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PREFACE

Limit analysis is concerned with the development of efficient methods for com-
puting the collapse or limit load of structures in a direct manner. It is therefore of
intense practical interest to practicing engineers. There have been an enormous
number of applications in metal structures. Applications of limit analysis to rein-
forced concrete structures are more recent and are given in two recent books (W.F.
Chen, ‘Plasticity in Reinforced Concrete’, McGraw-Hill, 1982; M.P. Nielsen,
‘Limit Analysis and Concrete Plasticity’, Prentice-Hall, 1984). Applications to
typical stability problems in soil mechanics have been the most highly developed
aspect of limit analysis so that the basic techniques and many numerical results were
summarized in the 1975 book by Chen entitled ‘Limit Analysis and Soil Plasticity’,
Elsevier. About 250 pages in this 1975 book were devoted to applying limit analysis
to the well-known ‘classical’ stability problems in soil mechanics: bearing capacity
of footings, lateral earth pressure problems, and stability of slopes. Many limit
analysis solutions were presented and compared with solutions from conventional
limit equilibrium analysis and slip-line solutions. In several instances, especially in
bearing capacity problems, such a level of reliability and completeness was achieved
that limit analysis solutions were given in comprehensive graphs and tables greatly
facilitating the practical application of the results.

However, most of the applications of limit analysis to soil mechanics problems
before 1975 were limited to soil statics. Further, it is a surprise to note that relatively
little work was carried- out by researchers and engineers before 1975 to apply limit
analysis to earth pressure problems. During the last ten years, our understanding of
the perfect plasticity and the associated flow rule assumption on which limit analysis
is based has increased considerably and many extensions and advances have been
made in applications of limit analysis to the area of soil dynamic, in particular, to
earthquake-induced slope failure and landslide problems and to earthquake-induced
lateral earth pressures on rigid retaining structures. This is not therefore just another
book which presents limit_analysis in a new style. Instead, its purpose is in part to
discuss the validity of the upper bound work (or energy) method of limit analysis
in a form that can be appreciated by a practicing soil engineer, and in part to provide
a compact and convenient summary of recent advances in the applications of limit
analysis to earthquake-induced stability problems in soil mechanics.

For reasons of brevity, and because it is assumed that the reader has had some
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contact with the 1975 book on ‘Limit Analysis and Soil Plasticity’ by the first
author, the emphasis in the first part of this book is focussed therefore on the
physical justification of limit analysis of perfect plasticity in application to soils
from the viewpoint of a soil engineer, rather than on the mathematical rigorousness
from the viewpoint of a continuum mechanjcian. To this end, some practical limits
on soils are suggested in the use of limit analysis method. Details of the application
of the upper bound work (or energy) method to stability problems in soil mechanics
in general and to earthquake-induced earth pressures and slope failures in particular
are made with extensive numerical results presented in graphs and tables. Since ex-
tensive references to the work of limit analysis in soil mechanics before 1975 were
already given in the 1975 book cited, only the references relevant to the recent work
will be given in this book.

The scope of the book is indicated by the contents. The first part of the book sets
out initially to describe the basic concept and technique of limit analysis and the
assumptions on which it is based (Chapter 2), going on to examine, on the basis of
idealized test conditions, the behavior and strength of soils, and leading to show
why the limit analysis technique is applicable to soils, especially for the cohesionless
soils (Chapter 3).

The upper bound work method is then applied and used to predict the lateral
earth pressures subjected to static forces (Chapter 4) as well as to earthquake forces
(Chapter 5). Practical design considerations of rigid retaining structures made using
this analysis are then summarized in Chapter 6. A brief description of the applica-
tion of the work method to determine the bearing capacity of strip footings on a
half-space follows of a rigorous upper bound analysis capable of dealing with foun-
dations on anisotropic and nonhomogeneous soils (Chapter 7).

The analysis method based on the concept put forward by N.M. Newmark in his
1965 Rankine lecture entitled ‘Effects of Earthquakes on Dams and Embankments’,
(Geotechnique, Vol. 15, No. 2), is then developed. The method is used to predict
the stability of a slope and its possible movement under a design earthquake
(Chapters 8, 9, 10). In the slope stability analysis, the logarithmic spiral rotational
failure mechanism is frequently utilized to provide a least upper-bound solution.
However, this failure mechanism is appropriate only for the material that follows
the popular linear Mohr-Coulomb failure criterion. We cannot immediately apply
the linear limit analysis method to a nonlinear failure problem. In many practical
problems such as the frozen gravel embankments used in offshore arctic engineer-
ing, the material is known to be highly nonlinear in its failure criterion. It is
necessary therefore to investigate the stability problems and to develop practical
solution methods based upon a general nonlinear failure criterion. This is described
in Chapter 11.

Much of the research on soil mechanics, plasticity and earthquake-induced slope
failure and landslide problems, sponsored by the National Science Foundation at
Purdue University, provided a background for the book and has been drawn on
freely. The book contains many results first presented in the form of technical

vil

reports and later as Ph.D. dissertations, prepared under various phases of research
projects, related to this subject. It is a pleasure for Professor Chen to acknowledge
his indebtedness to many of-his students and friends, particularly Drs. C.J. Chang,
M.F. Chang, X.L. Liu, W.0. McCarron, E. Mizuno, A.F. Saleeb, T. Sawada, E.
Yamaguchi and Messrs. S.W. Chan, O.Y. Wang and X.J. Zhang for their excellent
work concerning specific topics included in the book. Mr. T.K. Huang read the en-
tire manuscript and gave us many useful suggestions.

W.F. Chen

West Lafayette, Indiana
X.L. Liu

December 1988
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Chapter 1

INTRODUCTION

1.1 Introduction

The main objectives of stress analysis in soil mechanics are to ensure that the soil
mass under consideration shall have a suitable factor of safety against ultimate
failure or collapse, that it shall meet the service requirements when subjected to its
design working load. To this end, the analysis of problems in soil mechanics is
generally divided into two distinct groups — the stability problems and the elasticity
problems. They are then treated in two separate and unrelated ways. The stability
problems deal with the condition of ultimate failure of a mass of soil: problems of
earth pressure, bearing capacity, and stability of slopes most often are considered
in this group. The most important feature of such problems is the determination of
the loads which will cause failure of the soil mass. Solutions to these problems can
often be obtained by simple statics by assuming failure surface of various simple
shapes — plane, circular, or logspiral — and by using Coulomb’s failure criterion.
This is known as the limit equilibrium method in soil mechanics.

The earliest contribution to this method was made in 1773 by Coulomb who pro-
posed the Coulomb criterion for soils and also established the important concept of
limiting equilibrium to a continuum and applied it to determine the pressure of a
fill on a retaining wall. Later, in 1857, Rankine investigated the limiting equilibrium
of an infinite body and developed the theory of earth pressure in soil mechanics.
In this historical development, the introduction of stress-strain relations or con-
stitutive relations of soils was obviated by the restriction to the consideration of
limiting equilibrium and the appeal to the extremum principle. Subsequent
developments by Fellenius (1926) and Terzaghi (1943), among many others, have
made the limit equilibrium method a working tool with which many engineers
develop their own practical solutions. Perhaps the most striking feature of this ap-
proach is that no matter how complex the geometry of a problem or loading condi-
tion is, it is always possible to obtain some approximate but realistic solution.

The elasticity problems, on the other hand, deal with stress and deformation of
the soil at working load level when no failure of the soil is involved. Stresses at
points in a soil mass under a footing, or behind a retaining wall, deformations
around tunnels or excavations, and all settlement problems belong in this group.
Solutions to these problems are often obtained by using the theory of linear elastici-




ty. This approach is rational for problems at short-term working load level, but
limited by the assumed elasticity of the soils whose properties approach most nearly
those of a time-independent elastic material. While time-dependent effects are
significantly large, introducing long-term working stresses over a given period, it is
obviously wrong to design a structure on the basis of this time-independent Hooke’s
law for soils. In this case the design must consider the influence of time on the defor-
mations. This is known as creep. Such a behavior may be modelled as viscoelastic
and the theory of viscoelasticity may be applied to obtain solutions.

Intermediate between the elasticity problems and the stability problems mention-
ed above are the problems known as progressive failure. Progressive Jailure pro-
blems deal with the elastic — plastic transition from the initial linear elastic state to
the ultimate failure state of the soil by plastic flow. The essential constituent in ob-
taining the solution of a progressive failure problem is the explicit introduction of
stress-strain or constitutive relations of soils which must be considered in any solu-
tion of a solid mechanics problem.

As mentioned previously, for a long time, solutions in soil mechanics have been
based upon Hooke’s law of linear elasticity for describing soil behavior under work-
ing loading conditions and Coulomb’s law of perfect plasticity for describing soil
behavior under collapse state because of simplicity in their respective applications.
It is well known that soils are not linearly elastic and perfectly plastic for the entire
range of loading of practical interest. In fact, actual behavior of soils is known to
be very complicated and it shows a great variety of behavior when subjected to dif-
ferent conditions. Drastic idealizations are therefore essential in order to, develop
simple mathematical constitutive models for practical applications. For example,
time-independent idealization is necessary in order to apply the theories of elasticity
and plasticity to problems in soil mechanics.

It must be emphasized here that not one mathematical mode! can completely
describe the complex behavior of real soils under all conditions. Each soil model is
aimed at a certain class of phenomena, captures their essential features, and
disregards what is considered to be of minor importance in that class of applica-
tions. Thus, a constitutive model meets its limits of applicability where a disregarded
influence becomes important. This is why Hooke’s law has been used so successfully
in soil mechanics to describe the general behavior of soil media under short-term
working load conditions, while the Coulomb’s law of perfect plasticity providing
-good predictions of soil behavior near ultimate strength conditions, because plastic
flow at this ultimate load level attains a dominating influence, whereas elas‘uc
behavior becomes of relatively minor importance. :

For the most part, the concept of perfect plasticity has been used extensively in
conventional soil mechanics in assessing the collapse load in stability problems The
standard and widely known technique used in conventional soil mechanics is the
limit equilibrium method. However, it neglects altogether the important fact that
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the stress-strain relations constitute an essential part in a complete theory of con-
tinuum mechanics of deformable solids. Modern limit analysis method, however,
takes into consideration, in an_idealized manner, the stress-strain relations of soils.
This idealization, termed normality or flow rule, establishes the limit theorems on
which limit analysis is based. Within the framework of perfect plasticity and the
associated flow rule assumption, the approach is rigorous and the techniques are
competitive with those of limit equilibrium approach. In several instances, especially
in slope stability analysis, earth pressure problems, and bearing capacity calcula-
tions, such a level and completeness has been achieved and firmly established in re-
cent years that the limit analysis method can be used as a working tool for design
engineers to solve everyday problems (Chen, 1975).

Most of the early applications of limit analysis of perfect plasticity to soil
mechanics problems have been limited to soil statics. Recent works attempt to ex-
tend this method to soil dynamics, in particular to earthquake-induced stability pro-
blems. Recent results show convincingly that the upper-bound analysis method can
be applied to soils for obtaining reasonably accurate solutions of slope failures and
lateral earth pressures subjected to earthquake forces. Different aspects of these ad-
vances were reported in several recent books, theses, conference proceedings, and
state-of-the-art reports. This includes the books by Bazant (1985), Desai and
Gallagher (1983), and Dvorak and Shield (1984); the theses by C.J. Chang (1981),
Saleeb (1981), M.F. Chang (1981), Chan (1980), Mizuno (1981) and McCarron
(1985); the Conference Proceedings by ASCE (Yong and Ko, 1981, Yong and Selig,
1982), and the state-of-the-art reports by Chen (1980, 1984), and Chen and Chang
(1981), among others.

The main virtue of the application of the upper-bound techniques of limit analysis
to stability problems in soil mechanics is that no matter how complex the shape of
a soil mass or loading configuration is, it is always possible to obtain a realistic value
of the failure or collapse load. When this is coupled with its other merits, namely,
that it is relatively simple to.apply, that it is a limit state or collapse state method
and that many of the solutions predicted by the method have been substantiated by
experiments or by numerical calculations through the well-established computer-
based methods, it can be appreciated that it is a working tool with which every
engineer should be conversant.

The objective of this book, therefore, is to describe the recent applications of the
upper-bound techniques of limit analysis to stability problems in soil mechanics in

- detail, beginning with the historical review of the subject and the assumptions on

which it is based and covering the numerous developments which have taken place
since 1975. The book does not include what may be termed ‘standard limit analysis
methods and solutions’ which have been previously covered in the book entitled
‘Limit Analysis and Soil Plasticity’ by Chen (1975).

Before the upper-bound techniques of limit analysis are described in detail, the
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basic assumptions of the limit theorems on which the limit analysis is based are first
reviewed in Chapter 2 and the range of validity of these assumptions in the context
of soils is then critically examined and assessed in Chapter 3 from the stress-
dilatancy and from the energy point of view. In the subsequent chapters, the upper-
bound limit analysis method is applied to obtain solutions of the earth pressure on
rigid retaining walls subjected to static and seismic loadings (Chapters 4, 5 and 6),
of the bearing capacity of strip footings on nonhomogeneous, anisotropic soil
(Chapter 7), and of the seismic stability of slopes (Chapters 8, 9 and 10).
Although, the upper-bound limit analysis method can be applied to solve stability
problems with any type of failure criterion, almost all solutions that are at present
known, are based on the well-known linear Mohr-Coulomb failure criterion.
However, in many practical problems in geotechnical engineering, such as the
frozen gravel embankments used in offshore arctic engineering, experimental data
have shown that the frozen gravel follows a highly nonlinear failure criterion. We
cannot apply directly the techniques developed in the linear limit analysis to the
nonlinear failure problems. It is therefore necessary to investigate the soil stability
problems and to develop practical solution methods based upon a general nonlinear
failure criterion. Fortunately, in recent years, the application of the variational
calculus in soil mechanics makes it possible to combine the upper-bound limit
analysis method with the conventional limit equilibrium method and leads to the
development of a realistic and practical method for the solution of a class of stabili-
ty problems in nonlinear soil mechanics. This is described in detail in Chapter 11.

1.2 A short historical review of soil plasticity

Before the techniques of limit analysis are described in the chapters that follow,
it is important to appreciate that the limit analysis is indeed a great simplification
of the true behavior of soil mass. In order to get these simplifications or assump-
tions in true perspective, we shall present in this section a brief summary of the cur-
rent advances in the applications of the theory of plasticity to problems in soil
mechanics. A general examination of soil plasticity is followed in the subsequent
sections by a detailed description of the three basic subjects that are closely inter-
related. These are:

1. Idealized stress-strain relations for soil;

2. Limit analysis for collapse load; and

3. Finite-element analysis for progressive failure behavior of soil mass.

In this way, some of the interrelationships between the limit analysis of perfect
plasticity and the finite-element analysis of work-hardening plasticity are
demonstrated, and their power and their relative merits and limitations for practical
applications are evaluated.

In the 1950s, major advances were made in the theory of metal plasticity by the
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development of (a) fundamental theorems of limit analysis; (b) Drucker’s postulate
or definition of stability of material; and (c) the concept of normality condition or
associated flow rule. The theory of limit analysis of perfect plasticity leads to prac-
tical methods that are needed to estimate the load-carrying capacity of structures in
a more direct manner. The concept of a stable material provides a unified treatment
and broad point of view of the stress-strain relations of plastic solids. The normality
condition provides the necessary connection between the yield criterion or loading
function and the plastic stress-strain relations. All these have led to a rigorous basis
for the theory of classical plasticity, and laid down the foundations for subsequent
notable developments.

The initial applications of the classical theory of plasticity were almost exclusively
concerned with perfectly plastic metallic solids such as mild steel which behaves ap-
proximately like a perfectly plastic material (Prager and Hodge, 1950). For these
materials, the angle of internal friction ¢ is zero, no plastic volume change occurs
and the only material property is the shear strength k or cohesion ¢ in the ter-
minology of soil mechanics. Numerical calculations were restricted to the method
of characteristics based on the theory of the plane slip-line field analysis to derive
the stress and velocity distribution in the plastic region (Hill, 1950). Since the plane
slip-line field analysis is rarely applicable to structures, exact and approximate
calculations of the plastic collapse load were made exclusively by the methods of
limit analysis (Drucker, 1960).

The development of the modern theory of soil plasticity, as the new field was call-
ed, was strongly influenced by the well-established theory of metal plasticity. Soil
mechanics specialists have been preoccupied with extending these concepts to
answer the complex problems of soil behavior. Tresca’s yield condition, used widely
in metal plasticity, can be regarded as a special case of the condition of Coulomb
on which the important concept of the limiting equilibrium of a soil medium had
been firmly established in soil mechanics.

It is relatively straightforward matter to extend the method of characteristics to
cover Coulomb material where ¢ and ¢ can either remain constant (Sokolovskii,
1965) or vary throughout the stress field in some specified manner (Booker and
Davis, 1972). In the theory of limit equilibrium, the introduction of stress-strain
relations was obviated by the restriction to the consideration of equations of
equilibrium and a yield condition. This produces what appears to be and sometimes
is static determinacy for the solutions of slip-line field equations. However, in many
soil —structure interaction problems, the boundary conditions involve rates of
displacement and the slip line equations are generally statically indeterminate. The
key to obtain a valid solution for such cases requires the basic knowledge of the
stress-strain relations. Otherwise, a so-called solution is merely a guess.

The general theory of limit analysis, developed in the early 1950s, considers the
stress-strain relation of a soil in an idealized manner. This idealization, termed nor-




mality or the associated flow rule, establishes the limit theorems on which limit
analysis is based. Although the applications of limit analysis to problems in soil
mechanics are relatively recent, there have been an enormous number of practical
solutions available (Chen, 1975). Many of the solutions obtained by the method are
remarkably good when comparing with the existing results for which satisfactory

- solutions already exist. As a result of this development, the meaning of the limit
equilibrium solutions in the light of the upper- and lower-bound theorems of limit
analysis becomes clear.

The first major advance in the extension of metal plasticity to soil plasticity was
made in the paper ‘Soil Mechanics and Plastic Analysis or Limit Design’ by Drucker
and Prager (1952). In this paper, the authors extended the Mohr-Coulomb criterion
to three-dimensional soil mechanics problems. The Mohr-Coulomb criterion was in-
terpreted by Drucker (1953) as a modified Tresca as well as an extended von Mises
yield criterion. The yield criterion obtained by Drucker and Prager for the later case
is now known as the Drucker-Prager model or the extended von Mises model.

One of the main stumbling blocks in the further development of the stress-strain
relations of soil based on the Drucker-Prager type or Mohr-Coulomb type of yield
surfaces to define the limit of elasticity and beginning of a continuing irreversible
plastic deformation was the excessive prediction of dilation, which was the result of
the use of the associated flow rule. It became necessary, therefore, to extend
classical plasticity ideas to a ‘non-associated’ form in which the plastic potential and
vield surfaces are defined separately (Davis, 1968). However, this modification
eliminated the validity of the use of limit theorems for bounding collapse loads and

created doubts about the uniqueness of solutions. Attempts have been made to . .

revise the bouding theorems and to resolve the uniqueness problem, but to date not
much success has been achieved through this route (Palmer, 1973).

In 1957, an important advance was made in the paper ‘Soil Mechanics and Work-
Hardening Theories of Plasticity’ by Drucker, Gibson and Henkel (1957). In this
paper the authors introduced the concept of work-hardening plasticity into soil
mechanics. There are two important innovations in the paper. The first is the in-
troduction of the idea of a work-hardening cap to the perfectly plastic yield surface
such as the Coulomb type or Drucker-Prager type of yield criterion. The second in-
novation is the use of current soil density (or voids ratio, or plastic compaction) as
the state variable or the strain-hardening parameter to determine the successive
loading cap surfaces. '

These ideas have led to in turn to the generation of many soil models, most notably
the development of the critical-state soil mechanics at Cambridge University, U.K.
These new soil models have grown increasingly complex as additional experimental
data have been gathered, interpreted, and matched. This extension marks the begin-
ning of the modern development of a consistent theory of soil plasticity (Chen,
1975; Chen and Baladi, 1985).

1.3 Idealized stress-strain relations for soil

Soil mechanics along with.all other branches of mechanics of solids requires the
consideration of geometry or compatibility and of equilibrium or dynamics. The
essential set of equations that differentiate the soil from other solids is the relation
between stress and stain. The behavior of soils is very complicated. The attempt to
incorporate the various features of soil properties in a single mathematical model
is not likely to be successful, but even if such a model could be constructed, it would
be far too complex to serve as the basis for the solution of practical geotechnical
engineering problems. Simplifications and idealizations are essential in order to pro-
duce simpler models that can represent those properties that are essential to the con-
sidered problem. Thus, any such simpler models should not be expected to be valid
over a wide range of conditions.

The need for mathematical simplicity in the description of the mechanical proper-
ties of solids is understood quite well for metals where so much research effort has
been expended by so many investigators. Yet even for metals, the simple idealiza-
tions such as perfect plasticity, isotropic hardening, kinematic hardening, and mixed
hardening are frequently used in solving practical problems. The same situation is
to be expected for the stress-strain modeling of soil which is a far more complex
material.

Drastic idealizations are valuable not only for the ease of treatment of practical
engineering problems but also conceptually for a clear physical understanding of the
essential features of the complex behavior of a material under certain conditions.

. Therefore, for soils, as for metals, perfect plasticity is.still -an excellent design

assumption, while very complex stress-strain relations of soil which require an ever
increasing elaboration in detail of a mathematical description may be approximated
crudely by simple isotropic, kinematic, or mixed hardening models. Thus, the
isotropic hardening cap models and Cambridge models, the kinematic hardening
nested yield surfaces models, or the mixed hardening bounding surface models that
have been proposed and developed in recent years are all within the realms of this
simplification (Chen and Baladi, 1985). In the sections that follow, some of these
developments are briefly described and, hopefully, unified within the same
framework of physically and mathematically well-established theory of work-
hardening plasticity.

The use of work-hardening plasticity theories in soil mechanics has been
developed for about thirty years, since publication of the classical paper by Drucker
et al. (1957). Most of the research has been conducted by engineers working in the
area of soil statics. Recently, attention has been focused on the use of these models
in soil dynamics (Chen, 1980). The objective of this section is to set forth the state-
of-the-art with respect to elastic-plastic stress-strain relations of soils. In doing so,
it achieves not only the purpose of surveying the current research activity that has



been going on very actively in this field in recent years, but also the survey gives the
best indications of future problems that may result from the observations of the
trend of recent developments.

One of the main problems in the theory of plasticity is to determine the nature
of the subsequent yield surfaces. This post-yielding response is described by the
hardening rule which specifies the rule for the evolution of the loading surfaces dur-
ing the course of plastic deformations. Indeed, the assumption made concerning the
hardening rule introduces a major distinction among various plasticity models
developed for soils in recent years.

1.3.1 Hardening (softening) rules

There are several hardening rules that have been proposed to describe the growth
of subsequent yield surfaces for strain-hardening (softening) materials. The choice
of a specific rule depends primarily on the ease with which it can be applied and
its ability to represent the hardening behavior of a particular material. In general,
three types of hardening rules have been commonly utilized (Chen, 1982). These are;
(1) isotropic hardening; (2) kinematic hardening; and (3) mixed hardening. In an
isotropic hardening model, the initial yield surface is assumed to expand (or con-
tract) uniformly without distortion as plastic flow continues. On the other hand, the
kinematic hardening rule assumes that, during plastic deformations, the loading sur-
face translates without rotation as rigid body in the stress space, maintaining the size
and shape of the initial yield surface. This rule provides a means of accounting for

the Bauschinger effect, which refers to one particular type of directional anisotropy-

induced by plastic deformations; namely that an initial plastic deformation of one
sign reduces the resistance of the material with respect to a subsequent plastic defor-
mation of the opposite sign. Therefore, kinematic hardening models are particularly
suitable for materials with pronounced Bauschinger effect such as soils under cyclic
and reversed types of loading.

A combination of isotropic and kinematic hardening models leads to a more
general hardening rule, and therefore provides for more flexibility in describing the
hardening behavior of the material. For a mixed (combined) hardening model, the
loading surface experiences translation as well as expansion (contraction) in all
directions, and different degrees of Bauschinger effect may be simulated. Kinematic
and mixed types of hardening rules are generally known as anisotropic hardening
models. ‘

In the last few years, several plasticity models with more complex hardening rules
combining the concepts of kinematic and isotropic hardening have been developed
and applied to describe the behavior of soils under cyclic loading (Chen and Baladi,
1985). '

1.3.2 Perfect plasticity models

Perfect plasticity is an appropriate idealization for a structural metal because it
captures the essential features of its behavior. This includes small tangent modulus
when compared with elastic modulus, when loading in the plastic range, and the
unloading response is elastic. However, perfect plasticity is not nearly appropriate
for soils. Some of the troubles and their justifications for adoption of this idealiza-
tion for practical use were discussed in the paper ‘Concepts of Path Independence
and Material Stability for Soils’ by Drucker (1966).

For the most part, the concept of perfect plasticity has been used extensively in
the past in conventional soil mechanics in assessing the collapse load in stability pro-
blems. Different widely known techniques have been employed to obtain numerical
solutions in these cases; such as the slip-line method (Sokolovskii, 1965), and the
limit equilibrium method (Terzaghi, 1943). For the later case, the simple ideas of
perfect plasticity have found their direct application in many practical geotechnical
engineering problems.

In addition to these classical methods, the more rigorous approach of modern
limit analysis of perfect plasticity has been applied to a wide variety of practical
stability problems. Using the well-known Coulomb yield criterion and its associated
flow rule, many solutions have been obtained (Chen, 1975). Recently, the stability
analysis has been extended to include the earthquake loading, employing the
pseudo-static force method (see Chapters 5, 9 and 10). It should be emphasized here
that the useful application of these techniques has not been exhausted. New and
striking applications are not only possible but to be encouraged strongly, because
of their simplicity and power in helping us reach an understanding of; and feel for,
a problem. Further, some predictions of this enormous idealization are very good.
Much more value will be uncovered as engineers who have need for particular results
apply the methods of limit analysis and design to their own special problems.

1.4 Limit analysis for collapse load

Limit analysis is concerned with the development of efficient methods for com-
putting the collgp’se load in a direct manner. It is therefore of intense practical in-
terest to practieing engineers. There have been an enormous number of applications
in metal stru€tures. Applications of limit analysis to reinforced concrete structures
are more recent and are given in a recent book by Chen (1982) as well as a collo-
quium proceedings (IABSE, 1979). Applications to typical stability problems in soil
mechanics have been the most highly developed aspect of limit analysis so that the
basic techniques and many numerical results have been summarized in the book by
Chen (1975). Extensive references to the work before 1975 are also given in the book
cited. An up-to-date reference to recent work on the applications of limit analysis
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to earth pressure, bearing capacity and slope stability problems can be found in the
ASCE Proceedings (Yong and Ko, 1981; Yong and Selig, 1982), among many
others.

It is true, as in most fields of knowledge, that many of the basic ideas of perfect
plasticity and limit analysis have been used extensively and fruitfully in the past in
conventional soil mechanics through experimental studies and engineering intuition.
Here, the standard and widely known techniques of the slip-line method and the
limit equilibrium method, among others, come to mind immediately, and these
methods also have been mentioned previously.

The slip-line method uses the Coulomb criterion as the yield condition for soil.
From the basic slip-line differential equations, the slip-line network can be con-
structed and the collapse load determined. Examples of this approach are the solu-
tions presented in the book by Sokolovskii (1965).

The limit equilibrium method can be best described as an approximate approyach

to the construction of the slip-line field. It generally entails the assumption of the

failure surface of various simple configurations from which it is possible to solve
problems by simple statics. Terzaghi (1943) cited some examples of this approach.

Although these methods are widely used in geotechnical practice, they neglect
altogether the important fact that the stress-strain relations constitute an essential
consideration in a complete theory of any branch of the continuum mechanics of
deformable solids. Modern limit analysis methods take into consideration, in an
idealized manner, the stress-strain relations of soils in the present case. This idealiza-
tion, termed normality or associated flow rule, establishes the limit theorems on
which limit analysis is based, Within the framework of perfect plasticity and the
associated flow rule assumption, the approach is rigorous and the techniques are
competitive with those of limit equilibrium approach. In several instances, especially
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Fig. 1.1. Typical stress-strain curves and perfectly plastic idealizations.

11

in slope stability analysis, earth pressure problems and bearing capacity calcula-
tions, such a level of reliability and completeness has been achieved and firmly
established in recent years that the limit analysis method can be used as a working
tool for design engineers to solve everyday problems.

Although the perfectly plastic idealization for soil is of real value for many stabili-
ty problems in soil mechanics, the idealization is severe and it is necessary to guard
against improper interpretation. Since the perfect plastic idealization ignores the
real work-hardening or softening of the soil beyond the arbitrarily chosen yield
stress level (Fig. 1.1), it must therefore be interpreted as an average value with the
meaning that no more than small plastic deformation takes place in the so-called
elastic range but large plastic deformation occurs in the collapse state. In the follow-
ing section, we shall illustrate this concept of perfect plasticity, i.e., plasticity
without work-hardening, by presenting some typical progressive failure solutions of
strip footings on an overconsolidated stratum of clay using the finite-element
analysis with perfectly plastic models and work-hardening plastic models, and also
by comparing these solutions with the limit analysis of perfect plasticity. Further
discussions on the validity of limit analysis in application to soils will be critically
examined in Chapter 3. In the strip footing example that follows, emphasis is placed
on the comparison of failures modes and limit loads by the almost ‘exact’ finite-
element analyses with those assumed in the limit analysis and limit equilibrium
methods. :

| MATERIAL CONSTANTS
E = 30,000 Ib/in?
v =03, & =20°

3
2 v 5.14 1t
C =10 Ibfin = B

12 ft

Y

24 ft

Fig. 1.2. Analytical model for shallow stratum of clay.
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1.5 Finite-element analysis for progressive failure behavior of soil mass

As an illustration for some justifications of the perfect plasticity idealization for
soils, we shall present here a summary of the recent finite-element solutions of strip
footings on an overconsolidated stratum of clay. These computer-based solutions
include:

1. The analyses of flexible and smooth footings on clay by the perfectly plastic
models with different methods of determining the material constants. These
material constants define the appropriate level of plastic flow for soils as shown
schematically by the simple stress-strain curves of Fig. 1.1.

2. The analyses of rigid and rough footings on clay by the work-hardening plastic
cap models. The cap models have been used widely and successfully in recent
years in the geotechnical engineering research and applications.

Details of the plasticity modeling for soils and finite-element implementation for

computer solutions are given elsewhere (Chen and Baladi, 1985). Herein, only the

highlights of the numerical results of the response of clay to footing loads are
reported and compared with the limit analysis solutions.

1.5.1 Flexible and smooth strip footings
The problem used for the analyses is a 10.28 ft (3.13 m) wide strip footing (Fig.

1.2) bearing on a shallow stratum supported by a rigid and perfectly rough base.
The horizontal extent of the stratum is set at 24 ft (7.32 m) from the footing center

and the depth of the stratum is 12 ft (3.66 m). The vertical boundary is assumed to -

be perfectly smooth and rigid. The uniform mesh as shown in Fig. 1.2 is used. The
finite-element mesh consists of 120 nodes and 98 rectangular elements.

(a) Analyses by D-P models with different material constants

In this section, the response of the clay stratum to footing loads is analyzed by
the Drucker-Prager perfectly plastic model, for which the determination of the
material constants is made in several different ways. The following mechanical pro-
perties of clay are used: Young’s modulus £ = 3 x 104 psi (2.07 x 105 kPa),
Poisson’s ratio » = 0.3, cohesion ¢ = 10 psi (69 kPa), angle of internal friction
¢ = 20°. In the present analysis, the effect of soil weight is neglected or the unit
weight of soil v = 0 pcf. For the Drucker-Prager model, a careful selection of the
material constants « and & in the yield function ol + \/72 = k is required so that
it matches to some extend with the well-known Coulomb criterion (Chen and
Mizuno, 1979). In the Drucker-Prager model, I =0, + 0, + 0o, is the first in-
variant of stress tensor s and J, is the second invariant of stress deviatoric tensor
Sijr Herein, three types of material constants are used in the analysis with the
associated flow rule. These constants are obtained from matching the Drucker-
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Prager model with the Coulomb model along the compressive meridian (triaxial
compression test), along the tensile meridian (triaxial extension test), and under the
plane strain condition (plane strain test), respectively (see the inset of Fig. 1.3). The
corresponding values of the material constants o and & are 0.149 and 12.25 psi
(84.53 kPa), 0.118 and 9.74 psi (67.21 kPa), and 0.112 and 9.22 psi (63.62 kPa),
respectively.

Load-displacement curves. The complete load-displacement response of the strip
footing is shown in Fig. 1.3 where the applied pressure is plotted vs. the centerline
displacement directly beneath the footing for each case. The circles plotted in Fig.
1.3 correspond to some actual computed points obtained from the small deforma-
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Fig. 1.3. Load-displacement curves by the Drucker-Prager perfectly plastic models with different
material constants (flexible and smooth footing).
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tion analysis. As can be seen, the analysis using material constants matched with the
compressive meridian of the Coulomb criterion in three-dimensional space results
in a collapse load (365 psi or 2520 kPa) which is almost twice that of the other
analyses (158, 190 psi or 1090, 1310 kPa). This load-displacement curve is
characterized by a linear elastic response up to approximately 150 psi and a
nonlinear elastic-plastic response to the collapse load. On the other hand, the
Drucker-Prager criterion with material constants matched with the tensile meridian
of the Coulomb criterion predicts a collapse load (190 psi) which is somewhat higher
than that of 175 psi given by Terzaghi (1943). Further, the collapse load (158 psi)
predicted by the Drucker-Prager criterion matched with the Coulomb criterion in
the plane strain condition is, as expected, almost the same as that of 152 psi
predicted by the Coulomb criterion (Zienkiewicz et al., 1975). This load is close to
the loads (175 and 143 psi) given by the Terzaghi and Prandt! solutions.

As aresult, the analysis with the material constants matched with the compressive
meridian of the Coulomb criterion in three-dimensional stress space does not agree
with the well-known solution of Terzaghi and Prandtl. The important point to be
noted here in using the perfectly plastic Drucker-Prager model is the careful selec-
tion of material constants. In order for this criterion to represent a proper general-
ization of the Coulomb or modified Coulomb criteria under multi-dimensional
stress states, its material constants « and & must be properly defined. These con-
stants should not be treated as fixed expressions for all types of applications.
Rather, their choice depends on the particular problems.to be solved. Further
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Fig. 1.4, Load-displacement curves by the Drucker-Prager perfectly plastic models with associated arid
non-associated flow rules (flexible and smooth footing).

discussions on the choice of material constants can be found in the paper by Chen
and Mizuno (1979).

(b) Analysis by D-P model with non-associated flow rule

In this section, the Drucker-Prager perfectly plastic model with a non-associated
flow rule is utilized so that comparisons can be made with the analyses by the
associated flow rule model reported in the previous section. For the case of the
associated flow rule, the material constants « and & obtained from matching the
Coulomb model in plane strain condition are used in the yield function F and the

b}D-P Model (Non - associated Flow Rule)

Fig. 1.5. Velocity fields by the Drucker-Prager perfectly plastic models at the numerical limit load (flexi-
ble and smooth footings).
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potential function = F. For the case of a non-associated flow rule, the yield func-
tion is the same as that for the associated flow rule case, but a von Mises type of
function (no plastic volumetric strain) is used as the potential function (Mizuno and

Chen, 1983).

Load-displacement curves. Figure 1.4 shows the load-displacement curves predict-
ed by both flow rule cases. These curves are the same up to an applied load of 40 psi
(276 kPa) because the state of stress in all elements at this load level is still within
the elastic region. Then, as the load is gradually increased, their behavior becomes
different. The load-displacement curve for the associated flow rule case bends
sharply at a load of 150 psi and reaches a plastic limit load of 158 psi. On the other
hand, the curve for the non-associated flow rule case deviates gradually from the
associated flow rule curve at a load of 40 psi, and exhibits a significantly nonlinear
response to its collapse load of 142 psi. This collapse load is less than that of the
associated flow rule case. This collapse load agrees quite well with the loads of 143
and 147 psi given by the solutions of Prandtl, and of Coulomb with a non-
associated flow rule (Zienkiewicz et al., 1975).

(c) Velocity fields of perfect plasticity

In Fig. 1.5, the velocity fields at the collapse load are presented for both cases.
The broken and solid lines in the figure are outlines of Terzaghi and Prandtl velocity
fields, respectively. The magnitude and direction of velocity at each node is re-
presented by an arrow, and the displacement increment at the center of the footing
is taken as a normalized unit length. As shown in Fig. 1.5a, the numerically obtained
velocity field for the associated flow rule material is seen to be in a fair agreement
with that of the Terzaghi and Prandtl solutions. Further, it can be seen that the
magnitude of the velocity becomes gradually larger along the slip flow in ‘the radial
shearing zone’ and ‘near surface zone’ of the Prandtl mechanism. This is due to the
nature of dilatancy in soil during plastic flow.

In the other case, the velocity field (Fig. 1.5b) for the non-associated flow rule
material appears to agree with that of the Terzaghi solution. In this case, the
magnitude of velocity becomes gradually smaller, or remains nearly the same, along
the slip flow in the ‘radial shearing zone’. Here, because the von Mises type of
potential function is assumed, no dilatancy occurs during the plastic flow. The
velocity field in Fig. 1.5(b) is consistent with this condition.

