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Preface

This book is about finite elements and Green’s functions, two seemingly very
different topics, one representing modern numerical analysis and the other repre-
senting the old way of doing it, slowly converging infinite sums and strange
looking integrals—none of which will appear in this book—and limited in its
scope to linear problems. But the opposite is true, finite elements and Green’s
functions have very many things in common, may we just mention the fact that the
columns of the inverse stiffness matrix are the discrete Green’s functions of the
nodal values. To a young engineer who is easily fascinated by all the powerful
tools and machinery he has available today it may come as a surprise that the finite
element method basically can be seen as a Green’s function method and that when
it is applied to nonlinear problems many of these features shine through as the
success of goal-oriented adaptive refinement proves conclusively. So in some
sense a relic of the old past is the driving force in the computer programs we use
today.

The Green’s functions are so to speak the physical basis functions, the ‘‘true’’
basis functions of a problem and finite element analysis is all about approximating
these function with nodal basis functions. These discrete Green’s functions form
the machinery behind the finite element code, they produce the output the engineer
sees on the screen.

In 1999 the author attended an IUTAM-symposium on boundary elements in
Cracow, Poland. At lunch Wolfgang Wendland mentioned that Fehmi Çirak in
Stuttgart had applied ‘‘Rannacher’s method’’ to an engineering problem in shell
theory [1], that Çirak had traveled for one month twice a week to Heidelberg for
private lessons by Rannacher on goal-oriented adaptive refinement with Green’s
functions.

Later Ekkehard Ramm, Çiraks thesis adviser, discovered that the key equation
had already been published by Hugh Tottenham in Southampton as early as 1970 [2],
though hardly anyone noticed this at that time or seemingly understood the central
message this equation contained—otherwise we could have had goal-oriented
adaptive refinement as early as 1970.
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As an aside, probably there are also other precursors because in mathematics
Green’s functions are the tool of choice when it comes to pointwise estimates [3].
The intention of this (unproven) remark is not to diminish the pioneering insight of
Hugh Tottenham.

The conference in Cracow was the first time the author heard about goal-
oriented refinement. After returning home and reading Çirak’s thesis it suddenly
dawned on him that Green’s functions were not just a tool for pointwise estimates
but that they were the gist of the matter: the finite element method itself was a
Green’s function method—from the start.

Seemingly, there is no need to draw circles around the point loads, to soften
their impact, to avoid the infinite energy associated with most Green’s functions.
The algorithm itself does not care with the consequence that the machinery in an
finite element program, so to speak, consists of kernel functions which are the
solutions of ill-posed problems. One is reminded of the success of the X-FEM
which also does everything ‘‘wrong’’.

A first tentative paper was published [4], and in a later book on Structural
Analysis with Finite Elements we and our co-author Casimir Katz chartered the
new found territory in all directions [5]. Suddenly we could explain things from a
new perspective, point at possible difficulties due to the complex nature of the
influence functions. With each day the two authors learnt something new. Now
after more than 10 years have elapsed since the conference in Cracow the current
author has the feeling that it is time to treat the subject more systematically, to
summarize the main points, and to trace out the main features. This is why we have
written this book.

It is the attempt of an engineer to come to terms with the subject of Green’s
functions and finite elements. We are well aware that a more elaborate exposition
of this topic would have been desirable but we hope that what the book misses in
rigor and exactness is made up by an ample provision of engineering examples and
applications.

Kassel, Germany, March 2012 Friedel Hartmann
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Chapter 1
Introduction

A Green’s function is the response of a medium to a point source and because any
load or charge can be considered a sum of infinitely many such point sources the
Green’s functions play a fundamental role in linear systems. Green’s functions can be
considered “physically based basis functions adapted to a particular geometry and
particular constraints” [1], and what we do in FE-analysis is that we approximate
these physical basis functions with piecewise polynomials. This is all there is to
FE-analysis of linear problems—of course put aside the delicate question of how
to choose the best approximate. Testimony to this tight connection between finite
elements and potential theory is the fact that the columns of the inverse stiffness
matrix are the discrete Green’s functions of the nodal values.

Any (or nearly any) value an FE-program outputs has been processed by these
numerical influence functions and the kernel in these influence functions are the
approximate Green’s functions pieced together from the nodal basis functions.

The better an FE-mesh can react to the point loads which generate the Green’s
functions the better the accuracy of the FE-solution. That is the shapes a mesh can
assume, its kinematics, the quality of the Green’s functions which can be generated
on the mesh, ultimately determines the quality of an FE-solution.

And because any Green’s function strongly depends on the model parameters, the
slightest change in a coefficient, say on a stretch of only 0.1 m, will affect the whole
function, the sensitivities of a model can be made visible by plotting the updated
Green’s function and so the user gets an impression of the difficulties involved in
evaluating certain functionals. The machinery, so to speak, which the FE-program
uses, can be laid bare. FE-analysis becomes transparent, becomes visual.

What is nice about Green’s functions and finite elements is that the calculation of
Green’s functions is easy to implement in any existing code. Detailed instructions
on how to calculate influence functions with FE-programs close the chapter.

F. Hartmann, Green’s Functions and Finite Elements, 1
DOI: 10.1007/978-3-642-29523-2_1, © Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction

1.1 What are Green’s Functions?

A Green’s function G( y, x) is a function that allows to solve boundary value problems
such as

−Δu = −
(
∂2u

∂x2
1

+ ∂2u

∂x2
2

)
= p on � u = 0 on Γ (the edge) (1.1)

by an integral

u(x) =
∫
�

G( y, x) p( y) dΩ y , (1.2)

that is the Green’s function is the kernel of the inverse operator which here is an
integral operator.

In physical terms is the Green’s function the response of the medium if a unit
point load, a Dirac delta, is applied at the source point x (differentiation in the next
equation is done with respect to the variable y = (y1, y2))

−ΔG( y, x) = δ( y − x) G( y, x) = 0 , y ∈ Γ. (1.3)

In linear algebra the point loads are unit vectors ei or—the most simple scenario—the
number 1. To solve the equation

3 · u = 12 (1.4)

we multiply the right-hand side with the number g = 1/3

u = g · 12 = 1

3
· 12 (1.5)

which is the “Green’s function” , the solution of the equation

3 · u = 1 ← 1 = “point load” . (1.6)

The columns of the inverse of a matrix as for example

K =

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦ , ⇒ K−1 = 1

5

⎡
⎢⎢⎣

4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

⎤
⎥⎥⎦ ,

(1.7)
are the Green’s functions of the nodal values ui . They map the right-hand side of the
equation K u = f onto the solution vector u
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u = K−1 f = 1

5
·

⎛
⎜⎜⎝ f1 ·

⎡
⎢⎢⎣

4
3
2
1

⎤
⎥⎥⎦+ f2 ·

⎡
⎢⎢⎣

3
6
4
2

⎤
⎥⎥⎦+ f3 ·

⎡
⎢⎢⎣

2
4
6
3

⎤
⎥⎥⎦+ f4 ·

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦

⎞
⎟⎟⎠ . (1.8)

So Green’s function are a frequently used tool in applied mathematics and in this intro-
ductory chapter we will show that Green’s functions are also the “machinery” behind
the FE-method.

1.2 The Importance of Green’s Functions for FE-Analysis

In the language of mechanics is the integral

u(x) =
∫
Ω

G( y, x) p( y) dΩ y (1.9)

an influence function. Each observable of a linear system, that is each displacement,
each stress value, each gradient can be represented by such an influence function. A
linear system is even defined by this superposition principle.

And when an FE-program solves a linear problem it applies this principle, it writes
the FE-solution in integral form as in (1.9)

uh(x) =
∫
Ω

Gh( y, x) p( y) dΩy . (1.10)

It is only that it replaces the exact Green’s function by its projection Gh( y, x) onto
the trial and test space Vh which means that Gh( y, x) is the FE-solution K u = f of
the boundary value problem (1.3), with a Dirac delta on the right-hand side, or—as
an engineer would say—when a unit load P = 1 is applied at the point x.

But the exact response of a medium to a point load, a Dirac delta, cannot
be modeled—in general—with finite element shape functions, so that the kernel
Gh( y, x) is not exact and this gap G( y, x) − Gh( y, x) is responsible for the error
in FE-solutions1

u(x)− uh(x) =
∫
Ω

[G( y, x)− Gh( y, x)] p(y) dΩy . (1.11)

1 The response of an FE-mesh to a single nodal force fi = 1 is only a rough approximation of the
true Green’s function, see for example Fig. 3.3 p. 114.
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To minimize the error of the FE-solution at a particular point x we therefore refine
the mesh in such a way that the Green’s function for this point can be approximated
exceptionally well on the mesh. This is the idea of goal-oriented refinement.

This strategy works best when the focus is on specific values, say the high stresses
σyy at the tip of a crack. The loading that causes these high stresses constitutes the
so-called primal problem. In standard adaptive refinement we would solve the primal
problem first on an initial mesh and then refine the mesh where necessary. In goal-
oriented refinement we solve an additional, second problem, a dual problem, in
which a unit dislocation in y-direction is applied at the crack tip. Such a dislocation
generates the influence function for σyy and if the mesh is well adapted to model
this particular dislocation then automatically the stress σyy in the first load case (the
primal problem) will be very accurate.

Or imagine that the temperature in a motor bloc at a specific point x is to be
predicted very precisely. In this case we would place a single heat source at the point
x and ensure that the temperature field which is generated by this point source can
be modeled on the mesh very precisely. If this is guaranteed then the temperature at
the point x can be predicted very accurately—in virtually any load case.

1.3 A 1-D Problem

To illustrate this close relationship between Green’s functions and finite elements in
more details we study a simple 1-D example, a rope suspended between two walls,
prestressed by a horizontal force H and carrying a lateral load p, see Fig. 1.1.

1.3.1 The Analytical Solution

Finding the deflection u(x) of the rope means to solve the boundary value problem

− H u′′(x) = p(x) 0 < x < l u(0) = u(l) = 0 . (1.12)

When the load p is constant we choose the ansatz u(x) = −p x2/2H + c1x + c0
and so we easily find the solution

u(x) = p

2 H
(l x − x2) . (1.13)

1.3.2 Green’s Function

We could have approached the task also by observing that a force P = 1 applied at
a point y will give the rope a triangular shape, see Fig. 1.2,
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Fig. 1.1 FE-analysis of a taut
rope: a exact solution, b hat
functions, c FE-solution (a)

(b)

(c)

G(x, y) = 1

H l

{
y (l − x) y ≤ x
x (l − y) x ≤ y

(1.14)

and because the distributed load p resembles a series of infinitely many infinitely
small point loads p(y) dy, each of which contributes the deflection

du(x) = G(x, y) p(y) dy , (1.15)

the sum must be the deflection of the rope

u(x) =
l∫

0

du(x) =
l∫

0

G(x, y) p(y) dy = p

2 H
(l x − x2) (1.16)

which it is: the integral has at each point x the same value as the solution in (1.13).

1.3.2.1 A Switch

Before proceeding further we pause to do a switch. The Green’s function is symmet-
ric, G(y, x) = G(x, y), so that in (1.16) the places of y and x can be swapped
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u

(a)

(b)

(c)

Fig. 1.2 Green’s function, a exact Green’s function, b hat functions, c approximate Green’s function

(1.17)
which makes that the tip of the triangle now stays fixed at the point x whereas in
(1.16) the tip moved with the integration point y.

1.3.3 Finite Elements

To determine the shape of the rope with finite elements a subdivision of the rope into
four linear finite elements may suffice for a start, see Fig. 1.1,

uh(x) =
3∑

i=1

ui ϕi (x) . (1.18)

The formulation of the system K u = f
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⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦

⎡
⎣ u1

u2
u3

⎤
⎦ =

⎡
⎣ 1

1
1

⎤
⎦ . (1.19)

and finding its solution
u1 = u3 = 1.5 u2 = 2.0 (1.20)

is standard and so we easily determine that

uh(x) = 1.5 · ϕ1(x)+ 2.0 · ϕ2(x)+ 1.5 · ϕ3(x) (1.21)

is the best approximation to u(x) with four elements in terms of the strain energy
metric.

1.3.4 Finite Elements and Green’s Function

Now let us try a novel approach, a combination of finite elements and Green’s func-
tion.

The Green’s function G(y, x) is the shape of the rope when a force P = 1
is applied at x that is the Green’s function is the solution of the boundary value
problem

− H
d2

dy2 G(y, x) = δ(y − x) G(0, x) = G(l, x) = 0 . (1.22)

What happens if this boundary value problem is solved with finite elements and
the FE-solution Gh(y, x) instead of the exact kernel G(y, x) is substituted into the
influence function (1.16)? Which effect does this have on the influence function?

For a first try we choose the point x which lies half-way between node 1 and 2,
see Fig. 1.2. How well can we approximate the Green’s function of this point with
finite elements? The exact Green’s function for u(x) is the response of the rope to
a point load P = 1 applied at x . This triangular shape with its apex at x cannot be
modeled with the shape functions because in between nodes they run straight. What
the FE-program does is that it replaces the force P = 1 by two equivalent nodal
forces, fi = 0.5 each, at the two neighboring nodes

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦

⎡
⎣ u1

u2
u3

⎤
⎦ =

⎡
⎣ 0.5

0.5
0

⎤
⎦ (1.23)

and it solves this system for the nodal values of the Green’s function,

u1 = 0.625 u2 = 0.750 u3 = 0.375 (1.24)

which give the Green’s function a shape as in Fig. 1.2c.
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This is of course not the correct shape, the peak under the point load is missing,
and so the substitute influence function (1.16) the integral

1.75 =
l∫

0

Gh(y, x) p(y) dy (1.25)

gives a wrong value—the true value is 1.875. But when we look closer then we
find—to our surprise—that the value 1.75 is exactly the value of the FE-solution at
this point, see Fig. 1.1c.

And if we repeat this experiment at other points of the rope we always find that
the integral of the approximate Green’s function Gh(y, x) and the distributed load
p is exactly the value of the FE-solution at this point

uh(x) =
3∑

i=1

ui ϕi (x) =
l∫

0

Gh(y, x) p(y) dy . (1.26)

So it must be true that an FE-program uses the approximate Green’s functions to
calculate the deflection uh(x) of the rope.

But does’nt an FE-program calculate the nodal values u—and therewith also
indirectly the values in between—by solving the equation K u = f ? This is true
as well but it does not contradict the previous statement. Both statements are true.2

The nodal values ui the FE-program outputs—and any other value in between as
well—are as large as if the FE-program had calculated them with the approximate
Green’s function which can be generated on the mesh.

And this principle is not restricted to 1-D problems. To calculate the vertical
displacement of the center node of the plate in Fig. 1.3 the FE-program applies a
vertical unit point load at the node and it watches by how much the upper edge as
a reaction to this nodal load gets displaced. The work done by the edge load p on
acting through this edge displacement η(x) is the nodal displacement

uy =
l∫

0

p(x) η(x) dx . (1.27)

It is the same value ui = uy you get by solving the system K u = f .
Or watch how an FE-program calculates stresses, see Fig. 1.4. The program applies

a unit dislocation in x or y direction, here of magnitude 1 m = 1,000 mm, and it
measures the resulting vertical displacement at the foot of the point load. The ratio of
this displacement versus the triggering dislocation times the magnitude of the point
load is the stress σxx or σyy respectively at the source point

2 Call this the “particle-wave” duality of FE-analysis.
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Fig. 1.3 How an FE-program
calculates the nodal displace-
ment: it applies a point load at
the node and watches by how
much the edge as a reaction
to this displaces. The work
done by the edge load on
acting through this displace-
ment η(x) equals the nodal
displacement

σ = perceiveddispl.

triggeringdisl.
· P (1.28)

The better a mesh can react to these point loads and dislocations the better the
results. So the kinematics of a mesh—influence functions are displacements (!)—
decides how good the FE-results are, see Figs. 1.5, 1.6 and 1.7.

1.4 Entanglement

On second thoughts this close connection between the accuracy and the kinematics
of a mesh seems logical, correct measurements require a precise meter (= Green’s
function). What is a surprise though is the “entanglement” (to borrow a term from
quantum mechanics) between the FE-solution and the yardsticks, the meters. How
does the FE-solution know in advance what the FE-Green’s functions will measure,
which values uh(x) or σh(x) or Vh(x), etc., they will extract from p? Because only



10 1 Introduction

(a)

(b)

(c)

(d)

Fig. 1.4 How an FE-program calculates the stresses in a plate. Each stress value corresponds to
the work P · uy done by the applied load P on acting through the displacement uy at its foot as
generated by the corresponding influence function which is the displacement field due to a unit
dislocation, here of 1,000 mm, in the corresponding direction. Note that in 2-D a dislocation of
1,000 mm is not simply a spread of 1,000 mm. It is an integral measure, you circle the source point
once and you experience a shift of 1,000 mm, see Sect. 2.5
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(a)

(b)

Fig. 1.5 How an FE-program calculates the stress σyy at the bottom of the slit: it applies nodal
forces fi = σyy(ϕi ) at the four corner of the bilinear element and the work done by the edge load
on acting through the edge displacement η(x) is the stress σyy

with clever foresight can it choose the nodal values ui of the FE-solution

uh(x) =
n∑
i

ui ϕi (x) (1.29)

in such a way that the FE-solution agrees with the results produced by the approximate
FE-influence functions

n∑
i

ui ϕi (x) = uh(x) =
l∫

0

Gh(y, x) p(y) dy . (1.30)

This is the surprise. Why do the two techniques give the same value uh(x)?
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(a)

(b)

Fig. 1.6 How an FE-program calculates the bending moment mxx and the shear force qx respec-
tively of a slab: it calculates the work done by the surface load on acting through the influence
functions of a the bending moment and b of the shear force

1.4.1 Functionals

To understand this we must understand the concept of a functional. A functional
J (u) is a function of functions as

J (u) = u(0) . (1.31)

The value of the functional is the value of the function u(x) at the point x = 0,
so that

J (sin x) = sin 0 = 0 J (cos x) = cos 0 = 1.0 (1.32)

The area under a curve also is a functional
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J (u) =
π∫

0

u(x) dx J (sin x) =
π∫

0

sin x dx = 2 . (1.33)

Assume you are learning a new programming language and your first assignment is
to write a small program to calculate the deflection of a rope subjected to various
types of loads p. For a test the instructor asks you for the deflection at a specific
point x . In an abstract sense the teacher is asking for the value of the functional

J (u) = u(x) . (1.34)

How does the program calculate u(x)? You—as the author of the program—will say
that the program calls the subroutine where u(x) is stored and that it simply looks
up the value of u.

But a point value such as u(x) can also be thought to come from the application
of a Dirac delta to the function u

1 · u(x) =
l∫

0

δ(y − x) u(y) dy (1.35)

that is when a unit point load acts through u(x). On first view this seems to complicate
matters unnecessarily: “What sense is there in interpreting a function call—the simple
evaluation of a function—an application of a Dirac delta?”

But Betti would argue that when a Dirac delta is applied to the solution u then
this is the same as if the product of the Green’s function and the right-hand side p,
the applied load, is integrated

1 · u(x) =
l∫

0

δ(y − x) u(y) dy =
l∫

0

G(y, x) p(y) dy . (1.36)

And Betti is right, indeed, the work done by the point load δ(y − x) on acting
through u(x) is equal to the work done by the distributed load p on acting through
the displacement G(y, x) caused by the point load. This is the important step.

Saying a solution has at a point x the value u(x) is saying the functional J (u) =
u(x) has the value u(x). Each observable is identical with a functional. A support
reaction RA, the shear force V (x), the second derivative u′′(x), a nodal value ui , all
these are functionals.

How can Betti’s logic be extended to handle these various functionals? To do this
we first generalize the idea of the Dirac delta by claiming that any linear functional,
as the following three functionals
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50 cm

Fig. 1.7 Oscillations in the support reactions of a trapezoidal slab find their expression in the erratic
behavior of the influence functions
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Ja(u) = u′(0) =
l∫

0

δa(y − x) u(y) dy (1.37)

Jb(u) =
l∫

0

u(x) dx =
l∫

0

δb(y − x) u(y) dy (1.38)

Jc(u) = u′(x)+ u(x) =
l∫

0

δc(y − x) u(y) dy etc. , (1.39)

can be written as integrals between certain Dirac deltas and the solution u. What
these Dirac deltas δa, δb, δc look like is not important. It suffices to postulate that
they exist.

What is important is that each of these integrals can be interpreted as an expression
of exterior work: a certain point load δ(y − x) is acting through u and contributes a
certain amount of work W1,2 = J (u). And according to Betti’s theorem this work
must be equal to the work W2,1, (we switch the indices), done by the right-hand side
p, belonging to u, on acting through the shape G(y, x) produced by the Dirac delta
δ(y − x)

J (u) =
l∫

0

δ(y − x) u(y) dy = W1,2 = W2,1 =
l∫

0

G(y, x) p(y) dy . (1.40)

This is the basic logic. This is duality.
The function G(y, x) (or kernel) is called the Riesz element of J (u). In physical

terms it is the response of the medium to the “point load”δ(y − x), the Dirac delta.
It is essential that (1.40) remains valid3 if the two exact solutions G and u are

replaced by their FE-approximations while the loads δ and p stay the same

W h
1,2 =

l∫
0

δ(y − x) uh↑
(y) dy =

l∫
0

Gh↑
(y, x) p(y) dy = W h

2,1 (1.41)

because this invariance implies, see Tottenham’s equation p. 116,

J (uh) =
l∫

0

Gh(y, x) p(y) dy (1.42)

3 see Betti’s Theorem Extended, p. 114.
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which is the key result. It means that in linear FE-analysis any observable is the
L2-scalar product (integral) between the right-hand side p and the projection Gh of
the Green’s function belonging to the observable onto the test and trial space Vh .

In this sense FE-analysis is “consistent” . While the exact solution u is projected
onto the FE-solution uh and—parallel to this—the exact kernels G onto FE-kernels
Gh , the bond between u and the kernels G is never lost. It is inherited by uh and the
kernels Gh . While the kernel G maps p onto J (u), the projected kernel Gh maps p
onto J (uh), the functional value of the projection uh

J (u) =
l∫

0

G(y, x) p(y) dy (1.43)

J (uh) =
l∫

0

Gh(y, x) p(y) dy . (1.44)

It is only that in FE-analysis the mapping is distorted. The “lens” Gh(y, x) should
send the “beam” p onto the point J (u) but instead it sends it to a slightly different
spot J (uh) on the real axis.

1.4.2 Proof

What we call entanglement is of course simply a consequence of the fact that the
underlying differential equation is self-adjoint and therefore the FE-matrix K sym-
metric. This guarantees (1.42).

To exemplify this let the J be the point functional J (u) = u(x). The Green’s
function G(y, x) of this functional is the solution of the boundary value problem

− H
d2

dy2 G(y, x) = δ(y − x) G(0, x) = G(l, x) = 0 (1.45)

where the Dirac delta represents a point force in the weak sense. Like a real point
force it is zero almost everywhere and the work done by δ(y − x) on acting through
a virtual displacement v is v(x)

δ(y − x) = 0 y �= x (1.46)
l∫

0

δ(y − x) v(y) dy = v(x) x ∈ (0, l) . (1.47)

This is what weak means, one studies something by observing its effect on a set of
test functions, i.e. virtual displacements.
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The FE-solution of the boundary value problem (1.45), the FE-Green’s function,
has the form

Gh(y, x) =
∑

i

gi (x)ϕi (y) (1.48)

where the vector g of the nodal displacements (gi ≡ ui ) is the solution of the system

K g = j (1.49)

and where j is the vector of equivalent nodal forces for the Green’s function,

ji = J (ϕi ) (1.50)

or given that J (u) = u(x)

ji = J (ϕi ) = ϕi (x) . (1.51)

So in contrast to the standard FE-notation we use gi for the nodal values of the Green’s
function and the equivalent nodal forces which generate the Green’s function we call
ji because the forces are just the values of the functional applied to the single shape
functions ϕi .

The following theorem summarizes these results.

Theorem 1.1 (The central equation).

uh(x) =
l∫

0

Gh(y, x) p(y) dy =
l∫

0

∑
i

gi (x)ϕi (y) p(y) dy =
∑

i

gi (x) fi

= gT f = gT K u = gT K T u = j T u =
∑

i

ji ui

=
∑

i

ϕi (x) ui =
l∫

0

∑
i

ui ϕi (y) δ(y − x) dy =
l∫

0

uh(y) δ(y − x) dy .

(1.52)

The displacement uh(x) is the scalar product, gT f , between the nodal displacements
of the Green’s function and the equivalent nodal forces of the load p or—vice versa—
the scalar product, j T u, between the nodal displacements of the FE-solution uh and
the nodal forces ji of the Green’s function
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uh(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
i

ϕi (x) ui =
l∫

0

uh(y) δ(y − x) dy = j T u

l∫
0

Gh(y, x) p(y) dy = gT f .

(1.53)

The important point is that any linear functional J (u) can be written in this way

J (uh) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
i

J (ϕi ) ui =
l∫

0

uh(y) δ(y − x) dy = j T u

l∫
0

Gh(y, x) p(y) dy = gT f .

(1.54)

The equivalent nodal force ji is the value of the functional applied to the nodal shape
function ϕi

ji = J (ϕi ) (1.55)

and the vector g is the solution of the system

K g = j . (1.56)

The first equation is evident

J (u) = J

(∑
i

ui ϕi

)
=

∑
i

J (ϕi ) ui = j T u = gT f , (1.57)

the second is Betti.

Remark 1.1 The symbol δ(y− x) in (1.54) is used in a generic sense, it is that Dirac
delta which extracts the value J (uh) from uh whatever J (uh) is, a displacement, a
stress or else.

1.5 Goal Oriented Refinement

Obviously does the accuracy the FE-Green’s functions Gh achieves in mapping p
onto the observables onto the values J (u)
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J (uh) =
l∫

0

Gh(y, x) p(y) dy , (1.58)

depend on the kinematics of a mesh—how accurately can a mesh react to the point
sources, point loads or dislocations, see Fig. 1.8, which generate the Green’s func-
tions. The more refined a mesh is the smaller the error will be.

While in Fig. 1.8 the refinement was done in a uniform way the algorithm alterna-
tively could concentrate on those zones where the error is the largest. This is known
as adaptive refinement. When this technique is applied simultaneously to the Green’s
function, the dual problem, and the original problem, the primal problem, then this
is called goal-oriented refinement. This strategy produces the mesh in Fig. 1.9.

The algorithm refines the mesh near the point load and near the source point, the
regions were the errors are most prominent. In comparison with a standard adaptive
refinement the goal-oriented adaptive refinement achieves more with less effort but
of course the mesh can be truly optimal only with regard to one functional.

1.6 Model Adaptivity

One-sided traffic loads cause large bending moments in the hangers of the Ponte
della Musica, see Figs. 1.10 and 1.11, because the tensile forces in the hangers try to
pull the rods straight so that the curvature at the end points of the hangers is large and
consequently also the bending moments M . This means that eventually after many
cycles cracks will develop which reduce the stiffness of the load carrying members
and lead to changes in the stress distribution.

In a mathematical sense are such cracks or other changes in an element stiffness
equivalent to modifications of the coefficients of the governing differential equations
or in the FE-context to modifications of the stiffness matrix

K → K +ΔK . (1.59)

What we are interested in is to assess which influence such modifications have on
the solution u. Of course the modified set of equations could simply be solved anew
to find the new vector

uc = (K +ΔK )−1 f (1.60)

and this is what is most often done but qualitatively we would like to gain some
insight into the response of a system: How sensitive is the system to changes in the
stiffness matrix?

A simple problem, the task to determine the weight W of a suitcase, may provide
the necessary clue. To find the weight we would lift the suitcase by, say, 1 m which
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(a) (b)

(c) (d)

(f)(e)

Fig. 1.8 Plate analysis a with four elements, b influence function forσxx , c refined mesh, d influence
function for σxx on refined mesh and the same e and f after one further refinement

should be enough to gain a feeling for the weight of the suitcase and so, for our
purposes, the lift can be considered the influence function for the weight.

Assume that the suitcase contains six gold bars and on the trip one bar (mysteri-
ously) changes its weight by a (negative) amount Δ B, see Fig. 1.12,
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dislocation

(a)

(b)

Fig. 1.9 Goal oriented adaptive refinement: the accuracy of the point value σxx depends on how
well the effect of the dislocation is transmitted to the foot of the point load a adaptively refined
mesh b 3-D representation of the (horizontal component of the) Green’s function for σxx

B → B +Δ B . (1.61)

How will that affect the weight of the suitcase, what is its new weight Wc, with c as
in changed? To find this out we could lift the whole suitcase anew or we only lift the
bar whose weight has changed
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Fig. 1.10 Ponte della Musica, Roma, Italia, [2]

Fig. 1.11 One sided loads tilt the arc to one side causing large bending moments in the hangers

ΔW = Wc −W = ΔB (1.62)

because this information evidently suffices to determine the new weight
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Fig. 1.12 One gold bar (mys-
teriously) changes its weight

Wc = W +ΔW . (1.63)

This is the technique which—figuratively speaking—we apply in model adaptivity.
For illustrative purposes consider a shear wall (plate) which is discretized with

bilinear elements. Such elements have four nodes and 4 · 2 = 8 degrees of freedom.
The plate is subjected to some loads and suddenly, as it happens, one plate element
Ωe cracks.

These cracks produce a change, K e → K e+ΔK e, in the element matrix
K e(8× 8) and consequently also in the full system

(K +ΔK ) uc = f (1.64)

where ΔK basically is the element matrix ΔK e but enlarged—with the help of many
zeros—to the full size (n× n) of the system. To determine the new state of the plate
this system would have to be solved for uc.

Assume the focus is on the horizontal displacement u(x) at a particular point.
Which change in the displacement, uc(x)− u(x), will the cracks produce? This can
be determined with the formula

uc(x)− u(x) = gT ΔK uc (1.65)

where g is the nodal vector of the Green’s function for u(x) and uc is the nodal
vector of the modified solution.

In some sense this formula corresponds to the lift of the single gold bar: no need—
theoretically at least—to invert the full matrix K +ΔK . Measuring the modification
in the strain energy product of the afflicted element, gT ΔK uc, suffices (Fig. 1.12).

However this formula requires the nodal vector uc of the cracked system (1.64)
or at least that part of uc which is in contact with Ωe, so it seems nothing is gained
in the end by following this local approach.

But there is a technique by which we can overcome this hurdle. Introducing the
vector

f+ := ΔK uc (n × 1) = (n × n)× (n × 1) (1.66)
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the equation takes the form

uc(x)− u(x) = gT f+ (1× n) (n × 1) . (1.67)

This vector

f+ = {0, 0, . . . , 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗︸ ︷︷ ︸
f+e

, 0, . . . , 0, 0}T (1.68)

has only eight non-zero entries because the matrix ΔK is essentially the 8× 8 element
matrix ΔK e and not much else and so only those parts of the vectors g and uc which
are in contact with the defective element Ωe enter the equation

uc(x)− u(x) = gT
e f+e (1× 8) (8× 1) . (1.69)

Here ge and f+e designate the parts of g and f which have contact with Ωe.
As will be shown later f+e can be determined by solving a small system of size

8× 8
(Fe +ΔK−1

e ) f+e = ue (1.70)

where ue(8 × 1) are the nodal displacements of the element �e before the cracks
developed. The matrix Fe is the local part, (8 × 8), of the flexibility matrix of
the system, that is the inverse K−1 of the full system matrix; for details, how the
(normally) singular element matrix ΔK e can be inverted and how the entries of Fe

can be found without calculating the inverse K−1, see Chap. 5.
Adding the vector f+ to the right-hand side of the original equation

K uc = f + f+ (1.71)

produces the vector uc, the displacement vector of the cracked system! This implies—
and this is the important part—that the Green’s function of the uncracked system
(vector g) allows to predict the displacements (and all other observables as well) of
the cracked system

uc(x) = gT ( f + f+) . (1.72)

Whether this approach has any advantage over the “brute force” approach where
the modified system (K + ΔK ) uc = f is simply solved for uc depends on the
circumstances.

But irrespective of the computational merits of the equation

uc(x)− u(x) = gT ΔK uc (1.73)
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(a)

(b)

(c)

Fig. 1.13 The defective element Ωe acts like a CCD (lens) it collects and processes all informations

it provides important information about the interplay between the Green’s function
(vector g) and the modified solution (vector uc). The vector g represents the sensi-
tivity of u(x) with respect to the change ΔK in the stiffness matrix.

Technically does (1.73) express an energy balance. The work done by a virtual
force F = 1 applied at x in the direction of the displacement u(x) acting through the
increment uc(x)− u(x) is equal to the strain energy product (virtual strain energy)
in the element Ωe between the Green’s function and uc, see Fig. 1.13,

1 · (uc(x)− u(x)) = gT ΔK uc . (1.74)

The important point is that the change uc(x)−u(x) can be determined by integrating
only over �e, the defective element. And with regard to any other observable, say
the stress σ at a point x, the formula is the same

1 · (σc(x)− σ(x)) = gT ΔK uc (1.75)

only the Green’s function, the vector g, changes. (The 1 is now a unit dislocation).
So the defective element Ωe acts like a test bed which allows to determine any

change in the system by monitoring the virtual strain energy in Ωe triggered by the
corresponding Dirac delta. If the Green’s function of a functional J (u) barely causes
any ripples on Ωe then the change in the functional, J (uc)− J (u) will be negligible.
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Fig. 1.14 In calculus we
learn that the slope u′(x) is a
local quantity. In mechanics
the slope is a global quantity
because it is under the influ-
ence of sources far-off.

1.6.1 Local & Global

In calculus we learn that the slope of a function, see Fig. 1.14,

u′(x) = lim
Δx→0

u(x +Δx)− u(x −Δx)

2Δx
, (1.76)

expresses a local property of a function.
But if u is the solution of a boundary value problem,

− u′′(x) = p(x) u(0) = u(l) = 0 , (1.77)

then the slope is determined by an influence function

u′(x) =
l∫

0

G(y, x) p(y) dy (1.78)

and so u′(x) depends on global effects: modify p in any small subinterval [xa, xb] ⊂
(0, l) and the slope at x will change!

The reason for this observation is that the inverse of a differential operator is an
integral operator, a sum. The tri-diagonal stiffness matrix K of a rope is a difference
matrix (−ui−1 + 2 ui − ui+1) and its inverse is a fully populated summation matrix
K−1 the columns of which are the Green’s functions of the nodal values ui . And
quite naturally does the summation matrix, the influence function, register any small
change in p or in the nodal forces f i respectively [3].
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1.7 How to Calculate Influence Functions
with Finite Elements

Influence functions are displacements, they have nodal values ui as ordinary functions
do and these nodal values are the solution of the system K u = f just as in standard
FE-analysis. The only question is: which nodal forces fi (or ji as we usually call
them) do generate the influence functions?

Two examples may suffice to give the idea. (1) The equivalent nodal forces fi

which generate the influence function for the value u(x) of the solution at a point x
are the values of the shape functions at this point x

fi = ϕi (x) . (1.79)

(2) The forces fi which generate the influence function for the stress σ(x) at a point
x are the stresses

fi = σ(ϕi )(x) (1.80)

of the shape functions at the point x—and so on. So the rule is easy:

Theorem 1.2 (Nodal forces for influence functions) The Green’s function for a
linear functional J (u) is generated by applying the values fi = J (ϕi ) of the shape
functions ϕi as equivalent nodal forces

Example 1.1 The Green’s function for the deflection u(x) of the rope in Fig. 1.15
at the point x = 1.25 is to be determined and this means the values of the shape
functions ϕi at the point x are to be applied as nodal forces

f1 = ϕ1(x) = 0.75 f2 = ϕ2(x) = 0.25 f3 = ϕ3(x) = 0 . (1.81)

Solving the system

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦

⎡
⎣ g1
g2
g3

⎤
⎦ =

⎡
⎣ 0.75

0.25
0

⎤
⎦ (1.82)

for the nodal values gi of the Green’s function gives

g1 = 0.6875 g2 = 0.625 g3 = 0.3125 (1.83)

and so the Green’s function is

G(y, x) = g1 · ϕ2(y)+ g2 · ϕ2(y)+ g3 · ϕ3(y) . (1.84)

If u(x) were the deflection at the first node, x = 1.0, then the nodal forces would be
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(a)

(b)

(c)

Fig. 1.15 FE-model of a rope a shape functions b FE-Green’s function for u at the point x = 1.25
and exact value (0.86) c FE-Green’s function for u at the first node, the function is exact, Gh(y, x) =
G(y, x)

f1 = ϕ1(x) = 1.0 f2 = ϕ2(x) = 0.0 f3 = ϕ3(x) = 0 (1.85)

and in this case the FE-Green’s function for u(x) would even be exact because the
triangle with the nodal values

g1 = 0.75 g2 = 0.5 g3 = 0.25 (1.86)

has its apex at the first node and it has the correct value g1 = 0.75, see Fig. 1.15c.

Remark 1.2 The nodal values gi are normally called ui but to better distinguish
between Green’s functions and standard functions we prefer the notation gi . Unlike
standard ui the nodal values gi are in general functions of the source point x which
can change its position, so that

G(y, x) = g1(x) · ϕ2(y)+ g2(x) · ϕ2(y)+ g3(x) · ϕ3(y) (1.87)

is the general form of an FE-Green’s function: the nodal values depend on the source
point x , the position of the Dirac delta, and the shape functions vary with the position
of the field point y.
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In some books the source point is denoted by the Greek letter ξ, allowing the x to
be the field variable, but that would make the solution u to be a function of ξ when
the influence function is evaluated

u(ξ) =
l∫

0

G(x, ξ) p(x) dx . (1.88)

This is the reason why we prefer the combination x and y.

Example 1.2 The influence function for the bending moment M = −E I u′′ of the
continuous beam in Fig. 1.17 at the point x is generated by the equivalent nodal
forces, see Fig. 1.16,

fi = −E I ϕ′′i (x) (1.89)

and the influence function for the shear force V (x) = −E I u′′′(x) by the forces

fi = −E I ϕ′′′i (x) (1.90)

where theϕi are the shape functions of the nodes. Elementwise these shape functions
are (length of the element = le)

ϕe
1(x) = 1− 3x2

l2
e
+ 2x3

l3
e

ϕe
2(x) = −x + 2x2

le
− x3

l2
e

ϕe
3(x) = 3x2

l2
e
− 2x3

l3
e

ϕe
4(x) = x2

le
− x3

l2
e

.

(1.91)

Only the end nodes of the element that contains the point x carry nodal forces
fi because the shape functions ϕi of the other nodes, lying farther off, have zero
moments and shear forces at x .

The two influence functions are exact outside the element which contains the
source point x [4].

Example 1.3 In this example we calculate various Green’s functions for a plate
which is modeled with bilinear elements.

Such an element has 4 nodes and 2 ·4 degrees of freedom and the same number of
vector valued shape functions ϕi (x). These eight shape functions are displacement
fields which push the node in question either in horizontal or vertical direction

ϕ1(x) =
[
ψ1(x)

0

]
ϕ2(x) =

[
0

ψ1(x)

]
ϕ3(x) =

[
ψ2(x)

0

]
etc. (1.92)

The ψi (x) are the four shape functions of the four corner points, see Fig. 1.18,
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Fig. 1.16 Beam element a the four shape functions ϕi and b the corresponding bending moments
M and c shear forces V . The values at the quarter point x = 0.25 l are the nodal forces fi which
generate the influence functions for M and V respectively in the next figure

(a)

(b)

Fig. 1.17 FE-Green’s function for a the bending moment M and b the shear force V at the point x

ψ1(x) = 1

4 a b
(a − 2x)(b − 2y) ψ2(x) = 1

4 a b
(a + 2x)(b − 2y)

(1.93)

ψ3(x) = 1

4 a b
(a + 2x)(b + 2y) ψ4(x) = 1

4 a b
(a − 2x)(b + 2y) .

(1.94)
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Fig. 1.18 Bilinear element

First we calculate the Green’s function for the horizontal displacement at the quarter
point of an element having the extensions a = 2 and b = 1. The four horizontal forces
which are applied at the four corner points are the values of the four horizontal shape
functions, indices 1, 3, 5, 7, at the point x = (−0.5,−0.25) (element coordinates)

f1 = 0.5625 f3 = 0.1875 f5 = 0.0625 f7 = 0.1875 . (1.95)

These forces generate the shape in Fig. 1.19. (The four vertical shape functions
have of course zero horizontal displacement at x and so the fi in vertical direction,
f2, f4, f6, f8, are zero).

Next we calculate the Green’s function for the stress σyy at the same point. To
generate this function the stresses σyy(ϕi ) of the eight shape functions ϕi are to be
applied as nodal forces fi .

In a bilinear element of length a and width b as in Fig. 1.18, the stress
distribution is

σxx (x, y) = E

a b (−1+ ν2)
·
[

b (u1 − u3)+ a ν (u2 − u8)

+ x ν (−u2 + u4 − u6 + u8)+ y (−u1 + u3 − u5 + u7)

]
(1.96)

σyy(x, y) = E

a b (−1+ ν2)
·
[

b ν (u1 − u3)+ a (u2 − u8)

+ x (−u2 + u4 − u6 + u8)+ y ν (−u1 + u3 − u5 + u7)

]
(1.97)

and
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(a)

(b)

Fig. 1.19 Bilinear elements a Green’s function for ux (x) and b for σyy(x)

σxy(x, y) = −E

2 a b (1+ ν) ·
[

b (u2 − u4)+ a (u1 − u7)

+ x (−u1 + u3 − u5 + u7)+ y (−u2 + u4 − u6 + u8)

]
. (1.98)

Setting u1 = 1 and all other ui = 0 gives the stresses which belong to the shape
function ϕ1(x). So at the first node the equivalent nodal force in horizontal direction
(u1 = 1) is

f1 = σyy(x, y) = E

a b (−1+ ν2)
·
[

b ν u1+ y ν (−u1)

]
= −3.07 · 106 kN (1.99)

and in vertical direction (u2 = 1)

f2 = σyy(x, y) = E

a b (−1+ ν2)
·
[

a (u2)+ x (−u2)

]
= −3.85 · 107 kN (1.100)

and the other fi follow the same pattern.
The last example is the Green’s function for the integral of the shear force
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(a)

(b)

Fig. 1.20 Influence function for the integral of σxy in a vertical cross section a equivalent nodal
forces b Green’s function

Nxy =
l∫

0

σxy dy (1.101)

in a vertical cross-section that passes through a given point x. In this case the equiv-
alent nodal forces are integrals, see Fig. 1.20,

fi =
l∫

0

σxy(ϕi ) dy , (1.102)

which represent the resulting shear forces of the shape functions belonging to the
four corners of an element. So if an element a × b happens to lie in the path of the
cut the following equivalent nodal forces are applied at the four corners
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f e
i =

b∫
0

σxy(ϕi ) dy = −E

2 a (1+ ν) ·
[

b (u2 − u4)+ a (u1 − u7)

+ x (−u1 + u3 − u5 + u7)+ b

2
(−u2 + u4 − u6 + u8)

]
(1.103)

where x is the x-coordinate of the cut.
For f e

1 set u1 = 1 and all other ui = 0. For f e
2 set u2 = 1 and all other ui = 0, etc.

The notation f e
i is to indicate that these are element forces, element contributions.

The total nodal force fi is the sum of the single element contributions to a node.
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Chapter 2
Basic Concepts

The Hilbert space theory of weak boundary value problems forms the mathematical
background of the FE-method. This theory requires some (rudimentary) knowledge
of functional analysis and so the chapter starts with a short recap of the principal
concepts as vector spaces, scalar product, linear functionals, projection, equivalent
norms, Galerkin’s method and the definition of Sobolev spaces. The main result is
that in the weak theory Green’s functions are the Riesz elements of linear functionals.

The exposition is based on the first and second Green’s identities of the governing
differential operator as these underlie the variational and energy principles of math-
ematical physics and their algebra is essential for the formulation of weak boundary
value problems.

Green’s identities are then used to derive the classical influence functions for
displacements and force terms. The observation that influence functions for force
terms can only be formulated with Betti’s theorem (Green’s second identity) but not
with the principle of virtual forces (Green’s first identity) leads to the distinction
between strong and weak influence functions.

Physically Green’s functions represent monopoles, dipoles and higher-order
poles. Monopoles are like integral operators, they sum, while dipoles differenti-
ate, they are sensitive to imbalances. Most Green’s function, being the solution to
point forces or higher-order terms, have infinite energy which makes that they lie
outside the theory of weak boundary value problems. When and why that happens
can be explained with Sobolev’s Embedding Theorem.

In the algebra of linear problems Green’s functions are identical with Lagrange
multipliers. This observation allows to extend—formally—the concept of a Green’s
function also to nonlinear problems; not in the true sense of forming the kernel of
an inverse operator but to speak of a Green’s function at the linearization point of a
stiffness matrix.

F. Hartmann, Green’s Functions and Finite Elements, 35
DOI: 10.1007/978-3-642-29523-2_2, © Springer-Verlag Berlin Heidelberg 2013
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2.1 Elements of Functional Analysis

The weak form of the classical boundary value problems of mechanics are of
“quadratic type” . What is meant by this is best explained by a simple spring.

In a linear spring with a stiffness k the displacement u is proportional to the applied
force f

k u = f (2.1)

and consequently the displacement u minimizes the function

�(u) = 1

2
k u2 − f u (2.2)

because if u satisfies (2.1) then it is also a zero of �′(u) = k u − f .
If u is a solution of (2.1) then multiplying both sides with any number v leaves the

solution unchanged and therefore u is also the solution of the variational problem
Find a number u such that

δWi := v k u = f v =: δWe ∀ v ∈ R . (2.3)

The symbol ∀ means “for all” . For all numbers v this equation must be true. This is
the principle of virtual displacements: at the equilibrium position u the virtual strain
energy δWi of the spring equals the virtual exterior energy δWe—and this holds true
for all virtual displacements v.

Quadratic refers to the fact that the internal energy of the spring

Wi = 1

2
k u2 =: a(u, u) (2.4)

is a quadratic function, see Fig. 2.1, and this means it is positive definite

a(u, u) = k u2 > 0 u �= 0. (2.5)

With regard to the applied load f we can state that if it is not just infinitely large then
the external work f · u is a continuous function of u. These two properties which we
can attribute to a(u, u) and the function f · u guarantee that the weak problem (2.3)
has always a solution u = f/k. Ultimately the parabola 1/2 k u2 will rise faster than
the linear function. The point where the path of the parabola crosses the straight line
1/2 f u is the equilibrium point u, the internal energy and external work balance at
this point

Wi = 1

2
k u2 = 1

2
f u = We at u = f/k . (2.6)

But at the start, when the spring begins to move, it is the straight line—representing
the external work 1/2 f u—which grows faster (and it must grow faster!) than the
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Fig. 2.1 Because the internal energy Wi grows quadratically with u, while the external work We
grows only linearly, Wi always catches up with We, and there will always be an equilibrium point
where Wi = We [1]

parabola 1/2 ku2 of the internal energy. If that were not the case then the spring would
not move one iota! So in some sense—let f = k = 1—computational mechanics
is rooted in the fact that u > u2 in the interval (0, 1), and that beyond this point the
opposite is true. The transition point u = 1 is the equilibrium point.

In the continuous case, when the equilibrium position u of the mechanical system
is a function, then technically things are more complicated but the arguments and
the results are very nearly the same because the modern theory of partial differen-
tial equations is formulated in terms of weak boundary value problems on Hilbert
spaces and this theory and its algebraic structure bears a close resemblance to what
the engineer calls the principle of virtual displacements. In the following we will
summarize the main results and concepts of this theory as far as we need them for
the study of Green’s functions and finite elements.

2.1.1 Notation

Small bold letters u = {u1, u2, . . . , un}T denote column vectors and capital bold
letters K = [ki j ] matrices. The scalar product between two vectors u and f is written
in two ways

u · f = uT f = u1 f1 + u2 f2 (2.7)

and
S · E = σ11 ε11 + σ12 ε12 + σ21 ε21 + σ22 ε22 (2.8)
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is the scalar product of matrices. A small dot, 3 · 4, denotes a multiplication. Green’s
functions are written G( y, x) or if the emphasis is only on the source point x then
G[x]. Eventually the same is done with the Dirac delta δ( y − x) which has the short
form δ[x].

2.1.2 Vector Spaces and Scalar Product

A real vector space V is a set of objects, called vectors, on which are defined two
operations, addition and scalar multiplication (scalar product). Associated with such
a space is a field, the real numbers α ∈ R, such that if u is a member of V then also
α u is a member of V .1

The space Rn , the set of all vectors with n components, is such a vector space.
The sum of two vectors u and v in V is the vector u + v and the scalar multiplication
between two vectors

u · v = u1 v1 + u2 v2 + . . . + un vn = |u| |v| cos ϕ (2.9)

is of course the scalar product of two vectors where ϕ is the angle between the two
vectors.

Occasionally we will write the scalar product of two such vectors as the product
of the row vector vT and the column vector u

v · u = vT u = (v, u) (2.10)

or we will use the notation (v, u) or (u, v) respectively as a generic expression for
the scalar product of two quantities.

For an expression (u, v) to be a scalar product it must have the following properties
(α,β ∈ R)

Linearity: (α u + β v,w) = α (u, w) + β (v,w) (2.11a)

Symmetry: (u, v) = (v, u) (2.11b)

Definitness: (u, u) > 0 for u �= 0 . (2.11c)

With these properties it defines also the norm of an element

‖u‖ := √
(u, u) . (2.12)

The square root makes that the element 2 u has double the norm of u, ‖2 u‖ = 2 ‖u‖.

