclusion of a big-M. 

Meller et al. (2002) develop an approximate solution for MAX FS for extremely 

In a third experiment, Amaldi et al. apply a hybrid method in which RTR is run 
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)ln( xa  where there are m inequality constraints of the form 

i i
away from the satisfied constraints and generally towards the centre of a polytope. 
Note that the final point reached is affected by the extra push from redundant con-
straints, so it may not be near the geometric centre of a polytope. 

operates as follows. First obtain an initial solution x0, which will satisfy some sub-
set P(x0) of the inequality constraints in this infeasible system. For the protein 

0
tical potentials, but may be more difficult to obtain in other contexts. The success 
of the method depends greatly on a good choice of x0. Next, find the analytic cen-
tre of the subset of constraints P(x0) and denote this by x1. The analytic centre will 
necessarily satisfy all of the constraints in P(x0), and may satisfy a number of ad-
ditional constraints; this possibly larger set of constraints satisfied at x1 is denoted 
by P(x1). Now iterate the process, finding a new analytic centre for P(xk) and de-
noting this as xk+1, halting the iterations when P(xk) = P(xk+1). 

ing from protein folding problems. In one problem with 627,567 inequalities, the 
method progresses from an initial guess that violates 57,211 constraints to violat-
ing 6,800 constraints after the first analytic centre is found, and finally to 1,928 
violated constraints when the method converges. Two different methods of gener-
ating the initial solution are used, based on knowledge of the application. One 
method gives better results than the other, but in both cases there is a significant 
increase in the size of the feasible subset as the algorithm iterates. The authors 
note that it can require up to 15 analytic centre solutions before the method con-
verges, each solution requiring several minutes of workstation time. In their im-
plementation, each analytic centre solution is independent, without the benefit of a 
warm start for the interior point solution. 

 
 
This approach is reminiscent of the bootstrapping method for achieving 

feasibility for sets of nonlinear constraints as outlined in Sec. 5.3. 

7.8 Working with IIS Covers 

An IIS cover is directly useful as a tool to focus the analytic effort, but it also has 
other applications. It can be used to quantify the importance of constraints relative 
to the infeasibility, and it can also be used as a basis for finding individual IISs. 
Details follow below. 
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The maximum feasibility guideline algorithm developed by Meller et al. (2002) 

Meller et al. (2002) test their method on several very large infeasible LPs result-

folding application of interest to Meller et al. x  is conveniently provided by statis-

a x ≤ b . This is a form of barrier function that tends to push the current iterate 



7.8.1 Single Member IIS Covers 

Small cardinality IIS covers are generally the most useful in focussing the analytic 
effort on the constraints that cause the greatest difficulties. However, an IIS cover 
having only a single member may not be especially helpful for two reasons. If the 

member set cover, so the single-member IIS cover focuses inappropriately on a 
random member of the IIS. The same problem of possibly misleading focus ap-
plies when there are IISs overlapped on a common subset of constraints, each of 
which is a candidate for an IIS cover of cardinality 1.  

What needs to be determined is the complete set of single member IIS covers. 
If given a complete IIS in addition, it is then easy to determine whether there is 
only a single IIS, or whether there are overlapped constraints. Alg. 7.6 outlines a 
procedure first used in LINDO (Schrage 1991). The members of the IIS are la-
belled either “necessary” (i.e. necessary to the IIS) or “sufficient” (i.e. sufficient to 
remove all infeasibility in the model). “Sufficient” constraints are single member 
IIS set covers. 

 
INPUT: Constraints defining an infeasible model. 
1. Find an IIS. 
2.  FOR each member of the IIS: 
  Temporarily remove the current member from the model. 
  Test feasibility of the reduced model via solution of phase 1 LP. 
  IF the reduced model is feasible, label the current member “sufficient”. 
  ELSE (reduced model infeasible), label the current member “necessary”. 
  Return the current member to the model. 
OUTPUT: An IIS with all members labelled “necessary” or “sufficient”. 
 
Alg. 7.6. The IIS member labelling scheme 
  
Alg. 7.6 has some useful properties, as described in the following theorems. 
Theorem 7.3: Single IIS (Chinneck 1997a). All of the IIS members are labelled 

“sufficient” by Alg. 7.6 if and only if there is only a single IIS in the model. 
Proof: If there is another IIS in the model that does not overlap with the 

original IIS, then none of the members of the original IIS will be labelled 
“sufficient” since none of them can eliminate all of the infeasibility in the model. 
If there are other IISs in the model which overlap the original IIS, then some of 
the members of the original IIS will be labelled “necessary” rather than 
“sufficient” (recall that it is impossible to have a subset of an IIS that is itself 
infeasible since IISs are irreducible). Hence all members of the IIS are labelled 
“sufficient” if and only if there is only a single IIS in the model. ■ 

Corollary 7.4: Overlapped IISs (Chinneck 1997a). Alg. 7.6 labels some of the 
IIS members “sufficient” and some “necessary” if and only if there is a single 
cluster of IISs with some elements common to all IISs in the cluster. 

Proof: As in Theorem 7.3, if there is another IIS in the model that does not 
overlap with the original IIS, then none of the members of the original IIS will be 

model contains just a single IIS, then any member of the IIS forms a single-
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labelled “sufficient” since none of them can eliminate all of the infeasibility in the 
model. Hence there is only a single cluster of IISs that overlaps on the “sufficient” 
members. And since some members are labelled “necessary” (because their re-
moval does not eliminate all of the infeasibility) there must be other IISs in the 
model. ■ 

If some constraints are labelled “sufficient” and some are labelled “necessary”, 
then additional information is obtained because the “sufficient” members are more 
probably incorrect than the “necessary” members. 

Algorithm 7.6 can be used when the set cover cardinality is greater than one by 
first applying Alg. 7.7 (described below) to create subsets of the model in which 
the set cover cardinality is one. Thm. 7.3 and Corollary 7.4 can then be used to 
extract additional information about the infeasibility. 

If Alg. 7.6 is applied to the first IIS isolated, without knowledge of the set 
cover cardinality, it can give some idea of the set cover cardinality by using 
Thm.7.3 and Corollary 7.4. 

Theorem 7.5: Set cover cardinality of 1 (Chinneck 1997a). The minimum IIS 
set cover cardinality is one if and only if any member of the IIS is labelled 
“sufficient” by Alg. 7.6. 

Proof: If the removal of any constraint in the model eliminates all of the infea-
sibility, then it is a set cover, by definition. Further, since it has cardinality one, it 
must be of minimum cardinality (see Observation 7.2). ■ 

Corollary 7.6: Set cover cardinality >1 (Chinneck 1997a). No members of the 
IIS are labelled “sufficient” if and only if the minimum IIS set cover cardinality is 
greater than one. 

Proof: If no members of the IIS are labelled “sufficient”, then no single 
constraint is able to eliminate all of the infeasibility in the model. Hence the 
minimum set cover cardinality must be greater than one. ■ 

7.8.2 Finding Specific IISs Based on IIS Covers 

In repairing an infeasible LP, it is very helpful if one IIS covered by each member 
of the cover set is found. This is simple to do if the covering algorithm is 
operating on a list of IISs, even if the list is incomplete, as in Parker and Ryan’s 
method or the constraint frequency heuristic. Otherwise, a simple algorithm due to 
Chinneck (1996c) can be used when the set cover is provided by a method which 
does not first list IISs. See Alg. 7.7. 
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INPUT:  (i) Constraints defining original infeasible model, (ii) IIS cover. 
FOR each member of IIS cover: 
  Eliminate all members of IIS cover except the current member. 
  Test feasibility via solution of phase 1 LP. 
  IF the reduced model is feasible THEN: 
   Issue message and remove current member from IIS cover. 
  ELSE (reduced model is infeasible): 
   Isolate and report an IIS having few rows. 
  Reinstate all members of IIS cover. 
OUTPUT: One IIS for each member of (possibly reduced) IIS cover. 
 
Alg. 7.7. Finding one IIS for each member of the IIS set cover 
 

Alg. 7.7 will sometimes identify constraints which have been added to the IIS 
cover in error. When all but one member of the cover are removed from the model 
and it becomes feasible, then it is obviously not necessary to remove the single 
remaining member as well in order to eliminate all infeasibility, hence the current 
member is not part of a minimal cover. 

Note that when all but one member of the cover are eliminated in Alg. 7.7, sub-
sets of the model are created in which the retained set cover member is a single 
member IIS set cover. 

The satisfiability community has taken a different approach to finding IISs based on 
IIS covers. Given the availability of efficient solvers for the maximum satisfiability 
(MAXSAT) problem (see Sec. 4.1), Liffiton and Sakallah (2005) first generate the 
complete set of IIS covers, and then use this set to generate the complete set of IISs. To 
generate the complete set of IIS covers, they allow the maximum satisfiability solver 
to eliminate at most k constraints while seeking a feasible solution for all constraints 
that remain. Of course, each maximum satisfiability solution yields an associated IIS 
cover. All covers at some value k are found by adding constraints that block out 
solutions already found. k is incremented from an initial value of 1 until no more IIS 
covers can be found. 

Now a second algorithm is applied to generate a single IIS from the complete 
set of IIS covers, as shown in Alg. 7.8. It operates on the principle that every 
member of every IIS must be in some IIS cover in the complete set. At each itera-
tion the algorithm chooses a particular cover and a constraint from that cover is 
added to the IIS that is being constructed. It then removes the constraints from the 
set of covers to make sure that in later steps we will only find IISs that contain the 
chosen constraint. The process repeats until a single IIS has been constructed, 
which is signalled by the emptying of the list of IIS covers. The main idea is that a 
minimal cover of the cover sets is an IIS. 
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INPUT: COVERS, the complete set of IIS covers in the model. 
0. IIS=∅ 
1. WHILE COVERS ≠ ∅: 
 1.1 CurrentCover ← select a cover in COVERS. 
 1.2 Constraint ← select a constraint in CurrentCover.  
 1.3 IIS ← IIS ∪ constraint. 
 1.4 Remove all constraints in CurrentCover\Constraint from  
  all covers in COVERS. 
 1.5 Remove all covers in COVERS that contain Constraint. 
2. Return IIS. 
OUTPUT: a single IIS. 
 
Alg. 7.8. Finding a single IIS given the complete set of IIS covers (Liffiton and Sakallah 
2005) 

 
An example follows. Suppose the model contains the IISs {A,B,C}, {C,D,E} 

and {F,G,H}, then the complete set of IIS covers is {A,D,F}, {A,D,G}, {A,D,H}, 
{A,E,F}, {A,E,G}, {A,E,H}, {B,D,F}, {B,D,G}, {B,D,H}, {B,E,F}, {B,E,G}, 
{B,E,H}, {C,F}, {C,G}, {C,H}. The algorithm proceeds as follows: 

• Step 1.1: Select cover {A,D,F}. 
• Step 1.2: Select constraint A. 
• Step 1.3: IIS ←{A}. 
• Step 1.4: Eliminate constraints D and F from all covers. COVERS ←{ {A}, 

{A,G}, {A, H}, {A, E}, {A, E, G}, {A, E, H}, {B}, {B,G}, {B, H}, {B, E}, {B, E, G}, {B, E, H}, {C}, 
{C,G}, {C,H} }. 

• Step 1.5: Eliminate all covers containing constraint A. COVERS ←{ {B}, 
{B,G}, {B,H}, {B,E}, {B,E,G}, {B,E,H}, {C}, {C,G}, {C,H} }. 

• Step 1.1: Select cover {B,E,G}. 
• Step 1.2: Select constraint B. 
• Step 1.3: IIS ←{A,B}. 
• Step 1.4: Eliminate constraints E and G from all covers. COVERS ←{ {B}, 

{B}, {B,H}, {B}, {B}, {B,H}, {C}, {C}, {C,H} }. 
• Step 1.5: Eliminate all covers containing constraint B. COVERS←{ {C}, {C}, 

{C,H} }. 
• Step 1.1: Select cover {C}. 
• Step 1.2: Select constraint C 
• Step 1.3: IIS ←{A,B,C}. 
• Step 1.4: COVERS ←{ {C}, {C}, {C,H} }. 
• Step 1.5: Eliminate all covers containing constraint C. COVERS ← ∅. 
• Step 2: Return {A,B,C}. 

There is also an effort to use Alg. 7.8 to generate all IISs in the model, basically 
by branching to reorder the choices made in Steps 1.1 and 1.2 of Alg. 7.8. Given 
that the number of IISs is potentially exponential, this is not an efficient approach. 
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Bailey and Stuckey (2005) also find IISs by operating on the set of IIS covers, 
but they do not assume that the complete set of IIS covers is provided in advance. 
Their dualize and advance heuristic instead finds IIS covers one by one using the 
grow algorithm mentioned at the beginning of this chapter. Set covers of the par-
tial set of IIS covers are found as the algorithm proceeds. Again, this algorithm is 
only practical in where a fast method for finding maximum feasible subsystems is 
available, as in the MAXSAT context. 

7.9 The Minimum Number of Feasible Partitions Problem 

Amaldi and Mattavelli (2002) propose a generalization of the MAX FS problem, 
which they designate the minimum number of feasible partitions problem (MIN PFS): 
given a possibly infeasible system of linear constraints, find a partition of this 
system into a minimum number of feasible subsystems. In the previous part of this 
chapter we have considered the separation of an infeasible system of linear 
constraints into two partitions: the MAX FS set and the MIN IIS COVER (equivalently, 
MIN ULR) set. Note that it is possible that the MIN IIS COVER set is itself infeasible, 
hence further partitioning may be needed to solve the MIN PFS problem. MIN GRAPH 
COLOURING is a special case of MIN PFS. 

William Pulleyblank and others showed that any set of linear inequalities Ax ≥ b 
can be partitioned into two sets that are both feasible. The proof is provided by 
Greenberg (1996a) in the following theorem. 

Theorem 7.7: MIN PFS cardinality for linear inequalities (Greenberg 1996a, 
Theorem 18). Suppose a set S of linear inequalities is inconsistent. There exists a 
partition of S, say S’∪S” such that S’ and S” are each consistent and S’ is a maxi-
mal consistent subsystem (in which case X(S’)∩X(S”) = ∅). 

Proof: Construct a line that intersects each hyperplane, Hi = {x|aix = bi} where ai ≠ 0 
for each i. Totally order the points along the line; rename and reorder so that xi is the 
point on Hi. Now initialize S’={a1x ≥ b1} and continue to add ai x ≥ bi to S’ as long as 
ai xk ≥ bi for all k < i. The first time this fails, initialize S”={ai x ≥ bi}. For each i > 
k, the halfspace X({ai x ≥ bi}) intersects either X(S’) or X(S”), so the inequality can 
be added to S’ or S” respectively. Test first if S’∪{ai x ≥ bi} is consistent and if so 
add this inequality to S’. It then follows that all inequalities not in S’ are precisely 
those whose augmentation renders inconsistency. This means that S’ is a maximal 
consistent subsystem (and that X(S’)∩X(S”) = ∅). ■ 

Note that Thm. 7.7 applies only when all of the constraints in the model are 
linear inequalities. It does not apply when equalities are included. Consider, for 
example, a set of three or more parallel and separated hyperplane equality 
constraints. Now the cardinality of the MIN PFS solution is equal to the number of 
hyperplanes. For similar reasons, Thm. 7.7 also does not apply in the case of 
hyperslabs, pairs of complementary inequalities that define a slab in hyperspace, 
when the pairs must be handled together (i.e. both satisfied in the same partition). 
This is important in the sequel. 
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Amaldi and Mattavelli (2002) raise MIN PFS in the context of a particular application 
in estimating piecewise linear models (see Sec. 11.8). The goal is to model a set of 
noisy data points with a small number of linear pieces. Each known point di in j di-
mensions can be transformed into an equation of the form Σjdijwj = w0, where w is the 
vector of variables w1,w2…wn and w+ is w augmented with w0. It is then possible to 
solve a MIN PFS problem to find the smallest number of piecewise linear sections to 
model the data, but the noise in the data means that there will be an unnecessarily large 
number of linear sections. To handle the noise in the data points, each point is instead 
rendered as a pair of complementary inequalities defining a slab of limited thickness in 
n-space: diw ≤ w0 + ε and diw ≥ w0 –ε. This defines a slab of width 2ε, where ε may 
not be identical for all pairs of complementary inequalities. After the heuristic MIN 
PFS solution, each partition is feasible, so each partition allows a solution for the 
variables in w+. This defines a slab that contains all of the data points whose corre-
sponding pairs of complementary inequalities are satisfied in the partition. 

Amaldi and Mattavelli (2002) propose a greedy heuristic for the MIN PFS solu-
tion over the pairs of complementary inequalities. It first finds a close-to-
maximum feasible subsystem (feasible subsystem containing a close-to-maximum 
number of pairs of complementary inequalities), and the complementary close-to-
minimum cardinality set of removed pairs of complementary inequalities, for the 
original set of complementary inequalities. The process is then repeated on the set 
of removed complementary inequalities. This cycle continues until the final set of 
removed complementary inequalities is itself feasible. In this way the system is 
subdivided into a small number of feasible partitions. Empirical results for the 
piecewise linear modelling application are very good where the MAX FS subprob-
lems are solved by a randomized thermal relaxation algorithm (see Sec. 7.6). 