(d) Analyses of cap models with associated flow rule

In this section, the strain-hardening plane cap and elliptic cap models with the
associated flow rule are employed to solve the same problem. The material constants
W and D in the hardening function Elxc)k = W(eP* — 1) (Chen and Baladi, 1985) are
assumed to be 0.003 (the maximum compaction of plastic volumetric strain ezk)
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and 6.042 x 1073 ft2/1b (1.26 x 10~ Pa~!), respectively. The location of the
cap is determined by the value x. In addition, the shape ratio of an elliptic cap, R,
is assumed to be 4. Further, the initial intersection of both cap hardening surfaces
with the /;-axis is situated at the point of — 6700 psf on that axis. In this analysis,
these caps are allowed to expand and contract as the plastic volumetric strain in-
creases and decreases.

As for the yield surface, the Drucker-Prager type of yield surface based on
material constants matched with the Coulomb criterion in the plane strain condition
is used.

Note that since the weight of clay is not considered, the initial state of stress inside
the clay stratum is set at the origin in J; — \/71 space at the beginning of the
analysis.

Load-displacement curves. In Fig. 1.6, the load-displacement curves for the cap
models are compared with those obtained previously. Initially, all the curves are the
same. After some yielding, the plane cap model curve deviates significantly from the
Drucker-Prager model curves at approx. 40 psi (276 kPa), and thereafter rises to a
load of 139 psi. Beyond this point the iterative procedure of the computer solution
does not converge. Thus, this load is approximately the collapse load. Compared
with the collapse loads discussed in the previous sections, the present estimated col-
lapse load agrees quite well with that of 142 psi predicted by the Drucker-Prager
non-associated flow rule model, and with that of 143 psi given by the Prandtl solu-
tion.
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w
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g o
: 1001 4 o—o0 D-P Model with A.F. R.
2 a—=a D-P Model with N.F.R.
@ o——o Plane Cap Mode!
L o——eo Elliptic Cap Modsi
0.0l L t !

0.0 [Ke} 20 3.0
DISPLACEMENT AT CENTER OF SMOOTH FOOTING (in)

Fig. 1.6. Load-displacement curves by the Cap and Drucker-Prager models (flexible and smooth
footing).
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On the other hand, the elliptic cap model curve starts to deviates significantly at
amuch earlier load of 25 psi. This is because the elastic zone developed in the elliptic
cap model is smaller, in compressive I, — \/72 space, than that of the plane cap
model. However, the curve behaves in a similar manner to that of the plane cap
model and asymptotically approaches the curves predicted by the Drucker-Prager
associated flow rule model.

(e) Velocity fields of work-hardening plasticity
The velocity fields corresponding to the last load increment for both cap models
are shown in Fig. 1.7. For the plane cap model, the velocity ficld (Fig. 1.7a) agrees

b)Elliptic Cap Mode!

Fig. 1.7. Velocity fields by the Cap models at numerical limit load (flexible and smooth footing).
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quite well with that of the Terzaghi solution (broken line). The magnitude of the
velocity is large inside the triangular zone along the free boundary surface. The
velocity field appears to lie between those predicted by the various Drucker-Prager
models.

The velocity field predicted by the elliptic cap model corresponds reasonably well
with the Prandtl field (Fig. 1.7b). The magnitude of the velocity becomes gradually
smaller along the slip-flow direction from the footing surface to the free boundary
surface. Since the stress states lie either in a corner zone or a hardening cap zone
for almost all the elements, little dilatancy is expected. Thus, the velocity field is
close to that predicted by the Drucker-Prager non-associated flow rule model.

1.5.2 Rigid and rough strip footings

In this section, the previous soil — structure interaction problem between footing
and ground is changed from a flexible and smooth boundary to a rigid and rough
boundary. The displacements beneath the footing are assumed to be vertically
uniform. As a result of this change, the incremental displacement method is used
in the finite-element analysis with the initial stress procedure. Note that the footing
pressure in this section is defined as the average pressure under the footing.

Pylpsi)
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175 (171 pst)
u 143 Ch (154 pst)
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0.0 1 i
0.0 1.0 2.0

DISPLACEMENT AT BASE OF RIGID FOOTING (in)

Fig. 1.8. Load-displacement curves by the Drucker-Prager models with associated and non-associated
flow rules (rigid and rough footings).
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(a) Analyses by D-P models
Here, the results such as load-displacement curves and velocity fields predicted
by the Drucker-Prager models are presented.

Load-displacement curves. Figure 1.8 shows the load-displacement curves
predicted by the Drucker-Prager models. The curve for the associated flow rule case
rises linearly to about 65 psi (449 kPa), then exhibits mild nonlinear behavior and
finally a severe reduction of the stiffness. The model predicts a much stiffer curve
compared with that of the flexible and smooth footing problem. The collapse load
is approximately 171 psi which is quite close to Terzaghi’s solution (175 psi) but
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Fig. 1.9. Velocity fields by the Drucker-Prager models at the numerical limit load (rigid and rough
footing).
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considerably higher than 158 psi as predicted by the same model for the flexible and
smooth footing problem.

The curve corresponding to the non-associated flow rule case deviates from the
associated flow rule curve at a load of 65 psi, and then shows a nonlinear behavior
until it reaches a collapse load of approximately 154 psi. The collapse load lies be-
tween those of 158 and 142 psi predicted by the same models for the flexible and
smooth footing problem. Also, this load is close to that of 143 psi given by the

Prandtl solution.

Velocity fields. The velocity fields for both models at the last displacement incre-
ment are shown in Fig. 1.9. The magnitude and direction of velocity at each node
is denoted by an arrow and, the uniform displacement increment at the base of the
footing is taken as a normalized unit length. Figure 1.9a shows the velocity field
predicted by the associated flow rule model. The velocity field agrees quite well with
that of the Prandtl solution, as represented by the solid line. The magnitude of the
velocity field is much larger than that predicted by the same model for the flexible
and smooth footing problem. Further, its magnitude at the free surface becomes
two or three times that beneath the footing. This is due to the large amount of
dilatancy at this displacement increment.

The velocity field predicted by the model with a non-associated flow rule (Fig.
1.9b) has a relatively small and uniform magnitude in the ‘radial shearing zone’ and
the ‘near-surface zone’. The velocity field agrees well with that of the Prandtl solu-
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Fig. 1.10. Load-displacement curves by the Cap and Drucker-Prager models (rigid and rough footing).
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tion. As expected, dilatancy in the stratum is restricted at this increment, as can be
seen from the velocity field on the surface.

In the present analysis, the direction of the velocity in the “triangle rigid zone’
beneath the footing in the Prandtl mechanism is found to be vertically downward
(Fig. 1.9), while the corresponding velocity in the flexible and smooth footing pro-
blem is not uniformly vertical (Fig. 1.5).

(b) Analyses by cap models
Herein, results predicted by cap models are presented.

Load-displacement curves. The load-displacement curves predicted by both cap
models are shown in Fig. 1.10, and compared with those predicted by the Drucker-
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Fig. 1.11. Velocity fields by the Cap models at the numerical limit load (rigid and rough footing).
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Prager models. Initially, all the curves are similar. After yielding, the cap model
curves start to deviate from each other. Here, as in the Drucker-Prager models,
these curves are stiffer than those of the flexible and smooth footing problem (Fig.
1.6). For the plane cap model, yielding starts at about 40 psi (276 kPa). Thereafter,
the cap surface expands, hardens, and reaches the collapse state at 148 psi. This load
is quite close to those (143 psi, 154 psi) predicted by the Prandtl solution and the
Drucker-Prager model with the non-associated flow rule. Note that this collapse
load is slightly higher than that (139 psi) predicted by the same model for the flexible
and smooth footing problem.

As for the elliptic cap model, yielding starts at 30 psi, and reaches the collapse
load of 152 psi, which is greater than that (143 psi) of the Prandt! solution but quite
close to that (148 psi) predicted by the plane cap model.

Velocity fields. The velocity fields associated with both models are presented in
Fig. 1.11. The velocity field predicted by the plane cap model (Fig. 1.11a) agrees
quite well with that of Terzaghi solution in the ‘radial shearing zone’ and ‘near free
surface zone’. However, the velocity under the footing follows that of the Prandtl
field and its direction is almost vertical.

The velocity field predicted by the elliptic cap model (Fig. 1.11b) agrees quite well
with that of the Prandtl solution. Its magnitude is comparable to that of the plane
cap model.

Both models have much less dilatancy than that required by the Drucker-Prager

model with the associated flow rule.

1.5.3 Summary remarks

In this section, the Drucker-Prager models, with the associated flow rule as well
as a non-associated flow rule, and cap models are applied to obtain solutions for
problems of flexible smooth, and rigid rough footings resting on a stratum of clay.
From the cases studied, the following observations can be made:

a. The load displacement curves predicted by the Drucker-Prager perfectly plastic
models are found to be much stiffer than those predicted by the cap models.

b. All the collapse loads obtained from the matching of the Drucker-Prager model
with the Coulomb model under the plane strain conditions lie between the solu-
tions of Terzaghi and Prandtl.

c. The velocity fields predicted by the plane cap model for both types of footing
problems do not agree with that of the Prandtl solution in the ‘radial shearing
zone’ and ‘near the free surface-zone’. The velocity fields predicted by the
Drucker-Prager and elliptic cap models agree well with that of the Prandtl solu-

tion for both footing problems.
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Chapter 2

BASIC CONCEPTS OF LIMIT ANALYSIS

2.1 Introduction

There are three basic conditions needed for the solution of a boundary value pro-
blem in the mechanics of deformable solids: the stress equilibrium equations, the
stress-strain relations, and the compatibility equations relating strain to displace-
ment. In general, an infinity of stress states will satisfy the stress boundary condi-
tions, the equilibrium equations and the yield criterion alone, and an infinite
number of displacement modes will be compatible with a continuous distortion of
the continuum satisfying the displacement boundary conditions. Here, as in the
theory of elasticity, use has to be made of the stress-strain relations to determine
whether given stress and displacement states correspond and a unique solution
results. For an elastic-plastic material, however, there is as a rule a three-stage
development in a solution, when the applied loads are gradually increased in
mangitude from zero, namely, the initial elastic response, the intermediate contain-
ed plastic flow and finally the unrestricted plastic flow. The complete solution by
this approach is likely to be cumbersome for all but the simplest problems, and
methods are needed to furnish to load-carrying capacity estimation in a more direct
manner. Limit analysis is the method which enables a definite statement to be made
about the collapse load without carrying out the step-by-step elastic-plastic analysis.

The limit analysis method considers the stress-strain relationship of a soil in an
idealized manner. This idealization, termed normality (or the associated flow rule),
establishes the limit theorems on which limit analysis is based. Within the frame-
work of this assumption, the approach is rigorous and the techniques are in some
instances being much simpler. The plastic limit theorems may conveniently be
employed to obtain upper and lower bounds of the collapse load for stability pro-
blems in soil mechanics.

The conditions required to establish an upper- or lower-bound solution to the col-
lapse load are essentially as follows:

(1) Lower-bound theorem. The loads, determined from a distribution of stress
alone, that satisfies: (a) the equilibrium equations; (b) the stress boundary condi-
tions; and (c) no where violates the yield criterion, are not greater than the actual
collapse load. The distribution of stress has been termed a statically admissible stress
Jield for the problem under consideration. Thus, the lower-bound theorem may be
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restated as follows: If a statically admissible stress distribution can be found, uncon-
tained plastic flow will not occur at a lower load. It can be seen that the lower-bound
technique considers only equilibrium and yield. It gives no consideration to soil
kinematics.

(2) Upper-bound theorem. The loads, determined by equating the external rate of
work to the internal rate of dissipation in an assumed velocity field, that satisfies:
(a) the velocity boundary conditions; and (b) the strain and velocity compatibility
conditions, are not less than the actual collapse load. The dissipation of energy in
plastic flow associated with such a field can be computed from the idealized flow
rule. The velocity field satisfying the above conditions has been termed a
kinematically admissible velocity field. Hence, the upper-bound theorem states that
if a kinematically admissible velocity field can be found, uncontained plastic flow
must have taken place previously. It can be seen that the upper-bound technique
considers only velocity modes and energy dissipations. The stress distribution need
not be in equilibrium.

By a suitable choice of stress and velocity: fields, the above two theorems thus
enable the required collapse load to be bracketed as closely as seems necessary for
the problem under consideration.

In view of the uncertainties inherent in all engineering problems, and the essential
role of judgement in their solution, it is clear that the approximate nature of the
method is no basic handicap. The real difficulty is the possible discrepancy between
the plastic deformation properties of the ideal and the real material, which often ex-
hibits some degree of work softening, and may not follow the associated flow rule.
Since the assumptions regarding the mechanical properties of the material under in-
vestigation determine the range of validity of the theory of limit analysis, a complete
and concise statement of the assumptions used in this theory will be presented and
illustrated.

2.2 Index notation

Usually, we use the three mutually perpendicular coordinate axes by the familiar
notation x, y and z. For future convenience, however, these three mutually perpen-
dicular axes will be denoted by Xy, X5, and x5 as a dual notation. Accordingly, each

of the components of a force vector (or displacement vector) and the vector itself
is represented by the symbol T; (or u;) where i takes on the values 1, 2, and 3:

TX
T = Ty =T, 2.1
TZ

Similarly, each of the components of a stress tensor (or strain tensor) and the tensor
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itself will be represented by the symbol 0y (or Eij) where i and j take on the values
1, 2, and 3:

Oy Txy Txz 711 912 913
O = 1Ty 0y Ty | = | 03y 035 033 2.2)
Tox Tzp Oz 031 033 933

The symmetry of the stress tensor, oy, = gy, €tc., is symbolized by o;; = ;.
In the following, we will often encounter sums in which a certain subscript pair
is ‘summed’ from 1 to 3. It will be inconvenient to write summation signs and so
we here introduce a summation convention which consists essentially in merely
dropping the summation sign.
The summation convention can be understood as that whenever a subscript occurs
twice in the same term, the subscript is to be summed from 1 to 3. Thus:

3
£ T = Ty = Ty + Tyuy + Tyug @.3a)
=

303

E1 EL % T o = Guen ok + openy) + (016 + apep + 0p3e)

+ (031631 + 0O3p€3 + 033€33) (2.3b)

Such repeated subscripts are often called dummy subscripts because of the fact that
the particular letter used in the subscripts is not important; thus Tu; = Tjuj or
0jj€jj = Opyp € The subscript index which occurs only ‘once’ in a term is called
Jree subscript. A free subscript also takes the values 1, 2, 3 but repeats the equation
for three times. For example, the equation 7; = o;n; (or T; = o,,n,,) implies the
following three simultaneous equations:

Ty = oy ny + oy hy + o313

Tz = Ulznl + Uzznz + 0327!3 (2.4)
Ty = ay3ny + oy3my + 0337,

2.3 The perfectly plastic assumption and yield criterion

Figure 2.1 shows a typical stress-strain diagram for soils. The stress-strain
behavior of most real soils is characterized by an initial linear portion and a peak
stress followed by softening to a residual stress. Usually, the stress-strain diagram
given above is associated with a simple shear test or a triaxial compression test. In
limit analysis, it is necessary to ignore the strain softening feature of the stress-strain
diagram and to take the stress-strain diagram to consist of two straight lines as
shown by the dashed lines in Fig. 2.1. A hypothetical material exhibiting this proper-



30

STRESS

Perfectly Plastic

Softening

STRAIN

Fig. 2.1. Stress-strain relationship for ideal and real soils.

ty of continuing plastic flow at constant stress is called an perfectly plastic material.

It should be noted that the constant stress level used in limit analysis applications
where perfect plasticity assumption is made may be chosen to represent the average
stress in an appropriate range of strain. Thus the validity of the assumption of
perfect plasticity may be wider than might appear possible at first glance. The choice
of the level of the constant stress is not an absolute one, but is determined by the
most significant features of the problem to be solved.

It is important to know the behavior of the soil for a complex stress state. In par-
ticular it is necessary to have an idea of what conditions characterize the change of
the material from an elastic state to a flow state or yield (as the horizontal line a-b
in Fig. 2.1). Here the question arises of a possible form of the condition which
characterizes the transition of a soil from an elastic state to a plastic flow state with

acomplex stress state. This condition, satisfied in the flow state, is called the perfect - -
« Dlasticity condition or the yield criterion.

It is generally assumed that plastic flow occurs when, on any plane at any point
in a mass of soil, the set of stress components o; reaches a yield surface which can
be mathematically expressed as a yield function fin the stress space. In other words,
each element of general bodies is assumed to be governed by a yield function f. For
a perfectly plastic material, f depends only on the set of stress components o;; but
not on the strain components €jjr Plastic flow can occur only when the yield func-
tion is satisfied:

Fo) = 0 ' @.5)

Stress states for which f(a,-j) > 0 are excluded, and f(aij) < 0 corresponds to
elastic behavior.

The term yield surface is used to emphasize the fact that three or more com-
ponents of stress 0;; may be taken as coordinate axes. A two-dimensional picture
only is drawn, however, as shown in Fig. 2.2. The yield surface thus is represented
by a yield curve or actually becomes a yield curve when two independent com-

31

P _y 2f
\"/ Eij A BO’U
- \da -,—8mooth Unique
&P Flat-
\IS/ at-4
P od
€ii i a_ge
PN /71T G0
R o¢
*AN} e
gi 75 o, &
\‘Ol Uib
Elastic ) b
#Oij)< o <o
\
Corner

Fig. 2.2. Pictorial representation of yield surface and flow rules.

ponents of stress are studied. It is helpful to visualize a state of stress in a nine-
dimensional stress space as a point in the two-dimensional picture, shown in Fig.
2.2, as a vector whose components are the nine e

For materials, which satisfy the definition of Drucker’s stability postulate for
stable material, the yield surface must be convex. It will be proved later.

2.4 The kinematic assumption on soil deformations and flow rule

It is known that plastic flow occurs when a stress-point in stress space, represented
by a vector from the origin, reaches the perfectly plastic yield surface. When this
condition is met, then, what is the kinematics of the plastic flow? It is immediately
clear that we cannot say anything about the total plastic strain eg- because the
magnitude of the plastic flow is unlimited. In this case, the strain rates é,-j instead
of strains g are needed. The total strain rate é,-j is composed of elastic and plastic
parts:

= & + & (2.6)

The e; are related to the &,-j through Hooke’s law only. The ég depend on the state
of stress through an appropriate kinematic assumption on the deformations.

In discussing plastic strain rates, we need to define the directions of the axes of
principal plastic strain rates. The coordinate axes of the stress space already referred
to for the yield surface can also be used to represent simultaneously plastic strain
rates as well as stresses, each axis of oy being an axis of the corresponding plastic
strain rate component of éf-. Thus, a point in this space also specifies a plastic
strain rate state. Figure 2.2 shows this combined stress and strain rate plot. For



32

isotropic materials, we expect the axes of principal strain rates to coincide with the

axes of principal stresses. In other words, a rectangular element of isotropic material -

under simple compression would be expected during any plastic flow to deform in
such a way that its faces remained mutually perpendicular.

For stable materials that are defined by Drucker, it can be shown later that the
vector representing the plastic strain rate ég has the direction of the outward nor-
mal to the yield surface f(a .} = 0. It can be written in the general form:

D _ af @7

where A > O is a positive scalar proportionality factor. Equation (2.7) is called the -

associated flow rule or ‘normality’ because it is associated (or connected) with the
yield surface of the perfect plastic material. If \ is known, the ég can be obtained.
From Eq. (2.6), the total strain rate &; can be calculated without difficulty.

2.5 The stability postulate of Drucker

Considering the symbolic uniaxial stress-strain curves in Fig. 2.3, there are three
types of materials in Drucker’s sense:

1. In cases (a) to (c) in this figure, the stress o is uniquely determined from the strain
¢, and the converse is also true. An additional stress ¢ > 0 gives rise to an addi-
tional strain é > 0, with the product &¢ > 0. That is, the additional stress & does
positive work on the additional strain é which is represented by the shaded
triangle in the diagrams. Material of this kind is called stable.

Fig. 2.3. Stable and unstable stress-strain curves. (a), (b) and (c) Stable materials, ge > 0. (d) and
(e) Unstable materials, oe < 0.
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2. In case (d), the deformation curve has a descending branch, where the strain in-
creases with decreasing stress. Although the stress o is uniquely determined from
the value of the strain ¢,-the-converse is not generally true. On the descending
branch, the additional stress does negative work on the additional strain ¢, i.e.
¢ < 0. Such a material is called unstable.

3. In case (e), the strain decreases with increasing stress, so that the stress, o, can
not be uniquely determined from the value of the strain ¢ and again, 4¢ < 0 and
the material is called unstable.

From this simple uniaxial stress-strain behavior, Drucker extended the concept of
stable material to the general stress state, and obtained some very useful results.
This is described in the forthcoming.

Suppose that an external agency slowly applies and then removes additional
forces to a already loaded body without any temperature change. For a stable
material as defined by Drucker’s stability postulate, it should be that (a) positive
work is done by the external agency during the application of the added set of
stresses on the changes in strains and (b) nonnegative net work is done by the exter-
nal agency over the cycle of application and removal.

It is emphasized here that the work referred to is only the work done by the added
set of stresses on the ‘change’ in strains it produces, not the total stresses on strains.
For example, in case (d) of Fig. 2.3, although &é < 0, the work done by
the total stress is positive.

As shown in Fig. 2.4, the stress state moves from A to B and from Cto D, they
correspond to elastic behavior. However, the stress state moves from E to G along

“the yield surface or remains on E or G, they show plastic behavior.

Assume at time ¢t = 0, ag are any set of stresses, in equilibrium with F; in the
body and with the external forces 7; on the surface. If the external forces are added
at time 7, the stress state reaches the yield surface and becomes Tyjs and then moves
along the yield surface (Fig. 2.4b). When the time shifts to £ + Af, the stress
state is o5 + Aa If the external forces are removed at ¢ = r*, the stress state
will return to 00 again.

F(a']j)=0

Fig. 2.4. Stress state in the stress space.
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The work done over the cycle of addition and removal of the additional set of
forces has the form:

1 1+ At
AW, = o & dt + f o, &; dt
0 [from a% t0 g i H [from o to o + Agy]
" 2.8)
+ 0;; €, dt

u
t+ Ay [from o+ Au,-j to ug-]

y

Smce the total strain rate e is composed of elastic and plastic parts e c= &+
J, it follows that:

t t+ At *
AW, = '[ oy & dr + S oyley + &) di + S oy & dt
0 t 1+ At
t+ At 1+ At
= oy dr + f oy dr = j oy &5 dt 2.9)

1

in which 45 0y éij d¢ indicates the integration of the elastic work over the entire
load cycle, it must be zero for an elastic material. Note that the loading cycle starts
not from o;; 7= 0, but from ao Thus, the work done by 00 during this load cycle
must be subtracted:

t+AL 0 o B ' o
AW, = j & de . _ (2.10)
; _

The total plastic work over the load cycle is:

t+ At
AW, — AW, = j (o
t

The rate of plastic work or dissipation of energy is defined as:

t+ At 0. .p
g (Uij — Uij) & dr

At — 0 At At~ 0 At
If At > 0 and is very small, it can be written as:

lim AW, - AW, (0 — & (2.12)
At —0 At 4 vy '
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From the stability postulate of Drucker, we obtain:
0,,
(0 — o) = 0 S (2.13)

Condition (2.13) has very significant implications and restrictions on the shape
of the yield surface and the flow rule, among others.

2.6 Restrictions imposed by Drucker’s stability postulate — convexity and
normality

It will be shown that the Drucker’s stability postulate in fact imposes the re-
quirements of convexity for the yield surface and of normality for the flow rule.
This will be pictorially described below.

Referring to Fig. 2.5a, we note that:

(05 ~ o) = AB | 2.14)
and
& = BC (2.15)

Condition (2.13) requires that:

(0.~ g) = |AB|[BC|cosd = 0. . e 2.16)
where § is the angle between the two vectors AB and B:é Equation (2.16) states that
the value of cos 6 could not be less than zero, i.e., the angle § must not larger than
90°. In other words, for a yield surface f(aij) = 0 fixed in a three-dimensional
stress space, each tangent plane to the yield surface must never intersect the surface
but lies on one side of the surface at all points (Fig. 2.5a); otherwise, the condition,
cos 6 = 0could be violated. As a result of this restriction, the yield surface of stable
materials must be convex. If the yield surface is nonconvex, as shown in Fig. 2.5b,
it is easy to choose a state of stress inside the surface to make § > 90°. Thus, Eq.
(2.16) can not be satisfied.

Consider any existing initial state of stress ag inside the convex surface f(o; ) =
0. No matter where it is, the angle § between the vectors (cr, - ) and é e must be
equal to or less than 90° to meet the requirement of Drucker s postulate In this
case, the only possibility for an arbitrary stress state vector (a, - aO) is to require
the vector e . normal to the yield surface; otherwise, the angle 0 may be larger than
90°. This restriction is known as the ‘normality’ or ‘associated flow rule’ for the

plastlc strain rate vector EU
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(a) (b)

Fig. 2.5. Convex yield surface for stable materials.

2.7 The assumption of small change in geometry and the equation of virtual work

The key to prove the theorems of limit analysis and to apply them is the use of
the equation of virtual work. It is well known that the application of virtual work
equation requires the assumption of no appreciable change in geometry. In limit
analysis, it is assumed that changes in geometry of the body that occur at the instant
of collapse are small, in the sense that, in all calculations, original undeformed
dimensions will be used in the equilibrium equations. That is, if equilibrium equa-
tions are established for the original state of the problem, it will be assumed that
the overall dimensions at the incipient of collapse will alter by negligible amounts,
so that the same equations can be used to describe the deformed state of the pro-
blem. e
The equation of v1rtual work deals with two separate and unrelated sets:
equilibrium set and compatible set. Equilibrium set and compatible (or geometry)
set are brought together, side by side but independently, in the equation of virtual
work:

Equilibrium set

| | |

fT,.u;fdA+ Fufdv = foUeUdV (2.17)
. LT

Compatible set

Here integration is over the whole area, 4 or volume ¥, of the body. The quantities
T;, F; are external forces on the surface and body forces in a body, respectively. 0y
are any set of stresses, real or otherwise, in equilibrium with F; in the body and
with the external forces T; on the surface. Referring to F1g 2.6a, a valid
equilibrium set must therefore satisfy the following equilibrium equations:
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At surface points T; = ojin; 2.18)
do;

At interior points LIS F;=-0 2.19)
6xj

0j; = 0y (2.20)

where #; is the outward-drawn unit normal vector to a surface element.

Similarly, the strain rate e; represents any set of strain or deformations compa-
tible with the real or imagined (virtual) displacement rate i} of the points of ap-
plications of the extérnal forces T; or the points of displacements corresponding to
the body forces F;. Referring to Fig. 2.6b, a continuous distortion of a body com-
patible with an assumed displacement field must satisfy the following strain and
displacement rate compatibility relation:

. % ok
28 = % + 312 (2.21)

y Ox;  Ox;

The important point to keep in mind is that neither the equilibrium set 7}, F;, 0
(Fig. 2.6a) nor the compatible set iz}, e (Fig. 2.6b) need be the actual state, nor
need the equilibrium and compatible sets be related in any way to each other. Here,
the asterisk for the compatible set is used to emphasize the point that these two sets
are completely independent. When the actual or real states (which satisfy both
equilibrium and compatibility) are substituted in the equation of virtual work, the
asterisk will be omitted.

Any equilibrium-set may be substituted in Eq. (2. 1_7) In particular, an increment - -
or rate of change of forces and interior stresses 7}, F o may be used as an

equilibrium set:
fT',.a;fdA +I1’~;u;de =foljeu av (2.22)
A 14

Equation (2.22) is a virtual work equation in rate form. The two forms of virtual work

(b) Compatible Set

(a) Equilibrium Set

Fig. 2.6. Two independent sets in the equation of virtual work.
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(Egs. 2.17and 2.22) willbe used laterin proving the theorems of limit analysis. It should
be remembered that the virtual work equation carries the implication, which will
hold throughout the book, that all displacements are sufficiently small for the
original undeformed configuration of the problem to be used in setting up the equa-
tions of the system,

2.8 Theorems of limit analysis

Figure 2.7 shows a typical load-displacement curve as it might be measured for
a surface footing test. The curve consists of an elastic portion; a region of transition
from mainly elastic to mainly plastic behavior; a plastic region, in which the load
increases very little while the deflection increases manifold; and finally, a work-
hardening region. In a case such as this, there exists no physical collapse load.
However, to know the load at which the footing will deform excessively has obvious
practical importance. For this purpose, indealizing the soil as a perfectly plastic
medium and neglecting the changes in geometry lead to the condition in which
displacements can increase without limit while the load is held constant as shown
in Fig. 2.7. A load computed on the basis of this ideal situation is called plastic limit
load. This hypothetical limit load usually gives a good approximation to the physical
plastic collapse load or the load at which deformations become excessive. The
methods of limit analysis furnish bounding estimates to this hypothetical limit load.

The theorems of limit analysis can be established directly for a general body if
the body possesses the following ideal properties:

1. The material exhibits perfect or ideal plasticity, i.e., work-hardening or work-
softening does not occur. This implies that stress point can not move outside the
yield surface, so the vector (7,-1- must be tangential to the yield surface whenever
plastic strain rates are occurring.

Changes in Geometry or
Work Hardening
P ) Collapse or Limit
¢ AN Load {Definition)
Piastic
LOAD Elastic—Plastic
Elastic
DISPLACEMENT

Fig. 2.7. A typical plastic collapse phenomenon and definition of limit load.
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2. The yield surface is convex and the plastic strain rates are derivable from the
yield function through the associated flow rule (normahty) It follows from the
perfect plasticity and the normality condition that &; je,j = 0.

3. Changes in geometry of the body that occur at the limit load are insignificant,
hence the equations of virtual work can be applied.

In summary, the limit load is defined as the plastic collapse load of an ideal body
having the ideal properties listed above, and replacing the actual one.
Before we proceed to prove the limit theorems, we need to prove first the follow-

ing statement:

When the limit load is reached and the deformation proceeds under constant load,
all stresses remain constant; only plastic (not elastic) increments of strain occur.

Thus the application of the elastic-perfectly plastic stress-strain rate relation
becomes formally the same as the use of the rigid-perfectly plastic stress-strain rate
relation. It should be noted that in this case the elastic strain increments are proved

to be zero, they are not neglected.
A direct proof of this statement starts with the equatlon of virtual work (Eq. 2.22)

in rate form for the stress rates o and strain rate e i in the body at the limit load
and continuous displacement rates if. The superscript ¢ emphasizes the fact that
all the quantities used in what follows are the actual state at collapse or limit load.

The equation of virtual work is:

f Tiaf dA + f TSaf dA + fj:,?a;’ av =f s AV (2.23)
A : A, 14 1%

In this equation the load system at collapse consists of body force rates F (per
unit volume) and surface traction rates TC (per unit area). Each component TI
specified on the surface area Ay and each component of displacement rate u is

prescribed to be zero on area A,
Now, at the limit load, the left- hand side of Eq (2.23) vanishes, by our definition,

F, = 0 everywhere; Tf = 0on Ap and u =0 on Ay Since total strain rate
ElJ consists of elastic and plastic parts, e = &+ Eu , 1t follows from Eq. (2.23)
that:

IUU (eU + e Ydv =0 2.24)
4

But it follows from the ideal properties (a) and (b) that g, U u = 0. Therefore;

C ec
J ey AV =0 (2.25)
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Since ifjéejc is a positive quantity when 6cj %0 for any elastic materials, the

vanishing of the integral in Eq. (2.25) requires that o = 0 throughout the body.
Therefore, there is no change in stress, and correspondmgly no elastic change in
strain during deformation at the limit load. All deformation is plastic. This state-
ment states that elastic characteristics plays no part in the collapse at the limit load.

The lower- and upper-bound limit theorems will now be stated and proved here
(Drucker et al., 1952).

Theorem I (lower bound) — If an equilibrium distribution of stress al;: covering
the whole body can be found which balances the applied loads T; on the stress
boundary A and is everywhere below yield S(o; ) < 0; then the body at the loads

T;, F; will not collapse.

To prove the theorem, assume it false. We show that this leads to a contradiction.
If the body at the loads T;, F; collapses, a collapse pattern associated with the ac-
tual stresses, strain rates and displacement rates, o i e and u exists. ThlS collapse
pattern corresponds to the collapse loads T on AT and F;in V with u = 0on A,
Two equilibrium systems would exist, T, o and T, aE From virtual work
equation (2.17):

- C
fTicu,- d4 + f}«fude: I”ufde
Ar v 12

j T dA + fF,?a,?dV= _[aueu av
A 1 v

Hence:
E, .
f(a,?j — o) &;dV =0
12
Since at collapse, all deformation is plastic, it follows that:

l(a;. ) &y = 0 (2.26)

In v1ew of the fact that convvexity and normality properties require (a
au) & > 0 for a i below yield (Eq. 2.13). A sum of positive terms cannot vamsh
Therefore, Eq. (2.26) cannot be true and the lower-bound theorem is proved. If
f (0 ;} = 0 is permitted the body may be at the point of collapse.

The lower-bound theorem expresses the ability of the ideal body to adjust itself
to carry the applied loads if at all possible.

Theorem II (upper bound) — If a compatible mechanism of plastic deformation

éf?*, up is assumed, which satisfies the condition, up = 0 on the displacement
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boundary A ; then loads 7}, F; determined by equating the rate at which the exter-
nal forces do work

[ 1 a4 + [Fad av @.27)
A 14
to the rate of internal dissipation

f o ay 2.28)

will be either higher or equal to the actual limit load.

Again, assume the theorem false, then we show that this leads to a contradiction.
If the loads so computed are less than the actual limit load, th]eén the body will not
collapse at this load. An equilibrium distribution of stress o;; everywhere below
yield f (05) < 0 must therefore exist (converse of lower-bound theorem mentioned
above). From virtual work equation (2.17):

jTu dA+J‘Fu dV_jUng 2.29)
Ar 14
Since T; and F; are computed by Eqs. (2.27) and (2.28), it follows that:

% E, .p* _ )
j(ag. ~ )& V=0 (2.30)
v . ~ . Ce
The convexity and normality properties require, however, (afj’- - U) eu > 0 for

of- below yield. This leads to a contradiction and thus proves Theorem II.
The upper-bound theorem states that if a path of failure exists the ideal body will

not stand up.

Some corollaries follow immediately from the lower-bound theorem because the
original stress distribution is admissible in the modified situation.

Corollary I — Initial stresses or deformations have no effect on the plastic limit
or collapse load provided the geometry is essentially unaltered.

Corollary II — Addition of (weightless) material to a body without any change
in the position of the applied loads cannot result in a lower collapse loafl.

Corollary III — Increasing (decreasing) the yield strength of the material in any
region cannot weaken (strengthen) the body. .

Corollary IV — A limit load computed from a convex yield surface which cir-
cumscribes the actual surface will be an upper bound on the actual limit load. A
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limit load computed from an inscribed surface will be a lower bound on the actual
collapse load.

2.9 Limit theorems for materials with non-associated flow rules

An essential point in the proofs of the limit theorems given earlier is the inequality
(2.13). This inequality is a direct consequence of the normality condition or the
associated flow rule. Without this inequality, the theorems cannot be proven in
general. This normality relationship between a yield surface and its associated
plastic strain rate vector, or the so-called associated flow rule is known to be a pro-
perty of several wide classes of materials satisfying certain thermodynamic condi-
tions (Drucker, 1951; I’yushin, 1961).

The inequality (2.13) does not hold, for frictional materials and systems, and
hence the limit theorems of plastic materials do not apply here. In this section, we
shall examine first the frictional material, and then go on to see how we can, never-
theless, obtain a limited amount of useful information about friction effects by use
of the theorems derived for materials with associated flow rule. Finally, limit
theorems for a class of materials with nonassociated flow rules are derived.

A simple frictional system to which normality does not apply is illustrated in Fig.
2.8. Figure 2.8a shows a block resting on a rough horizontal surface and subjected
to two forces, a horizontal force Q and a vertical force P. The coefficient of friction
between the block and the surface is . Then, the ‘yield surface’ in P-Q load space
for the system is Q = uP, which is a straight line. If the forces on the block are

- represented by a point below the straight line, the block will not move;-if they are - -

represented by a point on the line, an infinitesimal force increment directed upward
will cause the block to slide. This is analogous to a yield surface for a perfectly
plastic material. Any sliding of the block along the horizontal plane gives a cor-
responding increment of irreversible displacement. The displacement of the block
is in the direction of the horizontal force Q, and there is no displacement in the
direction corresponding to the vertical force P. The displacement increment vector
for the block superimposed in the P-Q load space will be parallel to the Q-axis, and
thus not normal to the ‘yield surface’ except in the special case p = 0, i.e., fric-

Q

Displacement Vector

o

(a)
Fig. 2.8. Friction model.
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tionless sliding. It is clear from this example that, the limit theorems cannot be ap-
plied in general for frictional materials. However, there are some special cases for
which the limit theorems of-plastic bodies can still fully apply. They are: (a) the
coefficient of friction is zero; (b) there is no relative motion or separation at the fric- '
tional interferface. As shown in Fig, 2.8, normality does apply for a smooth or fric-
tionless material and no relative movement at the frictional interface implies that
any ‘sliding’ must be of the plastic kind. With this background it is intuitively clear

that:

Theorem ITI — Any set of loads which produces collapse of an assemblage of
elastic-plastic bodies with frictional interfaces for the condition of no relative mo-
tion at the interfaces will produce collapse for the case of finite friction.

No relative motion is a more inclusive than infinite friction because separation is
not permitted.

Theorem IV — Any set of loads which will not cause collapse of an assemblage
of elastic-plastic bodies with frictional interfaces when all coefficients of friction at
the interfaces are zero will not produce collapse with any values of the coefficients.