1 For not to confuse the vector space with the shear force V we write V and Vh as well.
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A norm has the properties

positive semi-definit: ‖u‖ = 0 ⇔ u = 0 or ‖u‖ ≥ 0 ∀ u ∈ V (2.13a)

homogeneous: ‖λu‖ = |λ|‖u‖ (2.13b)

triangular inequality: ‖u + v‖ ≤ ‖u‖ + ‖v‖ . (2.13c)

In particular does the first property guarantee that the norm can separate the elements
of V

‖u − v‖ = 0 ⇒ u = v . (2.14)

This is what makes a norm a norm.
A central property of a normed space V is the Cauchy-Schwarz inequality

|(u, v)| ≤ ‖u‖ ‖v‖ ∀ u, v ∈ V . (2.15)

A vector space V with a norm is called a normed vector space. If the space is also
complete, if the limit of any Cauchy sequence (the distance between consecutive
elements gets smaller and smaller) is an element of V then it is said that the space is
complete. Such normed vector spaces are called Hilbert spaces.

2.1.3 Linear Functionals

A linear functional J (u) on V is a real-valued linear function

J (α u + β v) = α J (u) + β J (v) α,β ∈ R . (2.16)

It is a continuous functional on V if there exists a constant c such that

J (u) ≤ c ‖u‖ ∀ u ∈ V . (2.17)

The set of all continuous linear functionals defined on V forms itself a normed vector
space which is called the dual space of V and is denoted by V∗. The norm on V∗ is
defined as

‖J‖V∗ = sup

(
J (u)

‖u‖
)

(2.18)

which means that the norm of a functional is the maximum value the functional J (u)

attains in the unit ball (all u with norm ‖u‖ = 1) because dividing J (u) by the norm
‖u‖ of u is the same as first dividing u by its norm and then applying the functional

J (u)

‖u‖ = J

(
u

‖u‖
)

. (2.19)
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The following theorem asserts that we can associate with each linear and bounded
functional J (u) a so-called Riesz element v in the sense that J (u) = (u, v).

Theorem 2.1 (Riesz representation theorem) If V is a Hilbert space then its dual
space V∗ can be identified with V:

1. For each v ∈ V the linear functional J (u) defined by J (u) = (u, v) belongs to
V∗ and

‖J‖V∗ = ‖v‖V . (2.20)

2. For each J ∈ V∗ there exists a unique v ∈ V such that

‖J‖V∗ = ‖v‖V (2.21)

and it is
J (u) = (u, v) ∀ u ∈ V . (2.22)

The Riesz element v in (2.22) is identical with what is later called the generalized
Green’s function of the functional J (u).

Example 2.1 Let V be the Euclidean space R
3. Let v = {v1, v2, v3}T be a vector

anchored at the origin and pointing in a certain direction. Then the functional

J (u) = vT u (2.23)

is simply the projection of a vector u onto the direction of the vector v. Clearly the
maximum value of J (u), when it is restricted to the unit ball (‖u‖ = 1), is obtained
for u = v/‖v‖ and so indeed

‖J‖V∗ = ‖v‖V . (2.24)

Vice versa, let there be a linear functional J (u) on R
3. Let

ji = J (ei ) i = 1, 2, 3 , (2.25)

(ei = unit vector) then
J (u) = u1 j1 + u2 j2 + u3 j3 (2.26)

and so the vector j = { j1, j2, j3}T represents the functional in the sense of (2.22)

J (u) = j T u . (2.27)

Example 2.2 Let Ω be the unit disk and Γ the edge of the disk. On Ω we consider
the following boundary value problem

− Δu = p on Ω u = 0 on Γ . (2.28)
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The space
V = {u ∈ H1(Ω)|u = 0 on Γ } (2.29)

with the scalar product a(u, v) := (∇u,∇v) and the norm ‖u‖E := a(u, u)1/2 is
a Hilbert space and so given any linear and bounded functional J (u) there exists a
Riesz element G ∈ V such that

Weak influence function
J (u) = a(G, u) ∀ u ∈ V (2.30)

where

a(G, u) =
∫

Ω

∇G · ∇u dΩ y =
∫

Ω

(G,1 u,1 +G,2 u,2 ) dΩ y . (2.31)

Because of Green’s first identity, see (2.86), this formula is equivalent to

J (u) =
∫

Ω

G (−Δu) dΩ y ∀ u ∈ V (2.32)

or if u is the solution of the boundary value problem (1.30) then holds

Strong influence function

J (u) =
∫

Ω

G p dΩ y . (2.33)

That is the Riesz element is the Green’s function of the functional. We call these two
influence functions, (2.30) and (2.33), weak and strong influence functions.

2.1.4 Projection

When a vector u = {ux , uy, uz}T ∈ R3 is projected onto the x −y-plane (or R2 for
short)

u → ū = {ux , uy, 0}T (2.34)

then the error vector e = u − ū is perpendicular to the plane

e · v = 0 ∀ v ∈ R2 (2.35)

and so the (length)2 of u is the (length)2 of ū plus the (length)2 of e
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‖u‖2 = ‖ū‖2 + ‖e‖2 . (2.36)

This is the Pythagorean theorem which holds true in any inner product space for two
orthogonal elements of the space, (e, ū) = 0, and so the idea of a projection can be
extended to any inner product space.

Theorem 2.2 (Projection) Suppose V is an inner product space and Vh is a finite-
dimensional subspace of V and u is an element of V . Then

1. there exists a unique element uh ∈ Vh satisfying

‖u − uh‖ < ‖u − vh‖ ∀ vh ∈ Vh, vh �= uh (2.37)

that is uh wins the competition, it has the shortest distance to u and
2. this statement is equivalent to

(u − uh, vh) = 0 ∀ vh ∈ Vh . (2.38)

that is the error is orthogonal to Vh.

2.1.5 Variational Problems

In the framework of the FE-method the classical boundary value problems of physics
are formulated as variational problems on appropriate Hilbert spaces V

u ∈ V : a(u, v) = J (v) ∀ v ∈ V (2.39)

where a(u, v) is a (not necessarily symmetric) bilinear form and J (v) is a linear
functional [2]. The next theorem lists sufficient conditions for this problem to have
a unique solution.

Theorem 2.3 (Lax-Milgram) Suppose V is a Hilbert space and a(u, v) is a bilinear
form on V which is bounded and coercive (or V-elliptic), that is there exist two
constants cE and cB such that

|a(u, v)| ≤ cB ‖u‖ ‖v‖ ∀ u, v ∈ V (bounded) (2.40)

a(u, u) ≥ cE ‖u‖2 ∀ u ∈ V (V-elliptic) (2.41)

Then given any J ∈ V∗ there exists a unique u ∈ V such that

a(u, v) = J (v) ∀ v ∈ V (2.42)

and the solution u depends continuously on J that is
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‖u‖V ≤ 1

cE
‖J‖V ∗ . (2.43)

The difficult part in applying this theorem is to demonstrate that the bilinear form
a(u, v) in question is V-elliptic.

Example 2.3 The energy of a beam, E I uI V = p, is the integral

a(u, u) =
l∫

0

E I (u′′)2 dx (2.44)

and the “energy space” is H2(0, l) with the norm

‖u‖2
2 =

l∫

0

(u2 + (u′)2 + (u′′)2) dx . (2.45)

Let
V = {u |u ∈ H2(0, l), u(0) = u(l) = 0} (2.46)

be the solution space of a hinged beam. It can be shown that the energy is V-elliptic

a(u, u) > c ‖u‖2
2 ∀ u ∈ V (2.47)

that is if a(u, u) tends to zero then also the norm ‖u‖2 tends to zero and this means
that

l∫

0

E I (u′′)2 dx → 0 ⇒
l∫

0

u2 dx → 0 ,

l∫

0

(u′)2 dx → 0 . (2.48)

This is a remarkable property because it shows that the bending moments of a properly
supported beam control the beam. Without supports the beam could perform rigid
body motions, u(x) = a+b x , and because the bending moment is then zero, M = 0,
(2.47) would be violated.

2.1.6 Equivalent Norms

If the bilinear form a(u, v) is V-elliptic then it forms an alternative inner product on
V and the expression

‖u‖E := √
a(u, u) (2.49)
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the so-called energy norm, is an equivalent norm2 on V , that is there exist two global
constants cE and cB (not depending on the particular u) such that

√
cE ‖u‖V ≤ ‖u‖E ≤ √

cB ‖u‖V (2.50)

which essentially means that the two norms generate the same topology on V:

• if a sequence of elements converges in one norm to an element u then it converges
also in the other norm to the same element,

• if V is complete then it is also complete with respect to the energy norm,
• if a linear functional J (u) is bounded then it is also bounded in the energy norm,

In the FE-context V is the trial and solution space on which the variational problem

u ∈ V : a(u, v) = J (v) ∀ v ∈ V (2.51)

is posed. Because the Riesz representation theorem also holds true in the energy
norm, the existence and uniqueness of the variational problem is settled.

In the same sense as ‖u‖ and ‖u‖E are equivalent norms on V the expression

||J ||E∗ := sup
v∈V
v�=0

|J (v)|
||v||E

= sup
v∈V

||v||E =1

|J (v)| (2.52)

is an equivalent norm on the dual V∗, equivalent to ‖J‖V∗ . If u is the solution of
(2.51) then

|J (v)|
‖v‖E

= |a(u, v)|
‖v‖E

≤ ‖u‖E ‖v‖E

‖v‖E
= ‖u‖E (2.53)

and so ‖u‖E is an upper bound and because of

|J (u)|
‖u‖E

= |a(u, u)|
‖u‖E

= ‖u‖E (2.54)

it is also the lowest upper bound. Hence the norm ‖J ‖E∗ of the functional J is just
the energy norm of the solution

‖J ‖E∗ = ‖u‖E = √
a(u, u) . (2.55)

This implies that the exact solution u is that function in V which gets “the most
mileage” out of J in the sense of (2.52), see Fig. 2.2.

Most milage means: the load p to which a beam is subjected constitutes a func-
tional

2 The so called taxi norm—distance by grid lines (blocks)—and the Euclidean norm—as the raven
flies—is also a pair of equivalent norms.
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Fig. 2.2 In the unit ball B1 = {u | ||u||E = 1} the normalized exact solution u/||u||E gets “the most
mileage” out of p, i.e. the virtual work exceeds that of any other normalized deflection û/||û||E [1]

J (u) :=
l∫

0

p u dx (2.56)

and the maximum value of J (u/‖u‖) on the solution space

V := {u ∈ H2(0, l)|u(0) = u′(0) = u(l) = 0} (2.57)

is attained if the function u is the deflection of the beam

E I uI V = p u(0) = u′(0) = u(l) = M(l) = 0 . (2.58)

This observation confirms that the principle of minimum potential energy is a
maximum principle. The beam deflection u does not minimize the potential energy
in the sense of “as small as possible” but it is the one function which maximizes the
potential energy

�(u) = 1

2

l∫

0

E I (u′′)2 dx −
l∫

0

p u dx

= −1

2

l∫

0

p u dx |u=solution = −1

2
J (u) (2.59)
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in the sense of having the largest possible distance from zero, |�(u)| = max, and it
is the one function in V which gets the most mileage out of p.

2.1.7 Galerkin Method

The idea of the Galerkin method in solving the variational problem

u ∈ V : a(u, v) = J (v) v ∈ V (2.60)

approximately is to construct a finite-dimensional subspace Vh which is spanned by
a set of n shape functions ϕi , i = 1, 2, . . . n, and to choose that function

uh =
n∑

i=1

ui ϕi (x) (2.61)

which satisfies (2.60) with regard to all shape functions ϕi . This leads to the (n × n)

system
K u = f (2.62)

for the vector u = {ui } where

ki j = a(ϕi ,ϕ j ) fi = J (ϕi ) . (2.63)

If J (v) is a linear bounded functional and if the energy norm ‖u‖E is an equivalent
norm on V then the solution u is also the Riesz element of the functional J (v).

2.1.8 Sobolev Spaces

The concept of a scalar product can be extended to functions defined over a domain Ω

(u, v)L2 :=
∫

Ω

u v dΩ (2.64)

and this introduces the space L2(Ω) as the set of all functions for which the integral

∫

Ω

u2 dΩ < ∞ (2.65)
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is bounded. Given two such functions u and v in L2(Ω) their scalar product is finite,
(u, v) < ∞ , and also (u, u) is finite and the expression

‖u‖ := √
(u, u) =

⎛

⎝
∫

Ω

u2 dΩ

⎞

⎠

1/2

(2.66)

defines a norm on L2(Ω).
The Sobolev-spaces are the extension of L2(Ω) by incorporating also the weak

partial derivatives of the functions up to a certain order m.
Before we can explain what a weak partial derivative is we must first explain what

a multi-index is. A multi-index α is an array of non-negative integers which serves
as short-hand for derivatives as in

∂3u

∂x2∂y
= ∂α u α = (2, 1) |α| = 2 + 1 = 3 (2.67)

∂4u

∂x2∂y2 = ∂α u α = (2, 2) |α| = 2 + 2 = 4 . (2.68)

Definition 2.1 (weak derivative) Let α a multi-index and u ∈ L2(Ω). The function
uα = ∂αu ∈ L2(Ω) is called the weak derivative of u if

∫

Ω

u ∂αϕ dΩ = (−1)|α|
∫

Ω

∂αu ϕ dΩ ∀ϕ ∈ C∞
0 (Ω) . (2.69)

Basically this is the integration by parts formula without boundary integrals because
ϕ ∈ C∞

0 implies that ϕ and all its derivatives have zero boundary values and that ϕ
is infinitely often differentiable on Ω . For “normal” functions such as sin x, ex , x2

etc. weak derivatives and regular derivatives coincide.
This equation is of Betti-type: the work done by the “load”∂αϕ on acting through

u is the same as the work done by the “load”∂α u on acting through ϕ. For odd orders,
|α| = 1, 3, 5, . . . , a (−1) factors in, symmetric and skew-symmetric operators.

Given a natural number m the inner product (·, , ·)m of two functions u and v is
the following sum

(u, v)m :=
∑

|α|≤m

(∂αu, ∂αv)L2(Ω) (2.70)

and correspondingly is

‖u‖m =
√ ∑

|α|≤m

‖∂αu‖2
L2(Ω) (2.71)

the associated norm.
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The Sobolev-space Hm(Ω) is the set of all m-times weakly differentiable func-
tions u ∈ L2(Ω), that is u and all its derivatives ∂αu up to the order |α| = m are in
L2(Ω).

Example 2.4 Let u(x) = sin(x), u′(x) = cos(x), on the interval (0, 2π). Then

‖u‖0 =

√√
√
√
√

2π∫

0

sin2(x) dx = √
π (2.72)

‖u‖1 =

√√
√
√
√

2π∫

0

[sin2(x) + cos2(x)] dx = √
π + π (2.73)

and evidently because of the cyclic nature of the derivatives

‖u‖n =

√√
√
√
√

2π∫

0

[u2(x) + (u′(x))2 + . . . (un(x))2] dx = √
n π . (2.74)

The space
V = {u ∈ H1(Ω)| u = 0 on Γ } (2.75)

with the scalar product a(u, v) := (∇u,∇v) and the norm ‖u‖E := a(u, u)1/2 is a
Hilbert space and therefore there exists for any linear and bounded functional J (u)

a Riesz element G such that

(weak infl. func.) J (u) = a(G, u) ∀ u ∈ V . (2.76)

Because of Green’s first identity, see (2.86), this is equivalent to

J (u) =
∫

Ω

G (−Δu) dΩ y ∀ u ∈ V (2.77)

and if u is the solution of the boundary value problem (2.28) then follows

(strong infl. func.) J (u) =
∫

Ω

G p dΩ . (2.78)
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2.2 Green’s Identities

Green’s first and second identities—which are essentially applications of Gauss’
Theorem—form two important corner stones of mathematical physics and of con-
tinuum mechanics. The classical energy and variational principles and conservation
laws are based on these identities.

2.2.1 Gauss’ Theorem

Let u and û be two arbitrary functions which have continuous first order derivatives
on the interval (0, l) then holds

l∫

0

u′ û dx = [u û] l
0 −

l∫

0

u û′ dx (2.79)

and in higher dimensions, given a domain Ω and two functions u and û in C1(Ω)

(continuous first derivatives), as well

∫

Ω

u,xi û dΩ =
∫

Γ

u ni û ds −
∫

Ω

u û,xi dΩ , (2.80)

where ni is the i-th component of the normal vector n on the edge Γ of the domain Ω .
The divergence theorem that connects the operators div and ∇ when applied to a

vector field u and a function û
∫

Ω

div u û dΩ =
∫

Γ

u · n û ds −
∫

Ω

u · ∇ û dΩ (2.81)

is an application of Gauss’ theorem.

2.2.2 The Laplace Operator

Consider a thin membrane, stretched by a force H (uniformly in all directions), that
seals an opening Ω and which is subjected to a pressure p, see Fig. 2.3. The deflection
u(x) of the membrane is the solution of the boundary value problem

− H Δu := −H (u,xx +u,yy ) = p on Ω u = 0 on Γ . (2.82)
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Fig. 2.3 Membrane under
pressure load

Because H is a constant we can set H = 1 in the following.
Let u ∈ C2(Ω) be a smooth (two times continuously differentiable) function

on Ω . To this function we apply the Laplace operator

− Δu = −(u,xx +u,yy ) (2.83)

multiply the result with a second function v ∈ C1(Ω), form the integral

∫

Ω

−Δu v dΩ (2.84)

and apply integration by parts to this integral

∫

Ω

−Δu v dΩ = −
∫

Γ

∂u

∂n
v ds +

∫

Ω

∇u · ∇v dΩ . (2.85)

The result is Green’s first identity

G (u, v) =
∫

Ω

−Δu v dΩ +
∫

Γ

∂u

∂n
v ds

︸ ︷︷ ︸
δWe

−
∫

Ω

∇u · ∇v dΩ

︸ ︷︷ ︸
δWi

= 0 . (2.86)

Any pair of functions {u, v} in C2(Ω) × C1(Ω) is a zero of this identity. If u is the
solution to the boundary value problem (3.67) and v a virtual displacement of the
membrane then the first two integrals represent the virtual exterior work δWe and
the integral
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∫

Ω

∇u · ∇v dΩ =
∫

Ω

(u,x v,x +u,y v,y ) dΩ =: a(u, v) (2.87)

is called the virtual internal energy δWi or the strain energy product between u
and v. It is often abbreviated as a(u, v).

Choosing for v the translation v = 1 gives

G (u, 1) =
∫

Ω

p · 1 dΩ +
∫

Γ

∂u

∂n
· 1 ds = 0 (2.88)

which is the equilibrium condition: the tractions ∂u/∂n on the edge balance the
pressure distribution p; they are the support reactions of a membrane.

On the “diagonal” , when v = u,

G (u, u) =
∫

Ω

−Δu u dΩ

︸ ︷︷ ︸
2 We

−
∫

Ω

∇u · ∇v dΩ

︸ ︷︷ ︸
2 Wi

= 0 (2.89)

Green’s first identity formulates the principle of conservation of energy and on the
“off-diagonals” when v = δu is a virtual displacement which we assume to be
compatible with the boundary conditions, δu = 0 on Γ ,

G (u, δu) =
∫

Ω

−Δu δu dΩ

︸ ︷︷ ︸
δWe

−
∫

Ω

∇u · ∇δu dΩ

︸ ︷︷ ︸
δWi

= 0 (2.90)

it formulates the principle of virtual displacements.
The principle of virtual forces is the identity in “reverse order” , that is with the

places of u and δu interchanged

G (δu, u) = δW ∗
e − δW ∗

i

=
∫

Ω

−Δδu u dΩ +
∫

Γ

∂δu

∂n
u ds

︸ ︷︷ ︸
δW ∗

e

− a(u, δu)

︸ ︷︷ ︸
δW ∗

i

= 0 . (2.91)

Green’s second identity is the expression

B(u, v) = G (u, v) − G (v, u) = 0 − 0 = 0 (2.92)

or
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B(u, v) =
∫

Ω

−Δu v dΩ +
∫

Γ

∂u

∂n
v ds −

∫

Γ

∂v

∂n
u ds −

∫

Ω

u (−Δv) dΩ = 0 .

(2.93)
This is Betti’s theorem which states that if a membrane is subjected to two different
pressure distributions p1 and p2

−Δu1 = p1 on Ω u1 = 0 on Γ (2.94)

−Δu2 = p2 on Ω u2 = 0 on Γ (2.95)

then the reciprocal exterior work of the two solutions u1 and u2 is the same

B(u1, u2) =
∫

Ω

p1 u2 dΩ −
∫

Ω

u1 p2 dΩ = 0 . (2.96)

FE-analysis operates with piecewise polynomials uh and vh which are smooth inside
each element Ωe, but the derivatives often jump at interelement boundaries and so
the identities can only be formulated element for element

G (uh, vh)Ωe =
∫

Ωe

−Δ uh vh dΩ +
∫

Γe

∂uh

∂n
vh ds − a(uh, vh)Ωe = 0 . (2.97)

Adding this string of zeros

G (uh, vh) :=
∑

e

G (uh, vh)Ωe = 0 + 0 + . . . + 0 = 0 (2.98)

results in

G (uh, vh) :=
∑

e

∫

Ωe

−Δ uh vh dΩ +
∑

k

∫

Γk

lk vh ds − a(uh, vh) = 0 (2.99)

where
a(uh, vh) :=

∑

e

a(uh, vh)Ωe . (2.100)

The functions lk on the mesh lines Γk represent the jumps of the normal derivative
in between the elements

lk := ∂uh

∂n +
− ∂uh

∂n −
. (2.101)

If a side Γk of an element borders on the outer edge then lk is simply the normal
derivative on the edge.
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2.2.3 Linear Self-Adjoint Operators

The Laplace operator is a linear self-adjoint differential operator of even order. Many
operators in mathematical physics share this property and have the same mathemat-
ical structure so that in the following we can let L represent a generic operator of
this type.

By applying integration by parts to the domain integral (L u, û) the integral can
be transformed into a series of boundary integrals [· , ·] and a symmetric bilinear
form a(u, û), the so called strain energy product or virtual strain energy, which is a
domain integral. Collecting all terms on one side results in Green’s first identity

G (u, û) = (L u, û) +
m−1∑

i=0

(−1)i [∂i u, ∂2m−1−i û] − a(u, û) = 0 (2.102)

and after a simple maneuver

B(u, û) := G (u, û) − G (û, u) = 0 − 0 = 0 (2.103)

also in Green’s second identity

B(u, û) = (L u, û) +
2m−1∑

i=0

(−1)i [∂i u, ∂2m−1−i û] − (u, Lû) = 0 . (2.104)

The 2 m boundary functions

∂i u i = 0, 1, . . . 2 m − 1 (2.105)

in the boundary integrals are the canonical boundary values; they are also known as
Cauchy data. They play a crucial role in the conservation laws, they register what
happens on the boundary, what flows in and out of a region. Given these bound-
ary functions and the right-hand side, L u = p, the function u inside Ω can be
reconstructed from these data.

If you know the height of the end points, u(0) and u(l), of a rope and the curvature,
−u′′ = p, of the rope in between then you can draw the shape of the rope; this is the
idea.

To the Laplace operator, −Δu, belong two boundary functions

∂0u = u ∂1u = ∂u

∂n
(2.106)

and to the fourth-order beam equation E I uI V = p four boundary values

∂0u = u ∂1u = u′ ∂2u = −E I u′′ = M ∂3u = −E I u′′′ = V . (2.107)
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In the mechanical context the lower order terms, ∂i u, i < m, are displacement terms
while the higher order terms, ∂i u, m ≤ i < 2 m − 1, are force terms and two such
terms are called adjoint or conjugate, as for example the terms

∂0u ∂3u = u V 0 + 3 = 3 (2.108)

∂1u ∂2u = u′ M 1 + 2 = 3, (2.109)

if the sum of the indices in the pair ∂i u ∂ j u equals i + j = 2 m − 1 (= 3 in the case
of a fourth order equation).

Obviously can these identities be extended to the Sobolev spaces as H2(Ω) and
H1(Ω) by allowing the functions to have weak derivatives. But on two- and three-
dimensional domains Ω this requires additional assumptions about the boundary
values of such functions (trace theorem) which are very technical and which we do
not want to discuss here in details.

For our purposes it suffices to assume that the identities are applicable to the
standard FE-shape functions inside each element and that the extension to the whole
domain, the whole mesh, can simply be done by adding zeros

0 + 0 + . . . + 0 + 0 = 0 . (2.110)

2.3 Duality

Imagine two opposite forces, Pl and Pr , that pull on both sides of a rod, so that
equilibrium is maintained

− Pl + Pr = 0 (2.111)

but then the equation can be multiplied with any number δu

δu (−Pl + Pr ) = δu · 0 = 0 (2.112)

without changing the mathematics. That is one can slide the rod effortlessly across
the table: the virtual exterior work is zero—for each displacement δu.

What looks like a child’s play is in truth one of the most important steps in applied
mathematics, it is the earliest manifestation of duality. A whole plethora of concepts
and ideas such as scalar product, adjoint quantities, virtual displacement, virtual
work, Green’s function, spectral theory, etc. comes to light by this simple maneuver.

The common theme of all these concepts is perhaps best explained in terms of
linear algebra.
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2.3.1 Linear Algebra

Let
K u = f (2.113)

a linear system of equations where K is an n × n matrix and u and f are vectors
in Rn .

The transpose of a real number is the same number as the original number, πT = π,
and so given any two vectors u and û the following expression is an identity

ûT K u = (ûT K u)T = uT K T û (2.114)

or in a slightly different arrangement

B(u, û) = ûT K u − uT K T û = 0 . (2.115)

This identity implies that the system (2.113) can only have a solution if the right hand
side f is orthogonal to all solutions û of the homogeneous adjoint system K T û = 0
because

B(u, û) = ûT K u − uT K T û = ûT f − 0 = ûT f = 0 . (2.116)

And if (2.113) has a solution u then u is also a solution of the variational problem

ûT K u = ûT f ∀ û ∈ Rn (2.117)

and vice versa which establishes that in the discrete case the strong formulation,
(2.113), and the weak formulation, (2.117), are equivalent.

Next let the vector gi be the solution of the adjoint equation if the right hand side
is the i-th unit vector, ei = {0, 0, . . . 1, . . . 0, 0}T

K T gi = ei (2.118)

and let u the solution of (2.113) then follows

B(u, gi ) = gT
i K u − uT K T gi = gT

i f − uT ei = 0 (2.119)

or
ui = gT

i f . (2.120)

So the “point solutions” of the adjoint system and the solution u of the original
problem are intrinsically intertwined. Projecting f on all the axes gi , i = 1, 2 . . . n
allows to construct the solution u = u1 e1 + . . . + un en with respect to the basis ei

because projecting f onto the gi is the same as projecting u onto the ei
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ui = gT
i f = uT ei . (2.121)

This is what is done when f is multiplied with the inverse matrix K−1

u = K−1 f (2.122)

because the rows of K−1 are just the vectors gi and so

u = (gT
1 f ) e1 + (gT

2 f ) e2 + . . . + (gT
n f ) en . (2.123)

In the continuous case, when the focus is on differential equations, as for example

− u′′(x) = p(x) u(0) = u(l) = 0 , (2.124)

the matrix K has infinitely many columns and the unit vectors become Dirac deltas

− d2

dy2 G(y, x) = δ(y − x) (2.125)

but the formalism is the same. By projecting the right-hand p side onto the solutions
G(y, x), that is by forming the L2-scalar product (integral) of the two functions, the
value of the solution can be recovered at any point x

u(x) =
l∫

0

G(y, x) p(y) dy

︸ ︷︷ ︸
gT

i f

=
l∫

0

δ(y − x) u(y) dy

︸ ︷︷ ︸
uT ei

(2.126)

and the first integral is, as the equation shows, the same as the L2-scalar product
between the function u itself and the Dirac delta, so that these two equations are
indeed equivalent to (2.121).

To the symmetry of the strain energy product

a(u, û) = a(û, u) (2.127)

corresponds the symmetry of K and it so follows that if u and G are the variational
solutions of the primal and the dual problem respectively

u ∈ V a(u, v) = (p, v) ∀ v ∈ V primal problem (2.128)

G ∈ V a(G, v) = (δ, v) ∀ v ∈ V dual problem (2.129)

then this implies
u(x) = (p, G) = (δ, u) . (2.130)
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Equation (2.126) is the same result in a “longhand” notation.
Much more could be said at this point about linear self-adjoint operators with con-

stant coefficients, Green’s functions and matrices, about eigenvalues, eigenvectors,
convolution and the construction of Green’s function from eigenfunctions. Linear,
time-invariant systems (signal processing) provide the most elementary application
and they are also a good example for the transition from the discrete case to the
continuous case, K (n×n) → K (∞×∞). Such systems are completely characterized
by their response to an impulse which is either modeled as a Dirac delta function for
continuous-time systems or as the Kronecker delta for discrete-time systems [3].

Remark 2.1 In signal processing the analysis is not done by integrating the impulse
response function (the Green’s function) and the input function but by multiplying
the integral transforms of the two functions because a convolution in the time domain
is equivalent to a multiplication in the frequency domain.

2.3.2 Vectors and Linear Functionals

In linear algebra, V = Rn , all linear functionals have the form of a scalar product

J (u) = j T u (2.131)

between u and a certain vector j whose components are simply the values of the
functional applied to the base vectors ei , i = 1, 2, . . . n of Rn

ji = J (ei ) . (2.132)

In the case of the functional J (u) = u1 which returns the first component of the
input, the vector j is just the unit vector e1

J (u) = eT
1 u = u1 . (2.133)

To understand the notion of a Green’s function or rather Green’s vector g imagine a
situation where the vector u is unknown and so J (u) cannot be calculated directly.
It is only known that the matrix K has mapped the vector u onto a vector f = K u.
Can the value J (u), the first component u1 of u, be recovered from f ? Yes, this is
possible. Solving the system

K T g = j = e1 (2.134)

for the vector g and formulating the identity

B(u, g) = gT K u − uT K T g = gT f − uT e1 = 0 (2.135)

it is found that
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J (u) = u1 = gT f . (2.136)

Note that the vector g depends on the matrix K , that is to find the way back from f
to u, or here u1, we must know which matrix K mapped u onto f .

If a different matrix K̄ maps u onto a different vector f̄ = K̄ u then—even though
the functional J (u) = u1 is the same—a different Green’s vector is required

K̄
T

ḡ = j = e1 . (2.137)

The same logic applies in the continuous case. Take the function u(x) = sin(π x/ l)
and differentiate it two times or four times respectively

−u′′ =
(π

l

)2
sin(π x/ l) = f (x) (2.138)

E I uI V =
(π

l

)4
sin(π x/ l) = f̄ (x) . (2.139)

In the first case u(x) is the deflection of a taut rope subjected to a lateral load f (x)

and in the second case it is the deflection of a beam subjected to a lateral load f̄ (x).
To recover the deflection at mid-span, u(l/2), from the right-hand sides f (x)

and f̄ (x), different Green’s functions are required though we are asking for the
same value, u(l/2). So the mapping is important. Which operator mapped u onto the
right-hand side? Where do the data come from?

2.4 Influence Functions

Linear algebra is easy. Let us now turn to functions and let us replace the matrix K
by the second-order differential operator in the equation for the rope

− u′′(x) = p(x) u(0) = u(l) = 0 . (2.140)

The aim is to formulate two influence functions, one for the deflection u(x) of the
rope and and one for the transverse force V (x) = H u′(x) = u′(x), by using Green’s
first identity (principle of virtual forces) and, alternatively, by using Green’s second
identity (Betti’s theorem).

Green’s first identity for the operator −d2/dx2 is the expression

I f û ∈ C2(0, l), u ∈ C1(0, l) then

G (û, u) =
l∫

0

−û′′ u dx + [û′ u]l0 −
l∫

0

û′ u′ dx = 0 (2.141)
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Fig. 2.4 Influence function G0

and the second identity, B(û, u) = G (û, u) − G (u, û), is the expression

I f û ∈ C2(0, l), u ∈ C2(0, l) then

B(û, u) =
l∫

0

−û′′ u dx + [û′ u] − [û u′]l0 −
l∫

0

û (−u′′) dx = 0 .

(2.142)

Because these identities are based on integration by parts the functions u and û must
meet certain regularity requirements. In the following, when we formulate these or
other identities, we will tacitly assume that the functions satisfy these conditions
or that we have partitioned the domain appropriately into subregions—typically the
elements—to circumvent restrictions which apply because the shape functions are
only piecewise C2 and C1 respectively.

2.4.1 Influence Function for u(x)

Let G0(y, x) be the deflection of the rope when a single force P = 1 acts at a point
x of the rope. That is G0 is the solution of the boundary value problem

− d2

dy2 G0(y, x) = δ0(y − x) G0(0, x) = G0(l, x) = 0 . (2.143)

The index 0 on the Dirac delta is to indicate that it represents a point load. Higher-
order Dirac deltas, δ1, δ2, . . ., will represent moments, dislocations, etc. The Green’s
functions carry the same index as the Dirac delta to which they belong.

The Green’s function has the form of a string plugged at x , see Fig. 2.4,
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G0(y, x) = 1

l

{
y (l − x) y ≤ x
x (l − y) x ≤ y

. (2.144)

The first derivative jumps at x and the second derivative is the Delta function, so
clearly G0(y, x) is not a C2 function. To derive Betti’s theorem Green’s second
identity is formulated on the punctured domain or—here—interval Ωε that is a small
ε-neighborhood of the source point x is excluded from [0, l]

Ωε := [0, x − ε] ∪ [x + ε, l] (2.145)

and we then let ε tend to zero.
The functions u and G0 are C2-functions on Ωε. The second derivative of G0(y, x)

is zero on Ωε because G0 is a linear function and so

B(G0, u)Ωε = G ′
0(x, y − ε) u(y − ε) − G ′

0(x, y + ε) u(y + ε)
︸ ︷︷ ︸

limε→0=1·u(x)

− G0(x, y − ε) u′(y − ε) + G0(x, y + ε) u′(y + ε)
︸ ︷︷ ︸

limε→0=0

−
∫

Ωε

G0(y, x) p(y) dy = 0 . (2.146)

Because the sum is zero for all ε > 0 the limit must be zero as well and so we
conclude that

lim
ε→0

B(G0, u)Ωε = u(x) −
l∫

0

G0(y, x) p(y) dy = 0 . (2.147)

The term u(x)—or to be more precise 1 · u(x)—is the work done by the unit-jump
in the derivative G ′

0 at the source point x on acting through u(x); the derivative G ′
0

corresponds to the transverse force and to accommodate the point load the derivative
must jump at x .

The expression on the second line in (2.146) is zero in the limit because both G0
and u′ are continuous at x .

Reordering the terms in (2.147) gives the influence function for u(x)

u(x) =
l∫

0

G0(y, x) p(y) dy . (2.148)

We can now also explain what it means that G0(y, x) solves the boundary value
problem (2.143). This is an open question: a direct verification is not possible because
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the second derivative of G0(y, x) is not defined at the source point x and also δ0(y, x)

is not a proper function.
The answer is that the differential equation (2.143) must be interpreted in the

distributional sense. The function G0(y, x) is a solution of (2.143) if and only if

l∫

0

− d2

dy2 G0(y, x) u(y) dy =
l∫

0

δ0(y, x) u(y) dy = u(x) ∀ u ∈ C∞
0 (0, l) .

(2.149)
That is the two sides are weighted with a test function u ∈ C∞

0 (0, l) and the results
on both sides should match. The test functions u are infinitely smooth functions and
all their boundary values, u, u′, u′′, . . ., are zero—at both ends.

The trick is to apply integration by parts to the left side, neglecting all warnings that
this is not allowed because −G

′′
0 is not a proper function, and to shift the differential

operator from G0 onto the infinitely patient test function

l∫

0

− d2

dy2 G0(y, x) u(y) dy =
l∫

0

G0(y, x) (−u′′(y)) dy (2.150)

and so it must be true that (2.149) is equivalent to

l∫

0

G0(y, x) (−u′′(y)) dy = u(x) ∀ u ∈ C∞
0 (0, l) . (2.151)

And this was demonstrated above (substitute for −u′′ the right hand side p).

2.4.2 Influence Function for u′(x)

Instead of a point load now a unit dislocation δ1(y, x) is applied at the source point
x so that the influence function G1(y, x) for the first derivative u′(x) is the solution
to the boundary value problem

− d2

dy2 G1(y, x) = δ1(y, x) G1(0, x) = G1(l, x) = 0 (2.152)

and consequently
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B(G1, u)Ωε = G ′
1(x, y − ε) u(y − ε) − G ′

1(x, y + ε) u(y + ε)
︸ ︷︷ ︸

limε→0=0

− G1(x, y − ε) u′(y − ε) + G1(x, y + ε) u′(y + ε)
︸ ︷︷ ︸

limε→0=1·u′(x)

−
∫

Ωε

G1(y, x) p(y) dy = 0 (2.153)

and therefore as well

lim
ε→0

B(G1, u)Ωε = u′(x) −
l∫

0

G1(y, x) p(y) dy = 0 (2.154)

which is the influence function for u′(x)

u′(x) =
l∫

0

G1(y, x) p(y) dy . (2.155)

Remark 2.2 The Dirac delta δ1

δ1(y, x) = 0 x �= y (2.156)

l∫

0

δ1(y, x) u(y) dy = u′(x) x ∈ (0, l) (2.157)

can be considered the first derivative of δ0 because integration by parts allows to
write (note that u(0) = u(l) = 0)

l∫

0

δ′
0(y, x) u(y) dy =

l∫

0

δ0(y, x) u′(y) dy = u′(x) (2.158)

so that δ′
0 performs the same action as δ1. For a very detailed discussion of these

shifts and other transformation rules applicable to Dirac deltas see [4].
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2.4.3 Weak Influence Function for u(x)

Next Green’s first identity (or the principle of virtual forces) will be used to formulate
an alternative influence function for u(x). On the punctured domain the starting point
is the expression

G (G0, u)Ωε = G ′
0(x, y − ε) u(y − ε) − G ′

0(x, y + ε) u(y + ε)
︸ ︷︷ ︸

limε→0=u(x)

− a(G0(y, x), u)Ωε = 0 (2.159)

and taking the limit

lim
ε→0

G (G0, u)Ωε = u(x) − a(G0, u) = 0 (2.160)

gives

u(x) = a(G0, u) :=
l∫

0

G ′
0 u′ dy . (2.161)

We call this influence function for u(x) a weak influence function in contrast to
(2.148) which we call a strong influence function.

A weak influence function is as good as a strong influence function. Weak means
that it is based on an evaluation of the stresses and strains, which are of the order
m if 2 m is the order of the differential equation, while a strong influence function
extracts u(x) (or possibly other values) from the right-hand side p which—in terms
of the solution u—is of order 2 m.

Weak influence functions can safely be formulated for displacement terms, the
lower order terms (derivatives less than m if the differential equation is of order 2 m),
but not for force terms (the higher derivatives), the result is nil, is zero.

To verify this we try to derive a weak influence function for the first derivative u′
of a rope. The starting point is as before a formulation on the punctured interval

G (G1, u)Ωε = − G ′
1(x, y − ε) u(y − ε) + G ′

1(x, y + ε) u(y + ε)

− a(G1(y, x), u)Ωε = 0 . (2.162)

The limit of the first two terms is zero

lim
ε→0

[−G ′
1(x, y − ε) u(y − ε) + G ′

1(x, y + ε) u(y + ε)
] = 0 (2.163)

because both functions, the slope G ′
1 of the Green’s function G1 and the solution u,

are continuous at x . But if the limit of the first two terms is zero (the exterior work)
then the limit of the strain energy product between G1 and u (the interior work) must
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(a)

(b)

(c)

(d)

Fig. 2.5 Rope a deflection u, b shear force V = u′, c influence function G1 for u′(x), d derivative
of G1

be zero as well

lim
ε→0

G (G1, u)Ωε = 0 − lim
ε→0

a(G1, u)Ωε = 0 , (2.164)

which is a correct but useless result. Stated separately the limit is

a(G1, u) := lim
ε→0

a(G1, u)Ωε = 0 (2.165)

and not, as one might have guessed, u′(x).
An example may prove the point. We try to formulate a weak influence function

for the first derivative V = u′ of the rope, see Fig. 2.5, at the point x = 0.25 �. But
the strain energy product between the slope V = u′ of the rope and the slope of the
Green’s function G1 evidently is zero

a(G1, u) =
l∫

0

d

dy
G1(y, x) u′(y) dy = 0 (2.166)

while the true value of V at the quarter point is pl/4.

2.4.3.1 Background

Does this result not contradict the claim that any linear bounded functional J (u)

allows such a “weak representation” by a Riesz element (G1),

J (u) = u′(x) = a(G1, u) ? (2.167)
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No it does not. Taking the derivative of a function is a bounded functional only if the
three indices

• i = the order of the derivative
• m = the order of the energy space Hm(Ω)

• n = dimension of the continuum Ω ⊂ R
n

satisfy the inequality

m − i >
n

2
. (2.168)

The differential operators, typically, have the order 2 m = 2 or 2 m = 4 and the
associated energy space is H 1(Ω) and H2(Ω) respectively, that is the order m of
the energy space is half the value of the order 2 m of the differential equation.

The solution space of the rope, −u′′ = p, is H1(0, l) and on this space the
zero-order derivative is a bounded functional but the first-order derivative is not

J (u) = u(x)︸ ︷︷ ︸
bounded

J (u) = u′(x)︸ ︷︷ ︸
unbounded

(2.169)

while on H2(0, l) (beam problems, E I uI V = p, 2m = 4) the derivatives are
classified as follows

J (u) = u(x) J (u) = u′(x)︸ ︷︷ ︸
bounded

J (u) = u′′(x) J (u) = u′′′(x)︸ ︷︷ ︸
unbounded

. (2.170)

There is nothing wrong with higher order derivatives. It all depends on the definition
of the underlying solution space. If the index m of the Sobolev space Hm is high
enough, if it satisfies the inequality

m > i + n

2
(2.171)

then also higher order derivatives are bounded functionals.
To be precise, in 1-D problems the i th order derivative is a bounded functional on

Hm(0, l)

|J (u)| =
∣
∣
∣
∣
di u

dxi
(x)

∣
∣
∣
∣ < c ‖u‖m (2.172)

if Ci (0, l) ⊂ Hm(0, l) (“continuous embedding” ) and according to Sobolev’s
Embedding Theorem this is the case if m > i + 1/2. So for the third derivative,
J (u) = u′′′(x), to be bounded the solution space Hm must have an index m > 3+1/2,
that is on H4(0, l) the third derivative is a continuous functional. In 2-D the necessary
condition would be m > i + 2/2 and in 3-D m > i + 3/2, see p. xx.

Note that it would not do to choose very smooth shape functions, ϕi ∈ H4(0, l),
and then to claim that the problem
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a(Gh,ϕi ) = J (ϕi ) = ϕ′′′
i (x) (2.173)

is well-posed, that it is in agreement with the Riesz-representation theorem. For that
the strain energy

a(u, u) =
l∫

0

(u′)2 dx (2.174)

must be equivalent on V to the norm on H4(0, l)

‖u‖4 :=
⎧
⎨

⎩

l∫

0

(uI V )2 + (u′′′)2 + (u′′)2 + (u′)2 + u2] dx

⎫
⎬

⎭

1/2

(2.175)

but because the strain energy disregards the higher-order derivatives it cannot really
separate the elements of H4(0, l), that is it cannot be a norm on H4(0, l). The correct
weak form for the Green’s function would be

(Gh,ϕi )4 = ϕ′′′
i (x) ∀ϕi ∈ Vh (2.176)

where (·, ·)4 is the scalar-product on H4(0, l) and in u′′′
h (x) = (Gh, p) the load p

would be the eighth-order derivative of u or something similar to that.

Remark 2.3 An engineer will not wonder about this negative outcome, that the strain
energy a(G1, u) is zero, because for him a weak influence functions such as

u(x) =
l∫

0

G ′(y, x) u′(y) dy ≡ a(G, u) (−u′′ = p) (2.177)

is based on the principle of virtual forces and which virtual force do you apply, so
he would ask, to calculate a force term?

To clarify this issue: What the engineer calls the principle of virtual forces is
Green’s first identity with δu and u in reverse order

G (δu, u) = 0 . (2.178)

The virtual displacement comes first and the solution is second while in the principle
of virtual displacements the sequence is: first u and then δu.

The reverse order makes that (“virtual” ) forces, δu′′ and δV (= δu′), act on u
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G (δu, u) =
l∫

0

−δu′′ u dx + [δV u]l0 − a(δu, v) = 0 (rope) . (2.179)

The single terms u(x) = . . . or V (x) = . . . in the influence functions are the limits
of certain “boundary integrals” 3

lim
ε→0

{
[V (G0) u]x−ε

0 + [V (G0) u]lx−ε

}
= 1 · u(x) (2.180)

lim
ε→0

{
[G1 V ]x−ε

0 + [G1 V ]lx−ε

}
= 1 · V (x) . (2.181)

But the force term V (x) could only jump out of the boundary integral [δu V ] and
this is not a part of (2.179). It is contained in Green’s second identity and this is why
Betti can do it but the principle of virtual forces can not.

2.4.4 A Sequence that Converges to G1

The jump in the Green’s function G1 at x forced us to exclude an ε-neighborhood of
the source point from the interval [0, l].

Alternatively we could study what happens if a sequence of continuous and piece-
wise polynomial functions Gε

1(y, x) tends to G1(y, x). Such a sequence is easily
constructed: we place two point forces P = ±1/Δx at each side of the source point
x , an unit Δx apart, and we then let the distance Δx shrink to zero so that the sequence
of shapes GΔx

1 converges to the exact Green’s function G1(y, x), see Fig. 2.6.
Let us see how we go about the formulation of the identities in this case. For a

particular value of Δx Green’s first identity reads

G (GΔx
1 , u) = 1

Δx
u(x +0.5 Δx)− 1

Δx
u(x −0.5 Δx)−a(GΔx

1 , u) = 0 . (2.182)

The limit of the first term is u′(x)

lim
Δx→0

[
1

Δx
u(x + 0.5 Δx) − 1

Δx
u(x − 0.5 Δx)

]
= u′(x) (2.183)

and because of

lim
Δx→0

G (GΔx
1 , u) = u′(x) − lim

Δx→0
a(GΔx

1 , u) = 0 (2.184)

the second term must have the same limit

3 In higher dimensions these terms would be genuine boundary integrals.
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(a)

(b)

Fig. 2.6 Influence function G1 (dashed line) for the first derivative V = H u′ = u′ a FE-
approximation GΔx

1 and b its derivative

lim
Δx→0

a(GΔx
1 , u) = u′(x) . (2.185)

This is a remarkable result because we know that

a(G1, u) := lim
ε→0

a(G1, u)Ωε = 0 . (2.186)

So the sequence, Δ x → 0, of the integrals a(GΔx
1 , u) converges to u′(x) but when

we substitute for GΔx
1 the limit function G1 then the integral is zero.

Numerically this is easily verified: the slope of G1 is 1/� and so

a(G1, u) =
�∫

0

1

�
u′(x) dx = u(�) − u(0) = 0 − 0 = 0 . (2.187)

The Green’s function G1 of the rope seemingly has a bounded energy, but all the
(infinite) energy is concentrated in one point, the point where the deflection jumps,
[[G]] = 1. But because the energy integral a(G1, u), when we follow the definition
(2.186), is insensitive to issues at points (1-D) the infinity is non-existing in the
energy metric.

The same happens in 2-D and 3-D problems: a stair welded together from flat
steel panels has zero energy but when a flat sheet of metal is folded into the same
shape then the energy of the stair is infinite though the energy hiding in the folds
(= lines) of the plate is “lost” because the strain energy is an 2-D integral which
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is insensitive to sudden jumps of the integrand along curves (= the folds) because
curves have measure zero.

Remark 2.4 The situation in Fig. 2.6 is the following: the two forces ±1/Δ x are
statically equivalent to a unit couple 1/Δ x · Δ x = 1 and so the support reactions,
±1/�, are independent of Δ x . The transverse force V is equal to the support reaction,
V = −1/�, and on passing the foot of the force −1/Δ x the transverse force V jumps
by 1/Δ x .

Basically what happens when Δ x → 0 is that the two infinite forces tear the
rope apart but surprisingly the discontinuity, the dislocation, is finite; the gap has
unit length. If G1 were a finite element shape function we would say that it is a
non-conforming shape function. Such functions have an infinite strain energy.

To see this let us assume, for simplicity, that the length � of the rope is very large
then 1/� � 0 and so the strain energy in the rope is approximately

a(GΔx
1 , GΔx

1 ) =
l∫

0

H [(GΔx
1 )′]2 dy �

x+0.5 Δ x∫

x−0.5 Δ x

H

(
1

Δ x

)2

dy

= H

(
1

Δ x

)2

Δ x = H

Δ x
(2.188)

and this term becomes infinite when Δ x → 0. If 1/� is not negligible then the
transverse force in the middle is 1/Δ x − 1/� but the leading term in the square is
the same as before

x+0.5 Δ x∫

x−0.5 Δ x

H

(
1

Δ x
− 1

�

)2

dy = H

(
1

Δ x
− 1

�

)2

Δ x = H

Δ x
+ . . . (2.189)

and so the energy becomes infinite as well.

2.4.5 Elevators and Escalators

Weak influence functions are like escalators while strong influence functions resem-
ble elevators. Depict the Green’s function as a mountain range where the height above
sea level indicates the influence a point load P = 1 on top of a mountain will have
on u(x). The lift G(y, x) takes us directly to the mountain top while the escalator
a(G, u) does one step dx at a time, calculates the increment du = u′ G ′ dx—the
derivative G ′ plays the role of a weight—and accumulates all the single increments
du to reach the value u(x).
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Fig. 2.7 Punctured domain
with source point

The classical example of an equation of this incremental type is the formula

∫

Ω

div u dΩ =
∫

Γ

u · n ds = J (u) (2.190)

which is the influence function for the net flow, J (u), in and out of a planar region Ω

bounded by a curve Γ . This influence function counts all the positive and negative
increments of the velocity field u inside Ω and if the average value of the divergence
of the field u

div u = ux ,x + uy,y (2.191)

is zero then the net flow J (u) is also zero (Fig. 2.7).

