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Preface

Network flow optimization problems may arise in a wide variety of
important fields, such as transportation, telecommunication, computer
networking, financial planning, logistics and supply chain management,
energy systems, etc. Significant and elegant results have been achieved
on the theory, algorithms, and applications, of network flow optimization
in the past few decades; See, for example, the seminal books written by
Ahuja, Magnanti and Orlin (1993), Bazaraa, Jarvis and Sherali (1990),
Bertsekas (1998), Ford and Fulkerson (1962), Gupta (1985), Iri (1969),
Jensen and Barnes (1980), Lawler (1976), and Minieka (1978).

Most network optimization problems that have been studied up to
date are, however, static in nature, in the sense that it is assumed that
it takes zero time to traverse any arc in a network and that all attributes
of the network are constant without change at any time. Networks in
the real world are, nevertheless, time-varying in essence, in which any
flow must take a certain amount of time to traverse an arc and the
network structure and parameters (such as arc and node capacities)
may change over time. In such a problem, how to plan and control the
transmission of flow becomes very important, since waiting at a node,
or travelling along a particular arc with different speed, may allow one
to catch the best timing along his path, and therefore achieve his overall
objective, such as a minimum overall cost or a minimum travel time
from the origin to the destination. There are plenty of decision making
problems in practice that should be formulated as optimization models
on time-varying networks. The main purpose of this monograph is to
describe, within a unified framework, a series of models, propositions,
and algorithms, that we have developed in this area in recent years.
Additional references and discussions on relevant problems and studies
that have appeared in the literature will also be provided.
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This monograph consists of eight chapters, in which we formulate
and study respectively the shortest path problem, minimum-spanning
tree problem, maximum flow problem, minimum cost flow problem,
maximum capacity path problem, quickest path problem, multi-criteria
problem, and generalized flow problem (the time-varying travelling sales-
man problem and the Chinese postman problem will also be considered
in a chapter together with the time-varying generalized problem). While
these topics will be described all within the framework of time-varying
networks, our plan is to make each chapter relatively self-contained so
that they can be read separately. It is hoped that this book is useful
for researchers, practitioners, and graduate students and senior under-
graduates, as a unified reference and textbook on time-varying network
optimization. While we describe in this book only the structure of the
algorithms, we have developed the software that implements the algo-
rithms, which is available for academic study purpose upon request.

The publication of this book would not be possible without the help
and generous support of many people and organizations. First, we
would like to express our sincere gratitude to Professor Fred Hillier, the
Editor of the book series, for his encouragement and guidance. We
are very indebted to Gary Folven, Publisher of Springer, for his kind
invitation, continued support, and patience, to allow us to complete
this book project. We also thank Carolyn Ford of Springer, for her
careful reading and processing of our manuscript. Many colleagues and
students have kindly provided us with invaluable comments and sugges-
tions in various occasions such as research seminars and conferences.
A number of our students have contributed to the literature survey
and software development of the algorithms presented in this book,
including Chyrel Teo, Wenting Hou, just to name a few. Part of our
research effort leading to the results included in this book was finan-
cially supported by the Research Grants Council of Hong Kong under
Project Nos CUHK4135/97E, CUHK 4170/03E, and N CUHK442/05,
and the National Science Foundation of China (NSFC) Research Fund
Nos. 70329001 and 70518002.

Last but not the least, the greatest gratitude must go to our families,
for their support and patience over the many days and nights during the
writing of this book.

Xiaoqiang Cai, Dan Sha, and C.K. Wong





Chapter 1

TIME-VARYING SHORTEST PATH

PROBLEMS

1. Introduction

The static version of the shortest path problem assumes that zero
time is required to traverse any path in the network, where all problem
parameters are not changed at all over time. This problem is the most
fundamental one in network optimization, which has been widely studied
in the literature. An extension of the static model is the problem of
finding a shortest path subject to some constraints involving transit
times. An example is the problem where a transit time is required to
traverse an arc, subject to the constraint that the total time to traverse a
path cannot be greater than any given amount T . This class of problems
has been studied by Aneja (1978); Hassan (1992); Joksch (1966); Skiscim
et al (1989); Witzgall et al (1965), and is known to be NP-complete; see
Ahuja et al (1993); Handler et al (1980).

We will consider, in this chapter, the time-varying version of the prob-
lem. A general model will be addressed, in which the transit time and
the cost to traverse an arc are varying over time, which depend upon
the departure time at the beginning vertex of the arc. Moreover, waiting
at a vertex is allowed, at a waiting cost; and speedup on an arc is also
possible, at a speedup cost. The problem is to find an optimal path to
travel from a source vertex s to another vertex x, so that the total cost
of the path is minimized subject to the constraint that the total travel
time of the path is at most T , where T is a given integer. In addition
to the determination of a path to connect the two vertices s and x, the
waiting times at all vertices and the speedups on all arcs along the path
should also be decision variables to be determined. We call this the
“time-varying shortest path” (TVSP) problem.
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Desrosiers et al (1986) have considered a shortest path problem with
time windows. In their model, it is assumed that each arc has a constant
transit time and a constant transit cost, and each vertex xi can only
be visited during a time period [ai, bi], which is called the time window.
Given a time limit T , they want to find the shortest path from the source
vertex to another vertex under the time window constraint. Clearly, by
setting the waiting cost at xi at any time t < ai to be infinite, and
the transit cost to depart from xi at any time t < ai or t > bi to be
infinite, one can see that this problem becomes a special case of the
TVSP problem described above.

The TVSP model has many applications. One example is the data
transmission problem. Suppose that a data packet has to be sent be-
tween two specified nodes in a network as cheaply as possible within a
time limit T . As the transit time and the cost needed to send the packet
on an arc vary over different periods, there exists an optimal departure
time to traverse an arc. Thus, an optimal solution to the problem should
not only provide the best path connecting the two nodes, but also spec-
ify the optimal duration for the data packet to stay at each node to wait
for the best departure time. Another example is the freight transport
problem. Suppose that some freight is to be sent from a source to a sink
in a network before a deadline T . Between two neighboring cities, sev-
eral types of freight services are available, which, however, have different
costs and transport times, depending upon the seasons. An optimal so-
lution should thus specify the route as well as the waiting times of the
freight at each city so that the overall cost is minimum while the freight
arrives at the destination no later than the deadline T .

This chapter will be organized as follows: In Section 2, we introduce
the necessary concepts and the basic model. The optimality properties
and the NP-completeness of the problem will be discussed in Section 3.
Then, Section 4 is devoted to problems with arbitrary waiting times,
zero waiting times, and bounded waiting times, respectively, all under
the assumption of strictly positive times. The results are generalized
to the case with nonnegative transit times in Section 5. The model
with speedups will be considered in Section 6. Finally, some additional
references and comments are given in Section 7.

2. Concepts and problem formulation

Let N(V,A, b, c) be a network without parallel arcs and self-loops,
where V is the set of vertices, A is the set of arcs, b(x, y, t) is the transit
time needed to traverse an arc (x, y). This transit time is dependent
on the discrete values of the time t = 0, 1, ..., T , where T ≥ 0 is the
maximum allowable time to travel from the origin vertex s to the target
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vertex x. Let c(x, y, t) be the transit cost of an arc (x, y) ∈ A. This
transit cost is also dependent on the discrete value of the time t =
0, 1, ..., T . Both the transit time b(x, y, t) and the transit cost c(x, y, t)
are functions of the departure time t at the beginning vertex x of the
arc (x, y). Moreover, let c(x, t) be the waiting cost if waiting takes place
at vertex x during the time period from t to t + 1, which is a function
of time t. We assume that both the transit cost and the waiting cost
are arbitrary integers, while the transit time b is a nonnegative integer.
Moreover, we let n = |V | and m = |A|.

We also assume that there is a unique source vertex in N , denoted by
s. If the network has more than one source vertex si, i = 1, 2, · · · , Is, one
can introduce a dummy source vertex s∗ and Is arcs (s∗, si) to connect
it with each source vertices si, so that the network contains only one
source vertex.

If the network contains parallel arcs or self-loops, we can convert it
into one with no parallel arcs and self-loops, by inserting an artificial
vertex into those arcs or self-loops. The following example illustrates
such a conversion.

Example 1.1

Figure 1.1. Convert a network into one without parallel arcs and loops

s

h

g

l s
e

h

k

g

l

(a) (b)

Given a network N as shown in Figure 1.1(a), there are two parallel
arcs (s, h) and a loop (g, g) in N . We insert an artificial vertex e into
one of the parallel arcs (s, h), and another vertex k into the loop (g, g)
(see Figure 1.1(b)). Furthermore, for any time t, let

b(s, e, t) = 0, b(e, h, t) = b(s, h, t), b(g, k, t) = 0, b(k, g, t) = b(g, g, t),

c(s, e, t) = 0, c(e, h, t) = c(s, h, t), c(g, k, t) = 0, c(k, g, t) = c(g, g, t),

c(e, t) = c(k, t) = 0,

and all other numbers maintain unchanged. Clearly, the new network
has no parallel arcs and self-loops, and finding the shortest path in the
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new network is equivalent to finding the shortest path in the original
one.

We need the following concepts and notation.

Definition 1.1 A waiting time w(x) at vertex x is a nonnegative integer,
and ux is its upper bound.

Definition 1.2 Let P (x1, ..., xr) be a path from x1 to xr. The arrival
time of a vertex xi on P is defined as α(xi) such that α(x1) = t0 ≥ 0
(for the source vertex s, we let α(s) = 0), and

α(xi) = α(xi−1) + w(xi−1) + b(xi−1, xi, τ(xi−1)), for i = 2, ..., r,

where τ(xi), the departure time of a vertex xi on P , is defined as

τ(xi) = α(xi) + w(xi), for i = 1, ..., r − 1.

Clearly, when we consider a path in a time-varying network, we have
to consider not only the graph structure of the path, but also the relevant
arrival times, departure times, and waiting times, at all its vertices. The
changes of the transit times by speedups on all its arcs should also be
considered. To simplify our discussion, we will, nevertheless, leave the
model with speedups to be introduced in Section 6. In what follows, we
introduce the concept of a dynamic path, with α(xi), w(xi), and τ(xi)
specified, under the assumption that the transit times b(x, y, t) cannot
be shortened.

Definition 1.3 P = (x1, ..., xr) is said to be a dynamic path from x1 to
xr, if all the α(xi), w(xi), and τ(xi) on the path are specified. Further-
more, the time of P is defined as α(xr) + w(xr)− α(x1). A path is said
to have time at most t, if its time is less than or equal to t. Specifically,
a path is said to have time exactly t, if its time equals t.

For any dynamic path P = (s, ..., x), the time of P is α(x) + w(x),
since we can assume, without loss of generality, that the arrival time at
s, α(s), is 0.

Definition 1.4 Let P = (x1, ..., xr) be a dynamic path from x1 to xr.

Let ζ(x1) =
∑w(x1)−1

t′=0 c(x1, t
′ + α(x1)) and define recursively

ζ(xi) = ζ(xi−1) + c(xi−1, xi, τ(xi−1)) +

w(xi)−1
∑

t′=0

c(xi, t
′ + α(xi))

for i = 2, ..., r. The cost (or length) of P , ζ(P ), is defined as ζ(xr).

For completeness, we adopt the following convention:
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Definition 1.5 For vertices x, y ∈ V and a given number t ≤ T , the
cost of a shortest path from x to y within time t is said to be ∞ if

(i) there does not exist any path from x to y, or
(ii) all paths from x to y have times greater than t.

3. Properties and NP-completeness
The time-varying structure of the network induces a number of inter-

esting phenomena. For example, some important properties that exist
for the static shortest path problem have, however, no longer held in the
time-varying model.

It is an important property for the static shortest path problem that,
if P (x1, ..., xr) is a shortest path from x1 to xr, then for every vertex
xi (i = 2, ..., r − 1), the subpath P ′(x1, ..., xi) is a shortest path from
x1 to xi. This property seems to be straightforward for a shortest path
problem. Nevertheless, it is no longer valid for the time-varying model.
Let us examine the example as shown in Figure 1.2, where T = 8, and

b(s, f, 0) = 2, b(f, g, 2) = 1, b(s, g, 0) = 5, b(g, h, 5) = 3,

c(s, f, 0) = 1, c(f, g, 2) = 1, c(s, g, 0) = 3, and c(g, h, t) = 2 for t ≥ 4.

All other b and c are equal to ∞. Moreover, ug = 0, i.e., waiting at the
vertex g is now allowed.

Figure 1.2. A subpath of the shortest path is not a shortest path

s

f

g

h

Clearly, the shortest (cheapest) path from s to h of time at most 8
is P (s, g, h), with τ(s) = 0, α(g) = τ(g) = 5, and α(h) = 8. The cost
of the path ζ(P (s, h)) is 5. Its subpath P ′(s, g) has a cost 3, which is,
however, not the shortest path from s to g. The shortest path from s
to g should be P (s, f, g), with τ(s) = 0, α(f) = τ(f) = 2, α(g) = 3 and
ζ(P (s, f, g)) = 2.

The subpath P ′(s, g) is not the shortest one, but it allows one to
depart from g at time 5 and therefore catch the feasible time to traverse
the arc (g, h).
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The example above indicates that the property for the static problem
cannot be simply extended to the time-varying model. Under some
additional restrictions, the property may continue to hold; see below.

Property 1.1 Suppose that the path P (x1, ..., xr) is a shortest dynamic
path from x1 to xr of time exactly t, then for each vertex xi (i =
1, 2, ..., r), the subpath P ′(x1, ..., xi) is a shortest path from x1 to xi of
time exactly t′, under the restriction that α(xi) ≤ t′ ≤ τ(xi).

Another important property for the static shortest path problem in-
dicates that, if all arc costs are positive numbers, then any shortest path
must be a simple path (A simple path is defined as one in which each
vertex appears only once). Again, this property has no longer held in
the time-varying model. Let us look at the following example, where the
network is given in Figure 1.3. Moreover,

b(s, g, 0) = 1, b(g, q, 1) = 1, b(q, h, 2) = 1,

b(h, g, 3) = 1, b(g, q, 4) = 1, b(q, i, 5) = 1,

while all other b’s are ∞. The transit costs c(x, y, t) = 1, for the arc
(x, y) ∈ A and t ≥ 0, and the waiting costs c(x, t) = ∞ for the vertex
x ∈ V and t ≥ 0. The deadline T = 6.

Figure 1.3. A shortest path is not a simple path

s

f

g

h

q

i

It is easy to verify that there is only one shortest dynamic path from
s to i within time T = 6, which is P = (s, g, q, h, g, q, i), with the total
cost being 6. This is the optimal path, in which the vertices g and q
appear, however, twice, and therefore it is not a simple path.

Again, we need some additional restrictions to make the property valid
in a time-varying network. For instance, if c(x, y, t) > 0, c(x, t) = 0,
and ux = ∞, for all x, y and t, then the property will remain true.
This result can be established by the following observation: If there is
a shortest dynamic path P (s, ..., x′, ..., x′, ..., x), where x′ is visited twice
in path P at time t1 and t2 (t1 < t2), then we can wait at x′ from time
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t1 to t2 and skip those vertices between two x′s. Let P ′ denote the new
path after deleting the section (x′, ..., x′) of P . Then, it is clear that the
cost of P ′ is not greater than that of P . This result is given below.

Property 1.2 There exists a simple shortest path in a time-varying net-
work N , if waiting at any vertex of N is allowed subject to no constraint
and causing no cost, and all transit costs are positive.

There are other scenarios where the time-varying model creates new
issues, which we leave to the readers who are interested to analyze and
investigate. In what follows we examine the complexity of the time-
varying model, TVSP.

It has been well-known that the static shortest path problem is poly-
nomially solvable. The time-varying problem, TVSP, is however NP-
complete, as we will show below. First, let us introduce the decision
version of TVSP, which can be described as follows.

TVSP Given a time-varying network N(V,A, b, c) and an integer K,
does there exist a dynamic path P from s to ρ within the time T , such
that ζ(P ) ≤ K ?

We will show that the Knapsack problem is reducible to TVSP. Knap-
sack is a well-known NP-complete problem (Garey and Johnson 1979),
which can be stated as:

Knapsack Given a finite set Q of elements, each having a value vi and
a size wi, and two integers v∗ and w∗, does there exist a subset S ⊆ Q
such that

∑

i∈S vi ≥ v∗ and
∑

i∈S wi ≤ w∗?

The following theorem establishes the NP-completeness of the TVSP
problem.

Theorem 1.1 The TVSP problem is NP-complete in the ordinary sense.

Proof. For any given instance of Knapsack, we can construct a network
N as shown in Figure 1.4. Let B =

∑

vi, K = nB − v∗, T = n+w∗ +1,
and

b(xi−1, x
′
i, t) = 1, b(x′

i, xi, t) = wi, 1 ≤ i ≤ n, 0 ≤ t ≤ T

c(xi−1, x
′
i, t) = 0, c(x′

i, xi, t) = B − vi, 1 ≤ i ≤ n, 0 ≤ t ≤ T

b(xi−1, xi, t) = 1, c(xi−1, xi, t) = B, 1 ≤ i ≤ n, 0 ≤ t ≤ T

b(xn, xn+1, t) = 1, 0 ≤ t ≤ T

c(xn, xn+1, n + w∗) = 0, c(xn, xn+1, t) = ∞, 0 ≤ t ≤ T, t �= n + w∗
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Figure 1.4. A time-varying network constructed from Knapsack

s=x

x’

x

x’

x x

x’

x x

( 1, 0 )
( w , B-v )

(1, 0 )

( w , B-v )

( 1, 0 )

( w , B-v )

( 1, B ) ( 1, B ) ( 1, B )

1 1 2 2  n n

1 2 n

 0 1 2 n-1 n n+1

( b, c )

We now prove that a “yes” answer to Knapsack is equivalent to a
“yes” to the decision version of TVSP.

If Knapsack has a set S ⊆ Q such that
∑

i∈S vi ≥ v∗ and
∑

i∈S wi ≤
w∗, then we can obtain a path P (x0, xn+1) in the following way: starting
from x0 at time zero, for each i, if i ∈ S, then traverse arcs (xi−1, x

′
i)

and (x′
i, xi); if i �∈ S, then traverse arc (xi−1, xi). At last, traverse arc

(xn, xn+1). Let w(xi) = 0 (1 ≤ i ≤ n − 1) and w(xn) = n + w∗ − α(xn).
Notice that, since

∑

i∈S wi ≤ w∗, we have α(xn) =
∑

i∈S(wi + 1) +
∑

i�∈S 1 = n +
∑

i∈S wi ≤ n + w∗, and α(xn+1) ≤ n + w∗ + 1 = T ,
where α(xn) and α(xn+1) are the arrival times of P at vertices xn and
xn+1, respectively. Clearly, P is a dynamic path from s to ρ within time
duration T . Moreover, since

∑

i∈S vi ≥ v∗, i.e., −
∑

i∈S vi ≤ −v∗, we
have ζ(P ) =

∑

i�∈S B +
∑

i∈S(B − vi) = nB −
∑

i∈S vi ≤ nB − v∗ = K.
Now, suppose that TVSP has a dynamic path P of time at most T

with ζ(P ) ≤ K. Let S = {i|(x′
i, xi) ∈ A(P ), 1 ≤ i ≤ n}, where A(P ) is

the arc set of P . We have ζ(P ) =
∑

i∈S c(x′
i, xi, τ(x′

i))
+

∑

i�∈S B =
∑

i∈S(B − vi) +
∑

i�∈S B = nB −
∑

i∈S vi ≤ nB − v∗ = K,
which implies

∑

i∈S vi ≥ v∗. On the other hand, since P is a dynamic
path within time T , by the construction of the network N , we must have
α(xn) =

∑

i∈S(wi + 1) +
∑

i�∈S 1 = n +
∑

i∈S wi ≤ n + w∗, where α(xn)
is the arrival time of P at xn. Therefore,

∑

i∈S wi ≤ w∗.
The analysis above show that TVSP can be reduced from Knapsack

and thus it is NP-complete. On the other hand, the optimal solution
of TVSP can be found by an algorithm in pseudopolynomial time (see
Section 4 below) and hence it is NP-complete in the ordinary sense (cf.
Garey and Johnson 1979). This completes the proof. �

4. Algorithms
As we have mentioned before, the waiting time at a vertex is a decision

variable that should be considered in a time-varying network model.
Because of the time-varying nature of the network, departing from a
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vertex too early may not be desirable. In other words, waiting at a vertex
to postpone the departure from the vertex may be a better decision.

Waiting at a vertex is often subject to constraints. In order to high-
light the basic ideas of the algorithms to be presented below, we will
consider, in this section, only the constraint that the waiting time at a
vertex x, w(x), is subject to an upper bound ux.

Corresponding to the situations with w(x) = ∞, w(x) = 0, and
w(x) = ux with ux being a finite positive number, we have the TVSP
problem with arbitrary waiting times (TVSP-AWT), the TVSP prob-
lem with zero waiting times (TVSP-ZWT), and the TVSP problem with
bounded waiting times (TVSP-BWT), respectively. In this section, we
will introduce an algorithm for each of these problems, under the as-
sumption that all b(x, y, t) are positive integers. The case with some
b(x, y, t) equal to zero will be discussed in Section 5.

As we have indicated, the transit time plays the most important role
in searching for the solutions in a time-varying network. Because of the
positive time requirement to reach a vertex, the search for an optimum
can be limited to a local region (in other words, vertices that would
be impossible to reach at a time t could be ignored before the time t).
This makes it possible for us to develop efficient dynamic programming
algorithms to construct a solution with a forward pass with respect to
the time t. This will be elaborated below. The algorithms described in
this section mainly come from Cai, Kloks, and Wong (1997).

4.1 Waiting at any vertex is arbitrarily allowed

We now consider the problem TVSP-AWT. First, let us introduce the
notation da(y, t).

Definition 1.6 Define da(y, t) as the cost of a shortest path from s to y
of time exactly t, where waiting at any vertex is not restricted.

The following lemma gives us a recursive relation to compute da(x, t).
Note that the optimal waiting times can be obtained implicitly by the
recursive computations. This will be further elaborated in Remark 1.1.

Lemma 1.1 da(s, 0) = 0, and da(y, 0) = ∞ for all y �= s. For t > 0, we
have

da(y, t) = min
{

da(y, t − 1) + c(y, t − 1),

min
(x,y)∈A

min
{u|u+b(x,y,u)=t}

{da(x, u) + c(x, y, u)}
}

.

Proof. It is easy to see that da(s, 0) = 0, and da(y, 0) = ∞ for all y �= s,
since all transit times are positive.
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Now prove the formula by induction. Consider t = 1. The only
vertices for which there can exist a path of time exactly one are s and
neighbors of s. For y = s, the formula clearly holds. Assume that
y �= s. Consider first the case where (s, y) ∈ A and b(s, y, 0) = 1. In
this case, the formula holds with da(y, t) = da(x, u) + c(x, y, u), where
u = 0 and x = s. In any other cases, the formula holds with da(y, t) =
da(y, t − 1) + c(y, t − 1) = ∞ as there is no feasible solution for a path
from s to y of time t = 1.

Assume that the formula is correct for all t′ < t. Consider a vertex y.
First, we prove the claim that there exists a path of time exactly t and
cost da(y, t).

If da(y, t) = ∞, there is nothing to prove. So, assume that da(y, t) is
finite. If da(y, t) = da(y, t − 1) + c(y, t − 1), then, by induction, there is
a path from s to y of cost da(y, t− 1). The time of the path is t− 1. By
waiting at y one unit of time more, the path has time exactly t.

Assume that da(y, t) = da(x, u) + c(x, y, u) for some x such that
(x, y) ∈ A and some u such that u + b(x, y, u) = t. Since b(x, y, u) > 0,
we have u < t and, therefore, by induction, we know there must exist
a path P ′(s = x1, ..., xr = x) from s to x of time exactly u and cost
da(x, u). Hence, there are waiting times w(xi) at xi such that the time
of the path P ′ with these waiting times is u. we extend the path to ver-
tex y, obtaining a path P with the given waiting times and with waiting
time zero at y. The time of P is exactly t, since u + b(x, y, u) = t. The
cost of P with these waiting times is da(x, u)+ c(x, y, u) = da(y, t). This
proves the claim.

We now prove that da(y, t) is the cost of a shortest path from s to
y with time exactly t. Let P (s = x1, ..., xr = y) be a shortest path
from s to y of time exactly t, and let w(xi) be the waiting time at
xi (i = 1, ..., r). If w(xr) > 0, then let P ′ be a path same as P but
waiting at xr for w(xr) − 1. Clearly, P ′ is a shortest path from s to xr

of time exactly t − 1. By induction, da(y, t − 1) ≤ ζ(P ′). Therefore,
we have ζ(P ) = ζ(P ′) + c(xr, t − 1) ≥ da(xr, t − 1) + c(xr, t − 1) =
da(xr, t). On the other hand, we have ζ(P ) ≤ da(xr, t) since P is a
shortest path from s to xr of time exactly t. Thus, ζ(P ) = da(xr, t).
Now, we consider the case w(xr) = 0. Let x be the predecessor of y
on this path. Let u be the time of the subpath P ′ (with the waiting
times) from s to x, and let ζ(P ′) be the cost of P ′. By definition,
u + b(x, y, u) + w(xr) = u + b(x, y, u) = t, implying that u < t since
b(x, y, u) > 0. Thus, by induction, ζ(P ′) ≥ da(x, u). By the definition,
the cost of P is ζ(P ) = ζ(P ′) + c(x, y, u)) ≥ da(x, u) + c(x, y, u). Again,
according to the formula, we have da(y, t) = da(x, u)+ c(x, y, u) ≤ ζ(P ).
In both cases, we must have ζ(P ) = da(y, t), since P is a shortest path
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and since there exists a path achieving da(y, t), as we showed above.
This completes the proof. �

Definition 1.7 Define d∗a(x) as the cost of a shortest dynamic path from
s to x of time at most T , where waiting at vertex is arbitrary allowed.

Lemma 1.2
d∗a(x) = min

0≤t≤T
da(x, t)

Proof. Consider a shortest feasible path P of time at most T . Let t ≤ T
be the time of P , with waiting time zero at x. Then, d∗a(x) = da(x, t).
�

Definition 1.8 For every arc (x, y) ∈ A and for t = 0, ..., T , let

Ra(x, y, t) = min
{u|u+b(x,y,u)=t}

{da(x, u) + c(x, y, u)}

Weadopt the convention that Ra(x, y, t) = ∞ whenever {u|u+b(x, y, u) =
t} = ∅.

The result below follows directly from Lemma 1.1:

Corollary 1.1

da(y, t) = min{da(y, t − 1) + c(y, t − 1), min
{x|(x,y)∈A}

Ra(x, y, t)}.

Corollary 1.1 indicates that when da(y, t) is to be updated we have to
know Ra(x, y, t) for all (x, y) ∈ A. Given t and (x, y), Ra(x, y, t) could
be evaluated by a naive approach of enumerating 0 ≤ u ≤ t to find those
satisfying u + b(x, y, u) = t, according to Definition 1.8. This would,
however, require a worse-case running time of O(T ) for every t. Clearly,
we need some mechanism to make the evaluation of Ra(x, y, t) efficiently.
Our idea in the algorithm below is to first sort the values of u+b(x, y, u)
for all u = 1, 2, ..., T and all arcs (x, y) ∈ A, before the recursive relation
as given in Lemma 1.1 is applied to compute da(y, t) for all y ∈ V and
t = 1, 2, ..., T .

We describe the algorithm as below:

Algorithm TVSP-AWT

Begin
Initialize da(s, 0) = 0 and ∀x �=sda(x, 0) = ∞;
Sort all values u + b(x, y, u) for u = 0, 1, ..., T and for all arcs

(x, y) ∈ A;
For t = 1, ..., T do

For every arc (x, y) ∈ A do Ra(x, y, t) := ∞;
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For all arcs (x, y) ∈ A and all u such that u+ b(x, y, u) = t do
Ra(x, y, t) := min{Ra(x, y, t), da(x, u) + c(x, y, u)};

For every y do
da(y, t) := min{da(y, t−1)+c(y, t−1),min(x,y)∈A Ra(x, y, t)};

For every y do d∗a(y) := min0≤t≤T da(y, t);
End.

We now consider a simple example.

Example 1.2

Assume that there is a network as shown in Figure 1.5, where the
two elements in the square brackets along each arc (x, y) represent the
transit time b(x, y, u) and the cost c(x, y, u) of the arc, respectively. The
problem is to find a shortest path connecting the source node s and the
sink node i such that the time of the path is at most T = 12, where
c(x, t) = 0 for all x and all time t.

Figure 1.5. Example 1.2

s

f h

g

i

[ 1, -u+12 ]

[ 3, 2u+6 ]

[ 1, 6 ]

[ 2, u+1 ] [ 1, -2u+24 ]

[ 4, u+8 ] [ u+3, -2u+35 ]

Applying Algorithm TVSP-AWT, one may obtain the results in Table
1.1. Thus, when T = 12, the cost of the shortest path connecting s and i
is da(i, 12) = 18. By a backtracking procedure, it is easy to find that the
shortest path is P ∗(s, g, h, i), where the departure times at the vertices
s, g, and h are, respectively, 0, 10, and 11, while the arrival times at the
vertices g, h, and i are, respectively, 4, 11, and 12. There is a waiting
time 6 at the vertex g to achieve the minimal cost 18.

Remark 1.1 In general, the algorithm TVSP-AWT computes the cost
da(x, t) of the shortest path from the source s to a vertex x with time
at most T . Let the shortest path be P ∗(s = x∗

1, ..., x
∗
i , x

∗
j , ..., x

∗
r = x).

Note that this path and the optimal departure time at each vertex x∗
i

on the path can be identified by a standard backtracking procedure of
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Table 1.1. Calculation of shortest path

t da(s, t) da(f, t) da(g, t) da(h, t) da(i, t)

0 0 ∞ ∞ ∞ ∞
1 0 12 ∞ ∞ ∞
2 0 11 ∞ ∞ ∞
3 0 10 14 ∞ ∞
4 0 9 8 20 ∞
5 0 8 8 20 26
6 0 7 8 20 26
7 0 6 8 20 26
8 0 5 8 18 26
9 0 4 8 16 24
10 0 3 8 14 22
11 0 2 8 12 20
12 0 1 8 10 18

dynamic programming. Then, the waiting times at the vertices on P ∗

can be obtained using the departure times. For example, if τ(x∗
i ) and

τ(x∗
j ) are the optimal departure times at two vertices x∗

i and x∗
j of an

arc (x∗
i , x

∗
j ) on P ∗, then the optimal waiting time at the vertex x∗ is

w(x∗
j ) = τ(x∗

j ) − τ(x∗
i ) − b(x∗

i , x
∗
j , τ(x∗

i )).

Lemma 1.3 The algorithm TVSP-AWT can be implemented such that
it runs in O(T (m + n)) time.

Proof. It is easy to check that the initialization can be done in O(Tn)
time.

For the sorting in step 2, we can use bucketsort, with T buckets. Since
there are Tm values to be sorted, this step can then be performed in
O(Tm) time.

Since the values u + b(x, y, u) are now sorted, the overall time needed
to update the values Ra(x, y, t) can be done in O(Tm) time.

Finally, the overall time to update the values da(y, t) in the last line
is proportional to T times the number of arcs, i.e., O(Tm).

It follows that the running time of the algorithm is bounded by
O(T (m + n)). �

From Lemma 1.1 and Corollary 1.1, one can easily see that, after the
termination of the algorithm TVSP-AWT, each computed value da(x, t)
is the cost of a shortest path from s to x of time at most t. This together
with Lemma 1.3, gives us
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Theorem 1.2 The TVSP-AWT problem with positive transit times can
be optimally solved in O(T (m + n)) time.

4.2 Waiting at any vertex is prohibited
We now consider the problem TVSP-ZWT, in which no waiting times

are allowed at any vertices. Recall Definitions 1.2, 1.3, and 1.4 on de-
parture times at vertices, time of path, and cost of path. Because the
waiting times in these definitions should be set to zero for the TVSP-
ZWT problem, we need not consider the waiting cost.

Definition 1.9 Define dz(y, t) as the cost of a shortest path from s to y
of time exactly t. If such a path does not exist, then dz(y, t) = ∞.

Following similar arguments in the proof for Lemma 1.1, one can show

Lemma 1.4 dz(s, 0) = 0 and dz(y, 0) = ∞ for all y �= s. For t > 0, we
have

dz(y, t) = min
{x|(x,y)∈A}

min
{u|u+b(x,y,u)=t}

{dz(x, u) + c(x, y, u)}.

Let us now further introduce the following definition:

Definition 1.10 For each arc (x, y) ∈ A and each 1 ≤ t ≤ T , define

Rz(x, y, t) = min
{u|u+b(x,y,u)=t}

{dz(x, u) + c(x, y, u)}

and adopt the convention that Rz(x, y, t) = ∞ whenever the set {u|u +
b(x, y, u) = t} is empty.

The result below follows directly from Lemma 1.4:

Corollary 1.2 For 1 ≤ t ≤ T , and for each vertex y,

dz(y, t) = min
{x|(x,y)∈A}

Rz(x, y, t)

Let d∗z(x) be the cost of a shortest path from s to x of time at most
T . Clearly, we have d∗z(x) = min0≤t≤T dz(x, t). Now we describe the
algorithm for solving the TVSP-ZWT problem as below:

Algorithm TVSP-ZWT

Begin
Initialize dz(s, 0) = 0 and ∀x �=sdz(x, 0) = ∞;
Sort all values u + b(x, y, u) for u = 0, 1, ..., T and for all arcs

(x, y) ∈ A;
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For t = 1, ..., T do
For every arc (x, y) ∈ A do Rz(x, y, t) := ∞;
For all arcs (x, y) ∈ A and all u such that u + b(x, y, u) = t

do
Rz(x, y, t) := min{Rz(x, y, t), dz(x, u) + c(x, y, u)};

For every y do dz(y, t) := min(x,y)∈A Rz(x, y, t);
For every y do d∗z(y) := min0≤t≤T dz(y, t);
End.

The following lemma gives the worst-case running time of the algo-
rithm TVSP-ZWT. The proof of the lemma is similar to that for Lemma
1.3 and is omitted here.

Lemma 1.5 The algorithm TVSP-ZWT can be implemented such that
it runs in O(T (m + n)) time.

Theorem 1.3 The TVSP-ZWT problem can be optimally solved in O(T
(m + n)) time.

4.3 Waiting time is subject to an upper bound
We now consider the problem TVSP-BWT, where waiting at a vertex

is allowed, but is constrained by an upper-bound ux. Clearly, we may
assume that ux ≤ T for all x ∈ V .

Definition 1.11 db(x, t) is the cost of a shortest feasible path from s
to y of time exactly t and with waiting time zero at x, subject to the
constraint that the waiting time at any other vertex y on the path is not
greater than uy. If such a feasible path does not exist, then db(x, t) = ∞.

Lemma 1.6 db(s, 0) = 0 and db(x, 0) = ∞ for all x �= s. For t > 0, we
have

db(y, t) =

min
{x|(x,y)∈A}

min
(uA,uD)∈F(x,y,t)

{

db(x, uA)+c(x, y, uD)+
uD−uA−1

∑

t′=0

c(x, t′+uA)
}

where F(x, y, t) = {(uA, uD)|uD + b(x, y, uD) = t ∧ 0 ≤ uD − uA ≤
ux}, and uA and uD are the arrival time and the departure time at x
respectively.

Proof. It is easy to see that db(s, 0) = 0 and db(y, 0) = ∞ for all y �= s,
since all transit times are positive. Thus, in the following, we need only
examine t > 0.

We prove the formula by induction. Consider t = 1. The only vertices
for which there exists a feasible path of time one are neighbors of s.
Assume that y is a neighbor of s. We must have b(s, y, 0) = 1 and
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all waiting times must be zero. In that case, the formula holds with
uA = uD = 0 and x = s.

Assume that the formula is correct for all t′ < t. Consider a vertex
y. First, let us prove the claim that there exists a feasible path of time
t and cost db(y, t), with waiting time zero at vertex y.

If db(y, t) = ∞, there is nothing to prove. So assume that db(y, t) is

finite. Assume that db(y, t) = db(x, uA)+c(x, y, uD)+
∑uD−uA−1

t′=0 c(x, t′+
uA) for some x such that (x, y) ∈ A and some (uA, uD) ∈ F(x, y, t).

By induction, we know that there is a feasible path P ′(s = x1, ..., xr =
x) from s to x of time exactly uA, with cost db(x, uA) and with zero
waiting time at x. We let uD − uA be the new waiting time at x. Since
0 ≤ uD − uA ≤ ux, the new path is again feasible. We extend the
path with vertex y, obtaining a path P with the given waiting times
and with waiting time zero at y. The time of P , with these waiting
times, is exactly t, since uD + b(x, y, uD) = t, which is the arrival time
at y. The cost of P with these waiting times is db(x, uA) + c(x, y, uD) +
∑uD−uA−1

t′=0 c(x, t′ + uA) = db(y, t). This prove the claim.
We now prove that db(y, t) is the cost of a shortest feasible path from s

to y with time t with waiting time zero at y. Let P (s = x1, ..., xr = y) be
a shortest feasible path from s to y of time t with waiting time zero at y.
Let w(xi) be the waiting time at xi (i = 1, ..., r). So, we have w(xr) = 0.
Let x be the predecessor of y on this path. Let uD be the time of the
subpath P ′ (with the waiting times) from s to x, let uA = uD − w(x)
be the arrival time at x along P ′, and let ζ(P ′) be the cost of P ′. By
definition, t = uD + b(x, y, uD). By induction, ζ(P ′) ≥ db(x, uA). By

definition, the cost of P is ζ(P ′)+c(x, y, uD)+
∑uD−uA−1

t′=0 c(x, t′+uA) ≥

db(x, uA)+c(x, y, uD)+
∑uD−uA−1

t′=0 c(x, t′+uA) ≥ db(y, t), where the last
inequality comes from the formula on the computation of db(y, t). This
cost must be equal to db(y, t), since P is a path of the shortest possible
cost and since there exists a path that achieves db(y, t), as we showed
above. This completes the proof. �

Definition 1.12 For each arc (x, y) ∈ A and each 1 ≤ t ≤ T , define

Rb(x, y, t)

= min
(uA,uD)∈F(x,y,t)

{

db(x, uA) + c(x, y, uD) +
uD−uA−1

∑

t′=0

c(x, t′ + uA)
}

,

and adopt the convention that Rb(x, y, t) = ∞ whenever the set F(x, y, t)
is empty.

From Lemma 1.6, we have
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Corollary 1.3 For 1 ≤ t ≤ T , and for each vertex y,

db(y, t) = min
{x|(x,y)∈A}

Rb(x, y, t)

Definition 1.13 d∗b(x) is the cost of a shortest feasible path from s to
x of time at most T , subject to w(x) = 0 and w(y) ≤ uy for any other
vertex y on the path.

From Definition 1.13, we also have d∗b(x) = min0≤t≤T db(x, t).
In addition to the idea of sorting the values of u+b(x, y, u) as discussed

previously, our key idea in the algorithm to be presented below is the
use of a binary heap. For every vertex x, we maintain a binary heap,
denoted as heapx, which contains the values of db(x, uA)−

∑uA−1
t′=0 c(x, t′)

for all max{0, t− ux} ≤ uA ≤ t. Using this data structure, initialization
and finding the minimum take constant time. Each insertion and each
deletion take O(log ux) = O(log T ) time. For convenience, we introduce
the following notation:

Definition 1.14 dm
b (x, t) is the minimum in the binary heap.

We need dm
b (x, t) when evaluating Rb(x, y, t). We see from Defi-

nition 1.12 that we have to solve an optimization problem of mini-
mizing {db(x, uA) + c(x, y, uD) +

∑uD−uA−1
t′=0 c(x, t′ + uA)} subject to

(uA, uD) ∈ F(x, y, t) to obtain Rb(x, y, t). Clearly, given (x, y) and t,
a value of uD that satisfies uD + b(x, y, uD) = t is known and, conse-
quently, the corresponding value of c(x, y, uD) is known. Thus, solv-
ing the optimization problem reduces to solving a problem of minimiz-
ing {db(x, uA) +

∑uD−uA−1
t′=0 c(x, t′ + uA)} subject to max{0, uD − ux} ≤

uA ≤ uD (recall the definition of F(x, y, t) in Lemma 1.6). Therefore, if
dm

b (x, uD) is known, we can obtain, for every (x, y) ∈ A and t, Rb(x, y, t),

which is equal to the minimum of dm
b (x, uD)+c(x, y, uD)+

∑uD−1
t′=0 c(x, t′)

over all uD satisfying uD + b(x, y, uD) = t.
We describe our algorithm for the TVSP-BWT problem as below:

Algorithm TVSP-BWT

Begin
Initialize db(s, t) = 0 and ∀x �=sdb(x, t) = ∞;
∀x initialize heapx := {db(x, 0)} and dm

b (x, 0) := db(x, 0);
Sort all values u + b(x, y, u) for u = 0, 1, ..., T and for all arcs

(x, y) ∈ A;
For each y ∈ V and each t = 1, ..., T−1 do Cy(t) :=

∑t−1
t′=0 c(y, t′);

For t = 1, ..., T do
For every arc (x, y) ∈ A do Rb(x, y, t) := ∞;
For all (x, y) ∈ A and all uD such that uD + b(x, y, uD) = t do
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Rb(x, y, t) := min{Rb(x, y, t),
dm

b (x, uD) + c(x, y, uD) + Cx(uD)};
For every y do db(y, t) := min(x,y)∈A Rb(x, y, t);
For every y update the heapy as follows

Insert-heapydb(y, t) − Cy(t);
If t > uy then delete-heapydb(y, t−uy − 1)−Cy(t−uy − 1);

For every y do
uA := Minimum − heapy;
dm

b (y, t) := db(y, uA) − Cy(uA);
For every y do d∗b(y) := min0≤t≤T db(y, t);
End.

Note that Algorithm TVSP-BWT computes iteratively db(y, t) for all
y at t = 0, ..., T . At any time t, the algorithm keeps all dm

b (y, u) for all
vertices y and all u ≤ t−1. Nevertheless, for each vertex y, the algorithm
maintains only one heap heapy. After db(y, t) is obtained, the new heapy

at time t is obtained by deleting db(y, t − uy − 1) − Cy(t − uy − 1) from
the heap (if t − uy − 1 ≥ 0) and inserting db(y, t) − Cy(t).

The following lemma is needed to show the correctness of the algo-
rithm:

Lemma 1.7 After the termination of Algorithm TVSP-BWT, db(y, t)
is the cost of a shortest feasible path from s to y of time exactly t and
with waiting time zero at vertex y.

Proof. We show that the formula given in Lemma 1.6 is correctly
computed. Clearly, it suffices to show that dm

b (x, u), for all 0 ≤ u ≤ t,
computed by the algorithm is the minimum value of db(x, uA)−Cx(uA),
for u − ux ≤ uA ≤ u. We use induction on t.

The argument holds for t = 0 because of the initialization. Now
assume that the argument holds for any 0 ≤ u ≤ t − 1, and we consider
u = t. Note that u subject to u+ b(x, y, u) = t in line 8 of the algorithm
must satisfy u ≤ t − 1 since b(x, y, u) is positive. Thus, line 9 of the
algorithm gives the correct value for Rb(x, y, t) because of the assumption
that dm

b (x, u) are correct for all u ≤ t−1. In addition, when Rb(x, y, t) is
correct, then db(y, t) is correct according to Corollary 1.3. Consequently,
Lines 12 and 13 of the algorithm generate the correct heap(y) at time t,
and therefore dm

b (x, t) is correct. This completes the proof. �

Lemma 1.8 The algorithm TVSP-BWT can be implemented such that
it runs in O(T (m + n log T )) time.

Proof. It is easy to see that the initialization can be done in O(Tn)
time.
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For the sorting, we can use bucketsort, with T buckets. Since there
are Tm values to be sorted, this step can then be implemented in O(Tm)
time.

Since the values u + b(x, y, u) are now sorted, the overall time needed
to update the values Rb(x, y, t) is O(Tm).

The two steps of inserting db(y, t)−Cy(t) to heapy and deleting db(y, t−
uy −1)−Cy(t−uy −1) (if t > uy) from heapy take O(log uy) = O(log T )
time. Since the algorithm has to perform these two steps for all t =
1, 2, ..., T and all vertex y ∈ V , it takes in total O(Tn log T ) time to
maintain the heaps.

The step of finding dm
b (y, t) takes O(1) time. Finally, the last step of

computing d∗(y) for all y ∈ V takes O(Tn) time.
It follows that the overall running time of the algorithm is bounded

above by O(T (m + n log T )). �

Combining Lemma 1.7 with Lemma 1.8, we obtain

Theorem 1.4 The TVSP-BWT problem with positive waiting times can
be optimally solved in O(T (m + n log T )) time.

5. How to take care of the “zero” ?
In this section, we propose an aproach to handle the situation where

some transit times are zero. The approach holds for all problems, TVSP-
AWT, TVSP-ZWT, and TVSP-BWT. In the following, we describe it
in details for the TVSP-AWT problem. The particulars of the approach
for other problems can be similarly derived following the same idea.
For brevity, we assume that all waiting costs are equal to zero. This
assumption can be relaxed without much difficulty.

Consider a network N(V,A, b, c). At the tth step of the algorithm
TVSP-AWT, we first apply, as usual, the algorithm to the subnetwork
N ′(V,A′, b, c). This subnetwork N ′ has the same vertex set V as N ,
but its arc set A′ = {(x, y)|(x, y) ∈ A ∧ b(x, y, t) > 0}. Then, after
the values of da(y, t), i.e., the costs of the shortest paths from s to each
vertex y, y ∈ V , have been obtained by the algorithm TVSP-AWT,
we create, for each y ∈ V , an artificial arc from s to y. Call this arc
[s, y]. The cost of [s, y] is set to da(y, t), i.e., c[s, y, t] = da(y, t), and
the transit time on [s, y] is assumed to be t. Then, we construct a new
subnetwork N ′′(V,A′′, b, c). The vertex set v of the subnetwork N ′′ is
the same as that of N . The arc set A′′ consists of those arcs (x, y) for
which b(x, y, t) = 0 and those arcs [s, y] for all y ∈ V \{s}. If there are
double arcs from s to y, delete the arc from A′′ which has the larger cost
(or break up a tie arbitrarily if they have equal costs).

When the subnetwork N ′′ is created, we apply a “common” shortest
path algorithm (say, Dijkstra’s algorithm, see Ahuja et al (1993); Dijk-
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stra (1959)) to N ′′ to find the shortest path from s to each y ∈ V . In
applying such an algorithm, we ignore the transit times and the problem
is thus a classical shortest path problem. For completeness, we describe
the application of Dijkstra’s algorithm below and refer to it as SP.

The algorithm maintain two sets S and S′. The set S contains vertices
for which the final shortest path costs have been determined, while the
set S′ contains vertices for which upper bounds on the final shortest path
costs are known. Initially, S contains only the source s, and the costs
of the vertices in S′ are set to da(y, t). Repeatedly, select the vertex
x �∈ S, for which the distance from s is the shortest. Put x in S, and for
all outgoing arcs (x, y) ∈ A′′, update da(y, t) := min{da(y, t), da(x, t) +
c(x, y, t)}. The algorithm terminates if all vertices are in S.

We are going to show that our approach is correct in terms of finding
an optimal solution at each time t for the original problem TVSP-AWT.
For any vertex y ∈ V and time t > 0, we can see that any path from s
to y with time at most t must be one of the paths of the following type:

1. A path from s to y of time at most t − 1,
2. A path from s to y of time exactly t, which must pass an arc

(x, y) ∈ A′ with b(x, y, t) > 0, or
3. A path from s to y of time exactly t, which must pass an arc

(x, y) ∈ A′′ with b(x, y, t) = 0.

In fact, for each vertex y ∈ V , our approach first uses the algorithm
TVSP-AWT to determine the shortest path among those of types 1 and
2. After this is done, it creates an artificial arc [s, y] to represent this
shortest path. Then, it uses the procedure SP to further determine the
shortest path cost of all possible paths. The shortest path can be one
with only the artificial arc [s, y] (in this case the algorithm TVSP-AWT
had, in fact, found the optimum) or a path of type 3 (in this case,
the procedure SP has found a minimal cost than that obtained by the
algorithm TVSP-AWT). Since any vertex y can be reached by one of the
paths of the three types, the approach has considered all possible paths
and is thus optimal. Formally, we have

Lemma 1.9 Consider the approach: At each t = 0, 1, ..., T , apply the
algorithm TVSP-AWT to N ′, then apply the procedure SP to N ′′ to
update da(y, t) for all y ∈ V . After the t th iteration, da(y, t) is the cost
of a shortest path from s to y of time at most t.

Proof. With induction on t, we now show that da(x, t) is the cost of a
shortest path from s to x of time at most t.

When t = 0, the algorithm TVSP-AW first initializes da(s, 0) = 0
and da(x, 0) = ∞ for all x �= s. Then, a subnetwork N ′′ is created, and
the procedure SP is applied to this network. Clearly, this procedure can
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correctly obtain, for each x ∈ V , the cost of a shortest path from s to x
in the network N ′′. Hence, the values for da(x, t) are correct for t = 0.

Now assume that the values of da(x, t′) are correct for all x ∈ V and
t′ < t. Under this assumption, it is easy to show that the values for
da(x, t) obtained by the algorithm TVSP-AW are the costs of shortest
paths of types 1 and 2. Now consider the subnetwork N ′′ created with
artificial arcs [s, y] associated with these costs. As the procedure SP is,
in fact, the algorithm of Dijkstra, it can find the cost of a shortest path
P from s to y in the network N ′′, for each y ∈ V . Moreover, the time
of this path is at most t, since all arcs except those artificial arcs in N ′′

have zero transit times. The artificial arcs in N ′′ have a transit time t,
but all of them originate from s and thus any path from s to y in N ′′ can
contain at most one such arc. By the notation of our approach, da(y, t)
(updated by the procedure SP) is the cost of this shortest path P .

We now claim that da(y, t) is also the cost of the shortest path from
s to y of time at most t in the original network N . Suppose that this
is not true, namely, there exists another path P̄ from s to y, which
has a cost ζ(P̄ ) < da(y, t). Clearly, this cannot be a path of type 1,2,
or 3; otherwise, such a path would have implied that the procedure SP,
namely, Dijkstra’s algorithm, is not optimal. The only possibility is that
P̄ is a path with time greater than t, which is, however, infeasible for
the given t. This proves the claim, and therefore the lemma. �

For each t = 0, 1, ..., T , the subnetwork N ′ and N ′′ can be constructed
in O(m + n) time, and the procedure SP can be implemented such that
it runs in O(m + n log n) time (see Ahuja et al (1993)). This is the
additional running time needed to update the solutions obtained by the
algorithm TVSP-AW, TVSP-ZWT, or TVSP-BWT. In summary, we
have

Theorem 1.5 The problems TVSP-AWT, TVSP-ZWT, and TVSP-
BWT with non-negative transit times can be optimally solved in times
O(T (m+ n log n)), O(T (m+ n log n)), and O(T (m+ n log T + n log n)),
respectively.

6. Speedup to achieve an optimal time/cost
trade-off

We now consider the problem in which the transit time required to
traverse an arc (x, y) can be shortened, at a speedup cost. Like waiting
at a vertex, speedup on an arc also enables one to catch the best timing
to travel in a time-varying network. Thus, in a time-varying network,
speedup may also be a better decision for the overall solution, although
it incurs an extra cost locally. In particular, speedup may become nec-
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essary when the deadline T is tight. In this section we will see how the
optimal solution containing speedup decisions could be computed.

Consider an arc (x, y), and let γ be the amount of time reduced from
the transit time b(x, y, t). Assume that the choice of γ is subject to a
feasible set Υ(x, y, t). Corresponding to each γ ∈ Υ(x, y, t), there is a
speedup cost cγ(x, y, γ, t). To be consistent with the integer assumption
of the transit time b(x, y, t), here we also assume that γ taken from
Υ(x, y, t) is an integer and for any γ ∈ Υ(x, y, t), b(x, y, t) − γ > 0.

Let us first consider the case where waiting at a vertex is allowed
without any restriction. We continue to use the notation as introduced
in Section 4; for example, da(y, t) is defined as the cost of a shortest path
from s to y of time exactly t.

Lemma 1.10 da(s, 0) = 0, and da(y, 0) = ∞ for all y �= s. For t > 0,
we have:

da(y, t) = min
{

da(y, t − 1) + c(y, t − 1),

min
(x,y)∈A

min
(u,γ)∈Γ(x,y,t)

{da(x, u) + c(x, y, u) + cγ(x, y, γ, u)}
}

where Γ(x, y, t) = {(u, γ)|γ ∈ Υ(x, y, u), u + b(x, y, u) − γ = t}.

The proof of Lemma 1.10 can be established by replacing b(x, y, u)
and c(x, y, u) by b(x, y, u)− γ and c(x, y, u) + cγ(x, y, γ, u), respectively,
in the proof of Lemma 1.1.

Algorithm TVSP-AWT can be generalized as follows.

Algorithm TVSP-AWT-S
Begin
Initialize da(s, t) = 0 and ∀x �=sda(x, 0) := ∞;
Sort all values u + b(x, y, u) − γ = t for u = 1, 2, ..., T , for all

γ ∈ Υ(x, y, u) and for all arcs (x, y) ∈ A;
For t = 1, 2, ..., T do

For y ∈ V do
For each (x, y) ∈ A and each (u, γ) ∈ Γ(x, y, t) do

da(y, t) = min{da(y, t − 1) + c(y, t − 1),

min
(x,y)∈A

min
(u,γ)∈Γ(x,y,t)

{da(x, u) + c(x, y, u) + cγ(x, y, γ, u)}}

Let d∗a(y) := min0≤t≤T da(y, t);
End.

The key idea in the algorithm above is to sort, first, the values of
u + b(x, y, u) − γ for all (u, γ) and (x, y) ∈ A, where u = 1, 2, ..., T
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and γ ∈ Υ(x, y, u), before the recursive relation given in Lemma 1.10 is
applied to compute da(y, t) for all y ∈ V and t = 1, 2, ..., T .

Lemma 1.11 After the termination of AlgorithmTVSP-AWT-S, da(y, t)
is the cost of the shortest path from s to y of time exactly t.

Lemma 1.11 follows from Lemma 1.10 immediately.

Lemma 1.12 Algorithm TVSP-AWT-S can be implemented in O(mT 2)
time.

Proof. To sort the values of u + b(x, y, u) − γ, we can use bucketsort,
with T buckets. Since we need to check each (x, y) ∈ A, each u and
each γ, there are at most mT 2 values to be sorted. Thus, this step
needs O(mT 2) time. Referring to the proof of Lemma 1.3, we know the
running times of other steps are dominated by O(mT 2), therefore, the
total running time of the algorithm is bounded by O(mT 2). �

Combining Lemmas 1.11 and 1.12, we have

Theorem 1.6 The TVSP-AWT problem with speedups can be optimally
solved in O(T 2m) time.

Similar to the above, we can generalize the algorithms of Section 4 to
the TVSP-ZWT and TVSP-BWT problems with speedups possible for
the transit times. The recursive relations for the two problems are given
in the two lemmas below, respectively.

Lemma 1.13 dz(s, 0) = 0, and dz(y, 0) = ∞ for all y �= s. For t > 0,
we have:

dz(y, t) = min
(x,y)∈A

min
(u,γ)∈Γ(x,y,t)

{dz(x, u) + c(x, y, u) + cγ(x, y, γ, u)}

where Γ(x, y, t) = {(u, γ)|γ ∈ Υ(x, y, u), u + b(x, y, u) − γ = t}.