The same general greedy approach can be applied in the more general case that 
does not feature slabs defined by pairs of inequalities. Simply recursively solve 
MAX FS until the MIN IIS COVER partition is itself feasible. This approach is clearly 
not guaranteed to solve MIN PFS exactly, as Amaldi and Mattavelli (2002) show in 
this example: A: x1 + x2 = 0, B: x1 − x2 = 0, C: x2 = 1, D: x2 = 2. The cardinality of 
MAX FS for this system is two. There are five feasible systems: A and B are satis-
fied at (0,0), B and C are satisfied at (1,1), B and D are satisfied at (2,2), A and C 
are satisfied at (−1,1), and A and D are satisfied at (−2, 2). If the greedy algorithm 
finds {A,B} as the first MAX FS solution, then it will return a cardinality 3 MIN PFS 
solution, even though a solution of cardinality 2 exists, e.g. {B,D} and {A,C}. Of 
course the MAX FS subproblems can be solved by any suitable method. 

problem and the same greedy approach, though they approach it by looking sepa-
rately at systems composed entirely of equalities, and systems composed entirely 
of inequalities. They show that the problem is NP-hard for systems composed en-
tirely of equalities. 

Bemporad et al. (2005) improve on the greedy algorithm in the context of 
solving a problem of identifying piecewise affine models of discrete-time 
nonlinear and hybrid systems from input-output data. They alter the greedy 
algorithm by allowing a degree of backtracking to see whether solutions 
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Murty et al. (2000) outline the same minimum number of feasible partitions 



developed for later partitions might provide better solutions at earlier stages of the 
process.  

The main algorithm developed by Bemporad et al. (2005) is summarized in 
Alg. 7.9. U is the entire set of complementary inequalities in the original infeasible 
system; Uk is the set of complementary inequalities addressed by the k th MAX FS 
heuristic solution. Sk is the set of complementary inequalities satisfied by the slab 
solution w+

k for the kth feasible partition. Hence Uk=U \{S1∪S2∪…∪Sk-1}. Note 
that the sets Sk and Uk may be changed as the algorithm backtracks. 

The main idea in Alg. 7.9 is that the slab solution developed at some stage k 
may actually provide a better solution at some earlier stage d than the solution 
originally returned for stage d. In this case (Step 7.3) the algorithm backtracks to 
stage d and replaces its solution with the solution for stage k, then resumes from 
stage d. This helps mitigate the greedy aspect of the original algorithm by Amaldi 
and Mattavelli. 

Bemporad et al. use a variation of the Randomized Thermal Relaxation algo-
rithm (Sec. 7.6) to solve the individual MAX FS problems. Their variation is spe-
cifically designed to improve performance in solving the MIN PFS problem. The 
main idea is that if the number of cycles in the RTR algorithm becomes too high, 
then the current best solution w+

best (i.e. the solution seen so far that satisfies the 
most pairs of complementary inequalities) is replaced by an improved version 
over the same set of satisfied constraints. The improved solution is obtained by 
solving for the l∞ projection norm over the set D of points contained within the 
w+

best slab. The l∞ projection norm is defined as ||maxminarg 0, 0

wd
w iDw

w − , which 
+

terline of the slab is minimized. This is found by solving a linear programming 
problem. The l∞ projection norm is used because it has favourable properties in a 
later refinement procedure that works with data points that satisfy more than one 
of the linear models to try to assign them to a single model. However Bemporad et 
al. mention that different measures could be used to return an improved model for 
the set, including least squares. 

Where the maximum number of RTR cycles is C, recalculation of w+
best is 

carried out for all cycles above 0.7C or 0.8C. This value was determined 
experimentally. 

Bemporad et al. (2005) carry out a set of experiments to compare their 
modified algorithm (both the RTR modifications and the backtracking heuristic in 
Alg. 7.9) with the original RTR (Sec. 7.6). The experiments use randomized data 
generated in such a way that the minimum number of feasible partitions is known 
a priori to be 4. Over repeated trials, the original RTR algorithm generates an 
average of 18 feasible partitions, with a range of 12 to 22, and a high variance. 
Bemporad et al.’s modified algorithm generates an average of 5 feasible partitions, 
with a range of 4 to 7, and low variance. It is also interesting that there are very 
few points in any partitions beyond the 4th one. 
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has the effect of setting w  so that the distance from the farthest data point to the cen-



INPUT: an infeasible set of complementary inequalities U. 
0. k ← 0; S1,S2,S3… ← ∅ 
1. k ← k + 1 
2. Uk ← U \{S1∪S2∪…∪Sk-1}. 
3. IF Uk = ∅ THEN: 
  3.1 k ← k – 1  
  3.2 Exit. 
4. w+

k ← slab equation returned by heuristic MAX FS solution for Uk. 
5. Sk ← {all constraints in Uk satisfied by slab w+

k}. 
6. d ← 1 
7. WHILE d < k DO: 
  7.1 Ud ← U \{S1∪S2∪…∪Sd–1} 
  7.2 Nkd ← number of constraints in Ud satisfied by slab w+

k. 
  7.3 IF Nkd > |Sd| THEN: 
   7.3.1 w+

d ← w+
k 

   7.3.2 Sd ←{all constraints in Ud satisfied by slab w+
d} 

   7.3.3 k ← d 
   7.3.4 Go to Step 1. 
  7.4 d ← d+1 
8. Go to Step 1. 
OUTPUT: k feasible partitions with slabs w+

1… w+
k.  

 
Alg. 7.9. Backtracking greedy algorithm for MIN PFS (Bemporad et al. 2005) 
 

Once a heuristic solution for MIN PFS has been found, Bemporad et al. (2005) 
add a final refinement stage. This stage allows partitions to be merged, discarded, 
and updated. It also handles undecidable points that are contained within more 
than one partition slab. The main steps are summarized in Alg. 7.10. The 
algorithm begins (Step 0) by calculating the best slab equation for each partition 
using the l∞ projection norm. In Step 1, partitions whose slab equations are too 
similar (as measured by the ratio of matrix norms) are merged, and replaced by a 
new slab equation. α is a user-specified control parameter. Partitions may also be 
discarded in Step 3 if their slab contains too few data points. β is a user-specified 
control parameter. 

Step 4 deals with the undecidable points. The user-specified control parameter 
c sets the number of nearest-neighbour feasible points to use in the decision. The 
undecidable point is assigned to the partition whose slab contains the most near-
est-neighbour feasible points, provided it is contained in the slab associated with 
that partition. It is possible that an undecidable point will retain its undeciable 
status after this process. 

It is also possible that the process will terminate with some points still in the in-
feasible category. If an infeasible point is far from any feasible slab, then Bempo-
rad et al categorize it as an outlier that should be ignored. 

Note that there is a considerable literature on other approaches to solving the 
piecewise linear model estimation problem, and it is certainly possible that some 
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of those other approaches can be adapted to solving the MIN PFS problem. Note 
particularly the literature on PieceWise affine AutoRegressive eXogenous 
(PWARX) models. See Juloski et al. (2005) for a comparison of four procedures 
for this problem, including the method by Bemporad et al. 

7.10 Partial Constraint Satisfaction in Constraint 
Programming 

In an overconstrained constraint satisfaction problem, not all of the constraints can 
be satisfied simultaneously. This is addressed in 3 different ways in constraint 
programming: the 
straints. 

true/false values for the Boolean literals such that the largest number of clauses is 
satisfied. This is directly analogous to the problem of finding the maximum feasi-
ble subset of constraints that is the subject of this chapter. The Boolean literals are 

(A∨B)∧(¬A∨C∨D)∧(¬B∨¬D)∧(¬C). The conversion of a Boolean satisfiability 
problem to a binary integer programming problem is well-known and direct: 

 
clause in Boolean variables constraint in binary variables 
A∨B A + B ≥ 1 
¬A∨C∨D (1– A) + C + D ≥ 1 → –A + C + D ≥ 0 
¬B∨¬D (1–B) + (1– D) ≥ 1 → –B–D ≥–1 → B + D ≤ 1 

¬C (1– C) ≥ 1 → –C ≥ 0 → C ≤ 0 
 

 This implies that the maximum feasible subset problem can be attacked for certain 
binary integer programming problems by converting them to Boolean satisfiability 

way: de Givry et al. (2003) examine a number of options for solving the weighted 
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equivalent to binary variables, and the clauses are equivalent to constraints. 
Consider the example Boolean satisfaction problem given in Sec. 4.1: 

MAXSAT problem, partial constraint satisfaction, and soft con-

As described in Sec. 4.1, the MAXSAT problem consists of finding a set of 

problems and applying MAXSAT solution algorithms. This can also go the other 

MAXSAT problem, including converting it for solution by a standard MIP solver. 



INPUT: a heuristic solution for MIN PFS consisting of s partitions. 
0. Calculate the best slab model w+

i for each partition using the  
 l∞ projection norm. 
1. Merge partitions: 

 1.1 Find partitions i and j such that 
},min{

),(
++

++
++

−
=

ji

ji
ji

ww

ww
wwμ   

  is minimized. 
 1.2 IF αμ ≤++ ),( ji ww , THEN merge the data points associated  
  with each partition into a new partition. 
 1.3 Calculate the new slab for this partition using the l∞ projection norm. 
 1.4 s ← s – 1. 
2. Data point reassignment: 
 2.1 FOR each data point dk: 
  2.2 Select case: 
   a. IF dk is contained within the slab associated with exactly one  
    partition, THEN assign it to that partition and mark as feasible. 
   b. IF dk is contained within the slab associated with more than one  
    partition, THEN mark as undecidable. 
   c. ELSE mark dk as infeasible. 
3. Discard partitions: 
 3.1 Find partition i whose associated slab contains the smallest  
  number of points. 
 3.2 IF (data points contained in slab for partition i)/(total number of   
  data points) ≤ β THEN discard partition i. 
 3.3 s ← s – 1. 
 3.4 Go to Step 2. 
4.  Assign undecidable data points: 
 4.1 For each undecidable point dk: 
  4.1.1 Find the c closest feasible points to dk. 
  4.1.2 Identify the partition i to which the greatest number    
    of the c closest feasible points belong.  
  4.1.3 IF dk is within the slab associated with partition i 
    THEN assign dk to partition i and mark it as feasible. 
5. Update parameters: 
 5.1 Calculate (w+

i)best for each partition using the l∞ projection norm. 
6. Termination: 
 6.1 IF ||(w+

i)best – w+
i|| ≤ γ||w+

i|| for all i = 1…s, THEN exit. 
 6.2 w+

i ← (w+
i)best for all i = 1…s. 

 6.3 Go to Step 1. 
OUTPUT: s partitions with associated slabs (w+

i)best for i = 1…s. 
 
Alg. 7.10. Partition refinement (Bemporad et al. 2005) 
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Freuder and Wallace (1992) raise the idea of partial constraint satisfaction. 
Their main goal is to find values for a subset of the variables such that a subset of 
the constraints is satisfied. One obvious goal is to find variable values such that a 
maximum number of constraints are satisfied. Mechanisms used include branch 
and bound, and more efficient use of the search tree via backjumping, backmark-
ing, arc-consistency, forward checking, and other techniques. Constraints can also 
be assigned an order, with constraints added to the set in the given order, stopping 
when infeasibility is reached. As well, constraints can be assigned a weight or 
strength, which implies an order. Again, constraints are added to the set in de-
creasing order of strength, with ties among constraints of identical strength being 
broken in various ways. The idea of partial constraint satisfaction gave rise later to 
the concept of soft constraints that are not necessarily satisfied at the solution, 
unlike hard constraints that must be satisfied; the same idea under the same name 
is also seen in the context of multi-objective programming in optimization (see 
Sec. 9.3). 

Meseguer et al. (2003) summarize the state of the art in solving over-constrained 
constraint satisfaction problems. The techniques are similar to those found in the 
optimization literature for finding the best solution for an infeasible model or for a 
multi-objective program, including fuzzy and probabilistic approaches (see Sec. 
8.1.5), lexicographical ordering (see Sec. 9.3), weighting methods, and 
hierarchical approaches. Meseguer et al. recognize that solving an overconstrained 
constraint satisfaction problem in the “best” way amounts to an optimization 
problem, and hence various optimization techniques are also employed; we will 
return to this theme in Chap. 8. In addition, various constraint programming 
techniques have been modified to deal with soft constraints. See also Petit et al. 
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(2000). Research in constraint programming techniques to deal with soft cons- 
traints is ongoing. 



8 Altering Constraints to Achieve Feasibility 

Chapters 6 and 7 present two different approaches for analyzing infeasible 
systems of constraints. Both try to discover useful information about the system 
(an IIS or a maximum feasible subsystem) that the modeler can use to correct the 
model. However it is possible to approach the analysis in a completely different 
way by asking this question: what is the smallest adjustment to the constraints in 
the model that will render if feasible?  

Most available methods in this category address only infeasible linear systems, 
though at least one method can be applied to nonlinear systems. The methods di-
vide into two broad classes: those that only consider shifting the constraints via a 
change to the right hand side constant (i.e. a parallel translation of the constraint), 
and those that consider the much harder problem of finding the minimum change 
to all of the constraint coefficients, including both the constraint bodies and the 
right hand side constants. Oddly, none of the research addresses the issue of incor-
rect relationship directions. For example, the model might be rendered feasible if a 
≥ relationship is changed to a ≤ relationship, or if an = is changed to a ≥, etc. The 
general unaddressed question is this: what is the smallest number of constraint re-
lationships to change such that the model is made feasible? 

As we will see in this chapter, there are several ways to define the “smallest ad-
justment” that will render a model feasible, each having different solution com-
plexities and yielding different results. All are based on minimizing some kind of 
matrix norm that expresses the difference between the “corrected” version of the 
model and the original version.  

8.1 Shifting Constraints 

The most straightforward approach to altering constraints to attain feasibility is to 
simply shift (or “translate”) them in space by adjusting the value of the constant, 
also known as the “right hand side” (RHS). Many researchers have developed 
methods for finding the “best” set of constraint shifts according to some criteria 
(e.g. minimum total distance moved, etc.). The most attention has been paid to in-
feasible linear programs, but some more recent methods can also be applied to 
nonlinear models. 

In the case of infeasible linear systems, Murty et al. (2000) distinguish four 
different ways to measure the “best” adjustment of the right hand sides needed to 
attain feasibility: 
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• The smallest number of shifted constraints (called the “smallest changes 

problem of Chap. 7, or more exactly, it is equivalent to the MIN ULR problem. 
• The smallest total penalty for fixed penalties. The penalty cost of changing a 

RHS is fixed for each individual constraint (regardless of the size of the shift), 
and the goal is to choose the constraints to shift such that the total penalty is 
minimized. This model may apply when there is a fixed cost to break a 
contract, for example. This is the same as the previous model if the penalties 
are identical across all constraints. 

minimize the total penalty. This is equivalent to a weighted elastic 
programming model (see Sec. 6.1.4 and Sec. 8.1.1). 

• The smallest total penalty for variable penalties with bounds. This is identical 
to the previous model, except that some or all of the elastic variables are 
bounded, indicating that the associated constraint can be shifted only a limited 
distance. This is again equivalent to elastic programming with simple bounds 
on the elastic variables. Note that if the bounds on the elastic variables are too 
tight, then even the elastic formulation may be infeasible. 

achieve feasibility depends on the application. Other measures, including 
nonlinear penalties, can also be imagined. 

Note that row scaling can significantly affect the results for many of the 
measures described below. It is best to apply these methods to a fully scaled 

8.1.1 Using the Phase 1 Result  

effectively allow the constraints to shift so that an initial feasible solution is 
readily available to start the simplex method (see Sec. 7.3). If the LP is infeasible, 

optimum. However, if the original LP is modified by adjusting the right hand side 
constants as indicated by the nonzero artificial variables, then a feasible solution is 
obtained. If the phase 1 objective function seeks to minimize the sum of the 
artificial variables, then this is a “minimum” adjustment of the constraints in that 
sense. 

should be used. This allows all constraints to shift, and allows equality constraints 
to shift in either direction (see Sec. 6.1.4). This is equivalent to the smallest total 
penalty for a variable penalties model in which the penalty rates are all identical 
and equal to one. 

The phase 1 formulation for a linear program includes artificial variables which 

Note that the usual phase 1 formulation does not add artificial variables to  

Which way to measure the “best” adjustment of the constraint RHSs needed to 

all constraints, nor does it allow equality constraints to shift in both directions.  

then at least one of these artificial variables cannot be forced to zero at the phase 1 

To obtain a true minimum adjustment of the constraints, a fully elastic program 

“original” version of the model. 
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model” by Murty et al.). This is equivalent to the maximum feasible subset 

• The smallest total penalty for variable penalties. The penalty cost of shifting  
a constraint is a linear function of the size of the shift, and the goal is to 
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8.1.2 Minimizing the l1 Norm 

The l1 matrix norm for some matrix D is ∑= ij ijl d
1

D . For a system of 
inequality constraints of the form Ax ≥ b, a full elastic program is identical to 
minimizing an l1 matrix norm objective function subject to the elastic constraints, 
i.e. 

1
)(min +− Axb  where (•)+ indicates component-wise application of the 

operator max{0,•}. Minimizing the l1 matrix norm to obtain the best feasible 
correction to an infeasible set of linear relations was first suggested by Charnes 
and Cooper (1961) in the context of goal programming. Without using the term 
elastic programming, which arrived much later, they added elastic variables to 
some of the constraints in an infeasible model and minimized their sum, i.e. 
minimized the l1 matrix norm. In the goal programming application, some goals, 
expressed as constraints, are known to be incompatible, and it is only these 
constraints that are elasticized. 

Minimizing the l1 matrix norm can of course be accomplished by standard 
linear programming applied to the fully elasticized model, but Dax (2006) 
describes a more efficient affine-scaling method. Once the solution point x* for 
the l1 matrix norm minimization is known, the adjustments for the constraint right 
hand sides can be seen directly from the values of any nonzero elastic variables. If 
a constraint is violated, then its right hand side should be relaxed by an amount 
equal to the magnitude of the elastic variable, with appropriate sign. 