Remark 2.5 Later in Chap. 3 it will be seen that the FE-method does not distin-
guish between weak and strong influence functions. In FE-analysis the approximate
Green’s function is the solution of the variational problem

Gh ∈ Vh : a(Gh,ϕi ) = J (ϕi ) ϕi ∈ Vh (2.192)

and Gh gives the same result with both formulas

J (uh) =
l∫

0

Gh(y, x) p(y) dy

︸ ︷︷ ︸
strong

= a(Gh, uh)

︸ ︷︷ ︸
weak

, (2.193)

because on Vh the two formulas—strong and weak—coincide

J (uh) =
l∫

0

Gh(y, x) p(y) dy = gT f = gT K u = a(Gh, uh) . (2.194)

In a matrix formulation the difference between strong and weak influence functions
only depends on how one reads the equations
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J (uh) = gT f
︸ ︷︷ ︸
strong

= gT K u
︸ ︷︷ ︸

weak

. (2.195)

In the weak formulation gT K u we sum over all entries ki j which procedure is like
the domain integral of the divergence. While the strong formulation gT f in contrast
weights the nodal displacements with the vector f . If f has only one non-zero
component fi then this formulation can be very economically.

Note that in (2.190) the divergence is weighted with g = 1 while here the gradient
∇uh is weighted with the gradient ∇Gh .

Remark 2.6 In beam analysis engineers use the zero result of the weak influence
function for the force term M(x) = −E I u′′(x)

a(G2, u) =
l∫

0

M2 M

E I
dy = 0 (2.196)

as a check that the derivative u′ of the beam deflection u is continuous at a point x
(orthogonality of Mi belonging to the redundant Xi , and M in the force method). If
the result is not zero then the deflection curve has a kink at x and so M cannot be
the correct bending moment distribution in the beam.

2.4.6 Influence Functions in Higher Dimensions

In higher dimensions the technique to formulate influence functions is basically the
same. To exemplify this we consider the boundary value problem

− Δu = p on Ω u = 0 on Γ . (2.197)

The Green’s function for u(x) is the solution of the boundary value problem

− ΔG0 = Δ0( y − x) G0( y, x) = 0 y ∈ Γ (2.198)

and Green’s second identity for the Laplace operator reads

B(u, v) =
∫

Ω

−Δu v dΩ +
∫

Γ

∂u

∂n
v ds −

∫

Γ

∂v

∂n
u ds −

∫

Ω

u (−Δv) dΩ = 0 .

(2.199)
It is well known that the Green’s function has a logarithmic singularity at the source
point x

G( y, x) = − 1

2 π
ln r + regular terms (2.200)
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and so the integral identity must be formulated on the punctured domain, see Fig. 2.7,

Ωε = Ω − Nε(x) (2.201)

that is a small circular neighborhood Nε of the source point x is spared from the
domain and then the argument is the following: because Green’s second identity is
zero for all ε > 0

B(G0, u)Ωε =
∫

ΓNε

∂G0

∂n
u ds y

︸ ︷︷ ︸
limε→0=u(x)

−
∫

ΓNε

∂u

∂n
G0 ds y

︸ ︷︷ ︸
limε→0=0

−
∫

Ωε

G0 p dΩ y = 0 (2.202)

it must be also zero in the limit, ε → 0,

lim
ε→0

B(u, G0[x])Ωε = u(x) −
∫

Ω

G0 p dΩ y = 0 (2.203)

or

u(x) =
∫

Ω

G0 p dΩ y (2.204)

which is the influence function for the solution u(x).
The derivation of the influence function for the slope in the direction of an arbitrary

unit vector m
∂u

∂m
(x) = ∇ u(x) · m (2.205)

follows the same lines. In this case the Green’s function G1 is the solution of the
boundary value problem

− ΔG1 = δ1( y − x) G1( y, x) = 0 y ∈ Γ (2.206)

where the Dirac function has the properties

δ1( y − x) = 0 y �= x (2.207)
∫

Ω

δ1( y − x) u( y) dΩ y = ∂u

∂m
(x) x ∈ Ω . (2.208)

Evidently the Green’s function is

G1( y, x) = ∇x G0( y, x) · m = G0,x1 m1 + G0,x2 m2 . (2.209)



2.4 Influence Functions 73

(a) (b) (c) (d)

Fig. 2.8 The four singularities of a beam, ‘1’ ≡ tan ϕl + tan ϕr = 1, generate the four influence
functions (uppermost row) for a u, b u′, c M = −E I u′′ and d V = −E I u′′′ at the center of the
beam; + = inf. func integrates, − = inf. func. differentiates

As before the starting point is

B(G1, u)Ωε =
∫

ΓNε

∂G1

∂n
u ds y

︸ ︷︷ ︸
limε→0= 1

2
∂u
∂m (x)

−
∫

ΓNε

∂u

∂n
G1 ds y

︸ ︷︷ ︸
limε→0=− 1

2
∂u
∂m (x)

−
∫

Ωε

G1 p dΩ y = 0 (2.210)

and after taking the limit

lim
ε→0

B(u, G1[x])Ωε = ∂u

∂m
(x) −

∫

Ω

G1 p dΩ y = 0 , (2.211)

we recover
∂u

∂m
(x) =

∫

Ω

G1( y, x) p( y) dΩy (2.212)

which is the influence function for the slope. Basically it is the same logic as in the
1-D case, see Fig. 2.8.

2.4.7 Weak Influence Functions

As in the 1-D case we can derive a weak influence function for u(x)

lim
ε→0

G (G0, u)Ωε = u(x) − a(G0, u) = 0 (2.213)

but not for the slope (Fig. 2.8).
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2.4.8 Non-Zero Boundary Values

To be complete a word must be said about influence functions for problems where
the displacements on the boundary are not zero as in

− Δu = 0 u = ū on Γ . (2.214)

As before Green’s second identity is formulated with the solution u and a test function
v ∈ V (v = 0 on Γ )

B(u, v) =
∫

Ω

0 · v dΩ +
∫

Γ

∂u

∂n
· 0 ds −

∫

Γ

ū
∂v

∂n
ds −

∫

Ω

u(−Δv) dΩ = 0 (2.215)

and so it follows that if the Green’s function solves the boundary value problem

− ΔG( y, x) = δ( y − x) on Ω G( y, x) = 0 y ∈ Γ (2.216)

then B(u, G) = 0 is equivalent to

u(x) =
∫

Γ

∂G( y, x)

∂n
ū( y) ds y . (2.217)

By weighting the boundary displacements ū with the slope of the Green’s function—
which is the term conjugated to the displacement u = ū—the value of u(x) can be
calculated.

In a boundary value problem such as

− Δu = p u = ū on ΓD
∂u

∂n
= t̄ on ΓN (2.218)

the test functions v ∈ V must vanish on the part ΓD (D as in Dirichlet) of Γ =
ΓD ∪ ΓN (N as in Neumann) and so if the Green’s function solves the boundary
value problem

− ΔG( y, x) = δ( y − x) G( y, x) = 0 y ∈ ΓD (2.219)

then

u(x) =
∫

Ω

G( y, x) p( y) dΩ y +
∫

ΓD

∂G( y, x)

∂n
ū( y) ds y

+
∫

ΓN

G( y, x) t̄( y) ds y (2.220)
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is the influence function. All the input {p, t̄, ū} contributes to u(x).

Example 2.5 If a rigid punch indents the surface of the half-space then this is such
a boundary value problem with a prescribed inhomogeneous displacement ū along
the Dirichlet part ΓD of the soil surface, see Fig. 2.9, and so all influence functions
must have zero displacements on ΓD .

By analogy with (2.220) it follows that the influence function for the stress σyy

at a point x inside the half-space must be

σyy(x) = ū
∫

ΓD

t ( y, x) ds y . (2.221)

What in the Laplace equation is the slope ∂G/∂n are here the tractions t ( y, x) (verti-
cal stress) directly under the rigid punch due to a unit dislocation in vertical direction
at the source point x (= influence function for σyy). We know from experience that
the stress σyy at the ends of the punch is singular and so we conclude that the integral
of the tractions t ( y, x) must be unbounded and not measurable when the dislocation
is applied directly under the edge of the punch.

Example 2.6 In 1-D problems the boundary consists of points. Supports are point
supports. If a support settles by ū units the influence J (u) on any observable
quantity is

J (u)(x) = R(x) ū (2.222)

where R(x) is the support reaction in the direction of the displacement ū due to the
action of the Dirac delta associated with the functional J (u)(x).

2.4.9 Average Values of Stresses

The integration by parts formula

l∫

0

u′ v dx = [u v]l0 −
l∫

0

u v′ dx (2.223)

is also a statement about the average value of a derivative u′

1

l

l∫

0

u′ dx = 1

l
[u · 1]l0 = 1

l
(u(l) − u(0)) (2.224)

which is just the slope between the end points.
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(a) (b)

Fig. 2.9 Why the stress under a corner point of a rigid punch becomes infinite, a the influence
function for σyy is generated by a unit dislocation while the punch is kept fixed and b the sum of
the forces needed to hold the punch fixed times the indentation ū of the punch is the stress σyy at
the edge of the punch

In the same sense the average value of the stress

σxx = E (εxx + ν εyy) = E (ux ,x +ν uy,y ) (2.225)

in a plate element Ωe of size |Ωe| can be expressed by a boundary integral

1

|Ωe|
∫

Ωe

E (ux ,x +ν uy,y ) dΩ = E

|Ωe|
∫

Γe

(ux nx + ν uy ny) ds . (2.226)

The influence function for the boundary integral is the displacement field when line
forces E/|Ωe| nx and E ν/|Ωe| ny respectively pull on the edge Γe of the element,
see Fig. 2.10 [1].

If the element Ωe is embedded into a rather soft matrix, EM � 1, then the forces
can stretch the element unhindered, the influence function will extend quiet far, and
so much of the load will flow through the element. But when the matrix is very stiff,
EM � 1, and the element in contrast is very soft, E � 1, then the influence function
will almost be zero and so hardly any stresses will flow through Ωe.

There exists a close connection between these influence functions and the hydro-
static pressure distribution in a plate. The edge forces which generate the influence
function for the average value of σxx + σyy

tx = E

|Ωe| (1 + ν)
nx ty = E

|Ωe| (1 + ν)
ny (2.227)
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Fig. 2.10 These forces generate the influence function for the average value of σxx in the
element Ωe

are essentially the same forces a plate which is submerged in a fluid experiences
along its edge

tx = p nx ty = p ny p = water pressure . (2.228)

The stress tensor in the plate, S = p I , is a diagonal matrix and so the core dis-
placement field is simply ux = α x, uy = α y,α = p/(E + ν), see Fig. 2.11. This
is also the influence function for the average value of σxx + σyy when the factor
E/|Ωe|(1 + ν) replaces p.

Core displacement field means that an arbitrary vector u0 can be added to the
solution. This has no effect on the average value of the stresses because if the plate is
freely floating, if it is untethered, then the applied load must satisfy the equilibrium
condition ∫

Ω

p · r dΩ +
∫

Γ

t · r ds = 0 (2.229)

where r = a + x ×ω is a rigid body motion of the plate and this property guarantees
that the effect of u0 is nil when the influence function is evaluated.

Remark 2.7 The fluid pressure is a pure Neumann problem for the submerged plate
but because the integral of the normal vector is zero along any closed contour

∫

Γ

nx ds = 0
∫

Γ

ny ds = 0 (2.230)

the problem is well posed, are the equilibrium conditions satisfied.
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Fig. 2.11 Edge forces in the
direction of the normal vector,
as water pressure, generate
a very simple displacement
field in any plate; the field
is determined up to arbitrary
constants

Remark 2.8 The average values of the stresses (derivatives) must be zero if the edge
of a plate is fixed all around because the forces E/|Ωe| nx and E/|Ωe| ny respectively
applied to a fixed edge will effect nothing.

Remark 2.9 In beams the bending stresses σx typically exhibit an antisymmetric
linear distribution in vertical direction (y) so that the average value of these stresses
over the length of the beam (= plate)

l∫

0

h∫

0

σx (y, x) dy dx = 0 (2.231)

is zero. This is easily understood by looking at the forces which generate the influence
function for this integral, see Fig. 2.12. If ν = 0 then only lateral loads E will act
on the beam but because of ν = 0 they will have no effects on the horizontal
edges. If ν �= 0 then the stretching of the beam by the lateral forces ±E translates
into a constriction of the beam but this is compensated by an opposite displacement
produced by the vertical forces ±ν E so that again the displacement of the horizontal
edges is zero.



2.5 Properties of Green’s Functions 79

(a)

(b)

Fig. 2.12 Beam a bending stresses σx , b these forces generate the influence function for the average
value of σx in the beam

2.5 Properties of Green’s Functions

What is a point load mathematically, how do we define a Dirac delta? The engineer
may help who defines point loads via the equilibrium conditions.

A point load P = 1 placed on a rope at a point x makes that the shear force V
jumps by one unit

lim
ε→0

[V (x + 0.5 ε) − V (x − 0.5 ε)] = 1 . (2.232)

When the same force is placed on a membrane, see Fig. 2.13, then the integral of the
slope ∂u/∂n over concentric circles ΓNε must be 1 in the limit

lim
ε→0

∫

ΓNε

∂u

∂n
( y) ds y = lim

ε→0

∫

ΓNε

∂u

∂n
(x + ε∇r) ds y = 1 (2.233)

where

∇r = ∇( y − x) =
[

cos ϕ
sin ϕ

]
(2.234)

is a “pointer” of length one which—like a compass needle—shows the direction to
the points y = (ε,ϕ) (polar coordinates) on the edge Γε.

Because the size of Γε shrinks like 2 π ε the slope of u must counterbalance
this tendency by increasing as ε−1. This is indeed the case: the displacement of a
membrane near a unit point load has the form

u = − 1

2 π
ln r + regular terms (2.235)

and the slope of the singular term on a concentric circle Γr with radius r is
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Fig. 2.13 A point load acting at the center of a circular membrane, Poisson equation

− 1

2 π

∂ ln r

∂n
= −1

r
∇r · n = 1

r
∇r · ∇r = 1

2 π r
· 1 (2.236)

Note that the outward normal on the edge Γε points towards the center x, that is it
has the opposite direction of ∇r , and this makes that ∇r · n = −∇r · ∇r .

So by taking the limit of the singular term the point load at the center of the
shrinking circle is recovered, see Fig. 2.14a,

lim
ε→0

∫

ΓNε

∂u

∂n
( y) ds y = lim

ε→0

2 π∫

0

1

2 π ε
ε dϕ = 1 . (2.237)

The contribution of the regular terms to this integral is zero because a bounded
function integrated over a shrinking circle gives zero in the limit.

This is the engineering approach to Dirac deltas. If there is a “black hole” then the
neighborhood of the black hole must show traces of its presence. When you circle
the singularity once then you get a lift of one unit in the relevant quantity, the integral
of the vertical forces or the integral of the deflection.

Note that the dimension n of the space, 2-D or 3-D, determines the strength
O(r−n) of the singularity. In 2-D the circle that surrounds the point load is of size
2 π r and in 3-D it is a sphere of size 4 π r2. This dimension argument is the reason
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Fig. 2.14 A point load,
solution G0, and a dislocation,
solution G1

(a) (b)

why the gravitational forces or electrostatic forces near a point mass or a point charge
have the same order r−2.

To summarize the main properties of Green’s function let ∂i u, i = 0, 1, 2, 3 be
the boundary values of an abstract fourth-order equation L u = p as for example of
a Kirchhoff plate

∂0u = u ∂1u = ∇u · n ∂2u = mn(u) ∂3u = vn(u) . (2.238)

What is needed for an influence function of ∂1u(x) (e.g.) is

• an integral identity such as B(u, v) which contains a boundary integral

∫

Γ

∂1u ∂2v ds 1 + 2 = 2 m − 1 = 3 (2.239)

with ∂1u and the term conjugated to it, ∂2v,
• and a homogeneous solution G( y, x) of the governing equation with the property

lim
ε→0

∫

ΓNε

∂2G( y, x) ds y = 1 (2.240)

because this provides in the limit the Dirac delta effect

∂1u(x) = lim
ε→0

∫

ΓNε

∂2G( y, x) ∂1u( y) ds y . (2.241)

Second order differential equations possess two Green’s functions

G0( y, x) = single force G1( y, x) = dislocation (2.242)

and fourth order equations four such functions,
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G0( y, x) = single force G1( y, x) = moment (2.243)

G2( y, x) = twist G3( y, x) = dislocation . (2.244)

2.5.1 Modern Approach

What we presented here was the classical theory. In FE-analysis things are much
simpler, we must not be concerned with limits over shrinking circles and alike, we
have more freedom and more room to invent a nearly infinite variety of Green’s
functions. It is only required that the functional J (u) is linear. The nodal values gi

of the Green’s function
Gh( y, x) =

∑

i

gi (x)ϕi ( y) (2.245)

are the solution of the system K g = j where ji = J (ϕi ) and once we have solved
this system we can map p onto the value J (uh) of the FE-solution with ease

J (uh) =
∫

Ω

Gh( y, x) p( y) dΩ y = gT f . (2.246)

2.5.2 Maxwell

If a unit point load applied at one point x1 of an elastic structure results in a given
deflection at another point x2, then the same load applied at x2 will result in the
same deflection at x1.

This is Maxwell’s theorem and the underlying principle4

l∫

0

G0(y, x2) δ0(y − x1) dy =
l∫

0

G0(y, x1) δ0(y − x2) dy (2.247)

can be extended to any pair {i, j} of Green’s functions Gi (y, x1) and G j (y, x2)

l∫

0

Gi (y, x2) δ j (y − x1) dy =
l∫

0

G j (y, x1) δi (y − x2) dy . (2.248)

4 The indices on the Green’s functions and the Dirac deltas are to distinguish the different functions,
see Sect. 2.4.1.
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Say G1(y, x2) is the influence function for the shear force V = H u′(x) in a rope at
the point x2

− H
d2

dy2 G1(y, x2) = δ1(y − x2) G1(0, x2) = G1(l, x2) = 0 (2.249)

and G0(y, x1) is the influence function for the deflection u(x) of the rope at another
point x1

− H
d2

dy2 G0(y, x1) = δ0(y − x1) G0(0, x1) = G0(l, x1) = 0 (2.250)

then
l∫

0

G1(y, x2) δ0(y − x1) dy =
l∫

0

G0(y, x1) δ1(y − x2) dy (2.251)

or
G1(x1, x2) = V (G0(x2, x1)) (2.252)

that is the magnitude of G1 at x1 is the same as the magnitude of the shear force
belonging to G0 at the point x2.

Formally this allows to derive any influence function Gi (y, ξ) from G0(y, x) by
the maneuver

l∫

0

G0(y, x) δi (y − ξ) dy =
l∫

0

Gi (y, ξ) δ0(y − x) dy = Gi (x, ξ) . (2.253)

But this is a rather cumbersome approach. To plot the influence function for the shear
force G1(y, x) in a rope you would subdivide the rope into ten equally spaced points
xi and place first a unit force P = 1 at the point x1, calculate the shear force V
at x , then place the force at the point x2, again calculate the shear force at x , etc.
A linear plot of all these values would be a—for engineering purposes often good
enough—first approximation of the influence function.

2.5.3 Modes of Decay

Generating an influence function can be compared to throwing a stone into a water
basin and watching the waves slowly ebb away. If the basin is an intricate system of
ponds and channels then the energy transport will be influenced by the width of the
channels and the curvature of the channels.
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Fig. 2.15 Influence functions on a slab (K ΔΔw = p), a deflection, b rotation, c moment mxx ,
d shear force qx

But the mode of decay, s. Fig. 2.15, primarily depends on the character of the
influence function, and this in turn depends on the function value (here of a beam)

u(x) u′(x) u′′(x) u′′′(x) (2.254)

which the influence function extracts from the right-hand side, the fourth order deriv-
ative, E I uI V = p,

di u(x)

dxi
=

l∫

0

Gi (y, x) p(y) dy i = 0, 1, 2, 3 . (2.255)

That is an influence function can be considered an integral operator. The more
a kernel Gi (y, x) integrates the more “volume” it has, the more it extends in all
directions and the slower the rate of its decay, s. Fig. 2.15.

The kernel G0(y, x) maps p onto u(x), it integrates four times! The opposite is
the Dirac delta δ0 which is a so-called reproducing kernel. It neither integrates nor
differentiates; it has zero spread. It measures at one point only and the output is equal
to the input

l∫

0

δ0(y, x) p(y) dy = p(x) . (2.256)
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In the list of the Green’s functions of the beam, see (2.255), the Dirac delta would
be the fifth kernel, G4 ≡ δ0 which maps p onto itself—no gain.

2.5.4 Dipoles and Monopoles

Consider two opposite electric point charges a distance Δx apart and with a strength
±1/Δx which is inversely proportional to their distance Δx . If the distance between
the two charges shrinks to zero, Δx → 0, they become a dipole.

In solid mechanics point charges are point loads ±1/Δx and while an electric field
needs no carrier, is “invisible” (to our limited senses), a dipole in a solid makes its
presence felt by a gap, a unit dislocation.5 Such a dislocation generates the influence
function for a stress in a solid or—in the one-dimensional case—the normal force N
in a bar.

Of a somewhat different type is the influence function for a displacement
because it is generated by a point load P = 1, a monopole. Influence functions
which are generated by monopoles sum, they add, while influence functions gener-
ated by dipoles measure differences, they are sensitive to imbalances.6 Each of the
influence functions in Fig. 2.15 belongs to either one of these two types:

• G.F. for displacements and bending moments sum.
• G.F. for rotations, stresses and shear forces differentiate

A monopole generates a dent, a pit. Anything that falls into the pit makes that the
displacement increases. The pit sums, it integrates. A dipole instead represents a
shear deformation and these two opposite movements differentiate.

The influence function for the slope u′ in a beam comes from a dipole, a couple
M = 1, which is the limit of two opposite point forces

M = lim
Δx→0

1

Δx
Δx = 1 . (2.257)

If the resulting shear deformation is perfectly antisymmetric as it is in the middle
of a hinged beam and if the load happens to be symmetric then the slope is zero;
no need for the cross-section of the beam to rotate to counterbalance the effect of
uneven forces. Also the influence function for a shear force V is of dipole-type, is
a “high-pass filter” while the influence function for the bending moment M is of
monopole-type is a “low-pass filter” . The latter influence function is generated by
two moments M = ±1/Δx which rotate inward—towards the bent—and so generate
a symmetric deflection but with a sharp bent, a jump in the first derivative, at the
source point.

5 You see a gap only in 1-D. In 2-D you can only sense it if you circle the gap once. Then you will
experience a displacement shift in the direction of the dislocation.
6 We restrain at this point from introducing quadrupoles or even octupoles [5].
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(a) (b)

(d)(c)

(e) (f)

Fig. 2.16 Influence functions (uppermost row) for a the bending moment and b the shear force at
the center of the beam, c and d bending moments and shear forces of a symmetric load and of an
antisymmetric load, (e) and (f)

Now it is clear what happens: the maximum effect is observed if the loading
and the influence are of the same type (symmetric—symmetric or antisymmetric—
antisymmetric) and the minimum effect if the two have opposite “signs” are of
opposite type, s. Fig. 2.16.

The difference between monopoles and dipoles also explains why displacements
and bending moments are easier to approximate than stresses and shear forces. It
is the difference between numerical integration and numerical differentiation, see
Fig. 2.17 and also Figs. 2.18 and 2.19.

Remark 2.10 All influence functions for support reactions integrate though the sup-
port reactions are normal forces (stresses) or shear forces respectively and so we
would expect that the influence functions differentiate. But at a fixed support one
half of the shear deformation (= influence function) is hindered by the foundation.
So with one half-wave being zero and the other half-wave making a full swing to pro-
duce the required dislocation [[u]] = 1 the influence function turns into an one-sided
integration formula.

Remark 2.11 Not all influence functions decay! If parts of the released structure
(released = after an N -, V - or M-hinge is built in) can perform rigid body movements
then the opposite may be true, s. Fig. 2.20b.
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(a)

(b)

(c)

Fig. 2.17 Monopoles and dipoles, a influence function for the horizonal displacement and b the
stress σxx in a shear wall c displayed are only the horizontal components of the two influence
functions

2.5.5 Multipole Expansion

To be complete we mention the multipole expansion of influence functions whereby
large complex problems in acoustics or in electromagnetic and gravitational field
theory can be solved in reasonable time.

The gravitational potential generated by a body Ω with mass density ρ(x) is the
integral

u(x) = −G
∫

Ω

1

r
ρ( y) dΩ y r = | y − x| (2.258)

where the kernel 1/r is the free-space Green’s function (fundamental solution) of
the Laplacian

− Δ
1

r
= 4 π δ( y − x) (2.259)
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support

motion

Fig. 2.18 How the influence functions for the bending moment M = −E I u′′ wanders along the
beam and keeps its shape

and G is the gravitational constant.7

By doing a Taylor expansion of the kernel

7 Actually the complete Green’s function is 1/(4 π r). But in the literature the potential is always
given in the form (2.258), that is the 1/4 π must be contained in the constant G.
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support

motion

1.0

shear force V(x)

Fig. 2.19 How the influence function for the shear force V = −E I u′′′ wanders along the beam
but essentially stays the same. Note that near the fixed support the two-sided dislocation becomes
a one-sided swing and so produces the maximal effect

1

| y − x| = 1

r

[

1 + 1

r
ex · y + 1

2 r2 (3 (ex · y)2 − | y|2) + O

( | y|
|x|

)3
]

, (2.260)

where the unit vector ex signals the direction to x = r ex , the potential can be
written as

u(x) = umon(x) + udip(x) + uquad(x) + . . . (2.261)
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(a)

(b)

Fig. 2.20 a Influence function for the normal force N and b the bending moment M in a frame.
Not all influence functions decay!

The potentials

umon(x) = −G

r

∫

Ω

ρ( y) dΩ (2.262)

udip(x) = − G

r2

∫

Ω

ρ( y) ex · y dΩ (2.263)

uquad(x) = − G

2 r3

∫

Ω

ρ( y)(3 (ex · y)2 − | y|2) dΩ (2.264)
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represent monopoles (+), dipoles (+−) and quadrupoles (+ − +−) respectively.
If the Earth were a perfect sphere with a uniform density then its higher potentials
would be zero, u(x) = umon(x). This expansion is often coupled with a multi-level
clustering of the boundary elements, that is the cells or panels into which the surface
of a vibrating machine is subdivided, and so the two techniques combined allow to
solve exterior problems at “quasi-linear” costs.

2.5.6 Infinite Energy

The strain energy product a(u, v) of two functions is an integral. On the diagonal,
v = u, it is, up to the factor 1/2, the internal energy

Wi = 1

2
a(u, u) (2.265)

of the function u. If the integral does not exist, if the integral is infinite, it is said that
the function has infinite energy. Most Green’s functions have infinite energy.

Apply for example a point load P = 1 at the center, x = 0, of a circular membrane
with radius R = 1, see Fig. 2.13,

− Δ G = P · δ( y − 0) G( y, 0) = 0 y ∈ Γ . (2.266)

The solution to this problem, the Green’s function for u(0)

G( y, 0) = −P
1

2 π
ln r (2.267)

has a singularity at y = 0. This means that the point force once placed on the center
of the membrane will sink and sink and not stop before it has reached the point ∞,
so that the exterior work done by the load is infinite

We =
∫

Ω

−Δ G · G dΩy = P
∫

Ω

δ( y − 0) G( y, 0) dΩy = P · ∞ . (2.268)

According to the principle of conservation of energy We = Wi which is identical
with Green’s first identity

G (u, u) =
∫

Ω

−Δu u dΩ +
∫

Γ

∂u

∂n
u ds

︸ ︷︷ ︸
2 We

− a(u, u)

︸ ︷︷ ︸
2 Wi

= 0 , (2.269)

the internal energy (dΩ = r dr dϕ) must be infinite as well, which indeed it is
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a(G, G) =
∫

Ω

∇G · ∇G dΩ = 1

2 π

∫

Ω

1

r2 (r,2
x +r,2

y ) dΩ

= 1

2 π

1∫

0

1

r
dr

2 π∫

0

(cos2 ϕ + sin2 ϕ) dϕ =
1∫

0

1

r
dr = ∞ ,

(2.270)

and so we have in the end the—fitting—result

G (G, G) = ∞ − ∞ = 0 . (2.271)

But when a guitar string is plugged with a finger

− H G ′′ = δ(y − x) G(0, x) = G(l, x) = 0 (2.272)

which produces a triangular shape G, then the internal energy of the string is bounded

a(G, G) =
l∫

0

H (G ′)2 dy < ∞ (2.273)

because G ′ is piecewise constant and finite.
The important point is that if the energy of the Green’s functions G is bounded

then the functional J (u) which is associated with a Green’s function

J (u) =
∫

Ω

G( y, x) p( y) dΩ y (2.274)

is also bounded and vice versa.
In the case of linear functionals bounded and continuous is the same. A functional

on a space V is continuous if there exists a constant c, which is independent of the
single u, such that for all u

|J (u)| < c ‖u‖ . (2.275)

2.5.7 Genealogy of Influence Functions

Theoretically it suffices to know the Green’s function of the functional

J (u) = u(x) =
l∫

0

G(y, x) p(y) dy (2.276)
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because the Green’s function G̃(y, x) of any other linear functional J̃ (u) is simply

G̃ = J̃ (G) (2.277)

as follows by direct substitution

J̃ (u) =
l∫

0

J̃ (G)(y, x) p(y) dy =
l∫

0

G̃(y, x) p(y) dy . (2.278)

Though one must be careful because applying a functional J̃ under the integral sign
is not a trivial task. There are some rules which apply to such maneuvers.

2.6 Sobolev’s Embedding Theorem

The question whether a Green’s functions has finite energy is answered by the fol-
lowing theorem.

Theorem 2.4 (Sobolev’s Embedding Theorem) Assume Ω is a bounded domain of
R

n with a piecewise smooth edge (as in engineering applications). For 2(m − i) > n
we have the inclusion

Ci (Ω̄) ⊂ Hi+m(Ω) (2.279)

and there exist constants ci < ∞ such that for all u ∈ Hi+m(Ω) the following
estimate holds

‖u‖Ci (Ω̄) ≤ ci ‖u‖Hi+m (Ω) . (2.280)

The norm of a function u

‖u‖Ci (Ω̄) := max
0≤| j |≤i

∣
∣
∣
∣
∂| j |u(x)

∂x j

∣
∣
∣
∣ (2.281)

is the maximum value of |u| and its derivatives up to the order i on Ω̄ .
This theorem implies that the strain energy induced by the point load is bounded

and the conjugated quantity (the effect the point load produces) is finite and contin-
uous if the three indices satisfy the inequality [6],

m − i >
n

2
. (2.282)
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Fig. 2.21 The four singularities of a beam, ‘1’≡ tan ϕl + tan ϕr = 1

Table 2.1 Energy is bounded (Yes) or (No)

n = 1 n = 2 n = 3
singularity m = 1 rope, bar, Timoshenko beam plate, Reissner–Mindlin 3-D

i = 0 : Yes No No

i = 1 : No No No
singularity m = 2 Euler–Bernoulli beam Kirchhoff plate

i = 0 : Yes Yes

i = 1 : Yes No

i = 2 : No No

i = 3 : No No

The order of the energy is

m = 1 Timoshenko beams, Reissner–Mindlin plates, elastic solids

m = 2 Euler–Bernoulli beams, Kirchhoff plates

and the singularities in a second order equation (2 m = 2) have the indices

i = 0 force i = 1 dislocation

and in a fourth order equation (2 m = 4), see Fig. 2.21,

i = 0 force i = 1 moment

i = 2 bend i = 3 dislocation.

The index n = 1, 2, 3 corresponds to the space dimension. Table 2.1 summarizes the
inequality (2.282).

What makes this theorem so important is the link between integrals and point
values that is which index m must a Sobolev space Hm(Ω) have for it to contain C(Ω)

C(Ω) ⊂ Hm(Ω) (2.283)

or else when does ‖u‖m < ∞ imply that u is continuous (or to be precise: equivalent
to a continuous function) on Ω . This is the case if m > n/2.
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(a)

(b)

Fig. 2.22 Split of the Green’s function for the first derivative u,x on a rectangular domain into
a the fundamental solution g0( y, x) and b the regular part u R( y, x)

If for example Ω is a (Kirchhoff) plate with energy space H2(Ω), corresponding
to ΔΔu = p, and a function u lies in H2(Ω)—if all its derivatives up to the order
2 are square integrable on Ω—then u must be continuous, no sudden jumps are
allowed, and it must also be bounded, |u(x)| < ∞, on Ω . There is guaranteed to be
an upper limit to the deflection.

The space H1(Ω) does have this property only in 1-D, 1 > 1/2, but not in 2-D,
1 ≯ 2/2, and not in 3-D, 1 ≯ 3/2.

Remark 2.12 In 2-D the H1-functions can have at most singularities at isolated
points but they cannot be discontinuous along whole lines while in 3-D the H1-
functions can have singularities both at isolated points and along curves [7] A4.

2.7 Fundamental Solutions

Each Green’s function

G( y, x) = g( y, x) + u R( y, x) (2.284)
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can be split into a fundamental solution—in the case of the 2-D Poisson equation
this would be the function

g( y, x) = − 1

2π
ln r (2.285)

and a regular solution u R( y, x). The fundamental solution exhibits the particular
feature which is characteristic for the Green’s function, in this case

− Δ g( y, x) = δ( y − x) (2.286)

while the regular part, which is a homogeneous solution of the governing equation,

− Δ u R( y, x) = 0 , (2.287)

makes that the sum G = g + u R satisfies the boundary conditions, see Fig. 2.22.
Because of their disregard for boundary conditions fundamental solutions are also

called free-space Green’s functions.

2.7.1 Influence Function

When Green’s second identity is formulated with the fundamental solution (2.285)
and a sufficiently smooth function u

lim
ε→0

B(g[x], u) = 0 (2.288)

and this expression is solved for u(x)

u(x) =
∫

Γ

[g( y, x)
∂u

∂n
( y)− ∂

∂n
g( y, x) u( y)] ds y +

∫

Ω

g( y, x) p( y) dΩy (2.289)

then this is an alternative influence function for u(x). The boundary element method
is based on this type of influence functions [8, 9]. It operates with fundamental
solutions instead of Green’s functions because fundamental solutions are problem
independent.

But given a boundary value problem such as

− Δu = p u = 0 on Γ (2.290)

the influence function (2.289) cannot be applied directly

u(x) =
∫

Γ

g( y, x)
∂u

∂n
?

( y) ds y +
∫

Ω

g( y, x) p( y) dΩ y (2.291)
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because the slope is unknown on Γ and must first be determined by an integral
equation (apply the previous equation to points on the boundary)

∫

Γ

g( y, x) sh( y) ds y = −
∫

Ω

g( y, x) p( y) dΩ y x ∈ Γ (2.292)

where sh( y) is a boundary element approximation of the slope.

2.8 Ill-Posed Problems

The Green’s function of the Laplace operator

− ΔG( y, x) = δ( y − x) G( y, x) = 0 y ∈ Γ , (2.293)

has—as most Green’s functions do—infinite energy. This poses a problem because
it is no longer possible to claim that the FE-solution minimizes the distance in the
energy to the exact solution

‖G − Gh‖E ≤ ‖G − vh‖E ∀ vh ∈ Vh (2.294)

because the distance to the point ‖G‖ = ∞ is always infinite—regardless of which
point Gh ∈ Vh is picked as best approximation to G.

In the literature on goal-oriented adaptive refinement the Dirac deltas, the point
loads P = 1, are therefore always replaced by equivalent surface loads p = 1/|Ωε|
spread over a tiny disc Ωε centered at the source point so that the response of the
medium, let us call this the function G̃, is almost the Green’s function G. Numerically
there is of course no difference between nodal forces fi coming from P and p. The
authors do this only to stay inside the bounds of the theory and to justify the estimate,
see (4.20),

|u(x) − uh(x)| ≤ ‖G̃ − G̃h‖E ‖u − uh‖E (2.295)

which (theoretically) breaks down when instead of G̃ the exact Green’s function is
substituted because G has infinite energy.

To a large extent mathematical analysis is about inequalities about bounds. When
you can provide bounds for an error term then you are in a much better position
because you can then control the error and this is why the inequality above is invalu-
able. If you can control something then this means that you understand on what this
something depends.

From the perspective of the theory of weak boundary value problems the search
for an approximation Gh is an ill-posed problem because (1) the exact solution G
does not lie in the energy space H1(Ω) of the Laplace operator and (2) the functional
J (v) is not bounded on H1(Ω).
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But the finite element method simply disregards such warnings and operates with
Green’s functions just as if they happened to have finite energy and the success
proves the FE-method right. Which certainly is a curious situation: In an FE-program
the input is mostly processed by kernel functions which are solutions of ill-posed
problems.

Remark 2.13 The functional J (u) = u(x) would be a bounded functional on H1(Ω)

if there would exist a constant c < ∞, independent of the single u, such that

|J (u)| ≤ c ‖u‖1 ∀ u ∈ H1(Ω) . (2.296)

This would be true if C(Ω) can be “continuously embedded” into H1(Ω)

C(Ω) ⊂ H1(Ω) (2.297)

which is another way of saying that there exists a constant c < ∞ such that

max
x∈Ω

|u(x)| ≤ c ‖u‖1 (2.298)

for all functions u in H1(Ω). Think of it this way: if the integral of u squared and
its first-order derivatives squared, (∼ energy), tends to zero then u uniformly tends
to zero—pointwise (!). When the stored heat (= energy) in a small box Ω is nearly
zero then the temperature u(x) at each point of Ω must be near absolute zero. Or
what is the same: if two functions u and v are close in the H 1-norm then they are
also close in the C-norm which means

max
x∈Ω

|u(x) − v(x)| ≤ c ‖u − v‖1 . (2.299)

But the function u = − ln(− ln−1 r) has a finite H1-norm on a disc Ωρ with radius
ρ = 0.5 and centered at x

‖u‖2
1 =

∫

Ω

(u2 + u,2
x +u,2

y ) dΩ =
2 π∫

0

ρ∫

0

(
u2 + 4

r2 ln2 r2

)
r dr dϕ < ∞ (2.300)

but becomes infinite at the center, r = 0 and so the functional J (u) = u(0) cannot
be a bounded functional on H1(Ωρ).

2.9 Nonlinear Problems

Green’s functions are only applicable to linear problems because scalar products are
linear and so the superposition principle is limited to linear problems
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u1(x) + u2(x) =
∫

Ω

G( y, x) (p1( y) + p2( y)) dΩ y . (2.301)

But two observations suggest to extend at least the concept of a Green’s function to
nonlinear problems:

• Functionals J (u) are not limited to linear problems.
• In linear problems Green’s functions are identical with the Lagrange multiplier λ

L(u,λ) := J (u) − (a(u,λ) − (p,λ)) (2.302)

because

L,u = J (v) − a(v,λ) = 0 ∀ v ∈ V ⇒ λ = G (2.303)

L,λ = a(u, v) − (p, v) = 0 ∀ v ∈ V (2.304)

and in the nonlinear case λ corresponds to the Green’s function at the linearization
point. So Lagrange multipliers inherently carry over the concept of a Green’s function
also to nonlinear problems although one must be fully aware that a nonlinear solution
does not allow such a representation as in (2.301). But the very same idea which has
been applied so successfully to linear problems, goal-oriented adaptive refinement,
see Sect. 4.7, can also be applied to nonlinear problems and in this regard the extension
to nonlinear problems is important.

2.9.1 Lagrange Multiplier

Assume a function f (x, y) is to be minimized under the side condition that the point
(x, y) satisfies an equation g(x, y) = 0. With the two functions f and g and the
Lagrange multiplier λ we form the expression

L(x, y,λ) = f (x, y) + λ g(x, y) , (2.305)

and the point {x, y,λ} at which L becomes stationary

dL = L,x dx + L,y dy + L,λ dλ = 0 (2.306)

is also the point x, y at which f (x, y) attains its minimum value.
Lagrange multipliers are not restricted to optimization problems. Imagine a func-

tion f (x) is to be evaluated at a point x and x is subject to the constraint g(x) = 0
as in

f (x) = sin2(x) g(x) = x − 1 = 0 . (2.307)

Then the expression
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L = f (x) + λ g(x) (2.308)

is stationary for a certain value of λ at the point {x,λ}, that is

dL = L,x dx + L,λ dλ = 0 . (2.309)

The point {x,λ} is found by solving the two equations

L,x = f ′(x) + λ g′(x) = 0 (this determines λ) (2.310)

L,λ = g(x) = 0 (this determines x) . (2.311)

In the following the function f will be a functional J (u) and the vector u is subject
to the constraint K u = f .

2.9.2 Lagrange Multiplier and Linear Algebra

Lagrange multipliers are denoted by λ or λ and we follow this convention here but in
essence they are identical with the nodal vector g of the Green’s function, so λ ≡ g.

Let
J (u) = j T u (2.312)

a linear functional on Rn which is to be evaluated under the side condition that the
vector u satisfies the symmetric (n × n) system

K u = f . (2.313)

With a third vector λ ∈ Rn we form the Lagrange functional

L(u,λ) = J (u) − λT (K u − f ) (2.314)

and the point {u,λ} at which the functional L is stationary

dL = L,ui dui − L,λi dλi = 0 (2.315)

is determined by the two equations

K u = f K λ = j (2.316)

and so it follows that
J (u) = λT f (2.317)
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Fig. 2.23 The Lagrange mul-
tiplier method is an application
of Betti’s theorem that is of the
duality inherent in the scalar
product, πT = π

which means that the Lagrange multiplier plays the same role als the nodal vector
g of the Green’s function in FE-analysis, see Fig. 2.23.

The Lagrange multiplier method as presented here is identical with Betti’s theorem
that is it is a simple application of the identity (πT = π)

B(u,λ) = λT K u − uT K λ = 0 (2.318)

which holds true for any two vectors u,λ and a symmetric matrix K . This immedi-
ately implies that if the two vectors are solutions of (2.316) then

B(u,λ) = λT f − uT j = 0 (2.319)

or J (u) = λT f .
The stationarity condition dL = 0 only serves to derive the two equations (2.316).

2.9.3 Nonlinear Functionals

Next let J (u) a nonlinear functional. We only presuppose that J (0) = 0. The
expression

J ′(u; v) := d

dε
J (u + ε v)|ε=0 (2.320)

is the Gateaux derivative of the functional J (u). Because of the chain rule of the
Calculus this expression is linear in the second argument, in v. Let f (s) be the
function

f (s) := J (u + s e) e = u − uh , 0 ≤ s ≤ 1 . (2.321)

According to the Fundamental Theorem of the Calculus we have
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Fig. 2.24 The Lagrange
multiplier method applied to a
non-linear functional

f (1) − f (0) = J (u) − J (uh) =
1∫

0

f ′(s) ds =
1∫

0

J ′(uh + s e; e) ds (2.322)

and in particular, if u = 0,

− J (uh) =
1∫

0

J ′(uh − s uh;−uh) ds = −
1∫

0

J ′(uh − s uh; uh) ds . (2.323)

In FE-analysis the function uh is a weighted sum of the shape functions

uh(x) =
n∑

i=1

ui ϕi (x) (2.324)

and so, see Fig. 2.24,

J (uh) = J (u) := j T
u u =

n∑

i=1

ju i ui jui :=
1∫

0

J ′(uh − s uh;ϕi ) ds . (2.325)

The functional J (u) (u is a vector) has the same value as J (uh) (uh is a function)
if u is the nodal vector of uh as in (2.324). The point {u,λ} at which the Lagrange
functional

L(u,λ) = J (u) − λT (K u − f ) (2.326)

becomes stationary is determined by the two equations

K u = f K λ = ju , (2.327)

and we have
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J (u) = j T
u u = λT K u = λT f . (2.328)

This looks like magic: seemingly a nonlinear functional can be given the form of a
scalar product. But the vector λ which multiplies f depends on the argument uh .
Only in linear problems is λ truly a constant vector. The (pseudo) linearity in (2.328)
is due to the chain rule of the Calculus.

Example 2.7 Let

J (u) =
l∫

0

u2 dx (2.329)

then

J ′(u; v) =
l∫

0

2 u v dx jui =
l∫

0

uh ϕi dx (2.330)

and
J (uh) = λT f = j T

u K−1 f = j T
u u . (2.331)

A direct evaluation of J (uh) gives

J (uh) = J (u1 ϕ1 + . . . + un ϕn) = uT M u mi j =
l∫

0

ϕi ϕ j dx (2.332)

where M = [mi j ] is the “mass matrix” and we see that ju = M u.
Because λ = K−1 ju depends on u the direct evaluation (2.332) is probably

always faster than (2.331).
The real value of the vector λ = K−1 ju is that it can be plotted. It represents the

sensitivity of the functional J (u) with respect to the vector f . Imagine a planar mesh
with two degrees of freedom at each node. At each node xi the two corresponding
values of λ form a small vector λi as for example in Figs. 3.20, 3.21 and 3.22 in
Sect. 3.10.2. Nodes where λi ≡ gi is orthogonal to the vector f i (which is the local
representative of f at node xi ) do not contribute to J (u).

2.9.4 Nonlinear Problems

Next let us assume that the boundary value problem itself is nonlinear

a(uh;ϕi ) = (p,ϕi ) i = 1, 2, . . . n , (2.333)
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Fig. 2.25 The Lagrange multiplier method applied to a nonlinear problem

and so the vector u = {ui } of nodal values of the FE-solution

uh(x) =
n∑

i=1

ui ϕi (x) (2.334)

satisfies the nonlinear vector-valued equation

k(u) = f (2.335)

where
ki (u) := a(uh;ϕi ) fi = (p,ϕi ) i = 1, 2, . . . n . (2.336)

We allow, as before, that J (u) is a nonlinear functional

J (u) = j T
u u . (2.337)

Hence the Lagrange functional is

L(u,λ) = uT ju − λT (k(u) − f ) (2.338)

and we conclude that the stationary point {u,λ} is determined by the two equations

k(u) = f K T (u)λ = ju (2.339)

where K T is the tangent stiffness matrix at the point u.
This result is no longer symmetric and not what we had hoped for. If the first

equation were of the same form as the second

K T (u) u = f (2.340)

then we could apply immediately the previous logic and write J (u) = λT f .
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So let us assume for a moment it were symmetric. With an arbitrary vector ui we
can construct the matrix K T (ui ) and therewith the identity (πT = π)

B(e,λ) = λT K T (ui ) e − eT K T (ui )λ = 0 (2.341)

which holds true for all vectors e and λ.
The solution of k(u) = f is a zero of the vector-valued function

s(u) := k(u) − f (2.342)

and so if we follow the logic of Newton’s algorithm

s(ui+1) = 0 = s(ui ) + s′(ui ) (ui+1 − ui ) + · · · (2.343)

and if we let
ei+1 = ui+1 − ui (2.344)

then we are led to
K T (ui ) ei+1 � f − k(ui ) . (2.345)

Denoting
K T (ui )λi = j (i)u (2.346)

the identity (4.47) implies

B(ei+1,λi ) = λT
i K T (ui )︸ ︷︷ ︸

( j (i)u )T

ei+1 − eT
i+1 K T (ui )λi = 0 (2.347)

or
J (ei+1) = ( j (i)

u )T ei+1 = eT
i+1 K T (ui )λi � ( f − k(ui ))

T λi (2.348)

which means that the vector λi and the residual k(ui ) − f at the linearization point
allow to approximate the error J (ei+1), see Fig. 2.25.

This basically is the algebra by which goal-oriented adaptive refinement can be
extended to nonlinear problems. For more details see Sect. 4.7.

Remark 2.14 We assumed the tangent stiffness matrix K T to be symmetric but the
extension to non-symmetric matrices is obvious: replace the second matrix K T in
(4.47) by K T

T .
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2.10 Mixed Problems

The boundary value problem

− Δu = p on Ω u = 0 on Γ (2.349)

can be split into a coupled system

∇u − σ = σ0 (2.350)

−div σ = p (2.351)

for the two functions u and σ or v = {u,σ}T . We have added an additional term σ0
on the right-hand side to account for possible initial stresses.

To this system belongs the identity

G (v, v̂) =
∫

Ω

[
(∇u − σ) · σ̂ − div σ û

]

︸ ︷︷ ︸
L v·v̂

dΩ +
∫

Γ

σ · n û ds

−
∫

Ω

(∇u · σ̂ + ∇û · σ − σ · σ̂) dΩ = 0 (2.352)

and Green’s second identity is the expression

B(v, v̂) =
∫

Ω

L v·v̂ dΩ+
∫

Γ

σ·n û ds−
∫

Γ

σ̂·n u ds−
∫

Ω

v·L(v̂) dΩ = 0 . (2.353)

Let G be the Green’s function for the value of u(x) at some interior point of Ω

− ΔG( y, x) = δ( y − x) G( y, x) = 0 y ∈ Γ (2.354)

and let the “mixed representation” of this function be

g = {G,σG}T , σG = ∇G (2.355)

which is a homogeneous solution of L v = 0 at all points except at x, then in the
limit

lim
ε→0

B(g, v)Ωε = 0 (2.356)

out of

lim
ε→0

∫

ΓNε(x)

σG( y, x) · n u ds = u(x) (2.357)
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would pop u(x) and so we have found an influence function

u(x) =
∫

Ω

(G( y, x) p( y) + σG( y, x) · σ0( y)) dΩ y . (2.358)

The kernels in the influence function for σ1 and σ2

G(1)( y, x) = ∂G

∂x1
( y, x) G(2) = ∂G

∂x2
( y, x) (2.359)

represent unit dislocations in x1 and x2 direction respectively and the σi are limit
values of the integrals

lim
ε→0

∫

ΓNε(x)

σ · n G(i) ds = σi (x) (2.360)

and so

σi (x) =
∫

Ω

(G(i)( y, x) p( y) + σG(i) ( y, x) · σ0( y)) dΩ y (2.361)

where
σG(i) = ∇G(i) . (2.362)
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Chapter 3
Finite Elements and Green’s Functions

In this chapter we discuss the various features of FE-solutions in so far these features
can be traced back to the nature of FE-influence functions, that is to the ways an
FE-program approximates Green’s functions. Evidence of this close connection
between Green’s functions and the FE-method is the fact that the columns of the
inverse of a stiffness matrix are the discrete Green’s functions of the nodal values ui .