Lemma 1.14 db(s, 0) = 0, and db(y, 0) = ∞ for all y �= s. For t > 0,
we have:

db(y, t) = min
(x,y)∈A

min
(uA,uD,γ)∈Fγ(x,y,t)

{

db(x, uA)

+c(x, y, uD) +
uD−uA−1

∑

t′=0

c(x, t′ + uA) + cγ(x, y, γ, uD)
}

where Fγ(x, y, t) = {(uA, uD, γ)|γ ∈ Υ(x, y, uD), uD + b(x, y, uD) − γ =
t, 0 ≤ uD − uA ≤ ux}.

We leave the detailed description of the algorithms to the readers.

Recall that sorting the values of u + b(x, y, u) − γ requires O(mT 2)
time. Thus, from Lemmas 1.5 and 1.8, we can show:
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Theorem 1.7 The the TVSP-ZWT and TVSP-BWT problems with
speedups possible for the transit times can be optimally solved by dy-
namic programming algorithms with time complexity of O(mT 2) and
O(T (mT + n log T )), respectively.

7. Additional references and comments
The main reference for this chapter is Cai, Kloks and Wong (1997).

Some additional references on related studies are given below.
Cooke and Halsey (1966) consider a discrete model in which the transit

time b(x, y, t) varies as a function of the departure time t at vertex x,
the transit cost c(x, y, t) = b(x, y, t), and waiting at vertex is strictly
prohibited. The function b(x, y, t) is defined as a positive integer-valued
function of t ∈ {t0, t0 + 1, ...}. For any vertex x ∈ V , the problem is to
find the path from s to x with starting time t = t0, so that the total cost
(i.e., the total travel time) is minimum. They establish an optimality
and develop a dynamic programming algorithm, which can solve this
problem in a finite number of iterations.

Orda and Rom (1990) generalize Cooke and Halsey’s model to allow
for the following additional features: (a) the function of the transit time
b(x, y, t) is arbitrary, and (b) waiting at vertices may occur as in the
following three cases:

(i) Waiting at any vertex is unrestricted; namely, unlimited waiting is
allowed everywhere along the path through the network.

(ii) Waiting is forbidden; namely, waiting is disallowed everywhere along
the path through the network.

(iii) Only waiting at the source vertex is allowed; namely, waiting is
disallowed everywhere along the path except at the source vertex
which permits unlimited waiting.

They consider an infinite time horizon (i.e., T = ∞). For the cases
(i) and (ii) above, they provide several polynomial labeling algorithms
to find the optimal solutions. They also investigate properties of the
optimal paths derived and show that for case (iii) where waiting at the
source vertex is arbitrary allowed, a shortest path can be found that is
simple (that is, each vertex appears in the path at most once) and that
can achieve a cost as cheap as the most unrestricted path (that is, the
optimal solution for case (i)). Orda and Rom (1991) continue to study an
infinite continuous model in which both transit time b(x, y, t) and transit
cost c(x, y, t) are continuous functions of the departure time t at vertex
x while b is strictly positive and c is nonnegative. Waiting at vertices is
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allowed, and a waiting cost is introduced. They set πx(t) as waiting cost
density where t is the departure time at x, and the function of waiting
cost is defined by Px(α, t) =

∫ t
α πx(θ)dθ, where α is the arrival time at

vertex x and 0 ≤ α ≤ t ≤ ∞. They assume that, for each arc (x, y) ∈ A,
there is a countable union of open and non-overlapping intervals of time,
during which this arc is unavailable. Similarly, there is a countable union
of open and non-overlapping intervals during which waiting is prohibited.
This assumption can be regarded as an extension of the time window
constraint. They point out that, the problem always has a solution no
mater whether the path is finite or infinite. For the former case, an
algorithm is provided that can optimally solve the problem.

Philpott and Mees (1992) examine a finite continuous shortest path
model for a vehicle traveling problem, in which the transit times, parking
costs and restarting costs are all time-varying but the stopping costs
(waiting costs) for each unit of time is fixed. They present an algorithm
and derive conditions under which the algorithm converges to an optimal
solution. Psaraftis and Tsitsiklis (1993) assume that the transit costs of
arcs are known functions of certain environment variables at the vertices.
Each of these variables evolves according to an independent Markov
process. Nachtigall (1995) study a railway model in which the transit
cost c(x, y, t) depends on the time t when the passenger enters the vertex
x. Suppose a passenger can depart from the original station at time τ ,
A transit function f(τ) gives the earliest possible arrival time at the
destination for the passenger. A label correcting method is used to
calculate the desired transit function for all starting times with one path
search procedure.

A type of shortest path problems that have close relation with the
time-varying models we study in this chapter consider the so-called time-
window constraints, which specify that a certain arc (x, y) ∈ A can only
be traversed within a given time period, and/or a certain vertex x ∈ V
can only be visited within a given time period.

The shortest path problem with time windows is firstly formulated
as a sub-problem in the construction of school bus routes (Dosrosiers,
Soumis and Desrochers (1988a)), where the tasks must be carried out
according to a specified time schedule and the total cost should be min-
imized. Dosrosiers, Soumis and Desrochers (1988a) propose a model in
which transit time b(x, y) is a positive number, transit cost c(x, y) is an
arbitrary number, which are however all time-independent. They de-
velop a column generation method to construct routes covering the set
of tasks. At each iteration of their algorithm, the current solution is
improved by inserting into the basis the least marginal cost route. This
route includes a subset of tasks respecting the time window constraints
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and is obtained by solving the shortest path problem with time windows.
Late, Desrsier and Soumis (1988b) present a labeling method to solve
the problem with up to 2500 vertices and 250,000 arcs.

Sancho (1992) investigates the problem where both arcs and vertices
are associated with time windows. The situation where one passes the
vertex x (without waiting at x) to travel on arc (x, y) within the time
window of the arc is considered feasible even though the vertex x is
not visited within its time window. Sancho (1994) also considers the
problem where arrival at the vertex before its time window is permitted
if one is willing to wait at the vertex until the time window is opened.
However, arrival at vertex after its time window is not permitted, even if
no waiting is incurred at the vertex. A dynamic programming approach
is developed to solve this problem.

Loachim, Gelinas, Soumis and Desrosiers (1998) propose a continuous
model in which there is a vertex cost, which can be regarded as the
waiting cost, at the vertex as a linear function of the service start time
within the vertex time window. A dynamic programming algorithm is
proposed for finding the optimal solution.

In general, a shortest path problem with time-windows can be for-
mulated as a special case of the time-varying model we consider in this
chapter, by properly setting the values for transit times and waiting con-
straints; see the example as illustrated in Section 1 above on the model
of Desrosiers et al (1986).



Chapter 2

TIME-VARYING MINIMUM SPANNING

TREES

1. Introduction

Given a network N , the minimum spanning tree (MST) problem is
to find a connected acyclic subnetwork T that spans all the vertices of
N , such that the sum of costs (or lengths) of the constituent arcs of T
is minimum. The problem is further called a rooted minimum spanning
tree problem, when there is a pre-specified vertex s, and the spanning
tree T must have its root at s. To find the minimum spanning tree of a
given network is one of the well-known problems in the field of network
optimization; see Ahuja et al (1993); Graham et al (1985); Gabow et al
(1986); Recski (1988).

Although the MST problem and its variants have been extensively
studied in the literature, most of the works published so far treat the
problem as a static one, where it is assumed that zero time is needed to
travel from one vertex to another vertex, and that all attributes of the
network are time-invariant. Apparently, as we indicated earlier, these as-
sumptions are only approximations of real-world problems. In most prac-
tical situations, the network under consideration may inevitably change
over time.

We will study the time-varying MST problem in this chapter. Our
model considers a network where positive transit time b(x, y, t) is needed
to traverse an arc (x, y), at a cost c(x, y, t); Moreover, both the transit
time b(x, y, t) and the cost c(x, y, t) are time-varying, which are functions
of the departure time at the vertex x. Waiting at a vertex x may be
allowed, in order to catch the best timing to depart from x. Given a
deadline κ and a root s, the problem is to find a rooted spanning tree to
cover all vertices in the network, so that the total cost of the constituent
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arcs of the spanning tree is minimum, while any vertex z of the network
can be reached, before the deadline κ, along a path in the spanning tree
that connects s and z.

Although the static version of the MST problem is polynomially solv-
able (see, for example, Ahuja et al (1993)), we will show that the time-
varying version is, in general, NP-complete. After laying down some
basic concepts and terminologies in Section 2 below, we will focus on
the MST problem over a type of arc series-parallel networks (Section
3). We will show that this problem is NP-complete in the ordinary sense
(Section 3.1), and present an algorithm that can find an optimal solution
in O((m + n)mκ2) time, where m and n are the numbers of arcs and
vertices, respectively (Section 3.2). We will then consider a more general
network, an undirected network containing no subgraph homomorphic
to K4 (Section 4). We will derive an algorithm that can find an exact op-
timal solution in O((m + n)mκ2) time. The general case will be studied
in Section 5. Its complexity in terms of strong NP-completeness will be
examined. Heuristic algorithms will be developed and their time com-
plexity and errors will be analyzed. Finally, some additional references
and remarks will be given in Section 6.

2. Concepts and problem formulation
Let N = (V,A, b, c) be a time-varying network. A vertex in N is

known as the source (root), denoted as s. Assume that b(x, y, t) is a
positive integer, t = 0, 1, ..., κ, where κ is a positive integer, representing
a given time limit. By an approach similar to that of Section 5, Chap-
ter 1, the results developed in this chapter may also be generalized to
situations where the transit time b is a non-negative integer.

Recall that a dynamic path in the time-varying network N is a path
P where all departure times, arrival times, and waiting times at each
vertex on P are specified. We now introduce the concept of path-induced
subnetwork as below.

Definition 2.1 For xj ∈ V and j = 1, 2, ..., J, where 1 ≤ J ≤ n, suppose
Pj(s, xj) is a dynamic path from s to xj of time at most t. Let V (Pj)
and A(Pj) be the vertex set and the arc set of Pj, respectively, and let
V ′ =

⋃

j V (Pj), A′ =
⋃

j A(Pj). Further, let Γ(Pj) be the set of the
triples (x, y, τ(x)) over Pj, where τ(x) is the departure time at vertex x
on Pj, and Γ =

⋃

j Γ(Pj). Define Ij(x) = {[α(x), τ(x)]} as the set of time
intervals (the waiting times at the vertices on Pj), and I(x) =

⋃

j Ij(x).
Then, N ′ = (V ′, A′, b, c), together with Γ and I(x) (x ∈ V ′), is said to
be a path-induced subnetwork of N . The subnetwork N ′ is also said to
be generalized by paths Pj, 1 ≤ j ≤ J , denoted by N ′ = [P1, P2, ..., PJ ].
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Obviously, a single dynamic path P (s, x) in N is also a path-induced
subnetwork of N . On the other hand, given a path-induced subnetwork
of N ′ of N , there must exist paths P1, P2, ..., Pk, such that N ′ =
[P1, P2, ..., Pk]. The following definition gives the concept of dynamic
spanning tree.

Definition 2.2 Let N ′ = [P1, P2, ..., PJ ] be a path-induced subnetwork
of N and t ≤ κ. N ′ is said to be a dynamic spanning tree of time at
most t, denoted by T (t), if it satisfies the following conditions:

(i) For each x ∈ V , there exists a dynamic path P (s, x) of time at most
t in N ′;

(ii) If x is the end vertex of path Pi in N ′, then x must be neither in
Pi again as an intermediate vertex, nor in any other path Pj in N ′,
where i �= j and 1 ≤ i, j ≤ J .

Definition 2.3 Let T (t) be a dynamic spanning tree of time at most t,
and let

ζ(T (t)) =
∑

(x,y,τ)∈Γ

c(x, y, τ) +
∑

x∈V

∑

t′∈I(x),t′=0,1,...,κ

c(x, t′)

A dynamic spanning tree T ∗(t) is said to be a minimum spanning tree
of time at most t on the time-varying network N(V,A, b, c), if

ζ(T ∗(t)) = min
T (t)∈T (t)

ζ(T (t))

where T (t) is the set of all dynamic spanning trees of time at most t.

The time-varying minimum spanning tree (TMST) problem is to de-
termine the minimum spanning tree T ∗(κ) for the given time-varying
network N .

Example 2.1

Figure 2.1. An example of a dynamic spanning tree
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Consider a network N as shown in Figure 2.1(a), where

b(s, e, 0) = 1, b(s, f, 0) = 3, b(f, g, 2) = 1, b(e, g, 1) = 1,

b(f, g, 3) = 1, b(g, h, 4) = 1, b(g, i, 2) = 3,

c(s, e, 0) = 2, c(s, f, 0) = 1, c(f, g, 2) = 1, c(e, g, 1) = 1,

c(f, g, 3) = 2, c(g, h, 4) = 3, c(g, i, 2) = 2.

All other b and c are equal to ∞, while all c(x, t) = 0. Waiting at any
vertex is not allowed. A dynamic spanning tree with root at s is to be
found for κ = 6.

We can see that there are two dynamic paths: P1 = (s, e, g, i) with
τ(s) = 0, τ(e) = 1 and τ(g) = 2 (arrival at i at time 5); P2 = (s, f, g, h)
with τ(s) = 0, τ(f) = 3 and τ(g) = 4 (arrival at h at time 5). Let
N ′ = [P1, P2] be a path-induced subnetwork. From Definition 2.1, we
have V ′ = V , A′ = A\{(f, e)}, Γ = {(s, e, 0), (s, f, 0), (e, g, 1), (f, g, 3),
(g, h, 4), (g, i, 2)}, and I(x) = ∅ for all x ∈ V . By Definition 2.2, we can
see that N ′ is also a dynamic spanning tree of N , since all vertices in
V can be visited from the root s within time 6, and the end vertices of
P1 and P2, i and h, only be visited once, respectively. We denote T as
this tree (see Figure 2.1(b)). By Definition 2.3, the cost of T is ζ(T ) =
c(s, e, 0) + c(s, f, 0) + c(e, g, 1) + c(f, g, 3) + c(g, h, 4) + c(g, i, 2) = 11.

The example above also shows a difference between the static spanning
tree and a dynamic spanning tree as we define here. We can note that the
underlying graph of T (Figure 2.1(b)) contains a cycle C = (s, e, g, f, s).
On the other hand, if we remove any edge from this cycle, then neither
h nor i could be visited within time κ.

Remarks are given below.

Remark 2.1

(1) The model described above covers the situation where an arc (x, y)
is not available during an interval [t1, t2] (For example, the arc is not
usable due to repair/maintenance work during the interval). This
can be achieved by setting the value of b(x, y, t) or c(x, y, t) to be
infinity for the interval [t1, t2].

(2) Solomon (1986) formulates a MST model with time window con-
straints, where a vertex xi (i = 1, ..., n) should only be visited during
a given time window [ei, li]. Early arriving at a vertex is allowed,
but it must then wait at the vertex until the earliest visiting time
(In other words, departure from the vertex before its earliest visiting
time is prohibited).
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A problem with time windows can be converted into the model
we discuss here as follows: Suppose that the time window of a vertex
y is [ey, ly], and suppose that xi (and zi) are immediate preceding
(and succeeding) vertices of y. Let b(y, zi, t) = +∞ for any t < ey,
and b(y, zi, t) = ty,zi

for any t ≥ ey, where ty,zi
is the travel time

between y and zi. Also, let c(xi, y, t′) = dxi,y for any t′+b(xi, y, t′) ≤
ly, where dxi,y is the cost of travelling from xi to y, and c(xi, y, t′) =
+∞ for any t′ + b(xi, y, t′) > ly. Then, one can arrive at y earlier
than ey and wait at y, but he cannot depart from y before time
ey since the transit time from y to any of its succeeding vertices is
infinite if the departure time is earlier than ey. On the other hand,
arriving at y later than ly will lead to an unacceptable schedule,
since the travel cost to arrive at y from any of its preceding vertices
is infinite. Consequently, the optimal solution for this time-varying
MST model will automatically satisfy the time window constraints.

3. Arc series-parallel networks
We will concentrate, in this section, on the TMST problem in which

waiting at a vertex is arbitrary allowed, and the network has an arc
series-parallel structure (see Duffin (1965); Weinberg (1971)). This type
of networks have interest themselves in applications (see, e.g., applica-
tion of Boolean algebra to switching circuits (Shannon 1938)). In addi-
tion, results derived on this type of networks may offer valuable insights
for the study of more general problems.

A network that meets the following properties is an arc series-parallel
network (ASP network):

(i) An arc (s, ρ) is an ASP network;

(ii) If G1 and G2 are two ASP networks and s1, s2 and ρ1, ρ2 are sources
and sinks of G1 and G2, respectively, then Gp generated from G1

and G2 by merging s1 with s2 and ρ1 with ρ2 is an ASP network.
Also, Gs formed from G1 and G2 by merging ρ1 with s2 is an ASP
network.

In fact, any ASP network can be induced by the two properties above.
Computationally, we can tell whether a given network is arc series-
parallel, by using the algorithm of Valdes et al (1982), which runs in
O(m + n) time. An example of an arc series-parallel network is given in
Figure 2.2.

In what follows, we will first study the complexity (in terms of NP-
completeness) of the TMST problem over time-varying ASP networks.
We will then present an exact algorithm which can find a minimum
spanning tree in pseudopolynomial time. Note that when we say that
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Figure 2.2. An arc series-parallel network
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the problem we consider has an arc series-parallel structure, we always
imply that the source vertex (root) of the problem is the starting vertex
in the ASP network (see, e.g., Figure 2.2).

3.1 Complexity
We now show that, the TMST problem on an ASP network is NP-

complete. The decision version of the problem is defined below.

TMST-SPN Given a time-varying arc series-parallel network N(V,A,
b, c), a time limit κ, and a threshold value K, does there exist a dynamic
spanning tree T (κ) of time at most κ, such that ζ(T (κ)) ≤ K ?

We will show that the Knapsack problem (see Section 3, Chapter 1)
is reducible to TMST-SPN. The following theorem establishes the NP-
completeness of the TMST problem with arc series-parallel networks.

Theorem 2.1 The TMST problem on an arc series-parallel network is
NP-complete in the ordinary sense.

Proof: For any given instance of Knapsack, we can construct a time-
varying network N , with structure same as Figure 1.3, and transit times,
transit costs, B, K, and time limit κ as specified in the proof of Theo-
rem 1.1. (Note that T is the time limit used in the proof of Theorem 1.1).

We now prove that a “yes” answer to Knapsack is equivalent to a
“yes” to the decision version of TMST-SPN.

If Knapsack has a set S ⊆ Q such that
∑

i∈S vi ≥ v∗ and
∑

i∈S wi ≤
w∗, then we can obtain a path P (x0, xn+1) by the following way: starting
from x0 at time zero, for each i, if i ∈ S, then traverse arcs (xi−1, x

′
i)

and (x′
i, xi); if i �∈ S, then traverse arc (xi−1, xi). At last, traverse arc

(xn, xn+1). Let w(xi) = 0 (1 ≤ i ≤ n − 1) and w(xn) = n + w∗ − α(xn).
Notice that, since

∑

i∈S wi ≤ w∗, we have α(xn) =
∑

i∈S(wi + 1) +
∑

i�∈S 1 = n +
∑

i∈S wi ≤ n + w∗, and α(xn+1) ≤ n + w∗ + 1 = κ, where
α(xn) and α(xn+1) are the arrival times of P at vertices xn and xn+1,
respectively. Combining P with arcs (xi−1, x

′
i) for each i �∈ S, we obtain

a tree, denoted as T o. Clearly, T o is a spanning tree of N within time
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duration κ. Moreover, since
∑

i∈S vi ≥ v∗, i.e., −
∑

i∈S vi ≤ −v∗, we have
ζ(T o) = ζ(P ) =

∑

i�∈S B+
∑

i∈S(B−vi) = nB−
∑

i∈S vi ≤ nB−v∗ = K.
If TMST-SPN has a spanning tree T with the total cost not ex-

ceeding K, then there exists a path P (x0, xn+1) such that ζ(P ) ≤
ζ(T ) ≤ K. Let S = {i|(x′

i, xi) ∈ A(P ), 1 ≤ i ≤ n}. We have ζ(P ) =
∑

i∈S c(x′
i, xi, τ(x′

i))+
∑

i�∈S B =
∑

i∈S(B−vi)+
∑

i�∈S B = nB−
∑

i∈S vi ≤
K = nB−v∗, which implies

∑

i∈S vi ≥ v∗. On the other hand, since T is
a spanning tree of N within time κ, by the construction of the network
N , we must have α(xn) =

∑

i∈S(wi+1)+
∑

i�∈S 1 = n+
∑

i∈S wi ≤ n+w∗,
where α(xn) is the arrival time of P at xn. Therefore,

∑

i∈S wi ≤ w∗.
The analyses above show that TMST-SPN can be reduced from Knap-

sack and thus it is NP-complete. On the other hand, the optimal solution
of TMST-SPN can be found by an algorithm in pseudopolynomial time
(see Section 3.2 below) and hence it is NP-complete in the ordinary sense
(cf. Garey and Johnson 1979). This completes the proof. �

3.2 A pseudo-polynomial algorithm
In an ASP network, a vertex x is called a spreading vertex if d+(x) > 1;

or a converging vertex if d−(x) > 1, where d+(x) and d−(x) are outdegree
and indegree of x, respectively. To develop our algorithm, we introduce
the concept of diamond as follows.

Definition 2.4 Let f ∈ V be a spreading vertex, and g ∈ V a converging
vertex. If there are two paths from f to g containing no other spreading
and converging vertices, then the subgraph induced by these two paths is
called a “diamond”.

Usually, we denote D(f, g) as a diamond constructed by a spreading
vertex f and a converging vertex g. We also need the following definition.

Definition 2.5 Suppose that P (f, g) is a path in N which contains no
other spreading and converging vertices other than f and g. For each
vertex x in this path, define df,g(x, ts, t) as the cost of a shortest path
from f to x so that this path can be traversed within the time duration
[ts, t]. If such a path does not exist, let df,g(x, ts, t) = ∞.

The following lemma gives a recursive relation to compute df,g(x, ts, t).

Lemma 2.1 Let P = (f, g) be a path which has no spreading and con-
verging vertices other than f and g. Then, we have df,g(f, ts, t) = 0 for
all 0 ≤ ts ≤ t ≤ κ, df,g(y, ts, ts) = ∞ for all y �= f , and

df,g(y, ts, t) = min{df,g(y, ts, t − 1) + c(y, t − 1),

min
{u|u+b(x,y,u)=t}

{df,g(x, ts, u) + c(x, y, u)}},



34 TIME-VARYING NETWORK OPTIMIZATION

for ts < t ≤ κ and y �= f , where x is the predecessor of y in P .

Lemma 2.1 is a simple generalization of Lemma 1.1. For a diamond
D(f, g), the notation df,g(g, ts, t) may cause some confusion since there
are two paths ending at g. We therefore use dx1

f,g(g, ts, t) and dx2
f,g(g, ts, t)

to denote the minimum costs from f to g along paths P1 and P2, where
x1 and x2 are the predecessors of g in P1 and P2, respectively.

Definition 2.6 Let D(f, g) be a diamond as defined in Definition 2.4
and D′ = D\{g}. Define δI(D, ts, t) as the cost of the minimum span-
ning tree of D such that τ(f) ≥ ts and α(g) ≤ t. Define δE(D′, ts) as
the cost of the minimum spanning tree of D′ such that τ(f) ≥ ts.

Lemma 2.2 Suppose D is a diamond in N and 0 ≤ ts ≤ κ. Then, we
have

δI(D, ts, t) = min{dx1
f,g(g, ts, t) + df,g(x2, ts, κ),

dx2
f,g(g, ts, t) + df,g(x1, ts, κ)}, for any ts ≤ t ≤ κ,

δE(D′, ts) = df,g(x1, ts, κ) + df,g(x2, ts, κ),

where x1 and x2 are the predecessors of g in P1 and P2, respectively.

Proof: Notice that D = P1(f, ..., x1, g) ∪ P2(f, ..., x2, g), and P1 and P2

have no common vertex except f and g. Thus, there are two ways to
span D only, i.e., reach g by path P1 and reach x2 by P2, or reach g by
path P2 and reach x1 by P1. Notice that if g is reached through P1 with
α(g) ≤ t, then the arrival time at vertex x2 could be less than or equal
to κ. Therefore the cost of the minimum spanning tree of D should be
the minimum between these two. �

The key ideas of our algorithm can be described below.

(a) If N is a path, then ds,ρ(ρ, 0, κ) is the cost of the minimum spanning
tree.

(b) If N is a diamond, then δI(N, 0, κ) is the cost of the minimum span-
ning tree.

(c) Otherwise, choose a diamond D in N . Calculate δI and δE respec-
tively, and make a contracting operation as follows:

(i) Delete P1 and P2 in N except vertices f and g.
(ii) Create an artificial vertex x′ and two artificial arcs (f, x′)

and (x′, g). Let δ(x′, ts, t) = δE(D′, ts) and δ(g, ts, t) = δI(D, ts, t)−
δE(D′, ts) for any 0 ≤ ts ≤ t ≤ κ (if both δI(D, ts, t) and δE(D′, ts)
are infinite, then δ(g, ts, t) = ∞). Then, a diamond is converted
equivalently to a path P (f, x′, g).
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(iii) It is possible that f and g are no longer a spreading vertex
and a converging vertex in the new network. Suppose that the path
P (f ′, g′) contains P (f, g) as its subpath. Calculate df ′,g′(x, ts, t) for
each vertex x in P (f ′, g′) according to the formula given in Lemma
2.3 below.

(d) Repeat step (c) until N becomes a path or a diamond.

Note that after a contracting operation, the new network obtained,
denoted as N ′, contains an artificial path P (f, g). Moreover, a spanning
tree T ′ in N ′ should contain either an arc (f, x′) or arcs (f, x′) and (x′, g),
since d−(x′) = d+(x′) = 1, where d−(x′) and d+(x′) are in-degree and
out-degree of x′ in N ′, respectively. Therefore, we can compute the cost
of T ′ as follows:

ζ(T ′) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

(x,y)∈A(T ′)\(f,x′) c(x, y, τ(x)) + δ(x′, τ(f), κ),

if (x′, g) �∈ A(T ′)
∑

(x,y)∈A(T ′)\{(f,x′),(x′,g)} c(x, y, τ(x))

+ δ(x′, τ(f), α(x′)) + δ(g, τ(f), α(g)), otherwise

For the case where there are multiple artificial paths, we can compute
the cost of a spanning tree in a similar way. The formula given in Lemma
2.1 can be revised as follows:

Lemma 2.3 Let P (f, g) be a path, 0 ≤ ts ≤ κ, df,g(f, ts, t) = 0 for all
ts ≤ t ≤ κ and df,g(y, ts, ts) = ∞ for all y �= f . For ts < t ≤ κ and
y �= f , we have:

(i) If (x, y) is not an artificial arc, then

df,g(y, ts, t) = min{df,g(y, ts, t − 1) + c(y, t − 1),

min
{u|u+b(x,y,u)=t}

{df,g(x, ts, u) + c(x, y, u)}}

(ii) If (x, y) is an artificial arc, then

df,g(y, ts, t) = min{df,g(y, ts, t−1)+c(y, t−1),

min
ts≤u<t

{df,g(x, ts, u) + δ(y, u, t)}}

where x is the predecessor of y in P .

Let P (f ′, x1, x2, ..., xr, f, x′, g, xr+1, ..., g
′) be a path we are consider-

ing now, and P (f, x′, g) be a path which comes from a diamond D. For
notational convenience, let us assume that dsi+1,ρj+1(x

′, ts, t) denotes the
cost of the minimum spanning tree of the subnetwork generated by D′
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and the path P (f ′, x1, ..., xr, f), with τ(f ′) ≥ ts, while df ′,g′(g, ts, t) de-
notes the cost of the minimum spanning tree of the subnetwork generated
by D and the path P (f ′, x1, ..., xr, f), with τ(f ′) ≥ ts and α(g) ≤ t.

We are now ready to present the following algorithm.

Algorithm TMST-SP

Begin
While N is neither a path nor a diamond do
Select arbitrarily a diamond D in N ;
Compute df,g(x, ts, t) for all x ∈ V (D) and for all 0 ≤ ts ≤ t ≤ κ;
Compute δI(D, ts, t) and δE(D′, ts) for 0 ≤ ts ≤ t ≤ κ;
Delete D, except the vertices f and g, from N ;
Create a path P (f, x′, g) in N and let δ(x′, ts, t) = δE(D′, ts)

and δ(g, ts, t) = δI(D, ts, t) − δE(D′, ts) for 0 ≤ ts ≤ t ≤ κ;
End While;
If N is a path then ζ(T ) = ds,ρ(ρ, 0, κ);
If N is a diamond then ζ(T ) = δI(N, 0, κ)
End.

Theorem 2.2 TMST-SP can find an optimal solution for the time-
varying minimum spanning tree problem with an arc series-parallel net-
work considered in this section.

Proof: Use induction on |A|. Consider the case with m = 1. Since there
is only one arc, N is a path and the claim holds obviously. Assume that
when m < k, the claim is true. Now we consider the case with m = k.

We examine the following cases:
(i) N is a path. By Lemma 2.1, the claim holds.
(ii) N is a diamond. By Lemma 2.2, the claim is also true.
(iii) N is neither a path nor a diamond. Then we select a diamond

D in N , and compute δI(D, ts, t) and δE(D′, ts) and change D to a
path P (f, x′, g) to obtain a new network N ′. Now, we prove ζ(T ′) =
ζ(T ), where T ′ and T are the minimum spanning trees in N ′ and N ,
respectively.

First, we show ζ(T ′) ≥ ζ(T ). Recall that N ′ differs from N , since a
diamond D in N is replaced by a path P (f, x′, g). Because the indegree
of x′ equals one in N , the arc (f, x′) must be in T ′. Consider the arc
(x′, g). If (x′, g) �∈ A(T ′), where A(T ′) is the arc set of T ′, then we can
restore the arc (f, x′) to a spanning tree T ′

D′ of D′ with cost δE(D′, ts),
where ts is the departure time at f in T ′. Combining T ′

D′ and all other
arcs in T ′ except (f, x′), we can obtain a spanning tree of N , denoted
as T ′′. From Lemma 2.3, we know that the cost to reach x′ from f with
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τ(f) = ts is δ(x′, ts, t). Then we have

ζ(T ′) =
∑

(x,y)∈A(T ′\(f,x′))

c(x, y, τ(x))+
∑

x∈V (T ′\{x′})

τ(x)−1
∑

t=α(x)

c(x, t)+δ(x′, ts, t)

=
∑

(x,y)∈A(T ′\(f,x′))

c(x, y, τ(x)) +
∑

x∈V (T ′\{x′})

τ(x)−1
∑

t=α(x)

c(x, t) + δE(D′, ts)

= ζ(T ′′) ≥ ζ(T )

The last inequality holds since T is the minimum spanning tree of N . A
similar analysis can be applied to the case with the arc (x′, g) ∈ A(T ′).

We now show ζ(T ) ≥ ζ(T ′). For any spanning tree T o of N , we can
construct T ∗, a spanning tree of N ′, such that ζ(T o) ≥ ζ(T ∗). Suppose
that T o

D′ is the spanning tree of D′ in T o with ts ≤ τ(f). We create T ∗ by
replacing T o

D′ by arc (f, x′). Let δ(x′, ts, t) denote the cost of reaching x′

from f with τ(f) = ts. By the definition, we have δ(x′, ts, t) = δE(D′, ts),
where δE(D′, ts) is the cost of minimum spanning tree of D′. Therefore,
we have

ζ(T o) =
∑

(x,y)∈A(T o\T 0
D′ )

c(x, y, τ(x)) +
∑

x∈V (T o\T 0
D′)

τ(x)−1
∑

t=α(x)

c(x, t) + ζ(T o
D′)

≥
∑

(x,y)∈A(T ∗\(f,x′))

c(x, y, τ(x)) +
∑

x∈V (T o\T 0
D′)

τ(x)−1
∑

t=α(x)

c(x, t) + δ(x′, ts, t)

= ζ(T ∗) ≥ ζ(T ′).

Since for any T o the inequality is true and T ′ is the minimum spanning
tree of N ′, we have ζ(T ) ≥ ζ(T ′). The proof for the case that T o contains
a spanning tree of D can be established similarly.

In summary, we have ζ(T ′) = ζ(T ). In other words, we can obtain
the minimum spanning tree of N by finding the minimum spanning tree
in N ′. Notice that N ′ is still a time-varying arc series-parallel network
with |A(N ′)| ≤ k − 1 since we replace a diamond by a path and the
number of arcs decreases by at least 1. By the induction, we complete
the proof. �

Theorem 2.3 TMST-SP can be implemented in O((m + n)mκ2) time.

Proof: The time needed for selecting a diamond in N is O(m + n) (see
Valdes et al (1982)). To calculate df,g(x, ts, t) for all x ∈ D and for all
0 ≤ ts ≤ t ≤ κ, we need O((m + n)κ2) time. Both the deleting and
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the creating operations require O(m + n) time. Therefore, one iteration
(within the While loop) needs O((m + n)κ2) time. Since each iteration
decreases by at least one arc, we need at most m iterations. Thus, the
total running time is bounded above by O((m + n)mκ2). �

Let us now examine an example to illustrate Algorithm TMST-SP.

Example 2.2

Figure 2.3. An example to illustrate Algorithm TMST-SP
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Consider an ASP network N as shown in Figure 2.3(a). Associated
with each arc, there are two numbers, transit time b(x, y, t) and cost
c(x, y, t), as listed in Figure 2.3(b) (a blank in the table stands for b =
c = ∞). All waiting costs c(x, t) = 0. Given κ = 4, the problem is to
find the time-varying minimum spanning tree T of N .

First, pick up a diamond D1 = (s, x1, x2, ρ1). For each x ∈ V (D1) and
0 ≤ t1 < t2 ≤ κ, calculate ds,ρ1(x, t1, t2). For example, ds,ρ1(s, 0, 0) = 0,
ds,ρ1(x2, 0, 0) = ∞, and

ds,ρ1(x2, 0, 1) = min{ds,ρ1(x2, 0, 0), ds,ρ1(s, 0, 0) + c(s, x2, 0)}

= min{∞, 0 + 1} = 1

since there exists u = 0 which satisfies u + b(s, x2, u) = 1. The val-
ues of ds,ρ1(x, t1, t2) are shown as in Table 2.1, while δI(D1, t1, t2) and
δE(D′

1, t1) are given in Table 2.2.

The network N is now converted into a network as shown in Figure
2.4(a). Then, we pick up D2 = (s, x3, x4, ρ2). For each x ∈ V (D1) and
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Table 2.1. The values of ds,ρ1
for diamond D1

ds,ρ1
(x1, t1, t2) t2 = 1 2 3 4 ds,ρ1

(x2, t1, t2) t2 = 1 2 3 4

t1 = 0 ∞ 3 3 3 t1 = 0 1 1 1 1

1 3 3 3 1 ∞ 1 1

2 ∞ 6 2 ∞ 2

3 ∞ 3 ∞

dx1
s,ρ1

(ρ1, t1, t2) t2 = 1 2 3 4 dx2
s,ρ1

(ρ1, t1, t2) t2 = 1 2 3 4

t1 = 0 ∞ ∞ 5 4 t1 = 0 ∞ 7 7 4

1 ∞ 5 4 1 ∞ ∞ 5

2 ∞ ∞ 2 ∞ ∞

3 ∞ 3 ∞

Table 2.2. The values of δI and δE for diamond D1

δI(D1, t1, t2) t2 = 1 2 3 4 t1 δE(D′
1, t1)

t1 = 0 ∞ 10 6 5 0 4

1 ∞ 6 5 1 4

2 ∞ ∞ 2 8

3 ∞ 3 ∞

0 ≤ t1 < t2 ≤ κ, calculate ds,ρ2(x, t1, t2), see Table 2.3. The values of
δI(D2, t1, t2) and δE(D′

2, t1) are listed in Table 2.4.

A new network is obtained as shown in Figure 2.4(b).
Finally, as the network is a diamond now, we can calculate δI(D, t1, t2)

for 0 ≤ t1 < t2 ≤ κ. The results are listed in Table 2.5.

Since δI(D, 0, 4) = 14, we have ζ(T ) = 14. The minimum spanning
trees T is shown as in Figure 2.5(a). The number in a box associated
with the arc is the departure time and the number without a box is the
transit cost. Figure 2.5(b) shows a minimum spanning tree of N with
κ = 3.
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Table 2.3. The values of ds,ρ2
for diamond D2

ds,ρ2
(x3, t1, t2) t2 = 1 2 3 4 ds,ρ2

(x4, t1, t2) t2 = 1 2 3 4

t1 = 0 4 3 3 3 t1 = 0 ∞ 5 3 3

1 3 3 3 1 ∞ 3 3

2 ∞ 5 2 4 4

3 ∞ 3 ∞

dx3
s,ρ2

(ρ2, t1, t2) t2 = 1 2 3 4 dx4
s,ρ2

(ρ2, t1, t2) t2 = 1 2 3 4

t1 = 0 ∞ 6 6 4 t1 = 0 ∞ ∞ 6 6

1 ∞ ∞ 4 1 ∞ ∞ ∞

2 ∞ ∞ 2 ∞ ∞

3 ∞ 3 ∞

Table 2.4. The values of δI and δE for diamond D2

δI(D2, t1, t2) t2 = 1 2 3 4 t1 δE(D′
2, t1)

t1 = 0 ∞ 9 9 7 0 6

1 ∞ ∞ 7 1 6

2 ∞ ∞ 2 9

3 ∞ 3 10

Table 2.5. The values of δI for diamond D

δI(D, t1, t2) t2 = 1 2 3 4

t1 = 0 ∞ ∞ 16 14

1 ∞ ∞ 14

2 ∞ ∞

3 ∞
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Figure 2.4. An example to illustrate Algorithm TMST-SP (continued)
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Figure 2.5. The optimal solutions
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4. Networks containing no subgraph
homomorphic to K4

In this section, we will generalize the model of Section 3.3 to such
networks whose underlying graphs contain no subgraphs homomorphic
to K4 (a complete graph with four vertices).

4.1 Properties and complexity
Liu and Geldmacher (1976) have shown that, any graph with no sub-

graph homomorphic to K4 can be recursively transformed, by applying
four transformation rules (see Definition 2.7 below), to a single ver-
tex. They have further devised a linear time algorithm that can decide
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whether a graph has a subgraph homomorphic to K4 (Liu and Geld-
macher 1980).

Definition 2.7 Let G′ be the resultant graph after applying four trans-
formation rules T1, T2, T3 and T4 to a graph G until none of the rules
can be further applied, where

T1: Replace a loop vv with a vertex v.
T2: Replace a dangling edge uv with a vertex u.
T3: Replace a pair of series edges uv and vw with an edge uw.
T4: Replace a pair of parallel edges uv and uv with an edge uv.

If G′ consists of only one single vertex, then we say G is reducible. Oth-
erwise, we say G is nonreducible.

Note that in the definition above we follow Liu and Geldmacher (1976)
to use the terminology “reducible”, which is different from the terminol-
ogy “reducible” used in the NP-completeness analysis (see Section 3.2).

The following two properties are established in Liu and Geldmacher
(1976).

Property 2.1 If T1, T2, T3 and T4 are applied to a graph until no longer
possible, then a unique graph results, independent of the sequence of
application of T1, T2, T3 and T4.

Property 2.2 A graph G is nonreducible if and only if it contains a
subgraph homomorphic to K4.

Corresponding to the concept of reducible graph, we define the ter-
minology of “reducible network” as follows.

Definition 2.8 A is a reducible network if its underlying graph con-
tains no subgraph homomorphic to K4.

Note that an edge series-parallel graph (the underlying graph of an
arc series-parallel network) is reducible since it contains no subgraph ho-
momorphic to K4. On the other hand, we do have other networks, whose
underlying graph are not edge series-parallel, but which are reducible.
Figure 2.6 below is an example.

Example 2.3

An ASP network is a special case of the reducible network. Thus,
from Theorem 2.1 and Theorems 2.5 and 2.6 (See below), we have the
following Theorem.

Theorem 2.4 The time-varying spanning tree problem on reducible net-
works is NP-complete in the ordinary sense.
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Figure 2.6. A reducible graph which is not edge series-parallel
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4.2 An exact algorithm
Recall that we consider time-varying networks with no parallel arcs,

that is, there do not exist two arcs of the same direction between two
vertices. It is possible to have, however, two arcs of opposite directions
between two vertices. To simplify the presentation in figures, in this
section we will use a link to indicate a single arc or a pair of opposite
arcs between two vertices.

Let us first examine the following two special cases.

Case I. The network N under consideration is shown in Figure 2.7(a),
where s is the source vertex. By Definition 2.5, ds,x(x, ts, t) is the cost of
a shortest path from s to x within the time duration [ts, t] (Note that if
such a path does not exist, then ds,x(x, ts, t) = ∞). Then, we can easily
see that

ζ(T (κ)) = ds,y(y, 0, κ) + ds,z(z, 0, κ) (2.1)

where ζ(T (κ)) is the minimum cost of the spanning tree of N within the
time limit κ.
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Case II. The network N under consideration is shown in Figure 2.7(b).
In this case we have

ζ(T (κ)) = min
1≤i≤r−1

{ds,xi
(xi, 0, κ) + ds,xi+1(xi+1, 0, κ)} (2.2)

where ds,xi
(xi, 0, κ) is calculated along the path P (x1, x2, ..., xi) while

ds,xi+1(xi+1, 0, κ) is calculated along the pathP (xr, xr−1, ..., xi+1). Again,
note that by default we define ds,x(x, ts, t) = ∞ if no path exists from s
to x.

A vertex v ∈ V is said to be a conjunction vertex, if it has more than
two adjacent vertices in N . A path P (x, y) (or a cycle C(x = x1, ..., xr =
x)) with one conjunction vertex x and s �∈ V (P )\{x} (or s �∈ V (C)\{x})
is called a dangling path (or a dangling cycle) (see Figure 2.8). A cycle
with two conjunction vertices is called a diamond. Note that this defin-
ition is a generalization of Definition 2.4.

Figure 2.8. l and e are conjunction vertices, while P (a, e) is a dangling path, cycle
C(e, g, h) is a dangling cycle, and D(P (s, w, l), P (s, f, l)) is a diamond.

el
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q k

w

Both two structures, path and diamond, play the key roles in the
algorithm we are to present below. Notice that, if a path contains two
conjunction vertices as its two ends and s is not in it, the flow can flow
in or out at each conjunction vertex of the path. Figure 2.9 shows these
situations.

Figure 2.9. Directions of flow into or out from a path, where y and z are two con-
junction vertices

y z y z y z
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Since for two vertices x and y, c(x, y, t) may not equal c(y, x, t), we
need to calculate the cost of a path in terms of three different spanning
ways above. This leads to the following definition.

Definition 2.9 Suppose that P (y = x1, x2, ..., xr = z) is a path in N ,
where y and z are two conjunction vertices, and s �∈ V (P )\{y, z}. Define

(1) dyI ,zO(ty, tz) as the cost of the minimum spanning tree of P , such
that y is the flow-in vertex, z is the flow-out vertex, τ(y) ≥ ty and
α(z) ≤ tz;

(2) dyO,zI (ty, tz) as the cost of the minimum spanning tree of P , where
y is the flow-out vertex, z is the flow-in vertex, α(y) ≤ ty and τ(z) ≥ tz;

(3) dyI ,zI (ty, tz) as the minimum forest of P , where both y and z are
flow-in vertices, τ(y) ≥ ty and τ(z) ≥ tz.
If such trees do not exist, let the relevant cost be ∞.

Recall Definition 2.5 on df,g(x, ts, t). The following lemma gives a
method to calculate dyI ,zO(ty, tz), dyO,zI (ty, tz), and dyI ,zI (ty, tz).

Lemma 2.4 Suppose that P (y = x1, x2, ..., xr = z) is a path in N , where
y and z are two conjunction vertices, and s �∈ V (P )\{y, z}. Then, we
have

dyI ,zO(ty, tz) = dy,z(z, ty, tz), 0 ≤ ty ≤ tz ≤ κ

dyO,zI (ty, tz) = dz,y(y, tz, ty), 0 ≤ tz ≤ ty ≤ κ

dyI ,zI (ty, tz) = min
1≤i≤r−1

{dy,z(xi, ty, κ)+dz,y(xi+1, tz, κ)}, 0 ≤ ty, tz ≤ κ.

Proof: Straightforward. �

By Lemma 2.4, formulae (2.1) and (2.2) can be rewritten as (2.3) and
(2.4) respectively.

ζ(T ∗) = dsI ,yO(0, κ) + dsI ,zO(0, κ), (2.3)

ζ(T ∗) = min
1≤i≤r−1

{dsI ,xO
i
(0, κ) + dsI ,xO

i+1
(0, κ)} (2.4)

Similarly, if a diamond does not contain the source vertex, the flow
can also flow in or out at each conjunction vertex of a diamond. Figure
2.10 shows these situations.

Definition 2.10 Suppose that D is a diamond in N , where y and z
are two conjunction vertices, and s �∈ V (D)\{y, z}. Define δyI ,zO(ty, tz)
as the cost of the minimum spanning tree of D such that y is the flow-
in vertex, z is the flow-out vertex, τ(y) ≥ ty and α(z) ≤ tz. Define
δyO,zI (ty, tz) and δyI ,zI (ty, tz) in a similar way. If such spanning trees
do not exist, let the cost be ∞.
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Figure 2.10. Directions of flow into or out from a diamond, where y and z are two
conjunction vertices
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Lemma 2.5 Suppose that D = (P1(y, z), P2(y, z)) is a diamond which
consists of two paths P1 and P2, with y and z being the two conjunction
vertices, and s �∈ V (D)\{y, z}. Then, we have

δyI ,zO(ty, tz) = min{d1
yI ,zO(ty, tz) + d2

yI ,zI (ty, tz), d
2
yI ,zO(ty, tz)

+d1
yI ,zI (ty, tz)}, 0 ≤ ty ≤ tz ≤ κ

δyO,zI (ty, tz) = min{d1
yO,zI (ty, tz) + d2

yI ,zI (ty, tz), d
2
yO,zI (ty, tz)

+d1
yI ,zI (ty, tz)}, 0 ≤ tz ≤ ty ≤ κ

δyI ,zI (ty, tz) = d1
yI ,zI (ty, tz) + d2

yI ,zI (ty, tz), 0 ≤ ty, tz ≤ κ

where dk denotes the cost for Pk (k = 1, 2).

Proof: Straightforward. �

The basic idea of our algorithm is to carry out two operations, one
transferring a dangling path or a dangling cycle to a vertex, while the
other transferring a diamond to a path.

Operation I Consider a dangling path (or a dangling cycle) of N . Be-
fore give the operation, we introduce the following definition first.

Definition 2.11 Suppose P (x, ..., y) be a dangling path in N and x is a
conjunction vertex. Define

η(x, t) = dxI ,yO(t, κ)

where 0 ≤ t ≤ κ. In case y = x, P becomes a dangling cycle C(x, ..., x).
Then, define

η(x, t) = dxI ,xI (t, t).

Actually, η(x, t) is the cost of the shortest path of P or the cost of
the minimum spanning tree of C with departure time t at vertex x. The
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operation is to remove the path P from N (except vertex x), and attach
η(x, t) (0 ≤ t ≤ κ) to vertex x in N ′. For completeness, we let η(z, t) = 0
(0 ≤ t ≤ κ) for any z ∈ V (N ′) if there does not exist a dangling path or
a dangling cycle at z. Furthermore, If there are more than one dangling
paths or dangling cycles at vertex x, let η(x, t) be the summation of the
costs.

Operation II Consider a diamond D(P1(e, ..., g), P2(e, ..., g)), where e
and g are two conjunction vertices. Now, we remove D in N except ver-
tices e and g, and add an artificial path P (e, x′, g) into N to obtain a new
network N ′, where x′ is an artificial vertex, ex′ and x′g are two artificial
edges (see Figure 2.11). Moreover, attach δeI ,gO(te, tg), δeI ,gO(te, tg), and
δeI ,gO(te, tg) to vertex x′.

Figure 2.11. A diamond is changed into a path
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Notice that, the network N is reducible, therefore after performing
these two operations until no longer possible, the resultant network is
either a path or a cycle as described in case I and II.

After completing operations, N ′ contains artificial vertices, artificial
edges and extra variables η(x, t). Therefore, we need to define the cost
of a spanning tree of N ′ as below:

Definition 2.12 Suppose N ′ is a network obtained after the operations,
and T ′ be a spanning tree of N ′. Define

ζ(T ′) =
∑

xy∈E(T ′),x,y �∈A(N ′)

c(x, y, τ(x))+
∑

x∈V (T ′)

η(x, α(x))+
∑

x∈A(N ′)

Δ(x)

where

Δ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δeI ,gI (α(e), α(g)), if (e, x′) ∈ E(T ′), (x′, g) �∈ E(T ′),
or (x′, g) ∈ E(T ′), (e, x′) �∈ E(T ′)

δeI ,gO(α(e), τ(g)), if (e, x′), (x′, g) ∈ E(T ′), α(e) ≤ τ(g)
δeO,gI (τ(e), α(g)), if (e, x′), (x′, g) ∈ E(T ′), τ(e) > α(g)

e and g are conjunction vertices of D, and A(N ′) is the artificial vertex
set of N ′.
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For the case where there are multiple artificial vertices, we can define
the cost of a spanning tree in a similar way. Definition 2.12 is the
generalization of Definition 2.3. One can see that if N ′ has no artificial
paths and all η = 0, then Definition 2.12 becomes Definition 2.3.

Furthermore, the formula for calculating de,g(x, te, tg) and dg,e(x, tg, te)
should be revised as follows:

Lemma 2.6 Let P (e, ..., x, y, z, ..., g) be a path of N where e and g are
two conjunction vertices. Then, de,g(e, te, t) = 0 for all 0 ≤ te ≤ t ≤ κ,
de,g(y, te, te) = ∞ for all y �= e, and, for 0 ≤ te < t ≤ κ and y �= e, we
have

(i) if xy is not an artificial edge, then

de,g(y, te, t) = min{de,g(y, te, t − 1),

η(y, t) + min
{u|u+b(x,y,u)=t}

{de,g(x, te, u) + c(x, y, u)}},

(ii) if xy is an artificial edge, and
(a) if y is an artificial vertex, then

de,g(y, te, t)=min{de,g(y, te, t−1), min
te<u<t

{de,g(x, te, u)+δxI ,zO(u, t)}},

(b) otherwise, if y is not an artificial vertex, then

de,g(y, te, t) = η(y, t) + min{de,g(y, te, t − 1), de,g(x, te, t)},

Similarly, we can compute dg,e(x, tg, te).

Also, Lemma 2.4 should be revised as follows:

Lemma 2.7 Suppose that P (y = x1, x2, ..., xr = z) is a path in N , where
y and z are two conjunction vertices, and s �∈ V (P )\{y, z}. Then, we
have

dyI ,zO(ty, tz) = dy,z(z, ty, tz), 0 ≤ ty ≤ tz ≤ κ

dyO,zI (ty, tz) = dz,y(y, tz, ty), 0 ≤ tz ≤ ty ≤ κ

dyI ,zI (ty, tz) = min
1≤i≤r−1

ξi, 0 ≤ ty, tz ≤ κ

where

ξi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dy,z(xi, ty, κ) + dz,y(xi+1, tz, κ),
both xi and xi+1 are not artificial vertices

min
ty≤u1≤κ,tz≤u2≤κ

{dy,z(xi−1, ty, u1) + δxI
i−1,xI

i+1
(u1, κ)

+dz,y(xi+1, tz, κ)}, xi is an artificial vertex
min

ty≤u1≤κ,tz≤u2≤κ
{dy,z(xi, ty, κ) + δxI

i
,xI

i+2
(κ, u2)

+dz,y(xi+2, tz, u2)} xi+1 is an artificial vertex
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By Lemma 2.6 and Lemma 2.7, formulae (2.3) and (2.4) now should
be rewritten as (2.5) and (2.6) respectively.

ζ(T ∗) = dsI ,yO(0, κ) + dsI ,zO(0, κ) + η(s, 0), (2.5)

ζ(T ∗) = dsI ,sI (0, 0) + η(s, 0). (2.6)

The basic steps of our algorithm are as follows:

(a) If N is a path P (y, ..., s, ..., z), then ζ(T (κ)) is calculated by formula
(2.5) (Assume the initial value of η(x, t) is set to zero for each x ∈ V
and t = 0, 1, ..., κ).

(b) If N is a cycle C(s = x1, x2, ..., xr = s), then ζ(T (κ)) is calculated
by formula (2.6).

(c) If N contains a dangling path P (x, y), where x is a conjunction
vertex, then let η(x, t) = dxI ,yO(t, κ) + η(x, t) for t = 0, 1, ..., κ, and
do Operation I.

(d) If N contains a dangling cycle C(x = x1, x2, ..., xr = x), where x is a
conjunction vertex, then for t = 0, 1, ..., κ, let η(x, t) = dsI ,sI (t, t) +
η(s, t) + η(x, t), and do Operation I.

(e) Otherwise, choose a diamond D(P1(y, z), P2(y, z)) in N (if there are
more than one diamond, choose one arbitrarily), where y and z are
two conjunction vertices of D. According to Lemma 2.5, calculate
δyI ,zO(ty, tz) for 0 ≤ ty ≤ tz ≤ κ, δyO,zI (ty, tz) for 0 ≤ tz ≤ ty ≤ κ,
and δyI ,zI (ty, tz) for 0 ≤ ty, tz ≤ κ. Perform Operation II.

(f) Still denote the new network as N . Repeat step (c) to (e) until N
becomes a path or a cycle.

Now, we are ready to present our algorithm.

Algorithm TMST-RN

Begin
Set η(x, t) = 0 for each x ∈ V (N) and for each 0 ≤ t ≤ κ;
While N is neither a path nor a cycle with s do

Repeat doing Operation I to delete the dangling paths and
dangling cycles;

Select arbitrarily a diamond D(y, z) in N ;
Calculate δyI ,zO(ty, tz), δyO,zI (ty, tz), and δyI ,zI (ty, tz) for D and

for all 0 ≤ ty, tz ≤ κ;
Do Operation II;
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End While;
If N is a path P (x, ..., s, ..., y) then ζ(T ) = dsI ,yO(0, κ) +

dsI ,zO(0, κ) + η(s, 0);
If N is a cycle C(s = x1, x2, ..., xr = s) then ζ(T ) = dsI ,sI (0, 0)+

η(s, 0);
End.

Theorem 2.5 TMST-RN can optimally solve the time-varying mini-
mum spanning tree problem on a reducible network.

Proof: We prove that, when the algorithm is terminated, ζ(T ) is the
cost of the minimum spanning tree of N . Use induction on m = |E(N)|.
Consider the case with m = 1. Since there is only one arc, N is a path
and the claim holds obviously. Assume that when m < k, the claim is
true. Now we consider the case with m = k.

We examine the following cases:
(1) N is a path or a cycle. By formulae (2.5) and (2.6), we know

that ζ(T ) is the cost of the minimum spanning tree of N .
(2) N is neither a path nor a cycle. Then consider the following

cases:
(i) N has a dangling path P (x, y), where x is a conjunction vertex.

By the algorithm, we delete P (except vertex x) from N and obtain a
new network N ′. In what follows, we first prove that, for each spanning
tree T ′ of N ′, it can be extended to a spanning tree T o of N such that
ζ(T ′) = ζ(T o). Next, we show that for each spanning tree T of N ,
there is a spanning tree T ′ of N ′, such that ζ(T ′) ≤ ζ(T ). That is
to say, finding the minimum spanning tree of N can be equivalently
converted to finding the minimum spanning tree of N ′. Since m′ =
|E(N ′) < k, by the induction, ζ(T ′) obtained by the algorithm is the
cost of minimum spanning tree of N ′, therefore, it is also the cost of the
minimum spanning tree of N .

