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Preface of German Edition

Some readers familiar with fluid mechanics who come across this book may
ask themselves why another textbook on the basics of fluid mechanics has
been written, in view of the fact that the market in this field seems to be
more than saturated. The author is quite conscious of this situation, but he
thinks all the same that this book is justified because it covers areas of fluid
mechanics which have not yet been discussed in existing texts, or only to
some extent, in the way treated here.

When looking at the textbooks available on the market that give an intro-
duction into fluid mechanics, one realizes that there is hardly a text among
them that makes use of the entire mathematical knowledge of students and
that specifically shows the relationship between the knowledge obtained in
lectures on the basics of engineering mechanics or physics and modern fluid
mechanics. There has been no effort either to activate this knowledge for ed-
ucational purposes in fluid mechanics. This book therefore attempts to show
specifically the existing relationships between the above fields, and moreover
to explain them in a way that is understandable to everybody and making it
clear that the motions of fluid elements can be described by the same laws
as the movements of solid bodies in engineering mechanics or physics. The
tensor representation is used for describing the basic equations, showing the
advantages that this offers.

The present book on fluid mechanics makes an attempt to give an introduc-
tory structured representation of this special subject, which goes far beyond
the potential-theory considerations and the employment of the Bernoulli
equation, that often overburden the representations in fluid mechanics text-
books. The time when potential theory and energy considerations, based on
the Bernoulli equation, had to be the center of the fluid mechanical education
of students is gone. The development of modern measuring and computation
techniques, that took place in the last quarter of the 20th century, up to the
application level, makes detailed fluid-flow investigations possible nowadays,
and for this aim students have to be educated.
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viii Preface

Using the basic education obtained in mathematics and physics, the
present book strives at an introduction into fluid mechanics in such a way
that each chapter is suited to provide the material for a one-week or two-week
lectures, depending on the educational and knowledge level of the students.
The structure of the book helps students, who want to familiarize themselves
with fluid mechanics, to recognize the material which they should study in
addition to the lectures to become acquainted, chapter by chapter, with the
entire field of fluid mechanics. Moreover, the present text is also suited to
study fluid mechanics on one’s own. Each chapter is an introduction into a
subfield of fluid mechanics. Having acquired the substance of one chapter,
it is easier to read more profound books on the same subfield, or to pursue
advanced education by reading conference and journal publications.

In the description of the basic and most important fluid characteristic
for fluid mechanics, the viscosity, much emphasis is given so that its physi-
cal cause is understood clearly. The molecular-caused momentum transport,
leading to the τij -terms in the basic fluid mechanical equations, is dealt with
analogously to the molecular-dependent heat conduction and mass diffusion
in fluids. Explaining viscosity by internal “fluid friction” is physically wrong
and is therefore not dealt with in this form in the book. This text is meant to
contribute so that readers familiarizing themselves with fluid mechanics gain
quick access to this special subject through physically correctly presented
fluid flows.

The present book is based on the lectures given by the author at the
University of Erlangen-Nürnberg as an introduction into fluid mechanics.
Many students have contributed greatly to the compilation of this book by
referring to unclarified points in the lecture manuscripts. I should like to
express my thanks for that. I am also very grateful to the staff of the Fluid
Mechanics Chair who supported me in the compilation and final proof-reading
of the book and without whom the finalization of the book would not have
been possible. My sincere thanks go to Dr.-Ing. C. Bartels, Dipl.-Ing. A.
Schneider, Dipl.-Ing. M. Glück for their intense reading of the book. I owe
special thanks to Mrs. I.V. Paulus, as without her help the final form of the
book would not have come about.

Erlangen, Franz Durst
February 2006



Preface of English Edition

Fluid mechanics is a still growing subject, due to its wide application in engi-
neering, science and medicine. This wide interest makes it necessary to have
a book available that provides an overall introduction into the subject and
covers, at the same time, many of the phenomena that fluid flows show for
different boundary conditions. The present book has been written with this
aim in mind. It gives an overview of fluid flows that occur in our natural
and technical environment. The mathematical and physical background is
provided as a sound basis to treat fluid flows. Tensor notation is used, and it
is explained as being the best way to express the basic laws that govern fluid
motions, i.e. the continuity, the momentum and the energy equations. These
equations are derived in the book in a generally applicable manner, taking ba-
sic kinematics knowledge of fluid motion into account. Particular attention is
given to the derivations of the molecular transport terms for momentum and
heat. In this way, the generally formulated momentum equations are turned
into the well-known Navier–Stokes equations. These equations are then ap-
plied, in a relatively systematic manner, to provide introductions into fields
such as hydro- and aerostatics, the theory of similarity and the treatment
of engineering flow problems, using the integral form of the basic equations.
Potential flows are treated in an introductory way and so are wave motions
that occur in fluid flows. The fundamentals of gas dynamics are covered, and
the treatment of steady and unsteady viscous flows is described. Low and
high Reynolds number flows are treated when they are laminar, but their
transition to turbulence is also covered. Particular attention is given to flows
that are turbulent, due to their importance in many technical applications.
Their statistical treatment receives particular attention, and an introduction
into the basics of turbulence modeling is provided. Together with the treat-
ment of numerical methods, the present book provides the reader with a good
foundation to understand the wide field of modern fluid mechanics. In the
final sections, the treatment of flows with heat transfer is touched upon, and
an introduction into fluid-flow measuring techniques is given.
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x Preface

On the above basis, the present book provides, in a systematic manner,
introductions to important “subfields of fluid mechanics”, such as wave mo-
tions, gas dynamics, viscous laminar flows, turbulence, heat transfer, etc.
After readers have familiarized themselves with these subjects, they will find
it easy to read more advanced and specialized books on each of the treated
specialized fields. They will also be prepared to read the vast number of publi-
cations available in the literature, documenting the high activity in fluid-flow
research that is still taking place these days. Hence the present book is a
good introduction into fluid mechanics as a whole, rather than into one of its
many subfields.

The present book is a translation of a German edition entitled “Grundla-
gen der Strömungsmechanik: Eine Einführung in die Theorie der Strömungen
von Fluiden”. The translation was carried out with the support of Ms. Inge
Arnold of Saarbrücken, Germany. Her efforts to publish this book are greatly
appreciated. The final proof-reading was carried out by Mr. Phil Weston of
Folkestone in England. The author is grateful to Mr. Nishanth Dongari and
Mr. Dominik Haspel for all their efforts in finalizing the book. Very supportive
help was received in proof-reading different chapters of the book. Especially,
the author would like to thank Dr.-Ing. Michael Breuer, Dr. Stefan Becker
and Prof. Ashutosh Sharma for reading particular chapters. The finalization
of the book was supported by Susanne Braun and Johanna Grasser. Many
students at the University of Erlangen-Nürnberg made useful suggestions for
corrections and improvements and contributed in this way to the completion
of the English version of this book. Last but not least, many thanks need to
be given to Ms. Isolina Paulus and Mr. Franz Kaschak. Without their sup-
port, the present book would have not been finalized. The author hopes that
all these efforts were worthwhile, yielding a book that will find its way into
teaching advanced fluid mechanics in engineering and natural science courses
at universities.

March 2008 Franz Durst
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Chapter 1

Introduction, Importance
and Development of Fluid Mechanics

1.1 Fluid Flows and their Significance

Flows occur in all fields of our natural and technical environment and anyone
perceiving their surroundings with open eyes and assessing their significance
for themselves and their fellow beings can convince themselves of the far-
reaching effects of fluid flows. Without fluid flows life, as we know it, would
not be possible on Earth, nor could technological processes run in the form
known to us and lead to the multitude of products which determine the high
standard of living that we nowadays take for granted. Without flows our
natural and technical world would be different, and might not even exist at
all. Flows are therefore vital.

Flows are everywhere and there are flow-dependent transport processes
that supply our body with the oxygen that is essential to life. In the blood
vessels of the human body, essential nutrients are transported by mass flows
and are thus carried to the cells, where they contribute, by complex chemical
reactions, to the build-up of our body and to its energy supply. Similarly
to the significance of fluid flows for the human body, the multitude of flows
in the entire fauna and flora are equally important (see Fig. 1.1). Without
these flows, there would be no growth in nature and human beings would
be deprived of their “natural food”. Life in Nature is thus dependent on
flow processes and understanding them is an essential part of the general
education of humans.

As further vital processes in our natural environment, flows in rivers, lakes
and seas have to be mentioned, and also atmospheric flow processes, whose in-
fluences on the weather and thus on the climate of entire geographical regions
is well known (see Fig. 1.2). Wind fields are often responsible for the transport
of clouds and, taking topographic conditions into account, are often the cause
of rainfall. Observations show, for example, that rainfall occurs more often
in areas in front of mountain ranges than behind them. Fluid flows in the
atmosphere thus determine whether certain regions can be used for agricul-
ture, if they are sufficiently supplied with rain, or whether entire areas turn

1
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Fig. 1.1 Flow processes occur in many ways in our natural environment

Fig. 1.2 Effects of flows on the climate of entire geographical regions

arid because there is not sufficient rainfall for agriculture. In extreme cases,
desert areas are sometimes of considerable dimensions, where agricultural use
of the land is possible only with artificial irrigation.

Other negative effects on our natural environment are the devastations
that hurricanes and cyclones can cause. When rivers, lakes or seas leave their
natural beds and rims, flow processes can arise whose destructive forces are
known to us from many inundation catastrophes. This makes it clear that
humans not only depend on fluid flows in the positive sense, but also have to
learn to live with the effects of such fluid flows that can destroy or damage
the entire environment.
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Leaving the natural environment of humans and turning to the technical
environment, one finds here also a multitude of flow processes, that occur in
aggregates, instruments, machines and plants in order to transfer energy, gen-
erate lift forces, run combustion processes or take on control functions. There
are, for example, fluid flows coupled with chemical reactions that enable the
combustion in piston engines to proceed in the desired way and thus supply
the power that is used in cars, trucks, ships and aeroplanes. A large part
of the energy generated in a combustion engine of a car is used, especially
when the vehicles run at high speed, to overcome the energy loss resulting
from the flow resistance which the vehicle experiences owing to the momen-
tum loss and the flow separations. In view of the decrease in our natural
energy resources and the high fuel costs related to it, great significance is
attached to the reduction of this resistance by fluid mechanical optimization
of the car body. Excellent work has been done in this area of fluid mechan-
ics (see Fig. 1.3), e.g. in aerodynamics, where new aeroplane wing profiles
and wing geometries as well as wing body connections were developed which
show minimal losses due to friction and collision while maintaining the high
lift forces necessary in aeroplane aerodynamics. The knowledge gained within
the context of aerodynamic investigations is being used today also in many
fields of the consumer goods industry. The optimization of products from the
point of view of fluid mechanics has led to new markets, for example the
production of ventilators for air exchange in rooms and the optimization of
hair driers.

Fig. 1.3 Fluid flows are applied in many ways in our technical environment
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We also want to draw the attention of the reader to the importance of fluid
mechanics in the field of chemical engineering, where many areas such as heat
and mass transfer processes and chemical reactions are influenced strongly
or rendered possible only by flow processes. In this field of engineering, it
becomes particularly clear that much of the knowledge gained in the natural
sciences can be used technically only because it is possible to let processes run
in a steady and controlled way. In many areas of chemical engineering, fluid
flows are being used to make steady-state processes possible and to guarantee
the controllability of plants, i.e. flows are being employed in many places in
process engineering.

Often it is necessary to use flow media whose properties deviate strongly
from those of Newtonian fluids, in order to optimize processes, i.e. the use of
non-Newtonian fluids or multi-phase fluids is necessary. The selection of more
complex properties of the flowing fluids in technical plants generally leads
to more complex flow processes, whose efficient employment is not possible
without detailed knowledge in the field of the flow mechanics of simple fluids,
i.e. fluids with Newtonian properties. In a few descriptions in the present
introduction to fluid mechanics, the properties of non-Newtonian media are
mentioned and interesting aspects of the flows of these fluids are shown. The
main emphasis of this book lies, however, in the field of the flows of Newtonian
media. As these are of great importance in many applications, their special
treatment in this book is justified.

1.2 Sub-Domains of Fluid Mechanics

Fluid mechanics is a science that makes use of the basic laws of mechanics and
thermodynamics to describe the motion of fluids. Here fluids are understood
to be all the media that cannot be assigned clearly to solids, no matter
whether their properties can be described by simple or complicated material
laws. Gases, liquids and many plastic materials are fluids whose movements
are covered by fluid mechanics. Fluids in a state of rest are dealt with as a
special case of flowing media, i.e. the laws for motionless fluids are deduced
in such a way that the velocity in the basic equations of fluid mechanics is
set equal to zero.

In fluid mechanics, however, one is not content with the formulation of the
laws by which fluid movements are described, but makes an effort beyond
that to find solutions for flow problems, i.e. for given initial and boundary
conditions. To this end, three methods are used in fluid mechanics to solve
flow problems:

(a) Analytical solution methods (analytical fluid mechanics):
Analytical methods of applied mathematics are used in this field to solve
the basic flow equations, taking into account the boundary conditions
describing the actual flow problem.
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(b) Numerical solution methods (numerical fluid mechanics):
Numerical methods of applied mathematics are employed for fluid flow
simulations on computers to yield solutions of the basic equations of fluid
mechanics.

(c) Experimental solution methods (experimental fluid mechanics):
This sub-domain of fluid mechanics uses similarity laws for the trans-
ferability of fluid mechanics knowledge from model flow investigations.
The knowledge gained in model flows by measurements is transferred by
means of the constancy of known characteristic quantities of a flow field
to the flow field of actual interest.

The above-mentioned methods have until now, in spite of considerable de-
velopments in the last 50 years, only partly reached the state of development
which is necessary to be able to describe adequately or solve fluid mechan-
ics problems, especially for many practical flow problems. Hence, nowadays,
known analytical methods are often only applicable to flow problems with
simple boundary conditions. It is true that the use of numerical processes
makes the description of complicated flows possible; however, feasible solu-
tions to practical flow problems without model hypotheses, especially in the
case of turbulent flows at high Reynold numbers, can only be achieved in
a limited way. The limitations of numerical methods are due to the lim-
ited storage capacity and computing speed of the computers available today.
These limitations will continue to exist for a long time, so that a number of
practically relevant flows can only be investigated reliably by experimental
methods. However, also for experimental investigations not all quantities of
interest, from a fluid mechanics point of view, can always be determined, in
spite of the refined experimental methods available today. Suitable measur-
ing techniques for obtaining all important flow quantities are lacking, as for
example the measuring techniques to investigate the thin fluid films shown
in Fig. 1.4. Experience shows that efficient solutions of practical flow prob-
lems therefore require the combined use of the above-presented analytical,
numerical and experimental methods of fluid mechanics. The different sub-
domains of fluid mechanics cited are thus of equal importance and mastering
the different methods of fluid mechanics is often indispensable in practice.

When analytical solutions are possible for flow problems, they are prefer-
able to the often extensive numerical and experimental investigations. Un-
fortunately, it is known from experience that the basic equations of fluid
mechanics, available in the form of a system of nonlinear and partial differ-
ential equations, allow analytical solutions only when, with regard to the
equations and the initial and boundary conditions, considerable simplifi-
cations are made in actually determining solutions to flow problems. The
validity of these simplifications has to be proved for each flow problem to be
solved by comparing the analytically achieved final results with the corre-
sponding experimental data. Only when such comparisons lead to acceptably
small differences between the analytically determined and experimentally in-
vestigated velocity field can the hypotheses, introduced into the analytical
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Fig. 1.4 Experimental investigation of fluid films

solution of the flow problem, be regarded as justified. In cases where such a
comparison with experimental data is unsatisfactory, it is advisable to justify
theoretically the simplifications by order of magnitude considerations, so as
to prove that the terms neglected, for example in the solution of the basic
equations, are small in comparison with the terms that are considered for the
solution.

One has to proceed similarly concerning the numerical solution of flow
problems. The validity of the solution has to be proved by comparing the
results achieved by finite volume methods and finite element methods with
corresponding experimental data. When such data do not exist, which may
be the case for flow problems as shown in Figs. 1.5 and 1.6, statements on
the accuracy of the solutions achieved can be made by the comparison of
three numerical solutions calculated on various fine grids that differ from
one another by their grid spacing. With this knowledge of precision, flow
information can then can be obtained from numerical computations that are
relevant to practical applications. Numerical solutions without knowledge of
the numerically achieved precision of the solution are unsuitable for obtaining
reliable information on fluid flow processes.

When experimental data are taken into account to verify analytical or nu-
merical results, it is very important that only such experimental data that can
be classified as having sufficient precision for reliable comparisons are used.
A prerequisite is that the measuring data are obtained with techniques that
allow precise flow measurements and also permit one to determine fluid flows
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Fig. 1.5 Numerical calculation of the flow around a train in crosswinds

Fig. 1.6 Flow investigation with the aid of a laser Doppler anemometer

by measurement in a non-destructive way. Optical measurement techniques
fulfill, in general, the requirements concerning precision and permit mea-
surements without disturbance, so that optical measuring techniques are
nowadays increasingly applied in experimental fluid mechanics (see Fig. 1.6).
In this context, laser Doppler anemometry is of particular importance. It has
developed into a reliable and easily applicable measuring tool in fluid me-
chanics that is capable of measuring the required local velocity information
in laminar and turbulent flows.

Although the equal importance of the different sub-domains of fluid me-
chanics presented above, according to the applied methodology, has been
outlined in the preceding paragraphs, priority in this book will be given to
analytical fluid mechanics for an introductory presentation of the methods for
solving flow problems. Experience shows that it is better to include analytical
solutions of fluid mechanical problems in order to create or deepen with their



8 1 Introduction, Importance and Development of Fluid Mechanics

help students’ understanding of flow physics. As a rule, analytical methods
applied to the solution of fluid flow problems, are known to students from lec-
tures in applied mathematics. Hence students of fluid mechanics bring along
the tools for the analytical solutions of flow problems. This circumstance
does not necessarily exist for numerical or experimental methods. This is the
reason why in this introductory book special significance is attached to the
methods of analytical fluid mechanics. In parts of this book numerical solu-
tions are treated in an introductory way in addition to presenting results of
experimental investigations and the corresponding measuring techniques. It
is thus intended to convey to the student, in this introduction to the subject,
the significance of numerical and experimental fluid mechanics.

The contents of this book put the main emphasis on solutions of fluid
flow problems that are described by simplified forms of the basic equations
of fluid mechanics. This application of simplified equations to the solution
of fluid problems represents a highly developed system. The comprehensible
introduction of students to the general procedures for solving flow problems
by means of simplified flow equations is achieved by the basic equations being
derived and formulated as partial differential equations for Newtonian fluids
(e.g. air or water). From these general equations, the simplified forms of the
fluid flow laws can be derived in a generally comprehensible way, e.g. by the
introduction of the hypothesis that fluids are free from viscosity. Fluids of
this kind are described as “ideal” from a fluid mechanics point of view. The
basic equations of these ideal fluids, derived from the general set of equations,
represent an essential simplification by which the analytical solutions of flow
problems become possible.

Further simplifications can be obtained by the hypothesis of incompress-
ibility of the considered fluid, which leads to the classical equations of
hydrodynamics. When, however, gas flows at high velocities are considered,
the hypothesis of incompressibility of the flow medium is no longer justified.
For compressible flow investigations, the basic equations valid for gas dynamic
flows must then be used. In order to derive these, the hypothesis is introduced
that gases in flow fields undergo thermodynamic changes of state, as they
are known for ideal gases. The solution of the gas dynamic basic equations is
successful in a number of one-dimensional flow processes. These are appropri-
ately dealt with in this book. They give an insight into the strong interactions
that may exist between the kinetic energy of a fluid element and the internal
energy of a compressible fluid. The resulting flow phenomena are suited for
achieving the physical understanding of one-dimensional gas dynamic fluid
flows and applying it to two-dimensional flows. Some two-dimensional flow
problems are therefore also mentioned in this book. Particular significance
in these considerations is given to the physical understanding of the fluid
flows that occur. Importance is also given, however, to representing the ba-
sics of the applied analytical methods in a way that makes them clear and
comprehensible for the student.
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1.3 Historical Developments

In this section, the historical development of fluid mechanics is roughly
sketched out, based on the most important contributions of a number of
scientists and engineers. The presentation does not claim to give a complete
picture of the historical developments: this is impossible owing to the con-
straints on allowable space in this section. The aim is rather to depict the
development over centuries in a generally comprehensible way. In summary,
it can be said that already at the beginning of the nineteenth century the
basic equations with which fluid flows can be described reliably were known.
Solutions of these equations were not possible owing to the lack of suitable
solution methods for engineering problems and therefore technical hydraulics
developed alongside the field of theoretical fluid mechanics. In the latter area,
use was made of the known contexts for the flow of ideal fluids and the in-
fluence of friction effects was taken into consideration via loss coefficients,
determined empirically. For geometrically complicated problems, methods
based on similarity laws were used to generalize experimentally achieved flow
results. Analytical methods only allowed the solution of academic problems
that had no relevance for practical applications. It was not until the second
half of the twentieth century that the development of suitable methods led to
the numerical techniques that we have today which allow us to solve the basic
equations of fluid mechanics for practically relevant flow problems. Parallel to
the development of the numerical methods, the development of experimental
techniques was also pushed ahead, so that nowadays measurement techniques
are available which allow us to obtain experimentally fluid mechanics data
that are interesting for practical flow problems.

Some technical developments were and still are today closely connected
with the solution of fluid flows or with the advantageous exploitation of flow
processes. In this context, attention is drawn to the development of naviga-
tion with wind-driven ships as early as in ancient Egyptian times. Further
developments up to the present time have led to transport systems of great
economic and socio-political significance. In recent times, navigation has been
surpassed by breathtaking developments in aviation and motor construction.
These again use flow processes to guarantee the safety and comfort which
we take for granted nowadays with all of the available transport systems. It
was fluid mechanics developments which alone made this safety and comfort
possible.

The continuous scientific development of fluid mechanics started with
Leonardo da Vinci (1452–1519). Through his ingenious work, methods were
devised that were suitable for fluid mechanics investigations of all kinds. Ear-
lier efforts of Archimedes (287–212 B.C.) to understand fluid motions led to
the understanding of the hydromechanical buoyancy and the stability of float-
ing bodies. His discoveries remained, however, without further impact on the
development of fluid mechanics in the following centuries. Something similar
holds true for the work of Sextus Julius Frontinus (40–103), who provided the
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basic understanding for the methods that were applied in the Roman Empire
for measuring the volume flows in the Roman water supply system. The work
of Sextus Julius Frontinus also remained an individual achievement. For more
than a millennium no essential fluid mechanics insights followed and there
were no contributions to the understanding of flow processes.

Fluid mechanics as a field of science developed only after the work of
Leonardo da Vinci. His insight laid the basis for the continuum principle for
fluid mechanics considerations and he contributed through many sketches of
flow processes to the development of the methodology to gain fluid mechanics
insights into flows by means of visualization. His ingenious engineering art
allowed him to devise the first installations that were driven fluid mechani-
cally and to provide sketches of technical problem solutions on the basis of
fluid flows. The work of Leonardo da Vinci was followed by that of Galileo
Galilei (1564–1642) and Evangelista Torricelli (1608–1647). Whereas Galileo
Galilei produced important ideas for experimental hydraulics and revised the
concept of vacuum introduced by Aristoteles, Evangelista Torricelli realized
the relationship between the weight of the atmosphere and the barometric
pressure. He developed the form of a horizontally ejected fluid jet in connec-
tion with the laws of free fall. Torricelli’s work was therefore an important
contribution to the laws of fluids flowing out of containers under the influence
of gravity. Blaise Pascal (1623–1662) also dedicated himself to hydrostatics
and was the first to formulate the theorem of universal pressure distribution.

Isaac Newton (1642–1727) laid the basis for the theoretical description of
fluid flows. He was the first to realize that molecule-dependent momentum
transport, which he introduced as flow friction, is proportional to the velocity
gradient and perpendicular to the flow direction. He also made some addi-
tional contributions to the detection and evaluation of the flow resistance.
Concerning the jet contraction arising with fluids flowing out of containers,
he engaged in extensive deliberations, although his ideas were not correct in
all respects. Henri de Pitot (1665–1771) made important contributions to the
understanding of stagnation pressure, which builds up in a flow at stagnation
points. He was the first to endeavor to make possible flow velocities by dif-
ferential pressure measurements following the construction of double-walled
measuring devices. Daniel Bernoulli (1700–1782) laid the foundation of hy-
dromechanics by establishing a connection between pressure and velocity,
on the basis of simple energy principles. He made essential contributions to
pressure measurements, manometer technology and hydromechanical drives.

Leonhard Euler (1707–1783) formulated the basics of the flow equations
of an ideal fluid. He derived, from the conservation equation of momentum,
the Bernoulli theorem that had, however, already been derived by Johann
Bernoulli (1667–1748) from energy principles. He emphasized the significance
of the pressure for the entire field of fluid mechanics and explained among
other things the appearance of cavitations in installations. The basic princi-
ple of turbo engines was discovered and described by him. Euler’s work on
the formulation of the basic equations was supplemented by Jean le Rond
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d’Alembert (1717–1783). He derived the continuity equation in differential
form and introduced the use of complex numbers into the potential theory.
In addition, he derived the acceleration component of a fluid element in field
variables and expressed the hypothesis, named after him and proved before
by Euler, that a body circulating in an ideal fluid has no flow resistance. This
fact, known as d’Alembert’s paradox, led to long discussions concerning the
validity of the equations of fluid mechanics, as the results derived from them
did not agree with the results of experimental investigations.

The basic equations of fluid mechanics were dealt with further by Joseph
de Lagrange (1736–1813), Louis Marie Henri Navier (1785–1836) and Barre
de Saint Venant (1797–1886). As solutions of the equations were not success-
ful for practical problems, however, practical hydraulics developed parallel
to the development of the theory of the basic equations of fluid mechan-
ics. Antoine Chezy (1718–1798) formulated similarity parameters, in order
to transfer the results of flow investigations in one flow channel to a second
channel. Based on similarity laws, extensive experimental investigations were
carried out by Giovanni Battista Venturi (1746–1822), and also experimental
investigations were made on pressure loss measurements in flows by Gotthilf
Ludwig Hagen (1797–1884) and on hydrodynamic resistances by Jean-Louis
Poiseuille (1799–1869). This was followed by the work of Henri Philibert
Gaspard Darcy (1803–1858) on filtration, i.e. for the determination of pres-
sure losses in pore bodies. In the field of civil engineering, Julius Weissbach
(1806–1871) introduced the basis of hydraulics into engineers’ considerations
and determined, by systematic experiments, dimensionless flow coefficients
with which engineering installations could be designed. The work of William
Froude (1810–1879) on the development of towing tank techniques led to
model investigations on ships and Robert Manning (1816–1897) worked out
many equations for resistance laws of bodies in open water channels. Similar
developments were introduced by Ernst Mach (1838–1916) for compressible
aerodynamics. He is seen as the pioneer of supersonic aerodynamics, provid-
ing essential insights into the application of the knowledge on flows in which
changes of the density of a fluid are of importance.

In addition to practical hydromechanics, analytical fluid mechanics devel-
oped in the nineteenth century, in order to solve analytically manageable
problems. George Gabriel Stokes (1816–1903) made analytical contributions
to the fluid mechanics of viscous media, especially to wave mechanics and
to the viscous resistance of bodies, and formulated Stokes’ law for spheres
falling in fluids. John William Stratt, Lord Rayleigh (1842–1919) carried out
numerous investigations on dynamic similarity and hydrodynamic instability.
Derivations of the basis for wave motions, instabilities of bubbles and drops
and fluid jets, etc., followed, with clear indications as to how linear instabil-
ity considerations in fluid mechanics are to be carried out. Vincenz Strouhal
(1850–1922) worked out the basics of vibrations and oscillations in bodies
through separating vortices. Many other scientists, who showed that applied
mathematics can make important contributions to the analytical solution
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of flow problems, could be named here. After the pioneering work of Lud-
wig Prandtl (1875–1953), who introduced the boundary layer concept into
fluid mechanics, analytical solutions to the basic equations followed, e.g. so-
lutions of the boundary layer equations by Paul Richard Heinrich Blasius
(1883–1970).

With Osborne Reynolds (1832–1912), a new chapter in fluid mechanics
was opened. He carried out pioneering experiments in many areas of fluid
mechanics, especially basic investigations on different turbulent flows. He
demonstrated that it is possible to formulate the Navier–Stokes equations
in a time-averaged form, in order to describe turbulent transport processes
in this way. Essential work in this area by Ludwig Prandtl (1875–1953) fol-
lowed, providing fundamental insights into flows in the field of the boundary
layer theory. Theodor von Karman (1881–1993) made contributions to many
sub-domains of fluid mechanics and was followed by numerous scientists who
engaged in problem solutions in fluid mechanics. One should mention here,
without claiming that the list is complete, Pei-Yuan Chou (1902–1993) and
Andrei Nikolaevich Kolmogorov (1903–1987) for their contributions to turbu-
lence theory and Herrmann Schlichting (1907–1982) for his work in the field of
laminar–turbulent transition, and for uniting the fluid-mechanical knowledge
of his time and converting it into practical solutions of flow problems.

The chronological sequence of the contributions to the development of fluid
mechanics outlined in the above paragraphs can be rendered well in a diagram
as shown in Fig. 1.7. This information is taken from history books on fluid

Fig. 1.7 Diagram listing the epochs and scientists contributing to the development
of fluid mechanics
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mechanics as given in refs [1.1] to [1.6]. On closer examination one sees that
the sixteenth and seventeenth centuries were marked by the development
of the understanding of important basics of fluid mechanics. In the course
of the development of mechanics, the basic equations for fluid mechanics
were derived and fully formulated in the eighteenth century. These equations
comprised all forces acting on fluid elements and were formulated for sub-
stantial quantities (Lagrange’s approach) and for field quantities (Euler’s
approach). Because suitable solution methods were lacking, the theoretical
solutions of the basic equations of fluid mechanics, strived for in the nine-
teenth century and at the beginning of the twentieth century, were limited to
analytical results for simple boundary conditions. Practical flow problems es-
caped theoretical solution and thus “engineering hydromechanics” developed
that looked for fluid mechanics problem solutions by experimentally gained
insights. At that time, one aimed at investigations on geometrically simi-
lar flow models, while conserving fluid mechanics similarity requirements, to
permit the transfer of the experimentally gained insights by similarity laws
to large constructions. Only the development of numerical methods for the
solution of the basic equations of fluid mechanics, starting from the middle
of the twentieth century, created the methods and techniques that led to
numerical solutions for practical flow problems. Metrological developments
that ran in parallel led to complementary experimental and numerical so-
lutions of practical flow problems. Hence it is true to say that the second
half of the twentieth century brought to fluid mechanics the measuring and
computational methods that are required for the solution of practical flow
problems. The combined application of the experimental and numerical meth-
ods, available today, will in the twenty-first century permit fluid mechanics
investigations that were not previously possible because of the lack of suitable
investigation methods.

The experimental methods that contributed particularly to the rapid ad-
vancement of experimental fluid mechanics in the second half of the twentieth
century were the hot-wire and laser-Doppler anemometry. These methods
have now reached a state of development which allows their use in local ve-
locity measurements in laminar and turbulent flows. In general, one applies
hot wire anemometry in gas flows that are low in impurities, so that the
required calibration of the hot wire employed can be conserved over a long
measuring time. Reliable measurements are possible up to 10% turbulence in-
tensity. Flows with turbulence intensities above that require the application
of laser Doppler anemometry. This measuring method is also suitable for
measurements in impure gas and liquid flows.

Finally, the rapid progress that has been achieved in the last few decades
in the field of numerical fluid mechanics should also be mentioned. Con-
siderable developments in applied mathematics took place to solve partial
differential equations numerically. In parallel, great improvements in the
computational performance of modern high-speed computers occurred and
computer programs became available that allow one to solve practical flow
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Fig. 1.8 Diagram of the turbulence anisotropy due to the invariants of the anisotropy
tensor

problems numerically. Numerical fluid mechanics has therefore also become
an important sub-domain of the entire field of fluid mechanics. Its significance
will increase further in the future.

One can expect in particular new ansätze in the development of turbu-
lence models which will use invariants of the tensors uiuj , εij , etc., so that
the limitations of modelling turbulent properties of flows can be taken into
consideration. This is indicated in Fig. 1.8. Information of this kind can be
used for advanced turbulence modeling.
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Chapter 2

Mathematical Basics

2.1 Introduction and Definitions

Fluid mechanics deals with transport processes, especially with the flow- and
molecule-dependent momentum transports in fluids. Their thermodynamic
properties of state such as pressure, density, temperature and internal energy
enter into fluid mechanics considerations. The thermodynamic properties of
state of a fluid are scalars and as such can be introduced into the equa-
tions for the mathematical description of fluid flows. However, in addition to
scalars, other kinds of quantities are also required for the description of fluid
flows. In the following sections it will be shown that fluid mechanics consid-
erations result in conservation equations for mass, momentum, energy and
chemical species which comprise scalar, vector and other tensor quantities.
Often fundamental differentiations are made between such quantities, with-
out considering that the quantities can all be described as tensors of different
orders. Hence one can write:

Scalar quantities = tensors of zero order � {a} → a
Vectorial quantities = tensors of first order � {ai} → ai

Tensorial quantities = tensors of second order � {aij} → aij

where the number of the chosen indices i, j, k, l, m, n of the tensor presenta-
tion designates the order and ‘a’ can be any quantity under consideration. The
introduction of tensorial quantities, as indicated above, permits extensions
of the description of fluid flows by means of still more complex quantities,
such as tensors of third or even higher order, if this becomes necessary for
the description of fluid mechanics phenomena. This possibility of extension
and the above-mentioned standard descriptions led us to choose the indicated
tensor notation of physical quantities in this book, the number of the indices
i, j, k, l, m, n deciding the order of a considered tensor.

Tensors of arbitrary order are mathematical quantities, describing physical
properties of fluids, with which “mathematical operations” such as addition,

15
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subtraction, multiplication and division can be carried out. These may be
well known to many readers of this book, but are presented again below as
a summary. Where the brevity of the description does not make it possible
for readers, not accustomed to tensor descriptions, to familiarize themselves
with the matter, reference is made to the corresponding mathematical liter-
ature; see Sect. 2.12. Many of the following deductions and descriptions can,
however, be considered as simple and basic knowledge of mathematics and it
is not necessary that the details of the complete tensor calculus are known.
In the present book, only the tensor notation is used, along with simple parts
of the tensor calculus. This will become clear from the following explana-
tions. There are a number of books available that deal with the matter in the
sections to come in a mathematical way, e.g. see refs. [2.1] to [2.7].

2.2 Tensors of Zero Order (Scalars)

Scalars are employed for the description of the thermodynamic state vari-
ables of fluids such as pressure, density, temperature and internal energy, or
they describe other physical properties that can be given clearly by stating
an amount of the quantity and a dimensional unit. The following examples
explain this:

P = 7.53 × 106︸ ︷︷ ︸
Amount

[
N
m2

]
︸ ︷︷ ︸
Unit

, T = 893.2︸ ︷︷ ︸
Amount

[
K
]

︸︷︷︸
Unit

, ρ = 1.5 × 103︸ ︷︷ ︸
Amount

[
kg
m3

]
︸ ︷︷ ︸
Unit

(2.1)

Physical quantities that have the same dimension can be added and sub-
tracted, the amounts being included in the adding and subtracting operations,
with the common dimension being maintained:

N∑
α=1

aα =
N∑

α=1

|aα|︸︷︷︸
Amount

[
a
]

︸︷︷︸
Unit

a±b = (|a| ± |b|)︸ ︷︷ ︸
Amount

[
a or b

]
︸ ︷︷ ︸

Unit

, with
[
a
]

=
[
b
]

(2.2)

Quantities with differing dimensions cannot be added or subtracted.
The mathematical laws below can be applied to the permitted additions

and subtractions of scalars, see for details [2.5] and [2.6].
The amount of ‘a’ is a real number, i.e. |a| is a real number if a ∈ R. It is

defined by |a| := +a, if a ≥ 0 and |a| := −a, if a < 0.
The following mathematical rules can be deducted directly from this

definition:

−|a| ≤ a ≤ |a|, |−a| = |a|, |ab| = |a||b|,
∣∣∣a
b

∣∣∣ = |a|
|b| (if b �= 0)

|a| ≤ b⇔ −b ≤ a ≤ b
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From −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|, it follows that −(|a| + |b|) ≤
a+ b ≤ (|a| + |b|) . Thus for all a, b ∈ R:

|a+ b| ≤ |a| + |b| (triangular inequality)

The commutative and associative laws of addition and multiplication of
scalar quantities are generally known and need not be dealt with here any
further. If one carries out multiplications or divisions with scalar physical
quantities, new physical quantities are created. These are again scalars, with
amounts that result from the multiplication or division of the corresponding
amounts of the initial quantities. The dimension of the new scalar physical
quantities results from the multiplication or division of the basic units of the
scalar quantities:

a · b = (|a| · |b|)︸ ︷︷ ︸
Amount

[
[a] · [b]

]
︸ ︷︷ ︸

Unit

and
a

b
=

|a|
|b|︸︷︷︸

Amount

·
[
[a]
[b]

]
︸ ︷︷ ︸
Unit

(2.3)

It can be seen from the example of the product of the pressure P and the
volume V how a new physical quantity results:

P · V = |P | · |V |
[

N
m2

· m3

]
︸ ︷︷ ︸

[J=Nm]

= |P | · |V |
[
Nm
]

(2.4)

The new physical quantity has the unit J = joule, i.e. the unit of energy. When
a pressure loss ∆P is multiplied with the volumetric flow rate, a power loss
results:

∆P · V̇ = |∆P ||V̇ |
[

N
m2

· m3

s

]
= |∆P ||V̇ |

[
Nm

s

]
︸ ︷︷ ︸
[W=N m

s ]

(2.5)

The power loss has the unit W = watt = joule/s.

2.3 Tensors of First Order (Vectors)

The complete presentation of a vectorial quantity requires the amount of the
quantity to be given, in addition to its direction and its unit. Force, velocity,
momentum, angular momentum, etc., are examples for vectorial quantities.
Graphically, vectors are represented by arrows, whose length indicates the
amount and the position of the arrow origin and the arrowhead indicates the
direction. The derivable analytical description of vectorial quantities makes
use of the indication of a vector component projected on to the axis of a
coordinate system, and the indication of the direction is shown by the signs
of the resulting vector components.
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Fig. 2.1 Representation of velo-
city vector Ui in a Cartesian
coordinate system

To represent the velocity vector {Ui}, for example, in a Cartesian coordi-
nate system, the components Ui(i = 1, 2, 3) can be expressed as follows:

U = {Ui} =

⎧⎨⎩
U1

U2

U3

⎫⎬⎭ = |U |
⎧⎨⎩

cosα1

cosα2

cosα3

⎫⎬⎭[ms ]� Ui = ±︸︷︷︸
Direction

|U | · | cosαi|︸ ︷︷ ︸
Amount

[m
s

]
︸︷︷︸
Unit

(2.6)

Looking at Fig. 2.1, one can see that the following holds:

U1 = U1 · e1, U2 = U2 · e2, U3 = U3 · e3 (2.7)

where the unit vectors e1, e2, e3 in the coordinate directions x1, x2 and x3

are employed. This is shown in Fig. 2.1. αi designates the angle between U
and the unit vector ei. Vectors can also be represented in other coordinate
systems; through this, the vector does not change in itself but its mathemat-
ical representation changes. In this book, Cartesian coordinates are preferred
for presenting vector quantities.

Vector quantities which have the same unit can be added or subtracted
vectorially. Laws are applied here that result in addition or subtraction of
the components on the axes of a Cartesian coordinate system:

a ± b = {ai} ± {bi} = {(ai ± bi)} = {(a1 ± b1), (a2 ± b2), (a3 ± b3)}T

Vectorial quantities with different units cannot be added or subtracted
vectorially. For the addition and subtraction of vectorial constants (having
the same units), the following rules of addition hold:

a + 0 = {ai} + {0} = a (zero vector or neutral element 0)
a + (−a) = {ai} + {−ai} = 0 (a element inverse to −a)
a + b = b + a, d.h. {ai} + {bi} = {bi} + {ai}

= {(ai + bi)} (commutative law)
a + (b + c) = (a + b) + c, d.h. {ai} + {(bi + ci)}

= {(ai + bi)} + {ci} (associative law)
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With (α · a) a multiple of a results, if α > 0. α has no unit of its own, i.e.
(α ·a) designates the vector that has the same direction as a but has α times
the amount. In the case α < 0, one puts (α · a) := −(|α| · a). For α = 0 the
zero vector results: 0 · a = 0.

When multiplying two vectors two possibilities should be distinguished
yielding different results.

The scalar product a · b of the vectors a and b is defined as

a · b :=

{
|a| · |b| · cos(a, b), if a �= 0 and b �= 0

0, if a = 0 or b = 0 (2.8)

where the following mathematical rules hold:
a · b = b · a a · b =

−→
0 ⇔ if a orthogonal to b

(αa) · b = a · (αb) = α(a · b) |a| def=
√

a · a
(a + b) · c = a · c + b · c

(2.9)

When the vectors a and b are represented in a Cartesian coordinate system,
the following simple rules arise for the scalar product (a ·b) and for cos(a, b):

a · b = a1b1 + a2b2 + a3b3, |a| =
√
a21 + a22 + a23 (2.10)

cos(a, b) =
a · b
|a||b| =

a1b1 + a2b2 + a3b3√
a21 + a22 + a23

√
b21 + b22 + b23

(2.11)

The above equations hold for a, b �= −→
0 . Especially the directional cosines in

a Cartesian coordinate system are calculated as

cos(a, ei) =
|ai|√

a21 + a22 + a23
i = 1, 2, 3 (2.12)

i.e. ai represents the angles between the vector a and the base vectors

e1 =

⎧⎨⎩
1
0
0

⎫⎬⎭, e2 =

⎧⎨⎩
0
1
0

⎫⎬⎭, e3 =

⎧⎨⎩
0
0
1

⎫⎬⎭ (2.13)

The vector product a × b of the vectors a and b has the following
properties:

a × b is a vector �= 0, if a �= 0 and b �= 0 and a is not parallel to b;
|a × b| = |a| · |b| sin(a, b) (area of the parallelogram set up by a and b);
a×b is a vector standing perpendicular to a and b and can be represented

with (a, b,a × b), a right-handed system.
It can easily be seen that a×b = 0, if a = 0 or b = 0 or a is parallel to b.

One should take into consideration that for the vector product the associative
law does not hold in general:

a × (b × c) �= (a × b) × c
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Fig. 2.2 Graphical representation of a vector
product a × b

The following computation rules can be stated (Fig. 2.2):

a × a = 0, a × b = −(b × a),
α(a × b) = (αa) × b = a × (αb) (for α ∈ R)
a × (b + c) = a × b + a × c

(a + b) × c = a × c + b × c (distributive laws)
a × b = 0 ⇔ a = 0 or b = 0 or a, b parallel (parallelism test)
|a × b|2 = |a|2 · |b|2 − (a · b)2

If one represents the vectors a and b in a Cartesian coordinate system with
ei, the following computation rule results:⎧⎨⎩

a1
a2
a3

⎫⎬⎭×
⎧⎨⎩
b1
b2
b3

⎫⎬⎭ =

∣∣∣∣∣∣
e1 a1 b1
e2 a2 b2
e3 a3 b3

∣∣∣∣∣∣ =
⎧⎨⎩
a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎫⎬⎭ (2.14)

The tensor of third order εijk := ei · (ej × ek) that will be introduced in
Sect. 2.5 permits, moreover, a computation of a vector product according to

{ai} × {bj} := εijk ai bj (2.15)

A combination of the scalar product and the vector product leads to the
scalar triple product (STP) formed of three vectors:[

a, b, c
]

= a · (b × c) (2.16)

The properties of this product from three vectors can be seen from Fig. 2.3.
The STP of the vectors a, b, c leads to six times the volume of the parallelo-
piped (ppd), Vppd, defined by the vectors: a, b and c.

The “parallelopiped product” of the three vectors a, b, c is calculated from
the value of a triple-row determinant:

[a, b, c] =

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ (2.17)
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Fig. 2.3 Graphical representation of scalar triple product by three vectors

Vppd =
1
6
VSTP =

1
6

[a, b, c] (2.18)

It is easy to show that for the STP

a · (b × c) = b · (a × c) = c · (a × b)
− b · (a × c) (2.19)

For the vector triple product a × b × c, the following relation holds:

a × (b × c) = (a · c)b − (a · b)c (2.20)

Further important references are given in books on vector analysis; see also
Sect. 2.12.

2.4 Tensors of Second Order

In the preceding two sections, tensors of zero order (scalar quantities) and
tensors of first order (vectorial quantities) were introduced. In this section, a
summary concerning tensors of second order is given, which can be formulated
as matrices with nine elements:

{aij} =

⎧⎨⎩a11 a12 a13a21 a22 a23
a31 a32 a33

⎫⎬⎭ = aij (2.21)

In the matrix element aij , the index i represents the number of the row and j
represents the number of the column, and the elements designated with i = j
are referred to as the diagonal elements of the matrix. A tensor of second
order is called symmetrical when aij = aji holds. The unit second-order
tensor is expressed by the Kronecker delta:

δij =

⎧⎨⎩1 0 0
0 1 0
0 0 1

⎫⎬⎭, i.e. δij =
{

+1 if i = j
0 if i �= j (2.22)
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The transposed tensor of {aij} is formed by exchanging the rows and
columns of the tensor: {aij}T = {aji}. When doing so, it is apparent that the
transposed unit tensor of second order is again the unit tensor, i.e. δTij = δij .

The sum or difference of two tensors of second order is defined as a tensor
of second order whose elements are formed from the sum or difference of the
corresponding ij elements of the initial tensors:

{aij ± bij} =

⎧⎨⎩
a11 ± b11 a12 ± b12 a13 ± b13
a21 ± b21 a22 ± b22 a23 ± b23
a31 ± b31 a32 ± b32 a33 ± b33

⎫⎬⎭ (2.23)

In the case of the following presentation of tensor products, often the so-
called Einstein’s summation convention is applied. By this one understands
the summation over the same indices in a product.

When forming a product from tensors, one distinguishes the outer prod-
uct and the inner product. The outer product is again a tensor, where each
element of the first tensor multiplied with each element of the second tensor
results in an element of the new tensor. Thus the product of a scalar and a
tensor of second order forms a tensor of second order, where each element
results from the initial tensor of second order by scalar multiplication:

α · {aij} = {α · aij} =

⎧⎨⎩
α · a11 α · a12 α · a13
α · a21 α · a22 α · a23
α · a31 α · a32 α · a33

⎫⎬⎭ (2.24)

The outer product of a vector (tensor of first order) and a tensor of second
order results in a tensor of third order with altogether 27 elements. The
inner product of tensors, however, can result in a contraction of the order.
As examples are cited the products aij · bj:

{aij} · {bj} =

⎧⎨⎩
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎫⎬⎭
⎧⎨⎩
b1
b2
b3

⎫⎬⎭ =

⎧⎨⎩
a11b1 + a12b2 + a13b3
a21b1 + a22b2 + a23b3
a31b1 + a32b2 + a33b3

⎫⎬⎭ (2.25)

and

{bi}T · {aij} = {b1, b2, b3} ·
⎧⎨⎩
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎫⎬⎭ =

⎧⎨⎩
b1a11 + b2a21 + b3a31
b1a12 + b2a22 + b3a32
b1a13 + b2a23 + b3a33

⎫⎬⎭
T

(2.26)

In summary, this can be written as

{aij} · {bj} = {(aijbj)} = {(ab)i} (2.27)

and
{bi} · {aij} = {(biaij)} = {(ab)j} (2.28)
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If one takes into account the above product laws:

{δij} · {bj} = {bi} and {bi}T · {δij} = {bj}T (2.29)

The multiplication of a tensor of second order by the unit tensor of second
order, i.e. the “Kronecker delta”, yields the initial tensor of second order:

{δij} · {aij} =

⎧⎨⎩1 0 0
0 1 0
0 0 1

⎫⎬⎭ ·
⎧⎨⎩a11 a12 a13a21 a22 a23
a31 a32 a33

⎫⎬⎭ = {aij} (2.30)

Further products can be formulated, as for example cross products between
vectors and tensors of second order:

{ai} · {bjk} = εikj · ai · bjk (2.31)

but these are not of special importance for the derivations of the basic laws
in fluid mechanics.

2.5 Field Variables and Mathematical Operations

In fluid mechanics, it is usual to present thermodynamic state quanti-
ties of fluids, such as density ρ, pressure P , temperature T and internal
energy e, as a function of space and time, a Cartesian coordinate system
being applied here generally. To each point P(x1, x2, x3) = P(xi) a value
ρ(xi, t), P (xi, t), T (xi, t), e(xi, t), etc., is assigned, i.e. the entire fluid proper-
ties are presented as field variables and are thus functions of space and time
Fig. 2.4. It is assumed that in each point in space the thermodynamic connec-
tions between the state quantities hold, as for example the state equations
that can be formulated for thermodynamically ideal fluids as follows:

ρ = constant (state equation of the thermodynamically ideal liquids)

P/ρ = RT (state equation of the thermodynamically ideal gases)

Entirely analogous to this, the properties of the flows can be described by
introducing the velocity vector, i.e. its components, as functions of space and
time, i.e. as vector field Fig. 2.5. Furthermore, the local rotation of the flow
field can be included as a field quantity, as well as the mass forces and mass
acceleration acting locally on the fluid. Thus the velocity U j = Uj(xi, t), the
rotation ωj = ωj(xi, t), the force Kj = Kj(xi, t) and the acceleration gj(xi, t)
can be stated as field quantities and can be employed as such quantities in
the following considerations.

In an analogous manner, tensors of second and higher order can also be
introduced as field variables, for example, τij(xi, t), which is the molecule-
dependent momentum transport existing at a point in space, i.e. at the point
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Fig. 2.4 Scalar fields assign a scalar to each point in
the space and as a function of time

r

Fig. 2.5 Vector fields assign vectors to each
point in the space as functions of time

P(xi) at time t. It represents the j-momentum transport acting in the xi di-
rection. Further, εij(xi, t) represents the fluid element deformation depending
on the gradients of the velocity field at the location P(xi) at time t.

The properties introduced as field variables into the above considerations
represented tensors of zero order (scalars), tensors of first order (vectors) and
tensors of second order. They are employed in fluid mechanics to describe
fluid flows and the corresponding fluid description is usually attributed to
Euler (1707–1783). In this description, all quantities considered in the repre-
sentations of fluid mechanics are dealt with as functions of space and time.
Mathematical operations such as addition, subtraction, division, multiplica-
tion, differentiation and integration, that are applied to these quantities, are
subject to the known laws of mathematics.

The differentiation of a scalar field, for example the density ρ(xi, t), gives

dρ
dt

=
∂ρ

∂t
+
∂ρ

∂x1

(
dx1

dt

)
+
∂ρ

∂x2

(
dx2

dt

)
+
∂ρ

∂x3

(
dx3

dt

)
(2.32)

=
∂ρ

∂t
+

3∑
i=1

(
∂ρ

∂xi

)(
dxi

dt

)
=
∂ρ

∂t
+
(
∂ρ

∂xi

)(
dxi

dt

)
In the last term, the summation symbol

∑3
i=1 was omitted and the “Einstein’s

summation convention” was employed, according to which the double index
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i in
(

∂ρ
∂xi

)(
dxi

dt

)
prescribes a summation over three terms i = 1, 2, 3, i.e.:

3∑
i=1

(
∂ρ

∂xi

)(
dxi

dt

)
=
(
∂ρ

∂xi

)(
dxi

dt

)
(2.33)

The differentiation of vectors is given by the following expressions:

dU

dt
=
{

dU1

dt
,

dU2

dt
,

dU3

dt

}T

⇒ dUi

dt
, i = 1, 2, 3 (2.34)

i.e. each component of the vector is included in the differentiation. As the
considered velocity vector depends on the space location xi and the time t,
the following differentiation law holds:

dUj

dt
=
∂Uj

∂t
+
∂Uj

∂xi

(
dxi

dt

)
(2.35)

When one applies the Nabla or Del operator:

∇ =
{
∂

∂x1
,

∂

∂x2
,

∂

∂x3

}T

=
{
∂

∂xi

}
, i = 1, 2, 3 (2.36)

on a scalar field quantity, a vector results:

∇a =
{
∂a

∂x1
,
∂a

∂x2
,
∂a

∂x3

}T

= grad a =
{
∂a

∂xi

}
, i = 1, 2, 3 (2.37)

This shows that the Nabla or Del operator ∇ results in a vector field deduced
from the gradient field. The different components of the resulting vector are
formed from the prevailing partial differentiations of the scalar field in the
directions xi.

The scalar product of the ∇ operator with a vector yields a scalar quantity,
i.e. when (∇·) applied to a vector quantity results in:

∇ · a =
∂a1
∂x1

+
∂a2
∂x2

+
∂a3
∂x3

= div a =
∂ai

∂xi
(2.38)

Here, in ∂ai/∂xi the subscript i again indicates summation over all three
terms, i.e.

3∑
i=1

∂ai

∂xi
=⇒ ∂ai

∂xi
(Einstein’s summation convention) (2.39)

The vector product of the ∇ operator with the vector a yields correspondingly

∇× a =

∣∣∣∣∣∣
e1 ∂/∂x1 a1
e2 ∂/∂x2 a2
e3 ∂/∂x3 a3

∣∣∣∣∣∣ =
⎧⎨⎩∂a3/∂x2 − ∂a2/∂x3

∂a1/∂x3 − ∂a3/∂x1

∂a2/∂x1 − ∂a1/∂x2

⎫⎬⎭ = rot a (2.40)



26 2 Mathematical Basics

or

∇× a = rot a = −εijk
∂ai

∂xj
= εijk

∂aj

∂xi
(2.41)

The Levi–Civita symbol εijk is also called the alternating unit tensor and is
defined as follows:

εijk =

{ 0 : if two of the three indices are equal
+1 : if ijk = 123, 231 or 312
−1 : if ijk = 132, 213 or 321

(2.42)

Concerning the above-mentioned products of the ∇ operator, the distributive
law holds, but not the commutative and associative laws.

If one applies the ∇ operator to the gradient field of a scalar function, the
Laplace operator ∇2 (alternative notation ∆) results. When applied to a, the
result can be written as follows:

∇2a = (∇ · ∇)a =
∂2a

∂x2
1

+
∂2a

∂x2
2

+
∂2a

∂x2
3

=
∂2a

∂xi∂xi
(2.43)

The Laplace operator can also be applied to vector fields, i.e. to the compo-
nents of the vector:

∇2U =

⎛⎜⎝∇2U1

∇2U2

∇2U3

⎞⎟⎠ =

⎛⎜⎝
(
∂2U1/∂x

2
1

)
+
(
∂2U1/∂x

2
2

)
+
(
∂2U1/∂x

2
3

)(
∂2U2/∂x

2
1

)
+
(
∂2U2/∂x

2
2

)
+
(
∂2U2/∂x

2
3

)(
∂2U3/∂x

2
1

)
+
(
∂2U3/∂x

2
2

)
+
(
∂2U3/∂x

2
3

)
⎞⎟⎠ (2.44)

2.6 Substantial Quantities and Substantial Derivative

A further approach to describing fluid mechanics processes is to derive the
basic equations in terms of substantial quantities. This approach is generally
named after Lagrange (1736–1813) and is based on considerations of proper-
ties of fluid elements. The state quantities of a fluid element 
 such as the
density ρ�, the pressure P�, the temperature T� and the energy e� are em-
ployed for the derivation of the laws of fluid motion. If one wants to measure
or describe these properties of a fluid element in a field, one has to move with
the element, i.e. one has to follow the path of the element:

(xi)�,T = (xi)�,0 +
∫ T

0

(Ui)�dt (2.45)

As the path of a fluid element is only a function of time t and an initial space
coordinate (xi)�,0, the substantial quantities, i.e. the thermodynamic state
quantities of a fluid element can also only be functions of time.
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Thus the total differentials of all substantial quantities can be formulated
as follows, with reference to (2.35):

da�

dt
=
∂a

∂t
+
∂a

∂xi

(
dxi

dt

)
�
, where

(
dxi

dt

)
�

= (Ui)� (2.46)

The quantity specified with (dxi/dt)� indicates the change of position of a
fluid element 
 with time, i.e. the substantial velocity of a fluid element.

If a fluid element is positioned at time t at location xi, then (Ui)� = Ui

results and from this arises the final equation of the substantial derivative of
a field variable Da/Dt:

da�

dt
=

Da
Dt

=
∂a

∂t
+ Ui

∂a

∂xi
(2.47)

This equation results also from the identity relationship. This states, for a
representation of a fluid flow in two different ways, without contradiction,
that the following equality of Euler and Lagrange variables holds:

a�(t) = a(xi, t) if (xi)� = xi at time t

From this one can derive

da�

dt
=
∂a

∂t
+ (Ui)�

∂a

∂xi
=
∂a

∂t
+ Ui

∂a

∂xi
=

Da
Dt

(2.48)

From (2.47), it can be seen that the operator D
Dt (= substantial derivative)

can be written as follows:

D
Dt

=
∂

∂t
+ Ui · ∂

∂xi
=
∂

∂t
+ (U · ∇) (2.49)

This operator can be applied to field variables and is very important for the
subsequent derivations of the basic equations of fluid mechanics, as it permits
the formulation of the basic equations in Lagrange variables and in a second
step the subsequent transformation of all terms in this equation into Euler
variables. In this final form, i.e. expressed in Euler variables, the equations
are suited for the solution of practical flow problems.

2.7 Gradient, Divergence, Rotation
and Laplace Operators

a(xi, t) represents a scalar field, i.e. it is defined or given as a function of space
and time. The gradient field of the scalar ‘a’ can be assigned the following
components at each point in a space:
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a(xi, t) =⇒
{
∂a

∂xi

}
= grad(a) =

⎧⎨⎩∂a/∂x1

∂a/∂x2

∂a/∂x3

⎫⎬⎭; grad(a) = f(xi, t) (2.50)

Thus the operator grad( ) is defined as follows:

grad() =
{
∂()
∂xi

}
=
{
∂()
∂x1

∂()
∂x2

∂()
∂x3

}
(2.51)

i.e. grad(a) is a vector field, whose components are marked by the index i.
The grad(a) vectors exhibit directions which are perpendicular to the lines

of a = constant of the considered scalar field, i.e. perpendicular to a(xi, t) =
constant.

Furthermore, the Laplace operator can be assigned to each scalar field
a(xi, t) ⇒ ∆a(xi, t) (J.S. Laplace (1749–1827)). Here, ∆a(xi, t) is a scalar
field, e.g. to each space point the quantity ∆(a) is assigned

∆a(xi, t) =
∂2a

∂xi∂xi
=
∂2a

∂x2
1

+
∂2a

∂x2
2

+
∂2a

∂x2
3

(2.52)

Employing the previously defined divergence operator, the following equation
results:

∆a(xi, t) = div(grad a) = div
(
∂a

∂xi

)
=

∂2a

∂xi∂xi
=
∂2a

∂x2
i

(2.53)

For the mathematical treatment of flow problems, there are other mathemat-
ical operators of importance, in addition to the operators div( ) and rot( ) =
curl( ) that are applicable to vector fields such as U(xi, t) and are defined as
follows:

div (U(xj , t)) =
∂Ui

∂xi
=
∂U1

∂x1
+
∂U2

∂x2
+
∂U3

∂x3
(2.54)

and

rot U(xj , t) = εijk · ∂Uj

∂xi
=

⎧⎨⎩
∂U3/∂x2 − ∂U2/∂x3

∂U1/∂x3 − ∂U3/∂x1

∂U2/∂x1 − ∂U1/∂x2

⎫⎬⎭ (2.55)

Here, div U is a scalar field and rot or curl U are vector fields. When U is a
velocity field, the value of div U describes the temporal change of the volume
δV� of a fluid element with constant mass δm�, i.e.

div (U) =
∂Ui

∂xi
=

1
δV�

d(δV�)
dt

(2.56)

If the density ρ = constant is included, div(ρU) implies a mass density source
at the point xi at time t. Correspondingly, rot (U) or curl (U) represent the
vortex density of the velocity field at the point xi at time t. If curl (U) = 0,
a fluid element at the point xi, and at time t, experiences no contribution
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to its rotation by the velocity field. For rot (U) �= 0 at time t and at point
xi, a fluid element consequently experiences, at the corresponding point, a
contribution to its rotational motion.

In summary, the operators described above can be formulated as follows:

grad(a) =
(
∂a

∂xi

)
= ∇a (2.57)

div (U) = ∇ · Ui =
∂Ui

∂xi
(2.58)

∆a = ∇2a = ∇ · ∇a =
∂

∂xi

(
∂a

∂xi

)
=

∂2a

∂xi∂xi
(2.59)

rot (U) = ∇× U = εijk
∂Uj

∂xi
(2.60)

These operators will be employed for the derivation of the basic equations of
fluid mechanics and also when dealing with flow problems.

2.8 Line, Surface and Volume Integrals

The line integral of a scalar function a(xi, t) along a line S is defined as
follows:

Is(t) =
∫

S

a dS =
∫

S

a(xi, t)dS with xi ∈ S (2.61)

Line integrals of this kind are required in fluid mechanics to define the position
of the “center of gravity” of a line. Their computation is carried out in three
steps as follows for t = constant:

1. The viewed curve is parameterized:

S : s(γ) = {si(γ)}T , α ≤ γ ≤ β (2.62)

2. The arched element ds is defined by differentiation:

ds =
∣∣∣∣dsi(γ)dγ

∣∣∣∣ dγ =

√(
dsi(γ)

dγ

)2

dγ (2.63)

3. The computation of the defined integral from γ = α to γ = β:

Is =
∫ β

α

a(si(γ))

√(
dsi
dγ

)2

dγ � Is (2.64)

The application of the above steps for the computation of the defined integral
leads for a = 1 to the length of the considered curve s(γ) between γ = α and
γ = β.
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Analogous to the above considerations, the integration of a vector field
along a curve can be carried out in the following way:

Isi(t) =
∫

S

ai · dsi =
∫ β

α

ai(sj(γ))
dsi(γ)

dγ
dγ at time t (2.65)

Computations of the work done in the fields of forces, the circulation
of mass and momentum flow in the case of two-dimensional flow fields are
effected via such defined integrations of vector fields along space lines.

Analogous to the integrals along lines or along line segments, space inte-
grals for scalar and vectors can also be defined and computed according to
the following computation rules:

IF (t) =
∫
F

∫
a dF at time t (2.66)

If F is the surface area of a considered fluid element and a(xi, t) a scalar field,
that is continuous on the surface, the above integral as the surface integral is
named from a to F . The surface-averaged value of a is computed as follows:

ã =
1
F0

∫
F0

∫
a dF0 (surface mean value) (2.67)

For the surface integral of a vector field holds that

IF (t) =
∫
F

∫
ai dFi =

∫
F

∫
ai ni dF at time t (2.68)

For the case ai = Ui, i.e. the execution of a surface integration over the veloc-
ity field, an integral value is obtained that corresponds to the instantaneous
volume flow through the surface F :

Q̇(t) =
∫
F

∫
Ui dFi (volume flow through F at time t) (2.69)

Analogously, the mass flow through F is computed by

Ṁ(t) =
∫
F

∫
ρUi dFi (mass flow through F at time t) (2.70)

The mean mass flow density is given by

˜̇m(t) =
1
F

∫
F

∫
ρUi dFi (2.71)
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The above integrations can be extended to volume integrals, which again
can be applied to scalar and vector fields. If V designates the volume of a
regular field and a(xi, t) a steady scalar field (occupation function) given in
this space, the total occupancy of the space is computed as follows:

IV (t) =
∫∫
V

∫
a dV (total occupancy of V through a at time t) (2.72)

The mass of a regular space with the density distribution ρ(xi, t) results in
the following triple integral of the density distribution ρ(xi, t):

M̂(t) =
∫∫
V

∫
ρ(xi, t)dx1dx2dx3 (2.73)

Here, variables with ˜ and ̂ symbols indicate surface- and volume-averaged
quantities in this chapter of the book.

For the practical implementation of surface and volume integrations, it is
often advantageous to employ the laws of Guldin:

1. Law of Guldin (1577–1643): The surface area of a body with rotational
symmetry is given by

∫
s 2π · r(s) ds, with ds denoting an arc element of

the plane curve s generating the body and r(s) denoting the distance of
ds from the axis of rotation.

2. Law of Guldin (1577–1643): The volume of a body with rotational sym-
metry is given by

∫
F

2π · rs(F ) · dF , with dF denoting an area element
of the area enclosed by the plane curve s generating the body and rs(F )
denoting the distance of dF from the axis of rotation.

2.9 Integral Laws of Stokes and Gauss

The integral law named after Stokes (1819–1903) reads∮
s

a · ds =
∫
Os

∫
rot a · dF (2.74)

which means that the line integral of a vector a over the entire edge line of
a surface is equal to the surface integral of the corresponding rotation of the
vector quantity over the surface. Thus the integral law of Stokes represents
a generalization of Green’s law (1793–1841), which was formulated for plane
surfaces, i.e. for “spatial areas”. If one stretches two different surfaces over a
boundary of surface S, Stokes’ law gives∫

OS1

∫
rot a · dF =

∫
OS2

∫
rot a · dF (2.75)
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where S is equal to the stretching quantities of OS1 and OS2 . If one introduces
by Γ =

∮
S

Uds the term of circulation of a vector field U along a boundary
S employing the mean-value law of the integral calculus from the rot integral
of velocity field Ui over a surface OS with normal n, surface area F and
boundary curve S, the surface integral of the vector field U when F → 0 in
the borderline case results:

Γ = n · rot U = lim
F→0

1
F

∮
S

U · dS

This relation makes it clear that the rotation effect of a fluid element is at its
maximum when the surface normal n is in the direction of the rot U vector.

The integral law named after Gauss can be formulated as follows:∫∫
V

∫
div a · dV =

∫∫
V

∫
∂ai

∂xi
dV =

∮
OV

∮
a · dF =

∮
OV

∮
ai · ni dF (2.76)

Thus the flow of the vector field a(xi, t) through the surface of a regular
space, i.e. the flow “from the inside to the outside”, is equal to the volume
integral of the divergence over the space. The mean-value theorem of the
integral calculus for V → 0 and consideration of a velocity field Ui give

div U =
∂Ui

∂xi
= lim

V →0

1
V

∫
OV

∫
U · dF (2.77)

The divergence of a velocity field thus measures the flow emerging from the
volume unit, i.e. it is the source density of Ui in the point xi at time t.

2.10 Differential Operators in Curvilinear Orthogonal
Coordinates

The compilation of important equations and definitions of vector analysis
to date is based on the Cartesian coordinate system. A great number of
problems can, however, be treated more easily in a curvilinear coordinate
system usually adapted to a considered special geometry. As examples are
cited the creeping flow around a sphere or the flow through a tube with
a circular cross-section which can be described appropriately in spherical
and cylindrical coordinates, respectively. In addition, the solution of a flow
problem can often be simplified considerably by exploiting the symmetry
properties of the problem in a curvilinear coordinate system adapted to the
geometry.

In this section, only some frequently used relationships for the differential
operators in curvilinear orthogonal coordinate systems will be recalled with-
out strict derivations. More detailed and mathematically precise presentation
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can be found in the corresponding literature, as for example [2.3], [2.4] and
[2.5], on whose presentation this section is oriented.

General curvilinear coordinates (x′1, x
′
3, x

′
3) can be computed from

Cartesian coordinates (x, y, z) by (local) unequivocally reversible relations:

x′1 = x′1(x, y, z)

x′2 = x′2(x, y, z) (2.78)

x′3 = x′3(x, y, z)

Conversely the Cartesian coordinates depend on the curvilinear ones:

x = x(x′1, x
′
2, x

′
3)

y = y(x′1, x
′
2, x

′
3) (2.79)

z = z(x′1, x
′
2, x

′
3).

If one holds on to two coordinates, one obtains, with the third coordinate as
a free parameter, a space curve, the so-called coordinate line, for example:

r = r(x′1, x
′
2 = a, x′3 = b) (2.80)

Concerning the respective tangential vectors

ti =
∂r

∂x′i
, i = 1, 2, 3 (2.81)

of the coordinate lines in point P (x′1, x
′
2, x

′
3) with the definition of the so-

called metric coefficients

hi :=
∣∣∣∣ ∂r∂x′i

∣∣∣∣ , i = 1, 2, 3 (2.82)

the unit vectors

ei =
1
hi

ti, i = 1, 2, 3 (2.83)

can be defined that form the basic vectors for a local reference system in point
P . To be emphasized here is the local character of this reference system for
general curvilinear coordinates, as the basic vectors themselves can depend
on coordinates, contrary to coordinate-independent basic vectors (ex, ey, ez)
of the Cartesian coordinate system. If the coordinate lines at each point stand
vertically on one another in pairs, i.e. the following relationship

ei · ej = δij (2.84)

holds, one designates the coordinate system curvilinear orthogonal coordinate
system. Curvilinear orthogonal coordinate systems are the subject of this
section. The reader interested in general curvilinear coordinate systems is
referred, for example, to the book by R. Aris [2.3].
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If one considers two infinitesimal closely neighbouring points P1(x′1, x′2, x′3)
and P2(x′1 + dx′1, x

′
2 + dx′2, x

′
3 + dx′3), for the difference of their position

vectors r1 = r(x′1, x
′
2, x

′
3) and r2 = r(x′1 + dx′1, x

′
2 + dx′2, x

′
3 + dx′3) at the

lowest order (Taylor expansion)

dr = r2 − r1 =
3∑

i=1

∂r

∂x′i
dx′i (2.85)

holds. The length of the distance vector dr, the so-called line element ds,
when employing the definition for the metric coefficients, is given by

ds2 = dr2 =
3∑

i=1

h2
i dx

2
i (2.86)

A vector field f is represented by its components in curvilinear coordinate
systems:

f = f1e1 + f2e2 + f3e3 (2.87)

Without derivation, the following relationships for differential operators are
stated in curvilinear orthogonal coordinates:

• Surface elements:

dS =

(
∂r

∂x′i
× ∂r

∂x′j

)
dx′i dx′j , i �= j = 1, 2, 3 (2.88)

• Volume elements:

dV = h1h2h3 dx′1dx
′
2dx

′
3 (2.89)

• Gradient of a scalar field Φ:

grad Φ = ∇Φ =
3∑

i=1

1
hi

∂Φ

∂x′i
ei (2.90)

• Divergence:

div f = ∇ · f =
1

h1h2h3

(
∂h2h3f1
∂x′1

+
∂h1h3f2
∂x′2

+
∂h1h2f3
∂x′3

)
(2.91)

• Rotation:

rot f = ∇× f =
1

h1h2h3

∣∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂

∂x′1

∂

∂x′2

∂

∂x′3
h1f1 h2f2 h3f3

∣∣∣∣∣∣∣∣ (2.92)

• Laplace operator:

∆Φ = ∇ · ∇Φ = div grad Φ =

1
h1h2h3

[
∂

∂x′1

(
h2h3

h1

∂Φ

∂x′1

)
+
∂

∂x′2

(
h1h3

h2

∂Φ

∂x′2

)
+
∂

∂x′3

(
h1h2

h3

∂Φ

∂x′3

)]
(2.93)
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When employing differential operators in curvilinear coordinates, the depen-
dence of the (local) unit vectors and metric coefficients of the coordinates is
also to be taken into account at least in principle.

Example 1: Cylindrical Coordinates (r, ϕ, z) (Fig. 2.6)

• Conversion in Cartesian coordinates:

x = r cosϕ
y = r sinϕ (2.94)
z = z

(0 ≤ r <∞, 0 ≤ ϕ ≤ 2π, −∞ < z <∞)

• Position vector:

r = x(r, ϕ, z)ex + y(r, ϕ, z)ey + z(r, ϕ, z)ez

= rrρ(ϕ) + zez

(2.95)

• Local unit vectors:

er = cosϕex + sinϕey

eϕ = − sinϕex + cosϕey (2.96)
ez = ez

• Metric coefficients or scaling factors:

hr = 1, hϕ = r, hz = 1 (2.97)

• Gradient:

grad Φ =
∂Φ

∂r
er +

1
r

∂Φ

∂ϕ
eϕ +

∂Φ

∂z
ez (2.98)

Fig. 2.6 Cylindrical coordinates
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Fig. 2.7 Spherical coordinates

y

z

x

Example 2: Spherical Coordinates (r, θ, φ) (Fig. 2.7)

• Conversion in Cartesian coordinates:

x = r sin θ cosφ
y = r sin θ sinφ (2.99)
z = r cos θ

(0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π)

• Metric coefficients or scaling factors:

hr = 1, hθ = r, hφ = r sin θ (2.100)

2.11 Complex Numbers

The introduction of complex numbers permits the generalization of basic
mathematical operations, as for example the square rooting of numbers, so
that the extended grouping of numbers can be stated as follows:

Complex numbers

Real numbers

Rational numbers

Integer numbers

Positive integer numbers
(Natural numbers)

Imaginary numbers

Irrational numbers

Fractional numbers

Negative integer numbers
Zero

By extending to complex functions, mathematically interesting descriptions
of technical problems become possible, for example the entire field of potential
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flows; see Chap. 10. Complex numbers and complex functions therefore have
an important role in the field of fluid mechanics. As will be shown, potential
flows can be dealt with very easily through functions of complex numbers.
It is therefore important to provide here an introduction to the theory of
complex numbers in a summarized way.

2.11.1 Axiomatic Introduction to Complex Numbers

A complex number can formally be introduced as an arranged pair of real
numbers (a, b) where the equality of two complex numbers z1 = (a, b) and
z2 = (c, d) is defined as follows:

Equality: z1 = (a, b) = (c, d) = z2 holds exactly when a = c and b = d
holds, where a, b, c, d ∈ R.

The first component of a pair (a, b) is named the real part and the second
component the imaginary part.

For b = 0, z = (a, 0) is obtained, with the real number a, so that all
the real numbers are a sub-set of the complex numbers. When determining
basic arithmetics operations, one has to keep in mind that operations with
complex numbers lead to the same results as in the case of arithmetics of real
numbers, provided that the operations are restricted to real numbers in the
above sense, i.e. z = (a, 0).

Additions and multiplications of complex numbers are introduced by the
following relationships:

Addition: (a, b) + (c, d) = (a+ c, b+ d)
Multiplication: (a, b) · (c, d) = (ac− bd, ad+ bc) (2.101)

Then,

(a, 0) + (c, 0) = (a+ c, 0) = a+ c
(a, 0) · (c, 0) = (ac, 0) = ac (2.102)

i.e. no contradictions to the computational rules with real numbers arise. The
quantity of the complex numbers (denoted C in the following) is complete as
far as addition and multiplication are concerned, i.e. with z1, z2 ∈ C follows:

z3 = z1 + z2 ∈ C

z3 = z1 · z2 ∈ C
(2.103)

Furthermore, it can be shown that the above operations of addition and
multiplication satisfy the following laws:

Commutative concerning addition: z1 + z2 = z2 + z1
Commutative concerning multiplication: z1z2 = z2z1
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Associative concerning additon: (z1 + z2) + z3 = z1 + (z2 + z3)
Associative concerning multiplicaton: (z1z2)z3 = z1(z2z3)

Distributive properties: (z1 + z2)z3 = z1z3 + z2z3

Analogous to the case of the real number z(a, 0), a so-called purely imaginary
number can also be introduced: z = 0, b.

A complex number z = (a, b) is called imaginary if a = 0 and b �= 0.
Moreover, one puts i = (0, 1) and calls i an imaginary unit.

According to the multiplication rules, introduced for complex numbers,
this complex number i, i.e. the number pair (0, 1), has a special role, namely,

i2 = (0, 1) · (0, 1) = (−1, 0) = −1 (2.104)

i.e. the multiplication of the imaginary unit number by itself yields the real
number −1. Based on equation (2.103), it can be represented as

i =
√−1 (2.105)

where the unambiguity of the root relationship for i requires some special
considerations. Because

z = (a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1) · (b, 0) = a+ ib (2.106)

each complex number z = (a, b) can also be written as the sum of a real
number a and an imaginary number ib.

Subtraction and division can be achieved by inversion of the addition and
multiplication, i.e., (z1 − z2) is equal to the complex number z3, for which

z2 + z3 = z1 (2.107)

holds. Following the above notation with z1 = (a, b), z2 = (c, d) results in

z1 − z2 = (a− c, b− d) (2.108)

z1
z2

=
(
ac+ bd

(c2 + d2)
,
bc− ad

(c2 + d2)

)
(2.109)

In the above presentations, elementary mathematical operations based on the
quantity C of the complex numbers were introduced. All other properties of
the complex numbers are followed in the implementation of these definitions.

2.11.2 Graphical Representation of Complex Numbers

In order to explain the above properties of complex numbers, they are often
shown graphically in ways summarized below. Several kinds of presentations
are chosen in the literature for a better understanding.
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Fig. 2.8 Diagram of a complex number in the
Gauss number plane x x

iy

iy z=x+iy

Every point z in 
the plane represents 
a complex number

2.11.3 The Gauss Complex Number Plane

As the complex number z = x+ iy represents an arranged pair of numbers, a
rectangular coordinate system is recommended for the graphical representa-
tion of complex numbers, in which a real axis for x and an “imaginary axis”
for iy is defined. The complex number z = x + iy is then defined as a point
in this plane, or as a vector z from the origin of the coordinate system to the
point Z with the coordinates (x, iy). This is illustrated in Fig. 2.9, where the
addition and subtraction of complex numbers are stated graphically.

2.11.4 Trigonometric Representation

If one considers the graphical representation in Fig. 2.8, the following trigono-
metric relations can be given for complex numbers:

x = r cosϕ and y = r sinϕ with r= | z | (2.110)

A complex number can therefore be written as follows:

z = r cosϕ+ i(r sinϕ) = r(cosϕ+ i sinϕ) (2.111)

or

z = reiϕ (2.112)

The connection between the exponential function and the trigonometric func-
tions follows immediately by a series expansion of the exponential function
and rearrangement of the series, i.e.

eiϕ =
∞∑

k=0

(iϕ)k

k!
=

∞∑
k=0

(−1)k ϕ
2k

(2k)!
+ i

∞∑
k=0

(−1)k ϕ2k+1

(2k + 1)!
= cosϕ+ i sinϕ

(2.113)
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Fig. 2.9 Diagram of the addition and subtrac-
tion of complex numbers in the Gauss number
plane

Fig. 2.10 Graphical representation of multipli-
cation of complex numbers

With the following relationship, the multiplication and division of complex
numbers can be carried out:

z1z2 = r1r2ei(ϕ1+ϕ2) = r1r2(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)) (2.114)

z1
z2

=
r1
r2
ei(ϕ1−ϕ2) =

r1
r2

(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2)) (2.115)

These multiplications and divisions of complex numbers can be represented
graphically as shown in Figs. 2.9 and 2.10.

At this point, it is advisable to discuss the treatment of the roots of com-
plex numbers. It is explained below, how the mathematical operator n

√
() is

to be applied to a complex number.
It is agreed that n

√
z (n ∈ N = (natural number)) is the set of all those

numbers raised to the 1/nth power of the number z. Therefore, if one puts

z = r(cosϕ+ i sinϕ) (2.116)

Then

n
√
z = n

√
r
(
cos ϕ+2kπ

n + i sin ϕ+2kπ
n

)
= n

√
r ei(

ϕ
n + 2kπ

n ) k = 0, 1, 2, . . . , n− 1
(2.117)
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Fig. 2.11 Graphical representation of
division of complex numbers

i.e. n
√
z is a set of complex numbers consisting of n numbers of values that

can be interpreted geometrically in the complex plane as corner points of a
polynomial, which is inscribed in a circle with radius n

√
r around the zero

point.
Specifically for k = 0, for example:

n
√
z = n

√
r
(
cos
ϕ

n
+ i sin

ϕ

n

)
= n

√
rei

ϕ
n (2.118)

2.11.5 Stereographic Projection

The above representations of complex numbers were described by using the
plane employed in the field of analytical geometry and well known trigono-
metric relationships were used. For many purposes it proves more favorable
to understand the points in the x− iy plane as projections of points lying on
a unit sphere, whose poles lie on the axis perpendicular to the complex plane.
One of the poles of the sphere lies at the zero point, whereas the other takes
the position coordinates (0, 0, 1). Stereographic projections are carried out
from the latter pole as indicated in Fig. 2.12. Thus each point of the plane
corresponds precisely to a point of the sphere which is different from N and
vice versa, i.e. the spherical surface is, apart from the starting point of the
projection, projected reversibly in an unequivocal manner on to the complex
plane. The figure is circle-allied and angle-preserving.

• The property of the circle-allied figure indicates that each circle on the
sphere is projected as a circle or a straight line on the plane (and vice
versa).

• The angle-preserving figure signifies that two arbitrary circles (and gen-
erally any two curves on the sphere) intersect at the same angle as their
stereographic projection in the plane (and vice versa).
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Fig. 2.12 Representation of the stereographic projection (complex sphere of
Riemann)

2.11.6 Elementary Function

Complex functions are defined analogously to the introduction of real func-
tions and can be given as follows:

When C is an arbitrary set of complex numbers, C can be designated as the
domain of the complex variables z. If one assigns to each complex variable z,
within the domain C, a complex quantity F (z), then F (z) is designated as the
function of complex variables. The function F (z) represents again a complex
quantity:

F (z) = Φ + iΨ (2.119)

Here it is to be considered in general that the quantities Φ and Ψ again depend
on x and iy, i.e. on the coordinates of the complex variable z.

When the definition of a complex function is compared with the often eas-
ier understandable real functions, the differentiation of a complex function
has a significant difference compared to real functions. The existence of a
derivative f ′(x) of a real function f(x) does not say anything about the
existence of possible higher-order derivatives, whereas from the existence
of first-order derivative f ′(x) of a complex function F (z), if automatically
follows the existence of all higher derivatives, i.e.

When a function F (z), in a field G ∈ C is holomorphic (i.e. distinguishable in
a complex manner) and exists and if the function posseses F ′(z), then there
exist all higher-order derivatives F ′′(z), F ′′′(z), . . . also. Instead of the term
holomorphic, the term analytical is often used.

The representation of F (z) is often also treated as conformal mapping. The
reason for this is based on the fact that, under certain restrictive conditions,
the function F (z) assigned to each point P in the plane z can map into
another complex plane as a point Q in an imaginary plane W . In order
to achieve this unequivocal assignment, a branch of an equivocal function is
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often introduced as the main branch and only the latter is used for computing.
The most important complex functions are as follows, see also refs. [2.2] and
[2.7].

Polynomials of nth Order

F (z) = a0 + a1z + a2z2 + · · · + anz
n (2.120)

where a0, a1, . . . , an are complex constants and n a positive total number.
The transformation F (z) = az+ b is designated as a linear transformation

in general.

Rational Algebraic Function

F (z) =
P (z)
Q(z)

(2.121)

where P (z) and Q(z) are polynomials of arbitrary order. The special case

F (z) =
az + b
cz + d

(2.122)

where ad− bc �= 0 is often designated as a fractional linear function.

Exponential Function

F (z) = ez = exp(z) (2.123)

where e = 2.71828 . . . represents the basis of the (real) natural logarithm.
Complex exponential functions have properties that are similar to those for
real exponential functions. For example:

ez1 · ez2 = e(z1+z2) (2.124)

ez1/ez2 = e(z1−z2) (2.125)

Trigonometric Functions

The trigonometric functions for complex numbers are defined as follows:

sin z =
eiz − e−iz

2i
cos z =

eiz + e−iz

2
(2.126)

sec z =
1

cos z
=

2
eiz + e−iz

csc z =
1

sin z
=

2i
eiz − e−iz

(2.127)

tan z =
sin z
cos z

=
eiz − e−iz

i(eiz + e−iz)
cot z =

cos z
sin z

=
i(eiz + e−iz)
eiz − e−iz

(2.128)
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Many of the properties of the above functions are similar to those of real
trigonometric functions. Thus it can be shown that

sin2 z + cos2 z = 1; 1 + tan2 z = sec2 z; 1 + cot2 z = csc2 z (2.129)

sin(−z) = − sin z; cos(−z) = cos z; tan(−z) = − tan z (2.130)

sin(z1 ± z2) = sin z1 cos z2 ± cos z1 sin z2 (2.131)

cos(z1 ± z2) = cos z1 cos z2 ∓ sin z1 sin z2 (2.132)

tan(z1 ± z2) =
tan z1 ± tan z2
1 ∓ tan z1 tan z2

(2.133)

Hyperbolic Functions

The hyperbolic functions in the complex case are defined as follows:

sinh z =
ez − e−z

2
cosh z =

ez + e−z

2
(2.134)

sech z =
1

cosh z
=

2
ez + e−z

csch z =
1

sinh z
=

2
ez − e−z

(2.135)

tanh z =
sinh z
cosh z

=
ez − e−z

ez + e−z
coth z =

cosh z
sinh z

=
ez + e−z

ez − e−z
(2.136)

For these functions, the following relations apply:

cosh2 z − sinh2 z = 1; 1 − tanh2 z = sech2 z; coth2 z − 1 = csch2 z (2.137)

sinh(−z) = − sinh z; cosh (−z) = cosh z; tanh(−z) = − tanh z (2.138)

sinh(z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2 (2.139)

cosh (z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2 (2.140)

tanh(z1 ± z2) =
tanh z1 ± tanh z2

1 ± tanh z1 tanh z2
(2.141)

From the above relations for trigonometric functions and hyperbolic
functions, the following connections can be indicated:

sin iz = i sinh z cos iz = cosh z tan iz = i tanh z (2.142)

sinh iz = i sin z cosh iz = cos z tanh iz = i tan z (2.143)
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Logarithmic Functions

As in the real case, the natural logarithm is the inverse function of the
exponential function, i.e. it holds for complex cases that

F (z) = ln z = ln r + i(ϕ+ 2kπ) k = 0,±1,±2, . . . (2.144)

where z = reiϕ holds. It appears that the natural logarithm represents a
non-equivocal function. By limitation to the so-called principal value of the
function, an equivocalness can be produced. Here a certain arbitrariness
is given. It can be eliminated by a specially desired branch, on which the
equivocalness is guaranteed, which is also indicated, for example by (ln z)0.

The logarithmic functions can be defined for any real basis, i.e. also for
values that differ from e. This means that the following can be stated:

F (z) = loga z ⇔ z = aF (2.145)

where
a > 0 as well as a �= 0 and a �= 1 (2.146)

Inverse Trigonometric Functions

Inverse trigonometric functions for complex numbers can be stated as follows.
These functions also are defined as non-equivocal, but show a periodicity:

sin−1 z = i ln
(
iz +

√
1 − z2

)
csc−1 z =

1
i

ln

(
i+

√
z2 − 1
z

)
(2.147)

cos−1 z = i ln
(
z +
√
z2 − 1

)
sec−1 z =

1
i

ln

(
1 +

√
1 − z2
z

)
(2.148)

tan−1 z =
1
2i

ln
(

1 + iz
1 − iz

)
cot−1 z = − 1

2i
ln
(
iz + 1
iz − 1

)
(2.149)

Inverse Hyperbolic Functions

Analogous to the considerations of the trigonometric functions, the inverse
functions of the hyperbolic functions can be formulated. These are as follows:

sinh−1 z = ln
(
z +
√
z2 + 1

)
csch−1 z = ln

(
i+

√
z2 + 1
z

)
(2.150)

cosh−1 z = ln
(
z +
√
z2 − 1

)
sech−1 z = ln

(
1 +

√
1 − z2
z

)
(2.151)
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tanh−1 z =
1
2

ln
(

1 + z
1 − z

)
coth−1 z =

1
2

ln
(
z + 1
z − 1

)
(2.152)

Differentiation of Complex Functions
(Cauchy–Riemann Equations)

If the function F (z) in a field G ∈ C is defined and the limiting value

F ′(z) = lim
∆z→0

F (z +∆z) − F (z)
∆z

(2.153)

is independent of the approximation ∆z → 0, then the function F (z) in the
field G is designated analytically.

A necessary condition so that the function F (z) = Φ + iΨ represents a
function analytically in G ∈ C is set by the Cauchy–Riemann differential
equations:

∂Φ

∂x
=
∂Ψ

∂y

∂Φ

∂y
= − ∂Ψ

∂x
(2.154)

When the partial derivations of the Cauchy–Riemann equations in G are
steady, then the Cauchy–Riemann equations are a sufficient condition to say
that F (z) is analytical in the field G.

From the Cauchy–Riemenn relations, it can be derived by differentiation
that the real and imaginary parts of the function F (z), i.e. the quantities
Φ(x, y) and Ψ(x, y), fulfill the Laplace equation, i.e.

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 (2.155)

∂2Ψ

∂x2
− ∂2Ψ

∂y2
= 0 (2.156)

Differentiation of Complex Functions

If F (z), G(z) and H(z) are analytical functions of the complex variable z,
then the differentiation laws of the functions result as indicated below. It is
easy to see that they are analogus to the function of real variables.

d
dz

[F (z) +G(z)] =
d
dz
F (z) +

d
dz
G(z) = F ′(z) +G′(z) (2.157)

d
dz

[F (z) −G(z)] =
d
dz
F (z) − d

dz
G(z) = F ′(z) −G′(z) (2.158)

d
dz

[cF (z)] = c
d
dz
F (z) = cF ′(z),with c as arbitrary constant (2.159)

d
dz

[F (z)G(z)] = F (z)
d
dz
G(z) +G(z)

d
dz
F (z) = F (z)G′(z) +G(z)F ′(z)

(2.160)
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d
dz

{
F (z)
G(z)

}
=
G(z)

d
dz
F (z) − F (z)

d
dz
G(z)

[G(z)]2

=
G(z)F ′(z) − F (z)G′(z)

[G(z)]2
G(z) �= 0 (2.161)

When W = F (ζ) and ζ = G(z)

dW
dz

=
dW
dζ

dζ
dz

= F ′(ζ)
dζ
dz

= F ′[G(z)]G′(z) (2.162)

The following table represents the important derivations of complex func-
tions:

d

dz
(c) = 0

d

dz
zn = nzn−1 d

dz
ez = ez

d

dz
az = az ln a

d

dz
sin z = cos z

d

dz
cos z = − sin z

d

dz
tan z = sec2 z

d

dz
cot z = − csc2 z

d

dz
sec z = sec z tan z

d

dz
csc z = − csc z cot z

d

dz
loge z =

d

dz
ln z =

1

z

d

dz
loga z =

1

z ln a

d
dz sin−1 z = 1√

1−z2

d

dz
cos−1 z =

−1√
1 − z2

d

dz
tan−1 z =

1

1 + z2

d

dz
cot−1 z =

−1

1 + z2

d

dz
sec−1 z =

1

z
√

z2 − 1
d
dz csc−1 z = −1

z
√

z2−1

d

dz
sinh z = cosh z

d

dz
cosh z = sinh z

d

dz
tanh z = sech2 z

d

dz
coth z = csch2 z

d

dz
sech z = − sech z tanh z

d

dz
csch z = − csch z coth z

d

dz
sinh−1 z =

1√
1 + z2

d

dz
cosh−1 z =

1√
z2 − 1

d

dz
tanh−1 z =

1

1 − z2

d

dz
coth−1 z =

1

1 − z2

d

dz
sech−1 z =

−1

z
√

1 − z2

d

dz
csch−1 z =

−1

z
√

z2 + 1
(2.163)

The above derivations of important complex functions can be used for
dealing with potential flows.
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Chapter 3

Physical Basics

3.1 Solids and Fluids

All substances of our natural and technical environment can be subdivided
into solid, liquid and gaseous media, on the basis of their state of aggrega-
tion. This subdivision is accepted in many fields of engineering in order to
reveal important differences concerning the properties of the substances. This
subdivision could also be applied to fluid mechanics, but, it would not be par-
ticularly advantageous. It is rather recommended to employ fluid mechanics
aspects to achieve a subdivision of media, i.e. a subdivision appropriate for
the treatment of fluid flow processes. To this end, the term fluid is intro-
duced for designating all those substances that cannot be classified clearly
as solids. Hence, from the point of view of fluid mechanics, all media can be
subdivided into solids and fluids, the difference between the two groups being
that solids possess elasticity as an important property, whereas fluids have
viscosity as a characteristic property. Shear forces imposed on a solid from
outside lead to inner elastic shear stresses which prevent irreversible changes
of the positions of molecules of the solid. When, in contrast, external shear
forces are imposed on fluids, they react with the build-up of velocity gra-
dients, where the build-up of the gradient results via a molecule-dependent
momentum transport, i.e. momentum transport through fluid viscosity. Thus
elasticity (solids) and viscosity (liquids) are the properties of matter that are
employed in fluid mechanics for subdividing media. However, there are a few
exceptions to this subdivision, such as in the case of some of the materials
in rheology exhibiting mixed properties. They are therefore referred to as
visco-elastic media. Some of them behave such that for small deformations
they behave like solids and for large deformations they behave like liquids.

At this point, attention is drawn to another important fact regarding the
characterization of fluid properties. A fluid tries to evade the smallest external
shear stresses by starting to flow. Hence it can be inferred from this that a
fluid at rest is characterized by a state which is free of external shear stresses.
Each area in a fluid at rest is therefore exposed to normal stresses only.

49
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When shear stresses occur in a medium at rest, this medium is assigned to
solids. The viscous (or the molecular) transport of momentum observed in
a fluid, should not be mistaken to be similar to the elastic forces in solids.
The viscous forces cannot even be analogously addressed as elastic force.
This is the case for all liquids and gases as the two important subgroups of
fluids which take part in the fluid motions considered in the book. Hence
the present book is dedicated to the treatment of fluid flows of liquids and
gases. On the basis of these explanations of fluid flows, the fluids in motion
can simply be seen as media free from stresses and are therefore distinguished
from solids. The “shear stresses” that are often introduced when treating fluid
flows of common liquids and gases represent molecule-dependent momentum-
transport terms in reality.

Neighboring layers of a flowing fluid, having a velocity gradient between
them, do not interact with each another through “shear stresses” but through
an exchange of momentum due to the molecular motion between the layers.
This can be explained by simplified derivations aiming for a clear physical
understanding of the molecular processes, as stated in the following section.
The derivations presented below are carried out for an ideal gas, since they
can be understood particularly well for this case of fluid motion. The results
from these derivations therefore cannot be transferred in all aspects to fluids
with more complex properties.

For further subdivision of fluids, it is recommended to make use of their
response to normal stresses (or pressure) acting on fluid elements. When a
fluid element reacts to pressure changes by adjusting its volume and con-
sequently its density, the fluid is called compressible. When no volume or
density changes occur with pressure or temperature, the fluid is regarded as
incompressible although, strictly, incompressible fluids do not exist. However,
such a subdivision is reasonable and moreover useful and this will be shown
in the following derivations of the basic fluid mechanics equations. Indeed,
this subdivision mainly distinguishes liquids from gases.

In general, as said above, fluids can be subdivided into liquids and
gases. Liquids and some plastic materials show very small expansion co-
efficients (typical values for isobaric expansion are βP = 10 × 10−6 K−1),
whereas gases have much larger expansion coefficients (typical values are
βP = 1,000× 10−6 K−1). A comparison of the two subgroups of fluids shows
that liquids fulfill the condition of incompressibility with a precision that is
adequate for the treatment of most flow problems. Based on the assumption
of incompressibility, the basic equations of fluid mechanics can be simpli-
fied, as the following derivations show; in particular, the number of equations
needed for the general description of fluid flow processes is reduced from 6
to 4. This simplification of the basic equations for incompressible fluid flows
allows a considerable reduction in the complexity of the requested theoretical
treatments for simple and complex geometries, e.g. in the case of problems
without heat transfer the energy equation does not have to be solved.
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The simplified basic equations of fluid mechanics, derived for incompress-
ible media, can occasionally also be applied to flows of compressible fluids,
such for cases where the density variations, occurring in the entire flow field,
are small compared with the fluid density. This point is treated separately in
Chap. 12, where conditions are derived under which density changes in gases
can be neglected for the treatment of flow processes. Flows in gases can be
treated like incompressible flows under the conditions indicated there.

For further characterization of a fluid, reference is made to the well-known
fact that solids conserve their form, whereas a fluid volume has no form of its
own, but takes the form of the container in which it is kept. Liquids differ from
gases in terms of the available volume taken by the fluids, filling only part
of the container, whereas the remaining part is either not filled or contains a
gas and there exists a free surface between liquid and the gas. Such a surface
does not exist when the container is filled only with a gas. As already said,
a gas takes up the entire container volume.

Finally, it can be concluded that there are a number of media that can only
be categorized, in a limited way, according to the above classification. They
include media that consist of two-phase mixtures. These have properties that
cannot be classified so easily. This holds also for a number of other media
that can, as per the above classification, be assigned neither to solids nor
to fluids and they start to flow only above a certain value of their internal
“shear stress”. Media of this kind will be excluded from this book, so that the
above-indicated classifications of media into solids and fluids remain valid.
Further restrictions on the fluid properties, that are applied in dealing with
flow problems in this book, are clearly indicated in the respective sections. In
this way, it should be possible to avoid mistakes that often arise in derivations
of fluid mechanics equations valid only for simplified fluid properties.

3.2 Molecular Properties and Quantities
of Continuum Mechanics

As all matter consists of molecules or aggregations of molecules, all macro-
scopic properties of matter can be described by molecular properties. Hence
it is possible to derive all properties of fluids that are of importance for con-
siderations in fluid mechanics, from properties of molecules, i.e. macroscopic
properties of fluids can be described by molecular properties. However, a
molecular description of the state of matter requires much effort owing to
the necessary extensive formalism and moreover the treatment of macro-
scopic properties would remain unclear. A molecular-theoretical treatment of
fluid properties would hardly be appropriate to supply application-oriented
fluid mechanics information in an easily comprehensible form. For this rea-
son, it is more advantageous to introduce quantities of continuum mechanics
for describing fluid properties. The connection between continuum mechanics
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quantities, introduced in fluid mechanics, and the molecular properties should
be considered, however, as the most important links between the two differ-
ent ways of description and presentation of fluid properties. Every student
should have a firm knowledge regarding this kind of considerations.

Some properties of the thermodynamic state of a fluid, such as density ρ,
pressure P and temperature T , are essential for the description of fluid me-
chanics processes and these can easily be expressed in terms of molecular
quantities. From the following derivations one can infer that the effects of
molecules or molecular properties on fluid elements or control volumes are
taken into consideration by introducing the properties the density ρ, pres-
sure P , temperature T , viscosity µ, etc., in an “integral form”. As will be
seen, this integral consideration is sufficient for fluid mechanics. Therefore,
continuum mechanics considerations do not neglect the molecular structure
of the fluids, but take molecular properties into account in an integral form,
i.e. averaged over a high number of molecules.

The mass per unit volume is called the specific density ρ of a material.
For a fluid element this quantity depends on its position in space, i.e. on
xi = (x1, x2, x3), and also on time t, so that generally

ρ(xi, t) = lim
∆V →δV�

∆M

∆V
=
δm�
δV�

(3.1)

holds (Figs. 3.1 and 3.2). If n is considered to be the mean number of the
molecules existing per unit volume and m the mass of a single molecule, the
following connection between ρ, n and m holds:

ρ(xi, t) = mn(xi, t). (3.2)

The density of the matter is thus identical with the number of molecules
available per unit volume, multiplied by the mass of a single molecule. There-
fore, changes of density in space and in time correspond to spatial and
temporal changes of the mean number of molecules available per unit volume,
i.e. where ρ is large, n is large.

Fig. 3.1 Definition of the fluid density at a
point in space, ρ(xi, t)

Mass M

Volume V

x1

x2

x1

x2

x3

x3

(xi ,t)
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Fig. 3.2 Fluctuations with increas-
ing ∆ V while determining the den-
sity of fluids

Stochastic considerations of the thermal molecular motions in a fluid
volume permit, having a very large number of molecules under normal con-
ditions, a mean number of molecules to be specified at time t. Volumes of the
order of magnitude of 10−18–10−20 m3 are considered to be sufficiently large
for arriving at a clear definition of density for gases. The treatments of flow
processes in fluid mechanics are usually carried out for much larger volumes,
therefore the specification of a “mean number of molecules” is appropriate in
order to provide the needed mass in the considered volume. The local den-
sity ρ(xi, t) therefore describes a property of matter that is essential for fluid
mechanics with a precision that is sufficient to treat fluid flows. The control
volumes in fluid mechanics considerations are always selected such that the
determination of a local density value is possible in spite of the molecular
nature of matter. Its said above, a volume size of 10−18–10−20 m3 fulfills the
requirements of the considerations that are to be carried out from the fluid
mechanics point of view. Hence, as said above, ρ can be defined in spite of
the molecular structure of the fluids considered.

Similar considerations can also be made for the pressure that occurs in a
fluid at rest and which is defined as the force acting per unit area (Figs. 3.3
and 3.4), i.e.:

P (xi, t) = − lim
∆Fj→δFj

∆Kj

∆Fj
(3.3)

From the point of view of molecular theory, the pressure effect is defined as
the momentum change per unit time felt per unit area, i.e. the force which
the molecules experience and exert on a wall when colliding in an elastic
way with the wall in the considered area. The following relation holds (see
Sect. 3.3.2):

P =
1
3
mnu2 =

1
3
ρu2, (3.4)

where m is the molecular mass, n the number of the molecules per unit
volume and mean u the thermal velocity of the molecules.

Analogous to the above volume dimensions, it can be stated that most
fluid mechanics considerations do not require area resolutions that fall below
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Fig. 3.3 Definition of the pressure in
a fluid P (xi, t) by momentum exchange

x1

x2

x3

Fj

Fig. 3.4 Fluctuation while determining
the pressure in a fluid

10−12 to 10−14 m2 and therefore the mean numbers of molecules impinging
on such an area are sufficient to have the force effect of the molecules per
unit area. This, however, corresponds to a local definition of the pressure is
permissible, P (xi, t) for a fluid.

Similarly to the above continuum mechanics quantities ρ(xi, t) and P (xi, t),
there are other local field variables such as temperature, internal energy, and
enthalpy of a fluid, etc., for which the above considerations can be repeated.
Analogously to the above treatments for the density and pressure, it becomes
apparent, that molecular properties define continuum properties. This again
shows that it is possible for fluid mechanics considerations to neglect the
complex molecular nature of fluids. It is sufficient to introduce continuum
mechanics quantities into fluid mechanics considerations that correspond to
mean values of corresponding molecular properties. Fluid mechanics consid-
erations can therefore be carried out on the basis of continuum mechanics
properties of fluids.

However, there are some important domains in fluid mechanics where con-
tinuum considerations are not appropriate, e.g. the investigation of flows in
highly diluted gas systems. No clear continuum mechanics quantities can be
defined there for the density and pressure with which fluid mechanics pro-
cesses can be resolved. The required spatial resolution of the fluid mechanics
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considerations does not provide, due to the dilution, sufficient numbers of
molecules for the necessary establishment of the mean values of the consid-
ered continuum properties. Hence there are insufficient molecules available in
the considered δV for the introduction of the continuum mechanics quanti-
ties. When treating such fluid flows, priority has to be given to the molecular
theory rather than continuum mechanics considerations. In the present in-
troduction to fluid mechanics, the domain of flows of highly diluted gases is
not dealt with, so that all required considerations can take place in the ter-
minology of continuum mechanics. For continuum mechanics considerations,
molecular effects, e.g. within the conservation laws for mass, momentum and
energy, are presented in integral form, i.e. the molecular structure of the con-
sidered fluids is not neglected but taken into consideration in the form of
integral quantities.

3.3 Transport Processes in Newtonian Fluids

3.3.1 General Considerations

When treating fluid motions including the transport of heat and momentum
as well as mass transport, molecular transport processes occur that cannot
be neglected and that, hence, have to be taken into account in the general
transport equations. A physically correct treatment is necessary that orients
itself on the general representations of these transport processes and this is
indicated below. For explanation we refer to Figs. 3.5a–c. These figures show
planes that lie parallel to the x1−x3 plane of a Cartesian coordinate system.
In each of these planes the temperature T = constant (a), the concentration
c = constant (b) or the velocity (Uj) = constant (c). There distributions in
space are such that, when taking into account an increase in the quantities in
the x2 direction = xi direction, a positive gradient in each of these quantities
exists. It is these gradients that result in the molecular transports of heat,
mass and momentum.

In Fig. 3.5, the heat transport occurring, as a consequence of the molecular
motion, is given by the Fourier law of heat conduction and the mass transport
occurring analogously given by the Fick’s law of diffusion. The Fourier law
of heat conduction reads:

q̇i = −λ ∂T
∂xi
, (3.5)

where λ = coefficient of heat conduction, and Fick’s law of diffusion reads:

ṁi = −D ∂c
∂xi
, (3.6)

where D = mass diffusion coefficient.
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x2 = xi

TA > 

x1

x3

qi = λ• ∂T
∂xi

TB

x2

x1

x3

l
l

T ( xi  - l )  

T  ( xi + l )   

x2

x3

x1

c(xi +l )

c ( xi - l )

l

l
}l

l

x2

x1

x3 Uj ( xi - l )

Uj ( xi + l )

x2 = xi
cA > cB

m = i  D 
• ∂c

∂xi
−

−

x1
x3

x2 = xi

x3

x1 = xj

cB

(Uj )A > (Uj )B

ij = − ∂
∂ xi
Uj

(Uj )B

a) Explanations of heat transport

b) Explanations of transport of chemical species

c) Explanations of momentum transport

 TB

Fig. 3.5 Analogy of the transport processes dependent on molecules for (a) heat
transport, (b) mass transport, and (c) momentum transport

In an analogous way, the molecule-dependent momentum transport also
has to be described by the Newtonian law, which in the presence of only one
velocity component Uj can be stated as follows (see Bird et al. [3.1]):

τij = −µ∂Uj

∂xi
, (3.7)

where µ = dynamic viscosity.
In q̇i, ṁi, and τij in the above three equations, the direction i indicates

the “molecular transport direction”, and j indicates the components of the
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Fig. 3.6 Exchange of mass and
momentum. Illustrative explana-
tion of τij as momentum transport

Exchange of mass and momentum

velocity vector for which momentum transport considerations are carried out.
It will be shown in Chap. 5 that the complete equation for τij , in the presence
of a Newtonian medium, can be represented as follows:

τij = −µ
(
∂Uj

∂xi
+
∂Ui

∂xj

)
+

2
3
µδij

(
∂Uk

∂xk

)
, (3.81)

where τij represents the momentum transport per unit area and unit time and
therefore represents a “stress”, i.e. force per unit area. It is therefore often
designated “shear stress” and the sign before the viscosity coefficient µ is
chosen positive. This has to be taken into account when comparing treatments
of momentum in this book with corresponding treatments in other books.
The existing differences in the viewpoints are considered in following two
annotations.
Annotation 1: The illustrative example in Fig. 3.6 shows how the viscosity-
dependent momentum transport, introduced in continuum mechanics, is
caused by motion of molecules. Two passenger trains may run next to one
another at different speeds. In each of the trains, persons are assumed to
travel carrying sacks along with them. These sacks are being thrown by the
passengers in one train to the passengers in the other train, so that a mo-
mentum transfer takes place; it should be noted that the masses mA and mB

of the trains do not change. Because the persons in the faster train catch
the sacks that are being thrown to them from the slower train, the faster
train is slowed down. In an analogous way, the slower train is accelerated.
Momentum transfer (of the momentum in the direction of travel) takes place
by a momentum transport perpendicular to the direction of travel. This idea
transfers to the molecule-dependent momentum transport in fluids, is in ac-
cordance with the molecule-dependent transport processes of heat and mass
that were stated above.

1 τij as molecule-dependent momentum transport, as introduced here, is to be dif-
ferentiated, in principle, from the shear stress that is introduced in some books;
see Sect. 3.3.3.
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Fig. 3.7 Interaction of friction.
Illustrative representation of the
τij term as a friction term

Friction acting on side 
walls  of wagons of trains

Annotation 2: In continuum mechanics, the viscosity-dependent interaction
between fluid layers is generally postulated as “friction forces” between lay-
ers. This would, in the above-described interaction between trains (Fig. 3.7),
running alongside each another, correspond to passengers in each of the trains
exerting a friction force of the other train with bars, by scratching along the
other train’s wall. This idea does not correspond to the concept of molecular-
dependent transport processes between fluid layers of different speeds.

If one carries out physically correct considerations regarding the molecular-
dependent momentum transport τij , derivations have to be carried out as
presented in Sect. 3.3.3. In addition, considerations are presented below con-
cerning the existence of pressure and the occurrence of heat exchange and
mass diffusion in gases in order to show the connection between molecular
and continuum-mechanics quantities and transport processes.

3.3.2 Pressure in Gases

From the molecular theory point of view, the gaseous state of aggregation of a
fluid is characterized by a random motion of the atoms and/or molecules. The
properties that materials assume in this state of aggregation are described
fairly well by the laws of an ideal gas. All the laws for ideal gases result
from derivations that are based on mechanical laws for moving spheres. They
interact by ideal elastic collisions and in the same way the moving molecules
also interact with walls, e.g. with container walls. Between these collisions,
the molecules move freely and in straight lines. In other words, no forces
act between the molecules, except when their collisions take place. Likewise,
container walls neither attract nor repel the molecules and the interactions
of the walls with the moving molecules are limited to the moment of the
collision. The most important properties of an ideal gas can be stated as
follows:
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(a) The volume of the atoms and/or molecules is extremely small compared
with the distances between them, so that the molecules can be regarded
as material points.

(b) The molecules exert, except at the moment of their collisions, neither
attractive nor repulsive forces on each other.

(c) For the collisions between two molecules or a molecule and a wall, the
laws of perfect elastic collisions hold (collisions of two molecules take
place exclusively).

When one takes into account the characteristic properties of an ideal gas
listed in points (a)–(c), the derivations indicated below can be formulated
to obtain the pressure. This fluid property represents a characteristic con-
tinuum mechanics quantity of the gas, but it can be derived by taking
well-known molecular-theoretical considerations into account. The deriva-
tions in the theory only consider the known basic laws of mechanics and
the molecule properties indicated above in (a)–(c).

In order to derive the “pressure effect” of the molecules on an area, the
derivations are carried out by considering a control volume consisting of
a cube with an edge length a as shown in Fig. 3.8. Regarding this control
volume, the area standing perpendicular to the axis x1 is hatched. All con-
siderations are made for this area. For other areas of the control volume, the
derivations have to be carried out in an analogous way, so that the consider-
ations for the hatched area in Fig. 3.8 can be considered as generally valid,
e.g. see Ref. [3.2].

In the control volume shown in Fig. 3.8, N molecules are present. With
the introduction of n molecules per m3 (molecular density), this number N
is given by:

N = na3. (3.9)

From n molecules per unit volume, nα molecules with a velocity component
(u1)α may move in the direction of the axis x1 and interact with the hatched
area in Fig. 3.8. In a time ∆t all molecules will hit the wall area that are at

Fig. 3.8 Control volume for derivations
of pressure from the molecular interaction
with walls

a

a

a
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a distance of (u1)α∆t from it

zα = nαa
2(u1)α∆t. (3.10)

Each of the zα molecules exerts a momentum on the wall that is formulated
by the law of ideal elastic collision:

∆(i1)α = −m∆(u1)α = 2m(u1)α (3.11)

For the total momentum transferred by zα molecules to the wall, we can
write:

∆(J1)α = zα∆(i1)α = nαa
2(u1)i∆t[2m(u1)α] (3.12)

∆(J1)α = 2ma2∆tnα(u2
1)α. (3.13)

The wall experiences a force (K1)α:

(K1)α =
∆(J1)i

∆t
= 2ma2nα(u2

1)α (3.14)

and the following pressure (P1)α results:

(P1)α =
(K1)α

a2
= 2mnα(u2

1)α. (3.15)

The total pressure which is exerted on the hatched area in Fig. 3.8 summarizes
the pressure contributions (P1)α of all differing velocities (u1)α. If one wants
to calculate the total pressure, one has to sum up over all these contributions.
Then one obtains from the above equation:

P1 =
nx∑

α=1

(P1)α = 2m
nx∑

α=1

nα(u2
1)α. (3.16)

The summation occurring in the above relation can be substituted by the
following definition of the mean value of the velocity squared, u2

1:

nx∑
α=1

nα(u2
1)α = nx(u2

1), (3.17)

If nx is the total number of molecules per unit volume moving in the positive
direction x1, i.e.

nx =
1
6
n, (3.18)

where nx represents the mean number of molecules present in a unit volume;
u2

1 represents the square of the “effective value” of the molecular velocity,
which, according to the above derivations, can be defined as follows:

(u2
1) =

1
nα

nx∑
α=1

nα(u2
1)α =

6
n

nx∑
α=1

nα(u2
1)α. (3.19)
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The thermodynamic pressure P in a free fluid flow is defined generally as the
mean value of the sum of the pressures in all three directions:

P =
1
3
(P1 + P2 + P3) =

2m
3

⎡⎣ Nα∑
α=1

nα

(
u2

1

)
α

+
Nβ∑
β=1

nβ

(
u2

2

)
β

+
Nγ∑
γ=1

nγ

(
u2

3

)
γ

⎤⎦
=

2m
3

[
nxu2

1 + nyu2
2 + nzu2

3

]
=

2m
3

1
6
n
[
3u2
]

=
1
3
mnu2

=
1
3
ρu2

The pressure with which the hatched area is associated is therefore:

P =
1
3
mn(u2). (3.20)

As m is the mass of a single molecule and n the mean number of molecules
per unit volume, the expression mn corresponds to the density ρ in the
terminology of continuum mechanics:

P =
1
3
mn(u2) =

1
3
ρ(u2) (3.21)

P =
1
3
ρ(u2). (3.22)

This relationship contains the continuum property ρ and also the mean
molecular velocity squared. The squared mean velocity can be eliminated
by another quantity of continuum mechanics, namely the temperature T of
an ideal gas (see Höfling [3.3]).

The mean kinetic energy of a molecule can be written according to the
equipartition law of statistical physics:

ek =
1
2
m(u2) =

3
2
kT, (3.23)

where k = 1.380658× 10−23 J K−1 represents the Boltzmann constant. From
(3.22) and (3.23) the following expression results:

P =
1
3
ρ(3

k

m
T ) = ρ

k

m
T. (3.24)

Further,

k =


L

=
universal gas constant
Loschmidts’s number

. (3.25)

Then,

P =

T
Lm

ρ, (3.26)
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where M = Lm is the mass per kmol of an ideal gas, so that υ = M/ρ can
be written:

Pυ = 
T, (3.27)

where υ represents the gas volume per kmol and 
 is the general ideal gas
constant (see to Bosnjakovic [3.4]).

Strictly, the above derivations can only be stated for a monatomic gas,
with the assumption of ideal gas properties. However, the above law can be
transferred to polyatomic gases with “ideal gas properties” if the additional
degrees of freedom present in polyatomic gases and the corresponding con-
stituents of the internal energy of a gas are taken into account. Generally,
the energy content of a gas can be stated as follows:

egas =
α

2
kT, (3.28)

where α indicates the degrees of freedom of the molecular motion:

α = 3 with monatomic gases,
α = 5 with a diatomic gases,
α = 6 with triatomic and polyatomic gases.

The above derivations have shown that the properties of an ideal gas, that
are known from continuum mechanics, can be derived from molecular theory
considerations. This means that the laws of continuum mechanics, at least for
the pressure derived here, with the introduction of density and temperature,
are consistent with the corresponding considerations of the mechanical theory
of molecular motion.

3.3.3 Molecular-Dependent Momentum Transport

In Sect. 3.3.1, transport processes that are caused by the thermal motion of
the molecules were considered in an introductory way. Attention was drawn to
the analogy between momentum heat and mass transport and it was pointed
out that the τij terms used in fluid mechanics are not considered to be caused
by friction, i.e. physically they represent no friction-caused “shear stress”
but represent molecular-caused momentum transport terms occurring per
unit area and time; the index i represents the considered molecular trans-
port direction and j the direction of the considered momentum. In order to
give an introduction into physically correct considerations of the molecular-
dependent momentum transport terms, the following derivations for an ideal
gas are made, where only an x1 momentum transport in the direction x2 is
considered, i.e. the term τ21.

For the derivations below, a velocity distribution has to be used that cor-
responds to the equilibrium distribution (Maxwell distribution), in which
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Fig. 3.9 Molecular motion and shear
stress: consideration of transport in the x2
direction of U1 momentum

ṁi = 0.2 The following simple model for a mean velocity distribution is used.
One-sixth of all molecules at a time move with a velocity (−ū, 0, 0), (ū, 0, 0),
(0,−ū, 0), (0, ū, 0), (0, 0,−ū), (0, 0, ū), with the directions of motion being
perpendicular to the axis of the coordinates. When one assumes a molecular
concentration per unit volume of n, i.e. n molecules per unit volume, one-
third of them on an average move with a velocity ū in the direction x2 and of
these again half, i.e. each n/6 molecules per unit volume, move in a negative
and positive x2 direction. On average, 1

6nū molecules per unit time and unit
area move through the area of the plane x2 = constant, which is indicated in
Fig. 3.9.

The molecules which traverse the plane x2 = constant in the positive x2

direction have, on average, collided the last time at a distance l with molecules
below the plane, where l represents the mean free path of the molecular
motion. The molecules coming from below thus possess, on average, the mean
velocity which the flowing medium has in the plane (x2−l). Consequently, the
molecular transport in the positive direction x2 posseses an x1 momentum,
which can be stated as follows:

∆J1 =
1
6
nū[mU1(x2 − l)]∆t ∆x1 ∆x3. (3.29)

This is connected with an “effective force” per unit time and unit area, i.e.
a force acting on the hatched area of Fig. 3.9, arising as a consequence of an
x1 momentum that is transported by molecular motion in the positive x2

direction:

τ+21 =
∆J1

∆t

1
∆x1∆x3

=
1
6
mnūU1(x2 − l). (3.30)

In an analogous way, the molecular motion through the plane x2 = constant
in the negative x2 direction can be stated to carryout a x1 momentum trans-
port per unit time and unit area. For the latter the resultant stress can be
calculated as:

τ−21 = −1
6
nmūU1(x2 + l). (3.31)

Hence the entire momentum exchange per unit area and unit time which the
hatched plane x2 = constant experiences can be expressed as:

2 The derivations are only valid if no self diffusion of mass is present in a flow.
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τ21 = τ+21 + τ−21 =
1
6
nmū[U1(x2 − l) − U1(x2 + l)]. (3.32)

The velocities U1(x2 − l) and U1(x2 + l) can be expressed by means of Taylor
series expansions:

U1(x2 − l) = U1(x2) −
(
∂U1

∂x2

)
l + · · · (3.33)

U1(x2 + l) = U1(x2) +
(
∂U1

∂x2

)
l + · · · (3.34)

Thus one obtains:

τ21 =
1
6
mnū

(
−2
∂U1

∂x2
l

)
, (3.35)

i.e.

τ21 = −1
3
mnūl

(
∂U1

∂x2

)
= −µ

(
∂U1

∂x2

)
. (3.36)

Hence the derivation based on the molecualar theory of ideal gases re-
sulted in a molecular transport of momentum. The resultant force per unit
area τ21 turns out to be proportional to the local velocity gradient. The
proportionality factor is the dynamic viscosity of the considered fluid.

For an ideal gas, this reads:

µ =
1
3
mnūl. (3.37)

If one takes into account the following relationship:

ū =

√
8kT
πm

; l =
1√

2d2πn
, (3.38)

where d is the molecular diameter, one obtains:

µ =
2

3π3/2

√
mkT

d2
. (3.39)

This relationship tells us that, for an ideal gas, µ ∼ √
T , i.e. the viscosity

increases with increasing temperature. Furthermore, the viscosity of an ideal
gas increases with increasing molecular mass, µ ∼ √

m, whereas the viscosity
decreases with increasing molecular size, µ ∼ (1/d2).

The above considerations were carried out to serve as an introduction to
the derivations of continuum mechanics properties of fluids, using average
molecular properties. Only one transport direction was taken into account
and only the x1 momentum term was included in the considerations. The
complete term τij is derived in Chap. 5 for Newtonian media, hence com-
pleting the considerations of the momentum transport in ideal gases. It is
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shown that the τij term comprises essentially three terms, which can all be
described physically with the help of considerations of the momentum trans-
port by ideal gases. A general approach for momentum-transport processes
in fluids is possible, i.e. of fluids different to an ideal gas, but this approach
is not undertaken within the framework of this book.

3.3.4 Molecular Transport of Heat and Mass in Gases

When the temperature in a system is not constant spatially, this system is
thermally not homogeneous and heat will be transferred from areas of higher
temperature to areas of lower temperature. For the one-dimensional problem
shown in Fig. 3.10, a heat flux q̇x2 = Q̇/(∆t∆x1∆x3), i.e. per unit area and
unit time, will take place, which is proportional to the temperature gradient
existing at position x2 = 0; this is known from experiments and is usually
referred to as Fourier’s law of heat conduction

q̇x2 = q̇2 = −λ ∂T
∂x2

. (3.40)

The proportionality constant λ is designated as the thermal conductivity of
the fluid or the thermal conductivity coefficient of the fluid.

In this section, considerations will be summarized that are suitable for
understanding the physical causes of heat conductivity from the point of view
of the molecular theory of ideal gases. Hence the derivations are again given
for the model of an ideal gas. Considerations of this kind are most suitable
because the molecular motion, as a basis for heat transport considerations,
can be presented in a simple way.

If one considers a plane A at x2 = constant in an ideal gas, where a
temperature gradient exists that can be stated as the derivative of T (x2),
the heat conduction through plane A can be explained in such a way that
the molecules in both directions traverse plane A and carry the “thermal
energy” with them. When (∂T/∂x2) > 0, the molecules which move through
the plane from the top to the bottom have a higher mean energy than the
molecules which traverse plane A in the opposite direction. The heat flow

Fig. 3.10 Heat transport through a
plane, caused by molecules

Plane A = hetched area

x2

x1

x3

l
l

T ( x2-l )

T ( x2 + l )
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through plane A can thus be explained as the difference between the energy
transports which stem from the upward and downward molecular motions.
The following equations can be given to express this.

The energy flow in the positive x2 direction can be given as:

q̇+2 =
1
6
nūe(x2 − l), (3.41)

where n is the number of molecules per unit volume, ū is the mean molecular
velocity and 1

6nū is the number of molecules that traverse the considered
unit area per unit time in the positive x2 direction. These molecules had,
on average, the last contact with other molecules in a plane that has the
distance of the mean free path l of the molecules. Concerning the “energy
content” of the molecular flow through the area A = 1, it can be said that
the molecules had an energy at the position (x2 − l), bring the same as that
of all the molecules of the ideal gas, i.e. the energy ne(x2 − l).

In an analogous way, for the energy flow through the plane A = 1 constant
in the negative x2 direction [3.2]:

q̇−2 = −1
6
nūe(x2 + l). (3.42)

The net heat flow results from the difference of the molecular-dependent
energy transports in the positive and negative x2 directions:

q̇2 = q̇+2 + q̇−2 =
1
6
nū[e(x2 − l) − e(x2 + l)]. (3.43)

By means of Taylor series expansion, one obtains:

e(x2 − l) = e(x2) −
(
∂e

∂x2

)
l +
(

1
2
∂2e

∂x2
2

)
l2 − · · · (3.44)

e(x2 + l) = e(x2) +
(
∂e

∂x2

)
l +

1
2

(
∂2e

∂x2
2

)
l2 + · · · (3.45)

For the difference e(x2 − l)− e(x2 + l), one obtains in a first approximation,
taking only first-order derivatives into account:

e(x2 − l) − e(x2 + l) = −2l
(
∂e

∂x2

)
+ · · · (3.46)

and thus for the heat flow:

q̇2 = −1
3
nūl

(
∂e

∂x2

)
= −1

3
nūl

(
∂e

∂T

)(
∂T

∂x2

)
. (3.47)

From the derivations given in Sect. 3.3.2 for the “heat energy” of molecules
of an ideal gas:

e = ek =
3
2
kT

∂e

∂T
=

3
2
k = cv. (3.48)
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The Boltzmann constant k is understood to be a measure of the heat capacity
of a molecule. When one considers again

ū =

√
8kT
πm

; l =
1√

2d2πn
(3.49)

one obtains

λ =
1
d2

√(
k

π

)3
T

m
. (3.50)

Analogous to the viscosity, the heat conductivity increases with increas-
ing temperature, λ ∼ √

T , and decreases with increasing molecular size,
λ ∼ (1/d2). However, it also decreases with increasing molecular mass,
λ ∼ (1/

√
m).

Similarly to the considerations regarding the heat conductivity, where spa-
tially different temperatures lead to temperature equilibrium by diffusion
processes, spatially varying concentrations of certain molecule types cause
concentration equalization processes that are to be understood analogously
and in order to follow up such processes, and study them experimentally,
gaseous radioactive particles could be used as tracers.

In equilibrium, these marked particles are distributed evenly over the avail-
able volume. However, if the concentration of the marked parts is position
dependent where the entire number of the particles per unit volume is con-
stant, this represents a non-equilibrium state which will try to equalize the
concentration in the course of time by diffusion. This smoothing is possible by
the temperature-dependent motion of the molecules. For the mathematical
description of diffusion processes, the equation

ṁ2 = −D ∂c

∂x2
(3.51)

can be employed, which is known as Fick’s law, where ṁ2 is the mass flow
per unit time and unit area that lies perpendicular to the direction x2, i.e.
the mass flow rate through a plane x2 = constant, D is the diffusion constant
and c is the concentration of the marked substance. The minus sign expresses
that the particles move from a position of higher concentration to a position
of lower concentration.

Analogously to the molecular theory of heat conduction, the considerations
below lead to the derivation of Fick’s diffusion equation and to a relationship
which states the diffusion coefficients in terms of molecular properties. It
holds again that the mass flow of the molecules through a plane x2 = constant
can be expressed as the difference in the mass flow of the molecules in the
positive and negative x2 directions (Fig. 3.11). In the positive x2 direction,
the area∆x1∆x3 of the considered plane is passed by all the molecules, whose
distance from the plane is not larger than ū∆t, i.e. 1

6∆x1∆x3ū∆tc(x2).
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Fig. 3.11 Transport of marked mole-
cules through a plane perpendicular to
the x2 direction

If one considers the particle flow per unit time and area [3.2], the following
relationship results:

ṁ+
2 =

1
6
ūc(x2 − l). (3.52)

The molecule concentration that exists at a distance l from the considered
plane is represented by c(x2 − l).

Accordingly, for the mass flow rate in the negative x2 direction, one can
write:

ṁ−
2 = −1

6
ūc(x2 + l). (3.53)

Through Taylor expansions of both c terms in (3.52) and (3.53), one obtains:

c(x2 − l) = c(x2) −
(
∂c

∂x2

)
l + · · · (3.54)

c(x2 + l) = c(x2) +
(
∂c

∂x2

)
l + · · · (3.55)

Hence this yields for the desired quantity ṁ2:

ṁ2 = ṁ+
2 + ṁ−

2 (3.56)

ṁ = −1
3
ūl
∂c

∂x2
. (3.57)

A comparison with the diffusion equation (3.51) shows that the diffusion
coefficient D is determined by molecular transport considerations as:

D =
1
3
ūl. (3.58)

If, on the other hand, one sets:

ū =

√
8kT
πm

; l =
1√

2d2πn
(3.59)
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then one obtains

D =
2
3

1
nd2

√
kT

π3m
. (3.60)

From this equation, we can infer that the diffusion increases constantly with
increasing temperature, D ∼ √

T , and decreases with increasing molecular
mass, D ∼ 1/

√
m. There exists a decrease with the molecular size, D ∼

(1/d2), and also with increasing density of the gas ρ = nm, D ∼ (1/ρ).

3.4 Viscosity of Fluids

The molecular momentum transport in Newtonian fluid flow is given by

τij = −µ
(
∂Uj

∂xi
+
∂Ui

∂xj

)
− µ′δij ∂Uk

∂xk
. (3.61)

The material property µ is called the dynamic viscosity of a Newtonian
medium, or the shear viscosity of the fluid. The coefficient µ′ is defined as
the expansion viscosity coefficient and can be formulated for a Newtonian
medium as follows:

µ′ = −2
3
µ (3.62)

with the same physical units for µ and µ′, i.e. [µ] = [µ′]. The dynamic
shear viscosity is a thermodynamic property of a fluid and thus depends
on temperature and pressure. For a Newtonian medium, µ is independent of
Sij = 1

2

(
∂Uj

∂xi
+ ∂Ui

∂xj

)
, i.e. τij is linearly dependent on the velocity gradients

occurring in a flow, or is connected with local fluid-element deformations.
When the τij = f(Sij), relationship (3.61) is non-linear, one speaks of fluids
with non-Newtonian fluid viscosities. Figure 3.12 sketches some of these pos-
sible non-Newtonian fluid properties with pseudo-plastic behavior, i.e. with
increasing shear rate the fluid tends to have lower viscosity. Dilatant fluids,
on the other hand, show an increase in viscosity with an increase in the rate
of deformation and one therefore defines them as “shear thickening fluids”.
In the diagram, a Bingham fluid also is shown that is characterized by a base
value of τij before the fluid moves. This book concentrates on the treatment
of Newtonian fluids rather than on fluids with properties of non-Newtonian
media. The non-Newtonian fluid properties indicated in Fig. 3.12 are pre-
sented to point out the existence of more complex fluid properties occuring
in nature and in industry.

The dynamic viscosity of a Newtonian fluid depends indirectly on the
molecular interactions and can therefore be regarded as a thermodynamic
property that varies with temperature and pressure. A complete theory of
this viscosity as a transport property in gases and liquids is still under devel-
opment and the present state can be consulted in the book by Hirschfelder
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Investigations are carried out 
for constant deformation rate

Decrease with 
time  = thixotropic

No time dependence

Increase   with
time = rheopectic

Plastic
Bingham
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plastic Dilatant

Newtonian

ε = Deformation rate

τ = Molecular momentum 
       loss per unit area

εε

ττ

Fig. 3.12 Properties of Newtonian and non-Newtonian fluids

et al. [3.5]. For an entire class of fluids, the function µ[T, P ] can be repre-
sented in a way that was presented by Kienan [3.6] and which makes use of
a normalized expression such that all values are normalized with the viscos-
ity at the critical point of the fluid. In this way the following expression is
obtained:

µ

µc
= f

[(
T

Tc

)
,

(
P

Pc

)]
(3.63)

which is illustrated in Fig. 3.13, showing that the viscosity of gases increases
with pressure. The viscosity of liquids decreases with temperature. For gases,
there is a very weak dependence of viscosity on pressure and this is generally
neglected in gas-dynamic considerations. In short, Fig. 3.13 indicate that:

• The viscosity of liquids decreases rapidly with temperature.
• The viscosity of gases increases with temperature at moderate pressure

values.
• The viscosity of all liquids increases more or less with pressure.
• The pressure dependence of viscosity of gases is negligible.

The above normalized property µ
µc

permits the conclusion that for most
fluids the critical pressure is higher than 10 atm and hence conditions for low
density are fulfilled very well under atmospheric pressure.

The theory of the physical properties of gases under pressure conditions
P < Pc is well established and has been advanced further on the basis of
theories by Maxwell (1831–1879), as indicated by Hirschfelder et al. [3.5] and
Present [3.7]. All of these theories are based on considerations yielding infor-
mation given in Sect. 3.3. In this section, it is explained that the measured
dynamic viscosity of a gas results from the statistical average of molecule-
dependent momentum transport of the motion of fluids. In the case of gases,
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Fig. 3.13 Normalized viscosity as a function of pressure and temperature. Normali-
zation is achieved with the viscosity at the critical point of the fluid

the dynamic viscosity can be given as follows:

µ =
2
3
ρlc, (3.64)

where ρ is the density of the fluid, l the mean free path length of the molecular
motion, and c the speed of sound in a gas. For gases under normal pressure
conditions ρl ≈ constant. However, more precise considerations show that ρl
increases slightly with temperature because of the so-called collision integral
Ωs. According to Chapman and Cowling [3.8]:

µ =
210−3

√
MT

σ2Ωs
, (3.65)

whereM is the molecular weight of the gas, T the absolute temperature, and
σ the collision cross-section of the molecules. For Ωs = 1 the molecules inter-
act only in the form of collisions. When more complex molecular interactions
exist, Ωs has to be calculated according to following equation:

Ωs ≈ 1.147
(
T

Tc

)−0.145

+
(
T

Tc
+ 0.5

)−2

. (3.66)
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Table 3.1 Stockmayer collision integral values for determining the viscosity of gases

T∗ = T/Tc Ωs Ωs (3.66)
0.3 2.840 2.928
1.0 1.593 1.591
3.0 1.039 1.060

10.0 0.8244 0.8305
30.0 0.7010 0.7015

100.0 0.5887 0.5884
400.0 0.4811 0.4811

Table 3.2 Values for the calculation of the dynamic viscosity of gases according to
the Sutherland equation (3.68)

Gas T0 µ0 n Error Temperature S Temperature
(K) (mPa s−1) (%) range (K) range for

(K) ±2% error (K)

Air 887.65 0.01716 0.666 ±4 745.65–4548.15 521.90 648.15–4548.15
Ar 887.65 0.02125 0.72 ±3 723.15–3648.15 598.15 548.15–3648.15
CO2 887.65 0.01370 0.79 ±5 744.4–4098.15 773.15 700.65–4098.15
CO 887.65 0.01657 0.71 ±2 790.65–3648.15 579.40 565.65–3648.15
N2 887.65 0.01663 0.67 ±3 773.15–3648.15 513.15 498.15–3648.15
O2 887.65 0.01919 0.69 ±2 790.65–4773.15 585.65 691.90–4773.15
H2 887.65 0.008411 0.68 ±2 453.15–2748.15 490.65 778.15–2748.15
Water 1210.65 0.01703 1.04 ±3 903.15–3648.15 2210.65 1085.65–3648.15
vapor

The values determined from the Stockmayer potential, e.g. see Bird et al.
[3.1], are compared in Table 3.1 with the values from the above approximation
relationship and they show good agreement.

For routine calculations, the following equation can be used:

µ

µ0
≈
(
T

T0

)n

, (3.67)

where µ0 and T0 are corresponding reference values that were obtained from
measurements or calculations on experimental findings.

In general, the value of n is found to be around 0.7. More precise values
of n are given in Table 3.2 for different gases.

More extensive considerations were made by Sutherland [3.9], and these
were based on an intermolecular potential for forces possessing an attractive
part. The resulting Sutherland equation is

µ

µ0
≈
(
T

T0

) 3
2 T0 + S
T + S

, (3.68)

where S represents an effective temperature, the so-called “Sutherland con-
stant”. It is also given in Table 3.2 for different gases.
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3.5 Balance Considerations and Conservation Laws

Before we conduct detailed considerations on fluid mechanics processes, some
remarks need to be made on the acquisition of information in fluid mechan-
ics, especially on the knowledge gained in analytical fluid mechanics, which
is treated extensively in this book. Starting from conservation laws, analyt-
ical fluid mechanics employs deductive methods to solve various unsolved
problems, i.e. to gain knowledge on existing flow problems. For analytical
solutions, one makes use of derived relations that are based on balance con-
siderations, as known from other fields of natural and engineering science and
also from everyday observations. In many domains of daily life one acquires,
starting from intuitive knowledge on the existence of conservation laws, use-
ful information from balance considerations which one conducts over defined
fields, domains, periods, etc. The way in which the changes of considered
quantities of concern take place in detail is often not of interest. Rather, the
“initial and end states of the considered quantities” need to be known. The
changes within the considered domain are due to “inflows and outflows of the
considered quantity”. Relationships can be established between the changes
within the considered fields, domains and periods knowing the “inflows and
outflows”. Considerations of the financial circumstances of a person or an
institution are, for example, conducted by establishing balances of income
and expenditure to obtain information on the development of the financial
situation. Many more examples of this kind could be cited in order to make
clear the importance of balances for obtaining information in daily life.

In fluid mechanics, we find balances of quantities such as mass, momentum,
and energy in almost all fields of natural and engineering sciences. With these
balances, basic equations are set up with the aid of existing conservation laws
whose solution lead, in the presence of initial and boundary conditions, to the
desired information on quantities. In order to obtain definite information, the
balance considerations have to be based not only on valid conservation laws
(mass conservation, energy conservation, momentum conservation, etc.) but
also on definite specified domains. The field or the domain for which balances
are formulated has to be defined precisely to guarantee the unambiguity of
the derived basic laws. A relationship that was derived by considerations over
a certain domain are, in general, not applicable when domain modifications
have taken place and these are not included in the relationship.

Fluid mechanics is a subject based on the basic laws of mechanics and
thermodynamics and, moreover, uses state equations in the derivations in
order to establish relationships between thermodynamic state changes of a
fluid. These state properties vary in the course of time or in space. However,
the changes of state take place in accordance with the corresponding state
equations while still observing the conservation laws. For the derivation of
the basic equations of fluid mechanics, the basic laws of physics are:
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• Mass conservation law (continuity equation)
• Momentum conservation law (equation of momentum)
• Energy conservation law (energy equation)
• Conservation of chemical species
• State equations

These basic laws can now be applied to several “balance domains”. The size of
the balance space is not important in general and it can include infinitesimally
small balance domains (differential considerations) or finite volumes (integral
considerations). Furthermore, the balance domains can lie at a fixed location
in different coordinate systems and can undergo motions themselves (Euler
and Lagrangian approaches). In general, once selected, domains for balance
considerations are usually maintained for all quantities to be considered, i.e.
mass, momentum, energy, etc.; however, this is not necessary. Changes in
domains are admissible as long as they are known and thus can be included
in the balance considerations.

Generally, to derive the basic fluid flow equations in fluid mechanics, only
integral considerations are made, but balance considerations are made over
different domains of interest. In the case of differential considerations, one
finds balance considerations for moving fluid elements (Lagrangian approach)
or space fixed elements (Eulerian approach). The two ways of fluid flow de-
scription have to be clearly distinguished and balances should always be set
up separately for the Lagrangian and Eulerian balance spaces. Mixed bal-
ances leads to errors, in general. However, transformations of final equations
are possible. It is usual, for example, in fluid mechanics to transform the
balance relationships derived for a moving fluid element to space-fixed co-
ordinate systems and thus to obtain balance relations for constant volumes.
The connections between considerations for moving fluid elements and space-
fixed control volume in this book are presented and the equations required for
the transformation are derived. Particular attention is given to the physical
understanding of the principal connections, so that advantages and disad-
vantages of the different approaches become clear. The advantages of the
“Eulerian form” of the basic equations are brought out with respect to the
imposed boundary conditions for obtaining solutions to flow problems. On
the other hand, the Lagrangian considerations allow the transfer of often
known physical knowledge of mechanics of moving bodies to fluid mechanics
considerations.

When stating the basic equations in Lagrange variables, the following
equations are valid for a fluid element:3

• Mass conservation:
d(δm)�

dt
= 0

3 The derivation of these equations is presented in Chap. 5. They are stated here
beforehand to explain the basic physical knowledge that is taken from Physics.
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• Newton’s 2nd law:
d
dt

[(δm)�(Uj)�] =
∑

(δMj)� + (δJ̇j)�

+
∑

(δOj)�

• Energy conservation:
d
dt

(e)� =
d
dt

(q̇)� − P� 1
δV�

d(δV )�
dt

+ φdiss

• State equation: e� = f(P�, T�) and P� = f(ρ�, T�)

(3.69)

The above representations make it clear that, generally, in fluid mechanics,
considerations agree with principles that are usually applied in thermodynam-
ics, e.g. the energy equation (1st law of thermodynamics) and state equations
for liquids and gases.

As is shown in Chap. 5, the above equations can also be expressed in
field variables, such that the following set of differential equations for density
ρ(xi, t), pressure P (xi, t), temperature T (xi, t), internal energy e(xi, t), and
three velocity components Uj(xi, t)(j = 1, 2, 3) are obtained:

• Mass conservation:
∂ρ

∂t
+
∂(ρUi)
∂xi

= 0

• Newton’s 2nd law: ρ

[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgi

with τij = −µ
[
∂Uj

∂xi
+
∂Ui

∂xj

]
+

2
3
µδij

∂Uk

∂xk

• Energy conservation: ρ
[
∂e

∂t
+ Ui

∂e

∂xi

]
= − ∂q̇i

∂xi
− P ∂Uj

∂xj
− τij ∂Uj

∂xi

with q̇i = −λ ∂T
∂xi

• State equations: e = f(P, T ) and P = f(ρ, T )
(3.70)

Thus five differential equations are available, if one inserts τij and q̇i through
the above equations, for altogether seven unknowns and two thermodynamic
equations. With this, the closed system of differential equations given above
can be solved for specified initial and boundary conditions. Therefore, the
given flow problem is defined by its initial and boundary conditions, needed
for the solution of the above set of equations. The basic physical laws are
identical for all flow problems. They comprise, as said above, the conservation
and state equations that are usually treated in thermodynamics. Therefore,
a repetition of thermodynamic fundamentals is essential as summarized in
Sect. 3.6.
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3.6 Thermodynamic Considerations

The thermodynamic state equations of fluids are often used as a supplement
for the solution of flow problems. However, in the present text only “simple
fluids”, i.e. homogeneous liquids and gases for which the thermodynamic
state can be expressed by a relation between pressure, temperature, and
density, are considered. Hence the following statements are possible for both
substantial and field quantities, i.e.:

P� = f(T�, ρ�) or P = f(T, ρ) (3.71)

The thermodynamic state equations for simple fluids are known to be:

P�
ρ�

= RT� (thermodynamically ideal gases)

ρ� = constant (thermodynamically ideal liquids).

If one defines α� = P�, T�, ρ�, e� and α = P, T, ρ, e, . . . , the following
relation holds when the fluid element 
 is located at time t at position xi

(see Sect. 2.6):

α�(t) = α(xi, t) �
dα�
dt

=
∂α

∂t
+ Ui

∂α

∂xi
=

Dα
Dt
. (3.72)

The second part of (3.72) indicates how temporal changes of substantial,
thermodynamic quantities can be computed from the substantial derivative
of corresponding field quantities.

In addition to the above thermodynamic state properties P�, T�, ρ�,
e�, . . . , other state properties can be defined whose introduction is of ad-
vantage in certain thermodynamic considerations. Some of them are as
follows:
• Specific volume: υ� =

1
ρ�

• Enthalpy: h� = e� + P�υ�
• Free energy: f� = e� − T�s� (Helmholtz potential)

• Free enthalpy: g� = h� − T�s� (Gibb potential)

Accordingly, it is possible to apply certain mathematical operators in or-
der to define “new thermodynamic quantities”. However, their introduction
makes sense, i.e. considerations become simpler or easier when carried out
with newly introduced quantities. Advantages result from the introduction
of newly defined quantities into thermodynamic considerations.

In one of the above definitions of thermodynamic potentials, the entropy
s� was used, whose definition is given by a differential relationship:

T�ds� = de� + P�dυ� (Gibbs relationship). (3.73)
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Integrating, one obtains:

s� = s(�)0
+
∫ e�

(e�)0

1
T�

de� +
∫ υ�

(υ�)0

P�
T�

dυ�. (3.74)

Equations (3.73) and (3.74) can be understood as identical definitions for the
entropy s� of a fluid element. When employing (3.72) one obtains with:

ds�
dt

=
Ds
Dt

de�
dt

=
De

Dt
and

dυ�
dt

= υ�
∂Ui

∂xi
(3.75)

the following relationships:

T�
ds�
dt

=
de�
dt

+ P�
dυ�
dt

� T
Ds
Dt

=
De

Dt
+ P

1
ρ

∂Ui

∂xi
(3.76)

or

T

(
∂s

∂t
+ Ui

∂s

∂xi

)
=
(
∂e

∂t
+ Ui

∂e

∂xi

)
+
P

ρ

(
∂Ui

∂xi

)
. (3.77)

When one applies the mass conservation equation (3.70), it can be rearranged
further to yield: (

∂Ui

∂xi

)
= −1

ρ

Dρ
Dt
. (3.78)

Insertion in (3.76) yields

T
Ds
Dt

=
De
Dt

− P

ρ2
Dρ
Dt
. (3.79)

From this relation, further equations can be derived that are important in
fluid mechanics, e.g. for s� = constant:(

De
Dt

)
s

=
P

ρ2
Dρ
Dt

�

(
de�
dt

)
s�

P�
ρ2�

=
(

de�
dρ�

)
s�

. (3.80)

For ρ� = constant or υ� = constant:

T

(
Ds
Dt

)
ρ

=
(

De
Dt

)
ρ

� T� =
(

de�
ds�

)
ρ�

(3.81)

Further, for e� = constant:

T

(
Ds
Dt

)
e

= − P
ρ2

(
Dρ
Dt

)
e

� P� = T�

(
∂s�
∂υ�

)
e�

= −T�ρ2�
(
∂s�
∂ρ�

)
e�

(3.82)

Further significant relationships, known from the field of thermodynamics,
are needed in the following forms:
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• Specific heat capacity of a fluid at constant volume:

cv =
(
∂e�
∂T�

)
υ�

= T�

(
∂s�
∂T�

)
υ�

(3.83)

• Specific heat capacity of a fluid at constant pressure:

cp =
(
∂h�
∂T�

)
P�

= T�

(
∂s�
∂T�

)
P�

, (3.84)

where h� = e� + P�υ�.
• Isothermal compressibility coefficient:

α = − 1
υ�

(
∂υ�
∂P�

)
T�

=
1
ρ�

(
∂ρ�
∂P�

)
T�

(3.85)

• Thermal expansion coefficient:

β =
1
υ�

(
∂υ�
∂T�

)
P�

= − 1
ρ�

(
∂ρ�
∂T�

)
P�

(3.86)

When one takes into account the following relationship:

dρ� =
(
∂ρ�
∂T�

)
P�

dT� +
(
∂ρ�
∂P�

)
T�

dP� (3.87)

including (3.85) and (3.86), the following relation can be formulated for all
fluids:

1
ρ�

dρ� = αdP� − βdT� (3.88)

or, rearranged in terms of field variables:

1
ρ

Dρ
Dt

= α
DP

Dt
− βDT

Dt
. (3.89)

This relation allows the statement that all fluids of constant density, i.e.
fluids having the property ρ� = constant or (Dρ/Dt) = 0, can be designated
as incompressible. They react neither to pressure variations (α = 0) nor to
temperature variations (β = 0) with changes in volume or density.

For any fluid, the difference in the heat capacities is given by

(cp − cυ) =
T�
ρ�
β2

α
= −T�

ρ�
· β
(
∂P�
∂T�

)
ρ�

= −T�
(
∂P�
∂T�

)
ρ�

(
∂υ�
∂T�

)
P�

.

(3.90)
The above general relationships (3.85) and (3.86) can now be employed to
derive the special α and β equations below that hold for the two thermo-
dynamic ideal fluids that receive special attention in this book, namely the
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ideal gas and the ideal liquid. For an ideal gas:

P�
ρ�

= RT� and consequently
P

ρ
= RT (3.91)

and in addition
(

∂e�
∂υ�

)
T�

=
(

∂e�
∂P�

)
T�

= 0 and cv = constant, i.e. the internal

energy of an ideal gas is a pure function of the temperature. The isother-
mal compressibility coefficient α and the thermal expansion coefficient β are
given by:

α =
1
ρ�

(
∂ρ�
∂P�

)
T�

=
1
ρ�

1
RT�

=
1
P�

β = − 1
ρ�

(
∂ρ�
∂T�

)
P�

= − 1
ρ�

(
− P�
RT 2

�

)
=

1
T�

(3.92)

and therefore the difference in the specific heat capacities for an ideal gas is:

cp − cv =
T�
ρ�

1
T 2
�
P� =

P�
ρ�T�

= R. (3.93)

It can further be formulated for the change in density:

dρ�
ρ�

=
dP�
P�

− dT�
T�
. (3.94)

If we introduce the thermodynamically ideal liquid that distinguishes itself
by α = 0 and β = 0 , i.e. by:

dρ�
ρ�

= 0 (fluid of constant density) (3.95)

we obtain the difference in the heat capacities and it can be computed that:

cp − cv = −T�
ρ�
β

(
∂P�
∂T�

)
ρ�

with β = 0 � cp = cv. (3.96)

When one employs the Gibbs relationship, (3.73), dρ� = 1
dυ�

= 0, one
obtains: (

∂s�
∂e�

)
ρ�

=
1
T�
. (3.97)

Because s� �= f(p�), the pressure in an ideal liquid does not need to be taken
into account as a thermodynamic quantity. It exists as a mechanical quantity,
but for an ideal fluid it is not part of a thermodynamic state equation.

A further physical property of a fluid, which is of significance when deal-
ing with some of the flow problems presented in this book, is the velocity
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propagation of small pressure perturbations, the so-called sound velocity:

c2 =
(
∂P�
∂ρ�

)
s�

. (3.98)

This quantity is defined as isentropic pressure change with density change, the
entropy being maintained constant. Hence the propagation of small acoustic
perturbations takes place isentropically.