As in classical analysis where the solution of an equation can be written as the
integral of the Green’s function and the right-hand side, the program input is
processed by these discrete Green’s functions. They provide the output the engi-
neer sees on the screen. In linear analysis (and to some extent also in nonlinear
analysis) an FE-program can be seen as an exercise in approximating the Green’s
functions of an engineering problem with piecewise polynomial shape functions.

The FE-solution is the exact solution of an equivalent load case ph , whereby
equivalent is to be interpreted in the sense of the principle of virtual displace-
ments: (p,ϕi ) = (ph,ϕi ). This property allows to extend Betti’s theorem (p1, u2)

= (p2, u1) to FE-solutions in a particular way: keeping the loads in the equation but
replacing the exact solutions by their FE-approximations, and this extension makes
Tottenham’s equation possible which establishes that FE-results are the scalar prod-
uct between the approximate Green’s functions and the original right-hand side of
the differential equation.

While the concept of a Green’s function is a classical and beautiful idea but
with limited applicability because it puts as much strain on the analyst to calculate
a Green’s functions as to solve the original problem, it is in the realm of weak
formulations that Green’s functions really shine because in a weak formulation the
Green’s function is the Riesz element of the functional and approximating a Green’s
functions becomes as easy as solving an engineering problem with finite elements.
This makes it possible to extend the concept of Green’s function to arbitrary linear
and bounded functionals.

F. Hartmann, Green’s Functions and Finite Elements, 109
DOI: 10.1007/978-3-642-29523-2_3, © Springer-Verlag Berlin Heidelberg 2013
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3.1 Poisson Equation

Let Ω be a regular planar domain with boundary Γ . On Ω we consider the boundary
value problem

−Δu := −(u,xx +u,yy ) = p on Ω u = 0 on Γ (3.1)

where p is assumed to be a sufficiently regular function, so that

V := {u ∈ H1(Ω) |u = 0} (3.2)

can be considered the appropriate solution space. Green’s first identity (2.86) formu-
lated with the solution u and a test function v ∈ V

G (u, v) =
∫

Ω

p v dΩ −
∫

Ω

∇u · ∇v dΩ = 0 (3.3)

shows that u has the property

∫

Ω

∇u · ∇v dΩ =
∫

Ω

p v dΩ ∀ v ∈ V (3.4)

or
a(u, v) = (p, v) ∀ v ∈ V (3.5)

for short.
Let the edge of Ω be polygonal in shape so that Ω can be partitioned into a mesh

of triangular or rectangular elements, see Fig. 3.1. To the n nodes x j , j = 1, 2, . . . n
of the mesh belongs a set of n (piecewise linear or quadratic) shape functions ϕi (x)

ϕi (x j ) =
{

1 i = j
0 i �= j

x j = node (3.6)

which form a partition of unity and which constitute a “nodal basis” for the trial
space Vh ⊂ V .

Given a function v in V its projection vh onto the trial space Vh is the function
vh ∈ Vh which satisfies the n equations

a(v − vh,ϕi ) = 0 i = 1, 2, . . . n (3.7)

that is the error e = v−vh is orthogonal—in the sense of the strain energy product—
to all ϕi ∈ Vh . The FE-solution
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Fig. 3.1 Membrane

uh(x) =
∑

i

ui ϕi (x) (3.8)

is the projection of u onto Vh in this metric and in this particular case the orthogonality
condition

a(u − uh,ϕi ) =
∫

Ω

∇(u − uh) · ∇ϕi dΩ = 0 ∀ϕi ∈ Vh (3.9)

is known as the Galerkin orthogonality.
Green’s first identity

G (u,ϕi ) =
∫

Ω

p ϕi dΩ +
∫

Γ

∂u

∂n
ϕi ds

︸ ︷︷ ︸
=0

−a(u,ϕi ) = 0 (3.10)

allows to substitute for the virtual internal energy the virtual exterior work of the
right-hand side and so (3.9) is equivalent to the n equations

a(uh,ϕi ) = (p,ϕi ) i = 1, 2, . . . , n (3.11)
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V

V

Fig. 3.2 FE-analysis of a taut rope

or the system
K u = f (3.12)

with entries

ki j = a(ϕi ,ϕ j ) fi = (p,ϕi ). (3.13)

3.2 The FE-Load Case ph

Given an equation such as

3 x = 7.7 (3.14)

and an approximate solution, xh = 2.5, by doing a backward error analysis—simply
substitute xh into the equation—it is found that xh is the exact solution to the slightly
perturbed equation

3 xh = 7.5. (3.15)
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The same can be done with the FE-solution uh : substitute the approximate solution
uh into the original differential equation

−Δuh = ph (3.16)

and out pops the right-hand side ph , the “FE-load case” ph , which is solved by the
FE-solution. If for example uh is the function uh(x) = x3 y2 then ph is the function

−Δ uh = −∂
2uh

∂x2 −
∂2uh

∂y2 = −(6 x y2 + 2 x3) =: ph(x). (3.17)

Complications arise because the typical FE-solutions are only piecewise smooth
and so the differential operator is only applicable inside the elements. To quantify
the jumps in the derivatives across the element boundaries Green’s first identity is
formulated with the FE-solution uh and the function v = 1 on each element

G (uh, 1)Ωe =
∫

Ωe

−Δ uh · 1 dΩ +
∫

Γe

∂uh

∂n
· 1 ds − a(uh, 1)Ωe︸ ︷︷ ︸

= 0

= 0 (3.18)

and this string of zeros is added

G (uh, 1) :=
∑

e

G (uh, 1)Ωe = 0+ 0+ . . .+ 0 = 0 (3.19)

which makes

G (uh, 1) :=
∑

e

∫

Ωe

−Δ uh · 1 dΩ +
∑

k

∫

Γk

lk · 1 ds = 0 (3.20)

that automatically jump terms along the mesh lines Γk emerge

lk = ∂uh

∂n +
− ∂uh

∂n −
(3.21)

which can be interpreted as vertical line forces lk which produce kinks in the smooth
fabric of the membrane. If an element borders on the outer edge Γ then lk is simply
identical with the slope ∂uh/∂n of the element at the edge Γ .

Together with the smooth element forces inside each element, p(e)
h := −Δuh

(restricted to element Ωe), these line forces represent the FE-load case ph . For a 1-D
example see Fig. 3.2.

In the case of the plate in Fig. 3.3 the element force ph is a vector field with two
components px and py .
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10 kN
(a) (b)

6.54

6.54

6.54

6.54

Fig. 3.3 How an FE-program approximates a point force a original load case, b FE-load case ph ,
the numbers are the Euclidean sum ph =

√
(px , px )+ (py, py) of the integrals of the distributed

forces within the elements (bilinear elements)

3.2.1 Distributions

In most cases ph is a rather odd looking function if at all and so we take the liberty to
call the FE-load case a distribution. A distribution d(x) is something which can be
sensed by a test function ϕ ∈ C∞0 (Ω) that is when we shake this “something” with
ϕ then we register virtual work

δW =
l∫

0

d(x)ϕ(x) dΩ (3.22)

which allows even very wild distributions d(x), see Fig. 3.4, to be measured. This
virtual work approach is in agreement with the FE-method which is not interested in
the shape of things, how something looks on the screen, but in the virtual work this
something contributes on acting through virtual displacements.

3.2.2 Notation

Because eventually a long list of element loads pe and line loads lk is necessary to
detail a distribution ph the virtual work statement can become very lengthy
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(a)

(b)

Fig. 3.4 The work done by a the original load p and b the FE-loads ph are the same with respect
to the shape functions ϕi , δWe(ph,ϕi ) = δWe(p,ϕi )

∫

Ω

p(uh) v dΩ :=
∑

e

∫

Ωe

−Δ uh · v dΩ +
∑

k

∫

Γk

lk · v ds , (3.23)

so that the integral on the left serves as a short hand. We understand the operator
p(.) applied to a function uh to be the list of all the force terms of uh when Green’s
first identity G (uh, 1) is formulated as in (3.19) and p(uh) v is then the appropriate
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pairing. Often we will simplify this even further by writing ph instead of p(uh) so
that all the following expressions

∫

Ω

ph v dΩ :=
∫

Ω

p(uh) v dΩ =
∑

e

∫

Ωe

−Δ uh · v dΩ + . . . . (3.24)

have the same meaning. We take the same liberty with regard to the original right-
hand side p and write

∫

Ω

p(u) v Ω or
∫

Ω

p v dΩ (3.25)

for the exterior virtual work of the applied load regardless of whether p is a uniform
load or a complex assemblage of line loads and piecewise smooth distributed loads
(checker-board loads) or else.

We hope that this sacrifice in exactness will be compensated by a gain in read-
ability.

The distribution which belongs to the FE-solution uh constitutes a virtual work
functional

J (v) =
∫

Ω

p(uh) v dΩ (3.26)

and in particular is (3.20) the application of this functional to the displacement v = 1.
The definition of p(uh) includes the support reactions and this is why the forces p(uh)

are self-equilibrated, J (1) = 0.
The vertically oriented support reactions on the edge of the membrane are (as in

a rope, V = H u′, see Fig. 1.1) the H -fold slope

V = H
∂u

∂n
(3.27)

where H is the uniform prestress which we set H = 1 for simplicity. Green’s first
identity, G (uh, 1) = 0, guarantees that the edge forces balance the applied load (Γk

are now only internal mesh lines)

−
∫

Γ

∂uh

∂n
· 1 ds =

∑
e

∫

Ωe

−Δ uh · 1 dΩ +
∑

k

∫

Γk

lk · 1 ds. (3.28)

The slope on the edge of a membrane is usually negative because the deflection
decreases towards the edge and so the left-hand side comes out positive.

The following theorem clarifies the role of the FE-load case ph and why it is
central for the finite element method.
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Fig. 3.5 Betti’s theorem and
its extension to FE-solutions

Theorem 3.1 (Equivalence) The exact load case p and the FE-load case ph are
equivalent with respect to all ϕi ∈ Vh

∫

Ω

p(u)ϕi dΩ =
∫

Ω

p(uh)ϕi dΩ ∀ϕi ∈ Vh (3.29)

and therefore with respect to all functions vh ∈ Vh because the ϕi form a basis
of Vh.

One cannot tell apart the original load case p from the substitute load case ph by
shaking the membrane with one of the shape functions ϕi . The response in terms of
virtual exterior work is in both cases the same.

This theorem is simply a reformulation of the Galerkin orthogonality

0 = a(u − uh,ϕi ) = a(u,ϕi )− a(uh,ϕi ) =
∫

Ω

p(u)ϕi dΩ −
∫

Ω

p(uh)ϕi dΩ

(3.30)
in terms of exterior—instead of interior—virtual work.
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3.3 Extensions

Betti’s theorem, which states that the reciprocal exterior work of two solutions u1
and u2 is the same, (p1, u2) = (p2, u1), can be extended to FE-solutions in the
following sense (p1, uh

2) = (p2, uh
1).

3.3.1 Betti’s Theorem: Extended

Betti’s theorem, discovered by Enrico Betti in 1872, states that for a linear elastic
structure subjected to two sets of forces {Pi }, i = 1, ..., m and {Q j }, j = 1, 2, ..., n,

the work done by the set {P} through the displacements produced by the set {Q} is
equal to the work done by the set {Q} through the displacements produced by the
set {P}.

This result, also known as the Maxwell–Betti reciprocal work (or reciprocity)
theorem, applies to any linear self-adjoint operator and its solutions. It is a verbal
assessment of Green’s second identity.

If the membrane is subjected to two different load distributions, p1 and p2,

−Δu1 = p1 on Ω u1 = 0 on Γ (3.31)

−Δu2 = p2 on Ω u2 = 0 on Γ (3.32)

then Green’s identity

B(u1, u2) =
∫

Ω

−Δu1 u2 dΩ +
∫

Γ

∂u1

∂n
u2 ds −

∫

Γ

∂u2

∂n
u1 ds

−
∫

Ω

−Δu1 u2 dΩ = 0 (3.33)

implies that the reciprocal exterior work is the same

B(u1, u2) =
∫

Ω

p1 u2 dΩ −
∫

Ω

u1 p2 dΩ = 0 (3.34)

which is Betti’s theorem. This theorem can be extended, see Fig. 3.5, to FE-solutions
in the following sense:

Theorem 3.2 (Betti’s theorem—extended) If uh
1 is the FE-approximation of (3.31)

and if uh
2 is the FE-approximation of (3.32) then Betti’s theorem (3.34) remains valid

if u1 and u2 are replaced by uh
1 and uh

2
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Fig. 3.6 Betti and Betti—extended

∫

Ω

p1 uh
2 dΩ =

∫

Ω

p2 uh
1 dΩ. (3.35)

The proof is based on the Equivalence Theorem

∫

Ω

ph
1 uh

2 dΩ =
∫

Ω

p1 uh
2 dΩ

∫

Ω

ph
2 uh

1 dΩ =
∫

Ω

p2 uh
1 dΩ (3.36)

and Betti’s theorem

B(uh
1, uh

2) =
∫

Ω

ph
1 uh

2 dΩ −
∫

Ω

ph
2 uh

1 dΩ = 0 (3.37)

so that, see Fig. 3.6,

∫

Ω

ph
1 uh

2 dΩ =
∫

Ω

p1 uh
2 dΩ =

∫

Ω

ph
2 u1ϕ dΩ =

∫

Ω

p2 uh
1 dΩ. (3.38)

3.3.2 Tottenham’s Equation

The Green’s function of the boundary value problem (3.1) is the solution to the
boundary value problem
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−ΔG( y, x) = δ( y − x) on Ω G( y, x) = 0 y ∈ Γ (3.39)

where the Dirac delta has the properties

δ( y − x) = 0 y �= x (3.40)∫

Ω

δ( y − x) v( y) dΩ y = v(x) x ∈ Ω , v ∈ C0(Ω). (3.41)

With the help of the Green’s function the exact solution can be written as

u(x) =
∫

Ω

G( y, x) p( y) dΩ y. (3.42)

The approximate Green’s function Gh( y, x), the projection of G( y, x) onto the
subset Vh , has the form

Gh( y, x) =
∑

i

gi (x)ϕi ( y) (3.43)

where the notation gi (x) is to indicate that the nodal values gi depend on the location
of the source point x. This “separation of variables” pattern is typical for FE-Green’s
functions. The vector g(x) is the solution of the system

K g(x) = j(x) ji (x) =
∫

Ω

δ( y − x)ϕi ( y) dΩ y = ϕi (x). (3.44)

The function Gh( y, x) is the Green’s function of the FE-solution uh(x) as the
following theorem explains [1].

Theorem 3.3 (Tottenham’s equation) If u is the solution to the boundary value
problem (3.1), uh its FE-approximation and Gh( y, x) the FE-approximation of the
Green’s function for the point value u(x) then holds

uh(x) =
∫

Ω

Gh( y, x) p( y) dΩ y. (3.45)

According to Betti’s theorem the reciprocal exterior work of the two solutions of the
two load cases

−Δu = p u = 0 on Γ (3.46)

−ΔG = δ G = 0 on Γ (3.47)

is the same and so
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Fig. 3.7 Tottenham’s equation: the FE-corner displacement uh is equal to the work done by the
load t on acting through the approximate influence function

u(x) =
∫

Ω

δ( y − x) u( y) dΩ y =
∫

Ω

G( y, x) p( y) dΩ y. (3.48)

According to Betti’s Theorem-Extended we may, (set p1 = p and p2 = δ), replace
in (3.45) the exact solutions u and G by their FE-approximations and so

uh(x) =
∫

Ω

δ( y − x) uh( y) dΩy =
∫

Ω

Gh( y, x) p( y) dΩy (3.49)

which is (3.45). �

The following arguments lead to the same result: Green’s first identity implies

G (uh, Gh) =
∫

Ω

Gh ph dΩ − a(uh, Gh) = 0 (3.50)

and because of (ph, Gh) = (p, Gh) this is identical with

a(uh, Gh) =
∫

Ω

Gh p dΩ (3.51)

where Gh plays the role of a test function, a virtual displacement. Then the roles are
interchanged: Gh becomes the FE-approximation to−Δ G = δ and uh is interpreted
as a virtual displacement and so it follows
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uh(x) =
∫

Ω

δ( y − x) uh( y) dΩy = a(Gh, uh). (3.52)

Combining these two equations, (3.51) and (3.52), Tottenham’s equation (3.45) is
obtained, see Fig. 3.7.

3.3.3 Maxwell’s Theorem: Extended

Theorem 3.4 (Maxwell’s theorem) If a unit point load applied at one point x1 of
an elastic structure results in a given deflection at another point x2, then the same
load applied at x2 will result in the same deflection at x1.

Maxwell’s theorem is a particular instance of Betti’s theorem

∫

Ω

p1 u2 dΩ =
∫

Ω

p2 u1 dΩ. (3.53)

Namely if p1 = δ( y− x1) and p2 = δ( y− x2) are two point loads then this implies

u2(x1) =
∫

Ω

δ( y − x1) u2( y) dΩ =
∫

Ω

δ( y − x2) u1( y) dΩ = u1(x2) (3.54)

which is
u2(x1) = u1(x2) Maxwell’s T heorem. (3.55)

Does Maxwell’s Theorem also apply to FE-solutions? The symmetry of the stiffness
matrix implies that Maxwell’s Theorem holds true with regard to the nodal displace-
ments: a unit load at a node xi effects at a node x j the same displacement as a unit
load at node x j will at node xi

eT
j K ei = ki j = k ji = eT

i K e j . (3.56)

But does this also hold true for arbitrary other points of the mesh? Yes, as will be
shown in the following.

Imagine that a membrane Ω is subjected to two different unit point loads δ( y−x1)

and δ( y− x2) respectively. Let u1(x) and u2(x) be the deflections of the membrane
in these two load cases.

Formulating Green’s second identity with these two solutions on Ω minus two
small circular neighborhoods Nε(x1) and Nη(x2) of the two source points x1 and
x2 and taking the limit gives
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lim
ε→0,η→0

B(u1, u2)Ω−Nε−Nη = u2(x1)− u1(x2) = 0 (3.57)

which is Maxwell’s theorem: the echoes are the same. A unit heat source (e.g.) at
x1 produces at the point x2 the same temperature as a unit heat source placed at the
point x2 will at the point x1.

So in the terminology of Betti’s theorem Maxwell’s theorem is the expression

∫

Ω

δ( y − x1) u2( y) dΩy =
∫

Ω

δ( y − x2) u1( y) dΩ y (3.58)

and according to Betti’s theorem—extended the exact solutions may be replaced by
their FE-approximations that is

∫

Ω

δ( y − x1) uh
2( y) dΩ y =

∫

Ω

δ( y − x2) uh
1( y) dΩy (3.59)

or
uh

2(x1) = uh
1(x2) Maxwell’s T heorem—extended. (3.60)

And this holds true for arbitrary pairs of points. So also in FE-analysis the symmetry
of the echoes is preserved. And this symmetry can be extended to arbitrary linear
functionals.

Theorem 3.5 (Maxwell for functionals) If J1(u) and J2(u) are linear functionals
on V and if G1 and G2 are the corresponding Riesz elements respectively then

J1(G2) = J2(G1) (3.61)

and the FE-approximations obey the same law

J1(G
h
2) = J2(G

h
1). (3.62)

The displacement field generated by a horizontal dislocation of the point x in
Fig. 3.8b is the Green’s function G1 for the stress σxx at this point. To this field
belong certain shear stresses σxy in the cross section (0, l). And the integral of theses
stresses has the same value as the stress σxx at the point x if the two halves of the
cross section (0, l) slide in opposite direction by one unit length (= influence function
G2 for the resultant shear force) so that

J1(G2) = σxx (G2)(x) =
l∫

0

σxy(G1)(s) ds = J2(G1). (3.63)
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Fig. 3.8 The Green’s functions (Riesz elements) of the two functionals satisfy J1(G2) = J2(G1)

and this also holds true for the FE-solutions, J1(Gh
2) = J2(Gh

1)

3.4 Proxies

The FE-Green’s function Gh( y, x) tries to mimic the actions of the original Green’s
function
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u(x) =
∫

Ω

G( y, x) p( y) dΩ y orig. (3.64)

uh(x) =
∫

Ω

Gh( y, x) p( y) dΩ y subst. (3.65)

and the FE-Dirac delta δh( y, x) tries the same with the original Dirac delta δ( y− x)

u(x) =
∫

Ω

δ( y − x) u( y) dΩ y orig. (3.66)

uh(x) =
∫

Ω

δh( y, x) u( y) dΩy subst. (3.67)

but they both fail. What they produce is only an approximation uh(x) to the exact
value u(x).

But on the space Vh they perform flawlessly. On the space Vh they are as good as
the originals as will be explained in the following.

Remark 3.1 We write δh( y, x) and not δh( y − x) because δh represents a certain
distribution of exterior forces or loads which is specific for each point x and which
is not invariant to shifts; to different pairs of points y, x and ŷ, x̂ having the same
distance r = | ŷ − x̂| = | y − x| belong different sets of forces δh .

3.4.1 Gh = G on V∗
h

Let us assume that the solution to the boundary value problem

−Δu = p on Ω u = 0 on Γ (3.68)

lies in Vh . Green’s first identity

G (u,ϕi ) =
∫

Ω

p ϕi dΩ − a(u,ϕi ) = 0 ∀ϕi ∈ Vh (3.69)

then implies that the FE-solution uh

a(uh,ϕi ) = (p,ϕi ) ∀ϕi ∈ Vh (3.70)

is identical with u. But if u lies in Vh then the approximate kernel Gh—though it is
not identical with the exact kernel G—must map p onto the exact solution u = uh
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u(x)− uh(x) =
∫

Ω

[G( y, x)− Gh( y, x)] p( y) dΩ y = 0 (3.71)

and so the error G−Gh—which is not zero (!)—must be orthogonal to the right-hand
side p if the solution lies in Vh .

Proof To see this it suffices to show for one ϕi that

ϕi (x)− ϕi (x) =
∫

Ω

[G( y, x)− Gh( y, x)] p(ϕi )( y) dΩ y = 0 (3.72)

where p(ϕi ) is the distribution that belongs to the shape function ϕi . The first part

ϕi (x) =
∫

Ω

G( y, x) p(ϕi )( y) dΩ y (3.73)

is evident. To prove the second part

ϕi (x) =
∫

Ω

Gh( y, x) p(ϕi )( y) dΩ y (3.74)

which in short-hand notation is

(δ[x],ϕi ) = (Gh, p(ϕi )) (3.75)

we recall Betti’s Theorem-Extended which asserts that in the equation

W12 = (δ[x],ϕi ) = (G, p(ϕi )) = W21 (3.76)

the functions ϕi and G may be replaced by their projections onto Vh . Because ϕi

lies in Vh its projection is identical with ϕi and so (3.75) is established. �

This result applies of course to any linear functional.

3.4.2 δh = δ on Vh

On Vh the blurred Dirac delta δh finds its target as well as the true Dirac delta.
The Dirac delta δ( y− x) is not a proper function. But the approximate Dirac delta

δh( y, x) is real, it can be displayed on the screen and the work done by δh on acting
through a virtual displacement, see Fig. 3.9, can be calculated.

The approximate Dirac delta δh( y, x) is the right-hand side, the distribution, that
belongs to the approximate Green’s function Gh( y, x) in the sense of (3.19)
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(a) (b)

Fig. 3.9 a Dirac Delta δ and b Dirac Delta δh

G (Gh, 1) :=
∑

e

∫

Ωe

−Δ Gh · 1 dΩ +
∑

k

∫

Γk

lk · 1 ds = 0. (3.77)

That is δh( y, x) is the assemblage of all the element loads pe
h := −ΔGh( y, x)

(on an element Ωe) and the collection of all the jumps lk of the normal derivative in
between the elements and on the exterior edge (lines Γk). On the exterior edge the
jump is identical with the slope of the FE-solution.

Because the two load cases δ( y − x) and δh( y, x) are equivalent with respect to
all ϕi ∈ Vh it follows

ϕi (x) =
∫

Ω

δ( y − x)ϕi ( y) dΩ y =
∫

Ω

δh( y, x)ϕi ( y) dΩy ∀ϕi ∈ Vh (3.78)

and so for any function uh ∈ Vh as well

uh(x) =
∫

Ω

δh( y, x) uh( y) dΩ y. (3.79)

These substitute Dirac deltas definitely are no point sources. But on Vh their actions
produce the same effect as the true Dirac deltas. This is the meaning of (3.78).

In Fig. 3.9 are displayed the true Dirac delta and the substitute delta. Both are
work-equivalent on Vh . The work done by the true point load P = 1 on acting through
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vh(x) and the work done by the element loads and line loads of the substitute δh on
acting through vh

vh(x) =
⎧⎨
⎩

∫
Ω

δ( y − x) vh( y) dΩy∫
Ω

δh( y, x) vh( y) dΩy
(3.80)

is the same.
The integral (3.79) basically is the interpolation operator which reconstructs uh(x)

by weighting its nodal values with the nodal forces ji of the approximate Green’s
function

uh(x) =
∫

Ω

δh( y, x) uh( y) dΩ y = j(x)T u (3.81)

and these nodal forces in turn are simply the values of the different shape functions
at the point x

uh(x) = j(x)T u =
∑

i

ji ui =
∑

i

ϕi (x) ui . (3.82)

Remark 3.2 The side by side comparison of δ with δh in Fig. 3.9 may look
impressive—the approximate Dirac delta seems to shoulder a heavy load in contrast
to the slender point-like original Dirac delta—but one may not forget that because
of the Galerkin orthogonality—we let the source point x a node x j and δi j is the
Kronecker delta

a(G[x j ] − Gh[x j ],ϕi ) = (δ[x j ] − δh[x j ],ϕi )

= ϕi (x j )−
∫

Ω

δh( y, x j )ϕi ( y) dΩy

= δi j −
∫

Ω

δh( y, x j )ϕi ( y) dΩ y = 0 (3.83)

almost all shape functionsϕi ( y) are orthogonal to δh , so most of δh is “non-existent”
in the weak sense, is a “weak” zero.

But the solution u senses the presence of δh and of each part of it! The work done
by δh on acting through u is the value of the FE-solution at the source point x j

uh(x j ) =
∫

Ω

δh( y, x j ) u( y) dΩ y (3.84)

and in evaluating this integral each element load ph
e and each line load lk that con-

tributes to δh counts.
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3.4.3 Jh(u) = J(u) on Vh

Each linear and bounded functional J (u) can be identified with the action of a certain
Dirac delta δ( y − x) or a Green’s function G( y, x) respectively

J (u) =
∫

Ω

δ( y − x) u( y) dΩ y =
∫

Ω

G( y, x) p( y) dΩ y (3.85)

where the Green’s function is the Riesz element of the functional J (u).
When G is projected onto Vh , G → Gh , then the new kernel Gh( y, x) constitutes

a new functional

Jh(u) =
∫

Ω

δh( y, x) u( y) dΩ y =
∫

Ω

Gh( y, x) p( y) dΩ y (3.86)

which in general is different from J (u)

Jh(u) �= J (u) (3.87)

that is the two functionals map the same function u in general onto different points
on the real axis. But when we restrict the functionals to Vh then the results agree.

Theorem 3.6 (Equivalence) On Vh the two functionals agree

J (ϕi ) = Jh(ϕi ) ∀ϕi ∈ Vh . (3.88)

An alternative version of this theorem is the following.

Theorem 3.7 (Dual Galerkin orthogonality) If Gh is the projection of the Green’s
function G onto the subspace Vh and p(vh) the right-hand side (= distribution) of a
trial function vh ∈ Vh then holds

∫

Ω

[G( y, x)− Gh( y, x)] p(vh)( y) dΩ y = 0 ∀ vh ∈ Vh . (3.89)

We call it dual Galerkin orthogonality because it is conjugate to the classical Galerkin
orthogonality

a(u − uh, vh) =
∫

Ω

(p − ph) vh dΩ = 0 ∀ vh ∈ Vh (3.90)

which states that the error in the right-hand side is orthogonal to Vh . Here the state-
ment is that the error in the Green’s function is orthogonal to the functions in V∗h ,
which are the right-hand sides, the distributions or load cases, which belong to the
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trial functions vh ∈ Vh . Galerkin tests with the trial functions vh while here the test
is performed with the loads or distributions ph(vh) which belong to the vh .

This result implies that if the exact solution lies in Vh then

J (u)− Jh(u) =
∫

Ω

[G( y, x)− Gh( y, x)] p( y) dΩy = 0. (3.91)

On the larger space V the two functionals differ in general

J (v) �= Jh(v) v /∈ Vh (3.92)

because the Galerkin orthogonality only holds true on the subset Vh ⊂ V . But the
following theorem applies:

Theorem 3.8 (Dual Reciprocity) If uh is the projection of u onto the subspace Vh

and Gh the projection of G then

J (uh) = Jh(u). (3.93)

Proof The proof is easy

J (uh) = (δ, uh) = a(G, uh) = a(Gh, uh) = (p, Gh) = Jh(u) (3.94)

and basically is an application of Betti’s theorem—extended. Or it can be read as
Tottenham’s equation

J (uh) = (δ, uh) = uh(x) =
l∫

0

Gh p dy = Jh(u). � (3.95)

Imagine there is a traffic jam on a two-span bridge. The pier in the middle of the
bridge has to withstand a certain portion of the total weight of the stalled cars and
trucks. When this problem is worked out with an FE-program then (1) the original
load p gets replaced by a work-equivalent load ph

(load case p) u → uh (load case ph) (3.96)

and (2) the pier reaction J (u) is calculated with the substitute FE-influence function

Jh(uh) = FE pier reaction. (3.97)

So it seems that two errors are committed: wrong load and wrong “yardstick” . But
in truth it is only one because
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Jh(uh) = J (uh). (3.98)

What the FE-influence function and the exact influence function measure is the same
because uh lies in Vh . Error #2 never materializes in an FE-code.

We can now also establish when the error

J (uh)− J (u) = 0 (3.99)

of an FE-solution is zero.

Theorem 3.9 (Exact values)
Sufficient conditions

1. If the Riesz element G of a functional J () lies in Vh then it is identical with its
projection, Gh = G, that is then holds

Jh(u) = J (u) ∀ u ∈ V (3.100)

and so also
J (uh) = Jh(u) = J (u). (3.101)

2. If the exact solution lies in Vh, u = uh (its projection) then the error in any
Green’s functions is orthogonal to the right-hand side p

J (u)− J (uh) =
∫

Ω

[G( y, x)− Gh( y, x)] p( y) dΩy = 0. (3.102)

Necessary condition

1. If a value is exact, J (uh) = J (u) then the error in the Green’s function must be
orthogonal to the right-hand side p

J (u)− J (uh) =
∫

Ω

[G( y, x)− Gh( y, x)] p( y) dΩ y = 0. (3.103)

Consider for example the functional

J (u) :=
∫

Ω

−Δ u dΩ +
∫

Γ

∂u

∂n
ds (3.104)

which is zero for any function u ∈ C2(Ω) because it is simply the integration by
parts formula

J (u) = G (u, 1) =
∫

Ω

−Δ u · 1 dΩ +
∫

Γ

∂u

∂n
· 1 ds − a(u, 1)︸ ︷︷ ︸

=0

= 0. (3.105)
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(a)

(b)

Fig. 3.10 FE-influence functions for σxx . In the vicinity of the source point the functions certainly
are not correct but they can predict the correct value σxx when constant forces pull at the edge. All
FE-influence function for σxx (x), where x can be any point, have this property!

In mechanical terms it expresses the fact that the tractions ∂u/∂n on the boundary
balance the pressure p = −Δu applied to a membrane. Any smooth function satisfies
this (natural) equilibrium condition.

The Riesz element of the functional (3.104) is the function G( y, x) = 1 and
because the shape functionsϕi form a partition of unity the unit-function G( y, x) = 1
lies in V+h (the full or “unrestrained” space Vh which knows nothing of boundary
conditions) and therefore it is guaranteed that also the FE-solution uh satisfies the
equilibrium condition,

J (uh) =
∑

e

∫

Ωe

−Δ Gh dΩ +
∑

k

∫

Γk

jk ds = 0 (3.106)

where the first sum extends over the interior of all elements Ωe and the second sum
measures the jumps jk in the slope along all interelement boundaries Γk which here
also include the edge of the domain.

In Fig. 3.10 are plotted different influence functions for the stress σxx in a plate.
These influence functions certainly are not exact in the neighborhood of the source
point. But their shape at the right end of the plate must be correct in an integral sense
because we know from the patch test that such a simple problem is exactly solvable
with bilinear elements and this means that when a uniform load t pulls on the edge
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then the influence functions

σxx (x) = t ·
l∫

0

Gh(x, y) ds y = t · l · Gavg(x) (3.107)

must evaluate to the exact value.
This means that the horizontal component Gh(x, y) of the FE-influence function

obviously has the correct average value Gavg(x) at the right end of the plate and this
must be true, as we know from the patch test, for all points of the plate. The piecewise
polynomial Green’s functions, the influence functions for the stresses σxx (x) at all
the points x of the plate, are “crooked” and “flawed” and far from being perfect but
they have one property in common: their average value Gavg(x) over the right edge
is exact. This is indeed a remarkable property.

Just imagine a point x very, very close to the edge. No hope for the shape functions
to come close—even only in rudimentary form—to the exact Green’s function but
the average value is correct—definitely.

Remark 3.3 The patch test can be seen as a test of an FE-model in how far it is able
to produce influence functions which are exact in an integral sense because most
often the loads applied in a patch test are uniform. The outcome of a patch test in
2-D and 3-D with a point load applied is guaranteed to be negative.

3.4.4 Summary

So an FE-solution can be written in six different ways

uh(x) =
∫

Ω

G( y, x)ph( y) dΩ y =
∫

Ω

Gh( y, x)ph( y) dΩ y

=
∫

Ω

Gh( y, x)p( y) dΩ y

=
∫

Ω

δ( y − x)uh( y) dΩ y =
∫

Ω

δh( y, x)uh( y) dΩy

=
∫

Ω

δh( y, x)u( y) dΩ y , (3.108)

not counting the weak forms

uh(x) = a(G, uh) = a(Gh, uh) = a(Gh, u). (3.109)
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Splines or Bezier curves are controlled by a (finite) set of control points or knots and
in a similar way the deflection u(x) of a rope is controlled by the Green’s functions
G(y, x) of the rope

u(x) =
l∫

0

G(y, x) p(y) dy. (3.110)

They represent an infinite number of invisible weights on u(x) which control the
“fit” between u and the applied load p. The solution to the boundary value problem
(1.30) is the only function which passes all tests

u(x) = p

2
x (l − x) =

l∫

0

G(y, x) p(y) dy (3.111)

f or all Green’s f unctions G(y, x) of the rope (3.112)

while the FE-solution uh(x) fails in most of these tests

uh(x) �=
l∫

0

G(y, x) p(y) dy. (3.113)

The only exception being the Green’s functions of the nodes because the piece-
wise linear FE-solution of the rope interpolates the exact curve at the nodes, uh(xi )

= u(xi ).
The amazing fact is that when we decide to forego the exact Green’s functions and

instead repeat the tests with the approximate Green’s functions then the FE-solution
passes all tests

uh(x) =
l∫

0

Gh(y, x) p(y) dy (3.114)

f or all F E-Green’s f unctions Gh(y, x) of the rope.

That is if we make our own rules, if the shape uh(x) is subjected to a different set of
control points—figuratively speaking—it fits perfectly. In this sense the FE-method
is consistent.

So according to (3.108) the FE-method can be interpreted in two ways:

• either as a modification of the right-hand side, p→ ph

• or as a modification of the kernels, G(y, x)→ Gh(y, x).

Remarkably both strategies produce the same error.
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3.5 Dirac Energy

Influence functions express a balance, an energy balance. The work done by a unit
point load P = 1 on acting through the deflection u(x) of the rope

1 · u(x) =
∫

Ω

G(y, x) p(y) dy (3.115)

is the same as the work done by the distributed load p on acting through G(y, x),
the reaction of the rope to the point load.

The factor 1 is essential because otherwise the units would not match

f orce · length = 1 · u(xc) =
l∫

0

G(y, x) p(y) dy

= length · f orce/ length · length (3.116)

So the output of an influence function is an energy. We call this energy quantum the
“Dirac energy” .

It is the work done by the applied load on acting through the influence function.
This principle finds its simplest expression in a see-saw, see Fig. 3.11b: the work

done by the two weights is zero for each turn of the see-saw

Pl ul − Pr ur = Pl tanϕ hl − Pr tanϕ hr

= (Pl hl − Pr hr ) tanϕ = 0 ∀ϕ (3.117)

because the two loads balance, Pl hl = Pr hr .
In this sense each influence function is a see-saw. To calculate the shear force

V (x) of the frame at a point x , see Fig. 3.11a, we install a shear hinge at x and apply
a unit dislocation to the hinge so that the shear force V (x) does the work−V (x) · 1,

− V (x) u(x−)− V (x) u(x+) = −V (x) (u(x−)+ u(x+)) = −V (x) · 1. (3.118)

The work done by the load, the point force P , on acting through the displacement u,
initiated by the dislocation, must be the opposite of this value because

−V (x) · 1+ P u︸ ︷︷ ︸
W1,2

= 0. (3.119)

This is Betti’s theorem, W1,2 = W2,1. Betti’s theorem is the logic of the see-saw and
pulleys, see Fig. 3.12. (The work W2,1 is zero, see the following remark).

So to each internal action, V (x), N (x), M(x) etc., belongs a certain mechanism,
a certain see-saw and when we activate this mechanism—unlock the hinge—and
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Fig. 3.11 An influence function resembles a see-saw

count the work done by the load on acting through the displacements initiated by
spreading the hinge then we learn how large the internal action must be to balance
the work of the load. In FE-analysis we hinder the free motions of the structure and
so the mechanism gets a wrong signal in return, the effect of the unit spread which
reaches P is uh

− Vh(x) · 1+ P uh = 0 (3.120)

and not the exact effect u
− V (x) · 1+ P u = 0 (3.121)

and so Vh(x) �= V (x). An FE-program gets the Dirac energies wrong.
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Fig. 3.12 A pulley demon-
strates a basic principle of
linear mechanics: equilibrium
means equal work, means
“symmetry” with respect to
translations

We conclude that the kinematics of a mesh, the richness in details, determines the
accuracy of an FE-solution, see Figs. 3.13 and 3.14.

• mesh = kinematics = accuracy of influence functions = quality of results.

In the Sleipner-platform accident the FE-bending moment was about half the exact
value because of the poor kinematics of the mesh in the region of the tri-cells [2].

It can now also be stated what a good design is. The energy balance

V (x) = P u

1
= P · u

1
← make u small! (3.122)

signals that the aim must be a design where the displacement u which reaches the
point load P due to the unit spread (the denominator) of the hinge is as small as
possible because then V (x) will only be a small fraction of the applied load P .

Throw a stone into the water and watch the ripples! The smaller the ripples that
reach the load, the better. Archimedes’ lever (willingly) is the opposite of a good
design: a unit displacement of the tip of the lever on the left leads to a very large
displacement u at the other end of the lever. (Vice versa: Archimedes has miles to
go for to lift the Earth just one iota!).

Remark 3.4 Equation (3.122) shows that influence is a ratio, u/1, of two displace-
ments and therefore it is of no concern whether the unit spread is 1 mm, 1 cm, 1 m
or even 1 mile. It could be any value. A unit spread only makes calculations easier.

Remark 3.5 Influence functions for displacements are based on Betti’s theorem

W1,2 = W2,1. (3.123)

The work done by a unit force P = 1 on acting through u(x) is the same as the work
done by the applied load on acting through the displacement initiated by the point
load.
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Fig. 3.13 Influence function for the bending moment M in a beam like structure; exact solution
and FE-solution; the poor kinematics of the bilinear elements leads to a large error

(a) (b)

Fig. 3.14 The tri-cell of the Sleipner-platform and the FE-mesh which was too coarse to produce
reliable results for the bending moments

Influence functions for force terms are based on the same equation

W1,2 = 0 (3.124)

but W2,1 is always zero. It is the work done by the two forces which effect the unit
spread of the hinge. These forces ±F , one on each side of the hinge, have opposite
signs but are otherwise equal so that their total work is zero

W2,1 = F u(x−)− F u(x+) = F (u(x−)− u(x+)) = 0 (3.125)

because the displacement u of the primary problem is continuous at x .
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(a)

(b) (c)

Fig. 3.15 Hinges allow to generate Green’s function in frame analysis, a M-hinge, b N -hinge,
c V -hinge

Remark 3.6 The technique to construct influence functions by unit spreads of
N−, M− or V−hinges, see Fig. 3.15, is called in structural mechanics an appli-
cation of the Müller–Breslau principle.

3.6 Generalized Green’s Functions

Virtual work, (p, δu), is a functional and this is why functionals play such a central
role in the theory of weak boundary value problems. When we make the transition
from the formulation of the boundary value problem

−Δu = p on Ω u = 0 on Γ (3.126)

in a pointwise sense to a formulation in a variational sense

a(u, v) =
∫

Ω

p v dΩ ∀ v ∈ V (3.127)

the right-hand side p becomes a linear functional

J (v) :=
∫

Ω

p v dΩ , (3.128)

that is (3.127) is equivalent to

a(u, v) = J (v) ∀ v ∈ V (3.129)
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and so—by definition—the variational solution u of (3.126) is also the Riesz element1

of the functional J (v). This can be verified by formulating Green’s first identity with
the solution u and a test function v

G (v, u) =
∫

Ω

−Δv u dΩ − a(v, u) =
∫

Ω

−Δv u dΩ − J (v) = 0 (3.130)

or ∫

Ω

−Δv u dΩ = J (v) (3.131)

which confirms that the work done by −Δv = p on acting through the Green’s
function u is the value J (v).

So each FE-solution is automatically also the Riesz element of the functional
J (v) on the right-hand side and—vice versa—given any linear functional J (v) the
solution to the variational problem (3.129) is the Riesz element of the functional.

We call the Riesz element of the functional J (v) the generalized Green’s function
of J (v). So both terms are synonyms.

Historically Green’s functions came first and the concept of a Riesz element came
later. The term generalized is to indicate that the existence of a generalized Green’s
function and of its properties is based on the Hilbert space theory of weak boundary
value problems. The benefit of this modern approach is that to any (bounded and
linear) functional J (u) can be assigned a Green’s function in the sense of (3.129).

And in FE-methods these ideas are extended to unbounded functionals like the
derivatives

J (u) = u,x1 (3.132)

disregarding all warnings that this is not allowed because it transgresses the bounds
of the Hilbert space theory but it is a huge gain in applicability and the success proves
the FE-method right.

3.6.1 Arbitrary Deltas

Given linear functionals such as

Ja(u) = u(x) Jb(u) = σ(u)(x) Jc(u) =
l∫

0

u(x) dx (3.133)

each of these functionals can be identified with the action of a certain Dirac delta

1 The Lax–Milgram Theorem is essentially a statement about the existence of the Riesz element.
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Ja(u) =
l∫

0

δa(y − x) u(y) dy (3.134)

Jb(u) =
l∫

0

δb(y − x) u(y) dy (3.135)

Jc(u) =
l∫

0

δc(x) u(x) dx . (3.136)

The first delta, δa , represents a point load and the second, δb, a dislocation while
the third is the unit function, δc(x) = 1, a simple translation. But such a physical
interpretation of the Dirac deltas is not a necessary prerequisite and in the case of
more complicated functionals it may even not be possible to provide such a physical
interpretation. But this is if no concern because the Dirac delta plays only a symbolic
role.

Consider the Poisson equation on a planar domain Ω with an edge Γ

−Δ u(x) = p(x) u = 0 on Γ (3.137)

and let the functional J (u) be the average value of the gradient of u over a small
circular region Ωρ(x) with radius ρ centered at a point x ∈ Ω

J (u) = 1

π c2

∫

Ωρ(x)

(u,y1 ( y)+ u,y2 ( y)) dΩ. (3.138)

We postulate that this functional can be expressed as

J (u) =
∫

Ω

δX ( y − x) u( y) dΩ y (3.139)

where no word is said about what the Dirac delta δX ( y− x) looks like, which actions
on the part of δX produce J (u). We only claim that the scalar product (= integral) of
δX with the function u provides the value J (u).

Next it is only necessary to find the function G which has the delta function as its
right-hand side, that is which solves the equation

−Δ G( y, x) = δX ( y − x) G( y, x) = 0 y ∈ Γ (3.140)

because Green’s second identity, see (2.93), then implies
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B(G, u) =
∫

Ω

δX ( y − x) u( y) dΩy

︸ ︷︷ ︸
J (u)

−
∫

Ω

G(x, y) p( y) dΩ y = 0 (3.141)

or

J (u) =
∫

Ω

G(x, y) p( y) dΩ y. (3.142)

This is the idea.
It remains to approximate G on Vh with the n shape functions

Gh( y, x) =
n∑

i=1

gi (x)ϕi ( y) (3.143)

and to determine the nodal values gi (x) by solving the n equations

a(Gh,ϕi ) = (δX ( y − x),ϕi ) = J (ϕi ) i = 1, 2, . . . n (3.144)

or in matrix notation

K g(x) = j(x) ki j = a(ϕi ,ϕ j ) ji = J (ϕi ). (3.145)

So the extension of the FE-method to Green’s functions is easy and straightforward.2

The equivalent nodal forces are simply the values of the functional at each ϕi , that
is fi = J (ϕi ), or in our notation fi = ji = J (ϕi ).

Let us summarize this as follows:

Theorem 3.10 (Equivalent nodal forces for Green’s functions) The Riesz element
or generalized Green’s function G of a linear and bounded functional is the solution
of the variational problem

a(G, v) = J (v) ∀ v ∈ V (3.146)

and its projection
Gh( y, x) =

∑
i

gi (x)ϕi ( y) (3.147)

onto the space Vh is the solution of the variational problem

a(Gh,ϕi ) = J (ϕi ) ∀ϕi ∈ Vh (3.148)

2 Strictly speaking it is not because most Green’s function have no finite energy, a(G, G) = ∞,
but at present we simply assume they do.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.16 Rope −u′′ = p a influence function for the nodal deflection b for the discontinuity in
the slope u′(x−)− u′(x+) at the same node c on the finer mesh the influence function for the nodal
deflection stays the same while d the influence function for the discontinuity shrinks—the mesh
improves; the nodal forces of e minus f are the nodal forces in b. Note that the peak 1 in b and
d remains the same. It is not a discretization error

that is the equivalent nodal forces for a generalized Green’s functions are

fi = ji = J (ϕi ). (3.149)
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The notation ji is the notation we prefer for these nodal forces.
Because the FE-shape functions are only piecewise smooth, functionals which

differentiate must be handled with care. If for example J (u) = u′(x) is the derivative
at a node and theϕi are hat functions then to each side of the node belongs a different
influence function and different equivalent nodal forces ji which generate these
influence functions.

And if J (u) = u′′(x) is the second derivative at the center of a linear element
then all the ji = J (ϕi ) = ϕ′′i = 0 are zero—a piecewise linear FE-solution has no
curvature. So that the Green’s function Gh = 0 is zero and consequently Jh(u) = 0
for all u ∈ V . Note that this result is in agreement with the dual reciprocity for
functionals formulated earlier

J (uh) = u′′h(x) = 0 = Jh(u). (3.150)

The fact that the derivative of the FE-solution jumps at a node but the exact solution
does not qualifies the functional

JΔ(uh) := u′h(x−)− u′h(x+) (3.151)

as error functional because it only reacts to the FE-solution and the functionsϕi ∈ Vh .
The aim in refining the mesh, see Fig. 3.16, must be that

lim
h→0

JΔ(uh) = 0. (3.152)

Remark 3.7 The influence function for the jump in the derivative is of even type
(monopole) and so if the load is the same on both sides of the node then the disconti-
nuity is pronounced while opposite loads (checkerboard loads) will produce no kink
in uh(x).

3.7 Influence Functions for Integral Values

If u(x) is the deflection of the rope

− u′′(x) = p 0 < x < l u(0) = u(l) = 0 (3.153)

then

u(x) =
l∫

0

G(y, x) p(y) dy (3.154)

and so the integral of the deflection is



3.7 Influence Functions for Integral Values 145

J (u) =
l∫

0

u(x) dx =
l∫

0

l∫

0

G(y, x) p(y) dy dx

=
l∫

0

[
l∫

0

G(y, x) · 1 dx]
︸ ︷︷ ︸

GΣ(y)

p(y) dy =
l∫

0

GΣ(y) p(y) dy. (3.155)

Obviously is the Green’s function GΣ(x) of this functional the solution of the
boundary value problem

− G ′′Σ(x) = 1 0 < x < l GΣ(0) = GΣ(l) = 0 (3.156)

where the right-hand side, p = 1, resembles a series of tightly packed Dirac deltas—
one Dirac delta at each point x of the rope.

If the integral extends only over a part of the rope

J (u) =
xb∫

xa

u(x) dx (3.157)

then the right-hand side vanishes outside the interval [xa, xb]

− G ′′Σ(x) = p 0 < x < l p(x) =
{

1 x ∈ [xa, xb]
0 x /∈ [xa, xb] (3.158)

and in the limit, if [xa, xb] shrinks to a mere point, p transforms again into a Dirac
delta.