The Cplex 10.0 (Ilog 2006) LP solver incorporates a FeasOpt option which 
allows the user to specify preferences that result in a weighted elastic solution for 
the infeasible model. The weighted penalty function takes the form ∑i ii pv /  
where vi is the constraint violation and pi is the user-specified preference value. 
Values of pi that are zero or negative indicate that constraint i is not to be 
modified, and higher values of pi indicate a greater preference for constraint i to be 
modified, if necessary. In addition, upper and lower bounds can be specified for 
the extent of adjustment of the right hand side constant for each constraint. This 
arrangement lets the user specify a fully or partially elasticized version of the 
model with preference weights on the elastic variables and limits on their 
adjustment. The bound changes determined by the weighted elastic solution are 
returned, along with the solution point and objective function value now permitted 
by the relaxed model.  

8.1.3 Least-Squares Methods 

One of the earliest approaches to finding the best correction for an infeasible set of 
linear inequalities is to find the point that has the smallest sum of squared 
constraint violations. As before, once the solution point is known, the necessary 
constraint shifts are easily found by substituting the point into each constraint.  

The least-squares problem for a system of linear inequalities Ax≥ b is 
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where ai is the ith row of the A matrix and is violated. Solution methods for this 
problem have been considered by Han (1980), Censor and Elfving (1982), and De 
Pierro and Iusem (1985). Byrne and Censor (2001) show that simultaneous projec-

minimizes a Bregman distance function that in some sense measures the total vio-
lation. In the usual case this amounts to a weighted sum of the squared Euclidean 
distances from the solution point to feasible points on all violated constraints. 

The least-squares optimization is considered less robust than minimizing the l1 
norm (Sec. 8.1.2) because a single outlier can dominate the solution. 

He first described a very simple approach that is effective if there is only a single 
IIS in the model, and then developed more advanced methods that apply when the 
infeasibility is more complex. The main idea is to find the smallest adjustments of 
the constraint right hand sides that are needed to provide a feasible solution. 
Roodman’s motivations in developing his method are interesting. He began with a 
feasible investment problem, and then pushed this to become infeasible. He next 
looked for parametric adjustments to make the problem feasible again, with the 
idea of seeing how this changed the original solution. 

When the adjustment of a single constraint is sufficient to render the model fea-
sible, then simple methods can be applied. This is the case when there is a single 
IIS, or when the IIS set cover has a cardinality of one. Methods to determine this a 
priori were not available in Roodman’s time, but it is easy to identify some of the 
constraints that are involved in the infeasibility, e.g. constraints that are violated. 
Given a constraint that is probably involved in the infeasibility, convert the con-
straint to an objective function with a sense (maximize or minimize) that tries to 
tighten the constraint as much as possible. This is equivalent to elasticizing the 
constraint appropriately and then minimizing the elastic variable. If the final solu-
tion for this modified problem is now feasible for the original model (with the ex-
ception of the constraint that was converted to an objective function), then we 
know the minimum adjustment of the constraint right hand side that will render 
the model feasible. This process can be repeated over all of the likely constraints, 
and the smallest adjustment of any violated constraint can be recommended as the 
minimum adjustment of the constraints to render the model feasible. 

This approach has several drawbacks. As described by Roodman, the method 
has no way of making sure that all of the relevant constraints are selected for test-
ing (applying the sensitivity filter would take care of this, but the method was not 
available in Rooman’s time). More importantly, this method cannot deal with 
more complex infeasibilities that require the adjustment of more than one con-

adjustment of the constraints in an infeasible system, in the case of linear systems. 

8.1.4 Roodman’s Bounds on Minimum Constraint Adjustments 

Roodman (1979) was the first to develop methods for finding the minimum 

tion methods converge for infeasible sets of convex constraints to a point that 

straint in order to achieve feasibility. For this reason, Roodman develops more 
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right hand side for every linear constraint that is needed to achieve feasibility. 
advanced methods that try to find lower bounds on the minimum adjustment of the 
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Define A(bi) as the optimum value of the objective function associated with 
some right hand side bi of constraint i in a feasible model. A(bi) is a piecewise 
convex linear function of bi. Each linear piece is given by a different basic feasible 
solution and has a slope equal to the dual price of constraint i. This same principle 
applies to a phase 1 solution, which is artificially “feasible”. Let bi* be the original 
right hand side value in constraint i, and let Πi* be the dual price of constraint i in 
the phase 1 solution. Finally, let bi

f denote the value of bi such that A(bi
f)=0 in the 

phase 1 solution, with all other parameters unchanged. 
Given the convexity of A(bi), Roodman calculates bounds on the value of bi 

such that feasibility is just achieved using the relationship: 
A(bi*) + Πi*(bi

f − bi*) ≤ A(bi
f) = 0. 

right hand sides, as covered by suitable algebra in the following three cases: 

i i
f 

i i
f

i i

i
f

i

i i
f

i i
f

i i

i
f Πi*  to  reach feasibility. 
i i

to the sensitivity filter. 

i i i i

Ri = i i i i i
sense of the constraint. The feasible solution x is not determined by this method, 
which only provides lower bounds on the RHS adjustments that are needed. 

Roodman also develops heuristics for finding phase 1 solutions for infeasible 
systems that have better properties for subsequent analysis. These methods are 

are violated by approximately the same amount so that the bounds determined by 
the analysis above are more consistent. The main idea is to assign weights to the 
artificial variables to try to achieve this outcome. Roodman provides some sugges-
tions on how to assign the weights on the artificial variables: 

• Assign a weight that is inversely proportional to the units used in the constraint. 
• Assign the smallest positive weights to the constraints for which it is most 

important to find tight bounds. This low weight means that the constraint is 
more likely to be violated, and by a larger amount, and hence its adjustment 
bound will be the tightest. 
The bounds can be further tightened after the weighted phase 1 solution is ob-

tained. Define lj and uj as the lower and upper bounds on wj (the weight associated 
j j j

Let Ri(wj) define Ri as a function of wj. Ri(wj) is monotone so that the two end-
points Ri(lj) or Ri(uj) will both provide lower bounds on the adjustment to the 

This relationship yields bounds on the minimum adjustments of the constraint 

− b*) ≥ −A(b )/ Π• If Π * < 0 then (b *. b  must be increased by at least 
−A(b )/ 

• If Π * > 0  then  (b  − b*) ≤ −A(b ) /Π *. b  must be decreased by at least 
A(b )/ 

• If Π * = 0 then no change in b  will permit a feasible solution. This is equivalent 

lower bounds on the right hand side adjustment needed to reach feasibility. 
Accordingly, it is worthwhile to find a phase 1 solution in which all of the constraints 

based on the observation that the most violated constraints provide the tightest 

with the jth artificial variable) such that for l ≤w ≤u  the final basis is unchanged. 

Roodman defines s =1 if Π * < 0 and s = −1 if Π * > 0. Hence a lower bound on 
the size of the appropriate relaxation of the right hand side for constraint i is 

−s (A(b *) /Π *), and the actual change is given by s R  to take into account the 
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Π * to reach feasibility. 
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RHS, hence choose the tighter of the two. Given G basic artificial variables in the 
phase 1 solution, then the tightest lower bounds are given by  

)]}(),({max[max
...1

*
jijiGji uRlRR

=
= . 

Roodman (1979) reports that some of the lower bounds are usually made exact by 
this computationally inexpensive process. 

Roodman goes on to develop a very similar approach for the case in which the 
dual simplex method is used to solve the phase 1 problem. In addition he briefly 
outlines an approach based on parametric programming for modifying multiple 
constraint RHSs simultaneously. 

8.1.5 A Fuzzy Approach to Constraint Shifting 

León and Liern (2001) use a fuzzy sets approach to shifting constraints to repair 
infeasibility in sets of linear inequalities (easily extendable to equalities). The 
main idea is that the fuzzy membership function expresses the degree to which a 
particular point satisfies a given constraint. The membership function makes use 
of Roodman’s limits: the membership value is 0 if the point violates the original 
constraint to an amount greater than Roodman’s limit; varies linearly between 0 
and 1 if the point violates the original constraint to an amount between Roodman’s 
limit and satisfying the constraint; and is equal to 1 if the point satisfies the origi-
nal constraint. They then solve the problem of finding a point that maximizes the 
minimum membership function value for any constraint. 

Given a set of inequalities defined as A1
1

2
2

amounts to finding a value λ to transform the original RHS vector B = (b1, b2)T 
1 2 T

appropriate signs. The value of λ will be at least equal to 1/k where k is the num-
ber of nonzero dual prices. A smaller λ represents a smaller perturbation of the 
model relative to the original, and is in some sense the “best” adjustment of the 
constraints. 

Gupta et al. (2004) take a similar fuzzy approach to finding a best approximate 
solution to an infeasible generalized linear complementarity problem. 

8.1.6 A Goal Programming Approach to Constraint Shifting 

Yang (2006) points out that any method based on a weighted sum of elastic vari-
ables to determine the constraint shifts can arrive at only a limited set of possible 
solutions: those that appear at the cornerpoints of the solution space. A goal pro-
gramming approach, on the other hand, allows solutions that arrive at any point on 
the efficient frontier, giving the modeller a vastly larger set of possible constraint 
shifts that provide a feasible solution. 

For an infeasible continuous optimization problem (linear or nonlinear) having 
i

1 2

into B(λ) = (b – λR, b + λS) , where R and S are vectors of Roodman’s limits with 

m…,y ) shifting problem as a multi-objective program as follows: minimize ( y , y , 
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x ≥ b  and A x ≤ b  with x ≥ 0, this 

inequality constraints of the form f (x) ≤ 0, i =1...m,  Yang formulates the constraint
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elastic program whose solution will always yield one of a limited number of basic 
feasible solutions. 

The multi-objective program can instead be handled by a goal programming 
formulation. The simplest such formulation is yy −min  where ),...,( 1 myyy =  
is a reference point and •  is a norm operator, for which several different choices 
are available. The usual reference point is . Given 0 as the reference point, 

the commonly-used l1 norm objective function is ∑
=

=
m

i
ii ywz

1

min where 

∑=

m

i i1 i

equivalent to a weighted elastic program, and has the same shortcoming of pro-
ducing only a limited number of basic feasible solutions. 

The l∞ norm, on the other hand, has different properties. The objective function 
∞ iimi ...1= ∑ =

=
m

i iw
1

1 i

i i 

yiii ,0≤ ∑ =
=

m

i iw
1

1 i

The absolute value is again not needed because w and y are nonnegative. Yang 
(2006) shows that an optimal solution to the l∞ norm optimization (x*, y*) is guar-
anteed to be a weakly efficient solution to the multi-objective program. A second 
theorem shows that an optimal solution to the l∞ norm optimization that is unique 
in y* is an efficient solution to the multi-objective program. Yang presents a way 
to improve any solution returned by the l∞ norm optimization to make it efficient 
by reducing the members of y as much as possible. This is done by solving a sec-
ond optimization based on the y* returned by the original l∞ norm optimization: 

∑
=

m

i
ii

1
i i yiii ,0≤

∑ =

m

i i1 i

l∞ norm optimization for the set of constraints constituting an IIS is necessarily an 

minimize the weighted sum of the objective functions, in this case: 
variables. A common solution approach for a multi-objective program is to 
 subject to f (x) − y ≤ 0, y ≥ 0, i = 1...m  where the y  are nonnegative elastic

min z = f (x) − y  for i =1…m where y ≥ 0 for i =1…m, 

 and w ≥ 0 for all i = 1…m. This amounts to a weighted version of an 

 and w ≥ 0 for all  where based on the l  norm is min z = max w y
≤ z, i =1…m, i =1…m. This can be implemented as min z subject to w y

f (x) − y ≥ 0, i =1...m and the usual  and w ≥ 0 for all i =1…m. 

min z = w y  subject to y ≤ y * and f (x) − y ≥ 0, i =1...m  where 

w =1  and w ≥ 0 for all i =1…m. A third theorem (Yang 2006) shows that the 

efficient solution for the multi-objective problem. Yang demonstrates that this 

w =1  and w ≥0 for all i =1…m. Given nonnegative w and y, this is again 
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∞

8.1.7 Constraint Shifting in Sequential Quadratic Programming 

Sequential Quadratic Programming (SQP) is a technique for solving nonlinear 
programs in which the original model is approximated by a sequence of quadratic 
programs that are much easier to solve. Each quadratic subproblem has linear con-
straints that approximate the original nonlinear constraints at the current trial 
point, and a quadratic objective function that approximates the original nonlinear 
objective function at the current trial point (or more accurately approximates the 
Lagrangian of the original objective function). The solution point for the current 
quadratic subproblem becomes the trial point at which the next set of constraint 
and objective function approximations are created. This cycle of approximation 
and solution continues until certain stopping conditions are met, typically that the 
current point and the last point are sufficiently close. 

As pointed out by Boman (1999), a few unusual situations arise in solving 
SQPs: 

1. The original NLP model is feasible, but some of the quadratic subproblems 
are infeasible. 

2. The original NLP model is infeasible, but some of the quadratic subproblems 
are feasible. 

3. The quadratic subproblem is feasible, but we don’t want to move to the 
resulting optimum point. 

In the first case, Boman suggests that some form of approximate solution for 
the subproblem that is in some sense “closest to feasibility” is needed to permit the 
algorithm to proceed. In the second case, the main algorithm should return a solu-
tion that is in some sense “closest to feasibility” for the complete original model. 
In the third case, some measure of the closeness of the subproblem optimum point 
to feasibility in the original NLP helps to determine whether the algorithm wishes 
to accept the updated point. In all three cases, the issue of determining the closest 
feasible and infeasible points arises. Not surprisingly, minimization of l1 and l∞ 
norms emerges as a major theme of Boman’s work. 

Boman’s l1 norm minimization is carried out by elasticizing the constraints of 
the quadratic program in a manner similar to that used for linear programs (see 
Sec. 6.1.4), but using an objective function that combines the original objective 
and a minimization of the sum of the elastic variables. For an NLP of the form 

various nonlinear optimizations can be solved correctly. 
approach is also effective for nonlinear problems, providing of course that the 

The l  norm optimization with subsequent tightening allows any solution on 
the efficient frontier to be reached by adjusting the w weights. This provides the
modeler with a vastly increased set of possible ways to shift the constraints to  
achieve feasibility. The choice of the weights is left to the modeler, but this may  

to constraints that he prefers not to violate. 
for constraints expressing basic physical laws, and may assign large weights  
be obvious by context. In practice the modeler may omit elastic variables entirely 
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subject to c(x) + t ≥ 0, t ≥ 0, where t are the elastic variables, γ is a penalty weight, 
and e is a column vector of 1s. Boman considers differing weights for individual 
constraints, bounded elastic variables, elastic bounds, switching between elastic 
and non-elastic modes, updating the penalty parameters and various other alterna-
tives in developing an improved SQP solution algorithm. He compares his method 

 The l∞
elastic variable is needed:  
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subject to c(x) + τe ≥ 0, τ ≥ 0, as formulated by Boman. 

8.1.8 Violating a Limited Number of Constraints by a Limited Amount 

In the context of a radiation therapy planning problem (Sec. 11.1) Censor et al. 
(2006) propose a method for finding a feasible solution by allowing the violation 
of a limited number of constraints by a limited amount. Individual linear inequali-
ties can be violated by up to an amount β. Specifically, where a particular linear 
inequality i has the form aix ≤ bi, it may be relaxed up to aix ≤ (1+ β)bi, where 
0 ≤ β ≤ βmax
αmax  where 0 ≤ α ≤ αmax ≤1. 

i i i i i i

max
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i
lem does not guarantee that no more than αmaxm constraints are violated; a MIP 
formulation is needed to guarantee this. However, for the radiation planning prob-
lems studied by Censor et al. (2006), the solution of this approximating LP fre-
quently provides a solution which respects the limit on the number of constraints 
violated. This is partly due to the effect of the objective function which tries to 
keep the ti small, thereby reducing the number of unnecessarily violated con-
straints. 

Censor et al. define a heuristic iterative procedure to determine small values of α 
and β that solve the problem, as shown in Alg. 8.1. Δα and Δβ are small incre-
ments for the two main parameters and are adjusted in an outer loop to find a solu-
tion that is in some sense close to feasible. 

min F(x) subject to c(x) ≥ 0, the elastic version is: 

. The fraction of the constraints that can be so violated is limited by 

The problem is formulated as follows. Replace each inequality i of the form 

α   mto help insure that the number of violated inequalities does not exceed 
where there are m inequalities in total:  

radiation treatment planning problems. 

Censor et al. report good results using the approximating LP and the heuristic 
 adjustment to find small values of α and β when the procedure is applied to

a x ≤ b  by a x ≤ t b  where 0 ≤ t ≤ (1+ β). A check inequality can then be formulated  

It is difficult to know in advance what values of α and β should be chosen, so 

    The objective function is to minimize Σt . Of course, the LP solution of this prob-
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with the long history of usage of elastic models in solvers such as SNOPT (Gill  
et al. 2005).  norm minimization is more space efficient in that only a single 
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INPUT: αmax, βmax, Δα, Δβ. 
0. k = α0 = β0 = 0. 
1. Solve the approximating LP using αk and βk. IF feasible THEN: 
 1.1 IF k = 0 THEN exit with the solution x. 
 1.2 IF the α and β conditions are satisfied at x  
  THEN exit with the solution x. 
2. ρ = βk +Δβ.  
3. IF ρ ≤ βmax THEN βk+1 = ρ and αk+1 = αk. 
 ELSE  
 3.1 σ = αk+Δα. 
 3.2 IF σ ≤ αmax THEN αk+1 = σ and βk+1 = βk. 
  ELSE exit unsuccessfully. 
4. k = k + 1; go to Step 1. 
OUTPUT: a solution x that satisfies the α and β conditions or a failure  
 message. 
 