According to the frictional theorems, the limit load is bounded below by the limit
load for the same bodies with zero friction on the interface. It is bounded above by
the limit load for no relative motion at the interfaces. Hence, in a lower-bound

calculation, if we take the footing-base or retaining wall interface to-be-a-plane of

principal stress; then our calculation is ‘safe’ for a ‘smooth’ footing or wall and
hence also for a footing or wall with finite friction. Further, in an upper-bound
calculation, if we assume a mechanism having no relative motion at the footing base
or wall interface, then, our calculation is ‘unsafe’ for a ‘rough’ footing or wall and
hence also for a footing or wall with finite friction. From the frictional theorems,
it can be seen that the special treatment is to enlarge the range between upper and
lower bounds derived for materials with associated flow rule.

In some of the stability problems considered in this book, the range between up-
per and lower bounds corresponding to these two ‘extreme’ conditions is not af-
fected much by the question of whether the footing or retaining wall is rough or
smooth. This indicates that friction is of only secondary importance in the deter-
mination of the limit load. In some other cases, however, we find that there is a large
difference between the bounds corresponding to rough and smooth footings or
walls; this then indicates that friction plays an important role, and it may be
necessary to use approximate intuitive method for assessing the effect of any par-

ticular coefficient of friction.
As mentioned before, the limit theorems developed earlier for materials with
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associated flow rule are inapplicable for materials with non-associated flow rules.
However, we can prove the following theorem which may have practical relevance
to the material having the same yield criterion but with a non-associated flow rule.

Theorem V (Upper Bound) ~ Any set of loads which produces collapse for the
material with associated flow rule will produce collapse for the same material with
non-associated flow rules.

This follows readily from the fact that statically admissible stress solutions are in-
dependent of the flow rule (see Egs. 2.18 to 2.20) so that the stress field correspon-
ding to the actual collapse load for the material with non-associated flow rules must
also be statically admissible for the same material with associated flow rule. It
follows immediately from the lower-bound theorem that the actual collapse load for
the material with non-associated flow rules must therefore be less than or equal to
the actual collapse load for the same material with associated flow rule. The result
has been discussed and applied by a number of investigators, e.g., Radenkovic
(1961), Sacchi and Save (1968), Mroz and Drescher (1969), and Collins (1969, 1973).

In what follows a lower-bound theorem for perfectly plastic materials with non-
associated flow rules will be developed (DeJong, 1964; Palmer, 1966). In Fig. 2.9,
a single yield surface, not necessarily smooth or convex, is shown. It is assumed that
at each point on this yield surface the directions of the plastic strain rate vector, not
necessarily normal to the yield surface, are known. Through each point on the yield
surface, f(a,-j) = 0, we construct the hyperplane perpendicular to the direction of
the plastic strain rate vector at that-point (Fig. 2.9). If the direction at a point is
non-unique, construct hyperplanes perpendicular to each of the admissible plastic

,’<Hyperp!ane

Yield Surface
flajjp=0

Plastic Strain
Rate Vector

g-Surface
g(O'”)=0

Fig. 2.9. Construction of g-surface.
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strain rate directions. Either these hyperplanes have an envelope which is a surface
completely within the yield surface, or they do not. If they do not, the limit theorem
which follows cannot be applied. If they do, the surface is necessarily convex, by
a well-known theorem in convex set theory (Eggleston, 1958). Denoting stress by oy
this envelope or new surface can be represented by g(o,-j) = 0, in such a way that
at points within it g(aij) < 0 and outside it g(o,-j) > 0; it will be called the g-surface.
We now state and prove the following lower-bound theorem:

Theorem VI (Lower Bound) — If an equilibrium stress distribution af-j‘- covering
the whole body can be found which balances the applied loads on the stress boun-

E

dary surface and is everywhere below yield g(a,-j) < 0, then the body will not col-

lapse.

The proof follows exactly the proof of the lower-bound theorem (Theorem I)
given earlier. From the definition of the g-surface, it follows that the inequality
(2.13) is applicable for the new yield surface g("ij) = 0. If the normality condition
does hold, then the g-surface is identical with the yield surface f1 (a,-j) = 0 and this
theorem reduces to the lower-bound theorem (Theorem I).

2.10 The upper-bound method

In the following two sections we shall discuss in more detail some of the basic
techniques of applying these upper- and lower-bound theorems. Herein we shall il-
lustrate the applications of these techniques by means of relatively simple examples;
more complex applications will be taken up in later chapters.

As stated in the upper-bound theorem, the imposed loads cannot be carried by
the soil mass if for any assumed failure mechanism the rate of work done by the
external forces exceeds the internal rate of dissipation. Equating of external to inter-
nal rate of work for any such valid mechanism thus gives a unsafe upper bound on
the collapse or limit load. The equation formed in this way is called the work equa-
tion for a particular assumed mechanism. The conditions required to establish such
an upper-bound solution are essentially as follows:

1. A valid mechanism of collapse must be assumed which satisfies the mechanical
boundary conditions.

2. The expenditure of energy by the external loads (including soil weights) due to
the small displacement defined by the assumed mechanism must be calculated.

3. The internal dissipation of energy by the plastically deformed regions which is
associated with the mechanism must be calculated.

4. The most critical or least upper-bound solution corresponding to a particular
layout of the assumed mechanism must be obtained by the work equation.

Any mechanism is said to be ‘valid’ if the small change in displacemenf within the
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body (or velocity field) due to the mechanism is ‘compatible’ or ‘kinematically ad-
missible’. In other words, the mechanism must be continuous in the sense that no
gaps or overlaps develop within the body and the direction of the strains which is
defined by the mechanism must in turn define the yield stresses required to calculate
the dissipation. This is known as the yield criterion and its associated flow rule.
It should be mentioned that discontinuous fields of stress and velocity may be us-
ed in applying lower- and upper-bound theorems. Discontinuous stress fields are ac-
tually very useful in deriving lower bounds. Surfaces of stress discontinuity are
clearly possible provided the equilibrium equations are satisfied at all points of these
surfaces. Surfaces of velocity discontinuity can also be admitted, provided the
energy dissipation is properly computed. Rigid-body sliding of one part of the body
against the other part is a well-known example. This discontinuous surface should
be regarded as the limiting case of continuous velocity fields, in which one or more
velocity components change very rapidly across a narrow transition layer, which is
replaced by a discontinuity surface as a matter of convenience. Discontinuous
velocity fields not only prove convenient but often are contained in actual collapse
mode or mechanism. This is in a marked contrast to the stress situation where
discontinuity is useful and permissible but rarely resembles the actual state.
Before the solution of a particular mechanism can be found, however, the work
equation must be formed by equating the external rate of work due to the external
applied lo~d« and soil weight to the internal dissipation of energy in the plastically
deformed region. Since these two quantities of work or energy have to be calculated
‘separat ;. y before they are equated, the way in which these quantities are calculated
shall be presented separately..

Once the work equation is formed, the collapée or limit load may be solved in

terms of the variables that define the assumed mechanism. The final step in the
analysis is to seek the particular layout or the value of the variables which is the least
or the most critical. By the use of differential calculus, the magnitudes of the
variables which give the most critical solution can generally be found. The algebraic
technique, when it can be applied, gives a general solution applicable to all size of
body of the particular mechanism assumed. This method can only be used, however,
when the plot of load vs. variable parameters has a stationary minimum value.
Sometimes, because of the physical conditions imposed on the parameters, there will
not be a stationary minimum value within the valid range of a particular parameter.
In such a case, the value of the least upper bound is not governed by the stationary
minimum condition.

An alternative to the differential calculus technique is to try certain values of
distances or angles which are treated as variables and several values of upper-bound
solution can be obtained directly by the work equation. Visual inspection of the
m.agnitude of the various solutions enables the most critical answer to be selected.
Siice many solutions are not very sensitive to a particular layout of a mechanism
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and further the valid ranges of variable parameters are already considered in the
trial values, the method may be used conveniently in all circumstances.

As an alternative to the algebraic technique, an arithmetic process can be used in
which several particular layouts corresponding to a particular assumed mechanism
are each examined in turn, each solution being obtained directly and arithmetically
by the work equation. The most critical answer can then be selected. Since this
technique can be combined with graphical constructions of various layouts and
mechanisms, it can be used conveniently in problems involving complex geometry.

Both the algebraic and arithmetic methods, and indeed a combination of both
methods, are each most suitable for certain types of problems.

An illustrative example

As an example of application of the upper-bound method we try to find the
critical height, H_, of a vertical cut in a cohesive (c-¢) soil (Fig. 2.10) which
follows the Mohr-Coulomb yield criterion and its associated flow rule. The unit
weight of the soil is . Here, we restrict our discussion to the plane strain case. The
dimension perpendicular to the plane of the book will be taken as unity, but all mo-
tion is supposed in the plane. The critical height is defined as the height at which
the unsupported vertical cut, as illustrated in the figure, will collapse due to its own
weight.

We assume first that the failure occurs by sliding along a plane making an angle
8 with the vertical. A limiting condition is reached when the rate at which the gravity
forces are doing work is equal to the rate of energy dissipation along the surface
of sliding. The rate of work done by the gravity force is the vertical component of
the velocity multiplied by the weight of the soil wedge:

} v H? tanB v cos(p + B) ' 2.31)

where v is the velocity of the soil, ¢ is called the angle of internal friction of the soil.

Rigid

H v Rigid

g

Fig. 2.10. Critical height of a vertical cut.
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The Mohr-Coulomb yield criterion assumes that plastic flow occurs when, on any
plane at any point in a mass of soil, the shear stress 7 reaches an amount that
depends linearly upon the cohesion stress ¢, and the normal stress, o:

T = ¢ + otang (2.32)

where ¢ is a compressive stress, and ¢, ¢ are material constants (Fig. 2.11). If now
a stress state, represented by a vector from the origin, is increased from zero,
yielding will be incipient when the vector reaches the curve (two straight lines). For
a perfectly plastic material, the vector representing the stress state at any given point
can never protrude beyond the curve, since it is an unattainable stress state for a
perfectly plastic soil. We shall now obtain in a convenient fashion a geometrical in-
terpretation of the flow rule. As we assumed before, in the (o, 7) stress coordinates,
the corresponding plastic strain rates (¢P, 4P) are set out parallel to the same direc-
tions, respectively. In order to associate each strain rate vector with the correspon-
ding stress vector, we plot it with the corresponding stress point as a floating origin.
Figure 2.11 shows this combined stress and strain rate plot. The associated flow rule
requires that the plastic strain rate vector be normal to the yield curve when their
corresponding axes are superimposed. It can be seen from Fig. 2.12 that the perfect-
ly plastic idealization with associated flow rule is illustrated by a block shearing on

Flow Rule

Fig. 2.11. Plastic strain rate is normal to yield curve for perfectly plastic theory, but parallel to r-axis
for frictional theory.
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Fig. 2.12. Difference between plastic shearing and frictional sliding.
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a horizontal plane. Volume expansion is seen to be a necessary accompaniment to
shearing deformation according to the idealization. This theory was proposed by
Drucker and Prager (1952) and generalized later by Drucker (1953), and Shield
(1955a).

We shall now evaluate the rate of dissipation of energy, D, along the sliding
plane. The mode of deformation in the transition layer shown in Fig. 2.13 is a com-
bination of shear flow parallel to the layer with extension normal to it. The shear
strain rate 4 which is assumed to be uniform in the layer is equal to éu/¢ and the
normal strain rate é is equal to 6v/¢, so the rate of dissipation of energy per unit
volume is equal to 7y — o€, 7 and o (here taken to be positive in compression) being
the shear and normal stresses, respectively. The volume of the layer is numerically
equal to ¥ X 1 X 1 = ¢ (see Fig. 2.13), so:

D = (ry — gé)t = (70u — odv)
or:
D = bu(r — o tang) (2.33)

Since the Mohr-Coulomb yield criterion must be satisfied in the plastic layer it
follows from Eq. (2.32) that:

D=3duc (2.34)

This equation states that the rate of dissipation of energy per unit area of discon-

tinuous surfaces of the narrow transition layer of Mohr-Coulomb material is simply
the product of the cohesion stress, ¢, and the tangential velocity change, du, across
the layer. It should be noted that the expression is independent of the layer
thickness, so t may be taken as small as we please, including zero as a matter of con-

Py

Fig. 2.13. The mode of deformation in the narrow transition layer of Mohr-Coulomb material.
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venience. Thus, the rate of energy dissipated along the discontinuity surface in Fig.

2.10 is:

-—{{— v (cos¢) ¢
C

0sf3

Equating the rate of external work (Eq. 2.31) to the rate of internal energy
dissipation (Eq. 2.35) gives:

Sk cosb (2.36)
v sinB cos(¢ + B)

If B8 is minimized then:

By = dm — 30 (2.37)
and
H, = (4c/y) tan (i1 + 1) (2.38)

This is the same value obtained by the conventional Rankine analysis (limit
equilibrium analysis). See for example Terzaghi’s book (1943).

An improved upper-bound solution may be obtained by considering a different
mechanism, i.e., a rotational discontinuity (logarithmic spiral) instead of the

Center of
Rotation

_._Log=Spiral
Failure Plane

Fig. 2.14. Rotational failure mechanism for the critical height of a vertical cut.

2.35)
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translation discontinuity (plane surface) used above. Such an analysis requires an
expression for the rate of dissipation of energy along a logarithmic spiral surface
as well as an expression for the external rate of work done by the weight of the
rotating soil mass. Since these expressions are useful for many applications in soil
mechanics, details of the calculations are treated as a typical illustrative example.

The rotational discontinuity mechanism used here is shown in Fig. 2.14. The
triangular-shaped region A-B-C rotates as a rigid body about the center of rotation
O (as yet undefined) with the angular velocity . The materials below the logarithm
surface BC remain at rest. Thus, the surface BC is a thin layer surface of velocity
discontinuity. The assumed mechanism can be specified completely by three
variables. For the sake of convenience, we shall select the slope angles 6, and 8, of
the chords OB and OC, respectively and the height H of the vertical cut. Since the
equation for the logarithmic spiral surface is given by:

r(0) = ryexpl(® — 6p) tand] (2.39)
the length of OC is:
r, = r(fy) = ry expl(6, — 6 tang] (2.40)

From the geometrical relations, it can easily be shown that the ratios, H/r, and
L/ry, may be expressed in terms of the angles §, and 6, in the forms:

H.= r, sinf, —. r, sinf, o (2.4)
or |

H/ry = sinfy, exp[(6,, — 6p) tang] — sinf, - (2.42)
and

L = rycosfy — ry, costy (2.43)
or

L/ry = cosfly — costy, expl(f, — 6, tand] (2.44)

A direct integration of the rate of external work due to the soil weight in the
region A-B-C is very complicated. An easier alternative is to use the method of
superposition by first finding the rates of work, Wl, W2 and W3 due to the soil
weight in the regions 0O-B-C, 0-A-B, and O-A-C, respectively. The rate of external



52
work for the required region A-B-C is then found by the simple algebraic summa-

tion, W, — W2 — W;. We now proceed to compute the respective expressions for
each of the three regions.

Considering first the logarithmic spiral region O-B-C, a differential element of the
region is shown in Fig. 2.15a. The rate of external work done by this differential

element is:
dW, = (@ % r cosf) (v & 2 df) (2.45)
integration over the entire area, we obtain:

. fn
W, =§79I r3 cosf df

)
3 b
= yryQ J 1 exp[3(0 — 6,) tang] cos6 df (2.46)
0
or
W, = v r3Qf, 6 6 2.47)

where the function f; (6},6,) is defined as:
(3 tang cosfy, + sind,) exp[3(6,, — Optang] — 3 tand cosb ~ sinf,

3(1 + 9 tan%g)

f164.80) =
(2.48)

8
r(9) \
(2/3)r cos A B
‘1/2)7 Lrg siné, (2/3) rhcosQh )
da-(2r 124 YA {1r3x2rgcosfy-L)
@) (b : )

Fig. 2.15. Detail calculations for Fig. 2.14.
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Consider next the triangular region O-A-B shown separately in Fig. 2.15b. The
rate of work done by the weight of the region is:

W2 = (3 v L ry siny) [} Q2ry cosfy — L)] @ (2.49)

where the first bracket represents the total weight of the region and the other
represents the vertical component of the velocity at the center of gravity of the
region. The horizontal distance from the center of gravity to the vertical line passing
through the point O is obtained by taking the mean horizontal distance of the points
O, A, and B. This is represented in the second bracket above. Rearranging the terms

in Eq. (2.49), we obtain:

- 3 .

Wy = v 1o Q. 6,00 (2.50)
where the function f, (6;,0,) is defined as:

To To

and L/rg is a function of 6, and 6, (see Eq. 2.44).

A similar technique can be used for the triangular area O-A-C as shown separately
in Fig. 2.15c. It is found that:

. L - 3, - .. . . . . e R
Wi = v rpQf; Oy (2.52)
where the function f3(6,,,6,) is defined as:

S30,00) = %rﬁ cos?0, exp[2(6, — 0p) tang] (2.53)
0

and H/ry is a function of 6, and 6, (see Eq. 2.42).
The magnitude of the rate of work done by the soil weight in the required region
O-B-C is now obtained by the simple algebraic summation:

W, — Wy — Wy = yrg QUfy — f — f3) 2.54)

The internal dissipation of energy occurs along the discontinuity surface BC (Fig.
2.14). The differential rate of dissipation of energy along the surface may be found
by multiplying the differential area, rdf/cos¢, of this surface by the cohesion ¢ times
the tangential discontinuity in velocity, v cos¢, across the surface of discontinuity,

L4
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Eq. (2.34). The total internal dissipation of energy is then found by integration over
the whole surface:

Oy r de

0
of c(v cosg) cos¢ T2 tang
o

2

{exp[2(6,, — O)tang] — 1) (2.55)

Equating the external rate of work, Eq. (2.54), to the rate of internal energy dissipa-
tion, Eq. (2.55), gives:

H = £ 6,6, (2.56)
Y

where (6,0, is defined as:

[exp{2(6; — fp)tang] — 1] [sinfy, exp{(6; — fp)tand] — sinby]
0,.6,) = 2.57
S(0y,,80) 2tan¢(fl—f2—f3) 2.57)

By the upper-bound theorem of limit analysis, Eq. (2.56) gives an upper bound for
the critical value of the height. The function f(8;,,6,) has a minimum value when 6,
and 6, satisfy the conditions:

af_o af

L =909 ZL=0 2,
a0, a6, @.38)

~ Solving these equations and substituting the values of 6, and 6, thus obtained into =~

Eq. (2.56), we obtain a least upper bound for the critical height, H_, of the vertical
cut.

To avoid lengthy computations, these simultaneous equations may be solved by
a semi-graphic method. The function f(8;,6,) is found to have a minimum value
near the point 6, = 40°, 6, = 65° for the case ¢ = 20°, where it has the value 3.83
tan Gr + i¢) for all values of ¢, so that:

H, = (3.83¢/y) tan. (7 + 1¢) (2.59)

is an upper bound for the critical height of the vertical cut. The value 3.83 in Eq.
(2.59) is an improvement of the previous solution 4.0 as given in Eq. (2.38).
This is the same value obtained by Fellenius (1927) using the conventional limit
equilibrium method,
In the laboratory, soil may exhibit the ability to resist tension. In the field,
however, the presence of water or tensile cracks near the surface may destroy the
tensile strength of the soil. Hence, the tensile strength of soil is not reliable and it
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may be neglected. This is a conservative idealization. The Mohr-Coulomb yield
criterion is modified by the tension cut-off as shown in Fig. 2.16, in which the re-
quirement of zero-tension is met by the circle termination as shown (the upper half
of the yield curve is ODB).

As the soil is unable to resist tension, the introduction of a tensile crack in a
failure mechanism is permissible. No energy is dissipated in the formation of a sim-
ple tension crack; both normal and shear stress are zero on the plane of separation
(see the origin in Fig. 2.16).

The rotational mechanism containing a simple-tension crack and a homogeneous
shearing zone A-B-C is shown in Fig. 2.17. Faijlure due to tipping over of the soil
‘slab’ of thickness A about point A with an angular velocity w is possible. The region
A-B-C of homogeneous shearing, ¥, is the field shown in Fig. 2.18b which indicates
that w = 4.

To understand the homogeneous shearing zone of Fig. 2.18b, we consider, the
rate of dissipation of energy, D, per unit volume of the simple shear flow shown
in Fig. 2.18a. This simple shear can be easily visualized as a series of narrow transi-
tion layers of the type discussed before. Each of these layers is bounded by horizon-
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Fig. 2.17. Rotational mechanism containing a simple tension crack and the homogeneous shearing zone
for soil unable to take tension.
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Fig. 2.18. Homogeneous shearing zone.

tal parallel straight lines corresponding to a relative translation of the adjacent
masses of soil. The simple shear deformation designed by 7 is accompanied by the
vertical normal strain rate, 4 tan¢. The rate of dissipation of energy is equal to
Ty — oy tan¢ per unit volume, 7 and o being the shear and normal stresses, re-
spectively. Since the Mohr-Coulomb yield criterion must be satisfied in the field of
flow, it follows that:

D = 74 — oy tand = c¥ (2.60)

For the example problem, where the triangle A-B-C of Fig. 2.18b is a portion of

the parallelogram of Fig. 2.18a, it follows that Eq. (2.60) gives.D =.cy =.cw. The .

total rate of dissipation of internal energy for unit dimension perpendicular to the
paper is just D times the area of the triangle ABC or:

(cw) [A? tanGm + $9)] (2.61)

The rate of external work done by gravity is the weight of the soil moving
downward as the ‘slab’ rotates about A, multiplied by the velocity, which is o

@ A): :
W=4iyA2?Huw (2.62)
If the rate of external work is equated to the dissipation, it yields:

H, = Qc/y) tan(m + i¢) ' (2.63)

This confirms Terzaghi’s solution (1943) for a tensile crack extending the full height
of the bank.

|
!
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2.11 The lower-bound method

The lower-bound method of. limit analysis is different from the upper-bound
method in that the equilibrium equation and yield condition instead of the work
equation and failure mechanism are considered. Moreover, whereas the develop-
ment of the work equation from an assum;d collapse mechanism is always clear,
many engineers find the construction of a plastic equilibrium stress field to be quite
unrelated to physical intuition. Without physical insight there is trouble in finding
effective ways to alter the stress fields when they do not give a close bound on the.
collapse or limit load. Often the user employs the existing stress fields from well-
known texts or the more recent technical literature as a magic handbook and tries
to fit his problem to the particular solutions he finds. Intuition and innovation seem
discouraged by unfamiliarity and apparent complexity. Although the discontinuous
fields of stress which will be drawn and discussed in this Section are simpler to
visualize, they too are not often employed in an original manner by the design
engineer. Yet, in fact, the concepts are familiar to the civil engineer in his terms and
can be utilized by the designer as a working tool. This was described in some details
by Chen (1975). i

Most of the early work on the construction of a stress field is concerned with the
pure cohesive soil for which ¢ = 0, or Tresca material, the self-weight of the
material being assumed to be insignificant. Actually, there are only limited prac-
tically important problems in soil mechanics for which this assumption is justified.
Further, as a rule for Mohr-Coulomb material, the stress field involves both applied
forces and the self-weight of soil mass. While a number of simple stress fields of
this type have been obtained during recent years, general methods allowing for the
self-weight of soil have not yet been developed. However, progress in its extension
to soils with some different yield surfaces is anticipated in the near future.

As stated in the lower-bound theorem, if an equilibrium state of stress below yield
can be found which satisfies the stress boundary conditions, then the loads imposed
can be carried without collapse by a stable body composed of elastic-perfectly
plastic material. Any such field of stress thus gives a safe or lower bound on the
collapse or limit load. The stress field satisfying all these conditions is called statical-
ly admissible stress field. The conditions required to establish such a lower-bound
solution are essentially as follows:

a. A complete stress distribution or stress field must be found, everywhere satisfy-
ing the differential equation of equilibrium.

b. The stress field at the boundary must satisfy the stress boundary conditions.

¢. The stress field must nowhere violate the yield condition.

From these rules it can be seen therefore that a lower-bound technique is based en-

tirely on equilibrium and yield conditions but it must not, however, be confused that

the limit equilibrium method or slip-line field gives a lower-bound solution. It is
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worth pointing out here that in the limit equilibrium method or slip-line field, the
stress state is specified only either along the slip lines or in a local plastic stress zone
around the load and not everywhere in the soil mass, as required by item (a), and
therefore a limit equilibrium solution or a slip-line solution does not give a complete
equilibrium solution. Further, even if a complete equilibrium solution extended
from the slip-line field into the rigid regions can be found, it remains to be
demonstrated that such a stress distribution will not violate the yield condition in
the rigid regions, as required by item (c). Hence, the slip-line field solution strictly
should only be regarded as an upper-bound solution, though, it seems most likely
that it could be completed. It should also be noted that the stress distribution
associated with an assumed collapse mechanism in the upper-bound calculation
need not be in equilibrium, and is only defined in the deforming regions of the col-
lapse mode. ‘

It has already been mentioned previously that discontinuous fields of stress and
velocity may be used in applying the lower- and upper-bound theorems. Similarly,
discontinuous fields of stress are found to be especially useful in deriving lower
bounds. Here, as in a discontinuous velocity situation, surfaces of stress discontinui-
ty are clearly possible, provided the equilibrium equations of stresses are satisfied
at all points of these surfaces. If the stress fields are chosen for convenience to be
at yield in some regions rather than below, the load so obtained may be the collapse

7
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Fig. 2.19. A lower-bound stress field for the stability of a vertical cut.
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load itself. Although such a discontinuous stress situation is useful and permissible
in lower-bound calculation, it is rarely the actual state. This is in a marked contrast
to the velocity situation where discontinuity is not only found useful and convenient
in upper-bound calculation but often is contained in actual collapse mode or
mechanism,

An illustrative example

Let us now attempt a lower-bound solution of the same slope stability problem-
critical height of a vertical cut with soil unable to take tension, by constructing a
simple discontinuous stress field which does not violate the yield condition. The
simplest possible equilibrium distribution of stress is found by having a horizontal
plane of discontinuity between Zones I and II and a vertical plane of discontinuity
between Zones II and III as shown in Fig. 2.19a. Assuming the state of stress in
Zones I, II, and III to be uniaxial compression, biaxial compression, and
hydrostatic compression, respectively. Figure 2.19b shows the corresponding Mohr
circles for each zone. The Mohr-Coulomb yield condition with tension cut-off is
satisfied when the circles representing Zone I at ground level meet the yield lines
MM, and MgM,. Therefore:

! yH = ccosp + L vH sing (2.64)

Since this discontinuous stress field satisfies equilibrium everywhere in the soil
mass and the boundary conditions, which in this case require both normal and shear
to be zero on all surfaces, and nowhere exceeds the Mohr-Coulomb yield criterion
with zero-tension cut-off, by the lower bound theorem of limit analysis, the value
H computed from Eq. (2.64) is therefore a lower bound for the critical height:

H_. = (2c/y) tan(ir + 3¢) (2.65)

Since this lower bound agrees with the previous upper-bound solution (Eq. 2.63),
the exact value of the critical height, which neglects the tensile stress of soil, is Eq.
(2.65) or Eq. (2.63). It must be borne in mind however that the coincidence of upper
and lower bounds provided by the velocity field, Fig. 2.17, and the stress field, Fig.
2.19a, is by no means indicating that the two discontinuous fields are the actual
state. Once again it is worth pointing out that in the limit analysis there is no
theoretical restriction that the assumed stress field or velocity field need have some
similarity to the actual state, although generally speaking, the closer the assumed
state to the actual state is, the more realistic the resulting answer will be.



60
References

Chen, W.F., 1975. Limit Analysis and Soil Plasticity, Elsevier Amsterdam, 638 pp.

Collins, L.F., 1969. The upper-bound theorem for rigid/plastic solids generalized to include Coulomb
friction. J. Mech. Phys. Solids, 17: 323 -338.

Collins, 1.F., 1973. A note on the interpretation of Coulomb’s analysis of the thrust on a rough retaining
wall in terms of the limit theorems of plasticity theory, Geotechnique, 23(3): 442 — 447. Discussion by
J.L. Justo, Geotechnique, 24(1): 106 — 108.

DeJong, D.J.G., 1964. Lower-bound collapse theorem and lack of normality of strain-rate to yield sur-
face for soils. In: J. Kravtchenko and P.M. Sirirys (Editors), Rheology and Soil Mechanics, IUTAM
Symp., Grenoble. Springer, Berlin, 1966, pp. 6975,

Drucker, D.C., 1951. A more fundamental approach to stress-strain relations. Proc. Ist U.S. Natl.
Congr. Appl. Mech. American Society of Mechanical Engineers, pp. 487 —491.

Drucker, D.C., 1953. Limit analysis of two- and three-dimensional soil mechanics problems. J. Mech.
Phys. Solids, 1: 217 —-226.

Drucker, D.C., Greenberg, J.H. and Prager, W., 1952. Extended limit design theorems for continuous
media. Q. Appl. Mech., 10(2): 381 — 389.

Drucker, D.C. and Prager, W., 1952. Soil mechanics and plastic analysis or limit design. Q. Appl.
Math., 10(2): 157 —165.

Eggleston, H.G., 1958. Convexity. Cambridge University Press, London.

Fellenius, W., 1927. Erdstatische Berechnungen. Ernst, Berlin (revised ed., 1939, 48 pp.).

I'yushin, A.A., 1961. O postulate plastichnosti (On the postulate of plasticity). Prikl. Mat. Mekh., 25:
503 - 507.

Mroz, Z. and Drescher, A., 1969. Limit plasticity approach to some cases of flow of bulk solids. J. Eng.
Ind., 51: 537-564.

Palmer, A.C., 1966. A limit theorem for materials with non-associated flow laws. J. Mecanique, 5(2):
217-222.

Prager, W., 1952a. The general. theory of limit design. Proc. 8th Int. Congr. Appl. Mech., Istanbul,
Faculty of Science, Univ. Istanbul, 11, pp. 65—72.

Prager, W., 1952b. On the kinematics of soils. Colloques Junius Massau, Comite National de Meécanique
Théorique et Appliquée, Brussels, pp. 3~ 8.

Radenkovic, D., 1961. Théorie des Charges Limitées, Extension & la Mécanique des Sols. Séminaires de
Plasticité. Ecole Polytechnique, Publ. Sci. Tech., 116.

Sacchi, G. and Save, M.A., 1968. A note on the limit loads of non-standard materials. Meccanica, 3:
4345,

Shield, R.T., 1955a. On Coulomb’s law of failure in soils. J. Mech. Phys. Solids, 4(1): 10— 16.

Shield, R.T., 1955b. On the plastic flow of metals under conditions of axial symmetry. Proc. R. Soc.
London, Ser. A, pp. 233 -267.

Terzaghi, K., 1943. Theoretical Soil Mechanics. Wiley, New York, NY., 510 pp.

61

Chapter 3

VALIDITY OF LIMIT ANALYSIS IN APPLICATION TO SOILS

3.1 Introduction

While the limit equilibrium method has been widely used for solving stability pro-
blems in soil mechanics for more than 200 years, the application of the limit analysis
method, that was originally developed for metals, to soil medium is a recent one
(e.g. Finn, 1967; Chen, 1975). Although the use of the upper-bound techniques of
limit analysis for solving stability problems is promising, there is, however, much
controversy on its applicability to soils. The required limit analysis assumption on
normality condition leads to a much too large dilatation for frictional (¢ # 0) soils
during plastic flow than that can be explained experimentally. This has been the
center of the dispute. Previous investigators, such as Chen (1975), have concen-
trated on how the techniques of limit analysis can be applied to solve soil stability
problems. However, little work has been done on why these techniques are ap-
plicable to soils, especially for cohesionless soils. It is one of the major purposes of
this chapter to-examine the applicability of the upper-bound limit analysis method . -
as applied to soil medium (Chen and Chang, 1981).- :

In the first part of this chapter, the principle of effective stresses and the
mechanical behavior of soils are briefly discussed. Some suggested yield criteria are
introduced. In the latter part of this chapter, the basic assumptions of the limit
theorems on which the limit analysis is based and the range of validity of these
assumptions in the context of soils are critically discussed, following the work of
Chen and Chang (1981). Meanwhile, a simple, vertical cut slope problem is
presented to illustrate the effect of pure friction or perfect plasticity idealization on
the collapse load analysis for a naturally existed, partially frictional and partially
dilating soil. :

3.2 Soil — a multiphase material

In its general sense, the term soil refers to the unaggregated or uncemented
granular material consisting of both mineral and organic particles. In many
materials classified as soils, cementing between grains may exist to some slight
degree and therefore may contribute to the mechanical characteristics of the
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granular material. However, if the material is to be classified as soil, this cementa-
tion should not be such as to cause the granular material to assume a rocklike form.

Generally, soil is a multiphase material comprised of mineral grains, air voids and
water. Therefore, the mathematical characterization of their mechanical behavior
should ideally be based on a consideration of the behavior of individual constituent
elements and their interaction. This type of mathematical formulation has been
made using the particulate mechanics approach (Harr, 1977), in which the
‘macroscopic’ continuum stress-strain behaviors are studied in terms of the more
basic ‘microscopic’ interactions of many particles, including the use of probabilistic
theory to handle the probabilistic nature of the interparticle contact relationships.
Such an approach in studying soil behavior can be rather complex and would not
be particularly fruitful in engineering applications.

For most practical applications, the scale of the geometry of interest of the soil
mass is very large. Thus, the ‘microscopic’ effects can be averaged and the soil can
be idealized as a continuum, and its mechanical behavior can then be studied within
the framework of continuum mechanics. All the discussions in this book are based
on this latter approach, that is, a phenomenological approach on a macroscopic
level.

Although soils are treated as ideal continua, the particulate nature of real soils
with respect to the effects of pore water and pore air pressures in saturated and par-
tially saturated soils on their deformational and strength characteristics must be em-
phasized. The principle of effective stresses (Terzaghi, 1943) is therefore fundamen-
tal in the discussion of the mechanical behavior of soils.

In general, soils are divided into two main groups, cohesionless and cohesive soils.

Cohesionless soils may be defined-as those in which intrinsic interparticle forces or
bounds have a negligible effect on the mechanical behavior of the soil. This category
includes rockfill, gravels, sands, and coarse silts. According to the state of packing
of the grains, cohesionless soils may further be classified as loose or dense material.

On the other hand, in cohesive soils, interparticle forces or bonds make a signifi-
cant contribution to the mechanical behavior of the soil. Included in this category
are soils such as clays, clayey silts, and boulder clays and tills. Depending on the
stress history of the cohesive soils, they may be classified as overconsolidated or nor-
mally consolidated soils. Many qualitative similarities exist between the behavior of
normally and overconsolidated cohesive soils, and that of loose and dense cohe-
sionless soils, respectively.

The mechanical behavior of soil materials under externally applied loads is quite
complicated, and it has been a subject of research for many years. The complexity
stems mainly from the fact that, unlike the properties of most engineering materials,
deformational and strength characteristics of soils are greatly affected by such fac-
tors as soil structure (e.g., grain size, grain shape, surface texture, mineralogy,
cementation or bonding), density, water content, drainage conditions, degree of
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void saturation, loading rate, confining pressure, loading (or stress) history, current
stress state, and inherent and stress (or strain)-induced anisotropy. In many cases,
it may be possible to take account of several of these factors (e.g., soil structure,
density, water content, drainage conditions, degree of saturation) by selecting soil
specimens and testing conditions that duplicate the field conditions as closely as
possible. However, even when this is done, it is always found that the behavior of
soil under the various stress paths and loading histories encountered in the field is
substantially different. Therefore, new or improved laboratory testing devices
capable of providing for a wide range of stress paths and modes of deformations
are essential in the development and the proper assessment of the applicability of
various constitutive models utilized to describe the behavior of soil materials. For
this purpose, a number of investigators have recently developed multiaxial or ‘truly’
triaxial test devices in which the three principal stresses and strains acting on a soil
sample can be independently controlled and measured.

As a multiphase material, soil can be visualized as a skeleton of solid particles
enclosing continuous voids that contain water and/or air. For the range of stresses
usnally encountered in practice, the individual solid particles and water can be con-
sidered incompressible; air, on the other hand, is highly compressible. As a result
of the applied stresses, the volume of soil skeleton as a whole can change owing to
rearrangement of the solid particles into new positions, mainly by rolling and
sliding, with a corresponding change in forces acting between particles. The actual
compressibility of the soil skeleton depends on the structural arrangement of the
solid particles.

In a fully saturated soil, since water is considered to be incompressible, a change
in volume is possible only if some of the water can escape from (or flow into) the
voids (i.e., under drained condition). When drainage of water is not allowed in a
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Fig. 3.1. Total and effective stresses in saturated soils.
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saturated soil, volume changes cannot occur, and the soil is defined to be under un-
drained condition. In a dry or a partially saturated soil, a change in volume is always
. possible owing to the compressibility of the air in the voids, provided that there is
scope for particles rearrangement.

Shear stresses can be resisted only by the skeleton of solid particles, by means of
forces developed at the interparticle contacts. However, the resistance to normal
stresses is provided by two components: the first is the stress carried by the skeleton
of solid particles, and the second is the stress carried by the pore pressure. The latter
component in turn is divided into two parts, the pore water pressure and the pore
air pressure.

The principle of effective stress (Terzaghi, 1943; Bishop and Blight, 1963) pro-
vides the relation between the total stresses, Ojps acting at any point in a soil mass,
the stresses carried by the skeleton of solid particles (interparticle stresses), referred
to as the effective stresses, and the pressure in the pore fluid (water and air).

In a fully saturated soil (Fig. 3.1), the principle of effective stress can be expressed
mathematically as (Terzaghi, 1943):

oy = oy + udy 3.1

where o;; is the total stress tensor, "i’j is the effective stress tensor, u is the pore
water pressure, and éij is the Kronecker delta. The components of bij are 1 if i =
Jand 0if i # j.