3.7.1 Nodal Forces

In agreement with the rule that ji = J (ϕi ) the equivalent nodal forces (we write ji
instead of fi ) which generate the FE-approximation Gh

Σ(x) of GΣ are the integrals
of the shape functions

ji = J (ϕi ) =
l∫

0

ϕi (x) dx . (3.159)

This rule applies to any integral functional as for example the following functionals
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Ja(u) =
l∫

0

u′(x) dx Jb(u) =
∫

Ω

σxx (x) dΩ Jc(u) =
∫

Ω

myy dΩ

(3.160)

to which belong the equivalent nodal forces

ji = Ja(ϕi ) =
l∫

0

ϕ′i (x) dx ji = Jb(ϕi ) =
∫

Ω

σxx (ϕi )(x) dΩ

ji = Jc(ϕi ) =
∫

Ω

myy(ϕi ) dΩ. (3.161)

Example 3.1 The influence function for the bending moment

J (u)(x) =
+1∫

−1

σxx (y) · y dy y = lever arm (3.162)

in section A− A (with horizontal coordinate x) of the cantilever plate in Fig. 3.17 is
generated by the equivalent nodal forces

ji (x) =
+1∫

−1

σxx (ϕi )(x, y) · y dy (3.163)

which are the moments generated by the vector-valued shape functions ϕi (x, y)

(displacement fields) associated with the nodal degrees of freedom ui .
Within a bilinear element of size a × b the stress distribution σxx is a function of

the nodal values

σxx (x, y) = E

a b (−1+ ν2)

[
b (u1 − u3)+ a ν (u2 − u8)

+ x ν (−u2 + u4 − u6 + u8)+ y (−u1 + u3 − u5 + u7)

]
. (3.164)

Letting u1 = 1 and all other ui = 0 gives σxx (ϕ1)(x, y), etc..
Substituting this formula into (3.163) we obtain (a = b = 1.0, ν = 0.1), the

equivalent nodal forces ji displayed in Fig. 3.17b. The shape these forces produce,
see Fig. 3.17a, is not the perfect 450 rotation but at least the value at the upper corner
point comes relatively close to the true value, 2.47 ∼ 2.5, though at other nodes the
deviations are markedly larger.
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A

A

45

(a)

(b)

Fig. 3.17 Cantilever plate, influence function for the bending moment M in section A− A a exact
solution (dotted lines) and FE-solution b equivalent nodal forces which generate the FE-Green’s
function for M

3.8 Weak Influence Functions

There is a need to distinguish between—as we call them—weak and strong influence
functions. Strong influence functions are based on Betti’s theorem (classical duality)
while weak influence functions are based on an evaluation of the strain energy product
a(G, u) between the Green’s function and u. An engineer would say that weak
influence functions are based on the principle of virtual forces; the Dirac delta being
the virtual force.

A continuous beam, see Fig. 3.18, may exemplify the difference between weak
and strong influence functions. The beam is subjected to a single moment at the
intermediate support so that the exact solution is a piecewise cubic function and two
elements suffice to produce the exact solution u = uh (the fact that the FE-solution
is exact is not essentially in the following).
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x

(a)

(b)

(c)

(d)

(e)

Fig. 3.18 Continuous beam, a bending moment, b bending moment of the exact influence function,
c and d bending moment of the approximate influence function; Fig. d is the sum of Fig. b plus the
approximate Dirac Delta in Fig. e
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The couple produces at the center of the first span, x = 2.5, a moment of M(x)

= 2.5 kNm as can be verified with the influence function for M(x)

M(x) =
l∫

0

G2(y, x) p(y) dy ≡ G ′2(y2, x) · 10 kNm = 2.5 kNm. (3.165)

According to Betti the value M(x) is equal to the work done by the load p on acting
through the influence function G2(y, x). Because the load is a couple M = 10 kNm
and a couple performs work on acting through rotations M must be multiplied with
the slope G ′2(y2, x) of the Green’s function at the point y2, the location of M . This
gives a value of 2.5 kNm.

Querying the weak influence function for the same result returns zero because the
strain energy product between the Green’s function G2(y, x) and u is zero

a(G2, u) =
l∫

0

E I G ′′2 u′′ dy =
l∫

0

M MG

E I
= 0. (3.166)

In this case the result is evident because M is antisymmetric and MG is symmetric
but this result is no coincidence, it is a rule. Any other result would mean that the
derivative u′(x) is discontinuous at x .

But when the same equation (3.166) is formulated with the FE-approximation
Gh

2—instead of the exact function G2—then the result is the bending moment at x

Mh(x) = a(Gh
2, u) =

l∫

0

Mh
G M

E I
dy

= 1

E I

[
1

6
· 5 · (0.2 EI+ 2 · 0.05 EI) · 5

+ 1

3
· (−0.15) EI · (−5) · 5

]
= 2.5. (3.167)

This seems strange. But technically it is easy to explain: the bending moment Mh
G

is the sum of the exact moment MG in Fig. 3.18b plus a small box of width h
(= length of the element) and height E I/h, see Fig. 3.18e, and so

a(Gh
2, u) =

l∫

0

MG M

E I
dy +

x+h/2∫

x−h/2

E I

h

M

E I
dy = 0+ M(x). (3.168)
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The second integral is just the average value of the bending moment on the element
that contains the source point x . But because M(x) = Mh(x) is a linear function this
value is just the value of M(x) at the center of the element.

This result (3.168) means that

Mh
G = MG + δh (3.169)

can be split into the exact kernel MG and an error term which in its actions corresponds
to an approximate Dirac delta δh , the box. On Vh the box is as good as δ because all
shape functions (Hermite polynomials) have linear second order derivatives and the
average value of a linear function is equal to the value at the center of the interval.

In Sect. 2.4.4 we constructed a sequence of functions GΔx
1 which, as Δx tends

to zero, converges towards G1, the influence function for the first derivative at the
center of the rope. It holds:

1. The strain energy product between one such function GΔx
1 and the slope deflec-

tion uh(x) is the difference quotient at x

G (GΔx
1 , u) = 1

Δx
u(x + 0.5 Δx)− 1

Δx
u(x − 0.5 Δx)− a(GΔx

1 , u) = 0.

2. And because uh(x) ∈ Vh is piecewise linear and therefore linear at x (not a
node) the difference quotient is identical with the derivative

[
1

Δx
uh(x + 0.5 Δx)− 1

Δx
uh(x − 0.5 Δx)

]
= u′h(x). (3.170)

This is the logic.
When force terms—essentially derivatives—are calculated in FE-analysis with

the strain energy product then the result is a finite difference expression which on
Vh is identical with the derivative(s). Stated otherwise: the exact Dirac delta δ is
replaced by an approximate delta δh but on Vh the two are identical in their actions.

Remark 3.8 Given the shape functions of a beam of length h, see (1.91), the bending
moments, Mi = −E I ϕ′′i (x), are

M1(x) = −E I

(
− 6

h2 +
12 x

h3

)

M2(x) = −E I

(
4

h
− 6x

h2

)
M3(x) = −E I

(
6

h2 −
12 x

h3

)

M4(x) = −E I

(
2

h
− 6 x

h2

) (3.171)

so that the nodal forces ji = M(ϕi )(h/2) which generate the FE-influence function
Gh

2 are

↓ j1 = j3 = 0 ↓ � j2 = − E I

h
j4 = E I

h
� . (3.172)
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3.9 Weak Influence Functions Have More Choices

When we apply Betti’s theorem then we usually assume that the primal solution,
−Δu = p, and the dual solution, −ΔG = δ(x, y), come from the same system.
But Betti’s theorem remains valid if the two solutions, let us call these uI and G I I ,
satisfy different sets of boundary conditions. But under these circumstances ad-
ditional adjoint terms on the edge of the domain contribute to the statement
W1,2 = W2,1 and often these additional boundary terms are unknown a priori and
must be determined by integral equations as in the boundary element method.

We have the same freedom with regard to weak influence functions. But because
weak influence functions evaluate the strain energy product via the nodal displace-
ments

J (u)(x) = a(G I I , uI ) = gT
I I K I I uI (3.173)

they have it easier.
To see this we formulate Green’s first identity

G (G, u) =
∫

Ω

δ( y − x) u( y) dΩ +
∫

ΓD

∂G

∂n
ū ds y − a(G, u) = 0 (3.174)

where ū is the prescribed edge displacement on the Dirichlet-part ΓD of the
boundary; often ū = 0.

In system II the restraints are relaxed that is the Dirichlet-part gets smaller and
the Neumann-part gets larger, the Green’s function G I I satisfies

−ΔG I I = δ( y − x)
∂G I I

∂n
= 0 on Γ I I

N , G I I = 0 on Γ I I
D (3.175)

and so no additional information is required to evaluate the boundary integral in
(3.174) because ΓD → Γ I I

D shrinks

G (G I I , uI ) =
∫

Ω

δ( y − x) uI ( y) dΩ +
∫

Γ I I
D

∂G I I

∂n
ū ds y − a(G I I , uI ) = 0.

(3.176)

In structural mechanics this flexibility in the choice of the system II is known as
Method of Reduction, “Reduktionssatz”, [3]. It states that the Dirac delta must not
be applied to the original system but that it can be any system that is “contained” in
the original system, see Fig. 3.19. Contained means that if the original system is for
example statically indeterminate (too many supports) the second system can be a
statically determinate system (just the minimum number) which is easier to analyze.
In the language of finite elements “contained” means that the two systems must be
based on the same set of shape functions but the nodes which are fixed can be different
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.19 Continuous beam (a) and its (b) deflection curve and calculating the deflection at the
center of the second span with a weak influence function. The unit point load P = 1 can be applied
to any of the beams on the right. The result is always the same. System c is the same as the original
system while in systems d, e, f the Dirichlet boundary shrinks

or to be more precise: the fixed nodes of the simplified model II must be a subset
of the fixed notes of system I. System II can release nodes but it must not keep
additional nodes fixed, then ΓD would grow and we no longer could evaluate the
boundary integral in (3.174) because the value of uI on the added Dirichlet boundary
which previously was a part of the Neumann boundary would be unknown: we do
not know a-priori how the free edge (ΓN ) of a membrane deflects under pressure.

Thus the stiffness matrix K in (3.173) must belong to the system with the lesser
number of fixed nodes, which here we assumed to be the system II. The matrix K
could even be the singular system matrix before rows and columns are removed to
model fixed supports; in that case the vectors g I I and uI would have to be padded
with zeros—corresponding to the position of the fixed supports—to make them full
size.

Remark 3.9 The original “Dirichlet-part” in Fig. 3.19 consists of u(0) = u′(0)

= u(xi ) = u(xe) = 0. In Fig. 3.19d the end node is released, u(xe) �= 0, and in
Fig. 3.19e also the intermediate support, u(xi ) �= 0, and in Fig. 3.19f the support
conditions u′(0) = 0 and u(xi ) = 0 are released. Each time the new Dirichlet-part
is a subset, Γ I I

D ⊂ Γ I
D , of the original part.
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3.10 Nodal Form of Influence Functions

The deflection of a taut rope can be written in two ways in integral form

u(x) =
l∫

0

G(y, x) p(y) dy =
l∫

0

δ(y − x) u(y) dy. (3.177)

In FE-analysis these two integrals—and of course any other influence function as
well—can be evaluated by summing over the nodes.

The Green’s function for the vertical displacement of the rope at the point x is the
solution of the problem

− H
d2

dy2 G(y, x) = δ(y − x) (3.178)

which amounts to the statement that

a(G, v) :=
l∫

0

H G ′(y, x) v′(y) dy =
l∫

0

δ(y − x) v dy ∀ v ∈ V. (3.179)

Hence the FE-projection onto Vh ⊂ V

Gh(y, x) =
n∑
i

gi (x)ϕi (y) (3.180)

leads to the system
K g = j (3.181)

where

ji =
l∫

0

δ(y − x)ϕi (y) dy = ϕi (x) (3.182)

ki j = a(ϕi ,ϕ j ) =
l∫

0

H ϕ′i ϕ′j dx . (3.183)

The vector
g = g(x) = {g1(x), g2(x), . . . , gn(x)}T (3.184)

is the vector of the nodal values gi of the Green’s function.
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Next let

uh(x) =
n∑
i

ui ϕi (x) (3.185)

the FE-solution of the problem

− H u′′(x) = p(x) 0 < x < l u(0) = u(l) = 0. (3.186)

That is the vector u of nodal values solves the equation K u = f where

fi =
l∫

0

p ϕi dx . (3.187)

Like the exact solution the FE-solution can be written in two ways in an integral
form

uh(x) =
l∫

0

Gh(y, x) p(y) dy =
l∫

0

uh(y) δ(y − x) dy (3.188)

and we have

uh(x) =
l∫

0

Gh(y, x) p(y) dy =
l∫

0

∑
i

gi (x)ϕi (y) p(y) dy =
∑

i

gi (x) fi

= gT f = gT K u = gT K T u = j T u =
∑

i

ji ui

=
∑

i

ϕi (x) ui =
l∫

0

∑
i

ui ϕi (y) δ(y − x) dy =
l∫

0

uh(y) δ(y − x) dy.

(3.189)

That is the vertical displacement uh(x) at the point x is the scalar product between
the vector of nodal values of the Green’s function and the equivalent nodal forces
of the load case p or, vice versa, between the nodal values of the FE-solution and
the equivalent nodal forces ji of the Green’s function

uh(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
i

ϕi (x) ui =
l∫

0

uh(y) δ(y − x) dy = j T u

l∫

0

Gh(y, x) p(y) dy = gT f .

(3.190)
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3.10.1 Numerical Effort

What holds true for uh(x) holds true for any linear functional J (uh). So if j and g
are the vectors of equivalent nodal forces and of nodal displacements respectively of
the generalized Green’s function then

J (uh) = j T u = j T K−1 f = gT f (3.191)

or more concisely

J (uh) =
{

j T u
gT f .

(3.192)

Both equations are equivalent. If the focus is only on, say, two or three values of the
solution (i.e. calls to two or three functionals) but a long list of load cases is to be
inspected then the second formula

J (uh) = gT f (3.193)

is to be preferred because it requires only the calculation of two or three nodal
vectors g(x) of the Green’s functions. Vice versa if a detailed picture of the solution
is required (calls to many different functionals) and the number of load cases is small
the first formula

J (uh) = j T u (3.194)

will serve us better.

3.10.2 Sensitivity Plots

The formula J (uh) = gT f is the scalar product between the vector g, the nodal
values of the Green’s function, and the vector f of equivalent nodal forces. This
scalar product can be written as a sum over the N nodes of the FE-mesh

J (uh) =
N∑

i=1

gT
i f i i = nodes (3.195)

where the vectors gi and f i are the portions of g and f respectively referring to
node i

g = {g1, g2︸ ︷︷ ︸
g1

, g3, g4︸ ︷︷ ︸
g2

, . . . , gn}T 2− D (3.196)
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Lagrange points

Fig. 3.20 Plot of the nodal vectors gi of the functional J (uh) = σyy , the vertical stress in the plate
close to the slit. The “Lagrange points” are the points where the influence of any force f i on σyy is
practically zero

So if f i happens to be orthogonal to gi at a node then the contribution of the node to
J (uh) is zero. The plot of the vectors gi therefore represents a sensitivity plot of the
functional J (uh), see Fig. 3.20. Nodal forces f i which point in the same direction
as the gi are able to maximize their influence on J (uh).

Note that in Fig. 3.20 there are two calm zones at which the influence of any nodal
force on J (uh) is practically zero. We call these “Lagrange points” . In astronomy
the Lagrange points are the points at which the graviational influence of the Sun and
the Earth balance, they pull with equal but opposite forces on a satellite parked
at these points. These Lagrange points can be found in nearly any such plot, see
Figs. 3.21 and 3.22. The circular nature of the flow field around these points is a
remarkable phenomenon. Continuous fields seem to need such tranquil zones (“fixed
points” ) to reverse directions.
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Fig. 3.21 Plot of the nodal vectors gi of the functional J (uh) = σyy , the vertical stress in the plate
close to the corner of the opening

Fig. 3.22 Plot of the nodal vectors gi of the functional J (uh) = σyy , the vertical stress in the plate
near the bottom of the plate

Remark 3.10 The Sun, mass MS at yS , and the Earth, mass ME at yE , generate at
a point x the gravitational potential

u(x) = −G
MS

rS
− G

ME

rE
rS = | yS − x| rE = | yE − x| (3.197)

where G is the gravitational constant. The gradient of this potential is the force g
acting on a mass m located at x

g(x) = m ∇ u (3.198)

and the Lagrange points are the points where the gradient is zero, where the potential
is “flat” , where it “takes a break” .

The analog to (3.198) is the equation

σyy = f · G ?= f · ∇s (3.199)
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where the load vector f plays the role of the mass m and the role of the gradient
is played by the displacement field G generated by the dislocation at the bottom
of the slit, see Fig. 3.20. The question is: does there exist a scalar field s(x) which
has G = {G1, G2}T as its gradient? Note that because of s,12= s,21 a necessary
condition for this to hold is that G1,2= G2,1.

3.10.3 What is j T u?

The expression
J (u) = j T u (3.200)

is the engineers way of evaluating functionals. He applies J to the single shape
functions ϕi , this gives ji = J (ϕi ), multiplies it with the nodal displacements ui

and sums over all degrees of freedom.
The deflection of a rope in between the two nodes x3 and x4 is

u(x) = u3 ϕ3(x)+ u4 ϕ4(x) = u3 j3 + u4 j4 (3.201)

and the derivative is

u′(x) = u3 ϕ
′
3(x)+ u4 ϕ

′
4(x) = u3 j

3
+ u4 j

4
(3.202)

where the notation j
i

is for not to confuse the two sets of ji .

3.11 Nodal Values of Green’s Functions

An FE-Green’s function is an expansion in terms of the nodal shape functions

Gh(y, x) =
∑

i

gi (x)ϕi (y) (3.203)

where g = K−1 j and ji = J (ϕi ). So g is a linear combination of the columns ci

of the inverse
K−1 = [c1, c2, . . . , cn]. (3.204)

If J (u) is the nodal-value functional J (u) = u(xk) for a node xk then j = ek and
g is identical with column ck of K−1.

Any functional applied to the columns ci gives

J (ci ) = j T ci = j T K−1 ei = gT ei = gi . (3.205)



3.11 Nodal Values of Green’s Functions 159

Applying J to a column ci (a nodal vector) means applying J to the (scalar-valued)
function ci (x) generated by the entries c ji of the column

ci (x) =
∑

j

c ji ϕ j (x). (3.206)

so that J (ci ) = j T ci =: J (ci ).
Functionals which take derivatives have vectors g which are difference quotients

of the columns ci . For example the influence function for the normal force N = E A u′
in a truss element has the vector

g = E A

le
(ci − c j ) , (3.207)

where the two columns ci and c j are associated with the nodal displacements ui and
u j of the end points of the element of length le.

3.11.1 Finite Differences and Finite Elements

Talking about nodal influence functions means to talk about finite differences. The
close relationship between finite differences and finite elements has been evident
from the start [4]. The stiffness matrix is a difference matrix and its inverse is a fully
populated summation matrix—a discrete integral operator.

Both methods extract all information from the nodal values, J (u) = j T u, and
so it is no surprise that the nodal forces ji which generate the Green’s function of a
functional J (u) are identical with the weights in a finite-difference scheme.

An example in point is the (backward) finite difference scheme for the first deriv-
ative at a node xi

u′(xi ) = ui − ui−1

h
= 1

h
· ui − 1

h
· ui−1 = ji · ui + ji−1 · ui−1. (3.208)

The weights ±1/h are identical with the equivalent nodal forces ji which generate
the FE-Green’s function for the first derivative u′h(x), see Fig. 3.23.

3.11.2 Influence Function for p(x)

Given the differential equation

− u′′(x) = p(x) (3.209)
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Fig. 3.23 These nodal forces generate the Green’s function for u′h(x), x ∈ [xi−1, xi ]

what is the Green’s function for the right-hand side p(x) of the differential equation?
That is, which function maps p onto p(x)? Of course this is just the Dirac delta

p(x) =
l∫

0

δ(y − x) p(y) dy. (3.210)

But does it make sense to calculate the FE-influence function for p(x) if p is given?
The answer is that the approximate kernel δh(y, x) allows to map p directly onto
ph(x). This approximate kernel

δh(y, x) =
∑

i

gi (x)ϕi (y) g = K−1 j (3.211)

is generated by the equivalent nodal forces

ji = J (ϕi ) = −ϕ′′i (x) (3.212)

and this kernel, see Fig. 3.24c for an example, constitutes the functional

Jh(u) =
l∫

0

δh(y, x) p(y) dy. (3.213)

Because of Jh(u) = Jh(uh)

Jh(u) =
l∫

0

δh(y, x) p(y) dy = Jh(uh) = ph(x) (3.214)

the approximate kernel δh(y, x) maps p onto ph(x) that is we have an influence
function for ph(x).
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(a)

(b)

(c)

Fig. 3.24 The influence function for p(x) = −u′′(x) at xi is a a Dirac delta, b quadratic elements,
c equivalent nodal forces ji = −ϕ′′i (xi ) and approximate Dirac delta generated by these forces.
Because ϕ′′i (x) is constant this is the Dirac delta for any point xa ≤ x ≤ xb on the element

When we use linear elements all the ji = −ϕ′′i (x) are zero (let x be an internal
point) and so also the approximate kernel δh(y, x) is zero and therefore also ph(x)

ph(x) =
l∫

0

δh(y, x) p(y) dy =
l∫

0

0 · p(y) dy = 0. (3.215)

Which is no surprise.
When quadratic elements are used instead, the shape functions, le = 1,

ϕi−1(x) = 1− 3x + 2x2 ϕi (x) = 4(x − x2) ϕi+1(x) = 2x2 − x (3.216)

have constant second derivatives and so the set of nodal forces

ji−1 = −4 ji = 8 ji+1 = −4 (le = 1) (3.217)

which generates the approximate Dirac delta for ph at an internal point x is the same
for each point x of an element. Consequently the function δh(y, x) = δh(y) does not
depend on x and this means that ph is constant on each element
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ph =
l∫

0

δh(y) p(y) dy. (3.218)

The kernel δh(y) has a tulip-like shape and it is zero outside the element itself, see
Fig. 3.24.

To the distributed load ph inside each element must be added nodal forces

Pi = u′h(x+i )− u′h(x−i ) (3.219)

which result from the possible discontinuity in the first derivative at the nodes. These
forces together with the distributed load ph inside each element constitute the ersatz
load case which is solved by the FE-program.

Now it is evident that with le → 0 the approximate Dirac delta will more and
more resemble the true delta and the Pi will tend to zero and so we have a convincing
argument that ph will converge to p and therefore also (any doubts?) uh to u.

3.11.3 The Foot Print of ph

This brings us to our next point. Imagine the load p is applied only on a small part
Ωp of the domain Ω . Say a single car is parked on the Golden Gate bridge. All the
other lanes are empty. To calculate the displacement u of the bridge we only need to
integrate over the part Ωp of the bridge deck beneath the car (which has morphed
into a distributed load p)

u(x) =
∫

Ωp

G(x, y) p( y) dΩ y. (3.220)

In the FE-analysis the car p gets replaced by a work-equivalent load ph which, unlike
the parked car p, spreads over all of Ω and so it seems that it is necessary to integrate
over the whole bridge

uh(x) =
∫

Ω

Gh(x, y) ph( y) dΩy (3.221)

to generate the FE-solution uh(x) from ph . But this is not true. The integral stops
beyond Ω+1

p which is Ωp plus a ring of elements of depth 1 which surrounds Ωp.
Each shape function ϕi whose support3 has no point in common with Ωp is

orthogonal to ph and therefore it does not contribute to uh(x). The equivalent nodal
forces

3 support = the points where ϕi is not zero.
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fi =
∫

Ω

p(x)ϕi (x) dΩ (3.222)

of these shape functions are zero and therefore also the equivalent nodal forces in
the load case ph

f h
i =

∫

Ω

ph(x)ϕi (x) dΩ = fi (3.223)

because this identity, fi = f h
i , is what the Galerkin orthogonality

a(u − uh,ϕi ) =
∫

Ω

(p(x)− ph(x))ϕi (x) dΩ = fi − f h
i = 0 (3.224)

is all about.
But the Green’s function in (3.221)

Gh(x, y) = u1(x)ϕ1( y)+ u2(x)ϕ2( y)+ . . .+ un(x)ϕn( y) (3.225)

is an expansion in terms of the ϕi and so only the ϕi which “sense” p will contribute
to uh(x) and therefore it is only necessary to integrate over Ω+1

p

uh(x) =
∫

Ω+1
p

Gh(x, y) ph( y) dΩ y. (3.226)

So in FE-analysis the foot print of a load is nearly preserved. Its work equivalent
substitute ph may extend over all of Ω but effective—with regard to the functionals
Jh(.)—is only the part of ph near p.

The real-life functionals J (.) though sense also contributions from outside Ω+1
p .

They do not ignore what lies farther off . This is an important point because when an
engineer designs a structure then he uses the functionals J (.) and not the functionals
Jh(.) which is the principal dilemma of finite elements: The functionals and the
solution do not match or else: the engineer, when he uses an FE-program, effectively
designs the bridge for the load case ph and not p.

3.12 The Inverse Stiffness Matrix

The approximate Green’s function for the displacement u(x) at a node xk has the
form

Gh(y, xk) =
∑

i

gi (xk)ϕi (y). (3.227)
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The vector g = {g1, g2, . . . , gn}T is the solution of the n × n system

K g = ek (unit vector ek) , (3.228)

which means that the columns ck of the inverse stiffness matrix K−1

g = K−1ek = ck (3.229)

are the nodal displacements which belong to the n Green’s functions Gh(y, xk) of
the n nodes xk

Gh(y, xk) =
∑

i

cki ϕi (y) = cT
k ϕi (y). (3.230)

This explains why the inverse of a tridiagonal matrix is fully populated. Even if
only one node xk carries a point load P = 1 the whole system takes note. Stated
otherwise: the inverse of a difference matrix as K is a summation matrix.

If x is a point in between two nodes then the vector g of the Green’s function is
the solution of

g = K−1ϕ(x) (3.231)

where the vector

ϕ(x) = {ϕ1(x),ϕ2(x),ϕ3(x), . . . ,ϕn(x)}T (3.232)

is simply the list of the values of the shape functions at that particular point x . The
following theorem summarizes these ideas.

Theorem 3.11 (General form of an FE-Green’s function) Let K be the stiffness
matrix.
(i) The FE-Green’s function for uh(x), the value of the FE-solution at a point x, is

Gh(y, x) = ϕ(y)T K−1ϕ(x) (3.233)

where the vector ϕ(x) is defined in (3.232) and ϕ(y) is the same vector with y
substituted for x.
(ii) The generalized Green’s function for a linear point functional J (u) is

Gh(y, x) = ϕ(y)T K−1 j(x) (3.234)

where
j(x) = {J (ϕ1), J (ϕ2), J (ϕ3), . . . , J (ϕn)}T . (3.235)

The x in j(x) is the point x in the definition of the point functional, as in J (u) = u(x).
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The shape a rope assumes under load is the envelope of infinitely many Green’s
functions each of which represents the contribution du of an infinitesimal portion
p(y) dy of the load to the total deflection u(x)

u(x) =
l∫

0

G(y, x) p(y) dy. (3.236)

The FE-solution uh(x) = uT φ(x) instead is the sum of a finite number of Green’s
functions weighted with the equivalent nodal forces fi

uh(x) = f1 Gh(x1, x)+ f2 Gh(x2, x)+ . . .+ fn Gh(xn, x) , (3.237)

because the vector u of the nodal values is

u = K−1 f = K−1( f1 e1 + f2 e2 + . . .+ fn en)

= f1 c1 + f2 c2 + . . .+ fn cn (3.238)

and column ci of K−1 corresponds to Gh(xi , x).
What holds true for the FE-solution uh holds true for the derivatives and stresses

as well. The influence function for the transverse force Vh(x) = H u′h in a rope
modeled with a series of linear elements has the nodal values

g(x) = K−1
(

H

h
ek − H

h
ek−1

)
= H

h
(ck − ck−1) xk−1 < x < xk . (3.239)

This vector is the difference quotient of the columns ck and ck−1 of the inverse matrix
K−1.

3.12.1 Examples

The bar in Fig. 3.25a is fixed at the left end and consists of five linear elements. The
stiffness matrix K

K = E A

l

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎦ , (3.240)

is a tridiagonal matrix while the inverse
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.25 a Elastic bar subdivided into five linear elements b–f the displacements resulting from
the nodal unit loads are the columns of the inverse stiffness matrix (all values times l/E A)

K−1 = l

E A

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦ (3.241)

is fully populated. The column ck of the inverse matrix, see Fig. 3.25b–f, lists
the nodal displacements when the bar is subjected to a nodal unit load P = 1 at
node xk .

If both ends of the bar are fixed, see Fig. 3.26a, then K is a (4 × 4) matrix with
nearly the same entries as before—only the last entry on the main diagonal changes
from 1 to 2—but the inverse is very different, see Fig. 3.26b
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(a)

(b)

(c)

(d)

(e)

Fig. 3.26 a Elastic bar subdivided into five linear elements b–e the displacements are the columns
of the inverse stiffness matrix (all values times l/(5 E A))

K = E A

l

⎡
⎢⎢⎣

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎦ , ⇒ K−1 = l

5 E A

⎡
⎢⎢⎣

4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

⎤
⎥⎥⎦ .

3.13 Condition of a Stiffness Matrix

If the vector u is the exact solution of the system K u = f and the vector û an
approximate solution then the relative error

|u − û|
|u| ≤ cond (K )

| f − K û|
| f | (3.242)
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(a) (b)

Fig. 3.27 Two trusses and their condition numbers

depends on the condition of the stiffness matrix. With one degree of freedom,
k u = f , the condition is simply the slope k of the straight line k u. One mea-
sure for the condition of a stiffness matrix K is the ratio of the largest eigenvalue to
the smallest eigenvalue

cond(K ) = λmax

λmin
. (3.243)

A tiny value λmin ∼ 0 means that the forces fi necessary to squeeze a structure into
the shape of the associated eigenvector u are very small

K u = λmin u = f . (3.244)

The two trusses in Fig. 3.27, the first with normal proportions, the other with a rather
elongated shape, have very different condition numbers. We let E A = 1 so that the
stiffness of an element of length l is k = E A/ l = 1/ l. The stiffness matrix of the
first truss (ϕ = 600) and its inverse are

K =
[

1.125 −0.216
−0.216 0.375

]
K−1 =

[
1.0 0.577

0.577 3.0

]
(3.245)

and the condition number of K is

cond(K ) = λmax

λmin
= 1.18

0.317
= 3.72. (3.246)

In the case of the second truss the same matrices are

K =
[

0.294 −0.037
−0.037 0.01

]
K−1 =

[
6.46 24.12

24.12 189.94

]
(3.247)

and the condition number of K is about fifteen times the value of the first matrix

cond(K ) = 0.299

0.0552
= 57.5. (3.248)
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Fig. 3.28 Three very different rods form a structure

Fig. 3.29 Rope attached to a very stiff spring

Note the large entries in column #2 of K−1 which is the (discrete) Green’s function
for the nodal displacement u2. A force f2 = 1 would produce a vertical displacement
of nearly 190 units! This observation can be made a rule.

Rule of thumb: A small value λmin implies that small forces fi = λmin vi suffice
to push the structure in the direction of the corresponding eigenvector v so some or
all columns in K−1 must have large entries.

In such a situation normal service loads would produce very large displacements—
probably not a very sound design.

But in other situations it is not the size of the entries which counts but the differ-
ences between these entries. The Green’s function for the derivative in between two
nodes is the difference between the column ci , node xi , and the column ci+1 of the
next node xi+1.

The stiffness matrix of the rod in Fig. 3.28 is certainly ill-conditioned

K =
[

1.01 −1
−1 1.01

]
K−1 =

[
50.2 49.8
49.8 50.2

]
(3.249)

and the inverse has large entries but the (discrete) influence function for the slope
between the two nodes is small in comparison

g =
[

50.2
49.8

]
−

[
49.8
50.2

]
=

[
0.4
−0.4

]
. (3.250)

On the other hand a single large entry on the diagonal, kii � 1, as in Fig. 3.29 will
produce large differences between the corresponding columns of K−1 so that the
Green’s function for the slope will be negatively affected by such large jumps in the
stiffness
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K =

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0
0 −1 20 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎦ K−1 = 1

20

⎡
⎢⎢⎢⎢⎣

13.5 6.9 0.4 0.2 0.1
6.9 13.8 0.7 0.5 0.2
0.4 0.7 1.1 0.7 0.4
0.2 0.5 0.7 13.8 6.9
0.1 0.2 0.4 6.9 13.5

⎤
⎥⎥⎥⎥⎦ .

Remark 3.11 These effects are independent of the length h of the elements. The
entries ki j are of the order O(1/h) and the entries k−1

i j are of the order O(h) and
the entries ji = ϕ′i (x) are of the order O(1/h) so that the 1/h-effect cancels when
the vector g = K−1 j of the Green’s function is calculated.

3.13.1 The Triple Product

Many problems in physics lead to the triple product

K n×n un×1 = AT
n×m Cm×m Am×n un×1 = f n×1 (3.251)

where A is a rectangular matrix and C a square matrix which depends on the para-
meters of the problem [5].

In a truss, consisting of m elastic bars, the components of the vector A u are the
strains εi = u′i of the m truss elements and the matrix C is a diagonal matrix with
entries cii = E Ai , one for each bar, and the vector

C A u = n = {N1, N2, . . . Nm}T (3.252)

is the list of the normal forces Ni in the truss elements and

AT n = f (3.253)

formulates the equilibrium conditions at the nodes. If the matrix A is square as in
a statically determinate truss, the equilibrium conditions alone suffice to determine
the element forces

n = (AT )−1 f (3.254)

and these in turn determine the nodal displacements

u = (C A)−1 n. (3.255)

Because the matrix A depends only on the geometry of the truss, which is to say the
length li and angles αi of the truss elements, it follows that in a statically determinate
truss the Green’s functions for the internal actions, which are the columns of (AT )−1,
only depend on the shape of the truss but not on the coefficients E Ai of the single
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Fig. 3.30 Statically determi-
nate truss: the element forces
only depend on the position
of the nodes and not on the
stiffness of the single elements

truss elements, see Fig. 3.30. With regard to the nodal displacements the situation is
different. Their influence functions depend on the matrix C.

3.14 Interpolation

In general the FE-solution does not interpolate the exact solution at the nodes xi . If
that were true the vector uI of the exact nodal displacements

uI = {u(x1), u(x2), . . . , u(xn)}T (3.256)

would be the solution of the system K u = f and the interpolant

uI (x) =
n∑

i=1

u(xi )ϕi (x) (3.257)

would be identical with the FE-solution. The fact that this is not true is an indication
that the interpolant uI is an inferior approximation in terms of the strain energy
metric. The FE-solution beats the interpolant, it has a smaller distance to the exact
solution in this metric

a(u − uh, u − uh) < a(u − uI , u − uI ). (3.258)

Only if the Green’s functions of the nodal values u(xi ) lie in Vh or if the error of the
nodal Green’s functions is orthogonal to the right hand side p

u(xi )− uh(xi ) =
l∫

0

(G(y, xi )− Gh(y, xi )) p(y) dy (3.259)

is uh(xi ) = u(xi ).
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A necessary condition for the Green’s function of the nodes to lie in Vh is that the
element shape functionsϕe

i are homogeneous solutions of the governing equation. In
elementary 1-D problems with only one constant coefficient such as E A u′′(x) = p or
E I uI V = p this is the case.4 The linear shape functions and the Hermite polynomials
respectively allow an exact representation of the nodal Green’s functions and so
uh(xi ) = u(xi ). But in the case of extended equations (two or more coefficients)
such as

E A u′′(x)+ c u(x) = p E I uI V + c u(x) = p (3.260)

this is no longer true because the homogeneous solutions of these equations

u(x) = c1 ex
√

c/E A + c2 e−x
√

c/E A (3.261)

and

w(x) = eβ x (c1 cosβ x + c2 sin β x)+ e−β x (c3 cosβ x + c4 sin β x) (3.262)

β = 4

√
c

E I
(3.263)

respectively are not the typical polynomial shape functions one associates with a
FE-trial space Vh . So in these cases the FE-solution does not interpolate the exact
solution at the nodes.

It can also happen that Vh is too “smooth” . For to generate a Green’s function
of an equation as −u′′ = p, we must allow for a discontinuous derivative at the
nodes because only then can we model a point force (= unit jump in u′) with finite
elements. The bubble function at the center node of a quadratic element does not
have this property and so uh(xi ) �= u(xi ) in general at such nodes, see Fig. 3.31.

This is a hint that FE-analysis must find a balance between the regularity that
is required by the strain energy product a(ϕi ,ϕ j ) and the non-regularity that is
necessary in order to come close to the Green’s functions.

The fact that quadratic elements do not interpolate the exact solution at internal
nodes is not so dramatic as it may sound. In most applications the right-hand side p
is constant, then u is quadratic and lies in Vh and so the error (3.259) is zero at all
points x and also at the mid-nodes. Only if u is a third-order (or higher) polynomial
will this deficiency become apparent.

Remark 3.12 If the shape functions allow the exact representation of the nodal
Green’s functions, which implies that they are homogeneous solutions of the gov-
erning equation in between the nodes, as is the case in the elementary problems,
−H u′′ = p, −E A u′′ = p and E I uI V = p, then the error of the Green’s func-
tions is zero outside the element which contains the source point [6]. You see this in

4 Also shear deformations −G Au′′ = p belong in this category. Their influence functions are
piecewise linear as in a rope.
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Fig. 3.31 Quadratic elements
do not interpolate the exact
solution at the mid-nodes,
only at the end nodes of the
elements, because the bubble
function of the center-node is
too smooth, a shape functions,
b point load at mid-node and
FE-solution, c point load at
end node and FE-solution
which in this case is exact

(a)

(b)

(c)

Fig. 1.2. The approximate Green’s function misses the peak under the point load but
outside the element it is exact.

3.14.1 The Nodal Vector uI

To establish the system of equations for the nodal vector uI of the interpolant the
solution u of the boundary value problem

−Δu = p on Ω u = 0 on Γ (3.264)

is split into the interpolant and a “remainder” term

u(x) = uI (x)+ u p(x) (3.265)

which is zero at the nodes, u p(xi ) = 0. Green’s first identity
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Fig. 3.32 Conic bar element, shape functions and stiffness matrix

G (u,ϕi ) =
∫

Ω

−Δ u ϕi dΩ −
∫

Γ

∂u

∂n
ϕi ds − a(u,ϕi )

=
∫

Ω

p ϕi dΩ − a(uI ,ϕi )− a(u p,ϕi ) = 0 (3.266)

implies that the nodal vector uI solves the system

K uI = f + k (3.267)

where the vector k has the elements

ki = a(u p,ϕi ). (3.268)

If k is the zero vector then the FE-solution interpolates u at the nodes.
The equation k = 0 is equivalent to

u(xi )− uh(xi ) =
∫

Ω

(G( y, xi )− Gh( y, xi ) p( y) dΩ y = 0 (3.269)
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that is if ki = 0 then the error in the Green’s function for u(x) at the node xi is
orthogonal to p and vice versa. To see this note that the split u = uI + u p implies a
corresponding split p = pI + pp = −ΔuI −Δu p on the right hand side.5 Because
the interpolant uI lies in Vh it holds

uI (xi ) =
∫

Ω

Gh( y, xi ) pI dΩ y =
∫

Ω

G( y, xi ) pI dΩ y (3.270)

and so it has only to be verified that also the second part pp of p = pI + pp is
orthogonal to the error in the Green’s function

∫

Ω

(G( y, xi )− Gh( y, xi )) pp dΩ y = 0 i = 1, 2, . . . n. (3.271)

But the nodal values of u p are zero and so the exact nodal Green’s functions return
zero

∫

Ω

G( y, xi ) pp dΩ y = 0. (3.272)

Finally Green’s first identity implies

G (u p,ϕi ) =
∫

Ω

pp ϕi dΩ − a(u p,ϕi ) =
∫

Ω

pp ϕi dΩ − 0 = 0 (3.273)

for each ϕi and so also the second part

∫

Ω

Gh( y, xi ) pp dΩ y =
∑

i

gi (xi )

∫

Ω

ϕi pp dΩ = 0 (3.274)

is zero as well because Gh(y, xi ) is just an expansion in terms of the shape functions
ϕi . So (3.271) is true.

Example 3.2 The saw blade in Fig. 3.33 is subjected to a unit horizontal point load
at its center. The longitudinal displacement of the blade in between two spikes is the
solution to the differential equation

− (E A(x) u′(x))′ = 0 (3.275)

5 pI and pp actually are the distributions (= element loads + jump terms) belonging to uI and u p
respectively. Symbolically this can be expressed in this way.



176 3 Finite Elements and Green’s Functions

where
A(x) = 1+ 20 x (3.276)

is the longitudinal stiffness; we let E = 1.
The homogeneous solution of (3.275)

u0 = c2 + c1
ln(1+ 20 x)

20
(3.277)

comes with two free constants c1 and c2 and so the shape functions of a bar element
[0, l] of length l = 1 are the two functions, see Fig. 3.32,

ϕ1(x) = − ln(1+ 20 x)

ln 21
+ 1 , ϕ2(x) = ln(1+ 20 x)

ln 21
. (3.278)

Upon substituting these functions into the strain energy product

k i j =
l∫

0

E A(x)ϕ′iϕ′j dx , (3.279)

the entries of the stiffness matrix of a trapezoidal bar element of length l = 1 are
obtained

K = 6.569

[
1 −1
−1 1

]
6.569 = 20

ln 21
. (3.280)

The global shape functions ϕi (x) of the nodes, which are patched together from
the element shape functions, form the basis of the trial and solution space Vh , see
Fig. 3.33. Because the ϕi are piecewise homogeneous solutions of the governing
equation the exact solution lies in Vh , that is the FE-solution uh is identical with
the exact solution u. So the nodal displacement of the center node can be predicted
precisely on this mesh and space Vh . Note that the solution u(x) is the Green’s
function for the nodal displacement of the center node.

If the unit nodal displacements would be modeled with standard linear shape
functions instead, see Fig. 3.33, then there would be a relative large gap between
the FE-solution uh and the exact solution and the normal force of the FE-solution
would come out as a zig-zag function—the echo of the zig-zag stiffness distribution
because u′h is constant. The error in the normal force would be even more pronounced
if we would substitute for u(x) its interpolant uI (x) on Vh , see Fig. 3.33f. This is in
agreement with the aforementioned fact that the interpolant uI is less fitting in terms
of the strain energy metric than the FE-solution.

The strain energy of the saw blade is the expression
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1 2 3 4 5

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3.33 Saw blade
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a(u, u) =
l∫

0

E A(x) u′(x)2 dx =
l∫

0

N (x) u′(x) dx =
l∫

0

N (x)2

E A(x)
dx (3.281)

and clearly the error of the interpolant exceeds the error of the linear FE-solution

a(u − uh, u − uh) =
l∫

0

(N − Nh)2

E A(x)
dx

<

l∫

0

(N − NI )
2

E A(x)
dx = a(u − uI , u − uI ) (3.282)

or in pure numbers

a(u − uh, u − uh) = 0.09 < 0.15 = a(u − uI , u − uI ). (3.283)

So when we operate with the strain energy metric we must sacrifice the “naive” belief
that next to the exact solution the interpolant is second in rank.

3.15 Infinite Stresses

Singular points are points where the stresses become infinite. Such hot spots typically
lie on the edge, at corner points or at points where the boundary conditions change,
see Fig. 3.34.

If we believe that influence functions can predict also these stresses—not directly
at the hot spot itself, but close by—then we have a problem: How does a dislocation
(= influence function for the stress σyy at the crack tip) make that the lower and
upper edge of the plate, see Fig. 3.35, disappear from the screen and move in opposite
directions, to ±∞? This is the only solution possible if we believe that the stress
becomes singular at the crack tip

σ(x) =
∫

Γ

G( y, x) p( y)ds y = ∞. (3.284)

How does this happen? How can a dislocation produce an infinite displacement field?
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Fig. 3.34 Stresses in a plate with a slit

3.15.1 Archimedes’ Lever

Archimedes knew how this could happen and he promptly claimed that he knew how
to lift the Earth, s. Fig. 3.36a.

The force exerted by his hand times distance from his hand to fulcrum equals mass
of Earth times distance from Earth to fulcrum.

Where Archimedes would place the Earth we place a support and we ask for
the reaction force RA which is necessary to balance the action of a single force P
(Archimedes’ hand) at the end of the cantilever beam.
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Fig. 3.35 A dislocation at the
crack tip must produce infinite
displacements

The influence function for the support reaction RA is generated by pushing the
left end of the beam down by one unit length and as a reaction to this the beam rotates
about the fulcrum.

In linear mechanics rotations are pseudo-rotations: the distance x of a point from
the fulcrum and its vertical lift y form a right angle triangle

tanϕ = y

x
(3.285)

where ϕ is the rotation angle. In the case of the support the lift is y = 1 and so the
lever ultimately will perform a 900 rotation when the distance h between the two
supports tends to zero

tanϕ = lim
h→0

1

h
= ∞ (3.286)
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-

u

(a)

(b)

(c)

Fig. 3.36 How influence functions become infinite: a Archimedes’ lever, b moment M(x) and
c influence function for the shear force

and this means that an infinite force

RA = lim
h→0

1

h
l P (3.287)

is necessary to balance even the tiniest force P at the other end of the cantilever.
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Actually Archimedes applied a “one-sided” dislocation. (i) He inserted a shear-
hinge (support reaction = shear force V ) next to the support and (ii) he spread this
hinge by one unit in vertical direction. But the left side of the hinge cannot move, it
is attached to the support, so the right side of the hinge must go all the way, that is
it moves one unit down and so it rotates the beam by 900 if the distance h shrinks to
zero.

We suspect that in most such cases the tanϕ = 1/h effect is the culprit which
produces the additional singularity in the Green’s function. A unit dislocation of a
point infinitely close to a fixed point kicks the displacement field into overdrive and
sends it to the “stars” . That is we presume that doubly singular influence functions
have the form

1

|ξ − x| r
−1 f (ϕ) (3.288)

where ξ is the singular point on the boundary (the point to which the source point will
drift in the end), x is the current position of the source point inside Ω , r = |x − y|
is the distance from x to the points y on Ω and ϕ is the angle of the radius vector
from x to y. So there is a “double singularity” , the natural r−1, and the 1/|ξ − x|
singularity.

3.15.2 Continuous Beam

A similar effect can be observed in the case of the continuous beam in Fig. 3.36b
where the point load produces a zig-zag bending moment in the beam. Because the
shear force is proportional to the slope of the bending moment M(x)

V (x) = −E I M ′(x) (3.289)

the shear force will become infinite if the distance h between the two interior supports
shrinks to zero because the bending moment M has in the limit an infinite slope.
Consequently the influence function for V (x)

V (x) = G(yP , x) · P (3.290)

must develop in the limit, h → 0, an infinite peak at the foot of the point load P . Is
this true?

The influence function for V (x) is the response of the continuous beam to a unit
dislocation at the source point x , the mid-point between the two supports. Because
of the symmetry of the system such a dislocation [[G]] = 1 will manifest itself as
a shear deformation G = ±0.5 of the source point and this means that the two end
points of the central span rotate counter-clockwise by the same angle
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Fig. 3.37 Gravity load in a cantilever plate, the stresses in the extreme fibers tend to ±∞

tan ϕ = 0.5

0.5 h
= 1

h
(3.291)

and in the limit, h → 0, will this rotation cause a lift of infinite magnitude,
G(yP , x) = ∞, at the foot of P .

3.15.3 Cantilever Plate

But even in standard situations we observe infinite stresses as in the case of the
cantilever plate in Fig. 3.37 which carries its own weight and can do so only by
producing infinite stresses in the extreme fibers. We may assume that this would also
happen if the weight were replaced by one single force P acting at an, more or less,
arbitrary single point yP .

If this is true then the influence function for the edge stress σxx of the upper fiber
must have an infinite value at almost any point of the plate

σxx (x) = G( yP , x) · P = ∞ · P. (3.292)

Now the influence function is generated by a horizontal unit dislocation of the corner
point. The nodal forces which produce the FE-version of the influence function are
the stresses σxx of the nodal shape functions at the corner point and this means that
only the element to which the corner point belongs carries nodal forces. These forces
are proportional to E/h, where E is the modulus of elasticity (E = 2.1 105 N/mm2

(steel)) and h is the element length.
In a numerical test, see Fig. 3.38, on an adaptively refined mesh of bilinear finite

elements the vertical displacement due to the dislocation grew indeed exponentially
with h→ 0.
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(a)

(b)

(c)

Fig. 3.38 Generating the influence function for the stress σxx at the corner point, a mesh,
b equivalent nodal forces that generate the influence function, c vertical displacement of the upper
right corner point as a function of the element length h
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So to infinite stresses must correspond infinite displacements of the influence
functions. No other solution is possible if we trust that the concept of influence
functions is also valid in the neighborhood of singular points.

Remark 3.13 Why the stresses become infinite will be discussed in Sect. 3.19 and
also why rounding off the corner points will eliminate the singular stresses.

3.15.4 Summary

There are three kinds of infinity

1. The influence function is infinite at the source point.
2. The integral of the influence function is unbounded, is infinite.
3. The influence function is pointwise infinite almost everywhere.

In 2-D and 3-D problems most influence functions are infinite at the source point as
for example the fundamental solution of the Laplace operator

g( y, x) =

⎧⎪⎨
⎪⎩

1

2 π
ln r (2-D)

1

4π
r (3-D)

. (3.293)

An example of the second type is the influence function for the vertical stress σyy in
the soil underneath the edge of a rigid punch, see Fig. 2.9, p. 76. The value of σyy is
infinite because the integral

σyy(x) = ū
∫

ΓD

t ( y, x) ds y (3.294)

is unbounded. The kernel t ( y, x) is the soil pressure on the underside of the rigid
punch if a unit dislocation (inf. func. for σyy) occurs directly under the edge of the
rigid punch. The kernel t ( y, x) has a singularity of type 1/r2 and so its area cannot
be measured, it is infinite. The slightest downward movement ū of the rigid punch
produces an infinite stress σyy underneath the tip of the punch.