Suppose T ′ is a spanning tree of N ′. By the definition, we have ζ(T ′) <
∞. By the definition of ζ(T ′), we know that

∑

x′∈V (T ′) η(x′, α(x′)) < ∞,
or, η(x, α(x)) < ∞. By the definition of η, we know that there is a
spanning tree T ′′ of P (x, y) with the cost η(x, α(x)). Thus, we can
extend T ′ by adding T ′′ to obtain a dynamic spanning tree of N .

Now, we show that ζ(T ′) ≤ ζ(T ). Notice that P is a dangling path
in N , that is to say, all vertices y in P can only be visited from x.
Suppose that to be the departure time at x in T . We create T ′ by
cutting path P in T except vertex x, and let η(x, to) be the minimum
spanning tree of path P with departure time to at vertex x. Then, we
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have η(x, to) ≤
∑

uv∈E(P ) c(u, v, τ(u)). By the definition, we have

ζ(T ′) =
∑

x′y′∈E(T ′)

c(x′, y′, τ(x′)) +
∑

x∈V (T ′)

η(x′, α(x′))

=
∑

x′y′∈E(T ′)

c(x′, y′, τ(x′)) +
∑

x∈V (T ′),x′ �=x

η(x′, α(x′)) + η(x, to)

≤
∑

x′y′∈E(T ′)

c(x′, y′, τ(x′))+
∑

x∈V (T ′),x′ �=x

η(x′, α(x′))+
∑

uv∈E(P )

c(u, v, τ(u))

= ζ(T )

Therefore, the claim is proved.
(ii) N has a dangling cycle. The analysis is similar to (i).
(iii) N has neither dangling paths nor dangling cycles. Since N

is reducible, there must exist a diamond with two conjunction vertices
only (Otherwise, N will contain a subgraph homomorphic to K4 since
the transformation T4 can not be applied to N).

Select a diamond D in N with two conjunction vertices, say e and g.
We compute δeI ,gO(t1, t2), δeO,gI (t1, t2), and δeI ,gI (t1, t2). Change D to
a path P (e, x′, g) to obtain a new network N ′. Similarly, we first prove
that for any spanning tree T ′ of N”, it can be extended to a spanning
tree T of N .

Notice that in N ′, the degree of x′ is 2, therefore edge ex′ (or x′g)
must be in T ′. Suppose ex′ in T ′ and x′g �∈ T ′. We restore edge ex′ and
vertex g to a spanning forest F of the diamond D, and add F to T ′ to
obtain a spanning tree T of N . A similar analysis can be applied to the
case with ex′, x′g ∈ E(T ′) or x′g ∈ E(T ′) only.

We now show that for any spanning tree T of N , there is a spanning
tree T ′ of N ′, such that ζ(T ′) ≤ ζ(T ). Suppose that F is the spanning
forest of D in T with te = τ(e), and tg = τ(g). We create T ′ by replacing
F by edge ex′. Let δeI ,gI (te, tg) denote the cost of minimum spanning
forest of D. Therefore, we have

ζ(T ) =
∑

xy∈E(T )\E(F )

c(x, y, τ(x)) + ζ(F )

≥
∑

xy∈E(T ′)\ex′

c(x, y, τ(x)) + δeI ,gI (te, tg) = ζ(T ′).

The proof for the case that T contains a spanning tree of D can be
established similarly.

Notice that N ′ is still a time-varying reducible network with |E(N ′)| <
k, since we replace a diamond by a path or replace a path (a cycle) to a
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vertex and the number of edges decreases by at least 1. By the induction,
we complete the proof.

�

Theorem 2.6 TMST-RN can be implemented in O((m + n)mκ2) time.

Proof: Setting η(x, t) for each vertex x ∈ V and for each time ≤ t ≤
κ needs O(nκ) time. In the while-loop, to find a dangling path or a
dangling cycle, we can use depth-first traversal (see Gilberg et al (2001)).
This step can be done in O(m) time. The time needed for selecting
a diamond in N is O(m + n) (see Valdes et al (1982)). To calculate
δyI ,zO(t1, t2), δyO,zI (t1, t2), and δyI ,zI (t1, t2) for all 0 ≤ t1 ≤ t2 ≤ κ, we

need O((m + n)κ2) time. Replacing a diamond by an artificial path
requires O(m) time. Therefore, one iteration (within the While loop)
needs O((m + n)κ2) time. Since each iteration decreases at least one
edge, we need at most m iterations. Thus, the total running time is
bounded above by O((m + n)mκ2). �

5. General networks
We now study the time-varying minimum spanning tree (TMST)

problem on a general network. We will first examine its complexity
in terms of strong NP-completeness, and then develop algorithms which
can find, in pseudopolynomial time, approximate solutions.

5.1 Strong NP-hardness
It is well known that the classical minimum spanning tree problem

is polynomially solvable (see, for example, Graham et al (1985)). We
have shown in Sections 3 and 4 above that, the time-varying minimum
spanning tree (TMST) problem on an arc series-parallel network or a
reducible network is, however, NP-complete in the ordinary sense. In
this section we will further show that the general TMST problem is NP-
complete in the strong sense even if the underlying graph of N is a tree
with b(x, y, t) = b(x, y), or c(x, y, t) = c(x, y) for any arc (x, y) ∈ A.

We will show that the Minimum Set Cover (MSC) problem is reducible
to TMST.

Definition 2.13 MSC: Given a set C = {C1, C2, ..., Cm} of finite sets
and a number Ks, does there exist a set cover C ′ such that |C ′| ≤ Ks?

To study its complexity in terms of NP-completeness, we examine the
decision version of the TMST problem as stated below.
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Definition 2.14 TMST: Given a time-varying network N and two in-
tegers k and κ, does there exist a spanning tree within the time limit κ
such that its total cost is not greater than k ?

We first examine the problem with the constraint that waiting at any
vertex is not allowed. Our results are given in Theorem 2.7 and Theorem
2.8 below.

Theorem 2.7 If waiting at any vertex is not allowed, then TMST is
NP-complete in the strong sense, even if the underlying graph of N is a
tree, and

(i) c(x, y, t) are time-varying and b(x, y, t) = b(x, y), ∀(x, y) ∈ A;
or

(ii) b(x, y, t) are time-varying and c(x, y, t) = c(x, y), ∀(x, y) ∈ A.

Proof: Clearly, TMST is in NP. Now, we will prove that MSC reduces
to TMST with no waiting allowed at any vertices. For each u ∈

⋃m
i=1 Ci,

we create a vertex x to represent it in N . Moreover, add a source vertex
s and a linking vertex v0 in N . Use arcs (s, v0) and (v0, u) to connect
these vertices and let

b(s, v0, κ) = ∞, b(s, v0, t) = 1, t = 0, 1, 2, ..., κ − 1

c(v0, u, 0) = ∞, c(s, v0, t) = 1, t = 0, 1, 2, ..., κ

b(v0, u, t) =

{

1 if u ∈ Ct

∞ otherwise

t = 1, 2, ..., κ

c(v0, u, t) = 0, t = 1, 2, ..., κ

Let k = Ks and κ = m. Finally, assume that at any x ∈ V , no waiting
is allowed.

The network N defined above possesses the property that b are time-
varying and c only depend on arc (x, y). Clearly, this reduction can be
implemented in polynomial time (see Figure 2.12).

We now prove that a “yes” answer to MSC is equivalent to a “yes”
answer to TMST.

If MSC has a set cover C ′ with |C ′| = l ≤ Ks, then a spanning tree
with zero waiting times at any intermediate vertices can be constructed
starting with the source vertex s. Without loss of generality, suppose
Ci ∈ C ′, 1 ≤ i ≤ l (note that l ≤ Ks ≤ m). Let C ′

1 = C1 and C ′
i =

Ci\
⋃i−1

j=1 Cj , 2 ≤ i ≤ l. Clearly, C ′ =
⋃i Ci =

⋃i C ′
i. For each C ′

i, if

|C ′
i| �= 0, we choose the path Pi(s, v0) starting at s at time i − 1 and

arriving at v0 at time i. If u is the element that occurs in C ′
i, we add
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Figure 2.12. A network constructed
from MSC

Figure 2.13. The spanning tree is
splitted into subtrees
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arc (v0, u) to Pi(s, v0) with the starting time i and arriving time i+1 to
form a subtree, denoted by Ti. According to our reduction, each vertex
u ∈

⋃m
i=1 Ci can be reached within time κ. It is obvious that the tree

constructed by combining all Ti above is a spanning tree T within time
κ = m and the total cost is less than k = Ks (see Figure 2.13).

If TMST has a spanning tree T of total cost not exceeding k = Ks,
then the cost restriction guarantees that there exist less than k subtrees
Ti which contain paths from s to each element u ∈

⋃m
i=1 Ci. Choose all

elements u in Ti to form the set C ′
i. Obviously, C ′ =

⋃

i C
′
i contains all

elements u ∈
⋃m

i=1 Ci, and C ′ is a set cover with |C ′| ≤ k = Ks.
For the case b(x, y, t) = b(x, y) and c are time-varying, we can modify

the reduction as follows:

b(x, y, t) = 1,∀(x, y) ∈ A, 0 ≤ t ≤ κ

c(s, v0, κ) = ∞

c(v0, u, t) =

{

0 if u ∈ Ct

∞ otherwise

t = 0, 1, ..., κ

All other analyses remain unchanged. This completes the proof. �

A problem is said to be in the class of APX, if it has a constant-error
approximation algorithm, i.e., an algorithm that can find, in polynomial
time, an approximate solution with an error bound β, where β > 1 is a
fixed constant (Note that the error bound is defined as follows: Let ζ∗

and ζ0 be the optimal and approximate solutions, respectively. Then,
ζ0 is said to have an error bound β if ζ0/ζ∗ ≤ β). Lund and Yannakakis
(1993) indicate that MSC is not in the class of APX; i.e., to find a
constant-factor approximation algorithm for MSC is at least as hard
as to prove P=NP. The reduction we constructed above implies that
the TMST problem is also not in the class of APX. This gives us the
following result.
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Theorem 2.8 Consider the TMST problem with no waiting allowed at
any vertex. There is no constant-error polynomial-time approximation
algorithm for the TMST problem unless P=NP, even if the underlying
graph of N is a tree, waiting time at any vertex must be zero, and one
of the two parameters, b or c, is time independent.

We now consider the situation where waiting at any vertex is ar-
bitrarily allowed (Namely, waiting at any vertex is subject to no con-
straints). We will establish its NP-completeness using another reduction
from MSC. Note that in the case where waiting at any vertex is prohib-
ited, we can show its NP-completeness even when the underlying graph
of N is a tree. This is however not extendible to the case with waiting
at any vertex being arbitrarily allowed. The reduction analysis is now
built on a network that is not a rooted tree; see below.

Theorem 2.9 The TMST problem where waiting at any vertex is ar-
bitrarily allowed is NP-complete in the strong sense, even if c(x, y, t) =
c(x, y) and b(x, y, t) = b(x, y), ∀(x, y) ∈ A.

Proof: For any given instance of MSC, we construct an instance of
TMST as follows: For each Ci ∈ C, create a pair of vertices xi and x′

i

(1 ≤ i ≤ m). For each element uj ∈
⋃

Ci, create a vertex xm+j . These
vertices together with an extra vertex, the source vertex s, compose the
vertex set V . Create arcs (s, xi), (s, x′

i), and (x′
i, xi), 1 ≤ i ≤ m, as

shown in Figure 2.14. For each vertex xm+j , create an arc (xi, xm+j) if
uj ∈ Ci (see Figure 2.14). These arcs compose the arc set A. Let

b(s, xi, t) = b(s, x′
i, t) = b(x′

i, xi, t) = b(xi, xm+j , t) = 1,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ t ≤ κ

c(s, xi, t) = 1, c(s, x′
i, t) = c(x′

i, xi, t) = 0, 1 ≤ i ≤ m, 0 ≤ t ≤ κ

c(xi, xm+j , t) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ t ≤ κ

Finally, let k = Ks, κ = 2. The network N(V,A, b, c) as defined above
has the property that both c and b are time independent (Note that we
do not have any restriction on the waiting time at any vertex). In what
follows, we prove that a “yes” answer to MSC is equivalent to a “yes”
answer to TMST.

If MSC has a set cover C ′ with |C ′| = l ≤ Ks, then a spanning tree
with waiting times at its vertices can be constructed as follows: Without
loss of generality, assume Ci ∈ C ′, 1 ≤ i ≤ l (note that l ≤ Ks ≤ m),
and let C ′

1 = C1 and C ′
i = Ci\

⋃i−1
j=1 Cj , 2 ≤ i ≤ l. For each C ′

i, if

|C ′
i| �= 0, we choose the path Pi(s, xi) with τ(s) = 0 and α(xi) = 1. If

uj is the element in C ′
i, we add arc (xi, xm+j) to Pi(s, xi) with τ(xi) = 1
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Figure 2.14. A time-varying network created from MSC

.  .  .  .  .  .

.  .  .  .  .  .

s

x x

x

x
x

x

x

x

x

 1

 1 2 3

2 3

m

m

’

’’

’

x x x xm+1 m+2 m+3 m+4 m+l

and α(xi) = 2. When there are more than one arc added to Pi(s, xi),
we have a subtree, denoted by Ti. Since ∪l

i=1Ci = ∪l
i=1C

′
i = ∪m

i=1Ci,
each vertex xm+j can be reached within time 2. For those Ci �∈ C ′, we
choose the path P (s, xi) = (s, x′

i, xi) with τ(s) = 0, α(x′
i) = τ(x′

i) = 1
and α(xi) = 2. It is obvious that all vertices in V can be reached within
time 2. Combining all Ti and P ′

i we obtain a spanning tree T within
time κ = 2. Since the cost of Ti is equal to 1 and the cost of P ′

i is 0, we
have ζ(T ) ≤ l ≤ k = Ks.

Now, if TMST has a spanning tree T (2) with ζ(T (2)) ≤ k ≤ Ks, then
the cost and transit time in the problem constructed above guarantee
that there exist l ≤ k subtrees, which contain path(s) from s to each
vertices xm+j with α(xm+j) = 2. Choose those sets Ci if xm+j appears

in Ti. Let C ′ =
⋃l

i=1 Ci. Since T (2) contains all vertices xm+j , we have

all elements uj ∈
⋃l

i=1 Ci. Thus C ′ is a set cover with |C ′| ≤ k = Ks. In
summary, we complete the proof. �

Again, from the definition of the class of APX, we have:

Theorem 2.10 Consider the TMST problem where waiting at any ver-
tex is arbitrarily allowed. There is no constant-error polynomial-time
approximation algorithm for the problem unless P=NP, even if for any
arc (x, y) ∈ A, b(x, y, t) = b(x, y) and c(x, y, t) = c(x, y).

Finally, we consider the general TMST problem where waiting time
at any vertex may be constrained by an arbitrary function. Since this
contains the situation where waiting time at a vertex must be zero as its
special case, Theorem 2.11 and Theorem 2.12 below follow immediately
from Theorem 2.7 and Theorem 2.8, respectively.

Theorem 2.11 The general TMSTproblem isNP-complete in the strong
sense, even if the underlying graph of N is a tree and

(i) c(x, y, t) are time-varying and b(x, y, t) = b(x, y), ∀(x, y) ∈ A; or
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(ii) b(x, y, t) are time-varying and c(x, y, t) = c(x, y), ∀(x, y) ∈ A.

Theorem 2.12 There is no constant-error polynomial-time approxima-
tion algorithm for the general TMST problem unless P=NP, even if the
underlying graph of N is a tree and one of the two parameters, b or c,
is time independent.

5.2 Heuristic algorithms
We now describe our algorithms that can find approximate solutions

in pseudopolynomial time. Basically, our algorithms consist of two main
steps: Firstly, for each vertex x ∈ V , we identify the shortest path from
s to x of time at most κ. Putting all these paths together we obtain a
path-induced subnetwork of N . Then, we remove redundant arcs from
this subnetwork so as to obtain a spanning tree of N . We will show
that the resulted tree, denoted as TA(κ), is an approximate solution for
the general TMST problem, while the total time required to construct
TA(κ) is pseudopolynomial.

In order to apply the algorithms in Chapter 1 to find the shortest
paths, in the following we will limit the problem to be solved to the one
where waiting time at vertex x, for x ∈ V , is bounded above by ux. Note
that when ux = 0 for all x ∈ V , we have the case with no waiting at any
vertex being allowed, while if ux = ∞ for all x ∈ V , we have the case
where waiting at x is arbitrarily allowed.

5.2.1 Finding a shortest path

The definition below defines the return function of the dynamic pro-
gram to be introduced below.

Definition 2.17 Let db(y, t) be the cost of a shortest path from s to y
of time exactly t. If such a path does not exist, let db(y, t) = ∞.

We rewrite Algorithm TSP-BW as a procedure below:

Procedure DP

Begin
Initialize: db(s, 0) := 0, and db(x, 0) := ∞, ∀x �= s; db(x, t) := ∞,
∀x and ∀t > 0; Heapx := {db(x, 0)} and dm

b (x, 0) := db(x, 0), ∀x;
Sort all values u + b(x, y, u) for all u = 0, 1, ..., κ and for all arcs

(x, y) ∈ A;
For t = 1, ..., κ do

For every arc (x, y) ∈ A do Rb(x, y, t) := ∞;
For all arcs (x, y) ∈ A and all uD such that uD +b(x, y, uD) = t

do
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Rb(x, y, t) := min{Rb(x, y, t), dm
b (x, uD) + c(x, y, uD)};

For every vertex y do db(y, t) := min{x|(x,y)∈A}Rb(x, y, t);
For every vertex y update the heap as follows

Insert-heap(y) db(y, t);
If t > uy then delete-heap(y) db(y, t − uy − 1);

For every vertex y do
uA := Minimum-heap(y);
dm

b (y, t) := db(y, uA);
For every y do d∗b(y) := min0≤t≤κ db(y, t);
End.

5.2.2 Removing redundant arcs

After applying the algorithm above to find the shortest paths between
the root s and each x ∈ V , we can obtain a path-induced subnetwork
of N by combining all these paths together. The next main step of our
approach is to remove those redundant arcs from the path-induced sub-
network. We will perform the following vertex/arc deleting operations:

(i) Deleting shared intermediate vertices. If a vertex x appears in two
paths Pi and Pj , and if [αj(x), τj(x)] ⊆ [αi(x), αi(x) + ux], then arc
(y, x), where y is the predecessor of x in Pj , is redundant, since
all successors of x in Pj can be reached from s through the section
Pi(s, x) in path Pi and the waiting time constraint is not violated.
Therefore we can delete arc (y, x). Then, the original path Pj ends
at the vertex y, and a new path is created which consists of two
sections: the section Pi(s, x) in path Pi, and the section starting
from x in the original path Pj with the departure time τj(x). Repeat
this operation until there are no shared intermediate vertices. Then
go to Operation (ii) next.

(ii) Deleting redundant end vertices. Let xo
j denote the end vertex of path

Pj . If xo
j appears in another path, or in Pj as an intermediate vertex,

then delete the end vertex xo
j in Pj as well as its adjacent arc, and

the predecessor of xo
j in Pj becomes the new end vertex. Repeat this

operation until the whole path is eliminated or the end vertex of Pj

does not appear in any other paths or inPj as an intermediate vertex.

By Definition 2.2, the path-induced subnetwork N ′ generated after
performing Operations (i) and (ii) above is a spanning tree. In what
follows, we will use two procedures, DSIV (Deleting Shared Intermediate
Vertices) and DREV (Deleting Redundant End Vertices) to realize these
two operations respectively.

(1) Procedure DSIV
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Procedure DSIV is used to delete the shared intermediate vertices
among paths. To reduce the time requirement, the procedure uses a
3-dimensional array e(x, t, i). If vertex x appears in path Pj with arrival
time αj(x) and departure time τj(x), then e(x, t, 1) = j and e(x, t, 2) =
τj(x), where t = αj(x). Initially, they are set to zero. The procedure
contains the following two basic steps:

(i) If there are more than one path which include x with the same
arrival time α(x), then keep the path Pj0 that has the latest departure
time τj0(x). Delete all arcs (yi, x) in path Pi, where yi is the predecessor

of x in path Pi and i �= j0.
(ii) Check array e. For each vertex x, if there exist u and t such

that t < u and e(x, u, 2) ≤ t + ux (this means that there are two paths
Pi and Pj with e(x, t, 1) = i, e(x, u, 1) = j, t = αi(x), u = αj(x) and
e(x, u, 2) = τj(x), which satisfies [αj(x), τj(x)] ⊆ [αi(x), αi(x) + ux]),
then arc (yj , x) can be deleted in Pj .
After completing these two steps, all shared intermediate vertices will
be deleted.

Procedure DSIV

Begin
For x ∈ V \{s} and t = 0, 1, ..., κ do e(x, t, 1) := e(x, t, 2) := 0;
For each path Pj (j = 1, ..., n − 1) and each x ∈ V (Pj) do

If e(x, α(x), 1) = 0 then e(x, α(x), 1) := j, e(x, α(x), 2) :=
τ(x);

Else If τ(x) ≤ e(x, α(x), 2) then delete arc (yj , x) in Pj ;
Else let i := e(x, α(x), 1), delete arc (yi, x) in Pi,

e(x, α(x), 1) := j, e(x, α(x), 2) := τ(x);
For each x ∈ V \{s} do

Let α := 0;
For t = 0, 1, ..., κ do

If e(x, t, 1) = 0 then α := t;
Else If e(x, t, 2) ≤ α + ux then let i := e(x, α(x), 1), delete

arc (yi, x) in Pi, αi(x) := α, e(x, t, 1) := e(x, t, 2) := 0;
End.

The time complexity of the procedure can be analyzed as follows.
The first and the third For-do loops need O(nκ) time. The second loop
also takes O(nκ) time since each path Pj contains at most κ vertices.
Therefore, the total running time of the procedure is bounded by O(nκ).

(2) Procedure DREV
This procedure is used to delete the redundant end vertices of the

paths. The basic idea is to set up a counter num(x) for each vertex x to



60 TIME-VARYING NETWORK OPTIMIZATION

record the number of its occurrences in all paths. Then, when we check
whether an end vertex x of a path appears in another place, we only
need to check num(x). If num(x) > 1, it is clear that x must appear in
another place and so we can delete it from the path and then decrease
num(x) by 1.

Procedure DREV

Begin
num(0) := 0;
For each x ∈ V \{s} do num(x) := 0;
For each x ∈ V \{s} and t = 0, 1, ..., κ do

If e(x, t, 1) > 0 then num(x) := num(x) + 1;
For each path Pj do

Identify the end vertex xo
j of Pj ;

While num(xo
j) > 1 do

Let num(xo
j) := num(xo

j) − 1;
Delete xo

j in Pj ;
End while;

End.

The procedure DREV checks each vertex in all paths. Since there are
at most n−1 paths (because there are at most n−1 end vertices) in TA(κ)
and each path contains at most κ vertices (because the transit time b is
a positive integer and the arrival time at a vertex must be greater than
that at its predecessor), the procedure DREV needs at most O(nκ) time.

5.2.3 The algorithm A-TMST

Our algorithm can be described as follows.

Algorithm A-TMST

Begin
Call Procedure DP to obtain the shortest path Pj(s, x), from s

to each vertex x ∈ V \{s}, for 1 ≤ j ≤ n − 1;
If there exists a path P (s, x) with d∗(x) = ∞ then let ζ(TA(κ)) :=
∞ and stop;
Call procedure DSIV to delete the shared intermediate vertices;
Call procedure DREV to delete the redundant end vertices;
Combine all paths that remain to generate an path-induced

subnetwork TA(κ);
End.

An approximate solution that has an error bound f is called an f-
approximate solution. Let L denote all leaves in TA(κ) obtained by
A-TMST and l = |L|. Then, we have
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Theorem 2.13 Algorithm A-TMST can find, in at most O(κ(m +
n log κ)) time, an l-approximate solution for TMST. Moreover, l is the
best possible bound for the algorithm A-TMST.

Proof: Clearly, TA(κ) obtained by the algorithm is a spanning tree of
N within time κ, according to Definition 2.2.

Let us first consider the time requirement of A-TMST. The running
time required by Procedure DP is O(κ(m + n log κ)). Since the proce-
dures DSIV and DREV each need only O(nκ) time, the total running
time of A-TMST is thus bounded above by O(κ(m + n log κ)).

We now analyze the error bound of the approximate solution TA(κ).
Recall that l is the number of leaves in TA(κ). It is not hard to see that

ζ(TA(κ)) ≤
∑

x∈L

ζ(P ∗(s, x)) ≤
∑

x∈L

ζ(P (s, x)) ≤ lζ(T (κ)),

where T (κ) is the optimal spanning tree and P (s, x) is the path in T (κ)
from s to x, while P ∗(s, x) is the shortest path from s to x obtained by
Procedure DP.

Figure 2.15. A network for error bound analysis
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To show that the bound l is the best achievable by Algorithm A-
TMST, we consider the following special class of the time-varying net-
works N , and illustrate that the approximate solution obtained by apply-
ing Algorithm A-TMST on such networks will achieve the bound l. Let
Nε = (Vε, Aε, bε, cε) (see Figure 2.15), where Vǫ = {x1(= s), x2, ..., xn},
Aε = {(s, xi), 2 ≤ i ≤ n, (x2, xj), 3 ≤ j ≤ n}, and

bε(s, xi, t) = 1, cε(s, xi, t) = 1, 2 ≤ i ≤ n, 0 ≤ t ≤ κ

bε(x2, xj , t) = ε, cε(x2, xj , t) = 1, 3 ≤ j ≤ n, 0 ≤ t ≤ κ.

Note that when κ ≥ 2, the optimal spanning tree T (κ) is Figure 2.16
with ζ(T (κ)) = 1 + (n− 2)ε. The solution of A-TMST, TA(κ), is Figure
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Figure 2.16. The optimal solution Figure 2.17. The solution obtained
by A-TMST
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2.17 with ζ(TA(κ)) = n − 1. Letting ε tend to zero, we have

ζ(TA(κ))

ζ(T (κ))
=

n − 1

1 + (n − 2)ε
ε→0
−→ n − 1 = l

where l is the number of leaves in TA(κ). Therefore, we complete the
proof. �

Remark. Note that the time complexity of the algorithm A-TMST is
dominated by that of the procedure to find shortest paths.

As for the error bound of the algorithm A-TMST, can we further im-
prove it? Theorem 2.13 indicates that the bound l is the best possible,
in general. Nevertheless, in some special situations where certain struc-
ture/conditions are satisfied, we may get a better error bound. In the
following we discuss such a case.

5.3 The error bound of the heuristic algorithms
in a special case

We will show here that the error bound of the algorithm A-TMST
can be improved for a type of multi-period networks. Such a network
possesses a multi-period structure, with each period starting from a com-
mon source vertex; see Figure 2.18 (Note that the parameters, such as
the transit times and the transit costs on the arcs, can be time varying).

Let Ni denote the sub-network of a period in N , 1 ≤ i ≤ k; see Figure
2.18. Furthermore, let L(Ni) denote the leaves of TA(Ni), where TA(Ni)
is the sub-tree of TA(κ) covering Ni, and let li = |L(Ni)| (1 ≤ i ≤ k).
Then, we have

Corollary 2.1 The approximate solution obtained by the algorithm A-
TMST has an error bound f = max{l1, l2, ..., lk}, if N is a job scheduling
network and
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Figure 2.18. A network with multi-period structure
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(i) waiting at any vertex is allowed without any restriction, and
(ii) both b(x, y, t) and c(x, y, t) are nonincreasing over time t.

Proof: We use the same notation as in the proof of Theorem 2.13. First,
we will show the following inequalities:

∑

x∈L(Ni)

ζ(P ∗(x̄i−1, x)) ≤
∑

x∈L(Ni)

ζ(P (x̄i−1, x)), for 2 ≤ i ≤ k. (2.1)

Note that, due to the structure of the network, each path P ∗(s, x)
and P (s, x), x ∈ V (Ni), must pass through the vertex x̄i−1 (2 ≤ i ≤
k). Moreover, since waiting at a vertex is allowed, we claim that each
path P ∗(s, x) and P (s, x) (x ∈ L(Ni)) must contain the same subpath
P ∗(s, x̄i−1) and P (s, x̄i−1) (2 ≤ i ≤ k). Otherwise, suppose that there
are two paths, say P (s, x1) and P (s, x2), which have different subpaths
P1(s, x̄i−1) and P2(s, x̄i−1), where x1 and x2 ∈ L(Ni). Then, let α1(x̄i−1)
and α2(x̄i−1) be the arrival times at vertex x̄i−1 on P (s, x1) and P (s, x2),
respectively. Without loss of generality, suppose α1(x̄i−1) < α2(x̄i−1).
Then we can delete the arc (y, x̄i−1) in P2(s, x̄i−1), where y is the pre-
decessor of x̄i−1 in P2. Denote the new tree as T 0(κ). Clearly, we have
ζ(T 0(κ)) < ζ(T (κ)). This contradicts the fact that ζ(T (κ)) is optimal.

Now, let α∗(x̄i−1) and α(x̄i−1) be the arrival times at vertex x̄i−1 in
P ∗(s, x) and P (s, x), respectively. Consider two cases:

(i) α∗(x̄i−1) ≤ α(x̄i−1). The inequalities (1) hold clearly since any
shortest path P ∗(x̄i−1, x) starting from time α∗(x̄i−1) is shorter than
that starting from timeα(x̄i−1), and also shorter than the pathP (x̄i−1, x).

(ii) α∗(x̄i−1) > α(x̄i−1). Because both b(x, y, t) and c(x, y, t) are non-
increasing functions of time t, any shortest path P ∗(x̄i−1), x) starting
from time α∗(x̄i−1) is shorter than that starting from time α(x̄i−1), and
also shorter than path P (x̄i−1), x).

In summary, we prove the inequalities (1). Now, it follows from (1)
that

ζ(TA(κ))
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≤
∑

x∈L(N1)

ζ(P ∗(s, x))+
∑

x∈L(N2)

ζ(P ∗(x̄1, x))+ ...+
∑

x∈L(Nk)

ζ(P ∗(x̄k−1, x))

≤
∑

x∈L(N1)

ζ(P (s, x)) +
∑

x∈L(N2)

ζ(P (x̄1, x)) + ... +
∑

x∈L(Nk)

ζ(P (x̄k−1, x))

≤ l1ζ(TN1(κ)) + l2ζ(TN2(κ)) + ... + lkζ(TNk
(κ))

≤ max{l1, ..., lk}ζ(T (κ))

where TNi
(κ) is the sub-spanning tree of T (κ) on sub-network Ni, 1 ≤

i ≤ k. That is,
ζ(TA(κ))

ζ(T (κ))
≤ max{l1, ..., lk}

Therefore, we complete the proof. �

5.4 An approximation scheme for the problem
with arbitrary waiting constraints

For the time-varying minimum spanning tree problem on the general
network but under arbitrary waiting time constraints, we have another
approximate scheme, which can solve the problem more efficiency. The
scheme consists of two main steps: Firstly, for a given general time-
varying network, create a spanning graph of N , denoted by N ′, which
contains no subgraph homomorphic to K4. Then, we apply Algorithm
TMST-RN on N ′. Let T ′ be the optimal solution obtained by the algo-
rithm. Clearly, T ′ is an approximate solution of the original network N .
Both of these two steps can be implemented in pseudopolynomial time.

5.4.1 Creating a spanning reducible network

Remind that A(N) is the arc set of the original network N and s is
the root of N . The basic idea of creating the spanning reducible network
is:

(i) Let Q be a vertex set. Initially, set Q = {s}. Denote dt(x) as the
earliest possible departure time at x. Let dt(s) = 0.

(ii) Pick up a vertex, say x, from Q. Let adj(x) = {(x, y)|(x, y) ∈
A(N), (x, y) is unchecked}, which denotes the all unchecked adjacent
arcs of x, and sort it in nonincreasing order in terms of the value of
c(x, y, dt(x)). Do the following repeatedly till adj(x) becomes empty:

(a) Pick up the first arc (x, y) in adj(x) and add it in N ′. Check
whether N ′ contains a subgraph homomorphic to K4 or not. If the an-
swer is “yes”, remove (x, y) from N ′; Otherwise, leave (x, y) in N ′ (still
called the new network obtained as N ′). If y �∈ Q then let Q = Q + y.

(b) Delete (x, y) from adj(x) and (x, y) is said to be checked.



Time-Varying Minimum Spanning Trees 65

(iii) Do (ii) repeatedly till Q becomes empty.
Clearly, N ′ is a spanning reducible network of N with edges as many as
possible.

Now we give the algorithm as below.

Algorithm TMST-A

Begin
Set E(N ′) = ∅ and V (N ′) = ∅. Let Q = {s}, dt(s) = 0;
While Q �= ∅ do;
Select a vertex x from Q;
Sort adj(x) in nonincreasing order on the value of c(x, y, dt(x));
While adj(x) �= ∅ do;
Pick up the first edge (x, y) ∈ adj(x);
If N ′ contains a subgraph homomorphic to K4, then discard

(x, y);
Else let A(N ′) = A(N ′) + (x, y) and V (N ′) = V (N ′) + y if

y �∈ V (N ′);
Let adj(x) = adj(x)\(x, y);

End while;
Let Q = Q\x;

End while;
End

Clearly, N ′ obtained by the algorithm is a reducible network of N .

Theorem 2.14 Algorithm TMST-A can be implemented in O(m ·
max{m,n}).
Proof: The initialization can be done in constant time. Since Q will con-
tain at most n vertices, the first “while” loop will be performed in at most
n times. Sorting adj(x) needs O(d(x) log d(x)) = O(d(x) log m), where
d(x) is the degree of vertex x. Since we need do this step for all vertices in
N , the total number of performances is

∑

x∈V (N) d(x) log m ≤ m log m.

During the second “while” loop, checking whether N ′ contains a sub-
graph homomorphic to K4 needs O(max{m,n}) (see Liu and Geld-
macher 1980). As we need do this for all edges in adj(x) and for all
vertices x, it needs O(m · max{m,n}) time. In summary, the total run-
ning time of Algorithm TMST-A is bounded above by O(m·max{m,n}).
�

5.4.2 Numerical experiments

We test the approximate algorithm on PC. Table 2.6 illustrate our
numerical results. The size of problem is listed on the first column
with the number of vertices n, the number of edges m, and the time
duration T we considered, respectively. All the transit time b, cost c
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are generated randomly. In the right column of Table 2.6, m′ is the
number of spanning reducible network created on the original network
by Algorithm TMST-A. For example, the problem 1 has 30 vertices, 80
edges with time duration T = 30. The edges of the spanning reducible
network N ′ is 38. The cost of the minimum spanning tree of N ′ is 31,
and use 2 seconds CPU time. As a comparison, we apply Monte Carlo
Method to the same problem. Generate 1000 minimum spanning trees
for the original network N and choose the best one, which has the cost
70 and costs 170 seconds CPU time. All numerical experimental results
show that our approximate algorithm is much batter than Monte Carlo
Method.

Table 2.6. The numerical experimental results

Problem size Monte Carlo method Approximate algorithm

n m T repeating times cost CPU (sec.) m′ cost CPU (sec.)

30 80 30 1000 70 170 38 31 2
50 120 50 5000 113 454 62 49 5
80 260 60 5000 202 515 98 80 36
100 300 80 5000 265 631 127 99 69
150 400 100 5000 394 948 176 149 204
200 500 100 5000 527 1282 228 202 366

6. Additional references and comments
Applications of MST models have been extensively studied in the lit-

erature. These include physical systems design (Prim (1957); Loberman
et al (1957); Dijkstra (1959)), network design (Magnanti et al (1984)),
optimal message passing (Abdel-Wahab et al (1997); Prim (1957)), pat-
tern classification (Dude et al (1973)), image processing (Osteen et al
(1974); Xu et al (1997)), and network reliability analysis (Van Slyke et
al (1972)). More references on applications of the MST problem can be
found in Graham et al (1985). Efficient algorithms for the MST prob-
lem include those proposed by Kruskal (1956); Prim (1957), and Dijkstra
(1959). The directed MST problem can be solved by an algorithm pro-
posed by Edmonds (1965).

Solomom (1986) considers the situation where there is a time window
associated with each vertex. A transit time is needed to traverse an arc,
and any vertex must be visited within its time window. The problem
is to find a minimum spanning tree to cover all the vertices under the
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time-window constraints. Solomom proves that this problem is NP-
hard, and presents a greedy algorithm and an insertion algorithm, which
may generate approximate solutions for the problem. By appropriating
setting the parameters in our time-varying MST model, we can show
that Solomom’s problem is a special case under our framework.





Chapter 3

TIME-VARYING UNIVERSAL MAXIMUM

FLOW PROBLEMS

1. Introduction

The maximum flow (MF) problem aims to find a solution that can
send the maximum flow from one vertex (the source) to another vertex
(the sink), under the constraint that the capacities of the arcs and ver-
tices in the network are all satisfied. Most MF models considered in the
literature are static, in which the capacities of both the arcs and vertices
are assumed to be constant. In practical situations, it is easy to see many
time-varying MF problems. For instance, consider a transportation net-
work in which several cargo-transportation services are available among
a number of cities. Each of them may take a certain time to travel from
one city to another, with a limited cargo-transporting capacity. More-
over, the travel time and the capacity for each transportation service are
season dependent. A question often asked is: what is the maximum flow
that can be sent between two specific cities within a certain duration T?
This is a time-varying maximum flow problem. Its solution is important,
particularly to the planning of the network.

An extension of the classical static problem is the maximal dynamic
flow model formulated and solved by Ford et al (1962), where the transit
time to traverse an arc is taken into consideration. Nevertheless, their
model still assumes that attributes in the problem, including arc capac-
ities and transit times, are time independent. Ford and Fulkerson have
developed an efficient procedure to find the optimal solution for their
model , which first finds the static flow from the source to the sink, and
then develops a set of temporally repeated flows, with the optimal flow
decomposed into a set of chain flows. A further extension is studied by
Halpern (1979), where arc capacities vary over time and storages at in-
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termediate vertices may be prohibited at some times. When the time is
considered as a variable taking discrete values, both these problems can
be solved by constructing an equivalent, static time-expanded network
(see, e.g., Minieka (1978)).

Gale (1959) introduces the concept of universal maximal dynamic flow
within a given duration T , which is defined as such a flow solution that
remains optimal when the deadline T is truncated to any smaller t,
0 ≤ t ≤ T . More specifically, for a time-varying network, the concept of
universal maximal dynamic flow is defined as follows. Let λ(T ) be the
optimal schedule to send flows under the time limit T , and λ(t) the sub-
schedule of λ(T ) which sends those flows that arrive at the sink no later
than t, where t ≤ T . Then, for any t ≤ T , if λ(t) remains the optimal
schedule under the time limit t, then λ(T ) is a universal maximum flow
under the time limit T . Note that the solution derived by Ford and
Fulkerson’s algorithm does not necessarily give the universal maximum
flow. Minieka (1973) and Wilkinson (1971) have independently modified
Ford and Fulkerson’s algorithm to produce a universal maximal flow for
the network studied by Ford and Fulkerson.

It is important to know the universal maximum flow that can be sent
through a time-varying network. For example, in the cargo-transporta-
tion network described above, suppose that the source node is the base
of a manufacturing firm while the sink is the primary market for the
manufacturer’s products. Further, suppose that the manufacturer pro-
duces different products in different seasons, which are perishable and
therefore must be sent to the destination within different time limits. In
such an environment, the information on the universal maximum flow
will be useful for the manufacturer to decide on the maximum amount
of his production at different times. The information will also be helpful
for him to plan the routes and means to transport his products.

In this chapter, we will study the universal maximal flow model in
a time-varying network, where transit times, arc capacities and vertex
capacities are all time-varying. We will introduce, in Section 2, some
basic definitions. The complexity of the problem with respect to NP-
completeness will also be discussed in this Section. Section 3 studies
the concept of residual network, an important tool to be used to decom-
pose the problem into a set of subproblems. The well-known Max-Flow
Min-Cut Theorem will be generalized, in Section 4, to the time-varying
model. A condition to ensure an f-augmenting path to be feasible will be
presented in Section 5, while algorithms that can generate the optimal
universal maximum flow will be developed in Section 6. Finally, some
concluding remarks will be given in Section 7.
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2. Definition and problem formulation
Let N(V,A, b, l) be a time-varying network, where V , A and b are as

defined before. The parameter l(x, y, t) is defined as the capacity of the
arc (x, y) at time t, which represents the maximum amount of flow that
can travel over arc (x, y) when the flow departs from x at time t, and
the parameter l(x, t) is defined as the capacity of the vertex x, which
represents the maximum amount of flow that can stay (wait) at x during
the time period [t, t + 1). Both b(x, y, t) and l(x, y, t) are functions of
the departure time t at x, where t = 0, 1, ..., T , and T > 0 is a given
number. The vertex capacity l(x, t) is a function of the time t when the
flow arrives at the vertex x.

The vertex capacity l(x, t) applies only to the flow that waits at the
vertex. In other words, it does not apply to the flow that passes through
the vertex without waiting. This models, for example, the situation
where some commodity has to wait at a port x for a while, and l(x, t)
represents the inventory capacity of x at time t. We assume that l is
a nonnegative integer and the transit time b is a positive integer. We
further assume that two vertices, s and ρ, are the source vertex and the
sink vertex, respectively.

Without ambiguity, we let f(x, y, τ) be the value of the flow departing
at time τ to traverse the arc (x, y), and f(λ, t) the total flow value under
the solution λ, which specifies when and how to send flows from the
source s to the sink ρ within the time limit t ≤ T . Then, it is clear that

f(λ, t) =
∑

(x,ρ)∈A,τ+b(x,ρ,τ)≤t

f(x, ρ, τ).

Moreover, it is clear that f(λ, T ) is the value of flows sent from s to ρ
no later than the time limit T .

The time-varying maximum flow problem is to find a solution λ such
that f(λ, T ) is maximized. The time-varying universal maximum flow
(TVUMF) problem is to find a solution λ∗ such that f(λ∗, t) remains
the optimal solution for the time-varying maximum flow problem for any
0 ≤ t ≤ T .

Note that there is an interesting distinction between the problem of
maximum flow and the problem of universal maximum flow. This can
be illustrated by the following example.

Example 3.1

Consider a time-varying network N as shown in Figure 3.1, where
T = 5, and

b(s, g, t) = 1, b(g, h, t) = 1, b(h, ρ, t) = 1, b(s, h, t) = 3, b(g, ρ, t) = 3,
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l(x, y, t) = 1, l(x, t) = 0, for all x, y, and 0 ≤ t ≤ T.

Figure 3.1. A time-varying maximum flow problem

s
g

h

ρ

Clearly, one can have such a solution λ: At time t = 0, one unit of flow
is sent along the path P1 = (s, h, ρ) and one unit of flow is transmitted
along the path P2 = (s, g, ρ) (which all arrive at vertex ρ at time 4);
At time t = 1, one unit of flow is sent along each of the two paths
(which arrive at vertex ρ at time 5). Consequently, f(λ, 4) = 2 and
f(λ, 5) = 4. One can verify (e.g., using the Time-Varying Max-Flow
Min-Cut Theorem to be described in Section 4) that f(λ, 5) = 4 is the
maximum flow for T = 5.

The solution λ is, nevertheless, not an optimum for the universal
maximum flow problem. Let us examine it again. When the time limit
T is changed from 5 to 4, we have f(λ, 4) = 2 and λ generates the
maximum flow in N within time 4. However, if the time limit is further
shortened from 4 to 3, we have f(λ, 3) = 0. There exists a better solution
λ′ in this case, which transmits one unit of flow from s at time 0 along
the path P3 = (s, g, h, ρ), which arrives at vertex ρ at time 3.

An optimal solution λ∗ that yields the universal maximum flow is
to transmit: one unit of flow along the path P3 = (s, g, h, ρ) at time
0 (which arrives at ρ at 3), one unit of flow along the path P1(s, h, ρ)
at times 0 and 1 respectively (which arrives at ρ at times 4 and 5 re-
spectively), and one unit of flow along the path P2 = (s, g, ρ) at time 1
(which arrives at ρ at time 5). This gives us f(λ∗, 5) = 4, f(λ∗, 4) = 2,
f(λ∗, 3) = 1, f(λ∗, 2) = 0, and f(λ∗, 1) = 0.

We now examine the complexity of the TVUMF problem with respect
to NP-completeness. It is well-known that the classical maximum flow
problem belongs to the class of P. However, the TVUMF problem is
NP-complete, as we will show below.

Theorem 3.1 The TVUMF problem is NP-complete.
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Proof. Obviously, the TVUMF problem is in the class of NP. We now
show that the 3-Dimensional matching (3DM) problem can polynomially
reduce to the decision version of TVUMF.

The 3DM problem is defined as: Given a set M ⊆ W ×X ×Y , where
W , X and Y are disjoint sets having the same number q of elements,
does M contain a matching, i.e., a subset M ′ ⊆ M such that |M ′| = q
and no two elements of M ′ agree in any coordinate?

The decision version of the TVUMF problem is to answer the question:
Given a time-varying network N , a time limit T and an integer k, does
there exist a universal flow f from s to ρ within time T such that the
value of this flow v(f) ≥ k?

Figure 3.2. A TVUMF problem constructed from 3DM
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For any given 3DM, we can construct an instance of the TVUMF
problem as follows: For each element in W , X and Y , we create vertices
wi, xi and yi for 1 ≤ i ≤ q. All these vertices, together with s, ρ, and
two extra vertices a and e (see Figure 3.2), compose the vertex set V of
N . Create arcs (s, a), (e, ρ), (a, wi) and (yi, e), 1 ≤ i ≤ q, and create
arcs (wi, xj) and (xj , yk) if (wi, xj , yk) ∈ M . All these arcs compose the
arc set A of N . The structure of the network is shown in Figure 3.2.
Let l(x, t) = 0 for each vertex x ∈ V and for each time 0 ≤ t ≤ T . The
transit time b and the capacity la are defined as follows:

b(u, v, t) = 1, ∀(u, v) ∈ A,∀t,

l(e, ρ, t) =

{

q, t = 5,
0, otherwise,

l(s, a, t) =

{

q, t = 0,
0, otherwise,

l(u, v, t) = 1, ∀(u, v) ∈ A\{(e, ρ), (s, a)},∀t.
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Finally, let T = 6 and k = q. In what follows, we will prove the claim
that the answer to 3DM problem is equivalent to that to the TVUMF
problem as constructed above.

Suppose that M ′ = {m1,m2, ..., mq} is a matching of M . For each
element mi = (wi, xi, yi) ∈ M ′, we can create a path P i = (s, a, wi, xi, yi,
e, ρ) with departure time 0 from s and arrival time 6 at ρ. Then we can
send a subflow, f i, along P i with v(f i) = 1, 1 ≤ i ≤ q. We can obtain
a dynamic flow f , by uniting the q subflows. This is the maximum flow
for N , since v(f) = q, which is the maximum possible flow value in N .

Given a maximum dynamic flow f in N with v(f) ≥ k = q, then
we must have v(f) = q, since q is the maximum possible flow in N .
By the structure of N , we must have q disjoint paths, Pi = (wi, xi, yi)
(1 ≤ i ≤ q), from a to e. Let mi = (wi, xi, yi). By the reduction,
we know mi ∈ M and none of them agrees in any coordinate. Let
M ′ = {m1,m2, ..., mq}. It is a matching of M with |M ′| = q.

This completes the proof. �

From the example discussed above, we can also see that the optimal
solution for the TVUMF problem is not unique. In some practical situ-
ations, one may want to find the maximum flow with:

1. the earliest departure and the earliest arrival time,
2. the earliest departure and the latest arrival time,
3. the latest departure and the earliest arrival time, or
4. the latest departure and the latest arrival time.

We will discuss these problems in Section 6.

3. The time-varying residual network
Recall that the basic idea of the maximum flow algorithm (Ford et al

(1956)) is to find an f-augmenting path from the source vertex to the
sink vertex in a residual network and then send as much flow along the
path as possible. We will, in this chapter, adopt a similar idea to tackle
the TVUMF problem. Nevertheless, because time plays an essential role
in our model, several concepts will have to be generalized to incorporate
those time-varying factors. Specifically, we have to address the following
issues:

(1) How to define and find a dynamic f-augmenting path, which is
feasible in the sense that the flow arrival times and departure times at
all its internal vertices are matched.

(2) How to define and generate a dynamic residual network after a
feasible dynamic f-augmenting path is found and the maximum possible
flow along this path is determined.
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Based on Definition 1.2, the definition of dynamic path, we now fur-
ther introduce the concept of the dynamic f-augmenting path.

Definition 3.1 Let P (s = x1, x2, ..., xr = x) be a dynamic path from s
to x. P (s, x) is said to be a dynamic f-augmenting path from s to x if,
for i = 2, ..., r, it satisfies

(i) l(xi−1, xi, τ(xi−1)) > 0;

(ii)
∏w(xi−1)−1

t=0 l(xi−1, α(xi−1) + t) > 0,
where 0 ≤ α(xi) ≤ T and 0 ≤ τ(xi) ≤ T for i = 1, ..., r.

Next we generalize the concept of residual network. Let us first create
a new network from N . For every arc (x, y) ∈ A, create an artificial arc,
denoted by [y, x], which has transit time b[y, x, u] and capacity l[y, x, u].
For arc [y, x] and t = 0, 1, ..., T , let l[y, x, t] = 0 initially and define the
transit time b[y, x, t] as:

b[y, x, t] =

{

−b(x, y, u) 0 ≤ t = u + b(x, y, u) ≤ T, u = 0, 1, ..., T
+∞ otherwise

Note that b[y, x, t] may take more than one value for some arcs [y, x]
at some time t, since there may exist more than one u satisfying u +
b(x, y, u) = t.

For every vertex x ∈ V , we also define an artificial vertex capacity
l[x, t], to represent the capacity under which a flow can “wait” at x
from time t to t − 1. This definition means that a flow may have a
negative waiting time at a vertex x. In fact, similar to the definition of a
negative transit time b[x, y, t] that allows us to retract a flow on an arc,
the introduction of l[x, t] allows us to retract a waiting time of a flow at
vertex x. Initially, let l[x, t] = 0 for each x and t = 1, 2, ..., T .

Obviously, the new network as created above is equivalent to the orig-
inal one. Thus we still denote it by N . Let A+ and A− denote the
non-artificial arc set and the artificial arc set of N , respectively. After
induction of artificial arcs, the concept of dynamic f-augmenting path
(Definition 3.1) can be further generalized as follows:

Definition 3.2 Let P (s = x1, x2, ..., xr = x) be a dynamic path from s
to x. P (s, x) is said to be a dynamic f-augmenting path from s to x if
for i = 2, ..., r, it satisfies

(i) τ(xi−1)+b(xi−1, xi, τ(xi−1)) = α(xi) if (xi−1, xi) ∈ A+; or τ(xi−1)+
b[xi−1, xi, τ(xi−1)] = α(xi) if [xi−1, xi] ∈ A−;

(ii) l(xi−1, xi, τ(xi−1)) > 0, if (xi−1, xi) ∈ A+; or l[xi−1, xi, τ(xi−1)]
> 0, if [xi−1, xi] ∈ A−; and

(iii)
∏w(xi−1)−1

t=0 l(xi−1, α(xi−1)+t) > 0, if w(xi−1) > 0; or
∏|w(xi−1)|−1

t=0

l[xi−1, α(xi−1) − t] > 0, if w(xi−1) < 0,
where 0 ≤ α(xi) ≤ T , 0 ≤ τ(xi) ≤ T for i = 1, ..., r.
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We define the capacity of a dynamic f-augmenting path as follows.

Definition 3.3 Let P (s = x1, x2, ..., xr = x) be a dynamic f-augmenting
path from s to x. The capacity of P is defined as

Cap(P ) = min
{

min
(x,y)∈A(P )

l(x, y, τ(x)), min
[x,y]∈A(P )

l[x, y, τ(x)],

min
v∈V (P ),α(x)≤t′<τ(x)

l(x, t′), min
v∈V (P ),α(x)≥t′>τ(x)

l[x, t′]
}

.

Clearly, the capacity of a path is the upper bound of the flow which
we can send along the path. In other words, let fp denote the flow value
that can be sent along the path P , we have fp ≤ Cap(P ).

After a dynamic f-augmenting path is found, we can send an aug-
menting flow fp along it, and then construct a residual network by the
following procedure:

Network Updating Procedure-UPNET

Let P (s, ρ) = (x1, x2, ..., xr) be a dynamic f-augmenting path from
s = x1 to ρ = xr, and let fp > 0 be the flow value sent along P (s, ρ).
For i = 1, ..., r − 1, do:

Update arc capacity
Case I: (xi, xi+1) ∈ A+. Let

l(xi, xi+1, τ(xi)) := l(xi, xi+1, τ(xi)) − fp,

l[xi+1, xi, α(xi+1)] := l[xi+1, xi, α(xi+1)] + fp

Case II: [xi, xi+1] ∈ A−. Let

l(xi+1, xi, α(xi+1)) := l(xi+1, xi, α(xi+1)) + fp,

l[xi, xi+1, τ(xi)] := l[xi, xi+1, τ(xi)] − fp

For i = 2, 3, ..., T − 1 do:

Update vertex capacity
Case I: w(xi) > 0. Let

l(xi, t) := l(xi, t) − fp, t = α(xi), α(xi) + 1, ..., α(xi) + w(xi) − 1

l[xi, t] := l[xi, t] + fp, t = τ(xi), τ(xi) − 1, ..., τ(xi) − w(xi) + 1
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Case II: w(xi) < 0. Let

l[xi, t] := l[xi, t] − fp, t = α(xi), α(xi) − 1, ..., α(xi) + w(xi) + 1

l(xi, t) := l(xi, t) + fp, t = τ(xi), τ(xi) + 1, ..., τ(xi) − w(xi) − 1.

Definition 3.4 The network generated by the procedure above is called
a dynamic residual network.

The problem in the original network and the problem in the dynamic
residual network are equivalent in the sense that there is a one-to-one
correspondence between their feasible solutions. Note that in the original
network we assume that all transit times b > 0. Thus, the first dynamic
f-augmenting path will only contain arcs with positive transit times b
and positive waiting times w. But in a dynamic residual network, the
transit time associated with an artificial arc is a negative number, and
a flow can be stored at a vertex with a negative waiting time.

Example 3.2

Figure 3.3. The original network of Example 3.2. In the figure, s is the source vertex
and ρ is the sink vertex. The three numbers inside each pair of brackets associated
with an arc are t, b(x, y, t) and l(x, y, t) respectively. For instance, (0, 1, 2) near the
arc (s, d) means at time 0, transit time b(s, d, 0) is 1 and capacity limit l(s, d, 0) is 2,
and at other times, b(s, d, t) = +∞ and l(s, d, t) = 0. We assume, in this example,
that no waiting time at any internal vertex is allowed, so l(x, t) = 0 for all x and t.

( 1, 2, 2 )

( 0, 1, 1 )

( 0, 1, 1 )

( 0, 1, 1 )
( 1, 2, 2 )
( 2, 3, 3)

( 0, 1, 1 )
( 1, 2, 2 )
( 2, 2, 2 )
( 3, 2, 4 )

( 0, 1, 2 )
( 1, 1, 4 )

( 0, 1, 2 )

( t, b(x,y,t), l(x,y,t) )

( 2, 1, 3 )

( 1, 1, 2 )

( 3, 1, 1 )

( 2, 1, 3 )( 0, 2, 2 )

s

g h

d r

ρ

Consider a network N as shown in Figure 3.3, where the three num-
bers in each bracket associated with an arc are t, b(x, y, t) and l(x, y, t)
respectively. For each arc (x, y) ∈ A, we create an artificial arc [y, x]; see
Figure 3.4, where the two numbers in each bracket on an artificial arc
denote t and b[x, y, t], respectively. For other time t that is not shown,
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Figure 3.4. The initial network
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we let b[x, y, t] = +∞. All l[x, y, t] = 0. No waiting time at any internal
vertex is allowed in this example, and so we let l(x, t) = 0 for all x and
t.