In the case of partially saturated soils, part of the voids is occupied by water and
the other part by air. The pore fluid pressure, u, consists of two parts: pore water
pressure, u,, and pore air pressure, u,. For such cases, the following effective
stress equation has been proposed (Bishop and Blight, 1963):

oy = a,fj + [y — x (uy — u,)] 3.2)
where x is a dimensionless parameter, to be determined experimentally, which is
primarily related to the degree of saturation of the soil (i.e., x is proportional to the
pore volume occupied by the water phase). The term (u, — u,,) is a measure of the
suction in the soil. The relation in Eq. (3.2) can be conveniently expressed in the
same form as Eq. (3.1), in which case u represents the total pore pressure for the
combined effect of the pore air pressure and the pore water pressure; that is:

u=u, — x(u, - uy) 3.3)
For a fully saturated soil x = 1 and Eq. (3.2) degenerates to Eq. (3.1); and for a

completely dry soil x = 0.
The principle of effective stress is fundamental to a proper description of defor-
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mational and strength characteristics of saturated and partially saturated soils. Ac-
cording to Terzaghi (1943), ‘All measurable effects of a change of stress, such as
compression, distortion, and a change of shearing resistance, are exclusively due to
changes in the effective stresses’. On this basis, all soil deformations are assumed
to be caused by the effective stresses.

In practice, the use of Eq. (3.2) for a three-phase soil material is not convenient
owing to the presence of the parameter x. Therefore, in most practical applications,
soils are treated as two-phase materials; in which cases only fully saturated or com-
pletely dry soils are considered. Furthermore, when studying the behavior of fully
saturated soils, two different situations are encountered in terms of the pore water
pressure variable, that is, drained and undrained conditions.

When the stresses are applied so slowly that the induced excess pore pressures are
negligible, the soil is said to be in a drained condition. Hence the only pore pressures
(if any) are steady-state pressures due to a preexisting seepage pattern or simply a
hydrostatic pressure. Any changes in the applied total stresses result in identical
changes in the effective stresses.

On the other hand, under an undrained condition, the loads are assumed to be
applied very rapidly so that the excess water pressure induced by the applied loading
does not have time to dissipate. No volumetric strains, i.e., no volume change can
occur in such case; the soil element undergoes shear strain only. Therefore, an un-
drained condition is often termed a constant volume condition. Precisely, undrained
condition implies no change in water content; and constant volume condition is an
approximation based on the incompressibility assumption for pore water and solid
particles.- - Ce ‘ o

The behavior of saturated soils under both fully drained and fully undrained con-
ditions can be described by time-independent constitutive models. In the subsequent
parts in this book, only time-independent behavior of soils are considered.

Under the general partially drained condition, the induced excess pore pressures
are functions of both the total stresses due to the applied loads and the elapsed time,
which is a time-dependent case. Throughout this book, the discussions are limited
to dry or fully saturated soils under drained or undrained conditions. Partially
saturated soils or partially drained conditions are not considered.

Drained and undrained conditions of saturated soils represent two of the most im-
portant situations in may practical geotechnical applications. For instance, stability
or progressive failure analysis involving saturated cohesionless soils are often car-
ried out based on a fully drained assumption, since cohesionless soils have high
permeability and drainage normally takes place so fast in such cases. Nevertheless,
undrained deformational and strength characteristics of cohesionless soils are of
prime interest in the study of problems involving rapid loadings as, for example,
underground shaking during an-earthquake. In these cases, such phenomena as /i-
quefaction of large masses of saturated cohesionless soil are extremely important
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since they can result in catastrophic failures in earth structures (e.g., landslides, and
failure of waterfront retaining structures).

Both drained and undrained behavior characteristics are relevant in problems in-
volving cohesive soils. For example, stability analyses of earth structures such as
footings and retaining walls at the end of construction, before the induced excess
pore water pressure dissipates, are usually based on undrained conditions (often
called immediate stability analyses). Drained conditions are relevant in the long-
term stability analyses, corresponding to the situation when all the excess pore water
pressures have dissipated.

3.3 Mechanical behavior of soils

Characteristics of soil deformational behavior have been the subject of research
for many years. Only the essential point and characteristics of typical soil behavior
are briefly described in the following.

The qualitative typical volumetric behavior of dry or saturated drained soils under
hydrostatic loading and unloading conditions is shown in Fig. 3.2. It is clear from
this figure that soils, in general, exhibit a nonlinear behavior under hydrostatic
loading and unloading. Upon unloading to the initial stress state, only a small part
of volumetric strains is recovered (elastic or reversible strains), whereas the other
part remains as permanent (irreversible or plastic) strain.

Qualitative typical stress-strain response curves for soils obtained under drained

oct

’
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Effective mean normal stress, O

Loading

Volumetric strain, €,,

Fig. 3.2. Typical behavior of a dry or drained soil under hydrostatic loading and unloading.
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triaxial compression conditions are given in Fig. 3.3. This is the most commonly us-
ed test in soil mechanics. The test is performed on a cylindrical sample, on which
two of the principal stresses are kept constant (e.g., 0, = 03 = constant) while the
third principal stress o is increased. Typically, the stress-strain behavior of dense
sands or overconsolidated clays is similar to that of curves 1 in Fig. 3.3, whereas
curves 2 in this figure are typical for loose sands or normally consolidated clays. The
curves in Fig. 3.3 demonstrate the great influence of the initial state of consolidation
(compaction) of the soil on the stress-strain response.
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Fig. 3.3. Typical behavior of saturated soils tested under drained conventional triaxial compression test
conditions. (1) Dense sand or overconsolidated clay; (2) loose sand or normally consolidated clay.
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Dense sands and overconsolidated clays have higher stiffnesses and higher peak
stresses than those for loose sands and normally consolidated clays. After peak
stresses (Fig. 3.3a), the stress-strain curves for dense and loose soils are distinctly
different. Loose soils show very little or no reduction in shear strength with increas-
ing strain beyond the peak, and their behavior can be characterized as strain-
hardening behavior, whereas the dense soils exhibit a more brittle strain softening
behavior with a marked post-peak falloff in shear strength. At very large strains
(i.e., the end of the test in a strain-controlled test), both dense and loose soils even-
tually reach the same constant ultimate (or residual) shearing resistance.

Irrespective of the original state of consolidation (loose or dense), the volumetric
strains are initially compressive (compaction), but after peak stresses, the dense
samples show a considerable amount of dilation, whereas the loose specimens con-
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Fig. 3.4. Typical behavior of saturated soils under undrained conventional triaxial compression test con-
ditions.
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tinue to compress (Fig. 3.3b). At very large strains, the volumes for both dense and
loose samples eventually approach a constant unique ultimate value. The condition
under which strains continue to increase without further changes in the shearing
resistance and void ratio has been termed the critical state (Hvorslev, 1937). As can
be seen from Fig. 3.3, the ultimate values of the shearing strength and the void ratio
(or specific volume) corresponding to this condition are independent of the initial
state of consolidation of the soil.

Quualitative typical stress-strain pore-pressure response curves for three different
saturated soils tested under undrained conventional triaxial compression are given
in Fig. 3.4. In this figure, the three soil samples are first isotropically consolidated
to the same effective mean normal stress level, Point 1, and then subjected to in-
creasing axial stress ;. The stress-strain curves 2 show typical response of a nor-
mally consolidated clay or very loose sand. In these curves, the peak shear strength
is developed at a relatively small axial strain compared to the value of the strain at
the end of the test (Fig. 3.4b). After the peak, the curve shows strain softening
behavior, and the residual shear strength at very large strains is small compared to
the peak value. Because of the volume contraction tendency in loose soils, the induc-
ed excess pore pressure increases as the test progresses, leading to a substantial
decrease in the effective stresses which causes the decrease in the shear strength.

Curves 4 in Fig. 3.4 depict behavior typical of dense sands and heavily overcon-
solidated clays. The strength of the material increases continuously with strain
hardening. Owing to the tendency of volume expansion in the dense soils, the effec-
tive stresses increase with increasing applied stresses (Fig. 3.4a). The pore water

.pressure reaches its maximum value at a relatively small strain, then decreases and

eventually becomes negative (Fig. 3.4d). -

Within the extreme limits of the dense and loose soil behaviors, various in-
termediate responses can be observed (curve 3 in Fig. 3.4) depending mainly on the
initial state of consolidation of the material. Obviously the void ratio remains cons-
tant under undrained condition since no volumetric strain can occur (Fig. 3.4c).

The effect of the confining pressure (o) on the behavior of soil can be shown by
considering the stress-strain-volume change curves in Fig. 3.5 obtained from drained
triaxial compression tests on loose and dense sands. As can be seen, the behavior
changes from strain softening to strain hardening, and the strains at peak failure
stresses increase as the confining pressure increases. This change in the behavior is
particularly pronounced for the initially dense sand. The volumetric strains become
more compressive with increasing confining pressure.

With increasing confining pressure o3, although the peak deviatoric stress o; —
oy increases, the peak stress ratio 0,/04 decreases. Corresponding to a particular
value of initial void ratio, the confining pressure that results in no volume change
at failure is called the critical confining pressure. Also, for a particular value of 03,
there is a corresponding value of the initial void ratio at which no volume change
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Fig. 3.5. Effect of the confining pressure (o3) on the stress-strain-volume change curves (Lee and Seed, )

1967).

occurs at failure. This void ratio is termed the critical void ratio (Lee and Seed,
1967).

Irrespective of the initial void ratio, a particular soil element may exhibit contrac-
tive or dilative behavior depending on the value of the confining pressure. For tests
under confining pressures larger than the critical, the bebavior is generally of the
strain hardening type with compressive volumetric strains at failure, whereas for
confining pressures below the critical value, the stress-strain curves show, in general,
decreasing shear strength after the peak with volume expansion at failure.
Therefore, the characterization of soil behavior as loose (contractive, strain harden-
ing) or dense (dilative, strain softening) depends on the initial state of consolidation
of the soil as well as the magnitude of the confining pressure.

The influence of the intermediate principal stress (,) on the behavior of soils can
be illustrated by Fig. 3.6, which shows the stress-strain curves of sand obtained by
Cornforth (1964) from conventional triaxial compressive tests (o, = o3 = cons-
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Fig. 3.6. Stress-strain curves in triaxial compression and plane strain tests for sand with different initial
porosities (Cornforth, 1964). The relative density, D, in (a) D, = 80%, (b) D, = 65%, (c) D, = 40%,
(d) D, = 15%.

tant), and plane strain tests for which o, is a variable. The results shown in this

figure indicate that the stress-strain curves in the plane strain tests are stiffer than

the corresponding curves in the triaxial compression test up to failure stresses. The
peak failure values of o, are higher in the plane strain tests for all values of initial
relative density, D,. However, the residual values of ¢; seem to be approximately
the same for both tests. Volumetric strains near failure in plane strain tests are less
sensitive than those in the triaxial tests, particularly for loose samples (Fig. 3.6¢ and
d).

One of the most important characteristics of the behavior of soils is the stress-
path dependency. The stress-strain behaviors of a soil element in loading and
unloading are entirely different. This has been demonstrated in Fig. 3.2 for the
nonlinear behavior under hydrostatic compression. The same is certainly true under
other stress paths, as can be seen, for example, from the results of a triaxial com-
pression test on sand in Fig. 3.7.

The nonlinear deformations in soils are basically inelastic. Except at very low
stress levels, only a small part of the strains is recovered upon unloading from any
given stress state. The recoverable strains represent the elastic component of the
total strains. These elastic strains are mainly due to the elastic deformations of the
individual solid particles in a soil material element. The irrecoverable strains, on the
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Fig. 3.7. Typical primary loading-unloading-reloading curves for air-dry Ottawa sand in triaxial com-
pression test (Makhlouf and Stewart, 1965).

other hand, are called the plastic strains, and they are caused by the deformations
resulting from sliding, rearrangement, and crushing of particles. These plastic
deformations cause a change in the internal structure of the soil element.
Experimental work has indicated that, at very low stress levels, the strains produc-
ed by loading and reloading are mainly elastic. The plastic deformations due to par-
ticle slippage upon unloading from such low stress levels are very small; the

- unloading and reloading curves follow essentially the same linear paths with.very.

small hysteresis loops. At high stress levels, hysteresis loops are observed upon
unloading and reloading with almost constant slope of the hysteresis loops.
However, with increasing stress levels, and particularly when failure states are ap-
proached, the hysteresis loops become wider. Large slip plastic strains are produced
upon unloading from such high stress levels. The rebound curves become nonlinear
and the slope of the hysteresis loops decreases.

3.4 Soil failure surfaces

Failure conditions and strength parameters are very important in the solution of
stability problems in soil mechanics. As has been demonstrated previously, two
values of the shear strength, the peak (maximum) and the residual (ultimate), are
required in order to characterize the strain softening materials, such as overcon-
solidated clays and dense sands at low confining pressures. The term failure is used
herein to define the limiting peak (or maximum) stress conditions. Therefore, only
those parameters related to the peak (maximum) strength are relevant in the follow-
ing discussion.
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It should be emphasized, however, that in problems involving such soils as dense
sands and overconsolidated clays, both peak and residual strength parameters are
needed. In this case, the actual maximum shear stress mobilized at overall failure
of a soil mass lies between the two limits of the peak and residual values (Bishop,
1972).

In the following, various strength characteristics are discussed with reference to
the shape of the failure envelope in Mohr’s diagrams and the trace of the cross sec-
tion of the failure surface in the deviatoric plane. In the Mohr diagram the normal
stress o and the shearing stress 7 are used as coordinates. The deviatoric plane is a
plane perpendicular to the hydrostatic axis (¢; = 0, = 03) in the principal stress
space whose coordinates are gy, 05, and 05.

From a plot of Mohr’s circles corresponding to various failure stress states (in
terms of effective principal stresses, o; = 0, = 03), the Mohr’s failure envelope can
be obtained as the common tangent curve to these circles, as shown in Fig. 3.8. In
general, the failure envelopes are curved, particularly for dense soils, such as dense
sand or overconsolidated clay. In many cases, if only a limited range of hydrostatic
(confining) pressures is of interest, the failure envelope may be approximated by a
straight line. In these cases, the familiar strength parameters, the cohesion, ¢', and
the friction angle, ¢', can be obtained as the intercept at the origin and the slope
of the failure line, respectively. The primes here are used to emphasize that ¢’ and
¢' are effective strength parameters.

Figure 3.9 shows Mohr’s failure envelope obtained from actual test results on
sand and clay. The tests have been carried out over a wide range of confining
pressures. At low effective confining pressures, the envelopes are curved, indicating
a rapid decrease in the friction angle with increasing pressures. In the high stress
range, the failure envelopes progressively flatten until a constant value of ¢’ is at-
tained at very high pressures. This value of ¢’ at very high confining pressures is
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Fig. 3.8. Typical Mohr’s failure envelope for soils.
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the same for both dense or loose materials (Fig. 3.9a), which indicates that the effect
of the initial state of compaction is eliminated at high pressures.

As can be seen from Fig. 3.9b, dense soil shows a marked increase in the measured
values of ¢’ at low confining pressures. This is mainly caused by the effect of parti-
cle interlocking due to the increased tendency of dilatation in this range of low
stresses. At higher confining pressure, the crushing of the particles becomes more
significant and causes a decrease in dilatancy, which in turn results in a decrease in
friction angle. However, at very high confining pressures, particles crushing and

2000 F (a)

1500

¢ -32.5°
from test at

03 -4000 psi
1000 8 P

Dense

Loose

Shear stress (psi)

500

I ! | 1
0 500 1000 1500 2000 2500 3000

Effectlive normal stress (psi)

140

120

100

80

Shear stress (psi)

60
40

20

i / 1 1 I I 1 | |

-20 0 20 40 60 80 100 120 140 160 180 200 220 240

Tenslon Compression Effective normal stress (psi)

Fig. 3.9. Mohr’s failure envelopes from drained triaxial tests on sand and clay (Bishop, 1972). (a) Ham
River sand; (b) undisturbed Toulnustoue clay.
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rearrangement require a considerable amount of energy, which causes an increase
in the shear strength (i.e., increase in measured ¢') until a constant value of ¢’ is
ultimately reached. A schematic illustration of the various contributions (sliding,
dilatancy, crushing, and rearrangement of particles) to the shear strength of cohe-
sionless soils at different confining stresses is given in Fig. 3.10.

Curvature of the failure envelopes for soils has been observed by many in-

Measured strength = sliding friction + dilatancy
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Fig. 3.10. Schematic illustration of contributions to strength of cohesionless soils (Lee and Seed, 1967).
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Fig. 3.11. General characteristics of the traces of the failure surface on the deviatoric planes (Lade and
Musante, 1977). (a) Monterey No. 0 sand; (b) Grundite clay.
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vestigators. It should be emphasized, however, that the stress ranges encountered
in most civil engineering applications are not very high. In such cases, only the type
of curvature observed at low and moderate pressure values is of interest. Further-
more, with only a limited range of pressures considered, a linear approximation of
the failure envelope is often possible.

General characteristics of the traces of the failure surfaces for sand and clay are
illustrated in Fig. 3.11. The experimental points have been obtained from triaxial
compression and extension tests (drained tests for sand and consolidated-undrained
tests for clay) with constant b values which is defined as the relative position of o,
with respect to o, and o3 as:

0 — 03

h=—-__ 3.4
01 — 03

From Fig. 3.11, two distinct failure surfaces for sand are obtained depending on the
initial void ratio e of the sample. Dense samples exhibit larger shear strength, and
consequently larger ¢’ value in triaxial compression, resulting in a larger size of the
trace of failure surface in the deviatoric plane. For clay, the strength increases with
increasing consolidation pressure, a‘; (Fig. 3.11b).

o1

Tresca criterion

von Mises criterion

a:
Oy 3

Fig. 3.12. Trace of the failure surface in the deviatoric plane for Tresca and von Mises criteria.

77

Based on the results shown in Fig. 3.11 and those of other experimental works,
it can be concluded that the traces of the failure surface in the deviatoric planes are
smooth, curved, noncircular and convex with ¢ /¢, > 1, where indexes ¢ and t
correspond to the compressive (¢ = 0°) and the tensile (§ = 60°) meridians, respec-
tively, as shown in Fig. 3.12. The curvature of these traces clearly indicates the in-
fluence of the intermediate principal stress on the shearing strength of soils (0 <
b =< 1). In general, this influence is more pronounced at low and moderate values
of confining pressures. But for high confining pressures the effect is almost negligi-
ble, as can be seen from Fig. 3.13, where the friction angles in both triaxial compres-
sion (b = 0) and plane strain (0 < & < 1) tests approach approximately the same
value.

Within the limits of the available experimental data, it appears that failure sur-
faces for soils are independent of the loading path, except possibly for the effects
of stress histories involving cyclic loading which cause strength increase due to den-
sification of the soil.

Various aspects of the complicated stress-strain behavior and strength of real soils
unders different loading and drainage conditions have been described above. To
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Fig. 3.13. Variations of friction angles in plane strain and triaxial compression with confining pressure
(Marachi, 1969).
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summarize, hydrostatic (confining) pressure sensitivity and effect of the in-
termediate principal stress are important factors in formulating the failure criteria
for soils.

In the following, several failure criteria proposed for soils are described.
Throughout this and the subsequent sections, unless otherwise stated, all stresses are
effective stresses, cr,fj, together with the associated strength parameters, ¢’ and ¢'.
For convenience, the primes are not written.

3.4.1 Tresca criterion (one-parameter model)

This criterion was originally developed and used as a yielding condition for
metals. According to this criterion, failure occurs when the maximum shear stress
at a point reaches a critical value k. Mathematically, this criterion can be expressed
as:

ilog — o3l =k (3.5)

where k is a constant to be determined experimentally which respresents the failure
(vield) stress in pure shear, and o; and ¢; are the major and minor principal
stresses, respectively (o, = 0, = ;). Equation (3.5) can be written in terms of the
stress invariant J, and 6 (Fig. 3.12) as follows (0° < 6 < 60°):

1(0; — 03) = 33U, [cosf — cos(@ + 3m)] = k (3.6)
where . A v . - | A

Jy = § Moy = 02* + (05 — 03 + (05 — o)) (3.72)
cos 30 = 3V3 (J3/ 137 (3.7b)
J3 = % Qo ~ 0y ~ 03) R0y — 03 — 7)) Qo3 — 0] — 0y (3.7¢)

Expanding Eq. (3.6), we have:

FWp0) = Ny sin@ + im) — k=0 (3.8)
or identically in terms of the variables g, 6§ (Fig. 3.12):

f(,8) = osin(@ + im) ~ 2k =0 (3.9

Since the effect of hydrostatic pressure on the failure surface is not considered
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in this criterion, Egs. (3.8) and (3.9) are independent of the hydrostatic pressure.
In the principal stress space, the Tresca failure criterion corresponds to a prism
whose generator is parallel to the hydrostatic axis, and whose cross section in the
deviatoric plane is a regular hexagon, as shown in Fig. 3.12.

Clearly, the Tresca criterion has many obvious shortcomings in connection with
its application to soil materials. First, according to this criterion, shearing strength
is independent of the hydrostatic (confining) pressure, which is certainly not true for
soils in general. Second, the criterion predicts the same failure stresses in compres-
sion and tension. According to experimental evidence, soils are generally
characterized by smaller tensile than compressive strength. In addition, the effect
of the intermediate principal stress is not accounted for.

However, there are certain problems for which adequate results can be obtained
using Tresca failure criterion, in particular, problems involving saturated soils under
undrained conditions, when the analysis is performed in terms of the total stresses.
The type of analysis in such cases is often referred to as ¢ = 0 analysis. In agree-
ment with the experimental observations, shearing strength of saturated soils during
undrained loading is independent of the imposed hydrostatic (or mean) total stress
component; and therefore the Tresca failure criterion may be utilized. In these
cases, the constant £ in Egs. (3.5) to (3.9) represents the undrained shear strength,
¢, (¢, = 0), which can be determined, for example, from the results of undrained
triaxial tests.

3.4.2 von Mises criterion (one-parameter model)
This criterion states that failure takes place when the stress invariant -J2 (Eq.

3.7a) reaches a limiting value. Mathematically, this failure criterion can be expressed
as:

fU) =0 — k=0 (3.10)
or
fle)=e—-V2k=0 (3.11)

In terms of the principal stresses o}, 0,, and o3, these expressions reduce to:
(0y — 02 + (0 — 03 + (03 — 07)? = 6k? (3.12)
where & is the failure (or yield) stress in pure shear.

In the principal stress space, the von Mises failure surface represents a circular
cylinder whose generator is parallel to the hydrostatic axis (¢; = 0, = ¢3). If both
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von Mises and Tresca criteria are made to agree along the compressive and tensile
meridians, g, (¢ = 0°) and g, (¢ = 60°), respectively, then the trace of the von
Mises surface in the deviatoric plane is a circle circumscribing the Tresca hexagon
(Fig. 3.12). In such cases, the maximum difference in the predicted failure stresses
is along the simple shear meridian (6 = 30°), where the ratio between the predicted
failure shear stresses for the von Mises and Tresca criteria is 2/+v/3 = 1.15. On the
other hand, if the two criteria are matched in simple shear (same k values), then the
von Mises circle inscribes the Tresca hexagon, and the maximum deviation between
the predictions of the two criteria will be along the compressive (8 = 0°) and tensile
(6 = 60°) meridians.

When applied to soil materials, the von Mises failure criterion suffers from the
same shortcomings mentioned previously for the Tresca criterion, namely, the same
predicted strength in tension and compression and the independence of the
hydrostatic pressure. Again, as for the Tresca criterion, undrained strength of
saturated soils can be adequately approximated by the von Mises failure condition.
In fact, the von Mises criterion is mathematically more convenient to use in most
practical applications since the corners (singularities) on the hexagon of Tresca sur-
face may cause mathematical difficulties and possible numerical complications.

3.4.3 Lade-Duncan criterion (one-parameter model)

Based on the experimental triaxial test results, Lade and Duncan (1975) have pro-
posed a one-parameter failure criterion for cohesionless soils. This criterion ac-
counts for many of the observed strength characteristics such as hydrostatic pressure
sensitivity, effect of the intermediate principal stress, and noncircular trace on the
deviatoric plane. However, the failure surface has straight failure envelopes in
Mohr’s diagram. Consequently, it can be applied to cases in which only a limited
range of hydrostatic (confining) pressures is of interest, where the curvature of the
failure envelope can be neglected. Further improvement of this failure criterion has
been made by Lade (1977) by adding an additional degree of freedom to the model,
taking into account the curvature of the failure envelope for cohesionless soils. This
same failure model also has been applied to normally consolidated clays (Lade,
1979). In what follows a brief description of the one-parameter criterion is
presented. The more refined two-parameter criterion is discussed in the next section.

The failure surface in the one parameter model is expressed in term of stress in-
variants I; and I, respectively, as follows:

fUp L) =1 - kly = 0 (3.13)

where k, is a constant that depends on the initial void ratio, and /; and I, are ex-
pressed in terms of the principal stresses as:
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Iy =0y + 0, + 04 3.14)
Iy = 0/0504 L (3.15)

In the principal stress space, the shape of the failure surface defined by the equa-
tions above is conical, with the apex of the cone at the origin of the stress axes, as
shown in the inset of Fig. 3.14. Also shown in this figure are the deviatoric cross
sections of the failure surfaces corresponding to ki = 13/13 = 41.7, 62.5, and
115.3 (i.e. corresponding to ¢ = 30°, 40° and 50° in conventional triaxial compres-
sion). As can be seen, the deviatoric traces of this failure surface have the same

Y Failure surface

1’(Hydrostatic
axis

o4 ¢ =50
o In triaxial
¢ =40} compression
o, .
¢ =30
B/ls -115.3
B/, -62.5

131,=417
N X

Fig. 3.14. General shape and deviatoric cross sections of the one-parameter failure model of Lade and
Duncan (1975).
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general shape as those determined experimentally (Fig. 3.11). For smaller values of
k; the deviatoric traces are more circular, and they become increasingly triangular
with increasing values of k;.

It can be seen that the present failure criterion has only one parameter &, which
can easily be determined from the results of conventional triaxial compression tests.

o1

Data from Monterey
No.0 sand

I?/Is =58 {loose sand)

Fig. 3.15. Comparison of the experimental and calculated results of the failure traces on the deviatoric
plane for Monterey No. 0 sand (Lade and Duncan, 1975).
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Fig. 3.16. Comparison of failure criterion results with experimental data from cubical triaxial tests on
four different sands (Lade and Duncan, 1975).
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Certainly, simple identification of the model parameter fom standard test data is of
great advantage in practical applications. Besides, this failure criterion involves the
stress invariant /; and ;. Thus, it accounts for the effects of the hydrostatic
pressure and the intermediate principal stress on the strength of the soil. The traces
of the failure surface in the meridian plane (§ = constant) are straight. That is, the
present model implies that Mohr’s failure envelope is a straight line; the strength
parameter ¢ is thus assumed to be constant and does not change with the confining
pressure,

In Figs. 3.15 and 3.16, the experimental results for dense and loose Monterey No.
0 sand are compared to the results obtained using Eq. (3.13) with values of k,
determined from triaxial compression tests. As may be seen, reasonably good agree-
ment is obtained for both dense and loose sand, although there is some scatter. The
failure criterion overestimates the strength of the loose sand at intermediate values
of b, whereas, it expresses the strength of dense sand quite accurately for all values
of b.

3.4.4 Mohr-Coulomb criterion (two-parameter model)

The criterion of Mohr (1900) states that failure is governed by the following rela-
tion:

[7] = f(o) (3.16)

where the limiting shearing stress, 7, in a plane depends only on the normal stress,
o, in the same plane at a certain point, and where Eq. (3.16) is the failure envelope
for the corresponding Mohr’s circles. The failure envelope f(o0) is an experimentally
determined function. According to Mohr’s criterion, failure of the material occurs
for all states of stress for which the largest of Mohr’s circles is just tangent to the
failure envelope. This means that the intermediate principal stress, o, (6, = 0, =
03), has no influence on the failure condition.

The simplest form of the Mohr failure envelope is the straight line such as that
shown in Fig. 3.17b. The equation for the straight line envelope is given by Eq.
(2.32), in which ¢ and ¢ are known as the strength parameters of the material; ¢
represents the cohesion and ¢ represents the angle of internal friction.

The failure criterion associated with Eq. (2.32) is referred to as the Mohr-
Coulomb criterion. This criterion is currently the most widely used for soils in prac-
tical applications owing to its extreme simplicity and good accuracy.

In terms of the principal stresses (o; = 0, = 03), the failure condition (2.32) is
identical to:

(1 — sing) o (1 + sing) ]
2c¢ coso 372 cos¢ B

o, forc # 0 (3.17)
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In terms of the stress invariants I;, J,, and 0, Eq. (3.17) can be written in the
following form:

FUpdyd) = — 4 1, sing + /T sin (9 + ;)
_ %\/j;cos (9 + ?3£>sin¢ —ccos$ =0 (3.18)

In the principal stress space, the Mohr-Coulomb criterion represents an irregular
hexagonal pyramid, as shown in Fig. 3.17a. The traces of failure surface in the meri-
dian planes are straight lines, and its deviatoric trace is an irregular hexagon. A
family of deviatoric cross sections for different values of ¢ is shown in Fig. 3.18a.
The compression and extension failure envelopes (compressive, § = 0°, and tensile,
6 = 60°, meridians) are illustrated in Fig. 3.18b.

G
Space diagonal
Oy=0p~0y
O3
(a)
T2
T
Failure envelope ¢ }
c 974
t o
O3 )
(U3 +C3)/2

(b)

Fig. 3.17. Mohr-Coulomb criterion in principal stress space and Mohr’s diagram. (a) Principal stress
space, (b) Mohr’s diagram.
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Compressive meridian (8=0")
Deviatoric plane/Triaxial compression (0;>C5-0,)

Hydrostatic stress axis
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Fig. 3.18. Traces of Mohr-Coulomb failure surface in the deviatoric and triaxial planes. (a) Deviatoric
plane, (b) triaxial plane.

In connection with its use for soils, the Mohr-Coulomb failure criterion has two
main shortcomings. First, it assumes that the intermediate principal stress has no
influence on failure, which is contrary to the experimental evidence (Figs. 3.6, 3.11,
and 3.13). Second, the meridians and the failure envelope in the Mohr’s diagram
are straight lines, which implies that the strength parameter ¢ does not change with
the confining (or hydrostatic) pressure. This approximation is reasonable only for
a limited range of confining pressures; but it certainly becomes poorer as the range
of pressures of interest becomes wider, as may be seen in Figs. 3.9 and 3.13. In addi-
tion, the failure surface has corners (or singularities) which are known to be difficult
to handle in the numerical analysis.
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However, this criterion is still one of the widely used failure models, mainly
because it is simple and it yields reasonably accurate results for many practical pro-
blems in which only a limited range of confining pressdres is encountered. This
criterion has been successfully utilized in a considerable amount of numerical ap-
plications for a variety of geotechnical engineering problems.

3.4.5 Drucker-Prager criterion (two-parameter model)

Fundamentally, both the Tresca and von Mises failure criteria are in contrast with
the experimental results for soils in the dependence upon the hydrostatic stress com-
ponent (/;). Therefore, attempts have been made to generalize these criteria by in-
corporating such hydrostatic pressure dependence for applications to soil media.

For example, on the basis of the Tresca criterion, Drucker (1953) proposed an ex-
tended Tresca criterion, which is a two-parameter criterion and can be written as:

max [§|o; ~ o3], 510y — 03], 4oy — o)l] = k + af (3.19)
or, for 0y = 0, = g5 we have:

where k and « are material constants to be determined experimentally. In the prin-

Extended von Mises
Extended Tresca
Mohr-Coulomb

A

Fig. 3.19. Section of the yield surface by the w-plane (¢, + 05 + 03 = 0).
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cipal stress space, the failure surface corresponding to the extended Tresca criterion
is a right-hexagonal pyramid whose deviatoric cross section is a regular hexagon
(Fig. 3.19). Here, as in the Mohr-Coulomb criterion, the extended Tresca failure
surface has corners, and therefore it is not mathematically convenient for use in
three-dimentional problems.

The second extended criterion, which was developed by Drucker and Prager
(1952) as a simple modification of the von Mises model, is most frequently used in
practical applications. This criterion is known as the extended von Mises failure
criterion. In terms of the stress invariants I; and J,, the extended von Mises
criterion can be written as:

ST =N —aly — k=0 (3.21)

where the two parameters « and k are material constants, which can be determined
from test results.

The extended von Mises criterion failure surface in the principal stress space is
shown in Fig. 3.20a. This surface is clearly a right circular cone with the space
diagonal (hydrostatic stress axis, o; = 0, = 03) as its axis. The traces of the failure
surface on the meridian (§ = constant) and deviatoric planes are illustrated in Figs.
3.20b and 3.20c. The extended von Mises failure surface can be looked upon as a
smooth Mohr-Coulomb surface or as an extension of the von Mises surface for
hydrostatic pressure-dependent materials such as soils.

In view to its use for soil strength modeling, the main characteristics of the ex-
tended von Mises criterion can be summarized in the following: First, the failure
criterion is simple. It has only two parameters k£ and «, which can be readily deter-
mined from conventional triaxial tests. Second, the failure surface is smooth and
is therefore mathematically convenient to use in three-dimensional applications.
Third, it accounts for the effect of the hydrostatic pressure on soil strength.
However, since the traces of the failure surface on the meridian planes (f = cons-
tant) are straight line, reasonable results are expected only for a limited range of
hydrostatic pressure, when the curvature in the failure envelope may be neglected
(Figs. 3.9 and 3.10). Fourth, since the failure criterion is independent of 6, the trace
of the failure surface on the deviatoric plane is circular. This contradicts the ex-
perimental results shown in Fig, 3.11. Fifth, unlike the Mohr-Coulomb criterion,
the influence of the intermediate principal stress is considered in the extended von
Mises criterion. However, unless care is taken in selecting the material parameters
« and k from test results, there is no guarantee that this influence will be correctly
represented. For example, for soils with ¢ = 0 and ¢ > 36.9° the extended von
Mises and extended Tresca failure criteria may yield unrealistic results when they are
matched to the Mohr-Coulomb criterion along the compression meridian (f§ = 0°)
(Chen and Saleeb, 1982). For example, in this case, when the stress state approaches
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# = 60°, the corresponding failure stress states will lie in the negative effective stress
space, which is clearly impossible for a cohesionless soil.

There are several ways to approximate the Mohr-Coulomb hexagonal surface by
the extended von Mises cone. If, for example, the two surfaces are made to agree
along the compressive meridian (# = 0°) shown as point A in Fig. 3.21, the two sets
of material constants (&, £ and ¢, ¢) are related by:

2 sing k= 6c cosg (3.22)
V3'(3 — sing)

o =

" V3 (3 - sing)’

9
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Fig. 3.20. Drucker-Prager failure criterion — Failure surface and traces on the meridian and deviatoric
planes. (a) Principal stress space; (b) meridian plane (0 = constant); (c) deviatoric plane.

BRI L, ettty s

89

The cone corresponding to the constant in Eq. (3.22) circumscribes the hexagonal
pyramid and represents an outer bound on the Mohr-Coulomb failure surface. On
the other hand, the inner cone, which passes through the tensile meridian (¢ = 60°)
shown as point B in Fig. 3.21 has the constants:

o = 2 sing , k= 6c cos¢ (3.23)
3 (3 + sing) V3 (3 + sing)

Many such approximations can be easily written but are not really necessary.
However, if the extended von Mises and Mohr-Coulomb criteria are expected, for
example, to give an identical limit load (Chen, 1975) for load-carrying capacity pro-
blems in the case of plane strain, then the following two conditions must be used
to determine the constants « and &: (1) the condition of plane strain deformation;
(2) the condition of the same rate of dissipation of mechanical energy per unit
volume. Based on these conditions, «, k are determined as (Drucker and Prager,

1952):
tané k=3¢ (3.24)

53 = ;
9 + 12 tan2¢):

© + 12 tan2g)}

Using Eq. (3.24), it can be shown that the failure function Eq. (3.21) reduces to the
Mohr-Coulomb criterion of Eq. (3.17).

Mohr-Coulomb

Drucker—Prager (matching at §=0)

‘ Drucker~Prager (matching at 8=60°)

Fig. 3.21. Drucker-Prager and Mohr-Coulomb failure criteria with different matching conditions.
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3.4.6 Lade criterion (two-parameter model)

As discussed earlier, experimental results have indicated that the failure envelopes
of most soils are curved, particularly over a wide range of confining (or hydrostatic)
pressures. The friction angle ¢ decreases with increasing confining pressure, as may
be seen in Figs. 3.10, and 3.13. All the failure criteria described previously fail to
include such characteristics. Recently Lade (1977) has extended the simple one-
parameter model of Eq. (3.13) to take into account the curvature of the failure
envelope. This extended failure criterion is expressed in terms of stress invariants,
I and I3, as:

FALL) = (/15 — 271) (4/p)™ — k = 0 (3.25)

where k£ and m are the two material constants of the model; and D, is the at-
mospheric pressure expressed in the same units as 7;. For example, p, = 1.033
kgf/cm? (= 14.7 psi = 101.4 kN/m?), which is introduced for convenience so that
the parameters k& and m become dimensionless.

The value of k£ and m in Eq. (3.25) may easily be obtained from the results of
triaxial compression tests, plotting (7 ';'/13 - 27) versus (p,/1,) at failure in a log-log
diagram as shown schematically in Fig. 3.22. On this diagram, k is the intercept with
(©,/1}) = 1and m is the slope of the straight line fitted to the experimental results.

In the principal stress space, the failure surface of Eq. (3.25) is shaped like an
asymmetric bullet with the pointed apex at the origin of the stress space. The apex
angle increases with increasing value of k. The deviatoric traces of the failure sur-
face (Fig. 3.23a) have exactly the same shape as those of the one-parameter criterion
of Eq. (3.13) (Fig. 3.14). The traces of the failure surface on planes containing the
hydrostatic axis are curved (Fig. 3.23b and c), and their curvature increases with in-
creasing m. For m = 0, the expression in Eq. (3.25) reduces to that of Eq. (3.13),
and the failure surface becomes conical in shape, with straight meridians.