If one takes into account the following relationship for the cited sequence
of partial derivations:

1 =
(
∂T�
∂e�

)
ρ�

(
∂e�
∂s�

)
ρ�

(
∂s�
∂T�

)
ρ�

(3.99)

and if one considers:

T� =
(
∂e�
∂s�

)
ρ�

cv =
(
∂e�
∂T�

)
ρ�

(3.100)

then

cv = T�

(
∂s�
∂T�

)
ρ�

. (3.101)

Also taking into account the Maxwell relations:(
∂T�
∂ρ�

)
s�

=
1
ρ2�

(
∂P�
∂s�

)
ρ�

(3.102)(
∂ρ�
∂s�

)
T�

= −ρ2�
(
∂T�
∂P�

)
ρ�

(3.103)

it can be formulated that:(
∂s�
∂T�

)
ρ�

(
∂T�
∂ρ�

)
s�

(
∂ρ�
∂s�

)
T�

= −1 (3.104)

and one can also express the quantity cv as:

cv = −T�
(
∂ρ�
∂T�

)
s�

(
∂s�
∂ρ�

)
T�

. (3.105)

Similarly, it can be derived that:

cp = −T�
(
∂P�
∂T�

)
s�

(
∂s�
∂P�

)
T�

. (3.106)

For the relationship of the heat capacities, it can be formulated that:

κ =
cp
cv

=

(
∂P�
∂T�

)
s�

(
∂s�
∂P�

)
T�(

∂ρ�
∂T�

)
s�

(
∂s�
∂ρ�

)
T�

=
(
∂P�
∂ρ�

)
s�

(
∂ρ�
∂P�

)
T�

. (3.107)
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With the definition equation for the speed of sound and the isothermal
compressibility coefficient, one obtains

c2 = κ
(
∂P�
∂ρ�

)
T�

=
κ

ρ�α
. (3.108)

For an ideal gas with α = 1
P�

and considering the ideal gas equation yields

c =
√
κR�T�. (3.109)

For an ideal liquid with α→ 0

c→ ∞, (3.110)

i.e. for a fluid with constant density an infinitely large sound velocity results.
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Chapter 4

Basics of Fluid Kinematics

4.1 General Considerations

The previous chapters dealt with important basic knowledge and information
of mathematics and physics as applied in the field of fluid mechanics. This
knowledge is needed to describe fluid flows or derive and utilize the basic
equations of fluid mechanics in order to solve flow problems. In this respect,
it is important to know that fluid mechanics is primarily interested in the
velocity field Uj(xi, t), for given initial and boundary conditions, and in the
accompanying pressure field P (xi, t), i.e. fluid mechanics seeks to present and
describe flow processes in field variables. This presentation and description
result in the “Eulerian form” of considerations of fluid flows. This form is
best suited for the solution of flow problems and is thus mostly applied in
experimental, analytical and numerical fluid mechanics. Thanks to the intro-
duction of field quantities also for the thermodynamic properties of a fluid,
e.g. the pressure P (xi, t) and the temperature T (xi, t), the density ρ(xi, t)
and the internal energy e(xi, t), and for the molecular transport quantities,
e.g. the dynamic viscosity µ(xi, t), the heat conductivity λ(xi, t) and the
diffusion coefficients D(xi, t), a complete presentation of fluid mechanics is
possible. With the inclusion of diffusive transport quantities, i.e. the molec-
ular heat transport q̇i(xi, t), the molecular mass transport ṁi(xi, t) and the
molecular momentum transport τij(xi, t), it is possible to formulate the con-
servation laws for mass, momentum and energy for general application. The
basic equations of fluid mechanics can thus be formulated locally, as is shown
in Chap. 5, and hold for all flow problems in the same form. The differences in
the solutions of these equations result from the different initial and boundary
conditions that define the actual flow problems. These enter into the solutions
by the integration of the locally formulated basic fluid flow equations.

Experience shows that the derivation of the basic equations of fluid me-
chanics can be achieved in the easiest way by considering fluid elements, i.e.
by employing the “Lagrangian considerations” for the derivation of the flow
equations. The Lagrange approach starts from the assumption that a fluid

83



84 4 Basics of Fluid Kinematics

can be split up, at a fixed time t = 0, into “marked elements” with mass δm�,
pressure P�, temperature T�, density ρ�, internal energy e�, etc. An element
with the index 
 possesses also a velocity (Uj)�, which is defined as the La-
grangian velocity of the marked element. This velocity is always linked to
the fluid element marked with 
 and to all other quantities labelled with 
.
In fluid mechanics, these quantities are also designated as substantial prop-
erties and are best employed to derive the basic laws of fluid mechanics in
an easily comprehensible way. As the following considerations will show, the
basic knowledge of mechanics, gained in physics, can be transferred into fluid
mechanics in the simplest way when it is introduced by way of Lagrangian
considerations, yielding the basic equations for fluid flows, deriving them for
a fluid element.

4.2 Substantial Derivatives

If one defines α�, a substantial quantity such as P�, T�, ρ� and e�, the
derivations of equations in fluid mechanics often require the total differential
dα� to be employed:

dα� =
∂α

∂t
dt+

∂α

∂x1
(dx1)� +

∂α

∂x2
(dx2)� +

∂α

∂x3
(dx3)� (4.1)

where α(xi, t) is the field variable corresponding to α�.
The fluid element motion in space (Fig. 4.1) can be described as follows:

(dx1)� = (U1)�dt = U1dt
(dx2)� = (U2)�dt = U2dt
(dx3)� = (U3)�dt = U3dt

(4.2)

The replacement of the substantial velocities (Ui)� by the field quantities
Ui in (4.2) is permissible, as at the time t we assume (xi)� = xi and thus
(Ui)�(t) = Ui(xi, t). Therefore, the following relationship holds:

Fig. 4.1 Motion of a fluid element in
space

Fluid element 
at time t

Fluid element 
at time (t+dt)

x2

x1

x3
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dα� =
∂α

∂t
dt+

∂α

∂x1
U1dt+

∂α

∂x2
U2dt+

∂α

∂x3
U3dt (4.3)

Hence the total time derivative of α�(t) can be expressed as follows, if x� = xi

at time t:
dα�

dt
=
∂α

∂t
+ Ui

∂α

∂xi
=:

Dα
Dt

(4.4)

where (Dα/Dt) is the substantial derivative of the field quantity α(xi, t) with
respect to time and the operator:

D
Dt

:=
∂

∂t
+ Ui

∂

∂xi
(4.5)

indicates how the substantial derivative of a field quantity is to be calculated.
The operator D/Dt may only be applied to field quantities. If one applies
D/Dt to the velocity field Uj(xi, t), the substantial acceleration results, i.e.
the local acceleration which a fluid element experiences in a flow field at a
point xi at time t where Uj(xi, t) exists:

DUj

Dt
=
∂Uj

∂t
+ Ui

∂Uj

∂xi
(4.6)

For further details about this subject, see refs. 4.1 to 4.3. The substantial
derivative of the velocity plays an important role in deriving the momentum
equation of fluid mechanics in Euler variables. In the acceleration term in
Euler quantities, as shown by the subscript i in (4.6), four partial derivatives
occur per momentum direction j = 1, 2, 3, namely one time derivative and
three derivatives with respect to the space coordinates x1, x2 and x3. Hence
the spatial derivatives (∂Uj/∂xi), multiplied by Ui occur as three terms in
each of the three momentum equations representing the substantial accel-
eration. These nonlinear terms lead to mathematical difficulties when flow
problems are to be solved. They prevent the application of the superposi-
tion principle of solutions and result in solution bifurcations, i.e. in multiple
solutions for equal initial and boundary conditions, and also in correlated ve-
locity fluctuations, e.g. in turbulent flows. The treatment of these nonlinear
terms is given good attention in several parts of this book. It is important
that the significance of the non-linear terms is understood in detail as part
of the acceleration term of fluid elements. It is important to realize that not
only the temporal changes of the velocity field lead to accelerations of fluid
elements, but also the motion of a fluid element in a non-uniform velocity
field.

4.3 Motion of Fluid Elements

Flow kinematics is a vast field and a comprehensive treatment is beyond
the scope of this book, which is meant to give only an introduction into
various sub-domains of fluid mechanics, including fluid kinematics. To such
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an introduction belongs the treatment of path lines of fluid particles, i.e. the
computation of space curves along which marked fluid elements move in a
fluid. Further, the computation of streak lines will be treated, i.e. the “marked
path”. This is the line a tracer mark, in a fluid when it is added at a fixed
point in the flow. The computation of both path lines and of streak lines is
of importance for the entire field of experimental fluid mechanics, where it is
often tried to gain an insight into a particular flow by observations, or also
by quantitative measurements, of the temporal changes of positions of “flow
markers”. The basics for the evaluation of such measurements are stated in
the following chapter.

4.3.1 Path Lines of Fluid Elements

If one subdivides, at time t = 0, the entire domain of a flow field, that is
of interest for investigating, into defined fluid elements and if one defines
the space coordinates of the mass centers of gravity of each element in a
coordinate system at time t = 0, one achieves a marked fluid domain such
that the position vector 
 can be defined as follows:

{xi}�,0 = {xi(t = 0)}� (4.7)

Hence {xi}� at t = 0 is assigned to each marked fluid particle. Each of the
moving fluid particles, defined by the subdivision of the fluid in space, and
moving for −∞ < t < +∞ is defined as a fluid element, that keeps its identity
0 ≤ t <∞ i.e forever.

When kinematic considerations for each marked fluid element are carried
out, only the motions of the individual fluid elements are of interest. These
considerations result for each fluid element in a separate consideration and
result for each marked element in a characteristic path line. The computation
of these path lines will be explained in the following. In all kinematic consid-
erations it can be assumed that the flow field determining the fluid element
motions is known.

As the velocity of a fluid element is dependent only on time, it follows from
d{xi}�/dt = {Ui}�, that the path line of a fluid element 
 can be calculated
as follows:

{xi(t)}� = {xi}�,0 +
∫ t

0

{Ui(t′)}�dt′ (4.8)

The position vector {xi(t)}�, defined in this way for each instant in time t,
contains as a parameter the position vector of the particle defined at time
t = 0, i.e. 
, i.e. {x1}�,0. The identity {Ui}� = {Ui} can be introduced into
the considerations, i.e. at a certain moment in time t, the space change of a
marked fluid element can be expressed as:

d{xi}�

dt
= {Ui}� = {Ui} (4.9)
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The equals sign between the substantial velocity {Ui}� and {Ui}, existing
for a moment in time t, indicates that the identity {xi}� = {xi} which
exists at time t justifies equating the substantial velocity {Ui}� with the field
velocity {Ui}. For the time derivative of the components {xi}� of the particle
motion one can write:

d{xi}�

dt
= {Ui} or

d (xi)�
dt

= Ui (4.10)

These differential equations have to be solved, for i = 1, 2, 3, in order to
determine the path lines of fluid elements. The differential quotient in (4.10)
states that, as a solution of the above differential equations, the path line of
that fluid element 
 is obtained whose position was defined at the moment
in time t = 0 with {xi}�,0.

The general way of proceeding when defining path lines will be explained
and made clear by the example given below. The components of the flow
velocity field will be given as follows:

U1 = x1(1 + t), U2 = −x2 and U3 = −x3t (4.11)

This flow case was also treated by Currie in ref. [4.4]. If one inserts these
definitions of the components of the velocity field in the above differential
equations for the path lines of a fluid element, one obtains

d(x1)�
dt

= x1(1 + t)

d(x2)�
dt

= −x2 (4.12)

d(x3)�
dt

= −x3t

This set of differential equations can be solved and results in the following
solutions holding for the path lines of all fluid elements:

(x1(t))� = C1 exp
[
t+

t2

2

]
(x2(t))� = C2 exp[−t] (4.13)

(x3(t))� = C3 exp
[
− t

2

2

]
If one now considers a fluid element of interest which had the position coor-
dinates (1, 1, 1) at time t = 0, then from the initial conditions for each of the
equations in (4.3), the introduced integration constants Cα result. They can
be deduced to be

C1 = C2 = C3 = 1 (4.14)

i.e. for the case considered here all integration constants are equal. Of course,
other integration constants would have resulted from the choice of other
marked fluid elements.
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Fig. 4.2 Spatial path line of the considered fluid element and projections into planes
of coordinate system

For the path lines of the selected fluid element, the introduction of Cα into
(4.13) yields

x1(t)� = exp
[
t+

t2

2

]
x2(t)� = exp

[
− t
]

(4.15)

x3(t)� = exp
[
− t

2

2

]
This path line is presented in space in Fig. 4.2.

As said above, if one selects a particle whose position at time t = 0 showed
different position coordinates, the integration constantsC1, C2 and C3 change
accordingly and a different path line results. Thus the path line is an “indi-
vidual” property of a fluid element. It is determined by the flow field and the
position of the fluid element at time t = 0.

The general solution for the position coordinates (xi)�,0, which a fluid
element takes at time t = 0, is obtained when one inserts these coordinates
in the general solutions for the path line coordinates for the determination
of the integration constants Cα (α = 1, 2, 3). This results in

Cα = (xi)�,0 (4.16)

and thus in the general solutions for the path line coordinates:

(x1(t))� = (x1)�,0 exp
[
t+

t2

2

]
(x2(t))� = (x2)�,0 exp[−t] (4.17)

(x3(t))� = (x3)�,0 exp
[
− t

2

2

]
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These coordinates yield the space curves, with the time t as parameter, which
represent the path lines of fluid elements. Each fluid element has its own path
line.

For further explanation, the following two-dimensional velocity field is also
considered1:

U1 = x1, U2 = x2(1 + 2t) and U3 = 0. (4.18)

With these data, the following law of differential equations for the coordinates
of the path lines of fluid elements can be formulated:

d(x1)�
dt

= x1,
d(x2)�

dt
= x2(1 + 2t),

d(x3)�
dt

= 0 (4.19)

The solution of the third differential equation results in a constant that states
in which plane the two-dimensional flow considerations need to be carried out.
For the path line coordinates x1(t) and x2(t) it is computed from (4.10)

(x1)� = C1 exp[t], (x2)� = C2 exp[t+ t2], (x3)� = C3 (4.20)

When one computes the path line of the fluid element which at time t = 0
took the coordinates (1,1,0), the result is

(x1)� = exp[t], (x2)� = exp[t(t+ 1)], (x3)� = 0 (4.21)

When one resolves the equation obtained for (x1)� with respect to time, the
following can be deduced:

t = ln(x1)� (4.22)

Inserting this in the solution for (x2)� for two-dimensional path lines in the
plane x1−x2−, the following functional relation between (x1)� and (x2)�
results:

(x2)� = (x1)
(1+ln(x1)�)
� (4.23)

This path line is presented in Fig. 4.3.

Fig. 4.3 Path line of the fluid flow in
the plane x1−x2

1 Attention is drawn to the fact that this flow field is not source-free, thus it violates
the requirements of the continuity equation. This is, however, insignificant for the
purely kinematic considerations mentioned here.
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4.3.2 Streak Lines of Locally Injected Tracers

As mentioned before, it is usual in experimental fluid mechanics to gain
qualitative insight into a flow process by the injection, at a fixed location,
of a continuous fluid tracer. This leads to a marked “fluid thread” which is
carried with the flow and thus marks the course of the flow. This is called
a streak line. When the exact course of the flow is of interest, quantitative
evaluations of the location coordinates of streak lines of locally installed tracer
materials are required. These evaluations can, based on the derivations stated
below, be carried out with methods of flow kinematics.

A fluid particle marked with a tracer, e.g. an air particle or any other gas
particle marked with smoke, or a water or liquid particle marked with color,
which at time t is located at the position {xi} = {xi(t)}� must have passed
the injection point for the tracer at a moment in time (t− τ), in order to be
present as a marked particle at the point {xi}, i.e. the following relationship
holds2

{xi(t)}� = {xi(t− τ)}S (4.24)

Hence the streak line covered by marked fluid elements up to time t can
be computed as the path line of the fluid elements that fulfills the condi-
tion (4.24). A path line needs to be computed with the initial condition that
for t = τ the fluid element held the position of the location coordinates of the
injection point of the tracers. The streak line is thus composed of the sum
of the path lines of individual particles. For each individual marked particle
of a streak line a parameter τ is introduced, which for 0 ≤ τ ≤ t covers all
parts of a sweeping path. It is therefore important to vary the parameter τ
in the solution equations in order obtain the entire streak line.

The above short explanations will be made clearer by way of an example,
which is handled on the basis of the three-dimensional velocity field also used
above:

U1 = x1(1 + t), U2 = −x2 and U3 = −x3t (4.25)

This velocity field yields the set of differential equations for the motion of a
fluid element in space, i.e. the following differential equations:

d(x1)S

dt
= x1(1 + t),

d(x2)S

dt
= −x2,

d(x3)S

dt
= −x3t. (4.26)

As a solution one obtains the components (x1)S, (x2)S and (x3)S according
to (4.13):

(x1)S = C1 exp
[
t(1 +

t

2
)
]
, (x2)S = C2 exp[−t], (x3)S = C3 exp

[
− t

2

2

]
(4.27)

2 The subscript s signifies that the location coordinate of the sweeping path is meant.
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If one inserts the initial conditions, that (x1)S = (x1)t=τ = 1, (x2)S =
(x2)t=τ = 1, (x3)S = (x3)t=τ = 1 the injection condition for t = τ , i.e. that
the position (1, 1, 1) serves as an injection point of the tracer, one obtains:

C1 = exp
[
−τ(1 +

τ

2
)
]
, C2 = exp[τ ] and C3 = exp

[
τ2

2

]
(4.28)

Inserting in this result the solutions for (x1)S, (x2)S and (x3)S the equation
for the space coordinates for the streak line results for all times3:

(x1)S = exp
[
t

(
1 +

t

2

)
− τ
(
1 +

τ

2

)]
,

(x2)S = exp[−(t− τ)], (4.29)

(x3)S = exp
[
−1

2
(t2 − τ2)

]
.

When one wants to make the spatial course of a streak line visible at a
moment in time t, one has to insert the value of t in the above equation. In
this way one obtains the equation of a space curve, with τ as a parameter.
Here τ is determined by the period of time [τ1, τ2] of the tracer injection in
(1, 1, 1) with −∞ < τ1 < τ2 < t. For τ1 → −∞, τ2 = t and t = 0 one can
write:

(x1)S = exp
[
−τ
(
1 +

τ

2

)]
(x2)S = exp[τ ] −∞ < τ < 0 (4.30)

(x3)S = exp
[
τ2

2

]
The course of this space curve is shown in Fig. 4.4. It indicates the streak

line existing at the moment in time t = 0 (made visible from τ = −∞ to
τ = 0). In Fig. 4.4 the projections of the streak line into the main level of the
Cartesian coordinate system are also introduced.

When one compares the equation for the streak line fixed by the space
point (1, 1, 1) with the equations for the path line of a fluid element, stated
for the same flow field, one realizes that path lines and streak lines are not
identical for non-stationary flows. Only in the case of a stationary flow are
path lines and streak lines identical, as can be shown easily by the following
considerations.

Considering the stationary velocity field:

U1 = 2x1, U2 = −x2, U3 = −x3 (4.31)

3 As a space curve is involved here, the statement in x1, x2, x3-coordinates is appro-
priate. The definition xS indicates that the location coordinates of a streak line
are meant.
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(1,1,1)

x2

x1

x3

Point of injection

x1 -x3 - projection
of steak line

Streak line

x1 -x2 - projection
of steak line

x1 -x3 - projection
of steak line

Fig. 4.4 Streak line for the time t = 0, with fluid tracer injections between τ = −∞
and τ = 0 at the position (1, 1, 1)

one obtains for the path line of a fluid element the following differential
equations:

d(x1)�
dt

= 2x1,
d(x2)�

dt
= −x2,

d(x3)�
dt

= −x3 (4.32)

For t = 0 it will be assumed that (x1)� = (x2)� = (x3)� = 1 so that in the
solution

(x1)� = C1 exp[2t] , (x2)� = C2 exp[−t] , (x3)� = C3 exp[−t] (4.33)

holds and thus the path line for a marked tracer 
 can be expressed as follows:

(x1)� = exp[2t] , (x2)� = exp [−t] , (x3)� = exp[−t] (4.34)

with −∞ < t < ∞. For the computation of the streak lines the solution in
(4.27) can be employed again and C1, C2, and C3 can be computed such that
it is claimed that at time t = τ the following relationship holds:

(x1(t = τ))
S

= 1, (x2(t = τ))
S

= 1, (x3(t = τ))
S

= 1 (4.35)

Therefore, it can be deduced that

C1 = exp [−2τ ], C2 = exp [τ ] , C3 = exp [τ ] (4.36)

or as the coordinate for the streak line for each time t:

(x1)S = exp[2(t− τ)] , (x2)S = exp[−(t− τ)] , (x3)S = exp [−(t− τ)]
(4.37)

where the range of the values of τ is defined by the period of time of the
tracer injection. In the case that the tracer substance is injected at all
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Fig. 4.5 Streak line in the plane x1−x2 (the full drawn line corresponds to −∞ ≤
τ ≤ 0, broken line to 0 ≤ τ ≤ ∞)

times, i.e. −∞ < τ < ∞, (4.34) and (4.37) yield the same curve. When
the tracer injection is limited to certain time periods, one obtains as a visi-
ble streak line equation (4.37) only the corresponding part of the path line
equation (4.34), see Fig. 4.5.

When one repeats the above derivations for the two-dimensional velocity
field also stated in Sect. 4.3.1:

U1 = x1, U2 = x2(1 + 2t), U3 = 0 (4.38)

which leads to the differential equations (4.19):

d(x1)�
dt

= x�,
d(x2)�

dt
= x�(1 + 2t),

d(x3)�
dt

= 0 (4.39)

with the solution

(x1)� = C1 exp[t] , (x2)� = C2 exp[t(t+ 1)] , (x3)� = C3 (4.40)

On the other hand, when one demands that for the particle located at time
t at the point x1, x2, x3 passes the injection point (1, 1, 0) of a tracer at the
moment in time τ , the integration constants C1, C2 and C3 can be obtained
from the following conditional equations:

C1 exp[τ ] = 1, C2 exp[τ(τ + 1)] = 1, C3 = 0 (4.41)

These “constants” can now be inserted in (4.40) again, where C3 = 0 signifies
that the streak line lies in the plane x1−x2, i.e. in the plane x3 = 0, and is
described there by the following equations for the position coordinates (x1)S

and (x2)S:

(x1)S = exp[t− τ ], (x2)S = exp[t(t+ 1) − τ(τ + 1)] (4.42)
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For the moment expressed by time t = 0, the course of the streak line is:

(x1)S = exp[−τ ] and in the domain −∞ < τ <∞
(x2)S = exp[−τ(τ + 1)]

(4.43)

From the equation for (x1)S, it follows that:

τ = − ln(x1)S (4.44)

Inserted in the equation for (x2)s at time t = 0, the existing course of the
streak line made visible by the injection of tracer material in −∞ < τ < ∞
results for the plane x1−x2:

(x2)S = (x1)
(1−ln(x1)S)
S in the domain 0 < (x1)S <∞

(x2)s = [(x1)s](
1−ln(x1)s) (4.45)

4.4 Kinematic Quantities of Flow Fields

4.4.1 Stream Lines of a Velocity Field

The considerations in Sect. 4.3 for fluid elements, i.e. for the computation of
path lines and streak lines have to be separated strictly from considerations
for the determination of the stream lines of a flow field. Although for station-
ary flows stream lines, path lines and streak lines are identical, this does not
justify neglecting the fundamental differences, or even worse, assuming that
such differences do not exist. Only by a clear separation of the considerations
does it become generally comprehensible why under the steady-state condi-
tions of a flow field the above-stated identities of stream lines, path lines and
streak lines exist.

If one considers the non-stationary flow field Uj(xi, t), stream lines can
be defined for this field at any moment in time t, so that space curves run
parallel to the velocity vectors. The latter are defined as stream lines at each
point of the velocity field. In the case that one considers initially a two-
dimensional flow field, for which all velocity vectors lie parallel to the plane
x1−x2, then the above definition of the stream line leads to the following
defining equation:

d (x2)ψ

d (x1)ψ
=
U2

U1
for time t = constant (4.46)

This relationship means that the gradient of the stream line is equal to the
tangent of the angle formed by the velocity vector with the axis x1 at the
instant in time t; see Fig. 4.6. The index ψ in (4.46) indicates that the stated
coordinates x1−x2 describe the stream line ψ = const.
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Fig. 4.6 Sketch for clarifying the defining equation for the stream line of a flow field

When one considers the defining equation (4.46) for the stream line of a
two-dimensional flow field, it becomes understandable that, in general, for
each moment in time t, the ratio of U2 to U1 is a function of x1 and x2.
The resulting differential equation has to be solved in order to derive the
fluid equation for the stream line. This will be explained on the basis of an
example that starts from the following two-dimensional velocity field:

U1 = x1(1 + 2t), U2 = x2 U3 = 0 (4.47)

Introduced into the defining equation (4.46) for the stream line, one obtains

d(x2)ψ

d(x1)ψ
=
U2

U1
=

x2

x1(1 + 2t)
(4.48)

or, rewritten in the following form:

d(x2)ψ

x2
=

d(x1)ψ

x1

1
1 + 2t

(4.49)

By integration, the following relationship for (x1)ψ and (x2)ψ results:

ln(x2)ψ = C +
1

1 + 2t
ln(x1)ψ (4.50)

Considering the stream line, passing at time t = 0 the point (1, 1, 0), C = 0
results and thus one can describe the stream line:

(x2)ψ = [(x1)ψ ](
1

1+2t ) (4.51)

In the case that a three-dimensional velocity field is considered, the above
derivations, which were carried out for the projection of the stream lines into
the planes x1−x2, can be performed in an analogous way. For the projections
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into the planes x1−x3 and x2−x3, relations analogous to the above used
defining equation result:

d(x3)ψ

d(x1)ψ
=
U3

U1
(4.52)

d(x3)ψ

d(x2)ψ
=
U3

U2
(4.53)

Hence the defining equations of the stream lines of a velocity field can be
stated as follows:

d(x1)ψ

U1
=

d(x2)ψ

U2
,

d(x1)ψ

U1
=

d(x3)ψ

U3
,

d(x2)ψ

U2
=

d(x3)ψ

U3
(4.54)

or rewritten as:

d(x1)ψ

U1
=

d(x2)ψ

U2
=

d(x3)ψ

U3
(4.55)

These differential equations for the stream line of a velocity field hold at each
moment in time t. Their solution leads to a relationship (x3)ψ = ψ(x1, x2),
which describe a curve in space, the three-dimensional stream line.

Probably the simplest way to solve the set of differential equations (4.55)
is to seek a parameter solution (x1)ψ = x1(s), where s is a parameter that
varies along a streamline. The value of s at a certain reference point of the
flow line is equal to zero. From there on it adopts increasing values along the
flow line and in the flow direction. For all values −∞ < s <∞ a presentation
of the entire stream line is obtained.

By introducing s, one obtains:

d(xj)ψ

ds
= Uj(xi, t) for t = constant and j = s (4.56)

a relationship which represents, for each coordinate (xj)ψ, a differential equa-
tion and for j = 1, 2, 3 describing the stream lines in space for t = constant.
If the flow line passing through the space point [x0]j at time t is sought, s = 0
results from integrating the three differential equations, when xj(t) = xj,0,
then s = 0 is set. From this results the entire stream-line field as:

(xj)ψ = ψj(x0,j , t, s) (4.57)

In order to demonstrate the above approached to obtaining the three-
dimensional stream-line fields, the following velocity field is considered again:

U1 = x1(1 + t), U2 = −x2, U3 = −x3t (4.58)

A set of three differential equations for the stream lines of this velocity field
results:
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d(x1)ψ

ds
= x1(1 + t),

d(x2)ψ

ds
= −x2,

d(x3)ψ

ds
= −x3t (4.59)

Integration of these equations yields

(x1)ψ = C1 exp[(1 + t)s]
(x2)ψ = C2 exp[−s] (4.60)
(x3)ψ = C3 exp[−txs]

Searching for the stream line that passes through the point (1, 1, 1), one can
choose this point as reference point and set s = 0 for (xi)ψ = 1. From this
one obtains the integration constants:

C1 = C2 = C3 = 1 (4.61)

Hence the following results for (xi)ψ are obtained:

(x1)ψ = exp[(1 + t)s]
(x2)ψ = exp[−s] (4.62)
(x3)ψ = exp[−ts]

For time t = 0, a stream line path results:

(x1)ψ = exp[s], (x2)ψ = exp[−s], (x3)ψ = 1 (4.63)

Hence one obtains for t = 0 a stream line passing in the plane x3 = 1, that
is described by

(x2)ψ =
1

(x1)ψ
(4.64)

The entire stream line field is obtained if one introduces for s = 0 arbi-
trary position coordinates (x0,i) so that for any the position coordinates the
following solution holds:

(x1)ψ = (x1)ψ,0 exp[(1 + t)s]
(x2)ψ = (x2)ψ,0 exp[−s] (4.65)
(x3)ψ = (x3)ψ,0 exp[−txs]

This set of equations indicates at each time t, the stream lines passing through
the point {xj}ψ,0, see Fig. 4.7. There the parameter s is zero and for all other
points of the considered stream line a value different to zero exists. This
clear assignment is thus occurring which guarantees that stream lines never
intersect, as otherwise two velocities would exist simultaneously at this point
of intersection. This is precluded because of the existence of a well defined
velocity fields (except for stagnation points and singularities).

In the preceding section, it was emphasized that, in general, stream lines,
path lines and streak lines are not identical and the computed examples
have confirmed this. For stationary flows all three lines are identical and are
characteristic for each considered flow, i.e.
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Fig. 4.7 Comparison of stream lines, path lines and streak lines

• For stationary flow fields marked fluid elements move along stream lines,
i.e. stream lines are equal to their corresponding path lines

• For stationary flow fields stream lines can be made visible by locally
injected tracer particles, i.e. stream lines are equal to streak lines

As already said, for non-stationary flows the corresponding stream lines, path
lines and streak lines are different space curves, see Fig. 4.8.

4.4.2 Stream Function and Stream Lines
of Two-Dimensional Flow Fields

For two-dimensional incompressible velocity fields {Uj} = {U1, U2, 0}, the
stream function can be introduced as a field quantity. It is defined as fol-
lows, i.e the velocity components are thus defined as gradients of the stream
function:

U1 =
∂ψ

∂x2
and U2 = − ∂ψ

∂x1
(4.66)

Hence the stream function can be computed from the velocity field by the
following line integral:

ψ − ψ0 =

x2∫
x2,0

U1dx2 for x1 = constant (4.67)
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Fig. 4.8 Explanation of the defining equations of stream function

or also

ψ − ψ0 = −
x1∫

x1,0

U2dx1 for x2 = constant (4.68)

The above equations show that the difference that exists between the val-
ues of two stream functions is a measure of the volume flow rate that flows
between two lines, each line corresponding to a constant stream function
value. The depth of the considered area is taken as 1 perpendicular to the
plane x1−x2. Accordingly the integrations along the line in (4.67) and (4.68)
drawn in Fig. 4.8 and stated in the equations for x1 = constant and for
x2 = constant, yield identical volume-flow values, when the upper integra-
tion limits x1 and x2 are chosen such that the differences ψ − ψ0 are equally
large in both integrals. For a fluid with ρ = constant, i.e. for a thermodynam-
ically ideal fluid, the identity of the integrals represents a mass-conservation
relationship. When one carries out the integrations stated in (4.67) and (4.68)
along a line ψ = constant i.e. for dψ = 0, one obtains

U1d(x2)ψ = U2d(x1)ψ (4.69)

or rewritten

d(x1)ψ

U1
=

d(x2)ψ

U2
(4.70)

From (4.70) it can be said by comparison with the definition equation for
the stream line stated in (4.46) that the stream function defined for two-
dimensional flow fields yields stream lines ψ for ψ = constant.

Whereas for the kinematic considerations, e.g. in Chap. 2, arbitrary math-
ematical relationships for the velocity field could be used, the introduction of
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the stream function requires a limitation of the considerations to those veloc-
ity fields which have to fulfill physical conditions. Considerations in Chap. 5
show that physically existing flow fields have to fulfill the mass-conservation
law, which can be formulated for ideal fluids (ρ = constant) as follows:

∂Ui

∂xi
=
∂U1

∂x1
+
∂U2

∂x2
+
∂U3

∂x3
= 0 (4.71)

The stream function fulfills the mass-conservation law for two-dimensional
flows automatically and can easily be checked by inserting the definition of
ψ = in equation (4.66) and applying the Schwarz rule of differentiation.

When a prescribed velocity field does not fulfill the mass-conservation
law, the integrations to be carried out according to (4.67) and (4.68) result
in solutions that contradict one another. This can be shown for the two-
dimensional flow field shown in Sect. 4.3.1 which does not fulfill the mass-
conservation law (i.e. the continuity equation):

U1 = x1, U2 = x2(1 + 2t), U3 = 0 (4.72)

When one carries out the integration stated in (4.67), one obtains from the
defining equations for the stream function, i.e. from (4.66) it results that:

∂ψ

∂x2
= x1 and

∂ψ

∂x1
= −x2(1 + 2t) (4.73)

By integration of these equations, one obtains for the stream function:

ψ = x1x2 + F (x1, t), ψ = −x1x2(1 + 2t) +G(x2, t) (4.74)

or, expressed otherwise,

x1x2 + F (x1, t) �= −x1x2(1 + 2t) +G(x2, t) (4.75a)

or

2(t+ 1)x1x2 �= G(x2, t) − F (x1, t) (4.75b)

A comparison of the results of both the integrations in equation (4.73), yields
equation (4.74), which shows the contradiction resulting for the stream func-
tion ψ. The time dependence for the x1x2 part in the right-hand side of
equation (4.75a) is missing on the left-hand side. This results from the fact
that the velocity field given in (4.72), although mathematically clearly de-
fined, cannot exist physically; the velocity field in (4.72) does not fulfill the
requirements determined by the mass-conservation law for ρ = constant.
When one considers, on the other hand, the velocity field:

U1 = exp[x1(1 + t)], U2 = −x2(1 + t) exp[x1(1 + t)], U3 = 0 (4.76)
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for which equation (4.71) is fulfilled, since the following holds:

∂U1

∂x1
= (1 + t) exp[x1(1 + t)] and

∂U2

∂x2
= −(1 + t) exp[x1(1 + t)] (4.77)

one obtains from the defining equations for the stream function equation
(4.66):

∂ψ

∂x2
= exp[x1(1 + t)] and

∂ψ

∂x1
= x2(1 + t) exp[x1(1 + t)] (4.78)

the following solution for the stream function ψ:

ψ = x2 exp[x1(1 + t)] + C (4.79)

If one knows the value of the stream function for x1,0 and x2,0, then the
following holds:

ψ0 = x2,0 exp[x1,0(1 + t)] + C (4.80)

or, rewritten with ψ0,

ψ − ψ0 = x2 exp[x1(1 + t)] − x2,0 exp[x1,0(1 + t)] (4.81)

The result obtained can also be computed for x1 = x1,0 = constant from
(4.66):

ψ − ψ0 = (x2−x2,0) exp[x1,0(1 + t)] for x1 = x1,0 (4.82)

This expresses the distribution ψ(x2) at the location x1,0. When one wants
to determine the stream line in the x1−x2 plane, one has to consider ψ as a
parameter in equation (4.81) and derive the relationship (x1−x2)ψ , for ψ as
a parameter from equation (4.81). Here ψ0, x1,0 and x2,0 are constants that
can be chosen freely.

4.4.3 Divergence of a Flow Field

In this section, mathematical operators will be explained that are known from
vector analysis and that can be applied to flow fields. Their derivations will
be repeated but also considered in some detail with respect to their physical
meanings.

The divergence of the velocity field U can be expressed as:

∂Ui

∂xi
=
∂U1

∂x1
+
∂U2

∂x2
+
∂U3

∂x3
(4.83)

The above-defined divergence of a velocity field is a scalar field which, in the
presence of a steady velocity field, is defined at each point in space and can
be computed from the velocity field if the latter can be assumed to be known.
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Fig. 4.9 Fluid element for explaining the physical meaning of ∂Ui

∂xi
= divergence of

velocity field

When one wants to perceive the physical meaning of the operator ∂
∂xi

applied to the velocity field Ui, the consideration of a single fluid volume, as
indicated in Fig. 4.9, is recommended.

The edge lengths ∆xi of the considered fluid element were assumed to be
very small, so that a velocity vector can be assigned to each surface such
that this vector indicates with which velocity the considered surface of a
fluid element moves. Accordingly, the surface AEHD moves in the direction
x1 with the velocity component of the velocity field present at point Q, i.e.
with U1(xi) = U1(x1, x2, x3). In comparison, the surface BFGC moves with
the velocity component U1(xi +∆x1, x2, x3), present at point P . This velocity
component can be expressed by a Taylor series expansion as follows:

U1(x1 +∆x1, x2, x3) = U1(x1)+
(
∂U1

∂x1

)
∆x1 +

1
2

(
∂2U1

∂x2
1

)
∆x2

1 + . . . (4.84)

The difference velocity between the surfaces AEHD and BFGC can thus be
computed as

∆U1(x1, ∆x1) =
(
∂U1

∂x1

)
∆x1 +

1
2

(
∂2U1

∂x2
1

)
∆x2

1 + . . . (4.85)

As a consequence of this velocity difference, a volume increase or a volume
decrease results, depending on the sign of the derivative of a considered ve-
locity field. This value can be stated as follows, to a first approximation, by
multiplication with the surface (∆x2∆x3), neglecting all the terms of second
and higher order in ∆x1:

d
dt

(δV1)� = ∆U1(xi)(∆x2∆x3) =
∂U1

∂x1
∆x1(∆x2∆x3) (4.86)

On the basis of simultaneously existing gradients of the velocity field in the
directions x2 and x3, additional volume changes occur per unit time, which
again can be stated to a first approximation as follows:
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d
dt

(δV2)� =
∂U2

∂x2
∆x2(∆x1∆x3) and

d
dt

(δV3)� =
∂U3

∂x3
∆x3(∆x1∆x2)

(4.87)

so that the entire volume change that can be expected in a flow field for a
fluid element per unit time can be expressed as follows:

d
dt

(δV )� =
3∑

α=1

d
dt

(δVα)� =
∂Ui

∂xi
(δV�) (4.88)

or can be rewritten as

∂Ui

∂xi
=

1
δV�

d
dt

(δV�) (4.89)

This relationship emphasizes the physical significance of the divergence of a
velocity field.4 The divergence of a velocity field states how large the volume
change of a fluid element is that occurs per unit time and unit volume at a
certain position in a flow field. At such locations of the flow field where the
divergence of a velocity vector is equal to zero, there is no temporal volume
change locally for a fluid element moving in the velocity field. When the
divergence in sub-domains of the velocity field is computed to be negative, a
fluid element experiences volume decreases in these domains.

When one considers the physical significance of the divergence of a velocity
field for a stationary volume element of a fluid, inflows and outflows occur
through the surfaces of the considered volume because of the existing velocity
field. The volume flowing in per unit time can be stated as

V̇inflow = Ui∆xj∆xk i �= j, k (4.90)

For the volume flowing out, one can compute

V̇outflow =
[
Ui +

∂Ui

∂xi
∆xi

]
∆xj∆xk i �= j, k (4.91)

The difference of inflows and outflows, considering ∆V = ∆x1, ∆x2, ∆x3

can be computed as

∆V̇ = V̇inflow − V̇outflow = −∂Ui

∂xi
∆V (4.92)

This relation makes it clear that the presence of a positive divergence of the
velocity field at a point in space is equal to a “volume source”, as more “fluid
volume” is flowing out of the considered control volume than is flowing in.
When, however, the divergence of a velocity field is negative, a sink is present,
as then the inflow in the “volume” has to be larger than the outflow.

4 Equation (4.88) makes it clear that the summation for i = 1 − 3 is stated in a
sufficiently comprehensible way by the subscript in ∂Ui/∂xi.
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4.5 Translation, Deformation and Rotation
of Fluid Elements

Analogous to considerations in solid-state mechanics, the deformations of
fluid elements that occur due to existing velocity gradients are of interest
in some fluid mechanics considerations. When one includes the translatory
motion and the rotation of a fluid element in the fluid deformations, the entire
local state of motion and deformation can be stated by four “geometrically
easily separable” states of motion. The pure translatory motion sketched in
Fig. 4.10 leads to a change in position of the fluid element marked 
 to an
extent that the following holds:

d(xj)� = (Uj)�dt = Ujdt (4.93)

This relationship expresses that the locally existing velocity field is responsi-
ble for the translatory motion of a fluid element, i.e. fluid elements move at
each moment in time with the locally existing velocity vector.

When one superimposes a fluid-element rotation upon the pure translatory
motions sketched in Fig. 4.10, the image shown in Fig. 4.11 results.

In order to state or compute the rotation of a fluid element, one has to
describe both the angles ∆Θ1 and d∆Θ2:

∆Θ1 =

⎡⎢⎢⎣tan

∂U2

∂x1
(∆x1)�∆t

(∆x1)�

⎤⎥⎥⎦ =
∂U2

∂x1
∆t (4.94)

∆Θ2 =

⎡⎢⎢⎣tan

∂U1

∂x2
(∆x2)�∆t

(∆x2)�

⎤⎥⎥⎦ = −∂U1

∂x2
∆t (4.95)

As the rotational speed of the fluid element, the positive change of angle of
the diagonal of the element occurring per unit time is defined as:

Fig. 4.10 Pure translatory motion; con-
siderations of the projection into the
x1−x2 planes 1

1

∆

∆

∆

∆
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Fig. 4.11 Translation and rotation of
a fluid element in a flow field, due to
velocity gradients

x2 = xj

x1 = xi

∂U1

∂x2

(∆ x2 ) ∆tℜ  

∂U2

∂ x1
(∆ x1 ) ∆tℜ  

=  
Pur rotation

Θ̇R
21 =

(
dΘR

dt

)
=

1
2

(
dΘ1

dt
+

dΘ2

dt

)
=

1
2

(
∂U2

∂x1
− ∂U1

∂x2

)
(4.96)

Generally, the components of the rotational velocity vector {ωk} for the lo-
cally occurring rotation of a fluid element per unit time can be stated as
follows:

rot(U ) = εijk
∂Ui

∂xj
= 2ωk = 2Θ̇R

ij =
∂Uj

∂xi
− ∂Ui

∂xj
(4.97)

The quantity ωk represents the double rotational speed around the axis of
the fluid element, with the rotation occurring in the positive direction. The
second diagonal of the considered fluid element in Fig. 4.11 rotates with the
same angular speed. {ωk} is an important kinematic quantity of the velocity
field. It is defined mathematically as vorticity and is computed as half the
rotational speed of the velocity field. Thus ωk(xi, t) is a field quantity of its
own, for which we can easily show that ωk(xi, t) = 0 when a flow field is free of
rotation. When ωk(xi, t) �= 0, flows subjected to rotations are present, whose
rotational properties can best be studied when expressing the conservation
laws for mass, impulse and energy in terms of ωk.

When one considers next the angular deformation of a fluid element shown
in Fig. 4.12, one can see that for the angle deformation the following holds:

Θ̇D
21 =

1
2

(
dΘ1

dt
− dΘ2

dt

)
deformation angular speed

Thus for the angular deformation in the plane x1−x2 the following expression
holds:

Θ̇D
21 =

1
2

(
∂U2

∂x1
+
∂U1

∂x2

)
(4.98)

or, considering the angular deformation only,

Θ̇D
ji =

1
2

(
∂Uj

∂xi
+
∂Ui

∂xj

)
i �= j (4.99)
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Fig. 4.12 Translation and angle de-
formation of a fluid element in a flow
field due to velocity gradients

Fig. 4.13 Elongation of a volume element due
to velocity gradients in the flow field

Analogous to considerations in solid-state mechanics, the symmetry of the
deformation tensor holds:

Θ̇D
ij = Θ̇D

ji (4.100)

Finally, one has to consider the dilatation of a fluid element which experiences
strain rates due to the velocity gradient existing in a flow field, as is shown
in Fig. 4.13. The linear deformation in length that occurs due to an existing
velocity gradient in the direction x1 can be stated as follows:

dl1
dt

= lim
∆t→0

(
∂U1

∂x1

)
(∆x1)�∆t
∆t

=
(
∂U1

∂x1

)
(∆x1)� (4.101)

From this, the linear deformation that occurs per unit length and unit time
is computed:

1
(∆x1)

d(l1)
dt

=
∂U1

∂x1
(4.102)
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On multiplying the linear deformation by the area perpendicular to the x1

axis, the corresponding volume change results:

d(δV1)�
dt

=
(
∂U1

∂x1

)
(δV1)� (4.103)

The same considerations hold for the x2 and x3 axes also. Summed over all
three axis directions, one obtains for the entire volume change per unit time

1
(δV )�

d(δV )�
dt

=
∂Ui

∂xi
(4.104)

i.e. the divergence of the velocity field indicates how the volume of a fluid
element changes with time at a point in space. This was already shown in
Sect. 4.3.

It is customary in the literature to combine elongations of fluid elements
and their angular deformations with a deformation tensor in such a way that

εij =
1
2

(
∂Uj

∂xi
+
∂Ui

∂xj

)
(4.105)

so that for the deformation tensor

{εij} =

⎧⎨⎩ε11 ε12 ε13ε21 ε22 ε23
ε31 ε32 ε33

⎫⎬⎭ and εij = εji (4.106)

From the above considerations, the following relationship results:

∂Uj

∂xi
=

1
2

(
∂Uj

∂xi
+
∂Ui

∂xj

)
+

1
2

(
∂Uj

∂xi
− ∂Ui

∂xj

)
(4.107)

i.e. the following kinematic relationship exists:

∂Uj

∂xi
= εij +

dΘR
ij

dt
= εij +

1
2
εijk

∂Uj

∂xi
(4.108)

Hence the gradients that existing in velocity fields are linked to deformations
and rotations of fluid elements, the gradients yields corresponding rates of
deformation and rotational angular velocities. This has to be taken into con-
sideration when employing the analogy between solid-state mechanics and
fluid mechanics. It is necessary to transfer considerations of deformations of
elastic bodies, carried out in solid-state mechanics, to rates of deformation
of fluid elements occurring in fluid mechanics. The latter occur due to gradi-
ents existing in velocity fields and the former due to existing internal surface
forces.
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4.6 Relative Motions

Considerations of the velocities at two points separated by (δxi) result in the
following relationship if one applies Taylor series expansion:

Uj(xi + δxi, t) = Uj(xi, t) +
∂Uj

∂xi
δxi + · · · (4.109)

or the relationship can be rewritten as follows:

Uj(xi + δxi, t) = Uj(xi, t)︸ ︷︷ ︸
Translation

+

Rotation︷ ︸︸ ︷
1
2

(
∂Uj

∂xi
− ∂Ui

∂xj

)
δxi +

1
2

(
∂Uj

∂xi
+
∂Ui

∂xj

)
δxi︸ ︷︷ ︸

Deformation

(4.110)

For further details, see Aris [4.5]. Considering the various terms in this rela-
tionship makes it clear that the velocity at the point adjacent to xi, i.e. at
the point xi + δxi, is composed of the translation by velocity at point P (xi),
a rotational velocity around this point and a deformation action in this point
(Fig. 4.14). The components for j = 1, 2, 3 read

j = 1 : U1(xi + δxi, t) =

[
U1 +

∂U1

∂x1
δx1 +

1
2

(
∂U1

∂x2
− ∂U2

∂x1

)
δx2

+
1
2

(
∂U1

∂x3
− ∂U3

∂x1

)
δx3 +

1
2

(
∂U1

∂x2
+
∂U2

∂x1

)
δx2 +

1
2

(
∂U1

∂x3
+
∂U3

∂x1

)
δx3

]
(4.111)

Fig. 4.14 Relative motions in a fluid element
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j = 2 : U2(xi + δxi, t) =

[
U2 +

∂U2

∂x2
δx2 +

1
2

(
∂U2

∂x3
− ∂U3

∂x2

)
δx3

+
1
2

(
∂U2

∂x1
− ∂U1

∂x2

)
δx1 +

1
2

(
∂U2

∂x3
+
∂U3

∂x2

)
δx3 +

1
2

(
∂U2

∂x1
+
∂U1

∂x2

)
δx1

]
(4.112)

j = 3 : U3(xi + δxi, t) =

[
U3 +

∂U3

∂x3
δx3 +

1
2

(
∂U3

∂x1
− ∂U1

∂x3

)
δx1

+
1
2

(
∂U3

∂x2
− ∂U2

∂x3

)
δx2 +

1
2

(
∂U3

∂x1
+
∂U1

∂x3

)
δx1 +

1
2

(
∂U3

∂x1
+
∂U2

∂x3

)
δx2

]
(4.113)

With the above equations, most general motions of fluid elements can now
be described, i.e. the motion at any point of a fluid element can be stated as
the sum of the translation of a reference point, a rotational motion around
this point and an additional deformation. The motion is due to translation
and rotation and a superimposed deformation.

The different components of the equations (4.111) to (4.113) can be
obtained by regrouping as follows:

j = 1 : U1(xi) +

[
∂U1

∂x1
δx1 +

1
2

(
∂U1

∂x2
+
∂U2

∂x1

)
δx2 +

1
2

(
∂U1

∂x3
+
∂U3

∂x1

)
δx3

]

+
{

1
2

(
∂U1

∂x2
− ∂U2

∂x1

)
δx2 +

1
2

(
∂U1

∂x3
− ∂U3

∂x1

)
δx3

}
(4.114)

j = 2 : U2(x2) +

[
∂U2

∂x2
δx2 +

1
2

(
∂U2

∂x1
+
∂U1

∂x2

)
δx1 +

1
2

(
∂U2

∂x3
+
∂U3

∂x2

)
δx3

]

+

{
1
2

(
∂U2

∂x1
− ∂U1

∂x2

)
δx1 +

1
2

(
∂U2

∂x3
− ∂U3

∂x2

)
δx3

}
(4.115)

j = 3 : U3(x3) +

[
∂U3

∂x3
δx3 +

1
2

(
∂U3

∂x2
+
∂U2

∂x3

)
δx2 +

1
2

(
∂U3

∂x1
+
∂U1

∂x3

)
δx1

]

+

{
1
2

(
∂U3

∂x2
− ∂U2

∂x3

)
δx2 +

1
2

(
∂U3

∂x1
− ∂U1

∂x3

)
δx1

}
(4.116)

The expressions in front of the square brackets represent the translational
velocity, which is given by the following velocity vector:

Uj (xi, t) = {U1, U2, U3}T (4.117)
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In the square brackets the product of the deformation tensor:

Dij(xi, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂U1

∂x1

1
2

(
∂U1

∂x2
+
∂U2

∂x1

)
1
2

(
∂U1

∂x3
+
∂U3

∂x1

)
1
2

(
∂U2

∂x1
+
∂U1

∂x2

)
∂U2

∂x2

1
2

(
∂U2

∂x3
+
∂U3

∂x2

)
1
2

(
∂U3

∂x1
+
∂U1

∂x3

)
1
2

(
∂U3

∂x2
+
∂U2

∂x3

)
∂U3

∂x3

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.118)

and of the “distance vector” from point xi to (xi + δxi):

{δxi} = {δx1, δx2, δx3} (4.119)

is shown, and in the curly brackets the vector product of

{δxi} = {δx1, δx2, δx3} (4.120)

and

2ωk =
{(
∂U3

∂x2
− ∂U2

∂x3

)
;
(
∂U1

∂x3
− ∂U3

∂x1

)
;
(
∂U2

∂x1
− ∂U1

∂x2

)}
(4.121)

is shown. Hence the entire motion can be written as

Uj(x+ dxi, t) = Uj(xi, t) +Dij(xi, t)δxi + εijkωk(xi, t)δxi (4.122)

This relationship again expresses the fact that the total motion of a point
P ′(xi + dxi) can be understood as the translational motion of the point P (xi),

Dilatation

Translation
and deformation

Angle deformation

Rotation

Fig. 4.15 Illustration of the translational motion, the deformation and the rotation
of a fluid element
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superimposed by deformation motions and rotational motions around P (xi)
(Fig. 4.14).

The different parts, i.e the translation, deformation and rotation, can be
taken from the sequence of a fluid element which is shown in Fig. 4.15. For the
two-dimensional case with U1 = u and U2 = v and with x1 = x and x2 = y,
the considerations for the different subjects are shown once more in Fig. 4.16.
In Fig. 4.17 a fluid element is shown under translation and pure rotation
once again. Fig. 4.18, on the other hand, shows a fluid element carrying out
a translation motion in the presence of a pure deformation, i.e. without the
presence of a rotation. The last manner of motion requires

∂U2

∂x1
=
∂U1

∂x2
(4.123)

so that ω3 = 0.

Fig. 4.16 Translation, deformation and rotation of a fluid element due to the
velocity components u and v

Fig. 4.17 Translation motion of a fluid ele-
ment with rotation
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Fig. 4.18 Translation motion of a fluid ele-
ment with deformation
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Chapter 5

Basic Equations of Fluid Mechanics

5.1 General Considerations

Fluid mechanics considerations are applied in many fields, especially in en-
gineering. Below a list is provided which clearly indicates the far-reaching
applications of fluid-mechanics knowledge and their importance in various
fields of engineering. Whereas it was usual in the past to carry out special
fluid mechanics considerations for each of the areas listed below, today one
strives increasingly at the development and introduction of generalized ap-
proaches that are applicable without restrictions to all of these fields. This
makes it necessary to derive the basic equations of fluid mechanics so gener-
ally that they fulfill the requirements for the broadest applicability in areas
of science and engineering, i.e. in those areas indicated in the list below. The
objective of the derivations in this section is to formulate the conservation
laws for mass, momentum, energy, chemical species, etc., in such a way that
they can be applied to all the flow problems that occur in the following areas:

• Heat exchanger, cooling and drying technology
• Reaction technology and reactor layout
• Aerodynamics of vehicles and aeroplanes
• Semiconductor-crystal production, thin-film technology, vapor-phase

deposition processes
• Layout and optimization of pumps, valves and nozzles
• Use of flow equipment parts such as pipes and junctions
• Development of measuring instruments and production of sensors
• Ventilation, heating and air-conditioning techniques, layout and tests,

laboratory vents
• Problem solutions for roof ventilation and flows around buildings
• Production of electronic components, micro-systems analysis engineering
• Layout of stirrer systems, propellers and turbines
• Sub-domains of biomedicine and medical engineering
• Layout of baking ovens, melting furnaces and other combustion units

113
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Total mass of 
considered fluid

Fig. 5.1 Division of a fluid into � fluid elements for mass conservation considerations

• Development of engines, catalyzers and exhaust systems
• Combustion and explosion processes, energy generation, environmental

engineering
• Sprays, atomizing and coating technologies

Concerning the formulation of the basic equations of fluid mechanics, it is easy
to formulate the conservation equations for mass, momentum, energy and
chemical species for a fluid element, see Fig. 5.1, i.e. to derive the “Lagrange
form” of the equations. In this way, the derivations can be represented in
an easily comprehensible way and it is possible to build up the derivations
upon the basic knowledge of physics. Derivations of the basic equations in
the “Lagrange form” are usually followed by transformation considerations
whose aim is to derive local formulations of the conservation equations and
to introduce field quantities into the mathematical representations, i.e. the
“Euler form” of the conservation equations is sought for solutions of fluid
flow problems. This requires one to express temporal changes of substantial
quantities as temporal changes of field quantities, which makes it necessary,
partly, to repeat in this section the considerations in Chap. 2 but to explain
them in a somewhat different and even deeper way.

The considerations to be carried in the sections below start out with the
assumption that, at a certain point in time t = 0, the mass of a fluid is
subdivided into fluid elements of the mass δm�, i.e.

M =
∑
�
δm�.

Each fluid element δm� is chosen to be large enough to make the assumption
δm� = constant possible, with sufficient precision, in spite of the molecular
structure of the fluid. The assumption is also made to allow one to assign ar-
bitrary thermodynamic and fluid mechanics properties α�(x�(t), t) = α�(t)
to a fluid element to yield α� = constant, with satisfactory precision for fluid
mechanics considerations.

The term α�(x�, t), with x� = x�(t), expresses the fact that the ther-
modynamic or fluid mechanics property, which is assigned to the considered
fluid element, represents a substantial quantity that is only a function of time.
This property of the element changes with time at a fixed position in space,
but changes also due to the motion of the fluid element. For the description
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of these changes, it is important that one follows the mass δm�, i.e. one takes
x�(t) and also introduces it into consideration as known. It is assumed that
the motion of sub-parts of δm� is the same for all parts of the considered
fluid element. The fluid element is also assumed to consist at all times of the
same fluid molecules, i.e. it is assumed that the considered fluid element does
not split up during the considerations of its motion. This basically means
that the fluid belonging to a considered fluid element, at time t = 0, remains
also in the fluid element at all later moments in time. This signifies that it is
not possible for two different fluid elements to take the same point in space
at an arbitrary time: x�(t) �= xL(t) for 
 �= L.

When a fluid element 
 is at the position xi at time t, i.e. xi = (x�(t))i at
time t, then the substantial thermodynamic property, or any fluid mechanic
property, α�(t) is equal to the field quantity α at the point xi at time t:

α�(t) = α(xi, t) when (x�(t))i = xi at time t. (5.1)

For the temporal change of a quantity α�(t) (see also Chaps. 2 and 3), one
can write:

dα�
dt

=
∂α

∂t
+
∂α

∂xi

(
dxi

dt

)
�
. (5.2)

With (dxi/dt)� = (Ui)� = Ui:

dα�
dt

=
Dα
Dt

=
∂α

∂t
+ Ui

∂α

∂xi
. (5.3)

The operator Dt = ∂/∂t+Ui∂/∂xi applied to the field quantity α(xi, t) is of-
ten defined as the substantial derivatve and will be applied in the subsequent
derivations. The significance of individual terms are:

∂/∂t = (∂/∂t)xi = change with time at a fixed location,
partial differentiation with respect to time

d/dt = total change with time (for a fluid element),
total differentiation with respect to time

e.g. for a fluid when α� = ρ� = constant, i.e. the density is constant, then:

dρ�
dt

=
Dρ
Dt

= 0 or
∂ρ

∂t
= −Ui

∂ρ

∂xi
. (5.4)

When at a certain point in space ∂/∂t(α)xi = 0 indicates stationary condi-
tions, the field property α(xi, t) is stationary and thus has no time depen-
dence. On the other hand, when d(α�)/dt = Dα/Dt = 0, then α�(t) =
α(xi, t) = constant, i.e. the field variable is independent of space and time.

5.2 Mass Conservation (Continuity Equation)

For fluid mechanics considerations, a “closed fluid system” can always be
found, i.e. a system whose total mass M = constant. This is easily seen
for a fluid mass, which is stored in a container. For all other fluid flow
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D

M = const M = const M = constmein

.

maus
.

Aquarium with
constant mass 
of water 

Blower with air
inlet and outlet

Flow around
an aeroplane wing

Fig. 5.2 Different fluid flow cases within control volumes for which M = constant
can be set

considerations, as shown in Fig. 5.2, control volumes can always be defined
within which the system’s total mass can be stated as constant. If necessary
these control volumes can comprise the whole earth to reach M = constant.

When one subdivides the fluid mass M within the considered system into

 fluid elements with sub-masses δm�, then for the temporal change of the
total mass one obtains:

0 =
dM
dt

=
d
dt

∑
�

(δm�) =
∑
�

d
dt

(δm�). (5.5)

This equation expresses that the total mass conservation in the control
volume of the fluid system is preserved when each individual fluid ele-
ment conserves its mass δm�. With this the balance equation for the mass
conservation can be stated as follows, in Lagrange notation:

d(δm�)
dt

= 0. (5.6a)

The basic molecular structure of matter and thermal motion connected with
it indicates that to fulfill the above relationship absolutely, it is necessary
that δm� → 0 is not taken into consideration. The derivations in this book
therefore require that all the chosen δm� are considered as finite but nev-
ertheless as very small. In Fig. 5.3 a fluid element with position coordinates
(xi)� is shown.1

The determination of the required size of δm� needs considerations that
are given in Chap. 3, where it is shown what dimensions a volume of an ideal
gas has to have in order to define “sufficiently clearly”, e.g. the density of the
gas within the volume. The considerations carried out there would have to be
repeated here in order to ensure δm� ≈ constant, in spite of the molecular
structure of the fluid. With the choice of δm� = constant, the conditions are
set to carry out continuum mechanics considerations for the motion of fluids,
although the fluids show a molecular structure.

1 See also the considerations in Sect. 3.2.
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Fig. 5.3 δm� = constant, condition for the mass
of a fluid element treated at (xi)� = xi

It is often claimed that molecular motions are not considered when con-
tinuum assumptions are taken into fluid mechanics applications. Strictly, this
means that the properties of the molecules, especially their transport prop-
erties, can only be introduced into continuum fluid mechanics considerations
in an integral form.

Because of the above explanations, the mass conservation can be stated in
Lagrange form as follows:

dM
dt

= 0 and
dδm�

dt
= 0. (5.6b)

The above considerations confirm that it is very simple to formulate the
mass-conservation law in Lagrange variables. Working practically with the
law of mass conservation, however, requires its representation in field quan-
tities, i.e. the Lagrange form of the mass-conservation law has to be brought
into its corresponding Euler form.

Transformed into Euler variables (i.e. into field quantities), one obtains
from (5.6a) for the mass conservation:

0 =
d
dt

(δm�) =
d
dt

(ρ�δV�) = ρ�
d (δV�)

dt︸ ︷︷ ︸
I

+ δV�
d (ρ�)

dt︸ ︷︷ ︸
II

. (5.7)

For Term I in (5.7), using ρ� = ρ and x�(t)i = xi at time t, yields
according to (4.89):

ρ�
d (δV�)

dt
= ρδV�

∂Ui

∂xi
. (5.8)

For Term II one obtains:

δV�
d (ρ�)

dt
= δV�

(
∂ρ

∂t
+ Ui

∂ρ

∂xi

)
. (5.9)

With the above derivations, the substantial derivative of the corresponding
field quantity d (ρ�) /dt could be applied for ρ, i.e. Dρ/Dt, in order to achieve
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the transformation of the substantial quantity ρ�(t) to the field quantity
ρ(xi, t). The same procedure is not possible with d (δV�) /dt since there are
no volume fields, i.e. a point has no volume. From Sect. 4.4.3, (4.89), it is
known that the temporal change of a fluid element is equal to the divergence
of the velocity field, however:

ρ�
d (δV�)

dt
= δV�

∂Ui

∂xi
. (5.10)

When one inserts (5.8) and (5.9) into (5.7) one obtains:

δV�

[
∂ρ

∂t
+ ρ
∂Ui

∂xi
+ Ui

∂ρ

∂xi

]
= 0. (5.11)

As δV� �= 0, it follows for the continuity equation in field variables and in
the most general form

∂ρ

∂t
+ ρ

∂Ui

∂xi
+ Ui

∂ρ

∂xi
=
∂ρ

∂t
+
∂(ρUi)
∂xi

= 0. (5.12)

The equation can also be written as follows:

∂ρ

∂t
+ Ui

∂ρ

∂xi
+ ρ
∂Ui

∂xi
=

Dρ
Dt

+ ρ
∂Ui

∂xi
= 0. (5.13)

The right hand side of the continuity equation is not very useful for the
solution of flow problems. However, it is very well suited for presentation of
the basic equations of fluid mechanics in different ways, in order to bring
out special physical facts. As an example, the special form of the continuity
equation for ρ� = constant, i.e. Dρ/Dt = 0, from (5.13) results:

∂Ui

∂xi
= 0. (5.14)

i.e. the divergence of the velocity field is zero for fields of constant fluid
density. Since the divergence of the velocity field is zero, the change in volume
is also zero from (5.10), this can also be obtained from equations (3.90) and
(3.93):

1
ρ

Dρ
Dt

=
1
ρ

(
∂ρ

∂T

)
P︸ ︷︷ ︸

−β

DT
Dt

+
1
ρ

(
∂ρ

∂P

)
T︸ ︷︷ ︸

+α

DP
Dt

= −∂Ui

∂xi
. (5.15)

This relationship expresses for an ideal liquid, ideal in the thermodynamic
sense, ρ = constant, i.e. if the fluid density is constant, that the fluid has to
be thermodynamically incompressible.

1
ρ

Dρ
Dt

= −∂Ui

∂xi
= 0 = α

DP
Dt

− βDT
Dt

with α = 0 and β = 0, (5.16)
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where α and β are:

α = −1
v

(
∂v

∂P

)
T

=
1
ρ

(
∂ρ

∂P

)
T

= isothermal compressibility
coefficient,

β =
1
v

(
∂v

∂T

)
P

= −1
ρ

(
∂ρ

∂T

)
P

= thermal expansion coefficient.

Thus the continuity equation holds in one of the following two forms:

∂ρ

∂t
+
∂(ρUi)
∂xi

= 0 (compressible flows), (5.17)

∂Ui

∂xi
= 0 (incompressible flows). (5.18)

For further details of these derivations, see refs. [5.1] to [5.5].

5.3 Newton’s Second Law (Momentum Equation)

The derivations of the momentum equations of fluid mechanics are usually
given for the three coordinate directions j = 1, 2, 3. They express New-
ton’s second law and are easiest formulated in their Lagrange forms. For a
fluid element, it is stated that the time derivative of the momentum in the
j direction is equal to the sum of the external forces acting in this direction
on the fluid element, plus the molecular-dependent input of momentum per
unit time. The forces can be stated as mass forces (δMj)� caused by grav-
itation forces and electromagnetic forces2, as well as surface forces caused
by pressure, (δOj)�. After the addition of a temporal change of momentum
introduced by the molecular movement input, the equation of motion can be
formulated as follows:

d(δJj)�
dt

=
∑

(δMj)�︸ ︷︷ ︸
mass forces

+
∑

(δOj)�︸ ︷︷ ︸
surface forces

+
(

d
dt

(δJM )j

)
�︸ ︷︷ ︸

molecular-dependent
momentum input

. (5.19)

Here, as shown in Fig. 5.4, (δJj)� = δm�(Uj)�.
Fluid elements act like rigid bodies. They do not change their state of

motion, i.e. their momentum, if no mass or surfaces forces act on the fluid
elements and no molecular-dependent momentum input is present. However,
when forces are present, or when molecular momentum input occurs, a con-
sidered fluid element changes its momentum in accordance with (5.19). This
equation represents the Lagrange form of the equations of momentum (j = 1,
2, 3) of fluid mechanics.

2 The latter are not taken into consideration in the following.
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Fig. 5.4 The derivation of momentum equations
are based on force considerations for a fluid element

In order to derive the Euler form of the equation of momentum, it is
necessary to express each of the terms contained in (5.19) in field quantities.
The left-hand side of (5.19) can be written as:

d(δJj)�
dt

=
d
dt

[δm�(Uj)�] = δm�
d ((Uj)�)

dt
+ (Uj)�

d ((δm)�)
dt

. (5.20)

Because of the mass conservation for a fluid element expressed in (5.6a), the
last term in (5.20) is equal to zero and hence one obtains:

d(δJj)�
dt

= δm�
d ((Uj)�)

dt
= δm�

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
. (5.21)

This relationship can be written as follows: δm� = ρ�δV� = ρδV� applying
ρ� = ρ when (x�(t))i = xi at time t:

d(δJj)�
dt

= ρδV�

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
. (5.22)

In accordance with the above derivations, it is possible to state the left-
hand side of the equation of momentum (5.19) in field quantities as shown in
(5.22). For the right-hand side the considerations below can be carried out.
The mass forces:∑

�
(δMj)� = mass forces acting on a fluid element

acting on a fluid element can be expressed by means of the accelera-
tion {gj} = {g1, g2, g3} acting per unit mass (Fig. 5.5). The mass force
acting on a fluid element in the j direction can therefore be stated as
follows:

(δMj)� = (δm)� gj = ρδV�gj . (5.23)

Even when only gravitational acceleration is present, depending on the
orientation of the coordinate system, several components of gj may exist and
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Fig. 5.5 Mass forces acting on a fluid element in
the directions j = 1, 2, 3

Fig. 5.6 Considerations concerning sur-
face force on a fluid element in the
directions j = 1, 2, 3

have to be taken into account:∑
�

(δOj)� = surface forces on a fluid element.

Fluids, as they are treated in this book, i.e. liquids (e.g. water) and gases (e.g.
air), are characterized by the way they apply surface forces on a fluid element
(Fig. 5.6). The only surface forces that can exist are those imposed by the
molecular pressure. The pressure force acting on a fluid element is calculated
as the difference in the forces acting on the areas that stand vertically on the
considered axes j = 1, 2, 3. For the pressure force, we can write:

dKP = −P dF .

The surface force resulting for the motion of the fluid element in the j
direction is the sum of the forces acting on the j planes of the element:

(δOj)� = −P (xj)(−|δFj |)� − P (xj + δxj)(|δFj |)�. (5.24a)

If one applies a Taylor series expansion for P (xi + δxj), one obtains:

(δOj)� = +P (xj)(|δFj |)� − [P (xj) +
∂P

∂xj
δxj + · · · ](|δFj |)�. (5.24b)
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Fig. 5.7 Considerations on the
molecular-dependent momentum
input in the j = 1, 2, 3 directions

− −

−

From this equation, one obtains for the surface force on a fluid element,
neglecting all second and higher order terms of differentiations (Fig. 5.6),

(δOj)� = − ∂P
∂xj

δV�. (5.25)

(
d
dt

(δJM )j

)
�

= molecular-dependent momentum input per unit time
into a fluid element.

When one defines the momentum j transported by molecules in the direc-
tion i per unit time and unit area as τij , the input influencing the momentum
j of a fluid element is calculated as an input at the position xi and as an
output at the position (xi +∆xi), e.g. see Fig. 5.7:(

d(δJM )j

dt

)
j

= −τij(xi)(−|δFj |)� − τij(xi +∆xi)(|δFi|)�. (5.26a)

By a Taylor series expansion one obtains for the term τij(xi + δxi)(
d(δJM )j

dt

)
�

= +τij(xi)(|δFi|)� − [τij(xi) +
∂τij
∂xi

δxi · · · ](δFi)�. (5.26b)

This results in: (
d(δJM )j

dt

)
�

= −∂τij
∂xi

δV�. (5.27)

When one inserts all these derived relationships (5.22), (5.23), (5.25) and
(5.27) into (5.19) and after division by δV�, the equation of momentum of
fluid mechanics in the j direction results, i.e. for j = 1, 2, 3, three equations
can be given:

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= ρgj − ∂P

∂xj
− ∂τij
∂xi

. (5.28)

As in this equation the volume of the fluid element δV�, appearing in all
terms, was eliminated, the equations of momentum are given by (5.28) per
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unit volume. From the general equation (5.28), the momentum equations in
the three coordinate directions result:

ρ

[
∂U1

∂t
+ U1

∂U1

∂x1
+ U2

∂U1

∂x2
+ U3

∂U1

∂x3

]
= − ∂P

∂x1
− ∂τ11
∂x1

− ∂τ21
∂x2

− ∂τ31
∂x3

+ ρg1

ρ

[
∂U2

∂t
+ U1

∂U2

∂x1
+ U2

∂U2

∂x2
+ U3

∂U2

∂x3

]
= − ∂P

∂x2
− ∂τ12
∂x1

− ∂τ22
∂x2

− ∂τ32
∂x3

+ ρg2

ρ

[
∂U3

∂t
+ U1

∂U3

∂x1
+ U2

∂U3

∂x2
+ U3

∂U3

∂x3

]
= − ∂P

∂x3
− ∂τ13
∂x1

− ∂τ23
∂x2

− ∂τ33
∂x3

+ ρg3

(5.29)

For fluids in general, τij �= 0, but for ideal fluids, i.e. ideal in terms of
fluid mechanics, the molecular momentum transport turns out to be τij = 0.
Hence the following forms of the momentum equations can be stated:

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj (viscous fluids), (5.30)

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
+ ρgj (ideal fluids). (5.31)

For further details of these derivations see refs. [5.1] to [5.5].

5.4 The Navier–Stokes Equations

In equation (5.30), the molecular-dependent momentum input τij was intro-
duced as an input as per unit surface area and unit time. It is an unknown
term, i.e. it was introduced formally into the derivations without any details
being considered as to how it can be formulated for various fluids. When one
takes into consideration the symmetry of the term τij , i.e. |τij | = |τji|, one
finds that there are the following unknowns in the above equations:

U1, U2, U3, P, τ11, τ12, τ13, τ22, τ23, τ33 = 10 unknowns.

For these unknowns there are only four partial differential equations avail-
able to provide solutions to fluid flow problems, the continuity equation and
three equations of momentum, i.e. an incomplete system of equations exists
that does not permit the solution of flow problems. It is therefore neces-
sary to state additional equations, i.e. to express the unknown terms τij in
a physically well-founded manner, as functions of ∂Uj/∂xi. This is done be-
low for ideal gases, as their properties are usually well known to engineering
students, from considerations in physics. From the derivations given below,
relationships for τij = f (∂Uj/∂xi) result, that are valid also for non-ideal
gases, and in fact for a whole class of fluids whose molecular momentum
transport properties can be classified as “Newtonian”. Thus the derived
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Fig. 5.8 Momentum input due to flow
through the plane δFi

relationships for τij are valid far beyond ideal gases and represent in this
book the basic equations to describe the molecular-dependent momentum
transport in Newtonian fluids.

If one considers a fluid element, as shown in Fig. 5.8, with side walls par-
allel to the planes of a Cartesian coordinate system, one can see that the j
momentum transported in the direction i by a velocity field Ui can be stated
as follows:

İij = ρÛiÛjδFi. (5.32)

Assuming that the instantaneous velocity components are composed of the
velocity components of the fluid flow Ui and the molecular velocity component
ui, one can write:

ρÛiÛj = ρ(Ui + ui)(Uj + uj)
= ρ(UiUj + uiUj + ujUi + uiuj)

. (5.33)

By time averaging, one obtains for the time-averaged total momentum
change of the fluid element:

ρÛiÛj = ρ[UiUj︸ ︷︷ ︸
I

+ uiUj︸︷︷︸
II

+ ujUi︸︷︷︸
III

+ uiuj︸︷︷︸
IV

]. (5.34)

The total momentum input consists of four terms that can be interpreted
physically as follows:

Term I: j Momentum input in the i direction due to the velocity field Ui

of the fluid.
Term II: j Momentum input in the i direction due to the molecular motion

in the i direction, i.e. due to ui.
Term III: j Momentum input in the i direction due to the molecular motion

uj in the j direction.
Term IV: For i �= j the uiuj = 0, as the molecular motion in the three

coordinate directions are not correlated. For i = j the molecular
caused pressure treated in Chap. 3 results.



5.4 The Navier–Stokes Equations 125

Fig. 5.9 Momentum input in the xi direction caused by the molecular motion with
mean velocity ui

The molecular motion is characterized by the presence of the molecular
free path lengths with finite dimensions, i.e. l �= 0, and for this reason the time
averages uiUj and ujUi are unequal to zero. In order to calculate the different
contributions to the τij terms making up the total molecular momentum
transport in ideal gases, the considerations below are recommended. For the
number of molecules moving in the direction xi and passing the plane A in
Fig. 5.9 in the time ∆t, when δx1 = δx2 = δx3 = a we can be write:

zi =
1
6
na2ui∆t, (5.35)

where n is equal to the number of molecules per unit volume, a2 is the mag-
nitude of the area δFi of the considered volume, oriented in the i direction,
and ui is the mean velocity of the molecules in the i direction. Connected
with zi, a mass transport through δFi can be stated as follows:

mzi =
1
6

(mn)︸ ︷︷ ︸
ρ

a2ui∆t, (5.36)

where m represents the mass of a molecule and thus mn = ρ can be set.
If one considers now two parallel auxiliary planes in Fig. 5.9 located at

a distances ±l above and below a main plane at δFi and if one introduces
for the derivations the mean flow field in the auxiliary planes to have the
velocity components Uj(xi + l) and Uj(xi − l), the considerations below can
be performed. In the positive and negative i directions, the j-directional
momentum input and output can be stated as follows:

i+ij = +zimUj(xi − l) momentum input over the area |δFi| = A = a2

i−ij = −zimUj(xi + l) momentum output over the area |δFi| = A = a2
.

(5.37)
Therefore, for the net input of momentum the sum of the molecular-

dependent input and output results:

∆iij = zim[Uj(xi − l) − Uj(xi + l)], (5.38)
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or, with zi inserted from (5.35):

∆iij =
1
6

(mn)︸ ︷︷ ︸
ρ

a2ui∆t[Uj(xi − l) − Uj(xi + l)]. (5.39)

The net momentum input per unit area and unit time can be obtained by
Taylor series expansion of the velocity terms around xi. This can be expressed
as given below by neglecting the higher order terms:

τ IIij =
1
a2
∆iij
∆t

=
1
6
ρui

[
Uj(xi) − ∂Uj

∂xi
l − Uj(xi) − ∂Uj

∂xi
l

]
, (5.40)

so that for Term II in (5.34) can be expressed as follows:

τ IIij = − 1
3
ρuil︸ ︷︷ ︸
µ

∂Uj

∂xi
= −µ∂Uj

∂xi
. (5.41)

Analogous to this, considerations can be carried out on τ IIIij , where for zj
it can be written

zj =
1
6
na2uj∆t. (5.42)

In accordance with Term III in (5.34), a j-momentum input results, see
Fig. 5.10, which can be expressed as follows:

i+ij = zjmUi(xj − l)
i−ij = −zjmUi(xj + l)

, (5.43)

or

∆iij = zjm[Ui(xj − l) − Ui(xj + l)]. (5.44)

Analogous to the derivations in (5.38) to (5.41):

τ IIIij = − 1
3
(ρuj l)︸ ︷︷ ︸
µ

∂Ui

∂xj
= −µ∂Ui

∂xj
. (5.45)

Fig. 5.10 Momentum input in the xj direction with molecular velocity uj and fluid
velocity Ui
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For reasons of symmetry τij = τji, so that ui = uj has to hold, i.e. the mean
velocity field of the molecules is isotropic (no preferred velocity direction), so
that the total j-momentum transport can be written as:

τij = τ IIij + τ IIIij = −µ
[
∂Uj

∂xi
+
∂Ui

∂xj

]
. (5.46)

This is the total momentum input τij for ρ = constant, i.e. when
d/dt(δV�) = 0, the thermodynamic state equation for a thermodynamically
ideal liquid is assumed to be valid. For ρ �= constant, an additional term
needs to be added to τij which is caused by the volume increase of a fluid
element. For the volume increase of a fluid element at point xi and time t
(see Chap. 4), one can write:

d(δV�)
dt

= (δV�)
∂Ui

∂xi
. (5.47)

For the corresponding surface increase the following relationship holds:

d(δF�)
dt

=
2
3
(δF�)

∂Ui

∂xi
. (5.48)

With this surface increase in time an increased momentum input results:

τij = +µ
2
3
δij
∂Uk

∂xk
. (5.49)

This term has to be added to obtain the general τij -relationship for the total
momentum input per unit time and unit area for ideal gases. It can be stated
as follows:

τij = −µ
(
∂Uj

∂xi
+
∂Ui

∂xj

)
+

2
3
δijµ

∂Uk

∂xk
. (5.50)

If one considers this equation for τij , the basic equations of fluid mechanics
can be written as follows:

Continuity equation:
∂ρ

∂t
+
∂(ρUi)
∂xi

= 0. (5.51)

Momentum equations (j = 1, 2, 3):

ρ

[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj . (5.52)

For Newtonian fluids:

τij = −µ
[
∂Uj

∂xi
+
∂Ui

∂xj

]
+

2
3
δijµ

∂Uk

∂xk
. (5.53)
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With τij expressed by equation (5.53) there exist equations for the six un-
known terms τij in the momentum equations. The four differential equations,
one continuity equation and three momentum equations, contain five remain-
ing unknowns P, ρ, Uj , so that an incomplete system of partial differential
equations still exists. With the aid of the thermal energy equation and the
thermodynamic state equation, valid for the considered fluid, it is possible to
obtain a complete system of partial differential equations that permits gen-
eral solutions for flow problems, when initial and boundary conditions are
present.

For ρ=constant and µ=constant, using ∂2Ui

∂xi∂xj
= ∂2Ui

∂xj∂xi
= ∂

∂xj

(
∂Ui

∂xi

)
=0,

the following set of equations can be stated:
Continuity equation:

∂Ui

∂xi
= 0. (5.54)

Navier–Stokes equations (j = 1, 2, 3) (momentum equations):

ρ

[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
+ µ

∂2Uj

∂x2
i

+ ρgj .

This system of equations comprises four equations for the four unknowns
P , U1, U2, U3. In principle, it can be solved for all flow problems to
be investigated if suitable initial and boundary conditions are given. For
thermodynamically ideal liquids, i.e. ρ = constant, a complete system of
partial differential equations exists through the continuity equation and the
momentum equations, which can be used for solutions of flow problems.

5.5 Mechanical Energy Equation

In many fields in which fluid mechanics considerations are carried out, the
mechanical energy equation is employed, which can, however, be derived from
the momentum equation. For this purpose, one multiplies equation (5.52) by
Uj:

ρ

[
Uj
∂Uj

∂t
+ UiUj

∂Uj

∂xi

]
= −Uj

∂P

∂xj
− Uj

∂τij
∂xi

+ Ujρgj . (5.55)

This equation can be rearranged to yield

ρ

[
∂

∂t

(
1
2
U2

j

)
+ Ui

∂

∂xi

(
1
2
U2

j

)]
= −∂(PUj)

∂xj
+ P

∂Uj

∂xj
− ∂(τijUj)

∂xi

+ τij
∂Uj

∂xi
+ ρgjUj . (5.56)

This relationship expresses how the kinetic energy of a fluid element changes
at a location due to energy production and dissipation terms that occur on the
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right-hand side of (5.56). In order to discuss the significance of the different
terms, the following modification of the last term is carried out, introducing
a potential G from which the gravitational acceleration gj is derived:

gj = − ∂G
∂xj

� ρgjUj = −ρ ∂G
∂xj

Uj. (5.57)

Thus, employing ∂G
∂t = 0, one can write:

ρgjUj = −ρ
[
∂G

∂t
+ Uj

∂G

∂xj

]
= −ρDG

Dt
. (5.58)

The combined equation (5.56) and (5.58) yield for the temporal change of
the kinetic and potential energy of a fluid element

ρ
D
Dt

(
1
2
U2

j +G
)

= − ∂(PUj)
∂xj︸ ︷︷ ︸

I

+P
∂Uj

∂xj︸ ︷︷ ︸
II

− ∂(τijUj)
∂xi︸ ︷︷ ︸
III

+ τij
∂Uj

∂xi︸ ︷︷ ︸
IV

, (5.59)

where the terms I–IV have the following physical significance:

Term I: This term describes the difference between input and output of
pressure energy. This refers to the considerations of ideal gases, in
the framework of which it was shown that P = 1

3ρū
2, i.e. the pres-

sure expresses an energy per unit volume. Therefore, the following
can be said:

PUj(xi) = input of pressure energy per unit area

−(PUj(xi +∆xi)) = output of pressure energy per unit area.

Taylor series expansion and forming the difference yields for the
energy per unit volume:

PUj(xi) −
[
PUj(xi) +

(∂PUj)
∂xj

+ · · ·
]
� − (∂PUj)

∂xj
. (5.60)

Term II: This term requires the following considerations:

with
∂Uj

∂xj
=

1
δV�

d(δV�)
dt

, (5.61)

the term P
∂Uj

∂xj
=
P

δV�
d(δV�)

dt
(5.62)



130 5 Basic Equations of Fluid Mechanics

proves to be the work done during expansion, expressed per unit
volume.

Term III: When taking into consideration that τij represents the molecular-
dependent momentum transport per unit area and unit time into
a fluid element:

−∂(τijUj)
∂xj

represents the difference between the molecular
input and output of the kinetic energy of the fluid.

Term IV: The term τij
∂Uj

∂xi
describes the dissipation of mechanical energy

into heat.

The above derivations show that the mechanical energy equation can
be deduced from the j momentum equation by multiplication by Uj. It is
therefore not an independent equation and hence should not be employed
along with the momentum equations for the solution of fluid mechanics
problems.

A special form of the mechanical energy equation is the Bernoulli equa-
tion, which can be derived from the general form of the mechanical energy
equation:

ρ
D
Dt

(
1
2
U2

j +G
)

= − ∂P
∂xj

Uj − ∂τij
∂xi

Uj. (5.63)

For τij = 0 and ∂P
∂t = 0, and also ρ = constant,

ρ
D
Dt

[
1
2
U2

j +G
]

= −ρ
⎡⎣∂
(

P
ρ

)
∂t

+ Uj

∂
(

P
ρ

)
∂xj

⎤⎦ =
DP

ρ

Dt
, (5.64)

ρ
D
Dt

[
1
2
U2

j +
P

ρ
+G

]
= 0 �

1
2
U2

j +
P

ρ
+G = constant. (5.65)

This form of the mechanical energy equation can be employed in many
engineering applications to solve flow problems in an engineering manner.

5.6 Thermal Energy Equation

The derivations in Sect. 5.5 showed that the mechanical energy equation is
derivable from the momentum equation, so that both equations have to be
considered as not being independent of each other. From the derivations the
following form of the energy equation was obtained:

ρ

[
D
Dt

(
1
2
U2

j

)]
= −∂(PUj)

∂xj
+ P

∂Uj

∂xj
− ∂(τijUj)

∂xi
+ τij

∂Uj

∂xi
+ ρgjUj . (5.66)
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When one sets up the energy equation with the total energy balance, the
considerations stated below result, which start from the entire internal, the
kinetic and the potential energies of a fluid element and consider its evolution
as a function of time:

d
dt

(
δm�

[
1
2
U2

j + e+G
]

︸ ︷︷ ︸
· · ·

)
= δm�

d
dt

[. . . ] + [. . . ]
dδm�

dt

For the temporal change of the total energy of a fluid element one obtains
with δm� = constant, i.e. d

dt(δm�) = 0:

d
dt

(
δm�

[
1
2
U2

j + e+G
])

= δm�
D
Dt

(
1
2
U2

j + e+G
)

This is the total energy change with time of a fluid element which has to
be considered concerning the derivation of the total energy equation.

The change in the total energy of the fluid element can emanate from
the heat conduction, which yields the following inputs minus the output of
heat:

− ∂q̇i
∂xi
δV� = energy input into δV� per unit time by heat conduction

An energy input can also originate from the convective transport of
pressure energy:

− ∂

∂xj
(PUj)δV� = input of pressure energy into δV� through convection

Also, the input of kinetic energy due to molecular transport into the fluid
element has to be considered:

− ∂

∂xi
(τijUj)δV� = molecular-dependent input of kinetic energy

The following total energy balance thus results:

ρδV�
D
Dt

[
1
2
U2

j + e+G
]

= − ∂q̇i
∂xi
δV� − ∂(PUj)

∂xj
δV� − ∂ (τijUj)

∂xi
δV�. (5.67)

As δV� �= 0, it follows that

ρ
D
Dt

[
e+
(

1
2
U2

j +G
)]

= − ∂q̇i
∂xi

− ∂(PUj)
∂xj

− ∂ (τijUj)
∂xi

. (5.68)
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When one deducts from this the derived mechanical parts of the energy, i.e.
by subtracting from equation (5.68) the equation for the mechanical energy,
given here once again:

ρ
D
Dt

[
1
2
U2

j +G
]

= −∂(PUj)
∂xj

+ P
∂Uj

∂xj
− ∂ (τijUj)

∂xi
+ τij

∂Uj

∂xi
, (5.69)

one obtains the thermal energy equation:

ρ
De

Dt︸ ︷︷ ︸
I

= − ∂q̇i
∂xi︸ ︷︷ ︸
II

−P ∂Uj

∂xj︸ ︷︷ ︸
III

− τij ∂Uj

∂xi︸ ︷︷ ︸
IV

. (5.70)

Term I: Temporal change of the internal energy of a fluid per unit
volume.

Term II: Heat supply per unit time and unit area.
Term III: Expansion work done per unit volume and unit time.
Term IV: Irreversible transfer of mechanical energy into heat, per unit

volume and unit time.
Considering the energy equation of technical thermodynamics:

dq� = de� + P�dv� − dldiss, (5.71)

and the sign convention usually applied in technical thermodynamics, that
the energy to be dissipated by a fluid element has to be regarded as negative,
one obtains

de�
dt

=
De
Dt

;
dq�
dt

= −1
ρ

∂q̇i
∂xi

; P�
dv�
dt

=
1
ρ
P
∂Uj

∂xj

and
dldiss

dt
=

1
ρ
τij
∂Uj

∂xi
(5.72)

The above derivations thus lead to the form of energy equation used in
thermodynamics but through the above derivation the energy per unit time
results.

Different forms of the thermal energy equation can be derived from equa-
tion (5.70), I is advantageous for most fluid mechanics computations, to
substitute the internal energy (e) by pressure and temperature relationships,
the following relations being employed in most text books.

Generally, it can be written for thermodynamically simple fluids that

de� =
(
∂e

∂υ

)
T

dυ +
(
∂e

∂T

)
υ

dT =
(
∂e

∂υ

)
T

dυ + cυ dT. (5.73)

Considering the Maxwell relationships of thermodynamics, one can be
write (

∂e

∂υ

)
T

= −P + T
(
∂P

∂T

)
υ

, (5.74)
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so that the following form of the energy equation can be given:

ρ
De
Dt

=

[
−P + T

(
∂P

∂T

)
ρ

]
∂Ui

∂xi
+ ρcυ

DT
Dt
. (5.75)

The thermal energy equation can thus also be written as:

ρcυ
DT
Dt

= − ∂q̇i
∂xi

− T
(
∂P

∂T

)
ρ

∂Ui

∂xi
− τij ∂Uj

∂xi
. (5.76)

For an ideal gas, as
(

∂P
∂T

)
ρ

= P
T and q̇i = −λ ∂T

∂xi
,

ρcυ
DT
Dt

= λ
∂2T

∂x2
i

− P ∂Ui

∂xi
− τij ∂Uj

∂xi
. (5.77)

For a thermodynamically ideal liquid, as ∂Ui

∂xi
= 0 and cυ = cp, therefore:

ρcp
DT
Dt

= λ
∂2T

∂x2
i

− τij ∂Uj

∂xi
. (5.78)

It was shown above that the equation for the change of the total energy
can be derived by addition of the equations for the mechanical and thermal
energies:

Equation for mechanical energy:

ρ
D
Dt

(
1
2
U2

j +G
)

= − ∂

∂xj
(PUj) + P

∂Uj

∂xj
− ∂

∂xi
(τijUj) + τij

∂Uj

∂xi
. (5.79)

Equation for thermal energy:

ρ
De
Dt

= − ∂q̇i
∂xi

− P ∂Ui

∂xi
− τij ∂Ui

∂xi
. (5.80)

Equation for the total energy:

ρ
D
Dt

(
1
2
U2

j +G+ e
)

= − ∂q̇i
∂xi

− ∂

∂xj
(PUj) − ∂

∂xi
(τijUj)

= λ
∂2T

∂x2
i

− ∂

∂xj
(PUj) − ∂

∂xi
(τijUj)

. (5.81)

From this final relationship, the Bernoulli equation can be derived, which
is often used for fluid mechanics considerations in engineering:
Ideal Liquid (ρ = constant): no heat conduction and viscous dissipation:

ρ

[
D
Dt

(
1
2
U2

j +G
)]

= −Uj
∂P

∂xj
= −Ui

∂P

∂xi
. (5.82)
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For a steady flow:

ρ

[ =0︷ ︸︸ ︷
∂

∂t

(
1
2
U2

j +G
)

+Ui
∂

∂xi

(
1
2
U2

j +G
)]

= −Ui
∂P

∂xi
, (5.83)

∂

∂xi

(
1
2
U2

j +G+
P

ρ

)
= 0

or after integration,

1
2
U2

j +G+
P

ρ
= constant. (5.84)

Ideal Gas: P/ρ = RT , no heat conduction and neglecting viscous dissipation
and not considering the potential energy:

ρ
D

DT

(
1
2
U2

j + e
)

= − ∂

∂xj
(PUj) = − ∂

∂xi
(PUi). (5.85)

For steady-state flows:

ρ
∂

∂xi

(
1
2
U2

j + e
)

= − ∂

∂xi
(PUi) = −P ∂Ui

∂xi
− Ui

∂P

∂xi
. (5.86)

From the continuity equation, it follows for steady-state flows that

ρ
∂Ui

∂xi
= −Ui

∂ρ

∂xi
. (5.87)

If one inserts into the considerations e = cυT , the following equations result:

ρ
∂

∂xi

(
1
2
U2

j + e
)

= ρ
∂

∂xi

(
1
2
U2

j

)
+ ρcυ

∂T

∂xi
=
P

ρ

∂ρ

∂xi
− ∂P

∂xi
,

∂

∂xi

(
1
2
U2

j

)
=
P

ρ2
∂ρ

∂xi
− 1
ρ

∂P

∂xi
− cυ ∂T

∂xi
(5.88)

Introducing

∂T

∂xi
= − P

Rρ2
∂ρ

∂xi
+

1
Rρ

∂P

∂xi
, (5.89)

∂

∂xi

(
1
2
U2

j

)
=
P

ρ2
∂ρ

∂xi

(
1 +

cυ
R

)
− 1
ρ

∂P

∂xi

(
1 +

cυ
R

)
= − κ

κ− 1
∂

∂xi

(
P

ρ

)
(5.90)

yields the Bernoulli equation in its “compressible form”:

∂

∂xi

[
1
2
U2

j +
κ

κ− 1

(
P

ρ

)]
= 0 ⇒ 1

2
U2

j +
κ

κ− 1

(
P

ρ

)
= constant. (5.91)
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5.7 Basic Equations in Different Coordinate Systems

5.7.1 Continuity Equation

The derivations carried out for the continuity equation in Cartesian coordi-
nates resulted in

∂ρ

∂t
+
∂(ρUi)
∂xi

= 0 (5.92)

or, without the application of the summation convention,

∂ρ

∂t
+
∂(ρU1)
∂x1

+
∂(ρU2)
∂x2

+
∂(ρU3)
∂x3

= 0. (5.93)

For ρ = constant on obtains:
∂U1

∂x1
+
∂U2

∂x2
+
∂U3

∂x3
= 0

In cylindrical coordinates (r, ϕ, z) with (Ur, Uϕ, Uz), the following equation
can be derived:

∂ρ

∂t
+
∂(ρUr)
∂r

+
1
r

∂(ρUϕ)
∂ϕ

+
∂(ρUz)
∂z

+
ρUr

r
= 0, (5.94)

and for ρ = constant the equation reduces to:

∂Ur

∂r
+

1
r

∂Uϕ

∂ϕ
+
∂Uz

∂z
+
Ur

r
= 0. (5.95)

In spherical coordinates (r, θ, φ), the continuity equation can be stated as
shown below for (Ur, Uθ, Uφ):

∂ρ

∂t
+

1
r2
∂

∂r
(ρr2Ur) +

1
r sin θ

∂

∂θ
(ρUθ sin θ) +

1
r sin θ

∂

∂φ
(ρUφ) = 0. (5.96)

The coordinates mentioned below were employed in the derivations of the
above relationships (Figs. 5.11 and 5.12).

The use of cylindrical coordinates in the derivations of the basic equations
leads to the metric coefficients introduced in Sect. 2.10 for the transformation
of the equations:

hr = 1; hϕ = r; hz = 1

for the general continuity equation one can also write:

∂(ρ)
∂t

+
1
r

∂

∂r
(rρUr) +

1
r

∂

∂ϕ
(ρUϕ) +

∂(ρUz)
∂z

= 0, (5.97)

or for the continuity equation with ρ = constant:

∂Ur

∂r
+

1
r

∂Uϕ

∂ϕ
+
∂Uz

∂z
+
Ur

r
= 0. (5.98)
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Fig. 5.11 Coordinate systems and trans-
formation equations for cylindrical coordi-
nates

Fig. 5.12 Coordinate systems and
transformation equations for spheri-
cal coordinates

Analogously to the above derivations of the continuity equation in cylin-
drical coordinates, one obtains for spherical coordinates the following metric
coefficients for the transformations:

hr = 1; hυ = r; hϕ = r sin θ, (5.99)

and thus for the continuity equation in spherical coordinates reads:

∂(ρ)
∂t

1
r2
∂

∂r
(ρr2Ur) +

1
r sin θ

∂

∂θ
(ρUθ sin θ) +

1
r sin θ

∂

∂φ
(ρUφ) = 0. (5.100)

The continuity equation in spherical coordinates with ρ = constant results
in:

1
r2
∂

∂r
(r2Ur) +

1
r sin θ

∂

∂θ
(Uθ sin θ) +

1
r sin θ

∂

∂φ
(Uφ) = 0. (5.101)

5.7.2 Navier–Stokes Equations

Analogously to the transformation of the continuity equation into cylindrical
and spherical coordinates, the different terms of the Navier–Stokes equations
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can also be transformed. These equations can be stated, for Newtonian fluids,
and in Cartesian coordinates as follows:

ρ
DUj

Dt
= ρ
[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
+
∂

∂xi

[
µ

(
∂Uj

∂xi
+
∂Ui

∂xj

)
− 2

3
µδij

∂Uk

∂xk

]
+ ρgj. (5.102)

Written out for j = 1, 2, 3:

ρ
DU1

Dt
= − ∂P

∂x1
+
∂

∂x1

[
2µ
∂U1

∂x1
− 2

3
µ(
∂Uk

∂xk
)
]

+
∂

∂x2

[
µ

(
∂U1

∂x2
+
∂U2

∂x1

)]
+
∂

∂x3

[
µ

(
∂U3

∂x3
+
∂U1

∂x1

)]
+ ρg1, (5.103)

ρ
DU2

Dt
= − ∂P

∂x2
+
∂

∂x1

[
µ

(
∂U2

∂x1
+
∂U1

∂x2

)]
+
∂

∂x2

[
2µ
∂U2

∂x2
− 2

3
µ(
∂Uk

∂xk
)
]

+
∂

∂x3

[
µ

(
∂U3

∂x3
+
∂U2

∂x1

)]
+ ρg2, (5.104)

ρ
DU3

Dt
= − ∂P

∂x3
+
∂

∂x1

[
µ

(
∂U3

∂x1
+
∂U1

∂x3

)]
+
∂

∂x2

[
µ

(
∂U3

∂x2
+
∂U2

∂x3

)]
+
∂

∂x3

[
2µ
∂U3

∂x3
− 2

3
µ(
∂Uk

∂xk
)
]

+ ρg3. (5.105)

• Momentum Equations in Cartesian Coordinates

– Momentum equations with τij terms:

x1 Component: ρ

(
∂U1

∂t
+ U1

∂U1

∂x1
+ U2

∂U1

∂x2
+ U3

∂U1

∂x3

)
= − ∂P

∂x1
−
(
∂τ11
∂x1

+
∂τ21
∂x2

+
∂τ31
∂x3

)
+ ρg1, (5.106)

x2 Component: ρ

(
∂U2

∂t
+ U1

∂U2

∂x1
+ U2

∂U2

∂x2
+ U3

∂U2

∂x3

)
= − ∂P

∂x2
−
(
∂τ12
∂x1

+
∂τ22
∂x2

+
∂τ32
∂x3

)
+ ρg2, (5.107)

x3 Component: ρ

(
∂U3

∂t
+ U1

∂U3

∂x1
+ U2

∂U3

∂x2
+ U3

∂U3

∂x3

)
= − ∂P

∂x3
−
(
∂τ13
∂x1

+
∂τ23
∂x2

+
∂τ33
∂x3

)
+ ρg3. (5.108)
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– Navier–Stokes equations for ρ and µ both being constant:

x1 Component: ρ

(
∂U1

∂t
+ U1

∂U1

∂x1
+ U2

∂U1

∂x2
+ U3

∂U1

∂x3

)
= − ∂P

∂x1
+ µ

(
∂2U1

∂x2
1

+
∂2U1

∂x2
2

+
∂2U1

∂x2
3

)
+ ρg1, (5.109)

x2 Component: ρ

(
∂U2

∂t
+ U2

∂U2

∂x1
+ U2

∂U2

∂x2
+ U3

∂U2

∂x3

)
= − ∂P

∂x2
+ µ

(
∂2U2

∂x2
1

+
∂2U2

∂x2
2

+
∂2U2

∂x2
3

)
+ ρg2, (5.110)

x3 Component: ρ

(
∂U3

∂t
+ U1

∂U3

∂x1
+ U2

∂U3

∂x2
+ U3

∂U3

∂x3

)
= − ∂P

∂x3
+ µ

(
∂2U3

∂x2
1

+
∂2U3

∂x2
2

+
∂2U3

∂x2
3

)
+ ρg3. (5.111)

• Momentum Equations in Cylindrical Coordinates

– Momentum equations with τij terms:

r Component: ρ

(
∂Ur

∂t
+ Ur

∂Ur

∂r
+
Uϕ

r

∂Ur

∂ϕ
− U

2
ϕ

r
+ Uz

∂Ur

∂z

)

= −∂P
∂r

−
(

1
r

∂

∂r
(rτrr) +

1
r

∂τrϕ

∂ϕ
− τϕϕ

r
+
∂τrz

∂z

)
+ ρgr, (5.112)

ϕ Component: ρ

(
∂Uϕ

∂t
+ Ur

∂Uϕ

∂r
+
Uϕ

r

∂Uϕ

∂ϕ
+
UrUϕ

r
+ Uz

∂Uϕ

∂z

)
= −1

r

∂P

∂ϕ
−
(

1
r2
∂

∂r
(r2τrϕ) +

1
r

∂τϕϕ

∂ϕ
+
∂τϕz

∂z

)
+ ρgϕ, (5.113)

z Component: ρ

(
∂Uz

∂t
+ Ur

∂Uz

∂r
+
Uϕ

r

∂Uz

∂ϕ
+ Uz

∂Uz

∂z

)
= −∂P

∂z
−
(

1
r

∂

∂r
(rτrz) +

1
r

∂τϕz

∂ϕ
+
∂τzz

∂z

)
+ ρgz. (5.114)

– Navier–Stokes equations for ρ and µ both being constant:

r Component: ρ

(
∂Ur

∂t
+ Ur

∂Ur

∂r
+
Uϕ

r

∂Ur

∂ϕ
− U

2
ϕ

r
+ Uz

∂Ur

∂z

)

= −∂P
∂r

+ µ
[
∂

∂r

(
1
r

∂

∂r
(rUr)

)
+

1
r2
∂2Ur

∂ϕ2
− 2
r2
∂Uϕ

∂ϕ
+
∂2Ur

∂z2

]
+ ρgr,

(5.115)
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ϕ Component: ρ

(
∂Uϕ

∂t
+ Ur

∂Uϕ

∂r
+
Uϕ

r

∂Uϕ

∂ϕ
+
UrUϕ

r
+ Uz

∂Uϕ

∂z

)
= −1

r

∂p

∂ϕ
+ µ

[
∂

∂r

(
1
r

∂

∂r
(rUϕ)

)
+

1
r2
∂2Uϕ

∂ϕ2
+

2
r2
∂Ur

∂ϕ
+
∂2Uϕ

∂z2

]
+ ρgϕ,

(5.116)

z Component: ρ

(
∂Uz

∂t
+ Ur

∂Uz

∂r
+
Uϕ

r

∂Uz

∂ϕ
+ Uz

∂Uz

∂z

)
= −∂P

∂z
+ µ

[
1
r

∂

∂r

(
r
∂Uz

∂r

)
+

1
r2
∂2Uz

∂ϕ2
+
∂2Uz

∂z2

]
+ ρgz. (5.117)

• Momentum Equations in Spherical Coordinates

– Momentum equations with τij terms

r Component: ρ

(
∂Ur

∂t
+ Ur

∂Ur

∂r
+
Uθ

r

∂Ur

∂θ
+

Uφ

r sin θ
∂Ur

∂φ
− U

2
θ + U2

φ

r

)

= −∂P
∂r

−
(

1
r2
∂

∂r
(r2τrr) +

1
r sin θ

∂

∂θ
(τrθ sin θ)

+
1

r sin θ
∂τrφ

∂φ
− τθθ + τθθ

r

)
+ ρgr,

(5.118)

θ Component: ρ

(
∂Uθ

∂t
+ Ur

∂Uθ

∂r
+
Uθ

r

∂Uθ

∂θ
+

Uφ

r sin θ
∂Uθ

∂φ
+
UrUθ

r

− U
2
φ cot θ
r

)
= −1

r

∂p

∂θ
−
(

1
r2
∂

∂r
(r2τrθ) +

1
r sin θ

∂

∂θ

(τθθ sin θ) +
1

r sin θ
∂τθφ

∂φ
+
τrθ

r
−cot θ

r
τφφ

)
+ ρgθ,

(5.119)

φ Component: ρ

(
∂Uφ

∂t
+ Ur

∂Uφ

∂r
+
Uθ

r

∂Uφ

∂θ
+

Uφ

r sin θ
∂Uφ

∂φ
+
UφUr

r

+
UθUφ

r
cot θ

)
= − 1

r sin θ
∂p

∂φ
−
(

1
r2
∂

∂r

(
r2τrφ

)
+

1
r

∂τθφ

∂θ
+

1
r sin θ

∂τφφ

∂φ
+
τrφ

r
+

2 cot θ
r

τθφ

)
+ ρgφ.

(5.120)
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• Navier–Stokes Equations for ρ and µ both being constant

r Component: ρ

(
∂Ur

∂t
+ Ur

∂Ur

∂r
+
Uθ

r

∂Ur

∂θ
+

Uφ

r sin θ
∂Ur

∂φ
− U

2
θ + U2

φ

r

)

= −∂P
∂r

+ µ
(
∇2Ur − 2

r2
Ur − 2

r2
∂Uθ

∂θ
− 2
r2
Uθ cot θ

− 2
r2 sin θ

∂Uφ

∂φ

)
+ ρgr, (5.121)

θ Component: ρ

(
∂Uθ

∂t
+ Ur

∂Uθ

∂r
+
Uθ

r

∂Uθ

∂θ
+

Uφ

r sin θ
∂Uθ

∂φ
+
UrUθ

r

− U
2
φ cot θ
r

)
= −1

r

∂P

∂θ
+ µ

(
∇2Uθ +

2
r2
∂Ur

∂θ

− Uθ

r2 sin2 θ
− 2 cos θ
r2 sin2 θ

∂Uφ

∂φ

)
+ ρgθ, (5.122)

φ Component: ρ

(
∂Uφ

∂t
+ Ur

∂Uφ

∂r
+
Uφ

r

∂Uφ

∂θ
+

Uφ

r sin θ
∂Uφ

∂φ
+
UφUr

r

+
UθUφ

r
cot θ

)
= − 1

r sin θ
∂P

∂φ
+ µ

(
∇2Uφ − Uφ

r2 sin2 θ

+
2

r2 sin2 θ

∂Ur

∂φ
+

2 cos θ
r2 sin2 θ

∂Uθ

∂φ

)
+ ρgφ. (5.123)

In these equations the operator ∇2 corresponds to:

∇2 =
1
r2
∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

(
∂2

∂φ2

)
. (5.124)

• Components of the molecular momentum transport tensor in Cartesian
coordinates

τ11 = −µ
[
2
∂U1

∂x1
− 2

3
(
∂Uk

∂xk
)
]
; τ22 = −µ

[
2
∂U2

∂x2
− 2

3
(
∂Uk

∂xk
)
]
,

τ33 = −µ
[
2
∂U3

∂x3
− 2

3
(
∂Uk

∂xk
)
]
, (5.125)

τ12 = τ21 = −µ
[
∂U1

∂x2
+
∂U2

∂x1

]
, τ23 = τ32 = −µ

[
∂U2

∂x3
+
∂U3

∂x2

]
,

τ31 = τ13 = −µ
[
∂U3

∂x1
+
∂U1

∂x3

]
. (5.126)
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• Components of the molecular m on in time transport tensor in cylindrical
coordinates

τrr = −µ
[
2
∂Ur

∂r
− 2

3
(∇ · U)

]
,

τϕϕ = −µ
[
2
(

1
r

∂Uϕ

∂ϕ
+
Ur

r

)
− 2

3
(∇ · U)

]
, τzz = −µ

[
2
∂Uz

∂xz
− 2

3
(∇ · U)

]
,

(5.127)

τrϕ = τϕr = −µ
[
r
∂

∂r

(
Uϕ

r

)
+

1
r

∂Ur

∂ϕ

]
,

τϕz = τzϕ = −µ
[
∂Uϕ

∂z
+

1
r

∂Uz

∂ϕ

]
, τzr = τrz = −µ

[
∂Uz

∂r
+
∂Ur

∂z

]
,

(5.128)
with

(∇ · U) =
1
r

∂

∂r
(rUr) +

1
r

∂Uϕ

∂ϕ
+
∂Uz

∂z
. (5.129)

• Components of the molecular momentum transport tensor in spherical
coordinates

τrr = −µ
[
2
∂Ur

∂r
− 2

3
(∇ · U)

]
, (5.130)

τθθ = −µ
[
2
(

1
r

∂Uθ

∂θ
+
Ur

r

)
− 2

3
(∇ · U)

]
, (5.131)

τφφ = −µ
[
2
(

1
r sin θ

∂Uφ

∂φ
+
Ur

r
+
Uθ cot θ
r

)
− 2

3
(∇ · U)

]
, (5.132)

τrθ = τθr = −µ
[
r
∂

∂r

(
Uθ

r

)
+

1
r

∂Ur

∂θ

]
, (5.133)

τθφ = τφθ = −µ
[
sin θ
r

∂

∂θ

(
Uφ

sin θ

)
+

1
r sin θ

∂Uθ

∂φ

]
, (5.134)

τφr = τrφ = −µ
[

1
r sin θ

∂Ur

∂φ
+ r

∂

∂r

(
Uφ

r

)]
, (5.135)

(∇ · U) =
1
r2
∂

∂r
(r2Ur) +

1
r sin θ

∂

∂θ
(Uθ sin θ) +

1
r sin θ

∂Uφ

∂φ
. (5.136)

• Dissipation function τij
∂Uj

∂xi
= µΦµ

Cartesian coordinates:

Φµ = 2

[(
∂U1

∂x1

)2

+
(
∂U2

∂x2

)2

+
(
∂U3

∂x3

)2
]

+
[
∂U2

∂x1
+
∂U1

∂x2

]2
+
[
∂U3

∂x2
+
∂U2

∂x3

]2
+
[
∂U1

∂x3
+
∂U3

∂x1

]2
− 2

3

[
∂U1

∂x1
+
∂U2

∂x2
+
∂U3

∂x3

]2
.

(5.137)
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Cylindrical coordinates:

Φµ = 2

[(
∂Ur

∂r

)2

+
(

1
r

∂Uϕ

∂ϕ
+
Ur

r

)2

+
(
∂Uz

∂xz

)2
]

+
[
r
∂

∂r

(
Uϕ

r

)
+

1
r

∂Uz

∂ϕ

]2
+
[
1
r

∂Uz

∂ϕ
+
∂Uϕ

∂xz

]2
+
[
∂Ur

∂xz
+
∂Uz

∂r

]2
− 2

3

[
1
r

∂

∂r
(rUr) +

1
r

∂Uϕ

∂ϕ
+
∂Uz

∂xz

]2
. (5.138)

Spherical coordinates:

Φµ = 2

[(
∂Ur

∂r

)2

+
(

1
r

∂Uθ

∂θ
+
Ur

r

)2( 1
r sin θ

∂Uφ

∂φ
+
Ur

r
+
Uθ cot θ
r

)2
]

+
[
r
∂

∂r

(
Uθ

r

)
+

1
r

∂Ur

∂θ

]2
+
[
sin θ
r

∂

∂θ

(
Uφ

sin θ

)
+

1
r sin θ

∂Uθ

∂φ

]2
+
[

1
r sin θ

∂Ur

∂φ
+ r

∂

∂r

(
Uφ

r

)]2
− 2

3

[
1
r2
∂

∂r
(r2Ur) +

1
r sin θ

∂

∂θ
(Uθ sin θ ) +

1
r sin θ

∂Uφ

∂φ

]2
.

(5.139)

The above equations can be solved in connection with the initial and
boundary conditions describing the actual flow problems. Very often the
boundary conditions define the coordinate system chosen for solving a
particular flow problem.

5.8 Special Forms of the Basic Equations

Due to the multitude of fluid mechanical considerations, special forms of the
equations have crystallized out of those treated in the preceding sections.
Some of these equations will be derived and also explained in this section.
These are the vorticity equation, the Bernoulli equation and the Crocco equa-
tion, some of which have already been treated. The following derivations
will also treat the Kelvin theorem as a basis for explanations of its physical
significance. The objective of the considerations is to bring out clearly the
prerequisites under which the derived special forms of the basic equations are
valid. Only when a sound basis for the simplified treatments of flow problems
exists can the special forms of the basic equations lead to valuable results. In
case the insight into a particular flow is not present, the general form of the
basic equations of fluid mechanics should be employed to slove the considered
flow problems.
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5.8.1 Transport Equation for Vorticity

The vorticity ωi is a local property of the flow field which can be employed ad-
vantageously in considerations of rotating fluid motions. It can be computed
from the velocity field as follows:

2ωk = ∇× U = −εijk
∂Uj

∂xi
=
(
∂Uj

∂xi
− ∂Ui

∂xj

)
. (5.140)

For a fluid with the properties ρ = constant and µ = constant, the Navier–
Stokes equation can be written in the following way:

ρ

[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
+ µ

∂2Uj

∂x2
i

+ ρgj , (5.141)

or in vector form:[
∂U

∂t
+ (U · ∇)U

]
= −1

ρ
∇P + ν∇2U + g. (5.142)

This vector form of the Navier–Stokes equation can also be written as:

∂U

∂t
+ ∇

(
1
2
U · U

)
− U × (∇× U) = −1

ρ
∇P + ν∇2U + g. (5.143)

When one applies the operator ∇× (. . . ) to each of the terms appearing
in the above equation, one obtains:

∂ω

∂t
−∇× (U × ω) = ν∇2ω. (5.144)

Making use of the following relationship, valid for vectors:

∇× (U × ω) = U(∇ · ω) − ω(∇ · U) − (U · ∇)ω + (ω · ∇)U ,

where ∇ · ω = 0 as the divergence of the rotation of each vector is equal to
zero, and where at the same time ρ = constant and also ∇ · U = 0 holds
due to the continuity equation. When one introduces all this into the above
equations, the transport equation for vorticity results:

∂ω

∂t
+ (U∇)ω = (ω∇)U + ν∇2ω, (5.145)

or written in tensor notation:

Dωj

Dt
=
∂ωj

∂t
+ Ui

∂ωj

∂xi
= ωj

∂Ui

∂xj
+ ν

∂2ωj

∂x2
i

. (5.146)

Equation (5.146) does not contain the pressure term, hence it is apparent
that the vorticity field can be determined without knowledge of the pressure
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distribution. To be able to compute the pressure, one forms the divergence
of the Navier–Stokes equation and obtains for gj = 0:

∂2

∂x2
i

(
P

ρ

)
= ω2

j + Uj
∂2Uj

∂x2
i

− 1
2
∂2U2

j

∂x2
i

, (5.147)

thus yielding a Poisson equation for the computation of the pressure. For
two-dimensional flows, for which the vorticity vector stands vertical on the
plane of the flow, (ω · ∇)U = 0. The transport equation for the vorticity
therefore reads:

∂ωj

∂t
+ Ui

∂ωj

∂xi
= ν

∂2ωj

∂x2
i

. (5.148)

5.8.2 The Bernoulli Equation

The general momentum equations can be transferred into the Euler equations
by assuming a fluid mechanically ideal fluid to exist. This is the equation with
which to start to derive the Bernoulli equation:

ρ
DUj

Dt
= ρ
[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
+ ρgj . (5.149)

Multiplying this equation by Uj , one obtains the mechanical energy
equation valid for dissipation-free fluid flows:

ρ
D
Dt

(
1
2
U2

j

)
= ρ
[
∂

∂t

(
1
2
U2

j

)
+ Ui

∂

∂xi

(
1
2
U2

j

)]
= −Uj

∂P

∂xj
+ ρgjUj .

(5.150)

When one introduces the potential fieldG for the presentation of gj as follows:

gj = − ∂G
∂xj

, (5.151)

the last term of (5.151) reads:

ρgjUj = −ρUj
∂G

∂xj
= −ρDG

Dt
+ ρ
∂G

∂t
, (5.152)

and one obtains for
∂G

∂t
= 0:

ρ
D
Dt

[(
1
2
U2

j

)
+G

]
= −Uj

∂P

∂xj
. (5.153)
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Considering that

ρ
D
Dt

(
P

ρ

)
= ρ

∂

∂t

(
P

ρ

)
+ ρUj

∂

∂xj

(
P

ρ

)
, (5.154)

and that moreover the following conversions of terms are possible:

ρ
∂

∂t

(
P

ρ

)
=
∂P

∂t
− P
ρ

∂ρ

∂t
, (5.155)

ρUj
∂

∂xj

(
P

ρ

)
= Uj

∂P

∂xj
− P
ρ
Uj
∂ρ

∂xj
, (5.156)

then (5.154) can be written as:

ρ
D
Dt

(
P

ρ

)
=
∂P

∂t
+ Uj

∂P

∂xj
− P
ρ

Dρ
Dt
. (5.157)

From (5.154) and (5.157) one obtains

ρ
D
Dt

[(
1
2
U2

j

)
+G

]
= −Uj

∂P

∂xj
= −ρ D

Dt

(
P

ρ

)
+
∂P

∂t
− P
ρ

Dρ
Dt
, (5.158)

or, after conversion of some terms,

ρ
D
Dt

[(
1
2
U2

j

)
+
P

ρ
+G

]
=
∂P

∂t
− P
ρ

Dρ
Dt
. (5.159)

or

ρ
D
Dt

[(
1
2
U2

j

)
+
P

ρ
+G

]
=
∂P

∂t
+
∂Uj

∂xj
P. (5.160)

For stationary pressure fields ∂P
∂t = 0, and, for ρ = constant, the Bernoulli

equation can be stated as follows:

1
2
U2

j +
P

ρ
+G =

1
2
U2

j +
P

ρ
− xjgj = constant. (5.161)

The above derivations make it clear under which conditions the well-known
Bernoulli (5.161) holds.

From the above derivations, the general form of the mechanical energy
equation, by introducing dissipation into the considerations, can be written
in the following form:

ρ
D
Dt

[
1
2
U2

j +
P

ρ
+G

]
=
∂P

∂t
+ P

∂Uj

∂xj
+
∂

∂xi
(τijUj) − τij ∂Uj

∂xi
. (5.162)

The left-hand side of this form of the mechanical energy equation contains
all terms of the Bernoulli equation.
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5.8.3 Crocco Equation

The Crocco equation is a special form of the momentum equation which
shows in an impressive manner how purely fluid mechanics considerations
can be supplemented by thermodynamic considerations, yielding new insights
into fluid flows. The Crocco equation connects the vorticity of a flow field
to the entropy of the considered fluid. It can be shown from this equation
that isotropic flows are free of rotation and vice versa, at least under certain
conditions. So, when one recognizes a flow field to be isentropic, the simplified
rotation-free flow field considerations can be applied.

For the derivation of the Crocco equation, one starts from the Navier–
Stokes equation, as stated in (5.143) supplemented by ν = 0, i.e. one
introduces an ideal fluid into the considerations, by neglecting viscous forces:

∂U

∂t
+ ∇

(
1
2
U · U

)
− U × (∇× U) = −1

ρ
∇P. (5.163)

In Sect. 3.6, it was shown that:

T� ds� = de� + P� dυ� = de� + P� d
(

1
ρ�

)
. (5.164)

With e� = h� − P�/ρ�, the following relation holds:

dh� − d
(
P�
ρ�

)
= −P� d

(
1
ρ�

)
+ T� ds�. (5.165)

Because d
(
P�
ρ�

)
= P� d

(
1
ρ�

)
+

1
ρ�

dP�,

it holds that

− 1
ρ�

dP� = T� ds� − dh�. (5.166)

This relation can also be written in field variables as:

−1
ρ
∇P = T∇s−∇h. (5.167)

Equation (5.167) is inserted in (5.163) to yield:

∂U

∂t
+ ∇

(
1
2
U · U

)
− U × (∇× U) = T∇s−∇h. (5.168)



5.8 Special Forms of the Basic Equations 147

For stationary adiabatic processes, the thermal energy equation can be
written in the following form:

ρ
Dh
Dt

=
DP
Dt
. (5.169)

From the momentum equation, it follows further that:

ρ
D
Dt

(
1
2
UU

)
= −U∇P. (5.170)

Hence

ρ
D
Dt

(
h+

1
2
UU

)
=

DP
Dt

− U∇P, (5.171)

ρ
D
Dt

(
h+

1
2
UU

)
=

DP
Dt
. (5.172)

Equation (5.172), inserted in (5.163) under stationary flow conditions, yields
the following relationship

U × ω + T∇s = ∇
(
h+

1
2
UU

)
. (5.173)

If a flow is considered along a flow line, then ∇(h + 1/2U · U) is a vector
perpendicular to the considered flow line. U ×ω is also a vector and also lies
perpendicular to the flow line. Hence T∇s lies vertical to the fluid motion
along a flow line, and therefore it can be stated that:

Unωn + T
ds
dn

=
d
dn

(
h+

1
2
UU

)
, (5.174)

when
(
h+ 1

2UU
)

is constant along a flow field, then d
dn

(
h+ 1

2UU
)

= 0 and
thus

Unωn + T
ds
dn

= 0. (5.175)

If ωn = 0 then ds/ dn = 0, hence rotation-free flows are isentropic and vice
versa. If the flow is assumed to be stationary and in the absence of viscosity,
the inertial forces turn out to be zero.

5.8.4 Further Forms of the Energy Equation

The close connection between fluid mechanics and thermodynamics becomes
clear from different forms of the energy equation, summarized in the following
table, as introduced by Bird, Steward and Lightfoot [5.1] with the notation
adapted in this book.
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Symbol Explanation Dimensions
cp Heat capacity at constant pressure, L2/(T t2)

per unit mass
cv Heat capacity at constant volume, L2/(T t2)

per unit mass
etotal Total energy of the fluid, per L2/t2

unit mass
e Internal energy, per unit mass L2/t2

g , gi External mass acceleration L/t2

G Potential energy, potential of G ML2/t2

h Enthalpy L2/t2

P Pressure field M/(Lt2)
q̇ , q̇i Heat flow per unit area M/t3

T Absolute temperature T
U , Ui Velocity field L/t
V Volume L3

xi Cartesian coordinates L
β Thermal expansion coefficient 1/T
ρ Fluid density field M/L3

τ , τij Molecular momentum transport M/(Lt2)

Mass conservation (continuity equation)

Equations in vector and tensor notation Special forms
Dρ
Dt = −ρ(∇ ·U ) For Dρ

Dt = 0; (∇ ·U ) = 0

Dρ
Dt = −ρ∂Ui

∂xi
or ∂Ui

∂xi
= 0

Equation of motion (momentum equation)

Special Equations in vector and Special forms
form tensor notation

Imposed ρDU
Dt = −∇P − [∇ · τ ] + ρg For ∇ · τ = 0 one obtains the

convection Euler equations
ρ

DUj

Dt = − ∂P
∂xj

− ∂τij

∂xi
+ ρgj

Free ρDU
Dt = −[∇ · τ ] − ρβg∆T This equation

convection comprises approximations
ρ

DUj

Dt = −∂τij

∂xi
− ρβgj∆T by Boussinesque

assumptions
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Energy equations

Special form Equations in vector and tensor notation Special forms

Written
for ρDetotal

Dt = −(∇ · q) − (∇ · ρU ) − (∇ · [τ ·U ]) Exact only
etotal = e+ for G time
+ 1

2U
2 +G ρDetotal

Dt = − ∂q̇i

∂xi
− ∂(PUi)

∂xi
− ∂(τijUj)

∂xi
independent

ρ
D(e+ 1

2U 2)

Dt = −(∇ · q) − (∇ · ρU )
−(∇ · [τ ·U ]) + ρ(U · g)

e+ 1
2U

2

ρ
D(e+ 1

2 U2
i )

Dt = − ∂q̇i

∂xi
− ∂(PUi)

∂xi
− ∂(τijUj)

∂xi
+ ρUigi

ρ
D 1

2U 2

Dt = −(U · ∇P ) − (U · [∇ · τ ])
+ρ(U · g)

1
2U

2

ρ
D 1

2 U2
i

Dt = −Ui
∂P
∂xi

− Ui
∂τij

∂xj
+ ρUigi

ρDe
Dt = −(∇ · q) − P (∇ · U ) − (τ : ∇U ) The term

e containing P
ρDe

Dt = − ∂q̇i

∂xi
− P ∂Ui

∂xi
− τij ∂Ui

∂xj
is zero for
Dρ
Dt = 0

ρDh
Dt = −(∇ · q) − (τ : ∇U ) + DP

Dt
h

ρDh
Dt = − ∂q̇i

∂xi
− τij ∂Ui

∂xj
+ DP

Dt

Written ρcv
DT
Dt = −(∇ · q) − T (∂P

∂T )ρ(∇ · U ) For an ideal
for −(τ : ∇U ) gas (∂P

∂T )ρ =
P
T

cv and T
ρcv

DT
Dt = − ∂q̇i

∂xi
− T (∂P

∂T )ρ(∂Ui

∂xi
) − τij ∂Ui

∂xj

Written ρcp
DT
Dt = −(∇ · q) + (∂ ln V

∂ ln T )ρ
DP
Dt For an ideal

for −(τ : ∇U ) gas
(∂ ln V

∂ ln T )ρ = 1cp and T
ρcp

DT
Dt = − ∂q̇i

∂xi
+ (∂ ln V

∂ ln T )ρ
DP
Dt − τij ∂Ui

∂xj
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5.9 Transport Equation for Chemical Species

In many domains of engineering science, investigations of fluids with chemical
reactions are required, which make it necessary to extend the considera-
tions carried out so far. It is necessary to state the basic equations of fluid
mechanics for the different chemical components:

• Local change of the mass per unit time of
the chemical component A

∂ρA

∂t
ρV�

• Change of the mass of component A by
inflow and outflow of A

− ∂

∂xi
ρA (UA)i δV�

• Production of the chemical component A
by chemical reactions in V�

rAδV�

This yields a mass balance:

∂ρA

∂t
δV� = − ∂

∂xi
[ρA (UA)i] δV� + rAδV�, (5.176)

and the equation for the mass conservation for the chemical component A of
a fluid is

∂ρA

∂t
+

∂

∂xi
[ρA (UA)i] = rA. (5.177)

For a chemical component B, as a consequence of identical considerations,

∂ρB

∂t
+

∂

∂xi
[ρB (UB)i] = rB . (5.178)

The addition of these equations yields

∂ρ

∂t
+
∂ (ρUi)
∂xi

= 0, (5.179)

i.e. the total mass conservation equation for a mixture of different components
is equal to the continuity equation for a fluid which consists of one chemical
component only. By considering Fick’s law of diffusion, it can be stated that

∂ρA

∂t
+

∂

∂xi
(ρAUi) =

∂

∂xi

[
ρDAB

∂ (CA/C)
∂xi

]
+ rA. (5.180)

For ρ = constant and DAB = constant, one obtains

∂ρA

∂t
+

=0︷ ︸︸ ︷
ρA
∂Ui

∂xi
+ Ui

∂ρA

∂xi
= DAB

∂2ρA

∂xi
+ rA, (5.181)
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or, expressed in terms of concentration, CA,

DCA

Dt
=
[
∂CA

∂t
+ Ui

∂CA

∂xi

]
= DAB

∂2CA

∂xi
2

+RA (5.182)

with rA = ARA [5.1].
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Chapter 6

Hydrostatics and Aerostatics

6.1 Hydrostatics

Hydrostatics deals with the laws to which fluids are subjected that do not
show motions in the coordinate system in which the considerations are car-
ried out, i.e. fluids which are at rest in the coordinate system employed for
the considerations. As the relationships derived in the preceding chapter rep-
resent general laws of fluid motions, they are also applicable to the cases of
fluids at rest, i.e. non-flowing fluids. Thus, from the continuity equation,

∂ρ

∂t
+
∂

∂xi
(ρUi) = 0 (6.1)

it can be shown that for ρ = constant and Ui �= f(xi) the continuity equation
is given by

∂ρ

∂t
+ Ui

∂ρ

∂xi︸ ︷︷ ︸
Dρ/Dt=0

+ ρ
∂Ui

∂xi︸︷︷︸
=0

= 0 (6.2)

This means that for Ui = 0 the following simple partial differential equation
holds:

∂ρ

∂t
= 0 (6.3)

whose general solution can be stated as follows:

ρ = F (xi) (6.4)

The density ρ in a fluid at rest is thus only a function of the spatial coordinates
xi. When time variations of the density of the fluid occur, these lead inevitably
to motions within the fluid because of the relationship between the flow and
density fields attributable to the continuity equation, i.e. because of (6.4).

153
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The general equations of momentum can be expressed as

ρ

[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj (6.5)

and its special form is deduced for a fluid at rest (Uj = 0 and the
molecular-dependent momentum transport τij) as the following system of
partial differential equations, which represents the set of basic equations of
hydrostatics and aerostatics:

∂P

∂xj
= ρgj (j = 1, 2, 3) (6.6)

or, written out for all three directions j = 1, 2, 3,

∂P

∂x1
= ρg1,

∂P

∂x2
= ρg2,

∂P

∂x3
= ρg3 (6.7)

In this section, the pressure distribution in a fluid, mainly defined by the field
of gravity, will be considered more closely. Restrictions are made concerning
the possible fluid properties; the fluid is assumed to be incompressible for
hydrostatics, i.e. ρ = constant. This condition is in general fairly well fulfilled
by liquids, so that the following derivations can be considered as valid for
liquids, see also refs. [6.1] to [6.8].

For the derivation of the pressure distribution in a liquid at rest, a rect-
angular Cartesian coordinate system is introduced, whose position is chosen
such that the mass acceleration {gi} given by the field of gravity shows only
one component in the negative x2 direction, i.e. the following vector holds:

{gi} =

⎧⎨⎩
0

−g
0

⎫⎬⎭ . (6.8)

Then the differential equations (6.7), given above generally for the pressure,
can be written as follows:

∂P

∂x1
= 0,

∂P

∂x2
= −ρg, ∂P

∂x3
= 0 (6.9)

From ∂P/∂x1 = 0, it follows that P = f(x2, x3) and from ∂P/∂x3 = 0
it follows that P = f(x1, x2). Thus a comparison yields P = f(x2) and this
shows that the pressure of a fluid within a plane is constant, P (x2) = const,
when it is perpendicular to the direction of the field of gravity. The free
surface of a fluid stored in a container is a plane of constant pressure and
all planes parallel to it are also planes of constant pressure. The pressure
increases in the direction that was defined by gj, i.e. in the direction of the
gravitational acceleration.
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Fig. 6.1 Coordinate system for the derivation
of the pressure distribution in fluids of constant
density

Fig. 6.2 Fluid at rest in a container with a
free interface at height h

For the physical understanding of hydrostatics, it is also important to
recognize that equation (6.9) expresses that the increase in pressure in the
negative x2 direction is caused by the weight of the fluid element plotted in
Fig. 6.1, i.e. the following force balance holds:

−ρg
∆V︷ ︸︸ ︷

∆x1∆x2∆x3 + p

∆A︷ ︸︸ ︷
∆x1∆x3 − (p+

∂p

∂x2
∆x2)

∆A︷ ︸︸ ︷
∆x1∆x3 = 0 (6.10)

Employing the above physical insights and the resultant equations, the fol-
lowing statements can be made for a liquid of constant density located in a
container (Fig. 6.2). In the case that the field of gravity acts in the negative
x2 direction, i.e.

g1 = 0, g2 = −g, g3 = 0 (6.11)

the differential equations stated in (6.9) with the solution P = f(x2) hold
for this case. Thus the partial differential ∂P/∂x2 in (6.9) can be written as
a total differential and one obtains for constant density fluids (ρ = constant)

dP
dx2

= −ρg −→ P = −ρgx2 + C (6.12)

which can be rewritten as:

P

ρ
+ gx2 = C
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This relationship expresses that the sum of the “pressure energy” P/ρ and
the potential energy (gx2 = −gjxj) is constant at each point of a fluid at
rest. As all points of different fluid elements possess the same “total energy”,
the driving energy gradient for motion is absent. Hence also from the energy
point of view the condition for hydrostatic fluid behavior exists.

When a fluid with a height h has a free surface on which an equally dis-
tributed pressure P0 acts at all points, it represents, because of the relation
P = f(x2), a plane x2 = h constant, i.e. a horizontal plane.

For the pressure distribution, one obtains with the boundary condition
P = P0 for x2 = h� C = P0 + ρgh

P = P0 + ρg(h− x2) 0 ≤ x2 ≤ h (6.13)

This relationship expresses the known hydrostatic law, according to which
the pressure in a liquid at rest increases in a linear way with the depth below
the free surface.

When one rewrites equation (6.13), one obtains:

P0

ρ
+ gh =

P

ρ
+ gx2 = constant (6.14)

The laws of hydrostatics are often applicable also to fluids in moving
containers when one treats these in “accelerated reference systems”. The
externally imposed accelerative forces are then to be introduced as inertia
forces. Figure 6.3 shows as an example, a “container lorry” filled with a fluid
which is at rest at the time t < t0; it then increases its speed linearly for all
times t ≥ t0, i.e. the fluid experiences a constant acceleration.

In a state of rest or in non-accelerating motion, the fluid surface in the
container forms a horizontal level. When the container experiences a con-
stant acceleration b, the fluid surface will adopt a new equilibrium position,
provided that one disregards the initially occurring “swishing motions”.
When one now wants to compute the new position of the fluid surface,
the introduction of a coordinate system xi is recommended which is closely
connected with the container. For this coordinate system, the hydrostatic
equations read as follows:

b
b

Fig. 6.3 Position of the fluid level under constant acceleration
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∂P

∂x1
= 0;

∂P

∂x2
= −ρb; ∂P

∂x3
= −ρg (6.15)

From this, the general solution results:

∂P

∂x1
= 0 p = f1(x2, x3) (6.16a)

∂P

∂x2
=−ρb P = −ρbx2 + f2(x1, x3) (6.16b)

∂P

∂x3
=−ρg P = −ρgx3 + f3(x1, x2) (6.16c)

By comparing the solutions, one obtains that f1, f2, f3 can only be the
sum of the terms obtained by partial integration plus a constant:

P = C − ρ(bx2 + gx3) (6.17)

Along the free surface of the fluid the pressure P = P0 exists and thus the
equation of the plane in which the free surface lies reads

x3 = − b
g
x2 +

1
gρ

(C − P0) for −∞ < x1 < +∞ (6.18)

The integration constant C is determined by the condition that the fluid
volume before and after the onset of the acceleration is the same. Therefore,
the same volume holds for the moving fluid and the fluid at rest:

C = gρh+ P0 (6.19)

Hence the equation for the plane of the free surface reads

x3 = h− b

g
x2 for −∞ < x1 < +∞ (6.20)

As the solution of the problem has to be independent of the chosen co-
ordinate system, a coordinate system ξi can be introduced which is rotated
against the system xi in such a way that the following equations for the
coordinate transformations hold:

ξ1 = x1 (axis of rotation)

ξ2 =
1√
b2 + g2

(gx2 + bx3) (6.21)

and
ξ3 =

1√
b2 + g2

(−bx2 + gx3)

This is equivalent to the introduction of a resulting acceleration of the quan-
tity

√
b2 + g2 in the direction ξ3. Hence the basic hydrostatic equations

read



158 6 Hydrostatics and Aerostatics

∂P

∂ξ1
= 0;

∂P

∂ξ2
= 0;

∂P

∂ξ3
= −

√
b2 + g2ρ (6.22)

Thus P = F (ξ3) holds and P = C − ρ
√
b2 + g2ξ3.

The integration constant C results from the boundary condition

P = P0 + gρh for ξ3 = 0 (6.23)

P = P0 + ρg

⎛⎝h−
√

1 +
(
b

g

)2

ξ3

⎞⎠ (6.24)

All further statements concerning the problem of the accelerated fluid con-
tainer can also be made in the coordinate system ξi. Along the free surface
P = P0 and

ξ3 =
h√

1 +
(
b

g

)2
= constant (6.25)

Hence this is the equation of the plane in which the free surface of the fluid
in the moving container lies.

By the above treatment, it becomes clear that it is possible to employ
the basic hydrostatic laws also in accelerated reference systems, provided the
inertia forces that are attributable to the external motions are taken into
consideration. The accelerations that occur (inertial and gravitational) are
to be added in a vectorial manner to yield a total acceleration. Through this
one obtains the direction and magnitude of the total acceleration. The free
surface occurs perpendicular to the vector of the total acceleration.

The example given in Fig. 6.4 can also be categorized into the group of
examples that can be treated by means of the basic laws of hydrostatics. This
figure shows a water container which is sliding down an inclined plane with
an angle of inclination α with respect to the horizontal plane. The container
at rest possesses a water surface which is horizontal, as only the gravitational

Fig. 6.4 Water container sliding down an inclined plane. Motion with and without
friction
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acceleration appears as inertia force per kg of fluid. When the fluid container
is released and when the acceleration directed downwards is |b| = g sinα, the
body starts to move and thus experiences an acceleration which is parallel
to the inclined plane. The resulting acceleration component acting on the
fluid is composed of the component directed upwards with |b| = g sinα and
the component directed downwards with µrg cosα. Here µr is the friction
coefficient which characterizes the interaction between the container bottom
and the surface of the inclined plane.

When one treats first the accelerated motion occurring downwards on
the inclined plane without friction, one obtains in the coordinate system,
indicated in Fig. 6.4, the following set of basic hydrostatic equations:

∂P

∂x1
= 0 (6.26a)

∂P

∂x2
= −ρg sinα cosα (6.26b)

∂P

∂x3
= −ρg(1 − sin2 α) (6.26c)

The pressure distribution in the container sliding downwards in Fig. 6.4 and
thus also the solution for the position of the fluid surface can be obtained by
the solution of (6.26).

From
∂P

∂x1
= 0, it follows on the one hand that P = f(x2, x3) and thus

the following solution holds:

∂P

∂x2
= −1

2
ρg sin(2α) −→ P = f1(x3) − 1

2
ρg sin(2α)x2 (6.27a)

and also the solution

∂P

∂x3
= −ρg cos2 α −→ P = f2(x2) − ρg(cos2α)x3 (6.27b)

By comparing the solutions, one obtains:

P = C − 1
2
ρg(sin(2α)x2 + 2(cos2α)x3) (6.28)

Along the free surface, P = P0 holds and thus one obtains as the relationship
for the location of the free surface:

x3 = −(tanα)x2 +
1

ρg cos2α
(C − P0) for −∞ < x1 < +∞ (6.29)

As the origin of the coordinates also lies on the free surface, C = P0 follows
and thus for the plane in which the free surface lies one obtains

x3 = −(tanα)x2 for −∞ < x1 < +∞ (6.30)
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This equation shows that for a friction-free sliding along the inclined plane,
the free surface lies parallel to the plane along which the container slides.
This can also be derived from considerations of the left-hand acceleration
diagram in Fig. 6.4, in which it can be seen that the resulting acceleration b
is located vertically with respect to the inclined plane.

When one adds for the downward motion the occurring frictional force,
one obtains the following set of basic hydrostatic equations:

∂P

∂x1
= 0 (6.31a)

∂P

∂x2
=−ρg(sinα− µr cosα) cosα (6.31b)

∂P

∂x3
=−ρg[1 − (sinα− µr cosα) sinα] (6.31c)

Thus the solution corresponding to (6.31) reads:

P = C − ρg[(sinα− µr cosα) cosα]x2 − ρg[1 − (sinα− µr cosα) sinα]x3

(6.32)

If one puts on the one hand P = P0, for the free surface, one obtains the
equation for the plane in which the free surface lies. When one takes further
into consideration that the origin of the coordinates lies again on the free
surface, i.e. C = P0, one obtains as the final equation for the plane of the
free fluid surface

x3 = −
[

(sinα− µr cosα) cosα
1 − (sinα− µr cosα) sinα

]
x2 (6.33)

For this general case of motion with friction along the inclined plane of the
fluid container, shown in Fig. 6.4, a free liquid surface appears which is less
inclined with respect to the horizontal plane without surface friction. Atten-
tion has to be paid, however, to the fact that the derivations only hold when
µr ≤ tanα. For µr ≥ tanα one obtains the limiting case of a container at
rest, i.e. the frictional force is higher than the forward accelerating force.

As a last example to show the employment of hydrostatic laws in accel-
erated reference systems, the problem presented in Fig. 6.5 is considered. It
shows a rotating cylinder closed at the top and bottom, which is partly filled
with a liquid. When the cylinder is at rest, the free surface of this liquid as-
sumes a horizontal position, as the different liquid particles only experience
the gravitational force as mass force. When the cylinder is put into rotation,
one observes a deformation of the liquid surface which progresses until finally
it becomes parabolic, as shown in Fig. 6.5.

When now on this rotating motion an additional accelerated vertical mo-
tion is superimposed, one detects that the hyperboloid can assume different
shapes, depending on the magnitude of the vertical acceleration and on the
direction (upwards or downwards). In the following it will be shown that the
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Fig. 6.5 Treatment of the “fluid flows” in a
rotating vertically moved and partly filled cylinder

issue of the shape of the hyperboloid can be answered on the basis of the ba-
sic equations of hydrostatics. For this purpose, a coordinate system is chosen
which is firmly coupled to the walls of the rotating and vertically accelerated
cylinder and which thus experiences both rotating motion and accelerated
vertical motion.

The above examples have shown that the basic hydrostatic equations are
applicable, provided that no fluid motion occurs in the chosen coordinate
system and that the external acceleration forces are taken into consideration
as inertia forces. In the acceleration diagram in Fig. 6.5, it is shown that, for
the following derivations, the horizontally occurring centrifugal acceleration
ω2r, as well as the “vertical acceleration” b, have been taken into account.

If one considers the fluid flow problem sketched in Fig. 6.5, in a coordinate
system (r, ϕ, z), rotating with the cylinder, one finds that all fluid particles are
at rest after having reached the steady final state of motion. With reference
to the chosen coordinate system, the prerequisites for the employment of the
basic hydrostatic equation are fulfilled, which in cylindrical coordinates adopt
the following form:

∂P

∂r
= ρgr;

1
r

∂P

∂ϕ
= ρgϕ;

∂P

∂z
= ρgz (6.34)

For gr = rω2, gϕ = 0 and gz = −(g + b) one obtains, for the problem to be
treated, the following set of basic equations and their general solution:

∂P

∂r
= ρrω2 −→ P =

1
2
ρω2r2 + f1(ϕ, z) (6.35a)
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1
r

∂P

∂ϕ
= 0 −→ P = f2(r, z) (6.35b)

∂P

∂z
= −ρ(g + b) −→ P = −ρ(g + b)z + f3(r, ϕ) (6.35c)

Comparison of the solutions (6.35a–c) results in:

P = C +
ρ

2
ω2r2 − ρ(g + b)z for 0 ≤ ϕ ≤ 2π (6.36)

When one introduces on the axis r = 0, for the position of the parabolic apex
z = z0, P = P0 holds at the location r = 0 and z = z0. This yields for the
integration constant:

C = P0 + ρ(g + b)z0

Therefore, the equation for the pressure distribution in the liquid body in
Fig. 6.5 reads:

P = P0 +
ρ

2
ω2r2 − ρ(g + b)(z − z0) for 0 < ϕ < 2π (6.37)

Along the free surface of the liquid, the following holds for the pressure P =
P0, so that the free surface employing (6.37) can be represented as follows:

z = z0 +
ω2

2(g + b)
r2 for 0 ≤ ϕ ≤ 2π (6.38)

The coordinate z0 of the introduced apex position can be determined from
the condition that the liquid volume before the rotations starts, i.e. πR2h,
has to be equal to the liquid volume which exists in rotation between the free
surface of the liquid and the cylinder walls. Thus the following holds:

πR2h = 2π
∫ R

0

rz dr = 2π
∫ R

0

r

[
z0 +

ω2

2(g + b)
r2
]

dr (6.39)

and carrying out the integration yields:

1
2
R2h =

[
1
2
z0r

2 +
ω2

8(g + b)
r4
]R

0

=
1
2
R2

[
z0 +

ω2

4(g + b)
R2

]
(6.40)

z0 = h− ω2

4(g + b)
R2 (6.41)

Inserting (6.41) in (6.38) yields:

z = h− ω2

4(g + b)
(R2 − 2r2) (6.42)

On the basis of this, the different forms of the free liquid surface can now be
looked at. Some typical cases are shown in Fig. 6.6. These will be discussed
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Fig. 6.6 Examples of possible forms of the fluid surface in a rotating vertically
accelerated cylinder

in the following on the basis of the above derivations and the derived final
relationship. It is hoped that it will be clear to the reader how physical
information can be obtained by analytical derivations employing the basic
equations of fluid mechanics, e.g. in the present example the form of the free
surface of the liquids in the containers can be calculated.

The positions of the liquid surface indicated in Fig. 6.6 can be stated by
the indicated relationship of the relative magnitudes of b and g:

b > −g: When the vertical acceleration of the container takes place up-
wards and the resultant acceleration b points downwards, with
0 > b > −g, the “opening” of the parabola is positive according
to (6.42). The liquid touches the bottom and side areas of the
container.

b = −g: When the vertical acceleration of the container takes place up-
wards with b = −g, the entire fluid rests at the side wall of the
container.

b < −g: When the vertical acceleration of the container takes place down-
wards with b < −g, the “opening” of the parabola is negative
according to (6.42). The fluid touches the ceiling and side areas
of the container.

All this can be deduced from (6.42) and all intermediate forms, not shown
in Fig. 6.6 can also be completed.

6.2 Connected Containers and
Pressure-Measuring Instruments

6.2.1 Communicating Containers

In many fields of engineering one has to deal with fluid systems that are
connected to one another by pipelines. Special systems are those in which
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∇
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P01 P02
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H2

h2

H1
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Fig. 6.7 Sketch for explanation of the pressure conditions with communicating
containers

Fig. 6.8 Communicating containers with inclined communication tube

the fluid is at rest, i.e. in which the fluid does not flow. Figure 6.7 represents
schematically such a system, which consists of two containers with “fluids at
rest” that are connected with one another by a pipeline with a valve.

When the valve is opened, both systems can interact with one another in
such a way that a flow takes place from the container with higher pressure,
at the entrance of the pipe connecting the containers, with lower pressure.
When the flow through the pipe has stopped, the same fluid pressure exists
on both sides of the valve, i.e.

p01 + ρ1g (H1 − h1) = p02 + ρ2g (H2 − h2) (6.43)

When there is the same fluid in both containers with ρ1 = ρ2 = ρ the
following relationship holds:

p02 − p01 = ρg [(H1 −H2) − (h2 − h1)] (6.44)

For the containers shown in Fig. 6.8, the pressure P0 acts on both of the top
surfaces.

Hence, introducing that the pressure over both of the free surfaces is equal,
one obtains

p02 = p01 = p0 (6.45)

and thus
(H1 − h1) = (H2 − h2) (6.46)

i.e. in open communicating containers filled with the same fluid, the fluid
levels take the same height with respect to a horizontal plane.
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This is the basic principle according to which simple liquid level indicators
which are installed outside liquid containers operate. They consist of a vertical
tube connected with a container in which the liquid filled in the container
can rise. The fluid level indicated in the connecting tube shows the fluid level
in the container.

As a last example, open containers are considered that are connected to
one another by means of an inclined tube that is directed upwards. For these
containers, one finds that the fluid surfaces in both containers adopt the
same level. When this final state is reached (equilibrium state), no equalizing
flow takes place between the containers, although the deeper lying end of
the pipe shows a higher hydrostatic pressure at the connecting point. The
reasons for the fact that an equalizing flow does not occur, in spite of a
higher hydrostatic pressure at the deeper lying end of the pipe were stated
in Sect. 6.1. The energy considerations carried out there show that the total
energies of the fluid particles are the same at both ends of the pipe and thus
the basic prerequisite for the start of fluid flows is missing.

The behavior of communicating containers that are filled with fluids at rest
can often be understood easily by making it clear to oneself that the pressure
influence of a fluid on walls is identical at each point with the pressure influ-
ence on fluid elements which one installs instead of walls. For example, the
pressure distributions in the fluid container shown in Fig. 6.9 are identical
with those of the same container when components are installed to obtain
two partial containers connected with one another, in the case that the fluid
surfaces are kept at the same level.

Owing to the installed walls, the pressure conditions do not change in
the right container as compared with the left container. The container areas
installed on the left replace the pressure influence of the fluid particles acting
on the walls.

Fig. 6.9 Sketch for the consideration of the pressure influence on liquids at rest
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6.2.2 Pressure-Measuring Instruments

The insights into the pressure distribution in containers gained in Sect. 6.2.1
were obtained through pressure relationships that were described for commu-
nicating systems. From the derived relationships for the pressure distribution
in the containers, information could be obtain for the location of the free
liquid surfaces. In return, it is possible, in the case that the established
fluid levels are known, to employ the general pressure relationships, indi-
cated in Sect. 6.1, in order to obtain information on the pressures occurring
in containers.

This is illustrated in Fig. 6.10, which shows a sketch for explaining the
basic principle according to which pressure measurements are carried out by
communicating systems.

To measure the pressure at point A in the container to which a “U-tube
manometer” is connected, the latter is filled with a measuring liquid (dotted
part of the U tube) and partly also with the liquid which enters into the U
tube from the container. The two liquids are assumed not to mix. For the
location of the separating plane between the two fluids, the following pressure
equilibrium holds:

pA + ρAg∆h = p0 + ρF gh (6.47)

For the pressure to be measured at point A, it follows that:

pA = p0 + ρF gh− ρAg∆h (6.48)

Equation (6.48) makes it clear that it is possible to determine the pressure
at point A in the container by measurements of h and ∆h when the fluid
densities ρF and ρA are known. In Fig. 6.10, it was assumed that the pressure
in the container is high compared with the ambient pressure p0. When there
is a negative pressure in the container with respect to the outside pressure,
the conditions presented in Fig. 6.11 will exist for the fluid level in the U-tube
manometer.

Thus, for the pressure equilibrium at the parting surface of the two fluids,
the following relationship holds:

pA − ρAg∆h = p0 − ρF gh (6.49)

Fig. 6.10 Diagram for explaining the ba-
sic principle of pressure measurements by
communicating systems

Measuring
Liquid
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Measuring
liquid

Fig. 6.11 Fluid columns in the U-tube manometer for “negative pressure” giving an
upward rise of the measuring liquid

Fig. 6.12 Basic principle of barometric pressure
measurements

PF

Vacuum P01=0

Plain A

P0

For the pressure at point A one then obtains the following expression:

pA = p0 − ρF gh+ ρAg∆h (6.50)

On the basis of communicating containers, measuring devices can also be
designed and employed to measure the atmospheric pressure, i.e. to carry out
barometric measurements. To explain this, reference is made to the pressure
measuring equipment shown in Fig. 6.12.

A system can in principle be produced as follows:

(a) A glass tube with a length of more than 1m is filled to the top with
mercury; at the lowest end of the tube a spherical extension of the tube
section has been made.

(b) The glass tube, filled with mercury, is turned upside down and its lower
end is displaced into a container also filled with mercury. This needs to be
achieved without mercury running out of the tube, as shown in Fig. 6.12.



168 6 Hydrostatics and Aerostatics

(c) The level of the mercury column in the glass tube over the surface of
the mercury in the external container is a measure of the barometric
pressure:

p0 = ρF gh (6.51)

A barometer, as shown in Fig. 6.12, can be employed to verify experimentally
the pressure distributions in the atmosphere stated in Sect. 6.4.1.

6.3 Free Fluid Surfaces

6.3.1 Surface Tension

In Chap. 1, it was emphasized that a special characteristic of fluids is that, in
contrast to solids, they have no form of their own, but always adopt the form
of the container in which they are stored. While doing this, a free surface
forms and it was shown in Sect. 6.1 that this surface adopts a position which
is perpendicular to the vector of the gravitational acceleration.