3.16 Why Do Singularities Matter?

Or to be more precise: Why do poorly resolved singularities matter? After all the
FE-influence function
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uh(x) =
∫

Ω

Gh( y, x) p( y) dΩ y (3.295)

always looks the same. Where do the singularities—if any—hide? They hide in the
kernel Gh( y, x). To see this recall that solutions of the Poisson equation,−Δu = p,
(and similarly of other equations as well) can also be written in the form

u(x) =
∫

Γ

[
g( y, x)

∂u

∂n
( y)− ∂g( y, x)

∂n
u( y)

]
ds y+

∫

Ω

g( y, x) p( y) dΩy (3.296)

where g( y, x) = 1/(2 π) ln r is the fundamental solution.
This formula can also be applied to the Green’s function Gh( y, x) itself

Gh( y, x) =
∫

Γ

[
g(ξ, y)

∂Gh

∂n
(ξ, x)− ∂g(ξ, y)

∂n
Gh(ξ, x)

]
dsξ

+
∫

Ω

g(ξ, y) δ(ξ − x) dΩξ

︸ ︷︷ ︸
=g( y,x)

(3.297)

and here one sees how Gh( y, x) depends on its slope ∂Gh/∂n on the boundary. If
the true slope becomes singular at a corner point then the FE-slope probably will
only be a poor approximation and then this defect will have a negative influence on
Gh( y, x) and therewith finally also on uh .

3.17 Nature Makes No Jumps: Finite Elements Do

On crossing the interface between two neighboring elements the stresses jump. This
means that also the influence functions must jump. At any given point on Ω the
influence functions for the stresses at two infinitely close points—separated only by
a mesh line—differ by a distinct margin. Why is this?

The answer can be seen in Fig. 3.39. The equivalent nodal forces which generate
the influence function for σxx at the point x1 are the stresses of the shape functions
of the neighboring nodes at that point. Because only shape functions whose support
contains the point x1 contribute to the action only the four nodes of the element that
contains the point x1 will carry nodal forces. The moment the point wanders into
the next element, x1 → x2, the previously loaded nodes will be unloaded and the
forces will appear at the four corner nodes of the next element.

This sudden switch in the load carrying nodes is responsible for the jump in the
influence function and therewith for the jump in the stresses.



3.17 Nature Makes No Jumps: Finite Elements Do 187

(a)

(b)

(c)

(d)

Fig. 3.39 FE-influence functions for σxx at two neighboring points, a equivalent nodal forces
which generate the influence function for σxx at x1, b influence function, c equivalent nodal forces
for the influence function for σxx at x2, d influence function
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(a)

(b)

Fig. 3.40 FE-influence functions for the displacement of a rope: different locations (a) and (b) of
the source point x

The influence function for a displacement u(x) has a much smoother character as
can be seen in Fig. 3.40. In this case the equivalent nodal forces are the displacements
ϕi (x) of the shape functions at the source point x and moving from one element into
the next element hardly affects the magnitude of the nodal forces fi .

3.18 Influence Functions for Support Reactions

The influence function G for the support reaction R of the continuous beam, see
Fig. 3.41a, b, is the deflection of the beam when the support settles by one unit.

The two parts G1 and G2, in the first and in the second span respectively, are
homogeneous solutions and they are joined together at the interface, G1 = 1 = G2
and G ′1 = G ′2, M1 = M2 so that indeed

B(G1, w)Ω1 +B(G2, w)Ω2 = V− − V+ +
l∫

0

G(y, x) p(y) dy = 0 (3.298)

where the jump in the shear force equals the support reaction R = V+ − V−.
To obtain an FE-approximation of the influence function the support reactions of

the shape functions ϕi are applied as nodal forces

ji = J (ϕi ) = R(ϕi ) = a(ϕX ,ϕi ). (3.299)
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(a)

(b)

(c)

Fig. 3.41 Beam, a support reaction R, b influence function for support reaction R, c FE-
approximation of the influence function on Vh ; the nodal forces fi are the support reactions R
of the shape functions

But the result is not what is to be expected, see Fig. 3.41c. What is wrong?
In some sense nothing is wrong. Technically one could argue that because the test

and trial space Vh does not contain the nodal shape function of the support G cannot
lie in Vh .

An engineer knows that the exact solution G = G0 + 1 · ϕX can be split into a
homogeneous solution G0 and the shape function ϕX of the support so that he would
choose for Gh the ansatz

Gh(x) = Gh
0(x)+ 1 · ϕX (x) =

∑
i

gi ϕi (x)+ 1 · ϕX (x). (3.300)

Because G0 is a homogeneous solution (p = 0) the variational problem takes the
form

a(Gh,ϕi ) = 0 ∀ϕi ∈ Vh (3.301)

or
a(Gh

0,ϕi ) = −a(ϕX ,ϕi ) ∀ϕi ∈ Vh (3.302)

which leads to
K g = − f (3.303)

where
fi = a(ϕX ,ϕi ) = R(ϕi ) (3.304)
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Fig. 3.42 Taut rope, a virtual
displacementϕΣ , b equivalent
nodal forces, c the shape
functions form a partition of
unity

(a)

(b)

(c)

is the support reaction which belongs to the shape functionϕi . This way the engineer
obtains the exact solution, Gh = Gh

0 + ϕX = G, while the FE-method internally
operates with a “wrong” influence function, the one in Fig. 3.41c.

3.18.1 Global Equilibrium

But why does an FE-solution satisfy the global equilibrium condition if it cannot
generate the exact Green’s function for the support reaction? The answer is that part
of the influence function which is missing in Fig. 3.41c, namely ϕX , is exactly the
part which renders the nodal force fi which is directly applied at the support.

fi =
l∫

0

ϕX p dy (3.305)

This is why global equilibrium is established.
So nothing is lost, only the load is distributed differently. Global equilibrium

means that the sum of the FE-support reactions balances the applied load, as in the
case of the rope see Fig. 3.42, that is

A + B =
l∫

0

p dx = Ah + Bh . (3.306)
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The sum Ah + Bh equals A + B because the shape functions ϕi form a partition of
unity

6∑
i=0

ϕi = ϕ0(x)+ ϕ1(x)+ . . .+ ϕ6(x) = 1 0 < x < l. (3.307)

Because the FE-load case ph , here the nodal forces fi , is equivalent to p with respect
to all test functions vh ∈ Vh we have

l∫

0

p ϕΣ dx =
l∫

0

ph ϕΣ dx =
5∑

i=1

fi ϕΣ(xi ). (3.308)

To the equivalent nodal forces fi in the interior the engineer adds the nodal forces
f0 and f6 at the supports

f0 =
l∫

0

p ϕ0 dx f6 =
l∫

0

p ϕ6 dx (3.309)

so that the total sum

Ah + Bh =
6∑

i=0

fi =
l∫

0

p
6∑

i=0

ϕi (x) dx =
l∫

0

p · 1 dx = A + B (3.310)

equals the applied load.
This may be formulated as a rule: If the unrestrained space V+h , that is simply the

set of all trial functions ϕi of a mesh (before any boundary conditions are taken into
account) contains the rigid body modes, translations and (engineering) rotations, then
global equilibrium is established, that is the resultant Rh of the FE-forces coincides
in length, direction and orientation with the resultant R of the applied forces.

Remark 3.14 But a handicap remains. The total sum of the forces which flow from
inside a region Ω to the edge cannot exceed in magnitude the resultant internal load
Rh

int summed up by the function ϕΣ (the handicapped 1 with the ramps at the end)

Rh
int =

∫

Ω

ϕΣ p dΩ <

∫

Ω

1 · p dΩ = R (3.311)

so that if p is a uniform load then the resultant shear force V , the integral along the
edge, will be less than the exact value.
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(a) (b)

Fig. 3.43 Influence functions for M(x) a the more the source point nears the hinged support the
smaller the influence function gets, b the FE-influence function for M(0) ignores this tendency; it
only gets smaller if h → 0

3.18.2 A Paradox?

The more the source point nears the hinged support the more the influence function
for M(x) nears zero because at a hinged support M is zero, see Fig. 3.43a. But
the FE-approximation of the Green’s function for M(0) is not zero and this is no
contradiction because a distributed load p will generate a nodal moment f = (p,ϕi )

at the support and the deflection in Fig. 3.43b is the influence function for Mh(0) = f .
Only if the element size h tends to zero will also the FE-influence function tend to
zero. Note that the influence function is exact, has the value zero, outside the element
itself.

3.19 The Path the Load Takes

The stress distribution in a plate, see Fig. 3.44, resembles the flow of a fluid. At
prominent points the flow is strong and rapid while at other points it is more relaxed;
sometimes it even seems to loose drive and direction. We can clearly discern a
principal route which the streamlines follow.

On this route lie the most energetic streamlines. Now energy is measured in terms
of strains and stresses. For the stresses (∼strains) at a point to be large dislocations
at the point must produce large displacements in the loaded zone. This distinguishes
the main path from the “also runs” . The impression of a path is due to the fact that
dislocations at neighboring points and in similar directions yield approximately the
same displacements in the region of the load.

In real structures the streamlines are continuous functions while in FE-analysis
they jump and change directions on crossing interelement boundaries.

The pattern that a specific load generates is an intrinsic property of the structure.
The 1-D example of a truss, see Fig. 3.45, may illustrate this. The size of the nor-
mal force Ni in a truss element li is proportional to the displacement Δi the load
experiences when the truss element is spread by one unit length, see Fig. 3.45b, c.
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Fig. 3.44 Principal stresses in a plate

The element which carries the largest portion of the load is the element whose
dislocation effects the largest displacement Δi of the load. The energy in a single
truss element is

N 2
i

E A
li = P2 Δ2

i

E A
li (3.312)

and so the energy balance Wi = We requires that

1

2

∑
i

P2 Δ2
i

E A
li = 1

2
P u = 1

2
P · (P u1) (3.313)

where u1 is the displacement of the load if P = 1 or
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(a)

(b)

(c)

Fig. 3.45 Truss, a normal forces, b and c influence functions for normal forces. In linear mechanics
the rule is: if a point rotates about a pole to the right or to the left of it the point moves straight up
or down
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1

2

∑
i

Δ2
i

E A
li = 1

2
u1. (3.314)

In other situations, when the shear forces dominate, the streamlines form two nearly
equally strong orthogonal directions, see Fig. 3.46. When we represent all the
pairs of mutually orthogonal streamlines in a cross section by just two arrows, see
Fig. 3.46b, then their vector sum must be equal to the applied force P . In terms of
work this means: two dislocations in the direction of the two inclined streamlines lift
the foot of the point load by one unit of displacement.

It is now also clear why the stresses become singular at the fixed edge. The more
the streamlines approach the fixed edge the more they flatten (because the edge is
fixed in vertical direction, uy = 0) and the more the streamlines must stretch so that
their ever smaller and smaller vertical components manage to balance the load.

Hang a lantern on a rope! Before you can pull the rope really tight the rope will
snap. This is the same situation.

When the corners are rounded off then the streamlines can rotate and so they have
it easier to balance the applied load, see Figs. 3.47 and 3.48—no need to develop
infinite stresses.

3.20 The Path the Influence Function takes

Influence functions are like fluids which spread from the source point all over the
problem domain, and in so doing they have the tendency to ebb away and to ramify.
One and the same point can be reached on different paths and so it is important that
all parts of a problem domain are modeled with the correct stiffness. If the flow runs
against artificial obstacles—because of an error in the modeling—or if the stiffness
of a single zone through which the ripples propagate is not modeled correctly then
the signal that arrives at the point will be disturbed and will no longer represent an
accurate, reliable value.

In the design of planar reinforced concrete structures it has become fashionable to
divide structures such as wall plates into beam-like zones and zones where the stress
distribution is more complex and requires a true 2-D model. Originally this zone
model was introduced to characterize the stress distribution in a structure. Today
engineers often assume that the stress distribution in beam-like zones is “exact” ,
because of the 1-D pattern, and that only the 2-D zones require special attention.
But also internal actions in 1-D elements, as the normal force N = σyy · A in the
cross section of the beam-like column in Fig. 3.49, can be wrong if the zones through
which the influence function for σyy propagates are not modeled careful enough.
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(a)

(b)

(c)

(d)

(e)

Fig. 3.46 Cantilever plate, a principal stresses (“streamlines” ), b force triangles in different cross
sections, c at the fixed edge the apex of the force triangle nears the point∞, d street lantern—the
same principle e a board placed between two ropes exploits the same effect



3.21 Mixed Problems 197

Fig. 3.47 The benefit of rounding off the corners: the streamlines can rotate and so they have it
easier to balance the load

Fig. 3.48 Stress distribution (σxx ) along the edge of the plate when the corners are rounded off

3.21 Mixed Problems

The logic of Green’s functions directly carries over to mixed problems: also FE-
solutions of mixed problems are based on an approximation of the pertinent Green’s
functions.



198 3 Finite Elements and Green’s Functions

(a)

(b)

Fig. 3.49 Wall plate, a influence function for the stress σyy , b stress field generated by the dislo-
cation at the source point
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The boundary value problem

−Δu = p on Ω u = 0 on Γ (3.315)

can be split into a coupled system

∇w − σ = 0(2) (3.316)

−divσ = p(1) (3.317)

for the two functions w and σ or v = {w,σ}T .
To this system belongs the identity

G (v, v̂) =
∫

Ω

[
(∇w − σ) · σ̂ − divσ ŵ

]
dΩ +

∫

Γ

σ · n ŵ ds

−
∫

Ω

(∇w · σ̂ +∇ŵ · σ − σ · σ̂) dΩ

︸ ︷︷ ︸
a(v,v̂)

= 0 (3.318)

and so the boundary value problem is equivalent to the variational problem

v ∈ V a(v, v̂) =
∫

Ω

p ŵ dΩ ∀ v̂ ∈ V (3.319)

where V is the usual space of trial and test functions with zero displacements, w = 0,
on the edge Γ .

In FE-analysis we would construct with piecewise polynomial shape functionsϕi

(scalars) and ψ j (vector-valued) a subset Vh ⊂ V so that

w =
d∑

i=1

ui ϕi (x) σ =
s∑

j=1

s j ψ j (x). (3.320)

The Babuška–Brezzi condition requires that d < s. Vector fieldsψ j with odd indices,
j = 1, 3, 5, . . ., have only horizontal components and vector fields j = 2, 4, 6, . . .

only vertical components

ψ j=odd(x) =
[ ·

0

]
ψ j=even(x) =

[
0
·
]

. (3.321)

For the FE-solution (3.320) to be the best fit on Vh the error in the strain energy
product must be orthogonal to all d + s test functions
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vi :=
[
ϕi (x)

0

]
, i = 1 . . . d , vi :=

[
0

ψi (x)

]
, i = d + 1 . . . s (3.322)

that is it must hold

a(v, v̂i ) =
∫

Ω

p ŵi dΩ i = 1 . . . d + s (3.323)

or [
0(d×d) A(d×s)

AT
(s×d) B(s×s)

] [
u
s

]
=

[
p
0

]
d equations
s equations

(3.324)

where pi is the right-hand side of (3.323) for indices in the range 1 ≤ i ≤ d; beyond
that end point the ŵi are zero.

Writing Kv = f for this system the same algebra as before can be applied.
Let J(v) some linear functional on V . On Vh it can be written as a scalar product

J (v) = j T
u u + j T

s s =: j T v (3.325)

where
( ju)i = J (vi ) ( jσ)i = J (ψi ) (3.326)

and so
J (v) = j T v = j T K−1 f = gT f (3.327)

if g is the nodal vector of the Green’s function K g = j .

Example 3.3 The equation

− u′′ = p u(0) = u(�) = 0 (3.328)

can be split into the system

u′ − σ = 0 (3.329)

σ′ = p (3.330)

and the variational form of this boundary value problem for v = {u,σ}T is

a(v, v̂) :=
l∫

0

(u′ σ̂ + û′ σ − σ σ̂) dx =
l∫

0

p û dx . (3.331)

The rod in Fig. 3.50a is subdivided into 5 elements of length le = 1 and the
longitudinal displacement u is approximated with piecewise linear shape functions
and the stresses within the five elements with piecewise constant functions σ j
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Fig. 3.50 Influence functions
for a rod, mixed formulation,
a rod, b elements and shape
functions, c influence function
for u2 (displacements), d
stresses, e influence function
for the stress σ in element Ω3
(displacements), f stresses

(a)

(b)

(c)

(d)

(e)

(f)

u =
4∑

i=1

ui ϕi (x) σ =
5∑

j=1

s j σ j . (3.332)

This results in the system

[
0 (4×4) A (4×5)

AT
(5×4) B (5×5)

] [
u
s

]
=

[
p
0

]
(3.333)

where

A =

⎡
⎢⎢⎣

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

⎤
⎥⎥⎦ ai j =

l∫

0

ϕ′i σ j dx (3.334)

and B = −le · I because bi j = −(σ j ,σ j ) = −le · δi j .
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Let the functional J (v) = u(x2) be the value of the solution at the node x2 then the
vector of the equivalent nodal forces which generates the Green’s function consists
of the elements

ji = ϕi (x2) i = 1, 2, 3, 4 , ji = 0 i = 5, 6, . . . 9 (3.335)

that is
j = [0, 1, 0, 0, 0, 0, 0, 0, 0]T (3.336)

and the nodal values g = K−1 j of the Green’s function are

g = {0.6, 1.2, 0.8, 0.4︸ ︷︷ ︸
ui

, 0.6, 0.6,−0.4,−0.4,−0.4︸ ︷︷ ︸
si

}T (3.337)

and if J (v) = σ3, the stress at the midpoint x̄3 in element 3, then the vector f has
the elements

fi = 0 , i = 1, 2, 3, 4 , fi = σi (x̄3) , i = 5, 6, . . . 9 (3.338)

that is
f = [0, 0, 0, 0, 0, 0, 1, 0, 0]T (3.339)

because only σ3 (= dof # 7) has a non-zero value σ3 = 1 at x̄3, and the nodal values
g = K−1 f of the Green’s function are

g = {−0.2,−0.4, 0.4, 0.2︸ ︷︷ ︸
ui

,−0.2,−0.2,−0.2,−0.2,−0.2︸ ︷︷ ︸
si

}T . (3.340)

3.21.1 Tottenham’s Equation for Mixed Problems

It is evident that Tottenham’s equation also holds true for mixed problems, that is if

u(x) =
∫

Ω

(G( y, x) p( y)+ σG( y, x) · σ0( y)) dΩ y (3.341)

is the integral representation of the exact solution then

uh(x) =
∫

Ω

(Gh( y, x) p( y)+ σGh ( y, x) · σ0( y)) dΩ y (3.342)

is the integral representation of the FE-solution where Gh and σGh are the FE-
approximations of the kernel functions.
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3.22 Condensation of a Stiffness Matrix

Green’s functions also play a prominent role in the condensation of a stiffness matrix.
Let us assume that the domain Ω is split into a domain Ω1 and a domain Ω2,

see Fig. 3.51. The displacements on Ω1 are represented by shape functions ϕi and
the associated nodal values u1, and the displacements on the domain Ω2 by shape
functions ψi and nodal values u2. The functions ϕi and ψi form a partition of unity
of Ω .

Consequently the stiffness matrix K is partitioned as follows

[
A B

BT C

] [
u1
u2

]
=

[
f 1
f 2

]
, (3.343)

and [
a(ϕi ,ϕi ) a(ψ j ,ϕi )

a(ϕ j ,ψi ) a(ψi ,ψi )

] [
u1
u2

]
=

[
(p,ϕi )

(p,ψi )

]
(3.344)

respectively. Green’s first identity

G (u, û) =
∫

Ω

−Δu û dΩ +
∫

Γ

∂u

∂n
û ds − a(u, û) = 0 (3.345)

allows to replace the strain energy product δWi by exterior virtual work δWe

δWi = a(ϕi ,ϕ j ) = (ϕi , p(ϕ j )) = δWe . (3.346)

If the system (3.343) is solved for u2 it follows

u2 = −C−1 BT u1 + C−1 f 2 , (3.347)

which allows to write the system in terms of u1 and the load vectors f 1 and f 2,

Au1 − BC−1 BT u1 = f 1 − BC−1 f 2 . (3.348)

Let us study the part
(BC−1 BT )i j = BilC

−1
lk Bk j (3.349)

of the system. Based of the previous analysis it is

Bil = a(ϕi ,ψl) = (p(ϕi ),ψl) and Bkj = a(ψk,ϕ j ) = (ψk, p(ϕ j )) (3.350)

and so (3.349) can be written as
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Fig. 3.51 Schematic representation of the interaction between domains Ω1 and Ω2

(BC−1 BT )i j =(p(ϕi ),ψl) C−1
lk (ψk, p(ϕ j ))

=
∫

Ω

∫

Ω

p(ϕi )(x) G(2)
h ( y, x) p(ϕ j )( y) dΩ y dΩx , (3.351)

where G(2)
h is the Green’s function on the domain Ω2,

G(2)
h ( y, x) = ψ(x)T C−1ψ( y) = ψi (x) C−1 ψ j ( y) . (3.352)

It can also be expressed in this way: the displacement field u(x) = ϕ(x)T u1 on
Ω1 generates forces p in Ω and therewith also on Ω2—at least in the short overlap
between Ω1 and Ω2. The shape function ϕi ∈ Ω1 which are associated with the
nodes at the interface extend into Ω2 for a short range. The forces acting on Ω2
induce a compensating movement

ũ(x) =
∫

Ω

G(2)
h ( y, x)p(ϕ j )( y) dΩ y (3.353)

in the short overlap, see Fig. 3.51. The work done by the forces p which were
generated by the test functions ϕi on acting through u2 are just the contributions
in BC−1 BT . If the element size h tends to zero the overlap also tends to zero and
the forces p(ϕ j ) concentrate on the interface ΓI , p(ϕ j ) → t(ϕ j ), that is then the
expression above tends to the boundary integral
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ũ(x) =
∫

ΓI

G( y, x) t(ϕ j )( y) dΩ y , (3.354)

which for points x on the interface, u1(x) = u2(x) is the operator which is the
inverse to the Poincaré-Steklov-Operator

t1(x) =
∫

ΓI

t y t x G0( y, x) u1( y) ds y , (3.355)

which establishes the link between the edge forces t1 and the edge displacements u1.

Imagine all internal degrees of freedom are eliminated from a stiffness matrix K
by condensation—only the ui on the boundary are left—then the modified equation
K̄ ū = f̄ (all terms live on the boundary) resembles a discrete Poincaré-Steklov-
operator. You press on a rubber ball (nodal forces fi ) and the deformed shape of the

ball comes out as ū = K̄
−1

f̄ .

3.23 p-Method

To facilitate the formulations in the following we write the boundary value problem
in an “abstract” form

L u = p on Ω u = 0 on Γ (3.356)

and we use the short-hand notation (u, v) for domain integrals so that Green’s first
identity on V × V reads

G (u, v) = (L u, v)− a(u, v) = 0. (3.357)

This identity allows to recast the original boundary value problem in a weak form

a(u, v) = (p, v) ∀ v ∈ V (3.358)

where V is the solution and trial space

V := {v ∈ H1(Ω) |v = 0}. (3.359)

In the p-method the trial space is enriched with higher degree polynomials, that is
bubble-functions are added to each element so that the FE-solution has the form (we
drop the usual subscript h on the FE-solution uh) u = u�+u p. Here u� is the original
low degree field and u p are the added polynomials. If this split is repeated on the side
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of the test functions as well, û = û� + û p, then the variational formulation becomes

a(u� + u p, û� + û p) = (p, û� + û p) ∀ (û� + û p). (3.360)

Because the test functions are independent of each other these are actually two sets
of equations

a(u�, û�)+ a(u p, û�) = (p, û�) ∀ û� (3.361)

a(u�, û p)+ a(u p, û p) = (p, û p) ∀ û p (3.362)

or after integration by parts (Green’s first identity)

a(u�, û�)+ (u p, L û�) = (p, û�) ∀ û� (3.363)

(L u�, û p)+ (L u p, û p) = (p, û p) ∀ û p. (3.364)

The last equation is identical with

(L u p, û p) = −(L u� − p, û p) ∀ û p . (3.365)

The ansatz u p is the solution to the differential equation L u p = p − (L u�) and
therefore can be represented by the associated Green’s function

u p =
∫

Ω

G p(y, x) (p − (L u�)) dΩy := L−1
p (p − L u�) . (3.366)

The lower index p at G p is to indicate that the kernel G p is the Green’s function on
the trial space Vp, which is “the other half” of the space V�, that is V = V� + Vp.

Substituting this expression into (3.363) it follows

a(u�, û�)− (L−1
p L u�, L û�) = (p, û�)− (L−1

p p, L û�) ∀ û�. (3.367)

To the Eqs. (3.361) and (3.362) corresponds in the FE-method the system

[
A B
BT C

] [
u�

up

]
=

[
f �

f p

]
(3.368)

and the inverse C−1 is the FE-approximation of the Green’s function in (3.366), so
that after the usual transformation

(A− B C−1 BT ) u� = f � − BC−1 f p (3.369)

we recover exactly (3.367).
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(a)

(b)

(c)

Fig. 3.52 The influence function for the normal force N (−0, 5) is a dislocation, a unit step function.
a bar, b FE-solution for different polynomial degrees, c shape functions
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Equation (3.366) implies, that it is the task of the refinement u p to correct the error
p− L u� of the original coarse solution u�. But we must be careful. In the p-method
the approximate kernel Gh

p is an expansion in terms of smooth functions u p. But
such a smooth kernel is not very well qualified to model discontinuities of higher
derivatives of the solution. The p-method achieves good results where the solution is
smooth. Then the kernel Gh

p has all the advantages. But not if in the middle of a plate
element the load drops abruptly to zero (= discontinuity in the second derivative) or
line loads cross the element (= discontinuity in the first derivative. In these cases a
local enrichment with smooth functions will not help much. The reason is that the
Schur-complement (A− BT C−1 B) u1 = f 1− BT C−1 f 2 depends on the Green’s
function.

To cite an example we consider a bar [−1,+1] which is fixed on its left side and
modeled by just one linear element. To the original linear shape function are added
10 additional functions (Pi = Lagrange polynomial), see Fig. 3.52d

ϕi (x) = Pi+1(x)− Pi−1(x)√
2
√

2(i + 1)− 1
i = 1, 2, 3, . . . p. (3.370)

At count p = 3 the system is

K = E A

2

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u2
u3
u4
u5

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f2
f3
f4
f5

⎤
⎥⎥⎦ fi = N (ϕi )(−0.5) .

so that the stiffness matrix consists of the matrix A (just 1 element) and the 3 × 3
matrix C. The matrices B and BT are zero.

For a test the influence function for the normal force N at the quarter point
x = −0.5 was calculated. The influence function is a unit step function, a simple
translation of all parts to the right of the point by one unit. Obviously does the
p-method have difficulties to approximate the true solution, see Fig. 3.52.
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Chapter 4
The Discretization Error

In this chapter we discuss the connection between Green’s functions and the error
of FE-solutions, how the error of an FE-solution can be traced back to the error
in the approximation of the Green’s function. We begin with classical asymptotic
error analysis where tools of functional analysis allow to express the energy error
in powers of the mesh-width h. In goal-oriented refinement where the focus is on
minimizing the error in certain functionals the adaptive refinement is steered by two
errors, the error in the primal, the original, problem and the error in the dual problem,
the approximation of the Green’s function with finite elements.

The technique of goal-oriented refinement can also be applied to nonlinear prob-
lems where the dual problem is the approximation of the Green’s function at the
current linearization point. In the case of nonlinear functionals the Green’s function
is taken as the Green’s function of the linearized functionals.

Because FE-solutions, in general, do not interpolate the exact solution at the nodes
they exhibit a certain drift, a mismatch at the nodes. This is the prime reason why the
output the approximate Green’s functions produce is not exact. If the drift is uniform,
or nearly so, then it is called pollution: badly resolved singularities or inconsistencies
in the discretization make that the solution gets shifted in a certain direction. Often
the cause of these shifts lies outside the zone where the shift is observed. Pollution
is “silent” , it is not accompanied by oscillating stresses and it cannot be discovered
solely by a local analysis.

The chapter closes with a remark about the strong singularities in Green’s func-
tions. These singularities are normally much higher than the typical stress singu-
larities at singular points on the boundary but surprisingly an FE-program manages
to approximate these functions relatively well. This is a kind of a paradox: (weak)
singularities on the boundary are hard to approximate while (strong) singularities in
the interior can be resolved quite easily.

F. Hartmann, Green’s Functions and Finite Elements, 209
DOI: 10.1007/978-3-642-29523-2_4, © Springer-Verlag Berlin Heidelberg 2013
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4.1 Asymptotic Error Analysis

To solve the boundary value problem

− Δu = p on Ω ⊂ R
2 u = 0 on Γ (4.1)

with finite elements the problem is recast in weak form

a(u, v) = (p, v) ∀ v ∈ V (4.2)

and the best approximation uh on a given subset Vh ⊂ V is found by solving the
system

a(uh,ϕi ) = (p,ϕi ) i = 1, 2, . . . , n. (4.3)

The only terms which allow to trace the error of the FE-solution are the error forces,
see Fig. 4.1,

re := p − (−Δuh) on element Ωe , (4.4)

the difference between the original right-hand side p and the right-hand side ph of
the FE-solution on each element Ωe, and the jumps lk in the normal derivative in
between the elements, see Fig. 4.2,

lk := ∂u+

∂n
− ∂u−

∂n
on Γk (4.5)

which can be interpreted as line loads lk which produce the kinks in the fabric of the
membrane along the mesh lines Γk . For technical reasons these forces lk are split into
two halves and are distributed evenly to the two sides Γe and Γe′ of the two elements
Ωe and Ωe′ which border on the mesh line Γk ,

je := 0.5 lk je′ = 0.5 lk . (4.6)

It seems evident that the quality of the FE-solution should be linked to the size of
the error forces re and je. But in which way?

To work this out note first that the error e = u −uh solves the variational problem

a(e, v) = a(u, v) − a(uh, v) = (p, v) − (ph, v) ∀ v ∈ V (4.7)

or

a(e, v) = (p − ph, v) :=
∑

e

⎧
⎪⎨

⎪⎩

∫

Ωe

re v dΩ +
∫

Γe

je v ds

⎫
⎪⎬

⎪⎭
. (4.8)
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(a)

(b)

Fig. 4.1 Plate problem, a the original load case p and b the FE-load case ph . The numbers inside
the elements are the L2-norms = ((re

x , re
x ) + (re

y , re
y))

1/2 of the element error forces

Because of the Galerkin orthogonality the residuals are orthogonal to all v ∈ Vh

and therefore also to the function uI ∈ Vh , which interpolates the solution u (if u
were given it could be interpolated with the functions in Vh and this would be the
function uI )

0 =
∑

e

⎧
⎪⎨

⎪⎩

∫

Ωe

re u I dΩ +
∫

Γe

je u I ds

⎫
⎪⎬

⎪⎭
. (4.9)

Hence it follows

a(e, v) =
∑

e

⎧
⎪⎨

⎪⎩

∫

Ωe

re (v − uI ) dΩ +
∫

Γe

j (v − uI ) ds

⎫
⎪⎬

⎪⎭
(4.10)

or if e itself is chosen as virtual displacement
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(a) (b)

Fig. 4.2 a Two elements e and e′ which border on a mesh line Γk , b normal vectors on the two
sides Γe and Γe′

a(e, e) =
∑

e

⎧
⎪⎨

⎪⎩

∫

Ωe

re (e − uI ) dΩ +
∫

Γe

je (e − uI ) ds

⎫
⎪⎬

⎪⎭
. (4.11)

The load case p− ph , that is the error forces {re, je} of each element e = 1, 2, . . . Ne,
is orthogonal to the part uh of the error e = u − uh and so

a(e, e) =
∑

e

⎧
⎪⎨

⎪⎩

∫

Ωe

re (u − uI ) dΩ +
∫

Γe

je (u − uI ) ds

⎫
⎪⎬

⎪⎭
. (4.12)

The next steps are an exercise in approximation theory. If u is a regular function then
the interpolation error u − uI is bounded by a certain power of the element size h
times some constant. Combining this with the Cauchy–Schwarz inequality provides
an estimate for the square of the error e in the energy norm

‖e‖2
E ≤ c1

∑

e

{
h2

e‖r‖2
L2(Ωe)

+ he‖ je‖2
L2(Γe)

}
(4.13)

and after some further steps also for the norm itself

‖e‖E ≤ c2

∑

e

{
he‖re‖L2(Ωe) + h0.5

e ‖ je‖L2(Γe)

}
. (4.14)

All terms in this equation, with the exception of the constants ci , can be calculated.
The constants ci , i = 1, 2 depend on how well the functions in Vh can interpolate
functions and on how smooth the function u is (what is not known a priori).
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Fig. 4.3 In goal-oriented
adaptive refinement two prob-
lems are solved: the primal
problem (original problem)
and the dual problem (Green’s
function)

Primary problem

Dual problem

Green s function‘

goal

So the sum

η =
∑

e

ηe :=
∑

e

{
‖re‖L2(Ωe) + h0.5

e ‖ je‖L2(Γe)

}
(4.15)

can serve as an error indicator. If H (the Greek capital letter η) is the total energy
error then the ratio

ηrel
e = ηe

H
(4.16)

indicates how much an element contributes to the overall error and in adaptive finite
element methods those elements where this ratio exceeds a certain threshold value
are refined; only the unknown value H must be replaced by some estimate H̃ .

4.2 Goal-Oriented Refinement

The same logic is now applied to the error in a functional

J (e) = u(x) − uh(x) =
∫

Ω

[G( y, x) − Gh( y, x)] p( y) dΩ y . (4.17)

Because of the Galerkin orthogonality the FE-load case ph can be added to this
equation without changing the math

J (e) = u(x) − uh(x) =
∫

Ω

[G( y, x) − Gh( y, x)] (p( y) − ph( y)) dΩ y , (4.18)

and a switch to the internal energy
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J (e) = u(x) − uh(x) = a(G[x] − Gh[x], u − uh) (4.19)

allows to apply the Cauchy–Schwarz inequality (ignoring for the moment that the
Green’s function has infinite energy)

|J (e)| = |u(x) − uh(x)| = |a(G[x] − Gh[x], u − uh)|
≤ a(G[x] − Gh[x], G[x] − Gh[x]) · a(u − uh, u − uh)

≤ ‖G[x] − Gh[x]‖E · ‖u − uh‖E . (4.20)

Hence the upper limit for |J (e)| is the product of two errors: the error in the Green’s
function and the error of the FE-solution, both errors measured in the energy norm.

If ηe
p and ηe

G are two error estimators on an element Ωe for the primal and dual
error respectively then follows

|J (e)| = |u(x) − uh(x)| ≤
∑

e

ηe
G · ηe

p (4.21)

which is the basic tool in goal-oriented adaptive refinement, see Fig. 4.3.
Strictly speaking does this estimate only hold true if the energy of the Green’s

function is bounded, a(G, G) < ∞, which would be the case if the point load were
spread over a small circular patch with radius ρ > 0.

4.3 Comparison

To demonstrate the difference in meshes generated by a standard (“global” ) adaptive
refinement and a goal-oriented refinement the two techniques were applied to the
plate in Fig. 4.4 which carries a point load at its upper left corner.

The corner points of the plate are singular points and this is registered by the
algorithm which mainly refines the mesh near these points, Fig. 4.4a. When the focus
is on a particular value, say the vertical stress J (u) = σyy at the edge of one of the
openings, then the goal-oriented refinement which evaluates both error indicators,
for u − uh and G − Gh , almost uniquely concentrates on the neighborhood of the
source point, Fig. 4.4b. In Fig. 4.5a is plotted the vertical displacement of the Green’s
function for σyy and in Fig. 4.5b the horizontal component. Both components are of
course in-plane components. Only for illustrative purposes are the function values
plotted above (+) and below (−) the mid-surface of the plate.
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(b)

(a)

Fig. 4.4 Adaptive refinement, a standard refinement, b goal-oriented refinement J (u) = σyy
at the edge of the opening
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Fig. 4.5 3-D plot of the a vertical component (y-direction) of the Green’s function for J (u) = σyy
and b the horizontal component (x-direction). The dipole character of the influence function is
easily recognizable

4.4 Primal and Dual Error

The primal solution is the solution u of the boundary value problem (4.1) and the
dual solution is the Green’s function for u(x); it is the solution to the boundary value
problem

− ΔG( y, x) = δ( y − x) G( y, x) = 0 y ∈ Γ . (4.22)

The primal and the dual errors respectively are

e = u − uh e∗ = G − Gh (4.23)

and the functional
ρ(uh)(·) = (p − ph, ·) (4.24)
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is called the primal residual and the functional

ρ∗(Gh)(·) = J (·) − Jh(·) (4.25)

is called the dual residual.
Imagine p represents a stone A and ph a second stone B. Which is heavier? What

you do to resolve the problem is you lift first the stone p by an amount v and then
ph by the same amount v. The difference in the work done

ρ(uh)(v) = (p − ph, v) (4.26)

is the primal residual. It gives you the necessary clue.
In the same way imagine you have two lenses, δ and δh , one perfect the other

looks suspicious. What you do to compare δh with δ is you send two identical beams
of light (v) through both lenses and you measure the aberration

ρ∗(Gh)(v) = J (v) − Jh(v) =
∫

Ω

δ v dΩ −
∫

Ω

δh v dΩ = v(x) − vh(x) (4.27)

or, as we would say, the difference in the displacement, v(x) − vh(x).
So the primal residual provides a hint how far off the FE-solution uh is by shaking

the membrane and measuring the virtual work done by the ersatz load case ph and
comparing it with the work done by the exact load p. Or a beam of light is sent
through the “lense” Jh(v) and we look where it lands on the screen. This is what is
done in the patch test. We fabricate a solution, send it through the FE-code and hope
to see a perfect image on the screen.

4.5 An Analysis of the Goal-Oriented Error Estimator

The error in a functional

J (e) = u(x) − uh(x) =
∫

Ωp

[G( y, x) − Gh( y, x)] p( y) dΩy (4.28)

is a consequence of the dual error G − Gh , the difference between G and Gh in the
region Ωp where the load p is applied. But why does in (4.20) figure also the primal
error ‖u − uh‖E ?

The reason is that (4.28) is the exact formula for the error while (4.20) is an
estimate of this error based on the Cauchy–Schwarz inequality (L2-scalar product)

|J (e)| ≤ ‖G − Gh‖0 · ‖p‖0 . (4.29)
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Firstly the Galerkin orthogonality allows to add ph to (4.28), see (4.18),

J (e) =
∫

Ω

[G( y, x) − Gh( y, x)] [p( y) − ph( y)] dΩ y . (4.30)

Secondly it may be assumed that the load p − ph , which is equivalent to Lu − Luh ,
(L is the differential operator in Lu = p) is a linear and continuous functional on V ,
that is for each v ∈ V the integral

(p − ph, v) =
∫

Ω

(p − ph) v dΩ (4.31)

is bounded
|(p − ph, v)| ≤ ‖p − ph‖∗‖v‖ (4.32)

where ‖ · ‖ is the norm on V and ‖ · ‖∗ is the norm on the dual space V∗ (the set of all
linear and continuous functionals on V). Let u − uh be the solution to the boundary
value problem with the right hand side p − ph , that is L(u − uh) = p − ph , then
the norm of u − uh is equal to the norm of p − ph ,

‖p − ph‖∗ = ‖u − uh‖ . (4.33)

Because the norm ‖ · ‖ and the energy norm are equivalent on V it follows

|(p − ph, v)| ≤ ‖p − ph‖∗‖v‖ ≤ c · ‖u − uh‖E ‖v‖E . (4.34)

Setting v = G[x] − Gh[x] provides the estimate

|J (e)| = |
∫

Ω

[G( y, x) − Gh( y, x)] (p( y) − ph( y)] dΩy|

≤ c · ‖G[x] − G[x]‖E ‖u − uh‖E , (4.35)

which is the same result as in (4.20). Hence the primal error is an estimate of the
error |p − ph |.

Adaptive methods draw on these error indicators. Where the error forces are large
the mesh is refined and by repeating this step it is hoped that the FE-solution improves.
But often the refinements are only indicators of hot spots, of points, mostly on the
boundary, where the exact solution becomes singular and then an adaptive refinement
can only try to restrict the influence of the singularity without actually removing it.



4.6 The Algebra of the Residuals 219

4.6 The Algebra of the Residuals

The primal residual is zero for functions vh ∈ Vh

ρ(uh)(vh) = (p − ph, vh) = a(e, vh) = 0 . (4.36)

This is the Galerkin orthogonality. Substituting for vh the exact Green’s function G
produces the error in the corresponding functional J (e)

(p − ph, G) = ρ(uh)(G) = J (e) . (4.37)

The dual residual exhibits a similar behavior. It is zero for functions vh ∈ Vh

J (vh) − Jh(vh) = 0 (4.38)

and it attains at u the value J (e) because

ρ∗(Gh)(u) = (p, e∗) = (p, G) − (p, Gh)

= J (u) − Jh(u) = J (u) − J (uh) = J (e) .
(4.39)

So there is a certain symmetry in the error functionals

(p − ph, G) = ρ(uh)(G) = J (e) = ρ∗(Gh)(u) = (G − Gh, p) (4.40)

or in words: error in p × G = error in G × p. This symmetry is only observed in
linear problems.

Remark 4.1 Arbitrary functionsψh ∈ Vh can be subtracted in (4.37) from G without
changing the result

(p− ph, G−ψh) = ρ(uh)(G−ψh) = (p, G−ψh)−a(uh, G−ψh) = J (e), (4.41)

because

a(u, G − ψh) − a(uh, G − ψh) = a(u − uh, G) − a(u − uh,ψh)

= a(u − uh, G) = J (e) .

This also holds true in (4.39); for each u − ϕh with ϕh ∈ Vh we have

a(u − ϕh, G) − a(u − ϕh, Gh) = (p, G − Gh) + a(uh, G − Gh) = (p, G − Gh) .

(4.42)
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4.7 Goal-Oriented Refinement for Nonlinear Problems

The method of goal-oriented refinement can also be applied to nonlinear problems.
This is done in three steps:

(i) Linear and nonlinear functionals J (u) can be written as, see Sect. 2.9.3,

J (u) = j T
u u (4.43)

where the component jui of the vector ju is the Gateaux derivative of J (u) in the
direction of the shape function ϕi . For linear functional ju is a constant vector
while for nonlinear functionals it depends on u.

(ii) Evaluating the functional J (u) under the side condition k(u) = f leads to the
Lagrange functional

L(u,λ) = J (u) − λT (k(u) − f ) = uT ju − λT (k(u) − f ) (4.44)

and the stationary point {u,λ} is determined by the equations

k(u) = f K T (u)λ = ju (4.45)

where K T is the tangent stiffness matrix at the point u.
(iii) The tangent stiffness matrix appears also when the equation k(u) = f is solved

by Newton’s method

K T (ui ) ei+1 
 f − k(ui ) ei = ui+1 − ui . (4.46)

Given a symmetric matrix such as K T (ui ) the following identity (π = πT )

B(e,λ) = λT K T (ui ) e − eT K T (ui )λ = 0 (4.47)

holds true for all vectors e and λ. Eventually the second matrix K T has to be
replaced by its transpose if K T is not symmetric.

Conclusion: If the vector λi is a solution of

K T (ui )λi = ju (4.48)

and e = ei+1 = ui+1 − ui then

J (ei+1) = λT
i ( f − k(ui )) + remainder . (4.49)

This is not the same result J (u) = λT f as in linear analysis (the vector λ is of course
identical with the vector g in the preceding chapters). This equation only allows to
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make (educated) guesses about the size of the error J (ei+1) with the Green’s function
at the linearization point.

But this is motivation enough to apply goal-oriented adaptive refinement as in
linear problems. The primal problem is (4.451) and the dual problem is (4.452).

4.7.1 Estimates

While the previous results were based mainly on linear algebra we present in the fol-
lowing some background material to show how by an elaborate mathematical analy-
sis estimates for the error J (u) − J (uh) can be obtained in a nonlinear context [1].

In Sect. 2.9 it was demonstrated that if a linear functional J (u) is to be evaluated
under the side condition that u is a solution to the variational problem a(u, v) =
(p, v) ∀ v ∈ V then this can be formulated in the context of Lagrange multipliers as
the problem to find a stationary point of the functional

L(u, G) = J (u) − (a(u, G) − (p, G)) (4.50)

because λ is identical with the Green’s function G. In linear problems a(., .) is a
bilinear form and (p, .) is a linear form.

We say a functional such as

�(u) = 1

2
a(u, u) − (p, u) (4.51)

is stationary at u if the Gateaux derivative is zero “in all directions δu ∈ V” that is

�′(u)(δu) := d

d ε
�(u + εδu)|ε=0 = a(u, δu) − (p, δu) = 0 ∀ δu ∈ V (4.52)

so that {u, G} is a stationary point of L(u, G) (two arguments instead of one) if both
Gateaux derivatives are zero in all possible directions δu, δG

L′
u(u, G)(δu) = d

d ε
L(u + εδu, G)|ε=0 = 0 (4.53)

L′
G(u, G)(δG) = d

d η
L(u,λ+ η δG)|η=0 = 0 . (4.54)

In the nonlinear case a(· ; ·) is a semilinear form, that is it is nonlinear in the first
argument and linear in the second and the variational formulation that underlies the
FE-method has the form

A(u; δu) := a(u; δu) − (p, δu) = 0 ∀ δu ∈ V (4.55)
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so that the Lagrange functional (4.50) is

L(u, G) := J (u) − A(u; G) . (4.56)

The Gateaux-derivatives of the functionals with respect to u are

J ′
u(u; δu) := d

dε

(
J (u + ε δu)

)∣∣∣∣
ε=0

(4.57)

and

A′
u(u; δu, G) := d

dε

(
A(u + ε δu; G)

)∣∣∣∣
ε=0

(4.58)

while the derivative with respect to G

A′
G(u; G, δG) := d

dη

(
A(u; G + η δG)

)∣∣∣∣
η=0

= A(u; δG) , (4.59)

is identical with A(u;ΔG) because A(·; ·) is linear in the second argument.
Hence the variational formulation of the primal (1st equ.) and dual problem (2nd

equ.) are

L′(u, G)(δu, δG) :=
{−A(u; δG)

J ′
u(u; δu) − A′

u(u; δu, G)

}
= 0 ∀ δu,∀ δG (4.60)

and the Galerkin approximation {uh, Gh} is the solution of

L′(uh, Gh)(δuh, δGh) :=
{−A(uh; δGh)

J ′
u(uh; δuh) − A′

u(uh; δuh, Gh)

}
= 0

∀ δuh,∀ δGh . (4.61)

After these preliminary steps we can now concentrate on the error J (u)− J (uh). To
this end we let x = {u, G} and xh = {uh, Gh} and we note that

L(x) − L(xh) = J (u) − J (uh) . (4.62)

By doing a Taylor expansion of the left an estimate for the right-hand side can be
formulated. This is the central idea.

Under the assumption that L(x) is a three-times differentiable function and x is a
stationary point, L′(x)(δx) = 0 ∀ δx, and xh is the FE-approximation to x holds [1],

L(x) − L(xh) = 1

2
L′(xh)(x − xh) + R(3)

h (4.63)

where the remainder term R(3)
h is cubic in the error e = x − xh .



4.7 Goal-Oriented Refinement for Nonlinear Problems 223

Let yh = {ϕi ,ψ j } be an arbitrary pair of test functions on Vh × Vh , that is the
ϕi approximate uh and the ψ j the function Gh (normally the two sets are the same,
ψi ≡ ϕi ) then holds

L′(xh)(x − yh) = L′
u(uh, Gh)(u − ϕi ) + L′

G(uh,ψ j )(G − ψ j )

= J ′
u(uh)(u − ϕi ) − A′(uh)(u − ϕi ,ψ j ) − A(uh)(G − ψ j )

= ρ∗(uh,ψ j )(u − ϕi ) + ρ(uh)(G − ψ j ) (4.64)

and this immediately implies that

J (u) − J (uh) = ρ∗(uh, Gh)(u − uh) + ρ(uh)(G − Gh) . (4.65)

This is just the sum of the dual and the primal residual which in nonlinear problems
are no longer the same, though the difference between the two

ρ∗(uh, Gh)(u − uh) = ρ(uh)(G − Gh) + Δρ (4.66)

is, (e = u − uh , e∗ = G − Gh),

Δρ =
1∫

0

{
A′′(uh + s e)(e, e, Gh + s e∗) − J ′′(uh + s e)(e, e)

}
(4.67)

of second order so that the simplified error representation is

J (u) − J (uh) = ρ(uh)(G − Gh) + R(2)
h (4.68)

or explicitly

J (u) − J (uh) = a(uh; G − Gh) − (p, G − Gh) + R(2)
h . (4.69)

Basically what this means is that the error in the functional is—we simplify somewhat
and let a(uh; G − Gh) 
 (ph, G − Gh)—a sum of two effects: the error in the right-
hand side, p − ph , and the error in the Green’s function, G − Gh

J (u) − J (uh) ∼ (ph, G − Gh) − (p, G − Gh) + remainder (4.70)

The problem with this equation is that the exact Green’s function G is unknown and
for this estimate to be useful G must be replaced by a higher order approximation [1].
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4.7.2 Nonlinear Functionals

In the FE-context the weak formulation of the dual problem leads to the system

K T (ui ) gi = ju (4.71)

where the vector ju has as its components

J ′(uh;ϕi ) i = 1, 2, . . . n (4.72)

the Gateaux-derivatives of J (uh) in the direction of ϕi .
We give one example for how to handle such a nonlinear functional. In nonlinear

elasticity the stress at a point x is defined as

J (u) = σi j (u)(x) . (4.73)

The Gateaux-derivative of this nonlinear functional is

J ′(u; v) :=
[

d

dε
J (u + ε v)

]

ε=0
=

[
d

dε
σi j (u + ε v)

]

ε=0
(4.74)

or with S = C[E(u)],
[

d

dε
S(u + ε v)

]

ε=0
= C

[
d

dε
E(u + ε v)

]

ε=0
= C[Eu(v)] =: Ŝ (4.75)

where Eu(v) is the Gateaux-derivative of the Green–Lagrangian strain tensor, see
Sect. 6.1. Hence the equivalent nodal forces

jk = J ′(uh;ϕk) = σ̂i j (ϕk)(x) (4.76)

are the components σ̂i j of the tangent stress tensor C[Euh (ϕk)].