Alg. 8.1. Adjusting the α and β conditions (Censor et al. 2006) 
 

8.2 Adjusting the Constraint Matrix 

It is much more difficult to determine the best way to achieve feasibility for an in-
feasible model by adjusting the constraint coefficients in addition to adjusting the 
right hand side constants. However a number of researchers have addressed this 
problem for infeasible LPs. The motivation is generally not to provide an auto-
matic fix for the model, but instead to provide some insight into the infeasibility 
by showing the “nearest” feasible model. 

There are various ways to measure how closely the adjusted feasible model ap-
proximates the original infeasible version. Amaral et al. (2006) describe the gen-
eral problem for a set of linear inequality constraints as min φ(H, p) subject to 

corrections to the right hand side vector b such that feasibility is achieved for the 
infeasible original set of inequalities Ax ≤ b. The objective function φ(H,p) meas-
ures the closeness of the adjusted system to the original system and is taken as a 
suitable matrix norm. Some common choices for the matrix norm include the l1 

∞ ijijl dmax=
∞

D

∑=
∞ j iji

dmaxD . 

Vatolin (1992) developed an LP-based solution for the problem of minimizing 
the l∞ norm for a system of linear inequalities. He defines the original system as 

norm, the l  norm 

(A+H)x ≤ b + p where x is a convex set (usually limited by upper and lower 
bounds). H is a set of corrections to the constraint body matrix A and p is a set of 

 for some matrix D, and the ∞-norm 
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Matrix    

0
M1 (available for correction). The columns are also subdivided into the sets J0 (not 
to be corrected) and J1 (available for correction). Where ai represents row i of A 
and the corrections vector for row i is hi = [hi’, hi,n+1

i i 0 i i i i,n+1 1

hij = 0 for i∈M1 and j∈J0. 
i

i i 1

∞ j

j 1 0 0

1,0

,02,01,0 ),...,(

+
=

n

T
n

h
hhh

x , 

∞

 min θ 
subject to: i i 0 0

 i bi]h0 ≤ ti for i∈M1  
 i 1
 ∑ ∈

=
1

1,0Jj jh  

 h0,j ≥ 0 for j =1…n+1 
The solution of this LP yields values for h0 and t, from which the individual 

corrections can be found using hi = tic, i.e. for i∈M1, hij = 0 for j∈J0 and hij ti 
1

the best correction point x can also be recovered by reversing the change of vari-
ables. If the l1 norm is to be minimized using Vatolin’s approach, then |J1| LPs 
must be solved, each LP correcting a single column of [A,b]. Popescu (2001) con-
siders the use of interior-point LP algorithms for the solution of the Vatolin for-
mulations. 

Amaral (2001) extends this idea to minimization of the ∞-norm and derives 
limits on the number of LPs needed for this optimization. However she observes 
that this approach involves only a single column of [A,b] at a time and results in 
particular patterns of the corrections. To provide greater freedom in the resulting 

Amaral et al. 2006) study the use of the Frobenius norm 

∑ ∑= =
=

m

i

n

j ijF d
1 1

22D  

for the objective function min φ(H,p), yielding the problem (P) 2],[min FpH  sub-

bounds on x, respectively. The Frobenius norm has several attractive properties 
compared to the l1, l∞, and ∞ norms. Imposing upper and lower bounds on the 
variables improves the solution properties, guaranteeing that (P) has a global 
minimum, and is not restrictive in practice. 

includes corrections to both the constraint body and the right hand side constant), 
] of dimension 1×(n+1) (which 

Ax ≤ b, x ≥ 0, whose rows are subdivided into the sets M  (not to be corrected) and 

the corrected system is  a x ≤ b , i∈M ; (a + h’)x ≤ (b − h ), i∈M ; x ≥ 0. 
Note that 

This formulation is nonlinear due to the bilinear h ’x terms, but can be rendered 
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linear by a change of variables. Let h = t c for i∈M  where the definition of c de-

resulting in the following LP for minimization of the l  norm: 

0pends on the matrix norm used in the optimization;  for the l  norm, c = 0 for j∈J  
and c = – 1 for j∈J . Further, ch = –1 where h > 0. The change of variables is then  

b ]h  ≤ 0 for i∈M  [a ,–

0 ≤ t  ≤ θ for i∈M  
[a ,–

= –
for j∈J . The magnitude of the largest individual correction is given by θ. If desired, 

corrections patterns, Amaral and colleagues (Amaral and Barahona 2005, 2005a, 

ject to (A+H)x ≤ b + p, where l≤ x ≤ u and l and u are vectors of the lower and upper 
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Minimization of the Frobenius norm correction is a nonconvex and nonlinear 
global optimization problem that can be solved by any suitable global optimiza-
tion technique. Amaral et al. (2006) use a branch and bound approach incorporat-
ing the Reformulation-Linearization-Convexification Technique due to Sherali 
and Tuncbilek (1992) to solve the global optimization. The tree is constructed by 
subdividing the range of a selected variable to create two child nodes for each par-
ent node, as in the standard branch and bound algorithm for MIPs. An approxima-
tion to (P) is solved at each node to provide a lower bound on the value of the 
Frobenius norm. The approximation is constructed to be a convex NLP that is 
solved efficiently due to its special structure. See Amaral et al. (2006) for details 
of the optimization approach. 

As an example of the kind of information provided by adjusting both the con-
straint matrix and the right hand side, consider the small demonstration example in 

1 2 2 1 2

1 2

1 2 1 2

1

sults are promising in that solutions are returned for about half of the problems in 
a very small number of nodes, indicating that the lower bound approximation is 
quite tight. Computation times for all models are small, though this is partly due to 
artificially tight bounds being imposed on the variables. The authors conclude that 
their technique will handle infeasible LPs with fewer than 100 rows and 100 col-
umns. This is very restrictive compared to the size of linear programs encountered 
in practice, but the technique can be applied to subsets of the constraints. In par-
ticular, in may be useful to first isolate an IIS via the techniques of Chap. 6 and to 
then apply the techniques of Amaral et al. (2006) to find an optimal correction. 

8.3 Related Research 

There are several research directions that are related to the topic of this chapter, 
but that are sufficiently different that they are given only a cursory treatment here. 
References are provided so that readers can follow up on these topics. 

A number of authors have studied condition measures for mathematical 
programs, an important aspect of which is the distance to ill-posedness (including 
infeasibility) of feasible models. Here again various matrix norms are used to 
measure this distance. See e.g. Vera (1998) or Ordonez and Freund (2003). 

1.9839. 
1.1193x  ≤

 +  0.6805x  ≤  3.0672,  1.9745x  –  1.0764x  ≤ –

Amaral et al. (2006). The original infeasible system consists of the three constraints
–x  – x  ≤ –7, x  ≤ 3, 2x  – x  ≤ –2, with bounds 1≤ x ≤ 5. Applying the Reformulation
-Linearization-Convexification Technique results in a 17-node branch and bound 
tree with the resulting optimum corrected system being –1.0398x  – 
 –6.9749, –0.1067x
This does show that a feasible solution is available with a relatively similar system
of inequalities, though it is difficult to know exactly how to use the information.
For example, the corrected system introduces x  into the second inequality
though it seems unlikely that a change of this type has real physical meaning.

Amaral et al. (2006) apply the method to a selection of small problems. The re- 
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                                                                                          8.3 Related Research    

Renegar (1994) shows that LPs have large or sensitive optimal values only if they 
are nearly primal or dual infeasible. 

Another problem on feasible models is the best approximation problem in 
which the best feasible point relative to a given infeasible point is sought. This 
arises when a solution may have been obtained by other means, prior to the addi-
tion of various constraints. Now a feasible solution is found that is as similar as 
possible to the original, but now infeasible, solution. Projection algorithms of 
various types are often used to solve this problem, see e.g. Censor (2006). 
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PART III: APPLICATIONS 

Part I of this book addressed methods for reaching a feasible solution quickly in 
optimization models.  Part II addressed the analysis of infeasible models.  As you 
might imagine, there are countless direct applications for algorithms in these 
classes: reducing the time to reach a feasible solution reduces the overall solution 
time; good tools for analysis of infeasible instances reduces the overall time for 
the complete modeling and solution cycle.  However, there are a surprising num-
ber of applications beyond these straightforward ones.  These “spin-off” applica-
tions are the subject of Part III. 

Closest to home is the application of methods for the analysis of infeasibility to 
the analysis of other model forms.  Unboundedness in primal linear programs is 
directly related to infeasibility in the dual (Sec. 9.1).  Network models can be 
plagued by the inability to carry flow in some of the arcs, a condition known as 
nonviability that can be analyzed by a simple transformation to an infeasibility 
problem (Sec. 9.2).  The interaction of the objectives in multiple objective linear 
programs can also be transformed into an infeasibility problem and analyzed with 
the assistance of the tools developed in Part II (Sec. 9.3). 

Other important and seemingly unrelated problems can also be addressed by 
simple transformations to infeasibility analysis problems. Many of these are well 
addressed by methods for the solution of the maximum feasibility problem (see 
Chap. 7).  A standard problem in classification and data mining is the placement 
of hyperplanes to separate data points of one type from data points of other types 
in the training set.  This is easily transformed into a MAX FS problem, and hence 
solutions are returned that tend to minimize the number of misclassified points, 
whereas more traditional approaches may have minimized other measures such as 
the sum of the squared misclassification distances (Sec. 10.1).  This is the same as 
providing the initial training for a neural network.  A related problem is determin-
ing the data depth of a particular point in a multidimensional cloud of data points, 
defined as the minimum number of data points on one side of a hyperplane 
through the point in question (Sec 10.2).  This again is easily transformed into a 
MAX FS problem and addressed via the methods of Chap. 7.  Massive data sets, 
such as census data, are routinely screened for errors using linear relationships.  
The data validation rules can be analyzed for internal inconsistencies using the 
methods of Chaps. 6 and 7 (Sec. 10.3). 

Several specific applications are well addressed as instances of the MAX FS 
problem.  Radiation treatment planning results in a large set of linear inequalities 
that express the fact that diseased tissue must receive more than some minimum 
amount of radiation while nearby healthy tissue and important organs should 



receive less than some maximum dose.  Since these requirements often conflict, 

problem in protein folding is to find the natural folding shape that minimizes the 
energy, which will be smaller than for other folded shapes.  Given the energy 
inequalities associated with similar “decoy” shapes, information about the 
natural folded shape is gleaned by solving a MAX FS problem that is typically 
extremely large (Sec. 11.2).  The digital video broadcasting problem is another 
MAX FS problem of very large scale (Sec. 11.3).  Here the broadcast coverage 
area is subdivided into small regions, each of which should receive a signal with 
a minimum amount of power from a set of transmitters.  This is again a MAX FS 
problem. 

The best approximation methods of Chap. 8 are needed in automated test 
assembly (Sec. 11.4) in which the idea is to meet the requirements imposed by the 
test assembly rules as well as possible.  IIS isolation is used to analyze problems of 
buffer overrun in computer programs (Sec. 11.5) when linear constraints describing 
the growth in the size of the buffer generate infeasibilities.  User preferences used to 
rank the value of internet pages can be expressed as linear inequalities (Sec. 11.6), 
but these can result in infeasibilities, which are analyzed using either a best 
correction approach (Chap. 8) or a MAX FS strategy (Chap. 7). 

IIS analysis is a common feature in tree-structured search, such as in branch 
and bound solution of MIPs or modern constraint programming systems, and is 

linear models are often used to approximate various physical phenomena such as 
signals.  Estimation of such models (Sec. 11.8) can be represented as an instance 
of the MIN PFS problem of Sec. 7.9.  Finding sparse solutions for systems of linear 
equations amounts to a MAX FS problem (Sec. 11.9).  Various NP-hard problems 
can also be converted to the MAX FS problem (Sec 11.10), though some of these 
are in binary rather than continuous variables, for which we do not as yet have 
good solution heuristics. 
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this can be addressed as an instance of a MAX FS problem (Sec. 11.1). The 

used to direct the backtracking process more efficiently (Sec. 11.7). Piecewise 



 

 
 
 
 
 

The various algorithms for analyzing infeasibility turn out to be useful in analyzing 
other types of models and modeling problems. This chapter describes three such 
examples. 

9.1 Analyzing Unbounded Linear Programs 

It is well known that if the primal form of a linear program is unbounded, then the 
dual form is infeasible (see e.g. Winston and Venkataramanan (2003)). For this 
reason, if an LP is found to be unbounded then an infeasibility analysis of the dual 
provides insight into the reason for the unboundedness. This is exactly the 
approach taken in the LINDO software (Schrage 1997) to return a minimal 
unbounded set of variables. At least one of the variables in this set must be finitely 
bounded to eliminate the unboundedness in the model. The thought process for the 
analyst is similar to the process for analyzing infeasibility: there may be other 
minimal unbounded sets of variables that must be found and fixed one by one in 
order to eliminate all unboundedness in the model. It is also possible to find a 
minimal set of variables to restrict so that all unboundedness is removed (similar 
to an IIS set cover). Since unboundedness difficulties are usually caused by 
missing constraints or bounds, the usefulness of this approach lies in providing 
clues as to where constraints have been omitted. 

9.2 Analyzing the Viability of Network Models 

Network models are among the largest constrained optimization problems 
regularly solved. Because of their scale and complexity, automated methods for 
“debugging” formulation errors are especially welcome. Networks are susceptible 
to a special kind of modeling error called nonviability (Chinneck 1990a, 1990b, 
1992) that results in some of the arcs being unable to carry flow. Note that zero 
flow is still a feasible solution for an arc, but the fact that it is the only solution for 
an arc indicates a modeling error. This is a special case of a forcing substructure 
(Greenberg 1996a), i.e. a structural problem that forces a variable to take on a 
particular fixed value. 
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There are a number of variations of network models: 

• Pure networks contain only regular nodes which conserve flow. 
• Generalized networks have one or more arcs in which a gain factor multiplies 

the flow into the arc to determine the flow out of the arc. 
• Pure processing networks have regular nodes 

and one or more processing nodes in which 
the flows in the incident arcs are constrained 
to fixed proportions. Processing nodes are 
usually depicted as squares with labels on the 
incident arcs showing the proportions of 
flow. Flow conservation holds at all nodes. 
An example appears in Fig. 9.1.  

• Nonconserving processing networks are 
processing networks in which at least one of 
the processing nodes does not conserve flow. 

Further information on processing networks is available from Koene (1982) or 
Chinneck (1990a, 1992). Chinneck (1992) shows how generalized networks are 
easily transformed into nonconserving processing networks. All network forms 
can then be considered as various special cases of nonconserving processing net-
works. 

Nonviability is a property of the network structure (i.e. the pattern of intercon-
nection of the arcs and nodes). It is particularly common in processing networks. 
The structural relationships of a network model include: 
• for regular nodes: the flow conservation equation, 

tions that specify the proportions of flow in each incident arc, 
• for arcs: the nonnegativity constraints on the arc flow. 

Note that other bounds on the arc flows are not considered to be part of the 
network structure, nor are the arc costs per unit of flow, the objective function, or 
any extra side constraints. Network viability and nonviability are defined as fol-
lows: 

Definition 9.1: Network viability and nonviability (Chinneck 1997a). If the 
complete set of structural relationships in a network model does not provide a 
unique solution for any of the arc flow variables, then the network is viable. In a 
nonviable network, the set of structural relationships provides a unique solution 
for one or more of the arc flow variables. ■ 

Because the structural relationships are all homo-
geneous equations or nonnegativity constraints, non-
viability forces arc flows to zero. A simple example is 
shown in Figure 9.2 in which both of the arcs cut by 
the dashed line are nonviable. 

Nonviability is generally an undesirable property 
of a network model since it indicates that a portion of 

the model can never be used, even before nonstructural arc bounds or an objective 
function are considered. Modellers should be alerted to nonviability in the same 

 
Fig. 9.1. Example processing node 
with ratio equations 

 
Fig. 9.2. A nonviable pure 
network 
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• for a processing node having t terminals: a set of t–1 independent ratio equa-
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way that they are alerted to infeasibility so that corrections can be made if 
warranted. However, unlike infeasibility, nonviability is “silent”: it is not reported 
automatically. Explicit measures must be taken to screen networks for this property. 

Chinneck (1990a) presents a procedure for detecting, localizing, and analyzing 
nonviabilities in pure processing networks and provides a taxonomy of structures 
causing nonviability. A prototype of the procedure was implemented in software 
(Chinneck 1990b). A second paper (Chinneck 1992) extends the method to non-
conserving processing networks, thereby covering all network forms, including 
generalized networks. However, a simpler approach using standard IIS isolation 
techniques can be adapted to the isolation of nonviabilities. The method is based 
on the following theorem.  

Theorem 9.1: Nonviability and infeasibility (Chinneck 1990a). A network is 
viable if and only if it is feasible for all variables to be positive simultaneously.  