In this way, the fluid properties under gravitational influence were for-
mulated which are known from phenomena of every day life. It was always
assumed that the fluid at disposal possesses a total volume having the same
order of magnitude as the larger container in which it is stored. The fluid
properties hold only when these conditions are met. This is known from
observations of small quantities of liquids which form drops when put on
surfaces, as sketched in Fig. 6.13. It is seen that different shapes of drops
can form, depending on which surface and which fluid for forming drops are
used. More detailed considerations show, moreover, that the gas surrounding
the fluid and the solid surface all have an influence on the shape of a drop.
The latter is often neglected and one differentiates considerations of fluid–
solid combinations with reference to their “wetting possibility”, depending
on whether the angle of contact established between the edge of the fluid
surface and solid surface is smaller or larger than π/2.

The surface is classified as non-wetting by the fluid when

γgr > π/2 (6.52)

(a) (b)

γgr γgr

Fig. 6.13 (a) Shape of a drop in the case of non-wetting fluid surfaces; (b) shape of
a drop in the case of wetting fluid surfaces
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It holds furthermore that for

γgr < π/2 (6.53)

the surface is classified as wetting for the fluid.
Surfaces covered by a layer of fat are examples of surfaces that cannot be

wetted by water. Cleaned glass surfaces are to be classified as wetting for
many fluids.

The above phenomena can be explained by the fact that different “actions
of forces” are experienced by fluid elements. Equivalent physical consider-
ations can be made also by referring to the surface energy that can be
attributed to free fluid surfaces. The equivalence of forces and energy consid-
erations in mechanical systems is explained in Sect. 5.5. When a fluid element
is located in a layer that is far away from a free fluid surface, it is surrounded
from all sides by homogeneous fluid molecules and one can assume that the
cohesion forces occurring between the molecules cancel each other. This is,
however, no longer the case when one considers fluid elements in the prox-
imity of free surfaces. As the forces exerted by gas molecules on the water
particles are negligible in comparison with the interacting forces of the liq-
uid, a particle lying at the free surface experiences an action of forces in the
direction of the fluid. “Lateral forces” also act on the fluid element, which
thus finds itself, in the considered free interphase surface, in a state of ten-
sion that attributes special characteristics to the free surface. It is therefore
possible, for example, to deposit carefully applied flat metal components on
free surfaces without the metal piece penetrating the liquid. The floating of
razor blades on water surfaces is an experiment that is often presented in
basic courses of physics to demonstrate this. In nature, animals like “pond
skaters” make use of this particular property of the water surface in order to
cross pools and ponds skillfully and quickly.

When a drop of liquid comes into contact with a firm support, attracting
forces also occur in addition to the internal interacting forces. When these
attracting forces are stronger than the internal forces that are typical for the
fluid, we have the case of a wetting surface and water drops form as shown in
Fig. 6.13b. If, however, the forces attributed to a thin layer of the free surface
are stronger, we have the case of a non-wetting surface and the shapes of the
drops correspond to those in Fig. 6.13a.

More detailed considerations of the processes in the proximity of the free
surface of a liquid show that we have to deal with a complicated layer (with
finite extension vertical to the fluid surface) from a liquid area to a gas area.
It suffices, for many considerations to be made in fluid mechanics however,
to introduce the surface as a layer with a thickness δ → 0. To the same
are attributed the properties that comprise the complex layer between fluid
and gas. The property that is of particular importance for the considerations
to be carried out here is the surface tension. This surface tension can be
demonstrated by immersing a strap, as shown in Fig. 6.14, in a fluid. When
pulling the strap through the free surface upwards, one observes that this
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Bend wire frame

Liquid film

Free liquid surface

Fig. 6.14 Wire frame experiment to prove the action of forces as a consequence of
surface tension

requires an action of forces which is proportional to the distance between the
strap arms. The proportionality constant describing this fact is defined as
the surface constant.

The surface tension thus represents a force of the free surface per unit linear
length. It can also be introduced as the energy that is required to build up
the tension in the liquid film in Fig. 6.14. The two definitions are identical. In
both ways of looking at the energy equation, the length of the liquid film in
the direction in which the wire frame is pulled can be understood as a process
to introduce energy to produce free surfaces. One can also look at the force
that is needed to pull the wire frame up to produce the free surface. This
makes it clear that both possibilities of introduction of the surface tension,
one as the action of forces per unit length and the other as the energy per
unit area, are identical.

In concluding these introductory considerations, the effect of the surface
tension on the areas above and below a free surface will be looked at more
closely. From observations of free surfaces in the middle of large contain-
ers one can infer that the surface tension there has no influence on the
fluid and the gas area lying above it, as the free surface forms vertically
to the field of gravity of the earth, as stated in Fig. 6.1. From this it follows
that considerations of liquids with free surfaces can be carried out far away
from solid boundaries (container walls), without consideration of the wall
effects.

When one considers a curved surface element, as shown in Fig. 6.15, one
understands that, as a consequence of the surface tensions that occur, actions
of forces are directed to the side of the surface on which the center points
of the curvatures are located. The forces acting on sides AD and BC of the
surface element are computed for each element ds1 and the forces resulting
from them, in the direction of the center points of the circles of curvature,
are:

dK1 = 2σ ds1 sinβ = 2σ ds1
ds2
2R1

dK1 =
σ

R2
ds1 ds2 =

σ

R1
dO

(6.54)
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Fig. 6.15 Schematic representation of a
curved surface

Fig. 6.16 Diagram for the consideration of pres-
sure in bubbles

Similarly, the action of forces dK2 is computed as

dK2 =
σ

R2
ds2 ds1 =

σ

R2
dO (6.55)

This shows that as a consequence of the surface tension, pressure effects occur
that are directed towards the center points of the circles of curvature. This
pressure effect is computed as force per unit area. As the considerations show,
a differential pressure results, which is caused by the surface tension:

∆pσ =
dK
dO

= σ
(

1
R1

+
1
R2

)
, with dK = dK1 + dK2 (6.56)

If a spherical surface is considered, the following relationship holds:

R1 = R2 = R −→ ∆pσ =
2σ
R

(6.57)

This relation means that the gas pressure in a spherical bubble is higher
than the liquid pressure imposed from outside:

pF +
2σ
R

= Pg (6.58)

For very small bubbles this pressure difference can be very large.
When one considers the equilibrium state of a surface element of a bubble

(see Fig. 6.16), the following relationship can be written for the pressure in
the upper apex:
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p0 + ρF gh0 + σ
(

2
R0

)
= pg,0 (6.59)

For a surface element of any height, the following pressure equilibrium
holds:

p0 + ρF g (h0 + y) + σ
(

1
R1

+
1
R2

)
= pg,0 + ρggy (6.60)

When one now forms the difference of these pressure relationships, one
obtains: (

1
R1

+
1
R2

)
− 2
R0

+
1
σ

(ρF − ρg) gy = 0 (6.61)

Hence the characteristic quantity for the normalization of equation (6.61)
is to be introduced:

a =

√
2σ

g (ρF − ρg)
(6.62)

which is known as the Laplace constant or capillary constant. It has the
dimensions of length and indicates the order of magnitude when a perceptible
influence of the surface tension on the surface shape of a medium exists.

• When the Laplace constant of a free surface of a liquid is comparable to
the dimensions of the liquid body, an influence of the surface tension on
the free surface shape is to be expected.

• In the proximity of liquid rims (container walls), an influence of the surface
tension on the shape of the fluid surface is to be expected with linear
dimensions that are of the order of magnitude of the Laplace constant.

6.3.2 Water Columns in Tubes and Between Plates

From the final statements in Sect. 6.3.1, consequences result for considera-
tions of heights of liquid columns in pipes and channels of small dimensions.
Considerations, have been carried out already in Sect. 6.2, but influences of
the interactions between liquid, solid and gaseous phases remained uncon-
sidered there, i.e. the influence of the surface tension was not taken into
account. Considering the insights into the properties of connected containers
filled with liquid gained in Sect. 6.3.1, one sees that the considerations stated
for “communicating systems” in Sect. 6.2 hold only when the dimensions of
the systems are larger than the Laplace constant of the fluid interface. More-
over, the considerations only hold far away from fluid rims. In the immediate
proximity of the rim there exists an influence of the surface tension which
was neglected in the considerations in Sect. 6.2.
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Fig. 6.17 Diagram for consideration of
heights of liquid column in tubes and
between plates

The processes taking place in fluid containers of small dimensions can be
treated easily if one carries out a division of the properties of container walls
into “wetting” ones and “non-wetting” ones. When making the considerations
first for wetting walls, experiments show that for such surfaces, in small tubes
and between plates with small distances forming small gaps, the fluid in the
tube or between the plates assumes a height which is above the height of the
surface of a connected larger container, as indicated in Fig. 6.17.

From pressure equilibrium considerations it follows that

Pressure between plates: p0 − σ

R0
= pF = pi − ρF gz0 (6.63a)

Pressure in tubes: p0 − 2σ
R0

= pF = pi − ρF gz0 (6.63b)

or, written in another form,

Height of water surface between plates: z0 =
1
ρFg

(pi − p0) +
σ

ρF gR0
,

(6.64a)

Height of water surface in tubes: z0 =
1
ρFg

(pi − p0) +
2σ

ρF gR0
(6.64b)

In these relationships, the radius of curvature R0 has to be considered as
an unknown before its determination, for which two possibilities exist. To
simplify the corresponding derivations one can assume, with a precision that
is sufficient in practice, that the surface in the rising pipe adopts the form
of a partial sphere for the tube and that of a partial cylinder for the gap
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of the plate. The angle of contact between the fluid surface and the tube
wall or plate wall has to be known from information regarding the wetting
properties of the wall materials. When one defines this angle as γgr , one
obtains the following relation:

r = R0 cos γgr (6.65)

For the final relationships of the height z0 of the water surface for plates
and tubes, the following expressions hold:

Plates: z0 =
1
ρFg

(pi − p0) +
σ

ρF gr
cos γgr (6.66a)

Tube: z0 =
1
ρFg

(pi − p0) +
2σ
ρF gr

cos γgr (6.66b)

These final relationships now show that even in the case of pressure equal-
ity, i.e. pi = p0, the height z0 of the free liquid surface assumes finite values
if γgr <

π
2 exists. This has to be considered when employing communicating

systems for measurements of the height of the water level in containers and
when measuring pressures.

The second possibility for computing the pressure difference below and
above interphases is given by the fact that it is experimentally possible, al-
though with greater inaccuracy, to determine the quantity δ in Fig. 6.17 by
means of the following considerations:

r2 + (R0 − δ)2 = R2
0 R0 =

r2 + δ2

2δ
(6.67)

The height z0 of the liquid surface is calculated from this as follows:

z0 =
1
ρg

(pi − p0) +
4σδ

ρF g (r2 + δ2)
(6.68)

This proves that for σ = 0 no height difference exists and a liquid level
increase due to surface effects is not to be expected in tubes or between
plates. Under such conditions, for considerations of wetting of a surface, the
relations derived in Sect. 6.2 hold also for small tube diameters and small
gaps between plates.

In the case of non-wetting surfaces, it is observed that the fluid in the
interior of a rising tube or the gap between plates does not reach the height
which the fluid outside the tube (or the gap of the plate) assumes, as indicated
in Fig. 6.18. Analogous to the preceding considerations for wetting fluids, it
can be stated that the following relationship holds:

z0 = − 2σ
R0ρg

(6.69)

where R0 can be introduced again as indicated above.
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Fig. 6.18 Considerations of the height of the meniscus in tubes and between plates
for non-wetting surfaces

The equation thus obtained indicates that the final relationships derived
for the wetting surfaces can often be applied also to non-wetting media,
if one considers the sign of γgr and δ, Thus δ needs, for example, to be
introduced positively in the above relationships for wetting fluids, whereas
for non-wetting surfaces δ has to be inserted negatively.

6.3.3 Bubble Formation on Nozzles

The injection of gases into fluids for chemical reactions or for an exchange of
gases represents a process which is employed in many fields of process engi-
neering. Thus bubble formation on nozzles as an introduction process for the
injected gases is of interest for these applications. Moreover, the simulation
of boiling processes, where steam bubbles are replaced by gas bubbles, repre-
sents another field where precise knowledge of bubble formation is required.

When gas bubbles form on nozzles during the gassing of liquids, the pres-
sure in the interior of bubbles changes. For the theoretically conceivable static
bubble formation, this is attributed to different curvatures of the bubble in-
terface during the formation of bubbles and thus to changes of the pressure
difference caused by capillary effects . Superimposed upon these are changes
in pressure which have their origin in the upward movement of the bubble
vertex taking place during the formation. With the dynamic formation of
bubbles, additional changing pressure effects are to be expected which are
essentially caused by accelerative and frictional forces.

By the term “static bubble formation”, one understands the formation
of bubbles under pressure conditions, which allow one to neglect the pres-
sure effects on an element of the interface due to accelerative and frictional
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forces. Although in practice this kind of bubble formation exists only to a
very limited extent, static bubble formation has a certain importance. As
it is analytically treatable, some important basic knowledge can be gained
from it which contributes to the general understanding of bubble formation,
also under dynamic conditions. Furthermore, knowledge is required on static
bubble formation in order to investigate the influences of the accelerative and
frictional forces in the case of the dynamic formation of bubbles.

The essential basic equations of static bubble formation can be derived
from the equilibrium conditions for the pressure forces at a free surface
element of the bubble.

For the pressure equilibrium at an element, the following relationship of the
interface boundary surface holds, in accordance with Fig. 6.19. This means
that the gas pressure in the bubble pG has to be equal to the sum of the
hydrostatic pressure ph and the capillary pressure pσ:

pG = pσ + ph =
(

1
R1

+
1
R2

)
σ + p0 + ρFg (h0 + y) (6.70)

Here the gas pressure is
pG = pG,0 + ρGgy (6.71)

When one considers the definition for the normalized radii of curvature, em-
ploying the Laplace constant, one obtains R̄j = Rj/a, r̄ = r/a, ȳ = y/a.
Hence the following differential equation can be derived:

ȳ′′

(1 + ȳ′2)3/2
+

ȳ′

r̄ (1 + ȳ′2)1/2
= 2
(

1
R̄0

− ȳ
)

(6.72)

Fig. 6.19 Equilibrium of forces at the
bubble interface (A, buoyancy force; G,
gravity; hD, distance of the nozzle from
the fluid surface; h0, distance of the bub-
ble vertex from the fluid surface; K0,
surface forces; KP , pressure forces; Ph,
hydrostatic pressure; P0, atmospheric
pressure on the fluid surface)
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By the substitution of

z̄ =
ȳ′√

1 + ȳ′2
= sinϑ (6.73)

the differential equation of second order can be replaced by a system of two
differential equations of first order:

d
dr̄

(r̄z̄) = 2r̄
(

1
R̄0

− ȳ
)

(6.74)

dȳ
dr̄

=
z̄√

1 − z̄2 = tanϑ (6.75)

which are used for integration. The desired bubble volume V̄ is obtained in
dimensionless form by the following partial integration:

V̄ = π

ȳ∫
0

r̄2 dȳ = πr̄2ȳ − 2π

ȳ∫
0

r̄ȳ dr̄ (6.76)

and, with the use of (6.74), one obtains:

V̄ = πr̄
[
z̄ + r̄

(
ȳ − 1

R̄0

)]
(6.77)

If one introduces again dimensional quantities, equation (6.77) can be written
as follows:

V

a3
= π

( r
a

) [
z̄ +

r

a

(
y

a
− a

R0

)]
(6.78)

V = a2πr
[
z̄ +

r

a2

(
y − a2

R0

)]
(6.79)

With Laplace constant a and equation (6.73), the bubble volume V can
be written as c′

V =
2σ

g (ρF − ρG)
πr

{
sinϑ+

r

2σ
g (ρF − ρG)

[
y − 2σ

g (ρF − ρG)R0

]}
(6.80)

Equation (6.80) represents an integral property of the differential equa-
tion system (6.74) and (6.75) which was obtained from considerations of the
equilibrium of forces on a bubble surface element.

For the forces acting on a bubble as a whole (Fig. 6.19), the equilibrium
condition can be written in the form:

V gρF − V gρG + πr2
[

2σ
R0

− g (ρF − ρG) y
]

= 2πrσ sinϑ (6.81)
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where the first two terms represent the buoyancy force and the weight of the
bubble and the third term on the left-hand side is the pressure force on the
bubble cross-section πr2 at the height y. The surface forces are indicated on
the right-hand side. Equation (6.81) should be employed in cases where the
bubble volume is to be computed from the conditions of the equilibrium of
forces.

For the computation of the pressure changes during bubble formation, the
pressure in the bubble vertex can be expressed using equations (6.70) and
(6.71) and can be expressed as:

pG,0 =
2σ
R0

+ p0 + �F g (hD − ys) (6.82)

The pressure at the nozzle mouth varies according to (6.71) and (6.82) as
the following relationship shows:

pG,D =
2σ
R0

+ p0 + �F ghD − g (�F − �g) ys (6.83)

Equation (6.83) can be written in dimensionless form:

∆p̄D =
1√

2gσ (�F − �G)
[pG,D − p0 − �F ghD] =

1
R0

− ȳs (6.84)

Although the differential equation system (6.74) and (6.75) permits the
computation of all bubble forms of static bubble formation and by means of
equations (6.77) and (6.84), the corresponding bubble volumes and pressure
differences can be obtained as important quantities of the bubbles, the prob-
lem with regard to the single steps of bubble formation is not determined.
The solution of the equations only allows the computation of a one-parameter
set of bubble shapes, where the vertex radius R0 is introduced into the deriva-
tions as a parameter. It does not permit one to predict in which order the
different values of the parameters are determined during bubble formation.
This has to be introduced into the considerations as additional information
in order to obtain a set of bubble forms that are generated in the course of
the bubble formation.

Theoretically, it is now possible to choose any finite set of quantities of R0,i

values and to compute for these the corresponding bubble forms. Of practical
importance, however, is only one R0,i variation, which is given by most of
the experimental conditions. For these conditions, the set of R0,i values can
be selected as follows:

(a) All bubbles form above a nozzle with radius r̄D.
(b) R̄0,i = ∞ is the starting shape of static bubble formation; the horizontal

position of the interface boundary surface above the nozzle is chosen to
start computations.

(c) All further vertex radii are selected according to the condition V̄D

[
R̄0,i+1

]
≥ V̄D [R0,i].
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This means that the theoretical investigations are restricted to the bub-
ble formation which comes about through slow and continuous gas feeding
through nozzles having a radius r̄D. Gas flows through the nozzles, and thus
a decrease in the bubble volume with the selected vertex radius, as (6.77)
or (6.79) would permit, are excluded from the consideration by the imposed
relationship (c). The consequent application of this relationship leads to the
formation of a maximum bubble volume. The same has to be considered to
be the volume of the bubble at the start of the separation process, i.e. the
lift-off occurs for

(d) V̄A =
(
V̄D

)
max

.

In the computations, the differential equation system (6.74) and (6.75)
was solved numerically for different vertex radii, considering the indicated
conditions, and thus a sequence of bubble forms was ascertained. The re-
sults of these computations are summarized in Figs. 6.20–6.25, which can be
consulted in order to understand the static bubble formation on nozzles in
liquids.

Figure 6.20 shows bubble forms that represent different stages of bubble
formation with slow gas feeding through nozzles. The results are reproduced
for r̄D = 0.4 and this corresponds to a nozzle radius of roughly rD ≈ 1.6mm
in the case of air bubble formation in water.

Figure 6.21 shows the change in the bubble volume during the formation
of gas bubbles on nozzles of different radii r̄D, where the vertex radius R̄0 was
chosen for designating the respective formation stage. From this diagram, it
can be inferred that a large part of the bubble forms at an almost constant
vertex radius and this is an important property for larger nozzle radii. For

r−D

Fig. 6.20 Bubble forms of the static bubble formation for r̄D = 0.4 computed
through integration of the equation system (6.74) and (6.75)
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Fig. 6.21 Bubble volume V̄ as a function of the vertex radius R̄0 for different nozzle
radii r̄D
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Fig. 6.22 Pressure difference ∆P̄D as a function of the vertex radius R̄0 for different
nozzle radii r̄D

smaller nozzle radii, larger changes in the vertex radius are to be expected
during the formation of the gas bubbles. The vertex radius R̄0 first decreases
and then increases again before the bubble separates from the nozzle.

In Fig. 6.22, the pressure difference ∆P̄D as a function of the vertex ra-
dius R̄0 is represented for different nozzle radii r̄D. From this representation,
it can be gathered that, for static bubble formation on nozzles, initially a
continuous pressure increase at the nozzle mouth is necessary. After having
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Fig. 6.23 Distance of the bubble vertex ȳs from the nozzle top as a function of the
vertex radius R̄0 for different nozzle radii r̄D

Fig. 6.24 Distance of the bubble vertex ȳs from the nozzle top as a function of the
nozzle volume V̄ for different nozzle radii r̄D

reached a maximum, distinct for all nozzle radii, the pressure decreases
again. This continuously increasing and then decreasing pressure change,
which is required for static bubble formation, makes it difficult to investigate
experimentally the static formation of gas bubbles on nozzles in liquids.
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Fig. 6.25 Pressure difference ∆P̄D as a function of the nozzle volume for different
nozzle radii r̄D

Figures 6.23 and 6.24 show the change in the vertex distance from the noz-
zle during bubble formation for different nozzle radii. In Fig. 6.23, the vertex
radius was chosen for designating the respective stage of bubble formation,
whereas in Fig. 6.24 the bubble volume was employed.

Figure 6.25 represents the dimensionless pressure difference∆P̄D as a func-
tion of the bubble volume for different nozzle radii r̄D. The final points of the
different curves are given by the existence of a maximum bubble volume. As
can be seen from Fig. 6.22, the bubble of maximum volume above a nozzle
is not identical with that having a minimum pressure. However, the latter is
excluded from the possible bubble forms. This exclusion is due to the defi-
nition of static bubble formation given above. It is stated that a continuous
gas flow takes place through the nozzles towards the bubble.

For a general understanding of static bubble formation, two further facts
can be referred to:

(a) For the static bubble formation, a radius r̄D,gr = 0.648 exists which splits
up the static bubble formation into two different domains. For larger r̄D
bubbles form that differ in their shape from those shown in Fig. 6.20.
Theoretical investigations for nozzle radii r̄D ≥ r̄D,gr were not carried
out here. They turned out to be unimportant for the introduction of
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1
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Fig. 6.26 Bubble chains R̄0 = 1.60 ascertained from the differential equation system
(6.74) and (6.75)

the results intended here for a better understanding of the principles of
bubble formation.

(b) The differential equation system (6.74) and (6.75) allows the computa-
tion of bubbles, as shown in Fig. 6.26. These bubble columns were not
investigated further, as they are not in accordance with the above-stated
air flow through the nozzle for the examined static bubble formation.

Whereas static nozzle formation can theoretically be understood essen-
tially with simple mathematical means, there are considerable difficulties
with similar investigations of dynamic bubble formation. This is attributable
mainly to the fact that no coordinate system could be found in which dynamic
bubble formation could be described as a stationary process. Moreover, for
dynamic bubble formation, the pressure on an element of the interface bound-
ary surface is dependent on the fluid motions during the bubble formation and
thus is computable only by solving the non-stationary Navier–Stokes equa-
tion. This, however, is solvable only with difficulty and great computing effort
using numerical methods. Solutions of this fluid are not treated in this book.

6.4 Aerostatics

6.4.1 Pressure in the Atmosphere

Aerostatics differs from hydrostatics in the treatment of the properties of
the fluid. The partial differential equations for fluids at rest, derived from
the general Navier–Stokes equations, are applied along with the equation of
state for an ideal gas:

P

ρ
= RT (6.85)

rather than for an ideal liquid, ρ = constant.
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Hence the valid partial differential equations in aerostatics read:

∂P

∂xj
= ρĝj =

P

RT
ĝj (6.86)

or written out for j = 1, 2, 3:

∂P

∂x1
=
P

RT
ĝ1,

∂P

∂x2
=
P

RT
ĝ2,

∂P

∂x3
=
P

RT
ĝ3 (6.87)

This set of partial differential equations can now be employed for the
computation of the pressure distribution in such gases whose thermodynamic
state equation is given by (6.85). For most gases, and definitely for air under
atmospheric conditions, considerations can be carried out with the help of
this ideal gas equation. This will be made clear in the sections below with
the help of some examples.

When one considers the atmosphere of the Earth as consisting of a com-
pressible fluid at rest, whose thermodynamic state can be described by the
ideal gas equation (6.85), with a precision sufficient for the derivations at
issue, an approximate relationship between the height above the surface of
the Earth and the pressure of the atmosphere at a considered height H can
be derived, which in general is defined as the barometric height-pressure re-
lationship. In particular, the relationship known as Babinets approximation
equation will be derived here.

When one uses the coordinate system indicated in Fig. 6.27, in which the
plane x1, x2 forms a horizontal area at the level of the sea surface, the partial
differential equations (6.87) can be written as follows:

∂P

∂x1
= 0 � P = f(x2, x3)

∂P

∂x2
= 0 � P = f(x1, x3)

(6.88)

Fig. 6.27 Coordinate system for the derivation of Babinet’s approximation equation
for the atmospheric pressure above the Earth’s surface
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i.e. P = f (x3) and thus the relation ∂P
∂x3

−→ dP
dx3

holds:

dP
dx3

= − P

RT
ĝ (6.89)

The differential equation which is to be solved can be written as follows:

dP
dx3

= − P

RT
ĝ

dP
P

= − 1
RT
ĝdx3 (6.90)

with the general solution:

ln
P2

P1
= − 1

R

∫ (x3)2

(x3)1

(
ĝ

T

)
dx3 (6.91)

The integral in the above equation can be solved only when it is known
how the gravitational acceleration g changes with height and when further
the temperature variation as a function of x3 can be stated. For the gravita-
tional acceleration ĝ, it is known that it changes with the height x3, exactly
speaking, with the square of the distance from the center of the Earth. This
follows directly from Newton’s law of gravitation, when the influence of the ro-
tation of the Earth is neglected. When one designates the radius of the Earth
R and when g is the gravitational acceleration at sea level, the following
relation holds:

ĝ = g
1(

1 +
x3

R

)2 (6.92)

Taking into consideration the linear decrease in temperature with height
which often exists in the atmosphere, i.e. if one introduces:

T = T0 (1 − αx3) (6.93)

one obtains the following final relation:

ln
PH

P0
= − g

RT0

H∫
0

dx3

(1 − αx3)
(
1 +

x3

R

)2 (6.94)

When one now imposes restrictions concerning the height above which the
above integration is to take place and when one chooses the height such that
the following relationship holds:

α x3 � 1
x3

R
� 1 (6.95)

one can obtain by series development of the terms in brackets:

ln
PH

P0
= − g

RT0

H∫
0

(1 + αx3 + . . . )
(

1 − 2x3

R
+ . . .

)
dx3 (6.96)
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Fig. 6.28 Standard pressure distribution in the atmosphere and distributions
computed on the basis of approximate equation (6.98)

or the following approximate equation by neglecting the terms of higher order:

ln
PH

P0
= − g

RT0

H∫
0

[
1 +
(
α− 2

R

)
x3

]
dx3 (6.97)

By solving this equation, the following final relationship results for the
pressure distribution in the lower atmosphere:

PH = P0 exp
{
− gH
RT0

[
1 +

1
2

(
α− 2

R

)
H

]}
(6.98)

As Fig. 6.28 shows, this pressure relationship describes, with good preci-
sion, the standard pressure distribution existing in the atmosphere.

The approximate equations stated by Babinet for the pressure distribution
in the atmosphere can be derived from the general differential equation

dP

P
= − ĝ

RT
dx3 (6.99)

by introducing the following hypotheses:

P =
PH + P0

2
= constant ĝ = g = constant

T =
T0 + TH

2
= constant

(6.100)

When one introduces these simplifications, the following solution for the
differential equation (6.99) results:
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2
PH + P0

(PH − P0) = −
H∫

0

g

RT
dx3 (6.101)

or resolved:

PH − P0

PH + P0
= − gH

R (T0 + TH)
(6.102)

H = −R
g
T0

(
1 +

TH

T0

)(
PH − P0

PH + P0

)
(6.103)

When one rearranges this equation to obtain PH relative to P0:

PH = P0

R
g T0

(
1 + TH

T0

)
−H

R
g T0

(
1 + TH

T0

)
+H

(6.104)

Figure 6.28 shows the pressure distribution by the two relationships (6.98)
and (6.104) in comparison with the standard pressure distribution in the
atmosphere.

6.4.2 Rotating Containers

As a further example of the employment of the basic equation of aerostat-
ics, the problem indicated in Fig. 6.29 will be considered. By a single pressure
measurement in the upper center point of the cylinder top surface and by em-
ployment of the partial differential equation of aerostatics, the entire pressure

The pressure distribution 
in rotating containers can 
become rather complex 

Fig. 6.29 Rotating cylinder with a compressible medium
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load on the circumferential surface of a rotating cylinder, filled with a com-
pressible fluid, can be defined. In contrast to the example treated in Sect. 6.1,
here the cylinder will experience a pure rotational motion only, so that the
partial differential equations of aerostatics can be written for T = constant
as follows:

∂P

∂r
=
P

RT
rω2 −→ lnP =

ω2

2RT
r2 + F (ϕ, z) (6.105)

1
r

∂P

∂ϕ
= 0 −→ P = F (r, z) (6.106)

∂P

∂z
= − P

RT
g −→ lnP = − g

RT
z + F (r, ϕ) (6.107)

By comparing the solutions one obtains for the logarithm of the pressure:

lnP = C +
ω2

2RT
r2 − g

RT
z (6.108)

The pressure P0, measured at the coordinate origin, permits the definition
of the integration constant C as:

C = ln P0 (6.109)

Introducing C into the (6.108), one obtains the pressure distribution. The
pressure P is given by:

P = P0 exp
{
ω2

2RT
r2 − g

RT
z

}
(6.110)

Along the floor space z = −L the pressure distribution is computed as:

P (r, z = −L) = P0 exp
{
ω2

2RT
r2 +

gL

RT

}
(6.111)

Along the vertical circumferential surface r = R:

P (r = R, z) = P0 exp
{
ω2

2RT
R2 − g

RT
z

}
(6.112)

Pressure measurements show a very good agreement of P (R, z) of equation
(6.112) with the experiments.

6.4.3 Aerostatic Buoyancy

When employing aerostatic laws, mistakes are often made by using relations
that are valid strictly only in hydrostatics. An example is the buoyancy of
bodies, which is computed according to Fig. 6.30 as the difference in the
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Fig. 6.30 Illustration of the hydrostatic buoyancy of immersed bodies

pressure forces on the lower and upper sides of a immersed body. The basic
equations for these computations are stated in Fig. 6.30. They lead to the
generally known relation which expresses that the buoyancy force experienced
by a body immersed in a fluid is equal to the weight of the fluid displaced
by the body. The derivations on the basis of Fig. 6.30 make it clear that the
simple relationship holds only for fluids with ρ = constant.

For the buoyancy force on a body element:

∆Ai = ∆Pi∆Fi

∆Pi = ρF ghi (x1)

Thus for the buoyancy force:

A =
N∑
i1

ρF ghi (x1)∆Fi = ρF gV

When one wants to compute the buoyancy forces in gases, the laws of
aerostatics have to be employed, i.e. the derivations shown in Fig. 6.30 are to
be modified as follows.

When one applies the basic equations (6.87) to an “isothermal atmo-
sphere”, in which the axis x3 of a rectangular Cartesian coordinate system
points in the upward direction, one obtains

dP
dx3

= − P

RT
g (6.113)

When one sets g = constant and T = T0 = constant, one obtains

dP
P

= − g

RT0
dx3 (6.114)
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or when integrated:

ln
P

P0
= − g

RT0
x3 (6.115)

In this relation, the pressure P0 prevails at the level x3 = 0. For the
pressure path in an isothermal atmosphere, one can therefore write:

P = P0 exp
{
− g

RT0
x3

}
(6.116)

Employing now again the relation for the buoyancy occurring on a body
element:

∆Ai = ∆Pi∆Fi (6.117)

and rewriting using (6.116), we obtain:

∆Pi = P0 exp
{
−gx3i

RT0

}
− P0 exp

{
− g

RT0
(x3i + hi)

}
(6.118)

i.e.

∆Pi = P0 exp
{
−gx3i

RT0

}[
1 − exp

{
− g

RT0
hi

}]
(6.119)

and it quickly becomes evident that, for the total buoyancy in the present
case, a simple relation stated for ρ = constant for the total buoyancy force
does not result. The Taylor series expansion for Pi can be written as:

∆Pi =
∂P

∂x3
hi +

1
2
∂2P

∂x2
3

h2
i +

1
6
∂3P

∂x3
3

h3
i + . . . (6.120)

= − P0g

RT0
exp
{
− gx3

RT0

}
hi +

P0g
2

2R2T 2
0

exp
{
− gx3

RT0

}
h2

i− (6.121)

∆Pi ≈ ρ (x3) ghi

[
1 − ghi

2RT0
+

1
6

(
ghi

RT0

)2

− + . . .

]
(6.122)

Thus one obtains for the buoyancy force:

A � ρ (x3) g

[
V −

N∑
i=1

gh2
i∆Fi

2RT0
+ − . . .

]
(6.123)

The first term in (6.123) corresponds to the buoyancy force of hydrostatics.
The second terms takes the compressibility of the considered gas into account.
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6.4.4 Conditions for Aerostatics: Stability of Layers

A fluid can find itself in mechanical equilibrium (i.e. show no macroscopic
motion) without being in thermal equilibrium. An equation similar to (6.7),
for the condition of mechanical equilibrium, can also be given when the tem-
perature in the fluid is not constant. Here the question arises, however, of
whether an established mechanical equilibrium is stable. It appears from
simple considerations that the equilibrium shows the stability only under
certain conditions. When this condition is not met, the static state of the
fluid is unstable and in the fluid flows of random motions occur, which
tend to mix the fluid such that the condition of constant temperature is
achieved. This motion is defined as free convection. The stability condi-
tion for mechanical equilibrium is, in other words, the condition for the
absence of natural convection for a stratified fluid. It can be derived as
follows.

We consider a fluid at a level z and with a specific volume v(P, s), where
P and s are the equilibrium pressure and the equilibrium entropy of the
fluid at this level. We assume that the considered fluid element is displaced
upwards by a small stretch ξ adiabatically. Its specific volume thus becomes
v(P ′, s), where P ′ is the pressure at the level z + ξ. For the stability of the
chosen equilibrium state it is necessary (although in general not sufficient)
that the force occurring here drives the element back to the starting position.
The considered volume element therefore has to be heavier than the fluid in
which it was displaced into the new position. The specific volume of the fluid
is v(P ′, s′), where s′ is the equilibrium entropy of the fluid at the level z+ ξ.
Thus we have as a stability condition

v(P ′, s′) − v(P ′, s) > 0

This difference is expanded in powers of s′ − s = ds
dz ξ and we obtain(

∂v

∂s

)
P

∂s

∂z
> 0 (6.124)

In accordance with thermodynamic relations, because T ds = dh− v dP , the
following holds, namely: (

∂v

∂s

)
P

=
T

cp

(
∂v

∂T

)
P

cp being the specific heat at constant pressure. The specific heat cp is always
positive like the temperature T and therefore we can transform (6.124) into(

∂v

∂T

)
P

ds
dz

> 0 (6.125)
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Most materials expand with warming, i.e.
(

∂v
∂T

)
p
> 0. The condition for the

absence of the convection is then reduced to the inequality:

ds
dz

> 0 (6.126)

i.e. the entropy has to increase with the level.
From this, one can easily find a condition for the temperature gradient

dT/dz. From the derivation of ds/dz we can write

ds
dz

=
(
∂s

∂T

)
P

dT
dz

+
(
∂s

∂p

)
T

dp
dz

=
cp
T

dT
dz

−
(
∂V

∂T

)
P

dp
dz

> 0

Finally, we insert dP/dz = −ρg according to (6.7) and obtain:

dT
dz

> −gTρ
cp

(
∂V

∂T

)
P

(6.127)

Hence convection will occur when the temperature in the direction from top
to bottom decreases and the temperature gradient is larger in value than
gT
cp
ρ
(

∂v
∂T

)
p
.

When one investigates the equilibrium of a gas column, one can assume the
gas stratification for (6.127) to be fulfilled. The limiting value T

V

(
∂V
∂T

)
p

= 1
exists. Hence the stability condition for the equilibrium simply reads

dT
dz

> − g
cp

(6.128)

When this stability requirement in the atmosphere is not met, the established
temperature stratification is unstable and it will give way to a convective
temperature-driven flow as soon as the smallest disturbances occur. The
motion will eliminate the unstable stratification.
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6.6. Höfling, O., Physik: Lehrbuch für Unterrichtund Selbststudium, Dümmler-
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Chapter 7

Similarity Theory

7.1 Introduction

The knowledge gained from similarity theory is applied in many fields of nat-
ural and engineering science, among others in fluid mechanics. In this field,
similarity considerations are often used for providing insight into the flow
phenomenon and for generalization of results. The importance of similarity
theory rests on the recognition that it is possible to gain important new
insights into flows from the similarity of conditions and processes without
having to seek direct solutions for posed problems. This will be known to
most readers of this book from geometry, where geometrically similar figures
and bodies, e.g. similar triangles, are introduced and employed extend con-
siderations. In this way, the height of a tower or the width of a river can,
for example, be found by means of similarity considerations, without directly
determining the height or the width. From similarity considerations in the
field of geometry, it is known that a sufficient condition for the presence
of geometrically similar triangles, quadrangles, etc., is the equality of corre-
sponding angles or equality of the ratios of the corresponding sides, i.e. it
holds for similar triangles:

L1

l1
=
L2

l2
=
L3

l3
= constant. (7.1)

For a channel with a step:

L1

l1
=
L2

l2
=
D

d
=
H

h
= constant. (7.2)

ensures geometrical similarity (see Fig. 7.1). The geometric similarity of fluid
flow boundaries is always an important assumption for extended similarity
considerations in fluid mechanics, i.e. the geometric similarity, is an inherent
part of the subject of this chapter.

The similarity relationships indicated above for the field of geometry can
be transferred to other domains, e.g. to mathematics and physics, and can

193
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Fig. 7.1 Explanation of geometric
similarity

Similar triangles

Similarity of backward 
flowing steps

be introduced in engineering science with the objective of achieving indirect
solutions for problems. A similar methodology can be applied to obtain the
kinematic similarity of flows, which is considered as given when, e.g. two
fluid flows exhibit similar spatial motions. This requires, in general, simi-
larity of the forces acting on individual fluid elements, i.e. the existence of
dynamic similarity is a precondition for kinematic similarity of fluid motions.
More detailed considerations show, in addition, that a further prerequisite for
kinematic similarity of fluid motions is geometric similarity and the presence
of similar boundary conditions.

When one extends the similarity considerations also to heat transport
problems, it makes sense to introduce the term thermal similarity. Here again,
similar temperature fields can be expected only when similar heat flows exist
in the considered temperature fields, i.e. when the caloric similarity of the
considered heat-transport problems is given. However, it is important here
to separate the thermal and caloric similarity from one another.

In similarity considerations, strictly, only quantities with the same physical
units can be included. The “dimensionless proportionality factors” of the dif-
ferent terms of a physical relationship computed from it by dividing all terms
by one term in the equation are designated similarity numbers or dimen-
sionless characteristic numbers of the physical problem. Physical processes of
all kinds can thus be categorized as similar only when the corresponding di-
mensionless characteristic numbers, defining the physical problem, are equal.
This requires, in addition, that geometric similarity exists and the boundary
conditions for the considered problems are similar. The concept of similarity
can therefore only be applied to physical processes of the same kind, i.e. to
fluid flows or heat transport processes separately. When certain relationships
apply both to flow processes and to heat transfer process, one talks of an
analogy between the two processes.
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The above general considerations on theoretical similarity deliberations in
fluid mechanics make it clear that two fundamentally different process exist
concerning the solution of flow problems:

• Solutions of concrete flow problems using dimensional physical quantities
permit flow systems with all parameters to be considered providing a so-
lution of a specific flow problem. Hence a solution with all dimensions of
the problem is provided.

• Generalization of solutions of flow problems, with the help of dimensionless
“characteristic numbers”, in order to present the solution obtained for a
specific flow problem as a generally valid solution for similar flows.

In Chap. 2, physical quantities were introduced that consisted of a sign, a
numerical value and a unit. It was made clear that according to the chosen
system of basic units, the magnitude of a considered physical quantity can
vary. When one chooses the SI system as a basis of units (m, kg, s) for
some mechanical quantities, other numerical values result for the value of a
considered quantity then when the basic units (cm, g, s) are introduced, as is
sometimes still the case. The international system of basic units, comprising
the following units, is gaining more and more acceptance, however:

• Length L (m = metre)
• Time t (s = second)
• Amount of substance N (mol = mole)
• Light intensity S (cd = candela)
• Mass M (kg = kilogram)
• Temperature θ (K = kelvin)
• Current intensity I (A = ampere)

Thanks to the introduction of an international system of units, the commu-
nication of physical processes and, above all, the comparison of analytical,
numerical and experimental results have been simplified. Nevertheless, in
principle, there is a multitude of different basic systems of units that can be
employed for the presentation of the same physical quantity. With each sys-
tem of units the considered physical quantity has another “absolute value”,
i.e. the physical quantity changes its numerical value according to the chosen
system of units. This indicates the significance of the Table 7.1 of dimensions
and units of the most important physical quantities in fluid mechanics. At
the same time the Table 7.1 points out the principle differences between the
dimensions and units of physical quantities.

In the presentation of fluid mechanics, in this book, transport processes by
molecular motions (diffusive transport) or by flows (convective transport) are
of particular interest. In order to guarantee the similarities between the trans-
port processes, different dimensionless characteristic numbers are employed,
which are subdivided below into four groups:
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Table 7.1 Dimensions and units of important physical quantities of fluid mechanics

Quantity, designation Dimensions Units
F, L, t, ϑ M, L, t, ϑ

Length L L metre, m
Force F MLt−2 newton, N
Mass FL−1t2 M kilogram, kg
Time t t second, s
Temperature Θ Θ kelvin, K
Velocity Lt−1 Lt−1 ms−1

Mass flow ṁ FL−1t Mt−1 kg s−1

Volume flow L3t−1 L3t−1 m3 s−1

Pressure, stress FL−2 ML−1t−2 pascal,
Pa = N m−2

Work, energy FL ML2t−2 joule,
J = W s = N m

Power FLt−1 ML2t−3 watt,
W = Nm s−1

Density ρ FL−4t2 ML−3 kgm−3

Dynamic viscosity µ FL−2t ML−1t−1 Pa s = N sm−2

Kinematic viscosity ν L2t−1 L2t−1 m2 s−1

Thermal expansion ϑ−1 ϑ−1 LK−1

coefficient β
Compressibility F−1L2 M−1Lt2 ms−2 kg−1

coefficient α
Specific heat capacity cp, cv L2t−2ϑ−1 L2t−2ϑ−1 J kg−1 K−1

Thermal conductivity λ Ft−1ϑ−1 MLt−3ϑ−1 W m−1 K−1

Surface tension σ FL−1 Mt−2 Nm−1

Thermal L2t−1 L2t−1 m2 s−1

diffusivity a = λ/ρcp

Heat transfer FL−1t−1ϑ−1 Mt−3ϑ−1 W m−2 K−1

coefficient α
Gas constant R L2t−2ϑ−1 L2t−2ϑ−1 J kg−1 K−1

Entropy s L2t−2ϑ−1 L2t−2ϑ−1 J kg−1 K−1

1. Similarity of molecular transport processes

Pr = ν/a = (µcp/λ) = Prandtl number
Sc = ν/D = µ/(ρD) = Schmidt number

2. Similarity of flow processes

Re = LU/ν = Reynolds number
Fr = U2g/L = Froude number
Ma = U/c = Mach number
Eu = ∆P/ρU2 = Euler number
St = Lf/U = Strouhal number, f is the frequency
Gr = L3gβρ2∆T/µ2 = Grashof number

3. Similarity of heat transfer processes

Pe = RePr = UL/a = Peclet number
Ec = U2/cp∆T = Eckert number



7.2 Dimensionless Form of the Differential Equations 197

4. Similarity of integral quantities of heat and mass transfer

Nu = αL/λ = Nusselt number
Sh = βL/D = Sherwood number

where α is introduced as heat transfer coefficient and β as mass transfer
coefficient.

It is recommended to bear these groups in mind when in the following
sections similarity theory and its application in fluid mechanics are treated.

7.2 Dimensionless Form of the Differential Equations

7.2.1 General Remarks

In Chap. 5 it was shown that fluid mechanics is a field whose physical basics
not only exist in complete form, but can also be formulated as a complete
set of partial differential equations. Closing the momentum and energy equa-
tions, molecular transport properties of fluids were included, i.e. the molecular
structure of the fluids was introduced with regard to its integral effect on
momentum, heat and mass transport. This resulted in a set of transport
equations which are summarized below for Newtonian fluids:

• Continuity equation:

∂ρ

∂t
+
∂(ρUi)
∂xi

= 0 (7.3)

• Momentum equations (j = 1, 2, 3):

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
+
∂

∂xi

[
µ

(
∂Uj

∂xi
+
∂Ui

∂xj

)
− 2

3
δijµ

∂Uk

∂xk

]
+ ρgj

(7.4)
or for ρ = constant and µ = constant:

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
+ µ

∂2Uj

∂x2
i

+ ρgj (7.5)

• Energy equation for ρ = constant, µ = constant and λ = constant:

ρcp

(
∂T

∂t
+ Ui · ∂T

∂xi

)
= λ

∂2T

∂x2
i

+ µΦµ (7.6)
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with

Φµ = 2

[(
∂U1

∂x1

)2

+
(
∂U2

∂x2

)2

+
(
∂U3

∂x3

)2
]

+

[(
∂U1

∂x2
+
∂U2

∂x1

)2

+
(
∂U2

∂x3
+
∂U3

∂x2

)2

+
(
∂U3

∂x1
+
∂U1

∂x3

)2
]

(7.7)

• State equations:

P

ρ
= RT (ideal gas) and ρ = constant (ideal liquid) (7.8)

Through the above set of partial differential equations there exist excel-
lent conditions for all fields of fluid mechanics for applying similarity
considerations. Similarity considerations can be introduced into the differ-
ential equations in many ways, depending on the problem and the solution
sought or on the solution path that one wants to take. This is explained in
Sects. 7.2.2–7.2.4, by way of examples, see also refs. [7.1] to [7.4].

Looking at the above set of partial differential equations, one finds that the
solution requires the specification of initial and boundary conditions. In simi-
larity analysis, these boundary conditions must meet strict similarity require-
ments. Geometric similarity of boundaries is an important prerequisite for
similar solutions of the above differential equations. As further considerations
show, the continuity equation can be employed to formulate the conditions
as to how the characteristic temporal changes of flow fields are to be coupled
with the characteristic dimensions of flow geometries and characteristic fluid
velocities, in order to deduce the conditions for the similarity of solutions of
the basic fluid-mechanical equations. Through the momentum equations, for
all three velocity components, which are formulated as equations of the forces
acting on a fluid element (per unit volume), strict statements can be made
on the requirements that have to exist for the dynamic similarity of flows.
Moreover, dynamic similarity is a prerequisite for the existence of kinematic
similarity of flow fields that is often necessary for transferring the insights on
structural observations in one flow to another flow.

Finally, it should be pointed out that with the above locally formulated
energy equation, all information is available to ensure that for heat transfer
problems the conditions for caloric similarity are given. This then is again
a prerequisite for the existence of thermal similarity. Employing also the
state equations, the conditions required to transfer the temperature field of
a gas flow to the temperature field of a liquid flow can then be derived.
All these possibilities, to extend a solution from a special flow or tempera-
ture field, through similarity considerations, into generally valid knowledge,
make similarity theory an important section of fluid mechanics. The fol-
lowing considerations show how one uses the insights, gained by similarity
considerations, of the differential equations, in different applications in fluid
mechanics.
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7.2.2 Dimensionless Form of the Differential
Equations

The deliberations in Sect. 7.1 show that insights into the existence of similar-
ity could be obtained by forming fixed relationships from momentum changes
per unit time and corresponding force effects. From this result, one can ob-
tain dimensionless characteristic numbers that are employed as a basis for
the desired generalizations of certain insights into fluid flows. Such knowl-
edge can also be gained when transferring the partial differential equations
summarized in Sect. 7.2.1 from their dimensional into a dimensionless form.
For this purpose, one introduces “characteristic quantities” that are desig-
nated below with the subscript c. All quantities marked with asterisks (*)
are dimensionless.

Uj = UcU
∗
j ; t = tct∗; ρ = ρcρ

∗; P = ∆PcP
∗; τij = τcτ∗;

gj = gcg∗; µ = µcµ
∗; etc.

When one inserts the dimensionless quantities into the continuity equation
(7.3), one obtains:

∂ρ

∂t
+
∂(ρUi)
∂xi

=
ρc

tc

∂ρ∗

∂t∗
+
ρcUc

Lc

∂(ρ∗U∗
i )

∂x∗i
= 0 (7.9)

or resulting:
Lc

tcUc︸ ︷︷ ︸
St = Strouhal number

∂ρ∗

∂t∗
+
∂(ρ∗U∗

i )
∂x∗i

= 0. (7.10)

The above derivations make it clear that similar solutions for flow problems
can follow from the continuity equation only when the Strouhal numbers for
two flow problems A and B, to which the continuity equation is applied, are
equal, i.e. when the following holds:(

Lc

tcUc

)
A

=
(
Lc

tcUc

)
B

. (7.11)

Normalizing also the momentum equations in a similar way, one obtains:

ρcρ
∗
(
Uc

tc

∂U∗
j

∂t∗
+
U2

c

Lc
U∗

i · ∂U
∗
j

∂x∗i

)
= −∆Pc

Lc

∂P ∗

∂x∗j
− τc
Lc

∂τ∗ij
∂x∗i

+ ρcgcρ
∗g∗j (7.12)

or once again rewritten in dimensionless form:

ρ∗

⎛⎜⎜⎜⎝ Lc

tcUc︸ ︷︷ ︸
St

∂U∗
j

∂t∗
+ U∗

i

∂U∗
j

∂x∗i

⎞⎟⎟⎟⎠ = − ∆Pc

ρcU2
c︸ ︷︷ ︸

Eu

∂P ∗

∂x∗j
− τc
ρcU2

c︸ ︷︷ ︸
1/Re

∂τ∗ij
∂x∗i

+
gcLc

U2
c︸ ︷︷ ︸

1/Fr

ρ∗g∗j .

(7.13)
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From (7.13), one can see that three new dimensionless characteristic numbers
were created by normalization of the momentum equation: from the continu-
ity equation and the momentum equation, four dimensionless characteristic
numbers can thus be derived for flow problems:

St = Lc/tcUc = Strouhal number = local acceleration forces
spatial acceleration forces

Eu = ∆Pc/ρcU
2
c = Euler number = pressure forces

acceleration forces
Re = ρcU

2
c /τc = Reynolds number = acceleration forces

molecular momentum transport
Fr = U2

c /(gcLc) = Froude number = acceleration forces
mass forces .

(7.14)
When one wants to obtain a general solution of (7.13), it is necessary

that the above-stated dimensionless characteristic numbers of the considered
flow problems are equal. Naturally, this is only a necessary, but not suffi-
cient, requirement for the existence of a uniform solution for the considered
flow problems. Similarity of the boundary conditions has to exist also and
this presupposes, in general, geometric similarity for the introduction of the
boundary conditions.

When one includes also into the consideration the momentum transport
relationship valid for a Newtonian medium:

τij = −µ
(
∂Uj

∂xi
+
∂Ui

∂xj

)
+

2
3
µδij

∂Uk

∂xk
(7.15)

one obtains, by introducing dimensionless quantities,

τcLc

µcUc
τ∗ij = −µ∗

(
∂U∗

j

∂x∗i
+
∂U∗

i

∂x∗j

)
+

2
3
µ∗δij

∂U∗
k

∂x∗k
. (7.16)

Setting now τc = µcUc

Lc
, one obtains Re = UcLc

νc
with νc = µc

ρc
, i.e. for

Newtonian media the following holds:

Re =
ρcU

2
c

τc
=
UcLc

νc
= Reynolds number, or Lc =

µcUc

τc
. (7.17)

The dimensionless characteristic numbers stated above in (7.14) indicate
the conditions under which the dynamic similarity between flows is given.
It means that the dimensionless characteristic numbers, introduced as force
relationships, adopt the same values. In the case of geometric similarity and
similar boundary conditions, i.e. for similar flow problems, ReA = ReB,
StA = StB, EuA = EuB and FrA = FrB must hold. In this way, for exam-
ple, horizontal, stationary pipe flows of gases and fluids can be compared in
all their flow properties when the same Reynolds numbers exist. The pressure
losses occurring in the pipe flows can generally be plotted as
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Fig. 7.2 Pressure loss factors for smooth and rough pipes for Newtonian fluids. The
dimensionless presentation makes the generalization of measured values possible

cf =
∆Pc
ρc

2 U
2
c

= 2Eu = f(Re). (7.18)

Thus cf values that were measured for an airstream can be employed for
the computation of pressure losses of flows of different Newtonian media, e.g.
water, oils, etc. When one considers also the influence of the “sand roughness”
ks on the pressure losses, see Fig. 7.2, pressure losses in smooth and rough
pipes results, with λ being equal to 4cf .

Extending the above similarity considerations also to the energy equation,
one obtains

St
∂T ∗

∂t∗
+ U∗

i
∂T ∗

∂x∗
i

=
1

RePr︸ ︷︷ ︸
Pe

∂

∂x∗
i

[
λ∗
(

∂T ∗

∂x∗
i

)]

+Ec

(
St

∂P ∗

∂t∗
+ U∗

i
∂P ∗

∂xi
+

1

Re
Φ∗
)

. (7.19)

The normalization of the energy equation adds the following new di-
mensionless characteristic numbers to the similarity considerations valid
for momentum and heat transfers; ∆Tc = Tc − T∞ is introduced for the
normalization of the temperatures:

Pr =
νc
ac

=
µc(cp)c

λc
= Prandtl number

Pe = RePr =
UcLc

νc

νc
ac

=
UcLc

ac
= Peclet number (7.20)

Ec =
U2

c

(cp)c(Tc − T∞)
= Eckert number.
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The above dimensionless characteristic numbers can be grouped, as indicated
in Sect. 7.1:

1. Similarity of molecular transport processes: Pr, (Sc), . . .
2. Similarity of flow processes: St,Re,Eu, Fr, (Gr)
3. Similarity of energy-transport processes: Pe,Ec, . . .

Finally, in the framework of the similarity of momentum and heat trans-
port processes, one should consider the dimensionless characteristic numbers
that result from experimental and theoretical investigations of heat transfer
processes. Extensions can easily be made to mass transfer processes. These
considerations result in the introduction of the Nusselt number (Nu) for the
heat transfer and in the introduction of the Sherwood number (Sh) for the
mass transfer. The considerations are limited at this point to the Nusselt
number. The heat transfer depends on the following parameters:

|U∞|; |ρ|; |µ|; |L|; |D| with Q̇(U∞, L,D, Fluid) results from measurements
of the heat transfer:
Q̇ = heat supply to the cylinder shown in Fig. 7.3.

Sought is a method for the reduction of the number of measurements,
given by the set of parameters. Without similarity considerations, one has to
carry out many measurements Q̇(U∞, L,D,Fluid).

The introduction of the Nusselt number is possible in many different ways,
e.g. through similarity considerations in fluid mechanics with heat transfer.
The introduction favored here starts from the following considerations of the
heat transfer from a cylinder (see Fig. 7.3).

In experimental investigations, the transfer of heat is measured per unit
area that can be expressed by a heat transfer coefficient α and a temperature
difference between the surface and surrounding fluid:

Q̇

L
= α(πD)(TD − T∞), (7.21)

where Q̇ represents the transferred heat per unit time, L the length of the
cylinder, TD the temperature of the cylinder and T∞ the temperature of the
oncoming fluid far away from the cylinder.

The parameters , , , c  ,
describe the fluid and its 
velocity U

p

Fig. 7.3 Heat transfer considerations for a two-dimensional cylinder in a cross flow
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α is defined from experiments and without using similarity insights it
would have to be determined for all diameters D, for all fluids of interest
and as a function of the incoming flow velocity U∞. A generalization of the
information obtained through one series of measurements, i.e. for a single
fluid, can be achieved by recognizing that the heat transfer rate per unit
length Q̇/L supplied to the cylinder in Fig. 7.3 can be set equal to the removal
of heat conduction at the cylinder surface:

Q̇

L
= −

∫
F

λD

(
∂T

∂r

)
r=R

dF
L
. (7.22)

Thus the following relationship holds:

α(πD)(TD − T∞) = −
∫
F

λD

(
∂T

∂r

)
r=R

dF
L
. (7.23)

When one introduces for the derivation of the dimensionless form of this
relationship the following quantities:

T = (TD − T∞)T ∗; r = Rr∗;
dF
L

= (πR) dϕ∗; ϕ = 2πϕ∗

one obtains

α(πD)(TD −T∞) =
1
R
λD(TD −T∞)(πR)

⎡⎣− 1∫
0

λ∗
(
∂T ∗

∂r∗

)
r∗=1

dϕ∗

⎤⎦ (7.24)

or, rewritten:

Nu =
αD

λD
= −

1∫
0

λ∗
(
∂T ∗

∂r∗

)
r∗=1

dϕ∗. (7.25)

The heat transfer obtained from a single series of measurements and for
a single fluid can be generalized by an Nu(Re) representation of the data.
Hilpert carried out experiments in an airstream and could thus cover an Re
domain of almost 106, see ref. [7.5].

Equation (7.25) shows that heat transfer measurements can be generalized
when the results are given in terms of the Nusselt number and not by the
measured heat transfer coefficient α. For the heat transfer problem considered
in Fig. 7.3, a correlation of the measuring results in the form Nu = f(Re)
is shown in Fig. 7.4. From a single series of measurements for an airstream,
a relationship can be derived that is valid for heat transfers from cylinders,
independent of the fluid and the cylinder diameter.

Analogous to the introduction of the Nusselt number, considerations on
mass transfer can be carried out that lead to the introduction of the Sherwood
number as a fourth group of dimensionless characteristic numbers:

4. Similarity of integral heat and mass transfer: Nu, Sh
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Fig. 7.4 Measured Nusselt numbers for the heat transfer into flows around a cylinder
as a function of the Reynolds number

This classification of dimensionless characteristic numbers represents the ba-
sis for deriving generally valid laws in fluid mechanics from experiments,
analytical and numerical computations, carried out for special fluids, in-
dividual flow velocities and a limited set of geometric parameters. The
dimensionless presentation of results obtained, e.g. for one fluid and one flow
geometry by variation of the flow velocity, can thus be transferred to other
fluids and other similar flow geometries of different dimensions.

7.2.3 Considerations in the Presence of Geometric
and Kinematic Similarities

When solving fluid mechanical problems, the question often arises of the
conditions under which the results of flow investigations, obtained in a test
section, can be transferred to a second flow with another fluid and for the
flow in a geometrically similar test section. When considering in this context
the geometrically similar test section for step flows sketched in Fig. 7.5 and
postulating stationary flow conditions, geometric similarity demands that
the ratio of corresponding geometric dimensions of the test sections yields a
constant value

dA

DB
=
DA

DB
=
hA

hB
=
ξ1
x1

= constant. (7.26)

When one considers as characteristic linear measures of the flow, the step
heights lA = hA and lB = hB and the corresponding characteristic flow ve-
locities (Uc)A = (U1)A and (Uc)B = (U1)B, one obtains for the dimensionless
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Fig. 7.5 Diagram for similarity considerations at a step flow

momentum equation, when assuming stationary flow conditions, the following
form:

ρ∗U∗
i

∂U∗
j

∂x∗i
= − ∆P

ρcU2
c

∂P ∗

∂x∗j
+

νc
UcLc

∂

∂xi
µ∗
∂U∗

j

∂x∗i
+
Lcgc
U2

c

ρ∗g∗j , (7.27)

i.e. for the dynamic similarity it is necessary that the following dimensionless
characteristic numbers are the same for both flows:

Eu =
∆P

ρcU2
c

; Re =
UcLc

ν
; and Fr =

U2
c

Lcgc
. (7.28)

Thus for similar flows one has to expect

∆PA

ρA(U1)2A
=

∆PB

ρB(U1)2B
;

(U1)AhA

νA
=

(U1)BhB

νB
;

(U1)2A
hAg

=
(U1)2B
hBg

. (7.29)

Large Froude numbers, i.e. high (U1)2A or (U1)2B values and small values of
hA or hB, result in a single dependency of all flow quantities on the Reynolds
number. For (Re)A = (Re)B, the differential pressures obtained in a test
section can be transferred from one test section to the other:

for:
ξ1
hA

=
x1

hB
we have

∆PA

ρAU2
A

=
∆PB

ρBU2
B

. (7.30)

For the velocity profile measured in the two test sections, the following
holds: [

U1

(
ξ2
hA

)]
A

(U1)A
=

[
U1

(
x2

hB

)]
B

(U1)B
for

ξ1
hA

=
x1

hB
. (7.31)

The velocity profiles obtained in the two test sections are therefore similar
when they are measured in positions corresponding to similarity considera-
tions and when the measurements are taken with equal Reynolds numbers
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Fig. 7.6 Streamlines for the flow field of sudden channel expansion as a function of
the Reynolds number

in test sections that are similar in the strictly geometric sense. This holds,
of course, not only for the results from experimental investigations but also
for results from numerical flow computations. The streamlines of the flow
fields computed for different Reynolds numbers and represented in Fig. 7.6
for a sudden channel expansion are identical for all Newtonian fluids and for
large and small dimensions as long as always only the corresponding Reynolds
number is present.

If the flow represented in Fig. 7.6 by its streamlines for Re = 610 is started
from rest, a temporal path of the streamlines results as depicted in Fig. 7.7.
Here the time until the flow reaches its stationary final state is a multiple of
the characteristic time of the flow, i.e. tstat ∼ tc ∼ Lc

Uc
. Thus, when one wants

to reach the stationary state of the flow quickly, i.e to reach a certain final
Reynolds number, one has to choose small dimensions and high velocities,
both being chosen to yield Re = 610.

To what extent a numerically computed flow is stable depends on the in-
fluence of disturbances which one can impose on the flow without changing
its stationary final state. The stability of the flows for the sudden channel
expansion for Re = 70 and 610 is shown in Fig. 7.8. Disturbances im-
posed at the inlet of the test section yield temporal changes of the rate
of inflow and these lead to strong temporal changes of the spatial di-
mensions of the separation regions behind the step of the sudden channel
expansion.
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Fig. 7.7 Temporal changes of the streamlines of a transient flow in a sudden channel
expansion for Re = 610

Fig. 7.8 Time variation of the length of separation regions in channel flow with
sudden expansion because of imposed disturbances. The flow is stable with respect to
the imposed disturbances as it reverts to its original condition after the disturbance
has faded away

7.2.4 Importance of Viscous Velocity,
Time and Length Scales

In fluid mechanics, there is a multitude of problems, outside the scope of civil
engineering, where gravitational forces are unimportant. This is equivalent
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to the statement that large Froude numbers exist and that therefore the
normalized momentum equation (7.13) can be written as follows:

ρ∗

⎡⎢⎢⎢⎣
St︷ ︸︸ ︷
Lc

Zc · Uc

∂U∗
j

∂t∗
+ U∗

i

∂U∗
j

∂x∗i

⎤⎥⎥⎥⎦ = −

Eu︷ ︸︸ ︷
∆Pc

PcU2
c

∂P ∗

∂x∗j
−

1/Re︷ ︸︸ ︷
τc
ρcU2

c

∂τ∗ij
∂x∗i

. (7.32)

Completing this equation with the dimensionless molecular-dependent mo-
mentum transport from (7.16):

c︷ ︸︸ ︷
τcLc

µcUc
τ∗ij = −µ∗

[
∂U∗

j

∂x∗i
+
∂U∗

i

∂x∗j

]
+

2
3
µ∗δij

∂U∗
k

∂x∗k
(7.33)

one obtains a dependence of the solutions of flow problems on the following
dimensionless characteristic numbers:

St =
Lc

tc · Uc
= Strouhal number Eu =

∆Pc

ρcU2
c

= Euler number

Re =
ρcU

2
c

τc
= Reynolds number C =

τcLc

µcUc
= Shear number.

(7.34)

Considering these dimensionless characteristic numbers, it becomes under-
standable that the basic equations of fluid mechanics deliver uniform solutions
also in the case that one chooses the characteristic quantities of flow problems
such that all characteristic numbers produce the value 1, i.e.

Re =
ρcU

2
c

τc
= 1 � Uc =

√
τc
ρc

(7.35)

Eu =
∆Pc

ρcU2
c

= 1 � ∆Pc = τc. (7.36)

With the quantities

St =
Lc

tcUc
= 1 and C =

τcLc

µcUc
= 1 (7.37)

one obtains the following characteristic time and length scales:

tc =
µc

τc
=
νc
U2

c

Lc = tcUc =
νc
Uc
. (7.38)

These characteristic quantities suggest that fluid flows in different flow ge-
ometries can be grouped in a uniform representation. Thus the characteristic
flow properties can be described by the following set of differential equations
that are free from dimensionless characteristic numbers:
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continuity equation:
∂ρ∗

∂t∗
+
∂(ρ∗U∗

i )
∂x∗i

= 0 (7.39)

momentum equations (j = 1, 2, 3): ρ∗
(
∂U∗

j

∂t∗
+ U∗

i

∂U∗
j

∂x∗i

)
= −∂P

∗

∂x∗j
− ∂τ

∗
ij

∂x∗i
(7.40)

molecular momentum transport: τ∗ij = −µ∗
(
∂U∗

j

∂x∗i
+
∂U∗

i

∂x∗j

)
+

2
3
µ∗δij

∂U∗
k

∂x∗k
.

(7.41)

The dependence of flow results on the dimensionless characteristic numbers
occurs in the solutions of (7.39)–(7.41) via the imposed boundary conditions.
Thus for all flows in Fig. 7.9, a uniform representation of measuring results
near the wall is achieved.

Fig. 7.9 Standardized flow profiles near the wall as a function of the standardized
distance from the wall for channel, tube, film and flat plate boundary layer flows
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The above representations have shown that for fluid flow measurements
for Newtonian media, the occurrence of velocity gradients are controlled by
the presence of characteristic viscous velocity, time and length scales. These
can be stated for τc = τw, ρc = ρ and µc = µ as follows:

uτ =
√
τw
ρ

; tτ =
ν

u2
τ

; and Lτ =
ν

uτ
. (7.42)

When employing these characteristic quantities, the general representation
of velocity profiles in turbulent wall boundary layer flows results, indicated
in Fig. 7.9. In this figure the following quantities are plotted:

u+ =
U1(y)
uτ

y+ =
yuτ

ν
,

where y is the distance from the wall.
The importance of the quantities in (7.42) becomes obvious when one

tries to solve some typical flow problems, e.g. the one-dimensional diffusion
problem which is sketched in Fig. 7.10, described by the following differential
equation:

ρ
∂U1

∂t
= −µ∂

2U1

∂x2
2

. (7.43)

After normalization, the equation can be written as(
ρcL

2
c

µc

)
∂U∗

1

∂t∗
= +µ∗

∂2U∗
1

∂x∗22

. (7.44)

From this one can deduce for the time which is required by the molecules to
transport the momentum, entering at the position x1 = 0, and transporting
it over the distance D, the following relationship:

tDiff =
D2

ν
. (7.45)

Fig. 7.10 Considerations of molecular-
dependent momentum transport in fluid
flows
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Forming the relationship tDiff/tτ = (D2/ν)/(u2
τ/ν), one obtains the diffusion

time expressed as a multiple of viscous time units:

tDiff

tτ
=
D2

ν

u2
τ

ν
=
D2

ν2

U2
0

U2
0

U2
τ =

(
DU0

ν

)2

︸ ︷︷ ︸
Re2

u2
τ

U2
0︸︷︷︸
cf

, (7.46)

i.e. for the momentum diffusion problem sketched in Fig. 7.10 the following
holds:

tDiff

tτ
= Re2cf = Re2(2Eu). (7.47)

This relationship makes it clear that the dimensionless characteristic numbers
can be understood also as relationships for characteristic times, e.g.,

Re =
U0D

ν
=

1
(D/U0)

D2

ν
=
tDiff

tConv
=

Diffusion time
Convection time

. (7.48)

The molecular-dependent heat transfer occurs in an analogous way to the
momentum transport, as shown in Fig. 7.11. From this results the temporal
formation of the temperature profile between the planes x2 = 0 and x2 = D:(

cpρD
2

λ

)
∂T ∗

∂t∗
= λ∗

∂2T ∗

∂x∗22

(7.49)

and the diffusion time thus ensures that for the temperature propagation
problem, the following holds:

(tDiff)T =
D2(
λ

ρcp

) =
D2

a
, (7.50)

where a is the thermal diffusion constant.

Fig. 7.11 Considerations of the
molecular-dependent heat transfer in
fluid flows
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The above representations show that the momentum and heat diffusion
processes in fluids occur in an analogous way. The ratio of the resulting
diffusion times is

(tDiff)T

(tDiff)U

=

(
D2

a

)
(
D2

ν

) =
ν

a
=
µcp
λ

= Pr. (7.51)

For Prandtl numbers larger than 1, the resulting linear temperature distri-
bution between plates at x1 = 0 and x1 = H in Fig. 7.11 is formed more slowly
than the analogous linear velocity distribution in Fig. 7.10. In contrast, for
Prandtl numbers smaller than 1, the development of the linear temperature
profile is quicker than that of the velocity profile.

7.3 Dimensional Analysis and π-Theorem

The formal tool of the similarity theory, illustrated in many ways in the
preceding sections, is dimensional analysis, if the differential equations de-
scribing the flow problem are not known. Its special importance lies in the
fact that it can also be employed when the physical relationships between
quantities are not known at all. Dimensional analysis proves to be a gener-
ally valid method to recognize the information structure in the relationships
between physical quantities in a precise and clear way. It starts from the
fact that in quantitative natural science the descriptive quantities, as illus-
trated before, have dimensions and can be divided correspondingly into basic
quantities and derived quantities. In the framework of fluid mechanics, one
could regard length, time and mass as (dimensional) basic quantities and,
e.g. area, volume, velocity, acceleration, pressure (or shear stresses), energy,
density and (dynamic and kinematic) viscosity, in relation to them, as derived
quantities. This classification has an important consequence that the units
in which the basic quantities are measured can be chosen independently, and
those of the dependent quantities are determined by this choice. Thus, with
the units metre (m), second (s) and kilogram (kg) for the basic quantities,
the derived quantities are:

Area: m2

Volume: m3

Velocity: m s−1

Acceleration: m s−2

Pressure (or shear stress): kg m−1 s−2

Energy: kg m 2 s−2

Density: kg m−3

Dynamic viscosity: kg m−1 s−1

Kinematic viscosity: m−2 s−1
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In particular the rule then follows that a modification of the units of
the basic quantities entails also a modification of the units of the derived
quantities. This principle determines formally the dimensions of the de-
rived quantities from the dimensions length (L), time (t) and mass (M) of
the basic quantities. The dimensions of the above-derived quantities are:

Area: L2

Volume: L3

Velocity: Lt−1

Acceleration: Lt−2

Pressure (or shear stress): ML−1t−2

Energy: ML2t−2

Density: ML−3

Dynamic viscosity: ML−1t−1

Kinematic viscosity: L2t−1

Each physical quantity is characterized quantitatively by its unit and the
numerical value related to this unit. When one modifies the unit by a factor
λ, the numerical value changes by the inverse factor λ−1.

The interdependent relationships between physical quantities, shown many
times in examples, relate to their numerical values. As a generally valid state-
ment, based on the dimensional analysis, the interdependent relationships
between physical quantities are dimensionally homogeneous, i.e. they are
valid independent of the choice of the units. This rule can also be expressed
in the following way: The relationships are invariant towards all changes of
units, i.e. changes of scales of the basic quantities, although the quantities
appearing individually in them possess units, i.e. scales.

The overall consequence of this statement becomes clear by a mathemat-
ical observation: the set of all modifications of scale of the basic quantities
meets the conditions, not described here in detail, of the (mathematical)
group concept. The latter is often associated with the concept of symmetry:
the elements of the group are operations on a certain object which do not
change this object. Just as the reflection of a circle along one of its diameters
leaves the circle unchanged (invariant) and thus is a symmetry operation of
the circle; all scale transformations of the physical basic quantities can be
understood as symmetry operations of these relationships, as they do not
change the interdependent relationships. The formal objective of the dimen-
sional analysis is to work out these circumstances and their consequences.
The consequence can be stated as follows:

The scale-invariant relationships between scale-possessing physical
quantities can be represented in the form of relationships between
scale-invariant quantities.

The direct objective of dimensional analysis is to develop the methodology for
determining from a given relation the number and form of the scale-invariant
quantities, the so-called characteristic numbers, to which this relation can
be attributed. This objective is summarized in the π-theorem.



214 7 Similarity Theory

A deeper reason for the occupation with dimensional analysis, which in its
nucleus is represented in the π-theorem, lies in the benefit to be gained from
it. The practical benefit of dimensional analysis for fluid mechanics
lies in the possibility of scale transfer. Dimensional analysis has its
origin in the variety of (passive) considerations on the same physical situation,
arising from the choice of the scales concerning the units and the numerical
values of the basic quantities. However, owing to dimensional homogeneity
only, the numerical values of the physical quantities enter into the physical
interdependent relationships, and their scaling can be separated from the
units of these quantities. Dimensional analysis therefore can be considered
also as scaling of the numerical values of fixed units, i.e. as an instrument of
(active) scale transfer.

Dimensional analysis assures, however, that the physical relationships are
always attributed to relationships that comprise dimensionless quantities (so-
called characteristic numbers). When a physical relation is described by a
differential equation, the method illustrated in Sect. 7.2 can be applied and
by normalization of the equation a set of characteristic numbers can be deter-
mined. When this form of equation of the physical relation does not exist, one
has to make use of the π-theorem in order to determine a set of characteristic
numbers describing the physical problem. This theorem makes a statement
on the relevant number of characteristic numbers: it is equal to the number of
variables minus the maximum number of variables with which no dimension-
less characteristic number can be formed. The theorem also gives a recipe for
the construction of the characteristic numbers. For both aspects the so-called
dimensional matrix is employed, which can be formed from the quantities of
the problem. Expressed by this matrix:

The number of the dimensionless characteristic numbers of a phys-
ical problem, for which a complete set of dimensional quantities is
available, is equal to the total number of the dimensional quantities
minus the rank of the dimensional matrix.

The setting up of the dimensional matrix is shown below for some typical
examples, starting from the following (mechanical) basic quantities:

M = mass (kg); L = length (m); t = time (s)

The chosen units are stated in parentheses. Each mechanical quantity can
now be traced in its dimension to the above basic quantities mass, length
and time, so the following holds:

[Q] =Mα1 , Lα2 , tα3 . (7.52)

When a mechanical problem depends on the quantities Q1, Q2, Q3, . . . ,
Qh, . . . , Qn−1, Qn, it holds that

[Qk] =Mα1kLα2k tα3k . (7.53)
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Example 1: Fluid Flowing out of a Container

For this physical problem, the following dimensional matrix can be given:

Q1 Q2 Q3 Qk Qn−2 Qn−1 Qn

M α11 α12 α13 α1k α1(n−2) α1(n−1) α1n

L α21 α22 α23 α2k α2(n−2) α2(n−1) α2n

T α31 α32 α33 α3k α3(n−2) α3(n−1) α3n

Matrix with rank r = 3,
and n influencing param-
eters, yield the quantity
of π-numbers: π = (n− r)

Q1 Q2 Q3 Q4 Q5 Q6

ṁ ρ g h A µ

n = 6 influencing parameters, i.e. ṁ = f(ρ, g, h,A, µ).

With the above determination of the quantities relevant for a fluid flowing
out of a container, the following dimensional matrix can be set up:

ṁ A g ρ h µ
M 1 0 0 1 0 1
L 0 2 1 −3 1 −1
T −1 0 −2 0 0 −1

From the below-stated considerations with rank r = 3, three dimensionless
characteristic numbers result, π1, π2 and π3.

When one chooses as a first determinant variable ṁ, one obtains

[ṁ][h]α[µ]β = (MT−1)(Lα)(MβL−βT−β) =M0L0T 0, (7.54)

i.e. (1 + β) = 0; (−1 − β) = 0; α− β = 0

or β = −1 and α = β � and thus π1 =
ṁ

hµ
. (7.55)

where π1 is the Reynolds number.
Choosing as a second determinant variable A, one obtains

[A][h]α = (L2)(h)α =M0L0T 0, (7.56)

i.e. (2 + α) = 0 � α = −2 � and thus π2 =
A

h2
, (7.57)

where π2 is the geometric similarity number.
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When one chooses as a third determinant variable g, it can be stated that

[g][h]α[µ]β [ρ]γ = 1 , (7.58)

i.e. (β + γ) = 0; 1 + α− β − 3γ = 0; −2 − γ = 0.

Thus one obtains α = 3; β = −2; γ = 2, and therefore π3 =
gh3

ν2
(7.59)

π1 =
ṁ

hµ
= [
kg

s
]
[
m · s
kg

] [
1
m

]
= Re

(π1 is the Reynolds number of the problem) (7.60)

π2 =
A

h2
=
[
m2
] [ 1
m2

]
(7.61)

π3 =
gh3

ν2
π1 = f(π2, π3). (7.62)

Hence a general representation of measured results can be achieved for
ṁ = f(ρ, g, h, A, µ), such that one applies π1 and chooses π2, π3 as
parameters.

Example 2: Flow Through Rough Pipes

This is an example of high relevance to engineering:

number of the variables
Q1 Q2 Q3 Q4 Q5 Q6

Ũ D ρ µ ε dP/dx

ε = roughness of the pipe

The parameters relevant for the representation of the problem of flow through
rough pipes were determined above. Thus the dimensional matrix can be
determined as follows:

Ũ ε dP/dx D ρ µ
M 0 0 1 0 1 1
L 1 1 −2 1 −3 −1 r = 3 and n = 6
T −1 0 −2 0 0 −1

When choosing Ũ as a first determinant variable, one obtains

[Ũ ] [D]α [ρ]β [µ]γ = (LT−1)(Lα)(MβL−3β)(MγL−γT−γ) =M0L0T 0 (7.63)

i.e. (β + γ) = 0; (1 + α− 3β − γ) = 0; (−1 − γ) = 0.
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Thus one obtains: γ = −1; β = 1; α = 1 and therefore π1 =
UDρ

µ
.

(7.64)
When choosing dP/dx as a second determinant constant, it can be stated
that[

dP
dx

]
[D]α [ρ]β [µ]γ =

(
MT−2L−1

)
(L∞)

(
MβL−3β

) (
MγL−γT−γ

)
, (7.65)

i.e. 1 + β + γ = 0; −2 + α− 3β − γ = 0; −2 − γ = 0.

Thus it can be computed that α = 3; β = 1; γ = −2; �

π2 =
(dP/dx)D3ρ

µ2
. (7.66)

When one chooses ε as a third determinant variable, it yields

[D]α [ρ]β [µ]γ [ε] = (Lα)(MβL−3β)(MγL−γT−γ)(L) = 0, (7.67)

i.e. it holds that (α− 3β − γ + 1) = 0; β + γ = 0; (−γ) = 0.

Thus it results that γ = 0; β = 0; α = −1; � π3 =
ε

D
(7.68)

π1 =
U ·Dρ
µ

=
[m
s

]
[m]
[
kg

m3

] [
ms

kg

]
= Re

(π1 is the Reynolds number of the problem) (7.69)

π2 =
D3
(

dP
dx

)
ρ

µ2
= pressure-drop number (7.70)

π3 =
ε

D
= [m]

[
1
m

]
= “relative roughness” π2 = f(π1;π3). (7.71)

However, instead of the characteristic number π2, the product

π2

π2
3

=
D3ρdP

dx

µ2
· µ2

D2Ũ2ρ2
=
D dP

dx

ρU2

can be used, as it was presented in Fig. 7.2.

Example 3: Pumping Capacity for an Incompressible Fluid

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

PE η gH ρ ω D V̇ µ
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As the electrical pumping capacity is of special interest, it was also included
in the list of the relevant parameters. Thus the dimensional matrix can be
set up as follows:

PE η gH ρ ω D V̇ µ
M 1 0 0 1 0 0 0 1
L 2 0 2 −3 0 1 3 −1 r = 3 and n = 8
T −3 0 −2 0 −1 0 −1 −1

Consequent use of the methods indicated in Examples 1 and 2 leads to the
following characteristic numbers:

π1 =
PE

ρω3D5
; π2 = η; π3 =

gH
ω2D2

; π4 =
V̇

ωD3
; π5 =

ρωD2

µ
. (7.72)

The quantities to be ascertained as important for a pump, such as the
electrical power capacity PE , the efficiency factor η and the pump head gH ,
can be represented via the following characteristic numbers:

PE

ρω3D5
= f1

(
V̇

ωD3
;
ρωD2

µ

)
= π1 (7.73)

η = f2

(
V̇

ωD3
;
ρωD2

µ

)
= π2 (7.74)

gH
ω2D2

=

(
V̇

ωD3
;
ρωD2

µ

)
= π3. (7.75)

These characteristic numbers are dependent on the remaining character-
istic numbers π4 and π5. From experiments, it is known, however, that
the dependence of the standardized pump properties does not depend on
π5 = (ρωD2)/µ, or that the dependence is very small. Hence it can definitively
be stated that

PE

ρω3D5
= f1

(
V̇

ωD3

)
; η = f2

(
V̇

ωD3

)
;

gH
ω2D2

= f3

(
V̇

ωD3

)
. (7.76)

The experimental results of pump investigations are generally also plotted as
indicated above, in diagrams with V̇ /(ωD3) as abscissa.
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Chapter 8

Integral Forms of the Basic Equations

In Chap. 5, the basic equations of fluid mechanics were derived in a form valid
for all flow problems of Newtonian fluids. In order to obtain this generally
valid form of the equations, they were formulated as differential equations for
field quantities. They represent local formulations of mass, momentum and
energy conservations. Applying these equations to special flow problems, it is
advantageous and often essential to derive and employ the integral forms of
these equations. These are derived in this chapter from the basic differential
equations stated in Chap. 5 for a point in space, i.e. they are locally formu-
lated and are valid per unit volume. The integral form of these equations is
derived by integration over a pre-defined control volume. In the preceding
chapters these derivations take place separately for the continuity equation,
the momentum equation in direction j and the mechanical and caloric forms
of the energy equation. In the following sections exemplary applications are
described to make it clear how the applications of the derived integral forms of
the fluid-mechanical basic equations take place. It will thus be shown how it is
possible to solve fluid-mechanical problems in a somewhat engineering man-
ner. As in this book only an introduction to the solution of problems is given,
simplified assumptions are made in the course of the solutions. Attention is
drawn to these simplifications in order to ensure that the reader is aware of the
limits of the validity of the derived results. On the basis of the exemplary ap-
plications, independent solutions of more extensive and complicated problems
should be possible by readers of this book. Depending on the problem, the
integral form of the momentum equation or the mechanical energy equation
can be employed, since the latter results from the former, as shown in Chap. 5.

8.1 Integral Form of the Continuity Equation

In Sect. 5.2, the continuity equation, i.e. the mass-conservation equation in
the local formulation expressed in field variables, see equation (5.17), was
stated as follows:

221
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∂ρ

∂t
+
∂(ρUi)
∂xi

= 0. (8.1)

Applying to (8.1) the integral operator
∫

VK
()dV, i.e. integrating this equation

over a given control volume V = VK , one obtains∫
VK

(
∂ρ

∂t

)
dV +

∫
VK

(
∂(ρUi)
∂xi

)
dV = 0, (8.2)

where VK is an arbitrary control volume which is to be selected for the
solution of flow problems in such a way that a simple solution path for each
solved problem can be found.

Considering that the integration applied to (∂ρ/∂t) and the partial differ-
entiation carried out for ρ can be done in any sequence, one obtains

∂

∂t
(
∫

VK

ρ dV)+
∫

VK

(
∂(ρUi)
∂xi

)
dV = 0. (8.3)

Applying now, to the second term of the above equation, Gauss’s integral
theorem (see Sect. 2.9), the following equation results:

∂

∂t
(
∫

VK

ρ dV)+
∫

OK

ρUi dAi = 0. (8.4)

Here the second integral is to be carried out over the entire outer surface of
the control volume, where the direction of dFi is considered positive from
the inside of the volume to its outside.

In (8.2), the following consideration was applied:

∫
VK

∂ (ρUi)
∂xi

dV ⇐⇒
∫

OK

(ρUi) dAi

• In this relationship the surface vector dFi represents a directed quantity,
i.e. it contains the normal vector n of the surface element with its absolute
value |dAi|.

• Because of the double index we have a scalar product of the velocity vector
Ui with the surface vector dAi.

In (8.4), the resulting integrals have the following meaning:

M =
∫

VK

ρ dV = total mass in the control volume,
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ṁout − ṁin =
∫

OK

ρUi dAi = difference of the mass outflows and inflows
over the surface of the control volume

.

(8.5)
Thus the integral form of the continuity equation yields:

∂M

∂t
= ṁin − ṁout. (8.6)

For the volume flow through a surface with the velocity component Ui normal
to this surface, one obtains, because of the above sign convention for the
surface vector dAi (outer normal to the surface), for the inflow in the control
volume or the outflow from it:

V̇in = −
∫
F

|Ui||dAi| V̇out = +
∫
F

|Ui||dAi|. (8.7)

The surface-averaged flow velocity can therefore be computed for any point
in time at

Ũ =
V̇in

|A| =
1
|A|
∫
F

Ui dFi. (8.8)

When one considers, however, that for the area-averaged density ρ̃

ρ̃ =
1
|A|
∫
F

ρ |dAi| , (8.9)

the mass flow through a surface can also be written:

|ṁ| = ρ̃ŨF mit F = |F |. (8.10)

For moderate velocities, where ρ is hardly changing, for internal flows, a
surface decrease is connected with an increase in velocity.

When carrying out considerations in fluid mechanics, the above deriva-
tions, taking into account the physical conditions of mass conservation, lead
to the following mathematical representations of mass conservation:

Differential form:
∂ρ

∂t
+
∂(ρUi)
∂xi

= 0. (8.11)

Integral form:
∂M

∂t
= ṁin − ṁout. (8.12)

Internal flows:
∂M

∂t
= 0 � ṁ = ρ̃ŨA = constant (8.13)
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From (8.13) one can derive by differentiating

d
dx

(ṁ) =
d
dx

(ρ̃ŨF ) = 0 �
dρ̃
ρ̃

+
dŨ
Ũ

+
dF
F

= 0 (8.14)

All of the above equations represent different forms of mass conservation
that can be employed for the solution of flow problems; which form should
be chosen depends on the method that is applied to solve a particular flow
problem.

8.2 Integral Form of the Momentum Equation

In Sect. 5.3, the momentum equation for local considerations of flow prob-
lems was formulated and derived for each component j of the momentum as
follows, i.e. for j = 1, 2, 3:

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj . (8.15)

When one adds to this equation the continuity equation in the form (8.1),
multiplied by Uj , i.e. adding the following terms:

Uj
∂ρ

∂t
+ Uj

∂(ρUi)
∂xi

= 0, (8.16)

one obtains

∂(ρUj)
∂t

+
∂(ρUiUj)
∂xi

= − ∂P
∂xj

− ∂τij
∂xi

+ ρgj . (8.17)

When integrating (8.17) over a given control volume, i.e. when applying the
operator

∫
VK

() dV to all terms of the equation, one obtains the integral form
of the component j of the momentum equation of fluid mechanics:∫
VK

∂(ρUj)
∂t

dV +
∫

VK

∂(ρUiUj)
∂xi

dV=−
∫

VK

∂P

∂xj
dV −

∫
VK

∂τij
∂xi

dV +
∫

VK

ρgjdV +
∑
Fj .

(8.18)
The term

∑
Kj is added as “integration constant”, i.e. all those forces in the

direction j have to be included in the equation that act as external forces on
the boundaries of the chosen control volume. Considering that the integration
and differentiation represent in their sequence exchangeable mathematical op-
erators, and also employing Gauss’s integration theorem, the following form
of the integral momentum equation can be derived:

∂

∂t

∫
VK

ρUj dV

︸ ︷︷ ︸
I

+
∫

OK

ρUiUj dFi

︸ ︷︷ ︸
II

=−
∫

OK

P dFj

︸ ︷︷ ︸
III

−
∫

OK

τij dFi

︸ ︷︷ ︸
IV

+
∫

VK

ρgj dV

︸ ︷︷ ︸
V

+
∑
Fj︸ ︷︷ ︸

VI

.

(8.19)
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This equation comprises six terms whose physical meanings are stated below:

I: Temporal change of the j momentum in the interior of a control volume.
II: Sum of inflows and outflows of flow momentum per unit time in the

direction j summed up over the entire surface surrounding the considered
control volume. The momentum over i = 1, 2, 3 represents this.

III: Resulting pressure force in the direction j, obtained by integration
over the entire j components of the surface elements surrounding the
considered control volume.

IV: Sum of the j momentum inflows and outflows occurring per unit time
by molecular momentum transport over the entire surface of the control
volume. The double index i expresses the summation over 1, 2, 3.

V: The j component of the mass force acting on the control volume.
VI: Sum of all external (not fluid mechanically induced) forces acting in the

j direction on the boundaries of the control volume.

This integral form of the momentum equation can be employed for a large
number of flow problems in fluid mechanics, in order to determine the cause
of forces on fluid motions on walls, flow aggregates, etc. Their applica-
tion is explained in the examples that are dealt with in Sects. 8.5.1–8.5.9.
On the basis of selected representative samples, it will be made clear how
the above-derived integral form of the momentum equation can be used to
solve flow problems. Here it is important to recognize the universal valid-
ity of the integral form of the momentum equation to ensure its general use
in solving flow problems, beyond the examples considered in the following
sections.

8.3 Integral Form of the Mechanical Energy Equation

In Sect. 5.5, it was shown that the momentum equation j:

in differential form : ρ
[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj (8.20)

can be transferred to the mechanical energy equation by multiplication by
Uj, [see (5.56)], to yield the following relationship:

ρ

[
∂
(

1
2U

2
j

)
∂t

+ Ui

∂
(

1
2U

2
j

)
∂xi

]
= −∂(PUj)

∂xj
+P

∂Uj

∂xj
− ∂(τijUj)

∂xi
+τij

∂Uj

∂xi
+ρgjUj .

(8.21)
Multiplying the continuity equation by (1

2U
2
j ), the following results:(

1
2
U2

j

)
∂ρ

∂t
+
(

1
2
U2

j

)
∂(ρUi)
∂xi

= 0, (8.22)
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which can be added to (8.21) so that one obtains

∂

∂t

(
1
2
ρU2

j

)
+
∂

∂xi

(
ρUi

1
2
U2

j

)
=−∂(PUj)

∂xj
+P

∂Uj

∂xj
−∂(τijUj)

∂xi
+τij

∂Uj

∂xi
+ρgjUj .

(8.23)
When one integrates this equation over a given control volume, one obtains,
by employing Gauss’s integral theorem and taking into account the mathe-
matically possible inversion of the integration and differentiation sequence:

∂

∂t

∫
VK

1
2
ρU2

j dV

︸ ︷︷ ︸
I

+
∫

OK

ρUi
1
2
U2

j dAi

︸ ︷︷ ︸
II

= −
∫

OK

PUj dAj

︸ ︷︷ ︸
III

+
∫

VK

P
∂Uj

∂xj
dV

︸ ︷︷ ︸
IV

−
∫

OK

τijUj dAi

︸ ︷︷ ︸
V

+
∫

VK

τij
∂Uj

∂xi
dV

︸ ︷︷ ︸
VI

+
∫

VK

ρgjUj dV

︸ ︷︷ ︸
VII

+
∑
Ė︸ ︷︷ ︸

VIII

. (8.24)

This equation comprises eight terms having the following physical meanings:

I: Temporal change of the entire kinetic energy of the flowing fluid within
the limits determining the control volume.

II: Outflow minus inflow of the kinetic energy of the flowing fluid per unit
time over the entire surface of the considered control volume.

III: Inflow minus outflow of “pressure energy” per unit time over the entire
surface of the considered control volume.

IV: Work done by expansion of the flowing fluid per unit time integrated
over the entire control volume.

V: Molecule-dependent input minus output of kinetic energy of the con-
sidered flowing fluid per unit time integrated over the entire surface of
the control volume.

VI: The kinetic energy per unit time dissipated within the entire control
volume. This energy is transferred into heat.

VII: Potential energy per unit time of the total mass then integrated over
the entire control volume.

VIII: Energy input per unit time over the surface of the control volume or
the power supplied to the fluid by flow machines.

In Sect. 5.5, attention was drawn to the fact that the differential form of the
j momentum equation and the differential form of the mechanical energy
equation do not represent independent equations. The latter emanated from
the first by multiplication by Uj , followed by various mathematical deriva-
tions and rearrangements of the different terms. This statement holds only
in a restricted way for the integral form of the basic equations. By addi-
tion of the term

∑
Fj in (8.19) and the term

∑
Ė in (8.24), it is possible

that independent forms of the momentum equation and the mechanical en-
ergy equation come about. This is known from the treatment of impacts
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of spheres treated in mechanics, for which the known momentum and en-
ergy equations from (8.15) or (8.19) and (8.20) or (8.24) can be derived as
follows:

• The left side of (8.15) yields for ρ = const. for an integration over the
entire sphere volume∫

VK

[
ρ
∂Uj

∂t
+ ρUi

∂Uj

∂xi

]
dV =

∫
VK

D
Dt

(ρUj) dV =
D
Dt

∫
VK

ρUj dV, (8.25)

and thus
D
Dt

∫
VK

ρUj dV =
d
dt

(mKUj). (8.26)

• With (8.25) and (8.26) for spheres 1 and 2, (8.15) can be written:

d
dt

(mKUj)1 = (Kj)1 and
d
dt

(mKUj)2 = (Kj)2, (8.27)

or rewritten, because (Kj)1 = −(Kj)2:

d
dt
[
(mKUj)1 + (mKUj)2

]
= 0 � (mKUj)1 + (mKUj)2 = constant

(8.28)
• The left-hand side of (8.20) yields for ρ = constant∫

VK

[
ρ
∂

∂t

(
1
2
U2

j

)
+ ρUi

∂

∂xi

(
1
2
Uj

)2
]

dV =
∫

VK

D
Dt

(
ρ
1
2
U2

j

)

=
D
Dt

∫
VK

ρ
1
2
U2

j dV (8.29)

and thus

d
dt

(
mK

1
2
U2

j

)
=

D
Dt

∫
VK

ρ
1
2
U2

j dV. (8.30)

• With (8.29) and (8.30), (8.20) yields for spheres

d
dt

(
mK

1
2
U2

j

)
1

=
(
Ė
)

1
and

d
dt

(
mK · 1

2
U2

j

)
2

=
(
Ė
)

2
, (8.31)

or rewritten because
(
Ė
)

1
+
(
Ė
)

2
= 0:

d
dt

[(
mK

1
2
U2

j

)
1

+
(
mK

1
2
U2

j

)
2

]
=
(
Ė
)

1
+
(
Ė
)

2
= 0, (8.32)(

mK
1
2
Uj

)
1

+
(
mK

1
2
Uj

)
2

= constant (8.33)
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Fig. 8.1 Possible motions of spheres following an elastic collision

The insights gained on the elastic collision by employing (8.28) and (8.33)
are sketched in Fig. 8.1. The representations are stated for different mass ra-
tios of the spheres. From the integral forms of the basic equations of flow
mechanics result the collision laws for spheres which are known from appli-
cations of mechanics in physics. This makes clear the general applicability of
the integral form of the mechanical energy equation stated in (8.24).

8.4 Integral Form of the Thermal Energy Equation

In Sect. 5.6, the thermal energy equation was derived and stated for an ideal
gas in (5.77) as follows:

ρcv

[
DT
Dt

]
= λ

∂2T

∂x2
i

− P ∂Ui

∂xi
− τij ∂Uj

∂xi
, (8.34)

For an ideal liquid with ρ = const. it was stated with (5.78):

ρcv

[
DT
Dt

]
= λ

∂2T

∂x2
i

− τij ∂Uj

∂xi
. (8.35)

When one chooses (8.34) for further considerations, this equation can also be
written:

ρcv

[
∂T

∂t
+ Ui

∂T

∂xi

]
= − ∂q̇i

∂xi
− P ∂Ui

∂xi
− τij ∂Uj

∂xi
. (8.36)

Adding to (8.36) the continuity equation multiplied by cvT :

cvT
∂ρ

∂t
+ cvT

∂(ρUi)
∂xi

= 0,
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one obtains the initial equation for the derivation of the integral form of the
thermal energy equation:

∂(ρcvT )
∂t

+
∂(ρcvTUi)
∂xi

= − ∂q̇i
∂xi

− P ∂Ui

∂xi
− τij ∂Uj

∂xi
. (8.37)

With cvT = e (inner energy), one obtains

∂(ρe)
∂t

+
∂(ρeUi)
∂xi

= − ∂q̇i
∂xi

− P ∂Ui

∂xi
− τij ∂Uj

∂xi
. (8.38)

The integration of (8.38) over a control volume yields∫
VK

∂(ρe)
∂t

dV +
∫

VK

∂(ρeUi)
∂xi

dV = −
∫

VK

∂q̇1
∂xi

dV −
∫

VK

P
∂Ui

∂xi
dV −

∫
VK

τij
∂Uj

∂xi
dV

+
∑

(Q̇+ Ė). (8.39)

Rewriting (8.39) with consideration of Gauss’s integral theorem and the
reversibility of the sequence of integration and differentiation, one obtains

∂

∂t

⎛⎝∫
VK

ρe dV

⎞⎠
︸ ︷︷ ︸

I

+
∫

OK

ρeUi dAi

︸ ︷︷ ︸
II

= −
∫

OK

q̇i dAi

︸ ︷︷ ︸
III

−
∫

VK

P · ∂Ui

∂xi
dV

︸ ︷︷ ︸
IV

−
∫

VK

τij
ρUj

∂xi
dV

︸ ︷︷ ︸
V

+
∑

(Q̇+ Ė)︸ ︷︷ ︸
VI

. (8.40)

The terms of the resulting equation can be interpreted as follows:

I: Temporal change of the inner energy of the fluid within the control
volume VK .

II: Convective outflow and inflow of inner energy per unit time over the
surface OK of the control volume.

III: Molecular heat flow per unit time, i.e. the sum of the outflow and inflow,
over the surface OK of the control volume.

IV: The work carried out during expansion by the total volume per unit time.
V: The mechanical energy dissipated per unit time in the entire control

volume.
VI: External heat and energy supply per unit time which is added to the

entire control volume.

The above equation holds likewise for an ideal liquid, but for this term IV
is equal to zero, as no work can be done during expansion because of ρ =
constant.
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8.5 Applications of the Integral Form of the Basic
Equations

The importance of the integral forms of the basic equations of fluid mechan-
ics becomes clear from applications that are listed below. Many books on the
basics of fluid mechanics treat flow problems of this kind, so that the consid-
erations carried out in the following sections can be brief. Typical examples
are treated that make it clear that the derived integral forms of the basic
equations represent the basis for a variety of engineering problem solutions.
However, attention has to be paid to the fact that solutions often can be
derived only by employing simplifications to the general form of the equa-
tions. Reference is made to these simplifications for each of the treated flow
problems and their implications for the obtained solutions in the framework
of the derivations.

In order to introduce the reader to the methodically of the correct han-
dling of the integral form of the equations, each of the problems treated below
is solved by starting from the employed basic equations. Starting with the
general form of the integral form of the equations, terms are deleted which
are equal to zero for the treated flow problem. In addition, by introducing
simplifications, terms in the equations are also removed which are small and
therefore have very little influence on the treated flow problem, so that easily
comprehensible solutions are obtained. Below only examples for the applica-
tions of the integral forms of the basic equations are given. More examples
are found in refs. [8.1] to [8.5].

8.5.1 Outflow from Containers

In Fig. 8.2, a simple container is sketched, having a diameter D, which is
partly filled with a fluid and is assumed to be closed at the top. Between the
fluid surface and the container lid there is a gas having a constant pressure
PH . The fluid height is H and at the bottom of the container there is an
opening with diameter d. Sought is the outflow velocity from the container,
i.e. the velocity Ud.

From Fig. 8.2, it can be seen that the water surface is moving downwards
with a velocity UD, because of the fluid flowing out, which exits with Ud from

Fig. 8.2 Diagram for the treatment of outflows
from containers
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the container opening. Through the integral form of the continuity equation
one obtains

ρ̃ŨF = constant � ρUD
π

4
D2 = ρUd

π

4
d2 � UD =

d2

D2
Ud (8.41)

By employing the Bernoulli equation between the points (A) and (B), one
obtains

1
2
U2

D +
PH

ρ
+ gH =

1
2
U2

d +
P0

ρ
. (8.42)

Hence

1
2
U2

d =
1
2
U2

D + gH +
1
ρ

(PH − P0) , (8.43)

or, after insertion of (8.41)

1
2
U2

d =
1
2

(
d4

D4

)
U2

d + gH +
1
ρ

(PH − P0) , (8.44)

the following relationship for Ud results:

Ud =

√√√√2gH + 2
ρ (PH − P0)

1 − d4

D4

. (8.45)

For PH = P0 and d << D, the well known equation Ud =
√

2gH results.

8.5.2 Exit Velocity of a Nozzle

In fluid mechanics, it is necessary to calibrate indirectly operating measur-
ing processes (e.g. stagnation-pressure tubes, hot-wire anemometers) in flow
fields in which the flow velocity is known. By letting a fluid flow through a
nozzle, it can be achieved that at the nozzle exit the flow velocity required for
calibration can be adjusted via the pressure in the input pipe of the nozzle
(Fig. 8.3).

With the statements made in Sect. 8.1, the integral form of the continuity
equation holds in the following form:

ṁ = ρ̃ŨF = constant � ρUA
π

4
D2 = ρUB

π

4
d2, (8.46)

i.e. one can write for UA

UA =
d2

D2
UB. (8.47)

For the planes (A) and (B) it can be written as a result of the Bernoulli
equation:
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Fig. 8.3 Diagram of a nozzle-calibrating test rig for velocity-measuring sensors

1
2
U2

A +
PA

ρ
=

1
2
U2

B +
PB

ρ
=

1
2
d4

D4
· U2

B +
PA

ρ
. (8.48)

From this, the following results:

UB =

√
2 (PA − PB)
ρ
(
1 − d4

D4

) . (8.49)

When one chooses D � d, one obtains for UB, to a good approximation:

UB =
√

2
ρ
(PA − PB) =

√
2
ρ
(PA − P0). (8.50)

By adjusting different PA values, the entire velocity regime required for
the calibration of measuring tubes can be set. Hence, measuring PA = P0

and knowing ρ yields UB against which velocity sensors can be calibrated.

8.5.3 Momentum on a Plane Vertical Plate

When flowing fluid jets are decelerated, forces appear which are used in many
fields of technology. For the flow problem shown in Fig. 8.4, the question
arises as to what force needs to be applied in the x1 direction to prevent the
deflection of the plate due to the momentum impact of the plane fluid jet.
The plane jet has a thickness H in the x2 direction and a width b in the x3

direction. The jet velocity far away from the plate is known and is UA. The
density ρ is known and g1 = 0, as the x1 direction axis is horizontal.

Employing the integral form of the continuity equation gives

ρUAHb = ρUCHCb+ ρUBHBb. (8.51)

From the Bernoulli equation, one obtains

1
2
U2

A +
PA

ρ
=

1
2
U2

B +
PB

ρ
and PA = PB = P0, (8.52)
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Fig. 8.4 Diagram for consideration of the momentum impact on a vertical plate

and thus UA = UB. Analogous considerations yield UA = UC . Owing to the
symmetry of the problem, one obtains

H = 2HC = 2HB; hence HC = HB .

For the solution of the problem to yieldK, the integral form of the momentum
equation can be employed, as it is stated in (8.19):

∂

∂t

∫
VK

ρUj dV +
∫

OK

ρUiUj dAi = −
∫

OK

P dAj −
∫

OK

τij dAi +
∫

VK

ρgi dV +
∑
Fj .

(8.53)
For the considered flow problem, the following simplifications of the above
universally valid equation hold:

∂

∂t

∫
VK

ρUj dV = 0, stationary flow problem

∫
OK

P dAj = 0, as P = P0 on all surfaces of the chosen control volume

∫
OK

τij dAi = 0, absence of viscosity in the fluid

∫
V̇

ρgj dV = 0, gravitation term, here gj = g1 = 0.

(8.54)

Therefore, the following holds for the simplified form of (8.53):∫
OK

ρUiUj dAi = Fj , (8.55)
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and thus one obtains by integration for j = 1:

F1 = −ρU2
AHB. (8.56)

The result of the above derivations shows that F1 must act in the negative
x1 direction, in order to prevent deflection of the plane plate by the incoming
plane fluid jet. This gives an example to make clear the kind of force terms∑
Fj that occur in (8.19). All forces need to be included for a particular flow

problem that act on the considered control volume.

8.5.4 Momentum on an Inclined Plane Plate

For a fluid jet hitting an inclined plane plate, the jet behavior is shown in
Fig. 8.5. Because of the inclination of the plate, which encloses the angle α
with the axis of the incoming plane fluid jet, the jet splits into two parts of
unequal thickness. The thicker jet goes upwards and has a height hB = εHA

and the thinner jet goes downwards and has a height hC = (1 − ε)HA. This
results from the continuity equation. Applying this equation, UA = UB = UC

results when g = 0 is introduced into the Bernoulli equation.
When employing the continuity equation in integral form, i.e. when con-

sidering that for the solution of the problem the mass conservation law can
be used, it follows that

ρUAHAb = ρUBhBb+ ρUChCb, (8.57)

or, because UA = UB = UC from the Bernoulli equation:

UAHA = UBhB + UChC � HA = hB + hC . (8.58)

For the two split jets forming on the plate, it can therefore be stated that

hB = εHA and hC = (1 − ε)HA. (8.59)

Fig. 8.5 Diagram for explain-
ing the independence of fluid
flow considerations on the chosen
coordinate system

F1

F2= 0 because =0

F

F2

b - Width of plate 
in x2 -direction
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When one employs the integral momentum equation:

∂

∂t

∫
VK

ρUj dV +
∫

OK

ρUiUj dAi = −
∫

OK

P dAj −
∫

OK

τij dAi +
∫

VK

ρgj dV +
∑
Fj .

(8.60)
For the problems sketched in Fig. 8.5, the following simplifications can be
introduced:

∂

∂t

∫
VK

ρUj dV = 0, stationary problem∫
OK

P dAj = 0, as P = PO on all surfaces of the chosen control volume∫
OK

τij dAi = 0, viscosity-free fluid∫
VK

ρgj dV = 0, insignificant term or gj = 0.

(8.61)
For the simplified form of the above integral momentum equation it thus
holds that ∫

0K

ρUiUj dAi = Fj . (8.62)

When one chooses a coordinate system oriented along the plate, then for Kp,
integration over the planes (A), (B) and (C), yields three contributions:

FP = −ρU2
AHAb sinα+ ρU2

AεHAb− ρU2
A(1 − ε)HAb. (8.63)

As in the present problem µ = 0 was set, the following results for the force
FP = 0, due to the moving fluid along the plate, can be deduced from (8.63):

−1 − sinα+ 2ε = 0, (8.64)

or one obtains for ε
ε =

1
2
(1 + sinα). (8.65)

For the force acting vertically on the plate, it can be computed that KS is

FS = ρU2
AHAb cosα. (8.66)

It is evident that the above considerations have to be independent from the
chosen coordinate system. When one chooses the coordinate system indicated
by x1 and x2 in Fig. 8.6, one obtains for K1 the following contributions,
derived by integration over the planes (A), (B) and (C):

F1 = −ρU2
AHAb+ ρU2

AεHAb sinα− ρU2
A(1 − ε)HAb sinα. (8.67)
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Fig. 8.6 Jet deflection at a knife edge and
its cause

For the force K2 similar derivations yield:

F2 = ρU2
AεHAb cosα− ρU2

A(1 − ε)HAb cosα. (8.68)

Since, because µ = 0, the total force on the plate resulting from F1 and
F2 has to act on the plate K vertically, the following holds:

tanα =
F sinα
−F1

=
F2

F cosα
=

2ε cosα− cosα
1 − 2ε sinα+ sinα

. (8.69)

From this it can be derived by introduction of 2ε cosα − cosα = sinα −
2ε sinα+ sinα or for ε:

ε =
1
2
(1 + sinα), (8.70)

which is the same result as (8.65).

8.5.5 Jet Deflection by an Edge

When a fluid jet (heightH , width b) hits, with part of its cross-sectional area,
a plate standing vertically to the jet, the arriving fluid is partitioned into two
partial jets. One of the two partial jets runs, vertically to the original jet
direction, downwards along the plate, and the other partial jet is deflected
upwards by an angle α with respect to the original jet direction. Neglecting
viscosity forces and gravitational forces and assuming a constant ambient
pressure, it results from the Bernoulli equation that the two partial jets have
the same velocity, which is equal to the velocity of the fluid in the original
jet. Because of the continuity equation, the two partial jets have jet heights
εH and (1 − ε)H . In the integral form of the momentum equation

∂

∂t

∫
VK

ρUj dV +
∫

OK

ρUiUj dAi = −
∫

OK

P dAj −
∫

OK

τij dAi +
∫

VK

ρgj dV +
∑
Fj ,

(8.71)
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the following simplifications can be introduced:

∂

∂t

∫
VK

ρUj dV = 0, stationary fluid flow problem∫
OK

P dFj = 0, constant pressure along the surface of the control volume

∫
OK

τij dFi = 0, viscosity forces are neglected∫
OK

ρgj dV = 0, gravitation is neglected.

(8.72)
Hence the following simplified momentum equation results:∫

OK

ρUiUjdAi =
∑
Fj . (8.73)

The force exerted on the fluid can be determined by the equation for the x1

components of the total force

−ρUU(bH) + ρ(U cosα)U(εbH) = F1, (8.74)

F1 = −ρU2bH(1 − ε cosα). (8.75)

The negative value of the forceK1 results from the fact that the force exerted
on the plate is computed.

From the equation for K2, one obtains:

ρU(1 − ε)Hb(−U) + ρUεbH(U sinα) = 0, (8.76)

and, hence, for K2 = 0, the connection between the deflection angle α and
the ratio ε can be computed as

−ρU2bH [(1 − ε) − ε sinα] = 0, (8.77)

ε =
1

1 + sinα
. (8.78)

Hence the ratio of splitting the jet in Fig. 8.6 can be determined from the
deflection of the jet from the horizontal position, i.e. by measuring the
angle α.

8.5.6 Mixing Process in a Pipe of Constant
Cross-Section

In a pipe, two fluids flow at constant velocities UA, UB. These fluids mix with
one another as they move downstream in a channel Fig. 8.7. The pressure
at point 1 and the partial areas in which the velocities UA, UB hold, will be
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Fig. 8.7 Diagram for explaining the
mixing process

given. Sought is the pressure P2 at point 2 where a constant velocity ŪC over
the pipe cross-section has been reached.

From the integral form of the continuity equation, one obtains

b(−ρHAUA − ρHBUB + ρ(HA +HB)ŪC) = 0, (8.79)

or, rearranged for ŪC ,

ŪC =
UAHA + UBHB

HA +HB
. (8.80)

The momentum equation:

∂

∂t

∫
VK

ρUj dV +
∫

OK

ρUiUj dAi = −
∫

OK

P dFj −
∫

OK

τij dAi +
∫

VK

ρgj dV +
∑
Fj

(8.81)
can be simplified as follows:

∂

∂t

∫
VK

ρUj dV = 0, stationary flow problem∫
OK

τij dAi = 0, µ = 0, i.e. the assumption of absence of viscosity is made∫
VK

ρgj dV = 0, no component of gravitation exists in horizontal direction∑
Fj = 0, no external forces act on the control volume.

(8.82)
From these simplifying assumptions it follows that∫

OK

ρUiUj dAi = −
∫

OK

P dAj . (8.83)

For the present problem this results in:

−ρU2
AHA − ρU2

BHB + ρŪ2(HA +HB) = (P1 − P2)(HA +HB). (8.84)

When one now inserts the above expression for Ūc and solves the equation
for P2, one obtains:

P2 = P1 + ρ(UA − UB)2
HAHB

(HA +HB)2
. (8.85)

The pressure therefore increases as a consequence of mixing the two flows
from position (1) to position (2).
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8.5.7 Force on a Turbine Blade in a Viscosity-Free
Fluid

In flow machines, wheels with blades are used to exploit the momentum of
fluid flows for propulsion purposes, i.e. to drive the rotating wheels. A jet
from a rectangular nozzle (plane jet having a width H and depth b) hits
a stationary blade which deflects the jet symmetrically to two sides around
the angle 180◦ - β (Fig. 8.8). The information on the inflowing and outflowing
fluid flows is given. The pressure along the surface of the marked control
volume is equal all over and can be assumed to be the ambient pressure, so
that the integral form of the momentum equation can be given as

∂

∂t

∫
VK

ρUj dV +
∫

OK

ρUiUj dAi = −
∫

OK

P dAj −
∫

OK

τij dAi

+
∫

VK

ρgj dV +
∑
Fj . (8.86)

This equation can be simplified in the following way, if gravitation is
negligible:

∂

∂t

∫
VK

ρUj dV = 0, stationary flow problem∫
OK

P dAj = 0, as P = P0 along all surfaces of the control volume∫
OK

τij dAi = 0, as µ = 0 was set in the assumptions∫
VK

ρgj dV = 0, as gravitation is negligible. (8.87)

Fig. 8.8 Diagram for explaining the force
on a turbine blade moving in the x1
direction
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Hence the following final equation results:∫
OK

ρUiUj dAi =
∑
Fj . (8.88)

As the problem is symmetrical, only the horizontal component j = 1 has to
be considered, i.e. in the j = 2 direction no resultant force appears, so that
the conservation of momentum can be written as follows:

−ρHbU2 + 2
1
2
ρHbU(−U · cos β) = F1. (8.89)

The resultant force on the blade thus results in:

FS = −F1 = ρHbU2(1 + cosβ). (8.90)

This equation makes it clear that by deflecting the jets in direction of the
incoming flow, an increase in the force F1 acting on the turbine blade can be
obtained.

8.5.8 Force on a Periodical Blade Grid

Assumptions: g = 0, µ = 0 for the flow problem given below.
Two-dimensional grids of blades are used in flow machines in order to

exploit forces caused by flows to drive rotating wheels.
Figure 8.9 shows such a set of blades arranged periodically in the x1 − x2

plane. These blades are approached by a flowing fluid with an approach

Fig. 8.9 Diagram explaining the effect of blade grids
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velocity UA = {(U1)A, (U2)A, 0} comprising two components, i.e. the U3

component of the oncoming flow field is assumpt to be zero. Because of the
deflection of the flow by the blade, the departing velocity differs from the
approach velocity, so that the following holds:

UB = {(U1)B, (U2)B , 0} �= UA. (8.91)

The assumed features of UA and UB , for which it always holds that (U3)A =
(U3)B = 0, make it clear that the flow field remains “two-dimensional” and
also has only two components. Thus for the inflow and outflow the following
equation can be derived from the continuity equation, where b is the width
of the blade in the x3 direction:

ρ(U1)Atb = ρ(U1)Btb. (8.92)

For the inflow and outflow the same velocity components in the x1 direction
thus result. This makes it clear that the purpose of the blades is to change
the velocity component (U2)A of the approaching flow.

For the computation of the force on a row of blades, a control volume
(a, b, c, d). is chosen, as shown in Fig. 8.9. In the flow direction, two flow
lines are chosen as boundaries of the control volume which are positioned
along (a − b) and (d − c), with the distance of the blades being t. Hence
the inflow and outflow to the chosen control volume take place only over the
areas (d− a)b and (c− d)b.

When one neglects gravitational effects, the Bernoulli equation yields the
following relationship between the velocity and pressure fields:

PA

ρ
+

1
2

[
(U1)

2
A + (U2)

2
A

]
︸ ︷︷ ︸

entire kinetic energy in (A)

=
PB

ρ
+

1
2

[
(U1)

2
B + (U2)

2
B

]
.︸ ︷︷ ︸

entire kinetic energy in (B)
(8.93)

For the computation of the force on the blade, the integral form of the
momentum equation is used:

∂

∂t

⎛⎝∫
VK

ρUj dV

⎞⎠+
∫

OK

ρUiUj dAi = −
∫

OK

P dAj −
∫

OK

τij dAi +
∫

VK

ρgj dV +
∑
Fj .

(8.94)
With the following assumptions, one obtains from (8.94)

∂

∂t

∫
VK

ρUj dVp = 0, as there is a stationary flow∫
OK

τij dAi = 0, as the flow is that of a viscosity-free fluid∫
VK

ρgj dV = 0, as gravitational forces are negligible,

(8.95)
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and the momentum equation in simplified form:∫
OK

ρUiUj dAi = −
∫

OK

P dAj +
∑
Fj oder Fj =

∫
OK

ρUiUj dAi +
∫

OK

P dAj .

(8.96)
Hence for the forces in the directions j = 1 and j = 2:

F1 = ṁ [(U1)B − (U1)A]︸ ︷︷ ︸
=0

+ (PB − PA) bt = (PB − PA) bt. (8.97)

F2 = ṁ [(U2)B − (U2)A]. (8.98)

From the Bernoulli (8.93), one obtains

(PB − PA) =
ρ

2
[
(U2)2A − (U2)2B

]
. (8.99)

Hence for F1 the following results:

F1 =
ρ

2
Bt
[
(U2)2A − (U2)2B

]
, (8.100)

or, expressed in terms of the in-flow angle and the out-flow angle:

F1 =
ρ

2
Bt
[
U2

A sin2 αA − U2
B sin2 αB

]
, (8.101)

and
F2 = −ρ · Bt [UA sinαA − UB sinαB], (8.102)

where F1 and F2 are the forces acting on the control volume. The forces
acting on the blades are

(F1)s = −F1 = −ρ
2
bt
[
U2

A sin2 αA − U2
B sin2 αB

]
. (8.103)

(F2)s = −F2 = ρbt [UA sinαA − UB sinαB]. (8.104)

The blade thus experiences a force (F1)s in the negative x1 direction and a
force (F2)s in the positive x2 direction. It is the force in the x2 direction that
drives the set of blades in Fig. 8.9.

8.5.9 Euler’s Turbine Equation

The considerations in Sect. 8.5.8 related to a set of blades arranged in a plane,
which is located in a x1 − x2 plane. Arranging the blades radially, a rotating
wheel results as shown in Fig. 8.10, one obtains the basic arrangement of
a radial turbine. The term “radial” designates the main flow direction in
which the flow through the turbine blades takes place, namely radially from
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Fig. 8.10 Diagram showing schemati-
cally the flow through a radial turbine

the inside of the impeller to the outside. When employing the continuity
equation, one obtains

ρ(Ur)A(2πrA)b = ρ(Ur)B(2πrB)b, (8.105)

or, stated differently, the demand for mass conservation results in the
following relationship:

(Ur)B =
rA
rB

(Ur)A. (8.106)

From the Bernoulli equation, the following results:

PA

ρ
+

1
2
[
(Ur)2A + (Ut)2A

]
=
PB

ρ
+

1
2
[
(Ur)2B + (Ut)2B

]
. (8.107)

From the integral form of the momentum equation, one can determine for
the force in the radial direction, if bA = bB = b is introduced:

Fr = ṁ [(Ur)B − (Ur)A] + 2π(rBPB − rAPA)b. (8.108)

Furthermore, for the force in the tangential direction the following holds:

Ft = ṁ [(Ut)B − (Ut)A] . (8.109)

For the moment imposed on the control volume by the running wheel, one
can derive:

Mt = ṁ [rB(Ut)B − rA(Ut)A] . (8.110)

The mechanical power output, resulting from the turbine, amounts to:

Pturb = −Mtω = −ṁω [rB(Ut)B − rA(Ut)A] . (8.111)
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Equations (8.110) and (8.111) are referred to in the literature as Euler’s
turbine equation. Here, for rA = ri, the “inflow radius” of the blade rim is
assumed, and for rB = r0 =, the “outflow radius” is set.

The resulting equation holds not only for turbines, but also generally for
flow machines, such as compressors, air blowers (ventilators), pumps, etc.
Here pumps and turbines differ in the considerations carried out only with
regard to the sign of the energy exchange between running wheel and flowing
fluid. In a turbine, energy is extracted from the fluid flow, so that one can
collect a usable moment at the shaft of this power engine, or the corresponding
energy can be extracted. In a pump, on the other hand, energy is supplied to
the fluid flow via the “running wheel”, i.e. a torque for driving the machine
is exerted at the shaft. Thus the energy necessary for pumping is supplied in
pumps to the fluid.

Finally, it is mentioned that Euler’s turbine equation can also be applied
to flow machines through which flows pass axially, as Figs. 8.11 and 8.12 show
them.

Fig. 8.11 Diagram of the course of the flow through an axial turbine

Fig. 8.12 Schematic representation of radial
and axial pumps
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8.5.10 Power of Flow Machines

In Fig. 8.13, a typical application of a flow machine is shown schematically.
In the chosen case, the application of a pump is shown as an example. It
sucks on the intake side a certain quantity of water ṁ in order to transport
it upwards at its discharge side. Here, differences exist in the pipe diameter
between the intake side and the discharge side of the pump.

The suction of the pumped fluid takes place from a container (A) and
the transport is carried out into a container (B), as shown schematically in
Fig. 8.13. All quantities located at the suction side of the considered problem
are designated by the subscript A, the quantities on the discharge side of the
pump by B.

From the integral form of the continuity equation, the following results for
the considered pumping fluid problem:

ρA

π

4
D2

AŨA = ρB

π

4
D2

BŨB. (8.112)

For ρA = ρB = ρ = constant, the following results:

D2
AŨA = D2

BŨB =
ṁ

ρ
= V̇ . (8.113)

For the computation of the required pumping power, it is recommended
to employ the integral form of the mechanical energy equation, as stated in
(8.24):

∂

∂t

∫
VK

1
2
ρU2

j dV +
∫

OK

ρUi

(
1
2
U2

j

)
dAi = −

∫
OK

PUj dAj +
∫

VK

P
∂Uj

∂xj
dV

−
∫

OK

τijUj dAi +
∫

VK

τij
∂Uj

∂xi
dV +

∫
VK

ρgj V̇ dxj +
∑
Ė. (8.114)

Fig. 8.13 Diagram for the computation of the pumping capacity
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Reducing this equation by simplifying assumptions that apply to the present
flow problem:

∂

∂t

∫
VK

1
2
ρU2

j dV = 0 stationary pumping conditions (8.115)

∫
VK

P
∂Uj

∂xj
dV = 0 no work done during expansion, as ρ = constant and thus

∂Uj

∂xj
= 0, (8.116)

and neglecting the τij terms in the above integral energy equation, one
obtains: ∫

OK

ρUi

(
1
2
U2

j

)
dAi = −

∫
OK

PUj dAj +
∫

VK

ρgjUj dV̇ +
∑
Ė, (8.117)

or

−ṁ
[
1
2
Ũ2

A +
1
2
Ũ2

B

]
= V̇APA − V̇BPB + ρgV̇ HC + pm, (8.118)

where Pm represents the power transferred by the pump into the fluid. For
the required mechanical power of the pump, the following holds:

Pm = V̇
{(ρ

2
Ũ2

B + PB + ρgHC

)
−
(ρ

2
Ũ2

A + PA

)}
. (8.119)

When one now considers PB and PA in more detail, the following can be said:

PB = P0 and hence PA = P0 + ρgHA − ρ
2
U2

A and ŨA ≈ 0,
and

UA =
V̇

FA
and hence UB =

V̇

FB

Therefore, one obtains the following relationship:

Pm = V̇

⎧⎨⎩ρ2
(
V̇ 2

F 2
B

− V̇
2

F 2
A

)
− ρgHA +

ρ

2

(
V̇

FA

)2

+ ρgHC

⎫⎬⎭ (8.120)

or, summarized:

Pm =
ρ

2

(
V̇ 3

F 2
B

)
+ ρg (HC −HA) V̇ . (8.121)

For the electrical power pe of the pump, the following results, with η being
the efficiency factor:
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pe =
1
η
pm =

1
η

[
ρV̇ 3

2F 2
B

+ ρgV̇ (HC −HA)

]
. (8.122)

For the pumping power it results that the electrical power stated in (8.122)
is required to supply the kinetic energy of the fluid leaving the pipe per unit
time, plus the power required per unit time for overcoming the hydrostatic
pressure level.
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Chapter 9

Stream Tube Theory

9.1 General Considerations

The preceding considerations, that covered the derivation of the integral form
of the basic equations of fluid mechanics, can also be used advantageously to
derive simplified equations applicable to so-called flow filaments or also called
stream tubes. The latter can be applied to solve some flow problems. For this
purpose, one starts the considerations from flow lines that are introduced as
lines of a flow which, at a certain point in time, possess the direction of the
flow at each point of the flow field. One can imagine a so-called flow filament
to be built up from a bundle of such flow lines and one can make a subdivi-
sion of the entire flow field into a multitude of flow filaments. Furthermore,
it is possible to bundle flow filaments to obtain stream tube, as indicated in
Fig. 9.1. For the suggested approach, one has to consider the properties of
flows applied to flow lines, filaments and stream tubes because this concept
can only be employed advantageously when the flow quantities assigned to
each area of the flow filament can be considered to be constant over the cross-
section of the flow filament. This makes it necessary occasionally to choose
the cross-sectional area of a flow filament sufficiently small that, for the con-
sidered problem, the assumption of uniform state and flow quantities over the
cross-sectional area of the flow filament can be fulfilled sufficiently precisely.

For the stationary flow tube theory, it results that the fluid elements con-
stituting a flow filament constitute this flow filament permanently. Fluid
particles that are located outside a flow filament at a certain point in time
can never become components of the considered filament. Each fluid parti-
cle of a stationary flow area belongs to a certain flow filament, so that it is
possible to describe the properties of the flow area by the properties of the
considered flow filaments (Fig. 9.2).

249



250 9 Stream Tube Theory

Stream or flow line

Stream or flow 
filament

 Flow line  Flow filament Stream tube

Fig. 9.1 Flow or stream line, flow or stream filament and stream tube

Fig. 9.2 Stream with introduced n–s
coordinate system
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To simplify the considerations on flow filaments, the following assumptions
for flow filaments are introduced:

• A flow filament is always completely filled with the fluid for which the flow
considerations are carried out.

• The cross-sectional area changes along a flow filament are small
• A flow filament is assumed to be only slightly curved in the flow direction

Although the assumptions introduced above for flow filaments have con-
siderable limitations, the derivations given in the following sections show
that the introduction of flow filaments, with the above properties, into fluid
mechanical considerations, leads to equations through which physically very
illustrative solutions of flow problems can be derived.

The considerations carried out on the basis of flow filaments show that in
some cases the properties of entire flow fields can be described by the prop-
erties of flow filaments. When the flow quantities change only slightly over
the entire cross-sections of internal flows, the basic equations derived for flow
filaments of small dimensions can also be employed to acquire the most im-
portant properties of internal flows by a one-dimensional flow theory. For this
purpose, the internal flow is treated as a single stream tube. The justification
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for this is given only, however, when friction influences are small or can be
neglected for first considerations of flow problems.

9.2 Derivations of the Basic Equations

9.2.1 Continuity Equation

The derivation of the continuity equation for a flow filament builds up on
the differential form of mass conservation as derived in Sect. 5.2, and which,
after integration over a control volume, and having employed Gauss’s integral
theorem, can be stated as:

∂ρ

∂t
+
∂ (ρUi)
∂xi

= 0 �

∫
Vc

(
∂ρ

∂t

)
dV +

∫
Oc

ρUidAi = 0 (9.1)

where Vc is identical with the considered control volume and Oc is its
outer surface. Exchanging in the first term of this equation integration and
differentiation, one obtains:

∂

∂t

∫
Vc

ρdV +
∫
Oc

ρUidAi = 0 �
∂Mc

∂t
= −

∫
Oc

ρUidAi (9.2)

Applying this form of the mass conservation equation to a flow filament and
considering that the same mass flux passes through all the cross-sectional
areas of the flow filament, ∂Mc

∂t = 0 (stationary flow conditions) the following
results, i.e. the mass inflows and outflows for a flow filament are the same:∫

AA

ρUidfi =
∫

AB

ρUidfi � AAUs,AρA = ABUs,BρB (9.3)

where the plane of the area A stands perpendicular to the flow direction s.
Therefore, one can conclude that the mass flow ṁ = ρAUs through the
cross-sectional area along a flow filament is constant.

In the derivations carried out above, it was already said that because
of small cross-sectional area changes in the flow filaments A, ρ and Us can
be set to be constant over A. When one wants to apply the considerations
also to stream tubes, as shown in Fig. 9.3, a more refined approach is neces-
sary. It must be taken into account that the assumption of constant density
and velocity Us in the presence of large cross-sectional areas is only permit-
ted conditionally. The introduction of cross-sectionally averaged quantities is
necessary, as will be shown below.

When carrying out the following averaging, with the use of the mean value
theorem of integration:

ρ̃Us = − 1
As

∫
As

ρUsdfs
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Fig. 9.3 Flows which can be computed one-dimensionally by the approximation
method introduced by stream tubes

it can be stated for stationary flow conditions that

=0︷ ︸︸ ︷
∂Mc

∂t
= −

∫
Vc

ρUidAi �

(
ρ̃Us

)
A
AA =

(
ρ̃Us

)
B
AB (9.4)

This relationship for the momentum flows through the cross-sectional areas
A and B is often simplified further in stream tube theory, by assuming ρ̃Us =
ρ̃Ũs, i.e. (9.4) is employed as follows:

ρ̃AŨs,AAA = ρ̃BŨs,BAB = ρUsAs (9.5)

where ρ̃A and ρ̃B, and also Ũs,A and Ũs,B are defined as follows:

ρ̃A =
1
As

∫∫
As

ρdf and Ũs =
1
As

∫∫
fs

Usdf (9.6)

The above derivations make it clear that the employment of the simplified
integral form of the continuity equation ρ̃ŨsAs =constant is only justified for
flows that have no strong variation in density or velocity over the flow cross-
section of a considered stream tube. Taking this assumption into account,
(9.5) is used in the following derivations. Since in the following considera-
tions, strong variations of the quantities ρ and U1 over the cross-section are
excluded, it is also justified to introduce local quantities in (9.5) as a valid
approximation.

In fluid mechanics, a number of questions arise relating to infinitesimal
changes of a thermodynamic state or a flow quantity when infinitesimal
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changes of other parameters take place. For this reason, the continuity
equation is often applied in a form derived below:

Differentiation of (9.5) gives:

ŨsAsdρ̃+ ρ̃AsdŨs + ρ̃ŨdAs = 0 (9.7)

The division of (9.7) by (9.5) leads to a further form of the continuity equation
which is employed in some cases in the following sections:

dρ̃
ρ̃

+
dŨs

Ũs

+
dAs

As
= 0 (9.8)

The equation expresses how, e.g., the velocity of a fluid will change in a
relative manner when common relative changes in density and cross-sectional
area occur.

9.2.2 Momentum Equation

Solutions of flow problems on the basis of the stream tube theory require the
inclusion of the momentum equations. However, these have to be transformed
to the flow filament or stream tube coordinates (Fig. 9.4). Starting from the
general momentum equation:

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj (9.9)

and neglecting the molecular momentum transport terms acting on the flow
filament, the following form of the momentum equations results:

ρ

(
∂Us

∂t
+ Us

∂Us

∂s

)
= − ∂P

∂s
+ ρgs (9.10)

Fig. 9.4 Expression of the momentum
equation for the flow filament
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with gs = −g cosα and cosα = dz/ds, so that:

ρ

(
∂Us

∂t
+ Us

∂Us

∂s

)
= −∂P

∂s
− ρg dz

ds
(9.11)

In an analogous way, it can be derived that the momentum equation in
the n direction is

ρ
U2

s

R
= −∂P

∂n
− g dz

dn
(9.12)

where the direction of z needs to be chosen in the negative direction of the
gravitational field.

This equation expresses that for straight flow filaments, i.e. R → ∞, the
pressure variation vertical to the flow direction is given only by the grav-
itation. When the gravitational forces are negligible, the pressure over the
cross-section of a non-curved flow filament is constant.

Starting from the general momentum equation in Eulerian form, i.e.
neglecting the molecular momentum loss terms:

∂(ρUj)
∂t

+
∂(ρUiUj)
∂xi

= − ∂P
∂xj

+ ρgj (9.13)

and integrating these over a control volume corresponding to the entire space
of a flow filament, one obtains for stationary flow conditions:∫

Ac

ρUiUjdf = −
∫
Ac

Pdfj +
∫
Vc

ρgjdV (9.14)

For the special inflow and outflow conditions at the areas AA and AB of a
flow filament, it can thus be stated that

−ρAUs,A
2AA + ρUs,B

2AB = +PAAA − PBAB −
∫
V

ρg
dz
ds

(Ads) (9.15)

or rewritten for g = 0, i.e. neglecting gravity:

ρU2
sAs + PAs = constant (9.16)

This form of momentum equation is employed for many problem solutions
in fluid mechanics and will also be employed in the sections to follow in this
book.

9.2.3 Bernoulli Equation

When carrying out fluid mechanics considerations, often the pressure and
the velocity changes in the flow direction are of interest. Such changes can,
when resulting only from mechanical energy changes, be determined from the
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mechanical energy equation. This equation can be stated in general form as
follows (see Sect. 5.5):

ρ
D
Dt

(
1
2
U2

j +G
)

= −∂(PUj)
∂xj

+ P
∂Uj

∂xj
− ∂(τijUj)

∂xi
+ τij

∂Uj

∂xi
(9.17)

When carrying out considerations neglecting the molecular-dependent en-
ergy transport on molecular dissipations terms, i.e. setting τij = 0, then one
obtains for ρ = constant and thus ∂Uj

∂xj
= 0:

ρ
D

Dt

(
1
2
U2

j +G
)

= −∂(PUj)
∂xj

= −Uj
∂P

∂xj
(9.18)

In the presence of only stationary pressure fields the following holds:

DP
Dt

=
∂P

∂t︸︷︷︸
=0

+Ui
∂P

∂xi
= Ui

∂P

∂xi
(9.19)

so that under these conditions one can write:

ρ
D

Dt

(
1
2
U2

j +G
)

= −DP
Dt

(9.20)

For G = −xjgj, (9.20) can be written as:

ρ
D

Dt

(
1
2
U2

j +
P

ρ
− xjgj

)
= 0 (9.21)

which leads for j = s to the statement of the Bernoulli equation for a flow
filament:

1
2
U2

s +
P

ρ
− gss = constant (9.22)

Considering that −gss = gh, one obtains the final form of the Bernoulli
equation:

1
2
U2

s +
P

ρ
+ gh = constant (9.23)

This equation can be interpreted physically such that the mass flux ṁ, flowing
into a flow filament per unit time, introduces the kinetic energy ṁ1

2U
2
s , the

pressure energy ṁPυ = ṁP
ρ and the potential energy ṁgh as total energy.

The sum of these three parts along the flow filament cannot change, i.e. the
total energy is constant along the flow filament. As at the same time ṁ =
constant holds, (9.23) results from all these considerations of mass and energy
conservations.
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9.2.4 The Total Energy Equation

The above considerations of the Bernoulli equation must also include the
expansion work when carrying out energy considerations for compressible
media. Considering the derivations in Chap. 5, the equation for the total
energy has to be employed instead of the above treated mechanical energy
equation. According to (5.68), the equation of the total energy can be stated
as follows:

ρ
D

Dt

(
e+

1
2
U2

j +G
)

= −∂q̇j
∂xi

− ∂(PUj)
∂xj

− (τijUj)
xi

(9.24)

Neglecting the contributions in the equation due to the molecular-dependent
heat and momentum transport, i.e. q̇i = 0 and τij = 0, the following equation
results for g ≈ 0:

∂

∂t

(
ρe+

1
2
ρU2

j

)
+
∂

∂xi

[
Ui

(
ρe+

1
2
ρU2

j

)]
=
∂

∂xj
(PUj) (9.25)

For stationary flow processes, i.e. neglecting the time derivative terms, the
following equation holds:

∂

∂xi

[
ρUi

(
e+

1
2
U2

j +
P

ρ

)]
= 0 (9.26)

Introducing the enthalpy h = e + P/ρ, one obtains for the energy equation
for stationary flows of compressible media:

h+
1
2
U2

j = constant (9.27)

When carrying out the above considerations for stream tubes, one obtains
also the relationship stated in (9.27) for area-averaged quantities:

h̃+
1
2
Ũ2

j = constant (9.28)

The sum of the area-averaged enthalpy of a flowing fluid and the area-
averaged kinetic energy per unit mass of the fluid is a constant for adiabatic
flows that are free of viscosity and when gravity influences are negligible.
With this, the following equations for the computation of flows in stream
tubes result:

Flows of incompressible fluids:

• Mass conservation: ρ̃ÃsŨs = constant (9.29)

• Momentum conservation: ρ̃Ũ2
sAs + PAs = constant (9.30)

• Mechanical energy equation:
{

1
2
Ũ2

s +
P̃

ρ̃
+ gh̃

}
= constant (9.31)
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Flows of compressible fluids:

• Mass conservation: ρ̃ÃsŨs = constant (9.32)

• Momentum conservation: ρ̃Ũ2
sAs + PAs = constant (9.33)

• Thermal energy equation: 1
2
Ũ2

s + h̃ = constant (9.34)

9.3 Incompressible Flows

9.3.1 Hydro-Mechanical Nozzle Flows

The flow problem shown in Fig. 9.5 can be solved, neglecting the friction
forces, with the aid of the flow tube theory, in order to obtain a first overview
of the flow processes taking place in converging pipes.

When applying one-dimensional flow computations, for the flow in cross-
section A, a velocity can be stated which is constant over the entire tube
diameter:

UD =
ṁ

ρ

1
π
4D

2
(9.35)

Since the continuity equation holds:

π

4
D2UD =

π

4
d2Ud � Ud =

D2

d2
UD (9.36)

From the Bernoulli equation:

PD

ρ
+

1
2
U2

D =
Pd

ρ
+

1
2
U2

2 =
P0

ρ
+

1
2
U2

2 (9.37)

From this PD is computed as:

PD = P0 +
ρ

2
(
U2

d − U2
D

)
= P0 +

ρ

2

[(
D
d

)4

− 1

]
U2

D (9.38)

x1
d

F/2

F/2

A

B

P0
m

PD

D

Control volume

P0

Fig. 9.5 Nozzle flow at the end of a pipe
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The flange force F on the control volume in Fig. 9.5 is computed from the
integral momentum equation as follows:

−ρU2
D

π

4
D2 + ρU2

d

π

4
d2 −PD

π

4
D2 + PO

π

4
D2︸ ︷︷ ︸

−π
4 D2(PD−PO)

= F (9.39)

or, after rearrangement, in consideration of (9.38):

−ρ
2
π

4
D2U2

D

(
2 − 2

d2

D2

U2
d

U2
D

)
− π

4
D2 ρ

2

(
D2

d4
− 1
)
U2

D = F (9.40a)

and after further rearrangement:

−ρ
2
π

4
D2U2

D

(
1 − D

2

d2

)2

= F (9.40b)

On inserting the corresponding relationships for UD from (9.35), one obtains
for the flange force F

A = − ṁ2

ρπ
2D

2

(
1 − D

2

d2

)2

(9.41)

The force applied by the flange on the examined nozzle part proves to be
positive, so that the supporting surface of the flange receives a negative force
F . The screws in the flange can therefore be regarded to be force free as far
as any contribution from the flow is concerned. The nozzle is pressed on to
the flange.

9.3.2 Sudden Cross-Sectional Area Extension

In practical fluid mechanics, often pipes of different cross-sections are lined
up and flows proceed through them. In this way, viewed in the flow direction,
internal flows result that are exposed to sudden cross-section widenings, as
shown in Fig. 9.6. In this manner separation areas are generated whose influ-
ence on the flow can be understood from the following considerations. When
treating flows with sudden changes in their cross-sectional area, mass conser-
vation between the planes A and B of the pipe flow exists, and thus yields
from the continuity equation:

ṁ

ρ
= Ud

π

4
d2 = UD

π

4
D2 (9.42)

Hence the velocities Ud and UD can be determined by the given mass flow
ṁ, if the density of the fluid is known, and also the cross sectional areas.

In the case of flows passing through the considered region without losses,
the following difference in pressure would result between the planes A and B,
which can be computed from the Bernoulli equation:
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.
Pverl { P

P P

Pideal

realA

B

Pressure distribution

m

d A B D

Separation
region

Separation
region

=

Fig. 9.6 Carnot’s impact diffusor

∆Pideal = (PB − PA)ideal =
ρ

2
U2

d

(
1 − d4

D4

)
(9.43)

Under real conditions, as indicated in Fig. 9.6 by the occurrence of the sep-
aration areas, the following momentum equation results:

F = ρU2
d

π

4
− ρU2

D

π

4
D2 + PA

π

4
d2 − PB

π

4
D2 (9.44)

When one neglects the contributions to the force F by momentum losses at
the pipe walls, then the force F can be computed as the pressure force on
the ring surface after the sudden expansion of the pipe, i.e. as

F = PA
π

4
(
D2 − d2) (9.45)

Thus one obtains for the pressure difference

∆Preal = (PA − PB)real = ρU2
d

d2

D2

(
1 − d2

D2

)
, (9.46)

so that a pressure loss (Carnot’s momentum loss) can be determined as
follows:

∆Ploss = ∆Pideal − ∆Preal =
ρ

2
U2

d

(
1 − d4

D4

)
=
ρ

2
(
U2

d − U2
D

)
(9.47)

For D → ∞ results as a maximum value for ∆Ploss = ρ
2U

2
d , the discharge

pressure loss. This means that there is no diffusor available to convert the
“dynamic pressure” 1

2ρU
2
d back into “static pressure”.
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9.4 Compressible Flows

9.4.1 Influences of Area Changes on Flows

The general treatment here provides information on what effect cross-sectional
changes in flow channels have on fluid flows, i.e. to what extent and in which
way area changes determine the distribution of velocity, pressure, density and
temperature along the channel. The equations that were derived in Sect. 9.2
are employed, i.e. the continuity equation reads:

ρ̃Ũ1A = constant (9.48)

Equation (9.48) can be written in differential form as:

dA
A

+
dρ̃
ρ̃

+
dŨ1

Ũ1

= 0 (9.49)

According to the considerations in Sect. 9.2, the variation of the velocity
in the flow direction can be described, as a first approximation, by Euler’s
equation, reduced for one-dimensional flows, i.e.

ρ̃Ũ1
dŨ1

dx1
= − dP̃

dx1
= − dP̃

dρ̃
dρ̃
dx1

(9.50)

On the basis of the energy equation, written for reversible adiabatic fluid
flows, the following relationship holds:

P̃

ρ̃κ
= constant (9.51)

Under these adiabatic conditions, the differentiation of P̃ with respect to ρ
yields the sound velocity c:

c̃2 =

(
dP̃
dρ̃

)
ad

(9.52)

Equation (9.52) introduced into (9.50) yields the following relationship:

ρ̃Ũ1
dŨ1

dx1
= −c̃2 dρ̃

dx1
(9.53)

When one introduces the Mach number Ma of the flow as:

M̃a =
Ũ1

c̃
(9.54)
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(9.53) can be written as:
dρ̃
ρ̃

= −M̃a2 dŨ1

Ũ1

(9.55)

Inserting the density variation in (9.55) in (9.49), one obtains:

dA

A
− M̃a2 dŨ1

Ũ1

+
dŨ1

Ũ1

= 0 (9.56)

or
dŨ1

Ũ1

=
−1

(1 − M̃a2)
dA
A

(9.57)

When one takes into consideration that subsonic flows are given by M̃a < 1
and supersonic flows by M̃a > 1, the above relationship expresses:

• In the presence of a subsonic flow (M̃a < 1), a decrease in the cross-
sectional area of a flow channel in the flow direction is linked to an increase
in the flow velocity. An increase in the channel cross-sectional area in the
flow direction results in a decrease in the flow velocity (see Fig. 9.7).

• In the presence of a supersonic flow (M̃a > 1), a decrease in the cross-
sectional area of a flow channel in the flow direction is linked to a decrease
in the flow velocity. An increase in the flow cross-section in the flow
direction results in an increase in the flow velocity (see Fig. 9.8).

In addition to the changes in the flow velocity, caused by changes in the
cross-sectional areas, the changes in pressure, density and temperature of the
flowing fluid are also of interest. From (9.51), it can be seen that the relative
change in density always has the opposite sign to the change in velocity,
i.e. the density increases in the flow direction when the velocity decreases
and vice versa. In the region of subsonic flow, the locally present relative
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M 1
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B B

B
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1 1

Fig. 9.7 Influence of a change in the flow cross-section on a subsonic flow
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Fig. 9.8 Influence of a change in the flow cross-section on a supersonic flow

change in density is smaller than the local relative change in velocity. In the
region of supersonic flow, the locally present relative change in density is
larger than the relative change in velocity. The changes in the density for the
corresponding changes in cross-sectional area changes of the flow channel are
given by the relationship:

dρ̃
ρ̃

=
M̃a

2

(1 − M̃a2)
dA
A

(9.58)

With regard to the pressure variation, the following considerations can be
carried out. From the adiabatic pressure-density relationship (9.51), the
following results:

dP̃ =
P̃

ρ̃κ
κρ̃(κ−1)dρ̃ = κ

P̃

ρ̃
dρ̃ (9.59)

Therefore, for the local relative change in pressure one can derive:

dP̃
P̃

= κM̃a
2 dŨ1

Ũ1

(9.60)

or with regard to the local relative change in the cross-sectional area of the
flow, the following relative change in pressure results:

dP̃
P̃

=
κM̃a

2

(1 − M̃a2)
dA
A

(9.61)

Finally, it is necessary to consider the variations in temperature. For this
purpose, the state equation for ideal gases is differentiated:

−P̃ dρ̃
ρ̃2

+
dP̃
ρ̃

= RdT̃
dA
A

(9.62)
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or rewritten in the following form:

−dρ̃
ρ̃

+
dP̃
P̃

=
dT̃
T̃

(9.63)

Hence, knowing dρ̃
ρ̃ and dP̃

P̃
, the following relationship for the temperature

changes results:
dT̃
T̃

= −(κ− 1)M̃a
2 dŨ1

Ũ1

(9.64)

The locally occurring relative change in temperature has the opposite sign
to the local relative change in velocity. The relative changes in temperature
are weaker than the corresponding relative changes in density. With regard
to the relative area change of the flow cross-section, it results that

dT̃
T̃

=
(κ− 1)M̃a

2

(1 − M̃a2)
dA
A

(9.65)

The considerations stated for the flow velocity variations in supersonic and
subsonic flows, which are sketched in Figs. 9.7 and 9.8, can also be carried
out for the variations in pressure, density and temperature with the aid of
the above equations.

Another important result of the above derivations can be stated through
a rearrangement of the relationships derived above, such that the following
equation holds:

dA
dŨ1

=
A

Ũ1

(1 − M̃a2) (9.66)

This relationship expresses that the condition for achieving the sound velocity
is given by dA = 0, i.e. M̃a = 1. Since for the second derivative of A

d2A

dŨ2
1

=
A

Ũ2
1

M̃a
2
(M̃a

2 − 2) (9.67)

for M̃a = 1 the condition for some flow to exist is given by a minimum of the
flow cross-section. Further considerations of changes if errors sectional area
are given in refs. [9.1] to [9.5].

9.4.2 Pressure-Driven Flows Through Converging
Nozzles

In many technical plants, flows of gases occur which are to be classified into a
group of flows that take place between reservoirs with differing pressure lev-
els. Gases, for example, are often stored under high pressure in large storage
reservoirs, in order to be discharged through conduits for the intended pur-
pose when need arises. This discharge can be idealized as a “equalization flow”
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between two reservoirs or two chambers of which one represents the storage
reservoir under pressure, while the environment represents the second reser-
voir. In the following considerations it is assumed that both reservoirs are very
large, so that constant reservoir conditions exist during the entire “equaliza-
tion flow” under investigation. These are assumed to be known and are given
by the pressure PH , the temperature TH , etc., in the high-pressure reservoir,
and also through the pressure PN and temperature TN for the low-pressure
reservoir. The compensating flow takes place via a continually converging
nozzle as indicated in Fig. 9.9, whose largest cross-section thus represents the
discharge opening of the high pressure reservoir, whereas the smallest nozzle
cross-section represents the inlet opening into the low-pressure reservoir.

When one wants to investigate the fluid flows taking place in the above
equalization flow in more detail, the final equations for flows through chan-
nels, pipes, etc., derived in Sect. 9.2 can be used:

ρ̃Ũ1A = constant (9.68)

h̃+
1
2
Ũ2

1 = constant;
P̃

ρ̃κ
= constant (9.69)

P̃

ρ̃
= RT̃ (9.70)

With (9.68)–(9.70), a sufficient number of equations exists to determine the
changes in the area-averaged velocity and the area-averaged thermodynamic
state quantities of the flowing gas. Hence the velocity, pressure, temperature
and density along the x1 axis, shown in Fig. 9.9, can be found by solving this
set of equations.