Figure 3.5. Example 3.2 (continued)
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Note that P1(s, ρ) = (s, d, h, ρ) is a feasible dynamic f-augmenting
path from s to ρ. Departing at time 0, at least two units of flow can
traverse the arc (s, d), since its capacity at time 0 is 2, and the flow
reaches the vertex d at time 1. Similarly, at least two units of flow can
be sent through arc (d, h) with departure time 1, and the flow reaches
the vertex h at time 3. One unit of flow can depart h at time 3 and
arrive at ρ at time 4. Thus, we can send one unit of flow from s to ρ
along P1(s, ρ) within time 4. We label each arc on P1 with a pair of
numbers [t,v(f1)], to denote that a flow value v(f1) is sent through this
arc with departure time t. The resultant network is shown in Figure 3.5
(to simplify the figure, we do not draw the artificial arcs in Figure 3.5).

Then, we update the original network by the Network Updating Pro-
cedure. The dynamic residual network created is shown in Figure 3.6.
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Figure 3.6. Example 3.2 (continued)
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Figure 3.7. Example 3.2 (continued)

s

g h

d r

ρ

( 0, 2, 2 )

( 2, 1, 3 )

( 2, 2, 2 )

( 1, 1, 4 )

( 0, 1, 2 )

( 1, 2, 2 )

( 3, 1, 1 )

P’

P’
2

1

( 3, 2, 4 )

( 1, 2, 2 )

( 2, 3, 3 )

Next, we find another feasible dynamic f-augmenting path P2(s, ρ) =
(s, g, h, d, r, ρ) (note that [h, d] is an artificial arc with negative transit
time). At time 0, two units of flow can be sent through (s, g) since
l(s, g, 0) = 2, which will arrive at g at time 2. At time 2, two units of
flow can be sent through (g, h), which will arrive at h at time 3. [h, d]
is an artificial arc, from which we can see that one unit of flow was sent
in the previous path P1 during time [1, 3]. By travelling from h to d, we
actually “push” this one unit of flow back to the vertex d and reduce
the time from 3 to 1. And then, since l(d, r, 1) = 4 > 0, we can send this
one unit of flow through (d, r), which departs at time 1 and reaches r
at time 2. Similarly, we can send one unit of flow through (r, ρ), which
departs at time 2 and arrives at ρ at time 4. As a result, we can “send”
one unit of flow “along” P2.

Obviously, P2 is not a real path since it contains an artificial arc,
but it helps us determine the real path. In fact, the actual solution is
to send the first flow along P ′

1 = (s, d, r, ρ) and the second flow along
P ′

2 = (s, g, h, ρ). The total flow value that can be sent is 1 + 1 = 2; see
Figure 3.7.
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4. The max-flow min-cut theorem
Minimum cut is an important concept in the study of the maximum

flow problem. In what follows, we will generalize this definition for
the time-varying network and introduce the time-varying version of the
max-flow min-cut theorem.

Definition 3.5 A vertex y is said to be reachable from another vertex
x, if there exists a feasible dynamic path from x to y.

Definition 3.6 A generalized cut K of N separating vertex s and ρ is
a set-valued function of time defined as

K = {K(t)|K(t) ⊂ V, s ∈ K(t), ρ �∈ K(t), t = 0, 1, ..., T}.

Definition 3.7 The capacity of the generalized cut K is defined as

CapK =
T

∑

t=0

∑

x∈s(t),y∈ρ(t′)

l(x, y, t)

+
T−1
∑

t=0

∑

(x,u)∈X(t)

min{l(x, t), ..., l(x, t + u)}

where X(t) = {(x, u)|x ∈ s(t), x ∈ h(t + 1), ..., x ∈ h(t + u), x ∈ ρ(t +
u + 1), 0 ≤ u < ux}, s(t) = {all those vertices x in K(t) such that x is
reachable from s with arrival time t at x}, ρ(t) = {all those vertices x
in K̄(t) = V \K(t) such that ρ is reachable from x with departure time
t at x}, t + b(x, y, t) = t′, h(t) = V \{s(t) ∪ ρ(t)}, and ux is a given
nonnegative integer.

Note that we have used ux to denote the bound of waiting time at
vertex x. If ux = 0, then there is no constraint on the waiting time at
x. Specifically, when the waiting time at a vertex must be zero or can
be arbitrary, Definition 3.7 can be replaced by the following.

Definition 3.8 The capacity of the generalized cut can be defined as

CapK =
T

∑

t=0

∑

x∈K(t),y∈K̄(t′)

l(x, y, t)

if no waiting time is allowed at any vertices, or

CapK =
T

∑

t=0

∑

x∈K(t),y∈K̄(t′)

l(x, y, t) +
T−1
∑

t=0

∑

x∈K(t),x∈K̄(t+1)

l(x, t)
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if waiting time is arbitrarily allowed at any vertices, where t′ = t +
b(x, y, t).

Theorem 3.2 Let v be the value of any feasible dynamic flow f on N ,
and CapK be the value of any generalized cut K in N . Then, v ≤ CapK.

Proof. Since any generalized cut K separates s and ρ for any dynamic
flow f , we have

v = f+(K) − f−(K)

where f+(K) and f−(K) are the flow values that flow out of and flow
in K respectively. Because f is a dynamic flow on N , it must satisfy all
capacity constraints. Therefore

0 ≤ f(x, y, t) ≤ l(x, y, t), ∀(x, y) ∈ A and ∀t,

0 ≤ f(x, t) ≤ l(x, t), ∀x ∈ V and ∀t.

Thus, we have

f+(K) =
T

∑

t=0

∑

x∈K(t),y∈K̄(t+b(x,y,t))

f(x, y, t) +
T−1
∑

t=0

∑

x∈K(t),x∈K̄(t+1))

f(x, t)

=
T

∑

t=0

∑

x∈s(t),y∈ρ(t′)

f(x, y, t) +
T−1
∑

t=0

∑

(x,u)∈X(t)

f(x, u)

≤
T

∑

t=0

∑

x∈s(t),y∈ρ(t′)

l(x, y, t) +
T−1
∑

t=0

∑

(x,u)∈X(t)

min{l(x, t), ..., l(x, t + u)}

= CapK

The second equality comes from the fact that f(x, y, t) = 0 for those
vertices x ∈ K(t)\s(t), since there is no dynamic path from s to x at
time t. Noting that f−(K) ≥ 0, we have

v = f+(K) − f−(K) ≤ CapK

This completes the proof. �

5. A condition on the feasibility of f-augmenting
paths

As we have mentioned have, f-augmenting path plays an important
role in solving the maximum flow problem. A related question we have
to explore is, in a dynamic residual network, how to determine whether a
dynamic f-augmenting path is feasible if there is a waiting constraint at
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a vertex. Note that by saying a dynamic f-augmenting path is feasible,
we mean that we can send an augmenting flow on this path such that the
resulting actual flow (combining the previous flow with the current aug-
menting flow) is feasible under all constraints, including the constraints
on the waiting time at vertices. Let us first consider an example to
examine the waiting time constraint.

Example 3.3

Figure 3.8. How to determine the departure time at a vertex such that the resulted
f-augmenting path is feasible under the bounded waiting time constraint

s

x x x

x

x

y

z

t+ut t+1 t+i

t+j

Suppose that we have a dynamic path P from s to x with α(x) = t,
and we want to append an arc (x, y) to P (see Figure 3.8, where we
split the vertex x into xt, xt+1, ..., xt+u to represent the states of x at
different times). Let ux be the upper bound of the waiting time at x.
A problem is to find the latest possible departure time at x, denoted
by t + u, such that the new path P ′ from s to y, obtained by adding
arc (x, y) to P , is still feasible in terms of satisfying the upper bound
ux. Clearly, if u ≤ ux, then P ′ is feasible since the waiting time at x is
not greater than the upper bound ux. But an observation shows that u
could be greater than ux. Let us look at the following scenario.

Suppose that there is another subflow, denoted by f ′, in N already,
which also passes through vertex x, with the arrival time t + i and the
departure time time t+ j (i < j < ux) (see Figure 3.8). In this case, the
latest departure time at x on path P can be t + i + ux. In other words,
for path P , any u satisfying i + u ≤ ux can be chosen as a departure
time at x on P , and the new path P is still feasible. In fact, we can
reconstruct two paths, P and P̄ , as follows: appending arc (x, z) to P
with the departure time t+j to obtain path P1, and appending arc (x, y)
to path P̄ with the departure time t + i + ux. Obviously, both of the
two paths satisfy the bounded waiting time constraint; see Figure 3.9.
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Figure 3.9. The two paths P and P̄
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The example above tells us that, for a dynamic f-augmenting path,
the waiting time at a vertex x could be greater than ux while the actual
waiting constraint is still satisfied. In what follows, we will give a feasi-
ble waiting time condition for a dynamic f-augmenting path under the
constraint that the waiting time at a vertex x is bounded above by ux.
This condition is also applicable to the cases with ux = 0 and ux = ∞.

Without loss of generality, assume that P (s, x) is a feasible dynamic f-
augmenting path from s to x; (z, x) (or [z, x]) is its last arc; and α(x) = t
is its arrival time at the vertex x. We now consider how to select the
vertex y, or equivalently, to append an arc (x, y) (or [x, y]) to P (s, x)
(denote this new path as P (s, x, y)), with a suitable departure time τ(x)
at x, so as to make P (s, x, y) still feasible. For this purpose, we first
examine the following cases, and then describe the feasibility condition.

Case I. Both (z, x) and (x, y) are not artificial arcs. Use f̄ to de-
note the previous flow from which the present dynamic residual network
is created. Decompose f̄ into subflows flows f1, f2, ..., fk in such a way
that fi traverses the path Pi(s, ρ). Moreover, for fi and fj with i < j,
if they pass through a vertex x, then αi(x) ≤ αj(x) and τi(x) ≤ τj(x),
where αi(x), αj(x) and τi(x), τj(x) are arrival times and departure times
of fi and fj at vertex x, respectively. We may show that in this case,
P (s, x, y) is feasible when

(i) τ(x) ∈ [α(x), α(x) + ux] and
∏τ(x)−1

t′=α(x) l(x, t′) > 0, if there does

not exist 1 ≤ i ≤ k such that [αi(x), τi(x)] ⊆ [α(x), α(x) + ux], or

(ii) τ(x) ∈ [α(x), αi0(x) + ux] and
∏τ(x)−1

t′=α(x) l(x, t′) > 0, if for

1 ≤ i1 < i2 < ... < i0 ≤ k, there exist [αi1(x), τi1(x)] ⊆ [α(x), α(x) +
ux], [αi2(x), τi2(x)] ⊆ [αi1(x), αi1(x)+ux],...,[αi0(x), τi0(x)] ⊆ [αi0−1(x),
αi0−1(x) + ux], or

(iii) τ(x) ∈ [0, α(x) − 1] and
∏α(x)−τ(x)−1

t′=0 l[x, α(x) − t′] > 0.
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Condition (i) above is straightforward, since if τ(x) ∈ [α(x), α(x)+ux],
we have w(x) = τ(x) − α(x) ≤ ux, and thus P (s, x, y) is feasible. For
condition (ii), we have τi1(x)−α(x) ≤ ux, τi2(x)−αi1(x) ≤ ux,...,τi0(x)−
αi0−1(x) ≤ ux. Thus, we can construct new paths P ′

i′ (i′ = i1, ..., i
0) by

the following method: let P ′
i1

= P (s, x) ∪ Pi0(x, ρ), P ′
i2

= Pi1(s, x) ∪
Pi2(x, ρ),..., P ′

i0 = Pi01
(s, x) ∪ Pi0(x, ρ) and P ′

i0+1 = Pi0(s, x) ∪ (x, y).

Denote the capacity of the path P (s, x, y) as Cap(P (s, x, y)) and let
δ = min{fi1 , ..., fi0 , Cap(P (s, x, y))}. And then, decrease fi′ to fi′ − δ
and send the difference δ on path P ′

i′ (i′ = i1, ..., i
0). Again, send δ units

of augmenting flow on path P ′
i0+1. Since w′

i′(x) ≤ ux, and other waiting

times are unchanged, all paths P ′
i′ are feasible. This means P (s, x, y) is

feasible too (see Figure 3.10, where the scenarios (a) and (b) correspond
to conditions (ii) and (iii) above, respectively. To simplify the picture,
we only draw one subflow flow f1 in the graph).

Figure 3.10. Splitting vertex x into several dummy vertices to represent its states at
different times.
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We now justify condition (iii). Without loss of generality, suppose
that f1, f2, ..., fh (h ≤ k) pass through the vertex x. Since l[x, t] > 0 for
t = τ(x)+ 1, ..., α(x)− 1, α(x), we have [τ(x), α(x)] ⊆

⋂h
i=1[αi(x), τi(x)].

Note that we have τh(x) ≥ α(x), α1(x) ≤ τ(x) and τh(x) − α(x) ≤ ux,
τ(x) − α1(x) ≤ ux. Similar to (ii), we can construct P ′

1, ..., P
′
h and

P ′(s, x, y) by the following method: let P ′
h = P (s, x) ∪ Ph(x, ρ), P ′

i =
Pi+1(s, x)∪Pi(x, ρ) (i = 1, ..., h− 1) and P ′

h+1 = P1(s, x)∪ (x, y). Then,
let δ = min{f1, ..., fh, Cap(P (s, x, y))}, decrease fi to fi−δ and send the
difference δ on path P ′

i (i = 1, ..., h). Again, send δ units of augmenting
flow on path P ′

h+1. Since w′
i(x) ≤ ux for i = 1, ..., h + 1, and other

waiting times are unchanged, P ′
i , i = 1, ..., h + 1, are feasible. This

means P (s, x, y) is also feasible.
Case II. (z, x) is not an artificial arc and [x, y] is an artificial

one. Similar to Case I, we decompose the previous flow f̄ into some
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subflows fi (i = 1, ..., k). Since l[x, y, τ(x)] > 0, some of fi may tra-
verse arc (y, x) with a common arrival time. Without loss of generality,
suppose these subflows are f1, f2, ..., fh1 (h1 ≤ k). Let αi(x) and wi(x)
be their arrival times and waiting times at x (i = 1, ..., h1). We have
αi(x) = τ(x). Letting w0(x) = mini wi(x), we may show that P (s, x, y)
is feasible when

(i) τ(x) ∈ [α(x), α(x)−w0(x)+ux] and
∏τ(x)−1

t′=α(x) l(x, t′) > 0, if there

does not exist 1 ≤ i ≤ k such that [αi(x), τi(x)] ⊆ [α(x), α(x) + ux], or

(ii) τ(x) ∈ [α(x), αi0(x) − w0(x) + ux] and
∏τ(x)−1

t′=α(x) l(x, t′) > 0, if

for 1 ≤ i1 < i2 < ... < i0 ≤ k, there exist [αi1(x), τi1(x)] ⊆ [α(x), α(x) +
ux], [αi2(x), τi2(x)] ⊆ [αi1(x), αi1(x)+ux],...,[αi0(x), τi0(x)] ⊆ [αi0−1(x),
αi0−1(x) + ux], or

(iii) τ(x) ∈ [0, α(x) − 1] and
∏α(x)−τ(x)−1

t′=0 l[x, α(x) − t′] > 0.

Denote P 0(s, ρ) as the feasible dynamic path corresponding to w0(x).
Note that [x, y] is an artificial arc. So P (s, x, y) is not a true path. How-
ever, we can construct a new path P ′ = P (s, x)∪P 0(x, ρ). Let w′(x) be
the waiting time of P ′ at x. Clearly, if τ(x) ∈ [α(x), α(x)−w0(x) + ux],
then w′(x) = τ(x) − α(x) + w0(x) ≤ ux. This together with the satis-
faction of the capacity constraint means that P ′ is feasible and justifies
condition (i) above. The justification of conditions (ii) and (iii) is similar
to that in Case I (also see Figure 3.11(b) below).

Figure 3.11. The feasibility condition for Case II
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Case III. [z, x] is an artificial arc and (x, y) is not. Since
l[z, x, τ(z)] > 0, similar to Case II, we know that some of fi traverse
the arc (x, z) with a common departure time. Without loss of gener-
ality, suppose these subflows are f1, f2, ..., fh2 (h2 ≤ k). Let αi(x) and
wi(x) be their arrival times and waiting times at x (i = 1, ..., h2). We
have αi(x) = α(x). Letting w∗(x) = mini wi(x), we may show that
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P (s, x, y) is feasible when

(i) τ(x) ∈ [α(x), α(x)−w∗(x)+ux] and
∏τ(x)−1

t′=α(x) l(x, t′) > 0, if there

does not exist 1 ≤ i ≤ k such that [αi(x), τi(x)] ⊆ [α(x), α(x) + ux], or

(ii) τ(x) ∈ [α(x), αi0(x) − w∗(x) + ux] and
∏τ(x)−1

t′=α(x) l(x, t′) > 0, if

for 1 ≤ i1 < i2 < ... < i0 ≤ k, there exist [αi1(x), τi1(x)] ⊆ [α(x), α(x) +
ux], [αi2(x), τi2(x)] ⊆ [αi1(x), αi1(x)+ux],...,[αi0(x), τi0(x)] ⊆ [αi0−1(x),
αi0−1(x) + ux], or

(iii) τ(x) ∈ [0, α(x) − 1] and
∏α(x)−τ(x)−1

t′=0 l[x, α(x) − t′] > 0.

When τ(x) ∈ [α(x), α(x)−w∗(x) + ux], we can construct a new path
P ′ = P ∗(s, x) ∪ (x, y), where P ∗ is the dynamic path corresponding to
w∗(x). The waiting time of P ′ at x, denoted by w′(x), will be w′(x) =
w∗(x) + τ(x) − α(x) ≤ ux, and thus P ′ is feasible under condition (i)
above. As for conditions (ii) and (iii), the discussion is similar to that
in Case I.

Case IV. Both [z, x] and [x, y] are artificial arcs. Similar to Case
I, decompose f̄ to subflows fi (i = 1, ..., k). Since l[z, x, τ(z)] > 0 and
l[x, y, τ(x)] > 0, some of subflows may traverse arc (x, z) or (y, x) with a

common departure time or a common arrival time. Let f
(1)
i (i = 1, ..., h)

denote those subflows that traverse the arc (x, z) with a common depar-

ture time τ
(1)
i (x) = α(x), and let f

(2)
j (j = 1, ..., e) denote those subflows

that traverse the arc (y, x) with a common arrival time α
(2)
j (x) = τ(x).

Let w(1)(x) = mini w
(1)
i (x) and w(2)(x) = minj w

(2)
j (x). Then one may

show that P (s, x, y) is feasible if

(i) τ(x) ∈ [α(x), α(x)−w(1)(x)−w(2)(x)+ux] and
∏τ(x)−1

t′=α(x) l(x, t′) >

0, if there does not exist 1 ≤ i ≤ k such that [αi(x), τi(x)] ⊆ [α(x), α(x)+
ux], or

(ii) τ(x) ∈ [α(x), αi0(x)−w(1)(x)−w(2)(x)+ux] and
∏τ(x)−1

t′=α(x) l(x, t′)>

0, if for 1 ≤ i1 < i2 < ... < i0 ≤ k, there exist [αi1(x), τi1(x)] ⊆
[α(x), α(x)+ux], [αi2(x), τi2(x)] ⊆ [αi1(x), αi1(x)+ux],...,[αi0(x), τi0(x)]
⊆ [αi0−1(x), αi0−1(x) + ux], or

(iii) τ(x) ∈ [0, α(x) − 1] and
∏α(x)−τ(x)−1

t′=0 l[x, α(x) − t′] > 0.

The case above is a combination of Case II with Case III. We thus
omit the detailed justification here.

From the discussion above, we see that when an artificial arc is to be
appended to path P , the waiting times of the previous flow will have to
be considered. We need to modify the Network Update Procedure (see
Section 2) to record this information when updating arc capacities.
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First, for any artificial arc [x, y] and any time t, let rj
x[x, y, t] and

rj
y[x, y, t] denote the waiting times of the previous flow fj (j = 1, ..., h),

which traverse the arc (y, x) with the arrival time t, at x and y respecti-
vely. Let gj

x[x, y, t] and gj
y[x, y, t] denote the values of fj correspondingly.

Furthermore, let us set up two queues, Rx[x, y, t] andRy[x, y, t], to con-
tain the binary elements (rj

x[x, y, t], gj
x[x, y, t]) and (rj

y[x, y, t], gj
y[x, y, t]),

respectively. Initially, let Rx := Ry := ∅. Since we always need the
minimal waiting times (see the discussion above), we maintain Rx and
Ry in nondecreasing order for rj

x and rj
y respectively (in the rest of

this paper, we assume that r1
x and r1

y are the minimal ones). Suppose
P (s = x1, x2, ..., xr = ρ) is a feasible dynamic f-augmenting path we
obtained and consider the following two cases:

(i) (xi, xi+1) ∈ A+. We let in the Network Update Procedure,

rxi
[xi+1, xi, α(xi+1))] := w(xi), rxi+1 [xi+1, xi, α(xi+1)] := w(xi+1)

gxi
[xi+1, xi, α(xi+1)] := gxi+1 [xi+1, xi, α(xi+1)] := fp

and insert (rxi
, gxi

) and (rxi+1 , gxi+1) in Rxi
and Rxi+1 respectively, while

keeping rxi
and rxi+1 in nondecreasing order.

(ii) [xi, xi+1] ∈ A−. We decrease the values of gxi
and gxi+1 ac-

cordingly while decreasing the value of l[xi, xi+1, τ(xi)]. If gxi
(or gxi+1)

becomes zero, delete (rxi
, gxi

) from Rxi
(or (rxi+1 , gxi+1) from Rxi+1).

Second, for each vertex x ∈ V \{s, ρ}, let αi(x, t) denote the arrival
time of the subflow fi at x which departs from x at time t. If no subflow
passes x or a subflow passes x but it does not depart at time t, then set
α1(x, t) = −∞. Furthermore, set up a queue H(x, t) to contain αi(x, t).
Initially, H(x, t) = ∅. We maintain H in nondecreasing order of αi(x, t).
Suppose P is a feasible dynamic f-augmenting path obtained. We can
now find αi0(x) as follows:

Let
ζ1 = max

t1=α(x)+1,...,α(x)+ux,t1≤T
α1(x, t1)

If ζ1 > α(x), then we say that α0(x) does not exist. Otherwise, let

ζ2 = max
t2=ζ1+1,...,ζ1+ux,t2≤T

α1(x, t2)

Keep on doing the above computation while ζi +ux ≤ T , which will give
us a series ζ1 < ζ2 < ... < ζi0 . Then, αi0(x) = ζi0 .

In summary, we have

Theorem 3.4 Let P (s = x1, ..., xr = ρ) be a dynamic f-augmenting
path with all α(xi), w(xi) and τ(xi) (t = 1, 2, ..., T ) in a dynamic resid-
ual network, and P satisfies capacity constraints both on arcs and at
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vertices. P is feasible under the bounded waiting time constraint iff for
i = 2, 3, ..., r − 1,

(i) τ(xi) ∈ [0, α(xi) − 1] and
∏α(xi)−τ(xi)−1

t′=0 l[xi, α(xi) − t′] > 0; or
(ii) τ(xi) ∈ [α(xi), αi0(xi) + uxi

], where αi0(xi) is defined as in Case
I, or

(a) τ(xi) ∈ [α(xi), α(xi) + uxi
], if both (xi−1, xi) and (xi, xi+1) are

not artificial and there does not exist 1 ≤ j ≤ k such that [αj(xi), τj(xi)]⊆
[α(xi), α(xi) + uxi

];
(b) τ(xi) ∈ [α(xi), α(xi) − r1

xi
[xi, xi+1, τ(xi)] + uxi

], if (xi−1, xi)
is not artificial but [xi, xi+1] is artificial and there does not exist 1 ≤
j ≤ k such that [αj(xi), τj(xi)] ⊆ [α(xi) − r1

xi
[xi, xi+1, τ(xi)], α(xi) −

r1
xi

[xi, xi+1, τ(xi)] + uxi
];

(c) τ(xi) ∈ [α(xi), α(xi) − r1
xi

[xi−1, xi, τ(xi−1)] + uxi
], if [xi−1, xi]

is artificial but (xi, xi+1) is not and there does not exist 1 ≤ j ≤ k such
that [αj(xi), τj(xi)] ⊆ [α(xi) − r1

xi
[xi−1, xi, τ(xi−1)], α(xi) − r1

xi
[xi−1, xi,

τ(xi−1)] + uxi
];

(d) τ(xi) ∈ [α(xi), α(xi)−r1
xi

[xi−1, xi, τ(xi−1)]−r1
xi

[xi, xi+1, τ(xi)]+
uxi

], if both [xi−1, xi] and [xi, xi+1] are artificial and there does not ex-
ist 1 ≤ j ≤ k such that [αj(xi), τj(xi)] ⊆ [α(xi) − r1

xi
[xi, xi+1, τ(xi)] −

r1
xi

[xi−1, xi, τ(xi−1)], α(xi) − r1
xi

[xi, xi+1, τ(xi)] − r1
xi

[xi−1, xi, τ(xi−1)] +
uxi

].

Proof. From the justification in the four cases above, it is clear that
these conditions are sufficient. We now show that they are also necessary.

Assume that P (s = x1, x2, ..., xr = ρ) is a feasible dynamic f-augment-
ing path with a departure time τ(xi) that does not satisfy the conditions.
We consider the case in which both (xi−1, xi) and (xi, xi+1) are not
artificial.

(i) If τ(xi) ∈ [0, α(xi) − 1], then
∏α(xi)−τ(xi)−1

t′=0 l[xi, α(xi) − t′] = 0,
since τ(xi) does not satisfy the conditions. By Definition 4, P is not a
feasible dynamic f-augmenting path, even if its waiting time is arbitrary.
Clearly, this is a contradiction.

(ii) Suppose that τ(xi) ∈ [α(xi) + uxi
+ 1,+∞]. One can see that

there must exist at least one previous flow waiting at xi during the
period [αj(xi), τj(xi)] ⊆ [α(xi), α(xi) + uxi

], since if such a flow does
not exist, then the waiting time of P at xi, w(xi) = τ(xi) − α(xi) ≥
uxi

+ 1. We can create new paths to shorten the waiting time w(xi)
by changing the flowing directions (see the method we described in
Case I (ii)). However, to shorten w(xi), this previous flow, fj′ , must
have α(xi) ≤ αj′(xi) ≤ α(xi) + uxi

and τj′(xi) ≤ α(xi) + uxi
, i.e.,

[αj′(xi), τj′(xi)] ⊆ [α(xi), α(xi) + uxi
]. This is also a contradiction.
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(iii) Suppose that τ(xi) ∈ [αi0(xi) + uxi
+ 1,+∞] and there does not

exist a previous flow, fj , such that [αj(xi), τj(xi)] ⊆ [αi0(xi), αi0(xi) +
uxi

]. This situation is similar to (ii) if we replace αi0(xi)+uxi
by α(xi)+

uxi
, and thus we omit the detailed proof.
The proof in other cases can also be conducted in a similar way. �

6. Algorithms

In this section, we will describe a few label setting algorithms, which
take into consideration the structure of waiting constraints. We first
deal with the case where no waiting times are permitted at any vertices,
i.e., ux = 0 for all x ∈ V .

Since no waiting time is permitted at any vertex, we need not consider
the capacity of a vertex (see our definition of vertex capacity in Section
2). The algorithm to be constructed is based on an observation that,
at each time t′ ∈ [0, t] for any given t, if we augment as much flow as
possible from the source to the sink in the dynamic residual network,
then the total value of the flows augmented within the period [0, t] will
consist of the maximum flow for that period. As the maximum flow for
each [0, t] can be obtained as t grows from 0 to T , such a procedure gives
naturally the universal solution we aim to achieve. One may see better
the validity of the above observation from the proof of Theorem 4.4 in
the previous section. More specifically, the algorithm will perform the
following operations:

(i) Maintain a set of labels d(y, 0), d(y, 1),..., d(y, T ) for each vertex
y, where d(y, t) is set to be the predecessor of y in a feasible dynamic
f-augmenting path P (s, y) of time exactly t if this path exists (for source
vertex s, define its predecessor to be 0); otherwise, if such a path does
not exist, set d(y, t) = null. A vertex y is said to be “labelled” at time
t if d(y, t) �= null.

(ii) Initially, set all d(s, t) (t = 0, 1, ..., T ) to be 0, and construct a
queue, Q, to contain them. Then, while Q is not empty, perform a
labelling operation: choose the first label d(x, t) from Q, and for each
y with (x, y) ∈ A+ (or [x, y] ∈ A−) and t′ = t + b(x, y, t) (or each
t′ = t + b[x, y, t]), set d(y, t′) = {x} if the following conditions hold:

(1) 0 ≤ t′ ≤ T ;
(2) d(y, t′) = null;
(3) l(x, y, t) > 0 (or l[x, y, t] > 0).

Delete d(x, t) from Q and append d(y, t′), if d(y, t′) = {x} (that is, the
conditions above hold), to Q.

(iii) Check all labels d(ρ, t) (t = 1, 2, ..., T ). If there is a label d(ρ, t) �=
null (t = 0, 1, ..., T ), then there is a feasible dynamic f-augmenting path
from s to ρ of time exactly t. Choose the one with the earliest arriving
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time t if there are multiple labels which are not null. Then send the
maximum possible flow along this path, construct the dynamic residual
network accordingly, reset all labels d(y, t) to null and try to find another
path; otherwise, stop the algorithm, and the sum of the flows found
during the process gives the final solution.

We now describe the details of the algorithm, where the notation
g(tmin) denotes the augmenting flow value along the feasible dynamic
f-augmenting path P (s, ρ) of time exactly tmin found in one iteration,
and maxf denotes the maximum flow value.

Algorithm TVUMF-ZW

Begin maxf := 0; tmin := 0;
While tmin ≤ T do
Initialization: d(s, t) := 0, t = 0, 1, ..., T ;

Q := {d(s, 0), d(s, 1), ..., d(s, T )};
While Q �= ∅ do
Select the first label in Q, denoted by d(x, t);
For any y such that (x, y) or [x, y]∈ A do

Let t′ := t + b(x, y, t) (or t′ := t + b[x, y, t] for each value
of b[x, y, t]);

If t < t′ ≤ T then c′ := l(x, y, t) Else c′ := l[x, y, t];
labelling:
If (0 ≤ t′ ≤ T )And(d(y, t′) = null)And(c′ > 0) then

d(y, t′) := x; Q := Q ∪ {d(y, t′)};
Let Q := Q\{d(x, t)};

Let tmin be the minimum t such that d(ρ, t) �= null; If d(ρ, t) =
null for all t, then let tmin = T + 1 (the
algorithm will terminate);

If tmin < T + 1 then
Use the predecessor indices to identify the feasible dynamic

f-augmenting path P (s, ρ) of time exactly tmin;
Let g(tmin) := the minimum capacity of arcs in P (s, ρ);

Augment g(tmin) units of flow along P (s, ρ);
Call procedure UPNET to update the arc and vertex capaci-

ties;
Let maxf := maxf + g(tmin);

End.

The following example illustrates how the algorithm works.

Example 3.4

In Figure 3.12, the solid lines stand for the original arcs of network N ,
and the dotted lines denote the artificial arcs. Initially, for all artificial
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Table 3.1. b(x, y, t) and l(x, y, t)

t (s, q) (s, g) (s, z) (q, v) (v, w) (g, h)

0 1, 1 1, 3 1, 2 1, 1 1, 3 1, 3
1 1, 0 3, 0 1, 0 1, 2 1, 3 2, 2
2 1, 0 3, 0 2, 0 1, 1 1, 2 2, 0
3 3, 0 1, 0 1, 0 2, 3 2, 3 1, 0
4 2, 0 1, 0 3, 0 1, 2 1, 2 2, 2
5 1, 0 2, 0 4, 0 3, 1 2, 2 1, 0
6 1, 0 1, 0 1, 0 3, 2 1, 1 2, 0
7 2, 0 2, 0 1, 0 2, 1 3, 3 1, 0
8 -, - -, - -, - -, - -, - -, -

t (g, r) (z, r) (w, g) (w, ρ) (h, ρ) (r, ρ)

0 1, 2 1, 3 1, 4 1, 3 1, 3 1, 2
1 1, 2 1, 2 1, 2 3, 3 1, 4 1, 2
2 2, 0 1, 0 1, 2 3, 2 1, 0 1, 2
3 2, 0 2, 0 1, 1 2, 0 1, 4 5, 1
4 2, 0 2, 0 3, 3 1, 0 1, 0 5, 0
5 1, 0 1, 0 3, 3 3, 0 1, 0 4, 2
6 4, 0 3, 3 4, 3 4, 0 1, 1 4, 2
7 1, 0 3, 0 5, 4 3, 0 2, 0 3, 1
8 -, - -, - -, - -, - -, - -, -

arcs [x, y] and all times t, let l[x, y, t] = 0 and b[x, y, t] = −b(y, x, u),
where u = t + b(x, y, t). For all non-artificial arcs (x, y), we list their
values of b(x, y, t) and l(x, y, t) in Table 3.1 (Assume T = 8).

Figure 3.12. The initial network of Example 3.4
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First, we set d(s, t) = 0 (t = 0, 1, ..., T ) and all other labels d(y, t) =
null. Q = {d(s, 0), d(s, 1), ..., d(s, T )}. Consider d(s, 0) first.

Since b(s, q, 0) = 1, l(s, q, 0) = 1 > 0, q can be labelled by setting
d(q, 1) = {s}. Similarly, d(g, 1) and d(z, 1) can also be set to {s}. Delete
d(s, 0) from Q and append d(q, 1), d(g, 1) and d(z, 1) in Q.

Consider d(s, 1) (now it becomes the first element in Q). Noting
b(s, q, 1) = 1, but l(s, q, 1) = 0, we cannot send any flow starting from
time 1 through arc (s, q) since during this time the capacity of (s, q) is
zero. Then d(q, 2) remains null. For arc (s, g), since b(s, g, 1) = 3 and
l(s, g, 1) = 0, g cannot be labelled at time 4 and d(g, 4) remains null.
Note that d(g, 2) and d(g, 3) remain null too, as no flow can arrive at g
at time 2 or 3.

Following this process, we can label other vertices. When Q becomes
empty, this iteration is completed. The result is shown in Figure 3.13
(all other labels d(y, t) which do not appear in the figure are null).

Figure 3.13. Example 3.4 (continued)
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arriving time t

Note that d(ρ, 3) = {r}, d(ρ, 4) = {h} and d(ρ, 7) = {h}. The earliest
arrival time for vertex ρ is 3. By a backward searching, we can find
a feasible dynamic f-augmenting path P1 = {s, g, r, ρ} with α(P1) = 3.
Let f1 denote the dynamic flow along P1; then we have

v(f1) = min{l(s, g, 0), l(g, r, 1), l(r, ρ, 2)} = min{3, 2, 2} = 2

maxf = v(f1) = 2

And then, update N . Let

l(s, g, 0) := l(s, g, 0) − v(f1) = 3 − 2 = 1

l[g, s, 1] := l[g, s, 1] + v(f1) = 0 + 2 = 2

l(g, r, 1) := l(g, r, 1) − v(f1) = 2 − 2 = 0
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l[r, g, 2] := l[r, g, 2] + v(f1) = 0 + 2 = 2

l(r, ρ, 2) := l(r, ρ, 2) − v(f1) = 2 − 2 = 0

l[ρ, r, 3] := l[ρ, r, 3] + v(f1) = 0 + 2 = 2

Other b and l remain unchanged.
We illustrate the labelling results in the remaining iterations in Fig-

ures 3.14-3.16. To highlight the previous feasible dynamic f-augmenting
paths, we use dotted lines to represent them in each figure. The network
updating process for each iteration is omitted.

Figure 3.14. Example 3.4 (continued)

s

q w

hg

r

ρ

( x, y )

[ x, y]

v
1  s 2  q 3  v

1  s 3  g

6  g

4  h

7  h

1  s

4  w

z

2  z

P2 = {s, g, h, ρ} α(P2) = 4

v(f2) = min{l(s, g, 0), l(g, h, 1), l(h, ρ, 3)} = min{1, 2, 4} = 1

maxf := maxf + v(f2) = 2 + 1 = 3

Figure 3.15. Example 3.4 (continued)
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P3 = {s, z, r, g, h, ρ} α(P3) = 4
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v(f3) = min{l(s, z, 0), l(z, r, 1), l[r, g, 2], l(g, h, 1), l(h, ρ, 3)}

= min{2, 3, 2, 1, 3} = 1

maxf := maxf + v(f3) = 3 + 1 = 4

Figure 3.16. Example 3.4 (continued)
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P4 = {s, q, v, w, g, h, ρ} α(P4) = 7

v(f4) = min{l(s, q, 0), l(q, v, 1), l(v, w, 2), l(w, g, 3), l(g, h, 4), l(h, ρ, 6)}

= min{1, 2, 2, 1, 2, 1} = 1

maxf := maxf + v(f4) = 4 + 1 = 5

Figure 3.17. Example 3.4 (continued)
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On the last iteration (see Figure 3.17), all labels d(ρ, t) = null (t =
0, 1, ..., T ); so tmin = T +1. Thus, the algorithm stops, and the universal
maximum dynamic flow is f = {f1, f2, f3, f4} with v(f) = 5.

Now let us examine the optimality and the time complexity of Algo-
rithm TVUMF-ZW.
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Theorem 3.5 Algorithm TVUMF-ZW can optimally solve the time-
varying universal maximum flow problem with no waiting time being
permitted at any vertex.

Proof. Note that in each iteration (i.e., an execution of the whole loop),
Algorithm TVUMF-ZW either finds a feasible dynamic f-augmenting
path P (s, ρ) or stops as the sink vertex cannot be labelled. Assume
that the algorithm stops at the (j + 1)th iteration (note that Algo-
rithm TVUMF-ZW must stop in finite iterations since all arc capac-
ities are nonnegative integers and each feasible dynamic f-augmenting
path obtained by Algorithm TVUMF augments at least one unit of
flow), and let λ be the schedule found by the algorithm to send flows
over the period [0, T ]. The total flow value under λ, f(λ, T ), is equal
to f(λ, T ) =

∑T
t=0 g(λ, t), where g(λ, t) denotes the value of all flows

arriving at ρ at time t. Given a time t such that 0 ≤ t ≤ T , let
f(λ, t) =

∑

t′≤t g(λ, t′). Now, we prove that λ is the optimal sched-
ule within the time t for all 0 ≤ t ≤ T . In other words, if F (t) is the
maximum flow of N within time t, we need to prove that F (t) = f(λ, t).
Clearly, we have F (t) ≥ f(λ, t). Thus, it will suffice if we can show that,
for any t, F (t) ≤ f(λ, t).

We will prove the argument by induction on t (0 ≤ t ≤ T ). Consider
first t = 0. Since all transit times b are positive integers, no flow can be
sent from s to ρ within time zero. Thus F (t) = 0 and F (0) ≤ f(λ, 0)
holds.

Assume that F (t′) ≤ f(λ, t′) for all t′ < t. We now prove F (t) ≤
f(λ, t) under this assumption.

Let ΔF = F (t) − F (t − 1) and Δf = f(λ, t) − f(λ, t − 1). Note that
according to the definition of f(λ, t), we have Δf = g(λ, t) (recall that
g(λ, t) is the value of all flows arriving at ρ at time t). Then, by the induc-
tion assumption, we only need to prove ΔF ≤ Δf . Suppose ΔF > Δf .
That is, ΔF =

∑

x∈ℵ F (x, ρ, τ(x)) >
∑

x∈ℵ f(x, ρ, τ(x)) = Δf , where
ℵ = {x|(x, ρ) ∈ A, τ(x) + b(x, ρ, τ(x)) = t}, F (x, y, τ) and f(x, y, τ) de-
note the flow values that arrive at y via the arc (x, y) departing at time
τ , according to F (t) and f(λ, t), respectively. Then, there must exist at
least one arc (xr, ρ) ∈ A such that F (xr, ρ, τ(xr)) > f(xr, ρ, τ(xr)). As
any flow on N must satisfy the flow conservation condition at each in-
termediate vertex of N , there must exist at least one arc (xr−1, xr) ∈ A
such that F (xr−1, xr, τ(xr−1)) > f(xr−1, xr, τ(xr−1)). Clearly, following
this process, we can find a dynamic path P = (s, x1, x2, ..., xr, ρ), where
F (x, y, τ(x)) > f(x, y, τ(x)) on each arc (x, y). Consequently, letting

δ = min
{(x,y) on P}

{F (x, y, τ(x)) − f(x, y, τ(x))},
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we know there exists a path on the dynamic residual network, along
which we can augment δ units of flow from s to ρ, where δ > 0. This
implies that g(λ, t) is not the value of all possible flows that can arrive
at ρ at time t, because it is still possible to augment an additional flow
δ from s which arrive at ρ at time t. This is a contradiction. Therefore
we must have ΔF ≤ Δf . This, together with the inductive hypothesis,
gives us F (t) ≤ f(λ, t). �

Theorem 3.6 Algorithm TVUMF-ZW can be implemented in O(Unm
T 2) time.

Proof. Consider one iteration. In the initialization block, the running
time is O(T ). For the labelling operation, we may need to examine all
arcs at all times t (in the worst case); so the running time is O(Tm). The
algorithm applies the procedure UPNET to update capacities, which
needs a running time O(Tm). Hence the total running time in one
iteration is bounded by O(Tm). Suppose U is the maximum capacity of
arcs, then the maximum flow value of the dynamic network is bounded
by O(nTU), since at each time t (0 ≤ t ≤ T ), there may be no more
than n paths sending flows to ρ and the maximum flow on any possible
path is at most U . Each iteration at least augments one unit of flow;
so the algorithm will terminate within nTU iterations. Thus, the total
running time of Algorithm TVUMF-ZW is bounded by O(UnmT 2). �

We can make some slight change to Algortihm TVUMF-ZW so that
it can handle the case with ux = ∞, i.e., the case where waiting at any
vertex is arbitrarily allowed. Since a feasible f-augmenting path from
s to y of time exactly t will be a feasible f-augmenting path from s to
y of time exactly t + 1, if l(y, t) > 0, we can check whether there is
still capacity available at y, namely, whether l(y, t) > 0, when we are
to label y with d(y, t + 1) after it is labelled with d(y, t). In fact, if y is
labelled with d(y, t), then, for any t′ > t, y can be labelled with d(y, t′)

if
∏t′−1

τ=t l(y, τ) > 0. On the other hand, if y is labelled with d(y, t), then,

for any t′′ < t, y can be labelled with d(y, t′′) if
∏t′′+1

τ=t l[y, τ ] > 0.

In view of the above, we can modify Algorithm TVUMF-ZW as follows
to solve the problem with ux = ∞ for each vertex x ∈ V .

Algorithm TVUMF-AW

All steps are same as those of Algorithm TVUMF-ZW, except the
following labelling operation:

labelling:
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If (0 ≤ t′ ≤ T )And(d(y, t′) = null)And(c′ > 0) then
Let τ := t′; d(y, τ) := x; Q := Q ∪ {d(y, τ)};
Let τ := τ + 1;
While (τ ≤ T )And(d(y, τ) = null)And(l(y, τ − 1) > 0) do

Let d(y, τ) := x; Q := Q ∪ {d(y, τ)}; τ := τ + 1;
Let τ := t′ − 1;
While (τ ≥ 0)And(d(y, τ) = null)And(l[y, τ + 1] > 0) do

Let d(y, τ) := x; Q := Q ∪ {d(y, τ)};τ := τ − 1;

Results similar to those for Algorithm TVUMF-ZW can be obtained
on the optimality and time complexity of Algorithm TVUMF-AW.

Theorem 3.7 Algorithm TVUMF-AW can optimally solve, in O(Unm
T 2) time, the TVUMF problem with no constraint on the waiting time
at any vertex.

The proof of Theorem 3.7 is similar to that of Theorem 3.5 and 3.6.

We now consider the case where a flow can wait at a vertex x ∈ V
subject to an upper bound ux. First, we deal with the situation with
no vertex capacity limit. Recall that Theorem 3.4 gives us a feasible
condition for constructing a feasible f-augmenting path. To implement
Theorem 3.4, consider the following scenarios:

(i) The vertex y is labelled with d(y, t) through an arc (x, y) and
t is the arrival time. Note that the waiting time at y is bounded by
uy, thus for τ = t + 1, ..., t + αi0(x) + uy, all d(y, τ) can be labelled if
d(y, τ) = null (note that here l(y, τ) = +∞). On the other hand, for
any τ ′ such that 0 ≤ τ ′ ≤ t, y can be labelled with d(y, τ ′) when the

condition
∏τ ′+1

τ=t l[y, τ ] > 0 is satisfied.
(ii) The vertex y is labelled with d(y, t) through an artificial arc [x, y],

with τ(x) being the departure time at x and t being the arrival time.
Since this is an artificial arc, r1

y[x, y, τ(x)] �= 0, which means that there
exists a previous augmenting flow that traverses the arc (y, x) with the
departure time t. However, this flow may arrive at y before t and has a
positive waiting time r1

y[x, y, τ(x)] at y. Thus, by Theorem 4.4, for any

τ = t + 1, ..., uy + t − r1
y[x, y, τ(x)], y can be labelled with d(y, τ). On

the other hand, for any τ ′ such that 0 ≤ τ ′ ≤ t, y can be labelled with
d(y, τ ′) when

∏τ ′+1
τ=t l[y, τ ] > 0.

(iii) Suppose d(y, t) has been labelled to y. Then, any non-artificial
arc (y, k) ∈ A can be examined similar to that in Algorithm TVUMF-
ZW. For any artificial arc [y, k] ∈ A, only those d(k, τ) that satisfy the
following conditions can be used to label k:

(1) 0 ≤ τ = t − r1
y[y, k, u] + b[y, k, u] ≤ T for a certain value of

b[y, k, u], where u satisfies t = u + r1
y[y, k, u];



98 TIME-VARYING NETWORK OPTIMIZATION

(2) d(k, τ) = null;
(3) l[y, k, u] > 0.

We can sort u for t = 0, 1, ..., T after applying the Network Update
Procedure.

The following is the algorithm to solve the problem.

Algorithm TVUMF-BW

Begin
maxf := 0; tmin := 0;
While tmin ≤ T do
Initialization: d(s, t) := 0, t = 0, 1, ..., T ; Q := {d(s, 0), d(s, 1), ...,

d(s, T )};
While Q �= ∅ do

Select the first label in Q, denoted by d(x, t);
checking:
For all y such that (x, y) ∈ A; or all y and u such that

[x, y] ∈ A, t = u + r1
x[x, y, u] do

Let t′ := t + b(x, y, t) (or t′ := t− r1
x[x, y, u] + b[y, k, u] for

each b[y, k, u]);
If t < t′ ≤ T then Let c′ := l(x, y, t) and rm

1 := 0;
Else Let c′ := l[x, y, u], rm

1 := r1
y[x, y, u] and mark l[x, y, u];

labelling:
If (0 ≤ t′ ≤ T )And(d(y, t′) = null)And(c′ > 0) then

Let τ := t′ − 1;
While (τ > 0)And(d(y, τ) = null)And(l[y, τ + 1] > 0)

do
Let d(y, τ) := x; Q := Q ∪ {d(y, τ)}; τ := τ − 1;

Let τ := t′; ζ2 := t′;
Do

Let ζ1 := ζ2; ζ2 := maxt1=ζ1+1,...,ζ1+uy ,t1≤T α1(y, t1);
While (ζ2 > ζ1) And (ζ2 + uy ≤ T );
While (τ < ζ1 + uy − rm

1 )And(τ ≤ T ) do
If d(y, τ) = null then d(y, τ) := x; Q := Q∪{d(y, τ)};
Let τ := τ + 1;

Let Q := Q\{d(x, t)};
Let tmin be the minimum t such that d(ρ, t) �= null. If d(ρ, t) =

null for all t, then let tmin = T + 1;
If tmin < T + 1 then

Use the predecessor indices to identify the feasible dynamic
f-augmenting path P (s, ρ) of time exactly tmin;

Let g(tmin) :=the minimum capacity of arcs in P (s, ρ);
Augment g(tmin) units of flow along P (s, ρ);
Call revised procedure UPNET;
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Table 3.2. ux

vertex x q v w g h z r

ux 1 3 2 2 3 3 0

Sort all values u + r1
x[x, y, u] for all u = 1, 2, ..., T and all arc

[x, y];
Let maxf := maxf + g(tmin);

End.

The following example is an illustration of the algorithm.

Example 3.5

The initial network in this example is same as that in Example 3.4,
where the bounds of waiting times at the internal vertices are listed in
Table 3.2.

In the first three iterations we find three feasible dynamic f-augment-
ing paths which are same as those in Example 3.4. Some labels d(y, t),
however, are different. The results are shown in Figures 3.18, 3.19 and
3.20 respectively.

Figure 3.18. Example 3.5
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Figure 3.21 shows the result of labels after the 4th iteration. Let
us take a look of these labels d(g, t). d(g, 1) comes from d(r, 2) since
b[r, g, 2] = −1 and l[r, g, 2] > 0. Because ug = 2, d(g, 2) and d(g, 3) can
also be set to {r}. However, during the time period [1,3], no flow can be
sent along arc (g, h). d(g, 4) comes from d(w, 3). Since b(g, h, 4) = 2 and
l(g, h, 4) > 0, d(h, 6) can be set to {g}. At the end of this iteration, we
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Figure 3.19. Example 3.5 (continued)
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Figure 3.20. Example 3.5 (continued)
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find a feasible dynamic f-augmenting path P4 = {s, q, v, w, g, h, ρ} with
v(f4) = 1 (compare it with Example 3.4).

Figure 3.21. Example 3.5 (continued)
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The algorithm stops in the 5th iteration. Figure 3.22 shows all labels.
The maximum flow is f = {f1, f2, f3, f4} with v(f) = 4.
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Figure 3.22. Example 3.5 (continued)
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We now examine the optimality and time complexity of Algorithm
TVUMF-BW.

Theorem 3.8 Algorithm TVUMF-BW can optimally solve the TVUMF
problem where the waiting time at each vertex is subject to an upper
bound while the capacity at any vertex is unlimited.

Proof. We use the same notions as those in the proof of Theorem
3.5. First, by Theorem 3.4, it is clear that the dynamic f-augmenting
path obtained in each iteration of Algorithm TVUMF-BW is feasible
under the bounded waiting time constraint. Let λ be the solution to
send flows obtained by the algorithm. Then, λ is feasible. On the
other hand, any feasible dynamic f-augmenting path can be found by the
algorithm since Theorem 3.4 gives a sufficient and necessary condition.
Next, noting that the conservation condition at each intermediate vertex
and at each time t still holds, we can use a similar method as in the proof
of Theorem 3.4 to find a feasible dynamic f-augmenting path of time t in
the dynamic residual network created based on f(λ, t). This will result in
a contradiction to the fact that there is no dynamic f-augmenting path
in the residual network. It indicates that f(λ, t) must be a universal
maximum flow in N . This completes the proof. �

Theorem 3.9 Algorithm TVUMF-BW can be implemented in O(UnT 2

(m + n log T )) time.

Proof. Consider one iteration. The initialization block needs a running
time O(T ). For the labelling operation, we may need to examine all
arcs at all times t (in the worst case), hence the running time is O(Tm).
For the revised procedure UPNET, we need a running time O(Tn) for
updating capacities and O(log ux) = O(log T ) for inserting r1 in R1 to
keep it in nondecreasing order. Thus, this step needs a running time
O(nT log T ), and therefore the total running time of one iteration is
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bounded by O(T (m + n log T ). For the sorting we can use bucketsort,
with T buckets. Since a dynamic path can contain at most (n − 1)T
arcs, there exist at most (n − 1)T waiting times. So this step can be
implemented in O(nT ). Suppose U is the maximum capacity of arcs.
Then, the maximum dynamic flow value is bounded by O(nTU). Since
each iteration at least augments one unit of flow, the algorithm will
terminate within O(nTU) iterations. Thus, the total running time of
Algorithm TVUMF-BW is bounded by O(UnT 2(m + n log T )). �

Now, we consider the case with vertex capacity constraints. Similar to
the discussion for the problem under arbitrary waiting time constraints,
we need to check whether l(y, t) > 0 when we are to label y with d(y, t+1)
after it is labelled with d(y, t). In view of this, we modify Algorithm
TVUMF-BW as follows:

Algorithm TVUMF-BW′

All steps are the same as those of Algorithm TVUMF-BW except
the
following labelling operation:
labelling:
If (0 ≤ t′ ≤ T )And(d(y, t′) = null)And(l′ > 0) then

Let τ := t′ − 1;
While (τ > 0)And(d(y, τ) = null)And(l[y, τ + 1] > 0) do

Let d(y, τ) := x;
Let Q := Q ∪ {d(y, τ)};
Let τ := τ − 1;

Let τ := t′;
Let ζ2 := t′;
Do

Let ζ1 := ζ2;
Let ζ2 := maxt1=ζ1+1,...,ζ1+uy ,t1≤T α1(y, t1);

While (ζ2 > ζ1) And (ζ2 + uy ≤ T );
If (τ < ζ1 + uy − rm

1 )And(τ ≤ T )And(d(y, τ) = null) do
Let d(y, τ) := x;
Let Q := Q ∪ {d(y, τ)};

Let τ := τ + 1;
While (τ < ζ1 + uy − rm

1 )And(τ ≤ T )And(l(y, τ − 1) > 0) do
If d(y, τ) = null then

Let d(y, τ) := x;
Let Q := Q ∪ {d(y, τ)};

Let τ := τ + 1;
End;

We can obtain results similar to those for Algorithm TVUMF-BW on
the optimality and time complexity of Algorithm TVUMF-BW′.
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We now turn to the few variants of the problem as listed at the end of
Section 2, in this chapter. As we have mentioned, the optimal solution
to send the maximum flow may not be unique. One may therefore like
to find such a maximum flow solution that has the earliest (or the latest)
arrival time at ρ or the earliest (or the latest) departure time at s, within
the same time limit T . These cases are discussed below.

1. The earliest (or the latest) arrival maximum flow. To find the
earliest arrival maximum flow, we can modify the algorithms described
above, so that they always select the label d(ρ, t) in increasing order of
the time t. That is, from the feasible flows from s to ρ with different
arrival times at vertex ρ, the flow with the earliest arrival time cam
always be picked up first. Since any flow which arrives at ρ will never
be changed by any f-augmenting paths found later, the maximum flow
obtained with the above pickup mechanism will have the earliest arrival
time at ρ.

Similarly, to find the latest arrival flow, we can modify the algorithms
so that they select the label d(ρ, t) in decreasing order of time t.

2. The earliest (or the latest) departure maximum flow. To find
the flow that has the earliest departure time at s, we can modify the
algorithm as follows: Let ts denote the departure time at s; and attach
it to the label d(x, t) when x is labelled at time t. If d(x, t) is labelled
already, we retain the earliest (or the latest) one. By doing so, the flow
finally generated will have the earliest (or the latest) departure time at
s.

An interesting question is whether there exists a maximum flow that
departs at s at the earliest possible time and arriving at ρ also at the
earliest possible time. We have the following theorem.

Theorem 3.10 For a given time-varying network N and a time duration
T , there exist an optimal solution that transmits the maximum flow from
the source vertex s at the earliest departure time and arrives at the sink
vertex ρ at the earliest arrival time.

Proof. Suppose that there are two maximum flows, F1 and F2, in N ,
within time T , with F1 having its departure time earlier than that of F2

but the arrival time later than that of F2. Then, we can show that there
must exist another maximum flow, denoted by F ′, which possesses the
departure time of F1 and the arrival time of F2.