Proof: The structure of the network consists of the homogeneous structural 

Thm. 9.1 makes it easy to test for viability by placing arbitrary positivity bounds 
on the arc flow variables, e.g. xj ≥ 1, and then testing the feasibility of the resulting 
system using a standard LP phase 1. If the modified system is feasible, then the 
original network model is viable. If the modified system is infeasible, then the 
original network model is nonviable, and IIS isolation techniques can be applied 

to the infeasible 
modified model to 
isolate the nonviabil-
ity in the original 
network model. If 
desired, the isolated 
portion of the model 
can be tested using 
the original algorithm 
(Chinneck 1990a) 
to arrive at a classifi-
cation of the cause of 
the novabiity. Strip-

 
Fig. 9.3. Finding a minimal nonviability in a processing network 
model (Chinneck 1996b) 
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ping the isolated IIS of its added posibility bounds yields the minimal 
nonviabiityabiity. 
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equations and the arc flow nonnegativity bounds.   These define a convex polyhedral 

and the nonnegativity constraints (i.e. a nonviable solution of zero). Each variable

feasible region is a convex polyhedral cone, if a variable can be positive in some
each variable must be positive in at least one feasible solution. Because the
must have more than one possible solution value for viability, which implies that

for a variable is possible only at the intersection of the homogeneous equations

cone feasible region. There is either a unique solution to such a system with 
x = 0 or there are multiple semipositive solutions (Murty 1983). A unique solution

solution, then there must exist feasible solutions in which all of the variables are
positive simultaneously. If one such solution exists, then there are many (Murty
1983). Therefore if we can find any feasible solution in which all variables are
positive simultaneously, then the network must be viable. The converse follows
easily. ■ 



 
 
A simple example is shown in Fig. 9.3. The processing node proportions are 

shown in italics. The minimal nonviability found by assigning positivity bounds to 
all arcs and isolating an IIS is shown in Fig. 9.3 (b). It is easy to explain. Assume, 
for simplicity, that the arc connecting node 5 to node 4 is carrying 3 units of flow. 
Following the flow ratios imposed by the processing nodes, this becomes 1 unit of 

entering node 5, but expect 3 units (or more given the outflow from node 5 to 
node 1) to leave node 5. This is clearly not possible and results in the minimal 
nonviability shown in Fig. 9.3 (b). Note that the arc connecting nodes 5 and 1 is 
part of the minimal nonviability because it is part of the simple flow balance of 
regular node 5 and its nonnegativity bound prevents backward flow. While struc-
turally nonviable, the model in Fig. 9.3 (a) is feasible since it admits the solution 
in which all arc flows are set to zero. It only becomes infeasible when the positiv-
ity constraints on the arc flows are added. 

The IIS isolation approach to nonviability analysis is used in a method for ana-
lyzing petri net models for various classes of modelling errors (You 1993). Petri 
nets are commonly used in the design of software systems. 

9.3 Analyzing Multiple-Objective Linear Programs 

A multiple-objective linear program (MOLP) consists of a set of linear constraints 
and a set of more than one linear objective functions. Formulating a large multiple 
objective linear program can be difficult due to questions about whether relation-
ships should be cast as objectives or constraints, and about how the different ob-
jectives interact and interfere with each other.  

Chinneck and Michalowski (1996) show how techniques for the analysis of in-
feasible LPs can assist in the formulation of MOLPs, both by analyzing infeasible 
constraint sets and by illuminating the interactions among objectives and con-
straints. IIS analysis can help in deciding whether relationships should be repre-
sented as objectives or constraints, and in simplifying the model by eliminating 
objectives or assigning lexicographic ordering or weights to the objectives.  

Chinneck and Michalowski approach MOLPs as models with inherent struc-
tural inconsistencies. The inability to reach a single solution optimizing all of the 
objective functions at the same time can be converted to a feasibility problem. 
Techniques for isolating IISs are used to identify sources of MOLP objective in-
compatibility and to analyze the options for reducing or removing them. This 
analysis may reduce the degree of conflict among MOLP objectives, and the re-
sulting problem should be easier to solve by means of, for example, interactive 
methods (see Michalowski and Szapiro (1992), Steuer (1986), or Zionts and 
Wallenius (1983) for a discussion of interactive programming methods). 
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flow between nodes 4 and 2, then 0.5 units of flow between nodes 2 and 3, and 
finally 1.25 units of flow between nodes 3 and 5. Hence we have 1.25 units of flow 



Michalowski define four classes of mathematical relationships below; a similar 
distinction has been used by Ignizio and Cavalier (1994): 

• Hard constraint: a mathematical relationship that is definitely classed as a 
constraint. These are often basic physical relationships such as conservation of 
flow in a network. 

• Soft constraint: a mathematical relationship that is currently classed as a 

hand side and adding an objective sense (maximize or minimize). 

objective (maximize or minimize). 
• Soft objective: a mathematical relationship that is currently classed as an 

objective, but which could be considered as a constraint if an appropriate right 
hand side and relationship sense were added. 

Constraint to objective conversions are straightforward: drop the right hand 
side and the relationship symbol, and add the appropriate optimization sense: 
> constraints become maximizations, < constraints become minimizations, 
= constraints can become either (though = constraints are unlikely candidates 
for conversion to objectives). Objective to constraint conversions are more 
complicated. First the constraint sense must be determined. Generally maximization 
objectives become > constraints, and minimization objectives become < 
constraints, but either could be converted to an = constraint and used as a goal 
constraint with the addition of appropriate deviational variables. Second, the 
right hand side value must be set; this requires some knowledge of the 
application. The value assigned to the right hand side in a soft constraint is 
called the aspiration level of the constraint. Similarly, when a soft objective is 
converted to a constraint, an aspiration level must be assigned. 

Current practice assumes that the modeller can make an initial assignment of 
every relationship to one of the four classes described above. Given this initial 
classification of the relationships, the modeller faces two main MOLP formulation 
problems, in addition to the usual LP formulation problems: 

1. Final Classification: arriving at a final classification of the soft constraints 
and objectives. Should a soft constraint be converted to an objective? Should 
a soft objective be converted to a constraint, and if so, what should the aspi-
ration value be? This produces the final form of the MOLP, which can then 
be solved. 

2. Simplification: elimination of constraints and objectives, rewriting of con-
straints, resetting of aspiration values etc. to arrive at a simpler or clearer 
formulation. 

Chinneck and Michalowski approach these two formulation problems by provid-

• Hard objective: a mathematical relationship that is definitely classed as an 

constraint, but which could be considered an objective by dropping the right 

ing algorithmic tools for Interaction Analysis, the process of analyzing the 

objectives can be difficult. For example, should a cost expression be an object i ve 
Classifying the mathematical relationships in a MOLP as constraints or 
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(“minimize cost”), or a constraint (“cost must not exceed $100,000”)? Chinneck and 



9.3.1 Interaction Analysis of the Constraints 

The MOLP constraint set is analyzed in two stages: (i) test the feasibility of the 
complete set of hard constraints, and then (ii) test the entire set of constraints in-
cluding both the hard and soft constraints. Infeasibility during step (i) indicates 
ordinary LP infeasibility that can be analyzed by the techniques outlined in Chaps. 
6–8. Infeasibility during step (ii) shows that the aspiration levels of the soft con-
straints are unrealistic. The IIS isolated by the infeasibility analysis in step (ii) is 
especially revealing because it shows the set of constraints which interact to cause 
infeasibility. There are two cases to consider. 

• Case 1: only one soft constraint and a set of hard constraints in the IIS. This 
shows that the aspiration level of the soft constraint is unrealistic and conflicts 
with basic hard constraints, such as physical limitations of equipment. This im-
plies that either (i) the aspiration level of the soft constraint must be relaxed to a 
feasible level, or (ii) the soft constraint should be converted to an objective. 

• Case 2: more than one soft constraint in the IIS. In this case, the aspiration lev-
els of the soft constraints interact with each other, and any hard constraints in 
the IIS, to create the infeasibility. The changes needed to repair the model are 
similar to the first case: (i) change the aspiration level of one or more of the soft 
constraints, or (ii) convert one or more of the soft constraints to objectives. In 
addition, we know that if more than one of the soft constraints is converted to 
an objective, then these converted objectives will interfere with each other. The 
kind of analysis needed at this point is then similar to the methods described 
below. 

9.3.2 Interaction Analysis of the Objectives 

Infeasibility analysis deals only with constraints, so to use IIS isolation to analyze 
the interaction of the objectives in the MOLP, all objectives (both soft and hard) 
must first be converted to constraints. This is easily accomplished via a two-step 
process which produces the converted MOLP. 

1. Find the extreme feasible aspiration level of each objective. Create and solve 
one LP for each objective, in which only that objective appears while all of 
the other objectives are temporarily removed. Note the optimum terminating 
point(s) (this is the extreme feasible aspiration point, xA

opt, for some objec-
A A A

objective A) for each LP. 
opttive A) and  the extreme feasible  aspiration level ( y = f (x )  for some  

objective as a constraint, with the relationship sense determined appropriately 

become < constraints), and the right hand side equal to the extreme feasible  

strains. Interaction Analysis may also assist in the solution of the MOLP. 
intercations and interferences between objectives and between objectives and con-

2. C onvert each objective to a constraint . This is done by rewriting each 

(maximization objectives become > constraints, minimization objectives 
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aspiration level determined in Step 1. For numerical reasons, it is better to 
relax the right hand side from the extreme feasible aspiration level by a 
small epsilon amount. 

Observation 9.1: Identifying objectives that are not in conflict (Chinneck and 
Michalowski 1996). Any objectives whose Step 1 LPs terminate at the same ex-
treme point in Step 1 (or who have the same extreme points as alternative optima) 
are not in conflict. Consider Fig. 9.4 for example.■ 

Observation 9.2: Identifying models that are not true MOLPs (Chinneck and 
Michalowski 1996). If all of the Step 1 LPs terminate at the same extreme point 
(or have the same extreme points as alternative optima), then none of the objec-
tives are in conflict, and the model is not a true MOLP.■ 

If the condition described in Obs. 9.2 holds, then the converted MOLP is feasi-
ble because the common extreme point exists, and it satisfies all of the original 
(hard and soft) constraints, and all of the converted objectives. This leads directly 
to the following theorem. 

Theorem 9.2: Converted MOLP infeasibility (Chinneck and Michalowski 
1996). If the original constraint set (hard and soft) is feasible, then the converted 
MOLP is infeasible if and only if the original model is a true MOLP. 

Proof: The constraint set is feasible, so infeasibility can happen only due to an 
interaction involving one or more of the converted objectives. If the converted ob-
jectives are not in conflict, then a feasible point exists, as discussed above. Thus 
an infeasible converted LP can be constructed only if one or more of the converted 
objectives are in conflict. This is the definition of a true MOLP.■ 

Observation 9.3: Objectives in converted MOLP infeasibility (Chinneck and 
Michalowski 1996). If the original constraint set is feasible and the model is a true 
MOLP, then any IIS in the converted MOLP will involve more than one converted 
objective. The extreme feasible aspiration levels are defined such that each con-
verted objective is feasible with respect to the constraint set. Infeasibility then re-
quires at least two converted objectives.■ 

Observation 9.4: Conflicting objectives in converted MOLP IIS (Chinneck and 
Michalowski 1996). Any converted objectives appearing together in an IIS are in 

 
Fig. 9.4. Examples of nonconflicting and conflicting objectives 

converted LP is {C,D,4}. 
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conflict. If they are not in conflict, then the infeasibility is not irreducible, since 
both would restrict the converted model to the same extreme point.■ 

These observations can be used to provide insight on the objective behaviour 
and to suggest model reformulations and simplifications. There are two cases to 
consider:  

• Case 1: The IIS includes only converted hard objectives, and possibly hard 
constraints. The IIS isolates sets of conflicting hard objectives. The model can 
be reformulated by abandoning an objective that is clearly of lesser importance 
among the converted objectives in the IIS, if appropriate. Or, once the conflict 
sets are known, the information can be used to guide the setting of the lexico-
graphic order or weights on the objectives. 

• Case 2: The IIS includes at least one converted soft objective or soft constraint. 
Here we have more reformulation options. A reformulation of a soft constraint 
may permit the objectives to achieve their extreme feasible aspiration levels. 
For example, assume that constraint 4 in Fig. 9.4 (b) is a soft constraint. Objec-

Constraint 4 in Fig. 9.4 (b) can be relaxed in two ways: (i) it can be converted 
to an objective instead of a constraint, or (ii) its aspiration level can be adjusted. 
Further, we can discover exactly how much to relax constraint 4 by constructing 
and solving a small elastic program (see Sec. 6.1.4) from the IIS: elasticize just 
constraint 4 and solve the LP consisting of the IIS constraints only. The value of 
the elastic objective gives the relaxation in constraint 4 that is needed to allow the 
other objectives to achieve their extreme feasible aspiration levels. 

If the IIS includes a soft objective, then similar considerations apply: if it is im-
portant that the other objectives achieve their extreme aspiration levels, then ig-
nore the soft objective, or convert it to a soft constraint whose aspiration level is 
set appropriately. 

9.3.2.1 Generating Different Interacting Sets of Objectives 

You normally deal with a single IIS at a time when considering only constraints: 
each IIS found is repaired before analysis proceeds. When considering objectives 
as well, the IISs in the converted MOLP simply provide information about inter-
acting sets of relationships, so we wish to be able to shift our focus from one in-
teracting set to another (i.e. from one IIS to another) as the analysis proceeds, 
while all IISs remain intact in the converted MOLP. Because IIS analysis algo-
rithms isolate only a single IIS, this causes some difficulty, but three techniques 
can be applied, as described below.  

1. Eliminate a converted objective from the current IIS. One method of generat-
ing a different IIS, and hence a different interacting set of relationships, is to 
eliminate one of the converted objectives from the current IIS. When this is done, 
restarting the IIS isolation algorithm will isolate a different IIS if one exists. Con-
verted objectives can be eliminated by either (i) actual elimination from the 
model, or (ii) elasticization. 

vels if constraint 4 is relaxed back to the intersection of C and D.  
tives C and D can simultaneously achieve their extreme feasible aspiration le-
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To examine how much the aspiration level of a particular objective must be 
adjusted to accommodate the other objectives in a particular IIS, the following 
procedure can be used: (1) choose the constraint set consisting only of the 
constraints and converted objectives in the IIS, (2) change the converted objective 
in question back to an objective, (3) solve the now-feasible LP to optimality, (4) 
calculate the difference between the original aspiration level and the optimum 
value found in step (3). The difference found in step (4) shows whether the 
conflicts between the objectives in the IIS are serious. A small difference indicates 
that the conflict is not serious, perhaps resolvable by converting one objective to a 
constraint with a slightly relaxed aspiration level, or by eliminating one objective 
entirely. 

2. Apply the IIS search guide codes. Different IISs are often found by setting 
the IIS guide codes so as to encourage or discourage the inclusion of specific con-
straints or converted objectives. One approach is to discourage the inclusion of all 
of the members of the current IIS. A particularly useful technique when examining 
the objective interactions is to run the IIS analysis once for each objective with 
that objective encouraged to stay in the IIS, and the other objectives encouraged to 
drop out of the IIS. If a certain relationship appears in all or most of the IISs gen-
erated this way, then that relationship is particularly conflictive and is a good can-
didate for change in some manner (convert relationship type if soft, adjust right 
hand side if constraint, etc.). 

3. Use an IIS-enumerating algorithm. The IIS-enumerating algorithm described 
by Gleeson and Ryan (1990) could, in principle, be used to find all of the IISs in 
the converted model (see Sec. 6.2.3). 

Option 2 is used in the complete method described later. 
 

9.3.2.2 Which Objectives Conflict With a Particular Objective? 

 
One common MOLP formulation question is to find all of the other objectives 
which conflict with a particular objective. This is easily determined by examining 
the converted MOLP: all objectives which do not share the same extreme aspira-
tion point xk

opt (or an alternative extreme aspiration point) with the objective in 
question are in conflict with it. 

 

9.3.2.3 Evaluating the Relative Amount of Objective Interference 

 
The degree of interference between some objective A and some objective B is 
determined by (i) substituting xA

opt into objective B and xB
opt into objective A, then 

(ii) determining how much each objective moves away from its extreme aspiration 
level at the new point. The absolute difference found in step (ii) can be used 
directly, or it can be normalized by dividing by the extreme aspiration level if 
appropriate.  
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We say that objective A interferes strongly with objective B if the value of 
objective B at xA

opt is greatly different (absolute or normalized difference as 
appropriate) from the extreme aspiration level of objective B; otherwise objective 
A interferes weakly. Objective interference is relative because it is possible that 
objective A interferes strongly with objective B while objective B interferes 
weakly with objective A. 

This analysis may suggest model simplifications. For example, if objective B 
interferes weakly with objective A, then the model can perhaps be simplified by 
considering objective B superior to objective A and, for example, using lexico-
graphic ordering of the objectives. 

Where the tradeoffs among several objectives must be analyzed simultane-
ously, an objective interference table can be constructed. First create a table hav-
ing columns for the objectives and rows for the extreme aspiration points for the 
objectives, e.g. xA

opt, xB
opt, etc. The element of the table for the row xA

opt and the 
column for objective B is then [yBopt – f B(xA

opt)] or [yBopt – f B(xA
opt)]/yBopt if normal-

ized. The normalized table shows the fractional loss in the objective function 
value relative to the extreme aspiration level when the objective function is evalu-
ated at the extreme aspiration point for a different objective. Examples of how it 
can be used are given in Section 9.3.4. 

9.3.3 Summary of the Method 

The steps in the method are summarized in Alg. 9.1. Note that each test is re-
applied until passed because there may be more than one IIS in the model, perhaps 
unrelated.  

Steps 1–5 of Alg. 9.1 are straightforward. Step 6 allows a great deal of flexibil-
ity. The modeller could, for example, choose to generate and analyze a single IIS 
in Step 6. Decisions on how to simply the model (e.g. convert a soft constraint to 
an objective or just modify its right hand side) require domain knowledge which 
cannot be incorporated into the algorithm. Similarly, only the modeller, applying 
domain knowledge, can determine when the model is sufficiently well formulated 
to proceed to the solution stage. 
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Analyze the constraint interactions: 
1. Apply a phase 1 feasibility test to the set of hard constraints. If feasible, go to 

Step 2, else (infeasible) identify an IIS and repair the basic LP formulation er-
ror. Go to Step 1. 