When one considers that, based on the assumption of a large high-pressure
reservoir there is the constant pressure PH and the velocity (U1)H = 0, then
for the velocity U1 at each point x1 of the nozzle the following relationship
can be stated to be valid:

Container 1 Container 2

P

T

P

T
H

H

H

N

N

N

x =01

x =L1

F(x  )1

1x

Fig. 9.9 Flow between two reservoirs through a converging nozzle



9.4 Compressible Flows 265

h̃+
1
2
Ũ2

1 = hH (9.71)

Taking into account that the enthalpy for an ideal gas can be stated as cPT
and moreover that the ideal gas equation (9.70) holds, (9.71) can be rewritten
as follows:

cP
P̃

Rρ̃
+

1
2
Ũ2

1 =
κ

κ− 1
P̃

ρ̃
+

1
2
Ũ2

1 =
κ

κ− 1
PH

ρH
(9.72)

The velocity U1 is thus linked to the change in the pressure along the axis of
the nozzle as follows:

Ũ1 =

√√√√ 2κ
κ− 1

(
PH

ρH
− P̃
ρ̃

)
(9.73)

The above equation indicates that for P̃ = 0, i.e. for the outflow into a
vacuum, a maximum possible flow velocity develops which is given by the
state of the reservoir only:

Umax =

√
2κ
κ− 1

PH

ρH
=
√

2cPTH (9.74)

Standardizing the flow velocity U1, existing at a point x1, with Umax, one
obtains:

Ũ1

Umax
=

√
1 − P̃ · ρH

PH ρ̃
(9.75)

or rewritten by taking the ideal gas equation into account:

Ũ1

Umax
=

√
1 − T̃

TH
(9.76)

Linking the adiabatic equation (9.86) to the state (9.70) leads to the following
relationships:

T̃

TH
=
(
ρ̃

ρH

)κ−1

and
T̃

TH
=

(
P̃

PH

)κ−1
κ

(9.77)

Thus the following equations hold:

Ũ1

Umax
=

√√√√[1 −
(
ρ̃

ρH

)κ−1
]

(9.78)
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and

Ũ1

Umax
=

√√√√√
⎡⎣1 −

(
P̃

PH

)κ−1
κ

⎤⎦ (9.79)

On choosing the normalized velocity (Ũ1/Umax) as a parameter for the repre-
sentation of the flow in the nozzle, the distributions of pressure, density and
temperature along the nozzle can be stated as follows:

P̃

PH
=

⎡⎣1 −
(
Ũ1

Umax

)2
⎤⎦

κ
κ−1

(9.80)

ρ̃

ρH
=

⎡⎣1 −
(
Ũ1

Umax

)2
⎤⎦

1
κ−1

(9.81)

T̃

TH
=

⎡⎣1 −
(
Ũ1

Umax

)2
⎤⎦ (9.82)

These relationships are shown in Fig. 9.10 as functions of (Ũ1/Umax). Also,
along the (Ũ1/Umax) axis, the corresponding Mach number of the flow is
plotted, which under consideration of the relationship c =

√
( dP/ dρ)ad =√

κRT can be shown to be identical with

Ũ2
1

U2
max

=
Ũ2

1

2cPTH

κRT̃

κRT̃
= M̃a

2

1

κ− 1
2

(
T̃

TH

)
(9.83)

Fig. 9.10 Distributions of the pressure, density and temperature as a function of
the local normalized velocity or as a function of the local Mach number
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When one considers the relationship derived above for (T/TH), in (9.77), one
obtains for the Mach number the following dependence on (Ũ1/Umax):

M̃a =

√√√√√√√√√√√
2

κ− 1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
Ũ1

Umax

)2

⎡⎣1 −
(
Ũ1

Umax

)2
⎤⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(9.84)

Hence a Mach number of the flow can be assigned to each value of an area-
averaged velocity normalized with the maximum velocity.

All quantities which are stated in (9.80)–(9.82) can also be written as
functions of the Mach number M̃a. This in turn can be considered as an
area-averaged flow quantity describing the distributions of the flow along the
x1 axis.

For the derivation showing the dependence of the pressure, density and
temperature on the Mach number of the flow, shown graphically in Fig. 9.10,
(9.71) is written as follows:

cP T̃ +
1
2
Ũ2

1 = cPTH (9.85)

By division with cP T̃ one obtains

TH

T̃
= 1 +

Ũ2
1

2cP T̃
κR

κR
= 1 +

κ− 1
2
M̃a

2

1 (9.86)

or for the reciprocal
T̃

TH
=

2

2 + (κ− 1)M̃a21
(9.87)

This equation makes it clear that there is a relationship between the area-
averaged temperature at a location on the x1 axis and the Mach number
existing at the same point of the flow. Hence it becomes clear that for each
point x1 the temperature can be computed when the high-pressure reservoir
temperature is given and the Mach number of the flow is known.

Taking into account the adiabatic equation, the relationship between the
pressure P̃ and reservoir pressure PH is given by

P̃

PH
=

(
T̃

TH

) κ
κ−1

=

[
2

2 + (κ− 1)M̃a21

] κ
κ−1

(9.88)

and the corresponding relationship for the density is

ρ̃

ρH
=

(
T̃

TH

) 1
κ−1

=

[
2

2 + (κ− 1)M̃a21

] 1
κ−1

(9.89)
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Fig. 9.11 Distribution of the pres-
sure, density, temperature and mass
flow density for converging nozzles

Figure 9.11 also contains the distribution of the flux density θ = ṁ/A = ρ̃Ũ1,
i.e. the mass flowing per unit area and unit time through the cross-section of
the flow. The equation for this quantity can be written as follows, using the
relationships for Ũ1 and ρ̃:

ρ̃1Ũ1 = ρH

⎡⎣1 −
(
Ũ1

Umax

)2
⎤⎦

1
κ−1

Ũ2
1 (9.90)

or for the normalized mass flow density:

ρ̃1Ũ1

ρHUmax
=

Ũ1

Umax

⎡⎣1 −
(
Ũ1

Umax

)2
⎤⎦

1
κ−1

(9.91)

The above relationship for the mass flow density makes it clear that for
U1 = 0, the mass flow θ = 0 is achieved. The mass flow density, however,
assumes the value zero also for U1 = Umax. The reason for this is that at
the maximum possible velocity the density of the fluid, also determining the
mass flow density, has dropped to ρ̃ = 0. Between these two minimum values
the mass flow density has to traverse a maximum which can be computed by
differentiation of the above functions and by setting the derivation to zero.
The value obtained by solving the resulting equation has to be inserted for
Ũ1/Umax in the above equation for the mass flow density in order to achieve
the maximum value. We have:

θmax = ρHUmax

√
κ− 1
κ+ 1

(
2

κ+ 1

) 1
κ−1

(9.92)

where for the velocity value:

Ũ1

Umax
=

√
κ− 1
κ+ 1

for θ = θmax (9.93)
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With this, the mass flow density normalized with the maximum value can be
written as:

θ

θmax
=

√
κ+ 1
κ− 1

Ũ1

Umax

[
κ+ 1

2

(
1 − Ũ2

1

Umax

)] 1
κ−1

(9.94)

The distribution of this quantity with Ũ1/Umax is also represented in Fig. 9.10.
The significance of the maximum of the mass flow density for the distribution
of pressure-driven flows is dealt with more in detail later. Its appearance
prevents a steady increase of the mass flow with increase in the pressure
difference between the pressure reservoirs when the compensating flow takes
place via steadily converging nozzles.

A representation of the flows through converging nozzles, often regarded as
simpler, is achieved by relating the quantities designating the flow to the cor-
responding quantities of the “critical state”, which is designated by Ma = 1.
To this state corresponds not only a certain Mach number, i.e. M̃a1 = 1,
but also certain values of the thermodynamic state quantities: These can be
determined from (9.87)–(9.89) by setting M̃a1 = 1. From this the following
values for thermodynamic state quantities of the fluid result at the critical
state of the flow, i.e. for M̃a1 = 1:

P̃ ∗

PH
=
(

2
κ+ 1

) κ
κ−1

(9.95)

ρ̃∗

ρH
=
(

2
κ+ 1

) 1
κ−1

(9.96)

T̃ ∗

TH
=

2
κ+ 1

(9.97)

With these equations, the pressure, density and temperature of a flowing
medium can be determined in that cross-section of a converging nozzle in
which the velocity of the fluid takes on the local sound velocity. According to
the considerations at the end of Sect. 9.4.1, a minimum of the cross-section has
to exist at this point. As here the Mach number assumes the value M̃a1 = 1,
(9.83) can be written as follows:

Ũ∗2
1

U2
max

=
κ− 1

2

(
T̃

TH

)
=
κ− 1
κ+ 1

(9.98)

On comparing the values for Ũ1/Umax in 9.98 and 9.93, one finds that they are
identical, i.e. the maximum mass flow density can only occur in the narrowest
cross-section of a nozzle, where the sound velocity then also applies.

In accordance with the above derivations of the basic equations for
pressure-driven flows between large reservoirs, the flow which occurs in a
steadily converging nozzle, as sketched in Fig. 9.7, will be discussed. The
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considerations will be carried out in such a way that the mass flow is com-
puted which results when a certain pressure relationship (PN/PH) between
the reservoirs applies. Here two pressure ranges are of interest:

PN

PH
>
P ∗

PH

The ratio of the normalized reservoir pressures is
larger than the critical pressure ratio

PN

PH
<
P ∗

PH

The ratio of the reservoir pressures is smaller than
the critical pressure ratio

When the pressure ratio is larger than the critical value, a steady decrease
in the ratio of the reservoir pressures leads to a steady increase in the mass
flow density, as indicated in Fig. 9.11. The latter represents part of the total
diagram stated in Fig. 9.10, namely up to Ma = 1. For the variation of the
state quantities, namely for the pressure and the density the diagram is given.
On the assumption that in the narrowest cross-section of the steadily con-
verging nozzle the pressure of the low-pressure reservoir sets in, the pressure
ratio PN/PH can be determined from the known values PN and PH . Via the
same approach the mass flow density in this cross-section can be determined
in the following manner and thus also the total mass flowing through the
nozzle:

ṁH = AH θ̃H = AH(ρ̃Ũ1)H (9.99)

For reasons of continuity, this total mass flow is constant in all cross-section
planes of the nozzle, so that

ṁH = ṁ i.e. AN θ̃N = Ax1 θ̃x1 (9.100)

Starting from the assumption that the specified distribution of the cross-
sectional area of the nozzle along the x1 axis is known, then the mass flow
density distribution along the x1 axis can be determined using (9.100). Via
the same approach, one can then compute, as indicated in Fig. 9.12, the
pressure distribution along the nozzle, or the resulting distributions of the
density and the temperature, but also of the Mach number and the flow
velocity.

The approach to determining the pressure distribution along the nozzle,
indicated in Fig. 9.13, can be applied analogously also to define the density
distribution and the temperature distribution. To determine the distribution
of the Mach number and the velocity, the approach indicated in Fig. 9.12
holds.

It follows from the above considerations that the velocity (U1)N in the
entrance cross-section of the nozzle indicated in Fig. 9.7 is finite and that
there the mass flow density

θ̃H =
AN

AH

(
ρ̃Ũ1

)
N

(9.101)
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Fig. 9.12 Determining the pressure distribution along the nozzle axis for
(PN/PH) > (P∗

N/PH)

Fig. 9.13 Determining the Mach number and the velocity distribution along a
converging nozzle for (PN/PH) < (P∗

N/PH)

is present. Also in this cross-section a pressure, a density and a temperature
exist which do not correspond to the values in the high-pressure reservoir. It
is necessary always to take this into consideration when computing pressure-
driven flows through nozzles. The quantities designating the flows that exist
at the nozzle entrance are to be determined via the above diagrams from the
mass flow density computed for the entrance cross-section in accordance with
(9.101).
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When carrying out the above computations for determining the flow quan-
tities and the thermodynamic quantities, with a decrease in the pressure ratio
PN/PH an increase in the mass flow density in each cross-section of the nozzle
is obtained, as long as the pressure ratio is larger than the critical value. When
the critical value itself is reached:

PN

PH
=
(

2
κ+ 1

) κ
κ−1

=
P ∗

PH
(9.102)

This value cannot be exceeded in the case of a further decrease in the pressure
ratio PN/PH i.e. for all pressure ratios smaller than the critical value:

PN

PH
<
P ∗

PH
=
(

2
κ+ 1

) κ
κ−1

(9.103)

in the steadily converging nozzle, a flow comes about which is identical
for all pressure relationships. At the exit cross-section of the nozzle, i.e. in
the entrance cross-section to the low-pressure reservoir, the pressure PN no
longer applies. In this cross-section, the maximum mass flow density rather
is reached:

θ̃max = ρH

√
2κ
κ− 1

PH

ρH
=

√
2κ
κ− 1

PHρH (9.104)

or
θ̃max = ρH

√
2cPTH (9.105)

The total mass flow thus is computed as:

ṁ = ṁmax = AN θ̃max (9.106)

Starting again from the assumption that the nozzle form is known, then
the mass flow distribution existing along the axis x1 can be computed via
the continuity equation. When this distribution is known, the corresponding
distributions of the pressure, density, temperature, Mach number and flow
velocity can be determined as stated above. Of importance is that for all
pressure ratios PN/PH that are equal to or smaller than the critical ratio,
the same flow occurs in the nozzle. In the exit cross-section of the nozzle for

PN

PH
<
P̃ ∗

PH
=
(

2
κ+ 1

) κ
κ−1

(9.107)

an area-averaged pressure exists which is larger than the pressure PN existing
in the low-pressure reservoir. The pressure compensation takes place via fluid
flows that form in the open jet flow, stretching from the nozzle tip to the
interior of the low-pressure reservoir (Fig. 9.14).

Finally, attention is drawn to important facts that arise when considering
pressure-driven flow. The above representations started from the state often
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Fig. 9.14 Pressure compensation at the nozzle exit via density impacts

existing in practice that pressure-driven flows are controlled via pressure dif-
ferences between reservoirs. This means that it was assumed that PH , ρH or
TH are known and constant and that they have an influence on how the flow
forms. In the low-pressure reservoir it was only assumed that PN is given and
can be forced upon the flow in the narrowest cross-section of the nozzle (for
PN/PH larger than the critical value P ∗/PH). The density of the flowing gas
that occurs for these conditions in the exit cross-section of the nozzle or the
temperature that arises are not identical with the corresponding values for
the fluid in the low-pressure reservoir.

Equalization of these values and the corresponding values for the low-
pressure reservoir takes place in the open jet flow following the nozzle flow.
For pressure conditions

PN

PH
<
P ∗

PH
=
(

2
κ+ 1

) κ
κ−1

(9.108)

the equalization takes place between the pressure in the nozzle exit cross-
section and the pressure in the low-pressure reservoir, and likewise in the
open jet flow following the nozzle flow. Further details of one-dimensional
compressible flows are provided in refs. [9.1] to [9.2].
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Chapter 10

Potential Flows

10.1 Potential and Stream Functions

In order to make the integration of the partial differential equation of fluid
mechanics possible by simple mathematical means, the introduction of irro-
tationality of the flow field is necessary. The introduction of irrotationality is
necessary to yield a replacement for the momentum equations and it is this
fact that permits simpler mathematical methods to be applied. In Sect. 5.8.1,
a transport equation equivalent to the momentum equation was derived for
the vorticity which for viscosity-free flows is reduced to the simple form
Dω/Dt = 0. From this equation, two things follow. On the one hand, it
becomes evident that irrotational fluids obey automatically a simplified form
of the momentum equation. On the other hand, Kelvin’s theorem results im-
mediately, according to which all flows of viscosity-free fluids are irrotational,
when at any point in time the irrationality of the flow field was detected. This
can be understood graphically by considering that all surface forces acting on
a non-viscous fluid element act normal to the surface and as a resultant go
through the center of mass of the fluid element. At the same time, the inertia
forces also act on the center of mass, so that no resultant momentum comes
about which can lead to a rotation. Hence the conclusion is possible that
rotating fluid elements cannot receive an additional rotation due to pressure
and inertia forces acting on ideal fluids. This is indicated in Fig. 10.1.

In addition to the above requirement for irrotationality, a further restric-
tion will now be introduced regarding the properties of the flows that are dealt
with in this chapter, namely the exclusive consideration of two-dimensional
flows. This restriction imposed on the allowable properties of flows is not a
condition resulting from irrotationality; one can, on the contrary, well imagine
three-dimensional flows of viscosity-free fluids that are irrotational. For two-
dimensional, irrotational flows there exists, however, a very elegant solution
method which is based on the employment of complex analytical functions
and which is used exclusively in the following.

275
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Fig. 10.1 Graphical representation of the physical cause of irrotationality of ideal
flows (Kelvin’s theorem)

When considering two-dimensional flow fields with flow property de-
pendences on x1 and x2, the only remaining component of the rotational
vector is:

ω3 =
1
2

(
∂U2

∂x1
− ∂U1

∂x2

)
. (10.1)

When one assumes the considered two-dimensional flow fields to be
irrotational, it holds that ω3 = 0 or:

∂U1

∂x2
=
∂U2

∂x1
. (10.2)

This condition has to be fulfilled in addition to the continuity equation when
irrotational two-dimensional flow problems are to be solved.

Disregarding singularities, for irrotational flow fields the above relation-
ship has to be fulfilled in all points of the flow field. This is tantamount to
the statement that, for two-dimensional irrotational flows, a velocity poten-
tial Φ(x1, x2) driving the flow exists, to such an extent that the following
relationships hold:

U1 =
∂Φ

∂x1
and U2 =

∂Φ

∂x2
. (10.3)

Equation (10.3) inserted in (10.2) leads to the following relations:

∂U1

∂x2
=

∂2Φ

∂x1∂x2
and

∂U2

∂x1
=

∂2Φ

∂x1∂x2
, (10.4)

which for irrotational flow fields, i.e. for ω3 = 0 [see (10.1)], confirm the
reasonable introduction of a potential driving the velocity field. When one
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inserts (10.3) into the two-dimensional continuity equation (5.18) for ρ =
constant then one obtains the Laplace equation for the velocity potential:

∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

= 0. (10.5)

For determining two-dimensional potential fields, it is sufficient to solve
(10.3) and (10.5), i.e. for determining the velocity field it is not necessary to
solve the Navier–Stokes equation, formulated in velocity terms. These equa-
tions, or the equation derived in Sect. 5.8.1, have to be employed, however,
for determining the pressure field.

The solution of the partial differential (10.5) for the velocity potential
requires at the boundary of the flow the boundary condition

∂Φ

∂n
= 0, (10.6)

where n is the normal unit vector at each point of the flow boundary.
When the velocity potential Φ, or potential field Φ, has been obtained as

a solution of (10.5), the velocity components U1 and U2 can be determined
for each point of the flow field by partial differentiations, according to (10.3).
After that, the determination of the pressure via Euler’s equations, i.e. via the
momentum equations for viscosity-free fluids, can be computed. Determining
the pressure can also be done, however, via the integrated form of Euler’s
equations, which leads to the “non-stationary Bernoulli equation”.

The above treatments make it clear that the introduction of the irrotation-
ality of the flow field has led to considerable simplifications of the solution
ansatz for the basic equations for flow problems. The equations that have to
be solved for the flow field are linear and they can be solved decoupled from
the pressure field. The linearity of the equations to be solved is an essential
property as it permits the superposition of individual solutions of the equa-
tions in order to obtain also solutions of complex flow fields. This solution
principle will be used extensively in the following sections.

In the derivations of the above equations for two-dimensional potential
flows, the potential function was introduced in such a way that the irro-
tationality of the flow field was fulfilled by definition. The introduction of
the potential function Φ into the continuity equation then led to the two-
dimensional Laplace equation; only such functions Φ which fulfil this equation
can be regarded as solutions of the basic equations of irrotational flows.

Via a procedure similar to the above introduction of the potential function
Φ, it is possible to introduce a second important function for two-dimensional
flows of incompressible fluids, the so-called stream function Ψ . The latter is
defined in such a way that through the stream function the two-dimensional
continuity equation is automatically fulfilled, i.e.

U1 =
∂Ψ

∂x2
and U2 = − ∂Ψ

∂x1
. (10.7)
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This relationship, inserted into the continuity equation, shows directly that
the stream function Ψ (introduced according to (10.7)) fulfills this equation;
by definition this is the case for rotational and irrotational flow fields.

When one wants to define analytically or numerically the stream function
of an irrotational flow the function Ψ has to be a solution of the Laplace
equation:

∂2Ψ

∂x2
1

+
∂2Ψ

∂x2
2

= 0. (10.8)

This equation can be derived by inserting equations (10.7) into the condition
for the irrotationality of the flow:

∂U2

∂x1
− ∂U1

∂x2
= 0.

The stream function for two-dimensional potential flows fulfils the two-
dimensional Laplace equation, similar to the potential function Φ.

The stream function has a number of properties that prove useful for
the treatment of two-dimensional flow problems. Lines of constant stream-
function values, for example, are path lines of the flow field when stationary
conditions exist for the flow. This can be derived by stating the total
differential of Ψ :

dΨ =
∂Ψ

∂x1
dx1 +

∂Ψ

∂x2
dx2. (10.9)

For Ψ = constant dΨ = 0 and therefore

(
dx2

dx1

)
Ψ=constant

= −
∂ψ

∂x1

∂Ψ

∂x2

=
U2

U1
. (10.10)

This is the relationship for the gradient of the tangent of the stream line,
but also for the gradient of the path line of a fluid element. Accordingly, the
total family of stream lines of a velocity field is described by all of Ψ values
from 0 to infinity.

A further essential property of the stream function becomes clear from
the fact that the difference of the stream-function values of two flow lines
indicates the volume flow rate that flows between the flow lines. This can
be derived with the aid of Fig. 10.2, which shows two flow lines that are
connected to one another by a control line AB.

When computing the volume flow that passes the control area AB in the
flow direction passing perpendicular to the x1 − x2 plane of depth 1, one
obtains:

Q̇ =

B∫
A

U1dx2 −
B∫

A

U2dx1 =

B∫
A

(U1dx2 − U2dx1). (10.11)
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Fig. 10.2 Schematic representation of the flow between flow lines

It holds, however, that dΨ = U1dx2 −U2dx1, so that the following can be
written:

Q̇ =

B∫
A

(U1dx2 − U2dx1) =

B∫
A

dΨ = ΨB − ΨA. (10.12)

It should be mentioned that from the statement that Ψ = constant are
stream lines of the considered flow field, it follows immediately that solid
walls have to run tangentially to lines Ψ = constant. From the orthogonality
of equipotential lines and stream lines, which is shown in the following section,
it results at once that equipotential lines always have to stand vertically on
solid walls. When one considers the stream lines of a flow field, which can
be given for two-dimensional potential flows in connection with the potential
lines of the same flow field, i.e. lines with Φ = constant, one finds that Ψ =
constant and Φ = constant lines lie orthogonally to one another. This can be
shown by stating the total differential dΦ:

dΦ =
∂Φ

∂x1
dx1 +

∂Φ

∂x2
dx2, (10.13)

or writing the same with consideration of (10.3) as follows:

dΦ = U1dx1 + U2dx2. (10.14)

The lines Φ = constant are thus given by:(
dx2

dx1

)
Φ=constant

= −U1

U2
. (10.15)

A comparison of relationships (10.10) and (10.15) yields:(
dx2

dx1

)
Φ

= − 1(
dx2

dx1

)
Ψ

. (10.16)
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As the gradient of the equipotential lines is equal to the negative reciprocal
of the gradient of the flow lines, these lines form an orthogonal net. The
velocity along a stream can be computed as

Us =
(
∂Φ

∂s

)
Ψ=constant

. (10.17)

This relationship is often used in investigations of flow fields for which
values of flow lines and equipotential lines have been computed or have to be
obtained from measurements.

From the above derivations, it is apparent that a stream function Ψ can
be computed when the potential function Φ is known and that also inversely
the potential function Φ can be determined when the stream function Ψ is
available. The procedure for determining one function from the other is to
be considered in accordance with the following single steps for determining
the stream function:

• The known potential function Φ(x1, x2) is examined with regard to
whether it represents a solution of (10.5).

• By partial differentiation of the function Φ(x1, x2) with respect to x1 and
x2 the velocity components U1 and U2 are determined, in accordance with
relations (10.3).

• From this the gradient of the equipotential line can be determined [see
(10.15)]: (

dx2

dx1

)
Φ

= −U1

U2
.

• From (10.16) it follows for the gradient of the stream lines that(
dx2

dx1

)
Ψ

=
U2

U1
.

• By integration of this relationship, the course of the stream lines is
determined. These are lines of constant Ψ values.

10.2 Potential and Complex Functions

The considerations in Sect. 10.1 have shown that the velocities U1 and U2 can
be stated as partial derivatives of the stream function and the potential func-
tion for irrotational two-dimensional flows of incompressible and viscosity-free
fluids:

U1 =
∂Φ

∂x1
=
∂Ψ

∂x2
, (10.18)

and

U2 =
∂Φ

∂x2
= − ∂Ψ

∂x1
. (10.19)
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On the basis of their definition, the stream and potential functions satisfy
the Cauchy–Rieman differential equations:

∂Φ

∂x1
=
∂Ψ

∂x2
, (10.20)

∂Φ

∂x2
= − ∂Ψ

∂x1
. (10.21)

These relationships provide the basis to deduce that a complex analytical
function F (z) (see Sect. 2.11.6) can be introduced in which Φ(x, y) represents
the real part and Ψ(x, y) the imaginary part of the function F (z). The latter
being refered to as the complex potential of the velocity field. This function
is usually written as:

F (z) = Φ(x, y) + iΨ(x, y), (10.22)

where x = x1 and y = x2 and z = x+ iy indicates a point in the considered
complex number plane. Conversely, it can be said that for any analytical
function it holds that its real part represents automatically the potential of a
velocity field whose stream lines are described by the corresponding imaginary
part of the complex function F (z). As a consequence, it results that each real
part of an analytical function, and also the corresponding imaginary part
of F (z), separately fulfil the two-dimensional Laplace equation. Analytical
functions, as they are dealt with in functional theory, can thus be employed
for describing potential flows. When setting their real part 
(x, y) equal to
the potential function Φ(x, y) and the imaginary part Im(x, y) equal to the
stream function Ψ(x, y), it is possible to state these as the equipotential
and the stream lines. By proceeding in this way, solutions to flow problems
are obtained without partial differential equations having to be solved. The
inverse way of proceeding, which is sought in this chapter for the solution of
flow problems, namely interpreting a known solution of the potential equation
as a flow, is regarded as acceptable because of the evident advantages of
proceeding in this way for introducing students to the subject of potential
flows.

From a complex potential F (z), a complex velocity can be derived by
differentiation. As F (z) represents an analytical function, and therefore is
continuous and can be continiously differentiated. The differentiation has to
be independent of the direction in which it is carried out, as is shown in the
following. Since the smoothness of F (z) holds, we can derive:

dF
dz

= lim
∆z→0

∆F

∆z
= lim

∆z→0

∆F

(z +∆z) − z
= lim

∆z→0

∆F

(x+∆x) + i(y +∆y) − (x+ iy)
,
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and as one is free to choose the way in which ∆z goes towards zero (the
differentiation has to be independent of the approach selected), the following
special ways can be taken into consideration:

∆y = 0:
dF
dz

= lim
∆x→0

∆F

(x+∆x) + iy − (x+ iy)
= lim

∆x→0

∆F

∆x
=
∂F

∂x
,

∆x = 0:
dF
dz

= lim
∆y→0

∆F

x+ i(y +∆y) − (x+ iy)
= lim

∆y→0

∆F

i∆y

=
∂F

i∂y
= −i∂F

∂y
.

The result of differentiation of the complex potential F (z) is thus for
x = x1:

w(z) =
dF (z)

dz
=
∂Φ

∂x1
+ i
∂Ψ

∂x1
, (10.23)

or, expressed in velocity components:

w(z) = U1 − iU2. (10.24)

Based on the above considerations, the following also holds:

w(z) =
dF (z)

dz
=
∂Φ

i∂x2
+ i

∂Ψ

i∂x2
, (10.25)

or after transformation, considering that i2 = −1, one can write:

w(z) =
∂Ψ

∂x2
− i ∂Φ
∂x2

= U1 − iU2. (10.26)

The above relationships are used in the following to investigate different
potential flows. For these investigations, occasionally use is made of the fact
that the complex number z can also be stated in cylindrical coordinates (r, ϕ):

z = re(iϕ) = r cosϕ+ ir sinϕ. (10.27)

Between the velocity components in Cartesian coordinates and in
cylindrical coordinates, the known relationships:

U1 = Ur cosϕ− Uϕ sinϕ, (10.28)

U2 = Ur sinϕ+ Uϕ cosϕ (10.29)

hold. Thus, for the complex velocity the following expressions result:

w(z) =
dF (z)

dz
= U1 − iU2 = (Ur cosϕ− Uϕ sinϕ) − i(Ur sinϕ+ Uϕ cosϕ)

= Ur(cosϕ− i sinϕ) − iUϕ(cosϕ− i sinϕ), (10.30)

w(z) = (Ur − iUϕ)e(−iϕ). (10.31)
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10.3 Uniform Flow

Probably the simplest analytical function F (z), disregarding a constant, is
a function which is directly proportional to z and whose proportionality
constant is a real number:

F (z) = U0z = U0(x+ iy). (10.32)

This analytical function describes a flow with the following potential and
stream functions:

Φ(x, y) = U0x and Ψ(x, y) = U0y. (10.33)

Via the relationship for the complex velocity, one obtains:

w(z) =
dF (z)

dz
= U0 = U1 − iU2, (10.34)

or for U1 = U0 and U2 = 0, the complex potential F (z) describes a uniform
flow parallel to the x1-axis or the x-axis. This flow is sketched in Fig. 10.3a.
For the velocity field it can be deduced that in every point of the flow field,
the velocity components are U1 = U0 and U2 = 0.

This figure shows the stream lines Ψ = constant, where the arrows in-
dicate the direction of the velocity. The potential lines Φ = constant are
not indicated in Fig. 10.3a. In Fig. 10.3b, stream lines of another flow are

Fig. 10.3 Uniform flow in the (a) x1 and (b) the x2 direction and (c) in the direction
of the angle α relative to the x1 direction
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shown, representing the lines parallel to the x2-axis. When the proportionality
constant is imaginary, i.e. it holds that:

F (z) = iV0z = V0(−y + ix), (10.35)

then one obtains for the potential and stream functions:

Φ(x, y) = −V0y and Ψ(x, y) = V0x. (10.36)

For the complex velocity it is computed that:

w(z) = iV0 = U1 − iU2, (10.37)

or U1 = 0 and U2 = −V0, i.e. in this case the complex potential describes a
flow parallel to the x2-axis or the y-axis which takes place in the direction of
the negative axis (see Fig. 10.3b).

When there is a flow in the direction indicated in Fig. 10.3c, the complex
potential is:

F (z) = (U0 − iV0)z
= (U0 − iV0)(x + iy). (10.38)

From this result, the following relationships for Φ(x, y) and Ψ(x, y) can be
obtained:

Φ(x, y) = U0x+ V0y and Ψ(x, y) = U0y − V0x.

Via the complex velocity, one obtains:

w(z) = U0 − iV0 = U1 − iU2. (10.39)

U1 = U0 and U2 = V0, The components give a velocity field which is sketched
in Fig. 10.3c.

10.4 Corner and Sector Flows

Potential flows around corners and or in sectors of defined angles are described
by a complex potential F (z) which is proportional to zn, where for n ≤ 1
flows around corners are described, and for n ≥ 1, flows in sectors of angles
π
n are obtained. This will be derived and explained through the following
considerations. The derivations below are based on the following complex
potential:

F (z) = Czn. (10.40)

When one replaces z by z = re(iϕ) and divides the complex potential into
real and imaginary parts, one obtains:

F (z) = C [rn cos(nϕ) + irn sin(nϕ)]. (10.41)
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Fig. 10.4 General representation
of corner flows and sector flows

From this relationship and taking (10.22) into account, the potential and
stream function can be stated as follows:

Φ(r, ϕ) = Crn cos(nϕ) and Ψ(r, ϕ) = Crn sin(nϕ). (10.42)

The resulting relationship for the stream function in (10.42) makes it clear
that Ψ(r, ϕ) assumes the values Ψ = 0 for ϕ = 0 and for ϕ = π/n. This
means that the lines ϕ = 0 and ϕ = π/n represent the flow line Ψ = 0 and
are regarded here as walls of the flow field. Between them the stream lines
for Ψ = rn sin(nϕ) = constant are stated. These result for Ψ = constant in
stream lines as they are sketched in Fig. 10.4. The velocity components that
are to be assigned to this flow field can be expressed in cylindrical coordinates
as follows:

w(z) =
dF (z)

dz
= nCz(n−1) = nCr(n−1)e{i(n−1)ϕ} (10.43)

or, rewritten, one obtains:

w(z) =
[
nCr(n−1)(cos(nϕ) + i sin(nϕ))

]
e(−iϕ), (10.44)

so that one can state [see (10.31)]:

Ur = nCr(n−1) cos(nϕ) and Uϕ = −nCr(n−1) sin(nϕ). (10.45)

For 1
2 < n < 1, one obtains fluid flows around corners as sketched in

Fig. 10.5. Flows around corners are of concern here. They are designated
here, in short, as corner flows. For 2

3 < n < 1 flows around obtuse-angled
corners are described by (10.40) and for 1

2 < n ≤ 2
3 a representation of flows

is achieved which comprises the flow around acute-angled corners.
For 1 < n < ∞. flows in angle sectors result from the complex poten-

tial F (z) = Czn as sketched for obtuse-angled angle sectors (1 < n < 2)
in Fig. 10.6a and for acute-angled ones (2 ≤ n ≤ ∞) in Fig. 10.6b. As for
0 < ϕ < (π/2n)Ur is always positive, whereas Uϕ assumes negative values
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Fig. 10.5 Flow around (a) acute-angled and (b) obtuse-angled corners

Fig. 10.6 Flow in the (a) obtuse-angled and (b) acute-angled angle sector

in this domain, and as for (π/2n) < ϕ < (π/n)Ur becomes negative and
Uϕ remains negative, the courses of the stream and potential lines result as
sketched in Fig. 10.6.

The planes ϕn = 0 and ϕn = π/n represent a stream line. Along this
stream line there are no velocity components in direction normal to the wall.
The velocity changes along the boundary stream line, i.e. the wall boundary
of the flow. The flow in an angle sector with acute angle differs from the
flow in an obtuse-angle flow domain only by the exponent n in the complex
velocity potential.

From the above derivations, it can be seen that the complex potential
(10.40) includes for n = 1 also the uniform flow dealt with in Sect. 10.3.
Another important special case is the flow around a thin plate, which can be
treated as flow around a border with the angle 360◦, i.e. this flow is described
by the complex potential:

F (z) = Cz(
1
2 ). (10.46)
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Fig. 10.7 Potential flow around the front of an
infinitely thin plate

The proportionality constant is real and the angular area occupied by the
flow is:

0 ≤ ϕ ≤ 2π.

In cylindrical coordinates the complex potential can be written as:

F (z) = Cr(
1
2 )e(i ϕ

2 ). (10.47)

The potential and stream functions can be stated as follows:

Φ(r, ϕ) = Cr
1
2 cos

(ϕ
2

)
and Ψ(r, ϕ) = Cr

1
2 sin

(ϕ
2

)
. (10.48)

From the relationship for the stream function, it can be derived that the
lines ϕ = 0 and ϕ = 2π correspond to the stream line Ψ = 0. The stream
lines for other ϕ values are described by the stream function in (10.48) and
are sketched in Fig. 10.7. Also indicated are the equipotential lines, which are
also computable according to (10.44). The complex flow velocity is obtained
by differentiation of the complex potential F (z) to yield:

w(z) =
dF (z)

dz
=

C

2z(
1
2 )

(10.49)

=
C

2r(
1
2 )

e(−i ϕ
2 ).

One can rewrite this relationship as:

w(z) =
C

2r(
1
2 )

[
cos
(ϕ

2

)
+ i sin

(ϕ
2

)]
e(−iϕ). (10.50)

The velocity components Ur and UΦ can therefore be computed as:

Ur =
C

2r(
1
2 )

cos
(ϕ

2

)
and Uϕ = − C

2r(
1
2 )

sin
(ϕ

2

)
. (10.51)
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These relationships make it clear that the velocity component Uϕ for 0 <
ϕ < 2π is negative, whereas Ur for 0 < ϕ < π is positive and for π < ϕ < 2π
negative. This leads to the stream lines of the flow sketched in Fig. 10.7.

As an important result of the above derivations, one can deduce that the
velocity field possesses a singularity at the origin of the coordinate system.
This is caused by the flow around the front corner of the flat plate. This
corner is characterized by extreme values of the velocity field. The values of
both velocity components approach ∞ for r → 0.

10.5 Source or Sink Flows and Potential Vortex Flow

When one chooses a complex potential F (z) which is proportional to the
natural logarithm of z, one obtains the complex potential of a source or a
sink flow selecting a real proportionality constant, and depending on whether
one chooses a positive or negative sign, the source flow (+sign) and the sink
(−sign) flow results:

F (z) = ±C ln z, (10.52)

or, with z = re(iϕ):

F (z) = ±C [ln r + iϕ] = Φ+ iΨ. (10.53)

For the potential and stream functions of the source and sink flow, one
thus obtains:

Φ(r, ϕ) = ±C ln r Ψ(r, y) = ±Cϕ

Φ(x, y) = ±C ln
√
x2 + y2 Ψ(x, y) = ±C arctan

y

x

. (10.54)

These equations show that the equipotential lines represent circles with r =
constant whereas the stream lines represent radial lines with Φ = constant.
When computing the complex velocity:

w(z) =
dF (z)

dz
= ±C 1

z
= ±C (x − iy)

x2 + y2
, (10.55)

one obtains for the velocity components:

w(z) =
±C

x2 + y2
(x− iy) = U1 − iU2, (10.56)

or, written for U1 and U2,

U1 =
±Cx
x2 + y2

and U2 =
±Cy
x2 + y2

. (10.57)
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In (10.55), w(z) can also be written in r − Φ coordinates:

w(z) =
±C
z

= ±C
r

e(−iϕ). (10.58)

A comparison of (10.58) with (10.31) shows that the following relationships
hold:

Ur = ±C
r

and Uϕ = 0. (10.59)

The velocity component Ur decreases with 1/r; however, this velocity has
a singularity in origin at r = 0 in the selected coordinate system.

A flow thus comes about which is sketched in Fig. 10.8 for the source flow
and which is purely radial.

The volume flow released per unit time and unit depth by the source,
characterizing the strength of the source, is given by:

Q̇ =

2π∫
0

Urr dϕ = C2π, (10.60)

so that the complex potential for the source or the sink flow can be written
as follows:

(+) = source flow
F (z) = ± Q̇

2π
ln z

(−) = sink flow
. (10.61)

Fig. 10.8 Representation of the potential and stream lines for source flows
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When the source or sink does not lie at the origin of the coordinate system
but at the point z0, one obtains:

F (z) = ± Q̇
2π

ln(z − z0). (10.62)

When considering a potential z proportional to the natural logarithm,
in which the proportionality constant is imaginary, one obtains F (z) of a
potential vortex:

F (z) = iC ln z = C(−ϕ+ i ln r). (10.63)

For the potential and stream functions one can deduce from this that:

Φ(r, ϕ) = −Cϕ and Ψ(r, ϕ) = C ln r, (10.64)

or:

Φ(x, y) = −C arctan
y

x
and Ψ(x, y) = C ln

√
x2 + y2. (10.65)

These relationships show that the equipotential radially and outward going
lines represented by Φ = constant whereas the stream lines are circles with
r = constant (Fig. 10.9). For the complex velocity, one can derive:

w(z) =
dF (z)

dz
= iC

1
z

= i
C

r
e(−iϕ). (10.66)

By comparing (10.66) and (10.31), one can deduce that:

Ur = 0 and Uϕ = −C
r
. (10.67)

This resulting flow field is that of a potential vortex with a characteristic
decrease of the circumferential velocity with distance from the vortex center.
When defining the strength of the potential vortex by the circulation Γ , one

Fig. 10.9 Stream lines and equipotential lines of the potential vortex
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can derive:

Γ =
∮
Us ds =

2π∫
0

Uϕr dϕ = −2πC. (10.68)

With this the potential vortex rotating in the mathematically positive
direction (Γ is positive), the complex potential can be stated as follows:

F (z) = − Γ
2π
i ln z. (10.69)

When the sign is positive, a potential vortex rotating in the mathematically
negative direction results with Γ being positive.

A strict distinction has to be made between the potential vortex and vortex
motions whose flow fields possess rotations, e.g. vortices result where the
entire flow field rotates analogously to the rotation of a solid body. The
flow field of the potential vertex is irrotational. The entire circulation of a
potential vertex is limited to the vortex-center line where the total circulation
is located.

10.6 Dipole-Generated Flow

In this section, a potential flow will be discussed which is defined as dipole-
generated flow and results as a limiting case of the superposition of a source
flow with a sink flow. Considered is a source with a strength Q̇ which is
located on the x-axis at a distance −a from the origin of a coordinate system
and a sink of the same strength, which has been arranged on the x-axis at a
distance +a as shown in Fig. 10.10a.

Fig. 10.10 Flow lines of (a) source and sink flows and (b) a dipole-generated flow
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When the distances ±a are reduced, the source and the sink of the con-
sidered potential flow move closer together until, for the limiting case a→ 0,
they coincide in the coordinate origin and thus result in the dipole-generated
flow sketched in Fig. 10.10b.

It is the task of the following derivations to find the complex potential of
the dipole-generated flow and to derive and discuss, based on the carried out
derivations, the flow field of the dipole generated flow.

The complex potential of the combined source and sink flow sketched in
Fig. 10.10 can be stated as the sum of the complex potential of both flows:

F (z) =
Q̇

2π
ln(z + a) − Q̇

2π
ln(z − a), (10.70)

or rewritten in the following form:

F (z) =
Q̇

2π

[
ln
(
z + a
z − a

)]
=
Q̇

2π
ln
[
1 + a/z
1 − a/z

]
. (10.71)

When carrying out a series expansion for the term
(

1
1−a/z

)
, one obtains:

F (z) =
Q̇

2π
ln
[(

1 +
a

z

)(
1 +

a

z
+
a2

z2
+
a3

z3
+ . . .

)]
, (10.72)

or, after performing multiplication and truncation after the linear terms, one
obtains:

F (z) =
Q̇

2π
ln
(
1 + 2

a

z

)
. (10.73)

When one carries out another series expansion:

ln
(
1 + 2

a

z

)
= 2

a

z
− 2
a2

z2
+

8a3

3z3
∓ . . . , (10.74)

one obtains for small values (a/z):

F (z) =
Q̇

2π
2
a

z
. (10.75)

With the strength of the dipole generated flow being characterized as:

D =
Q̇a

π
,

the following complex potential results for the dipole-generated flows:

F (z) =
D

z
=

D

(x + iy)
. (10.76)
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For the potential and stream functions, the following expressions can be
derived:

Φ(r, ϕ) =
Dx

x2 + y2
and Ψ(r, ϕ) =

−Dy
x2 + y2

,

Φ(r, ϕ) =
D

r
cosϕ and Ψ(r, ϕ) =

−D
r

sinϕ. (10.77)

The flow lines and equipotential lines are indicated in Fig. 10.10b.
For the complex velocity, one can derive:

w(z) =
dF (z)

dz
= −D

z2
= −D

r2
e(−i2ϕ), (10.78)

or rewritten in the following form:

w(z) = −D
r2

(cosϕ− i sinϕ)e(−iϕ). (10.79)

From this result, the following expressions for the velocity components
result:

Ur = −D
r2

cosϕ and Uϕ = −D
r2

sinϕ. (10.80)

The signs of these velocity components confirm the direction of the flow
indicated in Fig. 10.10b.

10.7 Potential Flow Around a Cylinder

The significance of the dipole-generated flow discussed above lies in the fact
that its complex potential can be superimposed with the complex potential
of the uniform flow parallel to the x-axis; in this way, a complex potential
arises which describes the flow around a cylinder. The simple superposition
of the F (z) functions of these two kinds of flows is permitted as the partial
differential equations, derived from the basic equations of fluid mechanics,
are linear for the potential and stream function. By addition of the complex
potentials for the constant flow parallel to the x-axis and for the dipole-
generated flow, one obtains the following relationship:

F (z) = U0z +
D

z
= U0re

(iϕ) +
D

r
e(−iϕ), (10.81)

which is equivalent to:

F (z) = U0r(cosϕ+ i sinϕ) +
D

r
(cosϕ− i sinϕ). (10.82)
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Fig. 10.11 Flow lines of the flow around a cylinder

For the potential and stream functions the following relationships can thus
be found:

Φ(r, ϕ) =
(
U0r +

D

r

)
cosϕ and Ψ(r, ϕ) =

(
U0r − D

r

)
sinϕ. (10.83)

When one now inserts the radius r = R of a cylinder, the stream function
along a cylinder wall results as

Ψ(r, ϕ) =
(
U0R− D

R

)
sinϕ. (10.84)

When choosing the strength of the dipole-generated flow D = U0R
2, one

obtains for the stream function Ψ = 0 along the cylinder wall (r = R for all ϕ).
The resulting stream lines of this flow are shown in Fig. 10.11. From this
representation, it can be seen that the stream line representing the cylinder
wall is a dividing line between an internal flow caused by the dipole-generated
flow and an external flow coming from the flow parallel to the x-axis. We
thus have an external flow that can be interpreted as the flow resulting from
two-dimensional considerations of the flow of an incompressible viscosity-free
fluid around a cylinder. When one takes into consideration the relationship
D = U0R

2, derived for the strength of the dipole-generated flow, for the
complex potential of the flow around a cylinder with r ≥ R, the following
final equation can be given:

F (z) = U0

(
z +

R2

z

)
. (10.85)



10.7 Potential Flow Around a Cylinder 295

In addition, for the potential and stream functions the following
relationships hold:

Φ(r, ϕ) = U0

(
r +

R2

r

)
cosϕ and Ψ(r, ϕ) = U0

(
r − R

2

r

)
sinϕ.

(10.86)
For the complex velocity, one can derive:

w(z) =
dF (z)

dz
= U0

(
1 − R

2

z2

)
= U0

[
1 − R

2

r2
e(−i2ϕ)

]
. (10.87)

Further conversions yield:

w(z) = U0

[
e(iϕ) − R

2

r2
e(−iϕ)

]
e(−iϕ) (10.88)

= U0

[
(cosϕ+ i sinϕ) − R

2

r2
(cosϕ− i sinϕ)

]
e(−iϕ)

and lead to the following velocity components:

Ur = U0

(
1 − R

2

r2

)
cosϕ and Uϕ = −U0

(
1 +

R2

r2

)
sinϕ. (10.89)

For the outer cylinder area (r = R) one obtains Ur = 0; along the actual
cylinder there is only a flow along the cylinder wall. For the latter a velocity
component results:

Uϕ = −2U0 sinϕ for r = R. (10.90)

For ϕ = π
2 , a velocity component therefore exists which is equal to twice

the value of the velocity parallel to the x-axis.
The indicated potential flow around a cylinder results in a solution having

outflow conditions which are equal to the inflow conditions, so that no force
resulting from the flow acts on the cylinder. This can also be derived from
the solution for the velocity field itself. As concerns the quantity of the Uϕ

component, there exists a symmetry to the x-axis, so that the pressure distri-
bution is also symmetrical and therefore no resulting buoyancy force comes
about. Because of a likewise existing symmetry of the pressure distribution
to the y-axis, no resulting resistance force is produced either. As this result
is contradictory to our experience (d’Alambert’s paradox), this investigation
shows clearly the significance of the viscosity terms in the basic equations of
fluid mechanics. When these terms are not considered in fluid-technical con-
siderations, for obtaining relevant information with regard to fluid physics,
fluid forces on bodies can only be dealt with to a limited extent.
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10.8 Flow Around a Cylinder with Circulation

In the previous section, the potential functions of the two potential flows were
added to yield a new flow. Determing the strength of the dipole-generated
flow, the flow around a circular cylinder resulted. In a similar way, one can
add complex potentials to give the following complex potential:

F (z) = U0

(
z +

R2

z

)
+
iΓ

2π
ln z + Ci. (10.91)

This complex potential results from the summation of the complex po-
tential of the flow around a cylinder and the complex potential of a vortex,
where the centers of both flows lie at the origin of the coordinate system.
The constant C was included in the above equation to be able to choose the
quantity of the stream function again in such a way that Ψ = 0 when r = R,
i.e. the outer cylinder is to represent the flow line Ψ = 0 in the finally derived
relation. For determining now the constant C, we insert in the above equation
z = re(iϕ):

F (z) = U0

[
re(iϕ) +

R2

r
e(−iϕ) +

iΓ

2π
ln(re(iϕ))

]
+ Ci. (10.92)

Making use of the relation eiϕ = cosϕ+ i sinϕ we obtain

F (z) = U0

[(
r +

R2

r

)
cosϕ+ i

(
r − R

2

r

)
sinϕ

]
− Γ

2π
ϕ+ i

Γ

2π
ln r + Ci

(10.93)
from which one can deduce the following relationship for the potential and
stream functions:

Φ(r, ϕ) = U0

(
r +

R2

r

)
cosϕ− Γ

2π
ϕ, (10.94)

and

Ψ(r, ϕ) = U0

(
r − R

2

r

)
sinϕ+

Γ

2π
ln r + C. (10.95)

In order to obtain Ψ = 0 for r = R and for all values of ϕ, one has to
choose the constant C = −( Γ

2π

)
lnR. In this way, for the complex potential

of the flow around a cylinder with circulation the following complex potential
results:

F (z) = U0

(
z +

R2

z

)
+ i
Γ

2π
ln
z

R
. (10.96)

This potential describes the plane flow parallel to the x-axis, made up of
a dipole-generated flow and a potential vortex located at the origin of the
coordinate system. For this flow, the potential and stream functions can be
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Fig. 10.12 Stream lines for the flow around a cylinder with rotation: (a) circulation
0 ≤ Γ

4πU0R
< 1; (b) circulation Γ

4πU0R
= 1; (c) circulation Γ

4πU0R
> 1

stated as follows:

Φ(r, ϕ) = U0

(
r +

R2

r

)
cosϕ− Γ

2π
ϕ.

Ψ(r, ϕ) = U0

(
r − R

2

r

)
sinϕ+

Γ

2π
ln
r

R
. (10.97)

The corresponding flow and equipotential lines are shown in Fig. 10.12 for
three typical domains of the normalized circulation. The velocity components
of the flow field can be computed with the help of the complex velocity:

w(z) = U0

[
1 − R2

r2 e(−i2ϕ)
]

+ iΓ
2πr e(−iϕ)

=
[
U0

(
e(iϕ) − R2

r2 e(−iϕ)
)

+ i Γ
2πr

]
e(−iϕ).

(10.98)

By comparing this relationship with (10.31), the following velocity
components result:

Ur = U0

(
1 − R

2

r2

)
cosϕ and Uϕ = −U0

(
1 +

R2

r2

)
sinϕ− Γ

2πr
.

(10.99)
For Γ = 0 the equations given in Sect. 10.7, resulting for the potential flow

around a cylinder without circulation, can be deduced from (10.99).
By setting r = R in the above relationship, one obtains the velocity

components Ur and Uϕ along the circumferential area of the cylinder:

Ur = 0 and Uϕ = −2U0 sinϕ− Γ

2πR
. (10.100)

As expected, the stream line Ψ = 0 fulfils the boundary condition employed
with all potential flows for solid boundaries. The Uϕ component of the velocity
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has finite values along the cylinder surface. However, a stagnation point forms
in which also Uϕ = 0. These are the stagnation points of the flow with
positions on the surface of the cylinder. These locations are obtained from
(10.100) for Uϕ = 0.

It should be noted that the position of the stagnation points on the cylinder
surface are only given for Γ ≤ 4πU0R. For Γ = 0 the stagnation points are
located at ϕs = 0 and ϕs = π, i.e. on the x-axis. For finite Γ values in the
range 0 < Γ/(4πU0R) < 1, ϕs is computed as negative, so that the stagnation
points come to lie in the third and fourth quadrants of the cylinder area, as
shown in Fig. 10.12. For Γ/(4πU0R) = 1, the stagnation points are located
in the lowest point of the cylinder surface area. For this location, ϕs = −π

2
and 3

2π is computed (see Fig. 10.12).
When the circulation of the flow is increased further, so that Γ > 4πU0R

holds, stagnation points of the flow cannot form any more along the cylinder
surface area. The formation of a “free stagnation point” in the flow field comes
about. The position of this point for Ur = 0 and Uϕ = 0 can be computed
from the above equations for the velocity components, i.e. from:

U0

(
1 − R

2

r2s

)
cosϕs = 0, (10.101)

and

U0

(
1 +

R2

r2s

)
sinϕs = − Γ

2πrs
. (10.102)

As rs �= R, i.e. the formation of the free stagnation point on the circum-
ferential area is excluded, the first of the above two equations can only be
fulfilled for ϕs = π

2 or 3
2π . Hence the second conditional equation for the

position coordinate of the “free stagnation point” is:

U0

(
1 +

R2

r2s

)
= ± Γ

2πrs
. (10.103)

As Γ > 0 can be assumed in the above equation, and as the left-hand side
of the equation can only adopt positive values, only the positive sign of the
above equation yields values consistent with the flow field, i.e. the conditional
equation for rs reads:

U0

(
1 +

R2

r2s

)
=

Γ

2πrs
, (10.104)

or rewritten in the following form to compute rs:

r2s − Γ

2πU0
rs +R2 = 0. (10.105)

As a solution of this equation, one obtains:

rs =
Γ

4πU0
±
√(

Γ

4πU0

)2

−R2. (10.106)
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With this the position coordinates of the free stagnation point result as:

ϕs =
3π
2

and
rs
R

=
Γ

4πU0R

⎡⎣1 +

√
1 −
(

4πU0R

Γ

)2
⎤⎦. (10.107)

The negative sign of the root in the solution for rs was omitted in the
statement of the position coordinates for the free stagnation point, as this
would lead to a radius which is located inside the cylinder surface area. As
only the flow around the cylinder is of concern, this second solution of the
square equation for rs is of no interest in the considerations presented here.

Moreover, it was also excluded from the solution for the position coordi-
nates of the free stagnation point that the angle ϕs also has a solution for
π
2 . The reason for this is that for Γ

4πU0R = 1 the stagnation point appears
as a solution only in the lower half of the cylinder surface area. Inclusion
of the solution for ϕs = π

2 would mean that a small increase in the circu-
lation, to an extent that the standardized circulation is given a value larger
than 1, would lead to a jump of the stagnation point from the lower to the
upper half of the flow. Considerations on the stability of the position of the
stagnation points show, however, that only the lower stagnation point, i.e
ϕs = 3π

2 , can exist as a stable solution. Because of the superposition of the
flow around a cylinder with a potential vortex, a flow field has come about,
which again is symmetrical concerning the y-axis. With this outcome of the
above considerations it is in turn determined that, owing to the flow around
the cylinder, the cylinder surface area obtains no resulting force acting in the
flow direction, i.e. no resistance force occurs because of the flow. Owing to
the imposed circulation, an asymmetric flow with respect to the x-axis, has
come about, however, and this leads to a buoyancy force, i.e. to a resulting
force on the cylinder, directed upwards. As the velocity component on the
upper side of the cylinder is larger than that on the lower side, because of
the Bernoulli equation a pressure difference results, with low pressure on the
upper side. This causes a flow force directed upwards. The quantitative deter-
mination of this force requires integral relationships to be applied as derived
in Sect. 10.10.

10.9 Summary of Important Potential Flows

In the preceding sections, a number of potential flows were discussed which
are known as basic potential flows and whose treatment give an insight into
the fluid flow processes that occur. In Table 10.1, further analytical functions
are stated, in addition to the already extensively discussed examples, which
can be used for the derivation of potential and stream functions and the
corresponding velocity fields of potential flows. By equating the indicated
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potential or stream-function values to a constant, the equipotential or flow
lines of the potential flow can be stated.

The procedure concerning the derivations of fluid-mechanically interesting
quantities will be represented here once again briefly with the aid of the
source-sink flow taken from the table.

Example: F (z) =
Q̇

2π
· ln z =

Q̇

2π
(ln r + iϕ) ; z = x+ iy = reiϕ

Potential: Φ =
Q̇

2π
ln r =

Q̇

2π
ln
√
x2 + y2

Stream function: Ψ =
Q̇

2π
ϕ =

Q̇

2π
arctan

y

x

Velocity: u =
∂Φ

∂x
=
Q̇

2π
x

x2 + y2
=
∂Ψ

∂y

v =
∂Φ

∂y
=
Q̇

2π
y

x2 + y2
= −∂Ψ

∂x

c =
√
u2 + v2 =

Q̇

2π

√
x2 + y2

(x2 + y2)2
=
Q̇

2πr

Equipotential lines: y =
√
e

2π
c ·KΦ − x2

Φ = KΦ

Stream lines: y = x tan
(

2π
Q̇

)
KΨ

Ψ = KΨ

10.10 Flow Forces on Bodies

In Sects. 10.1 and 10.2 the possibility was already mentioned of computing
from the pressure distribution along a body contour the forces acting on
bodies that are caused by potential flows. When one has determined the
velocity field of a potential flow according to the preceding sections, the
velocity distribution is also known along the body contour. This contour
represents a flow line of the flow field (as the reader will hopefully remember).
In each point of the flow holds the Bernoulli equation in the following form:

P +
ρ

2
(U2

s + U2
n) = constant. (10.108)
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For the stream line Ψ = 0 and thus the body contour, Un = 0 holds, i.e.

P +
ρ

2
U2

s = constant. (10.109)

The quantity U2
s can be computed from U1 and U2 or from Ur and Uϕ as

follows:
U2

s = U2
1 + U2

2 = U2
r + U2

ϕ. (10.110)

Along the contour of a flow body, the following integrations can be carried
out:

F1 = −
∮
P cosϕds = −

∮
Pdx2 and F2 = −

∮
P sinϕds = −

∮
Pdx1,

(10.111)
in order to conserve the flow forces in the x1 or the x2 direction of a Cartesian
coordinate system (here ϕ is the angle between body contour and x2-axis).

On referring the directions of the forces to the inflow direction and choosing
the latter such that it is identical with the x1 direction, F1 results in the
resisting force on the body, while F2 yields the buoyancy force.

In the present section, an attempt is made to derive the forces di-
rectly through appropriate equations which use the complex velocity. To
carry out the necessary derivations, a control volume around the flow body
is taken with the height 1 vertical to the plane of flow, as indicated in
Fig. 10.13.

In this way, a control volume comes about which is determined by an
internal and an external contour. The fluid forces attacking in the center of
gravity of the submerged body and given in the directions of the x1- and
x2-axis, respectively, are likewise indicated in Fig. 10.13. Also sketched is the
moment which a body can experience by the flow forces that occur.

When now applying to the control volume, indicated in Fig. 10.13, the
momentum equations in integral form, as they were treated in Chap. 8,

Fig. 10.13 Fluid element and surrounding control volume
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the consideration can be expressed in words that the increase of x1 or x2

momentum of the flow can only be caused by the flow forces acting on the
body in the x1 or x2 direction. In the x1 direction the following force results:

−F1 −
∮
C0

Pdx2 =
∮
C0

ρU1(U1dx2 − U2dx1). (10.112)

This relationship considers that the internal contour of the control volume
represents the surface of an emerged body, so that the fluid does not flow
through it. The pressure forces acting on the internal contour Ci in the x1

direction were combined into the resulting force F1. The force acts in the
positive direction on the body and thus in the negative direction on the fluid;
this explains the negative sign in front of F1.

A similar relationship can be written for the x2 direction:

−F2 +
∮
C0

Pdx1 =
∮
C0

ρU2(U1dx2 − U2dx1). (10.113)

By integrating the two equations in terms of the forces and solving them,
one obtains

F1 =
∮
C0

[−(P + ρU2
1 )dx2 + ρU1U2dx1

]
, (10.114)

and
F2 =

∮
C0

[
(P + ρU2

2 )dx1 − ρU1U2dx2

]
. (10.115)

Applying the Bernoulli equation:

P +
ρ

2
(U2

1 + U2
2 ) = constant, (10.116)

and taking into consideration that the line integrals
∮

C0

(constant)dx1 and∮
C0

(constant)dx2 are both equal to zero along a closed contour of the control

volume, one obtains for the forces in the x1 and x2 directions the following
terms:

F1 = ρ
∮
C0

[
U1U2dx1 − 1

2
(U2

1 − U2
2 )dx2

]
, (10.117)

F2 = −ρ
∮
C0

[
U1U2dx2 +

1
2
(U2

1 − U2
2 )dx1

]
.

Considering the quantity:

i
ρ

2

∮
C0

w2(z)dz = i
ρ

2

∮
C0

(U1 − iU2)2(dx+ idy) (10.118)
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one obtains:

i
ρ

2

∮
C0

w2(z)dz = ρ
∮
C0

[(
U1U2dx1 − 1

2
(U2

1 − U2
2 )dx2

)

+ i
(
U1U2dx2 +

1
2
(U2

1 − U2
2 )dx1

)]
. (10.119)

This equation shows that the flow forces in the x1 and x2 directions that
act on a body can be computed as follows:

i
ρ

2

∮
C0

w2(z)dz = F1 − iF2. (10.120)

Through this relationship, the Blasius integral for flow forces, the flow
forces on bodies submerged in potential flows can be computed easily.

Employing the above relationship to compute the resulting force com-
ponents on the cylinder with circulation, one obtains, beginning with the
complex potential:

F (z) = U0

(
z +

R2

z

)
+ i
Γ

2π
ln
z

R
(10.121)

for the complex velocity:

w(z) =
dF (z)

dz
= U0

(
1 − R

2

z2

)
+
iΓ

2πz
. (10.122)

For w2(z), one can compute:

w2(z) = U2
0 − 2U2

0R
2

z2
+
U2

0R
4

z4
+
iU0Γ

πz
− iU0ΓR

2

πz3
− Γ 2

4π2z2
, (10.123)

or, rewritten:

w2(z) = U2
0 +

U2
0R

4

z4
− 1
z2

(
2U2

0R
2 +

Γ 2

4π2

)
− i
[
U0ΓR

2

πz3
− U0Γ

πz

]
. (10.124)

Inserting this into the relationship for the components K1 and K2 of the
flow force, given above, one obtains for the integration along the cylinder
surface area

F1 − iF2 = i
ρ

2

∮
w2(z)dz = i

ρ

2

∮ [
U2

0 +
U2

0R
4

z4
− 1
z2

(
2U2

0R
2 +

Γ

4π2

)
− i
(
U0ΓR

2

πz3
− U0Γ

πz

)]
dz (10.125)

On introducing into this integral z = re(iϕ) and considering that for the
cylinder surface area r = R holds, then integration can be carried out and
leads to the result:

F1 − iF2 = −iρU0Γ (10.126)
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Fig. 10.14 Determination of the direc-
tion of the buoyancy forces

or F1 = 0 and F2 = ρU0Γ . This is the Kutta–Joukowski equation for the
lift force. This equation indicates that the flow force occurring through a
potential flow around a cylinder is equal to zero, when there is no circulation.

When there is circulation present, no resisting force occurs but a buoyancy
force, which is proportional to the fluid density, to the inflow velocity and
the circulation:

K2 = ρU0Γ (10.127)

As the sign of this force is positive, there is a buoyancy force acting on
the cylinder. The rule holding for the direction of the bouyancy is stated in
Fig. 10.14. The inflow direction, the direction of rotation of the vortex and
the direction of the resulting buoyancy represent the directions of the axes
of a rectangular coordinate. Hence, the force orientation is that of the “right
hand rule”.

The positive force in the case of the flow around a cylinder with circulation
comes about as a result of the mathematically positive direction of rotation
of the potential vortex at the origin of the coordinate system.

Flow forces acting on bodies can also lead to moments of rotation. There,
computation can again be carried out in a conventional way, i.e. by integration
of the moment contributions generated by pressure effects on areas. When
again assuming the moment acting on the body to be positive, the following
equation holds for the moment acting on the fluid:

M +
∮
C0

[Px1dx1 + Px2dx2 + ρU1x2(U1dx2 − U2dx1)

− ρU2x1(U1dx2 − U2dx1)] = 0

(10.128)

On solving in terms of M, one obtains:

M = −
∮
C0

[
Px1dx1 + Px2dx2 + ρ(U2

1x2dx2 + U2
2x1dx1

−U1U2x2dx1 − U1U2x1dx2) ] (10.129)
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By eliminating the pressure with the help of the Bernoulli equation:

P +
ρ

2
(U2

1 + U2
2 ) = constant, (10.130)

and considering that the integrals are
∮

C0

(constant)x1dx1 =
∮

C0

(constant)
x2dx2 = 0, one obtains:

M =
ρ

2

∮
C0

[
(U2

1 − U2
2 )(x1dx1 − x2dx2) + 2U1U2(x1dx2 + x2dx1)

]
, (10.131)

and it can be shown that the following holds (second Blasius integral):

M =
ρ

2
Re

⎛⎝∮
C0

zw2(z)dz

⎞⎠. (10.132)

An evaluation of the integral yields:

M = Re

⎡⎣ρ
2

∮
c0

(x+ iy)(U1 − iU2)2(dx + idy)

⎤⎦, (10.133)

and considering that x1 = x and x2 = y, one obtains:

M = Re { ρ
2

∮ [
(U2

1 − U2
2 )(x1dx1 − x2dx2) + 2U1U2 · (x1dx2 + x2dx1)

]
+ i
[
(U2

1 − U2
2 )(x1dx2 + x2dx1) − 2U1U2(x1dx1 − x2dx2)

]} (10.134)

The real part of (10.134) corresponds to the term (10.131), which was to
be proved.

On applying relation (10.131) to the flow around a cylinder with
circulation, one obtains:

M = Re

⎡⎣ρ
2

∮
C0

(
U2

0 z −
2U2

0R
2

z
+
U2

0R
4

z3
+
iU0Γ

π
− iU0ΓR

2

πz2
− Γ 2

4π2z

)
dz

⎤⎦.
(10.135)

On inserting z = re(iϕ) and r = R in (10.135), one obtains as a solution
M = 0. The flow around a cylinder does not furnish a hydrostatic moment
on the cylinder, even when the flow has circulation.
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Chapter 11

Wave Motions in Non-Viscous Fluids

11.1 General Considerations

In Chaps. 9 and 10, fluid flows were considered whose analytical treatment
was possible by employing simplified forms of the generally valid basic equa-
tions of fluid mechanics. The solution methods required for this are known,
i.e. they are at everybody’s disposal, and it is known that they can be suc-
cessfully employed to solve flow problems. Thus in Chap. 10, for example, the
application of methods was shown which permit the solutions of the basic
equations of fluid mechanics in order to obtain solutions to one- and two-
dimensional flow problems. In particular, in Chap. 10 potential flows were
dealt with whose given properties were chosen such that methods of func-
tional theory can be employed to treat analytically two-dimensional and
irrotational flow problems. Hence, the special properties of potential flows
made it possible to take a fully developed domain of mathematics into fluid
mechanics and to employ it for computing potential flows and their poten-
tial and streamlines. From these computed quantities, velocity fields of the
treated potential flows could be derived. The employment of the mechanical
energy equation, in its integral form, finally led to pressure distributions in
the considered flow fields. The latter again led to the computations of forces
and moments for pre-chosen control volumes. Lift and drag forces were con-
sidered that are of particular interest for the solution of engineering problems.
Simplifications of the flow properties by introducing two-dimensionality and
irrotationality have thus permitted a closed treatment of flow problems with
known mathematical methods.

A similar solution procedure is adopted in this chapter, in which an in-
troduction to the treatment of wave motions in fluids is attempted. As with
all mechanical wave motions, they are usually treated as fluid motions in a
medium at rest and around a mean location, i.e. the fluid particles involved
in the wave motion experience no change of position when considered over
long times. Thus, in the case of wave motions in fluids, only the energy in the

309



310 11 Wave Motions in Non-Viscous Fluids

Propagation direction of wave
Wave length

Longitudinal wave

Transversal wavePropagation direction of wave

Compression Expansion Compression

Wave length

Fig. 11.1 Instantaneous image of progressing longitudinal and transversal waves

wave propagates and not the fluid itself. This holds independently of whether
the wave motions in fluids are longitudinal or transversal waves.

Figure 11.1 shows the oscillation motion of fluid particles for both wave
modes. From the diagrams one can infer that the considered wave motions
are periodical, with regard to both space and time. Oscillations, on the other
hand, are periodical with respect to either time or space.

It can be seen from Fig. 11.1 that mechanical longitudinal waves, which are
characterized by compressions and dilatations i.e. by changes of the specific
volume or density of a fluid, can exist in all media having “volume elasticity”,
i.e. react with elastic counter forces to the occurring volume changes. Such
counter forces form in gases, and their volume changes are coupled to pressure
changes, so that for an ideal gas at T = constant, the following holds:

P dv = −v dP (11.1)

and therefore, due to compressibility, longitudinal waves can occur in isother-
mal gases, which are not possible in thermodynamically ideal liquids because
of ρ = 1/v = constant.

Figure 11.1 also makes it clear that the formation of transversal waves is
dependent on the presence of “shear forces”, i.e. lateral forces must exist in
order to permit the wave motion of “particles” perpendicular to the direction
of propagation. Hence, these mechanical transversal waves only occur in solid
matter which can build up elastic transversal forces. This makes it clear that
in purely viscose fluids no transversal waves are possible. At first sight, this
statement seems to be a contradiction to observations of water waves whose
development and propagation can be observed easily when one throws an
object into a water container. A transversal wave develops which, however,
proves to be a wave motion restricting itself to a small height perpendicular
to the water surface. In the interior of the fluid, the wave motion cannot be
observed. Moreover, it can be seen that the observed wave on the surface
does not form due to “shear forces”, but that the presence of gravity or the
occurrence of surface tensions is responsible for the wave motion.
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Fig. 11.2 Diagram of a two-dimensional plane wave
in its direction of propagation

In fluids, many different wave motions are possible, whose initiation and
existence are connected with an energy input into the fluid. For the generation
of a wave and its maintenance, a certain energy input is necessary which then
propagates in space as the energy of the wave. With this, two different types
of energy modes must exist and are essential for a wave to occur. Between
the two types of energy an exchange of energy can take place in a periodical
sequence. This makes it clear that an essential characteristic of a wave motion
in a fluid is that energy is transported without mass transport taking place.
Depending on the form of the wave fronts, i.e. also the form of the source
of the wave motion, one distinguishes different wave namely plane waves,
spherical waves and cylindrical waves. For the velocity field of such waves the
following can be stated:

Plane waves: u′(x, t) = uA sin
[
2π
(
t

T
∓ x
λ

)]
Plane waves (Fig. 11.2) are of particular importance for the considerations
in this chapter. In the case of a plane wave, the mean energy density is
constant, as a considered surface of a wave does not change in area along the
propagation direction x. In the above equation, T is the time of the oscillation
period of the wave motion and λ is the wavelength. The periodicity of the
plane wave in the propagation direction x and the time t can be seen from
the sinusoidal term.

Spherical wave: u′(x, t) =
uA

r
sin
[
2π
(
t

T
∓ r

λ

)]
As far as spherical waves in fluids are concerned (Fig. 11.3), the energy

density decreases with the square of the distance from the point r = 0, as the
surface of the sphere increases with the square of the distance. At point r = 0
the generator of the spherical wave is located; the entire origin of the energy
of the wave is concentrated at this location. Hence the above equation for a
spherical wave only holds for r �= 0. A negative sign in front of the r/λ term
indicates a diverging wave that moves away from the wave centre of origin
and a positive sign indicates a converging wave, moving towards the center
r = 0.



312 11 Wave Motions in Non-Viscous Fluids

Fig. 11.3 Diagram of a spherical wave showing
its radial propagation

Fig. 11.4 Diagram of a cylindrical wave showing plane
radical propagation

Cylindrical wave: u′(x, t) =
uA√
r

sin
[
2π
(
t

T
∓ r

λ

)]
Cylindrical waves (Fig. 11.4) propagate radially from the line of the wave

generation located in the center, i.e. at r = 0. Hence, for cylindrical waves the
wave surface increases linearly with the distance r. Thus the energy density
decreases linearly with the distance r. Therefore, the amplitude of the wave
is inversely proportional to the square root of the distance r from the wave-
generating line. Again, a negative sign in front of the r/λ term indicates a
wave moving from the generating line in the positive r direction, whereas a
positive sign describes a wave moving towards the wave origin.

Many general properties of wave motions, known from physics, can be
transferred to wave propagations in fluids. Nevertheless, in a book meant as
an introduction to fluid mechanics, special considerations are required; in par-
ticular, it is necessary to create a deeper understanding of the causes of the
considered wave motions. Especially it is necessary to show how to deal with
the wave motion on the basis of the Navier–Stokes equations. In the following
sections, important wave motions in fluids are considered. The derivations
of the properties of these waves will show the way in which to proceed in
fluid mechanics to derive the properties from the basic equations of fluid
mechanics. The aim of the derivations is therefore not to provide broad con-
siderations about different wave motions in fluids, but an introduction to the
mathematical treatment of longitudinal and transverse waves in fluids.
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11.2 Longitudinal Waves: Sound Waves in Gases

In order to be able to deal theoretically with the properties of longitudinal,
e.g. with sound waves, in ideal gases, the basic equations of fluid mechanics
derived in Chap. 5 can be used. These can be stated for ideal gases as follows:

Continuity equation:
∂ρ

∂t
+
∂(ρUi)
∂xi

= 0 (11.2)

Momentum equations: (j = 1, 2, 3)

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj (11.3)

Thermal energy equation:

ρcv

(
∂T

∂t
+ Ui

∂T

∂xi

)
= − ∂qi

∂xi
− P ∂Ui

∂xi
− τij ∂Uj

∂xi
(11.4)

State equation:
P

ρ
= RT and e = cvT (11.5)

The above system of partial differential equations and thermodynamic state
equations comprises seven unknowns, namely U1, U2, U3, P , ρ, e and T , for
the determination of which, seven equations are available. Thus we have a
closed system of equations which, with sufficient initial and boundary condi-
tions, can be solved, at least in principle. It definitely therefore allows one to
treat fluid motions caused by longitudinal waves.

The above system of equations is considerably simplified when one neglects
the diffusive heat and momentum transport terms, so that all terms of the
momentum and energy equation provided by qi and τij can be dropped. Mass
forces can also be neglected, i.e. gj = 0. Maintaining the tensor approach, the
equations, after introduction of the suggested simplifications, can be written
as follows:

Continuity equation:
∂ρ

∂t
+
∂(ρUi)
∂xi

= 0 (11.6)

Momentum equations: (j = 1, 2, 3)

ρ
DUj

Dt
= ρ
(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
(11.7)

Energy equation:

ρ
De
Dt

= ρcv
DT
Dt

= ρcv

(
∂T

∂t
+ Ui

∂T

∂xi

)
= −P ∂Ui

∂xi
(11.8)
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State equation:
P

ρ
= RT and e = cvT (11.9)

Taking into consideration that the continuity equation can be written as

∂ρ

∂t
+ Ui

∂ρ

∂xi
+ ρ
∂Ui

∂xi
=

Dρ
Dt

+ ρ
∂Ui

∂xi
= 0 (11.10)

the following relationship holds:

∂Ui

∂xi
= −1

ρ

Dρ
Dt
. (11.11)

Inserting (11.11) into the energy equation (11.8) and considering the state
equation (11.9), the energy equation can be written in the following form:

ρcv

[
D
Dt

(
P

ρR

)]
= P

[
1
ρ

Dρ
Dt

]
(11.12)

or
ρcv
R

[
1
ρ

DP
Dt

− P

ρ2
Dρ
Dt

]
=
P

ρ

Dρ
Dt

(11.13)

1
P

DP
Dt

=
(
R+ cv
cv

)
1
ρ

Dρ
Dt
. (11.14)

Considering R = (cP −cv) and κ = (cP /cv) permits the following relationship
to be derived:

1
P

DP
Dt

= κ
1
ρ

Dρ
Dt
. (11.15)

Equation (11.15) allows the following general solution to be derived by
integration:

D
Dt

(lnP ) =
D
Dt

(ln ρκ) (11.16)

or
D
Dt

[
ln
(
P

ρκ

)]
= 0 �

P

ρκ
= constant. (11.17)

The above relationship shows that the energy equation can be reduced to
the adiabatic equation of property changes known in thermodynamics. This
implies that no molecular heat and momentum transport takes place. The
relationship was derived from the energy equation, taking into account the
continuity equation and the state equation for ideal gases. Thus, along a
stream line of a flow the following relation holds for the indicated conditions
of the considered fluid motion:

P

ρκ
= constant. (11.18)
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There exist a number of fluid mechanics processes in compressible media
that can be dealt with by means of reduced equations, which result from
the above equations by further simplifications. Assuming that there are flow
processes that take place in such a way that the velocity field depends only
on one spatial coordinate, then we can write U1 = U1(x1), U2 = U2(x1) and
U3 = U3(x1). Moreover, the simplifications ∂U2

∂x1
� ∂U1

∂x1
and ∂U3

∂x1
� ∂U1

∂x1
are

introduced so that the following equations can be stated:

Continuity equation:
∂ρ

∂t
+
∂

∂x1
(ρU1) = 0 (11.19)

Momentum equation:

ρ

[
∂U1

∂t
+ U1

∂U1

∂x1

]
= − ∂P

∂x1
(11.20)

Energy equation:
P

ρκ
= constant (11.21)

By sound waves one understands the propagation of small disturbances
in gases. The sound velocity is, therefore, the velocity with which small dis-
turbances propagate in a fluid at rest. Whereas for an incompressible fluid
an infinitely large propagation velocity results for small disturbances. For
compressible fluids a finite propagation velocity results, defined by the con-
sidered kind of gas and its temperature. The quantitative determination of
the propagation velocity of small disturbances in fluids at rest can be de-
rived as stated below by employing equations (11.19)–(11.21), which hold for
unsteady, one-dimensional non-viscous, compressible fluids.

Computing the pressure gradient (∂P/∂x1) in (11.20), one obtains:

∂P

∂x1
=
(

dP
dρ

)
ad

∂ρ

∂x1
. (11.22)

This relationship results since the pressure is a function of only one
thermodynamic quantity, such as the density, as shown by (11.21). The dif-
ferentiation dP/dρ has to be applied for the adiabatic conditions as required
by (11.21). The continuity equation and the momentum equation can thus
be written for one-dimensional fluid flows as:

∂ρ

∂t
+ U1

∂ρ

∂x1
+ ρ
∂U1

∂x1
= 0 (11.23)

∂U1

∂t
+ U1

∂U1

∂x1
+

1
ρ

(
dP
dρ

)
ad

∂ρ

∂x1
= 0. (11.24)
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These two equations are available for the two unknowns U1 and ρ, whose
analytical solution is sought on the hypothesis that through the wave motion
small pressure and density fluctuations exist, i.e. the following holds:

U1 = 0 + u′(x1, t) P = P0 + p′(x1, t) (11.25)

ρ = ρ0 + ρ′(x1, t).

These relationships inserted in the above equations (11.23) and (11.24) lead
to:

∂

∂t
(ρ0 + ρ′) + u′

∂

∂x1
(ρ0 + ρ′) + (ρ0 + ρ′)

∂u′

∂x1
= 0 (11.26)

∂u′

∂t
+ u′

∂u′

∂x1
+
(
dP

dρ

)
ad

1
(ρ0 + ρ′)

∂

∂x1
(ρ0 + ρ′) = 0. (11.27)

On considering that the variables ρ′ and u′ depend on the location and
time, whereas the quantities P0 and ρ0 do not depend on either location or
time, the following set of partial differential equations results. To derive these,
the assumption was introduced that the products of fluctuating quantities are
negligible with reference to the linear terms:

∂ρ′

∂t
+ ρ0

∂u′

∂x1
= 0 and

∂u′

∂t
+
(

dP
dρ

)
ad

1
ρ0

∂ρ′

∂x1
= 0. (11.28)

There are now two differential equations for ρ′ and u′ that can be employed
to yield solutions for ρ′ and u′. In order to obtain the solution for the prop-
agation of sound waves, the first of the above two equations is differentiated
with respect to t:

∂2ρ′

∂t2
+ ρ0

∂2u′

∂x1∂t
= 0. (11.29)

The second equation multiplied by ρ0 and differentiated with respect to x1

yields:

ρ0
∂2u′

∂x1∂t
+
(

dP
dρ

)
ad

∂2ρ′

∂x2
1

= 0. (11.30)

The subtraction of (11.30) from (11.29) results in a differential equation
for ρ′:

∂2ρ′

∂t2
−
(

dP
dρ

)
ad

(
∂2ρ′

∂x2
1

)
= 0. (11.31)

Furthermore, the differentiation of (11.28) with respect to x1 yields:

∂2ρ′

∂t∂x1
+ ρ0

∂2u′

∂x2
1

= 0 (11.32)
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and multiplication of (11.28) by ρ/( dP
dρ )ad and differentiation with respect to

t leads to:
∂2ρ′

∂t∂x1
+

ρ0(
dP
dρ

)
ad

∂2u′

∂t2
= 0. (11.33)

The subtraction of (11.33) from (11.28) and multiplication by 1
ρ

(
dP
dρ

)
ad

results in:
∂2u′

∂t2
−
(

dP
dρ

)
ad

∂2u′

∂x2
1

= 0 (11.34)

which is the differential equation for the velocity fluctuation u′.
By comparing the differential equations for ρ′ and u′, one sees that both

have the same form, i.e. ρ′ and u′ will show the same dependence on location
and time. The solutions for both quantities are stated by the one-dimensional
wave equation, i.e. there exists a wave motion for ρ′ and u′ with a propagation
velocity which generally reads:

c =

√(
dP
dρ

)
ad

=

√
κρκ−1

P

ρκ
=

√
κ
P

ρ
=

√
κRT . (11.35)

The general solutions of the differential equations for ρ′(x1, t) and u′(x1, t)
can be stated as follows:

ρ′ = fρ(x1 − ct) + gρ(x1 + ct) and u′ = fu(x1 − ct) + gu(x1 + ct), (11.36)

where fρ,u(x1 − ct) represents the respective wave which propagates in the
positive x1 direction and gρ,u(x1 + ct) the wave moving in the negative x1

direction.
Further considerations on the propagation of disturbances in compressible

fluids at rest can now be made on the basis of the above results. To this
effect, one computes from the general solution for u′ (wave in the positive x1

direction):
∂u′

∂t
= −c

(
∂f

∂η

)
with η = x1 − ct (11.37)

and
∂u′

∂t
= −c ∂u

′

∂x1
. (11.38)

From the momentum equation it follows that

∂u′

∂t
= − c

2

ρ0

∂ρ′

∂x1
= −c ∂u

′

∂x1
(11.39)

or rewritten
∂u′

∂x1
=
c

ρ0

∂ρ′

∂x1
=⇒ u′

c
=
ρ′

ρ0
. (11.40)
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When we have a disturbance in the form of a compression wave, i.e. ρ′ > 0,
then also u′ > 0, and this means that the fluid particles move in the direction
of the disturbance when a compression disturbance occurs.

When, on the other hand, an expansion disturbance occurs, i.e. ρ′ < 0,
then also u′ < 0, and in this case the fluid particles move opposite to the
direction of the propagation of the disturbance.

The most important result obtained from the above derivations was that
small disturbances in non-viscous and compressible fluids at rest propagate
with the sound velocity of the fluid that can be computed as follows:

c =

√(
dP
dρ

)
ad

=
√
κRT. (11.41)

This relationship will find extensive employment in the derivations in
Chap. 12.

11.3 Transversal Waves: Surface Waves

11.3.1 General Solution Approach

On free surfaces of fluids, transversal wave appearances and wave prop-
agations can occur, i.e. propagation of transversal waves introduced by
disturbances. These can be two- or three-dimensional; however, the analytical
treatment of surface waves presented here concentrates on two-dimensional
surface waves. By linearization of the basic equations written in potential
form, one obtains the partial differential equations, normally solved for sur-
face waves. Looking at these indicates that the treatment of the propagation
of surface waves belongs to the field of the potential theory. The treatment
of waves takes place separately, as a special problem, i.e. with surface waves,
a special class of flow problems occurs whose treatment correspondingly re-
quires a special methodology. The latter is shown below in an introductory
way.

The relationships stated in the following can again be derived from the
basic equations of fluid mechanics, which can be stated as follows for a fluid-
mechanically ideal fluid, i.e. a non-viscous fluid:

∂U

∂t
+ Ui

∂Uj

∂xi
= −1

ρ

∂P

∂xj
+ gj. (11.42)

By integrating this equation over a period of time τ , one obtains

Ūj +

τ∫
0

Ui
∂Uj

∂xi
dt = −1

ρ

∂

∂xj

τ∫
0

Pdt+

τ∫
0

gjdt. (11.43)
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This equation can now be interpreted, with Π =
∫ τ

0

Pdt, as the pressure

impulse during the time interval τ . For small time intervals τ and for ρ =
constant the following results:

Ūj = − ∂

∂xj

P

ρ
with

τ∫
0

Ui
∂Uj

∂xi
dt ≈ 0 and

τ∫
0

gjdt ≈ 0. (11.44)

Hence the fluid motion generated as a result of pressure impulses on free
surfaces is described by a velocity potential. By setting Ūj = Uj :

Uj = Ūj = − ∂φ

∂xj
with φ =

P

ρ
. (11.45)

The motion is therefore irrotational. Strictly, all this holds only at the free
surface and the determination of φ in the entire flow area requires further
considerations.

The continuity equation can be written in terms of φ:

∂2φ

∂xi∂xi
= 0 =

∂2φ

∂x1
2

+
∂2φ

∂x2
2

+
∂2φ

∂x3
2
. (11.46)

The momentum (11.42) can be written as:

DUj

Dt
= −1

ρ

∂P

∂xj
+ gj (11.47)

and can be rewritten, after multiplication of the equation by Uj, as follows:

D
Dt

(
1
2
U2

j

)
= −1

ρ

[
DP
Dt

− ∂P

∂t

]
+ gjUj . (11.48)

With gj = −ρDG
Dt for ∂G

∂t = 0 (see (5.57) and (5.58)), we obtain:

D
Dt

(
1
2
U2

j

)
= −1

ρ

DP
Dt

− 1
ρ

∂P

∂t
− DG

Dt
(11.49)

or, rewritten:
∂φ

∂t
+
P

ρ
+

1
2
U2

j +G = F (t). (11.50)

The function F (t) introduced by the integration can be included in the
potential φ, so that the final relationship is:

∂φ

∂t
+
P

ρ
+

1
2
U2

j +G = 0. (11.51)
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v

Fig. 11.5 Two-dimensional surface wave

Figure 11.5 represents a two-dimensional surface wave whose deflection,
measured from the position of rest x2 = 0, can be expressed as follows:

x2 = y = η(x1, t) = η(x, t).

The kinematic boundary condition of the flow problem to be solved can
therefore be stated as follows:

y = η(x, t) = 0. (11.52)

This means that a fluid particle which belonged to the fluid surface at an
instant in time, will always belong to the free surface. From (11.52), the
following results, with ui as fluid velocity of the considered wave motion:

D
Dt

(y − η) = 0 =
∂

∂t
(y − η) + ui

∂

∂xi
(y − η) = 0 (11.53)

or after differentiation:

− ∂η
∂t

− u1
∂η

∂x1
+ u2 − u3

∂η

∂x3
= 0. (11.54)

On now introducing the potential function φ, for which the following
relationship holds:

u1 =
∂φ

∂x1
, u2 =

∂φ

∂x2
and u3 =

∂φ

∂x3
(11.55)

one obtains for the free surface with x1 = x, x2 = y and x3 = z:

∂φ

∂y
=
∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂z

∂η

∂z
. (11.56)
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In the entire area of the flow, the potential function fulfils the continuity
equation, which can be stated in its two-dimensional form as follows:

∂2φ

∂x2
+
∂2φ

∂y2
= 0. (11.57)

Under the assumption of absence of viscosity, the Bernoulli equation can be
employed in the form indicated by (11.51). Hence we can write:

∂φ

∂t
+
P

ρ
+

1
2
U2

j +G = 0. (11.58)

This equation is equivalent to the assumption that typically the pressure
along a free surface is constant and corresponds to the atmospheric pressure
over the surface. If one now includes in the considerations the solid bottom
in a certain position y = −h, one obtains as a boundary condition at this
distance

∂φ

∂y
= 0 for y = −h. (11.59)

Hence one can write the following set of equations, which are to be fulfilled
in order to treat the propagation of waves on free surfaces analytically:

∂2φ

∂x2
+
∂2φ

∂y2
= 0

∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂z

∂η

∂z
=
∂φ

∂y
for y = η

∂φ

∂t
+
P

ρ
+

1
2
U2

j + gη = 0 for y = η

∂φ

∂y
= 0 for y = −h.

(11.60)

Here the last equations are to be understood as boundary conditions. Hence
it becomes clear that the problem, when solving wave problems for fluids with
free surfaces, is heavily determined by the imposed kinematic and dynamic
boundary conditions. It proves to be a peculiarity of the treatment of wave
motion in fluids with free surfaces that the main problem is the introduction
of the boundary conditions and not the solution of the differential equations
describing the fluid motion.

Considerable simplifications of the system of equations result from the
assumption of surface waves of small amplitudes. Assuming that the ampli-
tude of the wave is smaller than all other linear dimensions of the problem,
i.e. smaller than the depth of the water h and the wavelength λ, it results
that η is small and ∂η

∂x also can be assumed to be small. The latter is the
gradient of the shape of the water surface. Moreover, it holds that ∂φ

∂x can
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also be assumed to be small. Surface waves have no high frequencies and the
assumption of small amplitudes is also valid for their propagation. Thus, for
two-dimensional waves we can write:

∂η

∂t
=
∂φ

∂η
for y = η. (11.61)

This equation still contains the problem that the boundary condition, applied
for surface waves, has to be imposed at the point y = η. However, when one
expands ∂φ

∂η in a Taylor series:

∂φ

∂y
(x, η, t) =

∂φ

∂y
(x, 0, t) + η

∂2φ

∂η2
(x, 0, t) + · · · (11.62)

it can be seen that the second term on the right-hand side can be neglected
because of the assumed small η values. In an analogous way, we can write:

∂φ

∂t
(x, η, t) +

P (x, t)
ρ

+ g · η(x, t) = F (t) (11.63)

and for small velocities the following relation is valid:

∂φ

∂t
(x, 0, t) +

P (x, t)
ρ

+ g · η(x, t) = 0, (11.64)

where the function F (t) was included in the potential φ(x, y, z).
Differentiation of (11.64) with respect to t yields:

∂2φ

∂t2
+

1
ρ

∂P

∂t
+ g

∂η

∂t
=
∂2φ

∂t2
(x, 0, z)+

1
ρ

∂P (x, z)
∂t

+ g · ∂φ
∂y

(x, 0, z) = 0

(11.65)
so that one obtains the following simplified set of equations for the treatment
of surface waves of small amplitudes:

∂2φ

∂x2
+
∂2φ

∂y2
= 0

∂φ

∂y
(x, 0, t) =

∂η

∂t
(x, t) (for y = η)

∂2φ

∂t2
(x, 0, t) +

1
ρ

∂P (x, t)
∂t

+ g
∂φ

∂y
(x, 0, t) = 0 (for y = η)

∂φ

∂y
(x,−h, t) = 0 (for y = −h).

(11.66)
With the above equations, gravitational waves and capillary waves can be
treated, which usually represent waves with small amplitudes.
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11.4 Plane Standing Waves

When considering wave motions, where the fluid particles move only parallel
to the x1 − x2 plane, i.e. where the pressure P and the velocity Uj are inde-
pendent of x3, so that the fluid motions in all areas parallel to the x1 − x2

plane take place in the same way, a plane wave motion with the following
potential results:

φ(x, y, t) = φ(x, y) cos(ϕt+ ε). (11.67)

For the case of a standing wave to be dealt with in this section, it can be
stated that:

φ(x, y) =
P (y)
ρ

sin [k(x− ξ)]. (11.68)

The potential φ fulfils the Laplace equation:

∂2φ

∂x2
+
∂2φ

∂y2
= 0. (11.69)

With ρ ∂2φ
∂x2 = −P (y)k2 sin[k(x − ξ)] and ρ ∂2φ

∂y2 = P d2P
dy2 sin[k(x − ξ)], one

obtains the following differential equation:

d2P

dy2
− k2P = 0 (11.70)

the solution of which is:

P (y) = C1 exp(ky) + C2 exp(−ky). (11.71)

From more precise considerations, the integration constant C2, results as
C2 = 0, as otherwise for large depths y =→ −∞ the P (y) term would become
very large, so that the solution:

φ(x, y) =
C1

ρ
exp(ky) sin[k(x− ξ)] (11.72)

can be obtained, or:

φ(x, y, t) =
C1

ρ
exp(ky) sin[k(x− ξ)] cos(ϕt+ ε). (11.73)

By starting from the assumption that the occurring fluid motion is slow,
the equation:

∂φ

∂t
+
P

ρ
+

1
2
U2

j + gη = 0 for y = η (11.74)

can be written as follows:

∂φ

∂t
+
P

ρ
+ gη = 0 for y = η. (11.75)
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Differentiation with respect to time yields the differential equation indicated
below, as the pressure along the free surface does not change:

∂2φ

∂t2
+ g

∂η

∂t
=
∂2φ

∂t2
+ gu2. (11.76)

With u2 = ∂φ
∂y , one can finally write:

∂2φ

∂t2
= −g ∂φ

∂y
. (11.77)

Employing (11.77) to treat (11.73), one obtains:

∂2φ

∂t2
= −C1

ρ
exp(ky) sin[k(x− ξ)]ϕ2 cos(ϕ+ ε) (11.78)

and
∂φ

∂y
= +

C1

ρ
k exp(ky) sin[k(x− ξ)] cos(ϕ+ ε) (11.79)

ϕ2 = kg. (11.80)

Hence, for the remaining considerations, the following fluid motion has to be
examined, which, for the sake of simplicity, is considered for ξ = 0 and ε = 0:

φ(x, y, t) =
C1

ρ
exp(ky) sin(kx) cos(εt). (11.81)

For the free surface one can compute from (11.75):

η = −1
g

∂φ

∂t
= −1

g

∂

∂t
φ(x, 0, t) (11.82)

or
η =

C1ϕ

g
sin(kx) sin(ϕt). (11.83)

With A =
C1ϕ

ρg
sin(ϕt) it holds that η = A sin(kx).

For x = mπ
k , for m = 0,±1,±2,± · · · , nodal points of a standing wave

result. In the middle between these nodes are the “antinodal points” of the
wave motion. The wavelength of the sinusoidal fluid motion can be computed
as:

λ =
2π
k
. (11.84)

The amplitude of the wave motion is C1ϕ
g sin(ϕt) = A, where for the frequency

of the wave motion the following holds:

f =
ϕ

2π
=

1
T
. (11.85)
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Taking into consideration (11.80), (11.84) and (11.85), one obtains

T =
1
f

=

√
2πk
g

or λ =
gτ2

2π
(11.86)

or
λ =

g

2πf2
. (11.87)

The above relationships show that the wavelength of standing fluid waves
decreases with increasing frequency of the motion.

11.5 Plane Progressing Waves

For the derivations given below, it is assumed that the fluid considered takes
up the space as follows (see Fig. 11.6) for the x− y coordinate arrangements:

−∞ ≤ y ≤ 0 and −∞ ≤ x ≤ +∞
and the fluid is assumed, at the point y = 0, to occupy a free surface. For
the considerations carried out it represents a finite surface. The equations
required for the treatment of progressing waves can be stated as follows:

∂2φ

∂x2
+
∂2φ

∂y2
= 0. (11.88)

With y = η(x1, t) for the free surface it holds that

D
Dt

(y − η) = 0 � u2 =
(
∂

∂t
+ u1

∂

∂x1

)
η. (11.89)

Neglecting the term of second order, the following equation results:

∂φ

∂y
=
∂η

∂t
. (11.90)

for and

Fig. 11.6 Illustration of the decrease for y → −∞
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For the pressure at the free surface it can be stated that:

P = −σ
[

1
R1

+
1
R2

]
, (11.91)

where R1 and R2 represent the main radii of curvature of the free surface
and σ is the surface tension. Linearized, this relationship can be written as:

P = −σ ∂
2η

∂x2
, (11.92)

where the pressure above the free surface is taken to be P = 0, otherwise P
is to be replaced by P = P0.

For plane progressing waves, the following potential can be stated:

φ(x, y, t) = C exp(ky) cos [k (x− ct)] (11.93)

with φ = 0 for y = −∞. The formulation for φ(x, y, z) fulfils the continuity
equation in the form of (11.69).

The Bernoulli equation can be stated as follows:

P

ρ
= − ∂φ

∂t
− gy (11.94)

or rewritten:
∂φ

∂t
= −P

ρ
− gη =

σ

ρ

∂2η

∂x2
− gη. (11.95)

From this, the following relationship results:

∂2φ

∂t2
=
σ

ρ

∂2

∂x2

(
∂η

∂t

)
− g ∂η

∂t
(11.96)

and with consideration of equations (11.90), (11.95) can be written as:

∂2φ

∂t2
=
[
σ

ρ

∂2

∂x2
− g
]
∂φ

∂g
. (11.97)

For the left-hand side of (11.95), one can write using (11.93):

∂2φ

∂t2
= −Ck2c2 exp(ky) cos [k(x− ct)] = −k2c2φ (11.98)

so that the following holds:

k2c2φ =
[
g − σ

ρ

∂2

∂x2

]
∂φ

∂y
. (11.99)
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With ∂φ
∂y = kφ and ∂2φ

∂x2 = −k2φ, the following relationship results from
(11.99) for the velocity of the progressing wave:

c2 =
g

k
+
kσ

ρ
. (11.100)

With k = 2π
λ , it can be seen that for long waves the influence of gravity

dominates:

c =
√
g

k
shear waves. (11.101)

For waves with small wavelengths, the capillary effects dominate:

c =

√
kσ

ρ
capillary waves. (11.102)

Concerning wavelengths, often the path lines of the fluid particles are also of
interest, which occur close to the water surface or at certain depths below
the water surface. In this respect, the following can be carried out, where x0

and y0 are introduced as the coordinates which, with the help of:

ux =
∂φ

∂x
=

dx
dt

= Ck exp(ky) sin [k(x− ct)] (11.103)

uy =
∂φ

∂y
=

dy
dt

= Ck exp(ky) cos [k(x− ct)] (11.104)

fulfil the following equations:

x = x0 + C · k exp(ky) cos [k(x− ct)]
(

+1
Ck

)
(11.105)

y = y0 + ck exp(ky) sin [k(x− ct)]
(−1
ck

)
(11.106)

or rewritten:

(x − x0)2 + (y − y0)2 =
(
C

c

)2

exp(2ky0). (11.107)

The path lines of the fluid particles are derived as circles whose radii become
smaller with increasing water depth. For the water surface, the radius of the
circular path is equal to the amplitude of the surface wave, while at a certain
depth it has already decreased to 1/535th of the wave amplitude at the water
surface. This makes it clear that the considered wave motion of fluid particles
remains limited to an area in the immediate proximity of the water surface.

Figure 11.7 shows the circular paths described by fluid particles. These
will run in an anticlockwise direction, so that the following expressions for
the x and y motion holds:
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Fig. 11.7 Circular paths of fluid particle motion

Fig. 11.8 Path lines in a plane gravity wave

(x− x0) = a exp(ky0) sinΘ (11.108)

(y − y0) = −a exp(ky0) cosΘ. (11.109)

Hence we can write for Θ:

Θ = kx0 + kct cos(yt+ ε). (11.110)

The changes of the motions of the fluid particles with water depth are
sketched in Fig. 11.8. The strong decrease of the radius of the circular fluid
motion with depth was not taken into consideration in Fig. 11.7.

In order to be able to investigate gravity waves with free surfaces in fluids
with a finite depth h, a mean surface position at point y = 0 is assumed. At
position y = −h a wall is considered as being given, so that a mean fluid film
thickness with height h occurs. To fulfill now the continuity equation:

∂2φ

∂x2
+
∂2φ

∂y2
= 0 (11.111)
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by a wave with wavenumber k, the following potential formulation is carried
out:

φ = C cosh k(y + h) cos k(x− ct). (11.112)

This formulation not only fulfils the continuity equation, but also permits
the boundary condition at the bottom of the fluid layer to be fulfilled:

∂φ

∂y
= 0 for y = −h. (11.113)

The procedure for deriving the required relationship is now similar to that
in Sect. 11.5. It then results in a condition for the free surface that can be
stated as:

kc2 cosh kh =
(
g +

k2T

ρ

)
sinh kh (11.114)

or resolved for the wave velocity, one obtains:

c2 =
(
g +

k2T

ρ

)
tanh kh
k

. (11.115)

For waves with long wave lengths, i.e. for small values of the wavenumber k,
one obtains for the wave velocity:

c2 = gh. (11.116)

The waves moving with this velocity are essentially gravitation waves, as the
surface curvature is so small that the influences of the surface tension at the
wave motion are not felt in the wave velocity.

For very short waves, i.e. for large values of the wavenumber k, one obtains
on the other hand

c2 =
kT

ρ
. (11.117)

This is the propagation velocity of the capillary waves. This equation shows
for the velocity of the capillary waves that they are waves of small amplitudes,
so that their propagation velocity is not influenced by the height of the fluid
layer.

In this section only an introduction to the treatment of wave motions in
fluids is given. Further treatments of waves in fluids are given in refs. [11.1]
to [11.7].

11.6 References to Further Wave Motions

The wave motions dealt with in Sects. 11.1–11.5 need considerations that
require extensions with emphasis on other kind of wave motions, e.g. see
Yih [11.6]. Nonetheless, good text books with general considerations on wave
motions in fluids are lacking, i.e. the treatment of wave motions in books is
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always limited to the treatment of very special wave motions. In Yih [11.6],
for example, the following wave motions in fluids are dealt with:

• Gerstner waves
• Solitary waves
• Rossby waves
• Stokes waves
• Cnoidal waves
• Axisymmetric waves

If one wants, however, to find the introductory literature on the mathe-
matical treatments of wave motion observed in nature, it is necessary to have
a clear understanding of the physical cause of the considered wave motion.
Thus one observes, for example, that a long body which is moved perpen-
dicular to its linear expansion near the free surface of a liquid forms waves
mainly in its wake. In front of the body one observes, with respect to the
amplitude, smaller surface waves, when the dimensions of the bodies in flow
direction are smaller than (σ/ρg)1/2. Otherwise the gravity waves occurring
behind the body dominate and the capillary waves that can be observed in
front of the body are negligible. Hence, when one has recognized the nature
of the observed wave motions, the appertaining analytic treatment can be
found in the tables of contents, listed in references.
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11.5. Spurk, J.H.: Strömungslehre, Springer, Berlin Heidelberg New York, 4. Aufl.,

1996
11.6. Yih, C.S.: Fluid Mechanics: A Concise Introduction to the Theory, West River,

Ann Arbor, MI, 1979
11.7. Yuan, S.W.: Foundations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs,

NJ, 1971



Chapter 12

Introduction to Gas Dynamics

12.1 Introductory Considerations

Gas dynamics is a branch of fluid mechanics which deals with the motion of
gases at high velocities. Gravitational forces and their influence on the state
of the gas can be neglected in the majority of gas dynamic flow cases. Con-
siderations of the pressure differences to be expected by gravitational forces
in a gas show that this is justified. According to the force balance shown in a
previous chapter, the following relationship holds for the pressure:

∆P = −ρgjxj = ρg∆z, (12.1)

which can be determined for an ideal gas (P = ρRT ) such as air as:

∆P
P

= g
∆z
RT

≈ 9,81
∆z

287T

[
m
s2

ms2K
m2K

]
. (12.2)

On inserting T ≈ 293 K it can be seen that the relative pressure changes due
to gravitation assume values around 1% only when vertical displacements of
about 100 m occur. As gas dynamic considerations are usually restricted to
installations of flow equipment of much smaller dimensions, it is justified to
simplify the fluid mechanical equations in gas dynamics by neglecting the
gravitational forces. For many fluid mechanical considerations in gas dynam-
ics, it is permissible to regard gaseous fluids also as incompressible when the
fluid velocities occurring are small compared with the sound velocity of the
fluid. This can be explained for a stagnation point flow by the following:

PS = P∞ + ρ
U2
∞
2

with ρ = constant. (12.3)

For a compressible flow, the stagnation point pressure may be obtained us-
ing the stream line relationship derived in Chap. 9 for adiabatic changes of
thermodynamic state of a gas, i.e.

331
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PS = P∞

(
1 +

κ− 1
2κ

ρ∞
P∞
U2
∞

) κ
κ−1

, (12.4)

or rewritten as a series expansion:

PS = P∞

[
1 +

ρ∞
2P∞

U2
∞ +

1
2κ

(
ρ∞U2

∞
2P∞

)2

+ · · ·
]
. (12.5)

where κ = cp/cv, the ratio of the heat capacitances. If we compose the stag-
nation pressure for an incompressible flow in (12.3) with the result from
compressible flows, we observe a difference of about 2% for velocities of
around 70m s−1 (assuming standard state conditions in the free stream).
This corresponds to a free stream Mach number Ma ≈ 0.2. Thus, it may be
concluded that compressibility effects in gases have to be taken into account
for velocities well above Ma ≈ 0.2.

Ma =
U

c
=

U√
κRT

≥ 0.2. (12.6)

From this consideration, a second conclusion may be derived concerning the
viscous effects if the flow velocity is fairly large, namely the Reynolds number
also takes on large values. Hence viscous effects may be neglected and the
Euler equations are usually used as a starting point for a mathematical treat-
ment of gas flows. For a ideal gas, that flows under gas dynamic conditions,
the equations are as follows:

Continuity equation:
∂ρ

∂t
+
∂(ρUi)
∂xi

= 0. (12.7)

Momentum equation (j = 1, 2, 3):

ρ

[
∂Uj

∂t
+ Ui

∂Uj

∂xi

]
= − ∂P

∂xj
. (12.8)

Energy equation:

ρcv

[
∂T

∂t
+ Ui

∂T

∂xi

]
= −P ∂Uj

∂xj
, (12.9)

where the energy (12.9) is given for adiabatic fluid flows. Together with the
thermodynamic equation of state for ideal gases, a closed system of differ-
ential equations exists which can be solved, in principle, for given boundary
conditions. The possible solutions require special considerations; however,
the appearance of high flow velocities is linked to specific phenomena which
differentiate gas dynamics sharply from other areas of fluid mechanics. As
the following considerations will show, the presence of high Mach numbers,
Ma = U/c, leads to the emergence of “discontinuity surfaces” (compression
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shocks) in which the pressure (and other flow quantities) experience a sudden
jump. This makes special procedures necessary when solving flow problems.

The employment of the differential form of the basic equations usually
requires that the quantities describing a flow are steady in the flow area.
There is also the fact that when treating fluid flows at high Mach numbers,
processes occur that are linked to different time scales, namely the time scales
of the diffusion ∆tDiff , the convection ∆tConv and the sound propagation
∆tSound:

∆tDiff =
L2

c

νc
; ∆tconv =

Lc

Uc
; ∆tSound =

Lc

c
. (12.10)

For ∆tConv � ∆tDiff , the following results:

Re =
∆tDiff

∆tConv
=
UcLc

ν
� 1, (12.11)

i.e. during the time that a flow needs to cover a certain distance, the molec-
ular transport, at high flow velocities, manages only to overcome a negligible
distance, i.e. at high Reynolds numbers the formation of thin boundary layers
takes place. However, in gas dynamics, considerations of boundary layers are
neglected, especially in the introductory considerations presented here. From
the point of view of characteristic times, the Mach number is represented by
the following ratio:

Ma =
∆tConv

∆tSound
=
Uc

c
, (12.12)

i.e. the Mach number shows how fast a fluid element is transported in com-
parison with the disturbances arising from the motion of this fluid element.
The disturbances vary with the velocity c:

c =
√
κRT κ = cp/cv = relation of the heat capacities, (12.13)

where R = specific gas constant and T = absolute temperature.
This relationship between the sound velocity and the thermodynamic state

quantities pressure and density can be presented as follows: we consider the
propagation of a small (i.e. isentropic) disturbance at the velocity c in a
fluid at rest. This is a non-stationary process which, by changing the refer-
ence system (the observer moves together with the flow), can be modified
into a stationary problem, as shown in Fig. 12.1. Now the momentum (12.8)

Fig. 12.1 Propagation of a disturbance
in a compressible fluid

F

Considered disturbance
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can be employed as a balance of forces at a control volume around the
disturbance:

F [P − (P + dP )] = ρFc[(c+ dU) − c]. (12.14)

Equation (12.14) gives the following relation:

−dP = ρcdU. (12.15)

For the mass conservation, it can be stated that

ρFc = (ρ+ dρ)(c+ dU)F, (12.16)

so that
dρ = −ρ dU

c
, (12.17)

and from (12.15) and (12.17):

dP
dρ

= c2 =
(
∂P

∂ρ

)
ad

(12.18)

as no heat exchange is included in the present considerations.
The sound velocity is therefore a local quantity, i.e. it depends on the local

pressure changes under adiabatic conditions. With the local value c(xi, t), the
local Mach number can be computed at each point of a flow field Uj(xi, t), so
that the corresponding Mach number field can also be assigned to the flow
field, i.e.Ma(xi, t). This local Mach number expresses essentially how quickly
at each point of the flow field disturbances propagate relative to the existing
flow velocity.

From a historical point of view, it is interesting to note that Newton was
the first scientist to compute the sound velocity for gases, although on the
assumption of an isothermal process in which no temperature changes occur
due to the sound propagation. He obtained

cNewton =

√
P

ρ
=

√
RT < c. (12.19)

Only a century later, Marquis de Laplace corrected the result of Newton’s
computations by recognizing that the temperature fluctuations produced by
sound disturbances and also the temperature gradients connected with them
are very small. Laplace recognized that it is not possible to transport the heat
produced by the compression of a pressure disturbance to the environment.
The

√
κ correction of Newton’s equation introduced by Laplace led to the

correct propagation velocity of sound waves in ideal gases:

c =
√
κRT . (12.20)

Attention is drawn once again to the fact that via this equation a sound
velocity field also c(xi, t) is assigned to each temperature field T (xi, t) of an
ideal gas.
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12.2 Mach Lines and Mach Cone

When considering a disturbance originating from a point source at the ori-
gin of a coordinate system, it will propagate radially at a velocity c, if the
point source does not undergo any motion, i.e. the surfaces of disturbance
of the same phase represent spherical surfaces when the propagation takes
place in a field of constant temperature. Whereas on the other hand, there
is a temperature field with variations of temperature, these variations are
reflected as deformations of the spherical surfaces shown in Fig. 12.2. The
propagation takes place more rapidly in the direction of high temperatures,
as predicted by equation (12.20). Possible temperature distributions thus
impair the symmetry of the propagation of sound waves.

When one now extends the considerations of the propagation of sound
to moving disturbance sources of small dimensions, propagation phenomena
result as shown in Fig. 12.3 for U < c, i.e.Ma < 1 and U > c, i.e.Ma > 1. By
moving the sound source at a velocity lower than the propagation velocity of

Fig. 12.2 Propagation of disturbances with a
stationary source of disturbance

(a) U < c � Ma < 1 (b) U > c � Ma > 1

Fig. 12.3 Propagation of disturbances caused by a moving sound source for
(a) Ma < 1 and (b) Ma > 1
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the disturbances as shown in Fig. 12.3a, a propagation image results which
does not show the symmetry seen in Fig. 12.2. Instead, a concentration of
the emitted waves is observed in the direction of prorogation of the source.
As a consequence, an observer standing upstream of the disturbance will
recognize a frequency increase as compared to the disturbances originating
from a source at rest. In the opposite direction, on the other hand, a frequency
decrease takes place with respect to the emitted disturbance.

When one computes this frequency change for the frequency increase in
the positive x1 direction, one obtains according to Fig. 12.4 for Ma < 1:
λ′ = c−Ui�i

f , or Ui!i = U where λ′ = (c−U)
f and !i is the unit vector in the

is the propagation
velocity of the 
emitted wave

Moving source
Stationary
observer

Fig. 12.4 Frequency change by moving the sound source (Doppler effect by moving
source)

Fig. 12.5 Propagation of disturbances with a source moving at sound velocity
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direction of propagation (f = frequency of the disturbance). Thus for f ′ we
have

f ′ =
f

1 − Ui!i/c
=

f

1 − (U/c)
. (12.21)

f ′ =
c

λ′
=

f

1 − U/c =
f

1 −Ma. (12.22)

In the negative x1 direction, the following relationship holds:

f ′′ =
f

1 + U/c
=

f

1 +Ma
. (12.23)

Thus the Mach number proves to be an important quantity for characterizing
wave propagations in fluids.

In the case that the velocity of the sound source exceeds the propagation
velocity of the sound, a characteristic propagation image develops which is
shown in Fig. 12.3b. This illustrates that the propagation of the disturbances
in relation to the moving sound source takes place within a cone, the so-
called Mach cone. In front of the cone a disturbance-free area results, which
is strictly separated from the area with disturbances within the Mach cone.
From considerations, shown in Fig. 12.6, it results for the half-angle of the
aperture α of the cone:

sinα =
c∆t
U∆t

=
1
Ma
. (12.24)

The above equation, employing Fig. 12.6, is derived from the following
quantities:

c∆t = propagation distance of the disturbance in the time ∆t,

U∆t = propagation distance of the disturbance source in the time ∆t.

Direction of wave propagation 

Flow direction

The angle    depends on the Mach numbers

Fig. 12.6 Formation of the Mach cone with typical angle
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Fig. 12.7 Explanation for percep-
tion of aeroplanes

Line of Mach cone

Region with sound
Region without sound

α

α

In two dimensions, the Mach cone consists of two planes representing the
Mach planes or Mach waves. The considerations stated above for spatial
motions can easily be employed for one-dimensional problems also. They
show that propagations of disturbances occur in the form of plane waves.
The propagation takes place vertically to the wave planes.

With the aid of the above considerations, observations can be explained
that can be made in connection to the flight of supersonic aeroplanes (see
Fig. 12.7). Aeroplanes of this kind show a region in which they cannot be
heard, i.e. observers can perceive an aeroplane flying towards them at super-
sonic speed much earlier with the eye than they can hear it. Only when the
observers are within the Mach cone do they succeed in seeing and hearing
the aeroplane.

12.3 Non-Linear Wave Propagation, Formation
of Shock Waves

The considerations in Sects. 12.1 and 12.2 concentrated on disturbances of
small amplitudes which can be treated as disturbances through linearized
equations, as was shown in Chap. 9. There it was explained that small dis-
turbances of the fluid properties ρ′, P ′, T ′ or of the flow velocity u′ can be
treated through linearizations of the basic equations of fluid mechanics. Based
on assumptions for this fluid, a constant wave velocity resulted. The resultant
propagation is such that a given wave form does not change. The implied as-
sumptions no longer hold for wave motions of larger amplitudes, so that wave
velocities may change locally and wave fronts may develop that deform with
propagation. In order to understand such processes, it is better to consider
the one-dimensional form of the continuity and momentum equations with
U = U1, x = x1:

Continuity equation:

∂ρ

∂t
+ U

∂ρ

∂x
+ ρ

∂U

∂x
= 0. (12.25)
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Momentum equation:

∂U

∂t
+ U

∂U

∂x
= −1

ρ

∂P

∂x
. (12.26)

From (12.25) the following relation results for ρ = ρ(U):

dρ
dU

∂U

∂t
+ U

dρ
dU

∂U

∂x
+ ρ

∂U

∂x
= 0. (12.27)

Analogously, (12.26) can be written:

∂U

∂t
+ U

∂U

∂x
+

1
ρ

(
dP
dρ

)(
dρ
dU

)
∂U

∂x
= 0. (12.28)

On multiplying (12.28) by dρ/dU and subtracting it from (12.27), one
obtains:

ρ
∂U

∂x
=

1
ρ

(
dP
dρ

)(
dρ
dU

)2
∂U

∂x
, (12.29)

or rewriting:
dU
dρ

= ±1
ρ

√(
dP
dρ

)
= ±1

ρ

√(
∂P

∂ρ

)
ad

. (12.30)

This equation can now be integrated:

U∫
0

dU = ±
ρ∫

ρ∞

√(
dP
dρ

)
dρ
ρ
. (12.31)

For isentropic flows, i.e. P/ρκ = constant, (12.31) can be integrated:

U = ±
ρ∫

ρ∞

√
κ constant ρ

κ−1
2

dρ
ρ

= ± 2
κ− 1

[√
κρκ−1 constant

]ρ
ρ∞

U = ± 2
(κ− 1)

(a− c). (12.32)

Thus for the propagation velocity of a wave of large amplitude:

a = c± (κ− 1)
2

U, (12.33)

a propagation velocity a results, which depends on the local flow velocity.
Here c is the computed sound velocity for the undisturbed fluid.

By inserting (12.30) into (12.28), one obtains the following relationship:

∂U

∂t
+ U

∂U

∂x
±
√(

dP
dρ

)
∂U

∂x
= 0, (12.34)
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or rewritten:
∂U

∂t
+ (U ± a) ∂U

∂x
= 0. (12.35)

From the continuity equation, one obtains:

∂ρ

∂t
+ (U ± a) ∂ρ

∂x
= 0, (12.36)

so that for ρ the following general solution of the differential (12.36) can be
stated:

ρ = Fρ (x1 − (U1 ± a)) = Fρ

(
x1 −

(
c± κ+ 1

2
U1

)
t

)
, (12.37)

where Fρ() can be any function. Analogously for the velocity:

U = Fu (x− (U ± a)) = Fu

(
x−

(
c± κ+ 1

2
U

)
t

)
. (12.38)

Equations (12.37) and (12.38) allow one to explain the propagation of a
disturbance with a propagation velocity c± κ+1

2 U . Because of this propaga-
tion velocity, which depends on the local flow velocity, wave deformations
develop as they are indicated in Fig. 12.8. On considering the propagating
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Fig. 12.8 Wave deformations and formation of compression shocks
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part with a + sign, then characteristic position changes in times t can be
stated as

x′A = c · tω; x′B = xA + cta +
κ+ 1

2
Uta; x′C = xB + ctb. (12.39)

The developing and progressive deformation of the wave is apparent. Thus
the formation of compression shocks comes about.

The local ambiguity of the density stated in Fig. 12.8 for tn cannot occur,
of course. When the wave front has built up in such a way that all thermody-
namic quantities of the fluid and also the velocity experience sudden changes,
then the maximum deformation possible of the propagating flow is reached.
A compression shock has built up.

12.4 Alternative Forms of the Bernoulli Equation

In Sect. 9.4.2, the stream tube theory was used to consider one-dimensional
isentropic flows leading to the Bernoulli equation for compressible flows:

1
2
U2 +

κ

(κ− 1)
P

ρ
=

κ

(κ− 1)
PH

ρH
. (12.40)

The thermodynamically possible maximum velocity was determined for
(P/ρ) → 0:

(Umax)
2 =

2κ
(κ− 1)

PH

ρH
=

2κ
(κ− 1)

RTH . (12.41)

Thus (12.40) may be expressed as

1
2
U2 =

1
2
U2

max −
κ

(κ− 1)
P

ρ
. (12.42)

As the Mach number represents a fundamental quantity in the treatment of
gas-dynamic flow problems, we can write

1 =
(
Umax

U

)2

− 2κ
(κ− 1)

RT

U2
=
(
Umax

U

)2

− 2
(κ− 1)

1
Ma2

. (12.43)

or rewritten:
1
Ma2

=
κ− 1

2

[(
Umax

U1

)2

− 1

]
. (12.44)

The basis for the above considerations was an expanding flow, as it is in-
dicated in Fig. 12.9. For this flow the so-called critical state results, when
the local velocity reaches the speed of sound, i.e. U1 = c = Uc. Then, from
(12.40):

1
2
U2

c +
U2

c

(κ− 1)
=

c2H
(κ− 1)

U2
c =

2κ
(κ+ 1)

RTH . (12.45)
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Large reservoir Nozzle end

x  = L1x  = 01

Fig. 12.9 Flow between two pressure tanks of different pressures

The critical pressure can be computed according to (12.40), considering
(12.45) and assuming isentropy:

U2
c =

2κ
(κ− 1)

RTH

[
1 −
(
Pc

PH

)κ−1
κ

]
=

2κ
(κ+ 1)

RTH . (12.46)

Pc

PH
=
P ∗

PH
=
[

2
(κ+ 1)

] κ
(κ−1)

. (12.47)

Employing the relationships for isentropic density and temperature changes,
one obtains: (

ρc

ρH

)
=
ρ∗

ρH
=
(
P ∗

PH

)1/κ

=
[

2
(κ+ 1)

] 1
(κ−1)

. (12.48)

(
Tc

TH

)
=
T ∗

TH
=
(
P ∗

PH

)κ−1
κ

=
2

(κ+ 1)
. (12.49)

The above results may now be expressed in terms of the Mach number. From
Bernoulli’s equation for compressible fluids it follows that:

1
2
U2

1 +
c2

(κ− 1)
=

c2H
(κ− 1)

�
κ− 1

2
Ma2 + 1 =

TH

T
, (12.50)

or rewritten for the temperature ratio:(
T

TH

)
=
[
1 +

(κ− 1)
2

Ma2
]−1

. (12.51)

For the density and pressure variations, the following relations can be
derived: (

ρ

ρH

)
=
(
T

TH

) 1
κ−1

=
[
1 +

(κ− 1)
2

Ma2
] −1

(κ−1)

, (12.52)

(
P

PH

)
=
(
T

TH

) κ
(κ−1)

=
[
1 +

(κ− 1)
2

Ma2
] −κ

(κ−1)

, (12.53)
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Fig. 12.10 Diagram representing the parameter variations in the Bernoulli equation

For the sound velocity relation c/cH , the following results:

c

cH
=
(
T

TH

) 1
2

=
[
1 +

κ− 1
2
Ma2

]−2

. (12.54)

The above relationships can be plotted as shown in Fig. 12.10. Thus, as
a result of the Bernoulli equation for isentropic flows, the figure shows the
change of pressure, density, temperature and speed of sound, each normal-
ized with its stagnation value. All data are represented as functions of Mach
number changes. This figure corresponds to Fig. 9.10 in Chap. 9, where the
temperature, density and pressure variations with (U1/Umax) were employed
as a parameter for the representation of different forms of the Bernoulli
equation.

It is characteristic for compressible flows that the local dynamic pressure

1
2
ρU2

1 =
1
2
ρc2Ma2 =

1
2
ρ

(
κP

ρ

)
Ma2 =

1
2
κPMa2 (12.55)

depends on the local pressure and the local Mach number.
For the normalized pressure difference, the following holds:

PH − P
1
2ρU

2
1

=
2

κMa2
PH − P
P

=
2

κMa2

[
PH

P
− 1
]
, (12.56)
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and with (PH/P ) from (12.53) one obtains:

PH − P
1
2ρU

2
1

=
2

κMa2

[(
1 +

κ− 1
2
Ma2

) κ
(κ−1)

− 1

]
. (12.57)

Through a series expansion for Ma2 < 2
(κ−1) , the following results:

Cp =
PH − P

1
2ρU

2
1

= 1+
1
4
Ma2+

2 − κ
24

Ma4+
(2 − κ)(3 − 2κ)

192
Ma6+· · · . (12.58)

For incompressible flows, the Mach number goes to zero so that only the first
term of the series expansion remains. For compressible flows, with increasing
Mach number a substantial deviation of Cp from the incompressible result is
obtained. However, for Mach numbers below 0.3. this deviation is below 1%.
Therefore, compressibility effects may be neglected up to this Mach number.
This is the basis for treating low-velocity gas flows as incompressible.

12.5 Flow with Heat Transfer (Pipe Flow)

Each chapter in this book tries to give an introduction into a sub-domain
of fluid mechanics and in particular each chapter aims at a deepening of
the physical understanding of the fluid flows treated there. For this purpose,
often simplifications were introduced into the considerations of an analyt-
ical problem. In the preceding chapter, for example, adiabatic, reversible
(dissipation-free) and one-dimensional fluid flows were treated, i.e. isentropic
flow processes of compressible media which depend on only one space coor-
dinate. These considerations need some supplementary explanation in order
to be able to understand special phenomena in the case of high-speed flows
with heat transfer. For dealing with such flows, which can be considered as
stationary and one-dimensional, i.e. experience changes only in the flow di-
rection x1 = x, the following basic equations are available, which are stated
by U1 = U :

• Mass conservation:

ρFU = ṁ = constant. (12.59)

• Momentum equation:

ρU
dU
dx

= − dP
dx
. (12.60)

• Energy equation:

(dq) = cvdT + Pd
(

1
ρ

)
= cpdT − 1

ρ
dP. (12.61)
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• State equation for ideal gases:

P

ρ
= RT. (12.62)

From the mass conservation (12.59), one obtains:

dρ
ρ

+
dU
U

+
dF
F

= 0. (12.63)

or for pipe flows with
dF
F

= 0:

dU
U

= − dρ
ρ
. (12.64)

From the ideal gas (12.62), it can be derived that:

dP
P

=
dρ
ρ

+
dT
T
, (12.65)

and from the momentum equation one obtains − dP
ρ

= U dU or:

− dP
P

=
ρ

P
UdU =

1
RT
U2 dU

U
. (12.66)

With κRT = c2 and from the momentum (12.66), one obtains:

− dP
P

=
κ

c2
U2 dU

U
= κMa2

dU
U
. (12.67)

On finally including the energy equation into the considerations, it can be
stated that the following relationship holds:

(dq) = cpdT − dP
ρ

= cpdT + UdU, (12.68)

or rewritten:

dU
U

=
(dq)
U2

− cpdT
U2

=
1
Ma2

( cp
κRT

) (dq)
cp

− 1
Ma2

cp
κRT

dT, (12.69)

i.e. for the relative velocity change in a pipe flow as a result of heat supply,
the following can be written:

dU
U

=
1

(κ− 1)Ma2

(
(dq)
h

− dT
T

)
, (12.70)



346 12 Introduction to Gas Dynamics

where h = cpT was set. From (12.65), it follows that:

dT
T

=
dP
P

− dρ
ρ

= −κMa2 dU
U

+
dU
U
, (12.71)

or rewritten:
dT
T

= (1 − κMa2) dU
U
. (12.72)

When this relationship is inserted in (12.70), the following results:

dU
U

=
1

(κ− 1)Ma2

(
(dq)
h

− (1 − κMa2) dU
U

)
. (12.73)

Solving in terms of
dU
U

, one obtains:

dU
U

=
1

(1 −Ma2)
(dq)
h
. (12.74)

This relationship inserted in (12.64) yields for the relative density change:

dρ
ρ

=
−1

(1 −Ma2)
(dq)
h
. (12.75)

or for the relative changes in pressure and temperature:

dP
P

=
−κMa2

(1 −Ma2)
(dq)
h

and
dT
T

=
(1 − κMa2)
(1 −Ma2)

(dq)
h
. (12.76)

For the local change of the Mach number, it can also be derived that:

d(Ma2)
Ma2

=
d(U2/c2)
(U2/c2)

=
T

U2
d
(
U2

T

)
= 2

dU
U

− dT
T
. (12.77)

Thus for the change of the Mach number with heat supply, the following
holds:

dMa2

Ma2
=

(1 + κMa2)
(1 −Ma2)

(dq)
h
. (12.78)

As (dq) = T · ds and h = cp · T it holds furthermore that:

dMa2

Ma2
=

(1 + κMa2)
(1 −Ma2)

ds
cp
. (12.79)

The above relations can now be employed for understanding how P, T, ρ, U
andMa change locally when one introduces heat to a pipe flow, i.e. dq/h > 0:
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12.5.1 Subsonic Flow

dU
U
> 0; the flow velocity increases with heat supply.

dρ
ρ
< 0 and

dP
P
< 0; density and pressure decrease with heat supply.

dT
T
> 0; the temperature increases with heat supply for Ma <

√
1
κ
.

dT
T
< 0; the temperature decreases in spite of heat supply for Ma >

√
1
κ
.

dMa2

Ma2
> 0; the local Mach number increases with heat supply.

The above relationships indicate that, in spite of heat supply, there is
a decrease in temperature for

√
1/κ < Ma < 1. This is not expected from

simple energy considerations that do not take the above details into account.

12.5.2 Supersonic Flow

dU
U
< 0; the flow velocity decreases with heat supply.

dρ
ρ
> 0 and

dP
P
> 0; density and pressure increase with heat supply.

dT
T
> 0; the temperature increases with heat supply.

dMa2

Ma2
< 0; the local Mach number decreases with heat transfer.

Thus, in a heated pipe, the change of the thermo-fluid dynamic state differs
substantially, depending on the Mach number of the flow.

If one considers to deepen the physical insight into pipe flows with heat
supply, the processes that occur in the T–s diagram for an ideal gas, one
obtains:

(dq)v = cvdTv = Tdsv �

(
∂T

∂s

)
v

=
T

cv
, (12.80)

(dq)P = cpdTP = TdsP �

(
∂T

∂s

)
P

=
T

cp
, (12.81)

From (12.76), one obtains for the temperature change in a pipe flow with
heat supply:

dT
T

=
(1 − κMa2)
(1 −Ma2)

dq
h

=
(1 − κMa2)
(1 −Ma2)

T dsR
cpT

. (12.82)
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From this it can be computed that:(
∂T

∂s

)
pipe

=
T

cp

(1 − κMa2)
(1 −Ma2) =

(
∂T

∂s

)
R

, (12.83)

On now introducing an effective heat capacity cpipe = cR, the following
holds:

(dq)R = cR dTR = TdsR �

(
∂T

∂s

)
R

=
T

cR
, (12.84)

and cR is computed as:

cR = cp
(1 −Ma2)
(1 − κMa2) = T

1(
∂T

∂s

)
R

. (12.85)

With κ =
cp
cv

, one can also write:

cR = cv
(1 −Ma2)(
1
κ −Ma2) = T

1(
∂T

∂s

)
R

. (12.86)

Hence the following relationship holds:(
∂T

∂s

)
P

−
(
∂T

∂s

)
R(

∂T

∂s

)
V

−
(
∂T

∂s

)
R

=

T

cp
− T

cR
T

cv
− T

cR

=
cR − cp
cR − cv , (12.87)

and further rewritten:[(
cR
cp

)
− 1
]

[
cR
cp

− 1
κ

] =
1 −Ma2 − 1 + κMa2

κ− κMa2 − 1 + κMa2
=

(κ− 1)Ma2

(κ− 1)
=Ma2. (12.88)

Ma2 =

(
∂T

∂s

)
p

−
(
∂T

∂s

)
R(

∂T

∂s

)
v

−
(
∂T

∂s

)
R

=
A

B
. (12.89)

In Fig. 12.11, the relationships expressed by (12.89) are shown graphically.
Here (∂T/∂s)p signifies the gradient of the isobars in the T–s state diagram
and (∂T/∂s)v the gradient of the isochors and (∂T/∂s)R the change of the
thermodynamic state of a gas in a pipe flow with heat supply. It can be shown
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Fig. 12.11 Change of state in the T–s diagram for pipe flows with heat supply

that (12.89) holds not only for flows of ideal gases, generally treated in gas
dynamics, but also for the flows of real gases.

In conclusion, it can be remarked that the relationships for dU
U (12.74),

dρ
ρ (12.75), dP

P (12.76), dT
T (12.76) and dMa2

Ma2 (12.78) for Ma = 1 lose their
validity if (dq) �= 0. In order to accelerate a subsonic flow to supersonic flow
speeds through heat supply, the heat supply has to be stopped once Ma = 1
is reached. After that, it is necessary to cool the flow in order to obtain a
further velocity increase.

Extended considerations show that the heat supply in the subsonic region
leads to accelerating the flow and in the supersonic region to decelerating the
flow. For pipe flows with a radius R = constant, a subsonic flow cannot be
turned into a supersonic flow with constant heat supply.

By considering the course of the effective heat capacity of the pipe flow,
the behaviour shown in Fig. 12.12 results:

cR
cv

=
(Ma2 − 1)

(Ma2 − 1/κ)
. (12.90)

For 0 ≤ Ma < √1/κ and 1 ≤ Ma < ∞ the heat capacity is positive and in
the range

√
1/κ < Ma < 1 a negative heat capacity results. At Ma =

√
1/κ

the local flow velocity has the value of the isothermal sound velocity.
According to (12.88) for the effective heat capacity cR/cv in heated and

cooled pipe flows, the thermodynamic state developes as shown in Fig. 12.13.
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Fig. 12.12 Behavior of the effec-
tive heat capacity of a gas with heat
supply in a pipe flow
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Fig. 12.13 Thermodynamic changes of state at subsonic and supersonic pipe flows
according to Bošnjaković

Starting for subsonic flow from state A, one reaches state C by heating
and subsequently state B by cooling, where a supersonic flow is achieved. If,
on the other hand, state A is supersonic, heating would decelerate the flow
towards C′ and finally cooling would further decelerate to subsonic flow B′.
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12.6 Rayleigh and Fanno Relations

The considerations in the preceding section concentrated on the investigation
of infinitesimal changes of fluid-mechanical and thermodynamic state quan-
tities in pipe flows, i.e. on the changes in the case of an infinitesimal heat
supply to the fluid, with the assumption that no dissipative processes occur.
For the pressure and Mach number changes that occur, it was derived that:

dP
P

=
−κMa2

(1 −Ma2)
(dq)
h

and
dMa2

Ma2
=

(1 + κMa2)
(1 −Ma2)

(dq)
h
. (12.91)

From these, the following relationship between the relative changes of
pressure and Mach number for the pipe flow is obtained:

dP
P

= − κMa2

(1 + κMa2)
(dMa2)
Ma2

. (12.92)

This differential equation can be integrated between two states 1 and 2,
yielding:

2∫
1

dP
P

= −
2∫

1

κMa2

(1 + κMa2)
dMa2

Ma2
� ln

(
P2

P1

)
= ln

(
1 + κMa21
1 + κMa22

)
,

(12.93)
and thus:

P2

P1
=

1 + κ(Ma)
2

1

1 + κ(Ma)22
etc.. (12.94)

From (12.53), a thermodynamically achievable maximum pressure PH fol-
lows:

PH = P
(

1 +
κ− 1

2
Ma2

) κ
(κ−1)

. (12.95)

With this relationship, also known as the Rayleigh flow, the following case
can be computed:

(PH)2
(PH)1

=
(1 + κMa

2

1)

(1 + κMa22)

[
1 + (κ−1)

2 Ma
2

2

1 + (κ−1)
2 Ma

2
1

] κ
(κ−1)

. (12.96)

Analogously for the temperature relationship T2/T1, the following can be
derived:

T2

T1
=

(Ma)
2

2

(Ma)21

[
1 + κ(Ma)

2

1

1 + κ(Ma)22

]2

, (12.97)
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and for the corresponding relationship of the stagnation temperature ratio:

(TH)2
(TH)1

=
Ma

2

2

Ma
2
1

(
1 + κMa

2

1

1 + κMa22

)2 [
1 + (κ−1)

2 Ma
2

2

1 + (κ−1)
2 Ma

2
A

]
. (12.98)

For the density and velocity relationship one can write:

ρ2
ρ1

=
U1

U2
=
P2T1

P1T2
=
Ma

2

1

Ma
2
2

(
1 + κMa

2

2

1 + κMa21

)
. (12.99)

Finally, the following relationship can also be derived:

ds = cp

[
1 −Ma2

1 + κ ·Ma2
]

d(Ma2)
Ma2

(12.100)

in order to compute the entropy change of the flowing gas in the pipe flow
with heat supply, the following holds:

s2 − s1 =
κR

(κ− 1)︸ ︷︷ ︸
cp

· ln

⎡⎢⎣ (Ma)
2

2

(Ma)21

(
1 + κ(Ma)

2

1

1 + κ(Ma)22

) (κ+1)
κ

⎤⎥⎦. (12.101)

The above equations can now be employed to determine in a T−s diagram
the thermodynamically possible states with the Mach numbers as parameters,
e.g. for Rayleigh flow. We start here from a state 1, for which T1 and s1 are
known, as well as U1 and therefore also (Ma)1. For each value (Ma)2, T2 an
s2 can be computed and thus the Rayleigh curve, as shown in Fig. 12.14 can
be obtained. For the direct connection between s and T one obtains:

s2 − s1
cp

= ln
(
T2

T1

)κ+1
2κ

From Fig. 12.14, it can be seen that for the subsonic part of the Rayleigh
curve the temperature increases, together with an increase in the Mach num-
ber up to Ma =

√
1/κ. After that the temperature decreases until Ma = 1.

On moving on the branch of the supersonic flow, the Mach number decreases
with increasing entropy until Ma = 1 is achieved.

It is also usual in gas dynamics to employ values for (Ma)1 = 1, which
are usually designated with an asterisk (∗) as reference quantities for the
standardized representation of P , PH , T , TH and ρ. For such a representation
of the above results, the following holds:

P

P ∗ =
1 + κ

1 + κMa2
;

T

T ∗ =
(1 + κ)2Ma2

(1 + κMa2)2
, (12.102)
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Fig. 12.14 Rayleigh curves on a T–s diagram

ρ

ρ∗
=

1
(U1/U∗

1 )
=

1 + κMa2

(1 + κ)Ma2
. (12.103)

A generalization of the considerations above for flows in pipes with change
in cross-section, which are furthermore exposed to externally imposed forces,
leads to the relationships below for the fluid mechanical and thermodynamic
changes of state caused in compressible flows.

Continuity equation:
dρ
ρ

+
dU
U

+
dF
F

= 0. (12.104)

Momentum equation:
ρU dU = −dP + dΠ, (12.105)

where dΠ is an externally applied pressure gradient which can be forced on
the flow by a compressor. The energy equation can be stated for the extended
considerations as follows:

cp dT + U dU1 = dq. (12.106)

By division by P and after introduction of c2 = κPρ , the momentum (12.105)
can be written as

κMa2
dU
U

+
dP
P

=
dΠ
P
. (12.107)

For the energy equation, the following rearrangements of terms are
possible:

dT
T

+
U dU
cpT

=
dq
cpT

, (12.108)
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or rewritten:
dT
T

+ (κ− 1)Ma2
dU
U

=
dq
cpT

. (12.109)

Finally, the state equation for ideal gases is employed for the considerations
to be carried out:

P

ρ
= RT �

dP
P

− dρ
ρ

− dT
T

= 0. (12.110)

The above set of equations can now be employed to express the quantities
dU/U, dρ/ρ, dT/T , etc. as a function of the local Mach number and the
local relative area change (dF/F ), the heat supplied (dq/h) and the applied
external forces (dΠ/P ):

dU
U

=
1

(Ma2 − 1)

(
dF
F

+
dΠ
P

− dq
h

)
, (12.111)

dP
P

= − κMa2

(Ma2 − 1)
dF
F

− 1 + (κ− 1)Ma2

(Ma2 − 1)
dΠ
P

+
κMa2

(Ma2 − 1)
dq
h
, (12.112)

dT
T

= − (κ− 1)Ma2

(Ma2 − 1)
dF
F

− (κ− 1)Ma2

(Ma2 − 1)
dΠ
P

+
(κMa2 − 1)
(Ma2 − 1)

dq
h
. (12.113)

From the above general equations, the preceding derivations, that are referred
solely to the area changes (see Chap. 9), can now be derived for dΠ/P = 0
and dq/h = 0. Furthermore, one obtains for dF/F = 0 and dΠ/P = 0 the
relationships derived at the beginning of this chapter for heated pipes. When
one now sets dF/F = 0 and dq/h = 0, one obtains:

dU
U

=
1

(Ma2 − 1)
dΠ
P

;
dP
P

= −1 + (κ− 1)Ma2

(Ma2 − 1)
dΠ
P
, (12.114)

and finally also:
dT
T

= − (κ− 1)Ma2

(Ma2 − 1)
dΠ
P
. (12.115)

On considering now for a viscous flow the molecular momentum transport
as an external action of forces (dΠR/P ) < 0, one realizes that the following
temperature changes are connected with it:(

dT
T

)
R

> 0 for Ma < 1, (12.116)

or (
dT
T

)
R

< 0 for Ma > 1. (12.117)

Analogous to the considerations that were based on (12.91) and (12.92),
all derivations that lead to the relationships for the Rayleigh flow, i.e. for the
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flow through pipes having constant cross-sections with heat supply, can now
be repeated for pipe flow under the influence of friction without heat supply.
From the derivations, similar relationships result as for the Rayleigh flow in
(12.94)–(12.102). From, this the “Fanno curve” in the T–s diagram results,
which indicates the possible states of the thermodynamic state that develop
in adiabatic pipe flow with internal friction. The “Rayleigh curve” in the T–s
diagram, on the other hand, represents the thermodynamic change of state
which develops with heat supply in the case of friction-free flow of an ideal
gas in a pipe. With this the Fanno curve indicates the influence of friction
in a pipe flow with constant cross-section, whereas the Rayleigh curve shows
the influence of the heat supply.

12.7 Normal Compression Shock
(Rankine–Hugoniot Equation)

In Sect. 12.3, the formation of compression shocks was explained as a
phenomenon of wave motions with a state-dependent wave velocity. The
discontinuity surface formed in this way shows a thickness which can be
considered to be of the order of magnitude of the free path length of the
molecules of an ideal gas. It is thus possible to describe, within the assump-
tions chosen in this book, the compression shock shown in Fig. 12.15 in a
medium at rest by the fluid mechanical and thermodynamic state quantities
before and after the compression shock. As before, the analysis may be sim-
plified by considering a stationary problem, i.e. assuming that the shock is at
rest. The flow velocity and the variables describing the thermodynamic state
upstream of the shock are denoted by PA, ρA, TA, eA, sA and downstream by
PB, ρB, TB, eB, sB. Thus the transformation is UA = Us and UB = UA−Ug,
respectively.

Fig. 12.15 Plotted normal compression
shocks and selection of coordinate systems



356 12 Introduction to Gas Dynamics

The integral conservation laws formulated with these variables are
expressed as:

ρAUA = ρB(UA − Ug) = ρBUB, (12.118)

ρAU
2
A + PA = ρBU

2
B + PB , (12.119)

or rewritten:
ρAUA(UA − UB) = PB − PA. (12.120)

Furthermore, the energy equation holds:

1
2
U2

A +
PA

ρA
+ cvTA =

1
2
U2

B +
PB

ρB
+ cvTB. (12.121)

The left-hand side of (12.121) can be described by the quantities P , ρ and U
of the mass conservation and momentum equations as one obtains:

1
2
U2

A +
PA

ρA
+ cv

PA

RρA
=

1
2
U2

A +
κ

(κ− 1)
PA

ρA
=

κ

(κ− 1)
PH

ρH
. (12.122)

From the momentum equation and the continuity equation, it follows that:

UA − UB =
PB

ρBUB
− PA

ρAUA
. (12.123)

Multiplication by UA + UB yields:

U2
A − U2

B =
(
PB

ρBUB
− PA

ρAUA

)
(UA + UB), (12.124)

U2
A − U2

B =
(
PB

ρA
+
PB

ρB
− PB

ρA
− PA

ρA

)
, (12.125)

or rewritten:

U2
A − U2

B = (PB − PA)
[

1
ρA

+
1
ρB

]
. (12.126)

From the energy equation it follows:

U2
A − U2

B =
2κ
κ− 1

(
PB

ρB
− PA

ρA

)
. (12.127)

Equations (12.125) and (12.126) set equal yields:

(PB − PA)
[

1
ρA

+
1
ρB

]
=

2κ
κ− 1

(
PB

ρB
− PA

ρA

)
. (12.128)

From this, the following relationship is obtained:

PB

PA

[
ρB

ρA
− (κ+ 1)

(κ− 1)

]
= 1 − ρB

ρA

(κ+ 1)
(κ− 1)

. (12.129)
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Hence one can write:

PB

PA
=

1 +
(κ+ 1)

2

(
ρB

ρA
− 1
)

1 − (κ− 1)
2

(
ρB

ρA
− 1
) and

ρB

ρA
=

1 +
(κ+ 1)

2κ

(
PB

PA
− 1
)

1 +
(κ− 1)

2κ

(
PB

PA
− 1
) .

(12.130)

The above relations PA/PB = f(ρB/ρA) or (ρB/ρA) = g(PB/PA) are known
as Rankine–Hugoniot equations. They state the pressure and density changes
through the normal compression shock. As the compression shock is linked
to a dissipation of mechanical energy into heat, the compression shock is a
non-isentropic process.

Derivations of somewhat different nature, using the energy equation yield:

UA +
2κ

(κ− 1)
PA

ρAUA
=

2κ
(κ− 1)

PH

ρHUA
(12.131)

and
UB +

2κ
(κ− 1)

PB

ρBUB
=

2κ
(κ− 1)

PH

ρHUB
. (12.132)

From this, the following results:

(UA − UB) +
2κ

(κ− 1)

(
PA

ρAUA
− PB

ρBUB

)
︸ ︷︷ ︸

UB−UA

=
2κ

(κ− 1)
PH

ρH

(
1
UA

− 1
UB

)
,

(12.133)

(UA − UB) − 2κ
(κ− 1)

(UA − UB) =
2c2H

(κ− 1)
UB − UA

UAUB
, (12.134)

1 − 2κ
(κ− 1)

= − 2c2H
(κ− 1)UAUB

. (12.135)

From this, the Prandtl compression relationship can be computed:

UAUB =
2c2H

(κ+ 1)
; (Ma)A,H (Ma)B,H =

2
(κ+ 1)

. (12.136)

From the energy equation:

1
2
U2

A + cpTA = cpTH and
1
2
U2

B + cpTB = cpTH . (12.137)

It then follows that:[
(κ− 1) +

2
(Ma)2A

]
=

2cpTH

U2
A

(κ− 1), (12.138)

[
(κ− 1) +

2
(Ma)2B

]
=

2cpTH

U2
B

(κ− 1). (12.139)
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Multiplying these two equations yields:[
(κ− 1) +

2
(Ma)2A

] [
(κ− 1) +

2
(Ma)2B

]
=

4c2pT 2
H

U2
AU

2
B

(κ− 1)2. (12.140)

With UAUB =
2κRTH

(κ+ 1)
, the following equation results:

[(
κ− 1

2

)
+

1
(Ma)2A

] [(
κ− 1

2

)
+

1
(Ma)2B

]
=
[
(κ+ 1)

2

]2
. (12.141)

It is usual to express the state quantities, after the vertical compression shock,
scaled with the corresponding quantity before the shock, as a function of the
Mach number before the shock. These normalized quantities can be written
as follows:

PB

PA
=

2κ
(κ+ 1)

(Ma)2A−
(κ− 1)
(κ+ 1)

�
PB

PA
= 1+

2κ
κ+ 1

(
Ma2A − 1

)
, (12.142)

ρB

ρA
=

(κ+ 1)(Ma)2A
(κ− 1)(Ma)2A + 2

, (12.143)

TB

TA
=
PBρA

PAρB
=

1
(κ+ 1)2(Ma)2A

[
2κ(Ma)2A − (κ− 1)

] [
(κ− 1)(Ma)2A + 2

]
.

(12.144)
Furthermore, it can be stated for the Mach number after the compression
shock:

(Ma)2B =

[
(κ− 1)(Ma)2A + 2

]
[(2(Ma)2A − 1)κ+ 1]

, (12.145)

and for the pressure difference ∆p/pA as a measure for the strength of the
compression shock:

(PB − PA)
PA

=
2κ

(κ+ 1)
[
(Ma)2A − 1

]
. (12.146)

For the change of entropy linked to the shock, one can compute:

sB − sA = cv ln
([

2κ
κ+ 1

(Ma)2A − κ− 1
κ+ 1

] [
(κ− 1)(Ma)2A + 2

(κ+ 1)(Ma)2A

]κ)
. (12.147)

The changes are shown in Fig. 12.17, where as the abscissa the Mach number
before the shock was chosen.
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Figure 12.16 shows further that the fluid is compressed when it is mov-
ing through the compression shock. The pressure, density and temperature
increase on passing through the compression shock, i.e.

PB

PA
≥ 1;

ρB

ρA
≥ 1; and

TB

TA
≥ 1

When considering the difference sB − sA, using (12.46), it is evident (see
Fig. 12.17) that sB − sA can only be larger than zero for MA ≥ 1. This
expresses that dilution shocks cannot occur in ideal gases, as they are not
permitted by the second law of thermodynamics, which demands sB−sA ≥ 0.

In this section only an introduction into gas dynamics was given providing
treatments of compressible flows in a manner also applied in refs. [12.1] and
[12.2] as well as in [12.4] to [12.6]. More advanced treatments are provided in
[12.3].
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Chapter 13

Stationary, One-Dimensional Fluid Flows
of Incompressible, Viscous Fluids

13.1 General Considerations

In this chapter, flows of viscous fluids (µ �= 0) are considered which are
stationary and two-dimensional. They are assumed to occur in fluids of con-
stant density and, in addition, the fluid is assumed to be fully developed in
the flow direction. The simplified equations determining this class of flow can
be derived from the general equations of fluid mechanics and the resultant
equations are basically one-dimensional. They are, moreover, for a number of
boundary conditions, accessible to analytical solutions and thus well suited
for students of natural and engineering sciences to provide to them an intro-
duction into fluid mechanics of viscous fluids. The basic knowledge gained
by studying these fluid flows can then be deepened in specialized lectures.
In this way, the knowledge of how flows of viscous fluids behaves in one-
dimensional flow cases can be extended and used for the solution of practical
flow problems.

As shown below, the problems discussed in this chapter can be tackled by
analytical solutions. Hence their properties with regard to the physics of fluid
flows can be described with a few terms of the Navier–Stokes equations and
solutions become possible due to the existence of simple boundary conditions.
In addition, it is assumed that stationarity exists for all flow quantities and
that fluids with a constant density are treated, i.e. fluids with ρ = constant.
This property holds not only for thermodynamically ideal liquids but also,
as shown in Sect. 12.1, for thermodynamically ideal gases when they flow at
moderate velocities.

Simple considerations show that gas flows with Mach numbers Ma ≤ 0.2
can be treated as incompressible with a precision which is sufficient for
practical application, i.e. gas flows at low Mach numbers can be treated
as fluids of constant density. For such fluids, the basic equations in the
form stated below hold, for Newtonian media when τij is introduced as
follows:

361
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τij = −µ
[
∂Uj

∂xi
+
∂Ui

∂xj

]
+

2
3
δijµ

∂Uk

∂xk︸ ︷︷ ︸
=0 because
ρ=constant

. (13.1)

• Continuity equation:

∂U1

∂x1
+
∂U2

∂x2
+
∂U3

∂x3
= 0. (13.2)

• Momentum equations:

– x1-component:

ρ

[
∂U1

∂t
+ U1

∂U1

∂x1
+ U2

∂U1

∂x2
+ U3

∂U1

∂x3

]
= − ∂P

∂x1
+ µ

[
∂2U1

∂x2
1

+
∂2U1

∂x2
2

+
∂2U1

∂x2
3

]
+ ρg1. (13.3)

– x2-component:

ρ

[
∂U2

∂t
+ U1

∂U2

∂x1
+ U2

∂U2

∂x2
+ U3

∂U2

∂x3

]
= − ∂P

∂x2
+ µ

[
∂2U2

∂x2
1

+
∂2U2

∂x2
2

+
∂2U2

∂x2
3

]
+ ρg2. (13.4)

– x3-component:

ρ

[
∂U3

∂t
+ U1

∂U3

∂x1
+ U2

∂U3

∂x2
+ U3

∂U3

∂x3

]
= − ∂P

∂x3
+ µ

[
∂2U3

∂x2
1

+
∂2U3

∂x2
2

+
∂2U3

∂x2
3

]
+ ρg3. (13.5)

13.1.1 Plane Fluid Flows

As a further simplification for the subsequent considerations, the flow field
is assumed to be two-dimensional, i.e. for all quantities of the velocity and
pressure fields [∂(· · · )/∂x3] = 0 can be introduced. It is further assumed that
in the x3 direction there is no flow component or that it is always possible
to introduce a coordinate system in such a way that only in the directions
of the two coordinate axes x1 and x2 do velocity components occur. Thus
one obtains the final equations for two-dimensional and two-directional flow
problems, which are employed in the following analytical solutions:

∂U1

∂x1
+
∂U2

∂x2
= 0, (13.6)

ρ

[
∂U1

∂t
+ U1

∂U1

∂x1
+ U2

∂U1

∂x2

]
= − ∂P

∂x1
+ µ

[
∂2U1

∂x2
1

+
∂2U1

∂x2
2

]
+ ρg1, (13.7)

ρ

[
∂U2

∂t
+ U1

∂U2

∂x1
+ U2

∂U2

∂x2

]
= − ∂P

∂x2
+ µ

[
∂2U2

∂x2
1

+
∂2U2

∂x2
2

]
+ ρg2. (13.8)
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The above equations are employed in subsequent sections for analytical com-
putations of fluid flows. It is assumed here that the flow causing effects are
known and that they fulfil the assumptions made to yield the above-stated
simplified form of the basic equations, i.e. (13.6)–(13.8).