Fitted straight line s
m
1
k

° Experiments

1ogt1y-27)

1.0
Iog(pa/l1)

Fig. 3.22. Determination of parameters for Lade’s two-parameter failure criterion.
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Fig. 3.23. Traces of the failure surface in the deviatoric, triaxial, and meridian planes for Lade’s two-
parameter failure model. (a) Deviatoric plane; (b) triaxial plane; (c) meridian planes.

The failure surface of Eq. (3.25) is always concave toward the hydrostatic axis
(Figs. 3.23b and c). In a Mohr’s diagram, this implies that the friction angle is
always decreasing with increasing hydrostatic pressure, which has been experimen-
tally verified for a wide range of hydrostatic stresses. However, at very high values
of hydrostatic pressure (when crushing of soil grains becomes important), test
results indicate that the failure envelopes open up and become straight (Figs. 3.9 and
3.10); that is, the failure surfaces become conical at very high hydrostatic pressures.
Therefore, the present failure criterion is valid only in the range of hydrostatic
stresses where the failure surface is concave toward the hydrostatic axis. This is the
range of stresses that is frequently experienced in most practical applications, and
in general this does not represent a serious limitation of the failure model.

The present model has been applied to predict failure stresses in cohesionless soils
(Lade, 1977) and normally consolidated clays (Lade and Musante, 1977) under dif-
ferent stress conditions. Reasonably good agreement with experimental results has
been obtained in all cases. This may be seen from the comparison of the test (points)
and the calculated (solid curves) results in Fig. 3.11.
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3.4.7 Summary of soil failure criteria

Based on the discussion presented in the present section for various failure criteria
commonly used for soils, the following conclusions may be made:

1. In general, the simple one-parameter models of Tresca and von Mises cannot be
applied to soils since they neglect the major effect of the hydrostatic stress com-
ponent on the strength. They can be used only in problem involving saturated
soils under undrained conditions when the analyses are performed in terms of
total stresses.

2. For a limited range of hydrostatic pressure, the one-parameter model of Lade

_and Duncan is very efficient for cohesionless soils under general three-
dimensional stress conditions. The model is simple and it captures many of the
essential strength characteristics of soils such as the effect of the hydrostatic
pressure, the influence of the intermediate principal stress, and the noncircular
shape of the deviatoric trace of the failure surface. ,

3. Owing to its simplicity, the Mohr-Coulomb criterion is a fair approximation of
soil strength in most practical applications. Its material parameters (¢ and ¢)
have well-defined physical interpretation, and they can easily be determined from
standard test data. However, the failure surface has corners (singularities), and
therefore it is not mathematically convenient to use, particularly for three-
dimensional problems.

4. Because of its mathematical convenience, the Drucker-Prager criterion may be
employed, as a smooth generalization of the Mohr-Coulomb failure surface, in
three-dimensional analysis. However, it is extremely important to properly iden-
tify the conditions that are used to determine the material constant (« and k).
For example, when the Drucker-Prager criterion is matched with the Mohr-
Coulomb criterion along the compressive meridian (8 = 0), the predicted failure
stress states at or near the triaxial extension state (¢ — 60°) will be much in error,
particularly for dense soils (larger ¢). Therefore, only those stress states
simulating the field conditions for the particular problem at hand must be uti-
lized in determining the material constants.

5. For problems involving a wide range of hydrostatic pressures, the two-parameter
model of Lade, Eq. 3.25, provides a better approximation than the one-
parameter criterion of Eq. 3.13, since it accounts for the curvature of the failure
surface along the hydrostatic axis.

3.5 Validity of limit analysis in application to soils

3.5.1 Basic assumptions

The limit theorems on which the limit analysis method is based are established
under the three basic assumptions:
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1. The changes in geometry of a soil mass of concern at the instant of collapse are
small and, thus, the virtual work equation is applicable.

2. The material is perfectly plastic and obeys, for the case of soils, the Mohr-
Coulomb yield criterion.

3. The axes of principal plastic strain increments coincide with the principal stress
axes during plastic flow and the resultant plastic strain increment vector is nor-
mal to the yield surface or the Mohr-Coulomb failure envelope.

This is known as the associated flow rule or the normality condition in plasticity.
As for Assumption (1), soil material is generally much more compressible than

most materials, such as metals to which the theory of plasticity is positively ap-
plicable. A measurable amount of deformation is therefore expected to take place
in a soil mass before the strength of the soil is fully mobilized at the instant of col-
lapse. However, geotechnical engineering is dealing with structures of much larger
scale than that in the field of metals, the small change in geometry assumption is
generally acceptable for most problems in soil mechanics.

Assumptions (2) and (3) are interrelated. They are the center of controversy on
the validity of the application of limit analysis method to soils based on the widely
used Mohr-Coulomb yield criterion.

The Mohr-Coulomb yield criterion although having its weakness as described in
the preceding section, is still widely accepted in the field of soil mechanics. The
criterion has been shown by Bishop (1966) to predict the yield or failure of soils very
well. Treating the Mohr-Coulomb envelope as a two-dimensional yield envelope is
fully justified for most problems in soil mechanics. The parameters defining the
envelope, ¢ and ¢, must, of course, be properly selected according to the special
features of each particular problem.

The typical stress-strain curves for a normally consolidated soil (Soil I) and an
overconsolidated soil (Soil II) upon shearing are shown in Fig. 3.24 as examples.

Soil I , Overconsolidated

\ Peak
Soilll ,-Idealized

b .o
b —_—— o e =L — — — — Mobilized
— Ultimate

) /
] / Soil T Idealized

|
§ Soit I, Normally Consolidated
7]

Shear Strain, Y

Fig. 3.24. Typical stress-strain curves and perfectly plastic idealizations.
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The perfectly plastic idealizations for these materials are shown as dashed lines in
the figure. Since during the stage of plastic flow, the plastic strain increment is not
affected by the elastic behavior of the material, whether we assume that the material
is elastic-perfectly plastic or rigid-perfectly plastic is not of great importance as long
as the validity of Assumption (1) is preserved. Hence, for soil I (Fig. 3.24) which
exhibits some work hardening, assuming its ultimate behavior as a perfectly plastic
one is practically acceptable, if sufficient deformation is allowed for the ultimate
state to develop without inducing significant changes in geometry. For soil II (Fig.
3.24) which shows a post-peak strain-softening behavior, the perfectly plastic
representation of its ultimate behavior is reasonable only in an average sense, when
the progressive failure effect in the whole soil mass is taken into consideration. For
this reason, the conventional way of idealizing the ultimate behavior of a soil ex-
hibiting softening behavior by a horizontal line passing through the peak of the ac-
tual stress-strain curve (taking ¢ = ¢peak) is not acceptable. The average mobilized
stress level in a soil mass at the instant of collapse should be somewhere between
the peak stress and the residual stress. When the progressive failure effect is taken
into consideration in the selection of the average mobilized stress level, the perfectly
plastic idealization is then acceptable for practical collapse load determination.

It has been experimentally observed that at stress levels close to failure stresses,
the directions of the principal strain increments are in consistence with the principal
stress axes (Roscoe et al., 1967). For a given stress state, the directions of the com-
ponents of the plastic strain increments are therefore fixed in any corresponding
stress space. Furthermore, based on the Drucker’s stability postulate, the plastic
work-increment, d W, which is equal to the plastic strain increment, deg, multiplied
by the corresponding stress increment, da,-j, should always be larger than or equal
to zero for a stable material which work hardens. That is:

dw = deg. doj; = 0 (3.26)

For a perfectly plastic material, the yield surface is fixed in the stress space and
thus the plastic work increment must be equal to zero:

def; doy; = 0 (3.27)

This indicates that deg- must be perpendicular to the direction of dau, which is
tangential to the yield function. Hence, the consequence of the observed coincidence
of principal axes of stress and plastic strain increments near failure and the assump-
tion that the material is perfectly plastic are that the plastic strain increment vector
must be normal to the yield function or yield surface for a perfectly plastic material.
For two-dimensional problems in soil mechanics, the plastic strain increment vector
during plastic flow must therefore be normal to the Mohr-Coulomb failure
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envelope, which is taken as the yield surface. The plastic strain increment vector is
completely defined in its direction. This implies that the relative magnitude of its
components in the corresponding stress space is determined by this normality condi-
tion.

3.5.2 Normality condition for ‘undrained’ purely cohesive soils

In many geotechnical problems, the rate of loading is very rapid in comparison
to the permeability or the rate of drainage of a purely cohesive soil so that the
cohesive soil behaves essentially in a constant volume and undrained state. The
strength of the soil remains practically unchanged upon loading, since there is no
possibility of increase in the mean effective stress without any drainage. A typical
Mohr-Coulomb envelope for an undrained purely cohesive soil of plane strain pro-
blem on a two-dimensional mean effective principal stress, p = (o, + 03)/2, ver-
sus maximum shear stress, ¢ = (o, — 03)/2, plot is shown in Fig. 3.25a. Accor-
ding to the normality condition, the plastic strain increment vector de should be
normal to the horizontal Mohr-Coulomb envelope corresponding to qb = 0, if the
plastic volumetric strain increment versus the maximum shear strain increment plot,
or dvP = de1 + de3 VS, dym = déP 1~ de3 plot, is super-imposed on the cor-
responding p vs. g stress plot based on the coincidence. of the principal axes. This
is also shown in F1g 3.25a. It is found that the vector de is pointing in a direction
parallel to the dym-ams This indicates that all the plastlc strain increment is shear
strain increment and there is no plastic volumetric strain increment induced during

_ the plastic flow, which is a property of Tresca material. This is consistent with the

actual strain observations. The application of limit analysis to an ‘undrained’ purely
cohesive soil is therefore acceptable.

The power of limit analysis in application to clay stability problems is well
demonstrated by an open cut example given by Henkel (1971). This has also been
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Fig. 3.25. Mohr-Coulomb failure envelopes and normality condition for soils.
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described by Wroth (1977). The limit analysis method not only gives the coefficients
of active earth pressure, K,-value, which are very close to the actually observed
values in all the sites investigated, but also gives a rational expression for assessing
the m-value for the well-known Terzaghi and Peck’s pressure distribution for strut
load estimation in clays (Terzaghi and Peck, 1967).

3.5.3 Normality condition for cohesionless soils

To investigate the consequence of the normality condition for cohesionless soils,
a plot corresponding to Fig. 3.25a is also constructed for this case as shown in Fig.
3.25b. By the normality condition, the relative magnitude of the two plastic strain
increment components, dvP and d'yg1 can be expressed as:

dvP .
—— = — tano = — sing (3.28)

p
dyp

where dvP = de} + de} and dyP = de} — del. Noted that « is not equal to ¢.
From Eq. (3.17), we can see that if ¢ = 0, (o; — 03)/(0; + 03) = q/p = sing,
which is not equal to tane.

Defining the angle of dilatation (Bent Hansen, 1958) as » = sin~!(— dv/dy,),
then, during plastic flow, we have:

P
,___dv = — siny ' S ’ o '(3.29)

p
dym

Hence, the consequence of applying the normality condition to a cohesionless soil
with its angle of internal friction equal to ¢ will be a necessary occurrence of a
volume expansion with » = ¢ during the plastic flow. However, soils are found ex-
perimentally to dilate at increments considerably less than those predicted by the
normality condition, i.e., » < ¢. Hence, cohesionless soils must be considered as
a non-associated flow rule material with » < ¢, which is different from the
associated flow rule material that obeys the normality condition with » = ¢. Idealiz-
ing a real cohesionless soil to an associated flow rule material is sure to affect the
deformation characteristics considerably, and is unrealistic when deformations are
of great concern. The normality assumption is therefore the center of dispute on the
validity of limit analysis in application to cohesionless soils (Chen and Chang,
1981).

Nevertheless, before discarding an idealized approach based on certain assump-
tions which do not follow exactly the behavior of the material of concern, it may
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be worthwhile to look further on how significant the ‘unrealistic’ assumption will
affect the validity of the approach for solving certain practical problems. It is
known that not all the factors presented in a problem predominantly control all
types of behavior of concern to us. Firstly, quite often the errors resulting from this
idealization on some aspects may be unimportant when compared with those in-
troduced by the variation in soil properties in nature or the inaccuracy of soil
parameters induced by experimental limitations. Secondly, as pointed out by Davis
(1968), the deformation condition of some problems may not be sufficiently restric-
tive for the material deformation properties, such as the angle of dilation v, to affect
the collapse load seriously all the time. These two points at least give us some indica-
tions here that limit analysis method, as in limit equilibrium method, can be a useful
tool for certain stability problems in cohesionless soils, even though the normality
condition is not actually observed in the soil. Further discussion on this from stress-
dilatancy and energy considerations will be given in the following section.

3.6 Friction-dilatation and related energy in cohesionless soils
3.6.1 Friction and dilatation

Most cohesionless soils can be considered as frictional-dilating materials in
general. The shearing resistance of a cohesionless soil is contributed by two actions:
(1) the frictional action, which is controlled by the mineral and surface
characteristics of soil particles; and (2) the dilating action, which is dependent on
the particle packing conditions. The frictional action dissipates external energy by
generating heat through relative particle sliding and rolling. The dilating action
changes external work into potential energy through the adjustment of relative posi-
tions of particles. Hence, the coefficient of internal friction of a cohesionless soil,
tan ¢, or the stress ratio on the failure plane, 74;/0, can be assumed to be compos-
ed of two parts, corresponding to the two different forms of energy response. A
typical representation of the physical components of the strength of a cohesionless
soil for the direct shear condition is given by Bishop (1950) as:

tang = tane; +(6_v> (3.30)
as/ ¢

where tané; represents the component contributed by interparticle friction and
(dv/3s); = tan p, which is the ratio of change in a soil specimen’s thickness to in-
crement of horizontal displacement at failure in a direct shear test, represents the
component contributed by particle interlocking. A similar expression for plane
strain or triaxial compression conditions can be derived from Rowe’s dilatancy
equation (Rowe, 1962) as:
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. singy siny
sing =--

3.31
1 + sing; siny 1 + sing; siny ( )

where ¢; represents the frictional component of ¢, which is bounded by the intrin-
sic mineral-to-mineral friction angle, ¢, and the critical state friction angle, ¢,
and » is the angle of dilatation which is defined by Bent Hansen as mentioned
earlier. '

It is interesting to note from the two similar expressions, Egs. (3.30) and (3.31),
that if the strength of a soil is contributed predominantly by friction so that ¢ =
¢y, then there is practically no volume change, since (3v/ds); = tany = 0 from the
expressions. On the contrary, if a soil is assumed to be a purely dilating or perfectly
plastic material with zero friction (qbf = (), then the shearing process should always
be accompanied by a volume expansion, (8v/ds); > 0, and ¢ = pis the direct con-
sequence of this assumption.

3.6.2 Energy considerations

While a purely frictional or purely dilating material as assumed in limit analysis
seldom exists in reality, most cohesionless soils can be considered as partially fric-
tional and partially dilating materials with their relative degree depending on the
mineral types, the surface properties, and the packings of the constitutive particles.
Once a loading is applied to a cohesionless soil mass, the external work will be
dissipated essentially by heat through particle-to-particle sliding and rolling, and by
the change in potential energy through sliding, rolling and volume expansion. This
can be clearly seen from the virtual work equation proposed by Davis (1968) for a
non-associated flow rule material with ¢ = 0:

Wee = [ Wpdl + [ [ Darde — [[E vz (3.32)

where W, is the net rate of external work contributed by the external loads, in-
cluding that due to the movement along the loading boundary or soil — structure in-
terface. The first term on the right-hand side of Eq. (3.32),.T[Wpdl = W,
represents the rate of energy dissipation along the discontinuities. It results from the
existence of the friction action. The second term, | | Ddxdz = W, represents the
rate of plastic work due to volume distortion in the plastically deformed regions,
which is also induced by friction. The last term, Eydxdz = Wy represents the
rate of change in potential energy due to the tendency of the body forces to resist
sliding and the existence of volume expansion contributed by the dilating compo-
nent. In Wy, the expression of W7, for the case of ¢ = 0, i.e., the cohesionless soil
is given as:
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oAU : .
Wp = ———————— secv (sing — sinv) (3.33)
1 — sing siny '

in which Au is the tangential velocity of plastic flow along velocity discontinuities
and oy is the normal stress acting on the discontinuities. In W, the expression for
D is given as:

D = (A¢; — Aey)p(sing — siny) (3.34)

where Ae; and Ae; are the principal plastic strain increments and p is the mean nor-
mal stress in the plastically deformed region.

From Eqgs. (3.33) and (3.34), it is obvious that if the material is an associated flow
rule material with » = ¢, then both Wy, and D vanish and W; = W, = 0if the in-
terface dissipation or work is included in W,,,. This can also be seen physically. If
a material is purely plastic there is no friction (tan ¢; = 0), and consequently no
surface traction to cause the soil mass to distortion. The energy dissipation by
sliding or rolling (W) and by volume distortion (D) should therefore be equal to
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Fig. 3.26. Non-coincidence of stress and velocity characteristics in retaining wall problems.
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zero if the material is cohesionless. The consequence of this is that the problem is
greatly simplified, since the values of oy and p, which are generally unknown,
become irrelevant to the problem. If the interface dissipation or work is included
in W,,,, then the equation is reduced to:

[Wext]¢ = - [W,Y]¢ (3.35)

However, it is believed that failure surfaces in a soil mass with » < ¢ should follow
the velocity characteristics rather than the stress characteristics (Davis, 1968). The
stress characteristics are the same as the velocity characteristics only when the soil
is purely plastic. The introduction of friction in a real soil not only changes the term
W, and adds the term W in the internal energy of the virtual work equation, but
also shifts the discontinuities (Figs. 3.26a and 3.26b). Consequently, the term Wv
is also different from that when » = ¢. The virtual work equation for the case of
v < ¢ can be restated as:

W, = W, + W], = IW.], (3.36)

The possible difference in [W,], and [Weyl,, which will result in the difference
in the corresponding collapse loads, p, and pg, can be expressed as:

Weod, = ey = (W, + W) — (W], - [W,]p) (3.37)
or )
AW, = AWy — AW, (3.38)

where AW,,, represents the difference in external works for the real material and
for the idealized material. The term AW, represents the difference in the energy
dissipation, while AWy is the difference in potential energy. Both AW, and AW7
are non-zero terms and both are the direct or indirect consequence of the existence
of friction in the shearing action of the real cohesionless soil. Hence if friction
vanishes, both AW, and AW7 are zero and the collapse load obtained will be uni-
que. However, with finite friction in real soils, its effect on AW, and AW,
although reflected in different forms, one through sliding and volume distortion,
the other through change in potential of body forces, can be of the same order since
they are the two and the only two forms of energy in response to external work.
Hence, there is a good possibility that the collapse loads determined by both models
may be practically the same. It can be a convincing argument if we can further prove
that the way of proportionating the frictional and the dilating components in tan
¢, which is believed to be of great importance in a deformational analysis, is essen-
tially irrelevant to the collapse load analysis in soil stability problems.
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3.6.3 A descriptive example of a c-¢ soil following non-associated flow rule

Let us examine a simple vertical cut in a c-¢ soil. A planar failure mechanism as
shown in Fig. 3.27 is assumed. Since real soils are non-associated flow rule
materials, the strength parameters along the failure surfaces or velocity discon-
tinuities, ¢, and ¢, are different from the Mohr-Coulomb strength parameter c, ¢
existed on the stress characteristics. The relations between, € B> and ¢, ¢ were
given by Davis (1968) as:

o = C COs¢ cosy 3.39
K™ 1 — sing siny (3.3%)
tan ¢, = sing cosy (3.39b)

1 — sing siny

They are the same as the Mohr-Coulomb ¢ and ¢ only when » = ¢, i.e. when the
material is a perfectly plastic, associated flow rule material. For purely frictional
materials, » = 0, and ¢, = ¢ cos¢, tan ¢, = sing,

For energy evaluation, the frictional and dilating components of the overall fric-
tional angle along the velocity discontinuities should be separated. As pointed out
by Davis (1968), the velocity discontinuity corresponds to the observed failure plane
in the direct shear condition. Equation (3.30) as proposed by Bishop (1950) provides
a way of separating these two physical components for the direct shear case with
tan ¢ representing the frictional component and (3v/3s); = tany representing the
dilating component. Substituting Eq. (3.39b) into Eq. (3.30), we obtain: o

sing — siny
(1 — sing sinv) cosy (3.40)

tang, =
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Fig. 3.27. A vertical cut in cohesive-frictional soils.
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Consider a vertical cut with the translational outward movement as shown in Fig.
3.27. By the theory of perfect plasticity, the rigid block ABC will slide down with
a velocity, AV, making an angle of » with the discontinuity line BC, If the most
critical failure plane with 8 = 45° + »/2 is investigated directly, then the work
done by the weight of the soil wedge ABC or the change in potential energy is:

W, = WAVsin@ - ») = 3v H2? AV tan(45° — 1») sin(45° — L») (3.41)

By frictional theory, the total internal energy dissipation along the discontinuity line
BC is:

Wi, = W cosB tang; AV cosy + ¢, AV cosy H cscf8
=}y H? AV tan(45° ~ }») sin(45° — }») cosv tand;
+ ¢ HAV cosy/cos(45° — 1») (3.42)

Substituting ¢, from Eq. (3.392) and tang; from Eq. (3.40) into W, and equating
W7 to W,,, we obtain the critical height or the real non-associated flow rule
material by the principle of virtual work, as:

COSv COS¢ ] 3.43)

= (4¢/v) tan(45° + %
Hc (4c/v) tan( ZV)[I — sing + siny — sing siny

Further arrangement reduces Eq. (3.43) to:

H, = (4c/7) tan(45° + 3¢) 3.44) .

which is independent of ».

The fact that H_ so derived without making any idealization of the soil is in-
dependent of » is of particular importance. It indicates that at least for this par-
ticular vertical cut stability problem for which there are no boundary restrictions
and the failure mechanism involves essentially a rigid-to-rigid body sliding, the
deformation property, v, does not affect the collapse load determination. More im-
portantly, it indicates that whether we assume the material to be purely dilating
(v = ¢), or purely frictional (» = 0), or partially frictional and partially dilating
(v < ¢) as that shown in Fig. 3.28 is immaterial to the collapse load evaluation, at
least for this particular case, in which it involves essentially a rigid block sliding.
This confirms our hypothesis that the way of proportionating the physical compo-
nent in tan ¢ is irrelevant to the collapse load analysis and AW;, and AW, in Eq.
3.38 can be of the same order of magnitude, so that the collapse load is unaffected
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by the idealization. For those soil stability problems in which the boundaries are not
very restrictive, the applicability of limit analysis to soil medium is therefore ex-
pected to be satisfactory as also pointed out by Davis (1968).

3.7 Effect of friction on the applicability of limit analysis to soils

While the power of limit analysis in application to purely cohesive soils under un-
drained conditions has been well recognized, its applicability to soils possessing ¢

_ is still a matter of dispute. This is mainly because the normality condition as assum-

ed in the analysis is not experimentally observed. The energy consideration as
discussed in the preceding section, however, shows that the application of limit
analysis to stability problems in frictional-dilating soils is quite optimistic, although
the excessive volume expansion as predicted by the perfect plasticity idealization as
used in limit analysis is unrealistic. This argument can be further justified by in-
vestigating how the introduction of ¢ #0 affects the accuracy of collapse load as
obtained by the limit analysis based on the perfect plasticity idealization. An existing
example reported by Chen, Giger, and Fang (1969) is investigated for this purpose.

In Chen, Giger and Fang’s paper, the slope stability of a homogeneous ¢-¢ soil
is analyzed by limit analysis using logarithmic spiral failure mechanism. For the
special case of a vertical cut, they obtained the N, -values for soils possessing dif-
ferent ¢-angles as shown in Table 3-1, with N, representing the so-called stability
Jactor. The critical height, in terms of this dimensionless factor N, can be express-
ed as:

H, = N, c/y (3.452)

or
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N, = y H/c (3.45b)

where c is the Mohr-Coulomb cohesion and v is the unit weight of soil. The N
values obtained by the ¢-circle method of Taylor (1937) are also given for ¢-values
up to 25°. Analysis of Taylor’s N-values shows that the N-value is generally ex-
pressed as:

N, = 3.83 tan(45° + i0) (3.46a)

Hence, to eliminate the direct influence of ¢, the N-values obtained by the limit
analysis are normalized to give:

N N v H,

N; = = 3.46b
5 tan(45° + }¢) ctan(45° + 3¢) ( )

The values of N; are shown under N, in Table 3-1. If the logarithmic spiral
mechanism assumed is close to the reality, the Ni-value for the case of ¢ = 0,
N}, = 3.83, can be considered as a ‘close-to-exact’ solution. Hence the error in-
volved in the limit analysis as the results of the perfect plasticity idealization and
the introduction of ¢ can be evaluated by calculating the values of (N; — Ny,)/Ng,
corresponding to each soil with different ¢-values. The results are as shown in Table
3-1.

1t is found from Table 3-1 that the error induced by the perfect plasticity idealiza-
tion is less than 1% for most ¢ — ¢ soils of which the ¢-value is seldom larger than
30°. Therefore, the introduction of ¢ has essentially no effect on the applicability

TABLE 3-1
Effect of introducing ¢ on limit analysis of the stability of vertical cuts in cohesive-frictional soils

N, or N [}

0° 5° 10°  15°  20°  25°  30° 35 40°

By ¢-circle method 3.83 4.18 4.59 503 550 6.02 — - -
By limit analysis method 3.83 4.19 459 5.02 551 6.06 6.69 743 8.30
N,
N; = ———————-s—¢ 3.830 3.839 3.851 3.852 3.858 3.861 3.863 3.868 3.870
tan(45° + —)
2
N; — N§, .
N % + 0 024 055 0.57 073 0.81 0.8 0.99 1.04

50

* Ny, is the Ny-value corresponding to ¢ = 0 case and has an ‘exact’ value of 3.83.
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of limit analysis method to soils possessing ¢ at least for this particular problem.
This further confirms the statement made by Davis (1968) that the upper-bound
solution obtained by the limit analysis method may be close to exact if the boundary
conditions are not so restrictive as to affect the collapse load seriously.

3.8 Some aspects of retaining wall problems and the associated phenomena at
failure N

It has been found that the application of limit analysis to soil stability problems
with little or no boundary deformation restriction is practically acceptable. The use
of it for solving retaining wall problems, however, faces another challenge due to
the particular features presented in this kind of problems. The determination of the
lateral earth pressure of a fill on a retaining wall, when frictional forces act on the
back of the wall, can also be solved conveniently by the limit analysis method.

Before we attempt to find the pressure in the rear face of a retaining wall, we note
that the lateral earth pressure problem can be divided into the active earth pressure
and the passive earth pressure as illustrated in Fig. 3.29a, which shows a particular
apparatus consisting of a large bin with a movable end section. By filling the bin
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Fig. 3.29. Results of retaining wall tests.
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with sand, a lateral pressure is developed against the end séction which simulates
the wall. This wall is constructed so that it can be held in a fixed position or moved
inward or outward. A horizontal force P, normal to the wall must be applied to
this wall in order to keep the apparatus in equilibrium in its initial position. Since
the wall can have two directions of motion, into the bank or away from the bank,
passive and active earth pressures are developed.

If the wall is initially at rest and held by a force P = P,,, it is apparent that for
a cohesionless soil, as the force P is reduced, the wall will be forced to move outward
due to the weight of the soil. As P is gradually reduced, the soil undergoes first
elastic deformation, then elastic-plastic deformation and finally, uncontained
plastic flow and thus defines the active collapse load, P,. Similarly, the passive
collapse load, Py, can be defined by forcing the wall to move inward. Figure 3.29b
shows a load displacement curve depicting the behavior of the soil under active and
passive earth pressures. The points marked P, Ppn and P, represent the wall force
at rest, at passive collapse, and at active collapse, respectively. The subscripts p, a,
and n indicate passive, active, and normal components of the force P, respectively.
Actually, the active and passive definitions are derived from the role the backfill
material plays in the two cases. In the active earth pressure case, the failure is due
to the soil’s weight overcoming the internal friction and pressure on the wall, that
is, the soil is playing an active role. In the passive earth pressure case the failure is
due to the pressure on the wall overcoming the soil’s weight and internal friction,
hence, the soil plays a passive role.

In a recent work reported by Potts and Fourie (1986), the finite-element method
has been used to investigate the effects of different modes of wall movements on
the generation of earth pressures. Both smooth and rough walls were considered.
Referring to Fig. 3.29, the development of active and passive pressure coefficients
for both smooth and rough walls is shown in Figs. 3.30a, b. It can be seen that the
equivalent coefficient K = 2P/(yH?) and the amount of displacement necessary to
generate fully active or passive failure conditions depends on the mode of wall
displacement. The rotation about the toe requires a far more displacement to reach
the failure condition than do the other modes of displacement. The final K values
for rough walls in the passive case are significantly larger than the corresponding
smooth wall case.

In a cohesionless soil, volume change comprises the major part of deformation
when there is a change of the state of stress. Certain volume change or volume flow
is, therefore, required before the strength of the soil can be fully mobilized along
the failure surfaces. As reported by Ladanyi (1958), the volume flow can be
neglected for the active pressure case in which the mean normal stress is decreasing
during deformation. In the case of passive earth pressure, however, the mean nor-
mal stress can increase considerably during deformation. The neglection of the
volume flow can be allowed only if the soil adjoining the wall is in a dense or com-
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pacted state. Ladanyi also pointed out that the magnitude of dilatation is of great
importance for the passive pressure case and it has little influence on the active
pressure.case as far as wall movement is concerned, although it can also have certain
influence on the mobilization of wall friction for both cases. Hence, it can be ex-
pected that the perfectly plastic idealization of the backfill material is generally ac-
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ceptable for the active pressure case in which the boundary deformation restriction
is not serious. The idealization for the passive pressure case in which the boundary
deformation condition is rather restrictive seems not very well justified even though
we are only concerned with the collapse load. However, as pointed out by Meyerhof
(1971), the use of the customary incomplete stability analyses based on stress
characteristics (or perfect plasticity idealization) and the average Mohr-Coulomb
shear strength value for the determination of collapse load is optimistic in many
geotechnical problems.

It is well recognized that the lateral wall movement required for the development
of the passive state of limiting equilibrium is rather large in comparison to that re-
quired for the active state of limiting equilibrium. This is believed to be closely
related to the points discussed by Ladanyi (1958) and the fact that the boundary
deformation conditions are different in the two cases. The direct consequence of this
is that the failure of a soil mass in the passive pressure case involves more serious
progressive effect than that in the active pressure case. Hence, in the perfectly plastic
idealization, progressive failure effect, although generally not of great concern to
the active pressure case, should always be considered in the passive pressure case for
the collapse load determination. Once the progressive failure effect is properly taken
care of in the selection of the average mobilized shear strength parameter, ¢_, for
analysis, the boundary deformation conditions, which affect the deformation
behavior and the extent of progressive failure in the soil mass, will practically have
no direct influence on the collapse load determination. Hence, the limit analysis
method may be applied to the passive pressure determination if the idealization is
based on the average mobilized shear strength represented by ¢, even though the
boundary deformation condition is relatively restrictive in this case. For the active
pressure case, the progressive failure effect, although it is not as significant as that
in the passive pressure case, should also be considered in the idealization for most
cases in which the soil —wall interface is generally not perfectly smooth.
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Chapter 4

LATERAL EARTH PRESSURE PROBLEMS

4.1 Introduction

In this chapter, the upper-bound techniques of limit analysis are applied to obtain
lateral earth pressures of rigid retaining walls subjected to static forces. The earth
pressure problems as the result of an earthquake are presented in Chapter 5. Some
practical considerations in the design of rigid retaining structures are given in
Chapter 6.

The upper-bound limit analysis method, as in all methods of stability analysis
dealing with overall equilibrium, is highly dependent on the failure mechanism
chosen for a particular problem. The selection of a proper failure mechanism is
therefore of great importance for assessing a reasonable collapse (or limit) load. In
this chapter, the translational horizontal wall movement is assumed and the log-
sandwich mechanism reported by Chen (1975) is adopted. A & log-spiral, with ¢ < ¢
(friction angle), rather than the common ¢ log-spiral is considered in the present for-
mulation and its effect on the limit load is investigated. Furthermore, a non-
associated flow-rule (or the partial friction — partial dilatation model) rather than
the pure friction model as adopted by Chen in 1975, is applied here to the soil — wall
interface material. Results of analysis with and without these modifications are
presented and discussed.

Some coefficients of the active and passive lateral earth pressures obtained by the
upper-bound limit analysis method reported by Chen and Chang (1981) are
presented and compared with those obtained by some well-known theoretical
methods of analysis. Discrepancies among them are discussed and possible explana-
tions are given.

Finally, some practical aspects in regard to analyses for actual design work are
considered. Suggestions are given for actual practice. A tentative conclusion is also
included.

4.2 Failure mechanisms
In 1967, Finn suggested that the reliability of the limit analysis may be increased

by observing the nature of the slip surface in simple model tests, although, at that
time, it was not well-known that the actual sliding surface is a velocity characteristic
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rather than a stress characteristic for a real soil with the angle of dilatation » < ¢.
Generally, different failure mechanisms are associated with different types of wall
movement in retaining wall problems. This is clearly reflected by the experimental
observations made by James and Bransby (1970) for the passive earth pressure pro-
blem.

In this chapter, outward and inward translational wall movements are assumed
for the active and passive earth pressure investigations, respectively. Failure
mechanisms as generalized from James and Bransby (1970) are adopted for both the
passive and the active cases. They are shown in Fig. 4.1. The failure surfaces are
assumed to follow the stress characteristics which are also the velocity characteristics
for a perfectly plastic material. The mechanism consists of three zones. The first
zone, Zone I, is the Rankine zone. The stress condition in this zone is not influenced
by the characteristics of the soil — wall interface. The second zone, Zone II, is the
mixed zone which is subjected to the influence of the interface characteristics. Ac-
cording to Hettiaratchi and Reece (1975), this zone should be of triangular shape
if the angle of wall friction, 8, is uniformly distributed along the interface as general-

Stress Characteristic
. - =Velacity Characteristic

(a) ACTIVE CASE

. \Stress Characteristic
=Velocity Characteristic

. -1’- .
I a

2

(b} PASSIVE CASE

Fig. 4.1. Assumed failure mechanisms for lateral earth pressure analysis.

113

ly assumed. The third zone, Zone II1, which is a transition zone, is formed by a
logarithmic spiral of angle ¢ and the two adjacent boundaries. This kind of com-
bination was reported by Chen and Rosenfarb (1973) to give the best upper bound
in the several mechanisms investigated.

Since the upper-bound method of limit analysis is based on energy equilibrium
rather than on force equilibrium as employed in the limit equilibrium method, the
particular benefit of adopting logarithmic spiral surface with a frictional angle of
¢ is no longer relevant to the upper bound technique. Furthermore, James and
Bransby (1970) found that the actual observed failure surfaces follow closely the
velocity characteristics and in the Rankine zone 6, = w/2 + » for the passive
pressure case, where the angle of dilatation » is much smaller than ¢. This
mechanism has recently been adopted by Habibagahi and Ghahramani (1977) who
solved the earth pressure problems by the limit equilibrium technique based on a so-
called zero extension line theory. Much experimental evidence, such as that discuss-
ed by Scott (1963), also shows that the actual failure takes place on planes with
smaller angles than those predicted by the Mohr-Coulomb criterion which gives the
stress characteristics with 8; = #/2 + ¢.

One possible explanation for the difference in the stress characteristics and the
velocity characteristics for most soils is that the introduction of the friction in real
soils causes the velocity characteristics, which are originally consistent with the
stress characteristics for a perfectly plastic material, to shift in such a way as that
shown in Fig. 3.26. Consequently, 6; = x/2 + £, with an equivalent friction angle
¢ being smaller than ¢ and no less than ». Hence it is justified to adopt a logarithmic
spiral with a £, with v <. ¢ < ¢, if the solution can be improved. However, it should
be noted that when £ < ¢ the solution is, strictly speaking, only an equilibrium solu-
tion and not necessarily an upper bound. For the upper-bound theorem of limit
analysis to be applicable, the material must be perfectly plastic so that £ = ¢ in the
Rankine zone.

Two sets of results by using both ¢ and # logarithmic spirals for both the active
and passive pressure cases of Fig. 4.1 are shown in Table 4.1. It is found that the
active pressure coefficient K a-values are not altered and Kp-values are somewhat
lowered by the use of £-spiral rather than ¢-spiral, especially when the values of the
angle of repose of the wall, «, the backfill slope angle, 8, and the ¢-angle are high.
This tends to indicate that the conventionally adopted ¢-spiral failure surface is not
necessarily the best mechanism that gives the ‘close-to-exact’ solution for a given
problem. One possible explanation for Table 4.1 in which the use of £spiral results
in essentially no improvement for X a-values but some improvement for Kp-values
is that the prefailure volume flow, which is believed to have certain effects on the
stress characteristics, is negligible in the active case but of considerable amount in
the passive case. To account for this fact, £&-spiral may be adopted for analysis in
the passive case. However, considering the fact that the solution so obtained is not
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strictly an upper bound and the fact that the improvement is very limited, ¢-spiral
is suggested for practical application for both the passive and the active cases.

The chosen mechanisms of failure as shown in Fig. 4.1 have the flexibility of be-
ing able to be reduced to a simple Coulomb planar failure mechanism when ¢ =
0, or a logarithmic Rankine mechanism when ¢ = 0 or a logarithmic spiral
mechanism when ¢ = 0 and ¢ = « + 8. For the special case of ¢ = 0, the failure
mechanism becomes a circular arc, which seems to agree with the actual observation
of sliding in undrained cohesive soil masses. The general mechanism can be optimiz-
ed so that the most critical failure mechanism is obtained.