Decompose F1 and F2 into subflows such that each subflow traverses a
dynamic path in N with unit flow value. Let f1

1 , ..., f1
l1

and f2
1 , ..., f2

l2
be

those subflows. Therefore, there must have two subflows, say, f1
i and f2

j ,
which traverse the same arc (x, y) at the time t0 (Otherwise, if no two
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subflows share the same arc at the same time, we can combine F1 and F2

to obtain a larger flow. This contradicts to the fact that both of F1 and
F2 are the maximum flow in N). Furthermore, Let t1s, t2s, t1ρ, and t2ρ be

the departure time and the arrival time of f1
i and f2

j , respectively, with

t1s < t2s and t1ρ > t2ρ (Otherwise, F1 will have the arrival time earlier than
that of F2, which contradicts to the assumption). We further let pi(x, ρ)
and pj(x, ρ) be the sections of the paths Pi and Pj that are traversed
by f1

i and f2
j . Then, we construct a new subflow f ′ by traverses p1(s, x)

and p2(x, ρ). Thus, f ′ has the departure time t1s and the arrival time t2ρ.
Then, we construct two new paths, say P ′

i and P ′
j , by exchanging two

sections pi(x, ρ) and pj(x, ρ) on paths Pi and Pj . Still denote two new
subflows which traverse on P ′

i and P ′
j as f1

i and f2
j . Notice that now the

arrive time at ρ of f1
i is earlier than that of f2

j .

Repeating doing this till there are no subflows f1
i and f2

j with t1s < t2s
and t1ρ > t2ρ. Let F ′ be the flow obtained by uniting all subflows f1

i . It
can be seen that F ′ has the earliest departure time as that of F1 and
the earliest arrival time as that of F2. This completes the proof. �

Results similar to Theorem 3.10 can also be obtained for the other
three variants of problems. We omit the details here.

7. Additional references and comments
Ford and Fulkerson (1958,1962) introduce the concept of dynamic

flows in a network and propose the maximal dynamic network flow prob-
lem. Although their model is not time-varying (all parameters are time-
independent), it is widely regarded as the fundamental work on the
time-varying maximum flow problem. Orlin (1983) considers the prob-
lem with an infinite time horizon and the flow is to be sent through
the network in each period of time so as to satisfy the upper and lower
bounds. He formulates the problem as an infinite integer program.

Bellmore and Vemuganti (1971) examine the multi-commodity max-
imum dynamic flow problem. Philpott (1990), Anderson and Philpott
(1994) consider a continuous dynamic maximum flow model in which
the arc capacities vary as Lebesgue-measurable functions of times, tran-
sit time of each arc is constant, and waiting at intermediate vertex is
allowed. They generalize the max-flow min-cut theorem.

After Gale (1959) propose his model with time-varying arc capacities,
Minieka (1974) discusses a special case of Gale’s model, in which each
arc capacity has two possible values, a normal value and a zero value
(corresponding to, respectively, the situation where the arc is usable and
unavailable). Halpern (1979) examines the problem in which the vertex
capacities are also time-varying. Xue, Sun and Rose (1998) study the
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fast data transmission problem by formulating it as a dynamic maximum
flow problem. Carey (1987) deals with a time-varying flow problem in
which the time taken to traverse each arc depends on the flow rate on
the arc.

Orda and Rom (1995) investigate another version of the time-varying
maximum flow problem, in which all transit times, arc capacities and
vertex capacities are time-dependent, and waiting at the intermediate
vertices is allowed. They establish a generalized max-flow min-cut the-
orem for their model.

Anderson, Nash and Philpott (1982) study a continuous-time prob-
lem in which the transit time of each arc is constant, and both arcs
and vertices are subject to capacity limits. The problem is formulated
as an infinite linear program, and a continuous-time version of the the
well-known labelling algorithm is proposed to solve this problem. Blum
(1990, 1993) examines the issues of approximating a continuous max-
flow problem by a sequence of static max-flow models in finite networks.
He introduces a definition of a continuous flow and proves that the ap-
proximation sequence of network flows generated by his algorithm has a
weakly convergent subsequence which converges to a maximal continu-
ous flow. Jacobs and Seiffert (1983) address similar problems.





Chapter 4

TIME-VARYING MINIMUM COST FLOW

PROBLEMS

1. Introduction

The minimum cost flow problem has been extensively studied in the
literature (see, e.g., Ahuja et al (1993)). The problem is to determine
how a given amount of flow should be sent from one vertex (source) to
another vertex (the sink) at minimum cost, subject to the capacity limits
on the arcs of the network. Traditionally, this problem is considered as
a static one, where it is assumed that it takes zero time to traverse any
arc, and all attributes of the network, including the cost to send flow on
an arc, and the capacity of an arc, are time invariant. In many practical
situations, however, these assumptions are no longer valid. Clearly, a
more realistic model is to take into account the time needed to traverse
an arc.

We will address, in this chapter, the time-varying minimum cost flow
(TVMCF) problem. The problem is to determine how to send a given
amount of flow from the source vertex s to the sink vertex ρ before a
pre-specified deadline T so as to minimize the total cost. This requires
us to determine the best routes to send the flow from s to ρ and the best
schedules to send the flow along these routes. Since the transit time, the
cost, and the capacity on an arc are time varying, it may be necessary
to wait at the starting vertex of the arc for the best departure time.
Therefore, in addition to the routes to send the flow, waiting times at
all vertices along each route will also be decision variables in our model.

The remainder of this chapter is organized as follows. In Section 2,
we will introduce the basic formulation of the problem. A property on
negative cycles will be described in Sections 3. Section 4 will be devoted
to algorithm developments. Some special cases that can be solved more
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efficiently will be discussed in Section 5. As an application, we will study
a time-varying maximum (f, c)-flow problem in Section 6, which can be
solved by transformation to a time-varying minimum cost flow problem.
Finally, some concluding remarks will be provided in Section 7.

2. Concepts and problem formulation
Let N(V,A, b, c, l) be a time-varying network, where all parameters

are as defined in the previous chapters. Moreover, similar to Chapter
3, we define f(x, y, t) as the flow travelling on the arc (x, y) during the
period [t, t + b(x, y, t)], f(x, t) the flow waiting at vertex x during the
period [t, t + 1], and f(λ, T ) the total flow under a schedule λ, which
specifies when and how to send flows from the source s to the sink ρ
within the time limit T . Clearly,

f(λ, T ) =
∑

(x,ρ)∈A,t+b(x,ρ,t)≤T

f(x, ρ, t).

The base problem addressed in this chapter is to find a feasible sched-
ule λ to send a given flow vf from s to ρ within the time limit T so as
to minimize the total cost.

Without ambiguity, in the following we will assume that the length
of an arc is equal to its cost, and use interchangeably the terminologies
cost and length, and shortest path and cheapest path. Recall that, in
Definition 3.2, we have defined the dynamic f-augmenting path, which is
actually such a path that is feasible in terms of matching all the transit
times and waiting times, and that can be used to transmit a positive
flow as it has a positive capacity on its arcs and at its vertices.

The algorithms to be developed in this chapter will search, succes-
sively, shortest dynamic f-augmenting paths from the source vertex to
the sink vertex in a dynamic residual network and then transmit as much
as possible flow along the paths. Similar to Chapter 3, we will need a
network updating procedure to retain the relevant information on the
current dynamic flow. First, we create a new network to replace the
original one:

For every arc (x, y) ∈ A, we create an artificial arc [y, x]. Its transit
time b[y, x, t], transit cost c[y, x, t], and capacity l[y, x, t] are defined as
follows:

b[y, x, t] =

{

−b(x, y, u), if 0 ≤ t = u + b(x, y, u) ≤ T, u = 0, 1, ..., T
+∞, otherwise

c[y, x, t] =

{

−c(x, y, u), if 0 ≤ t = u + b(x, y, u) ≤ T, u = 0, 1, ..., T
+∞, otherwise
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l[y, x, t] = 0; ∀(x, y) ∈ A, t = 0, 1, ..., T.

For every vertex x ∈ V , we define l[x, t] as the capacity within which a
flow can be “stored” or “waiting” at x from time t to t − 1, and c[x, t]
as the cost for the flow to stay at x from time t to t − 1. Initially, let
l[x, t] = 0 and c[y, t] = −c(y, t − 1) for all x and t.

Originally, no flow can be sent along any artificial arcs in the network
as defined above since capacities of those arcs are set to zero. Hence,
this new network is equivalent to the original one, and so we will still
denote it by N . After a feasible f-augmenting path is found, we create a
dynamic residual network by using the procedure UPNET (see Section
3, Chapter 3). The optimization problems in the original network and in
the dynamic residual network are equivalent in the sense that there is a
one-to-one correspondence between their feasible solutions. Notice that,
in the original network, we assume that all transit times b > 0. Thus,
the first dynamic f-augmenting path will only contain arcs with positive
transit times b and positive waiting times w. But in a dynamic residual
network, the transit time associated with an artificial arc is a negative
number, and a flow can be stored at a vertex for a negative waiting time.
Therefore, a dynamic f-augmenting path found in the dynamic residual
network may contain some arcs with negative transit times and negative
waiting times. Accordingly, we need a definition to define the cost of a
dynamic f-augmenting path while considering the cost of those artificial
arcs.

Definition 4.1 Let P (x1, ..., xr) be a dynamic f-augmenting path from
x1 to xr. Let

W (x) =

{

∑w(x)−1
t′=0 c(x, t′ + α(x)), if α(x) < τ(x)

∑|w(x)|−1
t′=0 c[x,−t′ + α(x)], if α(x) > τ(x)

denote the waiting cost at x on P . Further, let ζ(x1) = W (x1), and
define recursively

ζ(xi) =

{

ζ(xi−1) + c(xi−1, xi, τ(xi−1)) + W (xi), if (xi−1, xi) ∈ A+

ζ(xi−1) + c[xi−1, xi, τ(xi−1)] + W (xi), if [xi−1, xi] ∈ A−

for i = 2, ..., r. The cost of P , ζ(P ), is defined as ζ(xr).

In Section 4, we will present our algorithms to solve the time-varying
network problem we formulate above. We will examine three versions
of the problem, which correspond, respectively, to the three situations
regarding waiting at a vertex; namely, waiting is prohibited; arbitrarily
allowed; and subject to an upper bound. Before we proceed, let us
present another approach, which can also be used, theoretically, to solve
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the TVMCF problem, albeit with very high time complexity. This is
given in Remark 4.1 below.

Remark 4.1 By utilizing the discrete-time feature of the time-varying
network, the TVMCF problem can be re-formulated as a linear opti-
mization model, and then solved by applying some standard optimiza-
tion method, such as linear programming (LP) or dynamic programming
(DP). To be more specific, let us consider our time-varying problem with
arbitrary waiting times at vertices as an example. This problem can be
written as:

min
∑

(x,y)∈A

∑

t

c(x, y, t)f(x, y, t) +
∑

x∈V

∑

t

c(x, t)f(x, t)

s.t.
∑

(s,x)∈A

∑

t

f(s, x, t) = v (4.1)

∑

(x,y)∈A,t′+b(x,y,t′)=t

f(x, y, t′) + f(y, t) −
∑

(y,x)∈A

f(y, x, t) = 0

∀y ∈ V \{s, ρ}, t = 0, 1, ..., T (4.2)
∑

(x,ρ)∈A

∑

0≤t≤T,t+b(x,ρ,t)≤T

f(x, ρ, t) = v (4.3)

0 ≤ f(x, y, t) ≤ l(x, y, t), ∀(x, y) ∈ A, t = 0, 1, ..., T

0 ≤ f(x, t) ≤ l(x, t), ∀x ∈ V, t = 0, 1, ..., T

The above can be solved by a standard LP algorithm. However, a dif-
ficulty with this approach is its excessive time requirement. For example,
the time complexity of an efficient LP algorithm is O(MN9/2) (see, e.g.,
Ye (1997)), where M is the number of constraints and N is the number of
decision variables. This time complexity becomes to O(T 11/2(m+n)11/2)
when it is applied to the model above (as M = N = (m + n)T ).

Remark 4.2 It is well-known that the static version of the minimum
cost flow problem is polynomially solvable. The time-varying version of
the problem is, however, NP-hard in ordinary sense. This can be seen
from the fact that the time-varying shortest path problem is a special
case of TVMCF, but it is an NP-hard problem (see Chapter 1). The
TVMCF problem is NP-hard in the ordinary sense, since it is solvable
in pseudo-polynomial time (see the next section).

3. On the negative cycle
As we have mentioned above, we will solve the problem by search-

ing for the shortest dynamic f-augmenting path in the residual network
successively. To ensure that the algorithm can be finished within finite
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steps, we need a condition that the network should not contain any “neg-
ative cycle”. The following definition introduce the concept of negative
cycle in a time-varying network.

Definition 4.2 A dynamic path P (x1, ..., xr) is called a dynamic cycle
if x1 = xr and one can traverse this path starting from x1 at a time t
and returning to xr = x1 at the same time t. A negative cycle is defined
as such a dynamic cycle whose total cost is negative and whose capacity
is greater than zero.

It is clear that, if a network, either the original network or the residual
network, contains a negative cycle and it can be reached from s, then
one can continuously travel along this cycle while the cost is decreased
unlimited. In such a case, Thus, the problem has no optimal solution.

The original network contains no negative cycle, since all arcs in A+

have positive transit times and all arcs in A− have zero capacities. Now
examine the residual network. Recall that a residual network is gener-
ated based on a flow sent from s to ρ. For a general flow, the generated
residual network may have negative cycles. However, if the flow is sent
along a shortest dynamic f-augmenting path, the residual network gener-
ated will contain no negative cycle. This can be seen as follows: Suppose
that f is a flow sent along a shortest f-augmenting path P and C is a
negative cycle in the residual network N ′ generated by f . Clearly, C
and P must have common sections. Consider the case where they have
one common section. Note that this common section will have oppo-
site directions (refer to Sections 3, Chapter 3 and Section 2, Chapter
4). Denote Sc and Sp as the sections in cycle C and in path P , respec-
tively, then we have ζ(Sc) = −ζ(Sp). Let S′ be the remaining section
of C. Note that the cost of the cycle ζ(C) = ζ(S′) + ζ(Sc) < 0, i.e.,
ζ(S′) < −ζ(Sc) = ζ(Sp). Therefore, replacing Sp by S′ in P , we can
generate a path that is shorter than P . This contradicts the assumption
that P is a shortest dynamic f-augmenting path.

The analysis above is summarized in the following property.

Property 4.1 If a time-varying network N contains no negative cy-
cle, then the residual network generated based on a shortest dynamic
f-augmenting path contains no negative cycle.

Proof. Let N ′ be the residual network generated based on a flow f sent
along a shortest dynamic f-augmenting path P in N . Suppose that N ′

contains negative cycles with C = (x0, y1, ..., yl, xr, xr−1, x1, x0) as the
one with the minimum cost. Since C is generated based on f , C and P
must have common sections.

First, we consider the case where P and C have one common sec-
tion. The dotted line in Figure 4.1 represents the shortest dynamic
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f-augmenting path P (s, ρ) = (s, ..., x0, x1, ..., xr, ..., ρ), where Sp = (x0,
x1, ..., xr) is a section of P . Sc = (xr, xr−1, ..., x0) is the section of C in
N ′ (see the solid line in Figure 4.1). Since Sp and Sc have opposite direc-
tions, we have ζ(Sc) = −ζ(Sp). Let S′ be the section (x0, y1, ..., yl, xr).
Since ζ(C) = ζ(S′) + ζ(Sc) < 0, we have −ζ(Sc) > ζ(S′). On the other
hand, since ζ(Sp) = −ζ(Sc), we have ζ(Sp) > ζ(S′). Noting that P (s, ρ)
is the shortest f-augmenting path from s to ρ in N ′ and both Sp and S′

exist in N , we can use S′ to replace Sp in P (s, ρ) to obtain another path
P ′(s, ρ), with ζ(P ′) < ζ(P ). This is a contradiction to the assumption
that P is the shortest dynamic f-augmenting path. Therefore, N ′ can
not contain any negative cycles.

Figure 4.1. A negative cycle (case I) Figure 4.2. A negative cycle (case II)
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Now, we prove the claim that if P (s, ρ) and C have more than one
common section, then there must exist another cycle in N ′, say C ′, which
has only one common section with P , and C and C ′ have the same cost.
We will prove the case where P and C have two common sections (other
cases can be dealt with in a similar way).

Suppose that P and C have two common sections (x0, ..., xi) and
(xk, ..., xr). Then, there is another cycle C ′′ = (xi, ..., xp, ..., xk,
...xi) in N ′ (see Figure 4.2). Let S1 = (xi, ..., xp, ..., xk) and S2 =
(xk, ..., xq, ..., xi). Since both sections S1 and S2 exist in N , C ′′ ex-
ists in N too. Thus, C ′′ must have a non-negative cost, i.e., ζ(C ′′) =
ζ(S1) + ζ(S2) ≥ 0. If ζ(C ′′) > 0, we have −ζ(S1) < ζ(S2). Then,
replacing S2 by the section (xk, ..., xp, ..., xi) in C will create a new cy-
cle, with cost less than ζ(C). However, we have assumed that C is the
minimal one among all negative cycles. Thus we must have ζ(C ′′) = 0,
i.e., −ζ(S1) = ζ(S2). Then, we can use the section (xk, ..., xp, ..., xi) to
replace section S2 in C and form a new cycle C ′. Note that C ′ and P
have one common section only, a case we have proved in the above.
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In summary, the proof is completed. �

4. Successive improvement algorithms
We will describe, in this section, algorithms that can find optimal

solutions for the TVMCF problem. The algorithms are successive im-
provement procedures, which utilize the basic idea that, at each step,
a shortest f-augmenting path is identified and then a certain amount of
flow will be transmitted over the path. Since there is only a limited
amount of flow to be transmitted from the source to the sink in the
TVMCF problem, the algorithms will converge as long as we can show
that at each step they can transmit a positive amount of flow over a
shortest (cheapest) path.

We will apply the shortest path algorithms developed in Chapter 1
to identify the shortest f-augmenting paths. Corresponding to the three
shortest path algorithms proposed in Chapter 1, we will consider, in
Sections 4.1-4.3 below, three versions of the TVMCF problem, which
deal respectively with the three types of waiting constraints at a vertex.

4.1 Waiting at any vertex is prohibited
Since no flow is allowed to wait at any vertex, we need not consider

the waiting cost in this case.
As indicated above, the main idea to generate the solution is to find,

repeatedly, the shortest dynamic f-augmenting path in the dynamic
residual network. Note that in a dynamic residual network, the tran-
sit times may be positive or negative. To tackle this problem, we will
develop a procedure, which contains two searching operations: forward
searching and backward searching. Both operations are designed based
on the idea of dynamic programming for the shortest path problem in
Chapter 1. The forward searching is to deal with positive transit times,
while the backward searching will deal with negative transit times.

The procedure to be developed will solve the following subproblem,
where transit times and costs can be negative. Note that the concept of
nonnegative cycle means a closed path with negative total travel time.

Subproblem SP1 – Given a network N which contains nonzero transit
times, arbitrary costs, and no negative cycles, find a shortest dynamic
f-augmenting path from s to ρ with time at most T , where no waiting is
permitted at any vertex.

We also need the following definitions.

Definition 4.3 Let P (s = x1, ..., xr = x) be a dynamic f-augmenting
path from s to x. A section P (xi, xj), 1 ≤ i < j ≤ r, is defined as a
subpath of P (s, x) provided that all the transit times on P (xi, xj) have
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the same sign. A section of P (s, x) is said to be positive (or negative) if
its transit times are all positive (or negative).

We can see that a dynamic f-augmenting path will consist of several
positive and negative sections in an alternate manner. The number of
these sections is said to be the alternating number of P (s, x).

Definition 4.4 Define dz(x, t)k as the length of a shortest dynamic f-
augmenting path from s to the vertex x of time exactly t with the alter-
nating number at most k.

Property 4.1 has indicated that neither the original network N nor any
dynamic residual network contains any negative cycle. Consequently,
we can show that a shortest dynamic f-augmenting path P contains no
more than n vertices and each vertex cannot be visited more than once
at any time t, t = 0, ..., T . Therefore, P cannot contain more than nT
sections. In other words, dz(x, t)k is the length of the shortest dynamic
f-augmenting path from s to x of time exactly t when k ≥ nT .

The procedure SDFP-ZW to solve the subproblem SP1 is presented
below, where A+ and A− denote, respectively, the set of positive and
the set of negative arcs.

Procedure SDFP-ZW

Begin
Initialize: dz(s, 0)0 := 0, dz(s, t)

0 := +∞, t = 1, ..., T ; dz(y, t)0 :=
+∞,∀y ∈ V \{s}; t = 0, ..., T ;
Sort all values u + b(x, y, u) for 1 ≤ u ≤ T and for all arcs

(x, y) ∈ A+;
Sort all values u + b[x, y, u] for 0 ≤ u ≤ T − 1 and for all arcs

[x, y] ∈ A−;
i := 0;
Do

i := i + 1;
For all y ∈ V, t = 0, . . . , T do dz(y, t)i := dz(y, t)i−1;
Case 1: i is an odd number:

For t = 1, ..., T do
For every y ∈ V \{s} do forward searching operation:

dz(y, t)i := min{dz(y, t)i,

min
{x|(x,y)∈A+}

min
{u|u+b(x,y,u)=t∧l(x,y,u)>0}

{dz(x, u)i + c(x, y, u)}};

Case 2: i is an even number:
For t = T − 1, ..., 0 do
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For every y ∈ V \{ρ} do backward searching operation:

dz(y, t)i := min{dz(y, t)i,

min
{x|(x,y)∈A−}

min
{u|u+b[x,y,u]=t∧l[x,y,u]>0}

{dz(x, u)i + c[x, y, u]}};

While there exists at least one dz(y, t)i �= dz(y, t)i−1;
Let d∗z(ρ) := min0≤t≤T dz(ρ, t)i;
End

Lemma 4.1 When the procedure SDFP-ZW is terminated, d∗z(ρ) is the
length of a shortest dynamic f-augmenting path from s to ρ with time at
most T .

Proof: We only need to prove that for each i and t, dz(y, t)i obtained
by the procedure is the length of a shortest dynamic f-augmenting path
from s to y of time exactly t with the alternating number at most i. Note
that any shortest path must contain a positive section as its first section
since there are no negative arcs (s, y) ∈ A− in the original network N
or any residual networks. Thus, we only need to consider paths whose
first sections are positive.

The proof is carried out by double inductions on i and t. Consider
i = 1. Use the second induction on time t. When t = 0, since i = 1 is an
odd number, no positive dynamic path P (s, y) of time exactly t exists in
N except when y = s. We know that the length of the shortest dynamic
path P (s, s) of time 0 is 0. In the initialization of procedure SDFP-ZW,
we have dz(y, 0)1 = +∞ (y ∈ V \s) and dz(s, 0)1 = 0; hence the claim
holds.

Assume t > 0 and, for all values t′ < t, dz(y, t′)1 is the length of a
shortest dynamic path P (s, y) of time exactly t′ with the alternating
number at most 1 for all vertices y.

Consider a vertex y. First we prove that there exists a path of time
exactly t with the alternating number 1 and with length dz(y, t). If
dz(y, t)1 = +∞, there is nothing to prove. So assume dz(y, t)1 is finite.
Then by the forward searching operation, dz(y, t)i comes from dz(x, u)1+
c(x, y, u) for some x such that (x, y) ∈ A+ and some u such that u +
b(x, y, u) = t. By the induction on t, we know that there is a path
P ′(s = x1, ..., xr−1 = x) of time exactly u with the alternating number
at most 1 and with length dz(x, u)1. Then, we extend the path with
vertex y, obtaining a path P (s, y). The time of P (s, y) is exactly t and
the length is dz(x, u)1 + c(x, y, u) = dz(y, t)1. This is what we want to
obtain.
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We now prove that dz(y, t)1 is the length of a shortest path from s to
y of time exactly t. Let P (s = x1, ..., xr = y) be a shortest path of time
exactly t with the alternating number at most 1. If P is an empty path,
then y = s and the time of P is zero. The value dz(s, 0)1 = 0 is correct.

Assume the path is not empty. Let x be the predecessor of y on this
path. Let u be the time of the subpath P (s, x), and let ζ(x) be the length
of P (s, x). By definition, t = u+ b(x, y, u). Since u < t, by induction on
t, ζ(x) ≥ dz(x, u)1. By the calculation formula, P is a path of shortest
possible length and of time exactly t, since there exists a path of time
exactly t that achieves the length dz(y, t)1, as we showed above. This
completes the proof for time t on i = 1.

Assume that for i < k, the claim is true. Now consider i = k. We
discuss two cases in which i is an odd number and an even number,
respectively.

Suppose i is an odd number. Consider t = 0. Since no negative cycles
in N , the length of the shortest dynamic path P (s, s) of time exactly
0 with the alternating number at most i is 0. For vertex y �= s, since
no flow can depart from y at time 0, no residual network can contain
negative arcs which allow a flow to reach y from any other vertex x at
time 0. This means there is no dynamic path P (s, y) of time exactly
0. On the other hand, in the procedure, we let dz(y, 0)i = dz(y, 0)i−1

at first. By the induction on i we know dz(y, 0)i−1 = +∞ and by the
formula of the forward searching operation, dz(y, 0)i is unchanged. Thus
dz(y, 0)i = +∞.

Assume the claim holds for t′ < t. Now consider the case at the
time t. One can see that there exists a path of time exactly t with the
alternating number at most i and with the length dz(y, t)i. We now
prove that dz(y, t)i is the length of a shortest path from s to y of time
exactly t. Let P (s = x1, ..., xr = y) be a shortest path of time exactly
t with the alternating number at most i. If P is an empty path, then
y = s and the time of P is zero. The value dz(s, 0)i = 0 is correct.

Assume that P is not empty. Let x be the predecessor of y on this
path. Let u be the time of the subpath P (s, x), and let ζ(x) be the
length of P (s, x). By definition, t = u + b(x, y, u). By induction, since
u < t, ζ(x) ≥ dz(x, u)i. By definition, P (s, y) is a path of shortest
possible length and of time exactly t, and since there exists a path of
time exactly t that achieves the length dz(y, t)i. This completes the
proof.

The proof for the case with an even i can be conducted out in a similar
way by using induction on k (let t = T − k, k = 0, ..., T ). �
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Lemma 4.2 The procedure SDFP-ZW can be implemented in O(mnT 2)
time.

Proof: The time requirement of the initialization step is bounded by
O(nT ). For the sorting we can use bucketsort, with T buckets. Since
there are Tm values to be sorted, this step can be implemented in O(Tm)
time. One can see from the iterative formula that the number of itera-
tions for i is proportional to T

∑

x

∑

y,(y,x)∈A 1 = mT . Since i ≤ nT , the

total time is bounded by O(mnT 2). �

Now we can describe the algorithm to solve the TVMCF problem with
no waiting time permitted at any vertices. In the algorithm presented
below, v represents the given flow value to be sent from the source to
the sink, and fj the maximal flow value which can be sent along the jth
f-augmenting path Pj(s, ρ).

Algorithm TVMCF-ZW

Begin
v̄ := 0;
For j = 1, ..., v do

Call procedure SDFP-ZW;
If d∗(ρ) < +∞ then call the procedure UPNET; (there is an

f-augmenting path Pj(s, ρ) with flow value fj = Cap(Pj(s, ρ)); so
update the network)

Else stop; (no feasible solution to send all flow value v from
s to ρ within time T )

v̄ := v̄ + fj ;
If v̄ ≥ v then stop;

End

The algorithm is designed for seeking the optimal f-augmenting path
from s to ρ. The real path can be obtained by a backtracking process.

To illustrate how the algorithm works, an example is given below.

Example 4.1

The original network is shown in Figure 4.3(a). Since no waiting
time is permitted, all l(x, t) = 0. To simplify the figure, artificial arcs
[x, y] are not depicted there. Besides, in Figure 4.3(b) we only list those
numbers corresponding to non-zero arc capacities. Suppose v = 2 and
T = 5. The iterative process of Algorithm TVMCF-ZW for solving this
problem is as follows:

j = 1; i = 1: all dz(y, t)1 are listed in Figure 4.4(b) (the blank spaces
represent +∞).
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Figure 4.3. Example 4.1
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Figure 4.4. Example 4.1 (continued)
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i = 2: Since A− = ∅, all dz(y, t)2 = dz(y, t)1, and the searching in
this segment is stopped. We find a shortest dynamic f-augmenting path
P1(s, ρ) = (s, k, g, ρ) with f1 = 1. ζ(P1) = d∗(ρ) = 5 (see Figure 4.4(a)).
We now execute the procedure UPNET and obtain a new network as
shown in Figure 4.5(a).

Figure 4.5. Example 4.1 (continued)
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j = 2; i = 1: all dz(y, t)1 are listed in Figure 4.6(b).



Time-Varying Minimum Cost Flow Problems 119

Figure 4.6. Example 4.1 (continued)
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i = 2: all dz(y, t)2 are listed in Figure 4.7(b) (notice that an
artificial arc [g, k] is added in path (s, e, g, k), see Figure 4.7(a)).

Figure 4.7. Example 4.1 (continued)
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i = 3: all dz(y, t)3 are listed in Figure 4.8(b).

i = 4: Since all dz(y, t)4 = dz(y, t)3, the searching in this segment
is stopped. We find a shortest dynamic f-augmenting path P2(s, ρ) =
(s, e, g, k, h, ρ) with f2 = 1 and ζ(P2) = d∗(ρ) = 9 (see Figure 4.8(a)).
Because f1 + f2 = 2 = v, the algorithm stops. The total cost is ζ(P1) +
ζ(P2) = 5 + 9 = 14.

Theorem 4.1 Algorithm TVMCF-ZW solves optimally the time-varying
minimum cost flow problem with no waiting times at vertices.

Proof: Straightforward. �

From Lemma 4.2 and Algorithm TVMCF-ZW, we can easily obtain
the following result.

Theorem 4.2 The running time of Algorithm TVMCF-ZW is bounded
above by O(vmnT 2). �
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Figure 4.8. Example 4.1 (continued)
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4.2 Waiting at any vertex is arbitrarily allowed
We now consider the problem where waiting at any vertex is not

subject to any constraints. Similar to Section 4.1, we will present a
procedure, SDFP-AW, to solve a subproblem as follows:

Subproblem SP2 –Given a networkNwith nonzero transit times, arbit-
rary costs, and no negative cycles, find a shortest dynamic f-augmenting
path from s to ρ within time T , where waiting at any vertex is not limited.

Note that, unlike the case with waiting time prohibited, a dynamic
f-augmenting path P (s, x) of time at most t will be a path of time at
most t + 1 if l(x, t) > 0, since the flow can wait at x from t to t + 1. On
the other hand, if α(x) = t in P (s, x) and l[x, t] > 0, then a flow can
have a negative waiting time w(x) = −1 at vertex x and the arrival time
x can be t − 1.

Definition 4.5 Define da(x, t)k as the length of a shortest dynamic f-
augmenting path from s to vertex x of time at most t, with the alternating
number at most k.

The following is our procedure to solve the subproblem SP2:

Procedure SDFP-AW

Begin
Initialize: da(s, t)

0 := 0, da(y, t)0 := +∞,∀y ∈ V \{s}; t = 0, ..., T ;
Sort all values u + b(x, y, u) for 1 ≤ u ≤ T and for all arcs

(x, y) ∈ A+;
Sort all values u + b[x, y, u] for 0 ≤ u ≤ T − 1 and for all arcs

[x, y] ∈ A−;
i := 0;
Do

i := i + 1;
For all y ∈ V, t = 0, . . . , T do da(y, t)i := da(y, t)i−1;
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Case 1: i is an odd number:
For t = 1, ..., T do

For every y ∈ V \{s} do forward searching operation:

da(y, t)i := min{sign(l(y, t − 1))(da(y, t − 1)i + c(y, t − 1)), da(y, t)i,

min
{x|(x,y)∈A+}

min
{u|u+b(x,y,u)=t∧l(x,y,u)>0}

{da(x, u)i + c(x, y, u)}};

Case 2: i is an even number:
For t = T − 1, ..., 0 do

For every y ∈ V \{ρ} do backward searching operation:

da(y, t)i := min{sign(l[y, t + 1])(da(y, t + 1)i + c[y, t + 1]), da(y, t)i,

min
{x|(x,y)∈A−}

min
{u|u+b[x,y,u]=t∧l[x,y,u]>0}

{da(x, u)i + c[x, y, u]}};

While there exists at least one da(y, t)i �= da(y, t)i−1;
Let d∗a(ρ) := min0≤t≤T da(ρ, t)i;
End

Lemma 4.3 When the procedure SDFP-AW terminates, d∗a(ρ) is the
length of a shortest dynamic f-augmenting path from s to ρ with time at
most T .

Proof: Similar to the proof of Lemma 4.1, here we only need to prove
that, for each i and t, da(y, t)i obtained by the procedure is the length
of a shortest dynamic f-augmenting path from s to y of time at most t
with the alternating number at most i. Also, we only need to consider
dynamic paths whose first sections are positive.

The proof is conducted by double inductions on i and t. Consider
i = 1. Use the second induction on time t. When t = 0, since i = 1
is an odd number, no positive dynamic path P (s, y) of time at most t
exists in N except when y = s. Since there are no negative cycles in N ,
we know that the length of the shortest dynamic path P (s, s) of time
t is 0 for any t. In the initialization of procedure SDFP-AW, we have
da(y, 0)1 = +∞ (y ∈ V \s) and da(s, 0)1 = 0; so the claim holds.

Assume t > 0 and for all values t′ < t, da(y, t′)1 is the length of a
shortest dynamic path P (s, y) of time at most t′ with the alternating
number at most 1 for all vertices y.

Consider a vertex y. If y = s then the proof is straightforward. So
assume y �= s. First we prove that there exists a path of time at most t
with the alternating number 1 and with length da(y, t)1. If da(y, t)1 =
+∞, there is nothing to prove. So assume da(y, t)1 is finite. Then by



122 TIME-VARYING NETWORK OPTIMIZATION

the forward searching operation, da(y, t)1 must come from da(y, t−1)1 +
c(y, t − 1) while l(y, t − 1) > 0, or da(x, u)1 + c(x, y, u) for some x such
that (x, y) ∈ A+ and some u such that u + b(x, y, u) = t. If the first
case occurs, by the induction on t, there is a dynamic path P (s, y) of
time at most t − 1 with length da(y, t − 1)1. Of course, P (s, y) is also
a path of time at most t with the length da(y, t − 1)1 + c(y, t − 1) since
l(y, t−1) > 0. If the second case occurs, by the induction on t, we know
that there is a path P ′(s = x1, ..., xr−1 = x) from s to x of time u with
the alternating number at most 1 and with length da(x, u)1. We extend
the path with vertex y, obtaining a path P (s, y). The time of P (s, y) is
at most t and the length is da(x, u)1 + c(x, y, u) = da(y, t)1.

We now prove that da(y, t)1 is the length of a shortest path from
s to y of time at most t. Let P (s = x1, ..., xr = y) be a shortest
path from s to y of time at most t, and w(xi) the waiting time at
xi (i = 1, ..., r). Let x be the predecessor of y on this path. Let u be
the departure time of the subpath P (s, x) of P (s, y) at vertex x, and let
ζ(x) be the length of P (s, x). The definition t = u + w(y) + b(x, y, u)
implies u < t since b(x, y, u) > 0 and w(y) ≥ 0. Thus, by induc-
tion, ζ(x) +

∑u−1
τ=α(x) c(x, τ) ≥ da(x, u)1. By definition, the length of

P (s, y) is ζ(y) = ζ(x) +
∑u−1

τ=α(x) c(x, τ) + c(x, y, u) +
∑t−1

τ=α(y) c(y, τ) ≥

da(x, u)1 + c(x, y, u) +
∑t−1

τ=α(y) c(y, τ) ≥ da(y, t)1. Thus, we must have

ζ(y) = da(y, t)1, since P (s, y) is a path of shortest length and since there
exists a path achieving da(y, t)1, as we showed above. This completes
the proof on i = 1.

Assume that for i < k, the claim is true. Now consider i = k.

Suppose i is an odd number. Consider t = 0. Since there are no
negative cycles in N , the length of the shortest dynamic path P (s, s) of
time 0 is 0. For y �= s, since no flow can depart from y at time 0, no
residual network can contain negative arcs which allow a flow to reach
y from any other vertex x at time 0. This means there exists no path
P (s, y) of time 0. On the other hand, in the procedure, we let da(y, 0)i =
da(y, 0)i−1 at first. By the induction on i we know da(y, 0)i−1 = +∞. By
the formula of the forward searching operation, da(y, 0)i is unchanged
during the iterations since no path P (s, x) with negative arrival time u in
N or in any residual networks can be extended by adding an arc (x, y) ∈
A+ with a positive b(x, y, u) such that u + b(x, y, u) = 0. Therefore the
claim is correct.

Assume the claim holds for t′ < t. Now consider the case at time
t. One may clearly see that there exists a path of time at most t with
the alternating number at most i and with the length da(y, t)i. We now
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prove that da(y, t)i is the length of a shortest path from s to y of time
exactly t.

Let P (s = x1, ..., xr = y) be a shortest path from s to y of time
at most t, and w(xi) the waiting time at xi (i = 1, ..., r). Let x be
the predecessor of y on this path. Let u be the departure time of the
subpath P (s, x) of P (s, y) at vertex x, and let ζ(x) be the length of
P (s, x). The definition t = u + w(y) + b(x, y, u) implies u < t since
b(x, y, u) > 0 and w(y) ≥ 0. Thus, by induction, ζ(x) ≥ da(x, u)i.
By definition, the length of P (s, y) is ζ(y) = ζ(x) +

∑u−1
τ=α(x) c(x, τ) +

c(x, y, u)+
∑t−1

τ=α(y) c(y, τ) ≥ da(x, u)i+c(x, y, u)+
∑t−1

τ=α(y) c(y, τ), hence

ζ(y) ≥ da(x, u)i + c(x, y, u)+
∑t−1

τ=α(y) c(y, τ) ≥ da(y, t)i according to the

formula. Thus, we must have ζ(y) = da(y, t)i, since P (s, y) is a path of
shortest length and since there exists a path achieving da(y, t)i, as we
showed above.

The proof for the case with i being an even number is similar. �

Lemma 4.4 The procedure SDFP-AW can be implemented in O(mnT 2)
time.

Proof: The time needed for the initialization and the sorting are bound-
ed by O(nT ) and O(mT ). From the description of the iterative formula,
the number of iterations for i is proportional to T

∑

x

∑

y,(y,x)∈A 1 = mT .

Since i ≤ nT , the total time is bounded by O(mnT 2). �

The following is the algorithm to solve the TVMCF problem with
arbitrary waiting times.

Algorithm TVMCF-AW

Begin
v̄ := 0;
For j = 1, ..., v do

Call procedure SDFP-AW;
If d∗(ρ) < +∞ then call the procedure UPNET; (there is an

f-augmenting path Pj(s, ρ) with flow value fj = Cap(Pj(s, ρ)); so
update the network)

Else stop; (no feasible solution to send all flow value v from
s to ρ within time T )

v̄ := v̄ + fj ;
If v̄ ≥ v then stop;

End

Theorem 4.3 Algorithm TVMCF-AW solves optimally the TVMCF
problem with waiting times unconstrained at any vertices.
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The proof is similar to that for Theorem 4.1. By Lemma 4.4 and
Algorithm TVMCF-AW, we have the following theorem.

Theorem 4.4 The time complexity of Algorithm TVMCF-AW is bound-
ed above by O(vmnT 2). �

4.3 Waiting at a vertex is constrained by an
upper bound

In this section, we consider the TVMCF problem where waiting time
at a vertex is constrained by a vertex-dependent upper bound. As we
have mentioned in Section 5, Chapter 3, Theorem 3.3 gives us a feasible
condition to determine whether a dynamic f-augmenting path is feasible
under the bounded waiting time constraint. This condition will also
be used in our algorithm to find the shortest f-augmenting path in a
dynamic residual network.

Similar to Section 4.1, we will propose a procedure, SDFP-BW, to
solve a subproblem as follows:

Subproblem SP3 – Given a network N which has nonzero transit
times, arbitrary costs, and no negative cycles, find a shortest feasible
dynamic f-augmenting path from s to ρ within time T where waiting
time at each vertex x is constrained by an upper bound.

We need the following notation when we solve this subproblem.

Definition 4.6 Define db(x, t)k as the length of a shortest feasible dy-
namic f-augmenting path from s to the vertex x of time exactly t with
the alternating number at most k, where the waiting time at x is zero.

Definition 4.7 Let P (s, x) be a dynamic path and (x, y) (or [x, y]) the
next appended arc. Let uA and uD be the arrival time and the departure
time at x, respectively. Define:

LP (x, y, uA, uD) =

{

l(x, y, uD)
∏uD−1

τ=uA
l(x, τ) uD ≥ uA

l(x, y, uD)
∏uD+1

τ=uA
l[x, τ ] uD < uA

as the derived capacity if (x, y) ∈ A+, or

LN (x, y, uA, uD) =

{

l[x, y, uD]
∏uD−1

τ=uA
l(x, τ) uD ≥ uA

l[x, y, uD]
∏uD+1

τ=uA
l[x, τ ] uD < uA

if [x, y] ∈ A−.

Clearly, LP (x, y, uA, uD) (or LN (x, y, uA, uD)) indicates the arc ca-
pacity l(x, y, uD) as well as the vertex capacity during the waiting time
at vertex x. When LP (x, y, uA, uD) > 0 (or LN (x, y, uA, uD) > 0), it
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means that we can append the arc (x, y) (or the arc [x, y]) to the path
P (s, x) to obtain a feasible dynamic path from s to y.

Definition 4.8 Let P (s, x) be a dynamic path and (x, y) (or [x, y]) the
next appended arc. Suppose z is the predecessor of x on P . Let

δα(x) =

{

−r1{z, x, τ(z)} − r2{x, y, uD} + ux if αi0(x) does not exist
αi0(x) − uA + ux otherwise.

Define
F(x, y; t, r1, r2) =

{

{(uA, uD)|uD + b(x, y, uD) = t ∧ 0 ≤ uD ≤ uA + δα(x)} (x, y) ∈ A+

{(uA, uD)|uD + b[x, y, uD] = t ∧ 0 ≤ uD ≤ uA + δα(x)} [x, y] ∈ A−

as the feasible time region of x.

Definition 4.9 Define J(x;uA, uD) as the cost function combining the
cost of the path P (s, x) with the waiting cost at x:

J(x;uA, uD) =

{

db(x, uA)i +
∑uD−1

τ=uA
c(x, τ) uA ≤ uD

db(x, uA)i +
∑uD+1

τ=uA
c[x, τ ] uA > uD.

Similar to the two procedures as described in Sections 4.1 and 4.2,
here our idea is to use two searching operations, a forward pass and a
backward pass, to calculate db(y, t)k. Note that in the feasible condition,
we need r1 to determine F . Consequently, at any iteration, we use
a variable R1(y, t) to record the current value of r1, so that it can be
brought to the next iteration to compute the new value for r1. Moreover,
we use a function, FUNA(x, t), to calculate αi0(x) for the vertex x with
respect to the arrival time t, and then use αi0(x) to determine δα(x).
The function FUNA(x, t) is to be determined as follows:

FUNA(x, t);
Begin

Let ζ2 := t − r2;
Do

Let ζ1 := ζ2;
Let ζ2 := maxt1=ζ1+1,...,ζ1+ux,t1≤T α1(x, t1);

While (ζ2 > ζ1)and(ζ2 + ux ≤ T );
If ζ1 = t−r2 then Return(−1) (it means that ai0(x) does not

exist);
If ζ2 ≤ ζ1 then Return(ζ1) else Return(T − ux);

End.

The procedure SDFP-BW is now described below.
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Procedure SDFP-BW

Begin
Initialize: db(s, 0)0 := 0, db(s, t)

0 := +∞, t = 1, ..., T ;
db(y, t)0 := +∞,∀y ∈ V \{s}; t = 0, ..., T ; R1(y, t) := 0,∀y ∈ V ;
t = 0, ..., T ;

i := 0;
Do
i := i + 1;
For all y ∈ V, t = 0, . . . , T do db(y, t)i := db(y, t)i−1;

Case 1: i is an odd number:
For t = 1, ..., T do

For every y ∈ V \{s} do forward searching operation:

db(y, t)i := min{db(y, t)i,

min
{x|(x,y)∈A+}

min
(uA,uD)∈F(x,y;t,r1,r2) and

LP (x,y,uA,uD)>0

{J(x;uA, uD) + c(x, y, uD)}};

Case 2: i is an even number:
For t = T − 1, ..., 0 do

For every y ∈ V \{ρ} do backward searching operation:

db(y, t)i := min{db(y, t)i,

min
{x|(x,y)∈A−}

min
(uA,uD)∈F(x,y;t,R1,r2) and

LN (x,y,uA,uD)>0

{J(x;uA, uD) + c[x, y, uD]}};

If db(y, t)i is determined by the second term then
Let R1(y, t) := r1[x, y, uD];

While there exists at least one db(y, t)i �= db(y, t)i−1;
Let d∗b(ρ) := min0≤t≤T db(ρ, t)nT ;

End

We have the following result on the procedure SDFP-BW.

Lemma 4.5 When the procedure SDFP-BW terminates, d∗b(ρ) obtained
is the length of a shortest feasible dynamic f-augmenting path from s to
ρ with time at most T .

Proof: Similar to Lemma 4.1, we only need to prove that for each i
and t, db(y, t)i obtained by the procedure is the length of a shortest
feasible dynamic f-augmenting path from s to y of time exactly t with
the alternating number at most i. Furthermore, it will suffice for us to
consider only those dynamic paths whose first sections are positive.

The proof is carried out by double inductions on i and t. Consider
i = 1. Use the second induction on time t. When t = 0, since i = 1 is an
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odd number, no positive dynamic path P (s, y) of time exactly t exists in
N except when y = s. The empty path P (s, s) is feasible since the upper
bounds on waiting times are assumed nonnegative. In the initialization
of SDFP-BW, we have db(y, 0)1 = +∞ (y ∈ V \s) and db(s, 0)1 = 0; so
the claim holds.

Assume t > 0 and for all values t′ < t, db(y, t′)1 is the length of
a shortest feasible path P (s, y) of time exactly t′ with the alternating
number at most 1 for all vertices y.

Consider a vertex y. First we prove that there exists a path of time
exactly t with the alternating number 1 and with length db(y, t)1. If
db(y, t)1 = +∞, there is nothing to prove. So assume db(y, t)1 is fi-
nite. Then by the forward searching operation, db(y, t)1 comes from
J(x;uA, uD) + c(x, y, uD) for some x such that (x, y) ∈ A+ and some
(uA, uD) ∈ F(x, y; t, r1, r2) while LP (x, y, uA, uD) > 0. Since i = 1 and
r1 = r2 = 0, we have uA < uD < t. By the induction on t, we know
that there is a feasible path P ′(s = x1, ..., xr−1 = x) of time exactly uA

with the alternating number at most 1 and with length db(x, uA)1. We
let uD − uA be the new waiting time of P ′ at x. On the other hand,
since (uA, uD) ∈ F(x, y; t, r1, r2) while LP (x, y, uA, uD) > 0, by Lemma
5.1, the new path is again feasible. We extend the path with vertex y,
obtaining a path P with the given waiting times, and with waiting time
zero at y. The time of P , with all these waiting times, is exactly t, since
uD + b(x, y, uD) = t, which is the arrival time at y. The length of P is
J(x;uA, uD) + c(x, y, uD) = db(y, t)1. This proves the claim.

We now prove that db(y, t)1 is the length of a shortest feasible path of
time exactly t. Let P (s = x1, ..., xr = y) be a shortest feasible path of
time exactly t with the alternating number 1. Let w(xi) be the waiting
time at xi (i = 1, ..., r). So we have w(xr) = 0. Let x be the predecessor
of y on this path. Let uD be the departure time of the subpath P (s, x)
of P (s, y) at vertex x, let uA = uD − w(x) be the arrival time at x
along P (s, x) and let ζ(x) be the length of P (s, x). Note that t =
uD + b(x, y, uD). By induction, ζ(x) ≥ db(x, uD)1. By definition, the
length of P (s, y) is ζ(x) +

∑uD−1
τ=uA

c(x, τ) + c(x, y, uD) ≥ J(x;uA, uD) +

c(x, y, uD) ≥ db(y, t)1, where the last inequality comes from the formula
on the computation of db(y, t)1. This length must be equal to db(y, t)1

since P (s, y) is a path of the shortest possible length and since there
exists a path that achieves db(y, t)1, as we showed above. This completes
the proof on i = 1.

Assume that for i < k, the claim is true. Now consider i = k.

Suppose i is an odd number. Consider t = 0. Since there are no
negative cycles in N , the length of the shortest feasible dynamic path
P (s, s) of time exactly 0 is 0. For vertex y �= s, since no flow can depart
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from y at time 0, no residual network can contain negative arcs which
allow a flow to reach y from any other vertex x at time 0. This means
there exist no feasible dynamic paths P (s, y) of time exactly 0. On the
other hand, in the procedure, we let db(y, 0)i = db(y, 0)i−1 at first. By
the induction on i we know db(y, 0)i−1 = +∞. By the formula of the
forward searching operation, db(y, 0)i is unchanged during the iterations
since no path P (s, x) with negative arrival time uA in N or any residual
networks can be extended by adding an arc (x, y) ∈ A+ with a positive
transit time b(x, y, uD) such that uD + b(x, y, uD) = 0. Therefore the
claim is correct.

Assume the claim holds for t′ < t. Now consider the case at time
t. First we also prove that there exists a path of time exactly t with
the alternating number at most i and with the length db(y, t)i. If
db(y, t)i = +∞, there is nothing to prove. So assume db(y, t)i is fi-
nite. Then by the forward searching operation, db(y, t)i comes from
db(y, t)i−1 or J(x;uA, uD) + c(x, y, uD) for some x such that (x, y) ∈ A+

and some (uA, uD) ∈ F(x, y; t, r1, r2) while LP (x, y, uA, uD) > 0 such
that uD + b(x, y, uD) = t. If the first case occurs, namely, db(y, t)i =
db(y, t)i−1, by the induction on i, we know that db(y, t)i−1 is the length of
a shortest feasible dynamic path P (s, x) of time exactly t with the alter-
nating number at most i−1. Obviously, P (s, x) is also a feasible dynamic
path of time exactly t with the alternating number at most i. If the sec-
ond case occurs, namely, db(y, t)i = J(x;uA, uD) + c(x, y, uD) for some
x and some uD such that (x, y) ∈ A+ and (uA, uD) ∈ F(x, y; t, r1, r2)
while LP (x, y, uA, uD) > 0, we consider uA. Without loss of generality,
suppose that y is the jth visited vertex at time t during the ith itera-
tion, and for any vertex which is visited before y at time t, there exists
a feasible path of time exactly t with the alternating number at most i.
If uA < t, by the induction on t, we know that there exists a feasible
path from s to x of time exactly t with the alternating number at most
i. If uA > t, then there must have db(x, uA)i = db(x, uA)i′ with i′ < i.
By the induction on i, we know that there exists a feasible path from s
to x of time exactly t with the alternating number at most i′, of course,
with the alternating number at most i − 1. Now examine the case in
where uA = t. If x is visited before y at time t, by the assumption, the
claim is true. Otherwise, if x has not been visited at time t, then there
must have db(x, uA)i = db(x, uA)i′′ with i′′ < i. By the induction on i,
we know that there exists a feasible path from s to x of time exactly t
with the alternating number at most i′′, of course, with the alternating
number at most i − 1. Therefore, we can extend the path with ver-
tex y, obtaining a path P (s, y). Since (uA, uD) ∈ F(x, y; t, r1, r2) while
LP (x, y, uA, uD) > 0, by Theorem 3.4, P (s, y) is again feasible. The
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time of P (s, y) is exactly t, the alternating number is at most i, and the
length is J(x;uA, uD) + c(x, y, uD) = db(y, t)i. This proves the claim.

We now prove that db(y, t)i is the length of a shortest feasible path
from s to y of time exactly t with zero waiting time at y. Let P (s =
x1, ..., xr = y) be a shortest feasible path of time exactly t with the alter-
nating number at most i. Let x be the predecessor of y on this path. Let
uD be the departure time of the subpath P (s, x) of P (s, y) at vertex x,
let uA = uD−w(x) be the arrival time at x along P (s, x) and let ζ(x) be
the length of P (s, x). By definition t = uD + b(x, y, uD). By induction,
ζ(x) ≥ db(x, uA)i. Clearly, the length of P (s, y) is ζ(x)+

∑uD−1
τ=uA

c(x, τ)+

c(x, y, uD) ≥ J(x;uA, uD) + c(x, y, uD) ≥ db(y, t)i, where the last in-
equality comes from the formula for the computation of db(y, t)i. This
length must be equal to db(y, t)i since P is a path of the shortest possible
length and since there exists a path that achieves db(y, t)i, as we showed
above. This completes the proof.

The proof in the case where i is an even number can be carried out
in a similar way by using induction on k (let t = T − k, k = 0, ..., T ). In
summary, the lemma is proved. �

In the procedure SDFP-BW, to obtain J(x;uA, uD), LP and LN ,
we need to compute

∑uD−1
τ=uA

c(x, τ),
∑uD+1

τ=uA
c[x, τ ],

∏uD−1
τ=uA

l(x, τ) and
∏uD+1

τ=uA
l[x, τ ]. Note that all these can be computed, in O(nT 2) time,

before the procedure SDFP-BW is applied.

Lemma 4.6 The procedure SDFP-BWcan be implemented in O(nT 2(m+
nT )) time.

Proof: We can see that the computing times needed for the initialization
and the sorting are bounded by O(nT ) and O(mT ), respectively.

For F(x, y; t, r1, r2), note that uD can be found in O(1) time for any
given t, since we have sorted them already. For condition 0 ≤ uD ≤
uA + δα(x), i.e., max{0, uD − δα(x)} ≤ uA ≤ T , we can set up a set of
variables, denoted by D(x, t), ∀x ∈ V and t = 0, ..., T , which keeps the
minimal value among all J(x;uA, t) which satisfies t − δα(x) ≤ uA ≤ T
and

∏t−1
τ=uA

l(x, τ) > 0 if uA ≤ t (or
∏t+1

τ=uA
l[x, τ ] > 0 if t < uA). To

maintain D(x, t), we need to compute αi0(x) and δα(x) by using function
FUNA(x, uA) after db(x, uA)i is obtained. And then, for all t ≤ uA +
δα(x), calculate J(x;uA, t). If J(x;uA, t) < D(x, t) and

∏t−1
τ=uA

l(x, τ) >

0 when uA ≤ t (or
∏t+1

τ=uA
l[x, τ ] > 0 when t < uA), then let D(x, t) =

J(x;uA, t), otherwise, keep the current value of D(x, t) unchanged. This
step can be implemented in O(T ) time. Since the procedure has to
perform this step for t = 1, ..., T and for all vertices x ∈ V , it takes
O(nT 2) time. Therefore, for each i, the iteration can be implemented in
O(T (m + nT )).
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Since i ≤ nT , it follows that the overall running time of this procedure
is bounded above by O(nT 2(m + nT )). �

The following is the algorithm to solve the TVMCF problem with
bounded waiting times at vertices.

Algorithm TVMCF-BW

Begin
v̄ := 0;
Sort all values u + b(x, y, u) for 1 ≤ u ≤ T and for all arcs

(x, y) ∈ A+;
Sort all values u + b[x, y, u] for 0 ≤ u ≤ T − 1 and for all arcs

[x, y] ∈ A−;
Calculate

∑uD−1
τ=uA

c(x, τ) and
∑uD+1

τ=uA
c[x, τ ] for any x ∈ V , 0 ≤

uA, uD ≤ T ;
Calculate

∏uD−1
τ=uA

l(x, τ) and
∏uD+1

τ=uA
l[x, τ ] for any x ∈ V , 0 ≤

uA, uD ≤ T ;
For j = 1, ..., v do

Call procedure SDFP-BW;
If d∗(ρ) < +∞ then call the revised procedure UPNET;

(there is an f-augmenting path Pj(s, ρ) with flow value fj

= Cap(Pj(s, ρ)), so update the network)
Else stop; (no feasible solution to send all flow value v from

s to ρ within time T )
v̄ := v̄ + fj ;
If v̄ ≥ v then stop;

End

Theorem 4.5 The algorithm TVMCF-BW solves optimally theTVMCF
problem with the bounded waiting time constraint at each vertex.