Further restrictions which are made concerning the subsequently treated
flow problems should be mentioned with regard to the boundary conditions.
It is assumed that these boundary conditions are known and that they fulfil
the condition of stationarity, i.e. temporal changes do not occur. Because
of another restriction in the following considerations, only solutions of the
above equations are listed which are laminar. The perturbations acting on
fluid flows in practice constitute, in general, boundary conditions that depend
on time. Moreover, the disturbances have to be considered as unknown. Their
effects on flows are therefore not treated in the subsequent considerations in
this section.

13.1.2 Cylindrical Fluid Flows

For a large number of flow problems, boundary conditions exist which
originate from axi-symmetric flow geometries and which can be introduced
more easily into solutions of the basic equations of fluid mechanics, when
these equations are written in cylindrical coordinates. To provide these
equations, ρ = constant and µ = constant are also assumed.

• Continuity equation:

∂ρ

∂t
+ ρ
[
1
r

∂

∂r
(rUr) +

1
r

∂

∂ϕ
(Uϕ) +

∂

∂z
(Uz)

]
= 0. (13.9)

• Momentum equations:

– r-component:

ρ

[
∂Ur

∂t
+ Ur

∂Ur

∂r
+
Uϕ

r

∂Ur

∂ϕ
− U

2
ϕ

r
+ Uz

∂Ur

∂z

]

= −∂P
∂r

+ µ
[
∂

∂r

(
1
r

∂(rUr)
∂r

)
+

1
r2
∂2Ur

∂ϕ2
− 2
r2
∂Uϕ

∂ϕ
+
∂2Ur

∂z2

]
+ ρgr.

(13.10)

– ϕ-component:

ρ

[
∂Uϕ

∂t
+ Ur

∂Uϕ

∂r
+
Uϕ

r

∂Uϕ

∂ϕ
+
UrUϕ

r
+ Uz

∂Uϕ

∂z

]
= −1

r

∂P

∂ϕ
+µ
[
∂

∂r

(
1
r

∂(rUϕ)
∂r

)
+

1
r2
∂2Uϕ

∂ϕ2
+

2
r2
∂Ur

∂ϕ
+
∂2Uϕ

∂z2

]
+ ρgϕ.

(13.11)
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– z-component:

ρ

[
∂Uz

∂t
+ Ur

∂Uz

∂r
+
Uϕ

r

∂Uz

∂ϕ
+ Uz

∂Uz

∂z

]
= −∂P

∂z
+ µ

[
1
r

∂

∂r

(
r
∂Uz

∂r

)
+

1
r2
∂2Uz

∂ϕ2
+
∂2Uz

∂z2

]
+ ρgz. (13.12)

For stationary, incompressible (ρ = constant) fluid flows of Newtonian
fluids, assuming axi-symmetry ∂(· · · )/∂ϕ = 0 and Uϕ = 0, one can obtain
the following final equations:

1
r

∂(rUr)
∂r

+
∂Uz

∂z
= 0, (13.13)

ρ

[
Ur
∂Ur

∂r
+ Uz

∂Ur

∂z

]
= −∂P

∂r
+ µ
[
∂

∂r

(
1
r

∂(rUr)
∂r

)
+
∂2Ur

∂z2

]
+ ρgr, (13.14)

ρ

[
Ur
∂Uz

∂r
+ Uz

∂Uz

∂z

]
= −∂P

∂z
+ µ

[
1
r

∂

∂r

(
r
∂Uz

∂r

)
+
∂2Uz

∂z2

]
+ ρgz. (13.15)

These equations can be employed for solutions of fluid flow problems for
stationary axially symmetric fluid flows and for Uϕ = 0.

13.2 Derivations of the Basic Equations
for Fully Developed Fluid Flows

13.2.1 Plane Fluid Flows

The basic equations for stationary, two-dimensional and fully developed fluid
flows can be derived from the equations for incompressible Newtonian media
on the assumption that the resulting fluid flow in the x1 direction fulfils the
following relationships:

∂U1

∂x1
= 0 and

∂U2

∂x2
= 0. (13.16)

Thus the continuity equation is reduced to:

∂U1

∂x1︸ ︷︷ ︸
=0

+
∂U2

∂x2
= 0 �

∂U2

∂x2
= 0 and therefore U2 = f(x1). (13.17)

Based on the assumption of a fully developed fluid flow, the relationships
(13.16) hold and from (13.17) we can derive:
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U2 = constant U2 = 0
(
U2 = 0 holds for fluid flows with

impermeable walls

)
,

(13.18)
i.e. stationary, incompressible and internal flows are unidirectional. They flow
only in the x1 direction, i.e. only one U1 component of the flow field exists.

This is a statement for the flow field that was obtained from the continuity
equation for fluid flows which are fully developed in the flow direction x1. The
momentum equations are simplified for this class of fluid flows as follows:
x1 direction:

0 = − ∂P

∂x1
+ µ

∂2U1

∂x2
2

+ ρg1. (13.19)

x2 direction:

0 = − ∂P

∂x2
+ ρg2. (13.20)

From (13.20), one obtains a general solution for the pressure field:

P = ρg2x2 +Π(x1). (13.21)

The pressure field P (x1, x2) comprises an externally imposed pressure,Π(x1),
which can be applied along the x1 axis. The implementation of Π(x1) usually
takes place in practice with pumps and blowers. On introducing this general
pressure relationship into the momentum equation x1, taking U1(x2) into
consideration, one obtains:

0 = − dΠ
dx1

+ µ
d2U1

dx2
2

+ ρg1, (13.22)

i.e. a differential equation for the unknown flow field U1(x2). This is the basic
equation which holds for incompressible, stationary and one-dimensional, i.e.
fully developed, fluid flows, if the flow medium has Newtonian properties and
the fluid can be regarded as incompressible and the viscosity as constant.
Physically, the equation can be interpreted in such a way that the pressure
gradient imposed externally in the x1 direction counteracts the viscosity and
mass forces of the flow field

dΠ

dx1
= µ

d2U1

dx2
2

+ ρg1. (13.23)

Here it is important that the pressure gradient, in accordance with (13.21),
can assume any externally imposed value, which for the flow problems treated
here must depend only on x1. Considering however, (13.18), and admitting
only constant mass forces, i.e. g1 = constant, the right-hand side of (13.22) is
a function only of x2. Thus the pressure gradient in the x1 direction assumes
a constant value in the case of stationary, incompressible and one-dimensional
fluid flows.
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13.2.2 Cylindrical Fluid Flows

Analogous to the above derivations of plane fluid flows, the derivations of
the basic equations for stationary, one-dimensional fluid flows can be made
for axi-symmetric flow cases also. For the following derivation, it is assumed
that in the z direction the fluid flow is fully developed, i.e. all derivatives of
the velocity components are zero in the z direction, as stated below

∂Ur

∂z
= 0,

∂Uz

∂z
= 0. (13.24)

With these assumptions, one obtains from the continuity equation:

∂

∂r
(rUr) = 0 � ρrUr = constant (13.25)

and because of the assumption of impermeable walls for the fluid (see (13.18))
one obtains:

Ur = 0
(

for the presence of impermeable walls
for the considered fluid flow

)
(13.26)

and thus the momentum equations hold:

0 = − ∂P
∂r

+ ρgr. (13.27)

0 = − ∂P
∂z

+ µ
[
1
r

∂

∂r

(
r
∂Uz

∂r

)]
+ ρgz (13.28)

by integration of:

P (r, z) = ρgzr +Π(z), i.e.
∂P

∂z
=

dΠ
dz
. (13.29)

Finally, the above derivations result in:

0 = −dΠ
dz

+ µ
[
1
r

∂

∂r

(
r
∂Uz

∂r

)]
+ ρgz. (13.30)

This last equation represents the conditional equation for the velocity field,
which has to be employed for solutions of one-dimensional (fully developed)
flow problems in axi-symmetric geometries.

13.3 Plane Couette Flow

In chemical process engineering, it is common practice, e.g. when coating
sheet metals, foils, plates, etc., to employ coating systems of the kind shown
in Fig. 13.1. This figure shows that the actual material to be coated is moved
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Fig. 13.1 Schematic representation of a coating system

through a pre-chamber filled with the coating fluid. From there the material
enters a channel with plane parallel walls that end in a fluid collecting cham-
ber, where the coating thickness is brought to the required final value by
scrubbers installed on both sides. The wiped off coating material is collected
in the discharge chamber and is fed back through a discharge pipe to the
coating fluid supply system.

The flow forming in the slots between the pre-chamber and the discharge
chamber, after a certain distance from the inlet, is called Couette flow. It is
characterized by the fact that no pressure gradients are used for driving the
flow, i.e. for Couette flow the following holds:

dΠ
dx1

= 0 and therefore 0 = µ
d2U1

dx2
2

+ ρg1. (13.31)

In the case of a horizontal flow direction with respect to the vertical direc-
tion of the field of gravity, no mass forces are active which could drive the
fluid flow, as the x1 direction is vertical to the direction of the gravitational
acceleration, i.e. for the Couette flow in Fig. 13.1 the following holds:

g1 = 0. (13.32)

Thus the basic equation stated in Sect. 13.2 for plane flows is reduced to the
differential equation describing the Couette flow:

− dΠ
dx1︸︷︷︸
=0

+µ
d2U1

dx2
2

+ ρg1︸︷︷︸
=0

= 0 =⇒ ∂2U1

∂x2
2

= 0. (13.33)

From the resulting equation for U1, i.e. from (13.33), it can be seen that
the velocity profile U1(x2) occurring in the slot is independent of the viscosity
of the coating fluid. Thus also the required quantity of coating material is
independent of the viscosity of the coating medium, a property which is often
regarded to be desirable for well-designed coating systems. The system thus
becomes equally applicable for all fluid properties and results in velocity
profiles that are independent of the fluid properties (Fig. 13.2).
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Fig. 13.2 Basic geometry of the upper slit in the coating system shown in Fig. 13.1
(width of the slit in the x3 direction is B)

When considering that, for the assumptions made, the velocity U1 can
depend on the coordinate x2 only, the final equation can be written as follows:

d2U1

dx2
2

= 0 � U1 = C1x2 + C2. (13.34)

Because of the boundary conditions existing due to the operation of the
coating system, the integration constants C1 and C2 result in values as shown
below

x2 = 0 : U1 = U0 = C10 + C2; C2 = U0,

x2 = D : U1 = 0 = C1D + C2; C1 = −U0/D.
(13.35)

Thus for the velocity profile one obtains

U1 =
U0

D
(D − x2) for 0 ≤ x2 ≤ D. (13.36)

The required fluid volume of the coating material that has to be supplied
per unit time results from integration over the entire slot having the width
B in the x3 direction, i.e. the integration has to be taken over both slot
openings, on the top and at the bottom of the substrate. For the system in
Fig. 13.1, Q̇z needed for coating results from the following integration:

Q̇z = 2Q̇ = 2B

D∫
0

U1 dx2 = 2
U0B

D

[
Dx2 − 1

2
x2

2

]D

0

(13.37)

= 2
U0B

D

[
1
2
D2

]
(13.38)

or as the final relationship:

Q̇ =
1
2
BU0D. (13.39)
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The force exerted on one side of the material to be coated in the slot can be
computed as follows:

F = BLτw = −BLµdU1

dx2
= BLµ

U0

D
. (13.40)

Finally, attention is drawn to the fact that the Couette flow is characterized
in such a way that in the entire flow field, the same molecular-dependent
momentum transport takes place at every location x2. For this reason the
Couette flow is often sought as a fluid flow for basic investigations, in order to
examine experimentally the influence of the shear stresses on fluid properties
of non-Newtonian fluids.

13.4 Plane Fluid Flow Between Plates

In Sect. 13.2, the generally valid basic equation for an incompressible (ρ =
constant), stationary and one-dimensional (fully developed) flow of a New-
tonian medium with constant viscosity (µ = constant) was derived. This
equation:

dΠ
dx1

= µ
d2U1

dx2
2

+ ρg1 (13.41)

holds also for the fluid flow between two infinitely long plane plates arranged
as shown in Fig. 13.3.

This figure shows two plates which are placed at a distances x2 = +D
and x2 = −D with the planes in x3 = constant as surfaces located in a
Cartesian coordinate system. The fluid flow takes place between these two
plates and the flow velocity is equal to zero at the surfaces of the plates
(non-slip condition).

If one selects x1 perpendicular to the gravity field, then (13.41) reduces to
the following form:

dΠ
dx1

= µ
d2U1

dx2
2
. (13.42)

Fig. 13.3 Fully developed fluid flow between two plane and parallel plates
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This relationship expresses the fact that the motion of the flow between
the plates is caused by an imposed external pressure gradient. Pressure and
viscosity forces for these kinds of flows are in equilibrium for a fluid element.

As the pressure distribution dΠ/dx1 can only be a function of x1 (see
Sect. 13.2) and the right-hand side of the above equation depends only on x2,
i.e. U1(x2), dΠ/ dx1 has to be constant for the flow between parallel plates.
Thus, we have a simple linear differential equation of second order which has
to be solved to obtain the velocity profile of the plane channel flow.

By a first integration one obtains:

dU1

dx2
=

1
µ

(
dΠ
dx1

)
x2 + C1. (13.43)

This differential equation has as a general solution obtained by a second
integration:

U1 =
1
2µ

(
dΠ
dx1

)
x2

2 + C1x2 + C2. (13.44)

Due to the following boundary conditions:

x2 = +D −→ U1 = 0 =
1
2µ

(
dΠ
dx1

)
D2 + C1D + C2, (13.45)

x2 = −D −→ U1 = 0 =
1
2µ

(
dΠ
dx1

)
D2 − C1D + C2 (13.46)

one obtains the values for the integration constants:

C1 = 0 and C2 = − 1
2µ

(
dΠ
dx1

)
D2 (13.47)

and thus the solution for the velocity distribution between the plates can be
given as follows:

U1 = − 1
2µ

(
dΠ
dx1

)
D2

[
1 −
(x2

D

)2
]

for −D ≤ x ≤ D. (13.48)

This relationship for the flow velocity U1 shows that the velocity profile be-
tween the plates represents a parabola. The maximum velocity is at the center
of the channel. At the surfaces of both the plates the flow velocity is zero and
in the entire flow field U1 is positive, because for the flow region |x2| ≤ D
holds and, hence, [1 − (x2/D)2] is always positive. However, the pressure
gradient in the x1 direction decreases, i.e. the resultant pressure gradient is
negative, so that the velocity U1 in the x1 direction, according to (13.43), is
positive. Assuming that the plates in the x3 direction have a width B, the
volumetric flow rate per unit time can be computed for the flow in Fig. 13.3
as follows:
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Q̇ = 2B

D∫
0

U1 dx2 =
2B
2µ

(
dΠ
dx1

)[
1
3
x3

2 −D2x2

]D

0

. (13.49)

Thus the following results are valid for the flow rate Q̇ and the mean velocity:

Q̇ = −B
µ

(
dΠ
dx1

)
2
3
D3 −→ Ũ =

Q̇

2DB
= − 1

3µ

(
dΠ
dx1

)
D2. (13.50)

For the velocity Umax one can compute

Umax = U(x2 = 0) = − 1
2µ

(
dΠ
dx1

)
D2 � Ũ =

2
3
Umax. (13.51)

From Q̇ one obtains for the pressure gradient

dΠ
dx1

=
∆P

∆L
=

3µQ̇
2BD3

. (13.52)

From this it can be seen that the pressure drop is linear and is directly pro-
portional to the dynamic viscosity and to the volume flow rate and inversely
proportional to the cube of half the channel height. The action of forces on
the plate due to the molecular momentum transport results from the product
of the shear stress at the wall τw and the area of the plates

τw = −µ
(

dU1

dx2

)
x2=xw

, (13.53)(
dU1

dx2

)
w

=
1
µ

(
dΠ
dx1

)
(x2)w ; (x2)w = D; τw = −

(
dΠ
dx1

)
D. (13.54)

The force acting on one of the plates having length L and width B is given
by

F = τwA =
(

dΠ
dx1

)
DLB. (13.55)

As a further quantity, which is often used in fluid mechanics, the friction
coefficient of the flow can be computed

cf =
τw

ρ
2 Ũ

2
=

τw2D
µ
2

(
Ũ2D
µ/ρ

)
Ũ

=
1
Re

4Dτw
µŨ

. (13.56)

With

τw =
(

dΠ
dx1

)
D and Ũ =

Q̇

2DB
=

1
3µ

(
dΠ
dx1

)
D2, (13.57)

one obtains

cf =
12
Re

with Re =
Ũ2D
ν
. (13.58)

On plotting the friction coefficient as a function of the Reynolds number in
a diagram with double-logarithmic scales, one obtains a straight line with a
gradient of −1.
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13.5 Plane Film Flow on an Inclined Plate

In this section, fluid flows which are generally called film flows will be con-
sidered. They find applications in many fields of chemical engineering. Such
flows can be extremely complex, when the base plates of the flow show irreg-
ularities or waviness. To simplify the considerations to be carried out here,
only smooth surfaces are considered. In addition, the considerations are only
carried out for incompressible fluids with constant viscosity. Furthermore,
the assumption of two-dimensionality of the fluid flow is introduced into the
derivations and extended by the assumption of fully developed film flows fi-
nally yielding the one-dimensionality of the flow, so that the following basic
equation holds:

0 = −
(

dΠ
dx1

)
+ µ

d2U1

dx2
2

+ ρg1. (13.59)

In the examples shown in Fig. 13.4, the film motion is caused by the mass
forces occurring in the flow direction and not, as in the case of the plane
channel flow, by an externally imposed pressure gradient, i.e. for the film
flow the following holds for the pressure gradient:

dΠ
dx1

= 0, (13.60)

which finally results in the following simple basic equation for gravity-driven
film flows:

µ
d2U1

dx2
2

+ ρg1 = 0. (13.61)

In the case of film flows which are caused by mass forces on the fluid, the mass
and the viscous forces at a fluid element are in equilibrium. The diagram in
Fig. 13.4 shows a film flow which can be treated analytically as will be shown
later.

x

Free surface 
of film flow

U
1

x1

2

Surface of 
inclined wall

Angle of inclination

Fig. 13.4 A fluid film on a plane, inclined wall
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As an example of film flows that occur in the practice of chemical engi-
neering, different coating procedures are mentioned here which are applied in
industry in order to coat photographic papers and foils of all kinds. Current
coating procedures are presented in Figs. 13.5 and 13.6, which show that a
characteristic of the customary coating procedures is that the material used
for coating is supplied in fluid films. The fluid-volume flow supplied in the
films is, at a given geometry of the actual coating apparatus, controlled by
the supplied volume flow only. In this way, the supplied volume flow Q̇ con-
trols the film thickness δ and through the latter it also controls the velocity
distribution in the wet film.

For the design and construction of coating systems of the kind shown in
Figs. 13.5 and 13.6, it is important to know the relationship δ(Q̇) The latter
can be found by solving the above differential equation for the boundary
conditions of the film flow. This needs then to be integrated to obtain the
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Fig. 13.7 Curtain coating procedure and equipment

volume flow rate (Q̇). In addition, the solution of the differential equation
also renders details of the velocity field that establishes itself in the fluid
film.

In the simple coating system represented in Fig. 13.7, the coating material
is supplied through a slot opening leading it on to a plane, inclined surface
where, due to gravitation, a film flow forms. The film falling downwards
impinges on to the substrate to be coated which, moved by rollers, carries
away the fluid film.

For the actual coating dye, after the fluid has reached the inclined flat
plate, a plane film flow develops which can be treated analytically. After a
short entrance length, the conditions for a stationary, fully developed film
flow exist. The component of the gravity acting in the x1 direction is:

g1 = g cosβ. (13.62)

Thus, the differential equation describing the flow field reads:

d2U1

dx2
2

= −ρg cosβ
µ

. (13.63)

By a first integration one obtains from the above differential equation:

dU1

dx2
= −ρg cosβ

µ
x2 + C1 (13.64)

and by another integration the final relationship for the velocity distribution
in the film results:

U1 = −ρg cosβ
2µ

x2
2 + C1x2 + C2. (13.65)

As boundary conditions are available (see Fig. 13.4):

x2 = 0 :
dU1

dx
= 0, i.e. C1 = 0 because of the free surface, (13.66)
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x2 = −δ : U1 = 0, i.e. C2 =
ρg cosβ

2µ
δ2. (13.67)

Thus for the velocity distribution of the film, U1 can be expressed as:

U1 =
ρg cosβδ2

2µ

[
1 −
(x2

δ

)2
]
. (13.68)

This equation describes the parabolic velocity profile which is characteristic
for film flows with the maximum velocity being at the free surface of the film,
i.e. for the coordinate system chosen in Fig. 13.4 at the location x2 = 0.

When the velocity profile in the fluid film is known (see (13.68)), the
volume flow Q̇ can be computed by the following integration, where B is the
width of the film perpendicular to the x1 − x2 plane:

Q̇ = B

0∫
−δ

U1dx2 = B
ρg cosβδ2

2µ

0∫
−δ

[
1 −
(x2

δ

)2
]

dx2, (13.69)

Q̇ = B
ρg cosβδ2

2µ

[
x2 − 1

3δ2
x3

2

]0
−δ

. (13.70)

From this, Q̇ can be computed as:

Q̇ = B
ρg cosβδ3

3µ
. (13.71)

The volume flow running in a fluid film is inversely proportional to the dy-
namic viscosity and directly proportional to the cubic power of the film
thickness. The mean velocity results as:

Ũ =
Q̇

Bδ
=
ρg cosβδ2

3µ
. (13.72)

When the force acting on the film carrying surface in the x1 direction is of
interest, it can be computed for a surface having the dimensions L and B as
follows:

F1 = τBLB = −µ
(

dU1

dx2

)
x2=−δ

LB = −δLBρg cosβ. (13.73)

This value corresponds to the component of the weight of the total film acting
in the x1 direction over the length. This final result expresses that the film as
a whole adheres to the plate and thus the momentum transport to the wall
compensates the weight of the film.

In connection with the motion of the plane fluid film, the energy dissipation
in viscous fluids will be considered in more detail. In a fluid film, as shown
in Fig. 13.3, a fluid volume (LB dx2) having the mass (ρLB dx2) is flowing
downwards, per unit time, over a distance U1 cosβ in the direction of the
gravitational acceleration. In this way, the following potential energy per
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unit time is set free:

dĖpot = ρLB dx2U1 cosβg. (13.74)

Hence the potential energy Ėpot for the entire fluid film results as:

Ėpot =

0∫
−δ

ρLB
ρg cosβδ2

2µ

[
1 −
(x2

δ

)2
]

cosβg dx2, (13.75)

Ėpot = LB
ρ2g2 cos2 βδ2

2µ

[
x2 − x3

2

3δ2

]0
−δ

, (13.76)

Ėpot = LB
ρ2g2 cos2 βδ3

3µ
. (13.77)

This energy, set free per unit time by moving in the direction of gravity
along the length L, dissipates due to the viscosity of the flow medium. The
dissipated energy Ediss per unit time and unit volume for a fluid layer of
width 1 can be given as follows:

dEdiss

dV
= µ

(
dU1

dx2

)2

= ρ2g2 cos2 βx2
2

1
µ
. (13.78)

For the considered volume of the entire film, the dissipated energy per unit
time is computed by integration

Ėdiss = LB
ρ2g2cos2β

µ

0∫
−δ

x2
2 dx2, (13.79)

Ėdiss = −LBρ
2g2cos2β

3µ
δ3. (13.80)

Thus Ėpot + Ėdiss = 0 holds, i.e. the total potential energy of the falling film
is dissipated due to the viscosity of the flowing fluid, i.e. potential energy is
converted into heat. Because of the generally very high heat capacity of fluids,
this means, e.g. for water, only a very small increase of the fluid temperature.

13.6 Axi-Symmetric Film Flow

In addition to the description of plane film flows in Sect. 13.5, fluid films that
develop on axi-symmetric surfaces are also of interest in chemical engineering.
As an example, a film is shown in Fig. 13.8 which flows down on the outside
of a cylindrical body. The volume flow needed for the stationary fluid film is
conveyed upwards in the inner space of the cylindrical body, flows outwards
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Fig. 13.8 (a) Falling film outside a cylinder. (b) Important quantities for the solution
of the differential equation for the velocity of the fluid film

at the upper edge and forms there, after a short development length, an axi-
symmetric, stationary fluid film which is fully developed in the flow directions.
The fluid volume running down in the film per unit time corresponds to the
volume flow transported upwards in the inner space of the cylinder.

Film producing systems, such as schematically indicated in Fig. 13.8 are
often employed in chemical engineering. The fluid film running downward has
a large surface area, when compared with its volume, which can be brought
in contact with the surrounding gas to be absorbed. The gassing takes place
over the entire contact surface of the fluid and goes on until the entire fluid
film is saturated.

After the film in Fig. 13.8 has moved a short development distance, it
takes on a fully developed state, i.e. the fluid mechanics of the film flow
can be described by the following differential equation for one-dimensional,
axi-symmetric flows of fluids with constant density and constant viscosity:

− dΠ
dz

+ µ
1
r

d
dr

(
r

dUz

dr

)
+ ρgz = 0. (13.81)

The externally imposed pressure gradient ( dΠ/ dz) is zero for film flows,
so that with gz = g it holds that:

d
dr

(
r

dUz

dr

)
= −ρg

µ
r. (13.82)

After a first integration, one obtains:

dUz

dr
= − ρg

2µ
r +

C1

r
(13.83)
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and after a second integration:

Uz = − ρg
4µ
r2 + C1 ln r + C2. (13.84)

With the boundary conditions indicated in Fig. 13.8b, one obtains:

r = R; Uz = 0 : 0 = − ρg
4µ
R2 + C1 lnR+ C2, (13.85)

r = (R + δ);
dUz

dr
= 0 : 0 = − ρg

2µ
(R + δ) + C1

1
(R + δ)

, (13.86)

C1 = +
ρg

2µ
(R + δ)2, (13.87)

C2 = +
ρg

4µ
R2 − ρg

2µ
(R+ δ)2 lnR. (13.88)

Thus the velocity profile can be expressed as:

Uz =
ρg

4µ
R2

[
1 −
( r
R

)2

+ 2
(

1 +
δ

R

)2

ln
( r
R

)]
. (13.89)

The fluid volume flowing in the film can be computed by the following
integration:

Q̇ =

R+δ∫
R

2πrUz dr =
πρg

2µ
R2

R+δ∫
R

[
1 −
( r
R

)2

+ 2
(

1 +
δ

R

)2

ln
( r
R

)]
r dr,

Q̇ =
πρg

2µ
R2

[
r2

2
− r4

4R2
+ 2
(

1 +
δ

R

)2
r2

2

(
ln
r

R
− 1

2

)] ∣∣∣∣∣
R+δ

R

.

(13.90)
Thus for Q̇ the following final relation results:

Q̇ =
πρgR4

4µ

[
2
(

1 +
δ

R

)2

− 1
2

+
(

1 +
δ

R

)4(
2 ln
(

1 +
δ

R

)
− 3

2

)]
.

(13.91)
For the maximum velocity of the film flow, the following relationships hold:

(Uz)max =
ρgR2

4µ

[
1 −
(
R+ δ
R

)2

+ 2
(

1 +
δ

R

)2

ln
(
R+ δ
R

)]
, (13.92)

(Uz)max =
ρgR2

4µ

[
−2
(
δ

R

)
−
(
δ

R

)2

+ 2
(

1 +
δ

R

)2

ln
(

1 +
δ

R

)]
. (13.93)

Finally, it should be mentioned with regard to film flows that they stay lam-
inar for small Reynolds numbers only, i.e. they behave for small Re-numbers
as indicated above. The above equations can only be applied to small film
thicknesses and fluids with relatively large kinematic viscosities. In chemical
engineering, a number of film flows occur which fulfil these requirements for
the existence of laminar flows.
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13.7 Pipe Flow (Hagen–Poiseuille Flow)

The laminar fully developed pipe flow is another important fluid flow which
can be treated as stationary, one-dimensional flow, i.e. by solving the following
differential equation:

− dΠ
dz

+ µ
1
r

d
dr

(
r

dUz

dr

)
+ ρgz = 0. (13.94)

When considering the horizontal pipe flow as indicated in Fig. 13.9, the
following simplified differential equation holds, as gz = 0:(

r
dUz

dr

)
=

1
µ

(
dΠ
dz

)
r. (13.95)

This equation expresses the fact that the external pressure gradient im-
posed on the fluid is maintained in equilibrium by viscous forces acting also
on the fluid, so that a non-accelerated flow results.

The boundary conditions for this flow are:

r = 0;
dUz

r
= 0 and for r = R; Uz = 0.

The flow occurring in the cylindrical pipe indicated in Fig. 13.9 requires a
pressure gradient to be maintained in the developed state ( dΠ/z), i.e. this
quantity has to be applied externally for a pipe flow to be established. For
the resultant flow velocity one obtains the following differential equation:

d
dr

(
r

dUz

dr

)
=

1
µ

(
dΠ
dz

)
r. (13.96)

r

z

Pipe wall

Parabolic velocity profile

R

Fig. 13.9 Laminar flow in a pipe



380 13 Incompressible Fluid Flows

By a first integration of (13.96), the following results:

dUz

dr
=

1
2µ

(
dΠ
dz

)
r +

C1

r
. (13.97)

By a second integration one obtains:

Uz =
1
4µ

(
dΠ
dz

)
r2 + C1 ln r + C2. (13.98)

Applying the boundary conditions:

r→ 0;
dUz

dr
→ 0 and r = R : U2 = 0. (13.99)

C1 and C2 can be determined:

C1 = 0 and C2 = − 1
4µ

(
dπ
dz

)
R2. (13.100)

Thus the equation for the velocity distribution Uz(r) for the laminar pipe
flow reads:

Uz = −R
2

4µ

(
dΠ
dz

)[
1 −
( r
R

)2
]
. (13.101)

The velocity profile is parabolic and Uz is positive; the minus sign takes into
account the presence of a negative pressure gradient in the z direction, i.e.
the pressure decreases in the +z direction and the fluid thus flows in that
direction.

The volume flow through the pipe (volume per unit time) can be
computed as follows:

Q̇ =

R∫
0

2πrUz dr = −πR
4

8µ

(
dΠ
dz

)
(13.102)

or rewritten: (
dΠ
dz

)
=
∆p

∆z
= −8µQ̇

πR4
. (13.103)

In the case of a laminar pipe flow, the pressure drop per unit pipe length is
proportional to the dynamic viscosity of the flowing fluid and the volume flow
rate, as well as inversely proportional to the fourth power of the pipe radius.

The mean velocity results as:

Ũ =
Q̇

πR2
= −R

2

8µ

(
dΠ
dz

)
. (13.104)

The above connection between the volume flow, the inner radiusR of the pipe,
the viscosity of the flow medium and the resultant pressure gradient is known
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as the Hagen–Poiseuille law. It was found by Hagen in 1839 and by Poiseuille
in 1840/41 independently of one another in experimental investigations. The
experimental confirmation of the above-derived relations stresses the validity
of the assumptions made for the pipe flow and beyond that the fact that the
validity of the Navier–Stokes equations for the description of fluid flows of
Newtonian media hold.

The momentum loss to the wall of the pipe, due to the laminar, fully
developed pipe flow, can be computed as

τw = −µ
(

dUz

dr

)
w

=
1
2

(
dΠ
dz

)
R. (13.105)

The friction coefficient can thus be calculated as follows:

cf =
τw
ρ

2
Ũ2

=
2τw(2R)

Ũµ

(
Ũ2R
ν

) =

(
dΠ
dz

)
R(2R)

R2

8

(
dΠ
dz

)
Re

=
16
Re
, (13.106)

i.e. we obtain the following functional relationship:

cf =
16
Re

with Re =
Ũ2R
ν
. (13.107)

The representation of the friction coefficient as function of the Reynolds num-
ber yields, in a diagram with double-logarithmic axes, a straight line with the
gradient (−1).

Further insight into the fluid flow and the molecule interactions, taking
place in viscous mediums, can be gained by computing the energy dissipation
in the pipe flow by the action of the fluid viscosity. Based on the general
relationship for the energy dissipation per unit volume in a Newtonian fluid,
one obtains:

dEdiss

dV
= 2µ

[(
∂Ur

∂r

)2

+
(

1
r

∂U

∂ϕ
+
Ur

r

)2

+
(
∂Uz

∂z

)2
]

+µ
[
r
∂

∂r

(
Uϕ

r

)
+

1
r

(
dUr

dϕ

)]2
+ µ

[
1
r

(
∂Uz

∂ϕ

)
+
(
∂Uϕ

∂z

)]2
+µ
[(
∂Ur

∂z

)
+
(
∂Uz

∂r

)]2
. (13.108)

When considering all the simplifications which were introduced for the
derivation of (13.94), the above general relationship for the energy dissipation
of a viscous pipe flow can be described as follows:

dEdiss

dV
= µ

(
∂Uz

∂r

)2

= µ
(

dUz

dr

)2

. (13.109)



382 13 Incompressible Fluid Flows

By introducing dV = 2πr dz dr, one obtains

dEdiss = µ
(

dUz

dr

)2

2πr dz dr. (13.110)

dUz/dr can be written as:

dUz

dr
= − 1

2µ

(
dΠ
dz

)
r. (13.111)

Thus the dissipated energy per unit length of a pipe flow can be calculated
as:

dEdiss

dz
=
π

2µ

(
dΠ
dz

)2

r3 dr. (13.112)

On integrating this equation, one obtains the energy dissipated per unit pipe
length dz:

dEdiss

dz
=
π

2µ

(
dΠ
dz

)2
R∫

0

r3dr =
π

8µ

(
dΠ
dz

)2

R4, (13.113)

i.e. the pressure gradient that has to be applied per unit length of the pipe
serves for supplying the mechanical energy dissipated into heat, per unit
length of the fluid motion. Considering:

Q̇ =
πR4

8µ

(
dΠ
dz

)
, (13.114)

(13.113) can be written as:

dEdiss

dz
= Q̇

(
dΠ
dz

)
or ∆Ediss = Q̇∆Pdiss. (13.115)

This relationship expresses that the pressure gradient to be applied per
unit length of the pipe corresponds to the energy dissipated per unit length
of the pipe and per unit volume flow:

dΠ
dz

=
1
Q̇

dEdiss

dz
. (13.116)

The validity of the above-derived relationships for the pipe flow is, however,
limited to laminar flows, i.e. to Reynolds numbers which are smaller than
Recrit. This critical Reynolds number is for pipe flows in the range

Recrit =
Ũ2R
ν

� 2.3 to 2.5 × 103. (13.117)

When the Reynolds number of a pipe flow is larger than this critical value,
and when no special precautions are taken to keep flow perturbations away
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from the pipe flow, then the flow in the range of the critical Reynolds number
changes abruptly from laminar to turbulent. In this case there is no longer
a directed flow present as described by the above relationships. The flow
in the pipe shows, superimposed on a mean flow field, stochastic velocity
fluctuations which lead to an additional momentum transport transverse to
the flow direction. This momentum transport is not covered by the above
basic equations.

The most important properties of turbulent pipe-channel flows are in-
dicated in Chap. 18 and some references are made to deviations from the
laminar pipe flow as discussed here.

13.8 Axial Flow Between Two Cylinders

In chemical engineering, there are a large number of axially symmetric appa-
ratus in which flows can be treated as stationary, fully developed flows. They
are described by the following partial differential equation:

− dΠ
dz

+ µ
1
r

∂

∂r

(
r
∂Uz

∂r

)
+ ρgz = 0. (13.118)

Annular axial flows are among them, of the kind sketched in Fig. 13.10;
the boundary conditions for this flow can be given as:
for r = R1 : Uz = 0 and for r = R2 : Uz = 0.

As an interesting example, the flow in a cylindrical annular channel, as
shown in Fig. 13.10, will be discussed here. The annular channel is formed by
two axially positioned pipes having radii R1 and R2.

z

r

R

R1

2

Inside wall

Axis
r = 0

Outside wall

Velocity
profile

m
.

Fig. 13.10 Upwards flow for a cylindrical annular clearance
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For further simplification of the derivation,

K = R1/R2, Π∗ = Π + ρgz (13.119)

are introduced. Considering the coordinate system indicated in Fig. 13.10,
gz = −g holds and thus one obtains the following form of the differential
equation describing the annular channel flow of Fig. 13.10

µ
1
r

∂

∂r

(
r
∂Uz

∂r

)
=
∂

∂z
(Π + ρgz) =

∂Π∗

∂z
. (13.120)

Taking into account the assumptions ∂
∂z (· · · ) = 0 for the flow field, i.e. as-

suming a fully developed flow in the z direction, the above-mentioned partial
differentials can be written as total differentials, as follows:

d
dr

(
r

dUz

dr

)
=

1
µ

dΠ∗

dz
r. (13.121)

In Sect. 13.6, it was shown that this equation has the following general
solution:

Uz =
1
4µ

dΠ∗

dz
r2 + C1 ln r + C2. (13.122)

Based on the boundary conditions stated in Fig. 13.10, the integration con-
stants C1 and C2 for the flow in a cylindrical annular clearance can be
determined by (13.123) and (13.124).

From the boundary condition r = R1; Uz = 0 results the first equation for
the computation of the integration constants C1 and C2:

0 = R2
1 + C1 lnR1 + C2. (13.123)

On considering r = R2; Uz = 0, one obtains:

0 = R2
2 + C1 lnR2 + C2, (13.124)

the second relationship for the computation of the integration constants C1

and C2. In this way, one arrives at:

C1 = R2
2

[
1 −
(
R1

R2

)2
]

1
ln (R1/R2)

(13.125)

or, considering K = R1/R2

C1 = R2
2(1 −K2)

1
lnK

. (13.126)

C2 results as

C2 = R2
2

[
(K2 − 1)

lnK

]
lnR2 − 1. (13.127)
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For the velocity distribution, the following equation results:

Uz = −R
2
2

4µ

(
dΠ∗

dz

){[
1 −
(
r

R2

)2
]

+
K2 − 1
lnK

× ln
(
r

R2

)}
. (13.128)

The above equation shows that for K → 0 the velocity distribution for the
fully developed pipe flow is not obtained. The position of the maximum
velocity is computed as

r = (uz = umax) = Rz

√
1 −K2

2 ln(1/K)
. (13.129)

The maximum velocity is thus computed from the equation for Uz

(Uz)max = − 1
4µ

(
dΠ∗

dz

)
R2

2

{
1 −
[

1 −K2

2 ln(1/K)

] [
1 − ln

(
1 −K2

2 ln(1/K)

)]}
.

(13.130)
The volume flow results as

Q̇ = −π
∗

8µ
dΠ∗

dz
R4

2

[(
1 −K4

)− (1 −K2)2

ln (1/K)

]
(13.131)

and for the mean velocity one obtains

Ũz =
Q̇

π (R2
2 −R2

1)
=

1
8µ

(
dΠ∗

dt

)
R2

2

[
1 −K4

1 −K2
− 1 −K2

ln (1/K)

]
. (13.132)

The molecular momentum transport can be computed as

τr,z =
1
2

(
dΠ∗

dz

)
R2

{(
r

R2

)
−
[

1 −K2

2 ln (1/K)

](
R2

r

)}
. (13.133)

The quantity τr,z is naturally at the position duz/dr = 0, i.e. at Uz = Umax,
equal to zero, so that one obtains from (13.133):

r (τr,z = 0) = R2

√
1 −K2

2 ln (1/K)
. (13.134)

For the annular clearance it also holds that the above relationships can only
be employed for laminar flows. The additional momentum transports, occur-
ring in turbulent flows due to the turbulent velocity fluctuations, were not
taken into consideration in the above equations. Therefore, the derived equa-
tions in this section can be employed only when it has been confirmed that
the flow in the considered annular channel flows in a laminar way.
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13.9 Film Flows with Two Layers

The problems of steady, two-dimensional and fully developed flows of incom-
pressible fluids, discussed in the previous chapters, can be extended to fluid
flows that comprise of several non-mixable fluids. The derived basic equations
for fully developed flows have to be solved, in the presence of several fluids,
for each fluid flow and the boundary conditions existing in the inter-layers of
the fluids have to be considered in the solutions. This is shown below for a
film flow made up of two layers.

In coating technology, it is customary to insert superimposed film flows
of non-mixable fluids in order to coat several films, in one process step, on
to a substrate. In practice, up to 20 layers can be simultaneously applied
with high accuracy. If one limits oneself to two layers, flow configurations as
shown in Fig. 13.11 develop. The figure shows two superimposed film flows
which are moved by gravitation on top of a plane inclined wall. Flows of this
kind are described by the following differential equations:

0 = µA
d2UA

1

dx2
2

+ ρAg1 (13.135)

and

0 = µB
d2UB

1

dx2
2

+ ρBg1 (13.136)

with g1 = g cosβ and νA,B = µA,B

ρA,B
, so that one obtains by integration:

UA
1 = −

(
g cosβ
2νA

)
x2

2 + CA
1 x2 + CA

2 (13.137)

and

UB
1 = −

(
g cosβ
2νB

)
x2

2 + CB
1 x2 + CB

2 . (13.138)

By this integration, four integration constants were introduced in the above
relationships which have to be determined by appropriate boundary con-
ditions:

x2 = 0 � UA
1 = 0 (no-slip wall condition) � CA

2 = 0, (13.139)

Fig. 13.11 Flow between fluid films
on top of a plane, inclined wall



13.9 Film Flows with Two Layers 387

x2 = δA + δB �
dUB

1

dx2
= 0 (free surface), (13.140)

x2 = δA � UA
1 = UB

1 and also µA
dUA

1

dx2
= µB

dUB
1

dx2
. (13.141)

From the boundary condition for the free surface, CB
1 results as:

CB
1 =

g cosβ
νB

(δA + δB) . (13.142)

The equality of the local film velocities in the common interface between the
films yields:

−g cosβ
2νA

δ2A + CA
1 δA = −g cosβ

2νB
δ2A +

g cosβ
νB

(δA + δB) δA + CB
2 . (13.143)

The equality of the local momentum transport terms in the common interface
between the films further yields:

−δAg cosβδA + CA
1 = −ρBg cosβδA + ρBg cosβ(δA + δB). (13.144)

From the above equation, one can deduce:

CA
1 = (ρAδA + ρBδB)g cosβ (13.145)

and for CB
2 , one obtains:

CB
2 = −g cosβ

νA + νB
νAνB

δ2A + (ρAδA + ρBδB) g cosβ − g cosβ
νB

(δA + δB) δA.

(13.146)
Thus, one obtains for the velocity distributions UA

1 and UB
1 :

UA
1 = −

(
g cosβ
2νA

)
x2

2 +[(ρAδA + ρBδB) β]x2 for 0 ≤ x2 ≤ δA (13.147)

and

UB
1 = −

(
g cosβ
2νB

)
x2

2 +
g cosβ
2νB

(δA + δB)x2

− g cosβ
νA + νB
2νAνB

δ2A + (ρAδA + ρBδB) g cosβ

− g cosβ
νB

(δA + δB) δA for δK ≤ x2 ≤ δB. (13.148)

For ṁA and ṁB, we can write:

ṁA = ρAB

δA∫
0

UA
1 (x2) dx2 and ṁB = ρBB

(δA+δB)∫
δA

UB
1 (x2) dx2. (13.149)
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By integration one obtains

ṁA = ρAB

[(
−g cosβ

2νA

)
δ3A
3

+ CA
1

δ2A
2

]
. (13.150)

ṁB = ρBB

[(
−g cosβ

2νB

)
(δA + δA)3 − δ3A

3
+ CB

1

δAδB + δ2B
2

+ CB
2 δB

]
.

(13.151)
In this way, the layer mass flows ṁA and ṁB can be determined, when δA
and δB are given and the properties of the fluids of the coating fluids are
known.

13.10 Two-Phase Plane Channel Flow

In Fig. 13.12, a plane channel flow is sketched which is composed of the flow
of two superimposed non-mixable fluids, i.e. fluids A and B that flow simul-
taneously through a channel formed by two parallel plates. Fluid A forms a
layer of thickness δA and has density ρA, viscosity µA and mass flow ṁA.
The fluid that is on top of it has the density ρB, viscosity µB and mass flow
ṁB. For both fluids, the following differential equations for the molecular
momentum transport τ21 hold:

dτA
21

dx2
= − dΠ

dx1
and

dτB
21

dx2
= − dΠ

dx1
. (13.152)

With τ21 = −µ dU1/x2 the velocity field results

d2UA
1

dx2
2

=
1
µA

dΠ

dx1
and

d2UB
1

dx2
2

=
1
µB

dΠ

dx1
. (13.153)

Integration of (13.152) yields for both fluids

Fig. 13.12 Plane channel flow with two-layered flows; a solution is stated for δ = 0
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τA
21 = − dΠ

dx1
x2 + CA

1 (13.154)

and
τB
21 = − dΠ

dx1
x2 + CB

1 . (13.155)

Introducing the boundary conditions that the momentum transport is
equal due to the common surface A and B, one obtains τA

21(x2 = δ) =
τB
21(x2 = δ):

− dΠ
dx1

δ + CA
1 = − dΠ

dx1
δ + CB

1 � CA
1 = CB

1 = C1. (13.156)

When carrying out the integration for the velocity fields UA
1 and UB

1 , one
obtains:

UA
1 = − 1

2µA

dΠ
dx1

x2
2 +

CA
1

µA
x2 + CA

2 (13.157)

and

UB
1 = − 1

2µB

dΠ
dx1

x2
2 +

CB
1

µB
x2 + CB

2 . (13.158)

The coordinate system plotted in Fig. 13.12 was chosen such that the x2

direction yields positive values for δ, i.e. the area between the two fluids lies
above the plane x2 = 0. In this way, one can obtain the second boundary
condition that has to be imposed in the interface

UA
1 = (x2 = δ) = UB

1 (x2 = δ) � CA
2 �= CB

2 , (13.159)

i.e. the following relationship holds:

− δ2

2µA

dΠ
dx1

+
C1δ

µA
+ CA

2 = − δ2

2µB

dΠ
dx1

+
C1δ

µB
+ CB

2 , (13.160)

δ = 0 results in a reduction in the effort for determining CA
2 and CB

2 . This
special case is discussed below. For δ = 0 it results that CA

2 = CB
2 = C2.

The remaining integration constants can be determined with the following
boundary conditions:

x2 = −D � UA
1 = 0 : 0 = − dΠ

dx1

1
2µA

D2 − C1D

µA
+ C2, (13.161)

x2 = +D � UB
1 = 0 : 0 = − dΠ

dx1

1
2µB

D2 +
C1D

µB
+ C2. (13.162)

Hence one obtains for the velocity distributions in the fluids A and B:

UA
1 = − D

2

2µA

dΠ
dx1

[
+

2µA

(µA + µB)
+
(
µA − µB

µA + µB

)(x2

D

)
−
(x2

D

)2
]

(13.163)
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and

UB
1 = − D

2

2µB

dΠ
dx1

[
+

2µB

(µA + µB)
+
(
µA − µB

µA + µB

)(x2

D

)
−
(x2

D

)2
]
. (13.164)

For the distribution of the molecular-dependent momentum transport, the
following expression can be deduced:

τ21 = −D dΠ
dx1

[(x2

D

)
− 1

2

(
µA − µB

µA + µB

)]
. (13.165)

When choosing in the above relations µA = µB , one obtains:

U1 =
−D2

2µA

dΠ
dx1

[
1 −
(x2

D

)2
]

(13.166)

and
τ21 = −D dΠ

dx1

(x2

D

)
, (13.167)

which ends up in a parabolic velocity profile with the velocity maximum in
the middle of the channel and a linear τ21 distribution with τ21 = 0 on the
channel axis.

For µA �= µB, the position of the velocity maximum, with τ21 = 0, results
from (13.163):

δ

D
=

1
2

(
µA − µB

µA + µB

)
. (13.168)

The momentum transport to the upper wall yields:

τA
W = − dΠ

dx1
D

(
µA + 3µB

µA + µB

)
. (13.169)

The momentum transport to the lower wall yields:

τB
W = − dΠ

dx1
D

(
3µA + µB

µA + µB

)
. (13.170)

The mean velocities of the partial flows A and B can be computed as:

ŨA
1 = − D2

12µA

dΠ
dx1

(
7µA + µB

µA + µB

)
(13.171)

and

ŨB
1 = − D2

12µB

dΠ
dx1

(
µA + 7µB

µA + µB

)
. (13.172)

The corresponding mass flows can be computed as:

ṁA = BDŨA
1 and also ṁB = BDŨB

1 . (13.173)

The above treated one-dimensional flow problems are only a few of
those examples available in many text books of fluid mechanics. For further
examples see refs. [13.1] to [13.2].
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Chapter 14

Time-Dependent, One-Dimensional Flows
of Viscous Fluids

14.1 General Considerations

The flow problems, discussed in Chap. 13 for viscous fluids, were characterized
by the fact, among other things, that they fulfilled the condition of station-
arity, i.e. the examined flows were not dependent on time. All the derivations
in Chap. 13 that led to (13.22), can be repeated, maintaining the time deriva-
tive of the velocity field in the equations. For time-dependent flows, this term
cannot be set equal to zero and, hence, one obtains the basic equation for
time-dependent, one-dimensional flows of viscous fluids, i.e. U1 = f(x2, t):

ρ
∂U1

∂t
= − ∂Π

∂x1
+ µ

∂2U1

∂x2
2

+ ρg1 (14.1)

where U1(x2, t) and also Π(x1, t) are now to be regarded as functions of
both space and time. On transcribing this equation for incompressible flow,
it follows that:

∂U1

∂t
= ν

∂2U1

∂x2
2︸ ︷︷ ︸

time−dependent diffusion

−
(

1
ρ

∂Π

∂x1
− g1

)
︸ ︷︷ ︸

Source term

(14.2)

and one obtains an equation that is well known for dealing theoretically with
transport processes. Without the source term in (14.2), it represents the
fundamental equation for all transient one-dimensional, diffusion problems;
e.g. for unsteady, one-dimensional, heat conduction problems it reads:

∂T

∂t
= α

∂2T

∂x2
2

with α =
λ

ρcp
(14.3)

Analogous to heat-conduction problems, a number of transient, one-
dimensional flow problems can be solved via analytical methods. For this pur-
pose, it is useful to consider first the dimensionless form of (14.2) without the

393



394 14 Time-Dependent Flows

source term, i.e. the following equation which holds for the one-dimensional
molecular momentum transport:

∂U1

∂t
= ν

∂2U1

∂x2
2

⇒ ∂U∗
1

∂t∗
=
(
νctc
!2c

)
ν∗
∂2U∗

1

∂x∗2
2 (14.4)

In this equation, the term (νctc)/!2c is the reciprocal of the product of the
characteristic Reynolds and Strouhal numbers, Re = (!cUc)/νc and St =
!c/(Uctc). It may be compared with the Fourier number of heat conduction,
Fo = (actc/!

2
c), which is normally introduced when dealing, in general, with

time-dependent heat-conduction problems.
For the time-dependent, one-dimensional flow problems of viscous fluids,

to be discussed in this chapter, a generalization of the considerations can be
attained by setting

Fo =
1

ReSt
=
νctc
!2c

= 1 (14.5)

such that the left- and right-hand sides of (14.4), in the dimensionless form,
are of equal order of magnitude. Hence we are introducing the characteristic
measures of time, length and velocity for purely diffusive flow problems as
follows:

tc =
!2c
νc

!c =
√
νctc uc =

νc
!c

(14.6)

If a flow is generated in a fluid, with a constant flow velocity U0, describing
a one-dimensional problem, its properties can be derived from (14.4) by the
following solution ansatz:

U1

U0
= F

(
x2

2
√
νt

)
= F (η) with η =

x2

2
√
νt

(14.7)

Introducing into (14.4) all terms of (14.7), one can carry out the follow
derivations:

∂U1

∂t
= U0

dF
dη

∂η

∂t
= U0

dF
dη

∂

∂

(
− η

2t

)
= −U0

( η
2t

) F
η

(14.8)

∂U1

∂x2
= U0

dF
dη

∂η

∂x2
= U0

dF
dη

1
2
√
νt

(14.9)

∂2U1

∂x2
2

= U0
∂

∂x2

(
dF
dη

∂η

∂x2

)
= U0

[
d2F

dη22

(
∂η

∂x2

)2

+
dF
dη

∂2η

∂x2
2

]
(14.10)

∂2U1

∂x2
2

= U0
d2F

dη2
1

4νt
(14.11)

When the partial derivatives in (14.8) and (14.11) are inserted into the partial
differential equation (14.4), that needs to be solved, one obtains an ordinary
differential equation of second order for the function F (η):
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−2η
dF
dη

=
d2F

dη2
(14.12)

By introducing a new function G(η):

G(η) =
dF
dη

(14.13)

one obtains from (14.12):

dG
dη

= −2ηG ⇒ dG
G

= −2η dη (14.14)

Through integration of (14.14), one obtains:

lnG = −η2 + lnC′
1 ⇒ G(η) = C′

1 exp(−η2) (14.15)

Hence one can express the function G(η) as follows:

G(η) =
dF
dη

= C′
1 exp(−η2) ⇒ F (η) = C ′

1

η∫
0

exp(−η2) dη +C2. (14.16)

Using the definition of the error function:

erf(η) =
2√
π

η∫
0

exp(−η2) dη (14.17)

one obtains a general solution for one-dimensional, transient, diffusion-driven
flows of an incompressible fluid:

F (η) = C1erf(η) + C2 with C1 = C′
1

√
π

2
(14.18)

From equation (14.18), one obtains the solution for U1:

U1 = U0 [C1erf (η) + C2] (14.19)

In the subsequent sections, the above general solution will be employed in
order to find specific solutions for predefined initial and boundary conditions,
i.e. for different flows.

A number of one-dimensional, unsteady flow problems for incompressible,
viscous fluids can be dealt with more easily in cylindrical coordinates. The
basic equation for such flows can now be stated for such flow problems. The
derivations of the related equations start from the two-dimensional equa-
tions that were derived in Chap. 5 written in cylindrical coordinates. These
equations read:

1
r

∂

∂r
(rUr) +

∂Uz

∂z
= 0 (14.20)
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ρ

(
∂Ur

∂t
+ Ur

∂Ur

∂r
+ Uz

∂Ur

∂z

)
= − ∂P

∂r
+ µ

[
∂

∂r

(
1
r

∂ (rUr)
∂r

)
+
∂2Ur

∂z2

]
+ ρgr (14.21)

ρ

(
∂Uz

∂t
+ Ur

∂Uz

∂r
+ Uz

∂Uz

∂z

)
= − ∂P

∂z
+ µ

[
1
r

∂

∂r

(
r
∂Uz

∂r

)
+
∂2Uz

∂z2

]
+ ρgz (14.22)

Introducing the demand for the one-dimensionality of the flow, i.e. no change
of the flow field in the z direction because the flow is assumed to be fully
developed:

∂Ur

∂z
= 0 and

∂Uz

∂z
= 0 (14.23)

With the help of these expressions, it then follows from the continuity
equation (14.20):

1
r

∂

∂r
(rUr) = 0 ⇒ rUr = F (z, t) (14.24)

Since
∂Ur

∂z
= 0 holds, the function F (z, t) = F (t). Because Ur =

0 at the wall, the following holds: the one-dimensional, non-stationary flow
of incompressible viscous mediums is unidirectional and has only a Uz

component.
Hence the basic equations in cylindrical coordinates can be reduced to:

0 = − ∂P
∂r

+ ρgr (14.25)

ρ
∂Uz

∂t
= − ∂P

∂z
+ µ

[
1
r

∂

∂r

(
r
∂Uz

∂r

)]
+ ρgz (14.26)

By integration of (14.25), one obtains:

P = ρgrr +Π(z, t) (14.27)

Thus the equation corresponding to the partial differential equation (14.1),
but written in cylindrical coordinates, reads as follows:

∂Uz

∂t
= ν

[
1
r

∂

∂r

(
r
∂Uz

∂r

)]
−
(

1
ρ

∂Π

∂z
− gz

)
(14.28)

This generally valid equation will also be employed subsequently to deal
with unsteady, one-dimensional flows of incompressible, viscous fluids that
are axisymmetric.
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14.2 Accelerated and Decelerated Fluid Flows

14.2.1 Stokes First Problem

Stokes (1851) was one of the first scientists who provided an analytical solu-
tion for an unsteady, one-dimensional flow problem, namely the solution for
the fluid motion induced by the sudden movement of a plate and the related
momentum diffusion into an infinitely extended fluid lying above the plate.
In order to understand better the induced fluid movement, also observed
in practice, in this and the subsequent sections flow processes are discussed
which occur in fluids due to imposed wall movements. The simplest examples
on the subject discussed in this chapter on wall-induced fluid motions concern
the movement of plane plates. However, the general physical insights gained
from these examples are not limited to the plate-induced fluid motions only,
but can also be transferred to axially symmetrical flows (rotating cylinders).

Figure 14.1 shows schematically the velocity distribution which takes place
in a fluid due to a wall moved at a velocity U0. The flow setting in, due to
the movement of the plate, can be expressed mathematically as follows:

For t < 0 : U1(x2, t) = 0
For t ≥ 0 : U1(x2 = 0, t) = U0

U1(x2 → ∞, t) = 0
(14.29)

As a consequence of the fluid viscosity (molecular momentum transport), the
momentum of the fluid layer, moved in the immediate vincinity of the plate,
is transferred to the layers that are further away. With progress of time, layers
that are further away from the moved wall are also included in the induced
fluid motion. The differential equation describing this entire process reads:

∂U1

∂t
= ν

∂2U1

∂x2
2

(14.30)

Increase in time t

U0

x2

x1

U0

For x2          no
fluid motion

Fig. 14.1 Sketch of the flow induced by a plane wall suddenly set in motion
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For this equation, the following general solution was found in Sect. 14.1 in
terms of transformed variables, η = x2

2
√

νt
and U1

U0
= F (η):

U1 = U0 [C1erf (η) + C2] (14.31)

For the problem of the induced plate movement, the following boundary
conditions result for 0 < t <∞:

x2 = 0, i.e. η = 0 U1 = U0 (14.32)

and
x2 → ∞, i.e. η → ∞ U1 = 0 (14.33)

From the general solution (14.31) and for the boundary conditions (14.32)
and (14.33), it follows that:

1 = C1erf(0) + C2 = C2 (14.34)

0 = C1erf(∞) + C2 = C1 + C2 (14.35)

i.e. the integration constants can be evaluated as:

C1 = −1 and C2 = +1 (14.36)

Hence the solution reads:

U1 = U0 [1 − erf (η)] = U0

[
1 − erf

(
x2

2
√
νt

)]
(14.37)

This relationship shows that the movement of the plate is imposed on the
fluid only with progressing time. If ν = 0, then for all t and all x2, U1 = 0
holds, i.e. without the momentum transport carried out by the molecules,
which is expressed by the finite viscosity of the fluid, one does not succeed
in causing a fluid movement by the movement of the plate. The momentum
in each fluid layer, coming about due to the movement of the plate in the x1

direction, has to be communicated to the fluid via the molecular momentum
transport. The larger the viscosity ν is, the quicker the fluid layers far away
from the plate are affected, i.e. are set into motion.

For the entire physical understanding of the induced fluid motion, it is
important that the force per unit area acting on the plate can be computed
using:

τw = −µ
(
∂U1

∂x2

)
x2=0

(14.38)

∂U1

∂x2
can be evaluated from (14.37):

∂U1

∂x2
= U0

dF (η)
dη

∂η

∂x2
= − U0√

πνt
exp(−η2) (14.39)
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Thus for η = 0 one obtains
(
∂U1

∂x2

)
x2=0

= − U0√
πνt

and consequently:

τw = U0

√
ρµ

πt
(14.40)

This relationship explains that the required force increases with increase in
viscosity and density of the fluid, to be set in motion, and it decreases with
progress of time. At time t = 0 an infinitely large force results from the
derivations. However, because of the similarity relationship:

η =
x2

2
√
νt

(14.41)

in which the time appears in the denominator, the result for t = 0 is un-
defined. Consequently, the above statement regarding the required infinitely
large shear force is not permissible. For t→ ∞ one can compute τw → 0 and
U1 = U0 for all x2, i.e. the entire fluid mass will move with the velocity of
the plate if the plate motion is maintained for a long time.

14.2.2 Diffusion of a Vortex Layer

The so-called first problem of Stokes, discussed in Sect. 14.2.1, can also be
dealt with by means of the vorticity equation which, for the component ω3,
can be written as follows:

∂ω3

∂t
+ U1

∂ω3

∂x1
+ U2

∂ω3

∂x2
= ν

(
∂2ω3

∂x1
2

+
∂2ω3

∂x2
2

)
(14.42)

With ω3 = ω and U2 = 0 and also
∂ω3

∂x1
= 0, one obtains:

∂ω

∂t
= ν

∂2ω

∂x2
2

(14.43)

This equation describes how the vorticity, continuously produced at the plate
due to its movement, is transported by molecular diffusion into the fluid above
the plate. ω can be expressed in the following way:

ω = − ∂U1

∂x2
(14.44)

Thus, the characteristic vorticity for this flow problem can be given as ωc =
Uc/!c = U0 (νt)1/2, so that for ω the following similarity approach holds:

ω(η, t) = U0(νt)−1/2f(η) with η =
x2√
νt

(14.45)
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The partial derivatives of η with respect to x2 and t are given as:

∂η

∂x2
= (νt)−1/2 and

∂η

∂t
= − η

2t
(14.46)

Therefore, one obtains

∂ω

∂t
= U0 (νt)−1/2

[
− 1

2t
f(η) + f ′(η)

∂η

∂t

]
= −U0

2t
(νt)−1/2 [f(η) + ηf ′(η)]

(14.47)

∂ω

∂x2
= U0 (νt)−1/2

f ′(η)
∂η

∂x2
= U0f

′(η) (14.48)

∂2ω

∂x2
2

= U0f
′′(η)

∂η

∂x2
= U0(νt)−1/2f ′′(η) (14.49)

Introducing the equations (14.47) to (14.49) into the partial differential equa-
tion (14.43), one obtains the following ordinary differential equation for
f(η):

2f ′′ + ηf ′ + f = 2f ′′ + (ηf)′ = 0 (14.50)

By integrating this equation once, one obtains:

2f ′ + ηf = C1 (14.51)

The distribution of the vorticity is symmetrical with respect to x2, and thus
f ′(η = 0) = 0 holds C1 = 0. With this, (14.51) can be rewritten as follows:

2
df
dη

= −ηf �
df
f

= −η
2

dη = − d
(
η2

4

)
(14.52)

Therefore, as a solution of this ordinary differential one obtains:

f(η) = C exp
(
−η

2

4

)
(14.53)

With the following integration:

∞∫
0

ω dx2 = −
∞∫
0

∂U1

∂x2
dx2 = U0 (14.54)

and setting ω into the above integral, one obtains

C = (π)−1/2 (14.55)

Thus as a solution for ω one obtains

ω(x2, t) = U0(πνt)−1/2 exp
(
−x

2
2

νt

)
(14.56)
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∗

 (a) Vorticity

      =  (Ω /U)( 4 t )∗ 1/2
(b) Velocity

= (u/U)u∗

u∗

x2
x2∗ ∗

x   = x (4  t )2
∗

2 0
-1/2

Fig. 14.2 Diffusion of vorticity and molecular momentum transport in the fluid as
a consequence of a moved plane plate

This solution corresponds to:

U1(x2, t) = U0

[
1 − erf

(
x2

2
√
νt

)]
= U0erfc

(
x2

2
√
νt

)
(14.57)

The diffusion of the vorticity, expressed by (14.56) is sketched in a normalized
form in Fig. 14.2 and the corresponding dimensionless velocity distribution
expressed by (14.57) is plotted next to it.

For the flow shown in Fig. 14.2, the following integral parameters can be
computed:

• Vorticity diffusion radius

δω =
2U0

Ωmax
= (πνt)1/2 (14.58)

• Displacement thickness of the flow

δ1 =
2
U0

∞∫
0

(U0 − U1)dx2 =
(
νt

π

)1/2

(14.59)

• Momentum-loss thickness of the flow

δ2 =

+∞∫
−∞

(
U2

0 − U2
1

)
dx2 =

1
4U2

0

(
νt

8π

)1/2

(14.60)
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These final properties of the flow are usually employed to calculate the state
of the flow at a certain time.

14.2.3 Channel Flow Induced by Movements of Plates

In this section, a one-dimensional transient flow problem of an incompressible
fluid will be discussed, which cannot be solved with the help of the general
solution derived in Sect. 14.1, as this solution is unable to fulfil the bound-
ary conditions characterizing the flow problem sketched in Fig. 14.3. This
fact requires the derivation of another particular solution for the differential
equation characterizing the problem. It is additionally required that the new
solution can satisfy the predefined boundary conditions for the problem un-
der consideration. For this purpose, a solution path is taken which can be
obtained through the well-known Fourier analysis, as employed in the theory
of heat conduction. The flow problem discussed in this section will therefore
serve as an example to point out the application of this known method of
heat conduction in fluid mechanics.

Figure 14.3 shows schematically the flow problem to be solved. Two walls
are shown that are placed in a fluid. Both walls together form a plane channel
between themselves. For t < 0 both walls are at rest, whereas they both
assume a velocity U0 along the x1-axis for t ≥ 0. As a consequence of this,
a fluid movement is induced, which starts at both sides of the plates and
it moves inwards due to the fluid viscosity. For the problem treated in this
section, the fluid flow induced between the plates and its transient progress
will be discussed.

In order to obtain the solution of the general flow problem of plate-induced
channel flow, the introduction of the following dimensionless quantities is
recommended:

U∗ =
U0 − U1

U0
dimensionless velocity

η =
x2

D
dimensionless position coordinate

τ =
νt

D2
dimensionless time

U0

x2

x1

2D

U0

Induced fluidt

Plane plate 1

Plane plate 2

Fig. 14.3 Fluid flow induced by the movement of the walls of a plane channel
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The partial differential equation:

∂U1

∂t
= ν

∂2U1

∂x2
2

(14.61)

describing the flow problem can thus be written:

−νU0

D2

∂U∗

∂τ
= −ν U0

D2

∂2U∗

∂η2

or
∂U∗

∂τ
=
∂2U∗

∂η2
(14.62)

The initial condition expressed in dimensionless quantities:

τ = 0, U∗(η) = 1 (14.63)

and the boundary conditions at the walls:

η = ±1, U∗(η = ±1) = 0 (14.64)

and also the demand for symmetry at the center line of the channel:

η = 0,
∂U∗

∂η
= 0 (14.65)

define the flow problem sketched in Fig. 14.3.
For the solution of the partial differential equation (14.62), there is a classi-

cal solution path, which is based on the method of separation of the variables,
i.e. the solution is sought with an ansatz of the following form:

U∗(η, τ) = f(η)g(τ) (14.66)

From this, it follows that the left-hand side of (14.62) can be expressed as:

∂U∗

∂τ
= f

dg
dτ

(14.67)

and for the right-hand side:

∂2U∗

∂η2
= g

d2f

dη2
(14.68)

The expressions in (14.67) and (14.68) are inserted into the partial differential
equation (14.62) to yield:

1
g

dg
dτ

=
1
f

d2f

dη2
= −λ2 (14.69)

As the left-hand side of this ordinary differential equation depends only on
the variable τ and the right-hand side only on the variable η, the equation



404 14 Time-Dependent Flows

can only be fulfilled when both sides are set equal to a constant which is
introduced into (14.69) as −λ2.

The following ordinary differential equations thus result from (14.69) for
the function g:

dg
dτ

= −λ2g (14.70)

and the equation for f reads:

d2f

dη2
= −λ2f (14.71)

The general solutions of these differential equations are obtained by
integrations as:

g = A exp(−λ2τ) (14.72)

f = B(cosλη) + C(sinλη) (14.73)

where A, B and C are integration constants. Applying the symmetry of the
solution, demanded in (14.65) to the above solutions, one obtains C = 0, as
the sine function is unable to fulfil the requirement of symmetry at η = 0.
Applying the second boundary condition (14.64), one obtains:

B(cosλ) = 0 (14.74)

In order to permit now a non-trivial solution of the flow problem, i.e. a solu-
tion that is different from zero, it is necessary that B �= 0, i.e. the introduced
quantity λ can only assume some specific values such that (14.74) fulfils the
boundary conditions. Thus one obtains:

λ =
(
n+

1
2

)
π for n = 0,±1,±2,±3 . . . (14.75)

In this way, the general solution of the problem, which fulfils the boundary
conditions of the flow problem, results as:

U∗
n = AnBn exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

]
(14.76)

Since the governing differential equation is linear, one obtains the most
general solution as the sum of the individual solutions stated in (14.76):

U∗ =
∞∑

n→−∞

{
AnBn exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

]}
(14.77)

Considering the symmetry of all n functions around n = 0 in the sum (14.77),
the solution can be written as:
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U∗ =
∞∑

n=0

Dn exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

]
(14.78)

In this expression, Dn = AnBn +A−(n+1)B−(n+1) is an integration constant
which assumes a different value for each value of n. These values can be
determined from the initial condition (14.63):

1 =
∞∑

n=0

Dn cos
[(
n+

1
2

)
πη

]
(14.79)

Multiplying (14.79) by

cos
[(
m+

1
2

)
πη

]
dη

and integrating both sides from η = −1 to η = +1, i.e. carrying out the
following integration:

+1∫
−1

cos
[(
m+

1
2

)
πη

]
dη =

∞∑
n=0

Dn

+1∫
−1

cos
[(
m+

1
2

)
πη

]
cos
[(
n+

1
2

)
πη

]
dη

(14.80)
one obtains on the right-hand side for all n-values being always zero, when
m �= n. For m = n the integration on both sides yields the following
conditional equation for Dm:[

sin
(
m+ 1

2

)
πη(

m+ 1
2

)
π

]+1

−1

= Dm

[
1
2

(
m+ 1

2

)
π + 1

4 sin
(
m+ 1

2

)
2πη(

m+ 1
2

)
π

]+1

−1

or Dm =
2 (−1)m(
m+ 1

2

)
π

⇒ Dn =
2 (−1)n(
n+ 1

2

)
π

(14.81)

With this conditional equation for Dn one obtains the final relation for the
plate induced transient channel flow:

U∗ = 2
+∞∑
n=0

(−1)n(
n+ 1

2

)
π

exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

]
(14.82)

or in terms of the dimensional quantities:

U1 = U0 − 2U0

∞∑
n=0

(−1)n(
n+ 1

2

)
π

exp

[
−
(
n+

1
2

)2

π2 νt

D2

]
cos
[(
n+

1
2

)
π
x2

D

]
(14.83)

The above infinite series has the property of converging very quickly when
the dimensionless time (νt/D2) is large. On the other hand, the convergence
is slow when (νt/D2) is small. Considering the derived solution (14.83) for
(νt/D2) → 0, the result is in agreement with the solution of the plate-induced
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1

1

1
1

1

1

Fig. 14.4 Computed velocity distribution in the flow as a function of location and
time

fluid movement treated in Sect. 4.3.2. By employing Laplace transformation
for small dimensionless times, the employment of (14.37) can be recom-
mended for the computation of the velocity distribution in the channel. This
relationship has to be applied to both halves of the channel and the different
positions of the coordinate systems in Figs. 14.1 and 14.3 have to be taken
into consideration.

In Fig. 14.4, a graphical representation is given for the velocity distribution
described by the final equation (14.83). This representation shows that, for
small dimensionless times (νt/D2), only the fluid layers between the plane
plates of Fig. 14.3 near the wall are moved. Likewise, only for a dimensionless
time (νt/D2) ≥ 0.04 is a perceivable movement of the fluid in the middle of
the channel obtained. For (νt/D2) ≥ 1, almost the entire fluid in the space
between the plates has reached the plate velocity U0. For (νt/D2) → ∞, the
entire fluid moves between the plates with the velocity U0.

On considering the final state of the plate-induced channel flow for
(νt/D2) → ∞, one recognizes that it no longer depends on time, i.e. one
should be able to compute it also by solving the partial differential equation
for stationary, one-dimensional flows. The partial equation and its solution
read

µ
∂2U1

∂x2
2

= 0 ⇒ U1 = C1x2 + C2 (14.84)

Applying the boundary conditions U1 = U0 for x2 = ±D to this solution,
one obtains

C1 = 0 and C2 = U0 (14.85)

and thus U1 = U0 is obtained for plane plate-induced channel flow for
(νt/D2) → ∞. This solution shows that for the characteristic time of this
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flow problem to go to infinity, all fluid moves at the constant plate velocity;
the entire fluid is swept along by the plates.

14.2.4 Pipe Flow Induced by the Pipe Wall Motion

Analogous to the flow between two plates discussed in Sect. 14.2.3, which
was caused by the movement of the plate walls, the pipe flow can also be
treated, which is brought about by the movement of the pipe wall as sketched
in Fig. 14.5. The basic equation to this problem is the partial differential
equation derived from (14.28) where only the first term on the right-hand
side is considered:

∂Uz

∂t
= ν

1
r

∂

∂r

(
r
∂Uz

∂r

)
(14.86)

The flow problem to be studied with this equation can be defined by the
following initial and boundary conditions:

initial condition Uz(r, t = 0) = 0 for 0 ≤ r ≤ R (14.87)
boundary condition Uz(R, t) = U0 moving wall

for all times t ≥ 0 (14.88)
∂Uz

∂r
(0, t) = 0 symmetry (14.89)

Analogous to the treatment of the channel flow, induced by the movements
of the walls, the following dimensionless quantities are introduced:

U∗ =
U0 − Uz

U0
dimensionless velocity (14.90)

η =
r

R
dimensionless position coordinates (14.91)

τ =
νt

R2
dimensionless time (14.92)

Fig. 14.5 Fluid flow in a pipe induced by the motion of the pipe walls
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Thus the differential equation (14.86) can be written in dimensionless
quantities as follows:

−ν U0

R2

∂U∗
z

∂τ
= −ν U0

R2

[(
1
η

)
∂U∗

z

∂η
+
∂2U∗

z

∂η2

]
(14.93)

∂U∗
z

∂τ
=

1
η

∂U∗
z

∂η
+
∂2U∗

z

∂η2
(14.94)

The following initial condition for the dimensionless velocity results:

τ = 0 U∗(η) = 1 (14.95)

and boundary conditions can be given for all times t ≥ 0 as follows:

η = 1 U∗ = 0 (14.96)

and
η = 0

∂U∗

∂η
= 0 (14.97)

Again, the classical solution path can be chosen with the ansatz that the
variables can be separated:

U∗(η, τ) = f(η)g(τ) (14.98)

With the substitution of this ansatz into the differential equation (14.94),
one obtains:

f
dg
dτ

=
g

η

df
dη

+ g
d2f

dη2
(14.99)

As g depends only on τ and f only on η, by separation of variables the
following ordinary differential equations for g and f result:

1
g

dg
dτ

= −λ2 (14.100)

1
η

1
f

df
dη

+
1
f

d2f

dη2
= −λ2 (14.101)

The solution for the differential equation (14.100) can be derived by
integration:

g = C1 exp(−λ2τ) (14.102)

In order to determine the solution of the differential equation for f(η),
(14.101) can be written as follows:

d2f

dη2
+

1
η

df
dη

+ λ2f = 0 (14.103)
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From rewriting of (14.103), a Bessel differential equation results:

η2
d2f

dη2
+ η

df
dη

+ λ2η2f = 0 (14.104)

and with
α = λη (14.105)

one obtains

α2 d2f

dα2
+ α

df
dα

+ α2f = 0 (14.106)

This equation has the following general solution:

f(α) = C2J0(α) + C3Y0(α) (14.107)

The solution for J0 results from the Bessel differential equation:

x2y′′(x) + xy′(x) + (x2 − p2)y(x) = 0 (14.108)

which plays an essential role in many fields of theoretical physics and which
has the solution

Jp (x) =
∞∑

n=0

(−1)n

Γ (n+ 1)Γ (n+ p+ 1)

(x
2

)2n+p

(14.109)

where the Γ -function is defined as follows:

Γ (n) =

∞∫
0

exp (−x)xn−1 dx for n > 0 (14.110)

and can also be determined, for non-discrete values of n, by integral
arguments.

The function Jp(x) is defined as being a Bessel function of the first kind
and of order p.

The second function required for the complete solution of the Bessel dif-
ferential equation of zero order (14.106) is the Bessel function of the second
kind, but also of zero order, i.e. Y0(α). This function is often also called the
Neumann or Weber function. Thus the solution ansatz (14.107) in terms of
J0(α) and Y0(α) is composed of the Bessel functions of first and second kinds
and of zero order.

Considering the symmetry boundary condition in (14.97) or, noting that
at η = 0, Y0(λη) → ∞, one finds C3 = 0 in (14.107). Therefore, the solution
for U∗, substituting α = λη, may be written as

U∗(η, τ) = C1 exp(−λ2τ)J0(λη) = A exp(−λ2τ)J0(λη) (14.111)
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Application of boundary condition (14.96) yields

A exp (−λ2τ)J0(λ) = 0 (14.112)

Since setting A = 0 would result in a trivial solution, one must require

J0(λ) = 0 (14.113)

for the non-trivial solution. Therefore, one obtains multiple values of λ that
satisfy the boundary conditions at the wall. The values of λ obtained from
(14.113) are the 0-values of the zeroth order of Bessel functions of the first
kind. From tables of Bessel functions, the solutions of (14.113) are obtained
as follows:

λn = 2.405, 5.520, 8.654, 11.792, 14.931, 18.071, 21.212, 24.353, 27.494
(14.114)

Each of the solutions of λn now constitutes an individual solution. Con-
sidering the linearity of the governing equations (14.94) and (14.97), the
complete solution for U∗(η, τ) is obtained by linear superposition:

U∗(η, τ) =
∞∑

n=1

An exp (−λ2
nτ)J0(λnη) = 0 (14.115)

For readers of this book, the values for Jn(α) and Yn(α) can be taken
from Tables 14.1 and 14.2. The function J0(α) and J1(α) are also given in
Fig. 14.6, Y0(α) and Y1(α) in Fig. 14.7.

In order to be able to insert the boundary conditions, it is further necessary
to perform the derivatization dU∗/dη. For this it is important to know that
for the following relationship for the derivative holds:

dJ0 (α)
dx

= −J1(α)
dα
dx

(14.116)

Thus one can write

dU∗

dη
= −

∞∑
n=1

An exp
(−λ2

nτ
)
λnJ1 (λnη) (14.117)

Now the boundary conditions can be implemented:

η = 1 � U∗ = 0 � J0 (λn) = 0 (14.118)

and thus the following λn values can be determined as already explained
above:

λn = 2.405, 5.520, 8.654, 11.792, 14.931, 18.071, 21.212, 24.353, 27.494
(14.119)
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Table 14.1 Discrete values of Bessel functions of the first kind

α J0(α) J1(α) α J0(α) J1(α) α J0(α) J1(α)
0.00 +1.000 0.000 5.00 −0.178 −0.328 10.00 −0.246 +0.435
0.20 +0.990 +0.099 5.20 −0.110 −0.343 10.20 −0.250 −0.007
0.40 +0.960 +0.196 5.40 −0.041 −0.345 10.40 −0.243 −0.056
0.60 +0.912 +0.287 5.60 +0.027 −0.334 10.60 −0.228 −0.101
0.80 +0.846 +0.369 5.80 +0.092 −0.311 10.80 −0.203 −0.142
1.00 +0.765 +0.440 6.00 +0.151 −0.277 11.00 −0.171 −0.177
1.20 +0.671 +0.498 6.20 +0.202 −0.233 11.20 −0.133 −0.204
1.40 +0.567 +0.542 6.40 +0.243 −0.182 11.40 −0.090 −0.223
1.60 +0.455 +0.570 6.60 +0.274 −0.125 11.60 −0.045 −0.232
1.80 +0.340 +0.582 6.80 +0.293 −0.065 11.80 +0.002 −0.232
2.00 +0.224 +0.577 7.00 +0.300 −0.005 12.00 +0.048 −0.223
2.20 +0.110 +0.556 7.20 +0.295 +0.054 12.20 +0.091 −0.206
2.40 +0.003 +0.520 7.40 +0.279 +0.110 12.40 +0.130 −0.181
2.60 −0.097 +0.471 7.60 +0.252 +0.159 12.60 +0.163 −0.149
2.80 −0.185 +0.410 7.80 +0.215 +0.201 12.80 +0.189 −0.111
3.00 −0.260 +0.339 8.00 +0.172 +0.235 13.00 +0.207 −0.070
3.20 −0.320 +0.261 8.20 +0.122 +0.258 13.20 +0.217 −0.027
3.40 −0.364 +0.179 8.40 +0.069 +0.271 13.40 +0.218 +0.016
3.60 −0.392 +0.096 8.60 +0.015 +0.273 13.60 +0.210 +0.059
3.80 −0.403 +0.013 8.80 −0.039 +0.264 13.80 +0.194 +0.098
4.00 −0.397 −0.066 9.00 −0.090 +0.245 14.00 +0.171 +0.133
4.20 −0.377 −0.139 9.20 −0.137 +0.217 14.20 +0.141 +0.163
4.40 −0.342 −0.203 9.40 −0.177 +0.182 14.40 +0.106 +0.185
4.60 −0.296 −0.257 9.60 −0.209 +0.140 14.60 +0.068 +0.200
4.80 −0.240 −0.299 9.80 −0.232 +0.093 14.80 +0.027 +0.206
5.00 −0.178 −0.328 10.00 −0.246 +0.435 15.00 −0.014 +0.205

Fig. 14.6 Bessel function of the first kind
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From the initial condition of the considered flow problem, one obtains

τ = 0 � U∗ (η, 0) = 1 =
∞∑

n=1

AnJ0 (λnη) (14.120)

i.e. no λn=0 exists and one thus obtains

U∗(η, 0) = 1 = A1J0(λ, η) +A2J0(λ2η) + · · ·AnJ0(λnη) + · · · (14.121)

For determining the constants An one uses a special property of the Bessel
function:

x∫
0

xJn(ax)Jn(bx) dx = 0 when a �= b (14.122)

but
x∫

0

xJ2
n(ax) dx �= 0 i.e. when a = b (14.123)

Table 14.2 Discrete values of Bessel functions of the a second kind

α Y0(α) Y1(α) α Y0(α) Y1(α) α Y0(α) Y1(α)
0.00 −∞ −∞ 5.00 −0.309 +0.148 10.00 +0.058 +0.249
0.20 −1.081 −3.324 5.20 −0.331 +0.079 10.20 +0.006 +0.250
0.40 −0.606 −1.781 5.40 −0.340 +0.010 10.40 −0.044 +0.242
0.60 −0.309 −1.260 5.60 −0.335 +0.057 10.60 −0.090 +0.224
0.80 −0.087 −0.978 5.80 −0.318 −0.119 10.80 −0.133 +0.197
1.00 +0.088 −0.781 6.00 −0.288 −0.175 11.00 −0.169 +0.164
1.20 +0.228 −0.621 6.20 −0.248 −0.222 11.20 −0.198 +0.124
1.40 +0.338 −0.479 6.40 −0.200 −0.260 11.40 −0.218 +0.081
1.60 +0.420 −0.348 6.60 −0.145 −0.286 11.60 −0.230 +0.035
1.80 +0.477 −0.224 6.80 −0.086 −0.300 11.80 −0.232 −0.012
2.00 +0.510 −0.107 7.00 −0.026 −0.303 12.00 −0.225 −0.057
2.20 +0.521 +0.002 7.20 +0.034 −0.293 12.20 −0.210 −0.099
2.40 +0.510 +0.101 7.40 +0.091 −0.273 12.40 −0.186 −0.137
2.60 +0.481 +0.188 7.60 +0.142 −0.243 12.60 −0.155 −0.169
2.80 +0.436 +0.264 7.80 +0.187 −0.204 12.80 −0.119 −0.194
3.00 +0.377 +0.325 8.00 +0.224 −0.158 13.00 −0.078 −0.210
3.20 +0.307 +0.371 8.20 +0.250 −0.107 13.20 −0.035 −0.218
3.40 +0.230 +0.401 8.40 +0.266 −0.054 13.40 +0.009 −0.218
3.60 +0.148 +0.415 8.60 +0.272 +0.001 13.60 +0.051 −0.208
3.80 +0.645 +0.414 8.80 +0.266 +0.054 13.80 +0.091 −0.191
4.00 −0.017 +0.380 9.00 +0.250 +0.104 14.00 +0.127 −0.167
4.20 −0.094 +0.368 9.20 +0.225 +0.149 14.20 +0.158 −0.136
4.40 −0.163 +0.326 9.40 +0.191 +0.187 14.40 +0.181 −0.100
4.60 −0.224 +0.274 9.60 +0.150 +0.217 14.60 +0.197 −0.061
4.80 −0.272 +0.214 9.80 +0.105 +0.238 14.80 +0.206 −0.020
5.00 −0.309 +0.148 10.00 +0.058 +0.249 15.00 +0.206 +0.021
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Fig. 14.7 Bessel function of the second kind

Thus the coefficients A1, A2 · · ·An. · · · in (14.117) can be determined by
successive multiplication by ηJ0(λnη) and by the following integration:

1∫
0

ηJ0 (λnη) dη =

1∫
0

AnηJ
2
0 (λnη)dη (14.124)

Thus for each of the coefficients An the following relationship results:

An =

1∫
0

ηJ0 (λnη)dη

1∫
0

ηJ2
0 (λnη)dη

(14.125)

Carrying out a first step of the integration yields:

An =
2

[J2
0 (λn) + J2

1 (λn)]

1∫
0

ηJ0 (λnη)dη (14.126)

By further integration one obtains:

An =
2
λn

J1 (λn)
(J2

0 (λn) + J2
1 (λn))

(14.127)

Thus for the velocity distribution according to (14.111), the following expres-
sion results:

U∗ (η, τ) =
∞∑

n=1

2
λn

J1 (λn)
J2

0 (λn) + J2
1 (λn)

exp
(−λ2

nτ
)
J0 (λnη) (14.128)
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For the gradient of the velocity profile one obtains according to (14.117):

∂U∗

∂η
(η, τ) = −

∞∑
n=1

2
J1 (λn)

J2
0 (λn) + J2

1 (λn)
exp
(−λ2

nτ
)
J1 (λnη) (14.129)

Considering that
dJ0 (λnη)

dη
= −J1 (λnη)λn is valid over the entire flow field,

one can employ the above results to determine the shear-stress distribution
for the considered flow problem:

τ21 = −µ dUz

dr
= −µ

(
−U0

R

dU∗

dη

)
=
µU0

R

dU∗

dη
(14.130a)

and thus τ21 is given by

τ21 = −µU0

R

∞∑
n=1

2J1 (λn)
(J2

0 (λn) + J2
1 (λn))

exp
(−λ2

nτ
)
J1 (λnη) (14.130b)

For the τ21 value at the pipe wall, i.e. with η = 1, one obtains

τ21(R, t) = −µU0

R

∞∑
n=1

2
1 + (J0 (λn) /J1 (λn))2

exp(−λn)
νt

R2
(14.131)

i.e. a finite value, even for time t = 0. This is a surprising result when
comparing it with τ21 → ∞ for t = 0 for the induced channel flow.

14.3 Oscillating Fluid Flows

14.3.1 Stokes Second Problem

For further deepening the physical understanding of unsteady fluid move-
ments, induced by momentum diffusion, those fluid movements which occur
due to an oscillating plate will be discussed in this section. Hence, a fluid flow
problem is considered which comes about due to the oscillatory movement
of a plate in a such way that the fluid movement created in the immediate
vicinity of the plate is communicated to the fluid above the plate, by molec-
ular momentum diffusion. The movement of the fluid above the plate is thus
governed by the following partial differential equation:

∂U1

∂t
= ν

∂2U1

∂x2
2

(14.132)

Hence the same differential equation as in the previous sections describes
this flow. Its particular features are introduced by the imposed initial and
boundary conditions.
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The initial and boundary conditions of the problem can be stated as
follows:

for all times t ≤ 0 : U1(x2, t) = 0 (14.133)
for all times t > 0 :

x2 = 0 � U1(0, t) = U0 cos(ωt) (14.134)
x2 → ∞ � U1(∞, t) = 0 (14.135)

Again, a solution is sought which can be found by the following ansatz, i.e.
by separation of the variables:

U1(x2, t) = f(x2)g(t) (14.136)

Inserting in (14.132) results in:

f
dg
dt

= νg
d2f

dx2
2

(14.137)

By separation of the variables one can derive:

1
νg

dg
dt

=
1
f

d2f

dx2
2

= ±iλ2 (14.138)

In (14.138), the constant appearing on the right-hand side was set to read
±iλ2 with i =

√−1. This takes into consideration the fact that according
to (14.134), there is a periodic stimulation of the fluid movement. Thus co-
sine and sine terms are expected in the solution, which can be expressed
by complex terms in the exponential function. Consequently, the following
differential equations have to be solved:

dg
dt

− (±iλ2
)
νg = 0 (14.139)

d2f

dx2
2

− (±iλ2
)
f = 0 (14.140)

The solutions of these two differential equations yields for U1(x2, t):

U1(x2, t) = C∗ exp
[±iλ2νt± λ√±ix2

]
(14.141)

Because of the combination of positive and negative signs, four solutions
result:

UA
1 = A exp

[
− λ√

2
x2 + i

(
λ2νt− λ√

2
x2

)]
(14.142)

UB
1 = B exp

[
− λ√

2
x2 − i

(
λ2νt− λ√

2
x2

)]
(14.143)

UC
1 = C exp

[
+
λ√
2
x2 + i

(
λ2νt− λ√

2
x2

)]
(14.144)

UD
1 = D exp

[
+
λ√
2
x2 − i

(
λ2νt+

λ√
2
x2

)]
(14.145)
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The last two partial solutions of the differential equations do not represent
reasonable results from a physical point of view because of the requirement
(14.135), as for x2 → ∞ they yield for the velocity U1(∞, t) → ∞. Thus as a
solution ansatz, that is physically meaningful, the following results:

U1(x2, t) = UA
1 (x2, t) + UB

1 (x2, t) (14.146)

i.e.

U1(x2, t) = exp
(
− λ√

2
x2

){
A∗ exp

[
i
(
λ2νt− λ√

2
x2

)]
+B∗ exp

[
−i
(
λ2νt− λ√

2
x2

)]} (14.147)

The expressions in the curly brackets can be written as cosine and sine
functions:

U1(x2, t) = exp
(
− λ√

2
x2

)[
A cos

(
λ2νt− λ√

2
x2

)
+B sin

(
λ2νt− λ√

2
x2

)]
(14.148)

Applying the boundary condition (14.134), one obtains

U1(0, t) = U0 cos(ωt) = A cos(λ2νt) +B sin(λ2νt) (14.149)

and thus B = 0, A = U0 and λ =
√
ω/ν so that one obtains as a solution

U1(x2, t) = U0 exp
(
−
√
ω

2ν
x2

)
cos
(
ωt−

√
ω

2ν
x2

)
(14.150)

This equation describes the velocity distributions stated for certain ωt val-
ues in Fig. 14.8 which are present in the fluid above the plate. In Fig. 14.8,
velocities are given for ωt = 0, π

2 , π,
3π
2 , 2π.

The velocity distributions indicated in Fig. 14.8 show that the fluid move-
ment in fluid layers, some distance away from the wall, always lags behind the
movement of the plate. The amplitude of the fluid movement decreases with
increasing distance from the plate. At the plate itself, the fluid movement
follows exactly the movement of the plate, i.e. specifications existing due to
the boundary conditions are fulfilled.

The above-mentioned phase shift is of great interest for a number of
fluid motions. For practical purposes, one can state that a perceivable fluid
movement can only be observed for

x2 ≤ 2π
√

2
√
ν

ω
(14.151)

The larger the kinematic viscosity of the fluid is, the thicker this layer
becomes. Moreover, the relationship (14.151) says that high-frequency os-
cillations can penetrate less deep into the fluid interior than low-frequency
oscillations. These kinds of results of the analytical considerations above give
important insights that can be used advantageously in considerations of many
externally induced fluid flows.
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Fig. 14.8 Velocity profiles above an oscillating plane plate at fixed phases of the
plate motion

14.4 Pressure Gradient-Driven Fluid Flows

14.4.1 Starting Flow in a Channel

The considerations below were carried out in order to investigate the influence
of viscosity on the channel flow, setting in due to gravitational forces. It
is assumed that the entire fluid in the channel in Fig. 14.9 is at rest for
t < 0. At time t = 0, the fluid is set in motion, namely by the gravitational
acceleration g. The setting in, non-stationary fluid flow is described by the
following differential equation:

ρ
∂U1

∂t
= µ

∂2U1

∂x2
2

+ ρg (14.152)

This differential equation can be rewritten as

∂U1

∂t
= g + ν

∂2U1

∂x2
2

(14.153)

This equation has to be solved for the following initial and boundary
conditions:

Initial condition:

for t ≤ 0 U1(x2, t) = 0 (14.154)
for t > 0 � U1 �= 0 for −D < x2 < +D (14.155)
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Fig. 14.9 Starting flow in a channel

The boundary conditions are:

U1 = 0 for x2 = ±D (14.156)

To solve the partial differential equation (14.153), it is recommended to
introduce the following dimensionless variables:

U∗ =
U1

gD2/2ν
dimensionless velocity (14.157)

η =
x2

D
= x∗2 dimensionless position coordinate (14.158)

τ =
νt

D2
= t∗ dimensionless time (14.159)

On inserting these dimensionless quantities in (14.153), one obtains the par-
tial differential equation (14.160) for the above-introduced dimensionless
velocity U∗:

∂U∗

∂τ
= 2 +

∂2U∗

∂η2
(14.160)

with the initial and boundary conditions formulated for the dimensionless
variables as follows:

initial conditions: τ ≤ 0 : U∗ = 0 for − 1 < η < +1
boundary conditions: η = +1 : U∗ = 0 for all τ > 0

η = −1 : U∗ = 0 for all τ > 0
(14.161)

When looking for a solution of the partial differential equation (14.160), the
approach is to look for the stationary solution U∗

∞ (occurring for τ → ∞)
and for the non-stationary part U∗

t , to yield generally
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U∗ = U∗
∞ − U∗

t (14.162)

Due to the stationarity of the flow for τ → ∞, one obtains the following
partial differential equation for U∗∞:

0 = 2 +
∂2U∗∞
∂η2

(14.163)

Taking into consideration the above boundary conditions, the following
results for U∗∞:

U∗
∞ = (1 − η2) (14.164)

On introducing U∗ = (1 − η2) − U∗
t into the differential equation (14.160),

one obtains a differential equation to be solved for U∗
t :

∂U∗
t

∂τ
=
∂2U∗

t

∂η2
(14.165)

with the following initial condition and the boundary condition:

τ = 0 : U∗
t = U∗

∞ (14.166)
τ > 0 : U∗

t = 0 for η = ±1 (14.167)

With the ansatz for a solution by separation of variables:

U∗
t = f(η)g(τ) (14.168)

one obtains
∂U∗

t

∂τ
= f

dg
dτ

and
∂2U∗

t

∂η2
= g

d2f

dη2
(14.169)

and by insertion in (14.165):

1
g

dg
dτ

=
1
f

d2f

dη2
(14.170)

As this equation can on the left-hand side be only a function of τ and on the
right-hand side only a function of η, the differential equation can be fulfilled
only by setting both sides equal to a constant:

1
g

dg
dτ

= −λ2 � g = A exp
(−λ2τ

)
(14.171)

1
f

d2f

dη2
= −λ2 � f = B cos(λη) + C sin(λη) (14.172)

where A, B and C are the constants introduced by the integration. When
considering the coordinate system sketched in Fig. 14.9 and quantitatively
described in Fig 14.10, yielding a solution that is symmetrical with regard to
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Fig. 14.10 Starting flow between two plane plates according to (14.190)

η, one has to set C = 0. The boundary condition (14.166) applied to (14.172),
taking into consideration C = 0, yields:

0 = B cos(λn) (14.173)

This relationship is fulfilled for λn = (n+ 1/2)π with n = 0, ±1, ±2, ±3, · · ·
±∞ so that one obtains as the most general term for the solution of U∗

t :

U∗
t =

+∞∑
n=−∞

(
AnBn exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

])
. (14.174)

Considering the symmetry of all n partial functions and settingDn = 2AnBn,
(14.174) can be written as:

U∗
t =

+∞∑
n=0

Dn exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

]
(14.175)

Taking into account the initial condition, one obtains:

1 − η2 =
+∞∑
n=0

Dn cos
[(
n+

1
2

)
πη

]
(14.176)

Multiplying both parts of this equation by:

cos
[(
m+

1
2

)
πη

]
dη (14.177)
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one obtains by integration from (−1) to (+1):∫ 1

−1

(
1 − η2) cos

[(
m+

1
2

)
πη

]
dη = Dm (14.178)

or, with the following steps of integration:[∫ 1

−1

cos
((
m+

1
2

)
πη

)
dη −

∫ 1

−1

η2 cos
((
m+

1
2

)
πη

)
dη
]

= Dm

(14.179)[∫ 1

−1

cos
((
m+

1
2

)
πη

)
dη
]

=
2 sin

((
m+ 1

2

)
π
)(

m+ 1
2

)
π

(14.180)

[∫ 1

−1

η2 cos
((
m+

1
2

)
πη

)
dη
]

=
∫
u dv = uv −

∫
v du (14.181)

u = η2 ⇒ d = 2 ∗ η dη, . . . dv = cos
((
m+

1
2

)
πη

)
dη ⇒ v =

sin
((
m+ 1

2

)
πη
)(

m+ 1
2

)
π

(14.182)

[∫ 1

−1

η2 cos
((
m+

1
2

)
πη

)
dη
]

= η2
sin
((
m+ 1

2

)
πη
)(

m+ 1
2

)
π

]1
−1

− 2(
m+ 1

2

)
π∫ 1

−1

η sin
((
m+

1
2

)
πη

)
dη

(14.183)∫ 1

−1

η2 cos
((
m+

1
2

)
πη

)
dη =

2 sin
(
m+ 1

2

)
π(

m+ 1
2

)
π

− 2(
m+ 1

2

)
π∫ 1

−1

η sin
(
m+

1
2

)
πη dη (14.184)

∫ 1

−1

η sin
(
m+

1
2

)
πη dη =

∫
u dv (14.185)

u = η dv = sin
(
m+

1
2

)
πη dη

du = dη v = −cos
((
m+ 1

2

)
πη
)(

m+ 1
2

)
π∫ 1

−1

η sin
(
m+

1
2

)
πη dη = −η cos

(
m+ 1

2

)
πη(

m+ 1
2

)
π

]1
−1

+
∫

cos
(
m+ 1

2

)
πη(

m+ 1
2

)
π

dη

= 0 +
sin
(
m+ 1

2

)
πη[(

m+ 1
2

)
π
]2 ]1

−1

=
2 sin

(
m+ 1

2

)
π[(

m+ 1
2

)
π
]2 (14.186)
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Dm =
2 sin

(
m+ 1

2

)
π(

m+ 1
2

)
π

− 2 sin
(
m+ 1

2

)
π(

m+ 1
2

)
π

+
4 sin

(
m+ 1

2

)
π[(

m+ 1
2

)
π
]3 (14.187)

sin
((
m+

1
2

)
π

)
= (−1)m and cos

((
m+

1
2

)
π

)
= 0

Hence, one obtains for Dm = Dn:

Dm ⇒ Dn =
4 (−1)n(
n+ 1

2

)3
π3

(14.188)

or for the solution of U∗
t :

U∗
t = 4

+∞∑
n=0

(−1)n(
n+ 1

2

)3
π3

exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

]
(14.189)

As the complete solution for U∗ = U∗
∞ − U∗

t , one obtains:

U∗ = (1 − η2) − 4
+∞∑
n=0

(−1)n(
n+ 1

2

)3
π3

exp

[
−
(
n+

1
2

)2

π2τ

]
cos
[(
n+

1
2

)
πη

]
(14.190)

or in dimensional quantities:

U1 =
gD2

2ν

[(
1 −
(x2

D

)2
)]

− 4
+∞∑
n=0

(−1)n(
n+ 1

2

)3
π3

exp

[
−
(
n+

1
2

)2

π2 νt

D2

]

cos
[(
n+

1
2

)
π
x2

D

]
(14.191)

On comparing the above derivations with those that were carried out in
Sect. 14.2.3, it can easily be seen that the derivations correspond to one an-
other. It can now easily be understood that the above derivations for the
starting channel flow are equivalent to those for the fluid flow caused by a
pressure gradient. On replacing the pressure gradient − dΠ

dx1
in the deriva-

tions by the gravitational force ρg, all derivations can be transferred to the
pressure-driven channel flow.

14.4.2 Starting Pipe Flow

Another unsteady flow problem is the starting pipe flow, which is of certain
importance in practice. It shall be discussed in this section for those condi-
tions where for t < 0 a viscous fluid is at rest in an infinitely long pipe. At
time t = 0 and for all times t ≥ 0, a constant pressure gradient is imposed
on the fluid, i.e. − ∂Π

∂z is generated along the entire pipe. The flow induced
in this way is described by the partial differential equation
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∂Uz

∂t
= −1

ρ

∂Π

∂z
+ ν

1
r

∂

∂r

(
r
∂Uz

∂r

)
(14.192)

which was derived for one-dimensional, unsteady flows of incompressible vis-
cous media having a constant viscosity. The initial and boundary conditions
for the starting pipe flow read:

initial conditions: t = 0 � Uz(r, t) = 0 for 0 ≤ r ≤ R (14.193)
boundary conditions: r = 0 � Uz = finally for all t > 0 (14.194)

r = R � Uz = 0 for all t > 0 (14.195)

One obtains the solution of the considered flow problems by introducing the
following dimensionless variables:

U∗
z =

Uz(− ∂Π
∂z

) (
R2

4µ

) dimensionless velocity (14.196)

η =
r

R
dimensionless position coordinate (14.197)

τ =
µt

ρR2
dimensionless time (14.198)

so that one has to solve the following differential equation for dimensionless
quantities:

∂U∗
z

∂τ
= 4 +

1
η

∂

∂η

(
η
∂U∗

z

∂η

)
(14.199)

The initial and boundary conditions also need to be written for the
dimensionless variables and are:

initial conditions: τ = 0 � U∗ = 0 for 0 ≤ η ≤ 1 (14.200)
boundary conditions: η = 0 � U∗ = finally for τ > 0 (14.201)

η = 1 � U∗ = 0 for τ > 0 (14.202)

To solve the above differential equation, one uses the fact that the considered
flow for τ → ∞ heads for the laminar, stationary, fully developed pipe flow.
The latter is introduced as a separate partial solution by the solution ansatz,
where one writes U∗

z = U∗
∞ for τ → ∞.

The chosen solution ansatz therefore reads for the developing velocity field:

U∗ (η, τ) = U∗
∞ (η) − U∗

t (η, τ) (14.203)

The stationary part of the solution, i.e U∗
∞(η), is obtained by solving the

following differential equation:

0 = 4 +
1
η

d
dη

(
η

dU∗∞
dη

)
(14.204)
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which can be derived from the above partial differential equation (14.199) by
setting ∂U∗

∂τ = 0 for τ → ∞. By integration one obtains:

U∗
∞(η) = −η2 + C1 ln η + C2 (14.205)

Employing the boundary conditions, one obtains for the integration constants
C1 = 0 and C2 = 1 and thus for U∗

∞ the following results:

U∗
∞(η) = 1 − η2 (14.206)

Hence the Hagen–Poiseuille velocity distribution of the fully developed pipe
flow is obtained.

On inserting now U∗
∞ = 1− η2 into the differential equation (14.203), one

obtains:
U∗(η, τ) = (1 − η2) − U∗

t (η, τ) (14.207)

By insertion of this relationship into the differential equation (14.199), the
following differential equation can be derived:

− ∂U
∗
t

∂τ
= 4 +

1
η

∂

∂η

[
η
∂

∂η

(
1 − η2)]− 1

η

∂

∂η

(
η
∂U∗

t

∂η

)
(14.208)

or, after having carried out the differentiations:

∂U∗
t

∂τ
=

1
η

∂

∂η

(
η
∂U∗

t

∂η

)
(14.209)

This differential equation now has to be solved for the following initial and
boundary conditions:

initial conditions: τ = 0 � U∗
t (η, 0) = U∞(η) for 0 ≤ η ≤ 1 (14.210)

boundary conditions: η = 0 � U∗
t = finite for all τ > 0 (14.211)

η = 1 � U∗
t = 0 for all τ > 0 (14.212)

Again, a separation ansatz for the variables η and τ is employed for solving
the differential equation for U∗

t :

U∗
t = f(η)g(τ) (14.213)

This ansatz leads to the following relationship:

1
g

dg
dτ

=
1
f

1
η

∂

η

(
η

df
dη

)
= −λ2 (14.214)

Hence it is necessary to solve the following differential equations for g and f :

dg
dτ

= −λ2g (14.215)
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and
1
η

d
dη

(
η

df
dη

)
+ λ2f = 0 (14.216)

These are differential equations known in the field of unsteady fluid
mechanics. Their solutions are known and can be stated as follows:

g = A exp(−λ2τ) (14.217)
f = BJ0(λη) + CY0(λη) (14.218)

In these general partial solutions of the differential equations (14.215) and
(14.216), the quantities J0(λη) and Y0(λη) are Bessel functions of the first
and second kind of zero order. A, B and C are integration constants which
have to be determined by the initial and boundary conditions for U∗

t (η, τ).
When employing the first boundary condition (14.211), i. e. η = 0 � U∗

t is
finite, one obtains C = 0, since Y0(0) = −∞. Hence, one obtains for U∗

t :

U∗
t = A exp(−λ2τ)BJ0(λη) (14.219)

If one demands that the second boundary condition (14.212) be fulfilled, i.e.
U∗

t = 0 for η = 1, then J0(λ) = 0 has to be fulfilled and only those λ
values are permissible that fulfil these conditions. The following values can
be computed:

λ1 = 2, 405; λ2 = 5, 520; λ3 = 8, 654; etc. (14.220)

i.e. there is a large number of discrete flows, one for each value of λn, which,
summed up, result in the following general solution:

U∗
t =

∞∑
n=1

An exp(−λ2
nτ)J0(λnη) (14.221)

This general solution now fulfils the partial differential equation which de-
scribes the flow problem and the characteristic boundary conditions. Fulfilling
the flow condition can now serve to determine the integration constant An,
not yet defined. For τ → 0, the following holds:

(1 − η2) =
∞∑

n=1

AnJ0(λnη) (14.222)

When one multiplies both sides of this equation by:

J0(λmη)η dη (14.223)

and integrates from 0 to 1, i.e. when one carries out the following arithmetic
operations in the subsequent equation:

1∫
0

J0(λmη)(1 − η2)η dη =
∞∑

n=1

An

1∫
0

J0(λnη)J0(λmη)η dη (14.224)
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one obtains, because of the orthogonality of the Bessel function, values of the
right-hand side that are different from zero only when m = n. On employing
known relationships for the Bessel functions, one obtains:

4J1(λn)
λ3

n

= An
1
2
[J1(λn)]2 (14.225)

or, rewritten,

Am =
8

λ3
mJ1 (λm)

(14.226)

Hence one can deduce for U∗
t

U∗
t = 8

∞∑
n=1

J0 (λnη)
λ3

nJ1 (λn)
exp
(−λ2

nτ
)

(14.227)

and for the total velocity

U∗ =
(
1 − η2)− 8

∞∑
n=1

J0 (λnη)
λ3

nJ1 (λn)
exp
(−λ2

nτ
)

(14.228)

The velocity distributions computed according to (14.228) are shown in
Fig. 14.11, where the development of the velocity profile can be seen. Again,
for (νt/R2) = 1 the fluid flow has reached the stationary state of fully
developed laminar pipe flow with an accuracy that is sufficient in practice.

Again, similar to chapter 13, only some examples of time-dependent, one-
dimensional flows are treated in this chapter. Further, treatments are found
in refs. [14.1] to [14.6]

Pipe wallCentre of pipe

Fig. 14.11 Velocity distribution in the pipe for the starting, pressure-driven laminar
pipe flow
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Chapter 15

Fluid Flows of Small Reynolds Numbers

15.1 General Considerations

As shown in the preceding chapters of this book, the integrations of the
generally valid basic equations of fluid mechanics, that were derived in differ-
ential form in Chap. 5, are only successful, by means of analytical methods,
when simplifications concerning the dimensionality of the considered flows
are made. Furthermore, one has to choose for the treatment of transport
problems in fluids very simple boundary conditions. These simple bound-
ary conditions correspond to simple flow problems. For analytical solutions,
they often have to be chosen in such a simple way, that the insights into
the physics of fluid flows resulting from the solutions are of only slight
practical interest. In general, this means that practically relevant flow prob-
lems cannot be treated by analytical solutions of the generally valid basic
equations of fluid mechanics. The boundary conditions, which have to be
imposed on the solutions, are mostly so complicated for practically interest-
ing flows, that they can only be implemented in analytical solutions to some
extent. Thus, fluid mechanics researchers, interested in analytical solutions,
have only the possibility to treat such flow problems, for which the basic
equations can be simplified. The solution of these equations often means
that the considerations still have also to be restricted to flows with sim-
ple geometries, e.g. the flow around spheres, or the flow around cylinders.
To study flows of this kind, the considerations start from the general basic
equations that have been made dimensionless with the inflow velocity U∞,
a geometric dimension D, the fluid density ρ, the fluid viscosity µ, etc. This
yields

ρ∗
(
D

tcU∞
∂U∗

∂t∗
+ U∗

i

∂U∗
j

∂x∗i

)
= −∆Pc

ρU2∞

∂P ∗

∂x∗j
+

µ

ρU∞D
µ∗
∂2U∗

j

∂x∗i
2 +

gD

U2∞
ρ∗g∗j

(15.1)

429
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or, rewritten with St = D/(tcU∞) (Strouhal number), Eu = ∆P/(ρU2∞)
(Euler number), Re = (U∞D)/ν (Reynolds number) and Fr = U2

∞/(gD)
(Froude number):

ρ∗
(
St
∂U∗

j

∂t∗
+ U∗

i

∂U∗
j

∂x∗i

)
= −Eu ∂P

∗

∂x∗j
+

1
Re
µ∗
∂2U∗

j

∂x∗i
2 +

1
Fr
ρ∗g∗j . (15.2)

For stationary flows that are not influenced by gravitational forces, and where
the viscosity forces are larger than the acceleration forces, i.e. for Re < 1,
the following reduced form of the momentum equation can be employed:

Eu
∂2P ∗

∂x∗j
2 +

1
Re
µ
∂2U∗

j

∂x∗i
2 = 0 � 0 = − ∂P

∂xj
+ µ

∂2Uj

∂xi
2

(j = 1, 2, 3).

(15.3)
This simplification of the momentum equation is valid for such flows that
have the following properties:

• The geometric dimensions of the bodies are small, around which flow takes
place, or the channels are small in which flows occur.

• Flows characterized by very small flow velocities (creeping flows).
• Flows of fluids with large coefficients of kinematic viscosity.

When all the above requirements for a flow are present at the same time,
one arrives at conditions for the presence of smallest Reynolds numbers, i.e.
at flows, where the fluid flows are characterized by viscous length, time and
velocity scales. This will be explained at the end of the present chapter, where
the properties of creeping flows are treated.

The differential equations given in Chap. 5, the continuity and the Navier–
Stokes equations, read for Re→ 0:

∂Ui

∂xi
= 0 and 0 = − ∂P

∂xj
+ µ

∂2Uj

∂xi
2
. (15.4)

These are known as the Stokes equations. For two-dimensional, fully devel-
oped flows they are identical with the equations discussed in Chap. 13, when
gj is set equal to zero. In this respect, some of the flows treated in this chapter
are related to those in Chap. 13. This fact is pointed out at the appropriate
place in the treatment of creeping flows.

By attempting the treatment of simplified forms of the basic equations,
multidimensional flow problems can be included in the analytical treatment
of flows. This will be shown with examples in Sects. 15.2–15.8. These exam-
ples have been chosen in such a way that they demonstrate, on the one hand,
the multidimensionality of the possible computations achievable by simplifi-
cations and, on the other, the employment of the basic equations to practical
flow problems of small Reynolds numbers. The fluid mechanics of slide bear-
ings are considered. In addition, the rotating flow around a cylinder and the
rotating flow around a sphere are discussed. For both geometries, the transla-
tory motions and the rotating motions are considered. These considerations
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are carried out for viscous flows of small Reynolds numbers, employing the
equations in (15.4). The considerations are carried out up to the computations
of forces, to make it clear how small Reynolds number flows can be treated in
a complete way. The computations of forces require derivations of the pres-
sure distributions on the surface of bodies and also computations of the local
momentum losses of flows at walls. The chosen examples are aimed to give a
suitable introduction to the treatments of flows of small Reynolds numbers.
Solutions of other creeping flow examples, going beyond the treatments in
this chapter, are easily possible and are often described extensively in books
on fluid mechanics, see refs. [15.1] to [15.7]. Hence, no further considerations
of more complex flows are needed here.

15.2 Creeping Fluid Flows Between Two Plates

In this section, the flow of a viscous fluid between two parallel plates is
considered, whose distance D can be regarded as being very small (Fig. 15.1).
When the area-averaged mean flow velocity

Ũ =
1
A

∫
A

Ui dAi (15.5)

is also small, the conditions for the employment of the following differential
equations exist. When ρ = constant holds, then one can write

∂Ui

∂xi
= 0 (15.6)

∂P

∂xj
= µ

∂2Uj

∂xi
2
, (15.7)

i.e. the Stokes differential equations can be employed to treat the flow between
two parallel plates.

Fig. 15.1 The diagram shows the plates and the coordinate system for a flow between
plates
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This set of differential equations reads, written in full, for j = 1, 2, 3:

∂U1

∂x1
+
∂U2

∂x2
+
∂U3

∂U3
= 0 (15.8)

j = 1 :
∂P

∂x1
= µ

(
∂2U1

∂x1
2

+
∂2U1

∂x2
2

+
∂2U1

∂x3
2

)
(15.9)

j = 2 :
∂P

∂x2
= µ

(
∂2U2

∂x1
2

+
∂2U2

∂x2
2

+
∂2U2

∂x3
2

)
(15.10)

j = 3 :
∂P

∂x3
= µ

(
∂2U3

∂x1
2

+
∂2U3

∂x2
2

+
∂2U3

∂x3
2

)
. (15.11)

The above equations are valid within the limits −∞ < x1, x2 < +∞ and
0 ≤ x3 ≤ D. In addition, the flow in the x1 and x2 directions is assumed
to be fully developed, i.e. ∂Uj/∂x1 = 0 and ∂Uj/∂x2 = 0, so that one can
deduce from the continuity equation:

∂U3

∂x3
= 0 � U3 = constant. (15.12)

Because U3 = 0 for x3 = 0 and x3 = D, U3 = 0 holds in the entire flow region
between the two channel walls.

Due to the existence of fully developed flow conditions in the x1 and x2

directions, the following differential equations hold:

∂P

∂x1
= µ

∂2U1

∂x3
2

;
∂P

∂x2
= µ

∂2U2

∂x3
2

;
∂P

∂x3
= 0. (15.13)

From these equations, one obtains for U1:

U1 =
1
µ

(
∂P

∂x1

)
x2

3

2
+ C1x3 + C2 (15.14)

and for U2

U2 =
1
µ

(
∂P

∂x2

)
x2

3

2
+ C3x3 + C4. (15.15)

The integration constants C1 and C2 can be determined from the boundary
conditions:

U1 = 0 for x3 = 0 and x3 = D � C2 = 0 and C1 = −D
2µ

∂P

∂x1
.

Thus one can derive for U1:

U1 = − 1
2µ

(
∂P

∂x1

)
x3(D − x3) (15.16)
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and likewise U2 can be determined as:

U2 = − 1
2µ

(
∂P

∂x2

)
x3(D − x3). (15.17)

The equations for U1 and U2 show that the velocities differ only due to the
pressure gradients imposed in the x1 and x2 directions.

With the aid of the above solutions for U1 and U2, some further interesting
considerations can be carried out. The result is that the cross-sectional mean
velocities can be determined as follows, according to (15.5):

Ũ1 (x1, x2) = − D
2

12µ

(
∂P

∂x1

)
Ũ2 = − D

2

12µ

(
∂P

∂x2

)
, (15.18)

where Ũ1 and Ũ2 are the area-averaged velocities in the x1 and x2 directions.
On introducing the potential φ(x1, x2), driving the mean flow field to an

extent that φ(x1, x2) = − D
2

12µ
P (x1, x2) holds, then the following relationship

can be stated:
Ũ1 =

∂φ

∂x1
and Ũ2 =

∂φ

∂x2
. (15.19)

These relationships between the components of the mean velocity field and
the potential φ, express for the area-averaged fluid velocity, the driving force
to be the differentials of φ. This essentially suggests that the flow can be
regarded as having a block profile and is formally running, like the vorticity-
free flow of an ideal fluid (potential flow).

15.3 Plane Lubrication Films

Already daily experience shows that a fluid film between two plates has pos-
itive properties, as far as the sliding of one plate on another is concerned.
This provides insight into the film action, suggesting that the forces acting
on two solid plates, that are exposed to a gliding process, can be reduced by
lubrication films. One further notices that a fluid film placed between two
plates is able to absorb considerable forces. All these considerations make it
clear why fluid films can be used in so-called slide bearings in mechanical
systems, in order to make sliding and also rotating machine elements work
in practice. In order to understand the principal function of lubrication films
and also their properties, the flow in a very thin film which develops between
two sliding plates is investigated. Such a film which develops below a plate,
having a length l and leading to film thicknesses h1 and h2 at the beginning
and end of the plate, respectively, is plotted in Fig. 15.2. Due to h2 �= h1,
an angle of inclination α develops by which the upper plate is inclined with
respect to the lower plate. Thus, the film thickness h(x1) is determined by
the film and its motion. Moreover, in the treatment of the film motion, the
lower plate moves at a velocity UP relative to the upper plate.
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Lower plate (is moving)

Liquid film

l

h(x  )1

Upper plate (is fixed)

Fig. 15.2 Considerations of the fluid flow between two plates (basic flow of tripol-
ogy). UP = velocity of the moving lower plate; α = inclination angle between the
plates; R(x1) = variation of plate distance

For the flow between the inclined plates, induced by the motion of the lower
plate in Fig. 15.2, (15.8)–(15.11) hold the Stokes’ equations in the following
form, because U3 = 0:

0 =
∂U1

∂x1
+
∂U2

∂x2
(15.20)

∂P

∂x1
= µ

(
∂2U1

∂x1
2

+
∂2U1

∂x2
2

)
(15.21)

∂P

∂x2
= µ

(
∂2U2

∂x1
2

+
∂2U2

∂x2
2

)
. (15.22)

Orders of magnitude considerations of the terms in (15.20) yield:∣∣∣∣ ∂U1

∂x1

∣∣∣∣ ≈ UP

l
and

∣∣∣∣ ∂U2

∂x2

∣∣∣∣ = U2

h
=
∣∣∣∣ ∂U1

∂x1

∣∣∣∣ = UP

!
U2 ≈ UP

(
h

l

)
.

(15.23)
Because (h/l) � 1, U2 � UP (thin lubrication film), the order of U2 can be
computed. Similar considerations for the terms in (15.21) and (15.22) yield:

∂2U1

∂x1
2

= term 1 ≈ UP

l2
;

∂2U1

∂x2
2

= term 2 ≈ UP

h2
(15.24)

∂2U2

∂x1
2

= term 3 ≈ UP h

l3
;

∂2U2

∂x2
2

= term 4 ≈ UP

lh
. (15.25)

Comparisons of terms 1–4 in (15.24) and (15.25) show that term 2 domi-
nates and that therefore the following simplified forms of (15.21) and (15.22)
describe, sufficiently well, the film flow between two plates indicated in
Fig. 15.2:

∂P

∂x1
= µ

∂2U1

∂x2
2

and
∂P

∂x2
= 0. (15.26)
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For the induced film flow, the following boundary conditions hold:

x2 = 0 : U1 (x1, 0) = UP and x2 = h(x1) : U1(x1, h) = 0. (15.27)

Integrating ∂P/∂x2 = 0 yields P = Π(x1), so that the differential equation
for the velocity field reads(

dΠ
dx1

)
= µ

∂2U1

∂x2
2

� U1(x1, x2) =
1
2µ

(
dΠ
dx1

)
x2

2+C1x2+C2. (15.28)

With the boundary conditions in (15.27), the two integration constants in
(15.28) can be derived to read as follows:

C1 = − UP

h(x1)
− 1

2µ

(
dΠ
dx1

)
h(x1) and C2 = UP . (15.29)

Thus, the following equation for U1 results:

U1 (x1, x2) =
−1
2µ

(
dΠ
dx1

)
x2 [h (x1) − x2] + UP

(
h (x1) − x2

h (x1)

)
. (15.30)

The constant volume flow rate of the film flow can be computed by
integration:

v̇ (x1) =

h∫
0

U1 dx2 =
−1
12µ

(
dΠ
dx1

)
h3(x1) +

1
2
UPh(x1). (15.31)

Hence, the pressure gradient imposed by v̇ = constant is computed as follows:

dΠ
dx1

= 6µ
(
UP

h2
− 2v̇
h3

)
= f(x1). (15.32)

This relationship shows that the movement of the plates and the flow with
a volume flow rate v̇ within the film lead to a pressure gradient dependent
on x1. In order to compute the pressure P (x1) = Π(x1), we carry out the
following integration, where P (x1 = 0) = P1 = P0 can be set:

P (x1)∫
P0

dΠ
dx1

dx1 = 6µ

x1∫
0

UP

h2(x1)
dx1 − 12µ

x1∫
0

v̇

h3(x1)
dx1. (15.33)

Simple geometric considerations yield:

h(x1) = h1 −
(
h2 − h1

l

)
x1 = h1 − x1 tanα. (15.34)
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Hence, one can derive dh = − tanα dx1 ≈ −α dx1, so that the following
result for the pressure distribution holds:

P (x1) − P0 =
6µ
α

[
UP

(
1
h
− 1
h1

)
− v̇
(

1
h2

− 1
h2

1

)]
. (15.35)

As the ends of the slide bearing are exposed to the same fluid space, P (x1 = l)
= P0 holds and one can derive from (15.35) the following:

v̇ = UP

(
h1h2

h1 + h2

)
. (15.36)

This relationship inserted in (15.32) yields for the pressure gradient in the
fluid:

dP
dx1

=
6µUP

h3
(h− h0) with h0 =

2h1h2

(h1 + h2)
. (15.37)

From this, it readily follows that:

dP
dx1

> 0 at the location h = h1;
dP
dx1

< 0 at the location h = h2

dP
dx1

= 0 at the location h = h0,

i.e. the pressure distribution in the liquid film shows a maximum. For the
pressure distribution itself one can write:

P − P1 =
σµUP

α

[
(h1 − h)(h− h2)
h2 (h1 + h2)

]
. (15.38)

With the above relationships (15.36)–(15.38), the volume flow rate and the
pressure distribution in the film can be computed for the case that the relative
velocity of the moving plates is given and the entire bearing geometry can be
considered to be known. The employment of (15.38) yields P > P1 > P2, i.e.
the film plotted in Fig. 15.2 produces an overpressure due to the indicated
relative movement of the plates. The film is thus able to absorb forces that
act on the upper plate. A pressure maximum develops within the lubrication
film at which the value of the pressure can be computed to be:

Pmax − P1 = µl
UP

h2
1

. (15.39)

In this equation, the approximation (h1 − h2) /h1 ≈ 1 has been introduced.
The resulting pressure force on the plate surfaces can be computed as follows:

KP =

l∫
0

P dx =
σµUP

α2

[
ln
h1

h2
− 2

(h1 − h2)
(h1 + h2)

]
. (15.40)
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The tangential force on the lower plate can be computed to yield:

(Kτ )low =

l∫
0

µ

(
∂U

∂y

)
y=0

dx =
2µUP

α

[
3
(h1 − h2)
(h1 + h2)

− 2 ln
(
h1

h2

)]
(15.41)

and for the upper plate:

(Kτ )up = −
l∫

0

µ

(
∂U

∂y

)
g=h

=
2µUP

α

[
3
(h1 − h2)
(h1 + h2)

− ln
(
h1

h2

)]
. (15.42)

The tangential forces acting on the two surfaces of the plates are not equal
because the flow between the plates is partly dragged along in the film.

The flow lines developing in the film flow are shown in Fig. 15.3, to-
gether with the plotted local velocity profiles. The profiles result from (15.30),
including (15.38) for the computations. The following was introduced:

ρU2
P /l

µUP /h2
=
ρUP l

µ

(
h2

l2

)
� 1. (15.43)

The above considerations were carried out for plane flows, as the intention
of the derivations was to give an introduction into the theory of tribological
flows. Flows in slide bearings usually have to be treated as rotating cylinder

Guide
surface

Upper plate 

Lower plate 

Fig. 15.3 Flow lines and velocity profile in a slide-bearing flow
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Fig. 15.4 Pressure distribution in rotating slide
bearings

Velocity
distribution

Force

Pressure P

e

Ri

Ui

flows with an eccentric bearing positioning of the inner cylinder, relative
to the outer one. This bearing case is plotted in Fig. 15.4, which shows the
developing pressure distribution due to rotation. It is characteristic for this
kind of flow that the direction of the pressure maximum is not situated in the
direction of the load. Details of this flow are treated in the following chapter.
They represent the basis for understanding the fluid-mechanical functioning
of rotating slide bearings.

15.4 Theory of Lubrication in Roller Bearings

A roller bearing comprises a nonrotating bearing and a pivot rotating at
angular velocity ω. The practically employed double-cylinder arrangement is
shown in Fig. 15.5, with the following approximations being valid:

R1 + h ≈ R2 + e cosϕ,
R2 = R1 + e+ δ,
h ≈ δ + e(1 + cosϕ).

The solution of the equations for the fluid motion, which is important for the
lubrication flow in slide bearings, i.e. the rotating fluid motion which develops
between pivot and bearing, probably represents the technically most impor-
tant application of Stokes’ equations. Due to the resultant fluid movement
in a thin film, well-known bearing friction laws result which differ drastically
to those for dry friction laws. To demonstrate this, the motion of the inner
cylinder (pivot) having a radius r = R1 is considered, which rotates at an-
gular velocity ω, while the outer cylinder (bearing), having the radius R2,
is at rest. The internal rotating cylinder thus has a circumferential velocity
U = R1ω. From the representation in Fig. 15.5, one can establish that the
position of the bearing can be given as r = R1 +h. Here h = δ+ e(1+cosϕ).
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e
R

R  = Radius of pivot1

2

x1

x

= 0 : U   = U

= h : U   = 0

R2

R1

= h 

r = R + 

= 0 

e cos

R

R  = Radius of bearing2

1

 Pivot

Bearing

Fig. 15.5 Bearing-pivot arrangement for considered roller bearing

These relationships hold with sufficient precision for the considerations car-
ried out. In this section, δ is the film thickness of the lubrication fluid existing
at ϕ = 180◦ and e the eccentricity of the center point of the bearing with
regard to the position of the center point of the pivot.

On introducing into the considerations that the film thickness δ is very
small with respect to the radius of the pivot, i.e. δ/R1 � 1 holds, then one can
show that ∂Uϕ/∂r � 1/r∂Uϕ/∂ϕ holds. Order of magnitude considerations
of the remaining terms in the momentum equation (5.115) demonstrate that
the following differential equation can be employed for the treatment of film
flows in roller bearings:

1
r

∂P

∂ϕ
= µ

∂2Uϕ

∂r2
. (15.44)

As the r values appearing in the flow field of the film do not vary strongly,
the following approximation holds, because r ≈ R:

1
R

∂P

∂ϕ
= µ

∂2Uϕ

∂r2
. (15.45)

Due to this simplification, it is possible to treat the problem of roller bearings
in a way which comes close to that of the plane slide bearing.

Concerning the integration of the differential (15.45), one can proceed as
follows. The introduction of the variable ξ yields

r = R1 + ξ � dr = dξ. (15.46)

Integration of (15.45) therefore yields:

Uϕ =
1

2R1µ

(
dP
dϕ

)
ξ2 + C1ξ + C2. (15.47)
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With the boundary conditions:

ξ = 0 : Uϕ = U and ξ = h : Uϕ = 0 (15.48)

C1 and C2 can be determined, so that the following relationship holds:

Uϕ =
1

2R1µ

(
∂P

∂ϕ

)
ξ (ξ − h) +

U(h− ξ)
h

. (15.49)

For the volume flow rate, one can derive:

v̇ =

R+h∫
R

Uϕ dr =

h∫
0

Uϕ dξ = − 1
2R1µ

(
∂P

∂ϕ

)
h3

6
+
Uh

2
. (15.50)

Due to the introduction of a mean film thickness h0 with:

v̇ = − 1
2R1µ

(
∂P

∂ϕ

)
h3

6
+
Uh

2
=
Uh0

2
(15.51)

and thus from (15.45), the following pressure gradient can be computed:

∂P

∂ϕ
=

6RµU(h− h0)
h3

(15.52)

and by integration the pressure distribution results:

P (ϕ) = P (0) + 6R1µU

⎡⎣ ϕ∫
0

dϕ
h2

− h0

ϕ∫
0

dϕ
h3

⎤⎦ . (15.53)

With h ≈ δ + e(1 + cosϕ) from Fig. 15.5, the following results:

h(ϕ) = e
(
δ

e
+ 1 + cosϕ

)
= e (α+ cosϕ) . (15.54)

Because P (2π) = P (0) = P0, according to (15.53) it must hold that:

2π∫
0

dϕ
h2

= h0

2π∫
0

dϕ
h3

−→ h0 =

∫ 2π

0
dϕ
h2∫ 2π

0
dϕ
f3

. (15.55)

Considering:
2π∫
0

dϕ

(α+ cosϕ)h
= 2

π∫
0

dϕ

(α+ cosϕ)h
(15.56)



15.4 Theory of Lubrication in Roller Bearings 441

and because:

J1 =

ϕ∫
0

dϕ
(α+ cosϕ)

=
2√
α2 − 1

arctan

(√
α− 1
α+ 1

tan
ϕ

2

)
(15.57)

one obtains for J1(ϕ = π), J2(ϕ = π), etc.

J1 =
2π√

(α2 − 1)
; J2 = − dJ1

dα
=

2πα√
(α2 − 1)3

; J3 = −1
2

dJ2

dα
=
π
(
2α2 + 1

)√
(α2 − 1)5

.

(15.58)
Thus, from (15.51) one can compute

h0 = e
J2

J3
=

2eα
(
α2 − 1

)
(2α2 + 1)

with α =
(
δ

e
+ 1
)
. (15.59)

For the pressure distribution between pivot and bearing (Fig. 15.6), one can
compute

P (ϕ) − P0 = 6R1µU

⎡⎣ ϕ∫
0

dϕ
(α+ cosϕ)2

=
2eα

(
α2 − 1

)
(2α2 + 1)

ϕ∫
0

dϕ
(α+ cosϕ)3

⎤⎦ .
(15.60)

From (15.52), one can see that ∂P
∂ϕ = 0 for h = h0.

On defining with the angle ϕ0 the angular position, where the pressure
shows an extremum, one obtains from (15.54)

e (α+ cosϕ0) =
2eα

(
α2 − 1

)
(2α2 + 1)

(15.61)

cosϕ0 = − 3α
2α2 + 1

. (15.62)

With this relationship, it has been shown that the points of highest and
lowest pressure are positioned on that half of the pivot circumference that
comprises the narrowest film.

Fig. 15.6 Distribution of the normal pressure
on the pivot of a roller bearing
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The derived pressure distribution can be used to compute the share of the
pivot force resulting from the pressure actions only.

By integration, one obtains:

KP =
12πµR2

1U

e2 (2α2 + 1)
√
α2 − 1

. (15.63)

For determining the friction force, the momentum loss due to the motion of
the pivot can be stated as follows:

τrϕ = −µ
(

1
r

∂Ur

∂ϕ
+
∂Uϕ

∂r
− ϕ
r

)
(15.64)

and because Uϕ = U and Ur = 0 hold on the pivot surface r = R1, one can
deduce for τrϕ:

τrϕ = −µ
[(
∂Uϕ

∂ξ

)
ξ=0

− U

R1

]
=

h

2R1

∂P

∂ϕ
+
Uµ

h
+
Uµ

R1
. (15.65)

With (∂P/∂ϕ) = 6RµU(h − h0)/h3 and h0 inserted from (15.60), the
following results for the pressure gradient:

∂P

∂ϕ
=

6R1µU

e2

[
1

(α+ cosϕ)2
− 2α(α2 − 1)

(2α2 + 1)
1

(α+ cosϕ)3

]
(15.66)

and for τrϕ

τrϕ = µ
U(4h− 3h0)

h2
=

2µU
e

[
2

(α+ cosϕ)
− 3α(α2 − 1)

(2α2 + 1)
1

(α + cosϕ)

]
so that the torque can be computed as:

M =

2π∫
0

τrϕR
2
1 dϕ =

2µUR2
1

e

2π(α2 + 2)
(2α2 + 1)

√
α2 − 1

. (15.67)

In practice, the above equations can be employed as follows:

• When KP , µ, U,R, e, δ are known, the extremity of the pivot position and
also α can be determined by means of (15.63).

With (15.67), a friction factor can be introduced as

f =
M

KPR1
=
δ

R1

(
α2 + 2

)
3α

. (15.68)

As δ ≈ e holds in practice, one can deduce

f0 ≈ δ

R1
� M ≈ f0KPR1. (15.69)
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With this value, friction moments can be computed with sufficient accuracy
for application in practice. For large values of α, the following holds for M :

M =
2πµUR2

1

δ
. (15.70)

The above derivations have shown, in an exemplary way, that with the aid
of Stokes’ equations it is possible to treat technically relevant fluid flows in
such a manner that not only technically interesting insights result from the
derivations, but also quantitative results can be obtained.

15.5 The Slow Rotation of a Sphere

Considering the flow in a viscous fluid, which is caused by the slow rotation
of a small sphere, its Reynolds number can be determined as follows:

Re =
UcR

ν
=
ωR2

ν
, (15.71)

where ω is the angular velocity of the rotation. Applying to the equations of
motion in spherical coordinates the conditions that exist due to the motion
of a sphere, as plotted in Fig. 15.7, then for

Uφ = Uφ(r, θ) (15.72)

the following differential equation holds, which represents an equation of
second order. This differential equation can be derived from the general
equations of motion in spherical coordinates:

Fig. 15.7 Flow in a viscous fluid due to the
rotation of a sphere around the x3 axis
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0 =
[

1
r2
∂

∂r

(
r2
∂Uφ

∂r

)
+

1
r2

1
sin θ

∂

∂θ

(
sin θ

∂Uφ

∂θ

)
+

1
r2

1
sin2 θ

∂2Uφ

∂φ2

− Uφ

r2 sin2 θ
+

2
r2 sin θ

∂Ur

∂φ
+

2 cos θ
r2 sin2 θ

∂Uθ

∂φ

]
. (15.73)

Because of the chosen rotational symmetry, the following terms are zero:

2
r2 sin θ

∂Ur

∂φ
,

2 cos θ
r2 sin2 θ

∂Uθ

∂φ
, and

1
r2

1
sin2 θ

∂2Uφ

∂φ2
. (15.74)

Thus, (15.73) obtains the following form:

0 =
∂2Uφ

∂r2
+

2
r

∂Uφ

∂r
+

1
r2
∂2Uφ

∂θ2
+

1
r2

cot θ
∂Uφ

∂θ
− Uφ

r2 sin2 θ
. (15.75)

As boundary condition one can write Uφ(R, θ) = Rω sin θ.
The aim of the solution of the flow problem is to find a function Uφ(r, θ),

which fulfils the differential equation (15.75), and at the same time is able to
fulfil the stated boundary conditions. Such a function proves to be:

Uφ = A(r) sin θ. (15.76)

Insertion of (15.76) into (15.75) yields:

d2A

dr2
sin θ +

2
r

dA
dr

sin θ − A

r2
sin θ +

A

r2
cos2 θ
sin θ

− A

r2
1

sin θ
= 0 (15.77)

and as the differential equation for A(r) to be solved:

d2A

dr2
+

2
r

dA
dr

− 2A
r2

= 0. (15.78)

Integration of this differential equation yields

A(r) = C1r +
C2

r2
. (15.79)

Because Uφ(r → ∞, θ) = 0, it follows that C1 = 0.

From Uφ(R, θ) = Rω sin θ =
C2

R2
sin θ it follows that C2 = ωR3, and hence

one obtains as a solution for the velocity field of the fluid of the rotating
sphere:

Uφ =
ωR3

r2
sin θ. (15.80)

In order to maintain this flow, imposed on the fluid by the rotating sphere, a
moment has to be imposed continuously, which can be computed as derived
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below. From

τr,φ = −µ
[

1
r sin θ

∂Ur

∂φ
+ r

∂

∂r

(
Uφ

r

)]
(15.81)

it follows for the momentum release to the fluid by the rotating sphere:

τR,φ = −µ
[
∂Uφ

∂r
− Uφ

r

]
r=R

= 3µω sin θ (15.82)

and for this the moment can be computed to be:

M = −
π∫

0

(3µω sin θ) (R sin θ)
(
2πR2 sin θ

)
dθ (15.83)

M = −6πµωR3

π∫
0

sin3 θ dθ = 8µπR3ω. (15.84)

Analogous to the above solution concerning the problem of the fluid motion
around a rotating sphere, the creeping fluid motion between two concentri-
cally positioned rotating spheres, with radii R2 and R1 and angular velocities
ω2 and ω1, can be treated. The rotation is to take place again around the x3

axis shown in Fig. 15.7. One obtains once more:

Uφ = A(r) sin θ with A(r) = C1r +
C2

r2
. (15.85)

With the boundary conditions A(R2) = ω2R2 and A(R1) = ω1R1, one
obtains as a solution for the induced velocity field:

Uφ(r, θ) =
sin θ

r2(R3
2 −R3

1)
[
ω2R

3
2

(
r3 −R3

1

)− ω1R
3
1

(
r3 −R3

2

)]
(15.86)

and for the torque one can compute:

M = −8πµ(ω2 − ω1)
R3

2R
3
1

(R3
1 −R3

2)
. (15.87)

As far as the above solution is concerned, it was assumed that the eventually
occurring disturbances of the flow are attenuated by viscous effects, i.e. that
the computed solution is thus stable. On the basis of the treatment of creeping
flows, i.e. smallest Reynolds numbers, this assumption is justified, so that the
above analytically obtained results are very well obtained in experiments also.

15.6 The Slow Translatory Motion of a Sphere

The flow around a sphere is considered in this section, as induced by the
straight and uniform motion of the considered sphere in a viscous fluid. As
far as the equations to be solved are concerned, the problem is equivalent
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to the flow around a stationary sphere in a viscous fluid. The specific fluid
motion is characterized by a sphere of radius R, the fluid velocity U∞, the
density ρ and the dynamic viscosity µ. From these, the Reynolds number of
the flow problem is computed with ν = µ/ρ:

Re =
RU∞
ν

< 1. (15.88)

Stokes (1851) was the first to solve the problem of the translatory motion
of a sphere in a viscous fluid by considering only the pressure and viscosity
terms in the Navier–Stokes equations and neglecting all other terms in the
equations of motion. The same procedure is shown below. In this context,
a stationary sphere, located in the center of a Cartesian coordinate system,
is assumed in the subsequent considerations. For this flow case the following
boundary conditions hold:

U1 = U2 = U3 = 0 for r = R

with r =
√
x2

1 + x2
2 + x2

3, as shown in Fig. 15.8. This figure shows the sphere
whose center is at the origin of a Cartesian coordinate system. Relative to
this system, the coordinates of the spheres r, φ, θ are also indicated, which are
subsequently employed for the treatment of the flow around the considered
sphere. The surface of the sphere is located at r = R. Because of this assump-
tion of the location of the flow boundary, it is advantageous to take the basic
equations of fluid mechanics, for the solution of the flow around a sphere, in
spherical coordinates. In this way, the boundary conditions, imposed by the
presence of the sphere, can be included much more easily into the solution
of the flow problem, as if the treatment of the flow in Cartesian coordinates
was sought.

The following considerations are based on the diagram in Fig. 15.8. At
infinity, i.e. for r → ±∞, the following values for the velocity components
will establish themselves:

Fig. 15.8 Flow around a sphere with
Cartesian and spherical coordinates
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U1 = 0, U2 = 0, U3 = U∞ for r → ∞. (15.89)

As already mentioned, for the solution of the basic equations for flows around
spheres, it seems obvious to employ the equations in spherical coordinates, in
order to be able to include the boundary conditions easily into the solution.
When considering the relevant terms for small Reynolds numbers, one ob-
tains the equations below. They can be derived from the general form of the
basic equations of fluid mechanics, using spherical coordinates. The resulting
equations read as follows for Stokes flows:

∂Ur

∂r
+

1
r

∂Uθ

∂θ
+

2Ur

r
+
Uθ cos θ
r

= 0 (15.90)

∂P

∂r
= µ

(
∂2Ur

∂r2
+

1
r2
∂2Ur

∂θ2
+

2
r

∂Ur

∂r
+

cot θ
r2

∂Ur

∂θ
− 2
r2
∂Uθ

∂θ

−2Ur

r2
− 2 cot θ

r2
Uθ

)
(15.91)

1
r

∂P

∂θ
= µ

(
∂2Uθ

∂r2
+

1
r2
∂2Uθ

∂θ2
+

2
r

∂Uθ

∂r
+

cot θ
r2

∂Uθ

∂θ

+
2
r2
∂Ur

∂θ
− Uθ

r2 sin2 θ

)
. (15.92)

In spherical coordinates, the boundary conditions can be stated as follows:

r = R : Ur(R, θ) = 0 and Uθ(R, θ) = 0 (15.93)

r → ∞ : Ur → U∞ cos θ and Uθ → −U∞ sin θ. (15.94)

Again, the boundary conditions suggest solving the above differential
equations with the following solution ansatzes for Ur and Uθ:

Ur(r, θ) = B(r) cos θ Uθ(r, θ) = −A(r) sin θ (15.95)

and for the pressure:
P (r, θ) = µC(r) cos θ. (15.96)

On inserting these ansatz functions (15.95) and (15.96) into the above
differential equations (15.90)–(15.92), one obtains:

dB
dr

+
2(B −A)

r
= 0 (15.97)

dC
dr

=
d2B

dr2
+

2
r

dB
dr

− 4(B −A)
r2

(15.98)
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C

r
=

d2A

dr2
+

2
r

dA
dr

+
2(B −A)
r2

. (15.99)

From the boundary conditions for flows around spheres, the following
boundary conditions result for the functions A, B and C:

A(R) = 0, B(R) = 0, A(∞) = U∞, and B(∞) = U∞. (15.100)

The solution steps for the differential equations (15.97)–(15.99) can be stated
as follows
From (15.97) it follows that:

A =
1
2
r

dB
dr

+B. (15.101)

Inserting A into (15.99) results in:

C =
1
2
r2

d3B

dr3
+ 3r

d2B

dr2
+ 2

dB
dr
. (15.102)

This differential equation can be differentiated with respect to r and the
result can be inserted into (15.98) to yield:

r3
d4B

dr4
+ 8r2

d3B

dr3
+ 8r

d2B

dr2
− 8

dB
dr

= 0. (15.103)

The resulting Euler differential equation can be solved by integration with
particular solutions being sought of the form B = crk. If one inserts B = crk

into the above differential equations, an equation of fourth order for k results:

k(k − 1)(k − 2)(k − 3) + 8k(k − 1)(k − 2) + 8k(k − 1) − 8k = 0

or, written in a somewhat simplified form:

k(k − 2)(k + 3)(k + 1) = 0 (15.104)

so that the following k-values result as solutions:

k = 0, k = 2, k = −3 and k = −1. (15.105)

Thus, for B(r) the following general solution can be given:

B(r) =
C1

r3
+
C2

r
+ C3 + C4r

2. (15.106)

From the equations for A(r) (15.101) and C(r) (15.102) one obtains:

A(r) = − C1

2r3
+
C2

2r
+ C3 + 2C4r

2 (15.107)

C(r) =
C2

r2
+ 10C4r. (15.108)
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Inserting for A(r), B(r) and C(r) the boundary conditions (15.100), the
integration constants C1, C2, C3 and C4 can be determined:

C1 =
1
2
U∞R3; C2 = −3

2
U∞R; C3 = U∞; C4 = 0. (15.109)

Thus, for Ur(r, θ), Uθ(r, θ) and P (r, θ) the following solutions result:

Ur(r, θ) = U∞ cos θ
(

1 − 3
2
R

r
+

1
2
R3

r3

)
(15.110)

Uθ(r, θ) = −U∞ sin θ
(

1 − 3
4
R

r
− 1

4
R3

r3

)
(15.111)

P (r, θ) = −3
2
µ
U∞R
r2

cos θ. (15.112)

With these relationships, the solution for the velocity and pressure fields for
the flow around a sphere are available. Although obtained by solving a set of
simplified differential equations, which was obtained as a reduced set from the
Navier–Stokes equations by neglecting the acceleration terms, an important
set of results emerged for Ur, Uθ and P. However, the solutions obtained hold
only for Re < 1.

When looking at the different momentum transport terms τrr and τrθ of
the flow problem discussed here, one obtains for ρ = constant:

τrr = −µ
(

2
∂Ur

∂r

)
for r = R is

(
∂Ur

∂r

)
r=R

= 0 (15.113)

and τr,θ = −µ (1
r

∂Ur

∂θ + ∂Uθ

∂r − Uθ

r

)
. From this, one obtains for r = R, be-

cause Ur = Uθ = 0 and therefore also ∂Ur

∂θ = 0 and ∂Uθ

∂θ = 0, at the surface
of the sphere the following expression for the pressure:

P =
3
2
µU∞
R

cos θ (acts on each point vertically (15.114)
to the surface of the sphere).

In addition,

τr,θ = −µ ∂Uθ

∂r
= −3µU∞

2R
sin θ (acts on each point tangentially (15.115)

to the surface of the sphere).

The drag force FD can thus be computed:

FD =
∫∫

F

(P cos θ − τr,θ sin θ) dF (15.116)

FD = −
π∫

0

(
3
2
µU∞
R

cos2 θ +
3µU∞

2R
sin2 θ

)(
2πR2 sin θ

)
dθ (15.117)
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or rewritten and integrated:

FD = −
π∫

0

3πµU∞R(sin θ)dθ = −3πµU∞R (− cos θ)

]π

0

(15.118)

F = −6πµU∞R .

The integration over the pressure acting on the surface of the sphere, and
over the momentum loss to the wall, yields the Stokes drag force W. Here it
is of interest that the share of force coming from the pressure:

FD = −
π∫

0

P cos θ2πR2 sin θ dθ = −3πµU∞R

π∫
0

cos2 θ sin θ dθ (15.119)

with FD = −2πµU∞R amounts only to one-third of the total drag, i.e. two-
thirds of the drag force results thus from the molecular momentum input
to the surface of the sphere. This underlines the importance that must be
attached to the viscosity terms in the Navier–Stokes equations for the solution
of practical flow problems at small Reynolds numbers.

In order to determine now the velocity components in Cartesian coordi-
nates, i.e. U1, U2 and U3, the following equations for the transformation of
coordinates are employed:

x1 = r cos θ � U1 = Ur cos θ − Uθ sin θ (15.120)
x2 = r sin θ cosφ � U2 = Ur sin θ cosφ+ Uθ cos θ cosφ− Uφ sinφ (15.121)
x3 = r sin θ sinφ � U3 = Ur sin θ sinφ+ Uθ cos θ sinφ+ Uφ cosφ.(15.122)

With these equations one obtains:

U1 = U∞

(
1 − 3

4
R

r
− 1

4
R3

r3

)
− 3

4
U∞Rx2

1

R3

(
1 − R

2

r2

)
(15.123)

U2 = −3
4
U∞Rx1x2

R3

(
1 − R

2

r2

)
(15.124)

U3 = −3
4
U∞Rx1x3

R3

(
1 − R

2

r2

)
. (15.125)

For the solution of the Stokes flow around spheres, the above simplified flow
equations (15.90)–(15.92) were employed. To be able to assess how large the
neglected terms of the Navier–Stokes equations are in comparison with the
terms considered in the solution, the acceleration:

ρ

(
DU1

Dt

)
θ=0

= ρ
(
Ur
∂Ur

∂r

)
θ=0

=
3ρ
2
U2∞
r2
R

(
1 − R

2

r2

)(
1 − 3R

2r
+
R3

2r3

)
(15.126)



15.7 The Slow Rotational Motion of a Cylinder 451

is compared with the pressure term:(
∂P

∂r

)
θ=0

= 3µ
U∞R
r3

, (15.127)

i.e. put in relation to one another:

ρ

(
DU1

Dt

)
θ=0(

∂P

∂r

)
θ=0

=
U∞r
2ν

(
1 − R

2

r2

)(
1 − 3R

2r
+
R3

2r3

)
. (15.128)

For large values of r, this relationship shows that the above solution should
be valid only when U∞r/2ν < 1 holds, i.e. for large values of r the requested
condition for the validity of the solution is not fulfilled. As, however, for such
large values for r, the terms that have been employed above, for order of
magnitude considerations, become very small, it is justified to assume that
the velocity and pressure fields in the immediate proximity of the sphere are
not affected by influences of the introduced assumption for the validity of
the obtained solution. In order to achieve the derived solution in a reliable
way, it had to be assumed, however, that (U∞R)/ν � 1. On the basis of
such considerations, it can be assumed that the Stokes solution already does
not hold any longer for the flow around a sphere for Re ≈ 1, i.e. when
Re = (U∞D/ν) ≈ 1. It is a solution for Re < 1.