TABLE 4.1
a. Effect of assumed failure mechanism on K,-values*
Assumed a = 90° 8 = 10°, o =90°¢ = B =10° ¢ = a=90°8=
mechanisms &= ¢/2 35°,8 = ¢/2 35°, 8 = ¢/2 20°, ¢ = 40°
¢ = 30° 35° 40° B =0 20° o = 70° 110° & = 20° 40°

Coulomb’s

planar 0.34 0.28 0.22  0.25 0.32 0.49 0.14 025 0.27
¢-log

-sandwich 0.34 0.28 0.22 0.25 0.32 0.49 0.15 0.25 0.27
&-log .

-sandwich 0.34 0.28 0.22 0.25 0.32 0.49 0.15 0.25 0.27

* K, is defined as P,/iyH?

b. Effect of assumed failure mechanism on Kp-values*

Assumed a = 90° B = 10°, a=90°%¢= f=10°¢ = a=90°8 =
mechanisms 8= ¢/2 35° 6 = ¢/2 35°,8 = ¢/2 20°, ¢ = 40°
¢ = 30° 35° 40° B =0° 20° o = 70° 110° 6 = 20° 40°
Coulomb’s
planar 8.14 13.65 26.73 7.36 31.94  6.22 148.77 101.61 +
¢-log
-sandwich  6.75 10.16 16.26 6.71 14.96 6.00 22.52 25.64 56.82
© Eog
-sandwich  6.67 10.00 15.92 6.71 14.48  5.99 21.53 24.62 53.67

* Kp is defined as Pp/lyH*
+ No possibility of failure for the given §-value
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4.3 Energy dissipation
4.3.1 Internal energy dissipation

In the upper-bound limit analysis, the evaluation of internal energy dissipation
forms the major part of the analysis. The incremental energy dissipation per unit
volume in a plastically deformed region of a frictional-dilating material in a two-
dimensional plane strain problem has the value (Chen, 1975):

AD, = ccos ¢ Ayp.y “.1)
where c is the cohesion parameter, ¢ is the internal friction angle of the material,
and Ay .. = Ae; — Ae; is the maximum incremental shear strain or the maximum
incremental deviatorial strain during plastic flow. By using Eq. (4.1), the incremen-
tal energy dissipation per unit length along a velocity discontinuity or a narrow tran-
sition zone can be derived as (Chen, 1975):

AD; = ccos ¢ AV “.2)

where AV is the incremental displacement which makes an angle of ¢ with respect
to the velocity discontinuity according to the associated flow rule in perfect plastici-
ty.

For simple stability problems involving sliding and/or homogeneous deforming
mechanisms, the internal energy dissipation can be evaluated with Egs. (4.1) and
(4.2). By equating the incremental external work (or the external rate of work) to
the incremental dissipation (or the interal rate of energy dissipation), the collapse
load can be determined. However, for those problems involving soil — structure in-
teraction, such as the retaining wall problems, the evaluation of energy dissipation
along the soil — structure interface presents an uncertainity due to the complicated
mechanism involved in the interface sliding. This problem will be carefully in-
vestigated as follows before a detailed mathematical formulation is developed.

4.3.2 Interface energy dissipation

Since soil —wall interface is an actual slip surface and can be considered as a
velocity discontinuity rather than a stress characteristic, perfectly plastic model is
not applicable to the interface material. The relative movement between soil and
wall, which is dependent on the interface characteristics and the property of the ad-
jacent soil, needs not always be of purely frictional sliding. We should therefore
allow the interface material to be considered as a partially frictional and partially
dilating non-associated flow rule material and evaluate their effects separately,
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However, Chen (1975) suggested that the energy dissipation along soil — wall inter-
face can be evaluated as a purely frictional dissipation. To investigate how this
idealization affects the collapse load, Fig. 4.2 is considered. For retaining wall pro-
blems, the normal force acting on the soil — wall interface is either the same as the
unknown or is the component of the unknown to be determined. Idealization of the
material to be a pure dilatation material or a pure friction material is not required
for work and energy evaluations. Therefore, the net change in external work that
will result in change of passive earth pressure, Pp, due to the introduction of wall
friction (the angle of wall friction § > 0) can be derived as follows:
According to Eq. (3.30), we have:

tand; = tané — tanp,, @3

where §; and »,, are the frictional and dilating components of §, respectively.
Usually, we expect »,, < 6. From Fig. 4.2, the net change in external work can be
expressed: When v, < &:

[AW], <5 = AWE — AW, (4.4)

_— Velocity
Characteristic e
Stress Characteristic

s Velocity Characteristic
Pop= PoCos 3

Ppy=Ppsin -]

tanB = ton8f+ tan,,

(Vor)y,  siny,

(Vo) sinla +uy)

Vo . sin(B-y-¢lsina
(Voity  sinla+B-lsinla+v,)

Fig. 4.2. Velocity characteristic along soil-wall interface and incremental displacement diagram for
energy dissipation analysis (passive pressure case).
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where AWy, is the increment of external work without considering the wall friction,
AW, is the energy dissipated by sliding friction on the interface between the wall
and the soil adjacent to the wall. According to Fig. 4.2, we have:

AWy = (Pp, tans cosa) (Vp) — [Ppn cos (g - a)] Vo 4.5)

where Pp, denotes the normal component of the passive earth pressure Pp acting
on the wall. The vector V is the horizontal inward translating velocity of the wall.
The vector Vy, is the relative velocity between the wall and the soil adjacent to the
wall, which makes an angle of »_, with respect to the soil — wall interface. Note that
Vo1 is not vertical here. From Fig. 4.2, we can also find that:

AW, = Pp, tan & (Vp), (4.6)

Using Egs. (4.3), (4.5) and (4.6) and Fig. 4.2, the expression in Eq. 4.4 becomes:

A = Py cos 5 | S0 [t 5 oosa 8 T W T B ]
[ W]yw <§5 = P COSs m ano cosa m - Slnvw
~ [tans — tanvw]}- Vop, @.7)

Note that if we take », = 0, i.e., the interface sliding is of purely frictional
characteristics, then we have:

o . [ sinc cos(B — ¢) o .
[AW], _o= - Pp sma[—sin(a i ¢)] Vo, 4.8)

If we take v, = 6, i.e, the interface material is perfectly plastic, then we have:

sina sind cosa sin(B — & — ¢)
174 = Saasnaienndiy B BE
(AW, = s Pp cosé sine + 6 [ cosd sin(e + 8 ~ ¢)] Vo (49

When o« = «/2, Egs. (4.7) to (4.9) give the same expression:
[AW]Vw = — Ppsind (Vy)), 4.10)

Therefore, for vertical walls, whether the soil — wall interface material idealized as
purely frictional or purely dilating material or not will not affect the result of limit
analysis, if the failure mechanism remains the same. However, since Eq. (4.7) can-
not be reduced to Eq. (4.8) when »,, > 0 and o # 7/2, the idealization of the inter-
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face material as a purely frictional material (»,, = 0) will, in most cases, introduce
certain error in the passive earth pressure analysis.

The same conclusion can also be reached for the active earth pressure case. For
proper evaluation of the interface energy dissipation and the change in external
work due to the introduction of the wall friction, the partial friction — partial dila-
tion model should be applied to the soil — wall interface.

4.4 Passive earth pressure analysis

In the formulation, a £-log-sandwich mechanism is adopted for a greater flexibili-
ty. Figure 4.3 shows the &-log-sandwich mechanism adopted for the passive pressure
analysis. Also shown is the related incremental displacement diagram. The vector
V, is the horizontal inward translational velocity of the wall. The vector ¥ is the
velocity of the mixed zone ABO, which is pointing upward at an angle ¢ away from

~ § - spiral (v<l<e)

rweemn{

Mo sin{a + vy, )
Vo cos(p+p+y-&)

Vo _ cosla+ép-¢)
Vo cos(p+dp+y, &)

vy Stan(2¢-8)

—}-(a«f—p-dz)

Fig. 4.3. Log-sandwich failure mechanism and incremental displacement diagram for passive earth

pressure analysis.
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the stress characteristics or the assumed failure surface AB. The vector 1701 is the
relative velocity between the wall and the soil adjacent to the wall, which makes an
angle of p,, with respect to the soil — wall interface according to the non-associated
flow rule.

Shown in Fig. 4.4 are the property of a &-spiral and the relationship of the incre-
ment displacements on the spiral. The two adjacent incremental displacement along
the £-spiral, Vj and Vj +1» can be related as:

Vier  cos2¢ — & — 20/2) @.11)

Vi cos(29 — £ + AB/2)

&-spiral

rs rieemmE OAB & OBC are two
adjacent segments

lrfcrememal ﬁoa
Displacements

in Aabe
[ a:18
Lb:lar«+(2¢-€-A2—9)

Lc=-—7;——(2¢—E+ATe)
Vp . cas(zé-f-%g )
v, “costzgh- €+ 1)
Vjer _ cos(2p-§- —429—)
Vi cos(2¢—€'A9 )

2
Fig. 4.4. Property of ¢-spiral and relationship between the associated incremental displacements.

or
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Consequently, we have:

(4.12)

Vn _ [cos2p — £ — y/2m)|n | 4 _2tan@é - tan(y/2m) u
V. |cosQé — £ + y/2m)| 1 — tan2¢ — £) tan(y/2n)

1

where V; is the initial incremental displacement at r = riand 6 = 0, and V), is the
final incremental displacement at r = r,and 8 = . As n approaches infinity, we
have:

vV, _ n
Yoo {1+ 2 tan(2¢ — &) tan(y/2n) }
V, o 1 — tan(2¢ — &) tan(y/2n)
= ,,hfréo {1 + %}n = e¥tan(2¢ — &) 4.13)

In general, the incremental displacement at any location 6 along the spiral can be
expressed as:

V= ef tan(2¢ - £) 4.14)

The relationships between 170 and 171, 1701 are shown in Fig. 4.3.

The incremental external work due to self-weight of the soil (or the potential
energy change) in each zone can be calculated by multiplying the vertical component
of the incremental displacement in that zone with the corresponding weight of the
soil.

The incremental external work for the triangular zone OAB in Fig. 4.3 is:

AWoap = = W1 1y,
2 sing cos(e — £ cos(e + £ — o — @) sin(x + »,)
=—ﬂVO o Toe ° Y 4.15)
2 sinfa cost cos(g + ¢ + vy, — &)
For the £-log-spiral zone OBC:
AWope = — j’y v, dv
v
_ yH? . cos¥(o — &) sin(a + »,) 1
2 %Gin2a cos?s cos(g + ¢ + v, — H (@ + 1)
{cos(a + £ ~ o — @) [e¥(a cosy + sin ¥) — a} +
sinfe + £ — g — ¢) [e?¥(a siny — cos ¥) + 11} 4.16)
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2 tanf{ + tan(2¢ — £). And for the triangular Rankine zone OCD:

where a
AWoep = ~ W3 Vyy

e cos(o ~ Hsinfe + 8 — g — ¥) X
vH? cos( + & — o — ¢ — P)sin(e + »,)

2 0sinzozcosécos(g + o +r, —Heosle + B+ E—- 90— ¥)
4.17)

where @ is the same as in Eq. (4.16). The incremental external work contributed by
the passive earth pressure is:

AWp, = Pp, V, (sina + tand cosa) = Pp Vjsin(a + 0) (4.18)

The internal energy dissipation incremental is only that contributed by the
soil —wall interface friction since ¢ = 0 for cohesionless soils:

ADn, = Pp,, tand; (Vy; cosvy,)

cos(x + £ — o — ¢)
cosie ¥ 6 F vy = B Vy cosy,, 4.19)

= Pp cosé (tané — tanw,)

By equating the total increment of external work to the total internal energy
dissipation, we have: ’

ZAW = LAD 4.20)
or
AWopp + AWope + AWoep + AWp = ADgy @.21)

Substituting Egs. (4.15)—(4.19) into Eq. (4.21) and making rearrangements, we
have:

Py = yyH? Kp 4.22)
where Kp is the coefficient of passive earth pressure and is given as:
cos(e ~ & sin(a + »,)

sin?a cos¢ [sin(a + 8) cos(p + ¢ + vy — )
— cosd (tand ~ tanw,) cos(e + £ —~ ¢ — ¢) cosp,]
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[sing cos(le + £ — 0 — ¢) +

_coste — & (cos(a + £ — g — ¢) [e¥(a cosy + siny) — al
(@? + 1)cos &
+ sinfe + £ — o — ¢) [e®¥(a siny — cosy) + 1])

cos(e — O sinfle + B — g — Y)cos(a + £~ g — ¢ — ¢)
+ cosfwa + B+ £— g — )

eNJ (4.23)

where ¢ is the same as defined in Eq. (4.16).

For practical purpose, the ¢ log-spiral mechanism is suggested to ensure that the
solution is strictly an upper bound to the exact solution. Also, by adopting the ¢
log-spiral, the analysis is simplified and the cost is reduced. This can be done by
assigning £ = ¢ in Eq. (4.23). The expression for K} after this simplification is:

cos(g — ¢) sin(a + »,)
Kp =

sin?a cos¢ [sin(e + 8) cos(g + »,) — cosd (tand — tanp,)
cos(e — @) cos v,)

[sing cos(a — @) + M(cos(a ~ 0)[eb¥ (b cosy + siny) — b]
b2 + Dcoso ]

+ sin(a — o)[e?¥(b siny — cosy) + 1])

(4.24)

. cos(g — @) sin(e + B — o — ¥) cos(x — o — z//)ebV’]
coslo + B+ — o — )

where b = 3 tano.
4.5 Active earth pressure analysis

The £ log-sandwich mechanism considered in the formulation for active earth
pressure analysis is shown in Fig. 4.5. The incremental displacement are also shown
in the figure. They are very similar to those in the passive pressure analysis except
that the wall movement, Vg is now translationally outward and V| and V; have
downward components rather than upward components. Similar to the formulation
for the passive earth pressure, the active earth pressure can be derived as:

Ka = [sinzoz cost [sin(e — 8) cos(@ — ¢ — vy, + £) ]
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Py = yyH? K, ' 4.25)
where K, is the coefficient of active earth pressure and is given as:

cos(e + &) sin(e — »,) «

+ cosd (tand — tanp,) cos(o — @ + ¢ — §) cosp,]

cos(p + &)

cosfe — g + ¢ — &)
cost (@2 + 1)

[sing cosfa — g + ¢ — b +

[e=% (- acosy + sing) + a] + sinfe — ¢ + ¢ — Hle~ ¥~ asiny —

cosy + 1])

. cos(op + §sin(w + B — g — Y)cosla — g — ¥ + ¢ — g)e—a¢]

cosfe + B—g— ¢ — &
(4.26)

€ spiral (v<€<p)

rs

. e—etunf

Vo

12'--(a-p+q5-£)

Vi

Y sinla-y,)

[
Vo  cos(p--y &)
Voi ] cos{a~p+p-£)
Vo cos(p-¢-vw+€)
ve Vie—etan(2¢—§)

Fig. 4.5. Log-sandwich failure mechanism and incremental displacement diagram for active earth
pressure analysis.
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where @ = 2 tan¢ + tan(2¢ — £) is the same as defined in Eq. (4.16).

Similar to the passive case, Eq. (4.26) can be simplified to that corresponding to
the ¢-log-sandwich mechanism for obtaining strictly upper-bound solution by set-
ting £ = ¢ in the equation. After this simplification, the expression becomes:

K. - cos(e + ¢) sin(e — »,)
AT [sinza cose [sin(e — &) cos(e — »,) ] x

+ cosd (tand — tanp,) cos(ar — @) cosyy]

cos(o + ¢)

cos(e — @)le~P¥(~ b cosy + siny)
cos¢ (b2 + 1)

[sing cos(a — @) +

+ b] + sin(e — @) [e~%¥%(— b siny — cosy) + 1])

cos(e + @) sin(e + B — o — ) cos(x — o — V) e-W]
" cos@ + B —@a— -9 “.2n)

where b = 3 tan ¢.
Note that in special cases in which »,, = 0, Eqs. (4.24) and (4.26) reduce to those
obtained previously by Chen and Rosenfarb (1973), as also given in Chen (1975).
There is one point worth mentioning. The Kp (or K,) obtained by the pure fric-
tion assumption, »,, = 0, and by the partial-friction partial-dilation assumption,
w < 0, will not necessarily be identical, even as & = /2 in which [AW], _ o=
[AW] . This is because the most critical failure mechanism may be dlfferent
somewhat in both cases. Nevertheless, the difference in the Kp (or K,) values ob-

tained in both cases may be small.

4.6 Comparisons and discussions

When the validity of the theoretical analysis is investigated, it is generally required
to compare results of the analysis with actual observations and measurements from
field or from model tests. Unfortunately, complicated boundary and loading condi-
tions in the field and uncertain scale effect in the model tests often make the direct
comparison impossible. Investigation of theoretical results relies highly on the com-
parison with solutions from currently accepted theoretical analyses.
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4.6.1 Comparison with slip-line, zero-extension line, and Coulomb limit
equilibrium solutions

Tables 4.2a and 4.2b show some comparisons of K A and Kp values obtained by
the proposed limit analysis method with those well-known Sokolovskii’s slip-line
solutions (Sokolovskii, 1965) and the recently developed zero-extension line theory
presented by Habibagahi and Ghahramani (1977). Results from the classical
Coulomb’s theory are also included. It is found that for the active case, limit
analysis method gives results equal or close to Sokolovskii’s solution. It is also

TABLE 4.2
a. Comparison of K,-values by various methods (83 = 0°)

Analytical a = 90° ¢ = 30°
methods

¢ = 20° ¢ = 30° o = 40° a = 70° a = 110°

]

§=0° 10° &§=0°15° & =10° 20° §d=0°15° & =0° 15°

Coulomb 0.49 0.45 0.33 0.30 0.22 0.20 0.47 0.48 0.20 0.19
Zero-extension  0.49 0.41 0.33 0.27 0.22 0.17 — - — -
Slip-line 0.49 0.45 033 0.30 0.22 0.20 0.52 0.49 0.23 0.21

Limit analysis  0.49 - 0.45 0.33 0.30 0.22 0.20 0.50 0.48 0.22 0.19

* Kn = Py/iyH?

b. Comparison of Kp-values by various methods (8 = 0°)

Analytical a = 90° ¢ = 30°
methods

é = 20° = 30° = 40° a=70° o = 110°

§=0° 10° &=20° 15° &=0° 20° §=0° 15° & =0° 15°

Coulomb 2.04 2.64  3.00 4.98 4.60 11.81 214 3.26 5.02 10.95
Zero-extension  2.04 2.55  3.00 4.65 4.60 9.95 - - - —
Slip-line 2.04 2.55 3.00 4.62 4.60 9.69 216 2.16  5.06 8.45

Limit analysis ~ 2.04 2.58 3.00 4.70  4.60 10.07  2.27 3.16 5.09 8.92

* Kp = Pp/iyH?



126

found that when the wall is not perfectly smooth (8§ > 0), the limit analysis tends
to give higher K,-values than the zero-extension line theory does. The Coulomb’s
solution only seems to agree quite well with the Sokolovskii’s solution for the active
case when the wall friction is low and the wall is vertical.

For the passive case, limit analysis solution tends to slightly overestimate the Kp-
value when compared with the Sokolovskii’s solution, if the Sokolovskii’s solution
is considered to be ‘close-to-exact’. The zero-extension line theory gives ‘better’
results than the limit analysis does in this case. As is well recognized, the Coulomb’s
results show overestimation of the Kp-values in most cases, especially when the wall
friction is high and the interface is not vertical. This can readily be seen from Fig.
4.6 which shows the typical critical failure surfaces reflected in the limit analysis and
in the Coulomb’s analysis of active and passive earth pressures. It is found that in
the passive case, the critical failure surface of Coulomb is much more extended than
that of limit analysis. The Coulomb’s approach therefore gives higher Kp-values
than the limit analysis does. The fact that Coulomb solution is a reasonable approx-

a=90°, B=0°
¢=40°, B=20°

— Coulomb
fl=63°
Ka=0.199

~— Limit Analysis
p=22° ,y=4°
K,=0.200
(a) ACTIVE STATE

S a=90°,83:0°
PQ\\\\ 4):400'8_._200
~
\\ ~ =18°
\ Kp=11.81
™
z*® Limit Analysis
- p=4T°, Y=18°
Q 2 ¢ K,=10.07

(b) PASSIVE STATE

Fig. 4.6. Typical critical slip surfaces for active and passive states of failure.
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imation for the active case is obvious since the critical surfaces for both analyses
are almost identical.

It should be pointed out here that the critical failure surfaces reflected in the limit
analysis or the limit equilibrium method for collapse load estimation are not
representative of the actual failure surface. The critical failure surfaces reflected in
these analyses are stress characteristics. They are the same as velocity characteristics
or the actual failure surfaces only when the soil mass is perfectly plastic and observes
the associted flow rule during plastic deformation. Soils are non-associated flow
rule material and the stress characteristics are different from the velocity
characteristics along which actual failure occurs (Fig. 3.26). Hence, the critical sur-
faces reflected in the collapse load analyses are fictitious ones. When prediction of
the failure surface is of importance, model observation is preferred. Attention
should also be paid to backcalculating the mobilized strength of a failed soil mass
based on the actually observed failure surfaces and the classical stability analysis
techniques. Even if the stability analysis takes into account the non-associated flow

o
o

;: "IH

a=90° B=0°

Kag = RC0SB/Y oH'

o
»

o
o

Coefficient of Active Eorth Pressure {Normal Component), Kg,

02 E

£
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1

ol . Bmax

— Limit Anclysis
* Caquot and Kerisel (1948}
O I 1 L 1 1 1

o 8 10°0 185 20 25° 30" 35 40 45
Angle of Wall Friction , 8

Fig. 4.7. Comparison of K, -values by limit analysis with Caquot and Kerisel’s results (o = 90°, 8 =
0°).
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characteristics of the soils, back calculation based on the actual failure surface will
give strength parameters ¢, and ¢ rather than the Mohr-Coulomb’s ¢ and ¢ as
discussed earlier in Chapter 3. This should be carefully considered in evaluating the
field behavior of the stability of a soil mass.

4.6.2 Comparison with Caquot & Kerisel’s method (vertical wall and horizontal
backfill)

Some comparisons of K, (K, corresponding to the normal component of P,)
and Kp values with the well-known earth pressure tables of Caquot and Kerisel
(1948) are shown in Figs. 4.7 and 4.8. The agreement is quite good for this particular
case in which the wall is vertical and the backfill is horizontal. The Kp, — tan &
relations for a vertical wall with a horizontal backfill by several well-known
theoretical methods are compared with that obtained by the limit analysis (Fig. 4.9).
The limit analysis tends to give a little too high of Kp-values when the wall is fairly

50 r . . . . . : .
-\‘40 B T e . /'/_
@ _ane - A° 8
g a=90" B =0 mex |/

2 Ke= Pp /47 H? .
a

£30 4
o ——e Limit Analysis

2

g »—— Caquot ond Kerisel

o

“20 (1948) il
[«]

<

Qo

.

‘@

(<]

(Sl o] -

O 1 1 L 1 1 1 1 1

¢ 5 100 155 20° 25° 30° 35 40° 45°

Angle of Wall Friction, 8

Fig. 4.8. Comparison of Kp-values by limit analysis with Caquot and Kerisel’s results (@ = 90°, 8§ =
0°).
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Fig. 4.9. Comparison of Kp,-values by limit analysis and some available theoretical methods.

rough. However, the results are, in general, acceptable for this particular case of
vertical wall and the horizontal backfill from the practical point of view.

4.6.3 Comparison with Caguot and Kerisel’s and Lee and Herington’s methods
(general soil-wall system)

In many cases, the retaining wall may not be vertical and the backfill is possibly
inclined. To see if the limit analysis is acceptable for solving general retaining wall
problems, comparisons of results for the passive pressure case, which is more critical
than the active case, are made with some results obtained by Lee and Herington
(1972) in which the angle of repose of the wall, «, is 70° and the inclination of the
backfill, B, ranges from 0° to —20° as shown in Fig. 4.10. Some Sokolovskii’s and
Terzaghi’s (Terzaghi, 1943) logarithmic spiral solutions are also included. The
agreement among them, although they may not be as good when @ > 90° and 8
is high, is remarkably close in the present case with ¢ = 30° and a = 70°.

Some comparisons of results of limit analysis for ¢ = 45°, § (3)¢ and
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Fig. 4.10. Comparison of results of limit analysis with plasticity solutions by Lee and Herington (1972).
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Fig. 4.11. Comparison of K,-values by limit analysis with Caquot and Kerisel’s results B > 0°).
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Fig. 4.12. Comparison of Kp-values by limit analysis with Caquot and Kerisel’s results B > 0°).

a # 90°, 8 # 0° with those given by Caquot and Kerisel (1948) are shown in Figs.
4.11 and 4.12. It is found that the limit analysis gives higher K,- and Kp-values
than Caquot and Kerisel (1948) does. The difference, however, is very small in most
cases except when the wall is inclined toward the backfill (« = 110°) for the passive
case and away from the backfill (@ = 70°) for the active case.

The fact that the Kp-values obtained by the upper-bound limit analysis are higher
than those obtained by Caquot and Kerisel (1948) is reasonable. This is because the
solution of Caquot and Kerisel based on the equation of equilibrium may be con-
sidered as a lower bound. The exact solution is probably somewhere in between. The
reason why the K, -value obtained by Caquot and Kerisel is lower than that given
by the limit analysis is, however, not clear. In the active case, the Caquot and
Kerisel’s approach should give higher X a-values. The fact that the higher the K A"
value the closer the value is to the exact solution suggests that the limit analysis
method gives better results than Caquot and Kerisel does in the active earth pressure
determination.

In the passive pressure case, the exact Kp-value is probably somewhere in be-
tween those determined by the limit analysis method and by the Caquot and
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Kerisel’s method. The difference between them, however, is small even when the
wall is not vertical. For practical applications, the results of limit analysis is accep-
table.

4.6.4 Effect of pure-friction idealization of interface material

Analyzing the K, and Kp values for the general retaining wall problems shows
that even when »,, is as high as 15° for a soil — concrete interface, the solutions ob-
tained with and without pure friction idealization are almost the same. The values
obtained by the partial friction and partial dilatation model, are higher than those
obtained by the idealized models for the passive case and lower for the active case.
Nevertheless, it should not be misinterpreted as that the idealized models give ‘bet-
ter’ upper bounds. The values obtained by assuming »,, = 0 are not, strictly speak-
ing, upper bounds, because these models did not follow the normality condition.

Tables 4.3a and 4.3b show the errors introduced by the pure friction idealization
of the interface material. The maximum errors are approximately 2.5% and 0.9%
for the passive case and the active case, respectively. Practically, they are within the

TABLE 4.3
Error on K,-values introduced by pure-friction idealization of interface material

¢ = 45°, », = 15°, o = 70° o = 90° o = 110°
8 = ¢ = 39.9° - :
Ky Error (%) K, Error (%) Ky Error (%)
B = 0° 0.372 0.81 0.171 0.50 0.065 0.31
B = 9° 0.421 0.71 0.186 0.43 0.069 0.15
B = 18° 0.484 0.83 0.205 0.44 0.073 0.14
B = 27° 0.571 0.88 0.233 0.39 0.081 0.25

b. Error on Kp-values introduced by pure-friction idealization of interface material

¢ = 45°, p, = 15°, o = 70° a = 90° a = 110°
5 = ¢ = 39.9°
Kp Error () Kp Error (%) Kp Error (%)

= 0° 14.38 —2.23 35.41 -1.81 111.81 -0.56
g= 9° 24.41 -2.41 60.28 —1.68 191.31 —0.56

B = 13.5° 31.45 —2.48 77.78 -1.57 247.25 —0.49

g = 18° 40.24 -2.48 99.69 -1.53 317.14 ~0.41

B = 22.5° 51.17 -2.10 126.93 —1.63 404.01 -0.52
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acceptable ranges. It is therefore suggested that the pure friction idealization which
gives a ‘safe’ estimation of the upper bound, can be adopted for practical purposes.

4.7 Some practical aspects

For an actual design work, at least four practical aspects must be considered.
They are the loading and strain conditions, the soil — structure interface friction, the
progressive failure and scale effect, and the cohesion and surcharge effects.

4.7.1 Loading and strain conditions

The soil parameters for analysis and design are generally obtained by testing in
laboratories soil samples taken from the ground. For the results from a test to be
useful, not only the initial stress condition of the sample representing an element
in the ground of interest should be recognized but also the loading and strain condi-
tions (or the stress paths) should be carefully simulated to those to be expected in
the field.

Lateral earth pressures acting on long retaining walls are generally considered as
plane strain problems. For lateral earth pressure analyses, the strength parameters
should therefore be obtained from plane strain compression (active case) or plane
strain extension (passive case) test. However, in many cases, only triaxial compre-
sion test or direct shear test results rather than plane strain test results are available.
Modification of the strength parameters is therefore frequently required before they
can be entered into calculation.

A relationship between the triaxial ¢-value, ¢, and the plane strain ¢-value,
P> CAD be derived from the corresponding stress-dilatancy relations proposed by
Rowe (1969a).

From Rowe (1962), the stress-dilatancy relation for the triaxial and plane strain
loading cases can be expressed as:

0y/0y = D tan®(45° + § ¢p) (4.28)

where o; and aé are the principal stresses, D represents the dilatancy and is equal
to (1 — dv/de,), in which dv is the volume decrease per unit volume and de, is the
axial strain due to particle slips, and ¢, is the frictional component of ¢ with its
value varies from ¢#, the angle of mineral-to-mineral friction, to ¢.,» the angle of
internal friction at the critical state.

In Eq. (4.28), Rowe (1969a) suggested that D can be taken as 2 and ¢¢ can be
taken as ¢, in a triaxial compression test if the sand tested is at its densest state.
The upper limit of the stress ratio corresponding to the densest state can then be ex-
pressed as:
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o/oy = 2 tan2(d45° + 19,) ' o (4.29)

Also, by taking D = 1 and ©¢ = ¢, for the case that the sand is at its loosest state;
the lower limit of the stress ratio corresponding to this state can be taken as:

o}/0; = tan®(d5° + o) | (4.30) -

For the plane strain compression case, Rowe (1969a) suggested that D can be
taken as 2 for the densest state and 1 for the loosest state as in the triaxial compres-
sion case. He also suggested that ¢; can be taken as ¢, for sand at any relative den-
sity. Hence, the upper and the lower limits of the stress ratio for the plane strain
case can be expressed respectively as:

0/0y = 2 tan®(45° + i¢.,) - (4.31)
and
0/03 = tan®(45° + i) (4.32)

The stress ratios corresponding to the intermediate densities can be obtained by in-

terpolation.
In the general stress-dilatancy equation, Eq. (4.28), D can be expressed in terms
of the angle of dilation, », as:

D = tan?(45° + ip) . 4.33)
Here, v, or consequently, D, is dependent on the relative density (RD), the stress
path, and the strain condition. Analysis of the data obtained by Cornforth (1964)
for medium-to-fine, well-graded blasted sand reflects that D for both the plane
strain compression and the triaxial compression situations can be approximated by:

D = 0.64(RD)?> + 0.36(RD) + 1.0 (4.34)

The value of ¢; presented in Eq. (4.28) is also dependent on the relative density,

the stress path, and the strain condition, in general, although ¢; was found in-

dependent of the relative density and equal to ¢, in the plane strain compression
and extension cases. According to the results obtained by Rowe (1962) for a
medium-to-fine sand, the value of ¢, for the triaxial compression case can be ap-
proximated by:

¢; = ¢, + [1 — 0.463(RD) - 0.537(RD)2](<1>Cv - ¢) (4.35)
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Noticing that 0;/03 = tan® (45° + i¢) and by combining Egs. (4.28) to (4.33),
the general expressions for the peak triaxial compression and the peak plane strain

“compression ¢-values can be expressed, respectively, as:

) D tan?(45° + o — 1
b = Sm“< ) (4.36)
D tan?(45° + i¢p) + 1
and
) D tan?(45° + j¢.,) — 1
bps = sm“( ) (4.37)
D tan?(45° + i¢.,) + 1

where D is given by Eq. (4.34) and ¢ is given by Eq. (4.35). Hence, ¢, and q.’>ps
can be related as:

¢ps =17 ¢tx

where

D tan?(45° + i¢.,) — 1
sin—! )

D tan®(45° + ¢,,) + 1
7 = = 1.0 , (4.38)
D tan?(45° + i¢p) — 1
sin‘1< )

D tan?(45° + i¢p) + 1

They can also be related by tan bps = M tan Py, Some results plotted as 4 and 7,
vs. (RD) for ¢u = 15° to 35° are shown in Fig. 4.13 for reference. A linear approx-
imation between ¢, and d)u will be given later in Eq. (4.41).

Since it has been reported (Rowe, 1969a) that in both plane strain compression
and extension, ¢; = ¢, Eq. (4.38) originally derived for the compression case, is
also valid for the extension case, although the values of ¢ and D may be different
from those given by Eqs. (4.34) and (4.35). Analysis of Cornforth’s results (Corn-
forth, 1964) shows that for the triaxial extension test, D can be approximated by:

D = 1.23(RD)® — 0.79(RD)? + 0.49(RD) + 1.0 =< 1.93 (4.39)

This gives D-values somewhat lower than those estimated by Eq. (4.34) for given
relative densities. This tends to indicate that there is more dilatation in the compres-
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sion test than in the extension test. The angle of dilatation, », of a given soil is
therefore expected to be larger if sheared under triaxial compression condition than
if sheared under triaxial extension condition. Although, there is no information
available on the plane strain extension D-value, it is practically accepted that Eq.
(4.39) is also valid for this case in lieu of the fact that Eq. (4.34) is reported to be
equally valid for both triaxial and plane strain compressions (Rowe, 1969a).

As far as ¢ is concerned, it has also been reported that for both the triaxial com-
pression and triaxial extension cases, ¢p = ¢#, when the soil is in the densest state,
and, ¢; = ¢, when the soil is in the loosest state, However, there is no adequate
information so that a relation similar to Eq. (4.35) can be developed for soils at in-
termediate density for the extension case. Since D or » for the triaxial extension case
is different from that for the triaxial compression case, it is expected that ¢ is also
different for the two cases. Equation (4.38) is therefore not strictly applicable to the
extension case, since ¢; is an indeterminate value.

Another fact worth noting is that in the active earth pressure case, failure is induc-
ed by lateral unloading (or plane strain compression), whereas in the passive
pressure case, failure is induced by lateral loading (or plane strain extension). As
has just discussed, Eq. (4.38) seems not strictly applicable to the passive case. This
is because under unloading shear, the sample generally has more ‘brittle’ behavior.
Consequently, both ¢ and D may be different from those given by Eqgs. (4.34) and
(4.35) as developed for the loading case. Fortunately, the variations of both ¢ and
D are expected to follow quite similar trends for given loading and strain conditions.
Unless complete information can be obtained, Eq. (4.38) with D and ¢ given by

Eqgs. (4.34) and (4.35) is suggested for estimating the corresponding factor for the __ .

¢-value to be used in the analysis of active and passive earth pressures.
In case that only the direct shear ¢-value, ¢4 18 available, the correction can be
made based on the equation developed by Rowe (1969a):

tangy, = tandzps cosd,, (4.40)

For ¢” = 15° to 40°, which covers all non-metal materials, the experimental
data reported by Horne (1969) reflect that the relation between ¢, and ¢, can be
fairly approximated by:

oy = 22.5° + 0.9(¢, — 15°) 4.41)

For most earth materials, d’u = 25° to 30°, the value of ¢_, ranges approximately
from 31.5° to 36°. Hence, once the type of minerals forming the soil and the relative
density of the material is known, both ¢, and ¢4 can be properly corrected to give
¢ps that can be adopted for the theoretical analyses.
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4.7.2 Soil —structure interface friction

As pointed out by Davis (1968), the strength parameter ¢ on the velocity
characteristics in a soil mass is different from the Mohr-Coulomb ¢-parameter. If
the Mohr-Coulomb value for the plane strain case is ¢ps and the angle of dilatation
is » for a soil mass, the corresponding ¢-value on the velocity characteristics in the
soil mass is given as Eq. (3.39b), i.e.:

sing__ cosy
bs ) (4.42)

— -1
= tan T L,
x (1 - smqsps siny

It is noted from the expression that ¢, < ¢ps. On the soil-structure interface,
which is a velocity characteristic if the wall friction is fully mobilized, the maximum
d-value corresponding to the perfectly rough, soil-to-soil sliding situation is 8nax =
¢y.. Hence, the angle of wall friction, §, is always smaller than the Mohr-Coulomb
¢-value, d>ps, unless when » = Ppss in which case the velocity characteristics is the
same as the stress characteristics. The value of », if not measured, can be calculated
from Eqgs. (4.28) and (4.33), since ¢, can be estimated from Eq. (4.35) if the relative
density of the material is known, and according to Eq. (4.33), the » can be written
as:

vy =sin~ ! [(D - /D + 1)] (4.43)

- In general, the value of 6 can be evaluated by a direct shear testing with the soil
to be used as the backfill sliding over the wall material. The angle of dilatation for
the interface material, »,, can also be measured in this manner. For obtaining strict
upper bounds by the limit analysis method, both é and »,, are required, since a non-
associated flow rule should be applied to the interface material. However, the value
of vy, is quite often not given, the following rules are suggested for estimating »,,

(a) For ‘sand — smooth steel’ interface, § < b, is probably the case. Purely frlc-
tional soil-wall sliding predominates the 1nterface movement. In this case, »,, can
be taken as zero.