2. Select the entire set of constraints (hard and soft) and apply a phase 1 feasibil-
ity test. If feasible, go to Step 3, else (infeasible) identify an IIS and proceed as 
follows: 

 Case 1: only one soft constraint in the IIS. Either (i) relax aspiration level of
  the soft constraint, or (ii) convert the soft constraint to an objective. 
 Case 2: more than one soft constraint in the IIS. Either (i) relax the aspiration
  level(s) of one or more of the soft constraints, or (ii) convert one or more of
  the soft constraints to objectives. 
 Go to Step 2. 
 
Create the converted MOLP: 
3. Find the extreme feasible aspiration level and extreme feasible aspiration point 

(and any alternative extreme feasible aspiration points) for each objective by 
selecting the entire set of constraints and only one objective at a time and 
solving to optimality. 

4. Group objectives having the same extreme feasible aspiration points (or alter-
native extreme feasible aspiration points): members of each group are non-
conflicting objectives. If there is only one group of objectives, then the model 
is not a true MOLP, so exit. 

5. Convert each objective to a constraint by appending the extreme feasible aspi-
ration level as the right hand side and using the constraint sense appropriate to 
the objective (≥ for maximize and ≤ for minimize). 

 
Analyze the objective interactions: 
6. Identify a set of IISs as follows. For each objective, set the guide codes to en-

courage the inclusion of that objective in the IIS and to encourage the exclusion 
of the other objectives. Identify frequently occurring elements in the IISs and 
proceed as follows. 

 Case 1: frequent element is a hard objective or constraint. Either (i) abandon
  objective(s) in the set that are of lesser importance, or (ii) use the objective 
  interference table to set the lexicographic order or weights on the objectives 
  appearing in the IIS. 
 Case 2: frequent element is a converted soft objective or soft constraint. Either
  (i) soft constraint: adjust the aspiration level or convert to an objective, or 
  (ii) soft objective: use the objective interference table to decide whether to 
  ignore or convert to a soft constraint with appropriate aspiration level. 
7. If analysis complete then construct objective interference table for final setting 

of lexicographic order or objective weights and exit. Else (analysis not com-
plete) go to Step 3. 

 
Alg. 9.1. Analyzing MOLPs using IIS isolation algorithms 
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9.3.4 Example 

The example is an adapted and simplified version of a land-use problem deveoped 
by Steuer and Schuler (1981). See Chinneck and Michalowski (1996) for details 
of the relationships. The seven objectives relate to, in order, pasturage, dispersed 
recreation, timber production, and populations of deer, rabbits, squirrels, and 
quail. The first three objectives are soft (i.e. they could be considered as con-
straints), while the last four are hard (they are definitely objectives), since this is 
basically a forestry problem. Soft constraint s1 is a budget limitation. The steps of 
the analysis method are applied below. 

 Steps 1 and 2. The complete set of constraints is feasible, so the tests in Steps 1 
and 2 are passed. 

Step 3. The extreme feasible aspiration levels of the various objectives are 
summarized below: 

objective extreme feasible aspiration level 
zs1 1577.59 
zs2 164.33 
zs3 7437.00 
zh4 28.96 
zh5 81.07 
zh6 40.28 
zh7 100.57 

Step 4. Every extreme aspiration point is different, so no groupings can be 
made. All objectives are in conflict and the original problem is a true MOLP. 

Step 5. All objectives are converted to constraints. For example, maximize zs1 
is converted to zs1 ≥ 1577.59 – ∈, where ∈ is about 0.01. 

Step 6. The set of IISs identified by using the guide codes follows. Notice how 
each objective appears in its respective IIS. 

  {zs1, zs2, s1, h2, h3} 
  {zs1, zs2, s1, h2, h3} 
  {zs1, zs3, s1, h2, h6, h8, h12, h16} 
  {zs1, zh4, s1} 
  {zs1, zh5, s1} 
  {zs1, zh6, s1} 
  {zs1, zh7, s1, h2, h3, h6, h8, h12} 
Frequently occurring elements in the IISs are zs1 and s1 which are members of 

all seven IISs. We elect to remove the budget constraint s1 entirely, which is 
equivalent to adjusting the right hand side to a high value. 

Step 7. Analysis is not complete, so proceed to Step 3. 
Step 3. The new extreme feasible aspiration levels are shown below. Notice that 

all of the extreme feasible aspiration levels have increased (except zs3) with the 
removal of s1. 
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objective extreme feasible aspiration level 
zs1 1853.88 
zs2 185.65 
zs3 7437.00 
zh4 31.87 
zh5 95.58 
zh6 44.01 
zh7 134.88 

Step 4. Every extreme aspiration point is different, so no groupings can be 
made. All objectives are in conflict and we are still dealing with a true MOLP. 

Step 5. All objectives are converted to constraints. For example, maximize zs1 

Step 6. The set of IISs identified by using the guide codes follows:    
  {zs1, zs2, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16} 

  {zs1, zs2, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16} 
  {zs1, zs2, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16} 
  {zs1, zh4, s2–s7, h1–h5, h8–h9, h13} 
  {zs2, zh5, s2–s7, h1, h3–h5, h8–h9, h12–h13, h16} 
  {zs2, zh6, s2–s7, h1, h3–h5, h9, h13} 
  {zs1, zh7, s2–s7, h1, h3–h5, h9, h13} 
The results are less conclusive this time. The IISs contain many more elements, 

zs3 does not appear in any of the IISs generated, there are several common soft 
constraints (s2–s7), and all of the IISs contain a lengthy list of hard constraints. 
Because there is no clear-cut conclusion to be drawn, we construct a normalized 
objective interference table, as shown in Table 9.1. Rows in the table are for the 
extreme aspiration points for the named objective, columns are for the objectives, 
and the elements are the fractional decreases in the objectives at the points (i.e. 
[y Bopt – f B(xA

opt)]/y Bopt for table element AB). 
 

 Table 9.1. Normalized objective interference table 
 

 zs1 zs2 zs3 zh4 zh5 zh6 zh7 
zs1 0.000 0.426 1.000 0.550 0.490 0.435 0.154
zs2 0.103 0.000 0.000 0.063 0.014 0.219 0.016
zs3 0.827 0.816 0.000 0.670 0.795 0.583 0.753
zh4 0.250 0.132 0.000 0.000 0.046 0.258 0.056
zh5 0.000 0.006 0.000 0.092 0.000 0.201 0.023
zh6 0.000 0.357 0.000 0.267 0.423 0.000 0.021
zh7 0.183 0.449 0.000 0.207 0.430 0.053 0.000

 
Note that the diagonal elements of the table are zero, because each objective 

reaches its extreme aspiration level at its extreme aspiration point. 
Since no particular relationship is clearly identified as a candidate for change, 

the final formulation phase activity is to make recommendations about lexico-
graphic ordering or weighting of the objectives. We choose to use the objective in-
terference table to examine how best to set the lexicographic order. 

is converted to zs1 ≥ 1853.88 – ∈. 
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One way to set the order is to look at which extreme aspiration points have the 
least negative impact on the other objectives. This can be done in a many ways: 
average deterioration in objective value, smallest maximum decrease in objective 
value, etc. For illustrative purposes, we choose to look at the average decline in 
objective value by calculating the average of the off-diagonal elements in each 
row of the table, with results as follows: 

   zs1  zs2  zs3  zh4  zh5  zh6  zh7 
  .509 .069 .741 .125 .054 .178 .220 

With the idea of ordering the objectives so that a greater degree of satisfaction 
of one objective early has the least negative impact on the later objectives, we can 
order the objectives based on increasing values of the average decline in objective 
values: zh5, zs2, zh4, zh6, zh7, zs1, zs3. The reverse of this ordering shows the ob-
jectives having the most to the least impact on the others. It is not surprising to see 
that timber production (zs3) and pasturage (zs1), both land-intensive activities, 
have the most impact on the other recreation and wildlife objectives. This sort of 
insight can be used to prepare the final model formulation for solution. 

Step 7. Finished formulating, so exit and go to solver. Choosing a lexicographic 
ordering approach, our final model is thus to maximize the objectives in the cho-
sen order (zh5,zs2,zh4,zh6,zh7,zs1,zs3) subject to the constraints excluding con-
straint s1. 
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10 Data Analysis 

Techniques originally devised for analyzing infeasible linear programs turn out to 
have many interesting and useful applications in data analysis. The problem of 
placing a hyperplane in an n-dimensional space to separate two categories as well 
as possible can be directly transformed into an instance of the MAX FS problem, so 
the algorithms of Chap. 7 can be applied. This is also identical to the problem of 
providing the initial training for a neural network. A related problem in statistics is 
determining the data depth of a point in an n-dimensional cloud of data points, de-
fined as the smallest number of data points on one side of hyperplane through the 
point in question. This is again transformable to the MAX FS problem. Finally, 
arithmetic constraints are often used to check massive data sets such as census re-
sults. The rules themselves may be contradictory, and this can be checked via the 
methods of Chaps. 6 and 7. 

10.1 Classification and Neural Networks 

A standard problem in machine learning and data classification is the placement of 
a separating surface (normally a hyperplane) in an n-dimensional space of item 
features in such a way that it completely separates instances in one set (e.g. of 
Type 0) from instances in another set (e.g. of Type 1). This is not normally possi-
ble with real data, so the objective is usually to place the separating surface so as 

into the MIN IIS COVER problem (Amaldi 1994, Parker 1995, Chinneck 1998, 
2001a) as shown below. The conversion results in a MIN IIS COVER problem that 
has no variable bounds or equality constraints, and hence is somewhat simpler in 
structure. 

The data instances exist as points in an n-dimensional space of attributes or fea-
tures, each having an associated type (e.g. Type 0 or Type 1). This constitutes the 
training set of instances. Finding the minimum-misclassification hyperplane in the 
training set is an essential step in building up a decision tree that can be used to 
classify new instances as they are encountered. The problem of placing a hyper-
plane to misclassify as few of the training set instances as possible can also be 
viewed as the problem of determining the smallest number of points to remove 
from the training set such that all of the remaining points can be correctly classified 

to minimize the number of incorrectly classified instances. See the example in
nality problem is easily transformed Fig.10.1.T his minimum misclassification cardi



by a single hyperplane. This is translated into the MIN IIS COVER (or MAX FS) prob-
lem as follows: 

ij
point is known (either Type 0 or Type 1), define a set of linear constraints as 

follows (one constraint for each data 
point): Σjdijwj  ≤ w0 − ∈ for points of Type 
0, and Σjdijwj  ≥ w0 + ∈ for points of Type 
1, where ∈ is a small positive constant. 
Note that the variables are the unrestricted 

j ij
known constants. A similar conversion is 
given by Parker (1995). 

If the data are completely separable by a 
single hyperplane, then any solution to the 
LP resulting from the conversion will yield 
a set of values for the wj, which then defines 

the separating hyperplane wx = w0. If the data cannot be completely separated by a 
single hyperplane, then the LP resulting from the conversion will necessarily be 
infeasible. Finding a solution to the MIN IIS COVER problem in this infeasible LP 
then also solves the classification problem of finding the smallest number of 
points to remove such that the remaining points are completely separable by a sin-
gle hyperplane. The constraints in the IIS cover correspond to misclassified points 
in the classification problem. Because the points removed will be incorrectly clas-
sified by the resulting hyperplane, this constitutes a method of finding a hyper-

Table 10.1 provides information about nine frequently analyzed binary classifi-
cation problems taken from the publicly available UCI Repository of Machine 
Learning Databases (Newman et al. 1998), a common source of classification test 
data. “Net points” is the number of data instances remaining after incomplete 
tuples are removed. 

 
Table 10.1. Classification data sets 

 
data set net points number of features 
breast cancer 683 9 
bupa 345 6 
glass (type 2 vs. others) 214 9 
ionosphere 351 34 
iris (versicolor vs. others) 150 4 
iris (virginica vs. others) 150 4 
new thyroid (normal vs. others) 215 5 
pima 768 8 
wpbc 194 32 

 

 
 
Fig. 10.1. Separating hyperplane 

in which the value of attribute j for point i is denoted by d , and the class of each 
Given a training set of I data points (i = 1… I) in J dimensions (j = 1… J ), 

w , where j = 0… J, while the d  are 

classification research. 
plane that misclassifies the smallest number of points, an important goal in 
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Table 10.2 compares the results obtained when three different algorithms for 
placing separating hyperplanes are applied to these data sets: 

• Alg. 7.3 as implemented in CLIIS, a MINOS-based prototype for placing 
classifier hyperplanes (Chinneck 2001a). 

• Algorithm 2(1) of Sec. 7.4 (i.e. choosing only the violated constraint having the 
maximum product as the single candidate each time) as implemented in CLIIS 
(Chinneck 2001a). 

• A parametric exact LPEC formulation (see Sec. 7.1.2) solved by successive 
linear programming, and implemented in the MISMIN code (Bennett and 
Bredensteiner 1997).  

All algorithms are applied to the entire data set (i.e. there is no separation into 
training and testing sets). The best results in terms of both accuracy (% acc.) and 
time (secs) are shown in boldface.  

Because MISMIN is among the best of the available programs for minimizing 
the number of classification errors in classification problems, it is a good standard 
for comparison. Bennett and Bredensteiner (1997) show that MISMIN performs 
favorably against such other well-known programs as OC1 (Murthy et al. 1994) 
and CSADT (Heath et al. 1993). 

Table 10.2 shows that Alg. 7.3 is the most accurate, but also the slowest, while 
MISMIN is the fastest. Algorithm 2(1) provides a major speed-up over Alg. 7.3 
(several orders of magnitude in some cases), yielding times comparable to those 
for MISMIN (and sometimes faster). More significant, however, is that it does this 
with very little loss of accuracy. 
 
Table 10.2. Three algorithms for classification (Chinneck 2001a) 
 
 Alg. 7.3 Alg. 2(1) MISMIN 
 % acc. secs % acc. secs % acc. secs 
breast cancer 98.4 17 98.4 4.3 98.2 0.7 
bupa 75.1 159 75.9 1.3 73.9 0.6 
glass (type 2 vs. others) 81.8 38  78.5 0.6 76.6 0.6 
ionosphere 98.3 44 98.3 5.4 98.3 2.6 
iris (versicolor vs. others) 83.3 5 83.3 0.2 82.0 0.3 
iris (virginica vs. others) 99.3 0.4 99.3 0.1 99.3 0.3 
new thyroid (normal vs. others) 94.9 3 94.9 0.3 93.5 0.3 
pima 80.6 1434  80.2 7.2 80.5 1.5 
wpbc 96.9 17 96.9 1.2 91.2 1.5 
average: 89.8 216.2 89.5 2.3 88.2 0.9 
 

An important difference between the approaches taken in Alg. 7.3 and in Al-
gorithm 2(1) as opposed to many other methods is that they remove points from 
the data sets one at a time instead of all at once as in other methods. This raises 
the possibility of “guiding” the removal process as it is underway. For example, if 
the classification accuracy of Type 0 points is lower than that of Type 1 points at 
some intermediate point in the hyperplane placement process, then the point removal 
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procedure could be coerced to prevent the removal (and hence misclassification) of 
any more Type 0 points until the classification accuracies are balanced. 

Amaldi et al. (2007) ran various MAX FS algorithms on the same data sets as re-
ported in Table 10.2. Algorithms include: 

• A branch-and-cut implementation due to Pfetsch (2002), see Sec. 7.2. 
• An exact Big-M branch and bound using the Cplex 8.1 solver, see Sec. 7.1.1. 
• The two-phase algorithm using the linearized bilinear model for the first phase, 

and the exact Big-M branch and bound using Cplex 8.1 for the second phase, 
see Sec. 7.5. 

• The two-phase algorithm using a linearization of the Big-M method for the first 
phase, and the exact Big-M branch and bound using Cplex 8.1 for the second 
phase, see Sec. 7.5. 

• The two-phase algorithm using a simple LP phase 1 for the first phase, and the 
exact Big-M branch and bound using Cplex 8.1 for the second phase, see Sec. 7.5. 

• A reimplementation of Alg. 7.3 using the AMPL scripting language and with 
Cplex 8.1 as the LP solver.   

Results are summarized in Table 10.3. All solutions were limited to 10,000 
seconds of CPU time. Alg. 7.3 is the only method that is not branch-and-bound 
based, and is also the only method that did not time out on any of the data sets. 
The accuracy shown for timed-out solutions is for the incumbent solution available 
at time-out. There are some differences in the accuracies and times for Alg. 7.3 be-
tween Tables 10.2 and 10.3 which are likely due to differences in coding and in 
the LP solvers used. 

 
Table 10.3. More MAX FS algorithms for classification (Amaldi et al. 2007) 
 
 branch & 

cut 
Big-M 2Ph-bilin 2Ph-BigM 2Ph-LP Alg. 7.3 

 %acc sec %acc sec %acc sec %acc sec %acc sec %acc sec 
breast cancer 98.4 43 98.2 t 98.4 371 98.4 1 98.4 8 98.4 15 
bupa 65.8 t 71.9 t 75.7 t 75.4 t 75.1 t 75.1 331 
glass (type 2 
vs. others) 

83.2 t 82.2 t 78.5 133 80.4 375 78.0 t 80.4 143 

ionosphere 98.3 2215 98.3 t 98.3 2268 98.3 4 98.3 36 98.3 36 
iris (versicolor 
vs. others) 

83.3 1735 83.3 7630 82.7 4 82.7 1 82.7 5 83.3 30 

iris (virginica 
vs. others) 

99.3 0.1 99.3 0.4 99.3 1 99.3 0.2 99.3 0.2 99.3  0.1 

new thyroid 
(nrm vs others) 

94.9 17 94.9 46 94.9 9 94.9 0.2 94.9 0.4 94.9  10 

pima 79.9 t 76.6 t 80.3 t 80.1 t 80.1 t 80.6 1977 
wpbc 93.3 t 90.2 t 91.8 t 91.8 1863 91.8 t 91.8  91 
avg 88.5  88.3  88.9  89.0  88.7  89.1  
t: algorithm timed out. Boldface indicates best accuracy in the row. 