15.7 The Slow Rotational Motion of a Cylinder

Analogous to the discussion of the slowly rotating flow around a sphere in
Sect. 15.5, the rotating cylinder flow will be discussed in this section. Here, the
flow which occurs in the annular clearance between two concentric rotating
cylinders, with radii R1 and R2, will be investigated. This flow is described
by the equations that are stated below and which, assuming

∂Uϕ

∂ϕ
= 0 and Uϕ = Uϕ(r) (15.129)

can be derived from the general basic equations of fluid mechanics written in
cylindrical coordinates:

ρ
U2

ϕ

r
=
∂P

∂r
=

dP
dr

(15.130)

and

d2Uϕ

dr2
+

d
dr

(
Uϕ

r

)
= 0. (15.131)

These are the differential equations for the pressure P and the flow velocity
Uϕ. From (15.131), one obtains by integration:
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dUϕ

dr
+
Uϕ

r
= 2C1 =

1
r

d
dr

(rUϕ) . (15.132)

By further integration, one obtains:

Uϕ = C1r +
C2

r
(15.133)

with the integration constants C1 and C2. These can be determined from the
boundary conditions:

r = R1 � Uϕ = ω1R1 and r = R2 � Uϕ = ω2R2, (15.134)

i.e. the following equations hold for C1 and C2:

ω1R1 = C1R1 +
C2

R1
and ω2R2 = C2R2 +

C2

R2
(15.135)

and thus

C1 = ω1 +
R2

2

(R2
2 −R2

1)
(ω2 + ω1) (15.136a)

C2 =
R2

1R
2
2

(R2
2 −R2

1)
(ω2 + ω1) . (15.136b)

Inserting C1 and C2 in (15.133), one obtains:

Uϕ =
1

(R2
2 −R2

1)

[(
ω2R

2
2 − ω1R

2
1

)
r − R

2
1R

2
2

r2
(ω2 − ω1)

]
. (15.137)

By means of (15.137), one obtains by integration from (15.130) for the
pressure distribution in the annular clearance:

P (r) = P1 +
ρ

(R2
2 −R2

1)
2

[(
ω2R

2
2 − ω1R

2
1

)2(r2 −R2
1

2

)
− 2R2

1R
2
2 (ω2 − ω1)(

ω2R
2
2 − ω1R

2
1

)
ln
r

R1
− R

4
1R

4
2

2
(ω2 − ω1)

(
1
r2

− 1
R2

1

)]
.

(15.138)
The pressure at the internal cylinder wall was introduced in (15.138) with P1,
in order to determine the constant resulting from the integration of (15.130).
For the pressure distribution along the periphery of the external cylinder,
one can compute from (15.138)

P (R2) = P1 +
ρ

(R2
2 −R2

1)
2

[(
ω2R

2
2 − ω1R

2
1

)2(R2
2 −R2

1

2

)
− 2R2

1R
2
2

(ω2 − ω1)
(
ω2R

2
2 − ω1R

2
1

)
ln
R2

R1
− R

4
1R

4
2

2
(ω2 − ω1)

(
1
R2

2

− 1
R2

1

)]
.

(15.139)
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For the molecular momentum transport, the following relationship holds:

τrϕ = −µ
[
r

d
dr

(
Uϕ

r

)]
. (15.140)

With the aid of the solution (15.137) for Uϕ, one can compute

τrϕ =
−2µ

(R2
2 −R2

1)
R2

1R
2
2

r2
(ω2 − ω1) . (15.141)

The molecular-dependent momentum input into the internal cylinder amo-
unts to

τrϕ (r = R1) =
−2µ

(R2
2 −R2

1)
R2

2 (ω2 − ω1) (15.142)

and for the external cylinder to

τrϕ (r = R2) =
−2µ

(R2
2 −R2

1)
R2

1 (ω2 − ω1) . (15.143)

The circumferential forces acting on the cylinder can therefore be computed
as follows:

Fr(r = R1) = τrϕ (r = R1) 2πR1L = F1

Fϕ(r = R2) = τrϕ (r = R2) 2πR2L = F2.
(15.144)

From the relationships for the forces, one can see that the resulting circum-
ferential forces are directly proportional to the viscosity, a fact which is used
in the production of viscosimeters to measure the viscosities of fluids.

15.8 The Slow Translatory Motion of a Cylinder

The considerations carried out at the end of Sect. 15.6 show that perform-
ing fluid-flow computations with induced simplifications into basic equations,
can lead to solutions for which, in some subdomains of the flow field, the as-
sumptions made for the simplifications are no longer valid. This fact has
resulted in some regions for the Stokes solution of the flow around a sphere,
e.g. in regions where U∞r/ν ≥ 1. In these regions far away from the sphere,
the Reynolds number of the flow becomes too large. There, the acceleration
terms, neglected in the Stokes solution ansatz, prove to be no longer small
in comparison with the considered pressure terms. Basically, unsatisfactory
argumentations had to be used to justify the validity of the obtained solution.
Strictly, only experimental investigations for determining the drag force on
the sphere could confirm the correctness of the argumentation.

The problematic nature shown for the flow around a sphere becomes even
clearer when one looks at the corresponding cylindrical problem, i.e. the
two-dimensional flow around a cylinder. It shows indeed that for the plane
flow around a cylinder of a viscous fluid no solution at all can be found by
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Fig. 15.9 Diagram of the flow around a cylinder

employing the differential equations (15.4) or (15.6) and (15.7) or (15.8)–
(15.11). It is thus very problematic not to employ the complete set of basic
equations when solving flow problems, but to use reduced sets of differential
equations. The latter approach is, however, often necessary for the reason
that analytical solutions for the complete set of the basic equations are not
available.

For the flow around a cylinder, shown in Fig. 15.9, the following differential
equations hold, when assuming a flow possessing a small Reynolds number,
i.e. to postulate the validity of the Stokes equations:

∂U1

∂x1
+
∂U2

∂x2
= 0 (15.145)

∂P

∂x1
= µ

(
∂2U1

∂x1
2

+
∂2U1

∂x2
2

)
(15.146)

∂P

∂x2
= µ

(
∂2U2

∂x1
2

+
∂2U2

∂x2
2

)
(15.147)

with the boundary conditions:

U1 = U2 = 0 for r = R (15.148)

U1 = U∞, U2 = 0 for r → ∞. (15.149)

The analytical solution that can now be determined for the above differen-
tial equations, proves to be of a form such that the boundary conditions
introduced for r = R and r → ∞ lead to two solutions that contradict one
another. Thus, it is consequently not possible to solve the simplified flow
equations (15.145)–(15.147), in which the acceleration terms were neglected,
for the boundary conditions stated in (15.148) and (15.149). This insight
into the problem suggests leaving the acceleration terms in the basic equa-
tions. For the plane problem of the flow around a cylinder, for ρ = constant
and stationary flow conditions, one obtains the following set of differential
equations:

∂U1

∂x1
+
∂U2

∂x2
= 0 (15.150)
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ρ

(
U1
∂U1

∂x1
+ U2

∂U1

∂x2

)
= − ∂P

∂x1
+ µ

(
∂2U1

∂x1
2

+
∂2U1

∂x2
2

)
(15.151)

ρ

(
U1
∂U2

∂x1
+ U2

∂U2

∂x2

)
= − ∂P

∂x2
+ µ

(
∂2U2

∂x1
2

+
∂2U2

∂x2
2

)
. (15.152)

With U1 = U∞ + u1 and U2 = u2, the following set of equations results,
assuming U∞ � u1 to yield the generalized Stokes equations:

∂u1

∂x1
+
∂u2

∂x2
= 0 (15.153)

ρU∞
∂u1

∂x1
= − ∂P

∂x1
+ µ

(
∂2u1

∂x1
2

+
∂2u1

∂x2
2

)
(15.154)

ρU∞
∂u2

∂x2
= − ∂P

∂x2
+ µ

(
∂2u2

∂x1
2

+
∂2u2

∂x2
2

)
. (15.155)

Introducing the potential function φ(x1, x2), one obtains with
∂2φ

∂xi
2

= 0,

according to a solution path proposed by Lamb (1911), the following ansatz
for u1 and u2:

u1 =
∂φ

∂x1
+

1
2k

∂χ

∂x1
− χ and u2 =

∂φ

∂x2
+

1
2k

∂χ

∂x2
, (15.156)

where the quantities φ and χ fulfil the following differential equations:

∂2φ

∂x1
2

+
∂φ

∂x2
= 0 and

∂2χ

∂x1
2

+
∂2χ

∂x2
2

− 2k
∂χ

∂x1
= 0. (15.157)

Equations (15.153)–(15.155) are all fulfilled, when one inserts for the pressure:

P = P∞ − ρU∞
∂φ

∂x1
. (15.158)

For φ(x1, x2), the following ansatz can be found, in order to fulfil the
differential equation (15.157):

φ = A0 ln r +A1
∂ ln r
∂x1

+A2
∂2 ln r
∂x1

2
+ · · · . (15.159)

For χ(x1, x2), one introduces:

χ = ψ exp(kx1) (15.160)

so that for the determination of ψ the following differential equation results:

∂2ψ

∂x1
2

+
∂2ψ

∂x2
2

− k2ψ = 0 (15.161)
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or in cylindrical coordinates:

∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2
∂2ψ

∂ϕ2
− k2ψ = 0. (15.162)

On now looking for the solution of this equation, which depends on r, one
obtains the following ordinary differential equation:

d2φ

dr2
+

1
r

dφ
dr

− k2φ = 0. (15.163)

This differential equation is determined by the Bessel function K0(kr) and
its derivatives, so that the following ansatz seems reasonable:

χ = −U∞ + exp(kx)
[
B0K0(kr) +B1

∂K0(kr)
∂x1

+B2
∂2K0(kr)
∂x1

2
+ · · ·

]
.

(15.164)

Because
∂(ln r)
∂x1

=
x1

r2
=

cosϕ
r

and
∂2 ln r
∂x1

2
= −cos 2θ

r2
(15.165)

it can be derived that:

φ = A0 ln r +A1
cosϕ
r

−A2
cos 2ϕ
r2

. (15.166)

For the function χ one can write, on introducing the Mascheroni constant,
γ = 1.7811 or ln γ = 0.57722:

χ = −U∞ −B0

[
ln
(γ

2
kr
)

+ kr cosϕ ln
(γ

2
kr
)]

−B1
cosϕ
r

(15.167)

so that for the velocity field in cylindrical coordinates one can write:

Ur(r, ϕ) =
A0

r
− A1 cosϕ

r2
+ U∞ cosϕ−B0

[
1

2kr
+

1
2

cosϕ (15.168)

−1
2

cosϕ ln
(γ

2
kr
)]

+B1
cosϕ
2kr2

Uϕ(r, ϕ) = −A1 sinϕ
r2

− U∞ sinϕ−B0
sinϕ

2
ln
(γ

2
kr
)

+
B1 sinϕ

2kr2
. (15.169)

Including the boundary conditions for r = R, one obtains:

A0

R
− B0

2kR
= 0 � A0 =

B0

2k
(15.170)

A1

R2
+ U∞ − B0

2

[
1 − ln

(γ
k
kR
)]

+
B1

2kR2
= 0 (15.171)

−A1

R2
− U∞ − B0

2

[
ln
(γ

2
kR
)]

+
B1

2kR2
= 0. (15.172)

Thus, one obtains for the integration constants:
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A0 =
4ν

1 − 2 ln
(

γ
2kR

) =
2U∞

k
[
1 − 2 ln

(
γ
2kR

)] (15.173)

B0 =
4U∞

1 − 2 ln
(

γ
2kR

) (15.174)

A1 − B1

2k
=

−U∞R2

1 − 2 ln
(

γ
2kR

) . (15.175)

This yields for the velocity components in proximity of the cylinder:

Ur(r, ϕ) =
U∞ cosϕ

1 − 2 ln
(

γ
2kR

) [−1 +
R2

r2
+ 2 ln

( r
R

)]
(15.176)

Uϕ(r, ϕ) =
−U∞ sinϕ

1 − 2 ln
(

γ
2kR

) [1 − R
2

r2
+ 2 ln

( r
R

)]
. (15.177)

For large distances the following equations hold for the velocity components:

Ur(r, ϕ) =
A0

r
+

1
2
B0 exp (kr cosϕ) [K ′

0(kr) − cosϕK0(kr)] (15.178)

Uϕ(r, ϕ) =
1
2
B0 exp (kr cosϕ)K0(kr) sinϕ, (15.179)

where for large arguments (kr) the following asymptotic relationships hold:

K0(kr) ≈
√
π

2kr
exp(−kr) (15.180)

and

K ′
0(kr) ≈ −

√
π

2kr
exp(−kr). (15.181)

The pressure can be computed as:

P = P∞ − ρU∞A0
cosϕ
r

+ ρU∞A1
cos 2ϕ
r2

. (15.182)

For the drag force, the following equation results:

FD = 2πρU∞A0. (15.183)

When A0 is inserted, the Lamb equation for the drag force per unit length
of a cylinder results:

FD =
8πµU∞[

1 − 2 ln
(

γ
2kR

)] . (15.184)

Although the acceleration terms are taken into consideration, the above
relation for FD, i.e. (15.184), can only be employed for small values for
Re = U∞R

ν < 1.
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Fig. 15.10 Stream lines for flows around a cylinder at different Reynolds numbers

Fig. 15.11 Drag coefficients for the flows around cylinders

If one does not want to have the above limitations of the derived solution
of the considered flow problem, i.e. if one seeks a solution without any re-
strictions for the flow around a cylinder, one has to solve the complete set of
equations numerically. Such solutions are nowadays possible for Re ≤ 10.000
by direct solutions of the continuity and Re−equations. They lead to the
results shown in Fig. 15.10 for the stream lines of the flows. In Fig. 15.11, so-
lutions for the drag coefficient of fluid flows for small Reynolds numbers are
shown. Fluid flows information for small Re−number flows around spheres
are provided in Fig. 15.12.
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Fig. 15.12 Recirculating flow regions behind spheres, from the book of Van Dyke
[15.8]

15.9 Diffusion and Convection Influences on Flow Fields

In paragraphs 3 and 5 the analogy of heat conduction and molecular momen-
tum transport is underlined and, in order to emphasize the significance of
this analogy, the general form of the momentum equations was transformed
into the transport equation for vorticity (see Chap. 5):

ρ

(
∂ωj

∂t
+ Ui

∂ωj

∂xi

)
= ρωj

∂Uj

∂xi
+ µ

∂2ωj

∂xi
2
. (15.185)

For the two-dimensional flow around a cylinder, ω3 = ω is the only compo-
nent which is unequal to zero, and this fact allows one to write the vorticity

equation as a scalar equation. Because ρωi
∂Uj

∂xi
= 0, this equation reads:

ρ

(
∂ω

∂t
+ Ui

∂ω

∂xi

)
= µ

∂2ω

∂xi
2
. (15.186)

On comparing this equation with the heat or mass transport equations for
convective and diffusive transport:

ρcv

(
∂T

∂t
+ Ui

∂T

∂xi

)
= λ

∂2T

∂xi
2

and ρ
(
∂c

∂t
+ Ui

∂c

∂xi

)
= D

∂2c

∂xi
2
. (15.187)

one sees that one can understand the influence of walls on flows in such a way,
that at the boundary of the body the vorticity ω is produced. The vorticity
is then transported from the body to the fluid, by molecular diffusion, into
the moving fluid, see Fig. 15.13.

In order to understand now the interaction between convection and diffu-
sion, it is thus possible to consider the diffusive and convective heat transport,
and to transfer the insight gained in this way to the vorticity and its transport
in the flow field.

On considering a heated cylinder with a small diameter when a sudden
temperature increase takes place, it can be seen that in a time ∆t, a heat
front dissipates as follows, due to heat conduction:
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R   ~ tcp

2

R   ~ t2

Expansion
of heat

Expansion
of vorticity

Fig. 15.13 Spreading of head and momentum by diffusion only

R2
λ = const

λ

ρcv
∆t, (15.188)

where Rλ is a measure of the radial propagation, the heat has moved in the
time ∆t. For the vorticity one can write in an analogous way

R2
µ = const ν∆t. (15.189)

For the diffusion velocity one thus obtains:

uλ =
Rλ

∆t
= const

1
Rλ

(
λ

ρcv

)
(15.190)

or
uµ =

Rµ

∆t
= const

1
Rµ
ν. (15.191)

When a fluid now moves convectively at a small flow velocity U1 = U∞,
the state illustrated in Fig. 15.14 results, which is characterized by the fact
that a point can be found on the x1 axis, at which the dissipation velocity is
Uµ = U∞, so that

(x1)λ = Rλ = const
1
U∞

(
λ

ρcv

)
(15.192)

or
(x1)µ = Rµ = const

ν

U∞
. (15.193)

With this it can be understood that in the presence of an inflow the influence
of the cylinder on the temperature or velocity field can have an effect in a
limited area only, as Fig. 15.14 shows. To the right of point (x1)µ, there is no
information at all about the body lying in Fig. 15.14. The insights explained
in Fig. 15.14 are important when one has to find in the inflow domain of a



References 461

U d of order 1

Undisturbed
oncoming flow

Boundary of region with 
velocity and temperature 
influence

Cylinder

.
x1(  )

x2

x1

Fig. 15.14 Finite area for the dissipation of heat or rotational momentum for small
Reynolds numbers

cylinder the area in which inflow conditions have to be imposed that are not
disturbed by the cylinder. According to (15.193), one obtains(x1

D

)
µ
> const

ν

U∞D
=

const
Re

(15.194)

or (x1

D

)
λ
> const

ν

U∞D

(
λ

µcv

)
= const

1
RePr

. (15.195)

Equation (15.194) shows that with decreasing Reynolds number the inte-
gration area increases, which has to be covered with a numerical grid when
numerical integration procedures are employed, in order to install the bound-
ary conditions holding at infinity. An additional extension of the computation
area results for Peclet numbers, Pe = (RePr) < 1, i.e. for Pr < 1, when the
temperature field of a flow around a cylinder also has to be computed.
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Chapter 16

Flows of Large Reynolds Numbers
Boundary-Layer Flows

16.1 General Considerations and Derivations

In Chap. 15, flows that were characterized by small Reynolds numbers (Re)
were considered, i.e. fluid flows were treated that were diffusion-dominated
and where convection played a secondary role. This can be expressed by small
Re, e.g. when taking Re as a ratio of forces:

Re =
UcLc

νc
=
ρcU

2
c

µc
Uc

Lc

=
acceleration forces

viscosity forces
, (16.1)

where ρc and µc represent the density and viscosity characterizing a fluid,
respectively, Uc represents a characteristic velocity and Lc is a length
characterizing the flow domain.

Equivalent considerations on the significance of Re can, however, also be
expressed by the ratio of times typical for diffusion and convection processes
in the considered fluid flows:

Re =
UcLc

νc
=
L2

c/νc
Lc/Uc

=
diffusion times

convection times
(16.2)

or by the corresponding velocities that are typical for diffusion and convection
processes:

Re =
UcLc

νc
=

Uc

νc/Lc
=

convection velocities
diffusion velocities

. (16.3)

Considering flows of large Re, i.e. flows in which the acceleration forces are
large in comparison with the viscous forces, or in which the diffusion times
are large in comparison with the convection times, or the convection velocities
are large in comparison with the diffusion velocities, it can be shown that,
e.g., the influences of wall boundaries on flows are limited to small areas near
the walls. This is sketched in Fig. 16.1, which shows the flow around a flat
plate and indicates there the small region near the wall, where viscous influ-
ences can be observed. The contents of this figure results from the extended

463
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Fig. 16.1 Area limitations for diffu-
sion processes with Re ≈ 1 and in
the case of a flow around a plate for
Re � 1

Undisturbed flow

U
ν >> 1

U ~~ 1

Wall near region for 
high Re-numbers

ν

considerations which were carried out at the end of Chap. 15. Applying the
insights gained from Sect. 15.9 to the flow around a flat plate, a large region
results for Re ≈ 1, in which diffusion processes are present. In this region,
information about the presence of the plate (around which the flow passes)
is available. When, on the other hand, conditions exist that are character-
ized by Re � 1, the influence of the diffusion remains restricted to a small
region very close to the plate. There, a so-called wall boundary layer forms.
Boundary layers of this kind are thus the characteristic properties of flows
of high Re. Such flows can therefore be subdivided into body-near regions,
where viscous influences on flows have to be considered, and regions that
are distant from the wall, which can be regarded as being free from viscous
influences.

The above considerations show clearly that special treatments are neces-
sary, in order to derive the equations that can be employed as approximations
of the Navier–Stokes equations for Re � 1 to solve flow problems. Looking
for derivations where the viscous terms, because Re� 1, are completely ne-
glected in the differential equations describing the flow results in the Euler
equations:

standardized Euler equation︷ ︸︸ ︷
ρ∗
[
Lc

tcUc

∂U∗
j

∂t∗
+ U∗

i

∂U∗
j

∂x∗i

]
= − ∆Pc

ρcU2
c

∂P ∗

∂x∗j
+

⇒0 because Re⇒∞︷ ︸︸ ︷
νc
UcLc

∂2U∗
j

∂x∗i
2 . (16.4)

These equations are not applicable to solving wall boundary-layer flow prob-
lems. For the derivation of the boundary-layer equations, one has rather to
apply considerations as proposed by Prandtl (1904, 1905). They are based on
order of magnitude considerations of the terms in the Navier–Stokes equa-
tions, taking into consideration the differences in the times and velocities
in diffusion and convection transport processes. If one neglects the viscous
terms entirely, this would be equivalent to a reduction of the order of the
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Point at edge
of boundary layer

Start of flat plate

x1 = x where x = the boundary-layer coordinate in the flow direction

x2 = y where y = the boundary-layer coordinate vertical to the flow direction

Fig. 16.2 Boundary-layer thickness along a plane flat plate and its development

basic equations describing the fluid flow. Hence it would not be possible to
implement all the boundary conditions characterizing a flow, and flows that
result in this way from the differential equations as solutions would show
considerable deficits.

The transition from the generally valid Navier–Strokes equations to the
boundary-layer equations, as indicated in Fig. 16.1, is an essential step which
has to be taken into consideration, in order to admit only such simplifications
of the Navier–Stokes equations which result in physically still reasonable
solutions. The resultant equations are called the boundary-layer equations.

When choosing L as a distance in the flow direction along the flat plate flow
indicated in Fig. 16.2, δ is the resultant boundary-layer thickness, Fig. 16.1
showing that δ � L holds for large Re. Considering the times:

∆tc = L/U∞ convection time,
∆tD = δ2/ν diffusion time

one obtains, as ∆tc = ∆tD for the boundary point δ(L):

L

U∞
=
δ2

ν
�

δ

L
=

(
1
U∞δ
ν

)
. (16.5)

The boundary-layer thickness δ, normalized with the development length,
is proportional to the reciprocal of the Reynolds number, formed with the ex-
ternal flow velocity and the boundary-layer thickness: (δ/L) = 1/Reδ. Paying
attention to the context in (16.3), it results for the diffusion velocity occur-
ring in the y-direction that UD = Uy ≈ ν/δ, so that for considerations of
the orders of magnitude of the terms in the Navier–Stokes equations, the
following normalization can be carried out:

x∗ =
x

L
; y∗ =

y

δ
; U∗

x =
Ux

U∞
; U∗

y =
Uy

ν/δ
; t∗ =

t

L/U∞
; P ∗ =

P

P∞
.

(16.6)
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Introducing these normalized quantities into the two-dimensional Navier–
Stokes equations with constant fluid properties:

∂U1

∂x1
+
∂U2

∂x2
= 0, (16.7)

ρ

[
∂U1

∂t
+ U1

∂U1

∂x1
+ U2

∂U1

∂x2

]
= − ∂P

∂x1
+ µ

[
∂2U1

∂x1
2

+
∂2U1

∂x2
2

]
, (16.8)

ρ

[
∂U2

∂t
+ U1

∂U2

∂x1
+ U2

∂U2

∂x2

]
= − ∂P

∂x2
+ µ

[
∂2U2

∂x1
2

+
∂2U2

∂x2
2

]
(16.9)

the below-stated derivations can be carried out and for the continuity
equation one obtains:

U∞
L

∂U∗
x

∂x∗
+
ν

δ2
∂U∗

y

∂y∗
= 0 �

∂U∗
x

∂x∗
+

νL

U∞δ2︸ ︷︷ ︸
≈1

∂U∗
y

∂y∗
= 0, (16.10)

where the term νL/U∞δ2 = (L/U∞)/(δ2/ν) is the relationship for the ratio
of the convection and diffusion times. According to (16.5), both terms are
equal, so that both gradients in the continuity equation are of the same order
of magnitude and therefore have to be carried along in the boundary-layer
equations. Thus the continuity equation for boundary-layer flows reads:

∂Ux

∂x
+
∂Uy

∂y
= 0. (16.11)

For the momentum equation in the x-direction, the normalization yields:

ρ

[
U2∞
L

∂U∗
x

∂t∗
+
U2∞
L
U∗

x

∂U∗
x

∂x∗
+
νU∞
δ2
U∗

y

∂U∗
x

∂y∗

]
= −P∞

L

∂P ∗

∂x∗
+ µ

[
U∞
L2

∂2U∗
x

∂x∗2 +
U∞
δ2

∂2U∗
x

∂y∗2

]
. (16.12)

On dividing the entire equation by ρU2∞/L, one obtains:

∂U∗
x

∂t∗
+ U∗

x

∂U∗
x

∂x∗
+

νL

U∞δ2︸ ︷︷ ︸
≈1

U∗
y

∂U∗
x

∂y∗
= − P∞

ρU2∞

∂P ∗

∂x∗
+

ν

U∞L︸ ︷︷ ︸
δ/(LReδ)

∂2U∗
x

∂x∗2

+
νL

U∞δ2︸ ︷︷ ︸
≈1

∂2U∗
x

∂y∗2 . (16.13)

With δ/L ≈ 1/Reδ, the first of the two viscous terms in (16.13), multiplied
by 1/Re2δ, can be regarded as negligible for Reδ � 1. Thus for the boundary
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layer form of the x-momentum equation the following equation holds:

ρ

[
∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y

]
= − ∂P

∂x
+ µ

∂2Ux

∂y2
. (16.14)

Analogous derivations yield for the two-dimensional y-momentum equation:

ρ

[
νU∞
δL

∂U∗
y

∂t∗
+
U∞ν
δL

U∗
x

∂U∗
y

∂x∗
+
ν2

δ3
U∗

y

∂U∗
y

∂y∗

]
= −P∞

δ

∂P ∗

∂y∗

+ µ

[
ν

δL2

∂2U∗
y

∂x∗2 +
ν

δ3
∂2U∗

y

∂y∗2

]
. (16.15)

On dividing this equation also by ρU2
∞/L, the following equation results:

ν

δU∞

∂U∗
y

∂t∗
+

ν

δU∞
U∗

x

∂U∗
y

∂x∗
+

ν

U∞δ
νL

U∞δ2︸ ︷︷ ︸
≈1

U∗
y

∂U∗
y

∂y∗
= − P∞L

ρU2∞δ
∂P ∗

∂y∗

+
ν

U∞δ
ν

U∞L
∂2U∗

y

∂x∗2 +
(
ν

U∞δ

)2
L

δ

∂2U∗
y

∂y∗2 (16.16)

or rewritten:

1
Reδ

[
∂U∗

y

∂t∗
+ U∗

x

∂U∗
y

∂x∗
+ U∗

y

∂U∗
y

∂y∗

]
= − P∞

ρU2∞
Reδ

∂P ∗

∂y∗

+

[
1
Re3δ

∂2U∗
y

∂x∗2 +
1
Reδ

∂2U∗
y

∂y∗2

]
. (16.17)

From (16.17), it can be seen that all acceleration and viscous terms can be
neglected when compared with terms in (16.14). Because Re � 1, they are
very small in comparison with the corresponding terms in the x-momentum
equation (16.14). Thus the y-momentum equation results in the following
equation:

∂P

∂y
= 0. (16.18)

This equation expresses the fact that the pressure in a boundary layer, vertical
to the flow direction, does not change. The boundary layer thus experiences,
up to the wall, the pressure change imposed in the x-direction on the outer
flow. This means for many problem solutions that the pressure distribution
P (x, y) = P∞(x) is known, so that, through the boundary-layer equations for
the solution of flow problems, only the velocity components Ux and Uy have
to be determined.



468 16 Flows of Large Reynolds Numbers

Looking at the above derivations, the two-dimensional boundary-
layer equations can be stated as follows, on the basis of the above
order-of-magnitude considerations:

∂Ux

∂x
+
∂Uy

∂y
= 0, (16.19a)

ρ

[
∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y

]
= − ∂P

∂x
+ µ

∂2Ux

∂y2
, (16.19b)

∂P

∂y
= 0. (16.19c)

Equations (16.19) are, as can easily be shown, a set of parabolic differential
equations. They can be solved with the corresponding boundary conditions
for some flow geometries and thus make it possible to compute the velocity
distributions in boundary-layer flows with simpler equations than the Navier–
Stokes equations. There are numerous text books that describe the above
boundary-layer equations, e.g. see refs [16.4] to [16.9]

16.2 Solutions of the Boundary-Layer Equations

In the preceding section the boundary-layer equations were derived:

∂Ux

∂x
+
∂Uy

∂y
= 0, (16.20a)

ρ

[
∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y

]
= − ∂P

∂x
+ µ

∂2Ux

∂y2
, (16.20b)

∂P

∂y
= 0. (16.20c)

For the outer flow, where no viscous effects occur, the pressure distribution
can be determined through the Euler form of the momentum equation:

∂U∞
∂t

+ U∞
∂U∞
∂x

= −1
ρ

∂P

∂x
. (16.21)

Because of (16.20c), the momentum equation (16.20b) can be written as
follows, taking (16.21) into account:

∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
=
∂U∞
∂t

+ U∞
∂U∞
∂x

+ ν
∂2Ux

∂y2
. (16.22)

It is necessary to solve this equation together with (16.20a), in order to
compute boundary-layer flows. However, the validity of this equation has
strictly been verified only for Cartesian coordinates. It should be pointed
out, however, that it holds also for curved coordinates, when the radius of
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curvature of the flow lines is large in comparison with the boundary layer
thickness δ.

In order to solve the boundary layer equation, it is recommended to
introduce the stream function Ψ , so that the continuity equation is eliminated:

U1 =
∂Ψ

∂x2
=
∂Ψ

∂y
= Ux; U2 = − ∂Ψ

∂x1
= − ∂Ψ

∂x
= Uy. (16.23)

Thus, according to (16.22), the following partial differential equation for the
stream function Ψ can be derived:

∂2Ψ

∂t∂y
+
∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
=
∂U∞
∂t

+ U∞
∂U∞
∂x

+ ν
∂3Ψ

∂y3
. (16.24)

We therefore have to deal with a partial differential equation of third order,
which has to be solved for the stream function Ψ(x, y, t). Hence the solution
of the equation requires one to state three boundary conditions and suitable
initial conditions. Attention has to be paid to the fact that the different
boundary-layer flows are given by the corresponding boundary and initial
conditions. The transport processes occurring in the boundary-layers are all
described, however, by the differential equation for Ψ .

When stationary flow conditions exist, from (16.24) the following equation
results for ∂

∂t

(
∂Ψ
∂x

)
= 0:

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
= U∞

dU∞
dx

+ ν
∂3Ψ

∂y3
. (16.25)

This equation was stated by Blasius (1908) for the case of a flow over a plane
plate with U∞ = constant and was also solved by him analytically.

For the case of stationary boundary layer flows, von Mises (1927) at-
tributed the boundary-layer equations to a non-linear partial differential
equation of second order, which corresponded to the equation typical for heat
conduction. The essential points of the derivation of the von Mises differential
equation can be summarized as shown below.

The derivations proposed by von Mises start also from the stream func-
tion Ψ , which is, however, introduced into the derivation as an independent
variable, so that the following holds:

Ux(x, y) = Vx(x, Ψ) and Uy(x, y) = Vy(x, Ψ). (16.26)

With this, the relationships below can be stated:

∂Ux

∂x
=
∂Vx

∂x
+
∂Vx

∂Ψ

∂Ψ

∂x
=
∂Vx

∂x
− Uy

∂Vx

∂Ψ
, (16.27)

∂Ux

∂y
=
∂Vx

∂Ψ

∂Ψ

∂y
= Ux

∂Vx

∂Ψ
= Vx

∂Vx

∂Ψ
. (16.28)
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For the second derivatives with respect to y, one obtains the following
intermediate result:

∂2Ux

∂y2
=

∂

∂y

(
∂Ux

∂y

)
=
∂

∂y

(
Ux
∂Vx

∂Ψ

)
= U2

x

∂Vx

∂Ψ
+ Ux

(
∂Vx

∂Ψ

)2

= Ux

[
Ux
∂Vx

∂Ψ
+
(
∂Vx

∂Ψ

)2
]

= Ux
∂

∂Ψ

(
Vx
∂Vx

∂Ψ

)
. (16.29)

Thus the following second derivative can be deduced:

∂2Ux

∂y2
= Ux

∂

∂Ψ

[
∂

∂Ψ

(
1
2
V 2

x

)]
= Vx

∂2

∂Ψ2

(
1
2
V 2

x

)
. (16.30)

On inserting (16.27)–(16.30) into the boundary layer form of the stationary
momentum equation, the following results:

Vx
∂Vx

∂x
= U∞

dU∞
dx

+ νVx
∂2

∂Ψ2

(
V 2

x

2

)
(16.31)

or rewritten:
∂V 2

x

∂x
=

dU2∞
dx

+ νVx
∂2

∂Ψ2

(
V 2

x

)
. (16.32)

If one now introduces a new function:

V(x, Ψ) = U2
∞ − V 2

x (16.33)

so that Vx =
√
U2∞ − V holds, the differential equation (16.32) adopts the

so-called von Mises form:

∂V
∂x

= ν
√
U2∞ − V ∂

2V
∂Ψ2

. (16.34)

The von Mises differential equation has to satisfy the boundary conditions:

Ψ = 0 : Ux = 0, i.e. V = U2
∞,

Ψ → ∞ : Ux → U∞, i.e. V = 0.
(16.35)

The above general solution ansatz for the boundary layer equations are
applied to different flows in subsequent chapters.

16.3 Flat Plate Boundary Layer (Blasius Solution)

The flow over a flat plate, sketched in Fig. 16.3, represents the flow of a fluid
having constant fluid properties and also a constant inflow velocity. This
inflow hits, at the origin of the x–y coordinate system, an infinitely extended
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U00
U00

xU ( y) for  x = constant

x

{

Fig. 16.3 Formation of a plate boundary layer with ∂P
∂x

= 0 and dU∞
dx

= 0

flat plate, positioned in the x–y coordinate system, so that along the flat plate
a boundary layer flow forms. For the latter the boundary layer equations
(16.20a)–(16.20c) hold, with the simplifications according to (16.21):

∂P

∂x
= 0 (16.36)

and
∂U∞
∂x

=
dU∞
dx

= 0 (16.37)

so that the boundary layer equations hold as follows:

Ux
∂Ux

∂x
+ Uy

∂Ux

∂y
= ν

∂2Ux

∂y2
, (16.38)

∂Ux

∂x
+
∂Uy

∂y
= 0 (16.39)

with the boundary conditions:

y = 0 : Ux = Uy = 0 and y → ∞ : Ux → U∞. (16.40)

On introducing the stream function Ψ for the elimination of the continuity
equation:

Ux =
∂Ψ

∂y
and Uy = − ∂Ψ

∂x
(16.41)

one obtains the following differential equation for the x-momentum transport:

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
= ν

∂3Ψ

∂y3
. (16.42)

Blasius proposed a similarity solution for (16.42), such that the solution was
obtained with the ansatz

Ux

U∞
= F (η) with η = y

√
U∞
νx
. (16.43)
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This ansatz takes into consideration that η ≈ y

δ
with δ ≈ √

νt =
√
νx

U∞
can

be set. For the stream function one can write

Ψ =
∫ y

0

Ux dy = U∞

√
νx

U∞

∫ η

0

F (η) dη =
√
U∞νxf(η). (16.44)

For the different terms in (16.38) and (16.39), the following relationships can
thus be derived:

Ux =
∂Ψ

∂y
=

dΨ
dη

∂η

∂y
= U∞

df
dη

= U∞f ′(η), (16.45a)

Uy = − ∂Ψ
∂x

= −
[

1
2

√
U∞ν
x
f(η) +

∂Ψ

∂η

∂η

∂x

]

= −1
2

√
νU∞
x
f(η) −

√
U∞νx

(
− η

2x

)
f ′(η) (16.45b)

or rewritten for Uy:

Uy =
1
2

√
νU∞
x

(ηf ′(η) − f(η)) . (16.46)

For the further terms in (16.38) and (16.39), we can deduce

∂Ux

∂x
=
∂2Ψ

∂x∂y
= −U∞

2
η

x
f ′′(η), (16.47)

∂Ux

∂y
=
∂2Ψ

∂y2
= U∞

√
U∞
νx
f ′′ (η) , (16.48)

∂2Ux

∂y2
=
∂3Ψ

∂y3
=
U2∞
νx
f ′′′ (η) . (16.49)

On introducing all the derived terms into (16.42), one obtains

−U
2
∞

2x
ηf ′f ′′ +

U2
∞

2x
[ηf ′ − f ] f ′′ = ν

U2
∞
xν
f ′′′ (16.50)

or, after complete rearrangement:

ff ′′ + 2f ′′′ = 0. (16.51)

This is the ordinary differential equation derived by Blasius in his Göttin-
gen doctoral thesis. As he showed, it can be integrated numerically. This
integration results, with the following boundary conditions for f and f ′:

η = 0 : f = 0; f ′ = 0 and η → ∞ : f ′ → 1 (16.52)
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Fig. 16.4 The numerical solution of the
Blasius boundary-layer equation yields the
above-stated distributions of f(η), f ′(η),
f ′′(η)

Fig. 16.5 Longitudinal and transversal velocity distributions in a boundary layer

in the distributions shown in Fig. 16.4 for f, f ′ and f ′′. The given functional
values can be employed at each point η, in order to compute Ux/U∞ = f ′(η)
and Uy/U∞ = (1/2U∞)

√
νU∞/x(ηf ′ − f). The distribution of Ux/U∞ is

presented in Fig. 16.5a and Uy

U∞

√
U∞x

ν in Fig. 16.5b. Both figures indicate
velocity distributions as they are also found in experimental investigations.
This is shown in Fig. 16.6. The above considerations have shown that, by
introducing the boundary-layer equations, it has been possible to handle an
important flow theoretically, namely the viscous flow over a flat plate.

It is interesting to see from Fig. 16.4 that the Uy velocity component at
the outer edge of the boundary layer, i.e. for η → ∞, adopts the value

(Uy)∞ = 0.8604U∞

√
ν

xU∞
. (16.53)

This velocity component directed out of the boundary layer flow region comes
from the fact that with increasing length along the plate of the flow and
thus increasing boundary layer thickness, the fluid is being forced away from
the wall.

Further values concerning the velocity profiles of the flat plate bound-
ary layer can be taken from Table 16.1, in which f(η), f ′(η) and f ′′(η) are
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Theoretical values of Blasius solution
Experimental results measured by LDA

Fig. 16.6 Agreement of experimental and theoretical results for a flat plate boundary
layer

indicated. This table can be employed for the determination of all proper-
ties of the flat plate boundary-layer flow. The computed values are in good
agreement with the experiments, as can be seen from Fig. 16.6.

16.4 Integral Properties of Wall Boundary Layers

In the preceding considerations of boundary-layer properties, δ was used as a
quantity, without being defined precisely. It was introduced into the consid-
erations from derivations of the molecular momentum diffusion as δ ≈ √

νtD
with tD = tc = (x/U∞), so that the following holds:

δ ≈
√
νx

U∞
. (16.54)

It is possible to make a somewhat more precise statement, of what δ is, by
means of the definition of the displacement thickness δ1, which indicates the
extent to which the flow, originally arriving with U∞, was displaced by the
plate, due to the boundary-layer development (integral theorem for mean
properties):

δ1U∞ =

∞∫
0

(U∞ − Ux) dy (16.55)

or rewritten in terms of δ1 and integrated:

δ1 =

∞∫
0

(
1 − Ux

U∞

)
dy =

√
νx

U∞

∞∫
0

[1 − f ′ (η)] dη = 1.73
√
νx

U∞
. (16.56)
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Table 16.1 Solution values of the Blasius equation according to Howarth

η = y

√
U∞
νx

f f ′ =
Ux

U∞
f ′′

0 0 0 0.33206
0.2 0.00664 0.06641 0.33199
0.4 0.02656 0.13277 0.33147
0.6 0.05974 0.19894 0.33008
0.8 0.10611 0.26471 0.32739
1.0 0.16557 0.32979 0.32301

1.2 0.23795 0.39378 0.31659
1.4 0.32298 0.45627 0.30787
1.6 0.42032 0.51676 0.29667
1.8 0.52952 0.57477 0.28293
2.0 0.65003 0.62977 0.26675

2.2 0.78120 0.68132 0.24835
2.4 0.92230 0.72899 0.22809
2.6 1.07252 0.77246 0.20646
2.8 1.23099 0.81152 0.18401
3.0 1.39682 0.84605 0.16136

3.2 1.56911 0.87609 0.13913
3.4 1.74696 0.90177 0.11788
3.6 1.92954 0.92333 0.09809
3.8 2.11605 0.94112 0.08013
4.0 2.30576 0.95552 0.06424

4.2 2.49806 0.96696 0.05052
4.4 2.69238 0.97587 0.03897
4.6 2.88826 0.98269 0.02948
4.8 3.08534 0.98779 0.02187
5.0 3.28329 0.99155 0.01591

5.2 3.48189 0.99425 0.01134
5.4 3.68094 0.99616 0.00793
5.6 3.88031 0.99748 0.00543
5.8 4.07990 0.99838 0.00365
6.0 4.27964 0.99898 0.00240

6.2 4.47948 0.99937 0.00155
6.4 4.67938 0.99961 0.00098
6.6 4.87931 0.99977 0.00061
6.8 5.07928 0.99987 0.00037
7.0 5.27926 0.99992 0.00022

7.2 5.47925 0.99996 0.00013
7.4 5.67924 0.99998 0.00007
7.6 5.87924 0.99999 0.00004
7.8 6.07923 1.00000 0.00002
8.0 6.27923 1.00000 0.00001

8.2 6.47923 1.00000 0.00001
8.4 6.67923 1.00000 0.00000
8.6 6.87923 1.00000 0.00000
8.8 7.07923 1.00000 0.00000
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On now choosing δ = 3δ1 as a more precise definition of the thickness of the
boundary layer, as proposed by Prandtl, one obtains

δ = 5.2
√
νx

U∞
. (16.57)

According to Table 16.1, u(δ) shows a deviation of δ from the external velocity
U∞ by about 0.5%.

Analogous to the above-computed displacement thickness, which was de-
fined and computed as “mass loss thickness of the boundary layer”, the
momentum-loss thickness can also be defined and computed. Here, the
introduction of the momentum deficit into the integral took place with
∆U = (U∞ − Ux):

ρU2
∞δ2 = ρ

∞∫
0

Ux (U∞ − Ux) dy. (16.58)

Solved in terms of δ2 and integrated, this yields

δ2 =

∞∫
0

Ux

U∞

[
1 − Ux

U∞

]
dy =

√
νx

U∞

∞∫
0

f ′ [1 − f ′] dy = 0.664
√
νx

U∞
. (16.59)

Hence, a comparison of the various thickness gives δ2 = 0.384, δ1 = 0.128δ.
It is important to take into consideration that the boundary-layer equa-

tions become valid only with a certain distance x from the front edge of the
plate, i.e. the boundary-layer equations hold only from a certain Rex, with
Rex = U∞x/ν.

For smaller values of Rex, the complete Navier–Stokes equations have to
be employed to compute the velocity field. The solutions of these equations
have to consider, moreover, that the front edge of the plate represents a
singularity, which requires special attention when carrying out numerical so-
lutions, as shown by Carrier and Lin [16.3], Boley and Friedman [16.2], Shi
et al. [16.7], etc.

A further quantity, which can be derived from the solutions of the Blasius
boundary layer equation, is the friction coefficient cf , defined as

cf =
|τw|
ρ
2U

2∞
,

where |τw| = local momentum loss to the wall and 1
2ρU

2
∞ = stagnation pres-

sure of the outer flow.
The local momentum loss |τw| is computed as

|τw| = µ
(
∂Ux

∂y

)
y=0

=
µU∞f ′′(0)√
νx/U∞

=
0.332√
Rex

ρU2
∞ (16.60)
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and for cf for boundary-layer flows it therefore holds that

cf =
0.664√
Rex

. (16.61)

Often it is sufficient for boundary-layer flows to state their integral
properties as indicated in (16.56), (16.57) and (16.59), i.e. the quantities

δ = 5.2
√
νx

U∞
boundary-layer thickness,

δ1 = 1.73
√
νx

U∞
displacement thickness,

δ2 = 0.664
√
νx

U∞
momentum-loss thickness

serve for indicating integral properties of boundary-layer flows (Fig. 16.7).
General considerations of the integral form of the boundary-layer equa-

tions, that are based on (16.38) and (16.39), originate from von Karman. He
proposed to integrate the equation

∂Ux

∂t
+ U

∂Ux

∂x
+ Uy

∂Ux

∂y
= −1

ρ

dP
dx

+ ν
∂2Ux

∂y2
(16.62)

from y = 0 to y = δ(x), where (16.62), with the aid of the continuity equation,
can be rewritten as follows:

∂Ux

∂t
+
∂(U2

x)
∂x

+
∂(UxUy)
∂y

= −1
ρ

dP
dx

+
µ

ρ

∂2Ux

∂y2
. (16.63)

Now applying integration from 0 to δ, one obtains

Fig. 16.7 Illustration of the dis-
placement thickness δ1, the mo-
mentum loss thickness δ2, and the
boundary-layer thickness δ
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∂

∂t

δ∫
0

Uxdy+

δ∫
0

∂(U2
x)

∂x
dy+[UxUy]δ0 = −1

ρ

dP
dx
δ+
µ

ρ

δ∫
0

∂2Ux

∂y2
dy. (16.64)

For

δ∫
0

∂(U2
x)

∂x
dy we can write:

δ∫
0

∂(U2
x)

∂x
dy =

d
dx

δ∫
0

U2
x dy − U2

∞
dδ
dx
. (16.65)

Moreover, introducing [UxUy]δ0 = −U∞

δ∫
0

∂Ux

∂x
dy and rewriting:

U∞

δ∫
0

∂Ux

∂x
dy = U∞

d
dx

δ∫
0

Ux dy − U2
∞

dδ
dx

(16.66)

yields with
µ

ρ

δ∫
0

∂2Ux

∂y2
dy = −τw(x)

ρ
the following equation:

∂

∂t

δ∫
0

Ux dy +
d
dx

δ∫
0

U2
x dy − U∞

d
dx

δ∫
0

Ux dy = −1
ρ

dP
dx
δ − τw

ρ
. (16.67)

For stationary flows, with consideration of −1
ρ

dP
dx

= U∞
dU∞
dx

, one can

therefore write:

d
dx

δ∫
0

U2
x dy − U∞

d
dx

δ∫
0

Ux dy − U∞δ
dU∞
dx

= −τw
ρ

(16.68)

or, in a somewhat rewritten way:

d
dx

δ∫
0

U2
xdy− d

dx

δ∫
0

U∞Uxdy+
dU∞
dx

δ∫
0

Uxdy−dU∞
dx

δ∫
0

U∞dy = −τw
ρ

(16.69)

so that the following equation can be deduced:

d
dx

δ∫
0

Ux (U∞ − Ux)dy +
dU∞
dx

δ∫
0

(U∞ − Ux)dy = +
τw
ρ
. (16.70)
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As outside δ, i.e. for δ → ∞, there is no more change of the velocity profile,
one can write

d
dx

∞∫
0

Ux (U∞ − Ux)dy

︸ ︷︷ ︸
U2∞δ2

+
dU∞
dx

∞∫
0

(U∞ − Ux)dy

︸ ︷︷ ︸
U∞δ1

= +
τw
ρ
. (16.71)

Therefore, the following integral relationship holds:

d
dx
(
U2
∞δ2
)

+
dU∞
dx

(U∞δ1) =
τw
ρ
. (16.72)

This equation can be rewritten in the following form:

dδ2
dx

+ (2δ2 + δ1)
1
U∞

dU∞
dx

=
τw
ρU2∞

=
cf
2
. (16.73)

For the Blasius boundary layer, this equation reduces to

dδ2
dx

=
cf
2
. (16.74)

This result can be verified by inserting (16.59) and (16.61) into (16.74).
The basic idea behind the Karman integral consideration of the boundary-

layer equations is the fact that, for determining integral properties of
boundary-layer flows, one does not require the exact distribution of Ux/U∞ =
f ′(η). When giving an approximate function Ux/U∞ = g(y/δ), the general
character of boundary-layer flows is already captured. The Karman integral
equations allow one to determine good approximations for δ(x) and cf (x):

Ux

U∞
= A+Bη + Cη2 +Dη3 (16.75)

with η = y/δ and the boundary conditions

y = 0 : Ux = 0 and
∂2Ux

∂y2
= 0,

y = δ : Ux = U∞ and
∂Ux

∂y
= 0.

(16.76)

With these values, f ′(η) = 3
2η− 1

2η
3 can be stated as the velocity profile and

the values deduced:

δ = 4.641
√
νx

U∞
; cf =

1.293√
Rex

; δ1 = 1.74
√
νx

U∞
. (16.77)

These are close to the values derived from the Blasius solution of flat-plate
boundary-layer flow.
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16.5 The Laminar, Plane, Two-Dimensional
Free Shear Layer

On allowing two parallel flows of identical fluids, that differ only in having
different fluid velocities, to interact with one another, a flow results that is
defined as a laminar, plane, two-dimensional free shear layer. Such a flow is
sketched in Fig. 16.8, which shows that the features of the flow are generated
by the cross-flow molecular momentum transport that occurs along the flow.
The velocity gradient in the shear layer decreases with increasing distance
to x = 0. This takes place because of the momentum transport, i.e. because
of the momentum transport from the region of high velocity to the region of
low velocity, as indicated in Fig. 16.8.

The flow sketched in Fig. 16.8 has properties which were employed for the
derivations of the boundary-layer equations for flows.

• In the flow direction, there exists a convection-dominated momentum
transport. In the cross-flow direction, a diffusion-dominated momentum
transport occurs.

Likewise, the flow has no pressure gradient, i.e. ∂P
∂x = ∂P

∂y = 0, so that one
can state

• The form of the boundary-layer equations, which was deduced by Bla-
sius for the plate boundary-layer, also holds for the laminar, plane,
two-dimensional free shear layer.

Thus, (16.42) has to be employed to treat free shear flows of the kind
sketched in Fig. 16.8, i.e. one obtains the solution by the following differential
equation:

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
= ν

∂3Ψ

∂y3
. (16.78)

( U  )x A ( U  )x A
( U  )x A

( U  )x B
( U  )x B

( U  )x B

Region of shear flows

x

y

Fig. 16.8 Formation of a laminar, free shear layer by momentum diffusion
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Fig. 16.9 Diagram of the considered plane, two-dimensional, laminar free shear layer

With the ansatzes η = y
√

(Ux)A /νx and Ψ =
√
ν (Ux)A xf(η), the

following ordinary differential equation results:

ff ′′ + 2f ′′′ = 0 (16.79)

which has to be solved for the following boundary conditions, describing the
considered free shear-layer flow:

η = +∞ : f ′ = 1,

η = −∞ : f ′ = λ =
(Ux)B

(Ux)A

,

η = 0 : f = 0.

(16.80)

The solution of (16.79) has again to be carried out numerically, similarly
to the Blasius solution for the flat plate, as there is no analytical solution of
(16.79) available. The solution obtained by Lock [16.6] is indicated in Fig. 16.9
for λ = 0, i.e. (U∞)B = 0, and also for λ = 0.5.

16.6 The Plane, Two-Dimensional, Laminar Free Jet

Another flow with boundary-layer character will now be investigated. This
flow is usually referred to as a two-dimensional, laminar free jet, sketched in
Fig. 16.10.
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( U  )x A

y

x

Velocity profiles at
different x-position

Fig. 16.10 Sketch of the considered plane, two-dimensional laminar free jet

Below a two-dimensional free jet is considered, which can be generated
in the plane x = 0, by a flow from a narrow slit located in the x – y plane.
The jet propagates in the x-direction and the propagation is such, that the
x-axis is the symmetry axis. As the propagation of the jet occurring in the
y-direction is small in comparison with the propagation in the flow direction
and as, moreover, only stationary main flow conditions will be considered,
the boundary-layer equation for dP

dx = 0 can be employed to study the flow:

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
= ν

∂3Ψ

∂y3
. (16.81)

This is again the boundary-layer equation for Ψ as it was employed in the
case of the flow along a flat plate and also when the plane shear layer was
considered. The difference from the plate boundary-layer flow occurs due to
the boundary conditions, which for the free jet flow are as follows:

y = 0 : Uy = 0 and (∂Ux/∂y) = 0, as is the symmetry axis,
y = ∞ : Ux → 0, as there is no background flow. (16.82)

For the free jet, the total momentum can be derived as:

Iges =

+∞∫
−∞
ρU2

x dy = 2

+∞∫
0

ρU2
x dy = 2ρ (Ux)2A b. (16.83)

The momentum is constant along the x-axis. This follows from (16.68), which
holds for the free jet as given below:

d
dx

+∞∫
0

U2
x dy − U∞

=0︷ ︸︸ ︷
d
dx

+∞∫
0

Ux dy−

=0︷ ︸︸ ︷
U∞δ

dU∞
dx

=
µ

ρ

=0︷ ︸︸ ︷
+∞∫
0

∂2Ux

∂y2
dy (16.84)
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so that one can derive

d
dx

+∞∫
0

U2
x dy = 0 � Iges = 2

+∞∫
0

ρU2
x dy = constant. (16.85)

For deriving the similarity solution for the free jet flow, the boundary-layer
equation can be solved with the following ansatzes:

η = xαy and Ψ = xβf(η). (16.86)

From this the different terms in the boundary layer equation can be expressed
as follows in terms of the introduced quantities η and Ψ :

Ux =
∂Ψ

∂y
= x(α+β)f ′, (16.87)

Uy = − ∂Ψ
∂x

= −x(β−1) (αηf ′ + βf) , (16.88)

∂Ux

∂y
=
∂2Ψ

∂y2
= x(2α+β)f ′′, (16.89)

∂2Ψ

∂x∂y
= x(α+β−1) (αηf ′′ + αf ′ + βf ′) , (16.90)

∂3Ψ

∂y3
= x(3α+β)f ′′′. (16.91)

The boundary-layer equation (16.81) adopts the following form when (16.87)–
(16.91) are inserted into (16.81):

x(2α+2β−1)
[
(α+ β) f

′2 − βff ′′
]

= νx(3α+β)f ′′′. (16.92)

This equation becomes a physically correct equation for f(η), when the
exponents of the x-terms are equal, hence we can write:

2α+ 2β − 1 = 3α+ β � β = α+ 1. (16.93)

Moreover, one can deduce from the total momentum equation:

Iges = 2

+∞∫
0

ρU2
x dy = 2ρx(α+2β)

+∞∫
0

f
′2 dη = constant (16.94)

Hence, we obtain as an additional requirement for α and β:

α+ 2β = 0 (16.95)
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so that from (16.93) one can deduce:

α = −2
3

and β =
1
3
, (16.96)

i.e. the following similarity ansatzes hold:

η = yx−
2
3 and Ψ = x

1
3 f (η) . (16.97)

By means of these ansatzes the differential equation (16.81) turns into the
following equation to determine f(η):

(f ′)2 + ff ′′ + 3νf ′′′ = 0 (16.98)

with the boundary conditions coming from (16.82):

η = 0 : f = 0 and f ′′ = 0, (16.99)
η → ∞ : f ′ → 0. (16.100)

Moreover, to eliminate also the factor 3ν from the differential equation (16.98)
in order to obtain a generally valid equation to determine f ′(η), the following
ansatzes are finally chosen:

η̃ =
1

3ν
1
2

y

x
2
3

and Ψ = ν
1
2x

1
3 f̃ (η̃). (16.101)

With this one obtains the following ordinary differential equation:

f̃
′2 + f̃ f̃ ′′ + f̃ ′′′ = 0 (16.102)

with the following boundary conditions:

y = 0 : ∂Ux/∂y = 0 and Uy = 0 � η̃ = 0 : f̃ ′′ = 0 and f̃ = 0,
y → ∞ : Ux = 0 � η̃ → ∞ : f̃ ′ = 0.

(16.103)

On integrating the differential equation (16.102) once, one obtains:

f̃ f̃ ′ + f̃ ′′ = C1. (16.104)

The resulting integration constant yields, due to the employed boundary
conditions C1 = 0, as for η̃ = 0, f̃ and also f̃ ′′ are equal to zero. This
can readily be deduced from the boundary conditions, so that the following
differential equation results:

f̃ f̃ ′ + f̃ ′′ = 0. (16.105)

The solution of this differential equation can be obtained through the ansatz:

ξ =

F∫
0

dF
1 − F 2

=
1
2

ln
(

1 + F
1 − F

)
= tanh−1 F. (16.106)
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From this it follows that:

F = tanh ξ =
1 − exp(−2ξ)
1 + exp(−2ξ)

(16.107)

and from (16.104) it follows that dF
dξ = 1 − tanh2 ξ and thus for Ux the

following relationship holds:

Ux =
2
3
A2x−

1
3
(
1 − tanh2 ξ

)
. (16.108)

The constant A contained in this equation is determined through the
constancy of the total momentum of the free jet:

Iges = 2

∞∫
0

U2
xρ dy � Iges =

4
3
A3ρν

1
2

∞∫
0

(
1 − tanh2

)
dξ,

Iges =
16
9
ρA3ν

1
2 (16.109)

or solved for A:

A = 0.826
(
Iges

ρν
1
2

)1
3

. (16.110)

For the velocity components one thus obtains:

Ux = 0.454

(
I2ges
ρ2ν

)1
3 (

1 − tanh2 ξ
)
x

1
3 , (16.111)

Uy = 0.55
(
Igesν

ρx2

)1
3 [

2ξ
(
1 − tanh2 ξ

)− tanh ξ
]

(16.112)

and for ξ = 0.275
(
Iges
ρν2

)1
3 y

x
2
3
.

The velocity profile that can be computed from the above equations is
shown in Fig. 16.11. The Uy component of the velocity field is computed at
the edge of the jet:

Uy (ξ∞) = −0.55
(
Igesν

ρx2

)1
3

.

It is negative and this indicates that the free jet flow continuously sucks in
fluid from the outer flow, so that the mass flow of the free jet increases in the
flow direction.

The mass flow can be computed at each point x of the free jet:

ṁ = ρ

+∞∫
−∞
Ux dy, (16.113)
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Velocity profile 
for 2-dim . jet

− − − −

Fig. 16.11 Velocity profile of the plane free jet flow

ṁ = 3.3
(
Iges
ρ
νx

)1
3

. (16.114)

The fluid input into the free jet flow takes place due to the viscosity of the
fluid, i.e. the entrainment is caused by the molecular momentum transport.

16.7 Plane, Two-Dimensional Wake Flow

Additional flows that are important in practice and that can be treated with
the aid of the boundary-layer equations, are wake flows showing the features
sketched in Fig. 16.11. This figure shows a plane, two-dimensional wake flow
as occurs, e.g., behind a plane plate or a cylinder located with the main axis
perpendicular to the x–y plane. Such flows are characterized by a momentum
deficit, which corresponds in its integral properties to the flow resistance force
of the plate or cylinder around which a flow passes. This can be computed
by employing the integral form of the momentum equation:

Kw = 2ρB

∞∫
0

U1(U∞ − U1)dy, (16.115)

where U1(y) represents the velocity profile of the wake flow existing at a
certain x-position, B is the width of the plate in z-direction, and U∞ corre-
sponds to the main flow in the x-direction at y → ∞. For the infinitely thin
plane plate, one obtains the result

Kw = 2ρBU2
∞δ2. (16.116)

For the cylinder one obtains
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Fig. 16.12 Wake flow behind a body around which a flow takes place

Kw = cw
ρ

2
U2
∞!d. (16.117)

Although the actual flow structure near the plate or cylinder around which
the flow passes can be complicated, the flow in the downward field proves to be
of the kind that becomes independent of the body which generated the wake
flow. In the downstream region, the flow has a boundary-layer flow structure,
as the fluid flow in the x-direction of the wake takes place convectively and
the transverse distribution is established by diffusion.

For the treatment of the wake flow, sketched in Fig. 16.12, the velocity
difference can be expressed as

u(x1, x2) = U∞ − U1(x1, x2) (16.118)

and it is this difference that is introduced into the boundary-layer equations.
When considering that the pressure in the entire flow region is constant and
that moreover, because u(x1, x2) << U∞ holds, one can write

(U∞ − u) ∂
∂x1

(U∞ − u) ≈ U∞
∂u

∂x1
= ν

∂2u

∂x2
2

(16.119)

and, hence, one obtains the differential equation that is to be solved for the
wake flow. The boundary conditions can be stated as

x2 = 0 :
∂u

∂x2
= 0 and x2 → ∞ : u = 0. (16.120)

Similarly to the earlier ansatzes, the following relationships are introduced.

η = x2

√
U∞
νx1

and u = U∞C
(x1

!

)−1/2

f (η) (16.121)

and (16.121) introduced into (16.115) yields

Kw = ρBU2
∞C

(
ν!

U∞

)1/2
+∞∫

−∞
f(η) dη. (16.122)
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On introducing (16.121) into (16.119), one obtains the ordinary differential
equation to be solved for wake flows:

f ′′ +
1
2
ηf ′ +

1
2
f = 0 (16.123)

with the boundary conditions:

η = 0 : f ′(η) = 0 and η → ∞ : f(η) → 0. (16.124)

Equation (16.123) can be rewritten and integrated:

d2f

dη2
+

d
dη

(
1
2
ηf

)
= 0,

d
dη

(
df
dη

+
1
2
ηf

)
= 0 (16.125)

so that following final relationship holds:

df
dη

+
1
2
ηf = C � C = 0, since η = 0

df
dη

= 0. (16.126)

In this way, the solution for f(η) is obtained as an exponential function of
η2:

f(η) = exp
(
−1

4
η2
)
. (16.127)

With this, the following can be computed from (16.122):

Kw = ρBU2
∞C

(
ν!

U∞

)1/2 +∞∫
−∞

exp
(
−1

4
η2
)

dη. (16.128)

For the flat plate the value of Kw can be computed by integration along both
plate sides:

Kw = 1.328BρU2
∞

√
ν!

U∞
(16.129)

so that for C in (16.128) one can deduce C = 0.664/
√
π. Hence, one obtains

for the velocity profile of the wake flow behind a flat plate:

U1 (x1, x2) = U∞ − U∞
0.664√
π

(x1

!

)−1/2

exp
(
−1

4
x2

2U∞
x1ν

)
. (16.130)

This somewhat asymptotic solution is given in Fig. 16.13, namely for the
difference velocity u(x1, x2) � U(η), normalized with the local maximum of
the “deficit velocity”:

Umax = U∞
0.664√
π

(x1

!

)−1/2

, (16.131)

i.e. U(η)/Umax is plotted in Fig. 16.13.
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−

−

−−

−

Fig. 16.13 Solution for the normalized wake flow behind a plate

16.8 Converging Channel Flow

The boundary-layer flows considered above, were all characterized by an outer
flow with constant velocity. They thus represent the easiest flows which can
be solved with aid of the boundary-layer equations.

Based on the solution procedure derived by Blasius, in this section the
boundary layer of a flow will be considered, whose imposed flow is given by
the following velocity distribution:

U∞(x) = −UQ

x
= U(x), (16.132)

where UQ = Q̇/x, i.e. is the velocity existing at x = 1. When considering that
the velocity distribution corresponds to that of a sink flow in a convergent
channel with an aperture angle α between the plane walls, then the volume
flow rate flowing through the region α Q̇ = αxhUQ is given for h = 1 by
αUQ, i.e. the following holds:

UQ =
Q̇

α
. (16.133)

Because of the above-suggested velocity distribution of the flow, outside the
developing boundary layers, a pressure gradient results in the stationary
boundary-layer equation:

∂Ψ

∂y

∂2Ψ

∂x∂y
− ∂Ψ

∂x

∂2Ψ

∂y2
= −1

ρ

dP
dx

+ ν
∂3Ψ

∂y3
. (16.134)
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Fig. 16.14 Diagram to explain boundary-
layer formation in a converging two-
dimensional channel flow

The resulting pressure gradient can be computed as:

1
ρ

dP
dx

= −U∞(x)
dU(x)

dx
=
Q̇

αx

Q̇

α2
=
Q̇2

α2x3
. (16.135)

In order to obtain the sought similarity solution for the boundary layer
which forms at the walls of a converging channel flow (Fig. 16.14), the
following similarity variable is introduced:

η = y

√
−U∞
xν

=
y

x

√
UQ

ν
=
y

x

√
Q̇

αν
. (16.136)

For the stream function of the flow we introduce

Ψ(x, y) = −√νUQf(η) = −
√
Q̇ν

α
f(η) (16.137)

so that for the different terms in (16.38) the following relationships can be
derived:

Ux =
∂Ψ

∂y
=
∂Ψ

∂η

∂η

∂y
= − Q̇

α

1
x
f ′(η), (16.138)

Uy = − ∂Ψ
∂x

= − ∂Ψ
∂η

∂η

∂x
= − Q̇

α

y

x2
f ′(η), (16.139)

∂2Ψ

∂x∂y
=

∂

∂x

(
∂Ψ

∂y

)
=
Q̇

α

1
x2
f ′ (η) +

Q̇

α

η

x2
f ′′(η), (16.140)

∂2Ψ

∂y2
=
∂

∂y

(
∂Ψ

∂y

)
= − Q̇

α

1
x
f ′′ (η)

1
x

√
Q̇

αν
, (16.141)

∂3Ψ

∂y3
= − Q̇

α

1
x
f ′′′ (η)

1
x2

Q̇

αν
. (16.142)

On inserting (16.134) and also (16.136)–(16.140) in the boundary-layer equa-
tion (16.132), one obtains the following differential equation for f(η); only
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a few terms remain, since the products of the mixed derivatives f ′f ′′ cancel
out:

f ′′′ − (f ′)2 + 1 = 0 (16.143)

with the boundary conditions at η = 0, f ′ = 0 and for η → ∞, f ′ = 1 and
f ′′ = 0.

The integration of the above differential equation becomes analytically
possible with the ansatz

F (η) = f ′(η) (16.144)

so that (16.143) can be written as

F ′′ = F 2 − 1 with F (0) = 0 and F (∞) = 1. (16.145)

On multiplying both sides with the first derivative F ′(η), it is possible, by
partial integration, to obtain the following solution:

(F ′)2 − 2
3
(F − 1)2(F + 2) = C, (16.146)

where C is the integration constant, which, because F → 1 and F ′ → 0 as
η → ∞, adopts the value C = 0. Hence, from (16.146) it follows that

F ′ =
dF
dη

=

√
2
3
(F − 1)2(F + 2) (16.147)

or rewritten:
dη =

dF√
2
3 (F − 1)2(F + 2)

. (16.148)

Hence, the following equation holds:

η =

F∫
0

dF√
2
3 (F − 1) (F + 2)

. (16.149)

The integral can be given in a closed form:

η =

√
3
2

(
tanh−1

√
2 + F√

3
− tanh−1

√
2
3

)
. (16.150)

Solved in terms of F =
Ux

U
= f ′(η):

f ′ (η) =
Ux

U
= 3 tanh2

[
η√
2

+ ln
(√

3 +
√

2
)]

− 2 (16.151)
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Fig. 16.15 Velocity distribution in a laminar boundary layer forming at the walls
of a converging channel

or rewritten:

f ′ (η) =
Ux

U
= 3 tanh2

(
η√
2

+ 1.146
)
− 2. (16.152)

Introducing also Θ = y/x and Q̇ = rUα, one can rewrite η as:

η = Θ

√
Ur

ν
(16.153)

and the velocity distribution shown in Fig. 16.15 results for the boundary
layer at the walls of a converging, plane, two-dimensional channel flow.

The above-obtained relationship (16.152):

Ux =
3Q̇
αx

tanh2

(
η√
2

+ 1.146
)
− 2 (16.154)

can also be written as:

tanh2 [Z] = 1 − 1
cosh2 [Z]

= 1 − 4
(exp[Z] + exp[−Z])2

. (16.155)

This can be inserted to yield the velocity distribution:

Ux =
Q̇

αx

[
1 − 12[

(
√

3 +
√

2) exp(η/
√

2) + (
√

3 −√
2) exp(−η/√2)

]2
]
.

(16.156)
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Chapter 17

Unstable Flows and Laminar-Turbulent
Transition

17.1 General Considerations

It is common practice to categorize flows as laminar or turbulent, i.e. to
employ a special state of the flow to perform a subdivision: into laminar flows,
i.e. in such flows in which the momentum, heat and mass transport processes
are molecular dependent, and into such flows in which turbulence-dependent
transport processes occur in addition. For the considerations presented in
this chapter, a further subdivision is appropriate, so that grouping into four
sub-groups is made:

• Stable Laminar Flows. A laminar flow may fulfill all requirements of the
basic equations of fluid mechanics. It may also satisfy the initial and
boundary conditions characteristic for the flow. Yet it must not represent
a solution such as one finds in corresponding experimental investigations.
Disturbances of the flow, as always occur in experiments, are often not
considered in solutions of the basic equations governing fluid flows. Only
such laminar flows that prove stable towards disturbances that act from
the outside, i.e. attenuate the imposed disturbances, are defined as stable
laminar flows.

• Unstable Laminar Flows. A laminar flow is considered unstable when
disturbances introduced into it are amplified, but a certain “regularity”
in the excited disturbance is maintained, i.e. due to the disturbance
the investigated flow merges into a new laminar flow state. If this “new
laminar flow state” is stable towards newly introduced disturbances, we
have a bifurcation of the laminar flow. Here it is important to understand
that the flow occurring after the imposed disturbance can be stationary
or non-stationary.

• Transitional Flows. When the disturbances introduced in a laminar
flow are amplified and result in flows that appear orderly in parts, but
show also temporarily and/or spatially irregular fluctuations of all flow
quantities, we speak of a transitional flow state. Intermittent laminar and

495
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turbulent flow states occur, i.e. phases occur in the flow in which the flow
is laminar and phases in which the flow shows turbulent characteristics.
Flows that are in a transitional state still show clear characteristics that
depend on the imposed disturbances.

• Turbulent Flows. It is now easily possible to imagine, on the basis of
the considerations presented above, that disturbances are introduced
into flows to such an extent that fluid motions result from them that
are “out of control.” Such turbulent fluctuations of all flow quantities
are superimposed on corresponding mean flow quantities and are char-
acterized by high non-stationarity and by high three-dimensionality.
Turbulence-dependent transport processes of momentum, heat and mass
are superimposed on the molecular-dependent transport process. A closed
treatment of turbulent transport processes is at present only possible for
small Reynolds numbers (Re ≤ 40,000) by employing numerical com-
putation procedures. The treatment of turbulent flows at high Reynolds
numbers remains a problem of fluid mechanics that has not been solved.

In the preceding chapters, flows were investigated that are assumed to be
stable, i.e. without concrete proof it was assumed that disturbances which are
introduced into the flow are damped out by viscosity. In order to understand
now the causes of stable laminar flows, i.e. the causes of the attenuation of
disturbances by viscosity, the simplified one-dimensional momentum equation
is considered:

ρ
∂U1

∂t
= µ

∂2U1

∂x2
. (17.1)

When applying this to a flow with a constant flow velocity U0, on which
a disturbance with amplitude uA is superimposed, the following equation
applies for the total velocity field:

U1 = U0 + uA sin
(

2π
x

λ

)
with U0 = constant. (17.2)

On now forming the temporal derivative (∂U1/∂t) and the spatial derivative
(∂2U1/∂x

2), one obtains from (17.2) the following differential equation for
the disturbance. It indicates how the temporal change of the amplitude of
the imposed fluctuations behaves in time:

duA

dt
= −ν 4π2

λ2
uA. (17.3)

This differential equation can be solved by separation of the variables. Thus,
for the initial condition uA = (uA)0, for the time t ≥ 0 the following solution
can be derived:

uA(t) = (uA)0 exp
(
−ν 4π2

λ2
t

)
. (17.4)

This solution makes it clear that the viscosity terms in the momentum equa-
tions can be considered to lead to attenuations of imposed disturbances, i.e.
disturbances which are introduced into a laminar flow field will be damped
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due to the viscosity of the fluid. As expressed by (17.4), the attenuation of
short-wave disturbances, i.e. disturbances with small λ values, turns out to
be stronger, so that these receive stronger damping in the course of time. It
is this attenuation effect, caused by the viscosity of a fluid, which ensures
that many laminar flows possess high stability. This means that they show
strong resistance against external disturbances.

As concerns the possible mechanisms of amplification of disturbances,
these can be manifold and some are discussed in an introductory way in sub-
sequent sections. Generally it can be said, however, that gradients of flow
and/or fluid properties can be stated as causes of amplification. When they
act on introduced disturbances such that an exponential excitation takes
place, the latter can be described as follows:

uA = (uA)0 exp(αt). (17.5)

When a viscosity-dependent attenuation exists at the same time, the temporal
development of the amplitude of a disturbance can be stated in a simplified
way, and the following net result can be assumed to be valid:

uA = (uA)0 exp [(α− β)t] . (17.6)

When the viscosity-dependent attenuation term β proves to be larger than
the amplification-caused term α, i.e. β > α, we have a stable laminar flow.
When, on the other hand, the amplification term α dominates, i.e. α > β,
we have an unstable flow. This means that the flow field determined from
the Navier–Stokes equations for given initial and boundary conditions will
not form in practice. Due to the above-postulated exponential increase of the
disturbance introduced into the flow, a transition into a turbulent flow is to
be expected. When the excitation takes place in another, non-exponential
form, other unstable flow states, as mentioned in the above points, can form.

To make clear now what is to be understood by a stable laminar flow state,
reference is made to the backward-facing, double-sided step flow, which is
illustrated in Fig. 17.1. It shows a symmetrical solution for Re ≤ 200. When
imposing temporal disturbances on these flows, the temporal change of the
separation lengths x2, shown in Fig. 17.1, indicates that, after abandoning
the imposed disturbances, the separation and reattachment lengths, that are
characteristic for the step flow, are attained again. The flow is thus, for the
investigated Reynolds number, stable towards the imposed disturbances. At
higher Reynolds numbers, i.e. for Re ≥ 200, this stability no longer exists.
The flow abandons its symmetry, and two separate regions of different lengths
and shapes occur.

For further explanations of the processes that take place with unstable
laminar flows, reference is made to the flow through a rectangular channel.
The latter is characterized by secondary flows as shown in Fig. 17.2. These
so-called secondary flows represent fluid motions in a plane vertical to the
main flow. Depending on the Reynolds number, a certain secondary flow
pattern develops as the so-called bifurcation diagram demonstrates, which
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(a)

(b)

(c)

Stable flow region

Bifurcation point

Fig. 17.1 (A) Stability of double-sided step flow (sudden expansion): (a) sym-
metrical solution (unstable); (b) asymmetric solution (stable solution of the first
bifurcation); (c) asymmetric solution (unstable solution of the second bifurcation).
(B) Bifurcation diagram for a flow with sudden extension

Fig. 17.2 Pattern of the secondary flow in a rectangular channel and corresponding
bifurcation diagram

is also shown in Fig. 17.2. Detailed numerical investigations show, however,
that certain patterns of secondary flow can only be obtained by imposed
disturbances that are well directed.
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Another possibility of bifurcation of an unstable laminar flow is given in
Fig. 17.3. This figure shows that the laminar flow around a cylinder posseses
a symmetry of the flow field for small Re. For Re ≥ 46 the “symmetry” is
broken. A non-stationary vortex flow (Hopf bifurcation) develops with alter-
nating vortices relieving one another. In the wake of the cylinder, the so-called
Karman vortex street results as the form of the laminar flow around a cylinder
which proves to be a stable flow form for Re > 46.

To illustrate a transitional flow, reference is made to Fig. 17.4, in which a
region of turbulent flow is shown that is embedded in a laminar plate flow.
It can clearly be seen that the turbulence-dependent flow disturbances are

Fig. 17.3 Flow forms of the laminar flows around a cylinder

Fig. 17.4 Turbulent spot to illustrate the transitional, laminar-to-turbulent flow
state of a flow; see van Dyke [17.1]
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spatially and temporally limited. Likewise, a certain, still clearly distinctive
structure of the flow can be recognized. All of these are clear characteristics
of flows that are in a transitional, laminar-to-turbulent flow state.

As a turbulent state of a flow, the photograph illustrates a grid wake
flow, which is made visible by introduced smoke. The “filaments” of smoke,
introduced near the grid, are structured by the turbulent fluid motions and
form a typical picture of an almost isotropic flow field. By isotropy of a flow a
local property is understood, namely the independence of the mean properties
of the flow of considered directions (Fig. 17.5).

That the flow states described above can occur within one flow region is
illustrated in Fig. 17.6. This figure shows an open jet coming out of a nozzle

Fig. 17.5 Turbulent grid wake flow: making turbulent flow properties visible by
introduced smoke; see van Dyke [17.1]

Laminar flow

Transitional flow

Turbulent flow

Fig. 17.6 Subsonic open jet with areas of laminar, transitional and turbulent flow;
see van Dyke [17.1]
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which shows laminar flow behavior in the immediate vicinity of the nozzle.
The laminar flow becomes unstable and leads to a laminar-to-turbulent tran-
sition behavior, before further downstream the flow becomes completely
turbulent. For the last-named flow region it is characteristic that no dis-
tinctively coherent flow structures can be recognized any more. This makes
it clear that the transitional flow behavior can occur in parts of flows. In
front of these transitional sub-domains the flow is laminar and behind these
domains (looked at in the flow direction) the flow is turbulent.

17.2 Causes of Flow Instabilities

Flow instabilities show features that are manifold, and there is an extensive
literature available on their causes and on the resultant flow structures that
can be observed. It shall be the task here to discuss some of the causes that
occur and the resultant flow phenomena. The chapter tries to give an in-
troduction to the considerations that have to be carried out to investigate
flow instabilities theoretically. The methods employed in the considerations
are also part of the presentations, but they are limited to selected examples.
They were chosen, however, such that they clearly illustrate the full attraction
of fluid-mechanical investigations of unstable flows. Hence, the aim of the pre-
sented material is to ensure that students of fluid mechanics receive an early
introduction to the broad (but also very specialized) field of non-stationary
flow investigations, and that they are made familiar with the available solu-
tion methods. Here, it is important always to take the below-mentioned steps
towards a solution of the posed instability problems:

(a) Determine the main flow field as an analytical or numerical solution of the
Navier–Stokes equations and for the boundary conditions determining
the flow problem.

(b) Utilize the basic equations to derive equations to treat flow disturbances.
Carry out considerations for small amplitudes of the disturbances, i.e.
use the linearized equations to compute the disturbance. In this way,
linear, partial differential equations result and have to be treated for the
disturbances of all flow quantities to be considered.

(c) Obtain solutions of the resulting linear, partial differential equation sys-
tem for given disturbances, in order to investigate the increase or decrease
in the amplitude of the disturbances in space and time.

(d) The linear, partial differential equation system can be solved, to some
extent, for the general propagations of disturbances. Solutions do not
exist for all disturbances, so that one is often forced to carry out further
simplifications. The derivation of the Orr–Sommerfeld equation results
from such a simplification.
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(e) Finally, interpretations of the results obtained are needed for deciding
the ranges of parameter values for stable or unstable, laminar flows.

Steps (a)–(e) are shown in parts of the subsequent derivations.

17.2.1 Stability of Atmospheric Temperature Layers

In Chap. 6, the pressure distribution in the atmosphere was considered
for very different temperature distributions, e.g. also for the following
temperature distribution:

T (x2) = T0

(
1 − x2

c

)
, (17.7)

which states a linear temperature decrease with increasing height above sea
level. In this relationship γ = T0/c is the (existing) temperature gradient:

dT
dx2

=
T0

c
= constant. (17.8)

For the temperature distribution in the atmosphere, given by (17.7), the
corresponding pressure distribution could be found by integration of the
following equation:

dP
dx2

= −gρ = − g

RT
P (17.9)

resulting in

P = P0

(
1 − x2

c

) gc
RT0 = P0 (T0 − γx2)

g
Rγ . (17.10)

In the considerations in Chap. 6, it was indirectly assumed that the chosen
temperature distribution is stable, i.e. introduced disturbances leave the im-
posed temperature distribution undisturbed. Here, the extent to which this
holds true will be investigated, i.e. up to what temperature layer the imposed
temperature gradient is stable.

To be able to carry out the required stability considerations, a fluid el-
ement is considered which is deflected upwards for a short time. Here the
deflection of the fluid element is considered under adiabatic conditions. When
the deflection leads to a buoyancy force on the fluid element, increasing the
induced deflection, the temperature distribution is considered to be unsta-
ble. When the deflected fluid element experiences a restoring force, which is
directed such that a reduction of the deflection takes place, we have a stable
temperature distribution in the considered atmosphere (Fig. 17.7).

Taking the temperature T� as the temperature of a fluid particle which
experiences an adiabatic upward movement from z to z + dz, the following
relationship holds under adiabatic conditions:
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x2

T(     ) = T - x2
x2

x2 = z + z

x2 = z 

T(     )x2

0

T0

Temperature
distribution
for  γ     γa >

Fig. 17.7 Stability of temperature distribution in the atmosphere

T�
(T�)z

=
(
P�

(P�)z

)κ−1
κ

=
(
P

Pz

)κ−1
κ

, (17.11)

where T� and (T�)z are the fluid-element temperature and P� and (P�)z

represent the corresponding pressures at the considered heights.
From (17.11) one obtains

d(lnT�) =
κ− 1
κ

d(lnP ). (17.12)

From (17.9), it follows that

d(lnP ) = − g

RT
dx2 (17.13)

so that the following differential equation holds:

d(lnT�) = −κ− 1
κ

g

RT
dx2. (17.14)

From T = T0

(
1 − x2

c

)
, it follows that

dT = −T0

c
dx2 = −γ dx2. (17.15)

From (17.14) and (17.15), one obtains

dT�
T�

= −κ− 1
κ

g


γ
dT
T
. (17.16)

On introducing the adiabatic temperature gradient, common in meteorology:

γA =
(
κ− 1
κ

)
g

R
(17.17)
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into the above relationship, one can then write

dT�
T�

=
γA

γ

dT
T

(17.18)

or integrated:
T�

(T�)z

=
(
T

Tz

)(γA/γ)

. (17.19)

Due to the deflection of the fluid particle from position z, where it was in
equilibrium with its surroundings, a fluid motion results due to the presence
of the buoyancy force, for which the following equation of motion holds:

ρ�
d2z

dt2
= (ρ− ρ�) g (17.20)

or, after further rewriting:

d2z

dt2
= g
[(
T�
T

)
− 1
]
. (17.21)

Thus, because (T�)z = Tz, (17.21) holds:

d2z

dt2
= g
[
T�

(T�)z

(
Tz

T

)
− 1
]

(17.22)

and thus one can write for the subsequent considerations

d2z

dt2
= g

⎡⎣(T (z)
Tz

) γA−γ

γ

− 1

⎤⎦ . (17.23)

For these considerations, it is important to know whether the existing linear
temperature gradient γ = T0/c is larger or smaller than the adiabatic temper-
ature gradient of the atmosphere, i.e. (κ−1)

κ
g
R ≡ g

cp

>
<γ decides the stability

of the temperature distribution in the atmosphere.
Hence, the following considerations can be carried out:

• A positive deflection z causes T (z) < Tz because T = T0(1− z/c), so that
for γA > γ it follows that d2z/ dt2 < 0, i.e. the deflected fluid element
experiences a restoring force. The considered temperature distribution is
stable.

• When there is a value of γ = T0/c > γA, a fluid element deflected in the
positive z-direction experiences a positive force, i.e. the induced deflection
of the fluid element is increased. This temperature distribution therefore is
unstable. The smallest fluctuations of temperature and/or pressure in the
atmosphere will therefore “under these conditions” lead to the formation
of forces disturbing the considered temperature distribution.
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Summarizing, it can therefore be stated that for T = T0(1 − z/c) = (T0 −
γz) the following holds:

γ < g
cp

: stable temperature distribution,
γ > g

cp
: unstable temperature distribution.

These insights into the physics of aerostatics have to be considered when
employing (17.10) for the pressure distribution in the atmosphere. It holds
only for γ < g

cp
.

The above derivations make it clear also that there are mechanisms present
in the atmosphere which often are not noticed and which are suited to
reduce temperature fields with strong gradients in the atmosphere. When
the local temperature gradient reaches γ-values that are larger than g/cp,
the higher temperatures lying below the considered point will rise upwards
when disturbances occur. An intermixing of the air layers results, such that
γ ≤ g/cp is achieved.

17.2.2 Gravitationally Caused Instabilities

In order to investigate the gravitation-dependent instability of an interface
between two fluids, two infinitely extended fluids are considered which have a
common interface surface in the plane x1–x3 (see Fig. 17.8). Here, the density
of the upper fluid is ρA and that of the lower fluid is ρB. It is moreover
assumed that the surface tension in the interface layer is given by σ. Due to
the assumption that the fluid A expands in 0 ≤ x2 < +∞ and the fluid B
in −∞ < x2 ≤ 0, an instability problem results that is spatially dependent
only on x2.

As it is assumed that the considered fluids in the upper and lower regions
are viscous media, the considerations that should be carried out, concerning
possible instabilities, should be based on the Navier–Stokes equations. When,
however, one starts from the assumption that the following holds:√

g!� ν

!
, (17.24)

Fig. 17.8 Stratified fluids and stability of their
interface

x2

x3

x1

Fluid A with
density A

Fluid B with
density B

x 2
x 2

Plane between 
two fluids
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where ν/! is the characteristic “viscous velocity” and
√
g! is the character-

istic “gravitation velocity”, one can assume for the stability considerations
to be carried out here that gravitation effects dominate when compared with
viscous influences. These facts allow the employment of the “viscosity-free”
form of the basic equations, in order to investigate the instability caused by
gravitation, i.e. the instability of the fluids with the common interface shown
in Fig. 17.8. As the considerations to be carried out start from the assumption
that the fluids are at rest before the action of a disturbance sets in, the fluid
motion imposed by the disturbance will be irrotational from the beginning.
Therefore, it is recommended to treat the considered instability problem by
introducing the potentials φA and φB for fluids A and B.

It is understandable that in the case of the influence of a disturbance on
the interface surface, i.e. on x2 = 0 for all x1–x3 values, one can expect for
x2 → ±∞ that the velocities reach (U2)A = (U2)B = 0, so that one can set,
without limiting the universal validity of the considerations:

φA → 0 for x2 → +∞ and φB → 0 for x2 → −∞. (17.25)

As the solutions for φA and φB must, for viscous-free flows, satisfy the Laplace
equation, the following ansatzes can be chosen:

φA(xi, t) = CA exp(αt− kx2)S(x1, x3), (17.26)

φB(xi, t) = CB exp(αt + kx2)S(x1, x3), (17.27)

where S(x1, x3) has to satisfy the following partial differential equation:(
∂2

∂x1
2

+
∂2

∂x3
2

+ k2

)
S (x1, x3) = 0. (17.28)

On defining with η the deflection of the interface surface, the following
kinematic relationship holds:

∂φA

∂x2
=
∂φB

∂x2
=
∂η

∂t
for x2 = η. (17.29)

This relationship indicates that at the interface surface (U2)A has to be equal
to (U2)B and that the velocity is given by the deflection velocity of the inter-
face surface. Strictly there exists an equality for the normal components of
the velocities. For small deflections of the interface it can generally be as-
sumed, however, that the normal components of velocity are equal to the
vertical components. By introducing this equality into the considerations to
be carried out, a linearization of the problem is introduced, i.e. the subsequent
considerations can be assigned to the field of the linear instability theory.

When considering the relations (17.26) and (17.27) for x2 = 0, one can
write for η(x1, x3, t)

η = C exp(αt)S(x1, x3). (17.30)
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With (17.26), (17.27) and (17.30), one obtains from (17.29):

−kCA = kCB = Cα. (17.31)

For the pressure difference between fluids A and B, one obtains:

PA − PB = σ
(

1
RA

+
1
RB

)
= σ

(
∂2η

∂x1
2

+
∂2η

∂x2
2

)
. (17.32)

With (17.30) one obtains, with consideration of (17.28):

PA − PB = −σk2η. (17.33)

Statements on PA and PB can also be obtained via the Bernoulli equation:

PA

ρA
= − ∂φA

∂t
− gη; PB

ρB
= − ∂φB

∂t
− gη. (17.34)

Hence one can derive

ρA(−αCA − gC) − ρB(−αCB − gC) = −σk2C. (17.35)

The elimination of CA, CB and C from (17.30) and (17.35) allows the
following derivation for α:

α2 =
g (ρA − ρB) k

(ρA + ρB)
− σk3

(ρA + ρB)
, (17.36)

where α indicates the growth rate of a disturbance with time, (see (17.29)),
so that

g (ρA − ρB)
(ρA + ρB)

− σk2

(ρa + ρB)
≥ 1 (17.37)

or solved in terms of k2:

k2 <
g

σ
(ρA − ρB) >

2π
!
. (17.38)

This relationship expresses that in the case of infinitely extended fluids with
a common interface there always exists an ! which fulfills the condition for
instability when ρA > ρB. Fluids with a common horizontal interface, where
the heavy fluid is above, are inherently unstable. The fluids tend to “turn
over,” i.e. the heavier fluid tends to move to the lower location.

17.2.3 Instabilities in Annular Clearances Caused
by Rotation

In the preceding considerations in this chapter, instabilities of static fluids
were considered see also refs. [17.2]. A flow which proves unstable for cer-
tain parameter combinations was treated by Taylor [17.7]. He considered the
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Fig. 17.9 Diagram of the vortex development for the Taylor annular-clearance flow
and instability diagram

laminar flow between two rotating cylinders, as sketched in Fig. 17.9. There,
the inner cylinder is assumed to rotate at a velocity (Uϕ)1 = R1ω1 and the
outer cylinder at (Uϕ)2 = R2ω2. For Ur = 0 and Uz = 0, the following sys-
tem of equations results for the flow in the annular clearance between the
two cylinders:

ρ
U2

ϕ

r
=

dP
dr

and
d2Uϕ

dr2
+

1
r

dUϕ

dr
− Uϕ

r2
= 0. (17.39)

The second differential equation for Uϕ is of the Euler type and thus allows
particular solutions of the kind:

Uϕ = Ckr
k �

d2Uϕ

dϕ2
= Ckk(k − 1)rk−2,

1
r

dUϕ

dr
= Ckkr

k−1 and
Uϕ

r2
= Ckr

k−2.

(17.40)

This yields for k the general equation:

k(k − 1) + (k − 1) = (k + 1)(k − 1) = 0 (17.41)

and thus k1 = 1 and k2 = −1 are obtained. Therefore, the general solution
of the differential equation for the velocity Uϕ reads:

Uϕ = C1r +
C2

r
. (17.42)

The integration constants C1 and C2 result from the boundary conditions
Uϕ(R1) = R1ω1 and Uϕ(R2) = R2ω2, so that one obtains:

C1 =
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

and C2 =
(ω1 − ω2)R2

1R
2
2

(R2
2 −R2

1)
(17.43)

and thus for the velocity distribution Uϕ(r):

Uϕ (r) =
1

r (R2
2 −R2

1)
[(
ω2R

2
2 − ω1R

2
1

)
r2 + (ω1 − ω2)R2

1R
2
2

]
. (17.44)
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The derivations carried out above show that the solution stated in (17.44)
for the flow problem indicated in Fig. 17.9 fulfills the Navier–Stokes equations
and the corresponding boundary conditions. The derivations carried out in
order to obtain the analytical solution leave, however, the question of the
stability of the solution unanswered, i.e. the extent to which disturbances
introduced into the flow are attenuated or amplified still has to be resolved.
Taylor demonstrated that the question can be solved through purely analyti-
cal considerations. In accordance with Taylor’s considerations, we supplement
the above-indicated considerations by means of the following ansatzes for the
velocity components in the ϕ-, r- and z-directions:

Ur = u′r; Uϕ = Uϕ (r) + u′ϕ and Uz = u′z. (17.45)

On entering these velocity ansatzes into the basic equations and neglecting
the terms of second order, i.e. carrying out linear stability considerations, one
obtains the following equation system for the determination of the distur-
bances u′r, u′ϕ and u′z:
Continuity equation:

∂

∂r
(ru′r) +

∂

∂z
(ru′z) = 0. (17.46)

Momentum equations:

∂u′r
∂t

= −1
ρ

∂p′

∂r
+ 2
(
C1 +

C2

r2

)
u′ϕ + ν

[
∂2u′r
∂z2

+
∂2u′r
∂r2

+
1
r

∂u′r
∂r

− u
′
r

r2

]
,

(17.47)

∂u′ϕ
∂t

= −2C1u
′
r + ν

[
∂2u′ϕ
∂z2

+
∂2u′ϕ
∂r2

+
1
r

∂u′ϕ
∂r

− u
′
ϕ

r2

]
,

(17.48)

∂u′z
∂t

= −1
ρ

∂p′

∂z
+ ν
[
∂2u′z
∂z2

+
∂2u′z
∂r2

+
1
r

∂u′z
∂r

]
. (17.49)

Here, the boundary conditions u′r = u′ϕ = u′z = 0 for r = R1 and r = R2

hold. For their solution, the following ansatzes are now chosen:

u′r = u1(r) cos(!z) exp(βt), u′ϕ = u2(r) cos(!z) exp(βt) and
u′z = uB(r) sin(!z) exp(βt). (17.50)

Hence, the following equation system results for u1, u2 and u3, which all
depend only on the position coordinate r:

ν

[
d2u2

dr2
+

1
r

du2

dr
− u2

r2
− !′2u2

]
= 2C1u1, (17.51)
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ν

λ

d
dr

[
d2u3

dr2
+

1
r

du3

dr
− !′2u3

]
= − 2

(
C1 +

C2

r2

)
u2

− ν
[

d2u1

dr2
+

1
r

du1

dr
− u1

r2
− !′2u1

]
, (17.52)

du1

dr
+
u1

r
+ λu3 = 0, (17.53)

where the following holds for !
′
:

!
′2 = !2 +

β

ν
. (17.54)

The system of equations for u1, u2 and u3 can be solved by ansatzes of
Fourier–Bessel series, where the development takes place in terms of the
Bessel function:

z1 (kαr) = α1J1 (kαr) + α2N1 (kαr) , (17.55)

where α1 and α2 are chosen such that the following holds:

z1 (kαR1) = z1 (kαR2) = 0. (17.56)

Here

u1(r) =
∞∑

α=1

A∞z1(kαr), (17.57)

where the coefficients Aα have to be determined by the following
relationships:

Aα =
1
Hα

Rz∫
R1

ru1(r)z1(kαr) dr with Hα =

Rz∫
R1

rz21(kαr) dr. (17.58)

For u2 one obtains in accordance with (17.51):

ν

(
d2u2

dr2
+

1
r

du2

dt
− 1
r2

− λ′2
)

= 2C1

∞∑
α=1

Aαz1(kαr) (17.59)

so that one obtains:

u2(r) =
∞∑

α=1

Bαz1(kαr) (17.60)

with the coefficients Bα being:

Bα = − 2C1Aα

ν (k2
d + λ′2)

. (17.61)

The boundary conditions u2(R1) = u2(R2) = 0 supply, however, u2(r) = 0.
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To determine u3(r), the differential equation (17.53) is employed and a
known property of the Bessel function is implemented:

1
k

d
dr
z0(kr) = −z1(kr) (17.62)

so that one obtains

d
dr

(
d2u3

dr2
+

1
r

du3

dr
− λ′2u3

)
= 0. (17.63)

For this differential equation the following solution results:

u3(r) = z0(iλ′r) + constant. (17.64)

By employing the above solution, Taylor was able to demonstrate that in the
case of given values of ω1, ω2, R1 and R2 the quantities

λ and λ′ =

√
λ2 +

β

ν
(17.65)

are linked with one another.
Taylor carried out the above-indicated analysis in detail, assuming (R2 −

R1) � 1
2 (R2 + R1), i.e. his results hold for narrow annular clearances. His

results can be summarized as follows, in consideration of the stability diagram
in Fig. 17.10:

• When both cylinders, forming the annular clearance, rotate in the same
direction, the stability of the flow is always guaranteed when R2

1ω1 < R
2
2ω2

holds (see Fig. 17.10).
• The elementary stability criterion given above is not applicable when the

rotating cylinders possess opposite directions of rotation.
• For ω1

ω2
= R2

2
R2

1
= 1.292, the stability curve shown in Fig. 17.10 results. Here

the loss of stability is characterized by the so-called Taylor vortices that
form in the annular clearance. The directions of rotation of these vortices
alternate.

• With δ = (R2−R1) and U1 = R1ω1, the critical Taylor number Ta, where
the instability starts, can be stated as follows:

Ta =
U1δ

ν

√
δ

R1
≥ 41.3. (17.66)

The flow forming in the annular clearance, due to the treated instability,
is laminar again.

• The energy which is introduced through the drive of the inner cylinder
drives the secondary vortices and, after the steady state of the flow has
established itself, also the energy dissipation in the vortices.
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Fig. 17.10 (a) Vortex shapes between cylinders rotating in the same direction after
occurrence of the Taylor instability. (b) Vortex development with cylinders rotating
in the opposite direction after occurrence of the Taylor instability

It is interesting that in the cases of opposite directions of rotation of the two
cylinders, i.e. for ω2 = 0, the value for ω1 for which the Taylor instability
occurs increases again when departing from ω2 = 0. It is further interesting
that the annular vortices change with the opposite mode of rotation. As
Fig. 17.10 shows, two vortex series form, one which is to be assigned to the
rotation of the inner cylinder and another which belongs to the rotation of
the outer cylinder.

17.3 Generalized Instability Considerations
(Orr–Sommerfeld Equation)

Section 17.2 showed to some extent how to proceed with considerations in the
framework of the linear instability theory. The approach presented there will
now be generalized for flow computations for which the following disturbance
ansatzes hold, see also refs. [17.6]:

û1 = Ux(y) + u′x(x, y, t); û2 = u′y(x, y, t); û3 = 0, (17.67)
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i.e. a one-dimensional stationary velocity field Ux(y) is assumed as given, into
which two-dimensional time-dependent disturbances are introduced, or can
form in the flow. Furthermore, for the pressure we assume

P̂ = P (x) + p′(x, y, t), (17.68)

where for all fluctuation quantities we introduce:

a′

A
� 1; i.e.

u′x
Ux

� 1;
u′y
Ux

� 1;
p′

P
� 1. (17.69)

On introducing the quantities defined in (17.67) and (17.68) into the Navier–
Stokes equations, the following system of equations results:

∂u′x
∂x

+
∂u′y
∂y

= 0, (17.70)

∂u′x
∂t

+ (Ux + u′x)
∂u′x
∂x

+ u′y

(
dUx

dy
+
∂u′x
∂y

)
= −1

ρ

(
dP
dx

+
∂p′

∂x

)
+ ν
(
∂2u′x
∂x2

+
∂2u′x
∂y2

+
d2Ux

dy2

)
, (17.71)

∂u′y
∂t

+(Ux + u′x)
∂u′y
∂x

+u′y
∂u′y
∂y

= −1
ρ

∂p′

∂y
+ ν

(
∂2u′y
∂x2

+
∂2u′y
∂y2

)
. (17.72)

These differential equations yield for the special case that no disturbances
exist:

0 = −1
ρ

dP
dx

+ ν
d2Ux

dy2
. (17.73)

Disregarding all squared terms occurring in the disturbance quantities and
after subtraction of (17.73), one obtains the following system of equations for
the considered disturbance quantities u′x, u′y and p′:

∂u′x
∂x

+
∂u′y
∂y

= 0, (17.74)

∂u′x
∂t

+ Ux
∂u′x
∂x

+ u′y
dUx

dy
= −1

ρ

∂p′

∂x
+ ν

(
∂2u′x
∂x2

+
∂2u′y
∂y2

)
, (17.75)

∂u′y
∂t

+ Ux

∂u′y
∂x

= −1
ρ

∂p′

∂y
+ ν

(
∂2u′y
∂x2

+
∂2u′y
∂y2

)
. (17.76)

The introduced two-dimensionality of the disturbances allows the elimination
of the differential equation (17.74), resulting from the continuity equation,
by introducing a stream function for the velocity field of the disturbances:

u′x =
∂Ψ ′

∂y
and u′y = − ∂Ψ

′

∂x
. (17.77)
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If one expresses (17.75) and (17.76) in this disturbance stream function Ψ ′,
one obtains the following differential equations for Ψ ′ and p′:

∂2Ψ ′

∂y∂t
+ Ux

∂2Ψ ′

∂x∂y
− ∂Ψ ′

∂x

dUx

dy
= −1

ρ

∂p′

∂x
+ ν
(
∂3Ψ ′

∂x2∂y
+
∂∂3Ψ ′

∂∂y3

)
, (17.78)

− ∂Ψ
′

∂x∂t
− Ux

∂2Ψ ′

∂x2
= −1

ρ

∂p′

∂y
− ν
(
∂3Ψ ′

∂x3
+
∂3Ψ ′

∂x∂y2

)
. (17.79)

By differentiation of (17.78) with respect to y and (17.79) with respect to x,
the terms ∂2p′/∂x∂y can be eliminated, so that one only obtains a differential
equation for Ψ ′. The latter contains, however, terms of fourth order and can
be written as follows:(

∂

∂t
+ Ux

∂

∂x

)(
∂2Ψ ′

∂x2
+
∂2Ψ ′

∂y2

)
− d2Ux

dy2
∂Ψ ′

∂x

= ν
(
−∂

4Ψ ′

∂x4
+ 2

∂4Ψ ′

∂x2∂yx
− ∂

4Ψ ′

∂y4

)
.

(17.80)

All of the above differential equations clearly express that disturbances, as
expressed by (17.67) and (17.68), are governed by the conservation laws of
fluid mechanics and the given undisturbed flow field Ux(y). Special solutions
can be obtained for the following ansatz for Ψ ′(x, y, t):

Ψ ′ = f(y) exp [i (kx− ωt)] . (17.81)

Here k is always set as real, i.e. waves of wavelength λ = 2π/k are considered
in the direction of the x coordinate, whose behavior are described by the
differential equation (17.80).

The quantity ω in the exponential term of the ansatz (17.81) can adopt
complex values:

ω = ωR + iωI . (17.82)

On proving that ωI < 0 holds, Ψ ′ decreases with time and the fluid flow
Ux(y) can be regarded as stable. For ωI > 0, the disturbance is excited with
time, i.e. the flow Ux(y), investigated for instabilities, proves to be unstable
with respect to the imposed disturbances.

The differential equation (17.80) is of fourth order, so that its integration
requires the implementation of four boundary conditions. They can be stated
for plane channel flows and wall boundary-layer flows as follows:

• For plane channel flow it results for y = 0 and y = 2H that u′x = u′y = 0,
i.e.

f(0) = f ′(0) = f(2H) = f ′(2H) = 0. (17.83)

• For flat plate boundary layer flow one obtains, because of the no-slip
condition at the wall

f(0) = f ′(0) = 0.
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For the outer flow one can state, because of the lack of viscosity forces, i.e.
d2Ux/dy2 = 0, that

f ′′ − kf = 0 � f = ω exp(−ky). (17.84)

On setting Ψ ′ = f(y) exp[ik(x − ct)], the well-known Orr–Sommerfeld
differential equation results:

(kUx − ω)(f ′′ − k2f) − kU ′′
x f =

ν

ik
(f ′′′′ − 2k2f ′′ + k4f). (17.85)

This usually needs to be solved numerically for investigating the stability
of a certain flow, using the undisturbed velocity distribution Ux(y) and the
assumed wavelength k in the equation and employing the above-indicated
boundary conditions, e.g. for:

y = 0 : f(0) = f ′(0) = 0,
y → ∞ : f(y) = f ′(y) � 0. (17.86)

For physical considerations it is also appropriate to introduce c = ω/k =
cR +icI . For stability considerations one therefore has to look for the solution
of an eigenvalue problem and to determine it for each wavelength of a distur-
bance, i.e. for each λ = 2π/k. The wavelength range which leads to negative
values of the imaginary part of c is defined as stable, i.e. the investigated flow
is stable with respect to these disturbances. Thus, it is determined by succes-
sive computations, for which wavelength the imaginary part of c is positive.
This then leads to an insight into whether for a solution Ux(y), that we have
for a flow, the flow field Ux(y) changes abruptly into a flow state differing
from its undisturbed state.

When two-dimensional disturbances are imposed on considered flows, the
behavior of flows with two-dimensional velocity profiles can nowadays be
investigated numerically, e.g. plane channel flow with sudden cross-section
widening indicated in Fig. 17.11. This figure illustrates an inner flow, which
is given by a fully symmetric inflow in planeA, and shows symmetrical bound-
ary conditions between planes A and B, and in B a symmetrical profile of
the outflow exists. In spite of this, flow investigations show that the flow
profiles between planes A and B are asymmetric from a certain Res value
onwards. This is stated in Fig. 17.11b, which shows that from 
s ≈ 150
onwards separate regions with differing lengths and locations form.

The results in Fig. 17.11 for two-dimensional plane channel flow were
obtained numerically. For Re < Res the numerical computations yielded
symmetrical velocity profiles, i.e. for this Re range the viscosity influences
were strong enough to attenuate disturbances in the flow. Thus it was pos-
sible at all locations on the symmetry axis to obtain and maintain U2 = 0
for all times. For Re > Res this important condition for the symmetry of the
flow could not be fulfilled any longer, and the asymmetry of the flow indi-
cated in the lower half of Fig. 17.11 developed. This kind of investigation also
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}

}

Re < Res

Re > Res

Re    Res~~

a)

b)

A
B

Fig. 17.11 (a) Two-dimensional plane channel flows with sudden expansion of cross-
sectional area; (b) computation results with an asymmetry of the flow

Fig. 17.12 Computations of the separation regions for imposed disturbances for
flows of (a) Re = 70 and (b) Re = 610

yielded that the shorter separation region, characteristic for the asymmetry,
can occur either above or below, depending on the imposed disturbance.

When drawing the separation lengths as a function of the Reynolds num-
ber, one obtains a so-called bifurcation diagram with x2/x1 = 1 for smaller
Reynolds numbers, i.e. for Re < Res. This diagram would show that a bi-
furcation point S occurs for Re = Res. Two branches of the characteristic
function x2/x1, typical of the asymmetry of the flow, start at Re = Res. The
symmetrical solution turns out to become unstable for Re > Res, i.e. the
smallest disturbances that are introduced into the flow lead to a break of
the symmetry of the flow.

In order to demonstrate that the asymmetric flow fields that develop for
Re < Res are stable, the numerical solutions were exposed to considerable
disturbances in time. This is shown in Fig. 17.12, which shows (a) temporal
changes of the x2 positions characterizing the separation region behind the
step. When the temporal disturbances are removed, the dimensions of the
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separation areas, typical for the corresponding Reynolds numbers, re-form
and take on the value of the steady-state solution. Here, the numerical com-
putations carried out showed that it is left to chance whether the shorter
separation region develops on the lower or upper wall behind the sudden
expansion. In Fig. 17.12b, several layers of separation areas appear, which
also re-establish themselves as the disturbances on the flow are removed.

17.4 Classifications of Instabilities

The complexity of the behavior of flow fluctuations, resulting from induced
disturbances due to flow instabilities, becomes clear when considering the
ansatz for the stream function for velocity fluctuations:

Ψ ′ (x1, x2, t) = f (x2) exp [i (kx1 − ωt)] . (17.87)

On introducing k = kR + ikI and ω = ωR + iωI , one obtains with f(x2) =
F (x2) exp[−iθ(x2)]

Ψ ′ (x1, x2, t) = exp (ωIt− kIx1) {F (x2) cos [kRx1 − ωRt− θ (x2)]} . (17.88)

If all values kR, kI , ωR and ωI are unequal to zero, a disturbance is described
by Ψ ′(x1, x2, t), which is extremely complex and can only be classified as dif-
ficult to describe and even more difficult to “mentally digest.” When keeping
the space point constant for considerations within a certain range, i.e. x1, x2

constant, (17.88) describes a disturbance (unstable flow) increasing with time,
or a disturbance (stable flow) decreasing with time. Here, it has to be taken
into consideration that an insight into the physics of stability or instability
of a flow is only gained for one point of the flow field. It cannot be trans-
ferred to other points. On adding other disturbances to make the complexity
of stability considerations still clearer, and if one looks at flow disturbances
for constant values of x2 and t, increases or decreases of disturbances in the
x1-direction look different. One can see that direct considerations of (17.88)
lead only to a very limited extent to a deeper understanding of the stability
or instability of flows.

When the information on an existing instability for one point of the flow
field holds for the entire flow field, one talks about an absolute instability.
This occurs, e.g., when in a rotating annular flow a disturbance is introduced
which then transits from a flow free of Taylor vortices to a flow in which
Taylor vortices occur in the entire flow field.

On introducing into a flow a disturbance, which is “carried away” like,
e.g., the surface wave caused by a stone thrown into water, and when the
disturbance then increases, one talks of a convective instability. The dif-
ference to the absolute instability is indicated in Fig. 17.13. In 17.13a, the
increase of the disturbance in the entire part of the flow field with time is
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Fig. 17.13 Schematic diagrams of (a) absolute flow instability and (b) convective
instability

indicated. This is characteristic of the presence of an absolute instability of
the flow. In Fig. 17.13b, the increase of an induced disturbance with simulta-
neous movement in space is illustrated; this is characteristic of the presence
of a convective instability.

In the presence of a convective instability, “feed-back” mechanisms can
occur, such that the disturbance returns back, due to reflections, to the place
from where the disturbance started. This causes a new disturbance there,
which again is transported in a convective way and is again reflected, so that
an instability only occurs in an embedded part of the system. In this case, one
talks of a global instability. When there are global instabilities, subdivisions
with regard to the feed-back mechanisms and the interactions of the reflected
disturbances with the initial flows can be made. This is a research-active field
of modern fluid mechanics.

In the literature, further classifications of possible instabilities have been
made. We start from the following ansatz for the stream function of a
disturbance that is allowed to increase with space and time:

Ψ ′ (x1, x2, t) = f(x2) exp [i (kx1 − ωt)] (17.89)

and considering the corresponding Orr–Sommerfeld equation:

(kU1 − ω)
(
f ′′ − k2f

)− kU ′′
1 f + iRe−1

[
f ′′′′ − 2k2f ′′ + k4f

]
= 0. (17.90)

Simple stability considerations now start with the assumption that kI = 0,
so that as the basic disturbance a sine wave serves in the x1-direction. For
this case, for given values of Re and kR, the eigenvalues of ωR and ωI are
determined. When ωI is positive, the amplitude of the disturbing wave grows
with time; we have a time instability of the flow. On comparing this approach
with the diagrams on the absolute flow instability in Fig. 17.13, it becomes
clear that the time analysis of flow instabilities is appropriate when one wants
to analyze a flow with regard to the presence of an absolute instability. Often
time analysis is also chosen for reasons of simplicity, even when it is evident
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that a convective instability is involved. The reason for this can be taken
from the Orr–Sommerfeld equation (17.90). In this equation, k appears as a
factor in several terms, so that a certain simplification occurs in the solution
procedure when k is real. Strictly, one would have to set βI = 0 (see the text
above (17.88)), when investigating the spatial instabilities of a flow and thus
carrying out investigations for given values for Re and ωR to determine the
eigenvalues of kR and kI . When kI proves negative, we have an amplification
of the amplitude of the disturbance with x1, i.e. a spatial instability of the
flow is present. Recent investigations of flow instabilities mostly carried out
temporal and spatial analyses of the stability or instability of flows.

17.5 Transitional Boundary-Layer Flows

By relatively simple experimental investigations, one can detect that flows
can be in a laminar or in a turbulent flow state. Velocity sensors introduced
into a certain stationary flow lead to signals as shown in Fig. 17.14. In a flow
defined as laminar, the velocity signal shows a temporally constant velocity.
In a flow defined as being turbulent, there exists, however, a time variation
of the local velocity which shows velocity fluctuations around a mean value.
Both velocity variations with time are shown in Fig. 17.14. This makes clear
the difference in the time variations of the velocity signals. The figure also
shows the differences in the profiles of the velocity distributions.

The field of fluid mechanics that treats the transition of the laminar state
of a flow into a turbulent one, is defined as “fluid mechanics of transitional
flows.” Usually the laminar-to-turbulent transition of a flow takes place as an
intermittent process, such that a flow state is initially laminar. Introduced
flow disturbances are then excited for a short time, subsequently experiencing
an attenuation again. The flow transits initially only in an intermittent way
from the laminar into the turbulent flow state, where over the duration of
the turbulent phase, a comparison concerning the entire observation time, a
so-called “intermittent factor” can be introduced, i.e.

IF =
∑
∆tturb

T
. (17.91)

U  (     )x21

U  (     )x21

t

U  (     ,  )x21 t

x2

x1x1

Laminar velocity profilex2 Turbulent velocity profile

Velocity sensor Velocity sensor

Fig. 17.14 Laminar and turbulent flow states at plane channel flows
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For IF = 0 the considered flow is, at the place of measurement, in its laminar
state and for IF = 1 it has reached its turbulent state. For the entire region
0 < IF < 1, there exists the so-called laminar-to-turbulent transitional range,
with relatively abrupt changes from the laminar to the turbulent state of
the flow. Investigations of these abrupt changes belong to the important
investigations which constitute modern fluid mechanics research. An essential
sub-domain of the current investigations in this field of research involves the
laminar-to-turbulent transition in boundary layers. The latter will be treated
here in an introductory way, with emphasis on wall boundary layers.

The basic idea of the present laminar-to-turbulent transition research
starts from the assumption that the transition from the laminar to the tur-
bulent state of a flow is concerned with the increase in disturbances. Thus,
transition research is a sub-domain of stability research carried out in fluid
mechanics. Its theory is thus based, especially where boundary-layer flows
are concerned, on the Orr–Sommerfeld equation:

(kU1 − ω)(f ′′ − k2f) − kU ′′
1 f + iRe−1

[
f ′′′′ − 2k2f ′′ + k4f

]
= 0. (17.92)

For ν = 0 this differential equation can be stated as follows:

(kU1 − ω)(f ′′ − k2f) − kU ′′
1 f = 0. (17.93)

This equation (Rayleigh equation) is only of second order, and therefore
only two of the boundary conditions formulated in the preceding section can
be introduced into the solution. They are usually employed as follows:

y = 0 � f(0) = 0 and y → ∞ � f(→ ∞) = 0. (17.94)

Neglecting the viscosity term in (17.92) leads to a drastic simplification
of the differential equation to be solved, because of the above-mentioned
reduction of the order. This was probably the reason why all initial studies
on the stability of flows were based on the Rayleigh equation (17.93). From
this results the following insight:

All laminar velocity profiles which show an inflection point, i.e. for which at
one location of the velocity profile d2U1/dy2 = 0 holds, are unstable.

With this criterion, we have a necessary (Rayleigh) and a sufficient (Tollmien)
condition for the occurrence of flow instabilities. This fact alone makes it
clear that the curvature of velocity profiles has an important influence on the
stability of a flow.

Intuitively one would assume that the inclusion of a viscosity term in
(17.92), i.e. applying the Orr–Sommerfeld equation rather than the Rayleigh
equation, leads to an attenuation of introduced disturbances. This, how-
ever, cannot be confirmed. It rather turns out that the solution of the
Orr–Sommerfeld equation always has to be employed to obtain the approxi-
mately correct disturbance behavior of a flow in its initial phase. The insights
gained from such solutions can be plotted in so-called instability diagrams
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Fig. 17.15 Instability diagram for boundary layers with and without viscosity term
in the Orr–Sommerfeld equation

as indicated in Fig. 17.15 for a flat plate boundary layer. This figure shows
that only a relatively narrow range of wavelengths and frequencies of distur-
bances have to be classified as “dangerous” for the stability of the boundary
layer. There always exists, for each investigated disturbance, a lower limit
for each Reynolds number of the boundary layer and an upper limit. Out-
side the so-called critical Re range that is characteristic of each disturbance,
boundary-layer flows prove to be stable.

When carrying out numerical computations, it results for C = ω/k that

CR

U∞
= 0.39, kδ1 = 0.36 and

ωRδ1
U∞

= 0.15.

It is interesting that the smallest wavelength of the disturbances which can
act in an unstable way on boundary layers is fairly long:

λmin =
2π

0.36
δ1 = 17.5δ1 = 6δ.

For smaller wavelengths of disturbances, boundary layers prove to be stable.
As the critical Reynolds number for the laminar-to-turbulent transition,

numerical computations yield

Recrit = 520

a value which is lower than the corresponding experimentally obtained value:

(Recrit)exp ≈ 950.

The difference is probably due to the fact that the numerically determined
value Recrit = 520, ascertained from stability considerations, represents the
“point of neutral instability,” whereas the experimentally determined value
probably represents the “point of the laminar-to-turbulent transition that
occurs abruptly.” The two are, as can easily be understood, not necessarily
identical.
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Chapter 18

Turbulent Flows

18.1 General Considerations

In Chap. 17, we pointed out that special flow properties exist to justify the
classification of fluid motions into laminar, transitional and turbulent flows.
As laminar were designated all flows which proved stable towards distur-
bances introduced from outside, resulting in flows with a high degree of order
and in which diffusion phenomena are characterized only by molecular diffu-
sion. Laminar flows can be dependent on time, as the Karman vortex street
shows, which is depicted in Fig. 18.1. As long as the flow shows the high de-
gree of order which is characteristic of it, it is laminar. This means that the
viscosity of the fluid is able, in stable laminar flows, to attenuate sufficiently
fluctuations of the flow properties that would otherwise disturb the orderli-
ness of the flow. Perturbation attenuations of this kind usually occur at low
Reynolds numbers of all flows.

When considering flows at high Reynolds numbers, one finds that flow
phenomena such as the Karman vortex street, visually perceivable thanks
to flow visualization techniques, lose their “regularity,” i.e. stochastic fluc-
tuations of all flow properties are observed, as indicated in Fig. 18.2. These
fluctuations occur superimposed on the mean flow characteristics.

The fluid motions, known to be of high regularity for laminar flows, do not
exist any longer as orderly in turbulent flows, i.e. in flows of high Reynolds
numbers. At high Reynolds numbers, a flow state exists which stands out for
its strong irregularity, in connection with an extremely high diffusivity which
can exceed the molecular-dependent transport processes by several orders of
magnitude. Connected with that is an increased intermixing of the fluid and
an increased transport rate of the momentum, and also increased heat and
mass transport. All these characteristics led to the introduction of the term
“turbulence” for the state of flows with this strongly irregular flow behavior,
in order to give a clear expression of the differing character compared with
laminar flows. These differences have to be considered also when treating

523
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Fig. 18.1 The Karman vortex street, at low Reynolds numbers a time-varying
laminar flow

Fig. 18.2 The Karman vortex street (at high Reynolds numbers) in a turbulent flow

turbulent flows theoretically, i.e. turbulent flows require a specific treatment
which differs from that of laminar flows.

On introducing into a turbulent flow field a velocity sensor which is capable
of measuring the local instantaneous velocity, such a measurement results in
a velocity dependence on time, as indicated in Fig. 18.3. At a point in space,
the signal is characterized by strong fluctuations of the flow velocity in time,
which can be stated as deviations u′j(xi, t) from a mean value U j(xi), the
latter being a constant with respect to time. Here, the time mean value
U j(xi) is defined as follows:

U j (xi) = lim
T→∞

1
T

∫ T

0

Ûj(xi, t) dt, (18.1)

where Ûj(xi, t) indicates the instantaneous value of the velocity (see Fig. 18.3)
and T is the integration time over which the indicated time-averaging takes
place.

Thus, Ûj(xi, t) can be taken as a quantity which allows one to consider
the local flow velocity, varying over time, as the sum of a quantity that is
constant with respect to time and a quantity that is fluctuating in time. This
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Turbulent fluctuation 
of the velocity 
component of Uj

Time averaged 
velocity component of Uj

Fig. 18.3 Time velocity path at a point xi within a turbulent flow field

decomposition of the instantaneous velocity Ûj(xi, t) into a time-averaged
part U j(xi) and a fluctuating part u′j(xi, t) has advantages, as will be shown
later. It was introduced by Reynolds to treat turbulent flows.

The above definition of the mean velocity states, for T → ∞, an equality
in area:

TU i︸︷︷︸
rectangular

area

= lim
T→∞

∫ T

0

Ûi(t)dt︸ ︷︷ ︸
integral over

time-dependent signal

. (18.2)

When considering this definition of the time mean value of the velocity,
then for the quantity u′j(xi, t), designated as turbulent velocity fluctuation,
the following equation holds:

u′j(xi, t) = Ûj(xi, t) − U j(xi). (18.3)

When applying to this relationship the operator lim
T→∞

1
T

∫ T

0 ()dt, the following

can be carried out:

lim
T→∞

1
T

∫ T

0

u′j(xi, t) dt = lim
T→∞

1
T

∫ T

0

[
Ûj(xi, t) − U0(xi)

]
dt

= lim
T→∞

1
T

∫ T

0

Ûj(xi, t) dt︸ ︷︷ ︸
=Uj

− lim
T→∞

1
T

∫ T

0

U j(xi) dt︸ ︷︷ ︸
=Uj

.

(18.4)

It can be concluded that the two integrals shown on the right-hand side of
(18.4) are equal and their difference yields 0, i.e. the following holds for the
time average of turbulent velocity fluctuations:

lim
T→∞

1
T

∫ T

0

u′j(xi, t) dt = u′j(xi, t) = 0, (18.5)
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where the overbar on u′j(xi, t) represents a simplified way of writing the
carried out time averaging. On designating the turbulent velocity fluctuations
with u′j(xi, t) (or simplifying this to u′j), then the following can be said:

• The time average of the turbulent velocity fluctuations u′j is equal to zero
per definition. Hence, there is a way to present turbulence in local, time-
varying quantities, in a form such that the turbulent fluctuations of all
flow quantities, that are introduced into the considerations, show a time
mean value that is zero.

For the fluctuating velocity quantity u′j , moments of higher order can also be
defined:

u′nj = lim
T→∞

1
T

∫ T

0

u′nj dt, (18.6)

which in general show values different from zero. Especially for the rms value
of the turbulent velocity fluctuations, the following holds:

σi =
√
u′2i =

√
lim

T→∞
1
T

∫ T

0

u′2i dt. (18.7)

This can be employed for the definition of the turbulence intensity:

Tu =

√
1
2uiui

U tot

=

√
1
2

(
u2

1 + u2
2 + u2

3

)
U tot

. (18.8)

This quantity represents a measure of the intensity of the turbulent fluctua-
tions of the velocity components with respect to the local mean value U tot.
As shown in (18.8), it is often usual to take as a relative value the mean
value of the total velocity vector, i.e. U tot =

√
UjUj . The Tu-value is often

only around a few percent for some flows and, because of this, one speaks of
a turbulent flow of low intensity. When the value is around 10% and more,
the flow is defined as highly turbulent. Highly turbulent flows occur mostly
in industrial flow systems. It is the task of fluid mechanics to develop and
bring to application measurement techniques and numerical solution methods
which allow investigations of turbulent flows with low and high turbulence
intensities. In practice, it is often sufficient to only have information on time
mean values of turbulent quantities of an investigated flow field.

The introductory explanations above indicate clearly that turbulent flow
fields show a complex behavior, providing strong property variations in space
and time, so that detailed considerations are only worth the effort if spe-
cial insights into the physics of turbulence are needed. For practical flow
considerations, it is sufficient to treat turbulent flow processes by means of
their statistical mean properties, i.e. to describe the most important char-
acteristics of turbulent flows by statistical mean values. In this chapter, the
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most important methods of statistical flow considerations are summarized
and explained briefly, in order to employ them subsequently in the treatment
of turbulent flows. More details are found in refs. [18.4] to [18.9].

18.2 Statistical Description of Turbulent Flows

As emphasized in Sect. 18.1, turbulent velocity fields are characterized by
strong irregularities of all their properties, e.g. strong changes of their ve-
locity and pressure in space and time. To register them, at all times and
at all locations, is not only a task which is difficult to solve and that
exceeds our present measuring and representation capacities of fluid me-
chanical processes, but moreover constitutes a task whose solution is not
worth striving for. The solution would result in such a large amount of
information that it could not be possible to process them further, or to
exploit them, in order to gain new insights into fluid mechanical pro-
cesses. The large amount of information which turbulent flows possess due
to their time and space behavior, therefore does not serve to deepen our
fluid mechanical knowledge, nor does it help to improve fluid-flow equip-
ment and/or its installation. As fluid-flow information is only useful to the
extent to which it can be mentally grasped and exploited further, it is nec-
essary to reduce appropriately the large amount of information available
in turbulent flow fields. In today’s turbulent flow research, this is done by
mainly limiting investigations to two types of questions relating to turbulent
flows:

• How do the local turbulent fluctuations of the velocity components and
pressure vary around the corresponding mean values? What correlations
exist between the fluctuating quantities, and what physical significance do
these correlations have?

• How are neighboring turbulent fluctuations of the velocity components
and pressure correlated with one another, and what physical significance
do these correlations have?

To be able to give answers to these questions, one uses in turbulence re-
search methods of statistics and nearly all the terminology related to it.
The distribution of the local turbulent flow fluctuations and the turbulent
pressure fluctuations are recorded by the probability density distribution
℘(u′j) or ℘(p′), or by their Fourier transforms, the so-called characteris-
tic function ϕ(k). In order to describe the existing correlation between
neighboring points in terms of space and/or time, one uses appropriate
correlation functions or their Fourier transforms. To describe the locally
occurring fluctuations in time, the auto-correlation function of the fluctu-
ations is used and its Fourier transforms, or their corresponding energy
spectrum. All these quantities (probability density distribution, character-
istic function, auto-correlation function, energy spectrum, etc.) result from
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the instantaneous values of the velocity components and pressure describ-
ing the turbulent flow field, by applying mathematical operators which are
explained this chapter in a somewhat summarizing way. It is very impor-
tant for the further comprehension of the description of the characteristics
of turbulent flows to understand the employment of these operators and to
realize their physical significance. Further details are provided in refs. [18.1],
[18.3].

18.3 Basics of Statistical Considerations
of Turbulent Flows

18.3.1 Fundamental Rules of Time Averaging

For the treatment of turbulent flows, a method of consideration was intro-
duced by Reynolds (1895), where the instantaneous values of the velocity
components, pressure, density, temperature, etc., are replaced by mean values
(which are defined as constant in terms of time) to which the corresponding
time-varying, turbulent, fluctuating quantities, deviating from the mean val-
ues, are additively superimposed. Consequently, the instantaneous values can
be written as follows:

Velocity components Ûj(xi, t) = Uj(xi) + u′j(xi, t), (18.9)

Pressure P̂ (xi, t) = P (xi) + p′(xi, t), (18.10)
Temperature T̂ (xi, t) = T (xi) + t′(xi, t), (18.11)
Density ρ̂(xi, t) = ρ(xi) + ρ′(xi, t). (18.12)

The above quantities with overbars on them are the time-averaged values
and the quantities with a “hat,” ∧, are the corresponding instantaneous
values. The values with primes, ′, represent the turbulent fluctuations.

When applying the time-averaging operator:

lim
T→∞

1
T

T∫
0

(· · · ) dt (18.13)

to the instantaneous values of the above quantities, one obtains the time mean
values, and this makes clear that the averaging in time over the turbulent
fluctuations of the quantities has the value 0. This means that the following
holds:

lim
T→∞

1
T

T∫
0

u′j(xi, t) dt = 0 and lim
T→∞

1
T

T∫
0

p′(xi, t) dt = 0 (18.14)
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and further for the temperature fluctuations t′ and the density fluctuations
ρ′:

lim
T→∞

1
T

T∫
0

t′(xi, t) dt = 0 and lim
T→∞

1
T

T∫
0

ρ′(xi, t) dt = 0. (18.15)

Generally, we can therefore write:

lim
T→∞

1
T

T∫
0

α′(xi, t) dt = 0, (18.16)

where α′(xi, t) stands for any randomly varying turbulent flow property.
When applying time averaging to derivatives of the quantity α̂ = a+ α′,

the following can be shown to be valid:

∂α̂

∂xi
= lim

T→∞
1
T

T∫
0

∂α̂

∂xi
dt =

∂

∂xi

⎡⎣ lim
T→∞

1
T

T∫
0

(α+ α′) dt

⎤⎦ =
∂α

∂xi
. (18.17)

Furthermore, the following fundamental rules of time averaging can be stated:

(α̂+ β̂) = ᾱ+ β̄, (18.18)

ᾱα′ = 0 and α̂α′ = α′2, (18.19)

ᾱβ̄ = ᾱβ̄ and α̂β̂ = ᾱβ̄ + α′β′. (18.20)

With the help and the consequent application of the integration rules, stated
above for the time averaging procedure, further relationships can be derived
for combinations of the functions α̂(t) and β̂(t).

When applying to the product of the instantaneous functions α̂(t), β̂(t)
and γ̂(t) the time averaging rules above, the following relationship results:

α̂β̂γ̂ = (ᾱ+ α′)(β̄ + β′)(γ̄ + γ′) = (ᾱβ̄ + α′β̄ + β′ᾱ+ α′β′)(γ̄ + γ′)

= ᾱβ̄γ̄ + α′β̄γ̄ + β′ᾱγ̄ + α′β′γ̄ + ᾱβ̄γ′ + α′β̄γ′ + β′ᾱγ′ + α′β′γ′

= ᾱβ̄γ̄ + α′β′γ̄ + α′γ′β̄ + β′γ′ᾱ+ α′β′γ′.
(18.21)

In this way, triple products of the mean values of α̂, β̂ and γ̂ are obtained,
products of correlations of two quantities multiplied by the mean value of the
third quantity, and triple correlations of the turbulent fluctuation quantities
α′, β′ and γ′ result.

The above time averaging rules are employed in the subsequent sections,
in order to derive equations for the mean values from the basic equations
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of fluid mechanics. The latter are usually formulated for the instantaneous
values of the velocity, pressure, etc. In all the derivations in this chap-
ter, the fluid properties are assumed to be constant, and especially ρ =
constant. The resultant equations derived in this way indicate the mean
volume change by the time-averaged continuity equation, the mean mo-
mentum transport by the time-averaged momentum equation and the mean
energy transport by the time-averaged energy equation. On subtracting these
equations from the equations for the corresponding instantaneous values, one
obtains transport equations for the fluctuating quantities. The latter can be
employed for gaining information on these properties of turbulent flows.

18.3.2 Fundamental Rules for Probability Density

For the introduction of the probability density function for the velocity
components Ûj(xi, t), the velocity axis in Fig. 18.4 is subdivided into equal
sections ∆Ûj . The velocity distribution is plotted along the time axis, as
obtained at a fixed xi measuring location in a turbulent flow field. For the
considerations carried out here, the velocity distribution over time can be
assumed to be given for each velocity component Ûj(j = 1, 2, 3). The hori-
zontal lines of the subdivision of the Ûj axis now lead for each velocity interval
∆Uj to a corresponding period of time (∆t)α = f [(Ûj)α, ∆Uj ]. This time in-
terval indicates how long the velocity trace stays in the corresponding time
interval. On summarizing all time intervals which are assigned to the same
velocity interval, the probability density function can be defined as follows:

lim
∆Ûj→0

℘
[(
Ûj

)
α

] (
∆Ûj

)
α

= lim
T→∞

1
T

lim
N→∞

N∑
α=1

(∆t)α (18.22)

or rewritten:

℘
[(
Ûj

)
α

]
= lim

T→∞
1
T

lim
∆Uj→0

1
(∆Ûj)α

N∑
α=1

(∆t)α. (18.23)

Fig. 18.4 Time path of the velocity and resultant probability density distribution
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The probability density distribution defined in this way contains all the
required information that indicates in which amplitude range the velocity
moves in time at a given measuring location. It indicates, moreover, with
which probability the amplitude of the fluctuating velocity components oc-
cur in the course of time. The resultant function is also shown in Fig. 18.4,
as a distribution function, which is plotted along the Ûj axis. It describes, in
a time-averaged way, the amplitude of the velocity fluctuations occurring at a
point in the turbulent flow. The computation of time-averaged values can thus
also take place through the corresponding probability density distribution,
as the entire amplitude distribution for the turbulent velocity fluctuations is
recorded in it.

For the mean value of the velocity, discussed in Sect. 18.1:

U j,(xi) = lim
T→∞

1
T

T∫
0

Ûj(xi, t) dt (18.24)

the time-related increment dt can be written as

dt
T

= ℘
(
Ûj

)
dÛj . (18.25)

For the integral
+∞∫
−∞
℘
(
Ûj

)
dÛj , one can therefore derive from (18.25):

+∞∫
−∞
℘
(
Ûj

)
dÛj =

1
T

T∫
0

dt = 1, (18.26)

i.e. the “area” below the probability density distribution has the value 1.
The computation of the mean value of the local instantaneous flow velocity

Ûj(xi, t), as given in (18.25), can be computed with the help of the probability
density function. This means that two possibilities exist for computing the
mean value, computation in the time domain or in the probability density
domain:

U j(xi) = lim
T→∞

1
T

T∫
0

Ûj(xi)(t) dt =

+∞∫
−∞

℘(Ûj) Ûj dÛj . (18.27)

Here, ℘(Ûj) is to be considered as being given for a fixed location xi. Ûj =
Ûj(xi, t) represents the instantaneous value of the jth velocity component.

It is usual in turbulence research to state the probability density distribu-
tion only for the turbulent fluctuations, i.e. ℘(u′j). This probability density
distribution arises from the distribution shown in Fig. 18.4 by a parallel dis-
placement of the ordinate axis by the amount of the mean velocity U j . With
this parallel displacement the form of the probability density function does
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not change and it thus provides, in this new coordinate system, the amplitude
values of the turbulent fluctuations only.

Analogous to the time mean value computation with (18.27), one can
also compute the following moments of the velocity fluctuations. On the one
hand, computations can be carried out in the time domain of the velocity and,
on the other hand, in the probability density domain. Both methods yield
the time-averaged properties for the nth moment of the turbulent velocity
fluctuations:

(u′j)n = lim
T→∞

1
T

T∫
0

[
u′j(t)

]n dt =

+∞∫
−∞

℘(u′j)(u
′
j)

n du′j. (18.28)

Of special importance in turbulence research is the second moment u2
j , which

is employed for the definition of the turbulence intensity, α = 1, 2, 3:

Tuα =
σα

Uα

=

√
u′2α
Uα

or Tuj =
σj

U j

=

√
u′2j
U j

. (18.29)

Moreover, the “standardized third moment” of the turbulent velocity fluctu-
ations is included in several considerations, which allows statements about
the “skewness” of the probability density distribution of the turbulent veloc-
ity fluctuations. Here, the “skewness” is defined in the following way as the
standardized value of the turbulent velocity fluctuations:

Sj =
u

′3
j

σ3
j

with σ3
j =

(√
u

′2
j

)3

. (18.30)

For the corresponding standardized fourth moment, one often finds the term
“flatness” used in the literature. It represents another important property of
the probability density distribution of turbulent velocity fluctuations. As for
the skewness above, the flatness is again defined as a standardized quantity
(kurtosis):

Fj =
u′4j

σ4
j

with σ4
j =

(√
u

′2
j

)4

. (18.31)

The above moments of higher order for the velocity fluctuations are de-
fined as central moments of the probability density distributions of the
corresponding components of the turbulent velocity field.

In turbulence research, it is often necessary to define correlations between
the different velocity fluctuations. They are computed from the different time-
varying velocity fluctuations u′i and u′j as time integration over the products
of the fluctuations, according to the equation below. They can also be com-
puted, in a corresponding way, using the two-dimensional probability density
distributions.
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Fig. 18.5 Diagram of a two-dimensional
probability density distribution

u′inu
′
j
m = lim

T→∞
1
T

T∫
0

u′i
nu′j

m dt =

+∞∫
−∞

u′i
nu′j

m℘
(
u′i, u

′
j

)
du′i du′j . (18.32)

It is again possible to compute these correlations in the time domain of
the velocity field or in the probability density domain. It is important to
emphasize again that the probability density distributions in (18.25), for
the components of the turbulent velocity fluctuation, are probability den-
sity distributions for the turbulent fluctuations at one point in the flow
field.

Two-dimensional probability density distributions ℘(u′1, u
′
2), as shown in

Fig. 18.5, are of special importance in the subsequent treatment of turbu-
lent flows. The above considerations about probability can now be carried
out for two-dimensional functions ℘(u′1, u

′
2), and this results in the following

relationship:

+∞∫
−∞

+∞∫
−∞
℘(u′1, u

′
2) du′1 du′2 = 1 and 0 ≤ ℘(u′1, u

′
2) ≤ 1. (18.33)

When deriving from this two-dimensional distribution the one-dimensional
distribution that applies to the u′1 component of the turbulent velocity field,
i.e. deriving ℘(u1), the following relationship holds:

℘(u′1) =

+∞∫
−∞

℘(u′1, u
′
2) du′2. (18.34)



534 18 Turbulent Flows

By means of the two-dimensional distribution ℘(u′1, u′2), combined moments
of the turbulent velocity components u′1 and u′2 can be computed:

u′1nu′2m =
∫+∞∫
−∞

u′1
nu′2

m℘(u′1, u
′
2) du′1 du′2. (18.35)

For n = m = 1, the covariance of the velocity components u1 and u2 results:

u′1u
′
2 =

∫+∞∫
−∞

u′1u
′
2℘(u′1, u

′
2) du′1 du′2. (18.36)

This integration results in an expression for a correlation existing between
u′1 and u′2, i.e. it shows to what extent the velocity fluctuations u′1 and u′2
experience correlated changes. Since information of this kind is needed again
and again, for special considerations in the derivations in subsequent sec-
tions, the significance of correlations between turbulent fluctuations will be
explained here briefly. It is important to point out that two turbulent velocity
fluctuations that show no correlation with one another are, in the statistical
sense, not necessarily independent. This becomes clear when one considers
the definitions stated below of independence of two turbulent velocity fluc-
tuations and compares this definition with the condition for the variables to
be uncorrelated:

• Two velocity fluctuations u′1(t) and u′2(t) are considered to be statistically
independent when the following relationship for their probability density
distributions holds:

℘(u′1, u
′
2) = ℘(u′1)℘(u′2), (18.37)

i.e. the probability density of one component of the velocity fluctuations
is not influenced by the distribution of the second.

• Two velocity fluctuations u′1(t) and u′2(t) are considered to be uncorrelated
when their covariance is zero, i.e. when the following relationship holds:

u′1u′2 =

+∞∫
−∞

+∞∫
−∞
u′1u

′
2℘(u′1, u

′
2) du′1 du′2 = 0. (18.38)

Two variables are always uncorrelated when the probability density dis-
tribution ℘(u′1, u

′
2) is fully symmetrical, i.e. when it fulfills the following

condition:

℘(+u′1,+u
′
2) = ℘(+u′1,−u′2) = ℘(−u′1,+u′2) = ℘(−u′1,−u′2). (18.39)

Such a symmetrical probability density distribution is shown in Fig. 18.6,
where the isolines ℘(u′1, u

′
2) = constant are shown and lines of equal proba-

bility density. The latter indicate the probability density distribution vertical
to the u′1 − u′2 plane.



18.3 Statistical Considerations 535

Fig. 18.6 Two-dimensional symmetri-
cal probability density distribution with
isolines

Fig. 18.7 Probability density distribution for isotropic turbulent flows

The probability density distributions shown in Fig. 18.7a, b are identical
with that in Fig. 18.5, but are different in the directions of the coordinate
axes. The latter leads to the finite covariances v′1v

′
2 �= 0 indicated in the

figures, i.e. to correlations between v′1 and v′2. Thus it becomes evident that a
correlation, existing between two turbulent velocity fluctuations is dependent
on the choice of the coordinate system.

For the two coordinate systems indicated in Fig. 18.7 the following holds,
where α is the angle of rotation between the two coordinate systems:

v′1 = u′1 cosα+ u′2 sinα,
v′2 = −u′1 sinα+ u′2 cosα. (18.40)
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Using these relationships, one can compute by multiplication and time
averaging:

v′1v
′
2 = u′1u

′
2 cos 2α− (u′21 − u′22) cosα sinα. (18.41)

This relationship makes it clear that v′1v
′
2 is only equal to u′1u

′
2 and only equal

to zero when the condition u′12 = u′22 is fulfilled (see Fig. 18.6), i.e. when the
flow field is isotropic. By isotropy one understands here a property of the flow
field that shows:

• No directionality of all time-averaged local flow quantities which describe
a turbulent flow field.

In addition, a flow field can have properties which are designated as spatially
homogeneous. For the homogeneity of a flow field, the following holds:

• The time-averaged parameters describing the turbulent flow field are
independent of the position of the measuring location.

In Fig. 18.8, the two-dimensional probability density distribution of a tur-
bulent isotropic flow field is shown. When the same probability density
distribution exists in each space point and this satisfies the isotropy require-
ments, the turbulence is defined as being homogeneous and isotropic (see
Fig. 18.8).

Fig. 18.8 Spatial distributions of the probability density distributions for isotropic
and homogeneous turbulence
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18.3.3 Characteristic Function

For a number of considerations, the Fourier transform of the probability
density distribution is employed, which is usually defined as a characteristic
function of the flow field:

ϕ(k) =

+∞∫
−∞

℘(u′j) exp(iku′j(t)) du′j , (18.42)

where i =
√−1 represents the imaginary unit of a complex number z = x+iy.

Considering the identity of the operators:

lim
T→∞

1
T

T∫
0

(· · · ) dt =

+∞∫
−∞

(· · · )p(u′j) du′j (18.43)

the characteristic function of the velocity fluctuations u′j(t) can be computed
as follows:

ϕ(k) = lim
T→∞

1
T

T∫
0

exp(iku′j(t)) dt. (18.44)

The significance of this function lies, on the one hand, in the experimental
field of turbulence research, where one finds that the convergence of ℘(u′i) is
bad and that this, with decreasing ∆u′j, leads to very long measuring times.
The measurement of ϕ(k), on the other hand, is connected to a fairly rapid
convergence and ℘(u′j) can thus be computed from ϕ(k) as follows (inverse
Fourier transformation):

℘(u′j) =

+∞∫
−∞

ϕ(k) exp(−iku′j) dt. (18.45)

The multidimensional characteristic function can also be stated as follows:

ϕ(kj) = lim
T→∞

1
T

T∫
0

exp(i{kj}{uj}) dt (18.46)

or by u′j = {u1, u2, u3} and kj = {k, l,m}:

ϕ(k, l,m) = lim
T→∞

1
T

T∫
0

exp[i(ku1(t) + lu2(t) +mu3(t)] dt. (18.47)
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When considering the one-dimensional characteristic function ϕ(k) and its
definition, the following holds:

dϕ
dk

∣∣∣∣
k=0

=

+∞∫
−∞

℘(u′j)iu
′
j du′j = 0 (18.48)

or quite generally:
dnϕ

dkn

∣∣∣∣
k=0

= inu′nj . (18.49)

The characteristic function enters as a horizontal line into the axis k = 0.
At the point k = 0, the derivations of the functions ϕ(k) are linked to the
central moments of the velocity components. Because of this, the character-
istic function can be written as a Taylor series of the corresponding central
moments of the turbulent velocity fluctuations:

ϕ(k) =
∞∑

n=0

(ik)n

n!
u′ni . (18.50)

These positive properties of the characteristic function can also be put to
very good use in analytical considerations, but in this chapter only its use in
experimental studies is explained.

18.4 Correlations, Spectra and Time-Scales
of Turbulence

In order to obtain information on the structure of turbulence, two different
ways of consideration have gained acceptance, characterized as follows:

• The turbulent velocity fluctuations u′j(xi, t), which in general are functions
of space and time, are usually measured for a fixed location and thus can
be regarded as time series. Information on u′j(t), for a preset value of xi,
is therefore recorded for fixed points in space. Its time-averaged proper-
ties can also be provided in the form of probability density distributions,
characteristic functions, etc.

• The turbulent velocity fluctuations u′j(xi, t) can also be considered for a
fixed time, yielding information on the spatial distributions of the turbu-
lence of the flow field. Information on u′j(xi) is in this way recorded for
fixed points xi at the same time t. The entire information on turbulence
can also be provided in the form of two-point probability density distribu-
tions, or multi-point probability density distributions, depending on the
information sought.
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For considerations of signals varying over time at a fixed point in space,
the question concerning the time interval over which the turbulent velocity
fluctuations are correlated with one another can be answered. This question
can be answered using the autocorrelation function R(τ), which is defined as
follows:

R(τ) = lim
T→∞

1
T

T∫
0

u′i(t)u
′
i(t+ τ) dt. (18.51)

With t′ = t + τ , the following holds for processes that are stationary in a
time-averaged manner:

u′2j (t) = u′2j(t′) = constant for τ = 0. (18.52)

This constant “effective value” of the turbulent velocity fluctuations can be
employed for the standardization of the autocorrelation function and thus for
the introduction of the autocorrelation coefficient ρ(τ):

ρ(τ) =
1

u′2j
R(τ) =

1

u′2j
lim

T→∞
1
T

T∫
0

u′j(t)u
′
j(t+ τ) dt. (18.53)

For the autocorrelation coefficient, the following general properties hold:

ρ(τ) = ρ(−τ) symmetric with the τ = 0 axis, (18.54)

ρ(0) = 1 and ρ(τ) ≤ 1. (18.55)

A typical result for ρ(τ) is shown in Fig. 18.9. By means of the autocorrelation
coefficient of a turbulent flow field, through ρ(τ), typical time-scales of tur-
bulence can be introduced. As the integral time-scale the following quantity
is defined:

It =

∞∫
0

ρ(τ) dτ =
1

u′2j

∞∫
0

R(τ) dτ, (18.56)

Fig. 18.9 Autocorrelation function and time-scales of turbulent velocity fluctuations
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It corresponds, therefore, to the surface below the ρ(τ) distribution, and this
means that the following identity of the surfaces in Fig. 18.9 holds:

u′2jIt =

∞∫
0

R(τ) dτ. (18.57)

It is a characteristic property of turbulent flows that they show velocity
fluctuations having finite integral time-scales. The integral time-scale It is a
quantity which shows the order of magnitude of the period of time over which
the velocity fluctuations u′j(t) are correlated with one another. It = 0 means
that there is no correlation. Such a “degenerated” turbulent flow field cannot
exist in reality; it lacks essential elements for maintaining turbulent flow
fluctuations. Hence, turbulence contains structures of finite time durations.
In fact, turbulent flows contain an entire spectrum of vortex-like structures.

In addition to the integral time-scale of turbulence, a micro time-scale
λt can also be introduced, which is defined through the curvature of the
autocorrelation coefficient function at the point τ = 0:

d2ρ(τ)
dτ2

= − 2
λ2

t

. (18.58)

On expanding ρ(τ) in a Taylor series around τ = 0 and considering the
symmetry of the ρ(τ) distribution, then for the small τ values the following
parabolic function holds:

ρ(τ) = 1 − τ
2

λ2
t

± · · · (18.59)

so that by repeated derivatives the above definition equation (18.58) for λt

can be derived. Moreover, for the parabola arising from the Taylor series ex-
pansion, it can be derived that this parabola cuts the ρ(τ) = 0 axis (abscissa)
at τ = λt (see Fig. 18.9).

Based on the relationship

d2

dt2
(
u′2j
)

= 2u′j
d2u′j
dt2

+ 2
(

du′j
dt

)2

(18.60)

valid for all time-averaged turbulent flow processes which are stationary, we
can derive

d2

dt2
(
u′2j
)

= 0 = 2u′j
d2u′j
dt2

+ 2
(

du′j
dt

)2

, (18.61)

i.e. the following relationship holds:( du′j
dt

)2

= −u′j
d2u′j
dt2

. (18.62)
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In consideration of the properties of the autocorrelation function, one can
write ( du′j

dt

)2

=
2
λ2

t

u′2j (18.63)

or, expressed in terms of λ2
t :

λ2
t =

2u′2i(
du′i
dt

)2
. (18.64)

This shows that the micro time-scale of the turbulence can also be determined
from the double of the rms value of the turbulent velocity fluctuations divided
by the rms value of the time derivative of the turbulent velocity fluctuations.

In conclusion, one should mention, with regard to the above considerations,
that turbulence comprises an entire spectrum of time-scales or corresponding
frequencies, all of which one can imagine to lie in the range between the
integral time-scale It and the micro time-scale λt. This distribution of scales
is determined by the total distribution of the ρ(τ) function which for τ = 0 has
the value 1, and for all finite τ values the ρ(τ) values satisfy the requirement

ρ(τ) <
1
τ
. (18.65)

As for τ −→ ∞ (18.65) also holds: the integral time-scale can be computed
from ρ(τ) always to have a finite value.