(b) For ‘sand —rough steel’ interface, ¢# =< 8 = ¢, is the possible situation. A
linear interpolation between »,, = 0, corresponding to § = ¢u’ and the v -value
corresponding to & = ¢, is suggested. Similar to Eq. (4.40) as proposed by Rowe
(1969a), the relation between 8, the angle of wall friction in a direct shear test, and
the corresponding plane strain value, 6p5, can be approximated by:

tand = tand,; cosd;, (4.44)
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where 6., is the 8-value corresponding to v, = 0 case. Note that for the constant
volume test, »,, = 0 and 6 = 0gy- Equatlon (4.44) reduces to tan § = sm6
sind_,. But since § = ¢# is assumed as v, = 0, we have tanqb = sind,, Conse-
quently, Eq. (4.44) becomes:

tané = tan6ps V1 - tanzqsﬂ (4.45)

Furthermore, similar to Eq. (4.42), 6, éps and »,, can be related as:

sind_. cosv.
5 = tan~! (“—?S B ) (4.46)
1 — sind;, sinp,,

By assuming 6 = ¢, and solving Eqs. (4.45) and (4.46) simultaneously, the Vo
value corresponding to § = ®.y» denoted by v, can be obtained. The vy~value for
a given § can then be estimated by:

© - 8,
y, = . (4.47)

v G — 8

(c) For ‘sand — smooth concrete’ interface with ¢y = 0 =< ¢, the movement is
approaching from soil-wall sliding to soil-soil sliding. In this case, vy, < v. Also,
the 6.,-value is controlled practically by the sand grain-to-sand grain sliding and

= ¢, can be assumed. By solving Eqs. (4.44) and (4.46), considering Oy
¢cv, the »,-value can be reasonably estimated.

(d) For ‘sand—rough concrete’ interface, & can be assumed as equal to s
although Brumund and Leonards (1973) reported that § was as high as the triaxial
¢-value for the same kind of interface. The movement is practically a soil-to-soil
sliding and the »-value can be taken as ».

4.7.3 Progressive failure and scale effect

In a direct application of the Mohr-Coulomb ¢-parameter, Ppgr 1O plane strain
stability problems, we implicitly assume that the strength of the s01l along the failure
surface is fully mobilized everywhere along the surface. This is probably the case
in most laboratory tests in which the tested specimen is assumed representative of
a soil element in the soil mass. This is because the specimen is generally so small
that the strain is practically considered uniform along the failure surface, although
boundary restrains do exist in almost all tests. In a soil mass, the strains along the
failure surface are seldom uniform and failure of the soil mass is generally of pro-
gressive nature. At the instant of failure, the maximum shearing resistance available
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on the failure surface must be, on average, somewhere between the peak state and
the ultimate state as explained before (see Fig. 3.24). In most stability analyses, such
as the limit analysis and the limit equilibrium method, the overall equilibrium of the
soil mass involving deformation is considered. An average mobilized ¢-value, s
rather than the peak ¢-value, ¢ps, should be adopted in the analysis.

The selection of ¢, should be based on the progressive failure consideration so
that the ¢-value so chosen is corresponding to the average strain or the average stress
level in the soil along the failure surface. This can only be obtained from the com-
parison of the theoretical analysis with the model test results. However, it involves
another uncertainty, the scale effect, when applying the model test results to the
field. This is because different soil masses involved in models of different size will
result in a different extent of the progressive effect. Consequently, the Ppn-value
that fits the theories will be different if the models are of different scale. Further-
more, both the failure mechanism involved and the interface roughness have a great
influence on the extent of the progressive failure in a soil mass. Therefore, in the
selection of proper ¢ -value for design purpose, problem characteristics (e.g., ac-
tive or passive case in lateral earth pressure problems) and interface roughness as
well as the size of the structure (e.g., wall height in lateral earth pressure problems)
should be considered.

Rowe (1969b) recommended a method of considering the progressive failure ef-
fect in the selection of ¢ -value for the stability analysis of granular soils. With the
assumption that when the wall is perfectly rough § = Bps and ¢, = ¢, where
¢ 50 1S the maximum ¢-value to fit the current failure theory. He introduced a so-
called ‘progressive index’ Ko It is defined as:

¢ps - ¢mo
= 4.48
Fo ¢ps = by ( )

He suggested, based on model studies on dense sands, that by at field scales can be
taken as 0.4 for active pressure and 0.8 for passive pressure for practical design bas-
ed on classical failure theories. He also claimed that these values are applicable to
sands at intermediate densities.

In order to look more closely at the effect of wall height, H, on the ;Lp-value,
which has a great influence on the result of stability analysis, especially for the
passive pressure case in which the progressive failure effect is great, some test results
on models of different size are analyzed. Very limited data from Rowe and Peaker
(1965), Rowe (1969b), and Kerisel (1972) are available for this purpose for the
passive pressure case. As discussed previously, the maximum possible §-value for a
perfectly rough wall corresponding to a soil-to-soil sliding condition should be equal
to ¢y. It is therefore proper to redefine ®mo a8 the ¢ -value corresponding to
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Onax = ¢y situation, which is a perfectly rough situation for the case of concrete
walls and sand backfills. For the case of steel walls and sand backfills, the maximum
possible value of 8 may be taken as the ¢, -value corresponding to the pure friction
case (v = 0) since the movement is essentially soil-to-wall slippage. In this case,
Smax = tan~! (sing,,) from Eq. (4.42). The ¢_-value corresponding to this situa-
tion is taken as ¢, for the steel wall case. The results of analysis based on these
redefined ¢ -values are plotted as By, Versus H as shown in Fig. 4.14 for the cases
of steel wall and concrete wall. A similar relation can be developed from model tests
for the active earth pressure case, although the progressive effect is less significant
in this case.

It should be noted that the ¢ -value backcalculated from the observed failure
surface is only an approximation, since the surface is not necessary the most critical
one. Also, even if the non-associated characteristics of soils are considered, the ¢-
value backcalculated should be equal to ¢, which is a value not larger than ¢.

4)
Concrete Wall
09t Soil-to-Seil Sliding
. . ¢ Sindps COS ¥
3 Smax ¢K] oo fanil I—sin¢,.sinv)
RS
1
o (3)
2 e (4)
~ 08 —_———0
—
~S-g - /X
t
& ) Steel Wall
= Soil-to- Wall Siiding
n i, .
£ o7 / Bmax = ¢K] Voo tan (sin ¢.,)
&
-
06 - l @ (1) Tschebotarioff & Johnson
2 @ (1953)
o {2) Rowe & Peaker (1965)
g (3) Rowe (1969 b)
o ) ) Tcheng (Kerisel, (972}
05 1 t )
0] 1.0 20 30 4.0

Wall Height , H, meters

Fig. 4.14. Progressive index as function of wall height for passive translational wall movement case.
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Hence, this discrepancy should be recognized in interpreting“} the information on the
progressive index as function of wall height from model test results.

It was found by Rowe (1969b) that the ¢,-value of a soil mass subjected to active:

pressure or passive pressure is approximately equal to its corresponding triaxial ¢-
value, ¢, if the wall is perfectly smooth, i.e., § = 0. Furthermore, it was found
that the ¢-value decreases linearly as the friction component, tan §, increases, with
its ultimate value equal to ¢ ,. Based on these two findings, the ¢ -value cor-
responding to an arbitrary wall friction, 8, can be approximated by:

tan &
L= ¢r —
Om % tan Gy,

where ¢ can be estimated from Fig. 4.14 or similar relations and from Eq.
(4.48). In practice, the 6-value, which is a function of the wall movement, may not

a. Active Case

VA A
Vo
Vi, sine Nor . cosfa-p)
Vo cosp Vo cosp

Vs =V, g ¥1ord
b. Passive Case

Fig. 4.15. Log-sandwich failure mechanisms for lateral earth pressure analyses in c-¢ soils subjected to
uniform surcharge.

(Px = Pmo) a (4.49)
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be alWays full mobilized: By Eq. (4.49), a proper ¢p-value corresponding to the
given é-value can be selected for analysis and the lateral pressures can then be pro-
perly estimated. :

4.7.4 Cohesion and surcharge effects

In many cases, the backfill may possess cohesion although free-draining material
is generally preferred. Presence of surcharge on the slope of the backfill is not un-
common either. Both cohesion and surcharge have certain influence on the lateral
earth pressures. Their effects can be included in the lateral earth pressure evalua-
tions.

The versatility of the upper-bound limit analysis enables the effect of cohesion
and surcharge being included in the calculations with rather little difficulty. For
practical purposes, the soil-wall systems and their associated mechanisms of failure
with pure frictional interface idealization as shown in Fig. 4.15 are considered. By
including the internal energy dissipations along AB, BC, CD and in the radial shear
zone OBC as contributed by the cohesion component, represented by the c-
parameter, the dissipation along the interface OA as contributed by the adhesion
¢, and the potential energy change or external work induced by the surcharge, q,
acting on OD in the analysis for cohesionless soils as stated in Section 4.4, the lateral
earth pressures for the generalized case can be evaluated. Detailed derivation for the
case of ¢, = 0 can be found in the book by Chen (1975). If the adhesion is express-
ed as a ratio of ¢, e.g. ¢, = Ac, the lateral earth pressures for a mixed soil backfill
with uniform surcharge can be expressed as:

Py = 3y H2 (Na,) + gH(N,) + cH(Ny) (4.50)
Pp =iy H? (Np,) + gH(Npy) + cH(Np,) 4.51)
where
Npy = — 5 coste + ¢) [sing cos(e — @) + cos(e + ¢)2

sin“a cos(g — &) cos¢ cosp(l + 9 tan~¢)

[cos(e ~ )3 tang + e~ tand(_3 tand cosy + siny))

+ sin(e — @) {1 + e~3¥1tand(—3 tan¢ siny — cosy)}]

N cos(g + ¢)cos(e — o — Yy sin(a + B — o — P~V ‘a“¢] @.52)
cosle + B — ¢ — o — )
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N. = _ cos(e + ) cosl — g — Yye~ 29 tang @.53)
A9 sinorcos(o — 8) cos(e + B — ¢ — 0 — )
: -1 A cos(e — @) .
Nac = sina cos(p — 6)[ sino + sine
N cos(g + ¢) sin(e + f — g — Y)e—2¥ tand
cosfcg + B — ¢ — o0 — )
_ cos(o + ¢) (e tand — 1)] 4.54)
sing '
Np, = coste ~ ) [sing cos(a — @) + cosle ~ 9)
sina cos(p + 6) cose cose (1 + 9 tan?g)
[cos(e — ) {—3tang + &3V 'a88(3 tane cosy + siny))
+ sin(e — @) {1 + €3 1a%(3 tang siny — cosy)]
L cose — @) cos(a ~ @ — ¥) sina + B — o — Y)Y ta"¢] 455
cosle + B+ — o — ¥)
_ cos(g — @) cos(o — @ — y)e¥ tang : S : S
Neq sino cos(g + ) cos(e + B+ ¢ — g — ) (4'56)
_ 1 N\ cos(a — @) .
Nee = G costa + a)[ sne 0@

cos(g — @) sin(e + B — g — Y)e2¥ tand

+ cosfe + B+ — o — )
N cos(p — @) ‘(ez'p tané _ 1)] 4.57)
sing

It should be noted that the value of the soil — wall adhesion, ¢, is a function of
both soil properties and characteristics of wall face in contact with the backfill. The
maximum possible adhesion is ¢, as given in Eq. (3.39a), when there is a soil-to-soil

interface sliding. For an idealized purely frictional soil — wall interface, » = »,, =
0, the adhesion can be defined, according to Eq. (3.39a), as:
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¢, = [g], ¢ = ¢ cosdy, B (4.58)
or

C .
A =_?a < cosd,, (4.59)

The actual value of ¢, or A should be carefully evaluated by a direct shear test
with the backfill material placed over the wall material.

If the progressive failure effect is taken into consideration, the c-parameter
should be modified. However, little is known on this aspect. Assuming that the c-
parameter varies in the same manner as the coefficient of internal friction tane does,
the average mobilized c-value, Cm» €an be estimated as;

_ tang,
‘“ = on Sos Cps (4.60)

where Cps is the c-parameter corresponding to the plane strain condition. For prac-
tical purposes, the cps-value can also be taken as the triaxial ¢-value, Cy» Since the
cohesion characteristics of a soil, like pure friction, is almost independent of loading
and strain conditions. If only the direct shear c-value, cg, is available, Cps Can be
estimated by Eq. (3.39a) with ¢ replaced by bpsr € replaced by Cpsr and ¢, replaced
by ¢y, if v is known.

To obtain the most critical values of P, and Pp, maximization and minimiza-.

tion, respectively, are required. The optimization should be performed with respect
to the entire equation rather than to the individual terms in Eqgs. (4.50) and (4.51).
That is:

(PpA)max = Max [3y H? (NA'y) + qH(NAq) + cH(N, )] , 4.61)
(Pp)min = Min [y H2 (Np,) + gH(Npg) + cH(NpJ)] (4.62)

In this chapter, we have showed why the upper-bound limit analysis method can
be applied to cohesionless soils for obtaining reasonably accurate estimates of the
lateral earth pressures despite the fact that the normality condition required in the
limit analysis is not actually observed in cohesionless soils during plastic flow. Both
theoretical justifications and actual comparisons of the results of analysis confirm
this applicability. By properly taking into account the four practical aspects discuss-
ed in this section, the upper-bound limit analysis method can be adopted for the
analysis and actual design of rigid retaining structures (Chen and Chang, 1981).

By the same principle, the analysis can also be extended to include the earthquake
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3forces by introducing a seismic coeff1c1ent and by usmg the pseudostatlc analy51s
concept. This will be presented in Chapter 5.
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Chapter 5

RIGID RETAINING WALLS SUBJECTED TO EARTHQUAKE
FORCES*

5.1 Introduction

Although seldom reported and documented, numerous failures of rigid retaining
walls in areas of intensive seismic activity have been attributed to earthquake ef-
fects.

Earthquake can endanger the stability of a soil — wall system by either increasing
the driving forces acting on the wall or by reducing the resistance of the backfill
and/or the foundation soils. For most moderate earthquakes in which the seismic
acceleration is no more than 0.3 g, the mechanical properties of most soils will pro-
bably not change considerably (Okamoto, 1956). It can be practically assumed that
there is no strength reduction in the foundation soils that controls the movement
of the wall and in the backfill that influences the magnitude of lateral earth
pressures, unless that the soil is cohesionless, not very permeable, and submerged
under water. Hence, the assessment of seismic lateral earth pressures or changes in
lateral earth pressures as the result of an earthquake is of more practical significance
in most aseismic designs of retaining walls.

Since the earthquake motion is of an oscillatory nature, dynamic analysis of
lateral earth. pressures is certainly more realistic. However, dynamic analysis in-
volves many uncertainties, e.g. the extent of soil mass effectively participating in
vibrations, that are not yet wholly understood. Furthermore, providing the
necessary information for a dynamic analysis and performing such an analysis are
relatively expensive. Quasi-static analysis using the seismic coefficient concept is
therefore of greater practical value in many cases, although the assessment of the
seismic coefficients still relies highly on past experience.

The well-known Mononobe-Okabe analysis of seismic lateral earth pressures pro-
posed by Mononobe and Matsuo (1929) and Okabe (1926) is generally adopted in
current practice for aseismic design of retaining walls. The analysis is a direct
modification of the Coulomb wedge analysis. In the analysis, the earthquake effects
are replaced by a quasi-static inertia force whose magnitude is computed on the
basis of the seismic coefficient concept.

* This chapter is based on the Ph.D. thesis by M.F. Chang (1981) and the paper by Chang and Chen

(1982).
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As in the Coulomb analysis, the failure surface is assumed planar in the
Mononobe-Okabe method, regardless of the fact that the most critical sliding sur-
face may be curved. Similar to Coulomb’s, the Mononobe-Okabe analysis may
underestimate the active earth pressure and overestimate the passive earth pressure.
In the passive earth pressure case in which the most critical sliding surface is usually
curved, the overestimation may be very serious, especially when the soil — wall inter-
face is rough and the backfill surface is steeply sloped.

The Mononobe-Okabe analysis has been further modified by Prakash and Saran
(1966) for assessing seismic active earth pressure for walls retaining horizontal c-¢
soils. Uniform surcharge and tension cracks at top of the back fill are included in
their formulation. However, the seismic acceleration is assumed to act in the
horizontal direction and the failure surface is assumed planar as in the Coulomb or
Mononobe-Okabe analysis.

In this chapter, the upper-bound method of limit analysis applied previously to
lateral earth pressure calculations is extended to include the earthquake effects.
Translational wall movement and log-sandwich mechanism of failure as suggested
by Chen and Rosenfarb (1973) are assumed in the formulation. Quasi-static
representation of earthquake effects using the seismic coefficient concept is
adopted. The direction of seismic acceleration is taken as arbitrary and the most
critical direction is found by iteration.

Earthquakes have unfavorable effects of increasing active and decreasing passive
lateral earth pressures. To investigate how the lateral earth pressures are affected,
extensive numerical results based on the limit analysis method reported by Chang
and Chen (1982) are presented in dimensionless forms. For the active earth pressure
case, the coefficient of seismic active pressure, K,, is adopted. For the passive
earth pressure case, the coefficient of seismic passive earth pressure, Kpg, is used.

In order to see the validity of the limit analysis method, some K,g-values and
Kpg-values for various soil—wall conditions and seismic accelerations are
calculated and compared with solutions by the well-known Mononobe-Okabe
analysis. The difference between them is discussed.

Some parametric studies have been conducted to investigate the effects of the
parameters involved in the analysis of the calculated K,g- and Kpg-values. The
variations of Kjp- and Kpg-values with the ¢-parameter for different levels of
earthquake, or for different seismic coefficients, are presented. The increase in the
Kjg-value and the decrease in the Kpp-value as the result of an earthquake is
noted. The effect of the angle of wall friction on the K, g~ and Kpg-values is also
given. The influence of the geometrical factors on the K g- and Kpp-values is men-
tioned. The effect of the direction of seismic acceleration on the results is carefully
discussed.

Afterwards, the effects of possible presence of uniform surcharge and cohesion
in the backfill on the K, g-values and the Kpg-values, as well as the effect of seismic
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forces on the most critical sliding surface are carefully' studied and discussed. Their
importance in geotechnical engineering is also described.

Finally, the earth pressure tables that provide both static and seismic active and
passive earth pressures are presented in terms of dimensionless coefficients (Chang,

1981).

5.2 General considerations

In the theoretical formulation for seismic lateral earth pressure analyses, the up-
per bound limit analysis method is adopted. A general soil — wall system with
translational wall movement and a ¢-spiral log-sandwich mechanism of failure pro-
posed by Chen and Rosenfarb (1973), as shown in Figs. 5.1 and 5.2 are assumed.

m,-ta-p Vo

W= | dW,
e fow, ™
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=V eB'vun\f: VI = Cosp vO
Va =V, ehtond Vorr C(.::SO(:;P)VO

Fig. 5.1. Log-sandwich mechanism for seismic passive earth pressure analysis.
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Fig. 5.2. Log-sandwich mechanism for seismic active earth pressure analysis.
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The backfill material is assumed to posséss some cohesion (¢ > 0). A uniform sur-
charge g is assumed to act on the surface of the backfill sloped at an angle 8. The
soil —wall interface is assumed inclined with its repose angle equal to a.

An earthquake has two possible effects on a soil — wall system. One is to increase
the driving force. The other is to decrease the shearing resistance of the soil. The
reduction in the shearing resistance of a soil during an earthquake is in effect only
when the magnitude of the earthquake exceeds a certain limit and the ground condi-
tions are favorable for such a reduction. The evaluation of such a reduction requires
considerable knowledge in earthquake engineering and soil dynamics.

Research conducted by Okamoto (1956) indicated that when the average ground
acceleration is larger than 0.3 g, there is a considerable reduction in strength for
most soils. However, he claimed that in many cases, the ground acceleration is less
than 0.3 g and the mechanical properties of most soils do not change significantly
in these cases. In this chapter, only the increase in driving force is to be considered.
The shear strength of the soil is assumed unaffected as the result of the seismic
loading.

In the quasi-static analysis of seismic lateral earth pressures, a constant seismic
coefficient, k, is assumed for the entire soil mass involved. A seismic force, which
is equal to k times the weight of a soil mass, is assumed to act at the center of gravity
of the sliding soil mass. The seismic force is assumed to act in a direction at an angle
6 from the horizontal as shown in Figs. 5.1 and 5.2. Quite often, the direction of
the seismic acceleration may be essentially horizontal. In some situations, however,
the vertical component can be very large, for example, at locations near the
epicenter of an earthquake. In general, the relative magnitude of the horizontal and
vertical acceleration components varies from one case to another. A general direc-
tion of the seismic force is therefore assumed in the present formulation.

In case that the magnitudes of the horizontal and vertical seismic coefficients, ky
and k,, respectively, are known for a given earthquake, the direction § = tan—!
(k,/ky) is then fixed. The seismic lateral earth pressure due to that particular earth-
quake can then be evaluated. In most analysis for design purposes, however, 6 is
generally unknown. The 6-value should be optimized to give the most critical condi-

tion.
5.3 Seismic passive earth pressure analysis

In the passive case, the decrease in the passive earth pressure as the result of an
earthquake is of major concern. In this case, the possible critical direction of the
seismic force, kW (k = resultant seismic coefficient) is pointing away from the wall,
as shown in Fig. 5.1. Herein, as in the lateral earth pressure analyses for the static
cases, Chen and Rosenfarb (1973), the seismic passive earth pressure can be easily
derived by considering the equilibrium of external work and internal energy dissipa-
tion.
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5.3.1 Calculations of incremental external work

The incremental external work due to an external force is the external force
multiplied by the corresponding incremental displacement or velocity. The in-
cremental external work due to self-weight in a region is the vertical component of
the velocity in that region multiplied by the weight of the region. The seismic force
which is assumed constant in each region, can be divided into a vertical component
and a horizontal component. The incremental external work contributed by this
force in a region can be obtained by the muliplication of the force components and
the corresponding velocity components in that region. They should be added to
those due to self-weight.

In the following derivatives, the variables involved are defined as the following:
unit weight of the backfill material
angle of internal friction of the backfill material
angle of soil — wall interface friction
seismic coefficient
inclination of the seismic coefficient with the horizontal
= vertical height of wall,

All the others such as the geometrical factors, «, B, @, ¥, 8', and the incremental
displacements or velocities, vy, V{, V3, Vp: €tc. are as defined in Figs. 5.1 and 5.2.
In zone OAB, we have: :

e A e
il

AWopp = — (W) — kW, sinb) vy, + kW, cosf vy,

2 (0 —
= — ﬂw [(1 — k sin 6) cos(a — @)
2 sin o cos ¢

— k cosf sin(o — g)] Vo 5.1

Note that Eq. (5.1) is similar to Eq. (4.15) except that kK = 0, »,, = 0, and £ =
¢. In Zone OBC, we have:

_ cos’(g — ¢)
2 (1 + %) sina cos? cosg

[(1 — k sinf) [cos(ax — @)

{e?¥ (a cosy + siny) — a] + sin(e — @) {€™¥(a siny — cosy) + 1}]

— k cost [sin(e — o) [e®¥(a cosy + siny) — g
— cos(a — ) (e?¥ (a siny — cosy) + 1}]] g (5.2)
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where ¢ = 3 tandg.
In Zone OCD, we have:
— g (OD) (1 — k sinf) Vyy — 4 (OD) & cosf vy,

2 _ 3yt : - 5 —
_ [ﬁl_ cos(g — ¢) ¢ w/za.n‘ﬁsm(a +B8-0-1Y) + qH eZ‘/’ta“¢]
2 sina cos¢

1l

cos(c — ¢) [(1 — k sind) cos(e — @ — ¢¥) — k cosh
sin(e ~ @ ~ Y)] ) 5.3
cosgcosia + B + ¢ — o — ) 0 .

Due to the seismic passive earth pressure Ppg, using Eq. (4.18), we have:
AWp, = Ppg sina + 8y, G4

The total incremental external work is the summation of these four parts of con-
tributions, Egs. (5.1) to (5.4). That is:

L [AWley = AWoap + AWppe + AWgoep + AWPPE (5.5)
5.3.2 Calculations of incremental internal energy dissipation

According to Finn (1967) or Chen (1975), the incremental energy dissipation per
unit length along a velocity discontinuity, or a narrow transition zone, can be ex-
pressed as:

AD; = c Av cos¢ (5.6)

Where Av is the incremental displacement or velocity which makes an angle ¢ with
the velocity discontinuity according to the associated flow rule of perfect plasticity,
and c is the cohesion parameter. On an idealized soil — wall interface, where adhe-
sion and pure friction present, the following equation, which is modified from Eq.
(5.6) can be adopted:

AD; = s; Avy. 5.7
where s; is cohiesion parameter, ¢, adhesion parameter, ¢,, or pure friction compo-

nent of a unit interface force, and Avy is the tangential component of the incremen-
tal displacement along the velocity discontinuity.
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With this background, the incremental energy dissipation along a velocity discon-
tinuity is simply AD; multiplied by the length of the discontinuity or the total fric-
tional force multiplied by the.incremental displacement for the pure friction energy
dissipation along the soil — wall interface. It should also be noted that for the case
that there is a radial shear zone, such as zone OBC in Fig. 5.1, the energy dissipation
in the radial shear zone is the same as that along the spiral arc BC (Chen, 1975).
It is noted that the internal dissipation is totally independent of the seismic coeffi-
cient.

Along OA, there is:

ADg, = Ppg sind vy + ¢, (OA) vy,

¢ sina cosg
Along AB, there is:
ADpp = c (AB) v; cos¢ = c H tang v, (.9

Along BC, there is:

¢ Hcos(p — @) (e2¥tand _ 1)
sing cosg

ADp. = J[c Vvgr cosp) dL = 3 o (5.10)

Along CD; there is: - R o

AD¢p, = ¢ (CD) vy cos

_ cHcos(g ~ ¢)sin(a +  — o — y) A .11)
B cosgcos(a + B+ ¢ — o — V) 0 '

From Zone OBC, we have:

¢ Hcos(g — ¢) (e2¥2né — 1) (5.12)

AD, = ADp~ = v,
OBC BC 2 sin¢g cosg 0

The total incremental energy dissipation is the summation of the five parts given
above, Eqgs. (5.8) to (5.12). That is:

<PPE sind + ¢, —H——> cosle - o) Vo (5.8)

i
|
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By equating L[W],,, in Eq. (5.5) to T[AD] in Eq. (5.13), we have:

vH? '
Ppg = o Np., + qH Np, + cH Np, (5.14)

where NP'y’ NPq and Np, are passive earth pressure factors. They are given as:

Np, = cos(e ~ ¢) <sing [(1 — k sinf) cos(e — @) — k cosf

Y sin?a cos(o + 8) cose

sin(er — g)] 4 Cosle — ¢) [{ew(a cosy + sing) — a} (I — k sinf)
1 + @) cosg

cos(a — @) — k cost sin(a ~ @)} + {e™(asiny — cosy) + 1
{(1 = k sind) sin(e — @) + k cosf cos(ax — g)}]

cos(o — ¢)sinfe + 8 — o — YV .
SrEs e (N
cos(a — @ — ¥) — k cosf sin(w — o — :,b)]) (5.15)
where ¢ = 3 tang.
[cos(g ~ ¢) e¥tand (| — k sinf) cos(e — @ — V) ]
‘ e o "~ — k cosf sinfa — ‘0 = ¥)]
N, = y
Pq cos(e + B + ¢ — o — ¢¥) sina cos(g + ) (5.16)
_ 1 A cos(e — @) .
Nee sino cos(e + 6)[ sino + sine

+ cos(p — ¢) sinfx + 8 — g — l/,)eZ\btanqS
cosf@ + B+ ¢ — o — )

cos(g — ¢) (e2¥1and — 1)]

+ :
sing

5.17)

where A = ¢,/c.

The seismic passive earth pressure can also be expressed in terms of an
‘equivalent’ coefficient of seismic passive earth pressure, Kpy, as:

Ppp = 3 v H* Kpg (5.18)

in which
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2q L 2c
Ko = Np, + —= Np, + — N, 5.19
PE Py * g VPt g e (5.19)

The most critical Kpg-value can be obtained by minimization with respect to @
and ¥ angles in Fig. 5.1. The most critical failure surface is then defined by the o
and ¥ which give minimum Kpg.

5.4 Seismic active earth pressure analysis

In the active case, an increase in the active earth pressure as the result of earth-
quake is of major concern. The possible critical direction of a seismic acceleration
is therefore pointing toward the wall, as assumed in Fig. 5.2. The 8-value is con-
sidered positive when the seismic force has a downward vertical component. This
is different from that assumed in the passive case, in which the §-angle is positive
when the seismic force has an upward component.

Similar to the formulation for the seismic passive earth pressure, the seismic ac-
tive earth pressure can be derived as:

yH?
Pap = Lo Nay + a HNyg + ¢ HNy (5.20)

where Ny, , Npq, and Ny, are active earth pressure factors. They are given as:

Ny, = cos(e + ¢) (sing[(l + k sind) cos(a — o)

sin®o cos(gp — 8) cose

+ k cosf sin(a — )] + _cosle + ¢) l:['e“"#(— a cosy + siny) + af
(1 + a*)cos¢

{1 + k sinf) cos(a — @) + k cosf sin(e — o)}
+ {e~%(— asiny — cosy) + 1] [0 + k sind) sin(e — @)

N cos(g + @) sinfa + 8 — g — ) e~
cosla+ 8- —eg— ¥

[(1 + k sinf) cos(e — @ — ¥) + k cosf sin{fe — @ — \//)]) (5.21)

— k cosf cos(e — g)}]

where ¢ = 3 tan¢ is the same as in Eq. (5.15).

cos(p + ¢) e~ 2ané [(1 + k sinf) cos(e — @ — ¥)
N. = + k cosf sin(fe — ¢ — l//)] (5.22)
Ad cos(@ + 8 — ¢ — @ — ) sinc cos(g — 9) ’
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+ sing

Ni. = -1 [)\ cos(e — @)
AC " sina cos(g — 9) sina
cos(g + ¢) sin(e + B — g — y) e~ 2¥tang
cosfa + B — ¢ — o = ¥)

_ cos(e + ¢) (e 2¥iand — 1)]
sing

+

(5.23)

where A = ¢,/c is the same as in Eq. (5.17).
If expressed in terms of ‘equivalent’ coefficient of seismic active earth pressure,
Kxp» Eq. (5.18) becomes:

Pap = 3 vH2 K, (5.24)

in which:

Ny (5.25)

C

2q 2¢
Kip =N, + LN, 4+ 25
AE Y e R

The most critical K yg-value can be obtained by maximization with respect to g and
y-angles in Fig. 5.2. The ¢ and ¢ at which the K agp-value is maximum determine
the most critical sliding surface.

Two computer programs for assessing seismic lateral earth pressures have been
developed based on Eqs. (5.14) t0 (5.25). Details of the program documeiitation can
be found in the thesis by Chang (1981).

5.5 Numerical results and discussions

In the presentation of the results of seismic active and passive earth pressure
analyses, dimensionless coefficients X A and Kpy are adopted.

As mentioned previously, the present limit analysis solutions are valid when there
is no reduction in soil strength due to an earthquake. The results presented are
meaningful generally only when the seismic acceleration @ < 0.3 g, since most soils
will either liquify or seriously weaken if @ > 0.3 g (Okamoto, 1956). It is only for
purely theoretical interest that, in some cases, results are presented for seismic coef-
ficients up to 0.4. However, only when k£ < 0.3 are the results recommended for
practical use.
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Fig. 5.3. Some (Kjp),-values by limit analysis and Mononobe-Okabe analysis (vertical wall and
horizontal backfill).

5.5.1 Comparison with Mononobe-Okabe solution

The Mononobe-Okabe analysis, which is an extension of the Coulomb’s analysis,
has been experimentally proved by Mononobe and Matsuo (1929) and Ishii et al.
(1960) to be effective in assessing the seismic active earth pressure. It is generally
adopted in the current aseismic design of rigid retaining walls. The Mononobe-
Okabe solution is therefore practically acceptable at least for the active pressure
case, although its applicability to the passive pressure case is somewhat in doubt.

Some results on seismic active and passive earth pressures as obtained by the pre-
sent limit analysis method are compared with the Mononobe-Okabe (M-O) solu-
tions. They are shown in Figs. 5.3 to 5.6.

For the active case, the K, g-values obtained by the two methods are practically
identical for most cases (Figs. 5.3 and 5.5). This is true even when the wall is inclined
and the slope angle of the backfill is larger than zero, as shown in Fig. 5.5. The fact
that the most critical, or potential sliding surface for the active case is practically
planar, as shown in Fig. 5.7, is responsible for this consequence.

For the passive case, the most critical sliding surface is much different from a
planar surface as is assumed in the M-O analysis (Fig. 5.8). The Kpg-values are
seriously overestimated by the M-O method. They are, in most cases, higher than
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Fig. 5.6. Comparison of Kpg-values by limit analysis and Mononobe-Okabe analysis (general soil-wall

system).
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Fig. 5.8. Effect of seismic forces on failure mechanism in passive earth pressure analysis (¢ = 40°,6 =
20°, k;, = 0.20).

those obtained by the limit analysis. This is especially the case when the wall is rough
(Fig. 5.4) and the angle of wall repose is large (Fig. 5.6). For smooth walls, the
potential sliding surface is practically planar and the two methods give almost iden-
tical results.

5.5.2 Some parametric studies

In the analysis of seismic lateral earth pressures on rigid walls retaining cohe-
sionless soil, the parameters involved include the unit weight of soil, v, the angle
of internal friction, ¢, the angle of soil — wall interface friction, 8, the slope angle
of the backfill, 8, the angle of wall repose, «, the height of the wall, #, the seismic
coefficient, k, and the direction of the seismic acceleration, 6, if there is no uniform
surcharge presented. Since the dimensionless lateral earth pressure coefficients X AE
and Kpg are generally selected to represent the lateral earth pressure, y and H are
irrelevant to the problem for the case of cohesionless backfill (¢ = 0) and zero sur-
charge (g = 0).
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Fig. 5.9. Variation of K,g-values with ¢-angle for earthquakes of different level.

Parameters ¢ and k — internal friction angle and seismic coefficient
Figures 5.9 and 5.10 show the variation of K- and Kpg-values with parameter

¢ for different horizontal seismic coefficients, k. The K, g-valug decreases as ¢ in-

creases for a given ky-value. On the contrary, the Kpp-value.increases as ¢ increases
for a given kj-value. When there is an earthquake, the K, p-value increases and the
Kpg-value decreases. As the magnitude of an earthquake becomes larger, the K, -
value increases and the Kpgp-value decreases furthermore.

When Figs. 5.9 and 5.10 are replotted as shown in Figs. 5.11 and 5.12, where the
increases of pressures due to an earthquake are normalized by the corresponding
static pressures, the percentage of increase in the K,p-value and decrease in the
Kpg-value as the result of increase in the magnitude of an earthquake, or &;-value,
is much more clear. It is found that for the active case, the increase in Ky, is more
obvious for denser soils with higher ¢-values than for looser soils with lower ¢-
values, While, the decrease in Kpg is more obvious for looser soils than for denser
soils in the passive case.

Parameter 6 — interface friction

Figures 5.9 to 5.14 also show the parameter & affects the K,y and Kpp values.
For the active case, the K z-value may become smaller or larger when the §-value
increases, depending on the ¢-angle and the kj-value as shown in Figs. 5.9 and
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5.13. However, as shown in Fig. 5.11, when the é-value is increased the percentage
of change in K g-value as the result of an earthquake is seen also to increase. It is
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therefore expected that, in most cases when &, > 0, the K, p-value is larger when
& is high than when é is low. However, it should be noted that if the normal compo-
nent (K,p), is considered, the value decreases as 6 increases, unless the k;-value is
very high (Fig. 5.3).

For the passive case, the Kpp-values increase as the é-value increases, whether
there is an earthquake or not. This is true even when the magnitude of earthquake
is high. This is because that the percentages of decreases in the Kpg-value as the
result of an earthquake, although larger for larger §-values, are not much different
for the cases of lower 6-values and for the cases of high §-values as shown in Fig.
5.12. The general trend that Kp increases with increasing & values can also be seen
clearly from Fig. 5.4 and Fig. 5.14.

More results on the effects of parameter 6 on the K, and Kpg value are given
in Figs. 5.15 and 5.18.

Parameters a and 8 — wall geometry and backfill shape

The geometry of the wall and backfill as reflected by the angles « and 8 in Fig.
5.1 or 5.2 have considerable effects on the magnitude of the lateral earth pressures.
Figure 5.5 shows that for a given k;-value and soil condition, the K, g-value in-
creases as the slope angle, 8, increases and the angle of wall response, «, decreases.
The §-effect is larger as the ky-value becomes higher as shown in Fig. 5.13.

———8=2/3¢
_ S=¢r2

165

For the passive case, the Kpp-value increases as the 8-value and the «-angle in-
creases as shown in Fig. 5.6. The $-effect is practically unaffected by the variation
in k, (Fig. 5.14).

Parameter § — direction of earthquake force

As mentioned previously, the direction of the resultant seismic acceleration varies
from one earthquake to another. Although Housner (1974) claimed that k,=0G-
H) ky, for most earthquakes, current practice tends to assume that the seismic ac-
celeration is essentially horizontal (§ = 0°). The effect of this assumption on the
results of analyses depends on how much the most critical direction differs from the
horizontal one, how the actual seismic acceleration differs from the horizontal and
what is the magnitude of the earthquake.

Figure 5.15 shows that for the active case, the K, g-value obtained based on the
assumption 6 = 0° is not much different from the optimized X Ap-value obtained
when the seismic acceleration assumes the most critical direction, i.e. § = 6, This
is probably because the 6 ~values are found to be essentially equal to zero, especial-
ly if the «~angle is high, as shown in the figures. It may therefore be concluded that
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Fig. 5.14. Effect of slope angle on Kpg-values for § = ¢/2 and § = % ¢ cases.