The proof is similar to that for Theorem 4.1. By Lemma 4.6 and the
Algorithm TVMCF-BW, we have the following theorem.

Theorem 4.6 The running time required by the Algorithm TVMCF-BW
is bounded above by O(vnT 2(m + nT )). �

5. How to fine-tune the algorithms in special
cases?

The time requirements of the algorithms we have presented in the
previous sections are only worst-case upper bounds. In practice, the
actual time requirements of the algorithms may be much less than this
bound. In fact, we can show that in certain cases, even the worst-case
upper bounds may be improved.
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For the Algorithm TVMCF-ZW, we have the following result:

Corollary 4.1 If the arc capacities and the transit costs are positive
constants and the transit times are nondecreasing functions of time t,
the running time of Algorithm TVMCF-ZW reduces to O(vmnT ).

Proof: Under the condition of the corollary, any shortest dynamic f-
augmenting path with no artificial arcs (we call this a true shortest path
(TSP)) will not visit a vertex more than once. Otherwise, suppose P (s =
x1, ..., xi, xi+1, ..., xi, xj , ..., xr = ρ) is a TSP which visits the vertex xi

twice. Then we can create a new path P ′(s = x1, ..., xi, xj , ..., xr = ρ) by
deleting the section (xi+1, ..., xi) from P . It is clear that P ′ is a feasible
path with ζ(P ′) < ζ(P ), since P ′ traverses less arcs as compared to P ,
while the transit times are nondecreasing functions and the transit costs
are constant. This contradicts the fact that P is a shortest path.

Consequently, one can see that the first k shortest f-augmenting paths
obtained by the algorithm will not visit any vertex more than k times.
(Otherwise, if one represents these k paths by k TSPs, then there must
exist a TSP that visits the vertex more than once.) Now let gk be the
number of iterations to search for the kth shortest f-augmenting path
Pk, rk the alternating number of Pk, and hk the number of vertices of Pk.
Clearly, gk = rk + 1 ≤ hk. Hence, we have

∑v
k=1 gk =

∑v
k=1(rk + 1) ≤

∑v
k=1 hk ≤ nv. Noting that O(mT ) time is needed in each iteration, we

obtain the corollary. �

Similarly, the upper bound in Theorem 4.4 can also be reduced in
certain cases. For example, we can have the following result:

Corollary 4.2 If for each vertex, its capacity is unlimited, and its wait-
ing cost at time t is less than the transit cost of each arc leaving it
at time t, then the running time of Algorithm TVMCF-AW reduces to
O(vmnT ). �

6. The time-varying maximum (k, c)-flow problem
As an application of TVMCF, we now discuss the time-varying max-

imum (k, c)-flow problem, which can be stated as follows:

Consider a time-varying network N(V,A, b, cp, l), where V is the ver-
tex set, A is the arc set, b(x, y, t) is the transit time to traverse the arc
(x, y) at time t, l(x, y, t) is the arc capacity, which is given but can be
exceeded at a penalty of cp(x, y, t) per unit flow, where cp(x, y, t) is a
nonnegative integer. Each unit of flow sent from s to ρ yields a payoff
of k, where k is a positive integer. Given a time limit T , the problem
is to determine how much extra arc capacity to purchase and how much
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flow to be sent from the source vertex s to the sink vertex ρ within the
time limit T , so as to maximize the net profit.

The static version of the maximum (k, c)-flow problem, where both
the arc capacity and the penalty are time independent, is discussed by
Wagner and Wan (1993). The maximum (k, c)-flow problem has appli-
cations in transportation systems, electronic supply systems, and man-
power systems.

Obviously, when k = 1 and all penalties cp(x, y, t) = 1, the time-
varying maximum (k, c)-flow problem reduces to the time-varying maxi-
mum flow problem, since any dynamic path in N has at least one arc and
paying a penalty to exceed the capacity of an arc will not cause any ex-
tra net profit. This implies that the time-varying maximum (k, c)-flow
problem is NP-hard too. In what follows, we will develop a pseudo-
polynomial algorithm to solve the problem. We will only consider the
case where waiting at a vertex is not allowed. The problem under other
waiting time constraints can be solved in a similar manner.

The key idea of our method can be stated as follows. First, for each
arc (x, y) in the given network N , we create a parallel arc (x, y)r. We call
this the reserve arc, and the original arc (x, y) the normal arc. Let the
transit cost c(x, y, t) = 0 for the normal arc and c(x, y, t) = cp(x, y, t) for
the reserve arc. Then, we apply the procedure SDFP-ZW (see Section
4.1) to find the shortest dynamic f-augmenting path in the new network.
Note that, since all normal arcs have zero cost, they will be considered
first in generating the shortest dynamic f-augmenting path. After the
normal arcs are exhausted, those reserve arcs are then considered. In
particular, we will follow the following steps:

(1) Create a new network N ′(V,A, b, c, l′) by the following method: For
each arc (x, y) ∈ A, create a reserve arc (x, y)r. Let l′(x, y, t) =
l(x, y, t) and c(x, y, t) = 0 for each normal arc, and l′(x, y, t) = ∞
and c(x, y, t) = cp(c, y, t) for each reserve arc. Furthermore, create
artificial arcs for each normal arc and reserve arc respectively, and
set l and c same as those in Section 2.

(2) Find a shortest dynamic f-augmenting path P in N ′ by applying the
SDFP-ZW procedure.

(3) Let ζ(P ) be the cost of P . If k − ζ(P ) > 0, then that means we can
earn k − ζ(P ) units of profit by sending one unit of extra flow from
s to ρ. Go to step (4); Otherwise, if k − ζ(P ) ≤ 0 (that means we
cannot obtain any more profit in the network), then stop.

(4) Let fp be the flow value which we send along the path P . If fp = ∞,
i.e., Cap(P ) = ∞ (that means we can send flow as much as we want
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in the network, i.e., the original problem is unbounded), then stop;
Otherwise, use the procedure UPNET to update the network N ′

based on the flow fp (See Section 2, Chapter 3; Note that now we
need update the parameters for both the normal and the reserve
arcs). Still denote the residual network as N ′.

(5) Let F be the total flow value and ζ(F ) be the total benefit of flow
F . Let F := F + fp, and ζ(F ) = ζ(F ) + fp(k − ζ(P )) (initially, let
F = ζ(F ) = 0). Go to step (2).

We can now describe our algorithm as follows.

Algorithm TVMKCF

Begin
Create a network N ′ = (V,A, b, c, l′) for the given network N ;
Let F := ζ(F ) := 0;
Do

Call Procedure SDFP-ZW to obtain a shortest dynamic f-
augmenting path P ;

If k − ζ(P ) > 0 then
If Cap(P ) < ∞ then F := F + fp, ζ(F ) := ζ(F ) + fp(k −

ζ(P )), and create the dynamic residual network based on fp;
Else Stop (the original problem is unbounded);

While k − ζ(P ) > 0;
End.

Theorem 4.7 When the Algorithm TVMKCF terminates, it finds either
a path with Cap(P ) = ∞ (the time-varying maximum (k, c)-flow problem
is unbounded), or the optimal solution with the flow value F and the total
benefit ζ(F ).

Proof: Straightforward.

We now analyze the time complexity of the algorithm. First, we can
show that, if the problem is bounded, the total flow value which can be
sent from s to ρ is less than or equal to UmT , where U is the maximum
capacity of the normal arcs. Note that any maximum (k, c)-flow with
F < ∞ in N can be decomposed into several subflows fi such that fi

travels on a dynamic path Pi (1 ≤ i ≤ l), where l is a finite integer, and
each path Pi must contain at least one normal arc (x, y). Otherwise,
suppose that there exist a path Pi0 , 1 ≤ i0 ≤ l, which consists of reserve
arcs only. If k − ζ(Pi0) ≥ 0, then the problem is unbounded since all
capacities of the reserve arcs are infinite, and we can send flow as much
as possible along the path Pi0 to get a positive profit. This contradicts
the assumption of F < ∞. If k − ζ(Pi0) < 0, then deleting subflow fi0
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from F can improve the total net profit. This contradicts the assumption
that F is a maximum (k, c)-flow. Since the total capacity of the normal
arcs is less than or equal to UmT , the claim is true. From Lemma 5.2,
the procedure SDFP-ZW needs O(mnT 2) running time, and at least
one unit of flow can be sent from s to ρ after a dynamic f-augmenting
path P is found. Therefore the total running time of the algorithm is
bounded by O(Unm2T 2). Now, we consider the case that the problem
is unbounded. There must exist a dynamic f-augmenting path P with
k − ζ(P ) ≥ 0. Clearly, P can be found in UmT + 1 steps, regardless of
whether P consists of reserve arcs only or not. In summary, we have

Theorem 4.8 Algorithm can solve the time-varying maximum (k, c)-
flow problem in O(Unm2T 2) time, if waiting at any vertex is not allowed.

7. Additional references and comments
Aronson (1989); Aronson (1986); Klingman et al (1982) and Orlin

(1984) develop solution approaches based on the multi-period struc-
ture of a dynamic network. An inductive out-of-kilter algorithm is con-
structed by White et al (1969) for solving a dynamic, acyclic network,
formulated from the problem of distributing empty freight cars in a
railroad system. Klingman et al (1982) address a multi-period produc-
tion/distribution problem formulated as a minimum cost dynamic flow
model. However, the structure of the network and its parameters, such as
costs, capacities, and transit times, are all fixed constants. Only the node
requirements may change over time. Orlin (1984) considers a problem
defined over an infinite time horizon with the objective to minimize the
average convex cost per period. Some variants of the problem have also
been addressed. Aronson (1989) and Aronson (1986) propose to solve
the problem by a forward algorithm, a procedure for dealing with multi-
period problems through solving successively subproblems over longer
time horizon. Carey et al (1993) study a time-varying minimum cost
flow problem in which the arc cost depends on the flow transmitted on
the arc.



Chapter 5

TIME-VARYING MAXIMUM CAPACITY

PATH PROBLEMS

1. Introduction

The maximum capacity path (MCP) problem is to find a path between
two vertices such that the capacity of the path is maximized, where the
capacity of a path is defined as the minimum of the capacities of the arcs
and vertices on this path. The problem is also called the max-min path
problem. When all parameters are assumed to be static constants, the
problem has been studied in the literature and shown to be polynomially
solvable (see Gabow (1985) and Punuen (1991)). It has also been used to
tackle a number of network problems. For example, Hansen (1980) has
utilized MCP to find paths under bicriteria; Lawler (1976) has shown
that MCP has applications in reliability theory; Berman et al (1987) has
utilized MCP to obtain the optimal minimax path of a single service unit
in a network; Ichimori et al (1979) has also used MCP to solve minimax
flow problems.

In this chapter, we will study the time-varying maximum capacity path
(TVMCP) problem, where the problem parameters may change over
time. Specifically, we consider the situations where a flow must take
a transit time b(x, y, t) to traverse an arc (x, y), and both the transit
time b(x, y, t) and the capacity l(x, y, t) of the arc (x, y) are functions
of the departure time t at the vertex x. Waiting at the vertex x is
allowed, subject to a waiting time constraint as well as a vertex capacity
constraint l(x, t), which limits the maximum flow at x during the time
period [t, t+1). The parameter l(x, t) may also change over time t. The
problem is to determine the maximum capacity path from the source s
to another pre-specified vertex, subject to the constraint that the total
travel time of the path is not greater than a given time limit T .
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Applications of the TVMCP problem vary. The following is an ex-
ample: A manufacturer is to determine a route to transport his product
from his factory in one city to his customer in another city. The prod-
uct is perishable, and thus it is imperative to deliver it to the customer
within the time limit T . Besides, due to the high setup cost and other
practical restrictions, it is not desirable to separate the transportation
of the product to different routes. To make the maximum benefit, the
concern of the manufacturer is to determine a single route that has the
maximum transmitting capacity. As the transmitting capacity and the
transit time of each arc connecting two cities are time dependent, the
problem can be formulated as a TVMCP model.

We will show, in this chapter, that while the static MCP problem is
polynomially solvable (Gabow (1985) and Punuen (1991)), the TVMCP
problem is NP-complete. Pseudo-polynomial algorithms will be devel-
oped to find the optimal solutions for the TVMCP problem in a number
of situations. The rest of this chapter is organized as follows. The com-
plexity of the problem is studied in Section 2. Solution algorithms are
developed in Section 3. A fully polynomial approximation approach is
given in Section 4. Finally, some additional references and comments
are given in Section 5.

2. NP-completeness
We first show that TVMCP with no waiting allowed at any vertex is

NP-complete. We denote this variant of the problem as TVMCP-NW.
The decision version of TVMCP-NW can be stated as: Given a time-
varying network N , a time limit T , and an integer k, does there exist
a path P from s to x = ρ within time T such that Cap(P ) ≥ k, where
Cap(P ) denotes the capacity of the path P ? Since no waiting is allowed
at any vertex, we do not need to consider the vertex capacities now. In
other words, Cap(P ) is now equal to the minimum capacity value among
all arc capacities on the path P .

Theorem 5.1 TVMCP-NW isNP-complete, even if the underlying graph
of the network is a planar graph.

Proof: We will show that the following Knapsack problem is reducible
to TVMCP-NW:

Knapsack problem (KP): Given a set of positive integers w1, w2, ..., wn

and B, does there exist a subset S ⊂ {1, 2, ..., n} such that
∑

i∈S wi = B?

Given any instance of KP, we can construct accordingly an instance
of TVMCP-NW as follows: The network N is as shown in Figure 5.1;
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x0 = s and xn+1 = ρ; T = B + n + 1, k = 2 and

b(xi−1, x
′
i, t) = wi,

b(x′
i, xi, t) = b(xi−1, xi, t) = b(xn, xn+1, t) = 1,

for 0 ≤ t ≤ T, 1 ≤ i ≤ n,

l(xi−1, x
′
i, t) = l(x′

i, xi, t) = l(xi−1, xi, t) = 2,

for 0 ≤ t ≤ T, 1 ≤ i ≤ n,

l(xn, xn+1, t) = 0, for 0 ≤ t < B + n,

l(xn, xn+1, B + n) = 2.

We now show that KP has a ‘yes’ answer iff TVMCP-NW has a ‘yes’
answer.

If there exists a set S ⊂ {1, 2, ..., n} such that
∑

i∈S wi = B, a path
P with no waiting time at any vertex can be constructed in such a
manner: Starting from x0, we choose the arcs (xi−1, x

′
i) and (x′

i, xi) if
i ∈ S, or choose the arc (xi−1, xi) if i �∈ S; At last, we choose the arc
(xn, xn+1). Obviously, α(xn) = B + n. Since l(xn, xn+1, B + n) = 2
and b(xn, xn+1, B + n) = 1, we have α(xn+1) = B + n + 1 ≤ T and
Cap(P ) = 2, which is the maximum possible capacity in N . Thus, there
is a path p in N that achieves the maximum capacity within time T .

Figure 5.1. The network constructed for TVMCP-NW
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On the other hand, if there exists a path P with time T and ca-
pacity Cap(P ) = 2, then α(xn) = B + n since only when t = B + n,
l(xn, xn+1, t) = 2, and the total time to traverse P is equal to B +n+1.
Note that the arc (xi−1, x

′
i) takes time b(xi−1, x

′
i, t) = wi if it is on P .

Letting S = {i|(xi−1, x
′
i) ∈ A(P )}, where A(P ) is the set of all arcs on

P , we have
∑

i∈S wi = B.
In summary, we complete the proof. �

We now consider the TVMCP problem where waiting time at each
vertex x is subject to an upper bound ux. Denote this variant of the
problem as TVMCP-BW. It is clear that TVMCP-NW is a special case
of TVMCP-BW with ux = 0 for all x ∈ V . This gives us immediately
the following result.
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Theorem 5.2 TVMCP-BWisNP-complete, even if the underlying graph
of the network is a planar graph. �

We can also show that the TVMCP problem with arbitrary waiting
time at any vertex is NP-complete. Denote the problem by TVMCP-
AW. Similar to the proof for TVMCP-NW, we can show that KP is
reducible to TVMCP-AW, by constructing an instance of TVMCP-AW
as in Figure 6.1 and letting l(x, t) = 1 for all x and t. Obviously, if a
dynamic path has a waiting time at a vertex, its capacity will not exceed
1In other words, if there is a path with capacity 2, it can not have any
waiting times. This leads to the following result.

Theorem 5.3 TVMCP-AWisNP-complete, even if the underlying graph
of the network is a planar graph.

3. Algorithms
In what follows, we will give a pseudopolynomial approach which can

obtain the optimal solution for the problem TVMCP-BW, where the
waiting time at vertex y is bounded above by a given number uy. The
problem can be restated as: Given a time-varying network N(V,A, b, l)
and a time limit T , find the maximum capacity path from s to x ∈ V \{s}
within the time T subject to the constraint that the waiting time at any
intermediate vertex y is not greater than uy.

Definition 5.2 Let ξb(x, t) be the maximum capacity of the path from
s to x of time exactly t and with waiting time zero at x, subject to the
constraint that waiting time at any vertex y on the path is not greater
than uy. If such a path does not exist, let ξb(x, t) = 0.

Lemma 5.1 ξb(s, 0) = ∞, ξb(s, t) = 0 for t = 1, ..., T , and ξb(y, 0) = 0
for all y �= s. For t > 0, we have:

ξb(y, t) = max
(x,y)∈A

max
(uA,uD)∈F(x,y,t)

{min{ξb(x, uA),L(x, uA, uD), l(x, y, uD)}}

where F(x, y, t) = {(uA, uD)|uD + b(x, y, uD) = t, 0 ≤ uD − uA ≤ ux},
uA = α(x), uD = τ(x), and L(x, uA, uD) = minuA≤t′≤uD−1 l(x, t′).

Proof: The case t = 0 is obvious. There does not exist any path of time
zero from s to any other vertex y since all transit times b(x, y, t) are
positive. Note that the empty path P (s, s) is feasible. Hence ξb(s, 0) =
∞ and ξb(y, 0) = 0 for all y �= s.

We now use induction to prove the formula. Consider t = 1. If there
exists a path from s to y of time exactly one, then y must be a neighbor
of s with b(s, y, 0) = 1. The formula holds with uA = uD = 0 and x = s.
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Assume that the claim is true for all t′ < t. Now, examine the case
where time is t. Consider a vertex y.

If ξb(y, t) = 0, there is nothing to prove. So assume ξb(y, t) > 0. First,
we show that there exists a path from s to y of time exactly t and with
capacity ξb(y, t). By the formula, ξb(y, t) = min{ξb(x, uA),L(x, uA, uD),
l(x, y, uD)} for some x such that (x, y) ∈ A and some (uA, uD) ∈ F(x, y, t).
By induction, we know that there is a feasible path, P ′(s, x), from s to
x of time exactly uA and with capacity ξb(x, uA). Letting uD − uA be
the new waiting time at x and extending P ′(s, x) with vertex y, we can
obtain a path P (s, y) of time exactly t. Since 0 ≤ uD − uA ≤ ux and
L(x, uA, uD) > 0, path P (s, y) is again feasible. The capacity of P is
min{ξb(x, uA),L(x, uA, uD), l(x, y, uD)} = ξz(y, t). The claim is there-
fore proven.

We now prove that ξb(y, t) is the capacity of a maximum capacity
path from s to y of time exactly t. Let P (s = x1, x2, ..., xr = y) be a
maximum capacity feasible path from s to y of time exactly t, x be the
predecessor of y on P , uA and uD be the arrival time and departure time
of the subpath P ′ from s to x at vertex x, respectively. By definition,
t = uD + b(x, y, uD). By induction, Cap(P ′) ≤ ξb(x, uA) since uD <
t. By definition, Cap(P ) = min{Cap(P ′),L(x, uA, uD), l(x, y, uD)} ≤
min{ξb(x, uA),L(x, uA, uD), l(x, y, uD)} ≤ ξb(y, t), where the last in-
equality comes from the computation of the formula. This capacity
must equal ξb(y, t), since P is a path with the maximum possible capac-
ity and of time exactly t, and since there exists a path of time exactly t
that achieves the capacity ξb(y, t), as we showed above. This completes
the proof. �

To improve the efficiency of the algorithm to be presented below, we
will use a binary heap to store the values of ξb(x, uA) for every vertex
x and for all max{0, t − uA} ≤ uA ≤ t. Particularly, given (x, y) and
t, a value of uD that satisfies uD + b(x, y, uD) = t is known. Thus, the
corresponding value of la(x, y, uD) is also known. Therefore, the problem
of finding

max
(uA,uD)∈F(x,y,t)

{min{ξb(x, uA),L(x, uA, uD), l(x, y, uD)}}

reduces to solving a problem of finding

ξm
b (x, uD) = max

max{0,uD−ux}≤uA≤uD

{min{ξb(x, uA),L(x, uA, uD)}}

(recall the definition of F(x, y, t) in Lemma 5.1). In the procedure
TVMCP-BW below, we keep all maximal value ξm

b (x, u), for all x and
all u ≤ t − 1. And for each vertex x, maintain one heap Heapx. Af-
ter ξb(x, t) is obtained, the new Heapx at time t is obtained by deleting
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ξb(x, t−ux−1) from the heap (if x−ux−1 ≥ 0) and inserting ξb(x, t). Let
ξ∗b (x, t−1) be the maximum value in Heapx after deleting ξb(x, t−ux−1)
and before inserting ξb(x, t). Then, we have

Lemma 5.2 For t = 0, ξm
b (x, t) = 0. For t = 1, .., T ,

ξm
b (x, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max{min{ξ∗b (x, t − 1), l(x, t − 1)}, ξb(x, t)}
if ξ∗b (x, t − 1) < ξm

b (x, t − 1)
max{min{ξm

b (x, t − 1), l(x, t − 1)}, ξb(x, t)}
if ξ∗b (x, t − 1) ≥ ξm

b (x, t − 1)

Proof: It is obvious to see ξm
b (x, 0) = 0. Thus, we need only prove the

formula for t > 0. By the definition,

ξm
b (x, t) = max

max{0,t−ux}≤t′≤t
{min{ξb(x, t′),L(x, t′, t)}}

= max{min{ max
max{0,t−ux}≤t′≤t−1

{min{ξb(x, t′),L(x, t′, t − 1)}},

l(x, t − 1)}, ξb(x, t)} (5.1)

and

ξm
b (x, t − 1) = max

max{0,t−ux−1}≤t′≤t−1
{min{ξb(x, t′),L(x, t′, t − 1)}}.

Now we consider two cases:

Case 1: ξ∗b (x, t− 1) ≥ ξm
b (x, t− 1). If t ≤ ux, then any elements will

not be deleted in Heapx at time t, and

ξm
b (x, t − 1) = max

0≤t′≤t−1
{min{ξb(x, t′),L(x, t′, t − 1)}}.

Thus,

ξm
b (x, t) = max{min{ξm

b (x, t − 1), l(x, t − 1)}, ξb(x, t)}.

If t > ux, then t − ux − 1 ≥ 0. Therefore,

ξm
b (x, t − 1) = max

t−ux−1≤t′≤t−1
{min{ξb(x, t′),L(x, t′, t − 1)}}

= max{min{ξb(x, t − ux − 1),L(x, t − ux − 1, t − 1)},

max
t−ux≤t′≤t−1

{min{ξb(x, t′),L(x, t′, t − 1)}}}. (5.2)

By the assumption, ξ∗b (x, t−1) ≥ ξm
b (x, t−1), and by the definition,

L(x, t − ux − 1, t − 1) ≤ maxt−ux≤t′≤t−1 L(x, t′, t − 1). These imply

ξb(x, t − ux − 1) ≤ max
t−ux≤t′≤t−1

ξb(x, t′).
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Thus,

ξm
b (x, t − 1) = max

t−ux≤t′≤t−1
{min{ξb(x, t′),L(x, t′, t − 1)}}.

By substituting ξm
b (x, t−1) for maxt−ux≤t′≤t−1{min{ξb(x, t′),L(x, t′,

t − 1)}} in (5.1),we can see that the formula holds.

Case 2: ξ∗b (x, t − 1) < ξm
b (x, t − 1). It implies t > ux. We can now

examine (5.2). Since

maxt−ux≤t′≤t−1 ξb(x, t′) ≥ maxt−ux≤t′≤t−1{min{ξb(x, t′),L(x, t′, t −
1)}},

we have
max

t−ux≤t′≤t−1
ξb(x, t′) = ξ∗b (x, t − 1)

< ξm
b (x, t − 1)

= min{ξb(x, t − ux − 1),L(x, t − ux − 1, t − 1)}

≤ L(x, t − ux − 1, t − 1)

≤ min
t−ux≤t′≤t−1

L(x, t′, t − 1)

That is, maxt−ux≤t′≤t−1ξb(x, t′) < mint−ux≤t′≤t−1L(x, t′, t−1). Thus,

ξ∗b (x, t − 1) = max
t−ux≤t′≤t−1

ξb(x, t′)

= max
t−ux≤t′≤t−1

{min{ξb(x, t′),L(x, t′, t − 1)}}.

By substituting ξ∗b (x, t−1) for maxt−ux≤t′≤t−1{min{ξb(x, t′),L(x, t′,
t − 1)}} in (5.1), we can obtain

ξm
b (x, t) = max{min{ξ∗b (x, t − 1), l(x, t − 1)}, ξb(x, t)}.

This completes the proof. �

The following procedure calculates ξb(y, t).

Procedure TVMCP-BW;
Initialize ξb(s, 0) := ∞, ξb(s, t) = 0 for t = 1, ..., T ; ξb(y, 0) := 0

for all y �= s and t = 0, 1, ..., T ; Heapx := {ξb(x, 0)} and ξm
b (x, 0) :=

ξb(x, 0) for all x;
Sort all values u + b(x, y, u) for all u = 1, ..., T and for all arcs

(x, y) ∈ A;
For t = 1, 2, ..., T do

For all y ∈ V \{s} do
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ξb(y, t) := max
(x,y)∈A

max
{uD|uD+b(x,y,uD)=t}

{min{ξm
b (x, uD), l(x, y, uD)}};

For every vertex y update Heapy as follows
If t > uy then delete-heapyξb(y, t − uy − 1);
Let ξ∗b (y, t − 1) := Maximum-heapy;
If ξ∗b (y, t − 1) ≤ ξm

b (y, t − 1) then

ξm
b (y, t) := max{min{ξ∗b (y, t − 1), l(y, t − 1)}, ξb(y, t)};

Else

ξm
b (y, t) := max{min{ξm

b (y, t − 1), l(y, t − 1)}, ξb(y, t)};

Insert-heapyξb(y, t);
Return;

Our main algorithm can be stated below.

Algorithm TVMCP-BW Begin
Call procedure TVMCP-BW;
For every y do ξb(y) := max0≤t≤T ξb(y, t);

End.

Lemma 5.3 After Algorithm TVMCP-BW terminates, ξb(y) is the ca-
pacity of a maximum capacity path from s to y of time at most T .

Lemma 5.3 comes directly from Lemma 5.1, and therefore its proof is
omitted here.

Lemma 5.4 Algorithm TVMCP-BW can be implemented such that it
runs in O(T (m + n log T )) time.

Proof: It is obvious that the initialization can be done in O(Tn) time.
The sorting can be implemented in O(Tm) time when we use bucket-
sort. The two steps of inserting ξb(y, t) and deleting ξb(y, t − uy − 1)
take O(log uy) = O(log T ) time. The step of calculating ξm

b (y, t) takes
constant time. Since the procedure TVMCP-BW has to perform these
two steps for all t = 1, 2, ..., T and all vertex y ∈ V , it takes in total
O(Tn log T ) time to maintain the heaps. The step of finding ξm

b (y, t)
takes O(1) time. Finally, the last step of computing ξb(y) for all y ∈ V
takes O(Tn) time. Therefore the overall running time of the algorithm
is bounded above by O(T (m + n log T )). �

Combining Lemmas 5.3-5.4, we have

Theorem 5.4 The TVMCP-BW problem can be optimally solved in
O(T (m + n log T )) time.
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For the problem TVMCP-NW, since no waiting is allowed at any
vertex, we need not employ any heap to store the vertex capacities l(x, t)
between time uD −ux ≤ t ≤ uD. Thus, the algorithm TVMCP-BW can
be easily applied to this case. This is given below.

Definition 5.3 Let ξz(x, t) be the maximum capacity of the path from s
to x of time exactly t, where no waiting is allowed at any vertex. If such
a path does not exist, let ξz(x, t) = 0.

Lemma 5.5 ξz(s, 0) = ∞, ξz(s, t) = 0 for t = 0, 1, ..., T , and ξz(y, 0) = 0
for all y �= s. For t > 0, we have:

ξz(y, t) = max
(x,y)∈A

max
{u|u+b(x,y,u)=t}

{min{ξz(x, u), l(x, y, u)}}.

The proof for the above lemma is similar to that for Lemma 5.1. Based
on Lemma 5.5, we can have the following procedure to compute ξz(y, t).

Procedure TVMCP-NW

Initialize ξz(s, 0) := ∞, and ξz(s, t) = ∞ for t = 1, ..., T ;
ξz(y, t) := 0 for all
y �= s and t = 0, 1, ..., T ;

Sort all values u + b(x, y, u) for all u = 1, ..., T and for all arcs
(x, y) ∈ A;
For t = 1, 2, ..., T do

For all y ∈ V \{s} do

ξz(y, t) := max
(x,y)∈A

max
{u|u+b(x,y,u)=t}

{min{ξz(x, u), l(x, y, u)}}

Return;

The following is the algorithm to solve the problem TVMCP-NW:

Algorithm TVMCP-NW

Begin
Call procedure TVMCP-NW;
For every vertex y do ξz(y) := max0≤t≤T ξz(y, t);

End.

Lemma 5.6 After Algorithm TVMCP-NW terminates, ξz(y) is the ca-
pacity of a maximum capacity path from s to y of time at most T , where
no waiting is allowed at any vertex.

Proof: The correctness of the procedure TVMCP-NW follows directly
from Lemma 5.5. Since ξz(ρ, t) is the capacity of the maximum capacity
path from s to ρ of time exactly t, where t ∈ [0, T ], the maximum of
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ξz(ρ, t) over all 0 ≤ t ≤ T must be the capacity of the maximum capacity
path from s to ρ within time T . Moreover, the path generated by the
algorithm contains no waiting time at any vertices. �

Lemma 5.7 Algorithm TVMCP-NW can be implemented such that it
runs in O(T (m + n)) time.

Proof: It is obvious that the initialization step needs O(Tn) time. For
the sorting step, we can use bucketsort, with T buckets. Since there are
Tm values to be sorted, this step can be performed in O(Tm) time.

Since the values u + b(x, y, u) are now sorted, the overall time needed
to compute ξz(y, t) is proportional to T

∑

y

∑

x,(x,y)∈A 1 = Tm. Thus,
the total running time of the algorithm is bounded by O(T (m + n)). �

In summary, we obtain

Theorem 5.5 The TVMCP-NW problem can be optimally solved in
O(T (m + n)) time.

We now consider the problem TVMCP-AW, where ux = ∞ for each
vertex x ∈ V . In other words, waiting at any vertex is arbitrarily allowed.
In this case, a path from s to x of time at most t is also a path of time
at most t + 1, as long as the capacity of the vertex allows us to wait at
x during the period [t, t + 1].

Definition 5.4 Let ξa(x, t) be the maximum capacity of the path from
s to x of time at most t, where waiting at any vertex is not limited. If
such a path does not exist, let ξa(x, t) = 0.

Similar to Lemma 5.5, we can have:

Lemma 5.8 ξa(s, t) = ∞, for t = 0, 1, ..., T , and ξa(y, 0) = 0 for all
y �= s. For t > 0,

ξa(y, t) = max
(x,y)∈A

max
{u|u+b(x,y,u)=t}

{min{ξa(y, t − 1), l(y, t − 1)},

min{ξa(x, u), l(x, y, u)}}.

We can also use the following procedure to compute ξa(x, t).

Procedure TVMCP-AW;
Initialize ξa(s, t) := ∞ for t = 0, 1, ..., T ; ξa(y, 0) := 0 for all

y �= s and t = 0, 1, ..., T ;
Sort all values u + b(x, y, u) for all u = 1, ..., T and for all arcs

(x, y) ∈ A;
For t = 1, 2, ..., T do
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For all y ∈ V \{s} do

ξa(y, t) := max
(x,y)∈A

max
{u|u+b(x,y,u)=t}

{min{ξa(y, t − 1), l(y, t − 1)},

min{ξa(x, u), l(x, y, u)}}

Return;

The algorithm solves the problem TVMCP-AW.

Algorithm TVMCP-AW

Begin
Call procedure TVMCP-AW;
For every y do ξa(y) := max0≤t≤T ξa(y, t);

End.

Similar to our analysis of the problems TVMCP-NW and TVMCP-
BW, we can prove the following results.

Lemma 5.9 After Algorithm TVMCP-AW terminates, ξa(y) is the ca-
pacity of a maximum capacity path from s to y for the problem TVMCP-
AW.

Lemma 5.10 Algorithm TVMCP-AW can be implemented such that it
runs in O(T (m + n)) time.

Theorem 5.6 The problem TVMCP-AW can be optimally solved in
O(T (m + n)) time.

4. Finding approximate solutions
We can see that the time requirements of the algorithms developed

above depend on the parameter T . In this section we will show how
the time complexity of the algorithms could be reduced provided that
we aim to find approximate solutions only. The key idea is to evaluate
only a subset of the values for t = {0, 1, · · · , T}. We will analyze the
problem TVMCP-AW; that is, waiting at any vertex is not constrained.
Furthermore, we assume that there is no vertex capacity limit; namely,
l(x, t) = ∞ for all vertex x and all time t.

Specifically, for a given network N(V,A, b, l), we will apply our algo-
rithm TVMCP-AW to a new problem TVMCP-AW′, which is same as
the original problem TVMCP-AW except that t = 0, k, 2k, ..., k⌊T/k⌋,
and b′(x, y, t) = k · ⌈b(x, y, t)/k⌉ for t = 0, k, 2k, ..., k · ⌊T/k⌋. It follows
from Theorem 5.6 that, Algorithm TVMCP-AW can find an optimal
solution P 0 for the problem TVMCP-AW′ in a time O(T (m + n)/k),
which can be made sufficiently small if k is large. The question now is
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how to ensure the solution P 0 to be a satisfactory approximate solution
when it is applied to the original problem.

Let ξ′a(x, t) be the maximum capacity of the path from s to x of time
exactly t for the problem TVMCP-AW′. The following is an application
of algorithm TVMCP-AW to determine the optimal solution for the
problem TVMCP-AW′.

Algorithm TVMCP-AW′

Begin
Initialize ξ′a(s, 0) := ∞ and ξ′a(s, t) := 0 for t = k, ..., k⌊T/k⌋;

ξ′a(y, 0) := 0 for all y �= s and t = 0, k, ..., k⌊T/k⌋;
Sort all values u + b′(x, y, u) for all u = 0, k, ..., k⌊T/k⌋ and for

all arcs (x, y) ∈ A;
For t = k, 2k, ..., k⌊T/k⌋ do

For each y ∈ V \{s} do

ξ′a(y, t) := max
(x,y)∈A

max
{u|u+b′(x,y,u)=t}

{max{ξ′a(x, t − k),

min{ξ′a(x, u), l(x, y, u)}}}

For every vertex y do ξ′a(y) := max0≤t≤k⌊T/k⌋ ξ′a(y, t);
End.

First, we can show the following result. For ease of reference, we use
Cap(P ) to denote the capacity of a path P .

Lemma 5.11 If Algorithm TVMCP-AW′ finds a solution P o, then there
exists a path P in the original network N such that Cap(P o) = Cap(P ).

Proof: Suppose P o(s = x1, ..., xr = ρ) with αo(xi), τ o(xi), and w0(xi)
as its arrival time, departure time, and waiting time at vertices xi,
i = 1, ..., r, respectively. We first show that a feasible path P can be
constructed for TVMCP-AW, and then prove that Cap(P o) = Cap(P ).

We can construct a path P of the same topological structure as P o,
and let τ(xi) = τ o(xi), for i = 1, ..., r. Furthermore, we can let α(xi) =
τ(xi−1) + b(xi−1, xi, τ(xi−1)). Consequently, w(xi) = αo(xi) − α(xi) +
wo(xi). Note that we always have αo(xi) ≥ α(xi) due to the definition of
b′. This is valid for all i. Therefore, the path P with all α(xi), τ(xi) and
w(xi) as given above comprises a feasible dynamic path in the original
network, which can be traversed within the time limit T .

Since τ(xi) = τ o(xi) for all i, it is clear that Cap(P o) = Cap(P ). �

Let δ(x, y) = max1≤t≤T−1{l(x, y, t+1)−l(x, y, t)} for each arc (x, y) ∈
A and let δmax = max(x,y)∈A δ(x, y). Further, let Cmin denote the mini-
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mum arc capacity. Define the relative error of the solution P 0 as

r =
Cap(P ∗) − Cap(P 0)

Cap(P ∗)
,

where P ∗ is the optimal solution of the original problem TVMCP-AW.
The following theorem indicates that P 0 is an approximate solution for
TVMCP-AW.

Theorem 5.7 For any given ε, we can choose k = [Cminε/(nδmax)].
Then, Algorithm TVMCP-AW′ can find, in O(T/k(m + n)) time, a so-
lution P 0 such that r ≤ ε.

Proof: By Lemma 5.11, the solutionP 0 obtained by Algorithm TVMCP-
AW′ is a feasible solution of TVMCP-AW.

We now consider another solution P ′, which has the same topological
structure as P ∗, while the departure time at the beginning vertex of each
arc takes a value only at t = 0, k, 2k, ..., k⌊T/k⌋. Then we have

Cap(P ′) ≤ Cap(P 0) ≤ Cap(P ∗)

since P ′ is a feasible solution of TVMCP-AW′ while P 0 is the optimal
solution of TVMCP-AW′. It therefore follows that

r =
Cap(P ∗) − Cap(P 0)

Cap(P ∗)
≤

Cap(P ∗) − Cap(P ′)

Cap(P ∗)
≤

nkδmax

Cap(P ∗)
≤

nkδmax

Cmin
.

If we choose k = [Cminε/(nδmax)], then r ≤ ε. On the other hand, it
follows from Lemma 5.10 that the solution P 0 can be found in a time
O(T/k(m + n)). �

If l(x, y, t) is a linear function of t for all (x, y), then we can see that

δmax ≤
Lmax − Cmin

T
,

where Lmax is the maximum capacity of all l(x, y, t). If we choose

k =
TCminε

n(Lmax − Cmin)
,

then we have O(T/k(m + n)) = O(n(m + n)(Lmax − Cmin)(εCmin)) =
O(Lmaxn(m + n)/(εCmin)). This gives us the following result.

Corollary 5.1 Algorithm TVMCP-AW′ can be implemented in
O(Lmaxn(m + n)/(εCmin)) time, if l(x, y, t) is a linear function of t
for all (x, y).
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Table 5.1. b(x, y, t) and l(x, y, t)

t (s, g) (s, h) (h, g) (h, f) (g, f) (g, ρ) (f, ρ)

0 2,41 1,44 2,45 2,44 1,43 2,42 1,43
1 1,42 2,44 2,39 1,44 1,43 1,40 1,43
2 1,41 2,41 1,40 3,45 2,45 1,41 2,44
3 3,43 1,43 2,45 3,43 1,43 1,41 1,43
4 2,40 3,42 1,42 1,42 1,44 2,42 1,41
5 2,44 2,41 2,44 1,41 1,40 2,41 3,40
6 3,45 1,40 3,43 2,40 2,41 1,40 1,42
7 1,41 1,44 2,41 2,40 1,41 3,41 1,41
8 2,41 2,44 2,45 3,44 1,42 1,44 2,45
9 3,43 2,43 1,44 1,45 1,45 1,42 1,44

From Corollary 5.1, we know that Algorithm TVMCP-AW′ becomes
fully polynomial if Lmax/Cmin is bounded above by a polynomial in m
or n.

Now, we will give an example to illustrate how to obtain an approxi-
mate solution.

Example 5.1

Given a time-varying network as shown in Figure 5.2. All transit time
and arc capacity as listed in Table 5.1 (T = 9).

Figure 5.2. The network for Example 5.1

p

fh

g

s

One can find the maximum capacity path P = (s, h, f, ρ) with α(ρ) =
4 and Cap(P ) = 6 (τ(s) = 0, α(h) = τ(h) = 1, and α(f) = τ(f) = 2).
Now we try to use Algorithm TVMCP-AW′ to find an approximate
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Table 5.2. b′(x, y, t) and l(x, y, t)

t (s, g) (s, h) (h, g) (h, f) (g, f) (g, ρ) (f, ρ)

0 3,41 3,44 3,45 3,44 3,43 3,42 3,43
3 3,43 3,43 3,45 3,43 3,43 3,41 3,43
6 3,45 3,40 3,43 3,40 3,41 3,40 3,42
9 3,43 3,43 3,44 3,45 3,45 3,42 3,44

solution P ′ with ε = 2. Notice that we have Cmin = 38, n = 5, and
δmax = 5, therefore, k = [Cminε/(nδmax)] = [76/25] = 3. Let b′ = ⌈b/3⌉
and obtain a new table as shown in Table 5.2.

Then, we find a path P ′ = (s, h, f, ρ) with τ(s) = 0, α(h) = τ(h) = 3,
α(f) = τ(f) = 6, α(ρ) = 9 and Cap(P ′) = 4. Actually, in the original
network, the corresponding path could be found with τ(s) = 0, α(h) = 1,
w(h) = 2, τ(h) = 3, α(f) = 6, τ(f) = 6, and α(ρ) = 7.

5. Additional references and comments
The well-known approach of creating an equivalent static time-

expanded network to model the time-varying network is also applicable
to handle the TVMCP problem. The computational time for solving,
for example, the TVMCP model with the bounded waiting time con-
straint will be O(min{T (m + nT + n log(nT )), (mT + nT 2) logn W}) in
the worse case if one applies the algorithm of Gabow (1985) on the time-
expanded network, where m is the number of arcs, n is the number of
vertices and W is the maximum arc capacity. The computational time
of the algorithm we describe in this chapter is, however, bounded by
O(T (m + n log T )).

The TVMCP problem may appear as a subproblem in the process of
solving other time-varying network optimization problems. For example,
as we have seen in Chapter 4, the time-varying maximum flow problem
can be solved by repeatedly finding a dynamic augmenting path in the
dynamic residual network. Theoretically, it is not necessary to require
each augmenting path to have the maximum capacity. It will, however,
reduce the computational requirement if each augmenting path is also
a maximum capacity path (see Ahuja et al (1993)). Similarly, TVMCP
can also be applied in solving the time-varying versions of the problems
studied in Hansen (1980); Lawler (1976); Berman et al (1987); Ichimori
et al (1979).





Chapter 6

THE QUICKEST PATH PROBLEM

1. Introduction

Consider a network N(V,A, l, b), where G = (V,A) is a directed graph
without multiple arcs and self loops, l(x, y) ≥ 0 and b(x, y) > 0 are
the capacity and the lead time (transit time) for an arc (x, y) ∈ A,
respectively. If P (x1, x2, ..., xk) is a path in N , then the lead time of
the path P is defined as ℓ(P ) =

∑k−1
i=1 b(xi, xi+1), and the capacity of

the path P is Cap(P ) = min1≤i≤k−1 l(xi, xi+1). To send σ units of flow
from x1 to xk through P , one can send a batch of Cap(P ) units at each
time t = 0, 1, 2, · · ·. This process can continue until all σ units of flow are
transmitted, which requires a total transmission time ℓ(p)+⌈σ/Cap(P )⌉.
The quickest path (QP) problem is to find the path that can send the σ
units of flow from s to ρ with the minimum total transmission time.

Chen and Chin (1990) have pointed out that the quickest path prob-
lem does not possess the property that “any subpath of a shortest path
must itself be a shortest path”. The reason is that the transmission time
of a path depends not only on the lead time of the path, but also on the
path capacity. They have also proposed an algorithm which can opti-
mally solve the problem in O(m2 +mn log m) time. Rosen, Sun and Xue
(1991) have developed another algorithm which can be implemented in
O(m2 + mn log n) time.

In this chapter we consider a variant of the QP problem, which is
similar to the QP version that has studied in the literature, but is more
general in the objective function. Specifically, instead of considering
the total transmission time ℓ(P ) + ⌈σ/Cap(P )⌉, we are interested in a
more general function h(ℓ(P ), ℘(P )), where ℘(P ) = ⌈σ/Cap(P )⌉, which
is the number of batches to transmit the flow due to the capacity limit
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of the path. In other words, the total cost is a function of the lead
time of the path and the number of time to divide the flow into small
batches to pass through the path. Such a cost function may model
many practical problems in logistics management, telecommunications,
etc. For example, suppose a manufacturer has to deliver his product from
his manufacturing base to a market through a transportation network,
where air, sea, and road transportation modes are available but their
speed, cost, and routing are different. If he decides to deliver his product
by air, the transit time is shorter but his cargo will have to be divided
into smaller batches due to the capacity limit of aircraft. If he decides
to use sea transportation, the transit time is longer but the cargo may
be transported in larger batches. A natural objective to be optimized is
to determine the best solution (path) so that the total logistics cost is
minimized.

We deal with the situation where the problem parameters may change
over time. Specifically, we consider the model in which l(x, y, t) and
b(x, y, t) are the capacity and the lead time of the arc (x, y) at time
t = 0, 1, ..., T , where T is a given positive integer, l(x, y, t) is a non-
negative integer and b(x, y, t) is a positive integer for any (x, y) and t.
The problem is to determine, by taking into account the time-varying
information, a path P such that h(ℓ(P ), ℘(P )) is minimized, where
h(ℓ(P ), ℘(P )) is a non-decreasing function of ℘(P ). Note that when
h(ℓ(P ), ℘(P )) takes the specific form ℓ(p)+⌈σ/Cap(P )⌉ with all capaci-
ties and lead times being constant, our model reduces to the traditional
QP problem. To be consistent with the terminology that has been used
in the literature, we call such a path the quickest path (QP), and our
model the time-varying QP problem.

This chapter is organized as follows. Section 2 is the detailed problem
formulation. Section 3 shows that the problem is NP-hard, even when
the underlying graph of the network is a directed planar graph. Pseudo-
polynomial algorithms are developed in Section 4. As an application,
in Section 5 we examine a static k-quickest path problem, which is to
determine the first k quickest paths for any given k. Some additional
references and remarks are given in Section 6.

2. Problem formulation

Consider a time-varying network N(V,A, l, b), where l(x, y, t) ≥ 0 and
b(x, y, t) > 0 are the capacity and the lead time (transit time) of an arc
(x, y) ∈ A at time t. We assume that there is no capacity limit at any
vertex. We further assume that the capacity l(x, y, t) is a nonnegative
integer and the lead time b(x, y, t) is a positive integer. A single path
is to be determined to send σ units of flow from the source vertex s to
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the sink vertex ρ, such that the total cost h(ℓ(P ), ℘(P )) (see Section 1
above) is minimized, where h(ℓ(P ), ℘(P )) is a non-decreasing function
of ℘(P ).

Definition 6.1 Let P (x1, ..., xr) be a path from x1 to xr. The arrival
time of a vertex xi on P is defined as α(xi) such that α(x1) = t0 ≥ 0
(for the source vertex s, we let α(s) = 0), and

α(xi) = α(xi−1) + w(xi−1) + b(xi−1, xi, τ(xi−1)), for i = 2, ..., r,

where w(xi−1) is the waiting time at vertex xi−1 and τ(xi), the departure
time of a vertex xi on P , is defined as

τ(xi) = α(xi) + w(xi), for i = 1, ..., r − 1.

Definition 6.2 Let P (s, x) be a path from s to x. The time of P is
defined as α(x) + w(x).

Let P (x1, x2, ..., xr) be a path from x1 to xr. Then, the lead time of
P is

ℓ(P ) =
r−1
∑

i=1

b(xi, xi+1, τ(xi)) +
r−1
∑

i=1

w(xi).

The capacity of the path is defined as the minimum arc capacity
along the path. Because of this capacity limit, the flow σ must be
divided into ℘(P ) batches, where ℘(P ) = ⌈σ/Cap(P )⌉. We assume that
when the flow starts to be transmitted, the ℘(P ) batches of flow will be
transmitted at the same time (in other words, we assume that the time
interval between sending two batches is negligible).

Given a time duration [0, T ], the time-varying quickest time (TVQP)
problem is to find an optimal path P ∗ to send the σ units of flow from
the source vertex s to the sink vertex ρ, such that the cost function
h(ℓ(P ), ℘(P )) is minimized while all other constraints including the ca-
pacity constraints are satisfied.

3. NP-hardness
We will now show that the general TVQP problem is NP-hard. To

simplify the description, we consider the problem with zero waiting time
constraint first. Let h(ℓ(P ), ℘(P )) = ℓ(P ) + ⌈σ/Cap(P )⌉, and rewrite
it as h(P ). The decision version of TVQP can be stated as: Given a
time-varying network N , a time limit T , and an integer k, does there
exist a path P from s to x = ρ within time T such that h(P ) ≤ k?

Theorem 6.1 TVQP is NP-hard, even if the underlying graph of the
network is a directed planar graph.
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Proof: We show that the Knapsack problem defined below is reducible
to TVQP:

Knapsack problem (KP): Given a set of positive integers w1, w2, ..., wn

and B, does there exist a subset S ⊂ {1, 2, ..., n} such that
∑

i∈S wi = B?

Given any instance of KP, we construct accordingly an instance of
TVQP as follows: The network N is as shown in Figure 6.1; x0 = s and
xn+1 = ρ; T = B + n + 1, σ = 1, k = B + n + 2 and

b(xi−1, x
′
i, t) = wi,

b(x′
i, xi, t) = b(xi−1, xi, t) = b(xn, xn+1, t) = 1,

for 0 ≤ t ≤ T, 1 ≤ i ≤ n,

l(xi−1, x
′
i, t) = l(x′

i, xi, t) = l(xi−1, xi, t) = 1,

for 0 ≤ t ≤ T, 1 ≤ i ≤ n,

l(xn, xn+1, t) = 0, for 0 ≤ t < B + n,

l(xn, xn+1, B + n) = 1.

We now show that KP has a ‘yes’ answer iff TVQP has a ‘yes’ answer.

Figure 6.1. The constructed network for TVQP
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If there exists a set S ⊂ {1, 2, ..., n} such that
∑

i∈S wi = B, a
path p with no waiting times at any its vertices can be constructed
as follows: Starting from x0, choose the arcs (xi−1, x

′
i) and (x′

i, xi) if
i ∈ S, and choose the arc (xi−1, xi) if i �∈ S; At last, choose the arc
(xn, xn+1). Obviously, α(xn) = B + n. Since l(xn, xn+1, B + n) = 1 and
b(xn, xn+1, B + n) = 1, we have α(xn+1) = B + n + 1 and Cap(P ) = 1.
The lead time of P is ℓ(P ) = α(xn+1) = B +n+1 and the cost required
is h(P ) = ℓ(P ) + ⌈σ/Cap(P )⌉ = B + n + 1 + 1 ≤ k. Thus, there is a
path P in N that achieves the cost k.

On the other hand, if there exists a quickest path P within time
duration T with h(P ) ≤ k, then ℓ(P ) < h(P ) ≤ k as ⌈σ/Cap(P )⌉ > 0,
and α(xn) must be B + n since only when t = B + n, l(xn, xn+1, t) = 1.
Let S = {i|(xi−1, x

′
i) ∈ A(p)}, where A(p) is the set of all arcs on p.

Then we must have
∑

i∈S wi = B.
In summary, we complete the proof of the theorem. �
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Similar results for the problems with arbitrary waiting time constraint
and bonded waiting time constraint can be obtained, which are omitted
here.

4. Algorithms
Recall that the maximum capacity path problem discussed in Chapter

5 is to determine a path P from s to ρ with the maximum capacity
Cap(P ). We can show that, the TVQP problem can be tackled by
solving a set of time-varying maximum capacity path problems.

For each t = 0, 1, ..., T − 1, we can find a time-varying maximum
capacity path P (s, ρ) from s to ρ such that it can be traversed in a time
exactly equal to t with w(ρ) = 0. Denote this path as Pt, and let

h∗ = min
0≤t≤T,Cap(Pt)>0

h(ℓ(Pt), ℘(Pt)).

We can see that h∗ is the cost of the quickest path from s to ρ to transmit
a given flow σ. This gives us the following property.

Property 6.1 Given a network N(V,A, l, b), a flow σ, a time limit T ,

and a path P (s = x1, x2, ..., xr = ρ) with t =
∑r−1

i=1 b(xi, xi+1, τ(xi)) +
∑r−1

i=1 w(xi) ≤ T , then

(i) if P is a quickest path to transmit the flow σ with the lead time
ℓ(P ) = t, then there must exist a maximum capacity path of time
exactly t that has the same cost as that of P , where the transit time
is the lead time for each arc;

(ii) if Pt is a maximum capacity path of time t ≤ T which satisfies

h(ℓ(Pt), ℘(Pt)) = min
0≤t′≤T,Cap(Pt′ )>0

h(ℓ(Pt′), ℘(Pt′))

then P is a quickest path to transmit the flow σ within time duration
T .

Proof: We prove part (i) first. Suppose that P is a quickest path to
transmit the flow σ. If P is not a maximum capacity path of time
exactly t, that is, there exists another path P ′ of time exactly t that
has Cap(P ′) > Cap(P ), then, h(ℓ(P ′), ℘(P ′)) ≤ h(ℓ(P ), ℘(P )), since
℘(P ′) ≤ ℘(P ), ℓ(P ′) = t = ℓ(P ) and h(ℓ(P ), ℘(P )) is a non-decreasing
function of ℘(P ). Because P is the quickest path we must have
h(ℓ(P ′), ℘(P ′)) = h(ℓ(P ), ℘(P )).

We now prove part (ii). Suppose Pt is a maximum capacity path from
s to ρ of time exactly t such that

h(ℓ(Pt), ℘(Pt)) = min
0≤t′≤T,Cap(Pt′ )>0

h(ℓ(Pt′), ℘(Pt′))
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Suppose P ′′ is the quickest path for the TVQP problem with the lead
time ℓ(P ′′) = t′′. Let Pt′′ be the maximum capacity path of time exactly
t′′. It follows from part (i) that

h(ℓ(Pt), ℘(Pt)) ≤ h(ℓ(Pt′′), ℘(Pt′′)) ≤ h(ℓ(P ′′), ℘(P ′′)).

Since P ′′ is the quickest path, we must have h(ℓ(Pt), ℘(Pt)) =
h(ℓ(P ′′), ℘(P ′′)). By definition, we know that Pt is a quickest path.
This completes the proof. �

Note that Property 6.1 is true for the three types of waiting time
constraints. It also reveals an interesting fact that, for the case where
the waiting time at a vertex is arbitrary, the optimal strategy may let
the flow wait at some vertex. This contradicts a general intuition that
departure of the flow at the earliest possible time would be the optimal
solution.

It follows from Property 6.1 that solving the time-varying quickest
path problem can be converted into solving a set of time-varying maxi-
mum capacity path problems. Let ξ(x, t) be the maximum capacity of
the dynamic path from s to x of time exactly t with α(x) = t. We have
the following algorithm.

Algorithm TVQP

Begin
Call Procedure TVMCP-ZW (TVMCP-AW, or TVMCP-BW);
Let Pt be the maximum capacity path of time exactly t

(t = 0, 1, ..., T );
Let h∗ := h := inf;
For t = 0, 1, 2, ..., T do

If ξ(ρ, t) > 0 then h := h(ℓ(Pt), ℘(Pt));
If h∗ > h then h∗ := h;

End.