The considerations presented above can also be carried out in the spectral
range. The spectral energy density distribution S(ω) is given as follows:

S(ω) =

+∞∫
−∞

1
2π
ρ(τ) exp{−iωτ} dτ. (18.66)

Thus in reverse, the autocorrelation coefficient S(ω) can be computed from
the spectral energy density distribution by Fourier transformation:

ρ(τ) =

+∞∫
−∞

S(ω) exp{iωτ} dω. (18.67)

For S(0), the following relationship results from the above equation:

S(0) =

+∞∫
−∞

1
2π
ρ(τ) dτ = 2

∞∫
0

1
2π
ρ(τ) dτ =

It
π
. (18.68)
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With this, the value of the energy spectrum for ω = 0 is determined by the
integral time-scale of the turbulence in the following way:

S(0) =
It
π
. (18.69)

The significance of the spectral energy-density distribution also becomes
clear when one considers the Fourier coefficients of the turbulent velocity
fluctuations u′j(t):

aT (ω, t) =
1
T

t+T∫
t

u′j(t
′) exp{iωt′} dt′ (18.70)

and the time average of the square of this value:

lim
T→∞

|aT (ω, t)|2 = u′2iS(ω). (18.71)

The spectral energy density distribution thus represents the energy of u′j(t)
at the frequency ω, i.e. the following relationship holds:

dE(ω)
dω

= u′2iS(ω). (18.72)

The total energy can thus be computed as:

Eges = u′2j

∞∫
0

S(ω) dω. (18.73)

18.5 Time-Averaged Basic Equations of Turbulent Flows

It has been stressed in the previous sections that turbulent flows possess com-
plex properties, and one therefore limits oneself to the determination of the
time-averaged properties of turbulent flows, i.e. one does not try to recover the
time-varying properties of the flow field. Because of this, turbulent flows can
therefore be theoretically better treated by the Reynolds equations instead
of the Navier–Stokes equations. In order to derive the Reynolds equations,
the instantaneous velocity Ûj(t) is replaced by the sum of the mean veloc-
ity U j and the fluctuation velocity u′j(t), i.e. Ûj = U j + u′j and analogously
ρ̂ = ρ̄ + ρ′, P̂ = P̄ + p′, etc. Introducing these decomposed quantities into
the Navier–Stokes equations and, by time averaging the equations, a new set
of equations results for the mean values of the flow properties, the so-called
Reynolds equations. The corresponding derivations are shown below.
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18.5.1 The Continuity Equation

In Chap. 5, the continuity equation was derived as a mass-conservation equa-
tion which holds in the following form for the instantaneous values of the
density and the velocity components:

∂ρ̂

∂t
+

∂

∂xi

(
ρ̂Ûi

)
= 0. (18.74)

By introducing for the instantaneous values the time mean values and the
corresponding turbulent fluctuations, the continuity equation can also be
written as follows:

∂

∂t
(ρ̄+ ρ′) +

∂

∂xi

[
(ρ̄+ ρ′)

(
U i + u′i

)]
= 0. (18.75)

By time-averaging this equation, one obtains, applying the time-averaging
rules indicated in Sect. 18.3.1:

∂ρ̄

∂t
+

∂

∂xi

(
ρ̄U i + ρ′u′i

)
= 0. (18.76)

This time-averaged equation can now be subtracted from (18.75), so that one
obtains for the instantaneous density changes:

∂ρ′

∂t
+

∂

∂xi

(
ρ̄u′i + U iρ

′) = 0. (18.77)

For fluids with constant density, the above equations can be written in a
simplified way:

ρ̄ = ρ̂ = constant and thus ρ′ = 0 ⇒ ∂U i

∂xi
= 0 and

∂u′i
∂xi

= 0. (18.78)

These two final equations can now be employed for dealing with turbulent
fluid flows. In connection with this, it has to be taken into consideration
that the covariance between ρ′ and u′j , i.e. ρ′u′j appearing in the continuity
equation for the mean values, represents three unknowns, ρ′u′1, ρ′u

′
2 and ρ′u′3,

which have to be considered when solving fluid flow problems with variable
density. These quantities represent turbulence-dependent mean mass flows in
the x1-, x2- and x3-directions, which appear superimposed on the mass flows
due to the mean flow field. It is interesting to see from equations for fluids
with constant density that time averaging of the continuity equation does
not result in an additional unknown, i.e.

• For fluids of constant density, the time-averaging of the continuity equation
does not result in additional turbulent transport terms. Through the con-
tinuity equation no “additional unknowns” are introduced for fluids with
constant density, when dealing theoretically with turbulent flows, using
the time-averaged continuity equation.
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This advantage of fluids with constant density, set forth in the above point,
when dealing theoretically with turbulent flows, is the reason for the restric-
tions imposed in the subsequent sections. This means that all derivations
from here onwards are carried out for fluids with constant density.

18.5.2 The Reynolds Equation

In Chap. 5, the equation of momentum was stated in the following form:

ρ̂

[
∂Ûj

∂t
+ Ûi

∂Ûj

∂xi

]
= − ∂P̂

∂xj
− ∂τ̂ij
∂xi

+ ρ̂gj (18.79)

and for Newtonian fluids with ρ̂ = constant the τ̂ij term can be expressed as:

τ̂ij = −µ
(
∂Ûj

∂xi
+
∂Ûi

∂xj

)
(18.80)

so that (18.79) can be written as:

ρ̂

[
∂Ûj

∂t
+ Ûi

∂Ûj

∂xi

]
= − ∂P̂

∂xj
+

∂

∂xi

[
µ

(
∂Ûj

∂xi
+
∂Ûi

∂xj

)]
+ ρ̂gj . (18.81)

With the continuity equation for fluids of constant density, i.e. for ρ̂ =
constant:

∂Ûi

∂xi
= 0 and thus

∂2Ûi

∂xi∂xj
=

∂

∂xj

(
∂Ûi

∂xi

)
= 0. (18.82)

Hence the Navier–Stokes equations, for j = 1, 2, 3, can be written as follows:

ρ̂

[
∂Ûj

∂t
+ Ûi

∂Ûj

∂xi

]
= − ∂P̂

∂xj
+ µ

∂2Ûj

∂x2
i

+ ρ̂gj (18.83)

or by including the continuity equation:

ρ̂

[
∂Ûj

∂t
+

∂

∂xi

(
ÛiÛj

)]
= − ∂P̂

∂xj
+ µ

∂2Ûj

∂x2
i

+ ρ̂gj . (18.84)

If one introduces:

ρ̂ = ρ̄ and ρ′ = 0; Ûj = U j + u′j also P̂ = P̄ + p′, (18.85)
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(18.84) results in

ρ̄

[
∂

∂t

(
U j + u′j

)
+

∂

∂xi

[(
U i + u′i

) (
U j + u′j

)]]
= − ∂

∂xj

(
P̄ + p′

)
+ µ

∂2

∂xi
2

(
U j + u′j

)
+ ρ̄gj

(18.86)

and after completion of time-averaging of all terms of the equation

ρ̄

⎡⎢⎢⎣ ∂U j

∂t︸ ︷︷ ︸
=0

+
∂

∂xi

(
U iU j + u′iu

′
j

)⎤⎥⎥⎦ = − ∂P̄
∂xj

+ µ
∂2U j

∂x2
i

+ gj . (18.87)

Rearranging the terms, one obtains

ρ̄
∂

∂xi

(
U iU j

)
= − ∂P̄

∂xj
+

∂

∂xi

[
µ
∂U j

∂xi
− ρ̄u′iu′j

]
+ ρ̄gj. (18.88)

Considering the continuity equation for fluids of constant density, one obtains

ρ̄U i
∂U j

∂xi
= − ∂P̄

∂xj
+

∂

∂xi

[
µ
∂U j

∂xi
− ρ̄u′iu′j

]
︸ ︷︷ ︸

−(τij)tot

+ ρ̄gj . (18.89)

This equation shows that, due to the time-averaging of the non-linear terms
on the left-hand side of the Navier–Stokes equations, additional terms are in-
troduced into the Reynolds equations, which can be interpreted as additional
momentum transport terms, so that for a turbulent fluid flow the following
holds:

(τij)tot = −µ ∂U j

∂xi
+ ρ̄u′iu

′
j. (18.90)

The additional terms represent a tensor which can be stated as follows:

u′iu
′
j =

⎛⎝ u′12 u′1u
′
2 u

′
1u

′
3

u′2u
′
1 u

′
2
2 u′2u

′
3

u′3u
′
1 u

′
3u

′
2 u

′
3
2

⎞⎠. (18.91)

This tensor is called in the literature the Reynolds “stress tensor.” It is
diagonally symmetrical, i.e. the following holds:∣∣∣u′iu′j∣∣∣ = ∣∣∣u′ju′i∣∣∣. (18.92)

Furthermore, because ρ̂ = ρ̄ = constant, the following relationship holds:

∂

∂xi
u′iu

′
j = u′i

∂u′j
∂xi

(18.93)
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as the u′j
∂u′

i

∂xi
term is equal to zero, because of the continuity equation, written

for the fluctuating velocity components.
The diagonal terms appearing in the Reynolds stress tensor can be in-

terpreted as “normal stresses”, whose significance for the time-averaged
transport of momentum is negligible in many fluid flows. The non-diagonal
terms, i.e. the terms u′iu

′
j for i �= j, represent, in many fluid flows, the main

transport terms of the momentum which are due to the turbulent velocity
fluctuations. This makes it clear that the splitting of the instantaneous veloc-
ity components into a mean component and a turbulent fluctuation leads to a
division of the total momentum transport in a mean part and in a turbulent
part. The total momentum transport develops on the one hand due to the
mean flow field, ρUiUj , and on the other due to correlations of the turbulent
velocity fluctuations, ρu′

iu
′
j . This subdivision is very useful for many consid-

erations in fluid mechanics of turbulent flows. It means, however, as far as the
momentum transport equations are concerned, that six additional unknown
quantities appear, namely all terms of the Reynolds stress tensor. The in-
troduction of the instantaneous values of the velocity fluctuations, and the
employed time averaging, thus results in a system of equations which is not
closed: it contains more unknowns than equations that are at disposal for the
solution of fluid-flow problems. It is nowadays one of the main tasks of turbu-
lence research to link the additional unknowns of the Reynolds stress tensor
to the components of the mean flow field in such a way that independent
additional equations result, which can be employed to solve fluid flow prob-
lems. Deriving such additional relationships is called turbulence modeling.
The main elements of turbulence modeling are summarized in Sect. 18.7.

18.5.3 Mechanical Energy Equation
for the Mean Flow Field

In the preceding section, the momentum equations for Newtonian fluids of
constant density were derived as follows:

ρ̄U i
∂U j

∂xi
= − ∂P̄

∂xj
+

∂

∂xi

[
µ
∂U j

∂xi
− ρ̄u′iu′j

]
+ ρ̄gj . (18.94)

On multiplying this equation by U j , one obtains

ρ̄U iU j
∂U j

∂xi
= −U j

∂P̄

∂xj
+ U j

∂

∂xi

[
µ
∂U j

∂xi
− ρ̄u′iu′j

]
+ ρ̄gjU j (18.95)
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or rearranging this equation for gj = 0:

ρ̄U i
∂

∂xi

(
1
2
U

2

j

)
= − ∂

∂xj

(
P̄U j

)
+

∂

∂xi

[
µU j

∂U j

∂xi
− ρ̄u′iu′jU j

]

−µ ∂U j

∂xi

∂U j

∂xi
+ ρ̄u′iu

′
j

∂U j

∂xi
.

(18.96)

The different terms of the mechanical energy equation, derived for a unit
volume and a unit time and by time averaging, can now be interpreted as
follows, if the considerations are carried out for a fixed control volume:∫∫∫

δV

ρ̄U i
∂

∂xi

(
1
2
U

2

j

)
dV =

∫∫
δ0

(
1
2
U

2

j

)
ρU i dFi.

The above term represents the mean kinetic energy of the flow field flowing
in and out through the surfaces of a control volume. (As the energy equation
was derived from the momentum equation, it comprises only terms which can
be designated mechanical energy terms.)

−
∫∫∫
δV

∂

∂xj

(
P̄U j

)
dV = −

∫∫
δ0

P̄U j dFj .

The above term indicates what pressure energy per unit time flows in and
out of the control volume.∫∫∫

δV

∂

∂xi

[
µU j

∂U j

∂xi

]
dV =

∫∫
δ0

µU j
∂U j

∂xi
dFi

=
∫∫
δ0

µ
∂ 1

2U
2

j

∂xi
dFi.

This above term indicates the molecule-caused inflow and outflow of the
kinetic energy of the fluid flow.

−
∫∫∫
δV

∂

∂xi

[
ρ̄u′iu

′
jU j

]
dV = −

∫∫
δ0

ρ̄u′iu
′
jU j dFi.

The term above describes the turbulence-dependent transport of the energy
resulting from u′j and Uj interactions.

−
∫∫∫
δV

µ
∂U j

∂xi

∂U j

∂xi
dV.
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This term indicates how the dissipation of the mean energy by viscosity
takes place. ∫∫∫

δV

ρ̄u′iu
′
j

∂U j

∂xi
dV.

The last term of (18.96) describes how the energy of the mean flow field
is turned into turbulence, i.e. how turbulence is produced by the interac-
tion of turbulence with the mean flow field. (The energy withdrawn from
the mean flow field leads to the production of energy of turbulent fluid-flow
fluctuations.)

The product of the negative correlation of the turbulent velocity fluctua-
tions u′i and u′j and the gradient of the mean flow field yields the following
term, which is called production term of turbulence:

−ρ̄u′iu′j
∂U j

∂xi
. (18.97)

This term occurs in the differential transport equation of the turbulent kinetic
energy. Because of the symmetry of the Reynolds stress tensor, it can also be
written as follows:

−ρ̄u′iu′j
∂U j

∂xi
= −ρ̄u′iu′jD̄ij (18.98)

with D̄ij = 1
2

(
∂Uj

∂xi
+ ∂Ui

∂xj

)
= tensor of the time-averaged deformation rate.

It appears with a positive sign on the right-hand side of the above energy
equation for the mean flow field, and this means that the energy serving
for the production of turbulent velocity fluctuations is withdrawn from the
mean flow field. The actual dissipation term in the mean flow energy equation
appears:

µ
∂U j

∂xi

∂U j

∂xi
(18.99)

the significance of which, relative to the dissipation or production term of
turbulence, is negligible for many turbulent fluid flows. This can be assessed
by the subsequent order of magnitude considerations:

ρ̄u′iu
′
j

∂U j

∂xi
� ρ̄u2

c

Uc

Lc
� ρ(Tu)2

U
3

c

Lc
, (18.100)

µ
∂U j

∂xi

∂U j

∂xi
� µ

U
2

c

L2
c

, (18.101)

where u′2c represents the effective value of a characteristic velocity fluctua-
tion present in the flow field, (Tu)2 ≈ u2

c/U
2
c represents the square of the

corresponding turbulence intensity, Uc being a characteristic velocity and
Lc a characteristic dimension of the flow geometry. With this, the following
relationship holds:
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ρ̄u′iu
′
j

∂Uj

∂xi

µ
∂Uj

∂xi

∂Uj

∂xi

�
ρ̄(Tu)2U

3

cL
2
c

LcµU
2

c

=
(
U cLc

ν

)
(Tu)2 = Re(Tu)2. (18.102)

As turbulence always occurs for large Reynolds numbers, e.g. Re = 104,
(18.102) shows that even for Tu = 20%, a comparatively large degree of
turbulence, the viscous dissipation is negligible compared with the turbulence
production. Similar considerations also hold for the terms

ρ̄u′iu
′
jU j

µUj
∂Uj

∂xi

�
ρU

2

cU
3

cL
2
c

µUcU cLc

�

(
U cLc

ν

)
(Tu)2 = Re(Tu)2 (18.103)

so that for many practical computations the transport equation for the
“mechanical energy” of the mean velocity field of a turbulent flow can
be written in a simplified way, as the molecule-dependent energy trans-
port and molecular dissipations terms can be neglected compared with the
turbulence-dependent production term:

ρ̄U i
∂

∂xi

(
1
2
U

2

j

)
= − ∂

∂xj

(
P̄U j

)− ρ̄ ∂

∂xi

(
u′iu

′
jU j

)
+ ρ̄u′iu

′
j

∂U j

∂xi
. (18.104)

This somewhat simplified energy equation contains all terms that are impor-
tant for the mechanical energy transport occurring for the mean flow field in
the more practical, i.e. non-academic, applications of fluid mechanics.

In order to underline the significance of the energy transport equation for
the mean flow field, for the comprehension of the turbulence production, we
shall discuss the fully developed turbulent flow between two plane plates for
which (18.104) reads as follows:

0 = − ∂

∂x1

(
P̄U1

)− ρ̄ ∂

∂x2

[
(τges)21 U1

]
+ ρ̄u′1u

′
2

∂U1

∂x2
. (18.105)

Integration over the control volume, indicated in Fig. 18.10, results in the
following relationship:

0 = (PA − PB) Q̇−
∫∫∫
δV

(
−ρ̄u′1u′2

∂U1

∂x2

)
dV. (18.106)

The entire “pressure energy” generated per unit time by a ventilator for air or
a pump for water, i.e. (PA−PB)Q̇, serves for the production of the turbulent
kinetic energy in the flow.

When carrying out similar considerations for the turbulent Couette flow
indicated in Fig. 18.11, the energy transport equation for this flow reads

0 = −
∫∫
δ0

(τges)21 U1 dF1 −
∫∫∫
δV

(
−ρ̄u′1u′2

∂U1

∂x2

)
dV. (18.107)
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x

x

V

Control plane A

1

2

Control plane B

Fig. 18.10 Plane channel flow (the employed pump energy (PA −PB)Q̇ serves for
the production of turbulent, kinetic energy)

Fig. 18.11 Couette flow (the employed movement energy serves for the production
of turbulent, kinetic energy)

This equation expresses that the entire “driving energy” put into the plate
movement, indicated by U0 in Fig. 18.11, is used for the production of
turbulent kinetic energy in the flow.

The above examples of turbulent flows make the significance of fluid
mechanical efforts clear to reduce the production of turbulence wherever pos-
sible, e.g. by the addition of additives to flowing fluids. By using additives
such as high molecular weight polymers or surfactants, the production of the
turbulent energy can be considerably suppressed. The achieved reduction of
turbulence production represents a considerable saving of the pump energy
which has to be introduced for the propulsion of turbulent flows.

18.5.4 Equation for the Kinetic Energy of Turbulence

In addition to the considerations of the energy balance for the mean flow field,
it is instructive for the understanding of some of the physics of turbulent flows
to consider the energy balance of the turbulent part of the flow. For this the
energy equation for the kinetic energy of turbulence is employed, which again
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is derived from the general momentum equation:

ρ̂

[
∂Ûj

∂t
+ Ûi

∂Ûj

∂xi

]
= − ∂P̂

∂xj
+ µ

∂2Ûj

∂xi
2

+ ρ̂gj . (18.108)

On introducing in this equation ρ̂ = ρ̄ = constant and Ûj = U j + u′j, P̂ =
P̄ + p′ and neglecting gj , one obtains:

ρ̂

[
∂

∂t

(
U j + u′j

)
+

∂

∂xi

(
U i + u′i

) (
U j + u′j

)]
= − ∂

∂xj

(
P̄ + p′

)
+ µ

∂2

∂xi
2

(
U j + u′j

)
. (18.109)

Multiplying this equation by (Uj + u′j), the following relationship results if,
additionally, the continuity equation is taken into account:

ρ̂

[
∂

∂t

1
2
(
U j + u′j

)2
+
(
U i + u′i

) ∂

∂xi

1
2
(
U j + u′j

)2]
= − ∂

∂xj

[(
P̄ + p′

)(
U j + u′j

)]
+ µ

(
U j + u′j

) ∂2

∂xi
2

(
U j + u′j

)
(18.110)

and after time averaging the entire equation:

ρ̄U i
∂

∂xi

[
1
2

(
U

2

j + u′2j
)]

+ ρ̄
∂

∂xi

[
U ju′iu

′
j

]
+ ρ̄

∂

∂xi

(
u′iu′

2
j

)
= − ∂

∂xj

(
P̄U j + p′u′j

)
+ U jµ

∂2U j

∂xi
2

+ u′j
∂2u′j
∂xi

2
. (18.111)

Subtracting the energy equation for the mean flow field:

ρ̄U i
∂

∂xi

(
1
2
U

2

j

)
= − ∂

∂xj

(
P̄U j

)
+ U jµ

∂2U j

∂xi
2

− U j ρ̄
∂

∂xi
u′iu

′
j (18.112)

one obtains as the transport equation for the turbulent kinetic energy:

ρ̄U i
∂

∂xi

(
1
2
u′2j

)
= − ∂

∂xj

(
p′u′j

)
+

∂

∂xj

(
µu′j

∂u′j
∂xi

)
− ρ̄

2
∂

∂xi

(
u′iu′

2
j

)
−ρ̄u′iu′j

∂U j

∂xi
− µ ∂u

′
j

∂xi

∂u′j
∂xi

. (18.113)

The different terms of this equation can now be interpreted as follows,
showing their significance for the kinetic energy balance for a control volume:∫∫∫

δV

ρ̄U i
∂

∂xi

(
1
2
u′2j

)
dV =

∫∫∫
δV

ρ̄
∂

∂xi

[
U i

(
1
2
u′2j

)]
dV =

∫∫
δ0

ρ̄

2
u′2jUi dFi.

(18.114)
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The left-hand side term in this equation represents the turbulent kinetic
energy, transported in and out of a control volume by convection.

−
∫∫∫
δV

∂

∂xj

(
p′u′j

)
dV = −

∫∫
δ0

p′u′j dFj .

This is the pressure-velocity correlation responsible for the redistribution of
the energy of the turbulence from the j component to the other components
of the turbulent velocity fluctuations.∫∫∫

δV

∂

∂xi

[
µu′j

∂u′j
∂xi

]
dV =

∫∫
δ0

µu′j
∂u′j
∂xi

dFi

=
∫∫
δ0

µ
∂ 1

2u
′2
j

∂xi
dFi.

The above term describes the molecular transport of the turbulent kinetic
energy into and out of the control volume.

− ρ̄
2

∫∫
δV

∂

∂xi

(
u′iu′

2
j

)
dV = − ρ̄

2

∫∫
δ0

u′iu′
2
j dFi.

The above term is the diffusive transport of the turbulent kinetic energy by
velocity fluctuations into and out of the considered control volume.

ρ̄

∫∫∫
δV

(
−u′iu′j

) ∂U j

∂xi
dV.

This term represents the production term of the turbulent kinetic energy
which appeared in the energy equation for the mean flow field, but with
inverse sign.

−
∫∫∫
δV

µ
∂u′j
∂xi

∂u′j
∂xi

dV.

By the above term the viscous dissipation of turbulent kinetic energy is
described, caused by the turbulent velocity fluctuations.

When defining the following total term as the “turbulent diffusion” of the
turbulent kinetic energy:

Dj = p′u′j − µu′i
∂u′i
∂xj

+
ρ̄

2
u′ju′

2
i (18.115)

the production of turbulent kinetic energy as:

Pk = −ρu′iu′j
∂U j

∂xi
(18.116)
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and the dissipation of turbulent kinetic energy as

εk = µ
∂u′j
∂xi

∂u′j
∂xi

(18.117)

the equation for the turbulent kinetic energy can be written in the following
way:

ρ̄U i
∂k

∂xi
= − ∂Dj

∂xj
+ Pk − εk, (18.118)

where k = (1/2u′2j) was introduced, i.e. k = 1/2(u′21 + u′22 + u′23). The mean
transport of turbulent kinetic energy is kept “in balance” by the diffusion,
production and dissipation of turbulent kinetic energy at a point in the flow.

Earlier, it was shown that in the equation for the energy of the mean flow
the viscous dissipation, caused by the mean flow field, when compared with
the production term of the turbulent kinetic energy, can be neglected. This
is not the case for the turbulent dissipation in the above equation for the
turbulent kinetic energy, i.e. εk cannot be neglected with respect to Pk. This
can, on the other hand, be shown through the following order of magnitude
considerations:

Pk

εk
∼ ρ̄u2

cU cl
2
c

Lcµu2
c

=
(
U cLc

ν

)(
lc
Lc

)2

= Re
(
lc
Lc

)2

, (18.119)

where lc/Lc is the ratio of a characteristic length scale of the considered
turbulence to a length scale characterizing the mean flow. For the ratio lc/Lc,
the following relationship holds in general:

lc
Lc

= Re−m, (18.120)

wherem = 1/2 can be set, i.e. in the equation for the turbulent kinetic energy
the viscous dissipation cannot be neglected. It is an essential part of (18.118),
describing the transport of turbulent kinetic energy.

18.6 Characteristic Scales of Length, Velocity
and Time of Turbulent Flows

In the preceding sections, order of magnitude considerations were made in
which scales of length, velocity and time of turbulent flows were employed.
So, for the characterization of the mean flow field, a characteristic mean
velocity U c, a characterizing length Lc and a time scale tc were introduced.
Here, Lc is of the order of the dimensions of the total flow extension, i.e. for
internal flows Lc has the linear cross-section dimension of the flow channel or
pipe where the fluid flows. The area-averaged or the time-averaged velocity
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of the flow field can be introduced as the characteristic mean velocity. For
the characteristic time, tc, the following ratio holds:

tc =
Lc

Uc

. (18.121)

If one considers the turbulent velocity fluctuations that occur superimposed
on the mean flow field, it is easy to see that the integral time-scale of the tur-
bulence, introduced in Sect. 18.3, always has to be of the order of magnitude
of the characteristic time scale of the mean flow field, i.e. the largest vortices
that the turbulent part of a flow field possesses have time scales which cor-
respond to those of the mean flow field. Generally, the following relationship
holds:

It ≤ tc =
Lc

U c

. (18.122)

Following a suggestion of Kolmogorov, so-called micro-scales can be
introduced to characterize the turbulent flow field:

lK = Kolmogorov’s length scale,
uk = Kolmogorov’s velocity scale,

τk = (lK/uK) = Kolmogorov’s time scale.

The length, velocity and time scales introduced by Kolmogorov are deter-
mined in such a way that they characterize that part of the spectrum of the
turbulent velocity fluctuations in which the energy production of the turbu-
lent vortices is equal to the dissipation. Thus, assuming isotropic turbulence,
one can introduce:

ε ≈ P ≈ u3
K

lK
for the relationship for production, (18.123)

ε ≈ ν u
2
K

l2K
for the relationship for dissipation. (18.124)

From these results, we can deduce:

u6
K = ε2l2K = ε3

l6K
ν3

or (18.125)

1 = ε
l4K
ν3

� lK =
(
ν3

ε

) 1
4

. (18.126)

From the equality of the terms for production and dissipation, it follows that:

uK =
ν

lK
and thus uK = (νε)

1
4 . (18.127)

For the Kolmogorov time scale, the following expression results:

τK =
(ν
ε

) 1
2
. (18.128)
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The Reynolds number resulting on the basis of the above-introduced micro-
length scale and micro-velocity scale is:

ReK =
lKuK

ν
= 1. (18.129)

The characteristic turbulent eddy quantities, determined by Kolmogorov’s
scales of turbulence, are those that represent the viscous effects which damp
the turbulent velocity fluctuations. These smallest eddies are assumed to
convert the kinetic energy of turbulence into heat. Because of these charac-
teristic properties, the following definitions are available in the literature for
the smallest scales of turbulence:

Kolmogrov’s scales = micro-scales = viscous eddy scales:

lK =
(
ν3

ε

) 1
4

; uK = (νε)
1
4 ; τK =

(ν
ε

) 1
2
. (18.130)

From these scales, characterizing the smallest vortices of a turbulent flow,
the Taylor micro-scale has to be distinguished, which is defined as follows:

τT =
lT
uT

=
lT

U c

. (18.131)

The extensions of the different scales can perhaps best be illustrated in
schematic form; see Fig. 18.12, which shows that the Taylor micro-scale de-
fines an eddy size which is located between the smallest viscous eddies and
the large eddies having quantities of the dimension of the geometric extension
of the mean flow. Taking this into account, it can be shown that the following
hold:

U
3

c

Lc
= ν

U
2

c

l2T
;

(
lT
Lc

)
=

1
Re

1
2

= Re−
1
2 , (18.132)

where Re = (UcLc)/ν:
Considering that the following holds:

λT = lK
U c

uc
(18.133)

then inserting this relationship into the equation for lT
LC

and taking into

account
lKuK

ν
= 1, a further important relationship follows from the above

derivations:
lT
Lc

=
(
lK
lT

)2

; lT = Lcl
2
k. (18.134)

The different length scales of turbulence have proven to be very useful in
formulations of turbulence models, which are summarized in the subsequent
sections. The presentations to follow were chosen such that they are suitable
for introduction into turbulence modeling. More detailed descriptions can be
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Range of turbulence production

Range of dissipation of turbulence

Large length scalesSmall length scales

Fig. 18.12 Length scales of turbulence and contributions to production and
dissipation

taken from the available specialized literature on turbulence modeling, given
in the list of references at the end of this chapter.

The above derivations indicate the differences in the structure of turbulent
flows at small and high Reynolds numbers. For flows with the same inte-
gral dimensions (see Fig. 18.12), the flow at a large Reynolds number proves
to be “micro-structured,” i.e. the smallest eddies have small dimensions,
whereas for the small Reynolds number the flow appears “macro-structured.”
The Taylor length scale proves always to be larger than the Kolmogorov
micro length, and the difference between the two becomes larger with in-
creasing Reynolds number. From the above relationships, one can compute
lT /lK = (Re)1/4. For a Reynolds number of approximately Re = 104, lT is
approximately 10 times larger than lK (Fig. 18.13).

In order to characterize the complex nature of turbulent flows, the
following Reynolds numbers are often employed:

ReK =
lKUK

ν
= 1, ReK,c =

lKUc

ν
, Reλ =

lTUc

ν
, (18.135)

ReL =
LcUc

ν
= Re. (18.136)

Moreover, for the relationships of the characteristic length scales, the
following expression holds:

lK
Lc

= Re−
3
4

L = Re−
3
2

λ ,
λT

Lc
= Re−

1
2

L = Re−1
λ =

(
lK
lT

)2

,

lK
lT

= Re−
1
4

L = Re−1
η = Re−

1
2

λ . (18.137)

These relationships are often employed when considering turbulent flows,
in order to carry out order of magnitude considerations regarding the
characteristic properties of turbulence.
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(a) (b)

Fig. 18.13 (a) Micro-structure of the turbulence of small Reynolds numbers and
(b) micro-structure of the turbulence of higher Reynolds numbers

18.7 Turbulence Models

18.7.1 General Considerations

When limiting oneself to considerations of the components of mean velocity
and the moments of turbulent fluctuation quantities, as far as the solutions
of fluid mechanical problems are concerned, there is the possibility of solv-
ing flow problems theoretically: instead of the Navier–Stokes equations, the
Reynolds equations are solved. In order to derive the latter set of partial
differential equations, the instantaneous velocity Ûj(xi, t) was replaced in
Sect. 18.2 by the sum of the local mean velocity U j(xi) and the local fluctu-
ation velocity u′i(xi, t), i.e. in Sect. 18.2, it was shown that the following can
be set:

Ûj = U j + u′j . (18.138)

In Sect. 18.3, it was shown moreover that the introduction of this relation-
ships into the continuity equation and the Navier–Stokes equations results,
after time-averaging all terms in the equations, in a new system of equations
which has to be solved numerically for the flow problems to be investigated.
The derivations again yield, for ρ = constant, four differential equations:
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Continuity equation for j = 1, 2, 3:

∂Ui

∂xi
= 0. (18.139)

Reynolds equation:

ρ̄U i
∂U j

∂xi
= − ∂P̄

∂xj
+

∂

∂xi

(
µ
∂U j

∂xi
− ρ̄u′iu′j

)
+ ρ̄gj. (18.140)

The derivations have led, however, to the introduction of new unknowns given
by the following fourth-order tensor:

u′iu
′
j =

⎛⎝ u′21 u′1u
′
2 u

′
1u

′
3

u′2u
′
1 u

′2
2 u′2u

′
3

u′3u′1 u′3u′2 u′23

⎞⎠, (18.141)

which can be referred to as “Reynolds momentum transport terms,” but are
often also called Reynolds stress terms.

The introduction of additional unknowns into the basic equations of
fluid mechanics lead to a non-closed system of equations and this re-
quires additional information in order to obtain solutions from (18.139) and
(18.140). This required information, often formulated as additional differen-
tial equations, represents general statements on the interrelation between the
Reynolds momentum transport terms and the mean velocity field. The deriva-
tions of these additional differential equations require additional physical
insights into the turbulent velocity correlations (18.141) and their dependence
on the mean flow field. The development of model considerations for these
unknown terms is an important field of research in fluid mechanics. Consider-
ations of this kind are carried out in the form of turbulence models by various
research groups. The basics of such models are described in the following sec-
tions only in an introductory manner. Further insight into this important
sub-domain of fluid mechanics shows that the introduction of turbulence
models serves to derive “closing assumptions” for the Reynolds equations.
Succeeding in formulating additional equations, i.e. producing physically ap-
propriate turbulence models, a new system of equations results, based on the
Reynolds equations, which can be employed to solve turbulent flow problems.

The formulation of physically appropriate additional equations, i.e. to
provide physically appropriate information for the correlations u′iu

′
j for the

treatment of the Reynolds equations, can partly be realized by hypothetical
assumptions, as was often done in the past when setting up turbulence mod-
els. There is, however, the possibility to obtain the information required for
turbulence models by means of detailed experimental investigations in differ-
ent turbulent flows. For this purpose, local measurements of the instantaneous
velocity of turbulent flows are necessary. Such measurements can be achieved
with the help of hot wire and hot film anemometry and also laser Doppler
anemometry. Those measuring techniques provide the necessary resolution
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with respect to time and space variations of the flow, to carry out all the mea-
surements required for detailed turbulence modeling. The measuring methods
can be considered to be fully developed, so that the required measurements
can be carried out without serious application problems. Such measurements
contribute considerably to deepening the comprehension of the physics of tur-
bulence and make it possible to introduce additional information in the form
of new equations to yield numerical solution procedures for turbulent flows.

For measurements in wall boundary layers, hot wire and hot film anemome-
ters have been employed with great success for determining the mean velocity
U i and the fluctuation quantities u′iu

′
j (see Sect. 18.8). Flows of this kind

can be investigated reliably with hot wire anemometers because of their
characteristic properties. However, in the case of very thin boundary lay-
ers, inherent disturbances may occur which are caused by the introduced
measuring sensors. By special shaping of the employed measuring sensors,
these disturbances and the resulting measurement errors can be kept low.

Most measuring methods, requiring the introduction of measuring sensors
into flows, measure the flow velocity only indirectly, i.e. with most measuring
instruments physical quantities are recorded which are functions of the flow
velocity. Unfortunately, the measuring quantities are often also functions
of the properties of the state of the flow medium. The latter have to be
known and have to be adapted already when calibrating the measuring
method, in order to make the interpretation of the measured data possible
in terms of velocity. When fluctuations of the fluid properties occur during
the attempted velocity measurements, e.g. in two-phase flows, flows with
chemical reactions etc., they have to be known to be able to determine
reliably the required velocity values.

The above-mentioned difficulties in the employment of indirect measuring
techniques for flow velocities, such as hot wire and hot film anemometry,
have led to the development of the laser Doppler technique, which measures
flow velocities directly. By measuring the time which a particle needs to
flow through an interference pattern with a well-defined fringe distance, the
velocity of light-scattering particles can be determined. Such measurements
can be carried out locally and do not depend on the unknown thermodynamic
properties of the flow fluid. Measurements are possible in one- and two-phase
flows, and also in combustion systems and in the atmosphere. The measuring
technique can moreover be employed in particle-loaded flows, i.e. in media as
they often occur in practice. Its application requires, however, optical access
to the measuring point and transparency of the flow medium. In this respect
the employment of laser Doppler anemometry is limited, but its application
makes the determination of flow velocities possible in a large number of flows
that are not accessible to other measuring methods.

Due to considerable developments in applied mathematics over the last
few decades, new methods to solve numerically systems of partial differen-
tial equations, such as those describing fluid flows, have appeared. These
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Fig. 18.14 Increase in computing and computer power in the employment of
mathematical methods and of high-speed computers

developments were supported by an increase in computing power, as shown
in Fig. 18.14.

Considering also the increased performance of high-performance computer
systems, as also indicated in Fig. 18.14, it becomes understandable that it is
possible nowadays to obtain direct numerical solutions of turbulent flows at
least at small Reynolds numbers. Such solutions lead to important insights
that can be employed for the development of refined turbulence models. In
the following section, it is shown how the knowledge gained by experimental
and numerical investigations of turbulent flows can be used to formulate
turbulence models for the unknown Reynolds momentum transport terms.
Whereas in the past turbulence model developments had to be carried out
without such knowledge, numerically obtained information on the behavior
of turbulent flows is nowadays available.

18.7.2 General Considerations Concerning Eddy
Viscosity Models

In Sect. 18.5, the basic equations of fluid mechanics were employed, i.e. the
continuity equation, the Navier–Stokes equation and the mechanical en-
ergy equation, in order to introduce into them time-averaged quantities of
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turbulent property fluctuations. After time averaging of the resulting equa-
tions and taking into account ∂/∂t(· · ·) = 0, the following relationships could
be derived:

• Continuity equations:

– Mean flow field:
∂U i

∂xi
= 0. (18.142)

– Fluctuating flow field:
∂u′i
∂xi

= 0. (18.143)

• Navier–Stokes equations (for gj = 0)

– Mean flow field:

ρ̄U i
∂U j

∂xi
= − ∂P̄

∂xj
+

∂

∂xi

[
µ
∂U j

∂xi
− ρ̄u′iu′j

]
. (18.144)

– Fluctuating flow field:

ρ̄U i

∂ 1
2u

′
ju

′
j

∂xi
= −ρ̄u′iu′j

∂U j

∂xi
− ∂

∂xi

[
u′i

(
ρ̄u′ju

′
j

2
+ p′

)]
−µ ∂u

′
j

∂xi

∂u′j
∂xi

+ µ
∂ 1

2u
′
ju

′
j

∂xi∂xi
. (18.145)

• Thermal energy equation:

– Mean temperature field:

ρcpUi
∂T̄

∂xi
=

∂

∂xi

(
λ
∂T̄

∂xi
− ρcpu′iT ′

)
. (18.146)

– Fluctuating temperature field:

Ui
∂

∂xi

(
1

2
T ′2
)

= − ∂

∂xi

[
1

2
T ′2u′

i − a
∂

∂xi

(
1

2
T ′2
)]

− u′
iT

′ ∂T̄

∂xi
− a

(
∂T ′

∂xi

)2

(18.147)

with a = λ/ρcp.

Regarding the solutions of laminar flow problems, it had been possible, by
employing the continuity and the Navier–Stokes equations, to solve a number
of problems analytically, i.e. the set of differential equations that was available
constituted a closed system of partial differential equations for these cases.1

When considering the corresponding system of equations for turbulent flows,
e.g. the continuity equation and the momentum equation for the mean flow

1 By a closed differential system, one understands a system in which the number of
unknown variables and the number of equations available are equal.
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field, it can be seen from the above statements that the system of equations
is not closed. There appear six additional unknown quantities, namely the
correlations of the velocity fluctuations u′i and u′j, i.e. the elements of the
following tensor:

u′iu
′
j =

⎛⎝ u′21 u′1u′2 u′1u′3
u′2u′1 u′22 u′2u′3
u′3u

′
1 u

′
3u

′
2 u

′2
3

⎞⎠. (18.148)

This shows that the derivations of the time-averaged equations, generally
holding for turbulent flows, have led to a closing problem which has to be
solved before solutions of the above equations for turbulent flows can be
sought. The development of suitable closing assumptions is tackled in flow
research by turbulence model developments:

• By turbulence modeling, one understands the development of closing as-
sumptions, which are formulated in the form of additional equations and
which are employed in addition to the averaged continuity and Navier–
Stokes equations, i.e. the Reynolds equations, for the solution of flow
problems.

Such closing assumptions should make use of experimentally or numeri-
cally obtained information, so that soundly based assumptions for the prop-
erties of turbulent flow quantities can be employed as additional equations,
needed for numerical solutions of turbulent flow problems.

In the literature, a large number of different turbulence models have been
proposed, developed and employed for flow problem solutions, based on the
Reynolds equation for turbulent flows. They can be classified as follows. All
the following models have one thing in common, according to a suggestion of
Boussinesq: they set the transport mechanism of turbulent velocity fluctua-
tions equal to the transport of molecules in an isotropic Newtonian fluid, i.e.
it is assumed that the following relationship holds:

ρ̄u′iu
′
j = −ρ̄νT

(
∂U j

∂xi
+
∂U i

∂xj

)
, (18.149)

νT is defined as the eddy viscosity, which has to be regarded as an unknown
quantity, and it represents a property of the turbulent flow and not the fluid.
It is the task of the above eddy viscosity models, often also called “first-order
closure models,” to provide good model assumptions for the eddy viscosity νT .
To reach this goal, the considerations below based on characteristic velocity
and length scales need to be considered:

ρu2
c ∼ ρνT uc

lc
� νT ∼ uclc, (18.150)

i.e. defining equation of the eddy viscosity:

νT =
−u′iu′j(

∂U j

∂xi
+
∂U i

∂xj

) . (18.151)
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Order of magnitude considerations can be carried out, employing charac-
teristic units of velocity and length scales of the considered turbulence. For
simple turbulence model considerations, νT is often treated as a scalar quan-
tity, although, by definition, it constitutes a fourth-order tensorial quantity.
Strictly, by the introduction of νT the assumption of isotropy of a turbulent
flow field is introduced into turbulence.

The characteristic scales of length and velocity, i.e. lc and uc, used in the
different models are k = 1

2u
′
ku

′
k

Analytical models lc :
∣∣∣∣ ∂U j

∂xi

∣∣∣∣ lc � νT ∼ l2
∣∣∣∣ ∂U j

∂xi

∣∣∣∣ , (18.152)

One-equation models lc : k
1
2 � νT ∼ lck 1

2 , (18.153)

Two-equation models
k

3
2

ε
: k

1
2 � νT ∼ k2

ε
. (18.154)

“Analytical turbulence models” are characterized by describing the charac-
teristic length scale of the considered turbulence, lc, as a local property of
the turbulent flow field by means of an analytical relationship. This states the
distribution of the length scale as a function of the location in the flow. The
characteristic velocity is often given by the local gradient of the mean velocity
field, multiplied by the characteristic length scale of turbulence. With this the
turbulent eddy viscosity can be stated to be a product of the square of the
characteristic length scale of turbulence and the local gradient of the mean
velocity field. With the eddy viscosity introduced in this way, an additional
equation results, expressing νT , which can be employed for the solution of tur-
bulent flow problems. However, as a new unknown the characteristic length
scale of turbulence is added, which has to be given as a function of the loca-
tion, i.e. it has to be determined from experiments and introduced into the
analytical equations for νT .

The one-equation turbulence models, indicated in Fig. 18.15, maintain the
analytical description of the turbulent length scale, but solve a transport
equation for the turbulent kinetic energy k. The eddy viscosity, appearing in
the Boussinesq assumption (18.149) for the correlation −u′iu′j, can thus be
defined as a quantity which is computed from the product of the analytically
described length scale of turbulence, lc, and the (k)

1
2 value calculated with the

help of a transport equation. In the transport equation for k, the occurring
correlations of turbulent property fluctuations of higher order (see (18.145)),
which were introduced by averaging the equations, are replaced by suitable
modeling assumptions.

Two-equation turbulence models represent extensions with respect to
lower equation models, where the locally existing length scale of turbulence,
i.e. lc, is defined with the help of the turbulent dissipation, ε, and this latter
property of turbulence is computed from a transport equation. When this
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Fig. 18.15 Classification of eddy viscosity models for turbulent flows

quantity is computed locally by solving a separate transport equation, it can
be combined with the locally determined turbulent kinetic energy, k, to a
length scale of turbulence, so that the following holds:

lc =
k

3
2

ε
. (18.155)

Experience with the employment of turbulence models in practice has
shown that two-equation models are at least necessary to obtain mathemat-
ical formulations of turbulence model equations that have a certain general
validity. As shown in Sect. 18.7.5, the model constants appearing in the
transport equations for k and ε, can be determined from direct numerical
computations, or from experimental studies of basic flows, and can later be
applied to a wide range of practically relevant flows. In this way, solutions for
the mean flow field and the most important turbulence quantities result and
the computed quantities agree with experimental data with a precision suffi-
cient for practical application. Employing analytical models of turbulence, or
one-equation turbulence models, does not lead to the same generally valid ap-
plicability of once determined constants appearing in the transport equations.
Similarly, in lower order models the analytical expressions far the turbulent
velocity and length scale are far less generally applicable. For the analytical
turbulence models and the one-equation turbulence models, it is important
to find, for each flow geometry, new turbulence information for the model
quantities and to formulate them in appropriate equations. Hence specific
turbulence models result.
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A further generalization of the applicability of turbulence models for the
Reynolds differential equations was reached by the development of the so-
called Reynolds stress turbulence models. These models do not use eddy
viscosity formulations for the turbulent transport quantities, but solve a
transport equation for each of the cited u′iu

′
j terms. These transport equa-

tions for the u′iu
′
j terms can be derived from the Navier–Stokes equations;

however, they lead to correlation terms of higher order, for which also model-
ing assumptions have to be introduced. Experience seems to show that these
model assumptions for higher-order terms can be found more easily in a gen-
erally valid form than transport assumptions for correlations of lower order.
This is one of the main reasons for the generally wide employment of the
Reynolds stress turbulence models. In comparison with two-equation turbu-
lence models, they show an increased number of partial differential equations
which have to be solved. The availability of increased computing capacity
and increasing computing performance, already makes this kind of turbulence
modeling appear interesting for practical computations.

Although the above-cited turbulence models use essentially local quantities
for determining turbulent transport quantities, the solutions of the differential
equations describing the turbulence properties include also global information
on the entire flow field. This takes into account that the computed turbulence
quantities comprise the effect of an entire spectrum of quantities, and thus
also those from eddy sizes of the order of magnitude of the entire flow field.
The transport equations solved, e.g for k and ε, take into account also the val-
ues of their corresponding quantities existing at the boundaries of the flows.
Local transport processes enter into the computations also. Nevertheless, the
cited turbulence models give grounds for discussion as to whether they include
sufficiently all essential properties of turbulence and their effects on the un-
known u′iu

′
j correlations. It can be hoped, however, that open questions will be

solved by detailed experimental investigations, such as are possible nowadays
with modern methods of flow measurements, as laser Doppler anemometry
and hot wire anemometry.

18.7.3 Zero-Equation Eddy Viscosity Models

In the preceding section, the introduction of a turbulent eddy viscosity, as
suggested by Boussinesq, was explained briefly as a quantity only charac-
terizing sufficiently isotropic turbulence. The postulated analogy between
the molecule-dependent momentum transport and turbulence-dependent
momentum transport led to the following ansatz:

(τturb)ij = ρu′iu
′
j = −ρνT

(
∂U j

∂xi
+
∂U i

∂xj

)
(18.156)

which, for plane-parallel flows, is reduced to a single term (e.g. x1 = flow
direction; x2 = vertical to the flow direction and to the wall):
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ρu′2u′1 = ρνT
∂U1

∂x2
. (18.157)

For the determination of νT , Prandtl made use of simple considerations taken
from the kinetic gas theory. This theory was developed by Boltzmann and
used for the derivation of the molecule-dependent momentum transport, i.e.
for the introduction of fluid viscosity. By introducing so-called turbulent ed-
dies, it is possible, following Prandtl’s suggestion, to postulate “a uniform
size for the moment transporting eddies” of a turbulent flow field. These
turbulent eddies perform stochastic motions in space. They are assumed to
cover a path length lm, the so-called turbulent mixing length, before they in-
teract with other turbulent eddies, exchanging their momentum. This means
that the actually occurring continuous interaction between turbulent flow
sub-domains is modeled by a process, where the interaction of turbulence
eddies is postulated to take place only after passing a finite distance. The ex-
tent to which this simplified model process can derive properly the actually
occurring turbulent transport processes, has to be demonstrated by compar-
isons of theoretically derived insights into turbulent transport processes with
corresponding experimental results.

Taking into account the above model explanations, a turbulent field can be
subdivided into turbulent eddies in such a way that there are nT eddies per
unit volume. They carry out stochastic motions, so that (1/6nT ) of the tur-
bulent eddies move, on average, in each of the positive and negative directions
of a Cartesian coordinate system. During a time ∆t the below-cited number
of turbulence eddies is moving through the area a2 of a control volume, where
|u′2| was assumed to be the velocity of the eddies in the x2-direction, i.e. in
the consideration carried out here, uc = |u′2| is set.

1
6
nT a

2 |u′2|∆t =
1
6
nTa

2uc∆t. (18.158)

On attributing to each turbulent eddy the mass ∆mT , then for the mass
transported through an area a2 in a time ∆t in the positive and negative
x2-direction, the following relationship holds:

1
6
nT∆mT a

2uc∆t =
ρ

6
a2uc∆t. (18.159)

Connected with this mass transport is the momentum transport. The
transport occurring in the positive direction can be given as

J+ =
ρ

6
a2uc∆tU1 (x2 − lm) (18.160)

and in the negative direction

J− = −ρ
6
a2uc∆tU1 (x2 + lm). (18.161)
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The momentum transport difference which occurs over an area a2 in a time
∆t therefore is:

∆J = J+ + J− =
ρ

6
a2uc∆t

[
U1 (x2 − lm) − U1 (x2 + lm)

]
. (18.162)

Per unit time and unit area this results in the following relationships:

∆J

a2∆t
= (τturb)21 =

ρ

6
uc

[
U1 (x2 − lm) − U1 (x2 + lm)

]
. (18.163)

After carrying out Taylor series expansion for the velocity difference U1(x2 −
lm) and U2(x2 + lm) and subtraction, one obtains

(τturb)21 =
ρ

6
uc

[
−2
(
∂U1

∂x2

)
lm

]
(18.164)

or rewritten:

(τturb)21 = −ρ
3
uclm

(
∂U1

∂x2

)
. (18.165)

Taking into account that the contribution occurring due to |u′2| is given by
the term:

|u′2| =
∣∣∣∣ ∂U1

∂x2

∣∣∣∣ lm = uc (18.166)

the following expression holds:

(τturb)21 = −ρu′2u′1 = −ρ
3
l2m

∣∣∣∣ ∂U1

∂x2

∣∣∣∣ ( ∂U1

∂x2

)
. (18.167)

On introducing the Prandtl mixing length as:

l2p =
1
3
l2m (18.168)

one obtains the final relationship put forward by Prandtl for the turbulent
momentum transport:

(τturb)21 = −ρl2p
∣∣∣∣ ∂U1

∂x2

∣∣∣∣ ( ∂U1

∂x2

)
(18.169)

and thus the turbulent viscosity can be expressed as:

νT = l2p

∣∣∣∣ ∂U1

∂x2

∣∣∣∣. (18.170)

Corresponding to the representations in Sect. 18.7.2, for the Prandtl
mixing length model, the following time and velocity scales of turbulence
result:
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lc = lp, uc = lp

∣∣∣∣ ∂U1

∂x2

∣∣∣∣ . (18.171)

In the treatment of turbulence, lp has to be considered as an unknown quan-
tity in the above derivations. It has to be given analytically as a local quantity
for each turbulent flow field to be investigated, before solutions of the basic
equations for turbulent flows can be sought. To make this clearer, the turbu-
lent channel flow, for which the following basic equations hold, will be treated
below as an example.

Continuity equation:(
∂U2

∂x2

)
= 0 � U2 = constant = 0. (18.172)

Reynolds equations:

0 = − ∂P̄
∂x1

+
∂

∂x2

(
ρν

dU1

dx2
− ρu′2u′1

)
, (18.173)

0 = − ∂P̄

∂x2
+

d
dx2

(
−ρu2

2

)
(18.174)

and the boundary conditions:

x2 = ±D : U1 = 0; u′22 = 0; ρu′2u
′
1 = 0

and P (x1, x2) = Pw(x1) (18.175)

x2 = 0 symmetry conditions
∂

∂x2
(· · · ) = 0. (18.176)

The integration of the second Reynolds equation yields:

P (x1, x2) = Pw(x1) − ρu′22. (18.177)

From the second Reynolds equation, the following results, therefore, for
the pressure gradient in the flow direction:

∂P

∂x1
=

dPw

dx1
. (18.178)

Because of the assumption of a fully developed flow field, also with regard to
the turbulent quantities, the following relationship holds:

∂

∂x1

(
−ρu′22

)
= 0. (18.179)

This relationship expresses that the change in pressure in the flow direction,
that occurs in the entire flow field, is equal to the pressure gradient along
the wall.
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Fig. 18.16 Turbulent fully developed, plane channel flow

As an integral relationship for the channel flow plotted in Fig. 18.16, one
can write:

2τwBL = L
(

dPw

dx1

)
2DB (18.180)

or
τw = D

∂P

∂x1
� u2

τ =
τw
ρ

=
D

ρ

dPw

dx1
. (18.181)

The first of the Reynolds equations can thus be written as follows:

∂P

∂x1
=

dPw

dx1
=
ρ

D
u2

τ = ρν
d

dx2

[(
1 +

νT
ν

) dU1

dx2

]
(18.182)

or expressed by the wall coordinate y:

y = D − x2 and dy = −dx2, (18.183)

u2
τ

D
= ν

d
dy

[(
1 +

νT
ν

) dU1

dy

]
. (18.184)

With νT = l2P

∣∣∣∣ dU1

dy

∣∣∣∣ and the linear ansatz suggested by Prandtl:

lP = κy (18.185)

the following differential equation results:

u2
τ

νD
=

d
dy

[(
1 +

κ2y2

ν

∣∣∣∣ dU1

dy

∣∣∣∣) dU1

dy

]
. (18.186)

To solve the above equations, it is recommended to carry out the first
integration for the momentum equation in the following form:

∂P

∂x1
=

dPw

dx1
= −τw

D
= − d

dy
(τtot)21 (18.187)
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and
(τtot)21 =

τw
D
y + C = −τw

(
1 − y

D

)
, (18.188)

where y = D − x2 was considered. Thus the following equation holds:

−ρν dU1

dy
+ ρu′2u

′
1 = −τw

(
1 − y

D

)
, (18.189)

ρν
dU1

dy
− ρνT dU1

dy
= τw

(
1 − y

D

)
. (18.190)

On setting U+
1 =

U1

uτ
and y+ =

yuτ

ν
, one obtains:

(
1 − νT

ν

)
dracU+

1 y
+ =

(
1 − y+

D+

)
(18.191)

and with

νT
ν

=
l2P
ν

∣∣∣∣ dU1

dy

∣∣∣∣ = (l+P )2 ∣∣∣∣ dU+
1

dy+

∣∣∣∣, (18.192)

[
1 +
(
l+P
)2 ∣∣∣∣ dU+

1

dy+

∣∣∣∣]( dU+
1

dy+

)
=
(

1 − y+

D+

)
. (18.193)

On introducing the linear relation suggested by Prandtl:

l+P = κy+ (18.194)

one obtains:[
1 + κ2y+2

∣∣∣∣ dU+
1

dy+

∣∣∣∣]( dU+
1

dy+

)
=
(

1 − y+

D+

)
. (18.195)

For the upper half-plane of the channel flow
∣∣∣ dU+

1
dy+

∣∣∣ = ( dU+
1

dy+

)
. The following

equation thus holds:(
U+

1

y+

)2

+
1

κ2y+2

(
U+

1

y+

)
− 1
κ2y+2

(
1 − y+

D+

)
= 0 (18.196)

or solved for
dU+

1

dy+
it results (for

dU+
1

dy+
> 0):

dU+
1

dy+
= − 1

2κ2y+2
+

√√√√√√1 + 4κ2y+2
(
1 − y+

D+

)
4κ4y+4︸ ︷︷ ︸

A

(18.197)
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or rewritten:

U+
1

y+
=

[
− 1

2κ2y2 +
√
A
] [

1
2κ2y2 +

√
A
]

1
2κ2y2 +

√
A

(18.198)

to yield the following result:

U+
1

y+
=

2
(
1 − y+

D+

)
1 +
√

1 + 4κ2y+2
(
1 − y+

D+

) (18.199)

so that U+
1 can be computed as follows:

U+
1 =

y+∫
0

2
(

1 − y
+

D+

)
1 +

√
1 + 4κ2y+2

(
1 − y

+

D+

) dy+. (18.200)

Detailed considerations of the turbulence behavior near walls indicated that
the attenuation of the turbulence taking place near walls is not fully taken
into account by the linear assumptions for lp proposed by Prandtl. Through
considerations of the Stokes problem of a viscous flow oscillating parallel to a
fixed wall, van Driest derived an attenuation factor which can be introduced
into the assumptions for the Prandl mixing length. Considering this leads to
the equation

lvD = lP

[
1 − exp

(
−y

Uτ

ν

A+

)]
, (18.201)

where A+ = 26 was determined by van Driest from experimental results.
For large values of y+, the above attenuation factor approaches the value
1 and the van Driest mixing length theory and the Prandtl assumptions
merge, i.e. become identical. Near the wall, owing to the viscous attenuation,
a reduction of the mixing length takes place, which is taken into account in
the exponential term of the van Driest assumption.

Finally, some considerations on the Prandtl mixing length theory and
the derived final relationships for the turbulent momentum transport are
recommended:

−u′1u′2 = −lPuc

(
∂U1

∂x2

)
= −u2

c

(
lP
uc

)(
∂U1

∂x2

)
. (18.202)

On introducing two time scales:

Characteristic time scale of the turbulence: τc =
lP
uc

,
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Characteristic time scale of the mean flow field: τM =
1(

∂U1
∂x2

) the follow-
ing holds:

−u′1u′2 = −u2
c

τc
τM
. (18.203)

For turbulent flows for which the turbulence is exposed for a long time to
a mean flow field with constant deformation, a constant relationship of the
above time scale develops, so that, at least in some regions of the flow, the
following can be assumed to hold:

u′1u
′
2 = constant · u2

c . (18.204)

For this reason, and for a wide range of such turbulent flows, one can write

R12 =
u′1u′2√
u′21

√
u′22

= constant. (18.205)

In spite of the fact that a constant deformation rate in turbulent wall bound-
ary layers is not guaranteed and that therefore turbulence elements experience
differing deformations on their way through the flow field, the above relation-
ship also holds over wide ranges of turbulent boundary layers. This is indicted
in Fig. 18.17.

When turbulent modeling is desired only for one class of flows, e.g. tur-
bulent wall boundary layers, R12 can also be stated from experiments as
a function of the location. For the experimentally obtained distribution in
Fig. 18.17, one can derive

R12 = f
( r
R

)
=

u′1u
′
2√

u′21

√
u′22

≈ u′1u
′
2

k
. (18.206)

Knowing k, via R12 the local value for u′1u
′
2 can be computed and employed

in the momentum equation for computing the mean flow field.

Fig. 18.17 Correlation coefficient R12 for turbulent pipe flows
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18.7.4 One-Equation Eddy Viscosity Models

The class of turbulence models, discussed in Sect. 18.7.3, tries to describe the
momentum transport properties of turbulent flows with the help of a single
parameter, namely the Prandtl mixing length. The latter is introduced into
the considerations in a geometry-specific way and is stated in the form of
an algebraic equation, where the velocity characteristic of the turbulence is
introduced via the mixing length and the gradient of the mean velocity field.
In order to achieve a model expansion, the characteristic velocity typical of
the turbulent momentum transport is set as follows:

uc = k
1
2 with k =

1
2
u′iu

′
i. (18.207)

With the characteristic length lc of one-equation models, thus νT = (lc)1 k
1
2

results. Here k is the local turbulent kinetic energy, which is described by the
following transport equation:

Ui
∂k

∂xi
=

∂

∂xi

(
−p

′u′i
ρ

+ 2νu′j
∂u′j
∂xi

− 1
2
u′ju

′
ju

′
i

)
− u′iu

′
j

∂Uj

∂xi
− 2ν

(
∂u′j
∂xi

)2

(18.208)
so that the turbulent transport properties in (18.208) change with the modi-
fications of turbulence in a flow field. It is customary in turbulence modeling
to rewrite the above equation as follows:

Ui
∂k

∂xi
=

diffusion︷ ︸︸ ︷
− ∂Di

∂xi
+

production︷︸︸︷
P −

dissipation︷︸︸︷
ε , (18.209)

where the following relationships hold:

Di = −
(
−p

′u′i
ρ

+ 2νu′j
∂u′j
∂xi

− 1
2
u′ju

′
ju

′
i

)
(18.210)

and

P = −u′iu′j
∂Uj

∂xi
; ε = −ν ∂u

′
j

∂xi

∂u′j
∂xi

. (18.211)

With the modeling assumptions for Di, P and ε, customary in present-day
turbulence modeling research, the following modeled k equation results:

Ui
∂k

∂xi
=

∂

∂xi

[(
ν +

νT
σk

)
∂k

∂xi

]
︸ ︷︷ ︸

diffusion

+ νT

(
∂Uj

∂xi
+
∂Ui

∂xj

)
∂Uj

∂xi︸ ︷︷ ︸
production

− CD
k

3
2

(lc)
1︸ ︷︷ ︸

dissipation

.

(18.212)
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The second term on the right-hand side of (18.212) represents the production
of turbulence by the mean flow field, which was stated as follows:

−u′iu′j
∂Uj

∂xi
= νT

(
∂Uj

∂xi
+
∂Ui

∂xj

)
∂Uj

∂xi
. (18.213)

The first term on the right-hand side of (18.212) also contains σk, a quantity
which indicates how the turbulent diffusion of k is related to the turbulent
momentum diffusion νT , i.e. σk states the relationship of turbulent momen-
tum dissipation to energy dissipation. The third term on the right-hand side
of (18.212) states the turbulent dissipation. For this term, order of magnitude
considerations suggest, for equilibrium flows:

P ∼ u3
c

lc
∼ ε � ε = CD

k
3
2

(lc)1
. (18.214)

The constants introduced into this one-equation turbulence model have to be
determined from experiments. Here, one makes use of the two-dimensional
form of the k equation for a boundary-layer flow:

Ux
∂k

∂x
+Uy

∂k

∂y
=
∂

∂y

[(
ν +

νT
σT

)
∂k

∂y

]
+ νT

(
∂Ux

∂y

)2

− cD k
3
2

(lc)1
. (18.215)

In the turbulent equilibrium range of the flow (inertial sub-range), it holds
that P = ε, i.e. it can be stated that:

νT

(
dUx

dy

)2

= +CD
k

3
2

(lc)1
. (18.216)

On taking into account that the following relationships are valid:

τxy = −ρνT
(

dUx

dy

)
≈ −τw (18.217)

and considering that τw/ρ = u2
τ , one obtains τw/ρ

(
∂Ux

∂y

)
= cD

k3/2

(lc)1
, and

with
∂Ux

∂y
≈ k1/2

(lc)1
it can be stated that

k+ =
k

u2
τ

= C− 1
2

D . (18.218)

As in Sect. 18.7.3, for the one-equation k-l model, assumptions were chosen
in turbulence considerations which “in wall boundary layers” take into ac-
count the closeness of the wall and which lead to differing assumptions for
(lc)1 values, depending on whether one considers the diffusion term or the
dissipation term:
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(lc)1,ν = C
1
4
Dκy [1 − exp (−AνRT )] with Aν = 0.016 (18.219)

and

(lc)1,D = C
1
4
Dκy [1 − exp (−ADRT )] with AD = 0.26, (18.220)

where RT =
k

1
2 y

ν
represents the Reynolds number formed by wall

disturbance:
(lc)1 = lPC

1
4
D. (18.221)

From boundary layer data, the value CD ≈ 0.09 results. With this value,
it is now possible to integrate the Reynolds equations employing the k-l
one-equation turbulence model.

In order to determine the CD value, the equilibrium region of a boundary
layer was employed. Figure 18.18 shows where this region is located.

It is also customary to employ other characteristic ranges of turbulent
flows to determine the “free constants” in turbulence models. Altogether the
following ranges are available, introduced here by terms customary in the
English literature on turbulence.

Equilibrium range:
0 = P − ε. (18.222)

Decay range:

U i
∂k

∂xi
= −ε. (18.223)

Wall near
region

Core regionEquilibrium
region

0
h y

K

Fig. 18.18 Ranges of turbulent channel flow
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Rapid distortion range:

U i
∂k

∂xi
= P. (18.224)

The above equations are useful in discussions of different turbulent flow
regions.

18.7.5 Two-Equation Eddy Viscosity Models

Practical experience with turbulence models shows that, as far as their
general applicability is concerned, the k-l one-equation model represents a
considerable improvement over the zero-equation models. However, very good
computations of turbulent flows can only be carried out by zero- and one-
equation models when small flow accelerations or decelerations occur, i.e.
flows with strong pressure gradients can only be computed in an unsatisfac-
tory way with k-l one-equation models. Experience shows that the limitations
of the applicability of k-l one-equation models are due to the algebraic form
of the characteristic length scale l, which often means that the applicabil-
ity remains restricted to such flows which were applied for deriving the k-l
one-equation models. This is the reason for the introduction of two-equation
eddy viscosity models. One of these models is the k-ε model, which is based
on the solution of the following two differential equations:
k equation:

∂k

∂t
+ ui

∂k

∂xi︸ ︷︷ ︸
Dk
Dt

=−uiuj
∂Uj

∂xi︸ ︷︷ ︸
P

− ∂

∂xi
ui

(
ujuj

2
+
P

ρ

)
︸ ︷︷ ︸

T

−ν ∂uj

∂xi

∂uj

∂xi︸ ︷︷ ︸
ε

+ν
∂2k

∂xi∂xi︸ ︷︷ ︸
D

,

(18.225)
where P = production term, T = transport term and ε = dissipation term
and D = diffusion term.
ε equation:

∂ε

∂t
+ ui

∂ε

∂xi
= −2ν

∂uj

∂xi

∂uk

∂xi

∂Uj

∂xk︸ ︷︷ ︸
P 1

ε

− 2ν
∂uj

∂xk

∂uj

∂xi

∂Uk

∂xi︸ ︷︷ ︸
P 2

ε

−2νuk
∂uj

∂xi

∂2Uj

∂xkδxi︸ ︷︷ ︸
P 3

ε

− 2ν
∂uj

∂xi

∂uk

∂xi

∂uj

∂xk︸ ︷︷ ︸
P 4

ε

− ∂

∂xk
νuk

∂uj

∂xi

∂uj

∂xi︸ ︷︷ ︸
Tε

− ∂

∂xk

2ν
ρ

∂uk

∂xi

∂p

∂xi︸ ︷︷ ︸
Mε
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−2ν2 ∂
2uj

∂xiδxk

∂2uj

∂xiδxk︸ ︷︷ ︸
γ>0

+ ν
∂2ε

∂xkδxk︸ ︷︷ ︸
Dε

. (18.226)

The eddy viscosity can be defined with k and ε, i.e. with uc = k1/2 and

lc =
k3/2

ε
, as follows:

νT = Cµ
k2

ε
.

Here, k and ε are determined from the above-modeled differential equations.
In this context, it is useful to know that in turbulence modeling the above-
cited equation for k is considered to be sufficiently well modeled as concerns
practical computations, whereas similarly satisfactory modeling assumptions
do not exist for the ε equation. The model equations often used in present-
day flow computations are the following:

k equation:

∂k

∂t
+ Ui

∂k

∂xi
= νt

(
∂Uj

∂xi
+
∂Ui

∂xj

)
∂Uj

∂xi
+

∂

∂xi

νt
σK

∂k

∂xi
− ε+ ν

∂2k

∂xi∂xi
.

(18.227)

With νt as

νt ∼= 0.09
k2

ε
.

ε equation:

∂ε

∂t
+ Ui

∂ε

∂xi
= cε1

ε

R
νt

(
∂Uj

∂xi
+
∂Ui

∂xj

)
∂Uj

∂xi
− cε2fε ε

2

k

+
∂

∂xi

νt
σε

∂ε

∂xi
+ ν

∂2ε

∂xi∂xi
. (18.228)

Here, the modeling of the last term in the ε equation is based on the
assumption:

P ∼ kk
1
2

lc
ε � ν

(
U

λ2

)2

=
ε2

k
. (18.229)

As concerns the boundary layer formulation of the Reynolds and k-ε turbu-
lence model equations, valid for high Reynolds numbers, they can be given
as follows:

∂U

∂x
+
∂V

∂y
= 0, (18.230)

U
∂U

∂x
+ V

∂U

∂y
= Fx − 1

ρ

∂P

∂x
+
∂

∂y

[
(ν + νT )

∂U

∂y

]
, (18.231)

U
∂K

∂x
+ V

∂K

∂y
=
∂

∂y

(
νT
σK

∂K

∂y

)
+ νT

(
∂U

∂y

)2

− ε, (18.232)
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U
∂ε

∂x
+ V

∂ε

∂y
=
∂

∂y

(
νT
σε

∂ε

∂y

)
+ Cε1

νT ε

K

(
∂U

∂y

)2

− Cε2
ε2

K
, (18.233)

νT = Cµ
K2

ε
,

where Cµ = 0.09, σK = 1.0, σε = 1.3, Cε1 = 1.45, Cε2 = 2.0.

In order to determine cµ, the ansatz νT
(

∂U
∂y

)2

= ε� cµ = cD =
(

k
u2

τ

)2

=
0.09 again holds. This can also be determined from measurements of wall
boundary layers.

18.8 Turbulent Wall Boundary Layers

Turbulent boundary-layer flows, whose essential properties are determined by
the presence of a wall, are called wall boundary layers. As classic examples
one can cite

• Internal flows: plane channel flows and pipe flows
• External flows: plane plate flows and film flows

These flows are sketched in Fig. 18.19. Their essential feature is the momen-
tum loss to a wall which is characteristic of all flows in Fig. 18.19, i.e. wall
momentum loss exists in all the indicated flow cases and, in addition, the
properties of the fluid, the density ρ and the dynamic viscosity µ characterize
the fluid.

In order to discuss the properties of turbulent boundary layers in an
introductory way, the fully developed, two-dimensional, plane, turbulent

Pipe flows

Film flows

Plane chamber flows

Wall boundary layers

Normalisation of the flow 
data yields u+ and y+:

All these flows are 
characterised by 
momentum losses to walls

Fig. 18.19 Examples of internal and external wall boundary layers



18.8 Turbulent Wall Boundary Layers 579

channel flow is subjected to more detailed considerations below. From the
Reynolds equations (see Sect. 18.5.2), the following reduced set of equations
can be deduced for fully developed, plane channel flows with the above-cited
properties:

x1 − momentum equation: 0 = − ∂P
∂x1

+
d

dx2

(
µ

dU1

dx2
− ρu′1u′2

)
. (18.234)

x2 − momentum equation: 0 = − ∂P
∂x2

− ρu′22. (18.235)

x3 − momentum equation: 0 = − d
dx2

(
u′2u

′
3

)
. (18.236)

The last partial differential equation (18.236) can be integrated and yields,
because of the wall boundary condition u′2u

′
3 = 0, that the correlation u′2u

′
3

in the entire plane perpendicular to the plates of the channel has the value
u′2u

′
3 = 0.

The integration of the second differential equation (18.235) yields

P (x1, x2) = Pw(x1) − ρu′22, (18.237)

where ρu′22 = f(x2), since in the x1-direction the flow was assumed to be
fully developed. Nevertheless, the above relationship expresses that the pres-
sure in a turbulent channel flow changes slightly over the cross-section. The
change proves to be so small, however, that it can be neglected for practical
considerations of the properties of fully developed, two-dimensional, plane,
turbulent channel flows. Thus, from (18.237) the following results for the
pressure gradient:

∂P

∂x1
≈ dPw

dx1
. (18.238)

Inserted in (18.234), one obtains:

dPw

dx1
=

d
dx2

(
µ

dU1

dx2
− ρu′1u′2

)
︸ ︷︷ ︸

τges

=
dτges
dx2

. (18.239)

If one introduces, for scaling the above equations, the velocity and length
scales:

uτ =
√
τw
ρ

and !e =
ν

uτ
(18.240)

the momentum equation (18.239) can be written in general form as follows:

dU+
1

dy+
= 1 − y+

Reτ
+
(
u′1u

′
2

)+

. (18.241)



580 18 Turbulent Flows

Fig. 18.20 Fully developed turbulent, plane channel flow

Fig. 18.21 Terms of the momentum equation for two-dimensional channel flow

Here the wall coordinate y is introduced: y = H − x2.

U+
1 =

U1

uτ
; y+c =

yuτ

ν
; Reτ =

Huτ

ν
and

(
u′1u

′
2

)+

=
u′1u

′
2

u2
τ

. (18.242)

With these standardized quantities introduced into (18.242), (18.241) can be
derived. The latter relation comprises four terms which can all be seen in
Fig. 18.21.

In Fig. 18.21, the horizontal line represents the value 1. The quantity
−y+/Reτ and the quantity −u′1u′2 in the equation and also dU+/dy+ are
also shown in Fig. 18.21.

From (18.239), we obtain

τges =
τw
H
x2 =

τw
H

(h− y)

so that the different terms stated in (18.241) can be shown as in Fig. 18.21.
It is evident that the term dU+

1 /dy
+ represents, over wide ranges of the flow,

the smallest value in the standardized momentum equation (18.241).
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In order to obtain information on dU+
1 /dy

+ for plane channel flows, laser
Doppler and hot wire measurements were carried at the Institute for Fluid
Mechanics (LSTM) of Friedrich-Alexander-University, Erlangen-Nürnberg to
achieve U1(y) distributions experimentally. In connection with detailed shear
stress measurements, the presentation of the normalized measured values of
the velocity gradient was achieved in the form

ln
(

dU+
1

dy+

)
= f

(
ln y+

)
(18.243)

and from this it was determined that, for high Reynolds numbers, the mea-
sured and normalized mean velocity gradients plotted in Fig. 18.21 can be
described as follows:

ln
(

dU+
1

dy+

)
= − ln y+ + 1 ≡ ln

e

y+
. (18.244)

From this, U+
1 = e ln y+ + B can be obtained, i.e. the standardized velocity

distribution in a plane channel flow can, over a wide range of the channel
cross-section, be described by a logarithmic velocity distribution:

U+
1 =

1
κ

ln y+ +B with
κ = 1/e
B = 10/e

. (18.245)

These values were found through the experimental investigations at LSTM
Erlangen.

Figure 18.22 shows that the double-logarithmic plotting yields a line with
gradient −1. This is due to the fact that the logarithmic law is valid for the
normalized velocity distribution.

In the literature there has been a number of investigations to determine
the value of κ and the additive constant B to represent with these the loga-
rithmic boundary velocity law. The following represents a summary of these
investigations and the resultant values. The large variation in the values is
mainly due to the use of measurement techniques which do not permit suffi-
ciently local measurements of the mean flow velocities. Furthermore, effects
which arise from flows of low Reynolds numbers were included in the eval-
uations of κ and B in some literature data. If one considers all the possible
influences, i.e. permits only reliable hot wire and laser Doppler measurements
to enter the evaluations, then one obtains the values indicated in (18.245) for
κ and B (Fig. 18.23).

If one employes only reliable measurements for dU+
1 /dy

+, the relationship
stated in (18.241) allows the determination of (u′1u′2)

+ values for turbulent
channel flows. Distributions of these turbulent transport terms, plotted in a
normalized form, are shown in Fig. 18.24.

By means of a plane channel measuring test section with glass side
walls and the use of an LDA velocity-measuring system, information on the
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Fig. 18.22 Representations of experimental investigations for determining the
logarithmic wall law

Fig. 18.23 Scatter of the κ and B values in the experimental determination of
U+

1 = f(y+) for wall boundary layers

turbulent velocity fluctuations existing in flow direction, could also be ob-
tained at LSTM Erlangen. This information is shown in a summarized way
in Fig. 18.25. In this figure they are compared with corresponding results of
numerical flow computations.

Detailed measurements carried out at LSTM Erlangen have confirmed in-

teresting new results, e.g. that the local turbulence intensity
√
u′12/U1 does

not adopt a constant wall value. The result shows that the constant wall
value of this velocity ratio depends on the Reynolds number of the flow (see
Fig. 18.26). Although small discrepancies can be seen as compared with the
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Fig. 18.24 Standardized turbulent momentum transport terms (u′
1u′

2) for plane
channel flows
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Fig. 18.25 Plane channel flow and LDA system. Measurement results for
standardized turbulent velocity fluctuations in the flow direction

values obtained by numerical investigations, a general trend exists. The re-
maining discrepancies between the experimental and numerical data can, in
all probability, be attributed to mistakes in the numerical computations, as
the computed values were not subjected to corrections concerning the finite
numerical grid spacings employed.

The investigations described above are limited to such wall roughnesses
for which it holds that

δsuτ

ν
≤ ε = 2.72, (18.246)

i.e. the values κ = 1/e and B = 10/e are valid only for flows with high
Reynolds numbers and for walls which can be considered to be hydraulically
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Fig. 18.26 Turbulence intensity
√

u′
1
2/U1 near the wall as a function of the

Reynolds number

smooth. For rough walls, an amendment proves necessary for which the
following considerations hold:

U1 = f(y, ρ, µ, τw, δs) � U+
1 = f

(
y

δs

)
, (18.247)

where δs represents the “sand roughness” of the wall. Similarity considera-
tions show that the following logarithmic wall law for rough channel walls
can be derived:

U+
1 =

1
κ

ln y+ +B −∆B (δ+s ). (18.248)

Of particular interest is that point in the viscosity-controlled sub-layer of the
flow where the sub-layer U+

1 = y+ and the layer U+
1 = 1/κ(ln y+) have the

same values and the same gradients:

U+
1 = y+ =

1
κ

ln y+ and
dU+

1

dy+
= 1 =

1
y+
. (18.249)

From this it follows that at y+ = e this consideration is fulfilled for κ = 1/e,
a value that also resulted from the measurements at LSTM, Erlangen. For
the logarithmic velocity profile with maximum roughness δ+s for which a vis-
cosity dominated sub-layer still exists, it results that ∆B(δ+s ) = B = 10/e,
see Fig. 18.27. With this, we can see that a constant representation of the
normalized velocity distributions for hydromechanically smooth and rough
channel walls can be presented. Nevertheless, many questions concerning de-
tailed problems of turbulent wall boundary layers have still to be answered
and need to be investigated with the help of modern measuring and com-
putation techniques. It is especially necessary to extend the results obtained
here for fully developed, two-dimensional, plane, turbulent channel flows to
pipe flows, and also to flat plate flows and turbulent film flows.
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Fig. 18.27 Modification of the additive constants of the logarithmic wall law due to
roughness
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Chapter 19

Numerical Solutions
of the Basic Equations∗

19.1 General Considerations

The considerations in Chaps. 13–16 showed that analytical solutions of the
basic equations of fluid mechanics can often only be obtained when simpli-
fied equations or fully developed flows and small or large Reynolds numbers,
respectively, are considered and if, in addition, one limits oneself to flow
problems which are characterized by simple boundary conditions. Even with
these simplifications, the derivations carried out did not result in analytical
solutions for all flow problems to be solved, but merely reduced the flow de-
scribing partial differential equations to ordinary differential equations. As
shown in the previous chapters, the latter could be solved by means of cur-
rent analytical methods. Moreover, the boundary conditions characterizing
the flow problems could also be implemented into these solutions. Thus it was
demonstrated that the methods known in applied mathematics for solving or-
dinary differential equations represent an important tool for the theoretically
working fluid mechanics researcher. Although analytical techniques for the
solution of flow problems no longer have the significance they had in the
past, it is part of a good education in fluid mechanics to teach these methods
to students and for the latter to learn them.

When considering the partial differential equations discussed in the
preceding chapters, they can all be brought into the subsequent general form

A
∂2Φ

∂x2
+ 2B

∂2Φ

∂x∂y
+ C

∂2Φ

∂y2
+D

∂Φ

∂x
+ E

∂Φ

∂y
+ FΦ = g(x, y). (19.1)

When designating as the discriminant of the differential equation (19.1)

d : = AC −B2 (19.2)

∗Important contributions to this chapter were made by my son Dr. -Ing. Bodo
Durst.
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one defines the differential equation as parabolic, hyperbolic or elliptic when
for d the following holds:

Parabolic differential equation: d = 0 (one-parameter characteristics),
Hyperbolic differential equation: d < 0 (two-parameter characteristics),
Elliptic differential equation: d > 0 (no real characteristics).

This classification of the differential equation orients itself by the equations
for parabolas, hyperbolas and ellipses of the field of plane geometry, in which
the equation:

ax2 + 2bxy + cy2 + dx+ ey + f = 0 (19.3)

describes parabolas (ac − b2 = 0), hyperbolas (ac − b2 < 0) and ellipses
(ac − b2 > 0). Accordingly, for the differential equations discussed in the
preceding chapters, one can characterize:

Diffusion equation ∂U
∂t = ν ∂2U

∂x2 , i.e. it holds A = ν, B = C = 0 and
thus d = 0. The diffusion equation has “parabolic
properties.”

Wave equation ∂2U
∂t2 = c2 ∂2U

∂x2 , i.e. it holds A = c2, B = 0, C =
−1 and thus d = −c2 < 0. The wave equation is
hyperbolic.

Potential equation ∂2Φ
∂x2 + ∂2Φ

∂y2 = 0, i.e. A = C = 1,B = 0 and thus d > 0.
The potential equation shows “elliptical behavior.”

The stationary boundary-layer equations are, as can be demonstrated
when analyzing them according to the above representations, parabolic differ-
ential equations. Such equations have a property which is important for the
numerical solution to be treated in this section. The solution of the differen-
tial equation determined at a certain point of a flow field, does not depend on
the boundary conditions that lie downstream. This makes it possible to find
a solution for the entire flow field via “forward integration,” i.e. the solution
can be computed in a certain level of the flow field alone from the values of
the preceding level. This is characteristic for parabolic differential equations
which thus, in the case of numerical integration, possess advantages which
the elliptic differential equations do not have. This becomes clear when look-
ing at Fig. 19.1, which shows which subdomain of a flow field acts on the
properties at a point P , i.e. determines its flow properties.

In order to be able to solve differential equations numerically, it is necessary
to cover the flow region with a “numerical grid,” as e.g. indicated in Fig. 19.2
for a special flow problem, where a structured grid is shown. This is installed
over a plane plate which carries out the following motion:

U1(x2 = 0, t < 0) = 0 The plate rests for all times t < 0,
U1(x2 = 0, t ≥ 0) = U0 The plate moves at constant velocity for t ≥ 0.

By the motion of the plate, the fluid above the plate is, due to the molecular
momentum transport, set in motion.
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Region of influence of 
elliptic diff. equation

Region of influence of 
parabolic diff. equation

Region of influence of 
hyperbolic diff. equation

Fig. 19.1 Regions of influence for properties in point P for elliptic (a), parabolic (b)
and hyperbolic (c) differential equations

Fig. 19.2 Numerical grid for computing the fluid motion for sudden motion of the
plate

The momentum input into the fluid is, assuming an infinitely long plate
in the x1 direction, described by the following differential equation:

∂U1

∂t
= ν

∂2U1

∂x2
2

= ν
∂2U

∂y2
. (19.4)

To be able to describe the solution of this differential equation on the numer-
ical grid of Fig. 19.2, discretizations of the first derivative in time and second
derivative in space in the differential equation (19.4) are necessary. An anal-
ysis of the differential equation shows that the discriminant is d = 0, i.e. the
differential equation is parabolic. The solution concerning time t can thus be
computed from the solution concerning time t−∆t. Inversely it holds, how-
ever, that the solution concerning time (t +∆t) cannot be used to compute
the solution concerning time t. When using the “finite-difference method” for
discretization (see Sect. 19.3), for the time a forward-difference formulation
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and for y a central-difference formulation can be employed, from which the
following finite-difference equation for the differential equation (19.4) results:

Uα+1
β − Uα

β

∆t
= ν

[
Uα

β+1 − 2Uα
β + Uα

β−1

(∆y)2

]
. (19.5)

With this the velocity U in the time interval (α + 1) can be computed
explicitly:

Uα+1
β = Uα

β − ν∆t

(∆y)2
(
Uα

β+1 − 2Uα
β + Uα

β−1

)
, (19.6)

i.e. a discrete solution of the differential equation is possible. The discretized
equation is defined as consistent when for the transition ∆y → 0 and ∆t→ 0
(19.6) turns into the original differential equation (19.4). Here, checking of the
consistency can be done through an analysis treating the truncation error.
When for ∆y and ∆t → 0 the truncation error heads towards zero, the
employed differentiation method is consistent.

For the reasonable application of numerical computation methods, it is
moreover necessary that the “discretization method used is stable,” i.e. yields
stable solutions. The required stability is generally guaranteed when perturba-
tions introduced into the solution process are attenuated by the discretization
method. However, when an excitation of occurring perturbations takes place,
the chosen discretization method is defined as unstable. With respect to
fluid-mechanical problems, for stability considerations of the solution meth-
ods employed, the diffusion number Di and the Courant number Co are of
importance:

Di =
ν∆t

(∆y)2
and Co =

U∆t

∆y
. (19.7)

Here, the diffusion number indicates the ratio of the time interval ∆t cho-
sen in the discretization to the diffusion time (∆y2)/ν, while the Courant
number states the ratio of the chosen time interval ∆t to the convection
time (∆y/U). It is understandable that the numerical computation method
can provide stable solutions only when the chosen time intervals ∆t can re-
solve the physically occurring diffusion and convection times in the chosen
numerical grid. Details are explained in the subsequent paragraphs.

It is also important for a chosen discretization method that the conver-
gence of the solution is guaranteed. This means that the numerical solution,
with continuous improvements of the numerical grid, agrees more and more
with the exact solution of the differential equation. Yet the “Lax equiva-
lence theorem” says that stable and consistently formulated discretizations
of linear initial-value problems lead to convergent solutions, i.e. at least for
linear differential equations, it can be shown that the consistency, stability
and convergence of discretization methods are closely linked properties of a
discretization method employed for the solution of differential equations. In
the case of existing consistency, it is sufficient for a discretization method to
prove its stability, in order to be able to predict reliably its convergence also.
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Fig. 19.3 Increase in performance of mathematical methods for solving basic equa-
tions in fluid mechanics

As far as numerical solutions of the basic equations of fluid mechanics are
concerned, their solution regarding engineering problems is connected to high
computational efforts. By efficient numerical computational methods and the
employment of the currently available high computer power, this can nowa-
days be managed. Developments in applied mathematics have contributed to
this (see Fig. 19.3) and have led to a continuous increase in the performance
of computational methods for numerical solutions of the basic equations of
fluid mechanics. Figure 19.3 shows the increase in performance of numerical
computational methods, which has led, on average, to a tenfold increase ev-
ery 8 years. Combining this with the increase in computational power, which
can be said to have had a tenfold increase every 5 years (see Fig. 19.4), it
becomes understandable why numerical fluid mechanics has been gaining in-
creased significance in recent years. It is the field of numerical fluid mechanics
to which the greatest importance has to be attached in the near future. The
above increases in computing and computer power have significance with re-
gard to solutions of engineering fluid flow problems. It is therefore imperative
that modern fluid-mechanical education has an emphasis on numerical fluid
mechanics. In this chapter, only an introduction to this important field can
be given. These are detailed treatments of numerical fluid mechanics given
in refs. [19.1] to [19.6].

19.2 General Transport Equation and Discretization
of the Solution Region

In Chap. 5, the basic equations of fluid mechanics were derived and stated in
the form indicated below:

• Continuity equation:
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Fig. 19.4 Increase in the performance of high-speed computers and of personal
computers

∂ρ

∂t
+
∂ (ρUi)
∂xi

= 0. (19.8)

• Navier–Stokes equation:

∂ (ρUj)
∂t

+
∂ (ρUiUj)
∂xi

= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj (19.9)

τij = −µ
(
∂Uj

∂xi
− ∂Ui

∂xj

)
+

2
3
µδij

∂Uk

∂xk
.

• Energy equation:

∂ (ρcvT )
∂t

+
∂ (ρcvUiT )
∂xi

= − ∂qi
∂xi

− τij ∂Uj

∂xi
− P ∂Ui

∂xi
, (19.10)

qi = −λ ∂T
∂xi

,

where τij
∂Uj

∂xi
, in the last equation, represents the dissipation and P

∂Ui

∂xi
the work done during expansion. These equations can be transferred into a
general transport equation in such a way that the following equation holds:

∂ (ρΦ)
∂t

+
∂

∂xi

(
ρUiΦ− Γ ∂Φ

∂xi

)
= SΦ, (19.11)

where Φ and SΦ for the different equations are indicated in Table 19.1
Considerations on the numerical solution of the basic equations of fluid

mechanics can thus be restricted to equations of the form indicated in (19.11).
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Table 19.1 Φ, Γ and SΦ values for the general transport equation

Equation Φ Γ S Remarks

Continuity 1 0 0 –

Momentum uj µ
∂

∂xi

[
µ

(
∂Ui

∂xj

)]
Newtonian fluid and
compressible flow

−2

3

∂

∂xj

(
µ

∂Uk

∂xk

)
+ gjρ − ∂P

∂xj

Energy T λ
cp

ρT

cp

(
∂ν

∂T

)
p

DP

Dt
− τij

cp

∂Uj

∂xi

–

T
λ

cp

1

cp

DP

Dt
− τij

cp

∂Uj

∂xi

Ideal gas

T
λ

cp

−τij

cp

∂Uj

∂xi

Incompressible or
isobaric

The latter comprises a relationship which indicates the variations in terms of
time of (ρΦ) and changes in space in the form of a convection term (ρUiΦ)
and also a diffusion term (−Γ ∂Φ

∂xi
). In the source term S, all those terms

of the considered basic equations are contained that cannot be placed in the
general convection and diffusion terms.

With the general transport equation (19.11), a constant description in
terms of time and space is available of all the physical laws to which fluid
motions are subjected. However, the numerical solution of the transport
equation requires a discretization of the equation with respect to time and
space. Thus, through the numerical solutions of flow problems, solutions are
sought only of the flow quantities at determined points in space, which are
arranged at distances of ∆xi. The determination of these points, before start-
ing a numerical solution of a flow problem, is defined as grid generation, i.e.
the entire flow region is subdivided into discrete subdomains. In general, it
is usual to do the subdivision already in such a way that certain advan-
tages result for the sought numerical solution method. Regular (structured)
and irregular (unstructured) grids can, in principle, be employed; experi-
ence shows, however, that the efficiency of numerical solution algorithms is
influenced particularly disadvantageously by the irregularity of the numeri-
cal grid. On the other hand, it holds that in the presence of complex flow
boundaries the grid generation is considerably facilitated by unstructured
grids. Geometrically complex boundaries of flow regions can be introduced
more easily into the numerical computations to be carried out via unstruc-
tured grids. With this, in the case of strongly irregular grids, triangles,
quadrangles, tetrahedrons, hexahedrons, prisms, etc., can be employed in
combination.

Structured grids are characterized by the general property that the neigh-
boring points surrounding a considered grid point correspond to a firm
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Fig. 19.5 Examples of structured and unstructured numerical grids

pattern in the entire solution region. Thus, for structured grids, it is generally
only necessary to store the coordinates of the grid points, as the information
on the relationship of a grid point to its neighbors, which is required for the
discretization method, is determined by the structure of the grid. In the case
of unstructured grids, such firm relationships of neighboring grid points do
not exist but have to be stored for each grid point individually.

Figure 19.5 makes clear the difference between structured, (a), and un-
structured, (b), numerical grids. It can easily be seen that for unstructured
grids there is no regularity in the order of a grid point relative to its neighbor-
ing points. Without detailed explanations, it becomes clear that the missing
structure in the grid order provides high flexibility for arranging the grid
points over the entire solution regions such, that in areas with a high demand
for grid points many points can be placed. In particular, it is easily possible
with unstructured grids to capture corners and edges of flow geometry such,
that they are sufficiently resolved for supplying a good numerical solution of a
flow problem. However, a considerable disadvantage is that unstructured grids
require high computer storage core spaces. Besides the grid points themselves,
i.e. their position in the flow region, neighborhood relationships between the
grid points have to be stored via index fields.

With the example of the one-dimensional stationary convection-diffusion
equation without sources, it will be demonstrated which advantage finite-
volume methods have in this respect, e.g. as against finite-difference methods:

d
dx

(
ρUΦ− Γ dΦ

dx

)
= 0. (19.12)

The term ρUΦ represents the convective share of the flux density of Φ and
−Γ dΦ

dx the diffusive share. This equation will now be integrated via a random
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volume in terms of space which extends in the x direction from W to E For
the considered one-dimensional case, integration over a finite volume thus
yields ∫ E

W

d
dx

(
ρUΦ− Γ dΦ

dx

)
dx · 1 · 1 = 0 (19.13)

or, when carrying out the integration:(
ρUΦ− Γ dΦ

dx

)
W =

(
ρUΦ− Γ dΦ

dx

)
E . (19.14)

In words, this means that the entire flux of the quantity Φ, which at point
W flows into the volume, has to flow out of the volume at point E, as
no sources are present in (19.12). This shows that finite-volume methods
allow conservative, discrete formulations of the integrations of the differential
equations.

19.3 Discretization by Finite Differences

After having explained briefly the discretization of the flow region in
Sect. 19.2, the discretization of the general transport equation (19.11) has
to be explained. One possibility of such a discretization is given by the finite-
difference method, which, for the time being, will be explained for the case of
the one-dimensional, stationary convection-diffusion equation without source
terms, i.e. for the equation

d
dx

(
ρUΦ− Γ dΦ

dx

)
= 0. (19.15)

Starting from a grid point β, Φ(x+∆x) can be represented via Taylor series
expansion as follows:

Φβ+1 = Φβ +
(

dΦ
dx

)
β

∆xβ+1 +
1
2

(
d2Φ

dx2

)
β

∆x2
β+1 ± 0

(
∆x3

β+1

)
. (19.16)

In the same way, Φβ−1 can be stated:

Φβ−1 = Φβ −
(

dΦ
dx

)
β

∆xβ−1 +
1
2

(
d2Φ

dx2

)
β

∆x2
β−1 ± 0

(
∆x3

β−1

)
. (19.17)

By subtraction of (19.17) from (19.16), one obtains

Φβ+1 − Φβ−1 =
(

dΦ
dx

)
(∆xβ+1 +∆xβ−1)

− 1
2

(
d2Φ

dx2

)(
∆x2

β+1 −∆x2
β−1

)
+ · · ·



596 19 Numerical Solutions of the Basic Equations

For grids having equal distances between the grid points, the second term
on the right-hand side is equal to zero, so that for ∆xβ+1 = ∆xβ = ∆x the
following expression holds:

dΦ
dx

=
Φβ+1 − Φβ−1

2∆x
+O

(
∆x2

)
. (19.18)

For the terms with second derivatives one obtains by addition of (19.17) and
(19.16)

Φβ+1 + Φβ−1 = 2Φβ +
(

d2Φ

dx2

)
1
2
(
∆x2

β+1 +∆x2
β−1

)
+O

(
∆x3

)
(19.19)

so that for ∆xβ+1 = ∆xβ−1 = ∆x the following expression holds again:

d2Φ

dx2
=
Φβ+1 − 2Φβ + Φβ−1

∆x2
+O

(
∆x3

)
. (19.20)

Thus, the differential equation (19.15) for Γ = constant can be stated as a
finite difference equation as follows:

(ρU)β+1 Φβ+1 − (ρU)β−1 Φβ−1

∆x
− Γ Φβ+1 − 2Φβ + Φβ−1

∆x2
= 0. (19.21)

Ordered according to the unknowns Φβ+1, Φβ and Φβ−1, one obtains:[
(ρU)β+1

1
∆x

− Γ

∆x2

]
Φβ+1 +

2Γ
∆x2

Φβ +
[
(ρU)β−1

1
∆x

− Γ

∆x2

]
Φβ−1 = 0.

(19.22)
Hence, a linear system of equations results for the unknown Φβ , which has

to be solved to obtain, at each point of the numerical grid, a solution for
all variables Φ of the considered flow field. In this way, a solution path has
been found for the quantities Φ describing a flow. On considering now the
solutions for Φβ in the solution area from border W to border E, indicated
in Fig. 19.6, the integral U , where u = U is introduced:

Fig. 19.6 One-dimensional computational area
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∫ E

W

d
dx

(
ρuΦ− Γ dΦ

dx

)
dx · 1 · 1 ≈

5∑
β=1

⎡⎣
(
(ρu)β+1 Φβ+1 − (ρu)β−1 Φβ−1

)
xβ+1 − xβ−1

−
(
Γβ+1

(
dΦ
dx

)
β+1

− Γi−1

(
dΦ
dx

)
β−1

)
xβ+1 − xβ−1

⎤⎦ = 0

(19.23)
can only be determined by discrete integration, which has also been included
in (19.23). On writing this equation in full for the six supporting points in
Fig. 19.6, one obtains:[

((ρu)2Φ2 − (ρu)0Φ0) −
(
Γ2

(
dΦ
dx

)
2
− Γ0

(
dΦ
dx

)
0

)
x2 − x0

]
(x 3

2
− x 1

2
)+

[
((ρu)3Φ3 − (ρu)1Φ1) −

(
Γ3

(
dΦ
dx

)
3
− Γ1

(
dΦ
dx

)
1

)
x3 − x1

]
(x 5

2
− x 3

2
)+

[
((ρu)4Φ4 − (ρu)2Φ2) −

(
Γ4

(
dΦ
dx

)
4
− Γ2

(
dΦ
dx

)
2

)
x4 − x2

]
(x 7

2
− x 5

2
)+

[
((ρu)5Φ5 − (ρu)3Φ3) −

(
Γ5

(
dΦ
dx

)
5
− Γ3

(
dΦ
dx

)
3

)
x5 − x3

]
(x 9

2
− x 7

2
)+

[
((ρu)6Φ6 − (ρu)4Φ4) −

(
Γ6

(
dΦ
dx

)
6
− Γ4

(
dΦ
dx

)
4

)
x6 − x4

]
(x 11

2
− x 9

2
) = 0.

(19.24)
When one compares (19.23) with (19.24), one recognizes that the finite-
difference method employed for the discretization does not furnish the same
result as the integration yielding (19.23). This leads to the fact that the
chosen discretization method turns out to be non-conservative. Generally, it
can be said that discretizations by means of finite-difference methods require
special measures to produce conservative discrete formulations of the basic
equations of fluid mechanics. When choosing in (19.24) ∆xp = ∆xi = ∆xi+1,
one obtains

1
2

[
(ρu)5 Φ5 − Γ5

(
dΦ
dx

)
5

+ (ρu)6 Φ6 − Γ6

(
dΦ
dx

)
6

]
=

1
2

[
(ρu)0 Φ0 − Γ0

(
dΦ
dx

)
0

+ (ρu)1 Φ1 − Γ1

(
dΦ
dx

)
1

]
, (19.25)

i.e. all internal fluxes drop out and consequently a conservative form of the
conservation equation for the unknown discrete variables Φβ results. In this
equation, both sides represent admissible approximations of the flows into and
out of the solution area. The discretized equation is thus a conservative ap-
proximation of the general transport equation and the discretization scheme
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for this case is consequently conservative. However, one recognizes that for
finite-difference methods special measures have to be taken to force the con-
servativeness. Not least, it is assumed in the derivations that the numerical
grid employed does not show a strong non-equidistance. When the latter
assumption is not fulfilled, the method is not conservative and, moreover,
the order of the discretization method is reduced by an order of magnitude.
It is therefore emphasized once again that finite-difference methods are not
necessarily conservative. In addition, connected with this, non-conservative
formulations yield disadvantageous reductions of the order of the accuracy of
the solution methods.

19.4 Finite-Volume Discretization

19.4.1 General Considerations

The notation used in this section is represented in Fig. 19.7. Considered is a
point P and its neighbors located in direction of the coordinate axes, e.g. of
a Cartesian coordinate system. The neighboring points in the x–y plane are
named West, South, East and North, corresponding to their position relative
to P , and the two points in the z direction are referred to as Top and Bottom
points.

For the considerations to follow, around point P a control volume is for-
mally installed, so that P is the center of this control volume. The boundary
surfaces of the control volumes are marked according to the respective neigh-
boring points, but in lower-case letters. Terms which generally would read
the same for all neighboring points, are stated with an index Nb to abbrevi-
ate the notation. Accordingly, terms for the boundary surface of the control
volume are given the index cf .

As the present considerations always start from the assumption that all
points W , S, E, N , T and B are grid points and that the grid points are
located exactly in the centers of neighboring control volumes, it is suffi-
cient to store only the coordinates of the control-volume boundary surfaces

Fig. 19.7 Cartesian grid and control volume with characteristic point
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Fig. 19.8 Cross planes for explaining the basic ideas of interpolation

for numerical flow computations via finite-volume methods. All other in-
formation with regard to the grid can be computed back from these data.
The distance between P and E, for example, which we denote δxe, can be
computed as follows (see Fig. 19.8):

δxe = 1/2(xE + xP ) − 1/2(xP + xW ) = 1/2(xE − xW ). (19.26)

In the case of non-stationary processes, a discrete representation of the
coordinate time is necessary. Discrete time planes result for the process, which
also have to be marked. Here, the style of marking is tα, or tα+1 for each new
time level and tα−1 for each old time level.

When, for examining the conservativeness of the formulation of discretiza-
tion, the integration of (19.15) around a point Pβ results in the following
relationship:∫∫∫
∆Vβ

d
dx

(
ρuΦ− Γ dΦ

dx

)
dV =

∫ eβ

wβ

d
dx

(
ρuΦ− Γ dΦ

dx

)
dx·1·1 = 0 (19.27)

and thus the integral yields(
ρuΦ− Γ ∂Φ

∂x

)
eβ

−
(
ρuΦ− Γ ∂Φ

∂x

)
wβ

= 0. (19.28)

This equation says for the individual control volume that the convective and
diffusive flows at the East surface and the West surface are exactly the same.
The integration can thus be carried out by summing over all five control
volumes of the computation region indicated in Fig. 19.6:

5∑
β=1

[(
ρuΦ− Γ ∂Φ

∂x

)
eβ

−
(
ρuΦ− Γ ∂Φ

∂x

)
wβ

]
= 0. (19.29)

When taking into consideration that the common surface of two neighbor-
ing control volumes are identical (boundary surface eβ is at the same time
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boundary surface wβ+1), most of the fluxes in the last equation cancel each
other and the following remains:(

ρuΦ− Γ ∂Φ
∂x

)
e5

−
(
ρuΦ− Γ ∂Φ

∂x

)
w1

= 0. (19.30)

The two surfaces which remain in the consideration are those which limit the
computational region in Fig. 19.6, i.e. W and E. Thus it holds that(

ρuΦ− Γ ∂Φ
∂x

)
E

−
(
ρuΦ− Γ ∂Φ

∂x

)
W

= 0. (19.31)

This is exactly the same equation as one would obtain by integration over the
total region; see (19.6). One recognizes that a discretization method based
on finite volumes is inherently conservative.

19.4.2 Discretization in Space

The model differential equation for a general scalar quantity Φ was stated
in Sect. 19.2. In the same section, it was shown how, by inserting different
expressions for the individual terms of this differential equation, the basic
equations of fluid mechanics can be rederived. In the present section, we
shall only consider the model equation and carry out the discretization by
means of it. The discrete forms of individual fluid equations can then be
derived by inserting the expressions for Φ, Γ and S, respectively.

For the representations to be carried out here, the following transport
equation is thus considered:

∂

∂t
(ρΦ) +

∂

∂xi

(
ρuiΦ− Γ ∂Φ

∂xi

)
= SΦ. (19.32)

Here, the total flux of Φ consists of the partial fluxes:

ρuiΦ = convective flux and −Γ ∂Φ
∂xi

= diffuse flux

and can be stated as follows:

fi = ρuiΦ− Γ ∂Φ
∂xi

(19.33)

so that the transport equation consequently reads:

∂

∂t
(ρΦ) +

∂fi
∂xi

= SΦ. (19.34)
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This equation is now nominally integrated over all control volumes of the
computational domain. We consider as a substitute the control volume around
a considered point P :∫∫∫

∆V

∂

∂t
(ρΦ)dV +

∫∫∫
∆V

∂fi
∂xi

dV =
∫∫∫
∆V

SΦdV =
∫∫∫
∆V

SdV (19.35)

and treat the individual expressions of this equation separately.
Applying the Gauss integral theorem, for the second term on the left-hand

side of (19.35), the following holds:∫∫∫
∆V

∂fi
∂xi

dV =
∫∫
∆A

fi dAi (19.36)

with ∆A being the surface of the control volume.
The integration over the entire control-volume surface can also be rep-

resented as the sum of the integrations over the individual boundary
surfaces:∫∫

∆A

fidAi =
∫∫

∆Aw

fidAi +
∫∫

∆Ae

fidAi +
∫∫

∆As

fidAi +
∫∫

∆An

fidAi +

∫∫
∆Ab

fidAi +
∫∫

∆At

fidAi. (19.37)

The individual external surface normals of the boundary surfaces can be
stated plainly, e.g. always are in these considerations:

dAw =

⎛⎝−dx2dx3

0
0

⎞⎠ and dAt =

⎛⎝ 0
0

dx1dx2

⎞⎠. (19.38)

On introducing the scalar products fi dAi into (19.37), one obtains:∫∫
∆A

fidAi =
∫∫

∆Ae

f1dx2dx3 −
∫∫

∆Aw

f1dx2dx3 +

∫∫
∆An

f2dx1dx3 −
∫∫

∆As

f2dx1dx3 +

∫∫
∆At

f3dx1dx2 −
∫∫

∆Ab

f3dx1dx2. (19.39)

For the discretization, certain approximations are necessary, and they can be
taken as approximations on three different planes. The first approximation is
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∫∫
∆Acf

fidxjdxk ≈ Ficf . (19.40)

The mean-value theorem of the integral calculus says that a value ficf

can always be found on the surface Acf so that the above relation is exactly
fulfilled, i.e. that: ∫∫

∆Acf

fidxjdxk = ficfAcf

holds. To state this value a priori is not possible, however, as exactly ficf

quantities are supposed to be calculated. In order to state a computational
method now, the value in the center of the control-volume surface ficf is used
as an approximate value of ficf .

For Cartesian geometries, it holds that ∆Acf = ∆xj∆xk (j �= k) and,
although Ae = Aw, both expressions will be used further. With analogous
approximations also for the other two directions, the following relationship
holds: ∫∫∫

∆V

∂fi
∂xi

dV = Fe − Fw + Fn − Fs + Ft − Fb. (19.41)

The first expression on the left-hand side of (19.35), and also the source term
of this equation, are approximated in the same way, namely by using the
value in the control-volume center as an approximation for the mean value
over the control volume:∫∫∫

∆V

(
∂

∂t
(ρΦ)

)
dV ≈ ∂

∂t
(ρΦ)P ∆V =

∂

∂t
(ρΦ)P ∆x1∆x2∆x3 (19.42)

and ∫∫∫
∆V

S dV ≈ SP∆x1∆x2∆x3. (19.43)

On inserting the last three equations into (19.35), one obtains:

∂

∂t
(ρΦ)P∆V + Fe − Fw + Fn − Fs + Ft − Fb = SP∆V (19.44)

and with the expressions for the total flow it results that:

∂

∂t
(ρΦ)P∆V +

(
ρu1Φ− Γ ∂Φ

∂x1

)
e

∆Ae −
(
ρu1Φ− Γ ∂Φ

∂x1

)
w

∆Aw +(
ρu2Φ− Γ ∂Φ

∂x2

)
n

∆An −
(
ρu2Φ− Γ ∂Φ

∂x2

)
s

∆As +(
ρu3Φ− Γ ∂Φ

∂x3

)
t

∆At −
(
ρu3Φ− Γ ∂Φ

∂x3

)
b

∆Ab = SP∆V. (19.45)
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In order to increase the clarity of indexing in what follows, the variables x1,
x2 and x3 are replaced by x, y and z and the velocities u1, u2 and u3 by u,
v and w.

The next approximation step, for the derivation of a finite-volume com-
putational method, is the linearization of the expressions in question. If one
considers, e.g., the term ρuΦ, one recognizes that for Φ = u the unknown
u occurs as u2, i.e. the term is nonlinear. To be able to treat such terms,
in the computational method to be derived, in a simple way, one linearizes
them by considering the mass flow density (ρu) and the diffusion coefficient
Γ independently of the unknown quantity Φ. For computing Φ one falls back
on the values (ρu)∗ and Γ ∗, worked out in preceding computational steps.
Thus the values (ρu)∗ and Γ ∗ are known for the considered computational
step, and one looks for the final solution in several steps. The values with an
asterisk are each taken from the preceding iteration of the computations:(

ρuΦ− Γ ∂Φ
∂x

)
cf

≈ (ρu)∗cfΦcf − Γ ∗
cf

(
∂Φ

∂x

)
cf

(19.46)

and thus it follows from (19.44):

∂

∂t
(ρ∗PΦP )∆V +

[
(ρu)∗eΦe − Γ ∗

e

(
∂Φ

∂x

)
e

]
∆Ae−[

(ρu)∗wΦw − Γ ∗
w

(
∂Φ

∂x

)
w

]
∆Aw+[

(ρv)∗nΦn − Γ ∗
n

(
∂Φ

∂y

)
n

]
∆An −

[
(ρv)∗sΦs − Γ ∗

s

(
∂Φ

∂y

)
s

]
∆As+[

(ρw)∗tΦt − Γ ∗
t

(
∂Φ

∂z

)
t

]
∆At −

[
(ρw)∗bΦb − Γ ∗

b

(
∂Φ

∂z

)
b

]
∆Ab = SP∆V.

(19.47)

In the subsequent considerations, it will be necessary again and again to
have the discrete form of the continuity equation at disposal. The continuity
equation in its general form is obtained from the equation for the general
scalar quantity by setting Φ = 1, Γ = 0 and S = 0. With the same values,
the discrete form results from the above equation as

∂ρ∗P
∂t

∆V + (ρu)∗e∆Ae − (ρu)∗w∆Aw + (ρv)∗n∆An − (ρv)∗s∆As

+ (ρw)∗t∆At − (ρw)∗b∆Ab = 0 (19.48)

or, by abbreviating the mass fluxes by mcf :

∂ρ∗P
∂t
∆V +m∗

e −m∗
w +m∗

n −m∗
s +m∗

t −m∗
b = 0. (19.49)

In (19.47) there are values of Φ and ∂Φ
∂x , which have to be computed on the sur-

faces of the control volume. However, in the usually employed computational
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methods only values of Φ at the grid points are stored, as only they are
of interest for the solution and later computations. As a consequence, the
values Φcf have to be expressed as functions of the values ΦNb of the grid
points neighboring the considered control volume surface. Computing the
values Φcf from ΦNb, required for the computational methods, is the actual
difficulty when discretizing the basic fluid mechanics equations by means of
finite-volume methods. There is the problem, as already stated above, when
applying the mean integral value theorem, that the behavior of Φ as a func-
tion of space should be known between two grid points, in order to be able to
derive the exact values of Φcf or ∂Φ

∂x |cf at each of the considered control vol-
ume surfaces. However, it is exactly this behavior which has to be computed,
and it is therefore necessary for the derivations of the computational scheme
to assume a behavior. This assumption represents the third approximation
step of the finite-volume method considered here.

A certain understanding of the introduced approximation can be found
by considering a simplified problem. The equation for a one-dimensional,
stationary flow problem, without sources, is

d
dx

(
ρuΦ− Γ dΦ

dx

)
= 0. (19.50)

For this equation, an analytical solution can be found:

Φ ∼ exp
[
(ρu)x
Γ

]
. (19.51)

In Fig. 19.9, the behavior of this solution of the above equation is represented
for a boundary value problem between two points Pl and Pu with the cor-
responding functional values Φl and Φu. The functional relationship is given
as a function of the Peclet number. The Peclet number represents the ratio
between the convective and diffuse transport of Φ.

On considering Fig. 19.9 and also the solution of the transport equation
(19.50), it is actually obvious to assume an exponential behavior of Φ between
the grid points also in the multi-dimensional flow case. However, the compu-
tation of exponential functions on a computer is very costly compared with

Fig. 19.9 Dependence of the behavior of Φ on the mass current density (Peclet
number)
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other operations, and one is inclined to approximate the actual functional
behavior by a polynomial. The various approximation ansatzes employed for
this differs in the order of the polynomial used. In the present section, those
polynomials of zero and first order will be considered, which lead to the
so-called Upwind or central differential methods.

Owing to the assumption of a linear distribution of Φ between the two grid
points, the derivation for the diffusive transport term can approximately be
replaced by: (

∂Φ

∂x

)
cf

=
Φu − Φl

δxcf
. (19.52)

The flow through the control-volume surface cf can then be approximated
as follows:

−Γ ∗
cf

(
∂Φ

∂x

)
cf

∆Acf =
Γ ∗

cf∆Acf

δxcf
(Φl − Φu) = D∗

cf (Φl − Φu) (19.53)

and one obtains for the different control-volume sides:

cf = w, s, b : −Γ ∗
cf

(
∂Φ

∂x

)
cf

∆Acf = D∗
cf(ΦNb − ΦP ), (19.54)

cf = e, n, t : −Γ ∗
cf

(
∂Φ

∂x

)
cf

∆Acf = D∗
cf(ΦP − ΦNb), (19.55)

where Nb is the neighboring point of cf with the direction being given by P
and the location of the considered surface.

For the approximation of the convective fluxes, differing approximate con-
siderations can now be used, yielding different computational methods; they
are explained below.

19.4.2.1 Upwind Method

The upwind method approximates the behavior of Φ between two grid points
by a polynomial of zero order, i.e. a constant. From Fig. 19.9, one recognizes
quickly that this approximation is good for large Peclet numbers, i.e. for
situations in which the convective transport is predominant. For this case,
the value of Φ at the P -surface differs only slightly from the value at the
grid point located upwind of cf . It is thus also clear by which value of Φ the
approximation should be introduced, i.e. always by the one located upwind
of cf . For a flow in the positive coordinate direction, this is Φl, and for the
negative direction, it is Φu. It is therefore necessary to be able to determine
the flow direction at the control-volume surfaces. For this purpose, we shall
use the mass flux:

m∗
cf = (ρu)∗cf∆Acf . (19.56)
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For each control-volume surface, the direction of the mass flux has to be
determined by means of its plus/minus sign. Therefore, the following needs
to be considered:

cf = w, s, b : Φcf =
{
ΦNb for m∗

cf > 0
ΦP for m∗

cf < 0, (19.57)

cf = e, n, t : Φcf =
{
ΦP for m∗

cf > 0
ΦNb for m∗

cf < 0. (19.58)

To be able to represent all possible combinations of the above expressions
by a uniform notation, we introduce a unit “step function,” which is defined
as follows:

e(x) =
{

1 for x ≥ 0
0 for x < 0. (19.59)

This function is sketched in Fig. 19.10. The function for which the step is
carried out for negative x is given as follows:

e(−x) =
{

0 for x > 0
1 for x ≤ 0 (19.60)

and it is represented by Fig. 19.10b. With this, the functions e(x) given in
(19.57) can be written as:

cf = w, s, b : Φcf = e
(
m∗

cf

)
ΦNb + e

(−m∗
cf

)
ΦP , (19.61)

cf = e, n, t : Φcf = e
(−m∗

cf

)
ΦNb + e

(
m∗

cf

)
ΦP . (19.62)

On inserting these expressions for the convective and also the diffusive terms
into (19.47), one obtains:

Fig. 19.10 Unit step function



19.4 Finite-Volume Discretization 607

∂

∂t
(ρ∗PΦP )∆V + (m∗

e(e(−m∗
e)ΦE + e(m∗

e)ΦP ) +D∗
e(ΦP − ΦE))−

(m∗
w(e(m∗

w)ΦW + e(−m∗
w)ΦP ) +D∗

w(ΦW − ΦP )) +

(m∗
n(e(−m∗

n)ΦN + e(m∗
n)ΦP ) +D∗

n(ΦP − ΦN ))−
(m∗

s(e(m
∗
s)ΦS + e(−m∗

s)ΦP ) +D∗
s(ΦS − ΦP )) +

(m∗
t (e(−m∗

t )ΦT + e(m∗
t )ΦP ) +D∗

t (ΦP − ΦT ))−
(m∗

b(e(m
∗
b )ΦB + e(−m∗

b)ΦP ) +D∗
b (ΦB − ΦP )) = SP∆V

(19.63)
and with a little rearrangement of the terms of this equation, the total
expression then reads:

ρ∗P
∂ΦP

∂t
∆V + (m∗

e(e(−m∗
e)ΦE + (e(m∗

e) − 1)ΦP ) +D∗
e(ΦP − ΦE))−

(m∗
w(e(m∗

w)ΦW + (e(−m∗
w) − 1)ΦP ) −D∗

w(ΦP − ΦW ))+

(m∗
n(e(−m∗

n)ΦN + (e(m∗
n) − 1)ΦP ) +D∗

n(ΦP − ΦN ))−
(m∗

s(e(m
∗
s)ΦS + (e(−m∗

s) − 1)ΦP ) −D∗
s(ΦP − ΦS))+

(m∗
t (e(−m∗

t )ΦT + (e(m∗
t ) − 1)ΦP ) +D∗

t (ΦP − ΦT ))−
(m∗

b(e(m
∗
b)ΦB + (e(−m∗

b) − 1)ΦP ) −D∗
b (ΦP − ΦB)) +( ∂ρ∗P

∂t
∆V +m∗

e −m∗
w +m∗

n −m∗
s +m∗

t −m∗
b︸ ︷︷ ︸

= 0

)
ΦP = SP∆V.

(19.64)
As indicated before, the term covered by the brace represents the continu-

ity equation in its discrete form and therefore disappears because of (19.49).
A necessary requirement for this is that the iteration process secures the mass
conservation after each iteration step.

The above equation contains the expressions e(−m∗
cf)− 1 and e(m∗

cf )− 1.
These functions are also represented in Fig. 19.10. One realizes from their
behavior that the following holds:

e(x) − 1 = −e(−x) and e(−x) − 1 = −e(x). (19.65)

On considering this e(x) and e(−x) behavior, equation (19.64) can be
simplified further:

ρ∗P
∂ΦP

∂t
∆V +

(−m∗
ee(−m∗

e) +D∗
e) (ΦP − ΦE) − (−m∗

we(m
∗
w) −D∗

w) (ΦP − ΦW )+

(−m∗
ne(−m∗

n) +D∗
n) (ΦP − ΦN ) − (−m∗

se(m
∗
s) −D∗

s) (ΦP − ΦS)+

(−m∗
t e(−m∗

t ) +D∗
t ) (ΦP − ΦT ) − (−m∗

be(m
∗
b) −D∗

b ) (ΦP − ΦB) = SP∆V
(19.66)
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and one can introduce the abbreviation aNb for the coefficients of the terms
(ΦP − ΦNb):

Nb =W,S,B : aNb = D∗
cf +m∗

cfe(m
∗
cf),

Nb = E,N, T : aNb = D∗
cf −m∗

cfe(−m∗
cf).

(19.67)

The expressions, which now also contain the unit step function, can
also be expressed by means of the function max[a, b], which exists in most
programming languages and which expresses the larger of the two values:

Nb =W,S,B : aNb = D∗
cf + max[m∗

cf , 0],

Nb = E,N, T : aNb = D∗
cf + max[0,−m∗

cf ].
(19.68)

When using the coefficients aNb, one obtains from (19.65):

ρ∗P
∂ΦP

∂t
∆V + aE(ΦP − ΦE) + aW (ΦP − ΦW )+

aN (ΦP − ΦN ) + aS(ΦP − ΦS)+

aT (ΦP − ΦT ) + aB(ΦP − ΦB) = SP∆V.

(19.69)

After inserting the following abbreviation:

âP = aE + aW + aN + aS + aT + aB =
∑
Nb

aNb (19.70)

one finally obtains:

ρ∗P
∂ΦP

∂t
∆V + âPΦP −

∑
Nb

aNbΦNb = SP∆V. (19.71)

This equation is the discrete analogue of (19.32) after discretization of
the differentials with respect to space by means of the upwind method. The
coefficients can be computed according to (19.68).

19.4.2.2 Central Difference Method

The central difference method approximates the exponential behavior of Φ,
between two grid points, by a polynomial of first order. This corresponds to
the assumption of a linear variation of Φ, which represents a good approxi-
mation for small Peclet numbers. The behavior of Φ is approximated all the
better by this method, the more the diffusive transport prevails in the flow
and the more diffusive transports of properties are present.
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A linear behavior of Φ between two grid points Pl and Pu can
be expressed by

Φ(x) = Φl +
Φu − Φl

δxcf
[x− 1/2(xl + xll)] for xl ≤ x ≤ xu. (19.72)

On representing δxcf by the stored coordinates at the grid points, the
following results:

δxcf = 1/2(xu − xll). (19.73)

The control surface is just located at point x = xl, so that one can write

Φcf = Φl +
Φu − Φl

1/2(xu − xll)
(xl − 1/2xl − 1/2xll)

= Φl + (Φu − Φl)
(xl − xll)
(xu − xll)

.
(19.74)

By the definition of the interpolation coefficient as

ηcf =
xl − xll

xu − xll
(19.75)

an equation can be derived for the interpolation of the control surface values,
employing the values of the neighboring grid points:

Φcf = ηcfΦu + (1 − ηcf )Φl. (19.76)

For all occurring control-volume sides, one thus obtains

cf = w, s, b : Φcf = ηcfΦP + (1 − ηcf)ΦNb, (19.77)
cf = e, n, t : Φcf = ηcfΦNb + (1 − ηcf )ΦP . (19.78)

On inserting these expressions and again the approximations for the diffusive
flows (19.54) and (19.47) in (19.47), one obtains

∂

∂t
(ρ∗PΦP )∆V + (m∗

e(ηeΦE + (1 − ηe)ΦP ) +D∗
e(ΦP − ΦE))−

(m∗
w(ηwΦP + (1 − ηw)ΦW ) +D∗

w(ΦW − ΦP ))+

(m∗
n(ηnΦN + (1 − ηn)ΦP ) +D∗

n(ΦP − ΦN ))−
(m∗

s(ηsΦP + (1 − ηs)ΦS) +D∗
s(ΦS − ΦP )) +

(m∗
t (ηtΦT + (1 − ηt)ΦP ) +D∗

t (ΦP − ΦT ))−
(m∗

b (ηbΦP + (1 − ηb)ΦB) +D∗
b (ΦB − ΦP )) = SP∆V

(19.79)

from which the finite difference form of the continuity equation can also be
separated:
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ρ∗P
∂ΦP

∂t
∆V + (m∗

e(ηeΦE − ηeΦP ) +D∗
e(ΦP − ΦE))−

(m∗
w((ηw − 1)ΦP + (1 − ηw)ΦW ) −D∗

w(ΦP − ΦW )) +

(m∗
n(ηnΦN − ηnΦP ) +D∗

n(ΦP − ΦN ))−
(m∗

s((ηs − 1)ΦP + (1 − ηs)ΦS) −D∗
s(ΦP − ΦS)) +

(m∗
t (ηtΦT − ηtΦP ) +D∗

t (ΦP − ΦT ))−
(m∗

b((ηb − 1)ΦP + (1 − ηb)ΦB) −D∗
b (ΦP − ΦB))+

(
∂ρ∗P
∂t

∆V +m∗
e −m∗

w +m∗
n −m∗

s +m∗
t −m∗

b︸ ︷︷ ︸
= 0

)ΦP = SP∆V.

(19.80)
Appropriate rearrangement of the terms leads to the form:

ρ∗P
∂ΦP

∂t
∆V+

(−m∗
eηe +D∗

e) (ΦP − ΦE) − (m∗
w(ηw − 1) −D∗

w) (ΦP − ΦW )+

(−m∗
nηn +D∗

n) (ΦP − ΦN ) − (m∗
s(ηs − 1) −D∗

s) (ΦP − ΦS)+

(−m∗
t ηt +D∗

t ) (ΦP − ΦT ) − (m∗
b(ηb − 1) −D∗

b ) (ΦP − ΦB) = SP∆V
(19.81)

and by introducing the following coefficients:

Nb =W,S,B : aNb = D∗
cf + C∗

cf (1 − fcf), (19.82)

Nb = E,N, T : aNb = D∗
cf − C∗

cffcf (19.83)

this equation can be simplified to read:

ρ∗P
∂ΦP

∂t
∆V + aE(ΦP − ΦE) + aW (ΦP − ΦW )+

aN (ΦP − ΦN ) + aS(ΦP − ΦS)+

aT (ΦP − ΦT ) + aB(ΦP − ΦB) = SP∆V

(19.84)

or, abbreviated:

ρ∗P
∂ΦP

∂t
∆V + âPΦP −

∑
Nb

aNbΦNb = SP∆V. (19.85)

The last relationship is the discrete analogue of (19.32), when using the
central difference method for discretization. The coefficients can now be
computed according to (19.82) and (19.83).

At first glance, (19.85) is identical with (19.71), as for the description of the
coefficients the same notation is used. The above derivations show, however,
that different coefficients appear in the equations. The similarity of the two
equations will prove in the next section to be advantageous, as it allows, with
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the two equations to be handled at the same time, the discretization of the
differentiation with respect to time. However, there are also approaches which
permit the two methods to be mixed with a weighting factor (hybrid method
or deferred correction schemes). In such cases, a distinction has to be made
concerning the notation between the coefficients of the different discretization
schemes.

19.4.3 Discretization with Respect to Time

In order to simplify the subsequent considerations of discretizing the deriva-
tives with respect to time, we restrict our considerations to incompressible
fluids in the parts to follow. The deduction of the analogue equations for
compressible fluids can be realized, however, according to the same procedure.

For an incompressible fluid (ρ = constant), for (19.71) and (19.85) it holds
that:

ρ
∂ΦP

∂t
∆V + âPΦP −

∑
Nb

aNbΦNb = SP∆V. (19.86)

When this equation is integrated over a time interval, the following results:

ρ∆V

∫
∆t

∂ΦP

∂t
dt+

∫
∆t

âPΦP dt−
∫

∆t

∑
Nb

aNbΦNbdt = ∆V
∫

∆t

SP dt. (19.87)

The first integral of this equation can be computed to give:∫ tα

tα−1

∂ΦP

∂t
dt = Φα

P − Φα−1
P . (19.88)

The remaining integrals are approximated by means of the mean-value
theorem of integration:∫ tα

tα−1
âPΦP dt = âPΦP∆t ≈ âτ

PΦ
τ
P∆t, (19.89)∫ tα

tα−1
SP dt = S̄P∆t ≈ Sτ

P∆t, (19.90)

where Φτ
P defines the value ΦP at a point in the interval [tα−1, tα]. With these

approximations, (19.87) can be written as:

ρ∆V

∆t
(Φα

P − Φα−1
P ) + âτ

PΦ
τ
P −

∑
Nb

aτ
NbΦ

τ
Nb = Sτ

P∆V. (19.91)

In general, for numerical computations, so-called two-time-level methods are
employed, where the value Φα

P of the new time level is computed from the
values ΦNb and ΦP of the new and/or the old time level. More complex
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methods, which use three or even more time levels, offer higher precision.
This is correct, but they require greater numerical effort. The requirement
for storage of data increases and methods of lower order have to be employed
to be able to begin computing at the first time intervals to avoid divergence
of the solution.

The different methods for discretizing variables with respect to time, differ
only in the choice of τ . Following the type of equations which result from
different values of τ , the corresponding methods are called explicit or implicit
methods.

In the explicit case, tτ = tα−1 is chosen and thus the sought value Φα
P is

computed only from the values ΦNb and ΦP of the old time level. Equation
(19.91) therefore reads

ρ0∆V

∆t
(Φα

P − Φα−1
P ) + âα−1

P Φα−1
P −

∑
Nb

aα−1
Nb Φ

α−1
Nb = Sα−1

P ∆V (19.92)

or, rearranged with n = α and 0 = α− 1:

Φn
P = Φo

P − ∆t

ρ0∆V
(âo

PΦ
o
P −

∑
Nb

ao
NbΦ

o
Nb − So

P∆V ). (19.93)

This is an explicit equation for Φα
P as, except for the sought value Φn

P , all
other values are known from the preceding time interval. Generally, explicit
methods have the disadvantage that the size of the time interval is limited.
This can be understood and explained by considerations of the numerical
stability of the method. Another disadvantage is, that explicit methods do
not describe the time behavior of the diffusive transport processes in the same
way that the initial differential equation does. When an explicit method is
used in numerical computations, the information on a modification of the
boundary conditions per time interval is only carried by one grid point. This
is different from the actual physical behavior, as such information, due to
diffusion, is immediately transferred to the entire computational area.

In this respect, implicit methods are often better suited to reflect the actual
physical process, which also explains their higher numerical stability. Implicit
methods use, among other things, tτ = tα, with which, as a consequence
results from (19.91), the simplest implicit method of first order results:

ρ∆V

∆t
(Φα

P − Φα−1
P ) + âα

PΦ
α
P −

∑
Nb

aα
NbΦ

α
Nb = Sα

P∆V. (19.94)

As also values from the new time interval are used, influences caused by
modifications to the boundary conditions can spread within one time interval
over the entire computational area. The above relationship represents an
implicit equation for Φα

P as unknown values of the neighboring grid points
appear in the equation also. Here, it has to be taken into account that in all
considerations up to now, one grid point has been considered to represent all
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others. The inclusion of all grid points results in as many equations as there
are unknowns. Subsequently, the resulting system of equations is closed and
can be solved.

When the coefficients of Φα
P are appropriately factored out and combined

into a new coefficient ǎn
P with ǎα

P = âα
P + ρα∆V

∆t , the following relationship
results:

ǎα
PΦ

α
P −

∑
Nb

aα
NbΦ

α
Nb = Sα

P∆V +
ρ∆V

∆t
Φα−1

P , (19.95)

which represents the finite form of (19.32) after discretization of the
derivatives with respect to time.

19.4.4 Treatments of the Source Terms

In the above section, it was mentioned that (19.95) represents an implicit
equation to compute Φα

P and that, for solving it, an entire system of equations
has to be solved with the help of a corresponding algorithm. Here, mostly
iterative solution algorithms are used, which have to have a large coefficient
aP of the central point as a convergence condition (diagonal dominance of
the resulting coefficient matrix). For each point of the solution area,

aP ≥
∑
Nb

aNb (19.96)

should therefore be fulfilled. Without the source term, this is automati-
cally fulfilled by the previous discretization, as âP =

∑
Nb aNb and ǎP =

âP + ρ0∆V
∆t . With the discretization of the source term, steps that lead to a

reduction of aP should therefore be avoided.
It is possible that the source term S is not a linear function of Φ, however.

Nevertheless, this term can be linearized by splitting it into an independent
and a dependent part:

Sα
P = Sα

P
′Φα

P + Sα
c , (19.97)

where Sα
c designates the part of Sα

P , which does not explicitly depend on Φα
P .

Sα
P
′ can be replaced by Sα

P
′∗, which is computed with known values of ΦP

from previous iterations; thus, a linearization of the source term is obtained.
By insertion of (19.97) into (19.95), the following results:

ǎα
PΦ

α
P − Sα

P
′∗Φα

P∆V −
∑
Nb

aα
NbΦ

α
Nb = Sα

c ∆V +
ρ∆V

∆t
Φα−1

P . (19.98)

In order to not endanger the diagonal dominance of the coefficient matrix,
Sα

P
′∗ has to be negative. When this condition cannot be observed, it is better

for the stability of the iterative solution method to compute the entire source
term from known values and leave it in the right-hand side of the equation.
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When subsequently aα
P = ǎα

P −Sα
P
′∗∆V and b = Sα

c ∆V + ρ∆V
∆t Φ

α−1
P is set,

the completely discretized form of (19.32) results:

aα
PΦ

α
P −

∑
Nb

aα
NbΦ

α
Nb = b. (19.99)

19.5 Computation of Laminar Flows

When one analyzes the general Navier–Stokes equations and the energy equa-
tion for an incompressible fluid, i.e. the general transport equation, it can be
demonstrated that we have a set of partial differential equations which shows
a parabolic time response and an elliptic space behavior. Because of this time
response and space behavior, initial conditions at the point of time t = 0 have
to be given, and the boundary conditions have to be specified along the en-
tire area of the borders of the flow area. It is usual to include the following
boundary conditions into the numerical computations:

• The Dirichlet boundary conditions: Descriptions of the values of all
variables along the boundaries of the computational area

• The Neumann boundary conditions: Descriptions of the gradients (or of the
diffusive fluxes) of the variables along the boundaries of the computational
area

• A combination of the Dirichlet and Neumann boundary conditions
• Periodic boundary conditions

Thus, for practical computations, specific boundary conditions result for:

– Solid walls
– Symmetry planes
– Inflow planes
– Outflow planes

which can be considered separately; for this purpose, the s − n coordinate
system of Fig. 19.11 is used.

Plane of symmetry

Inlet plane Outlet plane

Solid wall

Fig. 19.11 Diagram explaining possible boundary conditions
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19.5.1 Wall Boundary Conditions

On walls the no-slip boundary condition is employed. For impermeable
surfaces, both velocities are set at zero, i.e.

Us = Un = 0. (19.100)

For the temperature either the wall temperature or the wall heat flux values
can be specified:

T = Tw or
∂T

∂n
= − Pr

µcp
Qw, (19.101)

where Tw designates the wall temperature and Qw the wall heat flux per unit
area (heat flux density).

19.5.2 Symmetry Planes

At symmetry planes, the normal gradients (or fluxes) of the tangential veloc-
ity and all scalar variables are zero. In addition, the velocity normal to the
symmetry plane disappears:

∂Us

∂n
= Un =

∂T

∂n
= 0. (19.102)

19.5.3 Inflow Planes

At inflow planes the profiles of Us, Un and T are normally prescribed by
tabulated data or by analytical functions.

19.5.4 Outflow Planes

If the outflow planes are of the type where the flow shows parabolic behavior
and the plane is sufficiently far away from the flow region of interest, a fully
developed flow can be assumed, i.e. the gradients in the flow direction can be
neglected:

∂Us

∂n
=
∂Un

∂n
=
∂T

∂n
= 0. (19.103)

The specification of profiles for Us, Un and T is also possible.
With boundary conditions of this kind, laminar flows as represented in

Figs. 19.12–19.14 can now be computed.
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Fig. 19.12 Computations of flows with different Reynolds numbers in a two-
dimensional flow channel with a backward facing step; Re = 10−4 (a), Re = 10
(b), Re = 100 (c)

a) b)

c) d)

Fig. 19.13 Computations of flows for the flow around a two-dimensional cylinder
with square cross-sectional area; Re = 1 (a), Re = 30 (b), Re = 60 (c), Re = 200 (d)

19.6 Computations of Turbulent Flows

19.6.1 Flow Equations to be Solved

Computations of turbulent flows, in the presence of high Reynolds numbers,
require the solution of the Reynolds transport equations that were derived
in Chap. 17 and for which, for two-dimensional flows, areas can be stated as
follows:

Mass Conservation (Continuity Equation):

∂ρ

∂t
+
∂(ρU)
∂x

+
∂(ρV )
∂y

= 0. (19.104)
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(a) (b)

Fig. 19.14 Results of laminar flow computations in a stirred vessel with inserted
Rushton turbine; (a) Re = 1, (b) Re = 100; Breuer (2002)

Momentum Conservation in the x-Direction:

∂(ρU)
∂t

+
∂

∂x
(ρU2 + ρu2) +

∂

∂y
(ρUV + ρuv) = − ∂P

∂x
. (19.105)

Momentum Conservation in the y-Direction:

∂(ρV )
∂t

+
∂

∂x
(ρUV + ρuv) +

∂

∂y
(ρV 2 + ρv2) = − ∂P

∂y
. (19.106)

For turbulent flows, all variables designated by capital letters and the thermo-
dynamic fluid properties have to be interpreted as time-averaged quantities.
Fluctuating flow quantities are designated by lower-case letters. Mean values
of turbulent velocity fluctuation, resulting in correlations of the fluctuations,
are indicated by overbars. The molecule-dependent momentum transports in
the momentum equations are neglected in the following, which is justified by
the assumption that high Reynolds numbers are involved. This assumption
is a customary approximation, when computing elliptical turbulent flows.

The correlations −ρu2, −ρuv and −ρv2 represent the momentum transport
by the turbulent fluctuating velocity components. They act like “stresses” on
the considered fluid elements and are therefore defined as Reynolds stresses .
These stresses are additional unknowns in the equation system (19.104)–
(19.106) and have to be related via a turbulence model to “known quantities.”
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To make a complete solution of the flow equations possible, the set of
equations needs to be closed.

The k−ε turbulence model (Launder and Spalding, 1972) makes use of the
eddy-viscosity hypothesis, which relates the Reynolds stresses to the mean
flow deformation rates in the following way:

−ρu2 = 2µt
∂U

∂x
− 2

3
ρk, (19.107)

−ρv2 = 2µt
∂V

∂y
− 2

3
ρk, (19.108)

−ρuv = µt

(
∂U

∂y
+
∂V

∂x

)
. (19.109)

The proportionality factor µt is the eddy viscosity. The quantity k, appearing
in (19.107) and (19.108), is the turbulent kinetic energy, which is equal to
half the sum of the normal Reynolds stresses (divided by the density):

k =
1
2

(
u2 + v2 + w2

)
(19.110)

and w is the fluctuation of the velocity in the z direction. The eddy viscosity
µt is not a fluid property, but depends on the local turbulent flow conditions.

When one writes the above x–y momentum equations in the form which
corresponds to the general transport equation, one obtains:

∂(ρU)
∂t

+
∂

∂x

(
ρU2 − µt

∂U

∂x

)
+
∂

∂y

(
ρUV − µt

∂U

∂y

)
= − ∂P

∗

∂x
+ SU ,

∂(ρV )
∂t

+
∂

∂x

(
ρUV − µt

∂V

∂x

)
+
∂

∂y

(
ρV 2 − µt

∂V

∂y

)
= − ∂P

∗

∂y
+ SV (19.111)

with the source terms:

SU =
∂

∂x

(
µt
∂U

∂x

)
+
∂

∂y

(
µt
∂V

∂x

)
, (19.112)

SV =
∂

∂x

(
µt
∂U

∂y

)
+
∂

∂y

(
µt
∂V

∂y

)
. (19.113)

The modified pressure term P ∗ is equal to:

P ∗ = P +
2
3
ρk. (19.114)

In most cases relevant in practice we have P � 2
3ρk, so that P = P ∗ can be

set without introducing a serious error.
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The conservation of the time-averaged or ensemble-averaged energy results
in a transport equation for the temperature described by

∂(ρcpT )
∂t

+
∂

∂x

(
ρcpUT + ρcput

)
+
∂

∂y

(
ρcpV T + ρcpvt

)
= ST , (19.115)

where t is the fluctuating value of T , and −ρcput and −ρcpvt represent turbu-
lent energy-flux values. The terms for the molecular transport were already
neglected in (19.115). For Prandtl numbers around 1, this agrees with the
assumption that was made when deriving the conservation equation for the
momentum of turbulent flows.

For turbulent flows, the turbulent energy transport terms are related to
the mean temperature gradients by an eddy diffusivity concept:

−ρcput =
µtcp
Prt

∂T

∂x
, (19.116)

−ρcpvt =
µtcp
Prt

∂T

∂y
. (19.117)

The eddy viscosity µt is employed in the expression from the k− ε turbulence
model. The turbulent Prandtl number Prt is an empirical constant which is
specified in the next section. The introduction of (19.116) into (19.115) yields
the temperature equation to be solved for turbulent flow predictions:

∂(ρcpT )
∂t

+
∂

∂x

(
ρcpUT − µtcp

Prt

∂T

∂x

)
+
∂

∂y

(
ρcpV T − µtcp

Prt

∂T

∂y

)
= ST .

(19.118)
The definition of µt, in many practical cases, takes place through the k − ε
turbulence model, where dimensional considerations lead to the following
relationship concerning the eddy viscosity:

µt = ρcµk2/ε,
k = turbulent kinetic energy,
ε = turbulent rate of dissipation,

(19.119)

where cµ is an empirical constant which is given below. Local values of k and
ε are obtained by solving the semi-empirical transport equations for k and ε,
which read as follows:

∂(ρk)
∂t

+
∂

∂x

(
ρUk − µt

σk

∂k

∂x

)
+
∂

∂y

(
ρV k − µt

σk

∂k

∂y

)
= Pk − ρε, (19.120)

∂(ρε)
∂t

+
∂

∂x

(
ρUε− µt

σε

∂ε

∂x

)
+
∂

∂y

(
ρV ε− µt

σε

∂ε

∂y

)
=
ε

k
(cε1Pk − cε2ρε). (19.121)
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The terms on the left-hand sides of these equations represent the changes
of k and ε with time and their “transport” through the time-averaged and
fluctuating turbulent motions in the flow. The right-hand sides contain the
production and “destruction” rates. In the k equation, the “k destruction
rate” is set equal to the dissipation rate ε multiplied by the density. The
production rate Pk is defined as

Pk = µt

{
2
(
∂U

∂x

)2

+ 2
(
∂V

∂y

)2

+
[(
∂U

∂y

)
+
(
∂V

∂x

)]2}
. (19.122)

For the empirical constants cε1, cε2, σk, σε and cµ, usually the standard
values suggested by Launder and Spalding (1974) are assumed. For flows
limited by walls and for free flows, values of 0.6 and 0.86 are recommended
for the turbulent Prandtl number. The k− ε model constants are summarized
in Table 19.2.

The transport equations presented above for turbulent flows can be
written, in a general form, as follows:

∂(ρΦ)
∂t

+
∂∂

∂∂x

(
ρUΦ− ΓΦ

∂Φ

∂x

)
+
∂

∂y

(
ρV Φ− ΓΦ

∂Φ

∂y

)
= SΦ, (19.123)

where Φ represents U , V , T , k or ε. The diffusion coefficients ΓΦ and the
source terms SΦ for turbulent flows are compiled in Table 19.3. For laminar
flows, the eddy viscosity and the turbulent Prandtl number are replaced by
corresponding molecular values and the k and ε transport equations do not
have to be solved.

19.6.2 Boundary Conditions for Turbulent Flows

19.6.2.1 Wall Boundary Conditions

For specifying the wall boundary conditions, usually the wall function method
(Launder and Spalding, 1972) is used, which bridges the viscous wall-near

Table 19.2 Empirical constants of the k − ε turbulence models

cµ cε1 cε2 σk σε Prt

0.09 1.44 1.92 1.0 1.3 0.6–0.86

Table 19.3 Diffusivity and source terms for general transport equation (19.123)

Φ ΓΦ SΦ

U µt −∂P/∂x + ∂/∂x(µt∂U/∂x) + ∂/∂y(µt∂V/∂x)
V µt −∂P/∂y + ∂/∂x(µt∂U/∂y) + ∂/∂y(µt∂V/∂y)
T µtcp/Prt ST

k µt/σk Pk − ρε
ε µt/σε ε/k(cε1Pk − ρcε2ε)
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regions with empirical assumptions. Using wall functions in the near-wall
region, instead of resolving the viscous sublayers, offers two advantages:

• The computational time and the required computer storage of data are
both reduced because the high gradients of all the dependent variables
near the wall need not be resolved.

• Some of the assumptions made in the derivation of the k − ε models lose
their validity in the viscosity-dominant near-wall zone, hence this fact does
not need to be considered.

For the wall functional method, the first grid node away from the wall, for
the numerical computations, has to be localized in the fully turbulent area,
according to the diagram in Fig. 19.15. Typical dimensionless wall distances
which characterize this region are stated below.

In the case of the wall-parallel velocity, the wall functional method suggests
an equation which relates the wall shear stress τw (i.e. the momentum flow
through the control volume close to the wall) to the velocity at the first grid
node Us,c away from the wall and to the distance nc of this point to the wall.
The basis for this equation is the logarithmic velocity law:

Us,c√
τw/ρ

=
1
κ

ln
(
nc

√
ρτw

µ

)
+ C =

1
κ

ln
(
E
nc

√
ρτw

µ

)
. (19.124)

Values for the von Karman constant κ and the roughness parameter C
are given in Table 19.4. It should be noted that the value given for C in
Table 19.4, holds for hydrodynamically smooth surfaces only. For rough walls,
other values of C are needed.

Grid points

Control volume

Wall

Fully turbulent 
region

Viscous sublayer

Fig. 19.15 Control volume near the wall

Table 19.4 Constants in the logarithmic wall law

κ C E = eκC

0.41 5.2 8.43171
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Equation (19.124) is transcendental in τw and becomes singular at sepa-
ration points (where τw → 0). Because of these problems, a modified form
of (19.124) is often used. The extension is built on the following three
assumptions for the flow in the near-wall control volumes:

• Directly near the wall, a Couette flow exists, with δ/δs = 0, and Un = 0
• The production and dissipation rates are in equilibrium, i.e. local

equilibrium of the turbulence
• There is a layer of constant stress, with −ρusun = τw

The logarithmic law for the mean velocity and the above three assumptions
does not hold in the proximity of or within separation areas.

When assuming a Couette flow, the eddy-viscosity relationship (19.109)
becomes

−ρusun = µt
∂Us

∂n
= ρcµ

k2

ε

∂Us

∂n
(19.125)

and the local equilibrium condition (production rate = dissipation rate) is
expressed as follows:

−ρusun
∂Us

∂n
= ρε. (19.126)

On inserting (19.126) into (19.125), the following results:

k =
−usun√
cµ

(19.127)

and the assumption of a layer of constant stress leads to

τw/ρ =
√
cµk. (19.128)

From (19.128) and the logarithmic velocity law (19.124), one obtains, by
simple algebraic derivations, an explicit relationship for the wall shear stress:

τw =
ρκc

1/4
µ k

1/2
c

ln(En∗c)
Us,c (19.129)

with the dimensionless wall distance

n∗c =
ρc

1/4
µ k

1/2
c nc

µ
. (19.130)

Equations (19.129) and (19.130) are used in most computer programs. These
equations hold in the range

30 < n∗c < 500. (19.131)

One should therefore place the grid nodes of the wall-nearest control volumes
carefully in this range.
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19.6.2.2 Standard Velocity

As in the case of laminar flows, the standard velocity at the wall, and also
its gradient, are equal to zero. The wall function takes care of the difference
from the correct velocity gradient.

19.6.2.3 Temperature

The near-wall distribution for the temperature is based on similarity argu-
ments for the inner wall layer, from which (for low Mach numbers) a linear
relationship results between the temperature and the velocity. The often used
temperature law reads

(Tc − Tw)ρcpc
1/4
µ k

1/2
c

Qw
=
Prt
κ

lnn∗c + CQ(Pr). (19.132)

The additive constant CQ is a function of the molecular Prandtl number Pr.
To determine it, an empirical relationship is employed:

CQ = 12.5Pr2/3 + 2.12 lnPr − 5.3 for Pr > 0.5, (19.133)

CQ = 12.5Pr2/3 + 2.12 lnPr − 1.5 for Pr ≤ 0.5. (19.134)

Equation (19.132) can easily be resolved according to the wall heat flux
Qw, which is the quantity of interest for the implementation of the wall
temperature into the finite-volume methods computational procedure.

19.6.2.4 Turbulent Kinetic Energy

Immediately near the wall, the turbulent kinetic energy k changes quadrati-
cally with the wall distance, i.e. k ∝ n2

c . At the same time, the diffusive wall
flow of k has the value zero:

µt

σk

∂k

∂n
= 0. (19.135)

In addition to the application of (19.135), the production and dissipation rates
in the wall-nearest control volumes are determined approximately, logically
assuming a Couette flow, a local equilibrium and a constant stress layer, as
discussed previously. This is described in the following. With (19.122), the
production rate of the kinetic energy in the wall-nearest control volumes is
computed with

Pk =
τ2w

ρκc
1/4
µ k

1/2
c nc

, (19.136)
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where the velocity gradient is derived from the logarithmic law (19.129) and
the local shear tension is set equal to the wall shear stress.

The dissipation rate, which appears in the k equation (19.121), is
approximated by assuming a linear dependence of the near-wall length scale:

L =
k3/2

ε
=

κ

c
3/4
µ

n. (19.137)

Equation (19.137) holds under local equilibrium conditions and for a logarith-
mic velocity law. From this follows an equation for ε in the near-wall control
volume in the form

εc = c3/4
µ

k
3/2
c

κnc
. (19.138)

19.6.2.5 Dissipation Rate

According to the treatment of boundary conditions in practice, for the dis-
sipation rate ε, its value is determined at the first computational node away
from the wall by employing (19.138).

19.6.2.6 Symmetry Planes

Along the symmetry planes (or symmetry lines) of flow, the standard gradi-
ents (diffusive flows) of the dependent variables and the normal velocity Un

are set equal to zero:

∂Us

∂n
= Un =

∂T

∂n
=
∂k

∂n
=
∂ε

∂n
= 0. (19.139)

19.6.2.7 Inflow Planes

Usually inlet flow profiles are derived from experimental data or from other
empirical information and are employed as inflow conditions. The turbu-
lence quantities often refer to the inflow velocity Uin by specifying a relative
turbulence intensity Tu, defined as

Tu =

√
u2

Uin
. (19.140)

Typical values for Tu lie between 1 and 20%. For an isotropic turbulent flow,
Tu is related to k through

k =
3
2
(Tu Uin)2. (19.141)
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At the inflow plane dissipation rates can be specified, assuming that the
quantity of the larger turbulence vortices is proportional to a typical scale of
length H of the cross flow area, i.e.

ε =
k3/2

aH
. (19.142)

Characteristic values for the proportional factor a are of the order of
magnitude of 0.01–1.

19.6.2.8 Outflow Planes

The same approach as described in Sect. 19.5.4, is usually employed for out-
flow planes. In addition to the equations stated there, the gradients of k and
ε assigned to the flow direction are set to zero.

The above equations can now be solved numerically for two-dimensional
flows, including the indicated boundary conditions. For the illustration
of typical computational results, different flow problems are shown in
Figs. 19.16–19.18.

Fig. 19.16 Flows around a near-ground model vehicle – computational result – LDA
measurements

Fig. 19.17 Subcritical flow around a circular cylinder at Re = 3,900; Breuer (2002)
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(a) (b)

Fig. 19.18 Separated flow around a wing at Re = 20,000; (a) non-stationary
rotational-power distribution; (b) time-averaged streamlines; Breuer (2002)
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Chapter 20

Fluid Flows with Heat Transfer

20.1 General Considerations

The derivations carried out in Chap. 5 to yield the basic equations of fluid
mechanics also include considerations of the energy transport and, based on
these considerations, different forms of the energy equation were derived.
There it could be shown that the local mechanical energy equation, stated as
a differential equation for a fluid, does not represent an independent equation,
as it can be derived from the generally formulated momentum equation. This
was the reason to subtract this equation from the total energy equation, in
order to obtain the thermal energy equation that can be written as follows:

ρ

(
∂e

∂t
+ Ui

∂e

∂xi

)
= − ∂q̇i

∂xi
− P ∂Ui

∂xi
− τij ∂Uj

∂xi
, (20.1)

where ρ is the density of the fluid, e its inner energy, t the time, Ui the fluid
velocity, q̇i the heat flux, P the pressure and τij the molecular-dependent
momentum transport. This equation can now be employed for a thermody-
namically ideal fluid, i.e. for ρ = constant and thus for (∂Ui/∂xi) = 0, and
also for

q̇i = −λ ∂T
∂xi

and τij = −µ
(
∂Uj

∂xi
+
∂Ui

∂xj

)
(20.2)

in the following form for heat transfer computations, where cv = cp = c =
was taken into consideration because of ρ = constant:

ρc

(
∂T

∂t
+ Ui

∂T

∂xi

)
= λ

∂2T

∂xi
2

+ µ
(
∂Uj

∂xi

)2

. (20.3)

Together with the continuity equation:

∂Ui

∂xi
= 0 (20.4)

627
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and the momentum equations for j = 1, 2, 3:

ρ

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂P

∂xj
+ µ

∂2Uj

∂xi
2

+ ρgj (20.5)

one obtains a system of five differential equations for the five unknowns U1,
U2, U3, P and T , which can be solved with suitable boundary conditions.
Thus, flow problems can be solved that occur coupled with heat-transfer
problems, but do not lead to considerable modifications of the fluid properties
such as ρ, µ and λ. This is often the case in technical applications of fluid
mechanics, where the actual fluid flow processes are sometimes of secondary
importance, the main importance being given to the heat transfer and heat
dissipation of a system. This significance of heat transfer is the actual reason
for including the present chapter in a book on fluid mechanics. It serves as
an introduction for students of fluid mechanics into an important field of
applications of fluid-mechanical know-how.