Fig. 5.15. Effect of direction of seismic acceleration on K agp-values for general soil-wall system: (a)
8=¢/2; (b)d = 2.
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in a given earthquake, even though its vertical seismic acceleration, a, = k,g, may
be significant compared to its horizontal acceleration, a;, = kg, its effect on the
K, p-value may be neglected for practical applications.

The effect of k, on the K p-value is also shown in Fig. 5.16. It can be seen that
the K, g-value is increased only in the order of 7% even when the £, is as high as
2/3 k. For this reason, Seed and Whitman (1970) recommended that the influence
of k, can be neglected in practical designs of retaining walls.

Figure 5.16 shows also the following points. First, the effect of k, is a maximum
when k; is around 0.2 and decreases as k; further increases. Second, the k,-effect
is smaller when the backfill is sloped than when it is horizontal. Third, the
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Fig. 5.16. Effect of vertical seismic acceleration component on normalized K,g-values.
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downward inertia force a, (k, > 0) tends to increase the X, g-value while the up-
ward action a, (k, < 0) tends to decrease the Kg-value.

It is of interest to note that if the resultant seismic acceleration, a = (a% + aﬁ)%,
is considered and is assumed to act horizontally, the difference between the K-
value so obtained and that obtained by optimization with respect to § = tan—!
(k,/ky) will even have a less value than that shown in Fig. 5.16. This is due partly
to the fact that the most critical surfaces are practically the same for both cases.
Also, there is no change in the magnitude of the resultant acceleration.

Figure 5.17 shows how the normalized K,p-value, and 7, vary with 6 for an
earthquake of different magnitude. Here #, is defined as:

K
o = (Kap) + 0 (5.26)
Eapk = 0
The #, has a unique maximum in the whole range of ¢. It was found that as k£
increases, the fj;-value becomes smaller. The difference between (K,p); ..o and
(Kop)p = o becomes larger. However, the maximum ﬁo-values, (1‘70)“, which are of
primary interest, are not much different from each other. They are all very close
to one. Also they all occur at nearly the same #-angle for a given soil — wall system.
In most cases, (Kp)p = 8, can be taken as (Kpglg—o-
For practical purposes, the vertical acceleration, a,, can be neglected if the actual
acceleration is nearly horizontal. Otherwise, the resultant acceleration can be used
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Fig. 5.17. Variation of normalized K,g-values with direction of seismic acceleration for earthquakes of
different magnitude.
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and assumed to act horizontally (¢ = 0) without much sacrifice in the accuracy of
the determination of K,p-values.

For the passive case, the effect of the direction of seismic acceleration on the
Kpg-values are partly shown in Figs. 5.18. Unlike the active case, the Kpg-value
corresponding to the optimized f-angle, 6, is considerably smaller than that cor-
responding to 6 = 0. This is due to the fact that the _-values are much larger than
zero in all the cases investigated. In fact, 6 is close to 90° when the B-value is high.
In this case, the vertical acceleration, a,, may play even a more important role than
the horizontal component, a;, does.

Figure 5.19 shows the effect of a, on the Kpg-values. It is clear that the effect
becomes larger as both the &, and &, values become higher. For the case of &, =
03andk, = 2 ky, the effect is in the order of 25%. The k-effect therefore cannot
be simply neglected for the passive case.

Figure 5.19 also shows that the nl'(v-value becomes smaller as 8 becomes larger,
where the n,'(_v is defined as:

(Kppk, % 0

_ (5.27)
k (Kpplk, = 0

Slope Angle of Backfil , 8 Slope Angle of Backfill , S8

Fig. 5.18. Effect of direction of seismic acceleration on Kpg-values for general soil-wall systems: (a) &
=¢/2, ()8 =%9.
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This is probably because, as 8 increases, the (Kpgi, = o increases in a faster rate
;h';lg the (KPE)kV « o does, ‘e\./er-l though 6 becomes larger as those shown in Fig.
Similar to the active case, if the resultant seismic acceleration is adopted and
assumed to act horizontally, the difference between (Kpp)y - ¢ and (Kpp)y - 0,
becomes smaller. However, the difference is still too significant to be neglected in
practice.

Figure 5.20 shows the variation of the normalized Kpg-value, and 1"70 with 6 for
different levels of earthquake. Here 1’50 is defined as:

o Kppp 20
By = ot 20 (5.28)
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Fig. 5.19. Effect of vertical seismic acceleration component on normalized Kpg-values.




170

It is found that, similar to the active case, there are unique minimum % values,
(%)Cr for different k-values for a given soil — wall system. They all occur at nearly
the same §-angle. However, the (1”7(;)Cr values are quite different from one another
and are all less than one. That is, in all cases, (Kpg), - 6, is less than (Kpg)y - o

In actual practice, unless the seismic acceleration is nearly horizontal, the Kpg- '

value should be assessed by optimization with respect to 6. This is of great impor-
tance especially when the retaining structures of concern are located close to poten-
tial epicenters where the vertical component of the seismic acceleration may be
larger than the horizontal component. If this fact is not taken into consideration,
use of (Kpg)y - o Will give unsafe designs.

It is noted from Figs. 5.15 and 5.18 that the §_.-value are almost unaffected by
the change in §-values for both the active and the passive cases.

5.5.3 Surcharge and cohesion effects

Quite often, a soil —wall system is subjected to a surcharge and the backfill may
be cohesive. The presence of surcharge and/or cohesion may influence the lateral
earth pressures considerably. It is therefore worthwhile to investigate how the lateral
earth pressures are affected by the surcharge and the cohesion in the backfill.

We shall first check the surcharge effect in the active earth pressure case.
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Fig. 5.20. Variation of normalized Kpg-values with direction of seismic acceleration for earthquakes of
different magnitude.
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Active case — surcharge effect

The K ,g-value for the case when there is a surcharge g, (K AE)q + o0 18 given by
Eq. (5.25) as:

(PAE)q #0 2g
K = ———=IN, + —N, 5.29
( AE)q #0 % ’YHZ [ Ay ’YH Aq:l@ = Qe ¥ = VYor ( )
and
(Kpp)g =0 = INaylo = Ccrs ¥ = Vor (5.30)
If (K AE)q + o 18 normalized with respect to (X AE)q - o» We have:
2q
N, ~ZN
[Kagl; + 0 [ M UH A“Je = e ¥ = Vo
"7 = =
7 [KAE]q =0 [NA’Y]Q =0 ¥ = Yo
N,
- [1 N _2% _Aq] o (5.31)
. NA’YA Q= Qe ¥ = Y

Note that if N Ay and N Ag 88 given in Eqgs. (5.21) and (5.22) are substituted into Eq.
(5.31), the resulting equation for g is independent of &, if we use the same critical

sliding surface for both N, and N, calculations. In general, ‘nq is a function of

¢, o, B, k, and g/vH.

The effect of surcharge on the normalized (K AE)q + o value is shown in Fig. 5.21.
In general, g increases linearly with g/yH. The rate of increase is larger as « and
8 get higher.

Figure 5.22 shows that the g is totally independent of 8 for the case (o« = 90°,
B8 = ¢/2) investigated. The unique critical surface as found is responsible for this
finding. The nq-value, although it increases slightly as ¢ increases, can be con-
sidered as independent of the ¢-angle for practical purposes.

Figure 5.23 indicates that the magnitude of an earthquake has no effect on the
g for the particular case (¢« = 90°, 8 = 20°, ¢ = 40°, § = 20°) investigated. This
is because that when the critical sliding surface is planar, NAq/N Ay = sina/sin(o
+ () and Eq. (5.31) becomes:

_ Z_q sinc
g 1+ H ——sin(a B * flky) (5.32)
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In general, it may vary slightly with the &, -value when the critical surface is not ex-
actly planar,

Summarizing Fig. 5.21 through Fig. 5.23, it is interesting to note that g is essen-
tially a function of « and f only. This is consistent with Eq. (5.32), since for the
active earth pressure case, the most critical sliding surface is often almost planar.

We shall now check the cohesion effect in the active earth pressure case.

Active case — cohesion effect
From Eq. (5.25), the K p-value for the case when there is a cohesive ¢ in the
backfill, (Kg). - ¢» can be expressed as:

2c
(KAE)C #0 - [NA’Y * V_HNAc] @ = Qe ¥ = ‘lbcr (5‘33)

and

Kap)e = 0 = Naylo = o v = yo, (5.34)

The normalized (K ,g), .. ¢-value, 5., can be expressed as:
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Fig. 5.23. Effect of surcharge on normalized K ,g-values for soil-wall systems subjected to earthquakes
of different magnitude.
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2c
T
, = (KAE)c;tO_[ AT Ty H A = g b = Yy
¢ (KAE)C =0 [NA'Y]Q =0 ¥ = VY

(5.35)

U

[ 2c NAC]
| 4 2 A
'YH NA'y e = @ ¥ = Yo

Note that N, is independent of the seismic coefficient, &, as shown in Eq. (5.23).
The A-value in Ny can be taken as N\ = cos ¢, if ¢ = ¢, or as\ = cos ¢, if ¢
< ¢, A typical value of A is 0.836. This corresponds to a ¢-angle at critical state,
¢., = 33.3°, which is typical for most siliceous sands.

Figure 5.24 shows that u, decreases as ¢/-yH increases, since the cohesion has a
negative effect on the active earth pressure. The rate of decrease in 5, becomes
larger as « increases. However, as 8 = ¢, the cohesion effect is practically constant
when ¢/yH = 0.10. This is probably because as 8 = ¢, the ¢-angle rather than the
c-parameter predominantly controls the active earth pressure.

Figure 5.25 shows that 7 is essentially independent of & and is slightly affected
by the ¢-angle. However, for practical purposes, the g-value can be treated as in-
dependent of both é and ¢.
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The 5, versus ¢/yH curves for different k;-values as shown in Fig. 5.26 reflect
that the 5 -value is seriously affected by the earthquake magnitude. This is because
in Eq. (53.35), N, is totally independent of k&, while NA7 is dependent on £. It
seems that the cohesion has a larger effect on the X, p-value when there is no earth-
quake (k = 0) than when there is an earthquake (k¢ > 0). The larger the earthquake
is, the less the cohesion affects the active earth pressure for a given ¢/vH value.

In summary, the 5 -value can be considered as practically independent of the ¢-
and é-angles only.

We shall now examine the surcharge effect in the passive earth pressure case.

Passive case — surcharge effect
Similar to the active case, the normalized (Kpg) g %0 values, or n(';-value, can be
expressed as:

2q ]
No, + 24 N
l (KPE)q #0 [ P'Y 'YH Pq Q@ = Q¢ ‘L = ‘Lcr V (5 36)
(KPE)q =0 [NP’Y]Q = Q¢ Y = ¢cr

In general ’721 is dependent on ¢, «, 8, k and g/yH as well as 8, since the most
critical sliding surface is seldom the same for the cases (Kpg), » o and (K PE)g = 0
unique in the passive case.
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Fig. 5.27. Effect of surcharge on normalized Kpg-values for soil-wall systems of different geometry.
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Figure 5.27 shows that ’7c,1 increases linearly with g/yH. The rate of increase is
larger as « and 8 becomes smaller. This is contrary to the active case.

The effect of surcharge on the nq—values for soils of different compactlon and
interfaces of different roughness is shown in Fig. 5.28. It seems that the 5 'value
is dependent on both ¢ and é. The rate of increase in 1; with g/vH, or the effect
of surcharge on the nq~value is larger as ¢ and & get smaller. The surcharge
therefore has larger effect on the Kpg-value for the case of looser soil and smaller
§-value than for the case of denser soil and larger §-value.

Figure 5.29 shows that the k;-value, or the magnitude of an earthquake, has little
effect on the n_-value. This is because the most critical sliding surface, in contrast
to the active case, is generally far from being planar. However, the difference in 77('1
for different kj-values is practically negligible.

Passive case — cohesion effect

Finally, for the passive case, the cohesion effect can be investigated by calculating
the normalized (Kpg), » o OT 1, for different soil — wall conditions and earthquake
conditions. Note that, similar to the active case, Wé can be expressed as:

[+ 2500
’7: _ (KPE)L‘ #*0 _ Py ‘YH Pe Q = Q¢ ¥ = 1P(:l’ (5 37)
¢ (Kpp)e = 0 [NP'y]g =0 ¥ = Yo

The effect of cohesion on the né—values for different soil —wall conditions is
shown in Figs. 5.30 and 5.31. It is obvious that the né-value depends on the
geometry of the wall and backfill, or the angles « and 8. It also depends on the
strength factors ¢ and 6. In general, the né—value increases linearly as ¢/yH in-
creases for a given soil — wall system. As « and 8 decrease, the n;-value increases.
For given « and § values, the né-value increases as ¢ and & decrease. The cohesion
effect is more obvious in the looser soil than in the denser soil.

Figures 5.32 shows the effect of cohesion on the né—value for earthquake of dif-
ferent magnitude. It is clear that the né—values, although affected by the k; -value,
can be considered as practically independent of the k-value, which is different
from that for the active case.

5.5.4 Seismic effects on potential sliding surface

The seismic acceleration generated by earthquakes not only imposes extra loading
to a soil mass but also shifts the sliding surface to less favorable positions. Conse-
quently, in addition to the change in the lateral earth pressures, the most critical or
potential sliding surface is also altered.




178

24 T T T
= 3
22 y =1201b/ 1t
H| & L a=90°,Ba/2
- H = 10ft, &,=0.20
c=0
20| Kee® Ppg /37 HE
o
= 74
’E‘ // £
% 18f ——¢=30° 7 /
< e ag §=0° 0/
»
i) —-—  50° //,
X 1.6
T 5s gv2 7
- 3 -~
& -
/’ P
14 7 =
7, -
// e /‘/-
o~
12 /-/ . -
7
/ ,/ 3=
-/
1.0l 2
0 ol 02 03 04 05
g9/yH

Fig. 5.28. Effect of surcharge on normalized K pg-values for soils of different compaction and inter-

faces of different roughness.

22 T
y =120 b/3
20 $x40°,8 =20
a=90°, 8 =20°
H=l0ft,c =0
H 2
E: Kpe= Pee /Byt
F
X
3
~ 16} —-— ¥,=0.30 .
& e 0.20 #
- O(.)IO //
= —_
14 /
1.2
1.0 s L L
0 ol 0.2 03 0.4 05
q/yH

Fig. 5.29. Effect of surcharge on normalized Kpg-values for soil-wall systems subjected to earthquakes

of different magnitude.

22
7 =120. 1b/ft2
$=35°,8 =17.5°

e H=10f1, Kk, =020

- Kpg= Ppg /4y H2

> 18

x

3 —_a=80°

3 /

- —— %0 #

a 18 P

x — 20° /

" B =0y =

& A

'@ By =z
”r’ —/'

g L 1

12 ‘—/, - —

L

.
10

° 005 o.o 0i5 020 025

¢/yH

179

. Fig. 5.30. Effect of cohesion on normalized Kpg-values for soil-wall systems of different geometry.
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Figures 5.7 and 5.8 show some typical changes in the potential sliding surface as
the result of an earthquake with £k = 0.20. It is interesting to note that the potential
sliding surface becomes more extended when earthquake presents, especially in the
active case. This conforms with the experimental results of Murphy (1960). For the
passive case, it seems that the change in the potential sliding surface is not as much
as that in the active case, although it is also found more extended in the earthquake
case. The change in the potential sliding surface as the result of earthquake has also
been noted by Sabzevari and Ghahramani (1974).

The prediction of the potential sliding surface is of importance when it is
necessary to back calculate strength parameters from field test or actual failures. It
is also influential in some geotechnical designs, such as in the design of bulkhead
anchorages and earth anchors. Although, as was pointed out by Chang and Chen
(1982), the potential sliding surface as reflected by the limit analysis is not represen-
tative of the actual failure surface, the results as shown in Fig. 5.7, especially deserve
special attention. In aseismatic design of most anchorage systems, not only the
change in the lateral earth pressures has to be aware, but also the change in the
potential sliding surface has to be carefully considered. The retaining structures
have to be anchored well outside the potential sliding surface, which is more extend-
ed in the case of earthquake, for the safe design of these structures.
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5.5.5 General remarks

The upper-bound technique of limit analysis of perfect plasticity is applied to
determine the seismic lateral earth pressures in a quasi-static manner. Here, as with
most limit equilibrium methods, the present analysis gives no information on the
point of action of the resultant seismic lateral pressures. This point will be further
discussed in the following chapter. The magnitude of the lateral pressures as
calculated by the present method is, however, fairly reasonable for the case of
translation wall movement.

5.6 Earth pressure tables for practical use

While earth pressure tables and charts suitable for the static design of retaining
walls are generally available, tables or charts for seismic lateral earth pressures are
scarce. Seismic active and passive earth pressures are required in a seismic design
of retaining walls subjected to earthquake forces. Development of seismic earth
pressure tables is of practical value for retaining wall design in earthquake en-
vironments.

The upper-bound limit analysis of active and passive earth pressures as developed
in this chapter is used to generate earth pressure tables that provide both static and
seismic active and passive earth pressures. The effect of earthquake forces is taken
into account in a quasi-static manner using the seismic coefficient concept. Dimen-
sionless coefficients of active and passive earth pressures are presented in the forth-
coming.

To reduce the number of tables and charts, we generate this information under
the following conditions:

1. The seismic acceleration acts in the horizontal direction (6 = 0°).

2. There is no surcharge acting on the surface of the backfill (g = 0).

3. There is no cohesion in the backfill material (¢ = 0).

The coefficients of the generated active and passive earth pressures are obtained for
the following cases:

1. ¢-parameter, ¢ = 20°, 25°, 30°, 35°, 40°, 45°, 50°.

2. Seismic coefficient (acts horizontally). £ = 0, 0.03, 0.10, 0.15, 0.20, 0.25, 0 30.
3. Angle of wall repose, a = 60°, 75°, 90°, 105°, 120°.

4. Slope of backfill (normalized with respect to ¢). 8/¢ = 0, %, %, +. %, &, L.

5. Angle of wall friction (normalized with respect to ¢). 8/¢ = 0, £, 4, %, 1.
The tables generated are listed in Appendix A developed originally by Chang (1981).

For the tables to be of practical value, procedures were developed for extending
the present listed earth pressure coefficients to cases other than those specified
before. They are given in the following subsections, following the work of Chang

(1981).
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5.6.1 Correction for direction of seismic acceleration

In general, the direction of the resultant seismic acceleration during a given earth-
quake is not necessarily horizontal. The seismic acceleration may assume any direc-
tion depending on the characteristic of an earthquake and the distance of the struc-
ture from the epicenter,

For this reason, it should be assumed that the seismic acceleration in an actual
lateral pressure analysis for design purposes can act in any direction. The lateral
earth pressures corresponding to the most critical direction of seismic acceleration
are then used for actual design.

To develop a way of correlating the seismic active and passive earth pressure coef-
ficients for the special case of horizontal acceleration (¢ = 0), (K AR)s = o and
(Kpp)g = o» to those corresponding to the optimized acceleration direction (¢ =
0.)s (Kap)s — 8., and (Kpgp)g - g, Some sensitivity analyses were performed. The
ratio of (K AE)6,= 6, to (Kap)g = ¢ is denoted as ng, and that of (Kpg)y - ., to
(BpE)g = o as g

Some typical results of sensitivity analyses for the active earth pressure case are
shown in Figs. 5.33 and 5.34. It is clear that the n,-value is sensitive not only to the
geometrical factors o and 8, but also to the strength factors ¢ and 6. Further, as
pointed out previously, the n4-value is also a function of the seismic coefficient k.
Development of simple correction factors for this case is therefore of great difficul-
ty. Fortunately, the ng-value is generally in the order of no more than 1.015. In
many cases, the gg-values are very close to unity. This is because the critical ac-
celeration angle 6 . does not deviate much from zero, as shown in Fig. 5.15. Fur-
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Fig. 5.33. Sensitivity of x4 to changes in «, 8 and 6.
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thermore, there is a general tendency that the gg-value increases slightly as «, 6 and
6 decrease. For practical purposes it is recommended that no correction is required
(ng = D unless ¢ < 90°, 8 = ¢/2, and 8 = ¢/2, then 5y = 1.01 can be used (Fig.
5.33). T

In reality, the angle of wall friction, 8, is seldom less than ¢/2, the active earth
pressure coefficients as listed in the tables can be used for practical purposes without
corrections in most cases.

The results of sensitivity analyses for the passive earth pressure case are presented
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Fig. 5.35. Sensitivity of 5, to changes in « and 8.
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in Figs. 5.35 and 5.36. It is found that the nf',-value decreases as § and ¢ increase.
In general, 77(; is not very sensitive to the variation in o and 6/¢ as long as
8/¢ > 2 orand @ = 90° as shown in the figures. Hence, for developing the correla-
tion factors, « and 6/¢ can be kept constant. The fact that the n(;-value varies with
a and 8/¢ when § < % and o < 90° can then be taken care by a modification factor.

Based on the facts that the né-value decreases as the seismic coefficient & in-
creases, and that 77(; varies with 8/¢ and « as shown in Fig. 5.35, the correction fac-
tors for estimating (Kpg)y - ., from (Kpg)y - o have been developed. They are
summarized in Figs. B5.1 to BS.6 in Appendlx B for practical use. To take care of
the variation when o < 90° and /¢ =< 2, a modification factor

kg = [glmodified/ M

as shown in Fig. B5.7, Appendix B, is provided.

With this information, the Kpg-value corresponding to6 = 0., (Kpgly = g, can
be estimated from the Kpg-values listed in the earth pressure tables, (Kpg)y — o bY
the following relation:

(Kpp)g = o, = 19 19 Kpplg - o (5.38)

where 7, is obtained from Figs. BS.1 to B5.6 and p, is given in Fig. B5.7. In fact,
as it can be seen from Fig. B5.7, ,u‘; is generally greater than 0.97, unless « < 75°
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Fig. 5.36. Sensitivity of 11,; to changes in « and 8.
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or the soil — wall interface is fairly smooth (6 < ¢/2). For practical purpose, Mé can
be taken as 0.97 if o« < 90° and 6§ < £ ¢, and 1.0 for other cases.

The fact that the-critical acceleration angle 6 . for passive earth pressure cases is
much different from zero on the horizontal direction, and in many cases close to
90°, is probably the reason for the large difference between (Kpg)y - 6 and
(Kpg)p — ¢- The na-value can be as low as 0.60 when the ¢-angle and the seismic
coefficient are high. The correction factors as shown in Figs. B5.1 to B5.7 should,
therefore, be applied when the seismic acceleration of an earthquake force may
assume any direction other than the horizontal.

5.6.2 Correction for the presence of surcharge

A uniform surcharge ¢ acting on the surface of the backfill of a soil — wall system
will induce additional loading on the wall. The consequence of its presence is to
cause both the active and the passive earth pressures to increase. The coefficients
of lateral earth pressures should therefore be corrected if ¢ #+ 0.

An attempt has been made to find a correlation between the K, and Kpg cor-
responding to g = 0 case, (K AE)q - pand (KPE)q — o» and those corresponding to
g # 0 case, (K AE)q + ¢ and (KPE)q « 0» based on an optimization with respect to
the whole expressions for the lateral earth pressures as shown below:

_ 2q 2¢
K,g = Max {NAy + 'y—HNAq + ;IT[NAC} (5.39)
. 2q 2c
Kpg = Min {NP'y + fyT{NPq + yTiNPC} (5.40)

where NAy’ NAq, Ny pr, Npq, and Np, are earth pressure factors, v, is the unit
weight of the backfill, and H is the height of the retaining wall.

It was found that there is no simple general correlation between (K AE)q - o and
K AE)q + o and between (KPE) - o and (KPE) + ¢- This is probably because the
ratio g = (KAE)q % 0/(KAE)q - o and 7Iq = (KPE)q - 0/(KPE)q = o are functions
of all variables involved, although it was found practically independent of the
seismic coefficient k.

A study has been conducted to see if the K, and Kpg can be practically approx-
imated by an optimization with respect to each individual term in the expressions
for K,p and Kpg. The corresponding approximate values can be expressed as:

. 2q 2c
Kag = Max [Ny} + ;ﬁMax [Nagl + ;—ﬁMax [Nyl (5.41)
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. . 2q ... 2c ..
Kpg = Min [prl + ;}—1 Min {Npq} + F_IMm {Np.] (5.42)

The results of this study are shown in Figs. 5.37 and 5.38 for the case of zero cohe-
sion (¢ = 0). It is interesting to see that for both the active and the passive cases,
the nq-value and n('l-value as obtained by Eqs. (5.39) to (5.42) differ (inly slightly.
For the active case, the approximation gives higher K,g-values, i.e. Kyp > K, g.
This is because individual optimization will allow each component to take its most
critical failure surface while overall optimization will require every component to
assume a compromised failure surface.

For the same reasoning as the active case, individual optimization gives lower
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Kpg-value than overall optimization does. This is clearly shown in Fig. 5.38. For-
tunately, the difference between K AE and K, and between Kpp and KPE is very
small. The zero or slight change in the most critical sliding surface between the two
cases of optimization, as noted in Figs. 5.37 and 5.38 is mainly responsible for this
consequence. Furthermore, use of K AE @nd KPE instead of Ky and Kpg for design
purpose is on the safe side. Therefore, the active and passive earth pressures obtain-
ed based on optimization with respect to the individual components are practically
acceptable at least for the case of ¢ = 0.

Based on these findings, correlations betwee_n earth pressure factors NAq, NPq,
and N Ay NPY are of interest. In fact, the earth pressure tables give directly the N Ay
and pr-values, since from Egs. (5.39) and (5.40), K AE = N, Ay and Kpgp = NP«,
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for the case of ¢ = ¢ = 0. Hence if the correlations between NA’y and N, 'Aq and be-
tween Np, and Np, can be established, K,y and Kpg can be estimated based on
Eqgs. (5.41) and (5.42) with NV, Ay and NP7 obtainable from the earth pressure table.s.

The correlations between NA'y and N, 'Ag® and pr and NPq are completely in-
dependent of the g/yH-value. In the special case when the most critical sliding sur-
face is planar, it can be proved that the ratios o = N Aq/N Ay and a(; = NPq/Nh
can be expressed in the simple form:

. sing
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-
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Slope Angle of Backfill , 8 ,degree

Fig. 5.39. Correlation factor o = a('] for active and passive planar failures.
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where « is the angle of wall repose and 8 is the slope angle of the backfill. The o
and a. -values are dependent on the geometry of the soil — wall system only. Hence,
if the most critical sliding surface-is practically planar, Fig. 5.39 as developed based
on Eq. (5.43) can then be used for obtaining the correlation factors oy and oz(; for
the active and passive cases, respectively.

In general, the sliding surface is not planar, especially for the passive case, the
o - and o -values will no longer depend only on o and B. Some sensitivity studies
have been conducted to investigate the effect of several variables involved. The
results are shown in Figs. 5.40 to 5.45. It is found the oy is practically independent
of the seismic coefficient k and so does the aé—value (Figs. 5.40 and 5.41). For «
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Fig. 5.40. Sensitivity of o, to changes in &;.
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Fig. 5.41. Sensitivity of a,; to changes in k.
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essentially independent of the strength parameter, ¢, and the soil — wall interface

'

friction angle, 8. For the passive case, the o value is, in general, dependent on «,

B, ¢ and 6.
Based on these sensitivity studies, charts for the correlation factor oy similar to

that shown in Fig. 5.42 have been developed. They are shown in Figs. B5.8 —B5.13
in Appendix B for practical use. The ac'l-value is found varying erratically with 8.
They were plotted in the form shown in Figs. B5.14 — B5.19 for design purposes.
With the availability of these charts for the correlation factors o and oz('], the ac-
tive and passive earth pressure coefficients for the case of ¢ #+ 0 and ¢ = 0 can be

o
? 04  $=40°, 8=¢r2 ]
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o ] 1 [ L
0 0.20 0.40 0.60 0.80 .00
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Fig. 5.42. Sensitivity of «, to changes in « and 8.
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Fig. 5.43. Sensitivity of a; to changes in o and 8.
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easily calculated using the following equations modified from Eqs. (5.41) and

(5.42):
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Fig. 5.44. Sensitivity of «, to changes in ¢, « and &.
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where N Ay =K AE)q - pand NP = (Kpg) g = ocan be directly obtained from the
earth pressure tables in Appendlx A.

5.6.3 Correction for presence of cohesion

As noted previously, the contribution of cohesion to the lateral earth pressure is
not gravity-related and is therefore independent of the earthquake forces. Thus, any
attempt to correct the K, g- and Kpg-values as the result of the presence of cohe-
sion by considering the relations between (Kpp). o ¢ and (Kag). - o and between
(Kpg)e = ¢ and (Kpp), - o will not be practical. Development of N, and Np, for
various soil — wall conditions may be more useful, if, as in the case of g # 0, Eqgs.
(5.39) and (5.40) are approximated by Eqs. (5.41) and (5.42) for the case of ¢ #
0. For this approximation to be valid, superposition must hold.
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Fig. 5.46. Difference in 5, by optimization with respect to Ny, and Ny, + (2c/yH) Ny,
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In developing earth pressure theories, most investigators tend to take for granted
that superposition holds, regardless of the fact that the potential sliding surface in
an overall optimization may be quite different from those in an individual optimiza-
tion (Prakash and Saran, 1966). Figures 5.46 and 5.47 show the difference in both
the magnitude of K, and Kpg and the potential sliding surfaces, represented by
Q¢ and ¥, between the two optimizations. It is found that for the passive case,
both the magnitude in Kpg and the mechanism of failure, denoted by ¢, and Yer
if an average is taken, do not differ considerably between the two cases. This is pro-
bably because the rather curved potential sliding surface as detected in the case of
cohesionless backfill is not much different from that would be detected if the
backfill were purely cohesive. The compromised sliding surface is therefore not
much different from either one of the above two cases.
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For the active case, it is clear from Fig. 5.46 that the compromised mechanism:
of failure for the case of an overall optimization differs considerably from that for
the case of optimization with respect to the cohesion component, N,, alone. The
compromised potential sliding surface, as in the case of ¢ = 0, is practically planar.

Only when both the a-angle and the ¢/yH-value are so high that the cohesion has

a predominant influence on the resultant K,g-value, then the sliding surface
changes to essentially the logarithmic spiral shape. The most critical sliding surface
is found to be the logarithmic spiral shape in the case of optimization with respect
to N, The difference in 9, = (Kzp). » o/(Kap)e = o for the two cases of op-
timization can be considered in some situations.

The findings as shown in Figs. 5.46 and 5.47 reflect that superposition is not-

always valid. That is, K AE, and KPE as given by Egs. (5.39) and (5.40), are not
always equal to K Ap and KPE as given by Egs. (5.41) and (5.42) for the case of
¢ # 0. For the approximation of Egs. (5.41) and (5.42) to be practically valid, the
N, -value as obtained by individual optimization should be modified at least for
@ = 90° in the active earth pressure case,

Since the N, - and Np_-values are totally independent of the seismic coefficient
and the c¢/yH-value, development of N,  and Np. tables or charts is much
simplified. Furthermore, the ratios a, = NAC/NM and cxc’ = NPC/NPV are found
dependent not only on the seismic coefficient, but also on the geometry of the
soil — wall system and the strength parameters ¢ and §. The direct development of
tables or charts for NV, and Np, factors, instead of o - and aé—values is therefore
easier and of more practical value.

Based on these considerations, tables showing the N, - and Np_-values for
various soil—wall conditions have been developed. In retaining wall design,
materials as close to cohesionless as possible are generally selected for the backfill.
Although the backfill can be slightly cohesive, the ¢-angle is generally high. For this
reason, the N, . and Np_ values for ¢ = 25° to 45° have been calculated. However,
to include the case when c-value is appreciably high, the N, - and Np -values for
¢ = 20° have also been generated. They are given in Appendix B for practical use.
In preparing these tables, the ratio of soil — wall adhesion c, to c-parameter, A =
¢,/¢, is take as cos ¢ for ¢ < 33.3° and as 0.836 for ¢ = 33.3°. To account for
the discrepancy in the N, -value resulting from an individual
optimization of N, . alone, a modification factor N, ] /[INA]
1sprecommended ﬁcls presented in a graphical foprL;n as[shpac\zvﬁafxlllf?llg B?CZI(\)A?;; [X?)c!
pendix B. In practice, however, « is seldom larger than 90° when the wall is built
for retaining purpose. This modification is, therefore, not necessary in most cases.

Against the background of this information, the seismic lateral earth pressures for
the case of ¢ # 0 and ¢ = 0 are approximated by the following equations modified
from Eqgs. (5.41) and (5.42):
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2c

(KaB)e = 0 = Na, + vz (cNac) (5.46)
2c

(Kpp)e 2 0 = Np, + ;I‘;,Npc (5.47)

where NA«Y = FKAE)C =0 and Npy = (Kpp)e = 0‘ are obtained from the earth
pressure tables in Appendix A.

5.6.4 Correlation for mixed effects from acceleration direction, surcharge and
cohesion

In a general situation in which a given earthquake force of unknown direction of
acceleration (¢ # 0) is presented and, in addition, there are uniform surcharge and
cohesion on a soil — wall system, a correlation for the mixed effect from these three
components has to be considered.

As far as the cohesion component is concerned, since it is independent of the
magnitude of an earthquake, the superposition as shown in Egs. (5.46) and (5.47)
is unaffected by the direction of the seismic acceleration. Also, the cohesion compo-
nent, which is not gravity-related, is not to be significantly affected by the presence
of surcharge either. Hence, for the case of ¢ # 0 and ¢ # 0, the following equa-
tions, combined from Egs. (5.44) and (5.45), and Eqgs. (5.46) and (5.47) are valid:

2q 2c

(KaB)g=0,c # 0 = Na, (1 = JH O‘q) * JH (cNac) (5.48)
2g 2¢

(Kpg)g # 0, c 0 = Np, (1 +— JH q) + ,yT_INPC (5.49)

To account for the effect of § # 0 on the seismic lateral pressures when a uniform
surcharge is presented, an investigation on how the presence of surcharge affects the
correction factors n, and 71(} has been conducted. It is found that for the sample case
investigated, ¢ = 40°, § = 20°, k = 0.20, ¢/vH = 0.10, the average ng-value is
1.012, 1.007, and 1.001 respectively for o = 75°, 90° and 120° when 8 < ¢/2. As
8 increases, the n4-value becomes close to one. The n4-values show practically no
difference from the recommended values as given earlier. Hence, the correction fac-
tor 7, is practically unaffected by the presence of a surcharge.

For the passive case, the n,’,-values obtained based on ¢/yH = 0.10 are compared
with the recommended u(;né—values, which are based on g/vH = 0, as shown in Fig.
5.48. It is interesting to note that, here, as in the case of ¢ = 0, the né-value is prac-
tically the same for walls with different values of a-angle. The calculated né—values
for g/vH = 0 are practically identical with the recommended ,u;m;-values shown
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earlier. It can therefore be concluded that the TI(;- and #(;né-values as recommended
for g = 0 case are equally valid for the case of ¢ # 0.

Based on these findings, the following general equations are suggested for prac-
tical use for the case of 6 = 6, ¢ # 0, and ¢ # O:

2q 2¢
(Kap)g, q, ¢ = Mo Nay <1 + :y—I?I 0‘q) + 'yT‘I (e Na) (5.50)
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Fig. 5.48. Recommended correlation factor m; 1;,; as compared with calculated n‘;—values based on
g/vH = 0.10.
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;o 2 / 2c
(Kpgs, q, c = #g Mg Npy <1 + ?PEI aq> + JH (Npe) (5.51)

Note that: (a) y, can be taken as 1.0 for most cases, or as 1.0l if « < 90°, 8 <
¢/2 and & < ¢/2; (b) 1, can be obtained from Figs. B5.1 to BS.6 and g, is given
in Fig. B5.7; (¢) g and ozc'l can be obtained from Figs. B5.8 to B5.19; (d) u, can be
obtained from Fig. B5.20 and N, and Np, are given in Appendix B and (e) N, Ay
and NP'y are given in Appendix A.

For special cases in which the c-value is appreciably high, the ¢-value may be low.
N, and Np-values for ¢ = 20° are given in Appendix B. Since backfills with c-
values are seldom acceptable in most retaining wall design, correction factors need-
ed in Eqgs. (5.50) and (5.51) were not developed for the ¢ = 20° case. It is recom-
mended that they can be estimated by extrapolation, or can be taken as those cor-
responding to ¢ = 25° for a slightly conservative design.
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APPENDIX A: SEISMIC EARTH PRESSURE TABLES FOR K, AND Kp (Chang, 1981)

Coefficients for active earth pressure K, for ¢ = 20° and k¥ = 0, 0.05, 0.1 and 0.15
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20° and k = 0.20, 0.25,0.30,and ¢ = 25°and k = 0
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Coefficients of active earth pressure K, for ¢ = 25° and & = 0.05, 0.10, 0.15 and 0.20 chesff‘c‘ems for active earth pressure K, for ¢ = 25°, k = 0.25 and 0.30, and ¢ = 30° and k = 0 and
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Coefficients of active earth pressure K, for ¢ = 30° and k£ = 0.1, 0.15, 0.20 and 0.25 : Coefficients of active earth pressure X, for ¢ = 30° and &k = 0.30, and for ¢ = 35° and k = 0, 0.05

! and 0.10
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Coefficients of active earth pressure K, for ¢ = 35° and & = 0.15, 0.20, 0.25 and 0.30
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Coefficients of active earth pressure K, for ¢ = 40° and &
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Coefficients of active earth pressure K, for ¢ = 40° and k = 0.20, 0.25 and 0.30, and for ¢ = 45° and
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