 
Adem and Gochet (2006) extend the mathematical programming based meth-

ods for finding separating hyperplanes for the two-class problem to the multiclass 
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problem. One approach they use is to modify Alg. 7.3 for use in solving multiclass 
problems. The main idea is that if there are C classes, then C constraints are for-
mulated for each data point. As for the two-class version of Alg. 7.3, one data 
point is removed at each iteration, but this is done by removing C-1 constraints 
(instead of just one constraint in the original two-class version). Various rules 
based on Chinneck (2001a) are used to identify the data point for removal at each 
iteration. Empirical results with the modified heuristic are very good. 

As pointed out by Mangasarian (1993), the training of neural networks is 
equivalent to finding separating hyperplanes. Hence the conversion of the classifi-
cation problem into the MIN IIS COVER problem allows the spectrum of solutions 
for MIN IIS COVER to be applied to the initial training of neural networks. 

Solution of the MIN IIS COVER problem to find separating hyperplanes also ap-
pears to underlie the statistical technique known as optimal data analysis (Yarnold 
and Soltysik 2004). 

10.2 Data Depth 

The data depth of a point in a cloud of points in a multi-
dimensional space is a statistical concept that is related to the 
idea of the median of a set of points in a one-dimensional 
space. It is also known as the halfspace depth, the location 
depth, and the Tukey depth. The data depth of some point p in 
a set of points S is defined as the smallest number of points in 
S in any closed halfspace with boundary through p. The point 
with the largest data depth is called the Tukey median.  

Fukuda and Rosta (2005) provide an introduction to basic 
concepts and algorithms for calculating the data depth and also show that finding 
the data depth of a given point is equivalent to solving the MAX FS problem (or 
equivalently the MIN IIS COVER problem). Given the use of algorithms for solving 
MAX FS in classification (Sec. 10.1), this is not surprising. Here the goal is to sepa-
rate a given point from as few other points as possible via a single hyperplane, as 
compared to separating Type 0 points from Type 1 points in data classification. 
The data depth problem also is identical to the closed (open) hemisphere problem,  

The problem of finding the data depth for some point p is converted to a linear 
program as follows. Let there be I other points in the set S, each represented as a 
J-tuple in the J-dimensional space. Set up one constraint for every point xi as fol-
lows: a1(xi1 – p1) + a2(xi2 – p2) + …+ aJ(xIJ – pJ) ≥ ∈, where ∈ is a small positive 
constant. Note that the xij and pj are known constants while the aij are the unknown 
variables. If p is on the convex hull of the cloud of data points, i.e. has a data 
depth of 0, then the resulting LP is feasible, and the hyperplane that separates p 
from the rest of the points is given by ax ≥ ∈. 

In the more general case where p has a data depth of greater than 0, then the re-
sulting LP will be infeasible, and the various algorithms for solving MAX FS can be 
applied (see Chap. 7). More exactly, this problem is best solved by the MIN IIS 

 
Fig. 10.2. The 
grey point has 
data depth 2  
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COVER or MIN ULR variants of MAX FS. The cardinality of the MIN IIS COVER or MIN 
ULR is the data depth of the point. 

Chen (2007) reports on experiments using various branch-and-bound and 
branch-and-cut algorithms to calculate data depth. Bremner et al. (2006) report on 
experiments using so-called primal-dual methods that calculate both upper and 
lower bounds on the data depth and terminate when the bounds are the same. 
Unreported experiments by the author using Alg. 7.3 show promise. 

10.3 Errors in Massive Data Sets 

Mathematical and logical rules are commonly used to check the data in massive data 
sets, such as census or survey data (Bruni 2005a). Very simple mathematical rules 
may check the range of a data value, e.g. that age is between 0 and 110 years. More 
complex rules tie conditions together, for example (Age−YearsMarried ≥ 16) to 
express the fact that the minimum age for marriage is 16. Bruni (2005a) further 
demonstrates how logical conditions can readily be converted to linear inequality 
constraints. 

Given a set of rules for checking a massive data set, various difficulties may 
arise, such as inconsistency among the rules. In the case of complete inconsis-
tency, it is straightforward to check the linear inequalities arising from the rules to 
identify an IIS (Chap. 6) or to find the maximum feasible subset (Chap. 7). This 
allows the analyst to alter the rules appropriately. However there is also the case 
of partial inconsistency in which an inconsistency among the rules arises when 
particular values are chosen for some of the fields. This can also be handled by IIS 
isolation and maximum feasible subset identification by analyzing the infeasibility 
that arises in that case. Depending on the format of the data, methods for the 
analysis of infeasibility in LPs or in MIPs may be required. This process is re-
ferred to as validating the data check rules. 

Given a set of validated rules, it is then simple to check each data record by 
verifying that it satisfies all of the linear constraints that express the rules. If a re-
cord does not satisfy all of the rules, then it is possible to automatically correct the 
record. The goal in this case is to make the smallest possible adjustment to the 
record such that it satisfies all of the rule inequalities, while simultaneously dis-
turbing the original frequency distribution of the data as little as possible. This is 
usually done by identifying a donor record that is as similar as possible to the er-
roneous record, and copying low-cost fields from the donor record to the errone-
ous record so that the erroneous record now satisfies all of the rules. 

Bruni (2005a) reports very encouraging results using the methods described 
above for test sets based on census data for Italy. See also Bruni et al. (2001). 
Riera-Ledesma and Salazar-Gonzalez (2007) describe a branch-and-cut approach 
for the correction of records that violate some of the rule inequalities; they find the 
minimum number of fields to change (or more generally, the minimum weight set 
of fields to change).  
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Wu and Barbará (2002) discuss a variety of methods for imputing missing data 
values based on data available in summary constraints (e.g. determining missing 
individual values when the column total is known). The value of the summary 
constraint and the individual data values may conflict, and in this case techniques 
of infeasibility analysis can be of assistance. 
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11 Miscellaneous Applications 

Many applications depend on representations that consist of sets of constraints. 
The constraints might represent limits on the amount of radiation that healthy and 
diseased tissue must receive when planning a course of radiation treatment (Sec. 11.1), 
the minimum levels of signal strength needed for digital video broadcasting 
(Sec. 11.3), restrictions on the questions drawn from a test bank (Sec. 11.4), etc. 
When the constraints conflict, common questions concern the cause of the conflict 
(Chap. 6), the maximum set of constraints that can be satisfied simultaneously 
(Chap. 7), or the smallest fix for the constraints (Chap. 8). This chapter briefly 
surveys some of the many specific applications that have arisen in recent years as 
effective techniques for the analysis of infeasibility have become available. Even 
more applications are sure to be discovered soon as more researchers become 
aware of these tools: why not add your own applications to the list? 

11.1 Radiation Treatment Planning 

Radiation treatment for diseases such as cancer involve careful planning such that 
the diseased target tissue receives a large enough dose to kill the problem cells, 
while non-diseased tissue receives doses that are not large enough to cause signifi-
cant damage. Various kinds of optimization problems and solution methods arise 
in the attempt to solve the radiation treatment planning problem. See Censor 
(2003), Holder (2004) and Lim et al. (2006) for an overview of radiation planning 
models and solution techniques. 

Intensity-modulated radiation therapy (IMRT) machines are designed such that 
small individual beams of radiation of adjustable intensity are directed through the 
body at various angles and intensities. The body is modeled as a collection of 
“volume pixels” known as voxels, and the resulting set of constraints, often lin-
earized, is of the form A1x ≤ u for voxels in non-diseased tissue that should not re-
ceive more than a specified dose of radiation, and A2x ≥ l for diseased tissue that 
should receive a sufficiently lethal dose. The nonnegative variables x represent the 
intensity setting that should be assigned to each individual radiation beam.  

The first IMRT problem is quickly finding a feasible solution for this set of 
constraints. There is a lengthy literature on this process. Standard LP and MIP so-
lution methods can be used, depending on the problem formulation. Various forms 
of projection algorithms have been developed extensively for the solution of this 
problem. See e.g. Censor and Zenios (1997). 



The second IMRT problem arises when the resulting voxel dosage inequalities 
form an infeasible set. A solution must be found so that the radiation therapy can 
proceed for the patient, but the solution must be as close as possible (in some 
sense) to satisfying the constraints. The measures and approaches of Sec. 8.1 can 
be applied to determine the minimum violation of the constraints that will result in 
a feasible solution. Censor et al. (2006) developed the method of Sec. 8.1.8 spe-
cifically for the solution of this problem. 

Sadegh (1999) approaches the infeasible radiation therapy planning problem as 
an instance of MAX FS, and develops a variation of Chinneck’s heuristics (see Sec. 7.4) 
to solve it. A MIP solution to the MAX FS problem is also described by Lee et al. 
(1999), in this case for a brachytherapy procedure, which involves the insertion of 
radioactive “seeds” in the patient. However the underlying model is similar to the 
IMRT models in that the body is discretized into voxels and there are lower 
bounds on the radiation to be delivered to diseased voxels and upper bounds on 
the radiation to be delivered to the healthy voxels. 

11.2 Protein Folding 

The prediction of the three-dimensional protein folding pattern from its amino 
acid sequence is currently a subject of great interest in computational biology. 
Knowing the folding pattern gives clues to the function of proteins. Linear con-
straints are often used to formulate protein energy models, resulting in LPs with 
extremely large numbers of constraints (on the order of tens to hundreds of mil-
lions) in a few hundred variables.   

Protein folding prediction can be cast as a problem of comparing the energy of 
a misfolded shape to the energy of the native shape of a protein sequence. Native 
shapes always have a lower energy than a misfolded shape. Meller et al. (2002) 
express this via the relationship ΔEmis,nat = Emisfolded – Enative ≥ ε where Enative = 
E(snat, x) is the energy of the native structure snat while x is the vector of unknown 
parameters. Similarly, Emisfolded = E(smis
and x is the set of unknown parameters. Given a set of similar decoy structures to 
compare against, energy inequalities can be constructed for each one; ε is a small 
positive constant indicating that the energy of the native structure is lower than 
that of any of the decoy structures. The goal is to determine the unknown values of 
x which represents a linear combination of basis functions. 

Since the energy function is a linear combination of basis functions, the values 
of x can be found by linear programming subject to the constraints arising from 
the energy inequalities for the decoy structures as defined above. The resulting 
models are very large, having hundreds or millions of constraints in a few hundred 
parameters (Wagner et al. 2004). Further, the models are very often infeasible, so 
a problem of identifying a maximum feasible subset of linear inequalities arises. 
The MAX FS solution helps define the region for the correct native structure. The 
techniques of Chap. 7 can be applied to this problem. 
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, x) is the energy of the misfolded sequence 



Given the scale of the resulting MAX FS problems, special large-scale solution 

Sec. 7.7. Amaldi et al. (2005) tested a number of algorithms for solving the protein 
folding MAX FS problem. The exact Big-M MIP method (Sec. 7.1.1) was entirely 
unsuccessful on models in range of several hundred thousand inequalities, how-
ever the randomized thermal relaxation algorithms (Sec. 7.6) performed well, 
though there are no exact results for comparison. 

11.3 Digital Video Broadcasting 

problem results in models having large numbers of linear inequalities. Given m 
square areas representing test points for signal reception, and n transmitters, the 
goal is to determine the transmission power of each transmitter so that the signal 

arrive at the same test point with a delay; if this delay is too large, then the signals 
interfere. Hence the resulting model has a linear inequality for each test point of 
the form ∑ =

≥
n

j ijij bxa
1

, where xj is the unknown power of transmitter j, and aij 

is the strength of the signal arriving at test point i from transmitter j. aij is positive 
if the signal is useful, and negative if it interferes. bi is the minimum signal 
strength needed at test point i to provide adequate signal strength with 95% prob-
ability. Each transmitter is also limited in transmission power: xj ≤ pmax for all j. 
Complete coverage of a large number of test points is not usually possible, so the 
problem becomes one of satisfying as many of the inequalities as possible, i.e. a 
MAX FS problem, so the methods of Chap. 7 are applicable. 

Amaldi et al. (2005) formulate a discretized version of the problem for Italy us-
ing a few thousand transmitters that results in 55,000 inequalities. A version can 
also be formulated that is weighted by the population at each of the test points. 
They approach this problem using the randomized thermal relaxation (RTR) heu-
ristic (Sec. 7.6) as well as the exact Big-M formulation (Sec. 7.1.1). The exact 
Big-M solution works well for the smaller models, but runs into difficulties and 
times out on the larger models. The RTR heuristic completes all solutions quickly 
(never taking more than 3 minutes of computation time on a PC). It is possible to 
assess the quality of the RTR solutions on the models completed by both methods 
within the time limits. The RTR solutions are in general not greatly worse than the 
exact Big-M solutions, and are even better in a couple of cases because of the nu-
merical issues that arise in the Big-M method. 

 Amaldi et al. (2007) report on the use of the two-phase relaxation-based heu-
ristic (Sec. 7.5) to solve the digital video broadcasting problem. The version of the 
algorithm using a linearization of the Big-M formulation as a first phase gives the 
best results, despite the fact that the second phase Big-M formulation times out 
frequently, hence returning only the incumbent solution available at time-out. 

A similar problem formulation is likely applicable to cell phone towers. 

techniques are needed. Meller et al. (2002) devised the interior-point heuristic of 

reception at each test point is acceptable. Signals from different transmitters may 

As described by Amaldi et al. (2005), the digital video broadcasting planning 
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11.4 Automated Test Assembly 

Many types of tests (e.g. the Scholastic Aptitude Test) are automatically assembled 
subject to constraints, e.g. that certain categories of knowledge are tested a certain 
number of times, or that the word count is less than a prescribed limit, etc. Test 
questions are drawn from a pool of authorized questions. The problem of assem-
bling a test from a bank of questions such that it meets all of the constraints is 
usually formulated as a binary program in linear constraints in which the binary 
variables indicate whether a particular question is to be included in the test or not 

lection of questions that is too small for the desired test. Several researchers have 
addressed the issue of how to resolve the infeasibility. 

Huitzing et al. (2005) approach the analysis of infeasibility in these problems in 
several ways, including IIS isolation (see Chap. 6), finding a maximum feasible 
subsystem (see Chap. 7), and finding the best approximation solution (see Chap. 8). 
Two categories of methods are applied. The first category provides a best ap-
proximate solution to the infeasible test assembly problem. Methods in this cate-
gory include: 

• A weighted elastic program. The objective is to minimize the sum of the 
weighted elastic variables (see Sec. 6.1.4). Huitzing et al. (2005) refer to this as 
goal programming. 

• Multi-objective programming. An ordered application of the objective functions 
may be used, or a weighted combination of them. See Sec. 9.3. 

• Greedy heuristics. Start the test assembly with a single item and successively 
add the next best item until a predetermined number of items has been added. 
The ordering of the items may be set by assigning weights to the violation of a 
constraint and choosing the next item as the one that minimizes the sum of the 
weights. 

The second category of methods tries to determine the cause of the infeasibility 
so that it can be analyzed and repaired by the human test assembler. Various 
methods for isolating IISs are used: 

• Standard deletion filtering applied to the LP-relaxation of the original binary 
test assembly problem. The deletion filter as implemented in Cplex 6.6 is used 
(termed RODA for relaxed and ordered deletion algorithm). See Sec. 6.1.2. 

• A version of the deletion filter that randomizes the order of the constraints and 
respects the integrality constraints (termed IRDA for integer and randomized 
deletion algorithm). 

• A sampling approach termed SCIS for set covering and item sampling. The 
sampling respects the binary nature of the variables, but otherwise the method 
is identical to that in Sec. 6.1.7. 

• A method for successively relaxing bounds until feasibility is reached. This 
works by finding an IIS (by either RODA or IRDA), and then calculating a 
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sembly formulation may be infeasible due to incompatible restrictions, or to a col-

(Huitzing et al. 2005). Questions are assigned an importance weight, and the 
objective is to maximize the total importance of the questions in the test. The test as-



measure for each member of the IIS to determine which one to relax. The 
process is repeated until the model is feasible. The measure for each member of 
the IIS is based on the amount it must be relaxed to make the IIS feasible 
relative to the size of its right hand side constant. A new LP/MIP must be 
solved for each constraint in the IIS to determine how much it must be relaxed 
to render the IIS feasible. Huitzing et al. (2005) refer to this process as the IIS-solver. 
It is similar to the methods of Sec. 7.2. This method can also be used to 
automatically provide an approximate solution to the infeasible problem. 

Huitzing et al. (2005) evaluate the performance of the various methods on two 
examples derived from real test assembly problems. 

Timminga (1998) further mentions a standard Big-M integer program for find-
ing a minimum IIS set cover (see Sec. 7.1.1). 

11.5 Buffer Overrun Detection 

Computer buffer overruns are a serious problem. Unintentional buffer overruns 
may cause program failure while intentional buffer overruns are serious security 
vulnerabilities. Ganapathy et al. (2003) approach the problem of preventing possi-
ble buffer overruns by analyzing the source code for a computer program before it 
runs. Their analysis transforms the source code into a list of linear constraints, 
typically inequalities that relate to the size of the buffer (e.g. number of bytes) and 
to the current level of usage of the buffer, which can be analyzed for possible 
buffer overruns. Application of their technique to several commercial programs 
identified a number of previously-unknown buffer overruns. Infeasibility of the 
constraints indicates a modeling problem that must be corrected before the re-
mainder of the overrun analysis can be applied (or may possibly indicate an over-
run vulnerability). Ganapathy et al. (2003) carry out the infeasibility analysis via 
an elastic filter (see Sec. 6.1.4). 