After the algorithm terminates, h∗ is the cost of a quickest path P
that sends σ from s to ρ. The path P can be obtained by a backtrack
procedure.

Theorem 6.2 When Algorithm TVQP stops, h∗ is the cost of a quickest
path from s to ρ for a given flow σ.

The correctness of Algorithm TVQP follows directly from Property
6.1, Lemma 5.3, Lemma 5.6, and Lemma 5.9. The following example
illustrate how to use the algorithm to solve a problem with ux = 0.



The Quickest Path Problem 157

Example 6.1

Consider a network as given by Figure 6.2 and Table 6.1. Suppose
σ = 9 and T = 10. The problem is to find a quickest path to send σ
units of flow from s to ρ, within the time limit T . The cost function is
h(ℓ(P ), ℘(P )) = ℓ(P ) + ℘(P ) = t + ⌈σ/ξ(ρ, t)⌉.

Figure 6.2. Example 7.1
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Applying Algorithm TVQP, we obtain Table 6.2, which contains the
maximum capacity ξ(ρ, t) of the path from s to ρ with the arrival time t,
and the corresponding cost t + ⌈σ/ξ(ρ, t)⌉. It is clear that the minimum
cost to transmit the flow σ is 10. By a backtrack procedure, we can find
that the quickest path P = (s, g, h, e, k, ρ).

The time complexity of Algorithm TVQP is dominated by the run-
ning time of the procedure TVMCP-ZW, TVMCP-AW or TVMCP-BW.
Therefore, we have

Theorem 6.3 Algorithm TVQP can optimally solve the time-varying
quickest path problem with zero waiting time, arbitrary waiting time and
bounded waiting time constraints in O(T (m + n)), O(T (m + n)) and
O(T (m + n log T )) time, respectively.

5. The static k-quickest path problem
As an application of the time-varying quickest path problem, we will

develop, in this section, a polynomial algorithm to solve the static k-
quickest path problem based on the idea of replacing the lead time by
the transit time for each arc (x, y) ∈ A and setting the cost function as
h(ℓ(P ), ℘(P )) = ℓ(P ) + ℘(P ) = t + ⌈σ/ξ(ρ, t)⌉.

The k-quickest path problem is to find the first, the second, ..., and the
kth quickest paths from a source vertex s to the destination x ∈ V \{s}.
Rosen, Sun and Xue Rosen et al (1991) propose an method which can
solve this problem in O(rkmn+ rkn2 log n) time, where r is the number
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Table 6.1. b(x, y, t) and l(x, y, t)

t (s, a) (s, g) (g, a) (a, c) (a, h) (g, c) (g, h)

0 2,5 4,3 3,5 1,2 4,3 3,7 3,6
1 2,5 4,6 1,1 3,1 3,5 1,5 1,6
2 2,3 2,1 1,3 2,1 2,3 1,7 2,1
3 1,3 3,6 1,5 1,6 3,2 1,7 1,2
4 3,2 1,1 2,3 1,3 2,7 1,3 1,4
5 1,4 3,6 2,5 3,6 1,3 2,3 2,2
6 1,1 1,1 1,4 2,1 3,4 3,1 3,2
7 1,3 1,2 1,5 2,7 4,4 2,7 1,3
8 1,6 4,7 3,2 2,2 3,3 2,3 1,4
9 3,3 3,5 4,2 1,2 1,6 4,1 3,4
10 1,3 2,2 2,4 1,2 1,2 4,6 2,3

t (c, e) (c, k) (h, e) (h, k) (e, ρ) (e, k) (k, ρ)

0 1,1 1,4 2,4 2,5 2,7 2,7 2,6
1 2,7 2,6 4,5 1,7 2,2 3,4 2,6
2 2,4 1,1 1,5 4,5 1,4 2,1 2,4
3 1,3 3,1 3,4 3,6 2,3 4,3 3,3
4 1,3 1,1 4,4 4,5 1,1 2,3 1,6
5 3,1 3,5 2,5 1,4 1,7 1,4 4,3
6 2,5 1,5 2,2 3,5 2,2 1,1 3,3
7 4,2 1,2 1,2 1,1 1,6 2,3 1,5
8 2,5 2,7 3,1 1,1 3,3 3,2 1,4
9 1,6 1,4 2,2 1,5 2,3 3,6 1,3
10 2,1 3,2 1,7 2,5 1,7 3,5 1,3

Table 6.2. ξ(ρ, t)

t 1 2 3 4 5 6 7 8 9 10

ξ(ρ, t) 0 0 0 0 0 1 0 3 3 3

t + ⌈σ/ξ(ρ, t)⌉ - - - - - 14 - 10 11 12

of different arc capacities in N . Since r ≤ m, This time complexity
is bounded by O(kmn(m + n log n)). The algorithm we develop below
has a time complexity bounded above by O(m(r + k)(log n + log r +
k)) = O(m(m + k)(log n + log m + k)). To illustrate, we first develop a
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polynomial algorithm to solve the static quickest path problem, i.e., the
case k = 1.

The basic idea is similar to that for Algorithm TVQP. That is, we first
find all maximum capacity paths from s to ρ of time exactly t under the
zero waiting time constraint, and then choose the quickest one among all
these paths. Let ξq(y, t) denote the capacity of the maximum capacity
path from s to y of time exactly t. For each vertex y ∈ V , set a queue
Hy to contain (ξq(y, t), t), under the following rules:

(i) All (ξq(y, t), t) are sorted in nondecreasing order on t;
(ii) If there exist two (ξq(y, t1), t1) and (ξq(y, t2), t2) in Hy satisfying

ξq(y, t1) ≥ ξq(y, t2) and t1 < t2, then delete (ξq(y, t2), t2) from Hy.
Let us explain rule (ii). Suppose P1(s, y) and P2(s, y) are two paths

from s to y with arrival times t1 and t2 at y, and Cap(P1) = ξq(y, t1)
and Cap(P2) = ξq(y, t2), respectively. For a given σ, we have h1 =
⌈σ/Cap(P1)⌉ + t1 and h2 = ⌈σ/Cap(P2)⌉ + t2, where h1 and h2 are the
costs of P1 and P2, respectively. Since t1 < t2 and Cap(P1) ≥ Cap(P2),
we have h1 < h2. Thus, it is impossible to have P2 as a quickest path
and therefore (ξq(y, t2), t2) can be deleted from Hy.

We also set a queue Q to store the first element in each Hy and keep
the elements in Q in nondecreasing order on t. Initially, let Q contain
(ξq(s, 0) = ∞, 0). Select the first element in Q, say (ξq(x, t), t), and
maintain Hx by the rules described above. Check each arc (x, y) ∈ A and
let ξq(y, t′) = min{ξq(x, t), l(x, y)}, where t′ = t+b(x, y). Then, we insert
(ξq(y, t′), t′) into Hy. Insert the element that is next to (ξq(x, t), t) of
Hx, if any, into Q. Then check the first element in Q again. Repeat this
process until Q becomes empty. Finally, let h = min0≤t≤T {⌈σ/ξq(ρ, t)⌉+
t}, which is the cost of the quickest path. The algorithm can now be
described as follows.

Algorithm QP

Begin
Initialize Q := Hs := {(ξq(s, 0) = ∞, 0)}; for any x ∈ V \{s},

Hx := ∅;
While Q �= ∅ do

Pick up the first element (ξq(x, t), t) of Q and declare it as
having been checked;

Check Hx. Delete any (ξq(x, t0), t0) if the conditions (ξq(x, t0),
t0) ≤ (ξq(x, t), t) and t0 > t are satisfied. Continue this process
until we find an element that violates any of the conditions, or all
ξq(x, t0) have been deleted;

For each arc (x, y) ∈ A do
Let t′ := t + b(x, y);
Let δ(y, t′) := min{ξq(x, t), l(x, y)};
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Do case
Case 1. Hy = ∅ or all elements in Hy have been checked.

Then let ξq(y, t′) := δ(y, t′); Hy := Hy ∪ {(ξq(y, t′), t′)} and insert
(ξq(y, t′), t′) into Q;

Case 2. Hy �= ∅. Let t1 := maxt′′≤t′,(ξq(y,t′′),t′′)∈Hy
t′′.

If t1 < t′ then let ξq(y, t′) := δ(y, t′); Otherwise, let ξq(y, t′) :=
max{ξq(y, t1), δ(y, t′)}. Insert (ξq(y, t′), t′) in Hy. If (ξq(y, t′), t′) be-
comes the first element in Hy, then replace the element (ξq(y, u), u)
in Q by (ξq(y, t′), t′);

End case;
Remove (ξq(x, t), t) from Q and then insert the element that is

next to (ξq(x, t), t) in Hx, if any, into Q;
End while;
Let h := min(ξq(ρ,t),t)∈Hρ

{⌈σ/ξq(ρ, t)⌉ + t};
End.

To illustrate, let us consider an example as follows.

Example 6.2

Figure 6.3. Example 6.2 Figure 6.4. Example 6.2 (continued)
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Suppose that the network is given as in Figure 6.3, where the two
numbers associated with each arc are the lead time and the arc capacity,
s is the source vertex, ρ is the sink vertex, and σ = 100. The problem
is to find the quickest path to send all σ units of flow from s to ρ.

First, we transform the original network into a dynamic network by
letting b(x, y) equal the lead time of arc (x, y). Then, set ξ(s, 0) = ∞
and let Q = Hs = {(ξ(s, 0), 0)}. Set other Hx = ∅. Denote (ξ(x, t), t) =
(ξ(s, 0), 0) and delete it in Q. Consider arc (s, b) first. Because t = 0, we
have t′ = t + b(s, b) = 0 + 15 = 15, and δ(b, 15) = min{ξ(s, 0), l(s, b)} =
min{∞, 5} = 5. Thus ξ(b, 15) = 5. Put it into Hb. Similarly, we obtain
ξ(c, 20) = 10 and ξ(d, 30) = 20. Insert (ξ(b, 15), 5), (ξ(c, 20), 20) and
(ξ(d, 30), 20) into Q.
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Now, we have Hb = {(ξ(b, 15), 15)}, Hc = {(ξ(c, 20), 20)} and Hd =
{(ξ(d, 30), 30)}. Denote (ξ(x, t), t) = (ξ(b, 15), 15) since it is the first
element in Q. Examine arc (b, e) and obtain ξ(e, 30) = 5. Similarly, we
can obtain ξ(e, 39) = 10, and ξ(e, 43) = 20. Finally, we obtain ξ(ρ, 40) =
2. Since there is only one element in Hρ, we obtain one maximum
capacity path from s to ρ, which is the quickest path in the original
network. The minimum cost is h = σ/ξ(ρ, 40) + 40 = 100/2 + 40 = 90
(see Figure 6.4).

Theorem 6.4 After Algorithm QP terminates, h is the transmission
time of the quickest path from s to ρ.

Proof: According to Property 6.1, we only need to prove that, when
the algorithm terminates, the following statements are true for any
0 ≤ t ≤ T and any vertex y:

(i) If ξq(y, t) ∈ Hy, then ξq(y, t) is the capacity of the maximum ca-
pacity path from s to y of time at most t,

(II) If ξq(y, t) �∈ Hy, then there exists no path from s to y of time ex-
actly t, or there exists such a path but there is another element ξq(y, t′)
in Hy such that ξq(y, t′) ≥ ξq(y, t) and t′ < t. For the latter case, we
have

⌈σ/ξq(y, t′)⌉ + t′ ≤ ⌈σ/ξq(y, t)⌉ + t.

Thus, the path of time t′ is better than that of time t.
Consider the case with t = 0. Since there exists no path from s

to y ∈ V \{s} of time exactly zero except the path P (s, s), we have
ξq(s, 0) = ∞ and Hy = ∅ for all vertices y �= s. Obviously the claim is
true.

Now, we use induction to prove the claim. Consider t = 1. If there
exists a path from s to y of time exactly one, then y must be a neighbor
of s with b(s, y) = 1. By the algorithm, ξq(y, 1) must be in Hy and it is
the maximum capacity of the path from s to y of time exactly one.

Assume that for any t′ < t, the claim is true. Now consider the case
where the time is t.

First, examine the situation where (ξq(y, t), t) ∈ Hy. By the formula
in the algorithm, ξq(y, t) must come from δ(y, t), and there exists an
element (ξq(x, u), u) in Hx such that (x, y) ∈ A and u + b(x, y) = t.
Noting that u < t since b(x, y) > 0 and (ξq(x, u), u) ∈ Hx, by induc-
tion, we know that there exists a maximum capacity path P (s, x) from
s to x of time exactly u with ξq(x, u) as its capacity. Then, we can
append arc (x, y) to P (s, x), and obtain a path P (s, y) from s to y with
ξq(y, t) = min{ξq(x, u), l(x, y)} as its capacity. Now, we prove that P is
the maximum capacity path from s to y of time t. Suppose that there
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exists another path, P ′(s, y), with Cap(P ′) > Cap(P ) and t′ ≤ t, where
t′ is the arrival time of P ′ at y, and x′ is the predecessor of y on P ′.
By induction, (ξq(x

′, u′), u′) must be in Hx′ (any subpath of a maxi-
mum capacity path must be the maximum capacity path), where u′ is
the arrival time of P ′ at x′. Notice that u′ < t since b(x′, y) > 0. By
the algorithm, ξq(x

′, u′) should be checked earlier than ξq(y, t). By the
formula, in Case 2, (ξq(y, t), t) should be replaced by (Cap(P ′), t′), and
(ξq(y, t), t) can not appear in Hy. This is a contradiction.

Next, consider the case where (ξq(y, t), t) �∈ Hy. Let x be the pre-
decessor of y on P and u is its arrival time. If (ξq(x, u), u) �∈ Hx, by
induction, we know that either there does not exist a path from s to x of
time exactly u, or the path is dominated by other paths. Therefore P is
also dominated by other paths since l(x, y) is a constant. Otherwise, if
(ξq(x, u), u) ∈ Hx, then (ξq(x, u), u) should be checked in the algorithm.
By the formula in Case 2, the path is replaced by another path P ′′ with
t′′ < t, where t′′ is the arrival time of P ′′ at y, and Cap(P ′′) ≥ Cap(P ).
Therefore the claim is also true.

In summary, we complete the proof. �

Theorem 6.5 Algorithm QP can be implemented in O(rm(log n+log r))
time, where r is the number of different arc capacities in N .

Proof: The initialization step needs O(n) time. Let r′x be the number of
elements in Hx (x ∈ V ) and r′ = maxx∈V r′x. Then, finding and deleting
ξq(x, t) in Q need O(1) time and inserting the next element of Hx in Q
needs O(log n) time. For checking Hx and deleting redundant elements,
we need O(r′m) time in the whole while-loop, since there exist at most
r′n elements entering Q which generate at most r′m elements among
all queues Hy. For case 1, we need O(log n) time to insert (ξq(y, t′), t′)
into Q. And for case 2, we need O(log r′) time to find t1. Since r′y ≤
r′, the total time for checking arcs in the whole while-loop is at most
r′m. Hence the total running time of the while-loop is bounded by
O(r′m(log n + log r′)). To compute τ it requires O(r′) time. Obviously,
r′ ≤ r where r is the number of different arc capacities in N , since all
elements in Hx should be kept on increasing order. Therefore, the total
running time of the algorithm is bounded by O(rm(log n + log r)). �

We are now ready to tackle the k-quickest path problem. For each
y ∈ V \{s}, we first calculate the k-maximum capacity paths from s to
y of time exactly t. Since we do not know which k paths will be the
solution, we extend, for each vertex y, the label ξq(y, t) to a set, namely,
we let ξq(y, t) = {ξ1

q (y, t), ..., ξk
q (y, t)}, where ξi

q(y, t) is the capacity of
the ith maximum capacity path from s to y of time exactly t and all
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ξi
q(y, t) are sorted in non-increasing order. If this path does not exist,

let ξi
q(y, t) = 0. We keep k values for each ξq(y, t), to ensure that no

solutions would be lost. Before describing our algorithm, let us introduce
some definitions below:

Definition 6.4 Let Q = {q1, q2, ..., qk} and R = {r1, r2, ..., rk} be two
sets with k elements and assume that all elements are sorted in nonin-
creasing order. Define an operation to get k minimal elements among R
and Q, denoted by “mink”, as follows:

mink{Q,R} = {k minimal elements in Q ∪ R}.

Similarly, define “maxk” as follows:

maxk{Q,R} = {k maximal elements in Q ∪ R}.

Definition 6.5 Let c be a constant and Q = {q1, q2, ..., qk} be a set with
k elements. Define the division operation between c and Q, denoted by
“/”, as follows:

c/Q = {c/q1, c/q2, ..., c/qk}.

Similar to Algorithm QP, we use a queue Hx to contain all (ξq(x, t), t)
for vertex x, and keep all elements of Hx in nondecreasing order on t.
Different from Algorithm QP, we maintain Hx according to the following
lemma:

Lemma 6.1 SupposeHx ={(ξq(x, t1), t1), (ξq(x, t2), t2), ..., (ξq(x, tf ), tf )}
and ξi

q(x, tj) is the ith value in ξq(x, tj) (1 ≤ k and 1 ≤ j ≤ f). ξi
q(x, tj)

can be deleted in ξq(x, tj) if there are k−i+1 values in ∪1≤g≤j−1ξq(x, tg)
which are greater than or equal to ξi

q(x, tj).

Proof: First consider ξj′
q (x, tj) for 1 ≤ j′ ≤ i − 1. Since ξj′

q (x, tj) ≥

ξi
q(x, tj), we have ⌈σ/Cap(Pjj′

)⌉+tj ≤ ⌈σ/Cap(Pji
)⌉+tj , where Pjj′

and

Pji
are the two paths with capacities ξj′

q (x, tj) and ξi
q(x, tj) respectively.

Similarly, for those in ∪1≤g≤j−1ξq(x, tg) which are greater than or equal
to ξi

q(x, tj), we can obtain the same result. This means that the path
Pji

cannot be the i′th quickest path (i′ ≤ k) since we already have
i − 1 + k − i + 1 = k paths whose transmission times are less than that
of Pji

. This completes the proof. �

The algorithm is given below.
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Algorithm KQP

Begin
Initialize Q := Hs := {(ξq(s, 0) = {∞, 0, ..., 0}, 0)}; for any

x ∈ V \{s}, Hx := ∅;
While Q �= ∅ do

Pick up the first element (ξq(x, t), t) of Q;
Examine Hx. Delete (ξq(x, t′), t′) in Hx if the conditions

(ξq(x, t0), t0) ≤ (ξq(x, t), t) and t0 > t are satisfied. Continue this
process until we find an element which violates any of the conditions
or all elements (ξq(x, t′), t′) have been deleted;

For each arc (x, y) ∈ A do
Let t′ := t + b(x, y);
Let δ(y, t′) :={min{ξ1

q (x, t), l(x, y)}, ...,min{ξk
q (x, t), l(x, y)}};

If δi(y, t′) ≤ bk
y (1 ≤ i ≤ k) then let δi(y, t′) = 0;

Do case
Case 1. Hy = ∅ or all elements in Hy have been checked.

Then let ξq(y, t′) := δ(y, t′); Hy := Hy ∪ {(ξq(y, t′), t′)} and insert
(ξq(y, t′), t′) into Q;

Case 2. Hy �= ∅. Let t1 := maxt′′≤t′,(ξq(y,t′′),t′′)∈Hy
t′′.

If t1 < t′, then let ξq(y, t′) := δ(y, t′); Otherwise, let ξq(y, t′) :=
maxk{ξq(y, t1), δ(y, t′)}. Insert (ξq(y, t′), t′) in Hy. If (ξq(y, t′), t′)
becomes the first element in Hy, then replace (ξq(y, u), u) of Q by
this element;

End case;
Delete (ξq(x, t), t) from Q and insert the element that is next

to (ξq(x, t), t) of Hx, if any, into Q;
End while;
Let h = {h1, h2, ..., hk} := mink(ξq(ρ,t),t)∈Hρ

{⌈σ/ξq(ρ, t)⌉ + t};
End.

To examine Hx and delete redundant elements, we can use an fixed
length queue Bx = {b1

x, ..., bk
x} which contains the k maximal values of

the checked ξq(x, t) of Hx in nonincreasing order. For those (ξq(x, t′), t′)
next to (ξq(x, t), t), we compare each ξi

q(x, t′) with bk
x (1 ≤ i ≤ k). If

ξi
q(x, t′) ≤ bk

x, then delete ξi
q(x, t′) by letting ξi

q(x, t′) = 0. Otherwise,

insert ξi
q(x, t′) into Bx (the last one in Bx will be pushed out). If all

ξi
q(x, t′) are equal to 0, then delete (ξq(x, t′), t′) in Hx and check the

next element. Repeat until we find one element in Hx with at least
one non-zero value, or until all elements (ξ(x, t′), t′) (t′ > t) have been
deleted.

Theorem 6.6 After the algorithm terminates, hi (1 ≤ i ≤ k) is the cost
of the static ith quickest path from s to ρ in N .
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The proof is similar to that for Theorem 6.4, and hence we omit it
here.

Theorem 6.7 Algorithm KQP can be implemented in O(m(r + k)(log n
+ log r + k)) time, where r is the number of different arc capacities in
N .
Proof: The initialization step needs O(n) time. Let r′ be the maximum
number of elements in Hx (x ∈ V ). Then, finding and deleting ξ∗q (x, t)
with minimal t needs O(1) time and inserting the next element of Hx (if
this element exists) into Q needs O(log n) time. The step of arranging
Hx requires O(rkm) time. For each arc (x, y) ∈ A, calculating δ(y, t′)
needs O(k) time. For cases 1 and 2, we need O(log n) and O(log r′ +
k) respectively. Since the number of elements in each Hx is less than
or equal to r′, the whole loop needs O(r′m(log n + log r′ + k)). To
compute τ we need O(r′k). Thus, the total running time is bounded by
O(r′m(log n + log r′ + k)).

Now, we show that r′ ≤ (r + k). Note that in each Hx, all (ξq(x, t), t)
are sorted on t. By Lemma 6.4, each ξi

q(x, tj) must be greater than its
k predecessors. Since we have r different arc capacities in total, we have
r′ ≤ (r + k) elements in Hx in the worse case.

In summary, we complete the proof. �

6. Additional references and comments
Burkard, Dlaska, and Kellerer (1994) consider another quickest path

problem in which the flow should be transmitted by two disjoint paths.
They have shown that the problem is NP-hard in general, but is solvable
in O(m3n) time if the network is acyclic.

The time-varying maximum capacity path problem and the time-
varying quickest path problem are both interesting models. One pos-
sesses the property that “any subpath of the optimal path is still op-
timal” while the other does not. However, as we have shown in this
chapter, these two problems have a very close relationship. The time-
varying quickest path can be obtained from among a set of time-varying
maximum capacity paths.





Chapter 7

FINDING THE BEST PATH WITH MULTI-

CRITERIA

1. Introduction
Many decision-making problems involve more than one objective to

optimize. In this chapter, we will discuss some of such multicriteria opti-
mization problems on a time-varying network. Specifically, we will focus
on the situation where a path is to be sought under two objectives. The
basic ideas and strategies used to tackle this type of bicriteria problems
may be generalized to other cases.

The minimum cost-reliability ratio path problem, which has been
studied in the literature when the network is static, is a typical bicriteria
problem. This is discussed below as an example of the models we are to
introduce in this chapter.

Suppose we are given a time-varying network, where a transit time
b(x, y, t) is needed to traverse an arc (x, y). Moreover, two attributes
are associated with each arc, which are the transit cost c(x, y, t) and
the reliability r(x, y, t), where the reliability is defined as the probability
that the arc (x, y) is performable at time t. All parameters b(x, y, t),
c(x, y, t) and r(x, y, t) are the functions of the departure time t at the
beginning vertex of the arc. The problem is to find a path that allows
one to travel from the origin s to the destination x by a given deadline
T , such that the total cost is minimum while the overall reliability of
the path is maximum.

For any path P (s = x1, x2, ..., xp = x), its reliability is defined as:

R(P ) =
∏

1≤i≤p−1

r(xi, xi+1, τ(xi)).

Let δ(P ) =
∑

(x,y)∈P g(x, y, τ(x)), where g(x, y, τ(x)) = − ln r(x, y, τ(x)).
Then, for any P , R(P ) = exp(−δ(P )). Hence, maximizing R(P ) is
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equivalent to minimizing δ(P ). Accordingly, the problem to minimize
the total cost and maximize the overall reliability is equivalent to mini-
mizing the following two objectives:

Z1(P ) =
p−1
∑

i=1

c(xi, xi+1, τ(xi))

Z2(P ) =
p−1
∑

i=1

− ln r(xi, xi+1, τ(xi))

In the static case where it is assumed that all parameters are time
independent and travel on any arc takes zero time, the problem above has
been studied in the literature, which actually converts the two criteria
into a single one expressed as the ratio of the cost and reliability:

min
P∈P

z(P ) = Z1(P )/R(P).

Clearly, minimizing z(P ) achieves, to certain extent, the effect of min-
imizing the total cost and maximizing the reliability. Hansen (1980)
presents an algorithm which can be implemented in O(mnD log(nD))
time, where m and n are the numbers of arcs and vertices of the net-
work, respectively, and D = max(x,y)∈A{c(x, y)} (c(x, y) is the cost of
arc (x, y)). Ahuja (1988) presents an O(mnD log m) algorithm, under
the assumption that all costs are positive.

We will consider, in this chapter, the time-varying version of the min-
imum cost-reliability ratio path problem. We will actually examine a bit
more general model which is to minimize two criteria, both expressed
as the sum of a set of cost attributes. We denote this as the MinSum-
MinSum model. In addition, we will also discuss a MinSum-MinMax
model, which involves another criterion expressed as the maximum in
the set of cost attributes. We will lay down the concepts and assump-
tions on these models in Section 2, which will then be examined in the
subsequent sections.

2. Problem formulation

Consider a time-varying network, where each arc (x, y) is associated
with two attributes ci(x, y, t), i = 1, 2. The attributes may represent
“cost”, or other entities such as “reliability” as in the example given
in Section 1 above. We assume that the transit time b(x, y, t) on each
arc (x, y) is a positive integer, and all ci(x, y, t) are arbitrary integers.
Moreover, to simplify the illustration of key ideas in the modelling and
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the solution algorithms, we consider only the case where waiting at any
vertex is not allowed. Consequently, we do not assume that there is any
waiting cost at any vertex. Generalizations of the results in this chapter
may be possible to problems involving waiting at vertex.

Let P (s = x1, x2, ..., xr = x) be a dynamic path from s to x in N ,
where s is the source vertex in N , and Z1(P ) and Z2(P ) are functions of
P in terms of the first and the second attributes, respectively. Generally,
the bicriteria problem we consider in this chapter is to determine an
optimal path to minimize the two criteria Z1(P ) and Z2(P ):

min
P∈P

Z(P ) = [Z1(P ), Z2(P )]

where P is the set of feasible paths that meet the constraint regarding
the deadline T and any other constraints that may exist. We denote
the problem by TVBP (The Time-varying bicriteria path problem). To
simplify the presentation, we will assume that both Z1(P ) and Z2(P )
take integer values. The results we describe in this chapter may also be
generalized when Z1(P ) and Z2(P ) are functions taking real values.

Because the problem we consider here has two objectives, finding an
optimal solution of the problem, i.e., an optimal path such that both
the values of Z1(·) and Z2(·) are minimum, may not be possible. Con-
sequently, similar to other multicriteria optimization problems, what we
should seek are the efficient solutions for the problem, as defined below.

Definition 7.1 A dynamic path P̄ ∈ P is said to be an efficient solution
for the TVBP problem if and only if there does not exist any other path
P ∈ P such that Z1(P ) ≤ Z1(P̄ ) and Z2(P ) ≤ Z2(P̄ ) with a strict
inequality in at least one case.

Mote et. al. (1991) have identified two properties for the problem of
finding an efficient path under two criteria, which can be extended to
the time-varying problem TVBP we are considering here.

Property 7.1 A dynamic path P from s to x is an efficient solution
only if every subpath from s to an intermediate vertex of P is also an
efficient solution. �

Let A(P ) and V (P ) be the vertex set and the arc set of the path P ,
respectively. We will consider, more specifically, the following models in
this chapter:

(1) The MinSum-MinSum problem:

Zi(P ) =
∑

(x,y)∈A(P )

ci(x, y, τ(x)), i = 1, 2.
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(2) The MinSum-MinMax problem:

Z1(P ) =
∑

(x,y)∈A(P )

c1(x, y, τ(x)),

Z2(P ) = max
(x,y)∈A(P )

{

c2(x, y, τ(x))
}

.

Note that in some problems, it may also be desirable to have a
MinMax criterion. For example, in the reliability example of Section
1, one may want to find a path where the reliability on each arc is
not too low, in addition to the criterion that the overall transit cost
of the path is minimum. In other words, it is desirable to minimize
max(x,y){− ln r(x, y, τ(x))}.

We will examine the MinSum-MinSum and MinSum-MinMax prob-
lems in Sections 3 and 4 respectively. There exists another type of
problems with MinMax-MinMax criteria, which can be tackled following
the similar ideas and techniques for the MinSum-MinSum and MinSum-
MinMax problems.

We now introduce some operators, which we will use in the solution
algorithms we will develop.

Definition 7.2 Suppose Q1 and Q2 are two sets of couples, each of
which has k elements sorted in nondecreasing order lexicographically.
The Merge operator on Q1 and Q2 is defined as follows:

Q = Merge(Q1, Q2)

where Q is a new set which contains and keeps all elements in Q1 and
Q2 in nondecreasing order lexicographically.

For example, Let

Q1 = {(1, 1), (1, 2), (3, 2), (4, 5)}

and

Q2 = {(2, 2), (2, 5), (4, 3), (4, 7)},

and then

Q=Merge(Q1, Q2)={(1, 1), (1, 2), (2, 2), (2, 5), (3, 2), (4, 3), (4, 5), (4, 7)}.

A Merge operation as defined above can be performed in O(2k) time.
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Definition 7.3 Let Q = {(a1, b1), ..., (al, bl)} be a set of l couples, and
(a0, b0) a couple.

(i) Define an add operator “+” as:

Q + (a0, b0) = {(a1, b1) + (a0, b0), ..., (al, bl) + (a0, b0)}.

If Q = ∅, then define Q + (a0, b0) = {(a0, b0)}.
(ii) Define a Max operator ▽ as:

Q▽(ao, bo)={(max{a1, a
o},max{b1, b

o}), ..., (max{al, a
o},max{bl, b

o})}.

If Q = ∅, then define Q ▽ (ao, bo) = {(ao, bo)}.
(iii) Define a Sum-Max operator ⊙ as:

Q ⊙ (ao, bo) = {(a1 + ao,max{b1, b
o}), ..., (al + ao,max{bl, b

o})}.

If Q = ∅, then define Q ⊙ (ao, bo) = {(ao, bo)}.

The operator “eff” is defined below, which finds all efficient points
among a set of points.

Definition 7.4 Let Φ = {(a1, b1), (a2, b2), ..., (ak, bk)}, where (ai, bi) is
a solution of the bicriteria problem TVBP, i = 1, 2, ..., k. Define eff{Φ}
as an operator that identifies all efficient points of Φ. Define eff{Φ} = ∅
if Φ = ∅.

Assume that all elements of Φ are sorted in nondecreasing order on
ai and bi lexicographically. Then the operator “eff” can be executed by
k comparisons, where k is the number of the elements in Φ.

3. The MinSum-MinSum problem

We consider, in this section, the MinSum-MinSum model. Let us
introduce the following definition.

Definition 7.5 Let P (s = x1, ..., xr = x) be a dynamic path of time t,
ζ(x, t) =

∑r−1
i=1 c1(xi, xi+1, τ(xi)), and δ(x, t) =

∑r−1
i=1 c2(xi, xi+1, τ(xi)).

Let (ζ(x, t), δ(x, t)) be an efficient point of the problem, and Δx,t be the
set of all efficient points. If there does not exist such a dynamic path
P (s, x) in N , let Δx,t = ∅.

The following lemma gives us a recursive relation to compute Δy,t.

Lemma 7.1 Δs,0 = {(0, 0)} and Δy,0 = ∅ for all y �= s. For t > 0 and
y ∈ V , we have:

Δy,t = eff

⎧

⎨

⎩

⋃

{x|(x,y)∈A},{u|u+b(x,y,u)=t}

{Δx,u + (c1(x, y, u), c2(x, y, u))}

⎫

⎬

⎭

.
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The lemma can be proven by using the usual induction technique
we have adopted in the previous chapters, based on the fact that any
subpath of an efficient path will also be an efficient path (see Property
7.1).

The following algorithm can now be presented.

Algorithm TVBP

Begin
Initialize Δs,0 = {(ζ(s, 0), δ(s, 0))} := {(0, 0)},Δs,t = ∅ for

0 < t ≤ T , and ∀x �=sΔx,t := ∅ for 0 ≤ t ≤ T ;
Sort all values u + b(x, y, u) = t for u = 1, 2, ..., T and for all

arcs (x, y) ∈ A;
For t = 1, 2, ..., T do

For each (x, y) ∈ A and each u such that u + b(x, y, u) = t
do

Δ̄z
y,t := Δx,u + (c1(x, y, u), c2(x, y, u));

Δy,t := Merge(Δy,t, Δ̄
z
y,t);

Δy,t := eff{Δy,t};
Let Δ∗

z(y) = eff{∪0≤t≤T Δy,t};
End.

From Lemma 7.1, we have the following result.

Lemma 7.2 When Algorithm TVBP terminates, Δ∗
z(y) is the set of all

efficient paths from s to y within the time T , and each couple (ζ(y, t),
δ(y, t)) in Δy,t is an efficient path P (s, y) of time t.

Let L = max(x,y)∈A,t=0,1,...,T c1(x, y, t). The following lemma gives an
estimation of the time complexity of the algorithm.

Lemma 7.3 Algorithm TVBP can be implemented in O(T 2Lnm) time.

Proof: The initialization needs O(nT ) time. To sort u + b(x, y, u) =
t, we can use bucketsort, with T buckets. Since there are mT values
to be sorted, this step needs O(mT ) time. During the iteration step,
we need to check each arc at each time. Thus, it needs O(mT ) time.
Noting that |Δy,t| ≤ nTL, computing Δ̄z

y,t needs at most O(nTL) time.

To merge Δy,t with Δ̄z
y,t, and to obtain all efficient points of Δy,t, we

need at most O(nTL) comparisons. Therefore, we need O(mTnTL) =
O(T 2Lnm) time in the iteration step. The last step is dominated by
this time requirement. In summary, the total running time is bounded
by O(T 2Lnm). �
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Note that we can also let L = max(x,y)∈A,t=0,1,...,T c2(x, y, t) in Lemma
7.3.

The set of efficient points is also called the efficient frontier of a multi-
criteria problem. In summary, we have

Theorem 7.1 The efficient frontier of the MinSum-MinSum problem
can be obtained in O(T 2Lmn) time. �

4. The MinSum-MinMax problem

We now consider the MinSum-MinMax problem. Note that we assume
that waiting at any vertex is not allowed.

Definition 7.6 Let P (s = x1, ..., xr = x) be a dynamic path of time t
where waiting at any vertex x is prohibited, Let ζ(x, t) =

∑r−1
i=1 c1(xi, xi+1,

τ(xi)), and η(x, t) = max1≤i≤r−1c
2(xi, xi+1, τ(xi)). Let (ζ(x, t), η(x, t))

be an efficient point of the problem, and Δo
x,t be the set of all those ef-

ficient points. If there exists no such a dynamic path P (s, x) in N , let
Δo

x,t = ∅.

The following lemma show that how to calculate Δo
x,t.

Lemma 7.4 Δo
s,0 = {(ζ(s, 0), η(s, 0))} = {(0, 0)} and Δo

y,0 = ∅ for all
y �= s. For t > 0, we have:

Δ0
y,t = eff{

⋃

{x|(x,y)∈A},{u|u+b(x,y,u)=t}

{Δo
x,u ⊙ (c1(x, y, u), c2(x, y, u))}}.

We leave the proof to readers. Following Lemma 7.4, we can write
out the algorithm as below:

Algorithm TVBP-MM

Begin
Initialize Δo

s,0 = {(ζ(s, 0), η(s, 0))} := {(0, 0)}, Δo
s,t = ∅ for

0 < t ≤ T , and ∀x �=sΔ
o
x,t := ∅ for 0 ≤ t ≤ T ;

Sort all values u + b(x, y, u) = t for u = 1, 2, ..., T and for all
arcs (x, y) ∈ A;

For t = 1, 2, ..., T do
For each (x, y) ∈ A and each u such that u + b(x, y, u) = t

do
Δ̄o

y,t := Δo
x,u ⊙ (c1(x, y, u), c2(x, y, u));

Δo
y,t := Merge(Δo

y,t, Δ̄
o
y,t);

Δo
y,t := eff{Δo

y,t};
Let Δ∗

z(y) = eff{∪0≤t≤T Δo
y,t};
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End.

Theorem 7.2 The efficient frontier of the MinSum-MinMax problem
can be obtained in O(T 2Lmn) time.

5. Additional references and comments
A dynamic network with discrete time can be converted into a time-

expanded network (TEN) without arc transit times. However, the size
of this TEN is usually much greater than that of the original one. Even
in the simple case where waiting at any vertex is not allowed, the num-
bers of vertices and arcs of such a TEN will be nT and mT , respec-
tively. So, for Hansen’s algorithm Hansen (1980), the computational
time will be O(T 2mnL log(nTL)) when it is applied to the TEN, where
L = max(x,y)∈A,0≤t≤T c(x, y, t). For Ahuja’s algorithm Ahuja (1988), the

time complexity will be O(T 2mnL log(mT )). As we have shown above,
the time complexity of the algorithm we present is O(T 2Lmn). The
reduction in the computing arises from a more direct exploitation of the
problem structure.



Chapter 8

GENERALIZED FLOWS AND OTHER

NETWORK PROBLEMS

1. Introduction

In all models that we have discussed in the previous chapters, we
assume that a flow travelling on an arc will retain its value all the time.
In other words, the flow will not gain or lose during the transmission
process. However, in some network systems, such as a water supply
system, some flow may be lost during the transmission process. One can
find many other examples. A flow is called a generalized flow if its value
is increased or decreased during the transmission process. In the first
part of this chapter, we will study such a time-varying network model
with generalized flow.

In addition to the generalized flow problem, we will also discuss, in
this chapter, other two well-known network optimization problems - the
travelling salesman problem and the Chinese postman problem. The
static version of the travelling salesman problem is a well-known NP-
hard problem but the static Chinese postman problem is polynomially
solvable. After introducing the time-varying parameters, both of the two
problems will become NP-hard, as we will show in this chapter.

The organization of this chapter is as follows. We discuss the gener-
alized flow problem in Section 2. Sections 3 and 4 consider the time-
varying travelling salesman problem and Chinese postman problem, re-
spectively. Dynamic programming approaches are described. Some ad-
ditional references and remarks are provided in Section 5.

2. Time-varying networks with generalized flows

A network problem is said to have generalized flow if the value of
the flow travelling on an arc changes. In fact, each of the time-varying
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problems we have discussed in the previous chapters can be generalized
by considering generalized flow. We will deal with, in this chapter, the
time-varying maximum generalized flow problem. This is based on the
following considerations: (1) The algorithms we will describe for this
problem are quite different from those we have developed for the time-
varying maximum flow problem (see Chapter 3); (2) The strategy we
use to solve the problem can be adopted for solving other time-varying
generalized flow problems.

2.1 Notation, assumptions, and problem
formulation

The time-varying maximum generalized flow problem is to send flow
from the source to the sink in a generalized network, such that the flow
at the sink is maximum. A distinguished feature of such a network is
that there is a positive multiplier, μx,y, associated with each arc (x, y),
so that if we send one unit of flow from vertex x to vertex y along the arc
(x, y), then only μx,y unit arrives at vertex y. Note that in a generalized
network, the flow conservation condition (Ford et al (1962)) does not
hold anymore.

Consider a time-varying network N(V,A, b, μ, l). Similar to the mod-
elling in our previous chapters, we assume that a flow must take a posi-
tive transit time b(x, y, t) to traverse an arc (x, y), where t is the depar-
ture time at the beginning of the arc (x, y). All parameters, including
transit times, arc capacities, vertex capacities and arc multipliers, can
change over time. Given a time limit T , the problem is to find a solution
to send the maximum possible flow from the source to the sink no later
than T . We call this model the time-varying maximum generalized flow
(TVMGF) problem.

Let μ(x, y, t) denote the multiplier of the arc (x, y) if the flow departs

from x at time t. We assume that μ(x, y, t) can be represented by r1(x,y,t)
r2(x,y,t) ,

where r1(x, y, t) and r2(x, y, t) are two positive integers. We further
assume that the capacity of arc (x, y), l(x, y, t), only limits the flow
which departs at vertex x at time t, which has no effect on the flow
arriving at vertex y. For example, suppose l(x, y, t) = 3, μ(x, y, t) = 2,
and there is a flow waiting at x with 5 as its flow value. Thus, only 3 units
of flow can be sent through the arc (x, y) at time t, since l(x, y, t) = 3.
However, when the flow arrives at y, it will becomes 6 units, since the
multiplier μ(x, y, t) = 2.

Without ambiguity, we let f(x, y, t) be the value of the flow departing
at time t to traverse the arc (x, y), f(x, t) the value of the flow waiting
at vertex x during time [t, t+1) and f(λ, T ) the total flow value flowing
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in ρ under the solution λ, which specifies when and how to send flows
from the source s to the sink ρ within the time limit T . Clearly,

f(λ, T ) =
∑

(x,ρ)∈A,t+b(x,ρ,t)≤T

μ(x, ρ, t)f(x, ρ, t)

is the amount of flow value reaching at ρ no later than the time T . The
problem is to find the optimal λ∗ to send a given flow v from s to ρ so
as to maximize f(λ∗, T ).

As we have shown in Chapter 3, the time-varying maximum flow
problem (TVMF) is NP-complete. This implies that TVMGF is also
NP-complete, since TVMF is a special case of TVMGF.

In Chapter 3, we introduce the concept of dynamic f-augmenting path
in a time-varying network N (Definition 3.2), which plays an important
role in solving the time-varying maximum flow problem. We are now
generalizing this concept to the problem TVMGF. A key issue we have to
deal with is that the multipliers μ(x, y, t) should be considered. Affected
by these multipliers, a flow travelling on a dynamic f-augmenting path
will no longer remain as a constant. How to calculate the flow value along
a dynamic f-augmenting path? Can we still calculate it by computing the
capacity of the path? We will examine these questions after we introduce
the definition below. To simplify, in what follows we let l(x, t) = +∞
for any vertex x and time t. Extension to the case with l(x, t) < +∞
can be made without much difficulty.

Definition 8.1 Let P (s = x1, x2, ..., xr = y) be a dynamic f-augmenting
path from s to y. Then, the capacity of path P (s, xi), while considering
the multiplier factors μ(x, y, t), is recursively defined as:

⎧

⎨

⎩

Cap(P (s, xi)) = min{Cap(P (s, xi−1)), l(xi−1, xi, τ(xi−1))}
·μ(xi−1, xi, τ(xi−1)) i = 2, 3, ..., r

Cap(P (s, x1)) = +∞.

Clearly, Cap(P (s, y)) gives us the upper bound of a flow which can
reach each vertex x at time α(x) in path P (s, y). Therefore, the flow
value sent from s to ρ along a dynamic f-augmenting path P (s, ρ) can
be calculated by computing the capacity of path Cap(P (s, ρ)) as defined
above.

Definition 8.2 A path P (x = x1, ..., xr = y) is called the maximum
dynamic f-augmenting path from x to y of time t if Cap(P (x, y)) ≥
Cap(P ′(x, y)), where P ′(x, y) is any other paths from x to y of time t.
Furthermore, P (x, y) is said to be consistent, if for each xi, i = 2, ..., r,
path P (x, xi) is a maximum dynamic f-augmenting path from x to xi.
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In the rest of this chapter, we will assume that a maximum dynamic
f-augmenting path is consistent if we do not state otherwise.

2.2 Time-varying generalized residual network
and properties

Recall that the basic idea of the time-varying maximum flow algorithm
described in Chapter 3 is to find, repeatedly, a dynamic f-augmenting
path from the source vertex to the sink vertex in the time-varying resid-
ual network and then send as much flow along the path as possible. We
will use a similar strategy to solve the TVMGF problem here. Conse-
quently, we need to generalize the concept of the time-varying residual
network with the multiplier μ being taken into account.

First, for a given time-varying network N , we create a new network
as follows. For every arc (x, y) ∈ A, create an artificial arc, denoted by
[y, x]. Associated with [y, x] are the transit time b[y, x, u] and capacity
l[y, x, u]. For arc [y, x] and t = 0, 1, ..., T , let l[y, x, t] = 0 initially and
define transit time b[y, x, t] and multiplier μ[y, x, t] as follows:

b[y, x, t] =

{

−b(x, y, u) 0 ≤ t = u + b(x, y, u) ≤ T, u = 0, 1, ..., T
+∞ otherwise

μ[y, x, t] =

{

1/μ(x, y, u) 0 ≤ t = u + b(x, y, u) ≤ T, u = 0, 1, ..., T
0 otherwise

Note that b[y, x, t] and μ[y, x, t] could be a multiple valued functions since
for some t, there may exist more than one u satisfying u+ b(x, y, u) = t.

For every vertex x ∈ V , we also define an artificial vertex capacity
l[x, t], to represent the capacity under which a flow can be “waiting” at
x from time t to t − 1. This definition means that a flow may have a
negative waiting time at a vertex x. In fact, similar to the definition of
a negative transit time b[x, y, t] that provides a chance to retract a flow
on an arc, l[x, t] provides a chance to retract a waiting time of a flow at
vertex x. Initially, let l[x, t] = 0 for each x and t = 1, 2, ..., T . Obviously,
the new network as created above with the initial settings is equivalent
to the original one, thus we still denote it by N .

After a dynamic f-augmenting path is found, we can send an augment-
ing flow along it, and then construct a residual network by the following
procedure:

Network Updating Procedure-UPNET

Let N(V,A, b, μ, l) be the network considered. Let P (s, ρ) = (s =
x1, x2, ..., xr = ρ) be a dynamic f-augmenting path from s to ρ with τ(xi),
w(xi) and α(xi), f(xi, xi+1, τ(xi)) > 0 the flow value sent from vertex
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xi along arc (xi, xi+1) at time τ(xi), and f(xi, t) the flow value waiting
at vertex xi during the time [t, t + 1). For i = 1, ..., r − 1, do:

Update arc capacity
Case I: (xi, xi+1) is not an artificial arc. Let

l(xi, xi+1, τ(xi)) := l(xi, xi+1, τ(xi)) − f(xi, xi+1, τ(xi))

l[xi+1, xi, α(xi+1)] := l[xi+1, xi, α(xi+1)]

+f(xi, xi+1, τ(xi)) · μ(xi, xi+1, τ(xi))

Case II: (xi, xi+1) is an artificial arc. Let

l(xi+1, xi, α(xi+1)) := l(xi+1, xi, α(xi+1))

+f(xi, xi+1, τ(xi)) · μ[xi, xi+1, τ(xi)]

l[xi, xi+1, τ(xi)] := l[xi, xi+1, τ(xi)] − f(xi, xi+1, τ(xi))

For i = 2, 3, ..., T − 1 do:
Update vertex capacity

Case I: w(xi) > 0. Let

l[xi, t] := l[xi, t] + f(xi, t), t = τ(xi), τ(xi) − 1, ..., τ(xi) − w(xi) + 1

Case II: w(xi) < 0. Let

l[xi, t] := l[xi, t] − f(xi, t), t = α(xi), α(xi) − 1, ..., α(xi) + w(xi) + 1

Definition 8.3 The updated network generated by the procedure above
is called a time-varying generalized residual network.

Notice that, at each iteration of the time-varying maximum flow algo-
rithm, the dynamic f-augmenting path found in the time-varying resid-
ual network is not necessarily a maximum one. How about the TVMGF
problem now ? Let us look at the following example first.

Example 8.1

Consider a time-varying network N as shown in Figure 8.1, where the
three numbers associated each arc are b(x, y, t), μ(x, y, t), and l(x, y, t)
(0 ≤ t ≤ 3). Notice that there is a dynamic f-augmenting path P1 =
(s, e, g, ρ) with Cap(P1) = 3. If we send the maximum possible flow along
this path, we will have f(s, e, 0) = 6, f(e, g, 1) = 6, and f(g, ρ, 2) = 3
(which means 3 units of flow are lost during the transmission process).
After that, we cannot send any more flow in N , since f(s, e, 0) = 6 =
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Figure 8.1. Finding a dynamic f-augmenting path at each iteration may not generate
the maximum generalized flow
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l(s, e, 0) = 6 and it has reached the upper bound of the arc capacity.
However, one can find that another path, P2 = (s, e, h, ρ), has Cap(P2) =
9. Therefore, if we send flow along path P2, the flow value reaching ρ
will be 9. Clearly, it is larger than that of P1.

This example tells us that, only finding a dynamic f-augmenting path
each time cannot allow us to obtain the maximum generalized flow, and
we should find the one that has the maximum path capacity Cap(P ).
Moreover, the problem of finding the maximum generalized flow in the
original network is not equivalent to finding the maximum generalized
flow in such a generalized residual network that is not created based on
a maximum dynamic f-augmenting path.

We have the following property.

Property 8.1 The problem of finding the time-varying maximum gen-
eralized flow in the original network is equivalent to finding the time-
varying maximum generalized flow in the time-varying generalized resid-
ual network created based on a maximum dynamic f-augmenting path,
where the equivalence is in the sense that there is a one-one correspon-
dence between their feasible solutions.

We omit the proof of the property here.

Definition 8.4 Let P (x = x1, x2, ..., xr = y) be a dynamic path. Define

μ(P ) =
∏

1≤i≤r−1

μ(xi, xi+1, τ(xi))

as the multiplier of the path P . A path P (x, y) is said to be a flow-
generating path if μ(P ) > 1, or a flow-absorbing path if μ(P ) < 1.
Especially, when x1 �= x2, ..., xr−1 �= xr, x1 = xr and τ(x1) ≥ α(xr), P
becomes a dynamic cycle C, which is said to be a flow-generating cycle
if μ(C) > 1, or a flow-absorbing cycle if μ(C) < 1.
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Let lmin(C) = min(x,y)∈A(C) l(x, y, τ(x)), where A(C) is the arc set
of C, be the minimum capacity of a dynamic cycle C. Notice that, if
C is a flow-generating cycle and lm(C) = +∞, then a flow can run in
C round and round while the flow value may be increased unlimitedly.
This type of cycle is called unlimited flow-generating cycle. Clearly, if
a time-varying network has such a cycle, the problem TVMGF will be
unbounded. We have, however, the following property.

Property 8.2 Neither the original network, nor the time-varying gen-
eralized residual network generated by the procedure UPNET based on a
consistent maximum dynamic f-augmenting path, contains any unlimited
flow-generating cycles.

Proof: It is obvious that the original time-varying network N contains
no unlimited flow-generating cycle, since all the transit times b are posi-
tive and there is no path which can visit any vertex twice with the same
arrival time.

Figure 8.2. A unlimited flow-generating cycle
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Now consider the time-varying generalized residual network. Without
loss of generality, suppose that N and N ′ are two time-varying general-
ized networks, N contains no unlimited flow-generating cycles, P (s, ρ) is
a maximum dynamic f-augmenting path found in N , N ′ is created based
on P (s, ρ), and N ′ contains unlimited flow-generating cycles. Let cycle
C be the one that has the minimal number of arcs among all unlimited
flow-generating cycles.

See Figure 8.2, in which the dotted line represents the maximum dy-
namic f-augmenting path P (s, ρ) = (s, ..., x0, x1, ..., xr, ..., ρ) found in N .
C = (x0, y1, ..., yl, xr, xr−1, ..., x1, x0) is the unlimited flow-generating cy-
cle in N ′. The section of C, P ′ = (xr, xr−1, ..., x0), is generated based on
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P (s, ρ) (see the solid line in Figure 8.2). The section P ′′(x0, x1, ..., xr) ex-
ists in N already. Let P̄ denote the section P (x0, y1, ..., xr), μ(P ′′), μ(P ′)
and μ(P̄ ) be the multiplier of section P ′′, P ′ and P̄ , respectively. Since
C is a flow-generating cycle, we have μ(P ′) · μ(P̄ ′′) > 1. On the other
hand, since μ(P ′) = 1/μ(P ′′), we have μ(P ′) · μ(P̄ ) = μ(P̄ )/μ(P ′′) > 1,
i.e., μ(P̄ ) > μ(P ′′). Therefore, we can create a new path P 0(s, xr),
by combining section (s, ..., x0) of P (s, ρ) and P̄ . Clearly, we have
Cap(P 0(s, xr)) > Cap(P (s, xr)), where P (s, xr) is the section of path
P (s, ρ). Notice that P 0(s, xr) exists in N . Thus, P (s, xr) is not a max-
imum dynamic f-augmenting path from s to xr in N . This contradicts
the fact that P (s, ρ) is a consistent maximum dynamic f-augmenting
path in N . This completes the proof. �

Similarly, we can prove the following property:

Property 8.3 Let N ′ be a time-varying generalized residual network,
which is created based on a maximum dynamic f-augmenting pathP (s, ρ),
and P ′(s, ρ) be a maximum dynamic f-augmenting path in N ′. Then,
each of vertices on P ′(s, ρ) will not be visited twice at the same time t,
where 0 ≤ t ≤ T .

2.3 Algorithms for the time-varying maximum
generalized flow problem

We will now develop a pseudo-polynomial approach to solve the
TVMGF problem (Note that it is NP-complete as we have indicated
above). The main idea of the algorithm is to find, repeatedly, the con-
sistent maximum dynamic f-augmenting path in the time-varying gen-
eralized residual network.

We first consider the problem under the zero waiting time constraint.
A procedure, which we call the maximum f-augmenting path searching
process with the zero waiting constraint (MDFP-ZW), will be presented
below to carry out the task of searching for the maximum dynamic f-
augmenting path in the time-varying generalized residual network. Sim-
ilar to the procedure SDFP-ZW, it contains two different searching op-
erations: one is a forward searching while the other backward search-
ing. Both operations are designed by using the dynamic programming
method, and forward searching is to deal with those arcs with positive
transit times while backward searching will deal with negative transit
times.

Definition 8.5 ξz(x, t)k is the capacity of a maximum dynamic
f-augmenting path from s to vertex x of time exactly t with the alter-
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nating number at most k, where the waiting time at any vertex is equal
to zero.