4.7.3 Implementation

The total load f is partitioned into M equal parts so that the load can be applied in
single steps

f (t) = q(t) f = t

M
f t = 1, 2, . . . M (4.77)

and at each stage t the mesh is adaptively refined based on the combined error
indicator of the primal and the dual problem.

• Generate an initial mesh Tt and let t = 0 .
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Fig. 4.6 Slit plate

Fig. 4.7 Results for different refinement strategies

• (A) for t = 1 up to M (loop over all load steps M)

q(t) = t

M
actual load parameter

1. Solve the nonlinear equation with Newton-Raphson (iterator i).
Let i = 0, uΔt = 0, u(0)

t = ut−1 and solve the equations
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x

(a) (b)

(c) (d)

Fig. 4.8 Meshes a initial mesh, b refinement based on energy norm, c goal-oriented refinement for
σxx (x) and d for σyy(x)

K T (u(i)
t ) u(i+1)

Δt
= q(t) · f − k(u(i)

t )

u(i+1)
t = u(i+1)

Δt
+ u(i)

t

Let i = i + 1 and repeat until convergence is achieved.
2. Calculate the error indicators of the primal problem η

(p)
e .

3. Formulate the dual problem at the current equilibrium position ut :

K T (ut ) gt = j t (4.78)

4. Calculate the error indicator of the dual problem η
(g)
e .



4.7 Goal-Oriented Refinement for Nonlinear Problems 227

Fig. 4.9 Green’s function
(at an equilibrium point) for
the stress σyy

5. Refine the mesh:

– Determine the combined error indicators

ηe = η
(p)
e · η(g)

e . (4.79)

– Calculate the error estimator

J (e) ≈ η =
∑

Ωe

ηe . (4.80)

– IF |η| ≤ TOL (global tolerance) → t = t + 1, GOTO (A).
– IF |ηe| ≤ TOLe (local element tolerance) → refine the element Ωe.
– Generate a new mesh Tt+1, transfer data, set t = t + 1.
– GOTO 1

The plate in Fig. 4.6 with a slit served as a test example [2]. The plate is subjected
to a point load at its upper left corner and the focus was on the horizontal and
vertical stress, J (u) = σxx and J (u) = σyy respectively, at one of the four quarter
points x. The results in Fig. 4.7 confirm that the goal-oriented refinement achieves
the best results. In Fig. 4.8 are plotted the different meshes and in Fig. 4.9 is plotted
the Green’s function for σyy(x).

4.8 Drift

If the nodal values u(xi ) of the exact solution were given u(x) could be interpolated
at the nodes with the nodal shape functions ϕi ∈ Vh of the mesh
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Fig. 4.10 Symbolic representation of the drift of an FE-solution, here the Green’s function for the
stress σxx

u I (x) =
n∑

i=1

u(xi )ϕi (x) . (4.81)

This function, the interpolant uI , has zero drift at the nodes

u(xi ) − uh(xi ) = 0 (4.82)

but it deviates from the true solution in between the nodes.
This observation suggests to split the error eh(x) = u(x)−uh(x)of an FE-solution

into a local and a global error

eh(x) = u(x) − uI (x) + uI (x) − uh(x) = eloc
h (x) + eglob

h (x) . (4.83)

The local error is that part of the solution which is missed by the interpolant and
the drift—the mismatch between u and uh at the nodes—represents the global error,
s. Fig. 4.10 and 3.33 p. 177,

eloc
h (x) = u(x) − uI (x) eglob

h (x) = uI (x) − uh(x) . (4.84)

A slightly different definition of these two errors is obtained if the interpolant is
replaced by a function ũ I which—as uI interpolates u at the end nodes—but which
additionally provides a local best fit in the sense of the energy metric [3]. But as-
ymptotically these two definitions are equivalent.

That FE-solutions have a drift at the nodes is not a failure in itself because the
interpolant is not the function which minimizes the energy error ‖u − uh‖E and so
FE-solutions must have a drift. Only in elementary 1-D problems is the FE-solution
identical with the interpolant, uI (x) = uh(x), see Sect. 3.14.
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In FE-analysis interest often focuses on the error on a certain patch Ωp of the
mesh, and then local and global may refer to contributions to the error from sources
inside or outside the patch, respectively. In this context the local error is also termed
the near-field error and the global error is referred to as the far-field error.

The local error would be for example the error from a poorly resolved local load
while the global error could have its cause in a singularity at the boundary.

4.9 Combination of Modeling and Discretization Error

In any engineering numerical analysis the error has two parts: the discretization error
and the modeling error. The modeling error is the error between the physical exact
solution, let us call it uc, and the engineering solution u based on some simplified
assumptions so that the problem becomes numerically tractable, can be reduced to a
Poisson equation or to a 2-D elasticity problem, etc.

The combination of these two errors, the modeling error, uc − u, and the
discretization error, u − uh , is the total error

uc − uh (4.85)

the distance of the numerical solution of the engineering model from the physical
exact model.

This error determines also the error in the functionals

J (uc) − J (uh) . (4.86)

By employing basically the same technique as before this error can be estimated as
follows [4],

J (uc) − J (uh) = − d(uh; Gh)

+ 1

2

{
ρ(uh; Gc − Gh) + ρ∗(uh, Gh)(uc − uh)

}

− 1

2

{
d(uh; eG) + d ′(uh; eu, Gh)

} + 1

2
R(3) (4.87)

where eu = uc − uh and eG = Gc − Gh .
To steer an adaptive refinement process it is suggested [4], to replace the exact so-

lutions uc and Gc by an upgrade of the FE-solution. Upgrade means that if the
FE-solution is based on bilinear elements then uh and Gh are interpolated by
bi-quadratic functions, u(2)

h and G(2)
h , that is

Gc − Gh ≈ G(2)
h − Gh uc − uh ≈ u(2)

h − uh . (4.88)

Because of the Galerkin orthogonality it is
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ρ(uh; G(2)
h − Gh) = ρ(uh; G(2)

h ) (4.89)

ρ∗(uh, Gh; u(2)
h − uh) = ρ∗(uh, Gh; u(2)

h ) . (4.90)

Neglecting higher-order terms gives

J (uc) − J (uh) ≈ ηh + ηm (4.91)

where

ηh = 1

2
{ρ(uh; G(2)

h ) + ρ∗(uh, Gh; u(2)
h )} (4.92)

ηm = −d(uh; Gh) . (4.93)

are estimates for the two types of errors.

4.10 Pollution

Pollution is the effect that the accuracy of the FE-solution on a certain patch is
adversely affected by disturbances whose cause lies outside the region itself.

Such an effect can be observed for example in Fig. 4.11 where the influence
function for the shear force Nyx of the plate

Nyx =
l∫

0

σyx dx (4.94)

is approximated with finite elements. The sliding movement, ux = 1, which is the
influence function, can only be poorly resolved on the mesh and so the poor resolution
in cross-section A − A leads to a large drift at the top of the shear wall where the
value of the FE-Green’s function is 2.3 while the exact value is 1.0. This is pollution:
a singularity at a lower level, in cross-section A − A, makes its presence felt on the
top level.

The upper part of the FE-plate slides to the right but additionally it performs
a slight rigid body rotation and so if we would make the plate higher and higher
we could produce arbitrarily large errors in the displacement field of the Green’s
function!

There are three types of pollution [3]:

1. Pollution due to local unsmoothness of the right-hand side p. This type of pollu-
tion is essentially limited in the neighborhood of the points of unsmoothness of
p.

2. Pollution due to local non-uniformity of the mesh.
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P

1.2

A A

(a) (b)

(c) (d)

Fig. 4.11 Drift of the influence function for the shear force Nyx in cross-section A − A, a shear
wall, b FE-solution Gh , c refined model, d improved FE-solution Gh

3. Pollution due to unsmoothness in the Green’s function which is related also to
the unsmoothness of the coefficients in the differential equation.

Pollution produced by discontinuous loads is negligible in practice. An engineer is
well trained to anticipate possible side effects of such loads p.
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x1

2x

1P

P2

= 1

= 1

Fig. 4.12 Uneven mesh but the reciprocal FE-displacements are the same

The second effect also is more or less predictable: a very uneven mesh—large
elements followed by sequence of small elements—leads to pollution. Though there
is a curious side effect built into Betti’s theorem: duality straightens things out, is
“egalitarian” , the richer do not get richer. A finely detailed mesh neighboring to a
very coarse mesh cannot profit from its richness because the messages it sends out
into the adjacent coarse mesh cannot exceed in accuracy the messages the coarse
mesh sends into the fine mesh, see Fig. 4.12. Maxwell’s theorem states that two point
loads, one on the fine mesh, and one on the coarse mesh, will produce the same
effects at the opposite points

δ12 = δ21 (4.95)

and so not much is gained if only one part of the mesh is finely detailed.
But what about cooperation in adaptive refinement? In adaptive refinement we

normally refine the mesh only in the loaded zone (in the absence of singularities
on the boundary) and we do not refine the mesh near the points where we evaluate
the solution. This is only done in goal-oriented refinement. Why then does standard
adaptive refinement succeed?

The reason becomes apparent when we look at the error equations

u(x) − uh(x) =
∫

Ω

G( y, x)(p( y) − ph( y)) dΩ y

=
∫

Ω

(G( y, x) − Gh( y, x)) p( y) dΩ y . (4.96)

The mesh refinement in the loaded zone makes that the error p − ph gets smaller
and according to the first equation this error gets processed by the exact kernel
which is accurate at the observation point irrespective of the size of the mesh. The
second equation explains why this effect is independent of the non-refinement at the
evaluation point x, because if the solution u lies in Vh—or very nearly so if p − ph
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Fig. 4.13 The singularity at
the corner point has a negative
effect on the information that
flows from the source point x
to the point load f

singularity

is small1—then the error in the Green’s function for u(x) is orthogonal to p and the
coarse grain nature of the Green’s function for u(x) at the evaluation point cannot
spoil the picture; it may be only a poor approximation, but its error gets unnoticed.

When we would test Maxwell’s theorem with two point loads at x1 and x2 respec-
tively then in goal-oriented refinement the error estimates—if the Green’s function
would have finite energy—would be symmetric

displacement at x1 caused by point load at x2

|Δ12 − Δh
12| ≤ ‖G[x1] − Gh[x1]‖E︸ ︷︷ ︸

error in G F

‖G[x2] − Gh[x2]‖E︸ ︷︷ ︸
error in sol.

(4.97)

and

displacement at x2 caused by point load at x1

|Δ21 − Δh
21| ≤ ‖G[x2] − Gh[x2]‖E︸ ︷︷ ︸

error in G F

‖G[x1] − Gh[x1]‖E︸ ︷︷ ︸
error in sol.

(4.98)

where the bracket is to indicate that this is the Green’s function for the point x1 or
x2 respectively, G[x1] = G( y, x1). In calculating the norm the derivatives are taken
with respect to y and integration is also done in this coordinate.

To summarize:

The principal cause for pollution though is the singular behavior of the Green’s functions in
the neighborhood of corner points. The error in the element next to the singularity spreads

1 We assume the problem to be well behaved in the sense that ‖u − uh‖ ≤ ‖p − ph‖.
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Fig. 4.14 A slightly misplaced node produces a singularity in the principal moments of the slab,
a slab, b principal moments



4.10 Pollution 235

Fig. 4.15 The influence functions for the edge moment mnn at two nearly identical points close to
the singularity are widely different

over the entire mesh and can be the dominant component of the error in the majority of the
elements [3].

Note that the authors, Babuska and Strouboulis, attribute the error to the Green’s
function, not the solution because it is the Green’s functions which produces the
output. If the Green’s functions are poorly resolved in the neighborhood of singular
points then they spoil the picture. The drift of the Green’s function manifests itself
as the error of the FE-solution.

Imagine a point load f acts at a node and the stress σyy it produces at a certain
point x, see Fig. 4.13, is to be calculated. To do this the FE-program applies a vertical
unit dislocation at the source point x and it measures by how much the point load is
displaced by this dislocation. If the FE-program could determine this value u exactly
it would output the exact value for σyy but the drift of the Green’s function produces
an error

σyy(x) = f · u exact (4.99)

σh
yy(x) = f · (u + drift) FEM (4.100)



236 4 The Discretization Error

Fig. 4.16 The same two influence functions after the singularity has been removed by placing the
node at the correct position

Recall that a Greens function can be split into a fundamental solution g( y, x) and a
regular part u R( y, x)

u(x) =
∫

Ω

G( y, x) p( y) dΩ y =
∫

Ω

(g( y, x) + u R( y, x)) p( y) dΩ y (4.101)

and so it is the task of the regular part to provide the fit between the fundamental
solution and the problem domain. This is why also Green’s function have to cope
with the singularities on the boundary, see Sect. 3.16.

Pollution may be controlled by employing a mesh which is sufficiently refined
in the appropriate places for example in the neighborhood of the singular points for
the Green’s function. Pollution is negligible if the following three conditions apply
simultaneously

• the solution u is smooth
• the mesh is uniform
• there are no singularities on the boundary

Pollution is silent. The problem with pollution is that it often goes unnoticed
because the drift of the solution and the Green’s functions produced by singularities
is frequently smooth and so the engineer who looks for suspicious oscillations in
the solution has no idea that the output on the screen is biased, is nearly uniformly
shifted in one direction.
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B
(a)

(b)

(c)

Fig. 4.17 Sensitivity of the Green’s function for a shear force. A slight change, ±0.1 (= ε), in the
position of the intermediate support B has a relatively large effect on the influence function, 1.77
versus 1.55 at the center, while the same maneuver hardly has any effect if the source point is the
center of the second span

4.11 Gauss Points and Green’s Functions

So singularities cause pollution, produce a drift in the solution, see Figs. 4.14, 4.15
and 4.16. But then one may rightly ask why are the stresses or shear forces at the
Gauss points (relatively) accurate? How does a program manage to produce accurate
Green’s functions for the stresses at the Gauss points although the singularities of
these Green’s functions are much higher than the singularities on the boundary. They
are for example of the order r−2 and r−3 for the bending moments (second order)
and for the shear force (third order) respectively in a Kirchhoff plate (biharmonic
equation)?

To understand this phenomenon imagine that a point load is applied at the center
of a plate (shear wall). The associated displacement field has a singularity of the
order O(ln r) and the stresses behave as 1/r . To an engineer it is evident that given a
certain distance from the source point it is no longer possible to distinguish between
a true point load and the effects produced by an equivalent (tightly packed) surface
load. That is given a certain distance from the source point the Green’s function is
“back on track” , has shed off its singular nature and behaves as any other regular
solution.
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(a)

(b)

(c)

(d)

Fig. 4.18 Plate a on point supports b a dislocation 0.1 m above the point support ultimately produces
a nearly infinite displacement while c a line support can better cope with such a dislocation, d the
displacement field remains bounded
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What is necessary for this to happen though is that the Green’s function has enough
“room” to perform the transition. At Gauss points far away from the boundary this
is obviously the case. The effects produced by the two opposite peaks, ±∞, of a
dislocation tend to annihilate in the distance but if the dislocation becomes a one-
sided swing as it happens when the source point moves to the boundary or encounters
an intermediate fixed point as in Fig. 2.19 then the balance gets disturbed: the effects
at distant points no longer cancel so fast because the opposite half swing is missing.

Eventually singularities from conflicting boundary conditions add to the singu-
larity in the Green’s function. Then the “self-healing forces” , the intelligence built
into the solutions of elliptic partial differential equations no longer can cope with the
situation—in particular if the kinematics is hampered by a low degree approximation
of the displacement field—and so the disturbances generated on the boundary spread
over the whole domain.

The 1-D problem of a two span beam, see Fig. 4.17, tries to exemplify the situation.
The short first span represents the negative effect a singularity on the boundary has
on the solution. The influence function for the shear force V (x) at the center of the
short span is very sensitive with regard to the position of the intermediate support B;
slight variations xB ±ε in the coordinate of the support lead to relatively large changes
in the influence function while the influence function for the same quantity in the
second span is hardly affected by such alterations.

The evaluation of the solution near the boundary per se poses no problem. The
problem is the evaluation of the solution near singular points as point supports or
corner points. Singular stresses means that dislocations (= influence functions for
stresses) close to the singular point result in infinite displacements, see Fig. 4.18b,
while the same dislocations produce only (relatively) mild effects, see 4.18d, if the
boundary is fixed, if the point support is replaced by a line support—even if it is only
a small stretch.
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Chapter 5
Modeling Error

In this chapter we are concerned with the question how the influence of modeling
errors on the output values can be assessed quantitatively. How do displacements
or stresses change if the coefficients of the differential equation change? In a wider
perspective this concerns the question in which way a solution depends on the coeffi-
cients of the differential equation or how precise a model must be to give reasonable
answers.

Any change in the underlying equation or change of an FE-model translates into
a change K → K + ΔK of the stiffness matrix and its inverse. The Woodbury-
Morrison-formula allows to compute the inverse of the modified matrix by doing a
correction to the original inverse. We will apply instead a “direct” method to calculate
the solution vector uc of the modified system and we will tie this to the force method
of structural analysis which provides a natural and intuitive way to handle such
problems. Basically in this approach it is not the stiffness matrix K which gets
modified but the right-hand side, f → f + f+.

While the correction ΔK to the stiffness matrix can be quite small its effects on
the influence functions are global—each entry of the inverse of the stiffness matrix
K−1 changes—and so to trace the changes in the output due to such modifications a
complete reanalysis of the influence functions is necessary, that is integration must
be done again from 0 to l, if Ω = (0, l) is an interval or else over the full domain Ω

in higher dimensions.
But there exists an alternative formulation where integration needs only to be done

over the defective element to predict which effects a modification in the element
stiffness has on all other points in the domain. This integral, the d-form d(G, uc) is
the strain energy product between the Green’s function and the modified solution uc.
It is a weak influence function. Various techniques are discussed how best to calculate
this d-form in the context of the FE-method. By solving small auxiliary problems
the effects caused by changes in an element stiffness can be calculated exactly.

In sensitivity analysis the effects of such changes K → K + ΔK are studied
systematically. One question in particular concerns the effects which changes in
model parameters have on the displacements and stresses, etc., at a given point. The

F. Hartmann, Green’s Functions and Finite Elements, 241
DOI: 10.1007/978-3-642-29523-2_5, © Springer-Verlag Berlin Heidelberg 2013



242 5 Modeling Error

Fig. 5.1 What a stiffness matrix looks like if you ask an engineer [1]

other question is which effects a partial loss of stiffness in one particular element
has on all other points and nodes and the relevant functionals at these points. These
questions too can be studied by an analysis of the d-form and the contributions to the
d-form coming from the Green’s functions and the original solution. Based on such
estimates adaptive refinement can now be steered by the discretization error and the
modeling error simultaneously.

5.1 Linear Algebra

In FE-analysis even the most complex structure, see Fig. 5.1, is reduced at the end to
a (possibly quite large) stiffness matrix K which depends on a multitude of model
parameters and so even the smallest change to the coefficients of the differential
equation of a single structural element requires an update, K → K + ΔK , of the
stiffness matrix. But while the update may regard only one or two entries ki j such
an update affects the inverse of the stiffness matrix as a whole. All coefficients of the
inverse change if one coefficient ki j changes.

The vector of nodal displacement of the modified system uc is the solution of the
system

(K +ΔK ) uc = f (5.1)

while the vector f on the right-hand side is the same vector as in the original system

K u = f . (5.2)
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This implies
uc = (K +ΔK )−1 K u (5.3)

and
K (uc − u) = −ΔK uc (5.4)

or
uc − u = −K−1ΔK uc (5.5)

and
(I + K−1Δ K ) uc = u (5.6)

as well.
The last equation means that a system which evolves from K to K +ΔK is not

free in its transition from u→ uc but rather that the new state uc must be compatible
with the previous state u, must be a solution of (5.6). A system must know its own
history!

So theoretically one could split the stiffness matrix into a series of sub matrices

K 1 = Δ K 1 (5.7)

K 2 = Δ K 1 +Δ K 2 (5.8)

. . . = . . . (5.9)

K n = Δ K 1 +Δ K 2 + · · ·Δ K n = K (5.10)

and watch how the final state un evolves out of the previous states

(I + K−1
i Δ K i+1) ui+1 = ui . (5.11)

To asses which consequences the step K → K +ΔK has for a particular functional
J (u) we start with the basic formula

J (uh) = j T u = gT K u = gT f (5.12)

where u is the nodal vector of the FE-solution uh , g is the nodal vector of the Green’s
function of the functional J and j = K g is the vector of nodal forces of the Green’s
function.

It follows that (5.4) must only be multiplied from the left with the nodal vector g
to register by how much the functional changes when a matrix ΔK is added to K

J (uh
c )− J (uh) = gT K (uc − u) = −gT ΔK uc. (5.13)

Basically what happens is that the extra stiffness ΔK leads to additional nodal forces
ΔK uc which shift the value of the functional from J (uh) to J (uh

c ).
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5.2 Summary

It is unusual to place a summary near the beginning of a chapter but for those readers
who primarily are interested in “results” , more in the “how to” than the background,
we summarize here the main features of the proposed technique.

5.2.1 Determining uc

The aim is to determine the vector uc of the modified system

(K +ΔK ) uc = f . (5.14)

For simplicity we assume that the change in K comes from a change in an element
stiffness matrix, K e → K e+ΔK e, so that ΔK = ΔK e. More general modifications
can be treated in the same way. The vector uc is, as can be shown, the solution to the
original system with a slightly modified right-hand side

K uc = f + f+. (5.15)

We call this the approach of the force method. Its advantage is that we can use the
Green’s function of the original system, vector g, to predict the new displacements
and stresses

J (uc) = gT ( f + f+). (5.16)

The vector f+ is the solution of the system

− (Fe +Δ K−1
e ) f+ = u (5.17)

which has size ne×ne where ne is the number of degrees of freedom of the element.
The entries ui in the vector on the right are those components of the original vector
u which belong to the nodes to which the element is attached. By padding the
vector f+ with zeros it can later be made to have the same number of entries as the
vector f . In the same way the notation ΔK e = ΔK is understood.

The matrix Fe is a flexibility matrix and ΔK−1
e is the inverse of the added element

matrix. The matrix Fe is that portion of the inverse stiffness matrix F = K−1 which
is associated with the nodes of the element.

The two equation (5.15) and (5.17) constitute the proposed algorithm. First (5.17)
is solved for f+ and then (5.15) for uc.

There are two problems with this approach:

• The matrix ΔK e may not be invertible.
• Fe requires the inverse F = K−1.

How these problems can be overcome will be detailed in the following sections.
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Let us concentrate at this point on short gap measures. A singular matrix ΔK e can
be made invertible by placing the element on very soft supports, just large enough to
hinder rigid-body movements. Of course such maneuvers could introduce numerical
instabilities but at the present moment we neglect this possibility hoping that the
engineer knows what he is doing.

With regard to the matrix Fe there are two options:

(i) We could calculate Fe “by hand” that is by applying unit forces in the direction of
the element degrees of freedom and measuring the response of the system. This
must be done for each of the ne degrees of freedom of the element. Basically this
means we only calculate those columns of F = K−1 which refer to the nodes
of the element.

(ii) We could simply set Fe = 0 and solve the modified system

− (0+ΔK−1
e ) f̃

+ = −ΔK−1
e f̃

+ = u (5.18)

for an approximate vector f̃
+

.

The shift K → K + ΔK e can be seen as adding an element “in parallel” to
the system, see Figs. 5.2 and 5.3, and the f +i are the coupling forces between the
original system in its deformed state and the added element. Setting Fe = 0 means
that the nodes of the original system which lie opposite to the added element have
no flexibility, they will not move when the forces ± f +i try to pull the element tight
in an effort to close the gap between the element added and the structure, that is the
f +i come out too large.

But for a first study of the consequences of a shift K → K+ΔK this may suffice.
The vector f+ represents so to speak the sensitivities of a system to such shifts and
for a (rough) first estimate this approach may be good enough.

Remark 5.1 When the rod in Fig. 5.2 gets compressed then evidently the forces f +i
act in reverse direction and if the stiffness of the element decreases (5.17) becomes

− (Fe −Δ K−1
e ) f+ = u (5.19)

but it is all handled by the same algorithm.

5.2.2 Determining Effects

By effects we mean displacements, stresses etc., or in summary functionals J (u).
The aim is to determine how the values of the functionals change with the transition
from K to K +ΔK . As shown above we have, see (5.12),

J (u) = gT f J (uc) = gT
c f = gT ( f + f+) (5.20)
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unstretched rod

stretched rod

stretched rod

(a)

(b)

(c)

(d)

(e)

Fig. 5.2 Rod stretched by forces fi (not shown) and an increase in the stiffness of an element.
a Two pairs of forces ± f +i provide the fit between the added unstretched virtual element and the
deformed rod; b the new shape uc is the response to the forces fi + f +i ; d if Fe = 0 then the
f̃ +i must go it alone and stretch the element over a longer distance; e consequently the effect is
overestimated the rod gets compressed too much (when the fi + f̃ +i are applied the two fixed nodes
are again released)

and the change in the value of a functional can be calculated with the formula

J (e) = J (uc)− J (u) = −gT ΔK uc. (5.21)

The vectors g and gc are the nodal vectors of the original and modified Green’s
functions respectively—modified because with K → K + ΔK also the Green’s
functions change.

The aim is it to determine J (e) without calculating the full vector uc explicitly.
In this regard we have two options:

• Substitute for uc the vector u.
• Calculate only those parts of uc which belong to the nodes of ΔK .

Substituting u for uc amounts, as we will see, to setting the flexibility matrix Fe to

zero, that is the forces f̃
+

are too large, they come from (5.18) and the vector ũ in

J (ũc) = gT ũc (5.22)
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Fig. 5.3 A change K + ΔK
means that an element Ω+e
with the stiffness ΔK is
attached to the structure

is the solution of the system K ũc = f + f̃
+

and what the formula

J (ẽ) = gT ΔK ũc (5.23)

measures is the difference
J (ẽ) = J (ũc)− J (u) (5.24)

between the approximate ũc and the original u.
Another option is to calculate by a local analysis the missing parts of uc. Missing

means that we only need those parts of uc which are in contact with the element
whose stiffness changes. We will make some suggestions how this could be done.

Of course the central question is: when does it make sense to proceed in this
fashion? Certainly not if the modifications are for good because then a reformulation
of the stiffness matrix of the structure would be much faster and less cumbersome
than this technique.

This technique is valuable in the sense of an inspection method when we want to
judge how changes in the stiffness of certain members influence the overall response
of a system.

But before discussing all this in more details we will first study which techniques
we have to extrapolate the new state uc from the previous state u.
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5.3 Woodbury-Sherman-Morrison Formula

This formula is a technique by which the inverse of a slightly modified matrix (rank-k
correction) can be computed by doing a corresponding correction to the inverse of
the original, the undisturbed matrix.

Theorem 5.1 (Woodbury-Sherman-Morrison formula) Let K c = K + ΔK =
K + A BT , then

K−1
c = K−1 −

[
K−1 A (I + BT K−1 A)−1 BT K−1

]
. (5.25)

In particular if the matrices A ≡ a and B ≡ b are column vectors then
K c = K +ΔK = K + a bT ,

K−1
c = K−1 − γ−1 K−1 a bT K−1 γ = 1+ aT K−1 b. (5.26)

5.3.1 One Entry on the Diagonal Changes, ki i + Δk

For a start we first assume that the correction is done only on the main diagonal in
row i , to the coefficient kii → kii +Δk is added a term Δk. In this case the matrix
ΔK is, up to the entry Δk in row i and column i , the null-matrix, and so

a = √Δk ei = b ΔK = a bT γ = 1+Δk k(−1)
i i . (5.27)

Hence we obtain for uc = K−1
c f the result

uc = K−1 f − γ−1 K−1 a bT K−1 f

= u − γ−1Δk K−1 ei eT
i u = u − γ−1 Δk ui K−1 ei

= u − γ−1 ui Δk︸ ︷︷ ︸
f orce

ci , (no sum over i) (5.28)

where ui is the i th component of u and ci is column i of the inverse K−1. Column ci

is the (discrete) Green’s function for ui . Because of Betti this vector lists the influence
a unit force at node xi has on the displacements u j at the other nodes. So ui Δk γ−1

must be a force. It acts at node xi and it effects additional displacements at the other
nodes x j in accordance with the entry c ji in row j of the vector ci .
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5.3.2 The Inverse of the Updated Stiffness Matrix Kc

Equation (5.28) can also be applied to calculate the columns cc
j of the inverse K−1

c .

Column c j of K−1 is the solution of the system K c j = e j , and so with

K−1 ei eT
i c j = K−1 ei k(−1)

i j = ci k(−1)
i j (5.29)

it follows that the new columns

cc
j = c j − γ−1 k(−1)

i j Δk ci , (no sum over i) (5.30)

are the previous columns plus a certain multiple of column ci . All the columns get
shifted in the same direction though to a varying degree because the shift depends
on the entries κ(−1)

i j in row i of K−1.
Equation (5.30) implies that

K−1
c = K−1 − γ−1 Δk ci ⊗ ci (no sum over i). (5.31)

Example 5.1 To better understand the logic behind the Woodbury-Sherman-
Morrison formula we try it on a small problem. The taut rope in Fig. 5.4 first hangs
free and later node #2 is hooked up to a spring which has the stiffness

Δk = 0.1

5
= 0.02 [kN/m]. (5.32)

This effectively means that a term Δk = 0.1/5 is added to the entry k22 of the
stiffness matrix, similar to Fig. 5.5. So if the rope previously had the shape u then
with the additional support of the spring it will become the shape

uc = u − 0.01786 · u2︸ ︷︷ ︸
f orce

·

⎡
⎢⎢⎣

3.00
6.00
4.00
2.00

⎤
⎥⎥⎦ (5.33)

where the column vector is the column c2 of the inverse stiffness matrix K−1—it is
the shape of the rope when a unit force f2 = 1 is applied at the node #2—and the
term

0.01786 = γ−1 Δk = 1

1+Δk k(−1)
22

= 1

1+ 0.02 · 6.00
· 0.02 (5.34)

is—as will be explained in the next paragraph—the coupling force X1 between the
rope and the spring if there would be a gap of one unit, u2 = 1, between the end of
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+

(a)

(b)

(c)

Fig. 5.4 A spring is attached to the taut rope. a Green’s function for node #2; b the deflection
before (u) and after (uc) is attached; c application of the force method

Fig. 5.5 Change one coefficient in the stiffness matrix and the whole inverse changes
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the spring and the rope. And so if the gap is of size u2 a force

X1 u2 = 0.01786 u2 (5.35)

is necessary to attach the spring to the rope, to close the gap, and so X1 u2 is the part
of the load that is carried by the spring.

5.4 Direct Formulations

The Woodbury-Sherman-Morrison formula is not very transparent. It works like
magic. You can apply it, and it is guaranteed to work, but you do not see what is
going on.

Also, the primary aim of our analysis is not to find the inverse of the modified
matrix K+ΔK but to find the solution uc of the modified system (K+ΔK ) uc = f
when the solution u of the original system K u = f is given. This leads, see Sect. 5.1,
to the system

(I + K−1 ΔK ) uc = u. (5.36)

In the next sections we will show that the force method is the proper framework for
analyzing this problem.

5.5 Force Method

The idea of a force X1 which we introduced for illustrative purposes to explain
the result of the Woodbury-Sherman-Morrison formula is the approach of the force
method. This method is applied by structural engineers to solve statically indeter-
minate structures when the equilibrium conditions alone do not suffice to determine
the support reactions and the internal actions.

Engineers solve such problems by reducing the structure to a statically determinate
cut-back structure and adding to this system a set of so-called redundant forces Xi

statically indeterminate structure = cut-back structure+ X1, X2, . . . , Xn

which essentially means that they strip the structure of all “unnecessary” constraints
(one step more and the structure would collapse) and they then reattach the removed
parts via coupling forces ±Xi .

To this procedure corresponds the transition from K to K + ΔK . The original
matrix K plays the role of the stiffness matrix of the cut-back structure and by
adding additional constraints to the cut-back structure—imagine these as additional
“springs” —the stiffness matrix K becomes the matrix K +ΔK .
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Let us see how a structural engineer solves the previous problem with the force
method: first he applies the load to the unrestrained, freely hanging rope and
he calculates the displacement δ10 := u2 at the node x2 caused by the load. Next
he applies two opposite forces X1 = ±1, one at the rope and one at the spring
(which at this stage of the analysis are not connected) and he measures the relative
displacement δ11 between the two points caused by the pair X1 = ±1

δ11 = k(−1)
22︸ ︷︷ ︸

rope

+ 1

Δk︸︷︷︸
spring

= 1+Δk k(−1)
22

Δk
(5.37)

and so for the gap δ10 (produced by the load) to close the unknown force X1 must
satisfy the equation

X1 δ11 + δ10 = 0 (5.38)

or

X1 = −δ10

δ11
= − u2 Δk

1+Δk k(−1)
22

= −γ−1 u2 Δk. (5.39)

This additional force X1 applied at node #2 will result in an additional displacement
of the rope so that the updated displacement vector of the rope is the vector

uc = u + X1 c2 = u − γ−1 u2 Δk c2 (5.40)

where c2 is the vector of nodal displacements when a unit force f2 = 1 is acting at
node #2. This equation is the same expression as in the Woodbury-Sherman-Morrison
formula (5.28).

The important point here is not how X1 is calculated but the important point is
that the analysis of the statically indeterminate structure can be done by applying an
additional force X1 to the cut-back structure and this means:

The analysis of the statically indeterminate system can be done solely with the
Green’s functions of the cut-back structure.

This is the key point! Let the functional J (w) = u(x) the deflection at the mid-
point of the rope then the final value u is the deflection u0 of the cut-back structure
plus the deflection u1 produced by the force X1

u(x) = u0(x)+ u1(x) =
l∫

0

G(y, x) p(y) dy + G(l, x) X1 (5.41)

where G(y, x) is the influence function for u(x) of the cut-back system.
In this chapter the original system, stiffness matrix K , plays the role of the cut-

back structure and the modified system, the cracked system K +ΔK , plays the role
of the statically indeterminate structure. The Xi are the forces f +i which are applied
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additionally to the original system (matrix K ) to produce the deformation of the
cracked system

uc = K−1( f + f+). (5.42)

This is the beautiful (albeit hidden) idea of the force method. The force method does
not change the stiffness matrix, it changes the right-hand side.

5.5.1 Notation

To begin with let us first assume that the stiffness of an element Ωe changes and that
this can be described by adding a matrix ΔK e to the element matrix

K e → K e +ΔK e. (5.43)

Let F = [ci j ] denote the flexibility matrix of the system, that is the inverse of
the global stiffness matrix K . Parallel to ΔK e we introduce the matrix Fe which
contains only those entries ci j of F which belong to the nodes of the element Ωe

and we introduce the matrix

Fe+ := Fe +ΔK−1
e (5.44)

which is the sum of Fe plus the inverse of the matrix ΔK e (we assume for a moment
that it exists).

Some of the formulations that follow are done on the element level and some are
done on the global level. We willingly do not distinguish this in the notation because
it would unnecessarily have complicated the notation.

So either ΔK e, Fe, Fe+ have the same size as the element matrix K e or they
have the same size as the global stiffness matrix K . In the latter case it is understood
that this is done by filling these matrices up with zeros.

Eventually there will also be formulations where the entries ki j which are subject
to change do not belong to a contiguous block of an element matrix. Then the nota-
tions above are to be understood correspondingly, but essentially they retain their
meaning. The important point is to realize that Fe+ is a “local” flexibility matrix.

We denote the elements of the inverse F−1
e+ by the small Greek letter κ

F−1
e+ = [κi j ] (5.45)

because the inverse of a flexibility matrix is a stiffness matrix.



254 5 Modeling Error

5.5.2 Changes on the Diagonal

Let us first assume that only one entry on the diagonal changes, kii → kii + Δk,
then ΔK has only one entry, Δk, and so it follows

I + K−1 ΔK = I +Δk C i (5.46)

where the matrix C i = [0, 0, . . . , ci , 0, 0] contains only one non-zero column, the
column ci of the inverse K−1. The inverse of this particular matrix is

(I + K−1 ΔK )−1 = (I +Δk C i )
−1 = I − Δk

1+ cii Δk
C i (5.47)

where cii is the component in row i of column ci and so the displacement vector of
the modified system is

uc = u − Δk

1+ cii Δk
ci (5.48)

which is the same result as in (5.28).

5.5.2.1 Two Entries on the Diagonal Change

The case that two diagonal elements are changing

kii → kii +Δkii k j j → k j j +Δk j j (5.49)

that is
I + K−1 ΔK = I +Δkii C i +Δk j j C j , (5.50)

can be handled as well with the force method, see Fig. 5.6.
Now there are two unknowns, Xi and X j , and the system for these two unknowns is

[
cii +Δk−1

i i ci j

c ji c j j +Δk−1
j j

] [
Xi

X j

]
+
[

ui

u j

]
=
[

0
0

]
(5.51)

or
Fe+ x + u = 0 ← gaps must close. (5.52)

The gaps ui and u j between the old structure (sans springs) and the springs must
close when the ends of the springs are attached to the structure. The matrix Fe+
times the vector x = {Xi , X j }T are the relative displacements between the ends
of the springs and the structure produced by the two coupling forces Xi and X j and
these forces must be so tuned that the two gaps close simultaneously that is



5.5 Force Method 255

(a)

(b)

Fig. 5.6 Two springs are attached to the taut rope. a Modified system; b analysis of the problem
with the force method

x =
[

Xi

X j

]
= −F−1

e+ u. (5.53)

The two forces Xi and X j which pull on the structure result in additional displace-
ments, ci Xi and c j X j , (ci is the displacement of the structure if a unit force fi = 1
acts in the direction of ui ) and so the displacement vector of the modified structure
becomes

uc = u + ci Xi + c j X j . (5.54)

This result is identical with

uc = u + K−1x = K−1 f + K−1x = K−1( f + f+) (5.55)

where we have introduced the vector f+ := x to denote the coupling forces.

Remark 5.2 The fact that in the system (5.51) appears the reciprocal Δk−1
i i of the

change Δkii is not without risk because for values of Δkii close to zero the reciprocal
is nearly infinite and only infinitely small forces Xi ∼ 0 are allowed to come in
contact with such infinite flexibilities.

5.5.3 The Inverse

Because of
f+ = −F−1

e+ u, (5.56)
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see (5.53), the last equation can be written as

uc = u − K−1 F−1
e+ u = (I − V ) u (5.57)

and so the inverse of the matrix in (5.36) is

(I − K−1 ΔK )−1 = I − V . (5.58)

This result immediately implies

uc = (I − V ) u = (I − V ) K−1 f (5.59)

and so
K−1

c = (I − V ) K−1 (5.60)

must be the inverse of the updated stiffness matrix K c.
The nearly vacant matrix V contains only two non-zero columns

V = {0, . . . , 0, vi , 0, . . . , 0, v j , 0, . . . 0} = K−1 F−1
e+ (5.61)

which are
vi = κi i ci + κ j i c j v j = κi j ci + κ j j c j (5.62)

where the coefficients κi j = f (−1)
i j are the entries in the inverse of the 2×2 flexibility

matrix Fe+ in (5.51).

5.6 Example

We apply these formulas to the frame in Fig. 5.7 to see which steps are required if
the 4× 4 stiffness matrix K e (the bending part) of a frame element gets an update,
K e → K e + ΔK e. For simplicity it is assumed that the relevant nodal degrees of
freedom are numbered 1, 2, 3, 4, see Fig. 5.7.

1. First K u = f is solved for the original displacement vector u.
2. Then the 4× 4 flexibility matrix is constructed

Fe+ = Fe +ΔK−1
e =

⎡
⎢⎢⎣

c11 c12 c13 c14
c21 c12 c13 c14
c31 c12 c13 c14
c41 c12 c13 c14

⎤
⎥⎥⎦

︸ ︷︷ ︸
entries in K−1

+ΔK−1
e . (5.63)
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Fig. 5.7 Modification in the stiffness matrix of a single beam element

To calculate the entries ci j in the first column a unit force f1 = 1 will be
applied to the structure and the displacements at the stations ui , i = 1, 2, 3, 4
will be measured; these values form the column #1. And this is repeated with
fi , i = 2, 3, 4 to find all four columns. To the matrix Fe is added the matrix
ΔK−1

e , the inverse of ΔK e. (We presume for a moment that ΔK−1
e exists).

3. The inverse F−1
e+ = [κi j ] of the (4 × 4) matrix Fe+ is calculated and then the

four forces

f +i := −
4∑

j=1

κi j u j i = 1, 2, 3, 4 (5.64)

all other f +i , i > 4 are zero.
4. Finally the system

K uc = f + f+ (5.65)

is solved for the new displacement vector uc.

5.6.1 What It Means

When the (unknown) displacement vector uc of the modified system
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K c uc = f (5.66)

is substituted into the original system

K uc = f + f+ (5.67)

then out pops the vector f+ = { f +1 , f +2 , f +3 , f +4 , 0, 0, . . . , 0}T , see (5.64) and
signals that uc is the response of the original system to “updated” equivalent nodal
forces f + f+. In mechanical term are the forces f +i the coupling forces between
the original structure and the added element Ω+e with its added stiffness ΔK e. The
modifications K e → K e +ΔK e in an element Ωe can be thought of—so we would
explain it to a layman—as attaching an additional element Ω+e to the structure, see
Fig. 5.3. This element is in size and shape identical with Ωe and it is connected to Ωe

at the nodes where the two elements interchange the forces ± f +i . And the reaction
of the original structure K to these nodal forces f+ plus the original forces f is the
displacement vector uc.

Because of K u = f and e = uc − u is (5.67) equivalent to

K e = f+ (5.68)

which corresponds to the variational problem for the displacement increment
e = uc − u due to a change in the coefficients of the differential equation

a(e,ϕi ) = −d(uc,ϕi ) ∀ϕi (5.69)

with the switch
− d(uc,ϕi ) = ( f +i ,ϕi ) (5.70)

from virtual interior energy to virtual exterior work, see Sect. 5.8.1. The vector f+
is then called the “pseudo-load vector” corresponding to the shift K → K +ΔK .

Remark 5.3 The added stiffness ΔK e can also be negative. Mathematically there is
no difference between adding or removing a stiffness.

Example 5.2 Imagine the uppermost (bilinear) element of the plate in Fig. 5.8a near
the support cracks, K e → K e+ΔK e. The displacement vector of the cracked model
is the solution of the system

K uc = f + f+ (5.71)

where the non-zero components of the vector f+ are the equivalent nodal forces f +i ,
see Fig. 5.8b, which act at the nodes of the cracked element.

The forces f +i are calculated as follows:

1. K u = f is solved for the displacement vector u.
2. The 4× 4 matrix

Fe+ = Fe +ΔK−1
e (5.72)
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(a)

(b)

(c)

Fig. 5.8 The uncracked model assumes the shape uc of the cracked model if additional nodal forces
f +i are applied

is formed, (the entries of Fe are calculated as in (5.63)), it is inverted,
F−1

e+ = [κi j ] and the f +i are calculated

f +i = −
4∑

j=1

κi j u j (5.73)

3. Finally
K uc = f + f+ (5.74)

is solved for uc.

5.6.2 The Inverse of ΔKe

Most often the matrix ΔK e = −α K e is a multiple (0 < |α| ≤ 1) of the singular
element matrix K e, and so it is not invertible.
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5.6.2.1 Adding Springs

One possible remedy would be to attach small springs to the ends of the element
which would eliminate the rigid body motions and render the stiffness matrix of the
element, say, a bar element

K+e =
E A

le

[
1+ ε −1
−1 1+ ε

]
0 < ε (5.75)

invertible. Of course this is a delicate maneuver and it gives only approximate results
but if the focus is more on the sensitivity of a system than on sheer numbers, one
may be justified in proceeding this way. It may be good enough to find the directions
into which a system evolves.

5.6.2.2 Two Step Approach

An accurate procedure is the following where the calculation is split into two steps.

1. First springs ε > 0 are added to the 4× 4 element matrix K e → K+e

k+11 = k11 + ε k+33 = k33 + ε, (5.76)

all other values remain the same, k+i j = ki j , to make ΔK e invertible

ΔK+e = −α K+e . (5.77)

Next ΔK+e is inverted and the 4× 4 flexibility matrix F(1) is calculated

F(1)
e+ := Fe + (ΔK+e )−1 (5.78)

and its inverse
(F(1)

e+)−1 = [κ(1)
i j ]. (5.79)

(The matrix Fe is, because of our numbering scheme, the upper 4× 4 block in
the inverse K−1).
This will provide the four vectors

v
(1)
i = −

4∑
j=1

κ
(1)
i j c j i = 1, 2, 3, 4 (5.80)

which allow to calculate the intermediate solution
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u(1) = u −
4∑

i=1

ui v
(1)
i = u −

4∑
i, j=1

κ(1)
i j ui c j (5.81)

and the first four columns, i = 1, 2, 3, 4,

c(1)
i = ci −

4∑
j=1

ci j v
(1)
j = ci −

4∑
j,k=1

cik κ
(1)
k j c j (5.82)

of the inverse (K (1)
c )−1 of the intermediate stiffness matrix

K (1)
c = K +ΔK+e . (5.83)

These columns will be needed in the following step. (The entries ci j are the
elements of the inverse K−1).

2. In the next step the spring elements at the end points are removed, that is K (1)
c

is modified by adding a correction matrix ΔK (2)

K c = K +ΔK+e +ΔK (2) = K (1)
c +ΔK (2) (5.84)

with only two non-zero elements on the diagonal,

Δk(2)
33 = Δk(2)

11 = −ε (5.85)

and so the flexibility matrix

F(2)
e+ := F(1)

e + (ΔK (2))−1 (5.86)

(F(1)
0 is the upper 4× 4 block in the inverse of K (1)

c ) is invertible

(F(2)
e+)−1 = [κ(2)

i j ] (5.87)

and the four vectors

v
(2)
i =

4∑
j=1

κ(2)
i j c(1)

j i = 1, 2, 3, 4 (5.88)

can be calculated to produce the final solution

uc = u(1) −
4∑

i=1

u(1)
i v

(2)
i = u(1) −

4∑
i, j=1

κ
(2)
i j u(1)

i c(1)
j . (5.89)
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Whether this procedure is advantageous depends on the circumstances. In any case
it is a local procedure. Regardless of how large K is, we only have to invert twice
a 4 × 4 matrix and calculate the 2 × 4 columns ci and c(1)

i , which are the first four

columns in the inverses of the matrices K−1 and K (1)
c (because of our numbering

scheme).
The first set ci , i = 1, 2, 3, 4 could be calculated by applying unit forces fi = 1 at

the pertinent nodes. The response of the structure to these four forces are the columns
ci . The second set can be retrieved from the first set via the formula

c(1)
i = ci −

4∑
j=1

ci j v
(1)
j = ci −

4∑
j=1

ci j

4∑
k=1

κ(1)
jk ck i = 1, . . . , 4. (5.90)

5.6.2.3 Notation

The symbol
Eκ = 0(n×n) +

[
κi j

]
(5.91)

denotes a matrix which contains the matrix κi j as a single block (or eventually
sprinkled over Eκ if the indices are not contiguous) but otherwise is empty. In the
following we will use two matrices

Eκ(1) = 0(n×n) +
[
κ

(1)
i j

]
Eκ(2) = 0(n×n) +

[
κ

(2)
i j

]
(5.92)

of this kind. The formula (5.81) for u(1) becomes in this notation

u(1) = u − Eκ(1) C u C = K−1 (5.93)

and the formula (5.82) for the intermediate inverse

C(1) = C − C Eκ(1) C (5.94)

and the formula (5.89) for the final product

uc = u(1) − Eκ(2) C(1)u(1). (5.95)

5.6.3 Example

The rod in Fig. 5.9 may serve as a test example. The stiffness matrix of the rod with
a uniform cross section is
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Fig. 5.9 Horizontal displacement of the rod; approximate analysis with linear elements; dashed
line is result for uniform rod

K =

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎦

K−1 = 1

6

⎡
⎢⎢⎢⎢⎣

5 4 3 2 1
4 8 6 4 2
3 6 9 6 3
2 4 6 8 4
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦

(5.96)

and the displacement vector is

u = K−1

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0.6667
1.3333
1.0000
0.6667
0.3333

⎤
⎥⎥⎥⎥⎦

. (5.97)

The single element with its concave contraction is modeled with a single element
which has only 40 % of the longitudinal stiffness of a standard element, so that
ΔK e = −0.6 K e.

5.6.3.1 Springs

To make the matrix ΔK e invertible an extra term ε = 0.01, which corresponds to
1 % of the stiffness of Ke, is added on the diagonal

ΔK+e = −0.6

[
1 −1
−1 1

]
+ ε I (2×2) (ΔK+e )−1 = −

[
49.58 50.42
50.42 49.58

]
.
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The flexibility matrix and its inverse are

Fe+ = 1

6

[
8 6
6 9

]
−
[

49.58 50.42
50.42 49.58

]
F−1

e+ =
[−1.1770 1.1849

1.1849 −1.1732

]
(5.98)

and −F−1
e+ is multiplied with the nodal displacements u2 and u3 to retrieve the

additional forces f +i

f+ = −F−1
e+

[
u2
u3

]
=
[

0.3845
−0.4066

]
(5.99)

which are added to the nodal forces f to produce the (approximate) new vector u∼c

u∼c = K−1 ( f + f+) =

⎡
⎢⎢⎢⎢⎣

0.7197
1.4394
0.7745
0.5164
0.2582

⎤
⎥⎥⎥⎥⎦

uc =

⎡
⎢⎢⎢⎢⎣

0.7333
1.4667
0.8000
0.5333
0.2667

⎤
⎥⎥⎥⎥⎦

(5.100)

which is quite close to the exact solution uc.