In order to present, in an easily understandable way, some general proper-
ties of heat transfer, as compared with momentum transfer, equations (20.3)
and (20.5) are rearranged:

∂T

∂t
+ Ui

∂T

∂xi
=
λ

ρc

∂2T

∂xi
2

+ ν
(
∂Uj

∂xi

)2

with
ν

Pr
=
λ

ρc
(20.6)

and
∂Uj

∂t
+ Ui

∂Uj

∂xi
= ν

∂2Uj

∂xi
2

+ ρgj − ∂P

∂xj
, (20.7)

where ν is the viscous diffusion coefficient and a = λ/ρc is the thermal
diffusion coefficient. From their interrelationship, the Prandtl number results:

Pr =
ν

a
=
µ

ρ

ρc

λ
=
µc

λ

which expresses how the molecular-dependent momentum transport relates
to the molecular-dependent heat transport. The Prandtl number can thus
be employed to demonstrate in which way momentum transport and heat
transport relate relatively to one another.

For small Pr, e.g. for metallic melts for equal development lengths, the
thermal boundary layer of a plate flow has developed more intensely than
the “velocity boundary layer” (Fig. 20.1).

The facts illustrated in Fig. 20.1 can also be expressed in development
lengths for momentum and temperature boundary layers, such that for δu =
δT the following relationships hold:

LT√
a

=
LU√
ν

�
LU

LT
=
√
ν

a
=

√
Pr. (20.8)

For equal development length, the following results for the boundary layer
thicknesses can be derived:
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Fig. 20.1 Thicknesses of temperature-boundary layers for different Prandtl numbers

δU
δT

=
√
Pr. (20.9)

This means that the molecular-dependent momentum transport is larger than
the molecular-dependent heat transport when Pr > 1 (see Fig. 20.1).

When extending the similarity considerations in Chap. 7, where from the
dimensionless momentum and τij transport equations:

ρ∗
(
!c
Uctc

∂U∗
j

∂t∗
+ U∗

i

∂U∗
j

∂x∗j

)
= − ∆P

ρcU2
c

∂P ∗

∂x∗j
− τw
ρcU2

c

∂τ∗ij
∂x∗i

, (20.10)

τ∗ij =
µcUc

τw!c

[
−µ∗

(
∂U∗

j

∂x∗i
+
∂U∗

i

∂x∗j

)
+

2
3
µ∗δij

∂U∗
k

∂x∗k

]
(20.11)

the following characteristic quantities of a flow can be derived:

uc = uτ =
√
τw
ρ
, !c =

ν

uτ
and tc =

ν

u2
τ

. (20.12)

When carrying out corresponding considerations for the energy equation, one
obtains the following derivations:

• Energy equation:

ρcp

(
∂T

∂t
+ Ui

T

xi

)
= − ∂qi

∂xi
+
(
∂P

∂t
+ Ui

∂P

∂xi

)
− τij ∂Uj

∂xi
. (20.13)

• Fourier law of heat transfer

qi = −λ ∂T
∂xi

. (20.14)
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• Dimensionless form of energy equation:

ρ∗c∗p

(
!′c
t′cUc

∂T ∗

∂t∗
+ U∗

i

∂T ∗

∂x∗i

)
= − q̇c

ρc (cp)c∆TcUc

∂q̇∗i
∂x∗i

− ∆Pc

ρc (cp)c∆Tc

(
!′c
t′cUc

∂P ∗

∂t∗
+ U∗

i

∂P ∗

∂x∗i

)
− τw
ρccp,c∆Tc

τ∗ij
∂U∗

j

∂x∗i
. (20.15)

• Characteristic temperature difference and characteristic heat transport:

∆Tc =
τw

ρc (cp)c

and q̇c = τwUc . (20.16)

• Characteristic units of length and time:

q̇cq
∗
i = −λc∆Tc

!c
λ∗
∂T ∗

∂x∗i
� !′c =

λc∆Tc

q̇c
=

λcνc
µc (cp)c Uc

=
1
Pr

(
νc
uτ

)
(20.17)

so that !T = !U/Pr holds and tT = tU/Pr. These derivations represent the
facts stated in Fig. 20.1 and in (20.8). These facts will turn up again in the
examples cited in the subsequent representations of flows with heat transfer.

20.2 Stationary, Fully Developed Flow in Channels

A simple flow with heat transfer is the stationary fully developed flow in
channels with a wall in motion. In Fig. 20.2, the basic geometry of the two-
dimensional version of this flow is sketched, and the boundary conditions are
also stated. For this flow, the following equations for two-dimensional flows
hold, given below for ρ = constant and for constant viscosity and constant
heat conductivity:

∂U1

∂x2
+
∂U2

∂x2
= 0, (20.18)

ρ

(
∂U1

∂t
+ U1

∂U1

∂x1
+ U2

∂U1

∂x2

)
= − ∂P

∂x1
+ µ

(
∂2U1

∂x1
2

+
∂2U1

∂x2
2

)
+ ρg1,

(20.19)

ρ

(
∂U2

∂t
+ U1

∂U2

∂x1
+ U2

∂U2

∂x2

)
= − ∂P

∂x2
+ µ

(
∂2U2

∂x1
2

+
∂2U2

∂x2
2

)
+ ρg2,

(20.20)

ρc

(
∂T

∂t
+ U1

∂T

∂x1
+ U2

∂T

∂x2

)
= λ

(
∂2T

∂x1
2

+
∂2T

∂x2
2

)
+ µ

[(
∂U1

∂x1

)2

+(
∂U2

∂x2

)2

+
(
∂U1

∂x2

)2

+
(
∂U2

∂x1

)2
]
.

(20.21)
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and

and

Fig. 20.2 Plane flow in a channel with one wall in motion and with wall temperatures
TH and TN

Because of the assumed stationarity of the overall problem, the following
holds:

∂ (· · · )
∂t

= 0 for all quantities

and moreover also (∂Ui/∂x1) = 0, due to the fully developed flow in the x2

direction and (∂T/∂x1) = 0, as the temperature field also is assumed to be
fully developed.

With the above assumptions, one obtains from the continuity equation:

∂U1

∂x1
= 0 �

∂U2

∂x2
= 0 � U2 = 0. (20.22)

Equations (20.19) and (20.20) reduce for the flow sketched in Fig. 20.2 to the
following forms:

0 = − ∂P

∂x1
+ µ

∂2U1

∂x2
2

; 0 = − ∂P

∂x2
− ρg. (20.23)

From (20.23) P (x1, x2) = −ρgx2 + Π(x1), and thus the equation for the
velocity field can be written as:

0 = − dΠ
dx1

+ µ
d2U1

dx2
2
. (20.24)

Standardization of this equation with x∗2 = x2/D and U∗
1 = U1/U0 yields:

d2U∗
1

dx∗2
2 =

D2

µU0

dΠ
dx1

= −A. (20.25)

For the energy equation (20.21), assuming stationarity and a fully developed
temperature field, one obtains:
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0 = λ
d2T

dx2
2

+ µ
(

dU1

dx2

)2

. (20.26)

This equation yields with T ∗ = (T − TN)/(TH − TN ), with TH = the high
wall temperature and TN = the low wall temperature,

d2T ∗

dx∗2
2 = − µU2

0

λ (TH − TN)

(
dU∗

1

dx∗2

)2

, (20.27)

where the normalization factor on the right-hand side represents the
Brinkmann number:

Br =
µU2

0

λ (TH − TN)
=
(µc
λ

)[ U2
0

c (TH − TN )

]
= PrEc (20.28)

with Pr =
µc

λ
(Prandtl number) and Ec =

U2
0

c(TH − TN)
(Eckert number).

Integration of (20.25) yields

dU∗
1

dx∗2
= −Ax∗2 + C1 � U1 = −A

2
x∗22 + C1x

∗
2 + C2. (20.29)

With the boundary conditions x∗2 = −1, U∗
1 = 0 and x∗2 = 1, U∗

1 = 1, one
obtains for the integration constants C1 = 1

2 and C2 = 1
2 (A + 1). Thus the

equation for the normalized velocity distribution reads

U∗
1 =

1
2

(1 + x∗2) +
1
2
A
(
1 − x∗22

)
. (20.30)

This equation expresses that the resulting velocity distribution is composed of
the Couette flow 1

2 (1+x∗2) moved by U0 and the pressure-driven Poiseuille flow
1
2A(1−x∗22 ). The linear differential equation (20.25) leads to the superposition
of the Couette and Poiseuille flows.

In order to obtain the solution of the normalized temperature equation,
one first computes the velocity gradient:

dU∗
1

dx∗2
=

1
2
−Ax∗2. (20.31)

With (20.27), one obtains the following differential equation for the
temperature distribution:

d2T ∗

dx∗2
2 = −Br

(
1
4
−Ax∗2 +A2x∗22

)
. (20.32)

On integrating this equation, one can derive

T ∗ = −Br
(

1
8
x∗22 − A

6
x∗32 +

A2

12
x∗42

)
+ C1x

∗
2 + C2. (20.33)
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Fig. 20.3 Velocity profiles for different
values of A

Fig. 20.4 Temperature profiles for different Brinkmann numbers

With the boundary conditions x∗2 = −1, T ∗ = 0 and x∗2 = 1, T ∗ = 1, one can
derive for the integration constants C1 and C2:

C1 =
1
2
−BrA

6
and C2 =

1
2

+Br
(

1
8

+
A2

12

)
. (20.34)

Equations (20.34) inserted in (20.33) yield, after rearranging the terms,

T ∗ =
1
2

(1 + x∗2) +
Br

8
(
1 − x∗22

)− BrA
6
(
x∗2 − x∗32

)− BrA2

12
(
1 − x∗42

)
.

(20.35)
The resulting temperature distribution shows a first term corresponding to

the pure heat conduction, i.e. a linear change of the temperature from TN

at the lower non-moving wall to TH at the upper moving wall. The second
term results from the dissipative heat due to the linear velocity profile of the
Couette flow and the remaining terms from the dissipation shear of the flow,
which results from the parabolic velocity profile of the Poiseuille flow.

The velocity and temperature profiles that followed from the above deriva-
tions are shown in Figs. 20.3 and 20.4 for different parameters A and Br.

20.3 Natural Convection Flow Between Vertical Plane
Plates

In the preceding sections, flows were considered for which it was assumed
that the fluid properties, such as the density ρ, the dynamic viscosity µ and
the heat conduction λ, are constant. They could therefore be considered as
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predefined and did not enter into the fluid-mechanical considerations of the
quantities of the flow problem as unknowns that were to be computed. Thus
the complexity of flow-problem solutions was considerably reduced, as with
constant values for ρ, µ and λ the strong coupling between the momentum
equations and the energy equation was broken. For the solution of flow prob-
lems, it was therefore sufficient to solve the continuity and the momentum
equations, i.e. the energy equation had only to be employed when, in addition
to the knowledge of the flow field, information on the temperature field of
the fluid was needed.

In this section, a flow problem will be considered for which it is no longer
permissible to neglect the density modifications that occur. Restrictively, it
will be assumed, however, that only small density modifications arise, so that
the following holds:

ρ = ρ0 +∆ρ ≈ ρ0 [1 − β0 (T − T0)] with β0 = − 1
ρ0

(
∂ρ

∂T

)
p

. (20.36)

With this, the equations of fluid mechanics can be stated as follows:

∂Ui

∂xi
= 0, (20.37)

ρ0

(
∂Uj

∂t
+ Ui

∂Uj

∂xi

)
= − ∂

∂xj
(P − ρ0gjxj)+µ

∂2Uj

∂xi
2

+(ρ− ρ0) gj, (20.38)

(ρ− ρ0) = −ρ0β0(T − T0), (20.39)

∂T

∂t
+ Ui

∂T

∂xi
=
(
λ0

ρ0cp0

)
∂2T

∂xi
2
. (20.40)

These equations can be employed for examining flows driven by density
differences, i.e. with the above set of partial differential equations natural
convection flows can be described mathematically.

From these equations, one obtains for two-dimensional flow conditions
∂/∂x3(. . . ) = 0, and for fully developed flows ∂/∂x2(Uj) = 0, the following
simplified equations:

• Momentum equation:

ρ
∂U2

∂t
= − ∂Π

∂x2
+ ρgβ0(T − T0) + µ

∂2U2

∂x1
2
. (20.41)

• Energy equation:

ρcp
∂T

∂t
= λ

∂2T

∂x1
2

+ µ
(

dU2

dx1

)2

(20.42)



20.3 Natural Convection Flow 635

Fig. 20.5 Free convective flow between
vertical plates

+
D

Wall Wall

Upwards
directed flow

Downwards
directed flow

x1

x2

TN TH

T  =M
TH TN

2
+

T(x )1

where, concerning the axial directions, the coordinate system stated in
Fig. 20.5 was chosen.

Equations (20.41) and (20.42) can now be simplified for stationary
flows, that run without an external pressure gradient, i.e. ∂Π/∂x2 = 0.
For such flows, the basic equations describing natural convection hold as
follows:

• Momentum equation:

0 = ρgβ0(T − T0) + µ
d2U2

dx1
2
. (20.43)

• Energy equation:

0 =
λ

ρcp

d2T

dx1
2

+
ν

cp

(
dU2

dx1

)2

. (20.44)

For the flow driven by natural convection between two plates, the momentum
equation results in the following form:

0 = µ
d2U2

dx1
2

+ ρMgβM (T − TM ) (20.45)

and the energy equation, taking into consideration the above assumption,
can be written as:

0 = λ
d2T

dx1
2

+ µ
(

dU2

dx1

)2

, (20.46)

where TM = 1/2(TH + TN). The subsequent boundary conditions describe
the natural convection flow problem sketched in Fig. 20.5:
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U2(D) = U2(−D) = 0, (20.47)

T (D) = TH ; T (−D) = TN . (20.48)

Introducing the so-called buoyancy-viscosity parameter A:

A =
βMgµD

λ
(20.49)

the basic equations can be normalized as stated below, introducing the
following dimensionless quantities:

x∗1 = x1/D; U∗
2 =

ρDU2

µ
; T ∗ =

(T − TN)
(TH − TN )

. (20.50)

One obtains in this way the following dimensionless equations for the
resultant velocity and temperature distribution:

d2U∗
2

dx∗1
2 = −GrT ∗ and

d2T ∗

dx∗1
2 = − A

Gr
, (20.51)

where the Grashof number Gr results from the derivations as follows:

Gr =
gρ2D3β (TH − TN)

µ2
. (20.52)

When considering that the buoyancy-viscosity parameter A assumes very
small values for most fluids and that moreover Gr assumes large values
for buoyancy-driven flows, relevant in practice, then for the dimensionless
temperature distribution, the following is obtained to a good approximation:

d2T ∗

dx∗1
2 = 0 � T ∗ = C1x

∗
1 + C2. (20.53)

With T ∗ = −1 for x∗1 = −1 and T ∗ = 1 for x∗1 = 1 one obtains C1 = 1 and
C2 = 0 and thus

T ∗ = x∗1 (20.54)

T ∗ inserted in (20.51) yields

d2U∗
2

dx∗1
2 = −Grx∗1 and hence U∗

2 = −Gr
6
x∗31 + C1x

∗
1 + C2. (20.55)

With the boundary conditions at x∗1 = 1: U∗
2 = 0 and at x∗1 = −1: U∗

2 = 0,
one obtains C1 = Gr/6 and C2 = 0 and thus

U∗
2 =

Gr

6
(
x∗1 − x∗31

)
. (20.56)

The resulting temperature distribution emerges from this analysis as linear. It
thus represents the distribution typical for pure heat conduction. On the other
hand, the velocity distribution is described by a point-symmetrical cubic
function as sketched in Fig. 20.5. Along the wall with the higher temperature,
an upward directed flow forms, and on the side of the cool wall a flow forms
that is directed downwards. Flows of this kind can occur between the planes
of insulating-glass windows when these have been dimensioned incorrectly.
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20.4 Non-Stationary Free Convection Flow Near
a Plane Vertical Plate

The combined flow and heat-transfer problem discussed in this section, deals
with the diffusion of heat from a vertical wall, heated suddenly and brought
to a temperature TW at time t = 0. The diffusion of heat takes place into an
infinitely extended field extending into a half-plane. The density modifications
in the fluid, caused by the heat diffusion, result in buoyancy forces, and these
in turn lead to a fluid movement that can be treated analytically as a free
convection flow. With it the basic equations, expanded in the momentum
equations by the Oberbeck/Bussinesq terms as stated in Sect. 20.3, can be
given as indicated below in the form of a system of one-dimensional equations.
Basically equations result for an unsteady flow providing a basis for the sought
solution. In this context the following was taken into consideration:

• Because of ∂U2/∂x2 = 0, due to the fully developed flow in the x2 direction,
one obtains from the two-dimensional continuity equation U1 = constant.
As U1 = 0 at the wall is given, one obtains U1 = 0 in the entire flow area.

• With the above insights, the left-hand side of the x2 momentum equation
reduces to the term ρ0(∂U2/∂t), so that the following system of equations
holds for the considered natural convective flow problem:

– Momentum equation:

ρ0
∂U2

∂t
= µ0

∂2U2

∂x1
2

+ (ρ− ρ0)g. (20.57)

– Energy equation:
ρ0cp,0

∂T

∂t
= λ0

∂2T

∂x1
2
. (20.58)

The dissipation term in the energy equation µ ( dU2/dx1)
2 was neglected here

for reasons stated in Sect. 20.3. For further details, see also ref. [20.4].
For the further explanation of the problem to be examined here, it should

be said that for all times t < 0 the following holds: U2(x1, t) = 0 and
T (x1, t) = T0 for x1 ≥ 0, i.e. in the entire area filled with fluid there is
initially no flow, and the fluid has the same temperature everywhere.

For all times t ≥ 0, the following boundary conditions will hold: U2(0, t)= 0
(no-slip condition at the wall) and T (0, t) = TW (sudden increase of the wall
temperature). Moreover, the flow problem to be examined is described for
x1 → ∞ by U2(∞, t) = 0 and T (∞, t) = T0.

The velocity and temperature fields sketched in Fig. 20.6 indicate the dif-
fusion processes that take place and how they contribute to the initiation of
the described buoyancy flow. The molecular diffusion of the temperature field
is evident, together with the induced fluid movement and the momentum loss
to the wall. Important for the quantitative information to be derived here is
the presence of an analytical solution of the buoyancy problem indicated in
Fig. 20.6.
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Fig. 20.6 Unsteady natural convection
flow at a flat vertical plate

The above flow problem has to be solved as a one-dimensional, unsteady
natural convection flow problem, namely as a similarity solution of the equa-
tion system (20.57) and (20.58). To derive the solution, we introduce the
similarity variable:

η =
x1

2
√
ν0t

(20.59)

and for the dependent variables U2(x1, t) and T (x1, t) for x1 ≥ 0 the similarity
ansatz:

U2 (x1, t) = [β0 (TW − T0) gt]F (η) (20.60)

and
T (x1, t) = (TW − T0)G (η) . (20.61)

These ansatzes are introduced in this particular form with the aim of con-
serving the dimensionless forms of the differential equations describing the
problem and, moreover, to transfer the partial differential equations into
ordinary differential equations.

The above ansatzes (20.60) and (20.61) hold for Pr = 1 and are solved
below for this special case. More general solutions for Pr �= 0 were given
by Illingworth [20.1] and can be looked up there. The special case discussed
here suffices to introduce students of fluid mechanics to the field of natural
convection flows.

With the above similarity ansatz, one obtains for the derivative in the
differential equation for U2:

ρ0
∂U2

∂t
= ρ0β0 (TW − T0) g

∂

∂t
[tF (η)] (20.62)

or the derivative executed with respect to t:

ρ0
∂U2

∂t
= ρ0β0 (TW − T0) g

(
F − 1

2
ηF ′
)
. (20.63)

Similarly, for the first derivative with respect to x1:
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µ0
∂U2

∂x1
= µ0β0 (TW − T0) gtF ′ 1

2
√
ν0t

(20.64)

and thus for the second derivative:

µ0
∂2U2

∂x1
2

= µ0β0 (TW − T0) gtF ′′ 1
4ν0t

(20.65)

or in consideration of ν0 = (µ0/ρ0) transcribed as:

µ0
∂2U2

∂x1
2

= ρ0β0 (TW − T0) g
(

1
4
F ′′
)
. (20.66)

For the gravitation term in the U2 differential equation, one obtains:

(ρ− ρ0)g = ρ0β0(T − Z0)g = ρ0β0(TW − T0)gG(η). (20.67)

Insertion of (20.63), (20.66) and (20.67) into the momentum equation to be
solved, yields the following ordinary differential equation for F (η):

F ′′ + 2ηF ′ − 4F + 4G = 0. (20.68)

For the derivatives in the energy equation in terms of time, one obtains:

ρ0c0
∂T

∂t
= ρ0c0 (Tw − T0)

∂

∂t
[G(η)] (20.69)

and after carrying out the differentiation:

ρ0c0
∂T

∂t
= ρ0c0 (TW − T0)

η

2t
G′. (20.70)

Deriving the second derivative with respect to x1 yields:

λ0
∂2T

∂x1
2

= G′′λ0
ρ

4µ0t
(TW − T0) (20.71)

and for Pr = 1

λ0
∂2T

∂x1
2

= G′′ 1
4t
ρ0c0(TW − T0). (20.72)

Insertion of (20.70) and (20.71) into the energy equation yields:

G′′ − 2ηG′ = 0. (20.73)

The boundary conditions for the solution of the above ordinary differential
equations (20.68) and (20.73) read:

x1 = 0 : U2(0, t) = 0 � η = 0 : F (0) = 0
T (0, t) = TW � G(0) = 1

x1 → ∞ : U2(∞, t) = 0 � η = 1 : F (1) = 0
T (∞, t) = T0 � G(1) = 0
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As a solution of the differential equation (20.73), one obtains:

G(η) = 1 − erf(η). (20.74)

The solution of the differential equation (20.68), with G(η) inserted, can be
obtained as a solution of the homogeneous differential equation for F (η):

F ′′ + 2ηF ′ − 4F = 0 (20.75)

and with the particular solution F (η) = erf(η) and adding the homogeneous
solution results in

F (η) =
2√
π
η exp

(−η2)− 2η2erf(η). (20.76)

With this, the solutions for F and G, as shown in Fig. 20.7, can be determined
from (20.74) and (20.76). With a decrease in G with increase in η, a decrease
in temperature with increasing distance from the wall is indicated. The F (η)
distribution relates to the velocity distributions for the natural convection.
This convective flow forms due to the buoyancy forces induced by density
differences near the wall.

The parts of the similarity solutions of the equation system (20.57) and
(20.58) represented in Fig. 20.7 show, on the one hand, the normalized tem-
perature profile G(η) that develops due to the temperature diffusion from

Fig. 20.7 Solutions F (η) and G(η) for
the free convection flow along a plane
vertical plate
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the heated wall into the fluid. The figure shows, moreover, the standardized
velocity profile, which is caused by buoyancy and which is strongly influ-
enced by the molecule-dependent momentum loss to the wall. Because of the
assumed fully developed flow in the x2 direction, for the temperature field
(20.61) and the velocity field (20.60) physically convincing solutions result
from the differential equations. Altogether the flow and temperature distri-
butions are understood as examples of many buoyancy flows that exist in
nature in a large variety. For a number of these flows, driven by temperature
fields, analytical solutions exist.

20.5 Plane-Plate Boundary Layer with Plate Heating
at Small Prandtl Numbers

In Chap. 16, the two-dimensional boundary-layer equations were derived from
the general Navier–Stokes equations according to a procedure suggested by
Prandtl. On extending these derivations to boundary-layer flows with heat
transfer, one obtains on the following assumptions:

x1 = flow direction; x3 = direction with ∂/∂x3 (· · · ) = 0

the following equations for x1 = x, x2 = y, U1 = U , U2 = V :

Stationary Compressible Flows (Boundary-Layer Equations)

∂

∂x
(ρU) +

∂

∂x
(ρV ) = 0, (20.77)

ρ

(
U
∂U

∂x
+ V

∂U

∂y

)
= − dP

dx
+
∂

∂y

(
µ
∂U

∂y

)
+ ρgxβ (T − T∞) , (20.78)

ρcp

(
U
∂T

∂x
+ V

∂T

∂y

)
= U

dP
dx

+ λ
∂2T

∂y2
+ µ

(
∂U

∂y

)2

, (20.79)

ρ = constant or
P

ρ
= RT and µ = µ(T ), λ(T ), cp(T ). (20.80)

Hence, there are four differential equations for U , V , P , ρ and T , which can
be solved with the boundary conditions defining the respective problem. For
incompressible flows, we obtain the following:
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Stationary Incompressible Flows (Boundary-Layer Equations)

∂U

∂x
+
∂V

∂y
= 0, (20.81)

ρ∞

(
U
∂U

∂x
+ V

∂U

∂y

)
= − dP

dx
+ µ∞

∂2U

∂y2
− ρ∞gxβ∞ (T − T∞) , (20.82)

ρ∞cp∞

(
U
∂T

∂x
+ V

∂T

∂y

)
= λ

∂2T

∂y2
+ µ∞

(
∂U

∂y

)2

+ ρ∞gxβ∞ (T − T∞) .

(20.83)

This system of partial differential equations can be solved for ρ = ρ∞ =
constant, λ = λ∞ = constant, cp = cp∞ = constant and µ = µ∞ = constant
for plane-plate boundary-layer flows by including the boundary conditions
that characterize the flow and heat-transfer problem, in order to compute U ,
V and T . The externally imposed pressure gradient (dP/dx) can often be
assumed to be given for this kind of flow.

In order to integrate the equations, it is recommended also to include in
the considerations the influence of the Prandtl number on the solution. Here,
it has to be taken into consideration that the Prandtl numbers of the fluids
considered in this book, are able to cover the wide range that is indicated in
Fig. 20.8.

For boundary-layer flows with very small Prandtl number, i.e. boundary
layers of melted metals, thermal boundary layers result, which are many
times thicker than the fluid boundary layers (see Fig. 20.9). It is therefore
understandable that it is recommended, for small Prandtl numbers, to treat
boundary-layer flows with heat transfer, such that the fluid boundary layer
is entirely neglected. From the continuity equation (20.81), it follows that
the gradients of V in y direction and U in x direction are connected in the
following way:

∂V

∂y
= − dU

dx
(20.84)

Prandtl number

Pr

Gases Water Viscous oilsLiquid metals

102
10 3- 10 2- 10 1- 10 0- 101 103

Fig. 20.8 Domains of Prandtl numbers for different fluids (fluids and gases)
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Velocity distribution

Temperature distribution

Plate

Fig. 20.9 Thermal boundary layer and thermal boundary layer for small Prandtl
numbers

and thus
V = − dU

dx
y. (20.85)

For the analytical considerations to be carried out, the similarity variable:

η =
1
2
y

√
U∞
ax

(20.86)

is introduced. From the energy equation, one obtains:

Ux
∂T

∂x
− y dU

dx
∂T

∂y
= a

∂2T

∂y2
(Pr << 1) . (20.87)

For T = TW for y = 0 and T = T∞ for y → ∞ (and this for all x positions),
one obtains for a constant external flow, i.e. U(x) = U∞ = constant,

U∞
∂T

∂x
= a

∂2T

∂y2
with a =

λ∞
ρ∞cp,∞

. (20.88)

For the standardized temperature T ∗ = (T − T∞)/∆Tw with ∆Tw = (Tw −
T∞), one obtains:

U∞
∂T ∗

∂x
= a

∂T ∗

∂y
(20.89)

and with the similarity ansatz:

T ∗ = f(η) (20.90)
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Temperature distribution Velocity distribution

Fig. 20.10 Temperature distribution and velocity distribution for a plate boundary-
layer flow with constant wall temperature at small Prandtl numbers

one obtains for the derivative in the above differential equation (20.89)

∂T ∗

∂x
= f ′

(
− 1

4x
y

√
U∞
ax

)
= ηf ′

1
2x
, (20.91)

T ∗

y
= f ′

(
1
2

√
U∞
ax

)
and

∂2T ∗

∂y2
= f ′′

(
1
4
U∞
ax

)
. (20.92)

From (20.91) and (20.92), the following ordinary differential equation for
f(η) can be derived:

f ′′ + 2ηf ′ = 0. (20.93)

With the following boundary conditions:
For all x ≥ 0:

T ∗(y = 0) = 1 � η = 0 : f(η) = 1,
T ∗(y → ∞) = 0 � η = 1 : f(η) = 0

one obtains for the temperature distribution(
T − T∞
TW − T∞

)
= 1 − erf(η) = 1 − 2√

π

η∫
0

exp
(−η2) dη. (20.94)

This temperature distribution is given as function of η in Fig. 20.10 together
with the corresponding temperature distribution. For more details, see ref.
[20.5]

20.6 Similarity Solution for a Plate Boundary Layer
with Wall Heating and Dissipative Warming

In Chap. 15, boundary-layer flows were discussed and an introduction was
given to the solution of the boundary-layer equations by means of similarity
ansatzes. The flat plate flow with heat transfer discussed here, is likewise
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based on the solution of the boundary-layer equations for the stationary
flow around plates suggested by Blasius, i.e. on the solution of the following
equations:

∂U

∂x
+
∂V

∂y
= 0, (20.95)

ρ

(
U
∂U

∂x
+ V

∂U

∂y

)
= µ

∂2U

∂y2
. (20.96)

For the discussion of the heat transfer, the boundary-layer form of the energy
equation is included. For the solution to be sought, the temperature depen-
dences of the material values ρ, µ, λ, and thus also the buoyancy forces, are
neglected in the energy equation:

ρcp

(
U
∂T

∂x
+ V

∂T

∂y

)
= λ

∂2T

∂y2
+ µ

(
∂U

∂y

)2

. (20.97)

For flat plate flow with wall heating, the following boundary conditions result:

y = 0 : U = V = 0 and T = TW , (20.98)

y = 0 : U → U∞ and T → T∞. (20.99)

For the solution of the flat plate boundary layer problem, it is important to
realize that (20.95) and (20.96), for the determination of the velocity field,
are decoupled from the energy equation (20.97) if the material properties
are assumed to be independent of the temperature. This assumption is made
here. Thus, for the velocity field the solution suggested by Blasius can be
taken (see Chap. 16).

With η = y
√
U∞/νx and ψ =

√
νxU∞f(η), one obtains U = U∞f ′(η)

and V = 1
2

√
νU∞/x− (ηf ′ − f).

From the momentum equation, the following differential equation for the
quantity f can be derived:

ff ′′ + 2f ′′′ = 0. (20.100)

As shown in Chap. 16, f(η) and f ′(η) can be determined numerically from
this, and thus U and V can be determined for the boundary conditions
reading as follows:

η = 0 : f = f ′ = 0 and η → ∞ : f ′ → 1.

The energy equation can be treated as follows:[
U∞f ′

dT
dη

∂η

∂x
+

1
2

√
νU∞
x

(ηf ′ − f) dT
dη

∂η

∂y

]
λ

ρcp

∂2T

∂η2

(
∂η

∂y

)2

+
µ

ρcp
U2

pf
′′2U∞
νx

(20.101)
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or rewritten for further considerations:

−1
2
f

(
dT
dη

)
=

λ

µcp︸︷︷︸
1/Pr

d2T

dη2
+
U2∞
cp

(f ′′)2 (20.102)

in order to obtain the final form:

0 =
d2T

dη2
+
Pr

2
f

dT
dη

+ 2Pr
U2
∞

2cp
(f ′′)2 . (20.103)

On now introducing

Θ (η) =
T − T∞
TW − T∞ (20.104)

one obtains the following ordinary differential equation of Θ:

0 = Θ′′ +
Pr

2
fΘ′ + 2Pr

U2∞
2cp

(f ′′)2 . (20.105)

Without dissipative heating of the boundary layer, given by the last term in
(20.105), one obtains the differential equation

Θ′′ +
Pr

2
fΘ′ = 0 (20.106)

which has to be solved for the boundary conditions:

η = 0 � θ = 1 and η → ∞ � θ → 0.

A solution of this equation is possible, as f(η) is known. It was derived as
a solution of the continuity and momentum equations. It was suggested by
Pohlhansen [20.3] and is given in Fig. 20.11 for different Prandtl numbers:

Fig. 20.11 Temperature distribution at a plane heated plate with temperature
difference (TW − T∞)
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For heat-transfer computations, the following equations hold:

q̇ (x) = −λ
(
∂T

∂y

)
0

= −λ
(
∂T

∂η

)
0

(
∂η

∂y

)
, (20.107)

q̇ (x) = −λ
(
∂Θ

∂η

)
0

(TW − T∞)

√
U∞
νx
. (20.108)

For the technically interesting fields the following holds:(
∂Θ

∂η

)
0

≈ 1
3

(Pr)1/3 (20.109)

so that for the local heat flow we obtain

q̇ (x) = −1
3
λPr1/3 (TW − T∞)

√
U∞
νx
. (20.110)

The amount of heat which is released from the tip of the plate up to the
plate-length L can be obtained by integration:

Q̇ (L) = +
1
6
λPr1/3 (TW − T∞)

√
U∞
ν
x−3/2. (20.111)

In this way, important information for technical engineering can be gained
from the above derivations.

20.7 Vertical Plate Boundary-Layer Flows Caused
by Natural Convection

Near a vertical plane, which was heated up to temperature TW , a natural
convection boundary-layer flow develops, which is caused by natural convec-
tion and is directed upwards. It is described by the boundary-layer equations
by dP/∂x = 0:

∂U

∂x
+
∂V

∂y
= 0, (20.112)

ρ

(
U
∂U

∂x
+ V

∂U

∂y

)
= µ

∂2U

∂y2
+ ρgβ (T − T∞) , (20.113)

ρcp

(
U
∂T

∂x
+ V

∂T

∂y

)
= λ

∂2T

∂y2
. (20.114)

For β = 1
T∞ and θ = T−T∞

TW −T∞ , these equations can be transcribed as follows
and can be employed for the solution of the velocity and temperature fields:
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∂U

∂x
+
∂V

∂y
= 0, (20.115)

ρ

(
U
∂U

∂x
+ V

∂U

∂y

)
= µ

∂2U

∂y2
+ ρg

TW − T∞
T∞

Θ, (20.116)

U
∂Θ

∂x
+ V

∂Θ

∂y
= a

∂2Θ

∂y2
. (20.117)

The introduction of the stream function U = ∂ψ
∂y and V = − ∂ψ

∂x eliminates
the continuity equation and makes possible the similarity ansatz given below:

Ψ = 4νAx3/4f (η) with η = A
y
4
√
x

(20.118)

with A being

A = 4

√
g (TW − T∞)

4ν2T∞
. (20.119)

The velocity components U and V can be computed as follows:

U = 4νx1/2A2f ′ and V = νAx−1/4(ηf ′ − 3f)

and the derivatives yield:

∂U

∂x
=
νA2

√
x

(2f ′ − ηf ′′) ,

∂V

∂y
=
νA2

√
x

(ηf ′′ − 2f ′) .

With this results the following set of differential equations, which can be
employed to determine the similarity functions f(η) and θ(η):

f ′′′ + 3ff ′′ − 2f
′2 +Θ = 0 and Θ′′ + 3PrfΘ′ = 0, (20.120)

where the following boundary conditions determine the problem:

η = 0 : f = f ′ = 0 and Θ = 1, (20.121)

η → ∞ : f ′ = 0 and Θ = 0. (20.122)

The numerical integration of the differential equation system was carried out
by Pohlhansen [20.3] and Ostrach [20.2] and led to the solutions stated in
Fig. 20.12 for different Prandtl numbers.

On computing now the heat flow existing locally per unit time and unit
area, one obtains:

q̇ (x) = −λ
(
∂T

∂y

)
0

= −λ
(
∂Θ

∂η

)
0

(
∂η

∂y

)
(TW − T∞) (20.123)
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Fig. 20.12 Temperature and velocity distribution at a heated vertical plane plate
caused by natural convection

or, after carrying out the differentiation
(

∂η
∂y

)
, one obtains:

q̇ (x) = −λA 1
4
√
x

(TW − T∞)
(
∂Θ

∂η

)
. (20.124)

For Pr = 0.73 one obtains ( ∂θ
∂η )0 ≈ 1

2 , so that the following expression holds
for q̇(x):

q̇ (x) ≈ − λA

2 4
√
x

(TW − T∞) . (20.125)

Integration over the plate length L results in the heat transfer per unit
width:

Q̇ =
2
3
L3/4λA (Tw − T∞) . (20.126)

On computing the Nusselt number, averaged over L, one obtains Q̇ =
λ (Nu)L (TW − T∞):

(Nu)L = 0.667AL3/4 (20.127)

a relationship which is well confirmed by experimental results.

20.8 Similarity Considerations for Flows
with Heat Transfer

In Chap. 6, general considerations on the similarity of fluid flows were carried
out. They can be extended to flows with heat transfer as shown below.

The momentum equations of fluid mechanics can be written as follows:

ρ

(
∂Uj

∂t
+ Uj

∂Uj

∂xi

)
= − ∂P

∂xj
− ∂τij
∂xi

+ ρgj . (20.128)
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As far as Newtonian fluids are concerned, for the molecular-dependent
momentum transport one can write

τij = −µ
(
∂Uj

∂xi
+
∂Ui

∂xj

)
+

2
3
µδij

∂Uk

∂xk
. (20.129)

In order to write (20.128) in dimensionless form, the molecular-dependent
momentum transport to the wall, τW , is introduced. All other quantities
are made dimensionless with characteristic quantities of the flow and heat-
transfer system. Therefore, the following quantities can be introduced:

ρ = ρcρ
∗; Uj = UcU

∗
j ; t = tct∗; xi = lcx∗i ;P = ∆PcP

∗; τij = τwτ∗ij

and gj = 0, so that one obtains the following equation:

ρ∗
(
lc
Uctc

∂U∗
j

∂t∗
+ U∗

i

∂U∗
j

∂x∗j

)
= −∆Pc

ρcU2
c

∂P ∗

∂x∗j
− τw
ρcU2

c

∂τ∗ij
∂x∗i

. (20.130)

On introducing U2
c = τw/ρ = u2

τ and ∆Pc = τw, the right-hand side of the
equation reduces to a dimensionless form, where the quantities are written
with an asterisk. The dimensionless groups of variables before the asterisked
quantities are now all made equal to 1.

On applying the dimensionless quantities stated in (20.130) also to
(20.129), one obtains

τ∗ij = −µcUc

τwlc

[
µ∗
(
∂U∗

j

∂x∗i
+
∂U∗

i

∂x∗j

)
+

2
3
µ∗δij

∂U∗
k

∂x∗k

]
. (20.131)

This equation becomes dimensionless on introducing as characteristic length
lc = νc/uτ .

On introducing all these characteristic quantities into (20.128) and
(20.129) to make them also dimensionless, one obtains the following forms of
these two equations:

ρ∗
(
∂U∗

j

∂t∗
+ U∗

i

∂U∗
j

∂x∗i

)
= − ∂P

∗

∂x∗j
− τ

∗
ij

x∗i
(20.132)

and

τ∗ij = −µ∗
(
∂U∗

j

∂x∗i
+
∂U∗

i

∂x∗j

)
+

2
3
µ∗δij

∂U∗
k

∂x∗k
. (20.133)

For similarity considerations, the following quantities were introduced as
dimensionless velocity, dimensionless pressure difference and dimensionless
length and time scales:

Uc = uτ =
√
τw/ρ; ∆Pc = τw; lc = νc/uτ ; tc = νc/u2

τ . (20.134)
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On extending the above-mentioned dimensionless considerations to the
general form of the energy equation:

ρcP

(
∂T

∂t
+ Ui

∂T

∂xi

)
= − ∂qi

∂xi
+
(
∂P

∂t
+ Ui

∂P

∂xi

)
− τij ∂Uj

∂xi
(20.135)

and the Fourier law for heat conductivity:

q̇i = −λ ∂T
∂xi

(20.136)

the dimensionless form of the energy equation can be derived as follows:

ρ∗c∗P

(
lc
tcUc

∂T ∗

∂t∗
+ U∗

i

∂T ∗

∂x∗i

)
= − q̇c

ρccP,c∆TcUc

∂q̇∗i
∂x∗i

− ∆Pc

ρccP,c∆Tc(
l′c
t′cUc

∂P ∗

∂t∗
+ U∗

i

∂P ∗

∂x∗i

)
− τw
ρccP,c∆Tc

τ∗ij
∂U∗

j

∂x∗i
. (20.137)

Looking at (20.137), one sees that the following quantities have to be in-
troduced as characteristic quantities, in order to conserve the dimensionless
form of the energy equation equivalent to (20.132):

∆Tc =
τw
ρccP,c

and q̇c = τwUc . (20.138)

Standardization of the Fourier law leads to the following result:

q̇cq
∗
i = −λc∆Tc

lc
λ∗
∂T ∗

∂x∗i
→ l′c =

λc∆Tc

q̇c
=

λcνc
µccP,cUc

=
1
Pr

(
νc
uτ

)
,

(20.139)

where Prlc = lc and Prtc = tc can be stated. This represents the connection
between the characteristic length and time scales for the heat and momentum
transport.
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Chapter 21

Introduction to Fluid-Flow Measurement

21.1 Introductory Considerations

The derivation of the Reynolds equations, as a basis for numerical flow in-
vestigations, led to a system of differential equations which, in addition to
the mean values of the components of the flow velocity and the static pres-
sure, contain also turbulent transport terms. These terms represent, for the
turbulent momentum transport, time mean values of the products of veloc-
ity fluctuations. These transport terms were derived from the Navier–Stokes
equations by introducing into the equation mean velocity components and
turbulent velocity fluctuation, and by averaging them afterwards with re-
spect to time. Although the turbulent transport terms were derived formally,
as new unknowns of the flow field, physical importance can be attached to
them. They represent, in the averaged momentum equations, additional dif-
fusive momentum-transport terms, which occur in flows due to turbulent
velocity fluctuations that occur superimposed on the mean velocity field.

When one wants to solve the Reynolds equations, it is important to
find additional relationships for these correlations of the turbulent veloc-
ity fluctuations uiuj. These relationships can be formulated by hypothetical
assumptions, and this approach played an important role in the past when
setting up turbulence models. Today, however, it is considered for certain that
reliable information on the time-averaged properties of turbulent flows can
only be obtained by detailed experimental investigations of different flows. To
gain the necessary information requires local measurements of the instanta-
neous velocity of turbulent flows. Such measurements can be made by means
of hot-wire or hot-film anemometry and laser Doppler anemometry that pos-
sess the necessary resolution in terms of time and space for local velocity
measurements in flows. These methods also permit to carry out the neces-
sary measurements in a relatively short time. Such measurements contribute
to the understanding of the physics of turbulent flows and make it possible
to introduce additional information into the computations of turbulent flows
for the above-mentioned correlations of turbulent velocity fluctuations.

653
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For measurements in wall-boundary layers, hot-wire and hot-film anemo-
meters have been applied with great success for determining the mean
velocities Ui and the fluctuation velocity correlations uiuj. Depending on
their characteristic properties, many turbulent flows can be investigated by
means of hot-wire and hot-film anemometers. However, in the case of thin
boundary layers, inherent perturbations can occur which are caused by the
measuring sensors introduced for velocity measurements. Special designs of
measuring sensors are required to keep these measuring errors at a low level in
wall-bound boundary layers. Turbulent flows also occur in regions with back
flow, and these regions possess a number of properties which prevent the em-
ployment of hot-wire anemometers for precise measurements, or limit their
application to only some flows. Of these properties of hot wires and hot films,
that negatively influence the measurements, only the perturbing influence of
the hot-wire support on the actual measurement is mentioned. In addition,
high turbulence intensity in regions of flow separation should be mentioned,
which leads to insurmountable difficulties concerning the interpretation of
the hot-wire signals.

Hot-wire and hot-film measuring devices are based on measurements of
the convective heat transfer that occurs due to the fluid flowing over heated
elements and providing in this way a measure for the local flow velocity.
These measurements, however, require the sensor to possess a higher tem-
perature than the fluid, which can lead in liquid flows to decomposition of
the fluid medium. This is indicated in Fig. 21.1 by means of a photographic
recording published by Eckelmann [21.9]. Difficulties with the employment of
hot-wire and hot-film anemometers, such as one encounters in measurements
in industrial conditions, are likewise indicated in Fig. 21.1. When giving up
the strict control of the particles carried along in the fluid medium, natural

Flows with recirculation

 Sensor lies in the wake of its own support 

Deposition of solids on the 
measuring sensor in dirty fluids

Disturbance due to small 
bubles in a liquid flow

Fig. 21.1 Difficulties when employing hot-wire and hot-film anemometers
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contamination occurs inherent for all components exposed to the fluid. Re-
liable measurements with hot-wire and hot-film anemometers are therefore
often possible only under laboratory conditions. In practical flow studies, one
accepts that dirt is deposited on the measuring sensors continuously with
time. The dirt layer developing on measuring sensors forms a heat insulation
that was not taken into account when the measuring sensor was calibrated.
In order to avoid measuring errors, caused in this way, recalibration of the
measuring probe has to be carried out at short time intervals, which can be
very time consuming.

Most measuring methods that require the insertion of measuring probes in
flows measure the flow velocity of interest only indirectly, i.e. with most flow-
measuring instruments physical quantities are measured which are functions
of the flow velocity. Direct measurements of the local flow velocity are often
not carried out. Unfortunately, the measured quantities, through which the
flow velocity is determined, are mostly also functions of the thermodynamic
state properties of the fluid medium. These fluid-property influences have to
be known and have to be taken into account in the calibration of the sensor,
in order to make the interpretation of the final measured data possible, i.e.
to yield the flow velocity through measurements. When fluctuations of the
state parameters of the fluid medium occur during measurements, e.g. in two-
phase flows, flows with chemical reactions, etc., these have to be known in
order to determine accurately the local velocity with hot-wire anemometers.
However, in practical measurements it is often not possible to know the fluid
properties at all measuring times, and they can therefore not be employed in
the interpretation of the measured velocity signals.

The above-mentioned difficulties in the employment of indirect measur-
ing techniques for flow velocities have led to the development of the laser
Doppler anemometry, which allows, almost directly, the local flow velocity
to be measured. By measuring the time which a particle needs for passing
through a well-defined interference pattern, the flow velocity of the parti-
cle is determined. Such measurements do not depend on the often unknown
properties of the flow fluid. Measurements are possible in one- and two-phase
flows, and also in combustion systems and in the atmosphere. The measuring
technique can moreover be employed in fluid media filled with particles, as
they often occur in practice. However, its employment requires optical access
to the measuring point and thus a sufficient transparency of the flow medium.
In this respect, the employment of laser Doppler anemometry is also limited.
Its application allows, nevertheless, the determination of flow velocities in a
number of flows that are important in practice, but cannot be investigated
by other measuring methods.

In addition to the above-mentioned measuring techniques for determining
local, time-resolved fluid velocities, the determination of pressure distribu-
tions is also very important in experimental fluid mechanics. This is given
consideration in the next section which treats the measurement of static pres-
sures. Introductory presentations of the measurement of dynamic pressures
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follow, in order to show that stagnation-pressure probes can be employed for
the determination of local velocities.

In addition to measurements of local velocities and pressures, measure-
ments of wall-shear stresses are often required in fluid-mechanical investiga-
tions. Although reference to measurements of these quantities occasionally
is made, they are not at the center of the considerations in this chapter.
The following considerations have rather to be understood as an introduc-
tion to flow-measuring techniques as a subfield of fluid measurements. The
introduced practice-oriented basics of flow and pressure measurements should
help to round off or complete the education of students in fluid mechanics.

21.2 Measurements of Static Pressures

In the discussion of flows with boundary-layer behavior (see Chap. 16), it
was shown that the momentum equation in the cross flow direction reduces
to ∂P/∂y = 0. This important property of the pressure field of boundary-
layer flows is often employed for the measurement of wall pressures, as it
permits one to determine easily the total pressure distribution in boundary-
layer flows without probes having to be inserted into the flow. In order to
determine now the pressure distribution P (x), with x being the flow direction,
it is sufficient to drill holes into the walls of the test rig, such as channels and
pipes, as shown in Fig. 21.2. However, for precise wall pressure measurements,
it is very important that the bore diameter is kept small, about the order of

Too large a hole 
for wall pressure
measurements

≥ d

0.25     d     1.5 mm< <

Correct hole design 
for wall pressure 
measurements

Fig. 21.2 Measurements of wall pressures through holes in the walls
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magnitude of 0.5mm diameter. Too large bores lead to recirculation flows as
indicated in Fig. 21.2. These lead to measuring errors that yield wall pressures
that do not correspond to the true values. Similar errors can be caused by
disturbances introduced by burrs, edges, etc., that remain after drilling of
the pressure-measurement holes. Further information on making out pressure
holes can be found in [21.1] and [21.2].

A somewhat difficult task is the measurement of static pressures in flows,
where the pressure in the flow is not obtainable through wall-pressure mea-
surements as described above. In this case, probes have to be inserted into
the flow of the kind shown in Fig. 21.3. These static pressure-measuring
probes have a streamline design and are provided with one or more holes
in their walls. These holes are connected through pressure tubes of small di-
ameter, located in the interior of the probe, to pressure-measuring sensors
through which the desired pressure information is obtained. As indicated
in Fig. 21.3, it is very important that the appropriate location of the holes
is determined experimentally in such a way, that actually the local static
pressure is measured by the probe. Often, with sufficient precision, potential-
theory computations are suited to determine the best location for the holes
in the flow direction. The probe design shown in Fig. 21.4 proved valid for
the employment of static pressure measurements in flows.

In order to measure static pressures, it is necessary to employ cor-
responding pressure-measuring instruments. These are briefly described
below.

The simplest of these measuring instruments is the U-tube manometer
shown in Fig. 21.5. If a pressure difference develops between points A and B,
the liquid levels in the two tubes will adjust themselves in such a way, that
the existing pressure difference is compensated by gρFh, with g being the

Pressure
too high

Influence of
probe holder

Position of 
hole for static 
pressure measurements

Influence of profile 

Pressure
to o low

Streamlines
of the flow
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Fig. 21.3 Measurements of wall pressures with pressure probes
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D

6 D 15 D

R= D
2

Suggested dimensions

Fig. 21.4 Pressure-measuring probe and location of static pressure-measuring hole

h

P1  = P0 P2

P2 P1

F

P = P2 - P1

    = F g h

Pressure measuring probe
P2

P0 = Atmospheric 
        pressure

h = measure of the 
       pressure difference 

AB

= Stat. pressure

P2

Fig. 21.5 U-tube manometer for the measurement of pressure differences

gravitation constant, ρF the density of the fluid in the U-tube and h the
difference in the height of the surface layers.

The distance between the layers of the two fluid levels h is therefore in di-
rect relation to the desired pressure difference and can be read by means of an
installed scale. It can easily be seen that the measurable pressure range of
the instrument can be adapted to each measuring problem by the selection of
different fluids (ρF ). The fluids most commonly used in practice are alcohol,
water and mercury, allowing h to be adapted to the measuring problems due
to the chosen fluid density.

When placing a large fluid reservoir at a location in the U-tube manome-
ter and inclining the actual measuring tube at an angle of (ρF ) towards the
horizontal line, as shown in Fig. 21.6, one obtains a considerable improve-
ment in the sensitivity of the manometer. A water column h develops, with
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Micro-manometer
screw
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h

∆

Fig. 21.6 Inclined-tube manometer with zero adjustment

Floating element

Transparent

scale

Illuminated scale

and projection system

Zero level setting 

Fig. 21.7 Betz manometer with optical reading system for low pressure difference
measurements

this set-up, i.e. a displacement of the fluid over a distance of h/sin θ in the
inclined arm of the instrument. The zero position, i.e. “zero adjustment” of
the instrument, is obtained by adjusting the height of the fluid reservoir.

In the Betz manometer, as shown in Fig. 21.7, a floating element with an
attached measuring scale is used to measure the change in the fluid level. The
scale, which is made of glass, is projected by an optical enlarging system on
to a screen, where another interpolation scale is installed. By this means the
reading precision of the measuring instrument is considerably improved.

In the employment of all manometers, a stable and vibration-free base is
of importance, in order to avoid vibrational influences on displays. Mobile
pipes between the pressure probe and the manometer employed have to be
avoided also, in order to avoid fluctuations of the fluid levels caused by pipe
movements, or by volume changes of the pipes. In particular, however, the
room temperature during a measurement has to be kept constant, as the den-
sity of the fluid (ρF ) is temperature-dependent, so that temperature changes
during the measurements are not measured as pressure changes in the flow.
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In today’s experimental fluid mechanics, the employment of U-tubes as
manometers is less common. Developments of pressure sensors have led
to measuring instruments that nowadays can be employed successfully to
measure pressures in fluid-flow experiments.

21.3 Measurements of Dynamic Pressures

In fluid mechanics, mechanical probes are employed for measuring the total
pressure P∞ + (ρ/2)U2

∞. For these probes, different designs have been de-
veloped over the years. Particularly simple designs of total-pressure probes,
which are named Pitot probes, after the French physicist Henri Pitot (1695–
1771), are sketched in Fig. 21.8. Probes of this kind are very suited for
total-pressure measurements; however, they require precise adjustment, ori-
entating the probe in the flow direction, so that the angle influence of the
pressure distribution is eliminated. Only if this precaution is taken, one can
measure the desired total pressure correctly.

In some measurements, Pitot tubes of the kind sketched in Fig. 21.9 are
used that possess a nozzle around the actual Pitot tube. These probes are
less direction-sensitive. The nozzle serves a correcting device, guiding the fluid
flow, so that it passes the entrance of the Pitot tube in a more parallel way.

On combining a Pitot probe and a probe for measuring the static pressure,
one obtains the so-called Prandtl probe, that permits the following quantity

Flow direction D

ca.5D0.2D

P   = P + / 2 Utot
2

oooo

Fig. 21.8 Designs of Pitot probes to measure the total pressure Ptot

Flow direction
max. 45°

RE

Fig. 21.9 Pitot probes mounted in a Venturi nozzle



21.3 Measurements of Dynamic Pressures 661
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0.16" I.D.
0.175" O.D.
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Fig. 21.10 Designs of Prandtl probes, shown with original dimensions, according to
data from the N.P.L. in England

to be found:
∆P = Pges − P =

ρ

2
U2
∞ (21.1)

In Fig. 21.10, practical probe designs for Prandtl probes are shown. Prandtl
probes measure the total pressure at a corresponding probe tip and, through
the pressure holes placed downstream in the probe walls, the static pressure is
measured. Using pressure-measuring instruments to obtain the total pressure
and the static pressure at the same time, results in the displayed pressure
difference ∆P = Ptot − Pstat. This leads to the determination of the flow
velocity:

U∞ =

√
2
∆P

ρ
(21.2)

Disregarding the perturbations introduced into a flow by the probe,
flow-velocity measurements with Prandtl probes can be categorized as un-
problematic when they are employed in laminar flows. Employment in
turbulent flows, on the other hand, is not free of problems. The reason for
this can be found in the continuous change of the flow direction and the con-
tinuous change in velocity magnitude which occur in turbulent flows. This
leads to integral pressure measurements which can only be interpreted with
difficulty, as far as the local mean velocity of the flows is concerned, as it ex-
its at the measuring location. It is important to emphasize that this problem
cannot be removed, even when using pressure-measuring instruments with
large time constants, despite the often held opinion in this respect. Due to
the hose connections from the probe to the measuring instrument, large time
constants already exist for most pressure measurements in fluid mechanics,
so that even the employment of fast pressure-measuring devices is not suited
to resolve the fast time-dependent pressure.
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Hence, pressure probes are not suited to study turbulent flows. In this
respect, it is important to point out that the Prandtl tube measures the
dynamic pressure, but it is not suited to investigate the dynamics of turbulent
flow fields. Such investigations are better carried out with hot-wire and laser
Doppler anemometers.

When special measuring probes are employed, in spite of the above men-
tioned limitations, for investigations of turbulent velocity fluctuations, the
frequency characteristic of the probe has to be determined before the employ-
ment in turbulent flows fields. The probe has to be calibrated dynamically.
Such calibrations are difficult. Yet, efforts of this kind are undertaken again
and again in various research efforts in fluid mechanics. This indicates that
in spite of major problems with pressure-measuring probes, the measure-
ment of fast varying pressures is of importance in fluid mechanics. Because
of this, newly developed pressure sensors are employed, utilizing different
mechanisms to measure pressure and to convert the pressure into suitable
electronic signals. A pressure probe consists, in general, of the actual sensor
element having low mechanical inertia, a surface as large as possible and very
short transmission elements which connect the sensor to the location where
the electrical signal is recorded. Spring-plunger devices and also capacitive
and inductive transducers are employed in this respect. All these devices have
reached an advanced state of development and nowadays can be adapted to
support pressure measurements in fluid mechanics research.

21.4 Applications of Stagnation-Pressure Probes

In the preceding section, it was shown that stagnation pressure probes, in
connection with pressure-measuring instruments, can be employed in order
to measure velocities of flows. Stagnation probes are in principle open tubes,
one side of which is exposed to the arriving flow, while the other side is
connected to a pressure element. The pressure measured in this way is, in
principle, except for measurements at very low static pressures, proportional
to the mean force per unit surface of a fluid particle located in the stagnation
point of the flow. Measurement of the stagnation pressure and the static
pressure allow one to obtain the sought velocity information, if it is possible to
derive simple relationships between the velocity and the measured pressures.
This is in general possible only for non-viscous media. In viscous media, one
has to take the influence of the viscosity of the flowing fluid into account. This
was not taken into account when employing the simple evaluation equations
(see the equations in Sect. 21.2). In the following, it is shown how great the
influences of viscosity on measurement with pressure probes can be.

By appropriate analytical derivations, the total pressure (P∞ + (ρ/2)U2
∞)

can be set in relation to certain properties of fluid flows, e.g. to the local flow
velocity and the locally existing static pressure. Corresponding analytical
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considerations start, however, from assumptions that often do not exist in
experimental investigations. As an example, the measured pressure Pges is not
in agreement with the pressure that would be measured if one permitted the
locally existing flow velocity to stagnate in an isotropic manner, i.e. Pges,i =
Pges. Considerations taking geometric and dynamic influences into account,
allow one to express the pressure relation Pges,i/Pstat, existing for real probes,
by multiplying the measured pressure by a correcting function. The latter
depends on the following parameters:

1. The Reynolds number of the flow, formed with the local flow velocity, the
kinematic viscosity of the fluid and the probe diameter, Re = (U∞D)/ν

2. The Mach number of the flow, Ma
3. The Prandtl number of the flow, Pr
4. The ratio of the heat capacitances, κ = cp/cv
5. The intensity of the flow turbulence, k2/U2

6. The Knudsen number, i.e. the ratio of the mean free path length of the
molecules to the probe radius as a characteristic quantity for a slip velocity,
λ/R

7. The ratio of the relaxation time of the molecules as an assembly to a
characteristic macroscopic time interval, tm/(R/U)

8. The angle of the inflow, i.e. the angle between inflow direction and probe
axis, α

In the subsequent paragraphs, some experimentally found dependencies of
the measured stagnation pressure on some of the above-mentioned influencing
quantities are given and discussed.

Provided that the Reynolds number Re = (UD)/ν is larger than approx-
imately 100, the above treated simple description of the flow around the
total-pressure measurements is sufficiently accurate, i.e. when treated by the
theory of ideal fluid flows. At smaller values of Re, however, the stagnation
pressure increases as a function of the Reynolds number and also depends on
the probe geometry. The measured total pressure can be expressed as

Pges = P +
ρ

2
U2
∞ + 2µβ (21.3)

From this pressure coefficient, Cp results:

Cp =
Pges − P

ρ
2U

2∞
=

2µβ
ρ
2U

2∞
(21.4)

The influence of viscosity on the pressure coefficient (Cp) is shown in
Fig. 21.11, indicating the expected deviation at low Re-number.

When compressibility influences occur, the deviations between the
measured total pressure and the ideal value can be stated as follows:

Pges

Pges,i
= 1 +

M2
∞
Re

[
2κC1

(
1 − C3M

2∞
)

1 + C2√
Re

](
1 +

κ− 1
2
M2

∞

) −κ
κ−1

(21.5)
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Fig. 21.11 Viscosity influences on total-pressure measurements

All of the above explanations, relating to influences that exist for the practical
application of pressure probes, indicate that the application of stagnation-
pressure probes for flow investigations is linked to a multitude of practical
problems. Nevertheless, owing to the simplicity of application of pressure
probes in practical measurements and owing to their robustness, they are
still employed today in practical fluid mechanics.

21.5 Basics of Hot-Wire Anemometry

21.5.1 Measuring Principle and Physical Principles

Hot-wire anemometry is a measuring technique that permits electrical mea-
surement of local flow velocities, and it has been employed successfully for a
long time in experimental fluid mechanics and also in other fields. With hot-
wire and hot-film probes, local, rapidly changing fluid flows, requiring high
resolutions of measurements in terms of space and time, can be investigated.

Hot-wire and hot-film measurements are based on the measurement of the
release of heat from hot sensors to the medium flowing around them. Hot-
wire anemometry is therefore an indirect measurement technique, as it is not
the flow velocity which is measured, but the velocity-dependent heat release
from a thin, heated wire to the fluid medium surrounding it. In this respect,
the technique takes advantage of this velocity-dependent heat transfer of hot
wires and hot films for measuring the local flow velocity.

The heat release of the probe depends not only on the flow velocity,
however, but also on other quantities:

(a) The temperature difference between the sensor and the fluid medium
(b) The physical properties of the fluid medium and the sensors
(c) The dimensions of the sensors and the design of the hot-wire prongs

When keeping the influences (a), (b) and (c) constant, the sensor only
reacts to the flow velocity, and the heat, withdrawn from the sensor, is then
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a direct measure of the flow velocity existing at the sensor at the moment
of measurement, i.e. a hot-wire anemometer can be built with a high time
resolution.

The basic element of hot-wire anemometry is a cylindrical sensor that can
be heated in a controlled way and whose electrical resistivity depends on the
temperature. The temperature and related resistivity change of the wire, due
to velocity changes, can be appropriately recorded electronically in a bridge
circuit. The probe itself represents a bridge arm of this bridge circuit. Of the
different bridge circuits in practice, the Wheatstone bridge has proved to be
especially suited for hot-wire measurements.

From the heat loss of the sensor, which in the state of thermal equilibrium
has to be equal to the heat produced electrically over the wire:

Q̇ = IE = I2R =
E2

R
,

where I is the electric current, E is the applied voltage and R is the resistance
of the wire, the flow velocity can be determined using two circuit variants.
From the need for measurements to have one dependent quantity to measure
the heat loss, one can either keep constant the electric current I, or the
temperature of the sensor through the wire resistance R. In the first case one
talks of the constant-current anemometer (CCA) and in the second case of
the constant-temperature anemometer (CTA).

In the constant-current operation of a hot-wire anemometry, the Wheat-
stone bridge is operated with a constant electric current. For this kind of
operation, the resistance of the energy source has to be large in comparison
with the total resistance of the bridge, in order to keep the current operating
the bridge constant at all measuring times. The temperature and resistance
changes of the hot wire, due to velocity changes of the fluid flow, induce in
the circuit in Fig. 21.12, an imbalance of the voltage at the vertical bridge
diagonal, e.g. the voltage between ports A and B. The resulting bridge output
signal is amplified and is then displayed as a measure of the flow velocity of
the fluid.

A

Compensation Amplifier

Output to indicator for
measured resistance

Hot-wire

I=const. R=R(U)

A

B

Fig. 21.12 Principal circuit of a constant-current anemometer for hot-wire
measurements
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One disadvantage of the velocity measurements by constant-current hot-
wire anemometry is the small bandwidth of the system. This disadvantage
can be attributed to the thermal inertia of the hot wire. The upper frequency
of a hot wire of 5 µm diameter is approximately 100Hz in constant-current
operation. By using very thin wires, the time constant can be reduced, but
thin wires are very sensitive to mechanical influences and can therefore easily
be destroyed by the flow as a result of mechanical stresses.

Moreover, for the constant-current anemometry, operational difficulties ex-
ist. Due to the increasing heat losses to the flowing fluid at high velocities, the
supply current has to be increased at high velocities. On the one hand, this
leads to an increased sensitivity of the wire, i.e. the wire reacts more strongly
to occurring velocity changes. However, when carrying out measurements the
risk increases that the hot wire will burn, e.g. when the velocity decreases
suddenly in a flow, the current cannot be removed fast enough from the wire
and, hence, the wire burns. Finally, the dependence of the time constant of the
hot wire on the mean flow velocity makes an adjustment of the compensation
network to the corresponding flow velocity necessary. When using hot-film
probes in their constant current mode, which possess high time constants, a
compensation amplifier with a complicated control circuit is required. This
special amplifier has to have very precisely the opposite frequency response
to the hot-wire probe and therefore is hard to design and build in practice,
let alone its employment in measurements.

Nowadays, the constant-current operation of hot wires is employed almost
only for measurements of fluid temperatures. For this application, the con-
stant heating power is reduced, in order to decrease the response of the probe
to the flow velocity, so that almost exclusively temperature changes in the
fluid lead to imbalances of the bridge. The bridge voltage at the horizontal di-
agonals in Fig. 21.13 is then a measure of the instantaneous flow temperature.

The basic idea of constant-temperature anemometry (CTA) results in an
electronically achieved compensation of the thermal inertia of the probe by
a fast electronic voltage feedback, guaranteeing the operation of the sensor
at a constant temperature, i.e. at a constant wire resistance.

I=I(U) T,R=const.

Difference
voltage

servo
amplifier V

Bridge current

Hot-wire

A B

Fig. 21.13 Principle electrical circuit of a constant-temperature anemometer
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In the case of the balanced bridge, no voltage difference exists between the
entrance ports of the servo-amplifier. Velocity changes in the flow, however,
result in temperature and corresponding resistance changes of the hot-wire
sensor, which cause voltage differences at the servo-amplifier input ports.
The exit of the servo-amplifier is back-coupled to the vertical parts of the
bridge, as shown in Fig. 21.13, with a polarity such that the bridge ad-
justs itself automatically to the new heat transfer situation. Through this
back-coupling, a signal is generated which is not influenced considerably by
the thermal inertia of the sensor, i.e. the upper frequency of the hot-wire
anemometer response is raised by several orders of magnitude compared with
constant-current operation of a hot wire. The upper frequency can reach up
to approximately 1.2MHz at high flow velocities. This upper frequency of the
constant-temperature anemometer is essentially determined by the frequency
response of the feedback amplifier and not by the time constant of the wire.

Advantages of constant-temperature operation are the above-mentioned
large bandwidth and the possibility of choosing high operating temperatures
of the sensor, to obtain a very high sensitivity to velocity changes. A dis-
advantage is the unstable behavior of the servo-amplifier in some extreme
operational cases.

21.5.2 Properties of Hot-Wires and Problems
of Application

As measuring sensors for hot-wire measurements, usually hot wires with a
cylindrical form, with typical diameters of a few µm and a length larger
than 200 times the wire diameter, are used. For hot-wire sensors, the wire is
mounted between the tips of special supports to which the wire is soldered or
welded. Because of this, certain mechanical demands are required to permit
the wire to be placed between the tips of the two supports (prongs). The
stated diameters and lengths of hot wires employed are a compromise between
the required mechanical strength and the upper frequency of the measuring
system. Typically, measuring wires with a diameter of 5 µm and a length of
1–2mm are employed for flow measurements.

Special measuring requirements, in different velocity fields, place different
requirements on hot-wire probes and make the employment of appropriate
sensors necessary, usually possessing special probe geometries. Thicker wire
sensors are employed when a higher mechanical stability is required; thinner
wires are employed when higher frequencies are required.

The dominating and for hot-wire probes decisive property of the sensor
material is the dependence of the electrical resistance on temperature. This
dependence can be stated as follows:

R = R0[1 + α1(T − T0) + α2(T − T0)2 + · · · ], (21.6)
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where R is the wire electrical resistance at the operating temperature T , R0

is the corresponding value at the reference temperature T0, and α1 and α2

are the thermal resistance coefficients. Preferred are hot-wire materials with
α1 values as high as possible and extremely small α2 values. In such cases
the square term in (21.6) can be neglected, so that the electrical resistance
changes practically linearly with temperature. For platinum as an example,
the values for the resistance coefficients are

α1 = 3.5 × 10−3 K−1; α2 = −5.5 × 10−7 K−2 (21.7)

and for tungsten

α1 = 5.2 × 10−3 K−1; α2 = 7.0 × 10−7 K−2. (21.8)

In Fig. 21.14, the variations of the electrical resistance with temperature are
given for some pure metals.

During hot-wire measurements, the temperature along the hot wire usually
differs which is explained in detail later; the measured resistivity has a mean
value R =

∫ 1

0
[R(z)/A(z)]dz. A(z) is the hot-wire cross-section and z the

coordinate along the hot wire, i.e. in direction of the flow of the electric
current. R(z) can therefore be considered the local resistance of the hot wire.

Another important parameter for the sensitivity of the anemometer is the
overheating relation βT = (T −T0)/T0, where again T is the hot-wire temper-
ature and T0 the reference temperature in K. Of more practical importance is
the relation βR = (R−R0)/R0, where R is the resistance of the sensor at the
operating temperature T and R0 the resistance at the reference temperature
T0. From the above, the following holds: βR = α1T0βT (with α2 = 0). In prac-
tice, one chooses the operating temperature of the hot wire as high as possible,
in order to obtain a high sensitivity for the velocity changes and also a re-
duction of the influence of the flow-medium temperature. As a rule, tungsten
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Fig. 21.14 Temperature-resistivity behavior of hot-wire materials
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wires coated with platinum tolerate temperatures up to 200–300◦C. At high
flow temperatures, sensors made of platinum and a 10% platinum-rhodium
alloy are employed, permitting operating temperatures up to 750◦C.

Measurements of flow velocities of fluids impose requirements which make
the employment of special sensors necessary. These sensors consist of dif-
ferently shaped elements of quartz glass, on to which thin-film layers (e.g.
nickel) have been coated. Film probes can be shaped conically, like a wedge,
or can have other shapes, so that they fulfill the requirements enforced by
differing measurement problems. Film sensors are moreover coated with a
quartz layer for protection, so as to be less sensitive towards environmen-
tal influences. In addition, the quartz layer provides electrical insulation
for the film sensor and thus makes it applicable to electrically conductive
fluids.

In fluid flow measurements, use can be made of different types of probes
with hot-wire or hot-film elements, in order to measure wall-shear stress in-
formation in addition to carrying out local velocity measurements. Shear
stress sensors are formed as flat heating elements, as shown, e.g. in Fig. 21.15,
among other sensor shapes. For measurements in liquids, sensors of thin metal
films are provided with a protective layer (insulation), in order to avoid elec-
trolytic interactions between the sensor and measuring fluid. All of this makes

Quartz rod

30° 0.060 Inches
(1.50 mm) dia.

Gold film electrical leads

Alumina or quartz coated platinum film
0.004" x 0.040"(0.10 mm x 1.0 mm) each side

Quartz rod

0.050 Inches
(2 mm) dia.

Gold film electrical leads

Approx. 0.010" (0.25 mm)dia.

Quartz costed platinum
film band

40°

0.040"
(1.0 mm) 

Gold plating defines
sensing length

Gold plated stainless
steel supports

Quartz coated platinum
film sensor on glass rod
(0.002" dia.)
(0.051 mm dia.)

Hot-film sensors based on glass 
support and plexiglass cotter

Quartz rod (50µ)

Platin film (0.1µ)

Quartz protection

Cross section 

Fig. 21.15 Different probe types for measurements in liquids
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it clear that flow-measurement technology nowadays employs hot elements
extensively, in order to measure fluid mechanically relevant quantities, when
carrying out experimental flow investigations.

The employment of hot-film technology for flow measurements in fluids re-
quires special skills and much care from the experimentalist, in order to obtain
reliable velocity measurements. The above-mentioned special designs of film
sensors are required because of the special properties of liquids. The most im-
portant of these properties disturbing the execution of hot-film measurements
are as follows:

1. The boiling temperature of fluids is low.
2. Organic fluids can decompose.
3. Fluids generally possess electrical conductivity.
4. Fluids dissolve gases and these can be set free.
5. Fluids are usually more contaminated than gases.
6. In water and other fluids salts are dissolved.
7. Tap water contains algae, bacteria and microorganisms.

In order to be able to obtain reproducible results when doing measurements
in fluid flows, the above-mentioned special properties of fluids have to be
taken into account.

Because of point 1 above, when carrying out hot-film measurements, the
operating temperature of the sensor has to stay below the boiling temper-
ature of the flow medium, as otherwise boiling of the fluid at the heated
sensor occurs. For practical reasons, it is important to consider that lower
operating temperatures, compared with the boiling temperature, have to be
chosen for the mean temperature of the hot film. As the temperature distri-
bution of commercially available cylindrical hot-film probes, having a length
of only 20–30 times their wire diameter, show a steep temperature max-
imum in the wire center, as can be deduced from measurements with an
infrared detector (Fig. 21.16). It is this maximum temperature that must
not exceed the boiling temperature when carrying out hot-film measure-
ments in liquids. When the temperature distribution along the wire is not
taken into consideration when setting the overheating temperature, the boil-
ing temperature of the fluid can easily be exceeded locally in the probe
center and evaporation of the fluid can occur. This leads to local modifi-
cations of the heat transfer between sensor and fluid and thus to erroneous
measurements.

Organic fluids decompose (point 2) after exceeding a critical temperature,
lower than the boiling temperature. This can lead to depositions on the probe
surface, which usually result in decreases in the anemometry output voltages.

Electrical conductivity of a fluid (point 3) leads to electrolysis at the sen-
sor surface of uncoated and, hence, unprotected films. Due to unprotected
exposure of the sensor to the liquid, gas bubbles (H2 or O2 bubbles in water)
are generated and the sensor material is worn away from the wire surface
as a result of electrolysis, which is manifested by an increase in the cold
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resistance of the sensor. The increased electrical resistance due to the wear-
ing away of sensor material, caused by the locally weakened cross-section of
the wire, leads to an increase in the local probe temperature, which in turn
intensifies the electrolysis at this point, until finally the wire or film sensor
breaks. Therefore, sensors working in electrolytes always require a thin quartz
layer for protection, in order to separate the wire or film from the electrically
conductive flow medium.

There is also a decrease in the heat transfer between the sensor surface and
the fluid, caused by degassing of the gases dissolved in the liquid (point 4).
This inherently leads to non-reproducible velocity measurements. Once a gas
bubble has deposited at the sensor surface, usually the formation of further
bubbles takes place very quickly. They modify the heat release to the flowing
medium, and thus the evaluation of the measurements can no longer be based
on the carried out calibration. This can be remedied by degassing the flow
fluid before the measurement. In the simplest case it is already sufficient to
leave the fluid to stand quietly for some time, so that small air bubbles are
discharged by rising in and leaving the fluid. However, it is better to bring
about degassing by heating or by creating an under-pressure above the fluid
surface before starting the measurements.

Dirt particles also deposit on the sensor used in fluids (point 5) and modify
thus the heat transfer between sensors and the fluid flow. Therefore, the fluid
should be kept as clean as possible during one series of measurements. This
can be effected by continuous filtration with sufficiently small filter pores.
Covering the flow channel with a protective cover is also recommended, in
order to avoid the continuous entry of dirt. Contaminated sensors have to be
cleaned. Dust can be removed mechanically, e.g. by brushing it off. It is also
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usual to rinse the probes in methanol to remove depositions of dirt in this
way, or to clean the sensor in an ultrasound bath.

The most commonly used liquid in fluid mechanics is water. The salts
dissolved in water generally lead to depositions on the sensor surface (point
6). Calcium carbonate is an essential part of the layers deposited on hot-film
sensors. Calcification of the sensor is substantially stopped if the operating
temperature of the sensor is below 60◦C.

Finally, tap water contains algae, bacteria and microorganisms (point 7).
In measurements with hot wires and hot films, slimy depositions can form
on the sensor surface and thus lead to deterioration of the heat transition. In
order to minimize these depositions, the flow channel should be set up in a
dark room and not be exposed to solar or light radiation. Moreover, adding
small amounts of borax is also recommended to stop the development of algae
and microorganisms.

In general, the disadvantageous influences outlined in points 1–7 result
in non-reproducible velocity measuring results and require regular recalibra-
tions of the sensors employed for flow measurements in fluids. The same
holds for corrosive changes, structural changes and other uncontrollable in-
fluences to which the wire or film material is exposed in the experiments,
or during storage between experiments. Only by continuous surveillance of
the calibration of the probes can negative influences on the measurements be
excluded.

21.5.3 Hot-Wire Probes and Supports

As already mentioned, the actual sensor, in the case of hot-wire probes, is
mounted between the two tips of two prongs acting as holders, and the wire
ends are, as a rule, soldered on these wire holders. The prongs of the probe
are inserted in a ceramic body acting as probe holder. Normally the hot wire
is a platinum-coated tungsten wire.

In order to reduce the heat conduction from the hot wire to the cold holder
tips and to be able do define the active sensor length more precisely, copper-
plated or gold-plated probes have been developed, in which the sensor ends
welded on to the prongs are copper-plated or gold-plated (Fig. 21.17). Thus

Gold  layer
 Holder of hot-wire

Prongs
U - component

Hot-wire

Electric connection

Fig. 21.17 Single-wire gold-plated sensor with prongs and probe filter
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the temperature distribution along the active sensor length is more uniform
than with non-plated probes. Because of the larger distance of the prongs
from the measuring point, the flow field in the region of the active sensor
part is less disturbed. The described single-wire probes can show different
configurations, according to the application purpose. Probes with equally
long, straight prongs, where the hot wire forms an angle of 90◦ with the axes
of both prongs, are employed for measurements of mean flow velocities and of
the velocity fluctuation in the main flow direction. Figure 21.18 shows such
a hot-wire sensor, which is oriented in the flow such that it is measuring the
Ū velocity component, indicated in Fig. 21.18.

Probes with unequally long straight prongs, where the hot wire forms an
angle of 45◦ with the axes of the two prongs, serve for measuring Reynolds
shear stresses. They are used sequentially with straight probes, as shown in
Figs. 21.18 and 21.19. Additional measurements with ±45◦ then yield u′2, v′2
and u′v′, i.e. all elements of the Reynolds stress tensor.

Straight hot-wire sensor is 
placed into the flow to 
measure the U -component
perpendicular to the wire

w  = Parallel to the wire
v  = Perpendicular to the 
      wire and prongs plane

Prongs lie in 
the u-w-plane

Fig. 21.18 Straight hot-wire probe for measurements of the Ū component and u′

fluctuations in a turbulent flow

w

Prongs to lie in 
u-w-plane

(U + u) With innclined hot-wires,
with respect to the flow 
direction, correlation 
measurements of velocity
fluctuations can be 
carried out. 

Fig. 21.19 Inclined probe for measurement of combined u′w′ and u′v′ term
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Fig. 21.20 Different types of hot-wire probes
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Fig. 21.21 X-probe for simultaneous measurement of the second velocity component

In Fig. 21.20, different probe holders, also for multiwire probes, are shown,
giving a good overview over those wires used today for fluid velocity
measurements.

For determining the flow direction in a plane, where two velocity com-
ponents are located in this plane, and carrying out measurements in one
measuring operation, so-called X-probes are used with two wires or films
standing perpendicular to one another, as shown in Fig. 21.21. The wires are
mounted parallel to the x–z plane and thus consist of two combined “inclined
probes” with a probe inclination of ±45◦, as shown in Fig. 21.19.

The following velocity relationships result for wires A and B:

UA
gem = U cosα+W sinα

UB
gem = U cosα−W sinα
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By addition and subtraction it is possible, as the above equations show, to
determine the instantaneous U and W components of the velocity field.

In practice, it is also usual to employ three-wire probes, in order to measure
all three velocity components simultaneously. At this point, we only want to
mention this fact. It is the object of this section of the book, to give an
introduction to flow-measurement technology and for this purpose the above
references to a few hot-wire probe geometries suffice.

For boundary-layer investigations, it is extremely important to carry out
measurements close to walls. For such investigations probes with wire holders
are employed, which are formed in such a way that they permit measure-
ments near to the walls. Such a probe with specially formed prongs is shown
in Fig. 21.22. It is oriented such that the u component of the fluid is mea-
sured. Traversing takes place in the y direction, to obtain the U velocity
profile.

Different demands are placed on the geometry of the hot-wire probes.
In order to keep the inevitable introduction of disturbances into the flow
by hot-wire probes low and to obtain a good spatial resolution and a high
vibration resistivity of the probe, the probes should, on the one hand, have
probe lengths as short as possible. On the other hand, in order to reduce
the disturbing influence of the prongs, a large distance between the prongs
would be required. Small wire diameters are required for high resolution in
terms of time and space. Large diameters, on the other hand, ensure high
mechanical strength and smaller wire strains when mechanically stressed. By
compromising, nowadays optimized probes are available which permit reliable
measurements by means of hot-wire anemometers.

U1 = U

 U2 = V

x

y

Spacer

Hot-wire lies 
parallel to wall

Origin of
coordinate system

Fig. 21.22 Probe for boundary-layer investigations with special prong arrangement
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21.5.4 Cooling Laws for Hot-Wire Probes

The basis for determining the flow velocity by means of hot-wire probes,
is the heat transfer from the heated sensor to the medium flowing around
the sensor. The heat can be transferred from the sensor by radiation Q̇R,
conduction Q̇C , free convection Q̇FC , and especially by forced convection
Q̇con (Fig. 21.23).

In the thermal equilibrium state, the supplied electric power is

Q̇el = IE = I2R = E2/R (21.9)

equal to the heat output carried off by the sensor:

I2R = Q̇R + Q̇C + Q̇FC + Q̇con (21.10)

The radiant heat Q̇RSt can be computed according to the equation:

Q̇R = kσA
(
T 4 − T 4

m

)
, (21.11)

where σ is the Stefan–Boltzmann constant, A the heat-radiating surface of
the sensor, T is the operating temperature and Tm the temperature of the
flow medium. The factor k is at around 0.1 and takes into account that the
radiation of hot wires amounts to about 10%, at the very most, of the radi-
ation that a black body of equal dimensions would have. Except for extreme
cases, the heat loss of hot wires due to radiation can be neglected, as it is
only a small percentage of the heat which is transferred from the sensor by
forced convection.

The heat conduction Q̇C from the hot sensor into the cold prongs is,
according to Fourier:

Q̇C = −2λD

(
dT
dx

)
πd2

4︸︷︷︸
end of sensor

, (21.12)

QFC

QC

Qcon

QR

QC

•

•

•

•

•

Free convection = Heat conduction

= Heat conduction

= Heat radiation

= Forced convection

Prong B

Prong A

Fig. 21.23 Heat balance at the sensor in general form
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where λD is the heat conductivity of the wire, d the wire diameter and dT/dx
the temperature gradient. The factor 2 before λD, is present because of the
two prongs needed to hold the wire. For computing Q̇C , it is necessary to know
the temperature gradient at the wire ends. The temperature variation along
the sensor depends implicitly on the dimensionless heat-transfer coefficient
expressed by the Nusselt number (Nu). With hot-wire probes, the heat loss
Q̇C , the so-called wire end loss to the prong, amounts to about 10–20% of the
total heat loss from the sensor. Seen relatively, this proportion is the larger
the smaller is the ratio of wire length to wire diameter.

The heat carried off from the sensor, due to free convection Q̇FC , gains in
importance when the buoyancy forces acting on the fluid flow considerably
influence the flow field around the wire. The characteristic dimensionless
quantity, which allows one to describe this influence, is the Grashof number:

Gr =
gβ∆TL3

ν
, (21.13)

where g is the gravitation acceleration, β is the compressibility coefficient, ν
is the kinetic viscosity and ∆T is the wire overheating temperature.

According to Collis and Williams (1959), free convection can be neglected
in the case when

Re > Gr1/3 (21.14)

The Grashof number, e.g. for a hot wire of 2.5 µm diameter in an air stream
at 300K is about 6×10−7; therefore, for Reynolds numbers larger than 0.01,
no considerable free convection effects on the heat transfer of a hot wire are
to be expected. This means that for the usually employed hot wires in air,
free convection can be neglected at flow velocities larger than 0.1m s−1.

In the case of velocity measurements with hot wires, the dominating heat-
transfer component from the wire to the flow medium surrounding it, takes
place by forced convection Q̇con. The latter can be calculated as follows:

Q̇con = απld(T − Tm), (21.15)

where T is the wire temperature, d = 2r is the wire diameter, l is the wire
length, Tm is the fluid temperature and α is the heat-transfer coefficient. It
can be computed with the help of the Fourier law:

Q̇Zk = −λl
2π∫
0

(
∂T

∂r

)
r=R

R dϕ, (21.16)

where λ is the heat conduction of the fluid.
The dimensionless heat-transfer coefficient at the sensor is defined as

Nu =
αd

λ
(Nusselt number) (21.17)
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From the above two equations, the heat transfer by convection Q̇con can be
computed as

Q̇con = Nuπlλ(T − Tm) (21.18)

Thus a simplified energy balance at the hot-wire sensor reads

E2

R
= 2λA

∣∣∣∣ dT
dx

∣∣∣∣
wire end

+Nuπlλ(T − Tm) (21.19)

For handling this equation further, a general heat-transfer law has to be for-
mulated for hot-wire probes. The similarity theory of heat transfer states that
for geometrically similar flow and heat transfer problems, the temperature
and velocity fields are similar, when the dimensionless characteristic quanti-
ties are equal. In general, the heat-transfer laws are described by relationships
between the Reynolds, Prandtl, Mach, Grashof and Knudsen numbers, of the
length-to-diameter ratio of the sensor elements, the overheating ratio, the
orientation of the probe in the flow field and other parameters.

Nu = Nu( Re, Pr, Gr, Ma, Kn, l/d, ∆T . . .)
flow fluid buoyancy compress- influence geometry overheating

influence characteristics influence ability of the of the of the

influence molecule sensor hot wire

structure

For general considerations, the Nusselt number would have to be determined
individually for every flow field examined and the probe employed, in order
to formulate generally a law that takes into account the above complexity of
the dependencies.

For practical applications of hot-wire anemometry in gas flows, the flow
velocities are usually higher than 0.1m s−1, and the influence of the Grashof
number on the heat transfer must therefore not be taken into account. The
same holds for the Mach number influence of the flow. When this characteris-
tic number does not exceed a certain limit, e.g. Ma ≈ 0.3, the compressibility
effects on the heat transfer can be neglected. Only in special cases, such as
in strongly diluted gases, e.g. in measurements of wind speeds at high atmo-
spheric altitudes, the diameter of the sensor can be equal to or even smaller
than the free pathlength of the molecules. In the normal case, ! (mean free
path of the molecules) � d (wire diameter), i.e. the heat transfer from the
hot wires is not influenced by the Knudsen number, i.e. for all measurements
continuum mechanics is applicable.

Moreover, assuming a large length-to-diameter relation of the consid-
ered hot wire [l/d > 400], the heat transfer is two-dimensional. With these
assumptions, the “Nusselt number dependence” reads:

Nu = Nu(Re, Pr,∆T, . . .) (21.20)

In spite of these introduced simplifications, it is very difficult to formulate a
general law for the heat transfer by theoretical means. The heat transfer from
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Table 21.1 Heat-transfer laws

Reference Validity A B n s
range

Collis and 0.02< Re <44 0.24 0.56 0.45 0.17 influence
Williams (1959) 0.02< Re <140 0 0.48 0.51 0.17 of the

temperature
Hilpert (1933) 1< Re <4 0 0.89 0.33 0

4< Re <40 0 0.82 0.38 0
40< Re <4,000 0 0.61 0.46 0

1< Re <4 0 0.872 0.330 0.0825 influence
4< Re <40 0 0.802 0.385 0.09625 of

40< Re <4,000 0 0.600 0.466 0.1165 the
temperature

King (1914) Pe = RePr� 1 1
π

√
2
π

√
Pr 0.5 0 for Pr � 1

Koch and Re <4.2 0.72 0.80 0.45 −0.67
Gartshore
(1972)

Kramers (1946) 0.01< Re <1,000 0.42 Pr0.2 0.5 Pr0.33 0.5 0
McAdams 0.1< Re <1,000 0.32 0.43 0.52 0

the hot-wire sensor is determined by the complex flow field which is developed
near the wires. Some of the heat-transfer laws, formulated and available in the
literature, are stated in Table 21.1. They are stated considering the following
form of a fitted relationship:

Nu = [A (Pr,∆T ) + b (Pr,∆T )Ren]
(
T − Tm

Tm

)s

(21.21)

The constants used in (21.21) are given in Table 21.1.
Already in 1914 King formulated in his research work, which was funda-

mental for hot-wire technology, a theoretical solution for the heat transfer
from an evenly heated infinitely long cylinder, assuming a two-dimensional
incompressible and friction-free potential flow:

Nu =
1
π

+

√
2
π

√
RePr valid for RePr = Pe > 0.08 (21.22)

This relationship obtained by King (1914) for the Nusselt number is still em-
ployed today in experimental hot-wire anemometry, not in the above original
form, but in a modified form which is better suited for flow measurements.
In practical applications it computes successfully, with empirically found
coefficients, the heat transfer laws for hot wires.

If one has decided on an independent representation of the experimental
data by a known heat-transfer law, or having found laws of one’s own in an
investigated flow medium for a particular hot-wire probe, one can easily ob-
tain the anemometer output voltage (measurement value) from a simplified
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energy balance. The heat-transfer law formulated by McAdams, for exam-
ple becomes, in this manner, the fundamental relationship for flow velocity
measurements:

E2/R = λ
π d2

2

∣∣∣∣ dT
dx

∣∣∣∣
Endof thewire

+ 0.32πlλ (T − Tm)

+ 0.43πRlλ (T − Tm)
(
d

ν

)0.52

U0.52 (21.23)

The fundamental procedure, when determining the flow velocity from a hot-
wire measurement, would then be the following. For a certain hot-wire probe,
with known geometric parameters d, l and operating values R (wire re-
sistivity) or T , one obtains the voltage-velocity function dependent on the
temperature, the pressure and the thermodynamic properties of the flow
medium, in addition the excess temperature T − Tm and the temperature
gradients at the sensor end. Knowing these parameters, the desired veloc-
ity behavior can be determined from the measured voltage behavior. After
all these explanations, it is worth mentioning that in practical hot-wire
anemometry direct calibration of the hot-wire sensor is preferred.

21.5.5 Static Calibration of Hot-Wire Probes

The approach described above for determining the heat loss of hot wires
permits the velocity behavior to be determined, for velocity measurements,
without calibration. However, for this purpose the geometric dimensions of
the measuring sensors and the operating values of the entire anemometer
have to be known precisely. Experience has shown, however, that a precise
knowledge of all the influencing quantities cannot be obtained with sufficient
precision for the commercially available hot-wire probes. Because of the com-
plicated processes, when drawing thin wires, the diameter of the active sensor
element, to give only one reason, cannot be obtained with high accuracy. Un-
certainties also occur when determining the sensor length, due to the welding
of the wire to the prongs. There are also other influences acting on the validity
of analytical heat-transfer laws, such as aging of the wire material, homo-
geneity of the wire alloy and corrosion of the sensor material. For all these
reasons, in measurement practice, preference is given to the experimental de-
termination of the voltage-velocity function in suitable calibration channels,
i.e. the hot wire is directly calibrated and then employed for measurements.
The probe considered for flow investigations is placed in a low-turbulence
airstream of known and adjustable velocities and the anemometer output
voltage E, as a function of the flow velocity U , is determined in the range
considered for the planned measurements, employing the calibrated sensor.
The static calibration curve, determined in this way, is obtained by plot-
ting the anemometer output voltage as a function of the known calibration
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Fig. 21.24 Fundamental diagram of the calibration curve of a hot-wire probe

velocity. There is a non-linear dependence of the anemometer output voltage
on the flow velocity.

In order to study the heat transfer from hot-wire sensors over a wide
velocity range, i.e. from very low velocities up to high velocities, but Ma <
0, 3, the supplied electric energy, which is proportional to the square of the
voltage, is plotted as a function of

√
ρU (Norman, 1967). The reasons for this

type of plotting will be discussed later, but equation (21.24) already makes
clear the necessity for this type of functional behavior.

One can divide the calibration curve into sub-ranges which physically
obey different laws. The sub-range of the calibration curve between L and
M in Fig. 21.24 is important for air flows in practical flow cases. It can be
approximated analytically as follows:

E2 = A+BUn (21.24)

This relationship is just a modification of King’s law for the heat loss from a
heated cylinder. One has thus taken over, for explaining Fig. 21.24, the funda-
mentally existing analytical function between the energy loss and the velocity
of King’s equation. The parameters A, B and n are determined by calibra-
tion, as all the assumptions made by King with regard to the properties of
sensors are not known in practice, or do not apply exactly. In the area L toM
in Fig. 21.24, A, B and n are almost constant, as results from measurements.
In the sub-range of the calibration curve between K and L free convection
dominates. With increasing flow velocity or, more precisely, with increasing
Mach number, the probe reaches its maximum cooling, and then decreases
with further increase of the Mach number. In the sub-range M–N–Q, it is
not possible to attribute only one velocity value to each measured value E,
i.e. the function in this area is not unique. In measuring practice the hot wire
is often employed only in the range L–M .

As the calibration of an employed hot-wire anemometer is every-day rou-
tine work for a flow-measurement technician, it is necessary to explain step
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Fig. 21.25 Calibration channels with mounted hot-wire probe and pressure
measuring device

by step how to proceed in calibrating a commercially available hot-wire
anemometer in an air jet. The probe is mounted, for the calibration, directly
in or shortly after the nozzle outlet of a calibration channel (Fig. 21.25). The
hot-wire sensor is oriented towards the outcoming flow. It is thus ensured
that the probe is located in an area of uniform velocity and low turbulence
intensity. In this region, the geometry of the nozzle also defines the flow
direction.

The calibration of a hot wire is carried out for many velocity points over the
entire velocity range that is of interest for a particular set of measurements.
For flow velocities that are not too low and not too high, as mentioned above
the calibration follows a law as given by Fig. 21.24. Practical application of a
calibrated hot wire is often limited to the range where this simple analytical
expression for the E = f(U) dependence can be found, i.e. to the L–M range
in Fig. 21.24.

The following data serve as an example of a typical velocity calibration.
The room temperature for these measurements was tAtm = 19.5◦C and the
atmospheric pressure was pAtm = 756mmHg.

The measured anemometer output voltages E and the pressure difference
read from the manometer and the atmospheric pressure, ∆p, are given in the
first two lines of Table 21.2.

To evaluate the E2(U) relationship from the data given in Table 21.2,
the calibration velocity U has to be computed from the measured pressure
differences ∆p. Assuming an incompressible friction-free flow, the Bernoulli
theorem between the cross-sections in front of and directly behind the
calibration nozzle reads

ρ

2
U2

1 + p1 =
ρ

2
U2 + p (21.25)

With p = pAtm and p1 − pAtm = ∆p, one obtains:

∆p =
ρ

2
(
U2 − U2

1

)
(21.26)
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Table 21.2 Typical data of a hot-wire calibration

Anemometer Nozzle pressure ∆p Calibration velocity E2 U0.4356

output at manometer (m s−1)
voltage (V) (mmW−1 s−1) U = 1.2821√

∆p (mmW−1 s−1) × 9.8066

2.88 1.04 4.09 8.29 1.85
3.01 2.11 5.83 9.06 2.15
3.16 4.24 8.27 9.98 2.51
3.28 7.20 10.77 10.76 2.82
3.36 10.25 12.85 11.29 3.04
3.46 15.20 15.65 11.97 3.31
3.54 20.17 18.03 12.53 3.52
3.62 27.42 21.02 13.10 3.77
3.68 33.47 23.23 13.54 3.93
3.73 39.88 25.35 13.91 4.09
3.79 43.34 27.62 14.36 4.24
3.83 54.53 29.65 14.67 4.38
3.90 67.26 32.93 15.21 4.58

When the area ratio of the nozzle inlet to the nozzle outlet is larger than
1:16, as in the present calibration, the velocity U1 in the above equation
can be neglected without great loss of accuracy. Hence, one obtains for the
calibration velocity from the ∆p measurements:

U =
√

2
ρ
∆p (21.27)

The density of the air, which is not known yet, can be computed from the
law for ideal gases:

p = ρRT (21.28)

Under the calibration conditions mentioned here, ρ is given by:

ρ =
PAtm

RTAtm
=

756 × 133.3
283 (273 + 19.5)

= 1.2167 N s2 m−4 (21.29)

(
with 133.3 Nm−2/mmHg = 1; Rair = 283 m2 s−2 K−1

)
With this result, the calibration velocity can be computed:

U = 1.2821
√
∆p , (21.30)

where
√
∆p represents the pressure difference read from the manome-

ter. In the above equation, ∆p has to be multiplied by 9.8066
(1 mmWs =̂ 9.8066 nm−2) and then only the root has to be extracted
and finally to be multiplied by 1.2821. In this way, one obtains the calibra-
tion velocities stated in the third column of Table 21.2. Figure 21.26 shows a
typical calibration curve of a hot-wire probe. It was obtained by plotting the
voltage measured at the anemometer outlet as a function of the computed
calibration velocities.
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Fig. 21.26 Calibration curve taken during calibration, in two manners of
representation

The application of hot-wire anemometers to determine the local velocity
of a fluid flow from voltage measurements, is occasionally helped by applying
an analytical expression for the voltage-velocity laws. As already mentioned,
in the velocity range investigated here, this law can be represented by the
modified King law:

E2 = A+BUn (21.31)

The calibration task lies in the determination of the constants A, B and n
from the measured data. This can be done graphically, by plotting the square
of the anemometer output voltage against Un. However, the exponent n is not
known a priori, so that a variation of n is required, until the correct exponent
n yields the measurement points lying on a straight line. The exponent n
depends somewhat on the flow velocity; in a limited velocity range a constant
exponent n can be defined, however. The gradient of the straight line in the
E2 − Un diagram corresponds to the constant B. The voltage value in the
point of intersection of the extrapolated straight line and the E axis provides
the constant A.

The values for the constants A, B, n can also be determined numerically.
In an iteration procedure, the exponent n is changed systematically, and for
each n value the other remaining constants A and B are evaluated from
the calibration data by applying the method of least-squares fit. When a
minimum of the “square of errors” between the analytical expression and the
calibration data is obtained, A, B and n are taken as best fits.

Finally it should be emphasized that the constant A does not agree with
the output voltage of the anemometer at zero velocity. This is understandable,
as two differing mechanisms of heat transfer define this quantity. In the case of
the E2 measurement at U = 0, the heat release by free convection dominates
and in the case of extrapolation of the data to U = 0, the heat release is due
to forced convection.
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21.6 Turbulence Measurements with Hot-Wire
Anemometers

Velocity measurements by means of hot-wire anemometers require a detailed
knowledge of the directional sensitivity of the hot wire. The latter is deter-
mined by direct calibration of the hot wire in a flow with known direction.
Rotation of the wire leads to the velocity-angle representation of the outlet
signal of a hot-wire anemometer shown in Fig. 21.27. However, this informa-
tion is insufficient for using a hot-wire anemometer in turbulent flows, where
the angle of the local velocity changes continuously. For the evaluation of
the resulting output signal, it is necessary to know the velocity-angle depen-
dence of the hot-wire signal analytically. In this way, it is possible to record
the complex connections between turbulent velocity fluctuations and the an-
gle dependence on the HDA output signal quantitatively. Here, it is usual
to introduce an effective cooling velocity which for the velocity components
vertical and parallel to the hot wire can be expressed as follows:

Û2
eff = Û2

per + k2Û2
par , (21.32)

where Ûper is the momentary velocity component vertical to the hot wire
and Upar the momentary parallel component; see, e.g. Hinze [21.1]. Equa-
tion (21.32) is characterized by the fact that the velocity components Uper

and Upar are chosen as components, i.e. the components are expressed rela-
tive to the wire. For the flow measurements it is important, however, that the
velocity components are obtained for the measurements relative to a space-
fixed coordinate system xi. This makes it necessary to express Ûper and Ûpar
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Fig. 21.27 Angle dependence of hot-wire signals
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by the components Ûi. In this respect, for the velocity vector and the position
vector of the hot wire the following holds:

Ûi =
{
Û1, Û2, Û3

}
and !i = {cosα1, cosα2, cosα3} (21.33)

Hence, Û2
per and Û2

par can be given as follows:

U2
per=

[
Û2

1 (cos2 α2+cos2 α3)+Û2
2 (cos2 α1+cos2 α3)+Û2

3 (cos2 α1+cos2 α2)

−2Û1Û2 cosα1 cosα2 − 2Û1Û3 cosα1 cosα3 − 2Û2Û3 cosα2 cosα3

]
(21.34)

and

U2
par =

[
Û2

1 cos2 α1 + Û2
2 cos2 α2 + Û2

3 cos2 α3 + 2Û1Û2 cosα1 cosα2

+ 2Û1Û3 cosα1 cosα2 + 2Û2Û3 cosα2 cosα3

]
(21.35)

From these equations, the effective cooling velocity indicated in (21.32)
can be given as follows:

Û2
eff =

{[
Û2

1

(
k2 cos2 α1+cos2 α2+cos2 α3

)
+ Û2

2

(
cos2 α1+k2 cos2 α2+cos2 α3

)
+Û2

3

(
cos2 α1+cos2 α2+k2 cos2 α3

)]
− 2
(
1−k2

)[
Û1Û2 cos α1 cos α2+Û1Û3 cos α1 cos α3+Û2Û3 cos α1 cos α3

]}
(21.36)

When expressing the momentary value of Ûi = Ui +ui, i.e. when introducing
the mean flow velocity Ui and the turbulent fluctuation velocity ui, i.e.

Û1 = U1 + u1 , Û2 = U2 + u2 , Û3 = U3 + u3 (21.37)

(21.36) can be written as follows:

Û2
eff =

{[(
U2

1 + 2U1u1 + u2
1

) (
k2 cos2 α1 + cos2 α2 + cos2 α3

)
+
(
U2

2 + 2U2u2 + u2
2

) (
cos2 α1 + k2 cos2 α2 + cos2 α3

)
+
(
U2

3 + 2U3u3 + u2
3

) (
cos2 α1 + cos2 α2 + k2 cos2 α3

)]− 2
(
1 − k2

)
× [(U1U2 + U1u2 + U2u1 + u1u2) cosα1 cosα2

+ (U1U3 + U1u3 + U3u1 + u1u3) cosα1 cosα3

+ (U2U3 + U2u3 + U3u2 + u2u3) cosα2 cosα3]} (21.38)

When one now considers the output signal of a hot-wire anemometer, Ê,
this is connected to the effective cooling velocity of the wire as follows:

Ê =
(
A+BÛn

eff

) 1
2

(21.39)
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In order to explain the application of hot-wire anemometry for measurements
in turbulent flows, the following sequence of measurements needs to be con-
sidered, for which in Fig. 21.28 the selected hot-wire positions are shown. For
the equation to be given below, it is assumed that:

Û1 = Q1 + q1, Û2 = q2, Û3 = q3 (21.40)

hold. The position of the hot wire is described by the following directional
vector:

ni = {sinα, cosα, 0}
With this, the effective cooling velocity is computed as:

Û2
eff =

(
Q2

1 + 2Q1q1 + q21
) (
k2 sin2 α+ cos2 α

)
+ q22

+
(
sin2 α+ k2 cos2 α

)
+ q23 + 2

(
1 − k2

)
q1q2 sinα cosα

+ 2
(
1 − k2

)
Q1q2 sinα cosα (21.41)

Rearrangement of the above equation yields:

Ûeff = Q1 cosα
{

1 +
(
k2 tan2 α

)
+ 2
(
1 + k2 tan2 α

) q1
Q1

+ 2
[(

1 − k2
)
tanα

] q2
Q1

+
(
1 + k2 tan2 α

) q21
Q2

1

+
(
k2 + tan2 α

) q22
Q2

1

+
(
1 + tan2 α

) q23
Q2

1

+ 2
[(

1 − k2
)
tanα

] q1q2
Q2

1

} 1
2

(21.42)
By series expansion and after neglecting terms of higher order the following
relationships result:

Ûeff(α) = Q1 cosα
{

1 + k2 1
2

tan2 α− k4 1
8

tan4 α+
(

1 + k2 1
2

tan2 α

− k4 1
8

tan4 α

)
q1
Q1

+
[
tanα− k2 tanα

(
1 +

1
2

tan2 α

)
+ k4 1

2
tan3 α

(
1 +

3
4

tan2 α

)]
q2
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+
(

1
2 cos2 α

− k2 tan2 α

4 cos2 α
+

3
16
k4 tan4 α

cos2 α

)
q23
Q2

1

− 3
8
k4 tan4 α

q21
Q2

1

[
k2

(
1
2

+ tan2 α1 +
1
2

tan2 α

)]
− 3

2
k4 tan2 α

(
1
2

+ tan2 α+
5
8

tan4 α

)
q22
Q2

1

− k4 tan4 α
q31
Q3

1

+
[
−k2

(
1
2

+ tan2 α+
1
2

tan4 α

)
+ k4

(
3
4

tan2 α+
3
4

tan4 α+
9
2

tan6 α

)]
q1q

2
2

Q3
1
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+ k4

(
6 tan3 α− 9

4
tan5 α

)
q2
q21
Q3

1

+
[
k2 tan2 α

4 cos2 α
+ k4 tan4 α

(
3
4

tan2 α+
3
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)]
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q23
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1

+
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k2 tan2 α

2 cos2 α
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3
2
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q2q

2
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1

+
[
−k2 tanα

(
1
2

+ tan2 α+
1
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(
1
2

tanα+
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4

tan3 α+
15
4

tan5 α− 1
16

tan7 α

)]
q32
Q3

1

}
(21.43)

When one introduces (21.43) in (21.39), one obtains for the time-averaged
voltage of a hot-wire anemometer

E2 −A ∼= BQn
1 cosn α

(
1 +

n

2
k2 tan2 α

)
(21.44)

For the momentary value, considering only terms of first order, the following
results:

E2 + 2Ee−A ∼= BQn
1 cosn

α

[
1 +

n

2
k2 tan2 α+ n

(
1 + k2 tan2 α

)
× q1
Q1

+ n
(
1 − k2

)
tanα

q2
Q2

] (21.45)

By subtraction of (21.44) from (21.45) and squaring the difference, one
obtains

[2E]2 e2 ∼= n2B2Q2n
1 cos2n α

[(
1 + k2 tan2 α

)
q1
Q1

+
(
1 − k2

)
tanα q2

Q1

]2 (21.46)

and, hence, the following final equations can be employed for evaluation of
hot-wire anemometer signals:(

E2 −A)2 = B2Q2n
1 cos2n α

(
1 + k2 tan2 α

)
(21.47)

or rewritten(
2E

E2 −A
)2

e2 ∼= n2

[(
q1
Q1

)
+

(
1 − k2

)
tanα(

1 + k2 tan2 α
) ( q2
Q1

)]2

(21.48)

By time-averaging, one obtains(
2E

E2 −A
)2

e2 = n2

⎧⎨⎩
(
q1
Q1

)2

+

[ (
1 − k2

)
tanα(

1 + k2 tan2 α
)]2(

q2
Q1

)2

+
2
(
1 − k2

)
tanα(

1 + k2 tan2 α
) q1q2
Q2

1

} (21.49)
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Three measurements with the angular positions α1 = 0, α2 = π/4 and α3 =
−π/4 yield (

q21
Q2

1

)
=

1
n2

[
2Eα1(
E2

α1
−A)

]2

e2α1
(21.50)

(
q22
Q2

1

)
=

1
2n2

[(
1 + k2

)
(1 − k2)

]2 [(
2Eα2

E2
α2

−A
)2

e2α2
+
(

2Eα3

E2
α3

−A
)2

e2α3

−
(

2Eα1

E2
α1

−A
)2

e2α1

] (21.51)

(
q2q2
Q2

1

)
=

1
n2

(
1 + k2

)
4 (1 − k2)

[(
2Eα2

E2
α2

−A
)2

e2α2
−
(

2Eα3

E2
α3

−A
)2

e2α3

]
(21.52)

In order to obtain also the components in the x1–x3 plane, i.e. in order to
measure q23 and q1q3, one chooses the wire positions in Fig. 21.28. For these
positions, additional information results which can be used for measuring the
subsequent quantity.(

q23
Q2

1

)
=

1
2n2

[(
1 + k2

)
(1 − k2)

]2 [(
2Eα4

E2
α4

−A
)2

e2α4
+
(

2Eα5

E2
α5

−A
)2

e2α5

−
(

2Eα1

E2
α1

−A
)2

e2α1

] (21.53)

Fig. 21.28 Wire positions for sequence of hot-wire measurements
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Fig. 21.29 Straight probe in flow field

(
q1q3
Q2

1

)
=

1
n2

[ (
1 + k2

)
4 (1 − k2)

] [(
2Eα4

E2
α4

−A
)2

e2α4
−
(

2Eα5

E2
α5

−A
)2

e2α5

]
(21.54)

The above evaluation equations can thus be used to measure the mean flow
component Q1 = U1 and the turbulence quantities q21 = u2

1, q
2
2 = u2

2, q
2
3 = u2

3,
q2q1 = u2u1 and q1q3 = u1u3. Measurements of other correlations can be
carried out on the basis of correspondingly derived equations.

A usually employed quantity for describing the turbulence intensity is the
degree of turbulence, Tu. The mean fluctuation velocity

√
u2 contained in it

is determined from the RMS value of the anemometer output voltage (RMS
value)

√
e2 of a straight hot-wire probe (Fig. 21.29), divided by the gradient

of the static calibration curve of the same probe, i.e.

Tu =

√
u2

U
100 (%) =

√
e2

dE
dU
U

100 (%) (21.55)

When basing the computation on the modified King’s law:

E2 = A+BUn (21.56)

differentiation yields
dĒ
dŪ

=
nBŪn−1

2
√
A+BŪn

(21.57)

On inserting in this differential equation once again the above King’s equation
one obtains, together with the theoretical exponents n, the working equation
for determining the turbulence degree

Tu =

√
u2

Ū
=

4 × Ē
√
e2 × 100

Ē2 −A (%) (21.58)

This equation indicates that for small fluctuations of the flow velocity, with
a mean velocity value Ū , the effective value of the velocity fluctuations is
proportional to the RMS value of the voltage fluctuation of the anemometer.
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Fig. 21.30 Notations of the velocity component

As already emphasized, for the determination of the Reynolds momen-
tum transport terms uiuj , one has to employ inclined probes (probe inclined
towards Ū by an angle α mostly α = ±45◦). In this case, the anemome-
ter output voltage is made up of velocity components of contributions of
the longitudinal and lateral velocity components of a space-fixed coordinate
system (Fig. 21.30). Thus it was shown in previous sections above that the
determination of the Reynolds momentum-transport terms becomes possible.

Simplified considerations, yet well suited for an introduction, are possible
on the assumption that the hot wire is sensitive only to the vertical velocity
component U cosα. The velocity components parallel to the hot wire and
vertical on the plane formed of the hot wire and its prongs are neglected, so
that the modified King’s law reads:

Ê2 = A+B
(
Û cos α̂

)n

(21.59)

Differentiation of this equation yields

2Ê dÊ = B cosn αnÛn−1 dÛ −Bn sin α̂ cosn−1
α α̂Ûn dα (21.60)

When the velocity fluctuations of a turbulent flow are small in comparison
with the mean flow velocity U , one can set

dÛ = u, Û dα = v

With this simplifying assumptions, the following results:

2Ê dÊ = nB
(
Û cos α̂

)n 1
Û

(u− v tan α̂) (21.61)

From the modified King’s law, one obtains

B (U cos α̂)n = Ê2 −A, (21.62)

where Ê is once again the anemometer output voltage at the flow velocity Û .
From the latter two equations, it can be derived that
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2Ê
Ê2 −A dÊ =

n

Ū
(u− v tan α̂) (21.63)

with
2Ê

Ê2 −A ≈ 2Ē
Ē2 −A = D and dÊ = e (21.64)

Combining the equations, one obtains

eD =
n

Ū
(u− v tanα) (21.65)

Squared and time-averaged, one obtains the basic equation for the RMS value
of the anemometer output voltage, when positioning the probe in the u, v
plane:

D2e2 =
n2

Ū2

(
u2 + v2 tan2 α− 2uv tan2 α

)
, (21.66)

where
√
e2=RMS value of the anemometer output voltage.

For a measurement with the +α inclined and the −α inclined probe in the
u–v plane (Fig. 21.31), one obtains the following:
+α inclined probe:

D2e21 =
n2

Ū2

(
u2 + v2 tan2 α− 2uv tan2 α

)
(21.67)

−α inclined probe:

D2e22 =
n2

Ū2

(
u2 + v2 tan2 α− 2uv tan2 α

)
(21.68)

The difference of (21.67) and (21.68) produces the turbulent shear stresses
(up to density ρ):

uv

Ū2
tan2

α =
1

4n2
D2
(
e21 − e22

)
(21.69)

The sum yields
u2

Ū2
+
v2

Ū2
tan2 α =

1
2n2

D2
(
e21 + e22

)
(21.70)

With known probe angle α (mostly α = 45◦) and previously measured u2/Ū2

from the above equation, v2/Ū2 can be computed.

U
U

w w

uu

 = 4
 = 4

Fig. 21.31 Measurements with inclined probe in u, v plane
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Fig. 21.32 The measured signals of a linearized anemometer and a sensor sensitive
only against the vertical velocity components

For the normal probe, α = 0◦, the following results from the basic equation,
an already known value:

D2e20 =
n2

Ū2
u2 (21.71)

The still remaining turbulence intensity w2/Ū2 is similar to what is described
above, with the only difference that the probe has to be positioned in the
u,w plane, so that in the above equations v only has to be replaced by w.
In the case of a linearized anemometer, with a voltage output proportional
to U , i.e.

E = SU (21.72)

the evaluation of hot-wire signals is simplified considerably. Assuming further,
on the other hand, that the hot wire is only sensitive to the vertical velocity
components (Fig. 21.32), one arrives at the following connections:

Position 0 : α = 0 e0 = a0u; Ē = a0Ū (21.73)
Position 1 : α1 = 45◦ e1 = au+ bv (21.74)
Position 2 : α2 = −45◦ e2 = au− bv (21.75)

From these three equations, one obtains by squaring and time averaging:

e20 = a20u2 (21.76)

e21 = a2u2 + b2v2 + 2abuv (21.77)

e22 = a2u2 + b2v2 − 2abuv (21.78)

From the RMS values, the flow parameters can be determined:

u2 =
1
a20
e20 (21.79)

v2 =
e21 + e22

2b2
− a

2

b2
u2 (21.80)

uv =
e21 − e22

4ab
(21.81)

When an X-probe is used in the measurements, e1 and e2 are measured
simultaneously with two separate electric systems (Fig. 21.33). For the flow
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Fig. 21.33 Measurement signals of an X-probe

parameters, the following evaluation would also be possible:

u =
1
2a

(e1 + e2) (21.82)

v =
1
2a

(e1 − e2) (21.83)

The output signals are then processed such that the sought flow parameters
can be determined, i.e. the following quantities:

u2 =
1

4a2
(e1 + e2)

2 (21.84)

v2 =
1

4b2
(e1 − e2)2 (21.85)

uv =
1

4ab

(
e21 − e22

)
(21.86)

Quantities that depend on squares of differences of small voltages can only
be determined very inaccurately.

21.7 Laser Doppler Anemometry

21.7.1 Theory of Laser Doppler Anemometry

The physical background of optical velocity measurements by means of laser
light beams, discussed in this section, is the Doppler effect, which leads to
measurable frequency changes of the laser light, that are generated by the
movements of light scattering particles. The prerequisite for the applicability
of optical velocity measurement procedures, therefore, is the existence of ap-
propriate light-scattering particles, which either exist naturally in the flowing
fluid, or need to be added by particle generators. These particles serve as re-
ceiver and transmitter of the incident laser light and bring about, by their
motion, the desired frequency changes of the laser radiation. These frequency
changes are measured and from the measurements one induces the velocities
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Instantaneous velocity
of particle{Ui}
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Fig. 21.34 Considerations of the Doppler shifted frequency of the scattered light

of the particles. This is the basis of optical velocity measurement by means
of laser Doppler anemometry.

In Fig. 21.34, an arrangement of laser beams is shown, which is suited for
explaining the LDA measurement principle. A beam, emanating from a laser-
light source, has the beam direction {!i} = !i and hits a scattering particle
which scatters light in all directions in space, and consequently also in the
directions which are given by the vectors {ki}= ki and {mi} = mi. The
moving scattered particle has the velocity {Ui} = Ui and therefore scatters
light having a Doppler shift of the frequency. In the two directions of the
receivers A and B, given by the direction vectors ki and mi, the frequencies
can be derived as

νA = ν
(
c− Ui!i
c− Uiki

)
and νB = ν

(
c− Ui!i
c− Uimi

)
(21.87)

Here, the particle generating the scattering beams once acts as a moving re-
ceiver of the arriving laser radiation and at the same time also as a moving
transmitter of the scattered radiation, i.e. the Doppler effect has to be ap-
plied twice, in order to deduce the relationships in (21.87). The simultaneous
detection of the two light signals by observers A and B allows one to detect
the frequency difference:

∆ν = νA − νB =
1
λ
Ui (ki −mi) (21.88)

by superposition of the scattered waves. This superposition is carried out
in order to determine the velocity of the scattering particles by a frequency
detectable by available photo detectors.

This superposition of the two waves is carried out since direct measurement
of the frequencies νA and νB, which according to (21.87) already show the
desired velocity dependence, is not possible, as the frequencies to be detected
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Fig. 21.35 Diagram of optical set-up of a two-beam LDA system

are in the range of 1015 Hz. Moreover, there is no detection system having the
frequency resolution to measure relative to 1015 Hz, the frequency of the laser
radiation, the Doppler shift, which is around 2× 105 Hz m−1 s. It is therefore
necessary to determine the velocity-dependent Doppler shift of the laser light
from the frequencies of two scattered light signals that can be superimposed.
This leads to the introduction of the two-beam anemometer, as shown in
Fig. 21.35. A first summary of the early work in Laser Doppler anemometry
is given by Buchhave et al. [21.3].

When applying the above derivations to the optical set-up in Fig. 21.35, one
obtains in each direction given by the vector ki the following two frequencies:

ν1 = ν
[
c− Ui (!1)i

c− Uiki

]
(21.89)

and

ν2 = ν
[
c− Ui (!2)i

c− Uiki

]
(21.90)

From this, the difference frequency can be computed, for c�| Ui |:

∆ν =
1
λ
Ui [(!2)i − (!1)i] (21.91)

This yields for the frequency difference:

∆ν =
1
λ
Ui [(!2)i − (!1)i] =

U⊥2 sinφ
λ

, (21.92)

where λ is the wavelength of the laser light U⊥ the velocity component vertical
to the axis of the optical system and ϕ half the angle between the scattering
beams. This relationship shows that the suspended frequency is independent
of the direction of observation. This is a big advantage when employing this
optical system, since a large collecting aperture of the receiving optical system
can be employed to detect the scattered light signal.



21.7 Laser Doppler Anemometry 697

Laser beam 1

1

2

{ }

{ }
i

i

U{ }
i

Laser beam 2

Fig. 21.36 Visual representation of LDA signals by transparents

In Fig. 21.36, an attempt is made to represent visually, by means of a
method developed by Durst and Stevenson [21.4], the above light superpo-
sition processes which lead to the desired frequency difference, in order to
measure fD = ∆ν. Figure 21.36 shows the two laser beams of the optical
velocity-measuring instrument and also a moving scattering particle which
was assumed to be present in the measurement volume. This figure also
shows scattering waves and the lens of the receiving optical system, which is
needed for detecting the scattering light. When superimposing on the scat-
tered wave of the first laser beam the second scattered wave of the second laser
beam, then, due to the different frequencies of the two scattering beams, the
frequency difference becomes detectable by means of a photodetector. This
detector yields an electrical signal proportional to the light intensity varia-
tions whose frequency is a measure of the velocity of the particle generating
the two scattered waves. The velocity component vertical to the axis of the
optical system, i.e. perpendicular to the bisector of the two laser beams, is
measured. The measured velocity component is located in the plane set up
by the two laser beams.

The above-explained physical processes of optical velocity measurements
by means of laser beams can also be explained by means of the so-called
interference model; see Fig. 21.37. This model starts from the assumption
that in the intersection volume of the two laser beams, interference fringes
are produced, whose fringe distance is given by the geometry of the optical
set-up and the wavelength of the laser light:

∆x =
λ

2 sinϕ
(21.93)
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Fig. 21.37 Visual representation of the interference fringes in the measuring volume
of a laser Doppler anemometer

When a scattered particle is moving through this interference pattern, it
will scatter light whose intensity, for a sufficiently small particle diameter,
is proportional to the local light intensity in the measuring volume. Because
of this, the intensity of the scattered light shows sinusoidal fluctuations that
are caused by the motion of the particle through the interference pattern.
When the particle has a velocity component U⊥ perpendicular to the plane
representing the interference fringes, the moving particle needs the following
time to cross a single fringe:

∆t =
∆x

U⊥
(21.94)

This brings about a signal frequency which can be expressed as follows:

f =
1
∆t

=
U⊥2 sinϕ

λ
(21.95)

These considerations lead to the same final equation as was derived above
with the help of a Doppler model. In Fig. 21.37, in turn, the modeling of
Durst and Stevenson [21.4] is included, in order to explain the interference
pattern in the measuring volume. Parallel interference fringes are present in
the crossing region of the two incident beams, as explained above, and they
are made visible.

To understand fully the signals occurring in optical velocity measurements,
attention has to be given also to the fact that the incident beams have a
finite expansion perpendicular to their direction of propagation and that their
intensity distribution over the cross-section shows a Gaussian distribution.
When taking this into account, it is understandable that a particle, that
passes through the center of the measuring volume of an LDA system, brings
about a signal as shown in Fig. 21.37.

When a particle is moving through the measuring volume of an LDA
system, a little away from the center, due to the locally existing intensity
differences of the two crossing beams, signals are to be expected as indicated
in Fig. 21.38. A signal which originates from a particle that moved through
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Fig. 21.38 Analytical representation of LDA signals
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Fig. 21.39 Different modulation depths with laser Doppler signals

the center of the volume, showing a good signal modulation, serves for com-
parison. Here, the two beams are located in the same plane, and they can
therefore be considered as overlapping well. Away from the center the parti-
cle crosses first one beam, then the overlapping area of the two beams and
finally the area of the second beam. The LDA signal in Fig. 21.39 reflects this
final form of the signal.

The influence of the particle size is shown in Fig. 21.39. When particles are
very small, they do not integrate the interference pattern in the measurement
of volume, i.e. the modulation depth of the intensity distribution of the inter-
ference pattern is fully reflected in the scattering signal of a particle. In this
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way a signal forms as is shown by the LDA-signal in (A). When the diameter
of a particle is increased, a signal shape develops as sketched in (B). When
the particle corresponds to the size of the distance of the interference fringes,
it is possible that the modulation disappears completely (C). In Fig. 21.39,
equations are given that show these relationships, for a particle assumed to
be square for the considerations carried out here. This form of the particles
is sketched and it is assumed to be moving through the interference pattern.

As far as the determination of the particle velocity direction is concerned,
some additional explanations are necessary. The explanations of optical
velocity measurements given so far, do not permit different signals to be gen-
erated for particles with the same velocity, but different velocity directions.
Therefore, a particle that moves in one direction through the interference
pattern in Fig. 21.37, will yield the same signal as a particle moving in the
opposite direction, having the same velocity. If, however, one changes the
frequency of a laser beam by a certain amount, this leads to a moving in-
terference pattern in the measuring volume. This can be explained in the
simplest way, when looking at the optical system in Fig. 21.40. It consists of
a diffraction grating, which is employed for splitting one laser beam. The two
beams of first order are made, with the help of a lens, to cross one another in
the measuring volume. There, in turn, one can imagine the interference-fringe
pattern required for the laser Doppler measurements. This means that the
coherence of the two crossing laser beams is maintained.

The interference fringes forming in the measuring volume can be viewed
as an image of the grid lines present on the diffraction grating, and with this
it can be understood that a rotation of the diffraction grating brings about
a motion of the interference fringes in the measuring volume. Here, emphasis
has to be laid on the fact that it is not the entire measuring volume that
moves, but only the intensity changes continuously in the measuring volume
with time. This means that only the interference pattern moves and not the
measuring volume. When a particle is now moving in the same direction as
the interference pattern, a smaller frequency is measured than with a motion
directed against the motion of the frequency pattern. When one knows the

Lens Rotating
grating Pinhole

Lens

Lens

Measuring volume

Photo detector

l1 l2

Pinhole

Fig. 21.40 Diagram of a laser Doppler system based on a rotating diffraction grating
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motion velocity of the interference fringes, which is given by the rotation of
the diffraction grating, the relative motion can be determined and, hence, also
the sign of the measured velocity component. Simple and easy to understand
introductions into the LDA-measuring technique are provided in references
[2.5] and [2.7].

21.7.2 Optical Systems for Laser Doppler
Measurements

The insights gained in the first decade of developments in laser Doppler
anemometry, have led to different optical setups for functioning laser Doppler
systems. All of them can be employed for contact-free velocity measure-
ments in flowing fluids. Many available optical systems can be subdivided
into three main groups which nowadays are designated as reference-beam
anemometer, two-beam anemometer and two-scattering-beam anemometer;
see Fig. 21.41. Practical employment of these instruments has shown that the
first LDA system shown above, is suitable especially for measurements in
very soiled fluids, where high particle concentrations are present and multi-
ple particles are present in the measuring volume. The second system, the
two-beam anemometer, is particularly suited for measurements, where the
particle concentration is such that, on average, there is less than one particle
in the measuring volume. This can be expected in all liquid flows and gas
flows that appear completely transparent to the human eye.

Fluid flow

Integrated
optical system

Fluid flow

Fluid flow

PM

PM

PM

Integrated
optical system

Integrated
optical system

Laser

Lens

Laser

Reference beam anemometer

Two-beam anemometer

Two scattered beam anemometer

Measuring
volume

Collecting lens

Laser light

Mask with 
adjustable
slotCollected light 

detected by the 
photodetector

Lens

Lens

Lens

Fig. 21.41 Reference-beam, two-beam and two-scattering-beam optical systems for
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Fig. 21.42 Optical elements of a two-beam laser Doppler anemometer

When a laser beam passes through a fluid, the laser beam generally lights
up intensely and this indicates that there are particles in a range that can-
not be observed by the human eye and which are about a few µm in size.
These particles are suited for velocity measurements with the help of a laser
Doppler system and the two-beam method is particularly suited for reliable
measurements. The two-scattering laser beam method needs to be employed
only in special cases, when measurements of two velocity components have
to be carried out with simple means.

In Fig. 21.42, the essential elements of a two-beam LDA system are shown.
From this diagram, it can be deduced that the optical transmitter system
is essentially composed of the laser light source and a beam-splitter unit,
followed by a lens. A frequency-shifting unit, consisting of Bragg cells, is also
included for measuring the direction of the flow. For the collection of the light,
another lens and a photomultiplier, with an appropriate pinhole, are required.
In the intersection region of the two beams of this optical set-up, one can
imagine that the interference fringes, explained in Sect. 21.7.1, form for the
actual measurements. To obtain good LDA signals, it is essential that these
interference fringes are fully modulated, i.e. that intensity becomes zero in the
dark part of the interference fringe pattern. This can be achieved by matching
the intensities of the two beams, and in addition by employing optimal optical
systems, i.e. optical systems with the same optical pathlengths of the two
beams. This latter requirement yields in the measuring volume to zero phase
differences of the superimposed laser-light waves.

For precise laser Doppler measurements, it is necessary to choose the cor-
rect laser. As most lasers have an outlet showing several axial modes, it
is necessary to keep the optical pathlengths of the two laser beams of the
system to be almost the same. This is guaranteed by employing an optical
beam-splitting prism, as indicated in Fig. 21.42. This prism has further ad-
vantages that recommend it for employment for practical measurements. It
is insensitive to adjustment and, hence, rotation of the prism in the plane,
as shown in Fig. 21.42, does not lead to a directional change of the parallel
beams leaving the prism. These beams are always parallel to the incident
beam and always have the same distance in relation to the optical axis of the
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Fig. 21.43 Sketch of laser beams to explain the Gaussian beam behavior in optical
systems

system. By choosing the prism shown in Fig. 21.42, LDA instruments become
insensitive to adjustment and are suited for practical flow investigations.

Laser beams show a behavior that is usually referred to as that of a Gaus-
sian beam (Fig. 21.43). For f → ∞ and ρL → ∞, one can derive from
relationships, as indicated by Durst and Stevenson [21.4], analytical expres-
sions for the variation of the wave-front curvature R(z) and the beam radius
s(z):

R (z) = z

[
1 +
(
πω2

0

λz

)2
]

and s (z) = ω0

[
1 +
(
λz

πω2
0

)2
] 1

2

(21.96)

With the help of these equations, the radius of the two beams and the wave-
front curvature at the lens of an LDA system can be computed:

σL = ω0

[
1 +
(
λz

πω2
0

)2
] 1

2

(21.97)

and

ρL = δ

[
1 +
(
πω2

0

λσ

)2
]

(21.98)

The expression for the light intensity is

Ip (r) =
2
π

(
πω0

fλ

)2

PL exp
(
−2r2

s2

)
(21.99)
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The influence of the properties of focused Gaussian beams on the mode
of operation of laser Doppler anemometers was investigated by Durst and
Stevenson [21.4] and Hanson [21.2]. When using a single lens to focus the
two incident beams, as is usually the case in two-beam systems, the axes of
the beams cross one another in the focal region of the lens. When the beam
waists are not adjusted to this region, this has an increased measuring volume
as a consequence. In addition, it could be shown by Durst and Stevenson [21.4]
that the curvature of the wave fronts, which occurs inside the crossing region
of the two beams, can lead to significant changes of the Doppler frequency,
when the particles traverse different parts of the measuring volume. If prop-
erly set up LDA systems are employed, the mentioned effects are often very
small and they were usually ignored in fluid flow measurements with laser
Doppler anemometers, either because they were not known, or because the
advantages of a set-up with a single lens outweighed these small discrepan-
cies. For some applications, e.g. in laser Doppler measurements over large
distances, investigations in extended flow fields, etc., the indicated errors can
be of significance, so that appropriate steps have to be taken to ensure an
optimal beam intersection region. This can be achieved in two ways:

• The waists of the two laser beams are laid into the back focal region of
the transmitter lens of the LDA optical system.

• An additional optical component, consisting of a convex and a concave
lens, is put between the laser and the lens of the LDA optical system. This
system is used for choosing freely the position of the beam contraction
with regard to the main lens of the optical system.

The above means that, to carry out now reliable LDA measurements, one
has to ensure that the beams in the measuring volume of a laser Doppler
anemometer are focused in such a way that we obtain parallel interference
fringes, with a high modulation depth, i.e. the minimum of the light intensity
should almost be zero. As far as the optical set-up of an LDA system is
concerned, the following should be mentioned:

• The lens in front of the photodetector has to be chosen such that the
equation:

dph =
NphMλ

2 sinϕ
(21.100)

holds, where dph is the number of interference fringes which the photo
multiplier sees,M is the optical enlarging relation of the detection system
(M = b/a), λ the wavelength of the laser light and ϕ is half the angle
between the two incident laser beams.

The diameter of the effective measuring volume can then be calculated as:

dm =
dph

M
= ∆xNph =

λNph

2 sinϕ
(21.101)
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This effective diameter of the measuring volume has to be smaller than the
diameter of the cross-sectional region of the two laser beams of the incident
optical system:

din =
ds

cosϕ
=

5
π
λ

(
f1
D1

)
1

cosϕ
(21.102)

The above equations are equivalent to the requirement that the num-
ber of interference fringes in the intersection area (Nfr) has to be larger
than the number of the interference fringes Nph which can be seen by the
photodetector. A guideline for this relation is:

Nfr ≈ 5
4
Nph (21.103)

With this, one ensures that the outer area of the interference-fringe pattern,
with its bad signal quality, does not have an influence on the carried out LDA
measurements. A summary of the above equations yields for the number of
fringes within the intersection region of an LDA optical system the following
equation:

Nfr ≈ din

∆x
=

10
π

f1
D1

tanϕ (21.104)

Details of the above considerations can be found in the book by Durst
et al. [21.8]. Multidimensional laser Doppler measurements are possible, but
one pair of beams is required per velocity component, i.e. per measured flow
direction. An optical system which allows one to carry out such measurements
with a two-beam configuration is shown in Fig. 21.44.

In the optical systems represented in Fig. 21.44, the Bragg cells are not in-
cluded. When these are introduced into the two pairs of beams, measurements
with frequency shifts in both pairs of the beams, for two-component measure-
ments, are possible, i.e. the directional recognition of the flow velocities can
be measured at the same time for the two velocity components.

21.7.3 Electronic Systems for Laser Doppler
Measurements

When a scattered particle is traversing the measuring volume of a laser
Doppler optical system, and when the scattered light resulting from this
particle is detected by a photomultiplier, a signal results at the outlet of the
photomultiplier as shown in Fig. 21.45. This signal comprises a low-frequency
component resulting from the Gauss intensity distribution of the laser light.
Furthermore, there is a high-frequency portion that is an inherent part of
the laser Doppler signal. The entire signal thus has a frequency spectrum as
is also shown in Fig. 21.45. It is the high-frequency component of the signal
which is of interest for velocity measurements by LDA.
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In principle, it would be sufficient, for determining the Doppler frequency
of a signal originating from a scattered particle, to measure the frequency by
means of a spectrum analyser. The most important components of such an
instrument are indicated in Fig. 21.46. This figure shows a block diagram of
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the most essential components for scanning the frequency range covered by
the LDA photodetector signal.

In practice, scanning of the expected Doppler frequency range is done
by a filter whose middle frequency is adjusted to a fixed frequency f0. For
detection of the Doppler frequency, the Doppler signal sk(t) is mixed with
the signal cos 2πf0St of a voltage-controlled oscillator, and in this way the
Doppler frequency range is scanned by varying the oscillator frequency. When
the signal of the kth particle is represented by:

sk(t) = ak(t) cos(2πνkt+ φk) (21.105)

for the momentary value of the mixer outlet (an analogue multiplier), the
following signal holds:

sM (t) = ak(t) cos(2πνkt+ φk) cos 2πf0st (21.106)

The amplitude of the mixed signal is proportional to the amplitude of the
photodetector signal and has frequency components f0S ± νk.

Most of the spectrum analysers choose for displacement of the detected
frequency, for their unambiguous operation, the lower of the two frequencies.
When the Doppler frequency to be detected satisfies the conditions

f0 − ∆f02
≤ f0s − νk ≤ f0 +

∆f0
2

(21.107)

a signal passes the filter and reaches the squaring and integrating part of
the electronics. After squaring and smoothing the frequency-analyser output
signal, the result is recorded.
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The voltage-controlled oscillator is driven by a sawtooth voltage, so that
the frequency of the signal, transmitted by the mixer, increases linearly with
time. As a consequence, the mixture of the Doppler frequencies νk and os-
cillator frequency, which contribute to the output signal of the analyser, also
increases. When the same sawtooth voltage is used for triggering the x-basis
of a plotter, the Doppler spectrum detected by the frequency analyser can
be plotted. The calibration of the x-axis with respect to frequency is carried
out with the voltage output of a suitable oscillator.

In order to be able also to carry out time-resolved laser Doppler measure-
ments, so-called frequency tracking modulators can be employed. In contrast
to the frequency analyser described above, they permit real-time detection
of the Doppler signal. Frequency tracking demodulation yields an analogue
signal whose voltage is always proportional to the component of the local
fluid velocity which the optical system detects.

Another part of the signal processing with analogous instruments provides
the statistical description of the flow velocity, e.g. via the mean velocity and
the components of the fluctuation velocity, and also quantities which can-
not be obtained by a frequency analysis, such as the turbulence spectrum
and the autocorrelation function of the velocities. Difficulties result, how-
ever, from the non-ideal mode of operation of a tracker. They are caused, e.g.
by the often discontinuous signal of the photodetector, which comes from the
fact that only single scattered particles are traversing the measuring volume.
With this demodulated output signal, one does not receive, at every point
in time, information on the momentary fluid motion. Velocity measurements
can only be carried out when a scattering particle is in the measuring vol-
ume. The intermittent measurements can lead to erroneous velocity statistics.
Fluctuations of the recorded Doppler frequencies can also be caused by other
reasons than those of velocity fluctuations in the fluid (e.g. by broadening of
the frequency spectrum due to the presence of the particles in the measuring
volume for finite time). The statistical evaluation of the measurements, by
the combination of an anemometer and a tracker, is made more difficult.

The essential components of a frequency tracking demodulator are repre-
sented in Fig. 21.47. This figure shows that the frequency analyzer, discussed
before, and also the tracker, contain three equal components [frequency mixer,
band-pass filter and voltage-controlled oscillator (VCO)]. Thus the above
explanations, which deal with the properties of the bandpass filter and the
mode of operation of the mixer, are also of significance for the present section
on frequency trackers. The integrator of the tracker corresponds to the time
averaging unit of the frequency analyser. For the discriminator, there is no
comparable component in the frequency analyser. The tracker has, moreover,
in contrast to the frequency analyser, a closed control circuit which drives
the oscillator.

The output signal of the photodetector of an LDA-optical system, similarly
to the processing in a frequency analyser, is mixed with the output signal of
the VCO. Here a signal sM (t), results which is led through a narrow bandpass
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Fig. 21.47 Functional principle for offset-heterodyne tracker

filter. Thus, only those signal frequencies of the LDA signal, plus the VCO, are
detected, which are located near the center frequency f0 of the filter. Because
of the small bandwidth of the bandpass filter (ZF-filter), the signal-to-noise
ratio (SNR) of the LDA signal to be detected, improves considerably due to
the narrowness of the band pass filter. A certain improvement of the signal-
to-noise ratio can also be achieved by a filter in front of the mixer. However,
one has to do this filtering with a filter bandwidth which is broad in relation
to the Doppler frequency, in order to avoid attenuation of the amplitude of
the Doppler signal in turbulent flows. The frequency discriminator generates
a voltage which triggers the VCO in such a way that the modifications of the
Doppler frequency by the VCO are compensated. This is explained below.
The integrator controls the transient behavior due to individual LDA signals
and the stability of the control circuit.

Trackers which operate with a narrow bandpass filter around the cen-
ter frequency f0 (see Fig. 21.47) function according to the offset-heterodyne
principle. In laser Doppler anemometry, autodyne trackers have also been
developed, of the kind shown in Fig. 21.48.

Whatever the actual working principles of the LDA frequency tracking
demodulators are, they bring about LDA signals as sketched in Fig. 21.49.
In this figure the individual Doppler bursts are shown as high-pass filtered
signals, which serve as an input signal into the tracker. Every time the sig-
nal amplitude of an individual LDA signal exceeds a certain threshold value,
the signal is fed to the tracker which then measures the frequency and thus
changes the output voltage of the preceding signal. The output signal of the
tracker therefore has the form of steps, each step being achieved by a new
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measurement of the laser Doppler frequency. This tracker output signal, in
the form of steps along the time axis, must not be considered as being dis-
advantageous for measuring the statistically averaged properties of a flow.
The stepwise changes of velocity information take place, with sufficient con-
centration of particles, in time intervals which are much smaller than the
characteristic times of the flow, i.e. the time scales at which velocity changes
occur in the flow. It is therefore possible to integrate over several of the
stepwise frequency changes by appropriate electronic devices, to achieve an
averaged output signal for the actual velocity measurements. It is important
to take this pre-averaging into account for precise Doppler measurements.

Finally, a signal-processing system that is extensively employed in laser
Doppler anemometry, the so-called time period measurement system, has to
be explained. Measurement systems of this kind are known as laser Doppler
counters and are extensively applied for LDA measurements. They make use
of signals which, after the photodetector, are fed, often after suitable ampli-
fication, to a bandpass filter. It is here, where the actual Doppler frequency
separation from the low-frequency part of the signal takes place. The resultant
signal is sketched at the top of Fig. 21.50. It is processed further in a special
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electronic system, in order to obtain a sequence of pulses which are also il-
lustrated in Fig. 21.50. The entire signal processing of the counter-electronics
functions as follows:

• The symmetrical signal produced by the input stage of the counter-system
is processed by an amplitude discriminator and a zero-position detector
to generate pulse sequences, which are fed to the several logic mod-
ules to check the validity of the frequency information. One possibility
for generating the required pulse sequences that allow precise frequency
measurements, is shown in Fig. 21.50. In practice, this pulse generation
has proven to be a successful method for the production of the precise
information on Doppler frequency.

• The signals of the two-level detectors (Schmitt triggers) and one zero-
position detector are fed to an appropriate logic circuit to generate the
pulse chains 1, 2 and 3. When the Doppler signal crosses the upper trigger
level, it generates a Schmitt trigger output signal, which is used to provide
a switch signal for a logic circuit whose output is then set to one. The
zero-passage detector signal puts this output back to zero. The changing
influence of the signals from the upper level detector and the zero-passage
detector supplies pulse sequence 1, if the appropriate pulse passes, i.e. the
LDA signal amplitude is satisfactory.

• The pulse sequence 2 is generated by the zero-passage detector only, by
switching the output of an appropriate logic module in such a way that
it switches to and fro between one and zero. A combination of the signals
of the zero-passage detector with those of the Schmitt trigger of the lower
level recognition, yields pulse sequence 3. The output of an appropriate
logic module is set by the lower trigger level and put back by the zero-
passage detector.

• If all three signal chains are present, one will obtain valid information and
use those zero passages for which either output 1 or output 3 is set. In this
way, the influence of multiple zero passages is suppressed for the largest
part, i.e. good LDA measurements are obtained.
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• The gate for the measurement of the duration of an LDA signal opens
with the first valid zero passage and closes one zero passage after the
pulse for which output 1 or output 3 was set. This corresponds to three
zero passages at the end of a Doppler signal, which no longer traverse the
upper or lower trigger level.

The above points show that it is possible, with the aid of counter-systems, to
determine the number of zero passages of an LDA signal, and also the length
of time during which the measured number of pulses is available. With this,
a period-time measurement is possible, which leads to the desired Doppler
frequency of the LDA signals. For each individual LDA signal arriving at
the entrance of the counter-electronics with sufficiently high amplitude, a
Doppler frequency can therefore be determined. The latter is now processed
further, to obtain mean frequencies and standard deviations.

The measured individual frequencies of laser Doppler signals correspond
to one velocity component, i.e. to Uj(xi, t). These individual measurements
have now to be processed further, in order to determine the mean frequency
and the RMS values of the existing deviations from the mean frequency:

< fD >= lim
N→∞

1
N

N∑
k=1

(fD)k (21.108)

and
< ∆f2

D >= lim
N→∞

1
N

∑
[(fD)k − < fD >]2 (21.109)

These averaged quantities can be determined easily, as the knowledge of the
individual frequencies, required for averaging, is known from the Doppler
measurements. However, there is a difference between the time-averaged
quantities which are of importance in turbulence, and the particle-averaged
flow quantities which can be determined from (21.108) and (21.109). This can
be explained in a simple way by means of a sketch of a temporal hypothetical
flow, as shown in Fig. 21.51.

This flow shows a mean motion which is generated by the horizontally
operating piston. Additional flows occur, which once show positively, once
negatively imposed step changes by the motion of the vertically operating
piston. This leads, at the measurement point, to a constant mean velocity
with superimposed step-like flow changes.

Assuming an equal distribution of the scattered particles, it is apparent
that the number of particles which pass the measuring volume depends on
the actual flow velocity, and this can be expressed as follows:

N = cv | U⊥ || Av | (21.110)

The number of the measured particles is proportional to the concentration
of the particles in the fluid, and proportional to the flow velocity vertical
to the surface of the control volume, and of course also proportional to the
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Fig. 21.51 Dependence of the particle arrival in the measuring volume on the flow
velocity

surface itself. This makes it understandable why in Fig. 21.51 more particles
appear at higher velocities than at lower velocities. This leads to a value of
the particle-averaged velocity that is higher than the fluid time mean velocity,
as indicated in Fig. 21.51. This fact was often called a “biasing error” in Laser
Doppler anemometry and was presented as a principal problem of the LDA
measurement technique. The above explanations make it clear that this only
has to do with the fact that one usually determines ensemble-mean values,
due to their easy determinability from the LDA signals. However, in most
fluid flow studies mean values in terms of time, which are of importance in
turbulence research, need to be measured. This difference between ensemble
and time averages represents the biasing. This leads to the differences between
the mean values with respect to time and with respect to particles.

In fluid mechanics, it is usual to determine time averages, e.g. for
determining mean quantities of turbulent flows, which are computed as
follows:

fD = lim
T→∞

1
T

T∫
0

fD dt and ∆f2
D = lim

T→∞
1
T

T∫
0

∆f2
D dt, (21.111)

where∆fD = (fD(t)−fD). The above integration can be carried out digitally
for irregular scanning intervals ∆tk, as shown in Fig. 21.52. This leads to the
following general equations:
For the time average for ∆tk �= constant:

fD = lim
N→∞

N∑
k=1

(fD)k∆tk

N∑
k=1

∆tk

with T =
N∑

k=1

∆tk (21.112)
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Fig. 21.52 Determination of the time average of the Doppler frequency for ∆Tk =
constant and ∆tk 
= constant

fD = lim
N→∞

1
N

N∑
k=1

(fD)k with T = N∆t (21.113)

and for the moments which describe the divergence from the mean value the
integration holds that

∆fn
D = lim

N→∞

N∑
k=1

[
(fD)k − f̄D

]n
∆tk

N∑
k=1

∆tk

(21.114)

For a stationary random process, the above equations for mean-value deter-
mination conserve their validity for all scanning intervals ∆tk, provided that
the scanning process and the scanned quantity (Doppler frequency) are not
correlated with one another. The dissolution of a certain frequency in a flow
requires that the ∆tk values are small compared with the time measure of
the flow to be registered.

When the scanning intervals ∆tk are chosen to be constant, i.e. ∆tk =
∆t = constant, the above equations simplify to

fD = lim
N→∞

N∑
k=1

(fD)k∆tk

N∑
k=1

∆tk

= lim
N→∞

1
N

N∑
k=1

fD =< fD > (21.115)
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∆fn
D = lim

N→∞

N∑
k=1

[
(fD)k − fD

]n
∆tk

N∑
k=1

∆tk

= lim
N→∞

1
N

N∑
k=1

[
(fD)k − fD

]n
=< fn

D >

(21.116)

In accordance with this, the time-averaged and the ensemble-averaged prop-
erties of a flow agree with one another in the special case that constant
averaging time intervals are chosen. It is therefore necessary to process the ob-
tained Doppler signals accordingly, so that one corresponding Doppler signal
is attributed to a particular constant time interval ∆t.

The above explanations of the behavior of LDA signals have shown that
the laser Doppler signals occur at irregular time intervals, so that irregular
scanning intervals are given by the Doppler signals. When this is not taken
into account, the time-averaged Doppler frequency and the corresponding
ensemble-averaged value can differ from one another. This is not an error
of the measurement technique, but a characteristic of the chosen averaging
process. The differences that occur are clear and follow from the definitions of
the mean values of ensemble and time. Hence, there are no principle problems
to measure biasing free averaged velocities in fluid flows.

21.7.4 Execution of LDA-Measurements:
One-Dimensional LDA Systems

In the preceding sections on LDA signal processing, LDA measurements were
presented without entering into the data obtained by the evaluation, in order
to obtain from the measured Doppler frequencies the desired information
on the flow field. It was shown that laser Doppler anemometers are linear
velocity measurement value sensors with a frequency response that is given
by the following equation:

f̂D =
1
λ
Ûini, (21.117)

where λ corresponds to the wavelength of the chosen laser radiation, Ûi to
the momentary velocity vector and (n)i to the transformation vector of the
anemometer. For a stable coordinate system xi, the two vectors of the above
equation can be expressed in the following form:(
Û
)

i
= (U1, U2, U3) and (n)i = 2 sinϕ (cosα1, cosα2, cosα3), (21.118)

where ϕ is half the angle between the light beams and α1, α2 and α3 are the
angles which the vector (n)i forms with the coordinate axes (Fig. 21.53). The
momentary velocity components and the momentary signal frequency can be
expressed as follows:

Ûi = Ui + ui, f̂D = fD +∆fD (21.119)
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Fig. 21.53 Important parameters for the evaluation of LDA signals in measurements
with one-dimensional LDA measurement systems

By combining the above equations, the following relation results:(
f̄D +∆fD

)
=

2 sinϕ
λ

(U1 cosα1 + U2 cosα2 + U3 cosα3

+ u1 cosα1 + u2 cosα2 + u3 cosα3)
(21.120)

This equation represents the basic relation for the evaluation of fluid
mechanical quantities from frequency measurements of laser Doppler signals.

On carrying out a time average for (21.120), one obtains the following
basic equation for the determination of the three velocity components U1, U2

and U3. To be able to measure all three components with a one-dimensional
LDA system, measurements in three different directions, α1, α2, and α3 are
required:

f̄D =
2 sinϕ
λ

(U1 cos a1 + U2 cos a2 + U3 cos a3). (21.121)

On deducing (21.120) from (21.121), one obtains the equation for the diver-
gence of the frequency from the averaged frequency. With this an equation
can be derived for the standard divergence from the Doppler frequency ∆f2

D:

¯∆f2
D =

4 sin2 ϕ

λ2

[
ū2

1 cos2 a1 + ū2
2 cos2 a2 + Ū2

3 cos2 a3
+ 2 ( ¯u1u2 cos a1 cos a2 + ¯u1u3 cos a1 cos a3 + ¯u2u3 cos a2 cos a3) ]

(21.122)

The measurement of the standard divergences of the signal frequencies for
six different directions of the sensitivity vector (nj)i (j = 1, 2, . . . , 6) makes
possible the evaluation of all correlations uiuj of second order.

Similar evaluating equations can be derived for the correlations of higher
order:

∆fn
D =

(
2 sinϕ
λ

)n

[u1 cos a1 + u2 cos a2 + u3 cos a3]
n

The complexity of the evaluating equations reduces, when preferential direc-
tions are given for the transformation vectors (n)i, e.g. parallel to the x1-axis
(n)i = (1, 0, 0):

U1 =
λfD

2 sinϕ
; u2

1 =
¯∆f2

Dλ
2

4 sin2 ϕ
; un

1 =
∆fn

Dλ
n

2n sinn ϕ
(21.123)
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With this, the evaluation of the measurements which are carried out with a
one-dimensional optic, is similar to the measurements with a single hot wire.
However, laser Doppler anemometers are characterized by a precise Cosine-
law response behavior and therefore the evaluating equations are easier. More
details about Laser Doppler anemometry can be found in a recent published
book by Albrecht et al. [21.10] with details about the physics of the measuring
technique and good descriptions about LDA-applications.
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