From Property 8.3, a maximum dynamic f-augmenting path P (s, ρ)
cannot contain more than n vertices and each vertex cannot be visited
twice or more at one time t, t = 0, 1, ..., T . Therefore, P cannot contain
more than nT are disjoint sections. In other words, when k ≥ nT ,
ξz(x, t)k should be the capacity of the maximum dynamic f-augmenting
path from s to x of time exactly t. Recall that we denote A+ as the
set of arcs with positive transit time and A− with negative transit time.
Now, the procedure MDFP-ZW can be described as follows:

Procedure MDFP-ZW

Initialize: ξz(s, 0)0 := +∞, ξz(s, t)
0 := 0, t = 1, ..., T ; ξz(y, t)0 :=

0,∀y ∈ V \{s}; t = 0, ..., T ;
i := 0;
Do

i := i + 1;
For all y ∈ V and t = 0, . . . , T do ξz(y, t)i := ξz(y, t)i−1;

Case 1: i is an odd number:
For t = 1, ..., T do

For every y ∈ V do forward searching operation:

ξz(y, t)i := max{ξz(y, t)i,

max
{x|(x,y)∈A+}

max
{u|u+b(x,y,u)=t}

{μ(x, y, u) · min{ξz(x, u)i, l(x, y, u)}}};

Case 2: i is an even number:
For t = T − 1, ..., 0 do

For every y ∈ V do backward searching operation:

ξz(y, t)i := max{ξz(y, t)i,

max
{x|(x,y)∈A−}

max
{u|u+b[x,y,u]=t}

{μ[x, y, u] · min{ξz(x, u)i, l[x, y, u]}}};

While there is at least one ξz(y, t)i �= ξz(y, t)i−1;
Let ξ∗z (ρ) := max0≤t≤T ξz(ρ, t)i;
Return;

Lemma 8.1When the procedure MDFP-ZW terminates, ξ∗z (ρ) is the ca-
pacity of a maximum dynamic f-augmenting path from s to ρ within time
T under the zero waiting time constraint.
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Proof: We only need to prove that for each i and t, ξz(y, t)i obtained
by the procedure is the capacity of a maximum dynamic f-augmenting
path from s to y of time exactly t with the alternating number at most i.
Notice that any dynamic path must contain a positive section as its first
section since l[s, y, 0] = 0 for any y ∈ V either in the original network N
or in any residual networks. So, in what follows, we only consider those
dynamic paths whose first sections are positive.

The proof is carried out by inductions on i. Consider i = 1. When
t = 0, since i = 1 is an odd number, no dynamic path P (s, y) of time at
most 0 exists in N except when y = s. The capacity of the maximum
dynamic path P (s, s) of time 0 is ∞. In the initialization of procedure
MDFP-ZW, we have ξz(y, 0)1 = 0 (y ∈ V \s) and ξz(s, 0)1 = ∞; so the
claim holds.

Now use the second induction on time t. When t = 1, there are only
those paths P (s, y), where vertices y is adjacent to s with b(s, y, 0) = 1.
By the definition, the capacity of P (s, y) should be l(s, y, 0)μ(x, y, 0).
By the computation of the procedure, we have

ξz(y, 1)1 = max{ξz(y, 1)1, max
{y|(s,y)∈A+}

{μ(x, y, 0)·min{ξz(s, 0)1, l(s, y, 0)}}}

= max{0, μ(s, y, 0) · min{∞, l(s, y, 0)}}

= μ(s, y, 0)l(s, y, 0)

since ξz(y, 1)1 = 0 initially and ξz(s, 0)1 = ∞. Therefore, the claim is
also true for t = 1.

Assume that t > 0 and that for all values t′ < t and all vertices
y, ξz(y, t′)1 is the capacity of a maximum dynamic f-augmenting path
P (s, y) of time at most t′ with the alternating number at most 1. Now,
examine the case at time t.

Consider a vertex y. First we prove that, there exists a dynamic
path of time at most t with the alternating number 1 and with ca-
pacity ξz(y, t)1. By the forward searching operation, ξz(y, t)1 must
come from ξz(y, t)0, or μ(x, y, u) · min{ξz(x, u)1, l(x, y, u)} for some x
such that (x, y) ∈ A+ and some u such that u + b(x, y, u) = t. If
ξz(y, t)1 = ξz(y, t)0, nothing needs to prove. If the second case occurs,
by the induction on t, we know that there is a maximum dynamic f-
augmenting path P ′(s = x1, ..., xr−1 = x) from s to x of time exactly u
with the alternating number at most 1 and with Cap(P ′) = ξz(x, u)1.
We extend the path with vertex y, obtaining a path P (s, y). The time
of P (s, y) is exactly t, the alternating number is still 1, since the alter-
nating number will not be changed by adding a positive arc to P ′, and
Cap(P (s, y)) = μ(x, y, u) · min{ξz(x, u)1, l(x, y, u)} = ξz(y, t)1.
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We now prove that ξz(y, t)1 is the capacity of a maximum dynamic f-
augmenting path from s to y of time at most t. Let P (s = x1, ..., xr = y)
be a maximum dynamic f-augmenting path from s to y of time at most t,
x the predecessor of y on this path, u the departure time of the subpath
P (s, x) of P (s, y) at vertex x, and Cap(P (s, x)) the capacity of P (s, x).
The definition t = u + b(x, y, u) implies u < t since b(x, y, u) > 0.
Thus, by induction, Cap(P (s, x)) ≥ ξz(x, u)1. By definition, the capac-
ity of P (s, y) is Cap(P (s, y)) = μ(x, y, u)·min{Cap(P (s, x)), l(x, y, u)} ≥
μ(x, y, u) · min{ξz(x, u)1, l(x, y, u)} ≥ ξz(y, t)1. We must have
Cap(P (s, y)) = ξz(y, t)1, since P (s, y) is a path with maximum capac-
ity and since there exists a path achieving ξz(y, t)1. This completes the
proof on i = 1.

Assume that for i < k, the claim is true. Now consider i = k.
Suppose k is an odd number. Consider the case t = 0 first. Since

there is no dynamic path P (s, y) of time exactly zero in the original or
the residual networks except path P (s, s), we have Cap(P (s, y)) = 0 and
Cap(P (s, s)) = ∞. In procedure, we have ξz(y, 0)k = ξz(y, 0)k−1 for any
y ∈ V initially. By the induction on i, we know ξz(y, 0)k−1 = 0 (y �= s)
and ξz(s, 0)k−1 = ∞. Furthermore, these values are not be updated by
the computation of the procedure. Thus, ξz(y, 0)k = Cap(P (s, y)) for
any y. The claim is true.

Consider t = 1. If ξz(y, 1)k = 0 there is nothing to prove. Now
we assume that ξz(y, 1)k > 0. For any vertex y ∈ V , by the compu-
tation of the procedure, ξz(y, 1)k comes from ξz(y, 1)k−1, or μ(x, y, u) ·
min{ξz(x, u)k, l(x, y, u)} for some x such that (x, y) ∈ A+ and some
u such that u + b(x, y, u) = 1. Suppose ξz(y, 1)k comes from the sec-
ond term and not from the first term. Since b(x, y, u) > 0 for any arc
(x, y) ∈ A+, we must have u = 0 and b(x, y, 0) = 1. That is to say,
ξz(y, 1)k = μ(x, y, 0) · min{ξz(x, 0)k, l(x, y, 0)} for some vertex x. When
x �= s, we know that ξz(x, 0)k = 0 (see the proof for t = 0). Then,
ξz(y, 1)k = 0. This is contradict to the assumption of ξz(y, 1)k > 0.
When x = s, we know ξz(s, 0)k = ξz(s, 0)k−1, therefore, ξz(y, 1)k =
ξz(y, 1)k−1. This is contradict to the assumption that ξz(y, 1)k comes
from the second term only. So, we must have ξz(y, 1)k = ξz(y, 1)k−1. By
the induction on i, the claim is true.

Assume the claim holds for t′ < t. For the case where time is at t,
the proof is similar to that for the case i = 1. One may see that clearly
by replacing 1 by k. This completes the proof for the case where k is an
odd number.

The proof for the case where k is an even number is similar, which we
omit here.

In summary, the proof is completed. �
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Lemma 8.2 Procedure MDFP-ZW can be implemented in O(mnT 2)
time.

Proof: The time needed for the initialization is bounded by O(nT ). The
number of iterations for i is proportional to T

∑

x

∑

y,(y,x)∈A 1 = mT .
Since there are no flow-generating cycles in N (see Property 8.2), P
cannot contain more than nT sections. In other words, ξz(x, t)k is the
capacity of the maximum dynamic f-augmenting path from s to x of time
exact t when k ≥ nT . Therefore, the total iteration number for getting
a maximum dynamic f-augmenting path is bounded by O(mnT 2). �

From Lemma 8.1 and Lemma 8.2, we have

Lemma 8.3 When Procedure MDFP-ZW terminates, ξ∗z (ρ) obtained is
the capacity of a maximum dynamic f-augmenting path from s to ρ of
time at most T under the zero waiting time constraint. The procedure
can be implemented in O(mnT 2) time.

Now we describe an algorithm to solve the time-varying maximum
generalized flow problem with the zero waiting constraint.

Algorithm TVMGF-ZW

Begin
Sort all values u + b(x, y, u) for 1 ≤ u ≤ T and for all arcs

(x, y) ∈ A+;
Sort all values u + b[x, y, u] for 0 ≤ u ≤ T − 1 and for all arcs

[x, y] ∈ A−;
v̄ := 0;
Do

Call procedure MDFP-ZW;
If ξ∗z (ρ) > 0 then let v̄ := v̄ + ξ∗z (ρ) and call the procedure

UPNET; (there is a maximum dynamic f-augmenting path with
flow value ξ∗z (ρ); so update the network)

Else stop; (no feasible solution to send all flow value σ from
s to ρ within time T )

While ξ∗z (ρ) > 0;
End

The main step of the algorithm is to apply the procedure MDFP-ZW
repeatedly. From Property 8.1, we have

Lemma 8.4 When Algorithm TVMGF-ZW terminates, v̄ is the total
flow value which can reach the vertex ρ within T .

Lemma 8.5 The running time of Algorithm TVMGF-ZW is bounded
by O(m2T 2 log B), where B is the largest integer among the multipliers
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and capacities.

Proof: We can use bucketsort for sorting, with T buckets. Since there
are Tm values to be sorted, this step can be implemented in O(Tm)
time. Let L denote the least common denominator of the gains of a
dynamic f-augmenting path. Clearly, L ≤ B2mT . Notice that, we find
the maximum dynamic f-augmenting path at each iteration. Therefore,
after at most mT times, the capacity of the maximum f-augmenting path
in the residual network will be reduced by a factor of at least 2 (refer to
Ahuja et al (1993). Thus, the total number of iterations can be bounded
by O(mT log(B2/B−2mT )) = O(mT log B2mT+2) = O(m2T 2 log B). �

Combining with Lemma 8.3, we have:

Theorem 8.1 Algorithm TVMGF-ZW solves the time-varying Maxi-
mum generalized flow problem with the zero waiting time constraint in
O(T 4m3n log B) time.

The following example shows how to apply the algorithm.

Example 8.2

Consider a time-varying network as shown in Figure 8.3. The transit
time b(x, y, t), multiplier μ(x, y, t) and the arc capacity l(x, y, t) are listed
in Table 8.1. The time duration T = 10.

Figure 8.3. Example 8.2

s

e

h

ρ

First, we call the procedure MDFP-ZW. When i = 2, all ξz(x, t)1 =
ξz(x, t)2, then the procedure stops. We have ξz(s, 0)2 = ∞, ξz(e, 2)2 =
12/5, ξz(e, 6)2 = 14, ξz(h, 3)2 = 7, ξz(ρ, 4)2 = 72/25, ξz(ρ, 5)2 = 15,
ξz(ρ, 10)2 = 3/7, and all other ξz(x, t)2 = 0. Thus, ξ∗z (ρ) = max{72/25,
15, 3/7} = 15. The first dynamic f-augmenting path P1 = (s, h, ρ) with
τ(s) = 0, τ(h) = 3, and α(ρ) = 5. The flow sent from s is 9/7, arriving at
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Table 8.1. b(x, y, t), µ(x, y, t) and l(x, y, t)

t (s, e) (s, h) (e, ρ) (h, e) (h, ρ)

0 2, 6/5, 2 3, 7/3, 3 2, 1/2, 3 3, 6/5, 5 4, 2, 5
1 1, 1/6, 2 3, 1/2, 2 2, 4/5, 1 2, 1, 2 1, 1/3, 1
2 1, 3/4, 4 2, 7/3, 7 2, 6/5, 6 1, 3, 1 1, 5/3, 6
3 1, 5/3, 6 1, 1/6, 3 3, 6/5, 7 3, 2, 7 2, 5, 3
4 3, 3, 2 2, 2, 2 3, 1, 7 2, 1, 6 3, 4/5, 5
5 1, 1, 6 2, 3/2, 3 1, 5/2, 1 2, 1/4, 6 2, 6/5, 6
6 2, 5/7, 4 4, 6/5, 3 4, 1/7, 3 2, 4/5, 6 3, 1/2, 2
7 1, 1/2, 4 1, 5/4, 2 4, 7, 6 2, 7, 4 4, 2/3, 6
8 4, 2, 2 1, 5/6, 3 3, 2/3, 3 3, 1/2, 4 4, 4/5, 3
9 2, 1/4, 1 2, 5, 4 3, 1, 6 1, 7/4, 1 2, 1, 1
10 3, 4/3, 5 3, 1/2, 4 4, 5/4, 6 4, 1, 5 1, 1, 1

h is 3 (notice that μ(s, h, 0) = 7/3), and arriving at ρ is 15 (μ(h, ρ, 3) =
5).

In a similar way, we have the second path P2 = (s, e, ρ), with τ(s) = 0,
τ(e) = 2, α(ρ) = 4, and ξ∗z (ρ) = 72/25. The third path P3 = (s, h, e, ρ),
with τ(s) = 0, τ(h) = 3, τ(e) = 6, α(ρ) = 10, and ξ∗z (ρ) = 3/7. There-
fore, the total flow sent from s is 9/7 + 2 + 9/14 = 55/14, and the total
flow arriving at ρ is 15 + 72/25 + 3/7 = 3024/175.

Now, we consider the case where ux = ∞, i.e., waiting at any vertex
is arbitrarily allowed.

Definition 8.6 ξa(x, t)k is the capacity of a maximum dynamic
f-augmenting path from s to vertex x of time at most t, with the al-
ternating number at most k, where the waiting at any vertex has no
restriction.

The following procedure can find the maximum dynamic f-augmenting
path from s to ρ of time at most t, where waiting at any vertex is
arbitrarily allowed (Note that a dynamic path of time at most t is one
of time at most t+1 as one can wait at a vertex one unit of time more).

Procedure MDFP-AW

Initialize: ξa(s, t)
0 := +∞, ξa(y, t)0 := 0,∀y ∈ V \{s}; t =

0, ..., T ;
i := 0;
Do

i := i + 1;
For all y ∈ V, t = 0, . . . , T do ξa(y, t)i := ξa(y, t)i−1;

Case 1: i is an odd number:
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For t = 1, ..., T do
For every y ∈ V do forward searching operation:

ξa(y, t)i := max{ξa(y, t − 1)i, ξa(y, t)i,

max
{x|(x,y)∈A+}

max
{u|u+b(x,y,u)=t}

{μ(x, y, u) · min{ξa(x, u)i, l(x, y, u)}}};

Case 2: i is an even number:
For t = T − 1, ..., 0 do

For every y ∈ V do backward searching operation:

ξa(y, t)i := max{ξa(y, t + 1)i, ξa(y, t)i,

max
{x|(x,y)∈A−}

max
{u|u+b[x,y,u]=t}

{μ[x, y, u] · min{ξa(x, u)i, l[x, y, u]}}};

While there is at least one ξa(y, t)i �= ξa(y, t)i−1;
Let ξ∗a(ρ) := ξa(ρ, T )i;
Return;

Lemma 8.6 When Procedure MDFP-AW terminates, ξ∗a(ρ) is the ca-
pacity of a maximum dynamic f-augmenting path from s to ρ of time at
most T with arbitrary waiting constraint. The procedure can be imple-
mented in O(mnT 2) time.

The proof of Lemma 8.6 is similar to that for Lemma 8.3, so we omit
it here. Similar to Algorithm TVMGF-ZW, we give the algorithm below
for solving the problem under the arbitrary waiting time constraints.

Algorithm TVMGF-AW

Begin
Sort all values u + b(x, y, u) for 1 ≤ u ≤ T and for all arcs

(x, y) ∈ A+;
Sort all values u + b[x, y, u] for 0 ≤ u ≤ T − 1 and for all arcs

[x, y] ∈ A−;
v̄ := 0;
Do

Call Procedure MDFP-AW;
If ξ∗a(ρ) > 0 then let v̄ := v̄ + ξ∗a(ρ) and call the procedure

UPNET; (there is a maximum dynamic f-augmenting path with
flow value ξ∗a(ρ); so update the network)

Else stop; (no feasible solution to send all flow value σ from
s to ρ within time T )

While ξ∗a(ρ) > 0;
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End

Noting that property 8.1 and Lemma 8.5 are also true for the case of
arbitrary waiting times. In summary, we have:

Theorem 8.2 The time complexity of Algorithm TVMGF-AW is bound-
ed above by O(T 4m3n log B).

We should point out that, when the arc multiplier μ(x, y, t) is less
than or equal to 1, the time complexity of the algorithm can be im-
proved to O(T 3m3n log B). This result can be obtained by the fol-
lowing observation: Each maximum dynamic f-augmenting path with
no artificial arcs, called the maximum true f-augmenting path (MTFP),
cannot contain any vertex more than once. Otherwise, suppose P =
(s, ..., xi, xi+1, ..., xi, xj , ..., ρ) is a MTFP which visits vertex xi twice.
Then we can create a new path P ′ = (s, ..., xi, xj , ..., ρ) by deleting the
section (xi+1, ..., xi) from P and waiting at vertex xi until the departure
for xj . It is clear that P ′ is a feasible path with Cap(P ) ≤ Cap(P ′), since
P ′ traverses less arcs as compared to P , while μ ≤ 1. This contradicts
the fact that P is a maximum one.

Consequently, one can see that the first k maximum f-augmenting
paths obtained by the algorithm will not visit any vertex more than
k times (otherwise, if one represents these k paths by k MTFPs, then
there must exist a MTFP that visits the vertex more than once). Now
let gk be the number of iterations to search for the kth maximum f-
augmenting path Pk, rk the alternating number of Pk, and hk the number
of vertices of Pk. Clearly, gk = rk + 1 ≤ hk. Hence, we have

∑v
k=1 gk =

∑v
k=1(rk + 1) ≤

∑v
k=1 hk ≤ nv. Note that O(mT ) is needed in each

iteration. Thus, the total running time is bounded by O(T 3m3n log B).
In summary, we have:

Corollary 8.1 Given a time-varying network N , if the arc multiplier
μ(x, y, t) ≤ 1 for each arc (x, y) and each time t, the time complexity of
Algorithm TVMGF-AW can be reduced to O(T 3m3n log B).

Now we examine the case with w(x) ≤ ux, ∀x ∈ V .

Definition 8.7 ξb(x, t)k is the capacity of a maximum dynamic
f-augmenting path from s to vertex x of time exactly t, with the alter-
nating number at most k, where the waiting time at any intermediate
vertex has an upper bound ux.

Similar to the two procedures MDFP-ZW and MDFP-AW, we can
develop a procedure, MDFP-BW, which can find the maximum dy-
namic f-augmenting path in N under the bounded waiting time con-
straint. Notice that in the procedure presented below, the notions r1,
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F(x, y; t, r1, r2) and J(x;uA, uD) are same as those defined in Chapter
4.

Procedure MDFP-BW

Initialize: ξb(s, t)
0 := +∞ for 0 ≤ t ≤ us, ξb(s, t)

0 := 0 for
us < t ≤ T ; ξb(y, t)0 := 0,∀y ∈ V \{s}; t = 0, ..., T ; R1(y, t) :=
0,∀y ∈ V ; t = 0, ..., T ;
i := 0;
Do

i := i + 1;
For all y ∈ V, t = 0, . . . , T do ξb(y, t)i := ξb(y, t)i−1;

Case 1: i is an odd number:
For t = 1, ..., T do

For every y ∈ V \{s} do forward searching operation:

ξb(y, t)i := max{ξb(y, t)i,

max
{x|(x,y)∈A+}

max
(uA,uD)∈F(x,y;t,r1,r2)

{μ(x, y, uD)·min{J(x;uA, uD), l(x, y, uD)}}};

Case 2: i is an even number:
For t = T − 1, ..., 0 do

For every y ∈ V \{ρ} do backward searching operation:

ξb(y, t)i := max{ξb(y, t)i,

max
{x|(x,y)∈A−}

max
(uA,uD)∈F(x,y;t,R1,r2)

{μ[x, y, uD]·min{J(x;uA, uD), l[x, y, uD]}}};

If ξb(y, t)i is determined by the second term then let
R1(y, t) := r1[x, y, uD];
While there is at least one ξb(y, t)i �= ξb(y, t)i−1;
Let ξ∗b (ρ) := mint∈T ξb(ρ, t)i;
Return;

The main algorithm to solve the problem can now be described below:

Algorithm TVMGF-BW

Begin
Sort all values u + b(x, y, u) for 1 ≤ u ≤ T and for all arcs

(x, y) ∈ A+;
Sort all values u + b[x, y, u] for 0 ≤ u ≤ T − 1 and for all arcs

[x, y] ∈ A−;
Calculate

∏uD−1
τ=uA

l(x, τ) and
∏uD+1

τ=uA
l[x, τ ] for any x ∈ V , 0 ≤

uA, uD ≤ T ;
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v̄ := 0;
Do

Call procedure MDFP-BW;
If ξ∗b (ρ) > 0 then let v̄ := v̄ + ξ∗b (ρ) and call the procedure

UPNET; (there is a maximum dynamic f-augmenting path with
flow value ξ∗b (ρ); so update the network);

Else stop; (no feasible solution to send all flow value σ from
s to ρ within time T );

While ξ∗b (ρ) > 0;
End

Theorem 8.3 Algorithm TVMGF-BW solves the time-varying maxi-
mum generalized flow problem under the bounded waiting time constraint
in O(T 4m2n(m + nT ) log B) time.

The proof is omitted here.

3. The time-varying travelling salesman problem
The travelling salesman problem (TSP) is to determine the minimum

cost path for one to visit a number of cities once and only once. This
problem has many applications.

The travelling salesman problem with time windows (TSPTW) is an
important model in time constrained routing problems, which have at-
tracted increasing attention in recent years. In TSPTW, each vertex
x ∈ V can only be visited within a given time window [ex, hx]. The time
window constraint can be divided into two types, hard and soft. In the
hard case, if a vehicle arrives at a vertex too early, it will have to wait.
In contrast, in the soft case, the time window constraints can be violated
at a cost. The objective of the problem is to minimize the total travel
cost (or time).

In this section, we consider a more general TSP: The time-varying
travelling salesman (TVTS) problem, which can be stated as: Given a
time-varying network N(V,A, b, c), where V is the vertex set, A is the
arc set, b(x, y, t) and c(x, y, t) are the transit time and the transit cost of
arc (x, y) at time t, the problem is to find a dynamic path which starts
at a pre-specified vertex s, visits each vertex in V only once within time
T such that the total transit cost of this path is minimized. We assume
that b is a positive integer and c is a non-negative integer.

Clearly, TSP is a special case of the TVTS problem where the transit
cost c is time independent, all b(x, y, t) = 1, and T = ∞ for any arc
(x, y) ∈ A and any time 0 ≤ t ≤ T . TSPTW is also a special case of
the TVTS problem. This can be shown as follows. For the hard window
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constraint case, let

c(x, y, t) =

{

+∞, t < ex

c(x, y), t ≥ ex

c(z, x, t) =

{

+∞, t ≥ hx

c(z, x), t < hx

for all arcs (z, x) ∈ A and (x, y) ∈ A, where c(x, y) is the transit cost
of arc (x, y) in TSPTW. For the soft window constraint case, we only
need to add the extra cost to those transit costs which depart from the
vertex x earlier than time ex and arrive at x later than hx.

It is well known that TSP is NP-hard in strong sense. Savelsbergh
(1985) has shown that even finding a feasible solution of TSPTW is
NP-complete. This implies that the time-varying travelling salesman
problem is also NP-hard as both TSP and TSPTW are special cases of
the TVTS problem.

Note that there is a dynamic programming approach (see Ahuja et al
(1993)) which can optimally solve the static TSP in O(n22n) time, where
n is the number of vertices. If we apply it to the time-expanded network
(a static network converted from the multi-period dynamic network) for
solving the TVTS problem, the running time will be O((nT )22nT ), since
there are O(nT ) vertices in the time-expanded network corresponding to
the time-varying network we consider. In what follows, we will describe
a dynamic programming approach directly on the original time-varying
network, which can be implemented in O(mnT2n) time. Clearly, this is
much better than O((nT )22nT ), especially when T is a large number.

We first examine the case with no constraint on waiting at any vertex,
and then develop algorithms for the TVTS problem with zero waiting
and bounded waiting constraints, respectively.

Definition 8.8 Given a vertex set S ⊂ V and s, x ∈ S, define Da(x, S, t)
as the cost of the shortest dynamic path in S which starts at vertex s,
visits all other vertices of S exactly once, and ends at vertex x. Waiting
at vertex is allowed, but the time of this path will not excess t. If there
is no such a dynamic path in S, define Da(x, S, t) = ∞.

Lemma 8.7 For any time t we have Da(s, S = {s}, t) = 0. For any ver-
tex y �= s, if s �∈ S, we have Da(y, S, t) = ∞ for any time t. Otherwise,
if s ∈ S, we have Da(y, S, 0) = ∞ and

Da(y, S, t) = min{Da(y, S, t − 1),

min
x∈S\{y,s}

min
(x,y)∈A

min
{u|u+b(x,y,u)=t}

{Da(x, S\{y}, u) + c(x, y, u)}}
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for any 0 < t ≤ T .

Proof: By the definition, Da(s, S, t) = 0 is true when S = {s} for any
time t. Furthermore, for any y �= s and s �∈ S, we have Da(y, S, t) = ∞,
since the dynamic path in S, if any, does not start at s.

Now, we consider the case y �= s and s ∈ S. When time t = 0,
Da(y, S, 0) = ∞ is obviously, since the transit time is positive and there
is no path from s to y within time 0. When t = 1, if there is a dynamic
path from s to y within time 1, then we must have S = {s, y} and
b(s, y, 0) = 1, because all transit times are positive integers. From the
formula, Da(y, S, 1) = c(s, y, 0). Otherwise, if there is no dynamic path
from s to y within time 1 (actually, there is no arc (s, y) in A such
that b(s, y, 0) = 1), Da(y, S, 1) = Da(y, S, 0) = ∞. Therefore, the claim
holds.

Assume that for any time t′ < t, the claim is true. Consider the case
of time t.

If Da(y, S, t) = ∞, then by the induction, we know that there is no
dynamic path from s to x ∈ S\{y} in S within time u = t − b(x, y, u),
therefore, no dynamic path from s to y within time t. Now, we assume
that Da(y, S, t) < ∞. First, we show that there is a dynamic path
from s to y in S within time t. From the formulation, if Da(y, S, t) =
Da(y, S, t− 1), then by the induction, there is a dynamic path from s to
y in S within time t − 1. Clearly, it is also a dynamic path within time
t. Otherwise, if Da(y, S, t) = Da(x, S\{y}, u) + c(x, y, u), then we have
Da(x, S\{y}, u) < ∞. It means that there is a dynamic path P (s, x) in
S within time u. Therefore, we can add arc (x, y) to P and obtain a
dynamic path P (s, x, y) in S within time t.

Now, we prove that Da(y, S, t) is the cost of the shortest dynamic
path from s to y. Suppose that P ∗ is the optimal path from s to y
in S within time t and ζ(P ∗) is its cost. Clearly, we have ζ(P ∗) ≤
Da(y, S, t). On the other hand, assume that P ∗(s, x) is the subpath of
P ∗ in S\{y} from s to x with arrival time u∗ at x. Therefore, we have
ζ(P ∗(s, x)) ≥ Da(x, S\{y}, u∗) by the induction. That is to say ζ(P ∗) =
ζ(P ∗(s, x))+ c(x, y, u∗) ≥ Da(x, S\{y}, u∗)+ c(x, y, u∗) ≥ Da(y, S, t). In
summary, we have ζ(P ∗) = Da(y, S, t). This completes the proof. �

Now we are ready to describe the algorithm.

Algorithm TVTSP-AW

Begin
Sort all values u+ b(x, y, u) = t for u = 1, 2, ..., T , and for all arcs

(x, y) ∈ A;
For t = 0, 1, ..., T do Da(s, {s}, t) := 0;
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For l = 1, 2, ..., n − 1 do
For each subset S̄ ⊂ V \{s} such that |S̄| = l do

S := S̄ + {s};
For t = 1, 2, ..., T do

For any y ∈ S̄ do
Da(y, S, 0) := ∞;
For each vertex x ∈ S̄\{y}, (x, y) ∈ A and each u such

that u + b(x, y, u) = t do

Da(y, S, t) := min{Da(y, S, t − 1),

min
x∈S̄\{y}

min
(x,y)∈A

min
{u|u+b(x,y,u)=t}

{Da(x, S\{y}, u) + c(x, y, u)}};

Let z∗ := miny∈V \{s} Da(y, V, T );
End.

Theorem 8.5 After the termination of Algorithm TVTSP-AW, z∗ is
the cost of the shortest dynamic path which starts at s and visits each
vertex of V once and only once within the time limit T .

Theorem 8.5 follows from Lemma 8.7 directly.

Lemma 8.8 Algorithm TVTSP-AW can be implemented in O(mnT2n)
time.

Proof: At the sorting step we need O(mT ) time and the initial setting
for Da(s, S, t) needs O(T ) time. To calculate each subset S̄ ⊂ V \{s} we
need C1

n−1 +C2
n−1 + ...+Cn−1

n−1 ≤ 2n time, i.e., O(2n) time. The sub-loop
of calculating Da(y, S, t) needs O(mnT ) time. So, the whole loop needs
O(mnT2n) time. The last step is to calculate z∗ which needs O(n) time.
In summary, we need O(mnT2n) time in total. �

Based on Lemmas 8.7 and 8.8, we have

Theorem 8.6 Algorithm TVTSP-AW can optimally solve, in O(mT2n)
time, the TVTS problem with no waiting time constraint at vertices.

Similarly, we can develop algorithms for the TVTS problem under
zero waiting time and bounded waiting time constraints, respectively.

Definition 8.9 Given a vertex set S ⊂ V and s ∈ S, define Dz(x, S, t)
as the cost of the shortest dynamic path in S which starts at vertex s,
visits all other vertices of S exactly once, ends at vertex x. Waiting at
vertex is strictly prohibited, and the time of this path is t. If there is no
such a dynamic path in S, define Dz(x, S, t) = ∞.
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Lemma 8.9 Dz(s, S = {s}, 0) = 0, and For any time t > 0, we
have Dz(s, S = {s}, t) = ∞. For any vertex y �= s, if s �∈ S, we
have Dz(y, S, t) = ∞ for any time t. Otherwise, if s ∈ S, we have
Dz(y, S, 0) = ∞ and

Dz(y, S, t) = min
x∈S\{y,s}

min
(x,y)∈A

min
{u|u+b(x,y,u)=t}

{Dz(x, S\{y}, u)+c(x, y, u)}.

The following is the algorithm to solve the problem with zero waiting
time constraint.

Algorithm TVTSP-ZW

Begin
Initialize: Dz(s, {s}, 0) = 0, Dz(s, {s}, t) := ∞ for t = 1, ..., T ;
Sort all values u+ b(x, y, u) = t for u = 1, 2, ..., T , and for all arcs

(x, y) ∈ A;
For l = 1, 2, ..., n − 1 do

For each subset S̄ ⊂ V \{s} such that |S̄| = l do
S := S̄ + {s};
For t = 1, 2, ..., T do

For any y ∈ S̄ do
Dz(y, S, t) := ∞;
For each x ∈ S̄\{y}, (x, y) ∈ A and each u such that

u + b(x, y, u) = t do

Dz(y, S, t) := min
x∈S̄\{y}

min
(x,y)∈A

min
{u|u+b(x,y,u)=t}

{Dz(x, S\{y}, u) + c(x, y, u)};

Let z∗ := miny∈V \{s} mint Dz(y, V, t);
End.

Theorem 8.7 Algorithm TVTSP-ZW can optimally solve the TVTS
problem with the zero waiting time constraint in O(mnT2n) time.

Definition 8.10 Given a vertex set S ⊂ V and s ∈ S, define Db(x, S, t)
as the cost of the shortest dynamic path in S which starts at vertex s,
visits all other vertices of S exactly once, and ends at vertex x. Waiting
at vertex x is allowed, however, it is bounded by a given number ux, and
the time of this path must be t. If there is no such a dynamic path in S,
define Db(y, S, t) = ∞.

Lemma 8.10 Db(s, S = {s}, t) = 0 for 0 ≤ t ≤ us and Db(s, S =
{s}, t) = ∞ for us < t ≤ T . For any vertex y �= s, if s �∈ S, we
have Db(y, S, t) = ∞ for any time t. Otherwise, if s ∈ S, we have
Db(y, S, 0) = ∞ and

Db(y, S, t) =
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min
x∈S\{y,s}

min
(x,y)∈A

min
(uA,uD)∈F(x,y,t)

{Db(x, S\{y}, uA) + c(x, y, uD)}

where F(x, y, t) = {(uA, uD)|uD + b(x, y, uD) = t, 0 ≤ uD − uA ≤ ux}.

Algorithm TVTSP-BW

Begin
Initialize: Db(s, S = {s}, t) = 0 for 0 ≤ t ≤ us, Db(s, S =

{s}, t) = ∞ for us < t ≤ T ;
Sort all values u+ b(x, y, u) = t for u = 1, 2, ..., T , and for all arcs

(x, y) ∈ A;
For l = 1, 2, ..., n − 1 do

For each subset S̄ ⊂ V \{s} such that |S̄| = l do
S := S̄ + {s};
For t = 1, 2, ..., T

do
For each y ∈ S̄ do
Db(y, S, t) := ∞;
For each vertex x ∈ S̄\{y}, (x, y) ∈ A and each (uA, uD)

such that (uA, uD) ∈ F(x, y, t) do
Db(y, S, t) :=

min
x∈S̄\{y}

min
(x,y)∈A

min
(uA,uD)∈F(x,y,t)

{Db(x, S\{y}, uA) + c(x, y, uD)};

Let z∗ := miny∈V \{s} mint Db(y, V, t);
End.

Theorem 8.8 Algorithm TVTSP-BW can optimally solve the TVTS
problem with the bounded waiting time constraint in O(mnT2n log T )
time.

4. The time-varying Chinese postman problem
The Chinese Postman Problem (CCP) is another important network

optimization problem. CPP aims to find a tour which visits each arc of
a given network at least once such that the total cost is minimized.

We will investigate, in this section, the time-varying Chinese postman
(TVCP) problem, which can be stated as: Given a time-varying network
N(V,A, b, c), where V is the vertex set, A is the arc set, b(x, y, t) and
c(x, y, t) are the transit time and the transit cost of arc (x, y) at time t,
respectively, find a dynamic path starting from a specified vertex s and
visiting each arc at least once within a given time duration T , such that
the total transit cost is minimized.

Definition 8.12 A dynamic path that visits each arc of the given net-
work at least once is called a dynamic Chinese path. If the end vertex
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of the path is the same as the start vertex of the path, then this path is
called dynamic Chinese tour.

4.1 NP-hardness analysis
It is known that the static CPP is polynomially solvable. The TVCP

problem is, however, NP-hard in the strong sense.

Theorem 8.12 The TVCP problem is NP-hard in the strong sense.

Proof: We transform the directed Hamilton path problem to TVCP.

Directed Hamilton Path (DHP): Given a digraph G = (V,A), does G
contain a directed Hamilton path?

Decision Version of TVCP: Given a network N(V,A, b, c) and a number
K, does N contain a dynamic Chinese path such that the total cost is
less than or equal to K?

For a given digraph G = (V,A), we create a network N(V ′, A′, b, c) as
follows: Split each vertex x ∈ V into two vertices x′ and x′′, and create
an arc (x′, x′′) to connect them. For each arc (y, x) ∈ A create an arc
(y′′, x′), and for each arc (x, z) ∈ A, create an arc (x′′, z′). Moreover,
create a super vertex, v, and for each arc (x, y) ∈ A′, create two arcs
(v, x) and (y, v). Lastly, for each vertex x ∈ A with d−(x) = 0, create
an arc (x′′, s). Combining all x′, x′′ and v to form V ′ and all arcs we
obtain A′. Let b(x, y, t) = 1 for each arc (x, y) ∈ A′ and for each time t.
Let

c(x, y, t) = 0,∀(x, y) ∈ A′, (x, y) �= (x′, x′′), 0 ≤ t ≤ T

c(x′, x′′, t) = 0, 0 ≤ t ≤ 2n − 1

c(x′, x′′, t) = 2, 2(n − 1) < t ≤ T

K = 1 and T = 3m + 2n + 1. See Figure 8.4.

Obviously, the construction step can be completed in polynomial time.
Now, we show that a “yes” answer for DHP is equivalent to a “yes”
answer for the TVCP problem.

If G has a directed Hamilton path P (x1, x2, ..., xn), then we also have
a dynamic path P ′(x′

1, x
′′
1, x

′
2, x

′′
2, x

′
3, ..., x

′′
n) in N . It means that starting

from x′
1, we can visit all those arcs (x′

i, x
′′
i ) (i = 1, ..., n) before time

t = 2n−1, since all arc transit times are equal to one. The cost of path P ′

is zero, since c(x′
i, x

′′
i , t) = 0 when t ≤ 2n−1. Consider xn. If d−(xn) = 0

in G, we can extend path P ′ to P ′′ by adding an arc (x′′
n, s) to P ′, where

d−(x) is the in-degree of vertex x in N . Otherwise, if d−(xn) > 0 then
there must be an arc (xn, xj) in A. Therefore, we can extend P ′ to P ′′
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Figure 8.4. Construct a time-varying network N for a given digraph G

y
x

z

y’

y’’ x’ x’’
z’

z’’

s

G=(V,A)
N=(V’A’,b,c)

by adding arcs (x′′
n, x′

j) and (x′
j , s) to P ′. Notice that all other unvisited

arcs in A′ can be visited by a path which starts from vertex s. Denote
this path as P̄ . Combining P ′′ and P̄ we obtain a dynamic Chinese path
of N . Since ζ(P̄ ) = 0 and ζ(P ′′) = 0, the cost of the dynamic Chinese
path is also zero. Furthermore, since τ(P ′′) ≤ 2n+1 and τ(P̄ ) ≤ 3m, the
time the dynamic Chinese path is less than or equal to 3m+2n+1 = T .

If N has a dynamic Chinese path which can visit all arcs in A′ within
time T with cost K ′ ≤ K = 1, all those arcs (x′

i, x
′′
i ) ∈ A′ must be

visited before time t = 2n − 1, since the cost of those arcs should be 2
after that time. This condition guarantees that there a dynamic path
P ′(x′

1, x
′′
1, x

′
2, x

′′
2, x

′
3, ..., x

′′
n) in N . Therefore, we can find a corresponding

directed Hamilton path in A.
In summary, we complete the proof. �

4.2 Dynamic programming
We now develop an exact algorithm to solve the TVCP problem. We

first study the problem with no waiting constraint at any vertex, and
then describe an algorithm for solving the problems with waiting time
constraints at vertices.

To simplify the formulation, we introduce an extra vertex s0 and an
extra arc r = (s0, s), and let both its cost and transit time be equal
to zero. r can be regarded as a source arc in the given network N . A
dynamic path is said to travel from arc a1 = (x1, y1) to arc a2 = (x2, y2),
denoted by P (a1, a2), if a1 is its starting arc and a2 the ending arc.
Moreover, we denote τ(a1) = τ(x1) as the departure time of arc a1,
α(a1) = α(y1) as the arrival time of arc a1, b(a1, t) = b(x1, y1, t) and
c(a1, t) = c(x1, y1, t). In this section, the notions P (a1, a2) and P (x1, y2)
are used interchangeably.
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Definition 8.13 Given an arc set M ⊂ A and r ∈ M , define Qa(e,M, t)
as the cost of a shortest dynamic Chinese path from r to e of time at
most t in M , where waiting at a vertex is arbitrarily allowed. If such a
dynamic Chinese path dose not exist in M , let Qa(e,M, t) = ∞.

Let z = mine∈A Qa(e,A, T ), which is the cost of the shortest dynamic
Chinese path of time at most T . Given e, M , and t, a dynamic Chinese
path from r to e within time t can be obtained by merging a dynamic
Chinese path from arc r to arc g ∈ M\{e} within time u < t and a
shortest dynamic path from g to e which τ(g) ≥ u and α(e) ≤ t. We
have the following recursive relation.

Lemma 8.11 For any time 0 ≤ t ≤ T , Qa(r,M = {r}, t) = 0. For
any arc e ∈ M and e �= r, if r �∈ M , Qa(e,M, t) = ∞ for any time t;
otherwise, if r ∈ M , Qa(e,M, 0) = ∞ and

Qa(e,M, t) = min{Qa(e,M, t − 1),

min
g∈M\{e}

min
{u|τ(g)≥u,α(e)≤t,0≤u<t}

{Qa(g,M\{e}, u) + ζ(PM (g, e))}}

for 0 < t ≤ T , where PM (g, e) is the shortest dynamic path from g to e
in M , ζ(PM (g, e)) is its cost, τ(g) and α(e) are the departure time at
arc g and the arrival time at arc e in path PM (g, e), respectively.

Proof: When M = {r}, it is obvious that Qa(r,M, t) = 0 for any t. For
any arc e ∈ M and e �= r, if r �∈ M , Qa(e,M, t) = ∞ holds since there
is no dynamic path in M which starts from arc r. In what follows, we
consider the case r ∈ M .

When time t = 0, Qa(e,M, 0) = ∞ is true, since all the transit times
are positive numbers and there is no dynamic path including arcs r and
e within time 0. For any time t > 0 and t ≤ T , we prove the recursive
relation by induction.

When t = 1, if there is a dynamic Chinese path in M of time at
most 1, then must have M = {r, e} and u = 0 and b(e, 0) = 1, since
all the transit times are positive integers. Therefore, the cost of the
shortest dynamic Chinese path from r to e within time 1 is c(e, 0).
On the other hand, by the recursive relation, we have Qa(e,M, 1) =
min{Qa(e,M, 0), Qa(g,M\{e}, 0) + ζ(PM (g, e))} = c(e, 0). Thus the
claim is true.

Assume that the claim is true for any time less than t. Now consider
the case of time t.

If Qa(e,M, t) = ∞, then there is nothing to prove. Now assume
Qa(e,M, t) < ∞. First, we prove that there is a dynamic Chinese path
of time at most t in M which starts at arc r and ends at arc e. If
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Qa(e,M, t) comes from Qa(e,M, t − 1), by the induction on t, we know
that there is a dynamic Chinese path of time at most t − 1, of course,
it is a path of time at most t. Otherwise, if Qa(e,M, t) comes from the
second term only, that is to say, there is a dynamic Chinese path of
time at most u in M\{e}, denoted by P (r, g), with g as its ending arc.
Moreover, there is a dynamic shortest path PM (g, e) with τ(g) ≥ u and
α(e) ≤ t. Now we can combine paths P (r, g) and P (g, e) to obtain a new
path P (r, e). Obviously, it is a dynamic Chinese path of time at most t
in M .

We now prove that Qa(e,M, t) is the value of the shortest dynamic
Chinese path in M . Suppose that P ∗(r, e) is the optimal path and ζ(P ∗)
is its cost. Then we have ζ(P ∗) ≤ Qa(e,M, t). On the other hand, let h
be such an predecessor arc of e on path P ∗ that (i) all arcs in M\{e},
except h, have been visited before h; (ii) h is first time visited. Let
P ∗(r, h) and P ∗(h, e) be the subpaths of P ∗ from r to g with time at
most u′ and from h to e, respectively. Therefore, by the induction,
we have ζ(P ∗(r, h)) ≥ Qa(h,M\{e}, u′), since u′ < t. Moreover, we
have ζ(PM (h, e) ≤ ζ(P ∗(h, e)), since PM (h, e) is the shortest dynamic
path in M . That means ζ(P ∗(r, e)) ≥ Qa(h,M\{e}, u′)+ ζ(PM (h, e)) ≥
Qa(e,M, t). The last inequality comes from the formula. In summary,
we have ζ(P ∗(r, e)) = Qa(e,M, t). This completes the proof. �

Definition 8.14 Let M ⊂ A. Define R(M,x, t) as the cost of a shortest
dynamic Chinese path in M that starts from s and ends at vertex x
within time t. If such a path does not exist, let R(M,x, t) = ∞.

For a given arc set M ⊂ A, let N [M ] denote the arc induced subnet-
work of N which is generated by M on N , and V (N [M ]) be the vertex
set of N [M ]. We have:

Lemma 8.12 For each M ⊂ A, each vertex x ∈ V (N [M ]) and each
time 0 ≤ t ≤ T , we have

R(M,x, t) =

min
e=(y,z)∈M

min
{u|τ(z)≥u,α(x)≤t,0≤u≤t}

{Qa(e,M, u) + ζ(PN [M ](z, x))},

where PN [M ](z, x) is the dynamic shortest path in subnetwork N [M ].

Lemma 8.12 follows from Definition 8.14 directly. By Lemma 8.12,
the calculation shown in Lemma 8.11 can be rewritten as

Qa(e,M, t) :=

min{Qa(e,M, t − 1), min
{u|u+b(x,y,u)=t}

{R(M\{e}, x, u) + c(x, y, u)}},

where e = (x, y) ∈ M .
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To obtain R(M,x, t), we can use a method as follows: Suppose e =
(y, z). To obtain Qa(e,M, t), we can calculate all shortest paths from
z to each other vertex x ∈ V (N [M ]) in N [M ], with the departure
time t and the arrival time t′, where t ≤ t′ ≤ T . Then, we up-
date the value of R(M,x, t′) (t ≤ t′ ≤ T ) by letting R(M,x, t′) =
min{R(M,x, t′), Qa(e,M, t) + ζ(PN [M ](z, x))}, where ζ(PN [M ](z, x)) is
the value of the shortest path of PN [M ](z, x). Initially, let R(M,x, t′) =
∞ for any time 0 ≤ t′ ≤ T .

We now have the following algorithm.

Algorithm TVCPP-AW

Begin
Sort all valuesu + b(x, y, u) = t for u = 1, 2, ..., T , and for all arcs

(x, y) ∈ A;
For t = 0, 1, ..., T do Qa(r, {r}, t) := 0, Qa(e, {r}, t) := ∞;
For l = 1, 2, ..., n − 1 do

For each subset M̄ ⊂ A\{r} such that |M̄ | = l do
M := M̄ + {r};
For each x ∈ V (N [M ]) and t = 0, 1, ..., T do R(M,x, t) :=

∞;
For each e ∈ M̄ do Qa(e,M, 0) := ∞;
For t = 1, 2, ..., T do

For each e = (x, y) ∈ M̄ do
Qa(e,M, t) :=

min{Qa(e,M, t − 1), min
{u|u+b(x,y,u)=t}

{R(M\{e}, x, u) + c(x, y, u)}};

Call procedure TSP-AW to calculate all paths from y to
each other vertex z ∈ V (N [M ]) and update R(M, z, t′);
Let z∗ := mine∈A Qa(e,A, T );
End.

Lemma 8.13 After the termination of Algorithm TVCPP-AW, z∗ is the
value of the shortest dynamic Chinese path of N within time T .

Lemma 8.13 follows from Lemma 8.11 and 8.12 directly.

Lemma 8.14 Algorithm TVCPP-AW can be implemented in
O(m2nT 22m) time.

Proof: The sorting step needs O(mT ) time. Setting initial values for
Qa(e, {r}, t) needs O(T ) time. Examining each subset M̄ of A\{r} needs
O(2m) time. For each arc set M = M̄ + {r}, initializing R(M,x, t) for
each vertex x ∈ V (N [M ]) needs O(nT ) time. For each arc e ∈ {̄M} to
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set Qa(e,M, 0) needs O(m) time. Calculating Qa(e,M, t) needs O(mT )
time, since we have sorted all u already. Computing all shortest paths
from y (the end of arc e) to each vertex z ∈ V (N [M ]) and updating
R(M, z, t′) need O(mnT 2(m+n)) and O(mnT 2) respectively. Therefore
the total running time of the algorithm is bounded by O(m2nT 22m). �

Theorem 8.13 The TVCP problem with the arbitrary waiting constraint
can be solved in O(m2nT 22m) time.

Now, we consider the problem with zero waiting and bounded waiting
constraints.

Definition 8.15 Given an arc set M ⊂ A and r ∈ M , define Qz(e,M, t)
as the cost of a shortest dynamic Chinese path from r to e of time exactly
t in M , where waiting at a vertex is strictly prohibited. If such a dynamic
Chinese path dose not exist in M , let Qz(e,M, t) = ∞.

Lemma 8.15 Qz(r,M = {r}, 0) = 0 and for any time 0 < t ≤ T ,
Qz(r,M = {r}, t) = ∞. For any arc e ∈ M and e �= r, if r �∈ M ,
Qz(e,M, t) = ∞ for any time t; otherwise, if r ∈ M , Qz(e,M, 0) = ∞
and

Qz(e,M, t) =

min
g∈M\{e}

min
{u|τ(g)=u,α(e)=t,0≤u≤t}

{Qz(g,M\{e}, u) + ζ(PM (g, e))}}

for 0 < t ≤ T .

Definition 8.16 Let M ⊂ A. Define Rz(M,x, t) as the cost of a short-
est dynamic Chinese path in M that ends at vertex x at time t, where
waiting at any vertex is strictly prohibited. If this path does not exist,
let Rz(M,x, t) = ∞.

Lemma 8.16 For each M ⊂ A, each vertex x ∈ V (N [M ]) and each
time 0 ≤ t ≤ T , we have

Rz(M,x, t) =

min
e=(y,z)∈M

min
{u|τ(z)=u,α(x)=t,0≤u≤t}

{Qz(e,M, u) + ζ(PN [M ](z, x))}.

The calculation shown in Lemma 8.15 can be rewritten to

Qz(e,M, t) := min
{u|u+b(x,y,u)=t}

{Rz(M\{e}, x, u) + c(x, y, u)},

where e = (x, y) ∈ M .

Algorithm TVCPP-ZW

Begin



204 TIME-VARYING NETWORK OPTIMIZATION

Initialize: Qz(r, {r}, 0) := 0 and Qz(r, {r}, t) := ∞ for 0 < t ≤ T ,
Qz(e, {r}, t) := ∞ for any e �= r and any time 0 ≤ t ≤ T ;
Sort all values u+ b(x, y, u) = t for u = 1, 2, ..., T , and for all arcs

(x, y) ∈ A;
For l = 1, 2, ..., n − 1 do

For each subset M̄ ⊂ A\{r} such that |M̄ | = l do
M := M̄ + {r};
For each x ∈ V (N [M ]) and t = 0, 1, ..., T do Rz(M,x, t) :=

∞;
For each e = (x, y) ∈ M̄ do Qz(e,M, 0) := ∞;
For t = 1, 2, ..., T do

For each e ∈ M̄ do

Qz(e,M, t) := min
{u|u+b(x,y,u)=t}

{Rz(M\{e}, x, u) + c(x, y, u)};

Call procedure TSP-ZW to calculate all paths from e to
each other vertex z ∈ V (N(M)) and update R(M, z, t′);
Let z∗ := mine∈A min0≤t≤T Qz(e,A, t);
End.

Theorem 8.14 Algorithm TVCPP-ZW can optimally solve the TVCP
problem with the zero waiting constraint in O(m2nT 22m) time.

Definition 8.17 Let M ⊂ A and r ∈ M , define Qb(e,M, t) as the cost
of a shortest dynamic Chinese path from r to e of time exactly t in M
under the bounded waiting time constraints. If this path dose not exist,
let Qb(e,M, t) = ∞.

Lemma 8.17 Qb(r,M = {r}, 0) = 0 and for any time 0 < t ≤ T ,
Qb(r,M = {r}, t) = ∞. For any arc e ∈ M and e �= r, if r �∈ M ,
Qb(e,M, t) = ∞ for any time t; otherwise, if r ∈ M , Qb(e,M, 0) = ∞
and

Qb(e,M, t)

= min
g∈M\{e}

min
(uA,uD)∈H(g,e,t)

{Qb(g,M\{e}, uA) + ζ(PM (g, e))}},

where H(g, e, t) = {(uA, uD)|τ(g) = uD, α(e) = t, 0 ≤ uD − uA ≤ ux},
PM (g, e) is the dynamic shortest path from g to e in M with the departure
time τ(g) and arrival time α(e) and waiting at vertex x is bounded by a
given number ux.

Definition 8.18 Let M ⊂ A. Define Rb(M,x, t) as the cost of a shortest
dynamic Chinese path in M that ends at vertex x within time t, where
waiting at any vertex x is bounded by a given number ux. If such a path
does not exist, let Rb(M,x, t) = ∞.



Generalized Flows and Other Network Problems 205

Lemma 8.18 For each M ⊂ A, each vertex x ∈ V (N [M ]) and each
time 0 ≤ t ≤ T , we have

Rb(M,x, t)

= min
e=(y,z)∈M

min
(uA,uD)∈H(g,e,t)

{Qb(e,M, uA) + ζ(PM (z, x))}.

The calculation shown in Lemma 8.17 can be rewritten to

Qb(e,M, t) :=

min
{(uA,uD)|uD+b(x,y,uD)=t,0≤uD−uA≤ux}

{Rb(M\{e}, x, uA) + c(x, y, uD)},

where e = (x, y) ∈ M .

Algorithm TVCPP-BW

Begin
Initialize: Qb(r, {r}, 0) := 0 and Qb(r, {r}, t) := ∞ for t > 0;

Qb(e, {r}, t) := ∞ for 0 ≤ t ≤ T ;
Sort all values u+ b(x, y, u) = t for u = 1, 2, ..., T , and for all arcs

(x, y) ∈ A;
For l = 1, 2, ..., n − 1 do

For each subset M̄ ⊂ A\{r} such that |M̄ | = l do
M := M̄ + {r};
For each x ∈ V (N [M ]) and t = 0, 1, ..., T do Rb(M,x, t) :=

∞;
For each e ∈ M̄ do Qb(e,M, 0) := ∞;
For t = 1, 2, ..., T do

For each e = (x, y) ∈ M̄ do
Qb(e,M, t) :=

min
{(uA,uD)|uD+b(x,y,uD)=t,0≤uD−uA≤ux}

{Rb(M\{e}, x, uA) + c(x, y, uD)};

Call procedure TSP-BW to calculate all paths from e to
each other vertex z ∈ V (N [M ]) and update R(M, z, t′);
Let z∗ := mine∈A mint Qb(e,A, t);
End.

Theorem 8.15 Algorithm TVCPP-BW can optimally solve the TVCP
problem with the bounded waiting constraint in O(T 22mm(m + n log T ))
time.
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5. Additional references and comments
The generalized maximum flow problem can be converted to a linear

program, and solved using general-purpose linear programming algo-
rithms, such as the ellipsoid method (Karchian (1980)) or Karmarkar’s
algorithm (Karmarkar (1984)). The fastest of this kind of algorithms
currently known runs in O(m3.5 log(nB)) time when applied to the gen-
eralized maximum flow problem, where B is the largest integer used
to represent the multipliers and capacities (Vaidya (1989)). Using the
technique of Kapoor et al (1986), this algorithm can be modified to run
in O(n2m1.5 log(nB)) time (Vaidya (1989)). Another algorithm for the
maximum generalized flow problem is reported by Goldberg, Plolkin and
Tardos, which can be implemented in O(n2m2 log n log2 B) (Goldberg
(1998)).

A generalized time-expanded network can be created to convert a
maximum generalized flow problem with arc transit times to an equiva-
lent static problem without arc transit times, which can then be solved
using a method for solving the static problem (Ford et al (1962)). How-
ever, the size of this time-expanded network is much greater than that
of the original one. Let m and n denote the number of arcs and ver-
tices of the original network, m′ and n′ the number of arcs and vertices
of the equivalent time-expanded network, respectively. Then, if wait-
ing at vertices is arbitrarily allowed, then we have m′ = (m + n)T and
n′ = nT . Therefore, if we apply the algorithm of Goldberg (1998), the
running time will be O(T 4m2n2 log(nT ) log2 B). The time complexity
of the algorithm we have presented in this chapter is bounded above
by O(T 4m3n log B). For the case where all multipliers are less than or
equal to 1 and vertex capacities are unbounded, the time complexity of
our algorithm can be further reduced to O(T 3m3n log B).
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