11.6 Customized Page Rankings 

Page rankings are used by web search engines to sort a collection of web pages for 
presentation to the user. Ranking algorithms use web page features such as how 
many other pages point to a particular page, some measure of the “quality” of a 
page, the quality of the pages pointing to this page, etc. However the importance 
of a page is relative to the search at hand and the interests of the human searcher, 
hence customized page rankings are more suitable for particular fields of study. 
Tsoi et al. (2006) model user preferences on page rankings via linear constraints, 
e.g. that the rank of page A should be higher than the rank of page B, or that the 
rank of a page on a particular topic should be at least twice its general page rank-
ing etc. Their page ranking algorithm results in a quadratic objective function sub-
ject to linear constraints. 
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The linear constraints may form an infeasible set. Tsoi et al. address the infea-
sibility in two ways. One approach is to solve an elastic program to minimize a 
weighted sum of the constraint violations (see Sec. 8.1.2). The second approach is 
a modified form of maximum feasible subset analysis (see Chap. 7). In the second 
approach, they first enumerate all of the maximum feasible subsets (an NP-hard 
problem in general), and then solve the linearly-constrained quadratic page rank-
ing problem for each feasible subset. This approach is exercised on a small problem. 

11.7 Backtracking in Tree-Structured Search 

Tree-structured search arises in solving mixed-integer programs, in constraint pro-
gramming, in solving the satisfiability problem (Sec. 4.1), and in many other con-
texts. When an infeasible node is reached in a tree-structured search, there is an 
opportunity to use the information about the infeasibility of the current node to 
decide which node to backtrack to, or to develop global constraints which will 
prevent branching to other nodes in the tree that have the same infeasibility. In 
both cases, the efficiency of the tree search is greatly improved. The efficiency re-
lies on the ability to identify IISs. 

Bruynooghe (1981) did some of the earliest work on intelligent backtracking in 
the context of constraint programs for combinatorial search problems. For such 
problems, each variable has a discrete set of possible values. Conflicts arise at a 
node in the search tree when the values of some of the variables have been fixed 
by the search tree and this fixing violates one or more constraints. The conflict set 
is then the set of fixed variables in the violated constraint. From the optimization 
perspective, this is similar to detecting infeasibility at a branch and bound node 
and identifying an infeasible subset that consists of a single functional constraint 
and the bounds on the variables it contains that have been altered by the branch and 
bound process. Bruynooghe defines a minimal conflict set similarly to an IIS: it is 
a conflict set for which every proper subset is not a conflict set. Bruynooghe sug-
gests first finding all minimal conflict sets, and then ordering them from smallest 
to largest cardinality. Backtracking is then done on the variables in the chosen 
conflict set.  

De Backer and Beringer (1991) find minimal conflict sets (i.e. IISs) in the sub-
set of linear constraints that define the constraint program, again for the purposes 
of intelligent backtracking. They use a method similar to that of Thm. 6.16. Burg 
et al. (1994) present another method of finding minimal conflict sets in the subset 
of linear constraints in the model for the same purpose. Constraints are processed 
one at a time in constraint programming. Burg et al. maintain the current set of 
constraints in a special solved form achieved by Gaussian operations. The solved 
form appears to be similar to van Loon’s (1981) form, and the minimal conflict 
sets appear to be isolated in the same manner. In both cases, the minimal conflict set 
directs the backtracking process to the nodes at which the members of the minimal 
conflict set were introduced so that another branch of the search can be explored. 
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Davey et al. (2002) introduce more efficient intelligent backtracking for binary 
linear programs consisting of inequalities. Each inequality of the form aix ≤ bi is a 
knapsack constraint, and a knapsack-cover is defined when a constraint is vio-
lated, of the form 

∑ ∑+ −−∈ ∈
−>

Ci CNi iii aba
\

. 

N − indexes the set of variables with negative coefficients (with C − as a subset) 
and N + indexes the set of variables with positive coefficients (with C + as a sub-
set). This equation states that given the current set of variable fixings (C +, C −), 
the constraint is violated no matter how the current unset variables are set. Based 
on this, a knapsack-cover inequality can be defined of the form 

1−≤−∑ ∑+ −∈ ∈
+

Ci Ci ii Cxx , 

which states that not all of the variable settings in the knapsack-cover can hold si-
multaneously. The knapsack-cover inequality is used as a global constraint.  

The efficiency of the method depends on finding small inconsistent sets with 
relatively little additional effort. Davey et al. find IISs using an approach based on 
identifying an improving ray in the dual cone of the unbounded dual problem as-
sociated with the infeasible primal problem. Their method is similar to that of 
Thm. 6.17. After the IIS is found, it is examined to see whether some of the con-
straints introduced by the branching process can be replaced by original con-
straints. For example, the IIS may include the constraint x1 + 5x2 + 4x3 + 2x4 ≤ 8, 
with the variables x1, x2, and x3 all set to 1 by the branching process and the value 
of x4 not yet set. This constraint is violated with these variable fixings, and is still 
violated if x1 = 1 (fixed by the branching process) is replaced by the original con-
straint x1 ≥ 0. The resulting knapsack-cover inequality in this case expresses the 
fact that x2 and x3 cannot be set equal to 1 at the same time: x2 + x3 ≤ 1. Knapsack-
cover inequalities involving fewer variables are more powerful and easier to 
check, hence the final examination of the functional constraint in an attempt to re-
place constraints introduced by the branching process with original variable 
bounds. This is done by a simple pass through the variables in the functional con-
straint whose values were set by the branching process, from smallest to largest 
coefficient, replacing the set value with the original bound as long as the func-
tional constraint remains violated. 

Davey et al. (2002) present empirical results for a variety of binary linear pro-
grams showing that their method solves binary linear programs faster than an 
unmodified branch and bound approach. 

Fränzle and Herde (2005) describe a system for dealing with models that com-
bines the Boolean satisfiability problem with linear inequalities. One aspect of the 
problem formulation uses Boolean variables to indicate whether or not a real-
valued linear inequality is included in the model or not. There is thus a higher-level 
SAT problem in Boolean variables that controls various lower-level combinations of the 
linear inequalities. At some nodes of the search tree, the combination of linear ine-
qualities may be infeasible. When this happens, an IIS is isolated and used to 
guide the backtracking in the SAT tree in the form of a conflict clause based on 
the IIS. 
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Codato and Fischetti (2006) use a similar approach for solving certain classes 
of MIPs. The model is separated into an all-binary master problem and slave con-
tinuous LP problems. If a slave LP problem is infeasible, an IIS analysis is used to 
generate a combinatorial cut constraint that is then added to the master binary 
problem to prevent recurrence of that particular infeasible combination of con-
straints. This approach greatly reduces the time to solve certain categories of MIPs 
as compared to a standard MIP solution method. 

11.8 Piecewise Linear Model Estimation 

Piecewise linear models are used to model a wide range of nonlinear phenomena. 
Such models typically result in a large set of linear equations, usually one for 
every data point, which is typically infeasible. Solving the MIN PFS problem for 
such a set of constraints (see Sec. 7.9) can be a very effective way of determining 
how to partition the model into linear segments. A feasible solution for each feasi-
ble partition then provides values for the model parameters.  

Amaldi and Mattavelli (2002) show how piecewise model estimation problems 
can be converted to MIN PFS problems. First, to deal with noisy data, each equation 
i is replaced by a pair of inequalities defining a hyperslab of width 2ε, where ε is 
the noise tolerance: ai x ≤ bi+ε and ai x ≥ bi−ε. The noise thresholds need not be 
identical over all equations since they may be subject to different physical effects. 
A MIN PFS solution finds a small set of hyperslabs that contains all of the original 
data points; see the example in Fig. 11.1. 

Amaldi and Mattavelli (2002) show how to 
apply heuristics for the solution of MIN PFS to 
line detection in digital images and to model-
ing of time series. For the line detection prob-
lem we are given a set of two-dimensional 
points pi in the x1 × x2 plane associated with 
contours extracted from the image. The goal 
is to detect line segments in this collection of 
contour points. Contour points lying on the 
same line will satisfy the constraint a1x1 + 

a2x2 + a3 = 0. We thus construct one such constraint for each contour point x. As 
described above, this equation is replaced by a pair of inequalities, which creates a 

ues of a1, a2, and a3, defining the line segment. The problem can be further simpli-
fied by replacing a3 by –1, which amounts to a scaling of each constraint; this 
simplification eliminates only solutions that pass exactly through the origin. 
Amaldi and Mattavelli test the greedy solution algorithm for the MIN PFS formula-
tion (Sec. 7.9) by application to a number of line detection problems. The quality 
of the results returned is always at least as good as and sometimes better than a 
Hough transform. 

 
Fig. 11.1. A piecewise linear model 
consisting of three slabs 
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hyperslab to allow for noise. Solving the MIN PFS problem will yield separate 
subsets of feasible inequalities. A solution for each feasible subset will yield the val-



Time series arise in many applications including various types of signal proc-
essing. These may be broken into linear submodels, as in threshold autoregressive 
models which choose the submodel at some time t by comparing the signal at time 
t-1 with predetermined thresholds. However it is difficult to choose the thresholds 
in advance. Such a piecewise linear model has the form 

∑ = − +=
n

j tjttjt uyxy
1

)( y  

where yt = (yt-1,…,yt-n) are the known observations, and the coefficients of the cur-
rent submodel xj (yt), 1 ≤ j ≤ n, depend on the values of the observations in yt, i.e. 
where the point is located in the state space. {ut} is an independent and identi-
cally-distributed random sequence. The xj coefficients and the partitions of the 
state space must both be estimated. 

As Amaldi and Mattavelli (2002) show, this system can be represented by a set 
of linear equations of the form Ax = b where 
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for a sequence of observations {y1 ,…, yL}. For anything beyond a simple model, 
this will be an infeasible system of linear equations, and the MIN PFS solution will 
define groupings of the vectors in the state space; the solution for each feasible 
subsystem will provide the parameters for the corresponding linear submodel. 
Noise is handled by replacing the equations by two oppositely-oriented inequali-
ties so as to create slabs as we have seen above. With an appropriate choice of the 
error parameter ε for the slab separation, Amaldi and Mattavelli report very good 
results on a number of sample applications, as do Bemporad et al. (2005) for their 
related method. 

11.9 Finding Sparse Solutions to Systems of Linear 
Equations 

Given a feasible system of linear equations, what is the solution that has the 
smallest number of nonzeroes? The answer to this question can be important in 
numerous applications, e.g. signal processing. A number of special-purpose heu-
ristics for solving this problem have been developed, under the general name of 
basis pursuit. However this problem can be cast as an instance of the MAX FS 
problem and hence solved by the many heuristics for this problem (see Chap. 7). 

We are given a system of linear equations Ax = b in which m < n where m is the 
number of equations, n is the number of variables, and b is not empty. This is an 
underdetermined system, so there are multiple solutions. Defining ||d||0 to be a 
norm giving the number of nonzeroes in some vector d, the problem at hand is to 
solve min{||x||0: Ax = b}. The most straightforward conversion of this problem to 
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MAX FS is to set up the infeasible system Ax = b, x = 0 in which the Ax = b 
constraints are strictly enforced, with only the constraints in x = 0 removable in 
the search for the largest feasible subsystem. The largest feasible subsystem under 
these conditions corresponds directly with the smallest number of nonzeroes in the 
solution x. 

Amaldi and Kann (1998) show the equivalence of this problem and the MIN ULR 
problem. For an infeasible set of linear equations Ax = b, the MIN ULR problem is 
the same as finding x such that Ax + s= b has as few nonzero slacks in s as possi-
ble. Now imagine a matrix D that is orthogonal to A, i.e. DA =0. Multiplying the 
system Ax + s = b by D yields the system DAx + Ds = Db, but since DA=0 this 
reduces to Ds = Db. If Ax = b is infeasible then Db ≠ 0 and there exists an s satis-
fying Ds = Db with k nonzeroes if and only if there exists an x satisfying all but k 
equations of Ax = b. 

A similar transformation is given by Jokar and Pfetsch (2007): using Gaussian 
elimination, transform the first m rows and columns of Ax = b into a unit matrix, 
which is then simplified to the equivalent system u + Rv = r, where r and u are 
m×1 vectors, R is an m × (n – m) matrix, and v is an (n – m) × 1 vector. Setting u = 0 
and v = 0 yields an infeasible system. Eliminating u reduces the infeasible system 
to Rv = r, v = 0. A maximum feasible subsystem of this infeasible system yields a 
solution for the original system Ax = b that has the fewest nonzeroes in the solu-
tion x. The instance of the inequality-constrained MAX FS problem is Rv ≤ r, Rv ≥ r, 
v ≤ 0, v ≥ 0, which has 2n inequalities in n-m variables. If k inequalities are elimi-

qualities gives a solution (u,v) for u + Rv = r that has at most k nonzeroes, where 
u = r-Rv. 

Jokar and Pfetsch (2007) study a variety of heuristic methods for solving their 
MAX FS transformation of the sparsest solution problem. Their experiments show 
that the best results are given by a heuristic method due to Mangasarian (1999) 
that is similar to the exponential approximation (Mangasarian 1996) given in Sec. 7.1.2. 
The exponential approximation gives better results than the special-purpose basis 
pursuit and orthogonal matching pursuit algorithms for this problem. 

11.10 Various NP-Hard Problems 

Several NP-hard problems can be reduced to MAX FS or its variants. Once con-
verted, these problems can then be attacked via the methods of Chap. 7. One such 
problem is the MINIMUM FEEDBACK ARC SET problem. 

Given a directed graph, the FEEDBACK ARC SET problem is to determine 
whether there is a subset S of the arcs such that |S| ≤ k and the directed graph that 
results when you remove the arcs in S is acyclic. Sankaran (1993) constructs a set 
of linear inequalities of the form ti − tj ≤ −1 for every arc that connects some node i 
to some node j. He then goes on to prove that the graph can be made acyclic by 
removing at most k arcs if and only if the system of associated inequalities can be 
made feasible by deleting at most k constraints. The MINIMUM FEEDBACK ARC SET 
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nated to render the system feasible, then a solution v to the remaining 2n-k ine-



problem is to determine the smallest number of arcs to remove to render the graph 
acyclic; this is identical to the MIN ULR (or MAX FS) problem in the set of associ-
ated constraints. 

Various other NP-hard problems reduce to MAX FS in binary variables. We do 
not have good heuristics for the solution of such problems yet. Two examples follow. 

Given an undirected graph, the MAX INDEPENDENT SET problem is to find the 
largest set of nodes that are not pairwise adjacent (known as an independent set of 
nodes). Amaldi (2003) shows how to convert the MAX INDEPENDENT SET problem 
to MAX FS. Let there be a variable xi for each node in the graph, which has a set of 
vertices vi and set E of arcs (vi,vj). We can construct a constraint for each node of 
the form ∑ ∈

=−
Evvj ji

ji
xx

),(:
1 . The constraint is satisfied only if the node vi rep-

resented by xi is included in the independent set while all nodes directly connected 
to it via a single arc are excluded. A maximum feasible subset of this set of linear 
constraints corresponds to a maximum independent set. 

find a true/false assignment for the Boolean variables that satisfies the maximum 
number of clauses. Amaldi (2003) shows the conversion to MAX FS as follows. For 
each clause of the form nzzz ...21 ∨∨  create a linear inequality of the form 

1...)1( 21 ≥+−+ nxxx . The MAX FS solution then yields the largest subset of 
clauses that can be satisfied. 

Given a set of m points on the surface of an n-dimensional unit sphere centred 
at the origin, the HEMISPHERE problem is to find the hemisphere that contains the 
largest number of points (this hemisphere may not be unique). If the points are 
given by n-vectors xi for i = 1 to m, this amounts to finding an n-vector a such that 
axi ≥ 0 for as many of the xi vectors as possible (see Amaldi (2003)). Constructing 
one homogeneous inequality for each xi vector converts this directly to the MAX FS 
problem. 
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Given m disjunctive clauses in n Boolean variables, the MAXSAT problem is to 



12 Epilogue 

Until recently, the main focus of algorithmic and computational work in optimiza-
tion was firmly on finding optimum solutions.  Issues of feasibility and infeasibil-
ity received much less attention, and even then mostly in the context of finding a 
feasible point as a preliminary step en route to the optimum.  But the situation has 
changed markedly in the last twenty years or so.  Computing power has increased 
dramatically and become inexpensive.  As a consequence, optimization models 
have become larger and more complex, and hence more prone to modeling errors 
resulting in infeasibility, as well as difficulties in finding feasible solutions.  New 
algorithms and computational methods have been developed in response to both 
problems.  The algorithms for analyzing infeasibility have found unexpected ap-
plications outside of their original purpose.  In addition, new application areas that 
pose challenging problems of feasibility and infeasibility have arisen.  Examples 
include computational biology (e.g. Sec. 11.2) and medicine (e.g. Sec. 11.1), net-
work security, and data analysis (Chap. 10), among others.   

In short, the time is ripe for a summary of research on algorithms and computa-
tional methods related to feasibility and infeasibility in optimization, which is of 
course the point of this book.  The field continues to be extremely active, with 
new developments almost daily, and much fascinating basic research remains to 
be done.  Examples include ways to choose the best remedial actions in the face of 
infeasibility (delete constraints? shift constraints? reverse inequalities?), better 
infeasibility analysis for NLPs and MIPs, better feasibility-seeking methods for 
MIPs and mixed-integer nonlinear programs, etc.  A particularly exciting devel-
opment is the ongoing integration of ideas and methods from the mathematical 
programming and the constraint programming communities.  This interaction con-
tinues to be extremely fruitful, resulting in powerful new hybrid methods; see for 
example the stimulating new book Integrated Methods for Optimization (Hooker 
2007). 

It is my hope that this book will serve as a valuable reference for researchers, 
practitioners and graduate students into the future. 
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