5.6.3.2 Two Step Approach

In the two-step approach we would now calculate the columns c(1)
2 and c(1)

3 of the

inverse C(1) = (K (1)
c )−1 and form the second flexibility matrix

F(2)
e+ = F(1)

e+ + (−ε I)−1 = F(1)
e+ −

1

ε
I

=
[

1.4394 0.7745
0.7745 1.7621

]
− 1

0.01

[
1 0
0 1

]
=
[−98.5606 0.7745

0.7745 −98.2379

]

(5.101)

calculate its inverse

(F(2)
e+)−1 = [κ(2)

i j ] =
[−0.0101 −0.0001
−0.0001 −0.01002

]
(5.102)

and calculate the final solution
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uc = u∼c − E(2)
κ C(1)u∼c =

⎡
⎢⎢⎢⎢⎣

0.7197
1.4394
0.7745
0.5164
0.2582

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

−0.0137
−0.0273
−0.0255
−0.0170
−0.0085

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

0.7333
1.4667
0.8000
0.5333
0.2667

⎤
⎥⎥⎥⎥⎦

which is exact.

5.6.3.3 Accuracy

With a spring constant of ε = 0.01 the largest relative error in the spring model is
about 3 %, with ε = 0.001 it is 0.3 % and with ε = 0.0001 it becomes 0.03 %.

For practical purposes the second step therefore may not be needed if ε is chosen
to be sufficiently small. Of course there is always the danger that ε is too small
and that the system blows up, becomes singular, but we would leave the choice of
an appropriate ε to the engineer. Often an engineer in studying the response of a
structure is not interested in pure numbers but more in the sensitivity of a structure,
see Fig. 5.10, in answers to questions such as “what happens if?” .

5.6.3.4 Technical Remark

The technique is also applicable to non-symmetric matrices K and ΔK and also to
single changes in off-diagonal terms, say k23 → k23 + Δk23, though in the latter
case there is the handicap that the matrix

ΔK =
[

0 Δk23
0 0

]
(5.103)

is no longer invertible. In this situation the starting point would be a slightly shifted
matrix

ΔK+ =
[

0.01 Δk23
0 0.01

]
= ΔK + 0.01 I (2×2) (5.104)

and in the second step the extra terms would be removed again. This procedure
provides the exact result, though it was often found that for engineering purposes the
second step was not necessary.

5.6.4 Collapse

If the flexibility matrix
Fe+ = Fe +ΔK−1

e (5.105)
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Fig. 5.10 Influence function for the bending moment in a girder

is not invertible then the modifications in the element matrix, K e → K e + ΔK e,
are too excessive, the changes ΔK−1

e to Fe render the system—or at least a part of
it—unstable.

Note that the removal of an element, ΔK e = −K e, does not render Fe singular
because Fe is “more” than the inverse of K−1

e alone (again assumed that K−1
e exists).

5.7 Functionals

What is the effect of local changes in an element stiffness on displacements or
stresses? Recall that there are two ways to evaluate a functional

J (u) =
{

j T u
gT f

. (5.106)

So one can either set up and solve the modified system

(K +ΔK ) uc = f (5.107)

for the new vector uc—how this can be done with as little effort as possible have we
discussed above—and simply compare the results

J (e) = J (uc)− J (u) = (uc − u)T j (5.108)
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or solve the modified system

(K +ΔK ) gc = j (5.109)

for the new Green’s function vector gc and compare the results

J (e) = J (uc)− J (u) = (gc − g)T f . (5.110)

But the force method offers an alternative formulation to the last formula. Instead of
modifying g we modify the right-hand side f

J (e) = J (uc)− J (u) = gT ( f + f+)− gT f = gT f+ (5.111)

The elements of the force vector

f+ = −F−1
e+ u (5.112)

are the unknowns Xi = f +i in the force method which provide the fit between the
nodes of the structure and the nodes of the attached element Ω+e ; they close, so to
speak, the gap between Ω+e and the structure and so they come in pairs, see Fig. 5.3.

According to (5.13) the value J (e) can also be expressed as

J (e) = −gT ΔK e uc (5.113)

where ΔK e is the modification to the element matrix. This implies that

F−1
e+ u = ΔK e uc (5.114)

5.7.1 The Gradient of a Functional

To predict the new value J (uc) of a functional one needs to know either the vector
uc or the vector gc or the vector f+

J (uc) = uT
c j = gT

c f = J (u)+ gT f+. (5.115)

But the gradient ∇ J (u) of a functional, the direction into which a functional will
evolve, instead can be calculated exactly at the current position, that is with the vectors
u and g. In sensitivity analysis this is known as the adjoint method of sensitivity
analysis. We will later discuss this in more details, see Sect. 5.14. Here we only want
to give the main result because with the gradient one can do a first order Taylor
analysis of J (u)

J (uc) = J (u)+ ∇ J (u) d p+ · · · (5.116)
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which corresponds to a linearization of the functional.
Let p a vector of m design variables. In frame analysis this would be the list of

the bending stiffness E Ii of the single beam elements

p = {E I1, E I2, . . . , E Im}T . (5.117)

The functionals then depend on u and p and evaluating a functional can be seen as
evaluating J (u, p) under a certain side condition

f unctional J (u, p) side condition K ( p) u = f . (5.118)

The vector f usually does not depend on p and so the equation K ( p) u = f implies
that

K ,pi u + K u,pi = 0 i = 1, 2, . . . , m (5.119)

and in the same sense J (u, p) = uT j implies that

J,pi = u,T
pi

j = u,T
pi

K g = gT K u,pi = −gT K ,pi u. (5.120)

So that the expression

J (e) = J (uc)− J (u) �
∑

i

J,pi dpi = −
∑

i

gT K ,pi dpi u (5.121)

is a first-order approximation to J (e). It should not be too difficult to see that this is
an approximation of the exact equation (5.113) when we allow the change in only
one pi and read ΔK e = K ,pi dpi .

5.8 Weak Formulations and the d-Term

We started this chapter with linear algebra, that is we started directly with the finite
element formulation and we studied how modifications of a stiffness matrix lead
to changes in the solution vector and how functionals are affected by these modifi-
cations. In the following we want to do a step back and study these modifications
and the consequences they entail by looking at the original weak formulation of
the boundary value problem. How does a weak formulation react to changes in the
coefficients of a differential equation?
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(a)

(b)

Fig. 5.11 Stepped bar. a Exact model; b simplified model

5.8.1 Linear Problems

In a stepped bar as in Fig. 5.11 the coefficient E A in the differential equation for the
longitudinal displacement of the bar

− E A u′′ = p (5.122)

is only piecewise constant. We want to study which effect such a local modification
of the coefficient has on the solution of the differential equation.

To this end we consider two equations: the base model with the uniform stiff-
ness E A

− E A u′′ = p (5.123)

and the stepped bar
− E Ac u′′c = p (5.124)

with the piecewise constant coefficient

E Ac =
{

E A x ∈ [xa, xb]
E A +ΔE A x ∈ [xa, xb] . (5.125)

The bilinear form of the original model is
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a(u, v) =
l∫

0

E A u′ v′ dx (5.126)

while the bilinear form of the modified problem

ac(u, v) =
l∫

0

E Ac u′ v′ dx =
l∫

0

(E A +ΔE A) u′ v′ dx

=
l∫

0

E A u′ v′ dx +
xb∫

xa

ΔE A u′ v′ dx

= a(u, v)+ d(u, v), (5.127)

contains an additional symmetric and bilinear term

d(u, v) =
xb∫

xa

ΔE A u′ v′ dx . (5.128)

Consequently the difference between the original weak problem

a(u, v) = (p, v) ∀ v ∈ V (5.129)

and the weak form of the modified problem

a(uc, v)+ d(uc, v) = (p, v) ∀ v ∈ V (5.130)

is
a(uc − u, v)+ d(uc, v) = 0 ∀ v ∈ V (5.131)

or if e := uc − u is introduced as the modeling error

a(e, v) = −d(uc, v) ∀ v ∈ V. (5.132)

This is the weak formulation for the modeling error e. The right-hand side is an
expression of internal energy which is of course equivalent to an expression of exter-
nal virtual energy. To find this expression we note that to the differential operator
−ΔE A u′′ belongs on the interval [xa, xb], where ΔE A lives, the identity
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G (uc, v) =
xb∫

xa

−ΔE A u′′c v dx + [ΔE Ac u′c v]xb
xa

︸ ︷︷ ︸
ext. energy

−d(uc, v) = 0 (5.133)

or
G (uc, v) = (− f +, v)− d(uc, v) = 0 (5.134)

for short where1

(− f +, v) :=
xb∫

xa

−ΔE A u′′c v dx + [ΔE Ac u′c v]xb
xa

(5.135)

so that (5.132) is the same as

a(e, v) = ( f +, v) ∀ v ∈ V (5.136)

or in the FE-context
K e = f+ (5.137)

where f +i = ( f +,ϕi ). The equivalent nodal forces f +i are exactly the forces which
we encountered in the force method, see (5.68). Here the vector f+ is called the
“pseudo-load vector” .

5.8.2 The Error in Functionals

Next let us study how we can assess the changes in typical functionals such as

J (u) = u(x) J (u) = σ(x) (5.138)

due to the change in the coefficients of a differential equation. While functionals for
displacement terms do not change with a change in the coefficients, functionals for
force terms, as J (u) = σ(x) do change

J (u) = σ(x) = E u′(x) → Jc(u) = σc(x) = Ec u′(x). (5.139)

We therefore first concentrate on functionals of the type J (u) = u(x).
The important point to note is that—regardless of what happens to the

coefficients—the loading p does not change. This implies that a shake test with
a virtual displacement v—before and after any modification of the coefficients—

1 The negative sign in (− f +, v) allows to write −d(uc, v) = ( f +, v).
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results in the same virtual exterior work (p, v) and so also the virtual interior work
must be the same as before

δWi (uc, v) = a(uc, v)+ d(uc, v) = (p, v) = δWe(p, v) (5.140)

δWi (u, v) = a(u, v) = (p, v) = δWe(p, v), (5.141)

which means that

δWi (uc, v)− δWi (u, v) = a(uc, v)+ d(uc, v)− a(u, v) = 0 (5.142)

or
a(e, v) = −d(uc, v) e = uc − u. (5.143)

Now we need only to substitute for v the Green’s function G

J (e) = a(e, G) = −d(uc, G) (5.144)

and we have found the central equation for quantifying the modeling error in a
functional

J (e) = −d(uc, G) . (5.145)

Two points are noteworthy: (i) this formula is a weak influence function (a divergence
form of an influence function) and (ii) the strain energy product, the integral, only
extends over the patch Ωp of the domain, the part where E A→ E A +ΔE A.

We add a third remark: the subscript c can be swapped without changing the result

J (e) = a(e, Gc)+ d(e, Gc) = −d(uc, Gc)+ d(e, Gc) = −d(u, Gc), (5.146)

that is both formulations, (5.145) and (5.146), are equivalent. Here we have used
(5.143) with v = Gc.

More formulations are possible, we only mention that the two equations

a(uc, Gc)+ d(uc, Gc) = J (uc) (5.147)

a(u, G) = J (u), (5.148)

where J (u) is assumed to be a displacement functional, and

a(uc, Gc) = a(e, Gc)+ a(u, Gc) = −d(uc, Gc)+ a(u, Gc) (5.149)

imply that
a(u, Gc) = J (uc) (5.150)

which is equivalent to
gT

c K u = gT
c f = J (uc) (5.151)
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in which form the result looks more familiar.

5.8.2.1 Weak Influence Functions

With regard to functionals for force terms such as J (u) = σ(x) the basic situation
is that only strong formulations (Betti)

Jc(uc)− J (u) = σc(x)− σ(x) =
l∫

0

(Gc(y, x)− G(y, x)) p(y) dy (5.152)

allow to quantify effects while weak formulations return zero

a(uc, Gc)+ d(uc, Gc) = 0 = σc(x) (5.153)

a(u, G) = 0 = σ(x) (5.154)

and notσc(x)orσ(x); here the two Green’s function Gc and G represent the necessary
dislocations.

But we have the interesting result that we can apply (5.145) also to force terms.
Before we give a proof we give an example.

5.8.2.2 Example

The non-uniform continuous beam in Fig. 5.12 which is subjected to a constant
lateral load p is chosen as model problem. The bending stiffness in the first span is
E Ic = 90,626 kNm2 and in the second span it is half that value, E I = 45,313 kNm2.

In an engineering handbook the bending moment at the center of the first span
is listed as M(x) = −7.81 kNm if the beam has a uniform stiffness E I =
45,313 kNm2. What is the real value of M(x) given that the bending stiffness is
not uniform?

The strain energies of the uniform and the non-uniform beam differ in the first
span by the term

d(u, v) = ΔE I

l1∫

0

u′′ v′′ dx ΔE I = 45,313. (5.155)

Therefore the error in the bending moment is
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10 kN/m

(a)

(b)

(c)

(d)

Fig. 5.12 Continuous beam. a Bending moments of the non-uniform beam and b the uniform
beam; c bending moment of the Green’s function G (uniform beam) and d non-uniform beam

J (e) = Mc(x)− M(x) = −d(u, Gc) = −ΔE I

l1∫

0

u′′ G ′′c dx

= −ΔE I

5∫

0

M

E I

Mc
G

E Ic
dx = −2.61 kNm (5.156)
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so that the true value Mc(x) of the bending moment is

Mc(x) = M(x)+ J (e) = −7.81− 2.61 = −10.42 kNm. (5.157)

which is the correct value. The function u in (5.156) is the deflection of the uniform
beam and Gc(y, x) is the Green’s function for the bending moment Mc(x) in the
non-uniform beam.

Remark 5.4 For completeness we mention, see Fig. 5.12, that

a(u, G) = E I

10∫

0

u′′ G ′′ dy =
10∫

0

M MG

E I
dy = 0 (5.158)

a(uc, G) = E I

10∫

0

u′′c G ′′ dy =
5∫

0

Mc MG

E Ic
dy +

10∫

5

Mc MG

E I
dy = 0 (5.159)

with Mc = −E Ic u′′c and Mc = −E I u′′c in the first and the second span respectively
while MG = −E I G ′′ along the whole beam. If these two equations were not zero
then the first derivatives, u′(x) and u′c(x) respectively, were discontinuous at x . The
two couples, Xl = Xr = X , on both sides of x , see Fig. 5.12c, would perform
exterior virtual work δWe

δWe = Xr · u′(x+)− Xl · u′(x−) = X · (u′(x+)− u′(x−)) = 0 (5.160)

to which would correspond a non-vanishing virtual interior work δWe = δWi

= a(u, G) or a(uc, G) respectively.
The engineer determines the Green’s function G for M(x) as follows: he inserts

a hinge at the point x , applies two moments Xl = Xr = X , first of size X = 1, finds
the solution G and then he scales the X in such a way that the slope of the Green’s
function has the required discontinuity, G ′− − G ′+ = 1, at x .

5.8.2.3 Is the Principle of Virtual Forces Applicable to Forces?

But why can changes in force terms such as M(x) be calculated with weak influence
functions when weak influence functions for force terms per se give no answer, return
zero?

The difference is obviously that in (5.156) the integral only extends over a part
of the structure.

Let us recap the formulation. The derivation of the equation

a(e, v) = −d(uc, v) (5.161)
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rests on purely formal arguments (algebra). For all functions e, uc and v which are
sufficiently regular, which lie in the trial space V , this identity is established.

Let G the Green’s function for J (u)(x) = M(x). The limit of the sequence

lim
ε→0

a(G, u)Ωε = 0 (5.162)

where Ωε is the punctured domain—the hole gets smaller and smaller—is zero but
if a sequence of smooth functions Gε converges to G the limit of the integrals is

lim
ε→0

a(Gε, u) = J (u)(x) (5.163)

so that with e = uc − u instead of u also

lim
ε→0

a(Gε, e) = J (e)(x). (5.164)

Equation (5.161) holds true for any of the functions Gε as well

a(e, Gε) = −d(e, Gε) (5.165)

and therefore also the limits of the two sides must be the same

J (e)(x) = lim
ε→0

a(e, Gε) = − lim
ε→0

d(uc, Gε) (5.166)

and we may assume that

lim
ε→0

d(uc, Gε) = d(uc, G) (5.167)

so that the equation

J (e) = lim
ε→0

a(Gε, e) = − lim
ε→0

d(uc, Gε) = −d(uc, G) (5.168)

is established.
What could spoil the assumption (5.167) is that d(uc, G) could be zero, in analogy

to
lim
ε→0

a(u, Gε) = a(u, G) = 0 (5.169)

but d(uc, G) cannot be zero. We know that the integral over the full length of the
two-span beam in Fig. 5.12 is zero, see (5.159),

a(uc, G) = E I

l∫

0

u′′c (y) G ′′(y, x) dx = 0 (5.170)
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or

0 = a(uc, G)Ω1+ a(uc, G)Ω2=
ΔE I

E I
a(uc, G)Ω1+

ΔE I

E I
a(uc, G)Ω2

= d(uc, G)+ ΔE I

E I
a(uc, G)Ω2 (5.171)

and this implies

d(uc, G) = −ΔE I

E I
a(uc, G)Ω2 (5.172)

which is only zero if Ω2 is zero, in which case the change E I → E I + ΔE I
affects all parts of the beam, l = Ω1, no part is spared, Ω2 = 0, and in this case
the bending moment distribution does not change at all, Mc(x) = M(x), and so
J (e) = Mc(x)− M(x) = −d(uc, G) = 0.

Remark 5.5 For any pair of coefficients {E I, E Ic} the two solutions u and uc of

E I uI V = p E Icu I V
c = p (5.173)

have the same bending moments M = −E I u′′ = −E Ic u′′c = Mc.

By the same line of reasoning it can be shown that for functionals of force terms
holds

a(u, Gc) = J (e). (5.174)

Namely we have
a(u, Gc)+ d(u, Gc) = Jc(u) = 0 (5.175)

and it is
a(u, Gc) = −d(u, Gc) = −d(uc, G) = J (e). (5.176)

Applied to the beam where the left side of this equation is

a(u, Gc) = E I

l∫

0

u′′ G ′′c dy =
l∫

0

M Mc
G

E Ic
=

5∫

0

M Mc
G

E Ic
dy +

10∫

5

M Mc
G

E I
dy

= 1

E Ic

1

3
· 9062.5 · 15.625 · 5+ 1

E I

1

3
· 9062.5 · 15.625 · 5

+ 1

E I

1

3
· (−9062.5) · 31.25 · 5 = −2.61 (5.177)

this means that

J (e) = Mc − M = −2.61. (5.178)
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Note that in the FE-context the analog of (5.174) gives

gT
c K u = gT

c f = Jc(uh) (5.179)

and not J (e).

Remark 5.6 Obviously there is a distinctive difference between displacement terms
and force terms, see (5.150) and (5.174),

a(u, Gc) =
{

J (uc) displacement terms
J (e) force terms.

(5.180)

5.9 The Basic Idea

Let us pause for a moment to reflect on the contents of the formula J (e) = −d(G, uc).
Imagine J is the functional J (u) = u(x). When we multiply J (e) with the number
one, the virtual force, the δ which belongs to the functional,

J (e) = 1 · (uc(x)− u(x)) = −d(G, uc) = −gT ΔK e uc (5.181)

then we are reminded that the equation expresses an energy balance: the work done
by the virtual point load P = 1 on acting through the shift uc−u in the displacement
is equal to the virtual strain energy−d(G, uc) in the element Ωe between G and uc.
That is changes in functionals, J (e), at points x which possibly lie far, far away can
be predicted by integrating over the defective element Ωe only! Of course the points
communicate with Ωe, they send signals via the Green’s functions to Ωe. But the
information is processed on Ωe alone. It collects the incoming information, it acts in
a sense like a CCD (light sensor) which produces a picture, the change J (e) in the
functional.

5.9.1 Continuous and Discrete Case

Here we compare the discrete formulation with the continuous formulation. The
model problem is a beam on a spring support, see Fig. 5.13a, and the spring stiffness k
undergoes a change, k → k +Δk.

Let the stiffness matrix K be of size n × n and let the last node xn coincide with
the spring support. In the discrete case the new solution vector is

uc = u − Δk un

1+Δk k(−1)
nn

cn (5.182)
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(a)

(c)

(b)

Fig. 5.13 Beam on a spring support. a Original system; b modified system; c Green’s function for
the deflection u(xi )

where cn is the last column of the inverse matrix, that is cn is the discrete Green’s
function for u(xn).

It may be guessed that this formula translates in the continuous case to the formula

uc(x) = u(x)− Δk u(xn)

1+Δk G(xn, xn)
G(x, xn) (5.183)

where
G(xn, xn) ≡ k(−1)

nn (5.184)

is the flexibility of the beam at the spring support. To show that this assumption is
correct we start with the continuous case where the formula for uc(x) is

uc(x) = u(x)− d(G[x], uc). (5.185)

The updated strain energy product of the beam + 2 springs is the expression

a(u, v) :=
l∫

0

E I u′′ v′′ dx + k u(xn) v(xn)+Δk u(xn) v(xn)︸ ︷︷ ︸
d(u,v)

(5.186)

so that
d(G[x], uc) = Δk uc(xn) G(xn, x). (5.187)

In terms of the force method the factor Δk uc(xn) = X is the suspension force in the
added spring which contributes the deflection −X G(xn, x) to uc(x).

The equation for X is
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X = −δ10

δ11
= − u(xn)

G(xn, xn)+ 1/Δk
= − Δk u(xn)

1+Δk G(xn, xn)
(5.188)

so it is found that indeed

uc(x) = u(x)− d(G[x], uc) = u(x)− X G(xn, x)

= u(x)− Δk u(xn)

1+Δk G(xn, xn)
G(xn, x) (5.189)

agrees with (5.183).

5.9.2 Long & Strong and Short & Weak

The formula
J (e) = −d(u, Gc) (5.190)

is a weak influence function and the integral only extends over the interval [xa, xb]
where the change E I → E I +ΔE I occurs. Compare this with a formulation based
on Betti’s theorem

J (e) = Mc(x)− M(x) =
2∑

i=1

⎧⎨
⎩

li∫

0

(Gc(y, x)− G(y, x)) p(y) dy

⎫⎬
⎭ (5.191)

or in vector notation
J (e) = (gc − g)T f (5.192)

where for the same result the integral extends over the whole structure, the whole
domain, or in this case over both spans, i = 1, 2. This is what makes strong influence
functions “expensive” . Even the slightest change in the coefficient of a differential
equation will affect the Green’s function as a whole, will make the Green’s functions
change everywhere. Modify just one coefficient in the stiffness matrix K and each
coefficient of the inverse K−1 will change, see Fig. 5.5.

Though the distribution of the load, the right hand side, also factors in. Acciden-
tally in this case the extra effort is not larger, because only the second span carries a
load, but in the case of a 20 story building under gravity loading it certainly would
be helpful if the integral only extends over the element where the coefficient in the
differential equation changes.

So the short form, (5.156), which is a weak influence function, must be preferred
to (5.191), which is pure Betti, which is a strong influence function.
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5.9.3 Estimates

The bilinear form d(u, Gc) is a scalar product and this means that

1. the Cauchy-Schwarz’ inequality provides a bound on the energy

|d(u, Gc)| ≤ d(u, u) d(Gc, Gc); (5.193)

2. and—as in any scalar product—u and Gc can be orthogonal in which case the
product is zero

d(u, Gc) = 0 u = 0, Gc = 0 (5.194)

even though neither u nor Gc is zero.

So for modifications in the model parameters to produce significant effects the strains
and stresses of the two solutions, u and Gc, must both reach elevated levels and be
in sync or in parallel in the region where d(., .) is defined.

5.10 The Approximation uc ≈ u

The problem with the formula

J (e) = −d(uc, G) (5.195)

or the equivalent statement
J (e) = −d(u, Gc) (5.196)

is that either one of the two functions uc or Gc must be known to predict the change
in the functional. But if the modified solution uc is known then it can be evaluated
directly and then there is no need for the formula (5.195).

The natural idea at this point is to substitute for uc the undisturbed solution u.
Adding the identity d(u, G)− d(u, G) = 0 to (5.195)

J (e) = −d(u, G)+ d(u − uc, G) (5.197)

does not change the equation but it allows to conclude that if either (i) the difference
uc − u ≈ 0 is negligible on Ωp or (ii) u − uc and G are orthogonal on Ωp (in terms
of the strain energy product) then the expression

J (e) ≈ −d(u, G) (5.198)

should be a reasonable approximation to J (e).
For a first check of the quality of this predictor we test the formula with the system

in Fig. 5.12 and obtain the result
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J (e) ≈ −d(u, G) = ΔE I

l∫

0

M

E I

MG

E Ic
dx = 1.94 kNm (5.199)

instead of the exact value J (e) = 2.61 kNm. So the approximate value of Mc(x) is

Mc(x) � −7.81− 1.94 = −9.75 kNm (5.200)

while the true value is Mc(x) = −10.42 kNm which is an error of 6 %. This is a
small error, but of course there are other examples where the error is much larger.
So the question is how the accuracy of the predictor step can be controlled.

In matrix notation the predictor step is the expression

J (e) = −gT ΔK euc � −gT ΔK eu (5.201)

where only those components of g and uc respectively contribute to the scalar product
which are attached to the element K e. Let us call these the “local” components of
g and u. With this in mind recall, see (5.114), that the force method establishes the
following link between the local u and the local uc

(Fe +ΔK−1
e )−1u = ΔK e uc. (5.202)

If the flexibility matrix is set to zero, Fe = 0, then this results in

(ΔK−1
e )−1u = ΔK e uc (5.203)

or
ΔK e u = ΔK e uc (5.204)

that is with respect to ΔK e the actions of the two vectors are the same. This is the
error we commit when we replace uc by u in (5.201), we neglect the flexibility of
the structure, we set Fe = 0.

The entries in Fe = [ci j ] are the flexibilities of the structure at the nodes opposite
to the added element Ωe. Setting these flexibilities to zero effectively means that the
coupling forces ± f +i which pull on both sides to close the gap come out too large
because the rigid, inflexible nodes of the structure (opposite to Ωe) do not move, and
so the f +i can close the gap only by pulling at the nodes of the element Ωe.

Let us exemplify this by studying the rope in Fig. 5.4. The strain energy product
of the rope with the spring attached is the expression

a(u, û)+Δk u(xi ) û(xi ) =
l∫

0

u′ û′dx +Δk u(xi ) û(xi )︸ ︷︷ ︸
d(u,û)

(5.205)
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and using the approximation uc∼ u the change in the deflection at a point x is
predicted as

J (e) = uc(x)− u(x) ≈ −d(G, u) = −Δk G(xi , x) u(xi ). (5.206)

In this formula the term

γ−1 = 1

1+Δk k(−1)
i i

= 1

1+Δk G(xi , xi )
(5.207)

is missing which means that the contribution of the rope, the term k(−1)
22 , has been

neglected when δ11, the gap between the rope and the spring produced by the pair of
forces X1 = ±1, was calculated, s. (5.37).

So erroneously a too large X1 is applied to close the gap and consequently (5.206)
will overshoot, will predict values which are too large.

The following theorem summarizes these observations:

Theorem 5.2 (The error in a first-order Taylor expansion) Estimating the change in
a functional with the formula

J (e) � −gT Δ K u (5.208)

as is done in the adjoint method of sensitivity, see Sect. 5.14, and in a first-order
Taylor expansion, (5.121), amounts to a disregard for the flexibility of the system
opposite to the added element Ω+e .

5.11 Linearization

When the load f that pulls on a spring

k u = f (5.209)

doubles in value, the displacement u = k−1 f will also double in value but if the
stiffness drops, k + Δk and Δk < 0, then we cannot later correct this by pumping
the lost stiffness back into the system, see Fig. 5.14c. At the end the displacement u
of the spring remains larger than before. The response of a spring, as of any linear
system, to changes ±Δk in the stiffness is not symmetric.2

But when we substitute in the expression

J (e) = −d(u, Gc) (5.210)

2 The same holds true when you drive the first half of a distance with 50 mph and the second half
with 70 mph. Better to keep a constant speed of 60 mph: you arrive earlier.
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(a)

(d) (e)

(b) (c)

Fig. 5.14 Spring and effects of an increase/decrease in the stiffness k

for Gc the original Green’s function then we effectively enforce this behavior—we
symmetrize the response of the system to changes ±Δk.

To see this let the functional J (u) = u the displacement of the spring. The strain
energy product of the spring is a(u, v) = v k u and so the weak problems of the
original (k) and the modified spring (k +Δk) is

a(u, v) = u k v = f v (5.211)

a(uc, v)+ d(uc, v) = uc k v + uc Δk v = f v . (5.212)

The “Green’s function” is the response of the spring to a unit load, G = 1/k,

J (u) = a(u, G) = G k u = 1

k
k u = u , (5.213)

and so by changing the characteristic of a spring, k → k +Δk, also the response of
the spring changes, Gc = 1/(k +Δk), and consequently

J (e) = uc − u = −d(u, Gc) = −Gc Δk u = − 1

k +Δk
Δk u (5.214)

which evidently is not symmetric with respect to±Δk while, when we substitute for
Gc the original G = 1/k, the response is symmetric

J (e) = uc − u � −d(u, G) = −1

k
Δk u. (5.215)
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Fig. 5.15 A change in the stiffness k means a change in the slope

So the approximation G � Gc means that the function 1/k gets replaced by its
tangent

uc − u = u(k +Δk)− u(k) = −1

k
Δ k u + · · · (Taylor series) (5.216)

or

uc ≈ u − 1

k
Δ k u︸ ︷︷ ︸
force

. (5.217)

The increase in stiffness k → k+Δ k makes that the original displacement u produces
now the force (k +Δ k) u = f +Δ k u in the spring and the surplus force must be
compensated by an opposite displacement Δ uc = Δ k uc/k (approx.), see Fig. 5.15.

The Taylor-expansion of a stiffness matrix has the form [2]

(K +Δ K )−1 = K−1 − K−1 ΔK K−1 + · · · , (5.218)

and the analogy between (5.217) and

uc = (K +ΔK )−1 f ≈ u − K−1ΔK u (5.219)

is evident.

Remark 5.7 Because of the 1/k-effect the derivative of u(k) is inversely proportional
to k2

k u = f ⇒ u = 1

k
f ⇒ u′ = − 1

k2 f, (5.220)

and this means that the displacement increments Δu
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Δu = u′Δk = − 1

k2 Δk f (5.221)

are the larger the lower the stiffness of the spring.
This also holds true for whole structures. The compensating movements a structure

must perform to balance the loss of the stiffness in some members are inversely
proportional to the original stiffness in these members. So soft structures are very
sensitive to such changes and this implies that the influence functions and coefficients
in such structures must be handled with care. A greater safety margin is needed for
such structures.

5.12 Engineering Sensitivity Analysis

After these general remarks about functionals and how they are affected by changes
in the model parameter let us apply these techniques to two important questions in
engineering analysis.

1. Given a point x at which the maximum stresses occur how then would these
stresses change if the stiffness in a certain part of the structure changes? Find the
parts of the structure which have the most negative influence on the stress state
at x and quantify their influence on the point!

2. Given an element Ωe in which way would cracks in the element influence the
results in the structure? How vital is the element for the structure?

5.12.1 Focus on a Point

We start with the first problem. The frame in Fig. 5.16 is subjected to wind blowing
from the left which generates the bending moments plotted in Fig. 5.16. By how much
will the bending moment M(x) at the foot of the vertical frame element change if
the bending stiffness E I in one of the frame elements li drops by 30 %.

Given the change E I → E I +ΔE I in one of the elements li the change in the
functional J (u) = M(x) amounts to

J (e)(x) = Mc(x)− M(x) = −d(G, uc) = −ΔE I

li∫

0

u′′c G ′′ dy

= −ΔE I

E I

li∫

0

Mc MG

E Ic
dy (5.222)
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M

GM

x

(a)

(b)

Fig. 5.16 Applied duality. a Bending moment M from the wind load; b bending moment MG of
the influence function for M(x)

where Mc = −E Ic u′′c is the bending moment in the afflicted element li due to the
wind load (after the cracks have developed) and the function MG = −E I G ′′ is the
bending moment of the Green’s function in this element (before the cracks).

How the moment distribution Mc in the cracked element can be determined will
be discussed in Sect. 5.13. Eventually one could approximate Mc with the moment
distribution M in the uncracked beam.

The other term in the formula is the bending moment distribution MG of the
Green’s function, see Fig. 5.17, which according to Schwarz’ inequality

|J (e)(x)| ≤ ΔE I

E I

√√√√√
le∫

0

( Mc

E Ic

)2
dy

√√√√√
le∫

0

(MG)2 dy (5.223)
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Fig. 5.17 Influence function for a bending moment. a Deformation of the system; b bending
moment MG of the Green’s function

signals how sensitive J (e) is with regard to Mc.
A simple but illustrative example for the role which MG plays provides the can-

tilever beam in Fig. 5.18. To the point load at the end of the beam, which generates the
influence function for the end deflection, belongs a linear bending moment distribu-
tion MG which has its maximum value at the clamped edge and this means the closer
the defective element, E I → E I +ΔE I , lies to the edge the larger its influence on
the end deflection will be (in reality the distribution of the bending moment M from
the load also has some influence on the results—the reasoning would be correct if
M were constant).

With regard to the end rotation of the beam the situation is different. The bending
moment MG of the influence function is the same at all points and so we conclude
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(a) (b)

(d)(c)

Fig. 5.18 Influence functions and their bending moments MG . a For the end deflection u(l); b the
bending moment at the clamped edge; c for the end rotation u′(l); d the shear force V (0)

that wherever the cracks will appear in the beam the effect on u′(l) is the same. And
the bending moments MG of the two influence functions for M(0) and V (0) are
both zero and this means that cracks will not change these values at all, which is no
surprise given that the cantilever is statically determinate.

5.12.1.1 2-D Problems

In 2-D problems the situation essentially is the same. In the case of the Laplacian
the d-form is

d(G, uc) = kΔ

∫

Ωe

(G,1 uc,1+G,2 uc,2 ) dΩ y (5.224)

where kΔ represents the change, k → k + kΔ, in the coefficient of the differential
equation −k Δu in the element Ωe and so the gradient of the Green’s function, see
Fig. 5.19, could be used as an indicator when we search for those elements Ωe or
regions where a change k → k + kΔ in the coefficient is the most critical.

In linear elasticity the strain energy is the integral3

3 S · E = σ11 ε11 + σ12 ε12 + σ21 ε21 + σ22 ε22 (scalar product).
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Fig. 5.19 The gradient of the Green’s function of the functional J (u) = u(x) (Poisson equation)
and the subdivision of Ω into different control regions Ωe. The strong singularity of the gradient
at the source point x overshadows all other regions

a(u, v) =
∫

Ω

C[E(u)] · E(v) dΩ =
∫

Ω

S · E dΩ (5.225)

where the dominant term in the elasticity tensor

C[E] = E
(

E + ν

1− 2 ν
(trE) I

)
= S (5.226)

is Young’s modulus E (a number) so that defects in an element could be modeled by
adding a corrective term to Young’s modulus E → E + EΔ

EΔ d(G, uc) = EΔ

E

∫

Ωe

C[E(G)] · E(uc) dΩ. (5.227)

This formula suggests that the stresses associated with the Green’s function of the
functional J (u) are an indicator of where and when modifications in element stiffness
will have an impact on a functional. Of course it could always happen that the stress
states of G and uc are almost orthogonal, d(G, uc) � 0, but by and large the regions
where the stresses reach a high level will be the regions to check for possible defects
in the material.
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Fig. 5.20 Influence function for σxx and subdivision of Ω into control regions Ωe

In Fig. 5.20 is displayed the typical stress distribution of a Green’s function (for
σxx ). Because the singularity at the source point tends to overshadow stresses at points
farther off, see also Fig. 5.19, the neighborhood of the source point must be masked
out when the stress distribution resulting from the Green’s function is displayed.

For an analysis one would partition the domain Ω into smaller subregions Ωe,
see Fig. 5.20, and one would weight the principal stresses in such a subregion Ωe

with the stresses in the same region resulting from the load.
In plate-bending problems (Kirchhoff plates) the formalism basically is the same.

The strain energy product of two functions u and v is the L2-scalar product of the
moment tensor M and the curvature tensor K of the two functions

a(u, v) =
∫

Ω

C[K (u)] · K (v) dΩ =
∫

Ω

M · K dΩ (5.228)

where
C[K ] = K ((1− ν)K + ν (trK ) I) = M. (5.229)

The scalar K = E d3/12(1− ν2) is the bending stiffness of a plate with thickness d
and modulus of elasticity E . The entries in the curvature tensor K = K (u) are the
second derivatives, Ki j = u,i j .

Cracks K → K + KΔ in an element Ωe would lead to

d(G, uc) = K

KΔ

∫

Ωe

C[K (G)] · K (uc) dΩ y (5.230)

so that the principal moments of the Green’s function play the role of an indicator to
detect the regions where cracks will have the most influence on a given functional
J (u)(x), see Fig. 5.21.
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Fig. 5.21 Influence function for the shear force vx . a 3-D plot; b principal moments
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Fig. 5.22 Plate and lateral load. a Principal stresses before and b after the drilling of a hole

5.12.1.2 Boundary Integrals

In certain situations the d-form is equivalent to a boundary integral.
Let J (u) = u(x) and G( y, x) the corresponding Green’s function and let Ωe be a

patch or a single element of the mesh where the coefficient of the governing equation
−κΔu = p shifts to a value κ → κ + κΔ. Green’s first identity implies that the
strain energy product

d(uc, G) = κΔ

∫

Ωe

∇uc( y) · ∇G( y, x) dΩ y (5.231)

is identical with

d(uc, G) = κΔ

∫

Γe

∂G( y)
∂n

uc( y, x) ds y + c(x)κΔ u(x) (5.232)

where

c(x) =
⎧⎨
⎩

1 x ∈ Ωe

Δϕ/2 π x ∈ Γe

0 x /∈ Ωe

(5.233)

is the so called characteristic function of Ωe and Δϕ is the interior angle of Γe at
the point x; at smooth boundary points Δϕ = π, see Fig. 5.22.

If the source point x lies outside Ωe then this reduces to

d(uc, G) = κΔ

∫

Γe

∂G( y)
∂n

uc( y, x) ds y. (5.234)
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Because Δuc = 0 on Ωe
4 and x /∈ Ω only the tractions of uc and G are pulling on

the edge Γe and the reciprocal work of these two solutions is the same (Betti)

κΔ

∫

Γe

∂G( y)
∂n

uc( y, x) ds y = κΔ

∫

Γe

∂uc( y)
∂n

G( y, x) ds y (5.235)

so that

d(uc, G) = κΔ

∫

Γe

∂uc( y)
∂n

G( y, x) ds y (5.236)

or what is the same (the engineer’s approach)

d(u, Gc) = κΔ

∫

Γe

∂u( y)
∂n

Gc( y, x) ds y. (5.237)

Let us assume that κΔ = −κ, that is the element or patch Ωe effectively becomes a
void, κ+ κΔ = κ− κ = 0. An engineer would solve this problem by applying the
tractions t = κ ∂u/∂n of the undisturbed solution u as exterior forces on the edge
of the void and predict the effect these forces produce with the modified influence
function Gc( y, x) of the punched domain Ωc = Ω − Ωe and he would add this
correction

e(x) = −(−κ) d(u, Gc) = κ
∫

Γe

∂u( y)
∂n

Gc( y, x) ds y (5.238)

to u(x) to obtain uc(x) = u(x)+ e(x).
Stated differently the change J (e) in any functional can be computed via a bound-

ary integral if the tractions tc of the modified solution are known on the interface
between Ωe and the rest of the domain Ω .

J (e) =
∫

Γe

tc( y) G( y, x) ds y. (5.239)

This is again the idea of the force method. The new solution uc can be generated
on the original physical domain (uniform κ) when to u are added additional effects
which come from the boundary layer tc on the edge of Ωe.

Remark 5.8 One crucial assumption is of course what happens to the load p that
possibly acts on Ωe when the stiffness κ+Δκ tends to zero. We assume that either
p = 0 (on Ωe) or that it tends to zero in sync with Δκ→−κ.

4 But uc is not zero on Ωe.
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5.12.2 Focus on an Element

Imagine there is a certain element which looks suspicious and we want to make sure
that cracks that eventually develop in this element, E I → E I +ΔE I , will not lead
to a collapse of the structure.

Inquiring for possible negative side effects of these cracks means one must check
the normal force, J = N , the shear force, J = V , the bending moment J = M etc.,
and each of these functionals at a very large number of points xi

J (e)(xi ) = J (uc)(xi )− J (u)(x) = −d(G[xi ], uc) i = 1, 2, . . . (5.240)

In this situation it would be much simpler to solve the modified system with the
cracked element directly.

But there is an alternative approach which requires less effort. Figuratively speak-
ing we do not have to throw a new stone into the pond at each point x separately
to watch the ripples. We can stand still and watch what happens when we drop one
stone at the point where we are standing—which is the cracked frame element. There
might be situations where this technique has its benefits and we therefore want to
detail this method in the following.

Recall that the formula which is used to trace changes in functionals is an expres-
sion of internal energy that is it is of the type

J (e)(x) = −d(G, uc) = −ΔE

E

le∫

0

σ(G[x]) ε(uc) dy. (5.241)

The strains ε(uc) of the updated solution uc are weighted with the stresses produced
by G[x], which is the Green’s function of the functional J . The point in brackets, [x],
is the source point—the point on the left—and the ratio ΔE/E signals the change
in the stiffness; in a beam this would be the term ΔE I/E I .

This expression is, as can be shown, equivalent to

J (e)(x) = −d(G, uc) = −ΔE

E

le∫

0

J (Gσ[y])(x) ε(uc) dy (5.242)

where Gσ is the influence function for the stress at the integration point y. Gσ is the
movement the (uncracked) structure performs if a unit dislocation is applied at the
integration point y. This movement produces an effect J at the point x and because
the effect depends on which point y was spread one unit apart J (Gσ[y])(x) is a
function of the integration point y and so the scalar product with the strain ε(uc)(y)

provides the value J (e)(x). Note that the functional J appears now on both sides of
the equation.
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e

Fig. 5.23 Frame with a truss element

The benefit of this formulation is that only one Green’s function is needed. The
Green’s function under the integral sign, does not depend on the functional. Only
the effects studied, the value J (Gσ[y])(x), depend on the choice of the functional J
and the position x of the observation point.

5.12.2.1 Details

To explicitly detail the single steps of this approach the technique is applied to the
frame in Fig. 5.23. The longitudinal stiffness E A of the first frame element drops by
some value ΔE A and the task is to predict which effect this change has on the shear
force V at the point x , that is on the functional

JV (u)(x) = V (x) = −E I u′′′(x). (5.243)

The analysis proceeds in steps:

(i) The defective frame element is a pin-jointed element in which the strain energy
product only depends on the normal force

a(u, û) =
le∫

0

E A u′ û′ dx =
le∫

0

E A ε ε̂ dx =
le∫

0

σ ε̂ dx =
le∫

0

N N̂

E A
dx

so that

JV (e)(x) = −d(uc, G) = −ΔE A

E A

le∫

0

Nc(y) N (GV [x])(y)

E Ac
dy (5.244)

where Nc(y) is the normal force (in the cracked element) due to the applied load
p and N (GV [x])(y) is the normal force at the integration point y produced by
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the Green’s function GV . The Green’s function produces a dislocation of the
beam at the source point x in the direction of the shear force V .

(ii) The normal force at the integration point y too is a functional

JN (u)(y) := N (y) = E A u′(y) (5.245)

so that (5.244) is the same as

JV (e)(x) = −ΔE A

E A

le∫

0

Nc(y) JN (GV [x])(y)

E Ac
dy. (5.246)

(iii) The final step: let G N (x, y)be the Green’s function associated with the functional
JN (that is G N (x, y) is the influence function for the normal force N (y) at the
integration point y). The reciprocal values of two functionals with regard to their
kernels (= G.F.) are the same

JV (G N [y])(x) = JN (GV [x])(y) (5.247)

and this means that (5.246) is equivalent to

JV (e)(x) = −ΔE A

E A

le∫

0

Nc(y) JV (G N [y])(x)

E Ac
dy. (5.248)

In this expression the functionals J on both sides are identical.
How is the integral (5.248) calculated? To generate the Green’s function G N [y]

the forces

ji (y) = N (ϕe
i )(y) = E A (ϕe

i )
′(y) i = 1, 2 (5.249)

have to be applied at the two nodes of the element. Because the shape functions
ϕe

i (y) are linear the ji are the same at all source points y. By the same argument the
normal force Nc(y) = N due to the load is constant and so with

le∫

0

JV (G N [y])(x) dy = JV

⎛
⎝

le∫

0

G N [y] dy

⎞
⎠ (x) = JV (G�)(x) (5.250)

(5.248) becomes

JV (e)(x) = −ΔE A

E A
εc JV (G�)(x). (5.251)

The function G� is the influence function for the integral value of N in the element
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Fig. 5.24 Truss

le∫

0

N (x) dx =
l∫

0

G�(x) p(x) dx . (5.252)

It is generated by the two nodal forces, i = 1, 2,

j�i =
le∫

0

fi (y) dy =
le∫

0

N (ϕe
i )(y) dy = E A

± 1

le
le = ±E A (5.253)

which are independent of le. They produce the same strains ε = 1 in short and in
long elements.

If the element were free to move then these two end forces would stretch the
element to double its length5 but the nodal forces j�i also must push the neighboring
elements aside and so the elongation Δl of the element will be less than le. How these
forces manage to deform the structure is a telltale sign of how changes E → E+ΔE
in the element will effect the structure.

Example 5.3 Under the influence of the nodal load P the center node of the truss in
Fig. 5.24 moves sideways by

u = N l

E A
= 0.75 · P · 2

E A
(5.254)

units. By how much will this displacement increase if the element which holds the
node tight (the left element) cracks, say ΔE = −0.5E? The formula for the change
in the functional is

5 A stress σ = E implies because of σ = E ε that ε = 1 and so Δl = ε · l = l.
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J (e) = ΔE A

E A
εc J (G) (5.255)

where G is the influence function for the integral value of N in the element—two
forces j�i = ±E A stretch the element (unhindered because the truss is statically
determinate) to double its length, Δl = l = 2—and J (G) = 2 is the nodal displace-
ment caused by this stretching. The term

εc = Nc

Ec A
= 0.75

P

Ec A
Ec = E +ΔE = 1

2
E (5.256)

is the strain in the cracked element due to the load (the normal force N in the element
does not alter, Nc = N ) so that the change in the displacement amounts to

J (e) = −−0.5 E A

E A
0.75

P

Ec A
J (G) = 1

2
u · 2 = u. (5.257)

This is the additional displacement, so the total displacement uc = u + u is twice
the previous value.

Certainly one could have guessed the result without applying this elaborate tech-
nique but this example is just to demonstrate that the effects observed when the
element is stretched to double its length, ε = 1, is an indicator for the change J (e)
in the functionals. Of course in statically indeterminate structures and in 2-D and
3-D problems when the elements are tightly packed no element achieves ε = 1 (or
κ = 1 in bending problems). The neighboring elements dampen the movement and
so they lessen the influence of cracks. What here appears as a hinderance is actually
beneficial because it increases the redundancy. The neighboring elements help their
brethren out when it cracks under the load.

Example 5.4 A more realistic example is the multi-story frame in Fig. 5.25. A change
ΔE A in the stiffness of the center front column amounts to a change

J (e) = −ΔE A

E A
εc J (G�) (5.258)

in any functional. Here G� is the influence function for the integral value of the
normal force in the column and εc is the strain in the column

εc = Δu

l
(5.259)

where Δu is the amount by which the column shortens when E A decreases.
In FE-analysis G� would be generated by applying two forces j�i = ±E A at

the end points of the column, see Fig. 5.25 and the plots of G� and of the relevant
functionals, J (G�) = M(G�) or J (G�) = V (G�), would be used as indicators
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Fig. 5.25 Influence function for the normal force in the column

to assess which functional values—the engineer would say: which internal actions,
M, N , V —are the most affected by cracks in the element.

5.12.2.2 Total Loss of Stiffness

If the column breaks down, if it is no longer able to support the structure, then this is
equivalent to a total reverse, ΔE A = −E A, in the stiffness and so (5.258) becomes

J (e) = εc J (G�)(x) (5.260)

where εc is the strain in the column if it were drained of all is stiffness that is the Δl
in (5.259) is by how much the floor plate sacks when the column topples.

Basically this is the same logic which the engineer applies: To see how much the
structure gets stressed without the column the engineer would remove the column
and apply the opposite of the normal force N as nodal forces at the end points and
add these results to the original load case so that in the end the result is the same

J (uc) = J (u)+ J (e). (5.261)

Actually the engineer uses the expression (5.260) in the second form

J (e) = εc J (G�)(x) = ε J (G�
c )(x)︸ ︷︷ ︸

engineer

(5.262)
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(recall that d(uc, G) = d(u, Gc)) and he applies integration by parts to the strain
energy so that

J (e) = ε J (G�
c )(x) =

∑
i

fi G�
c (yi , x) (5.263)

becomes an expression of exterior work namely the work done by the nodal forces
fi opposite to the vanished column on acting through the displacements of the same
nodes caused by the influence function G�

c .
So whenever there is a total loss of the stiffness as in the column, E A→ E A −

E A = 0, the curve uc is that curve (or surface in 2-D) which bridges the gap in
the structure left open by the now defunct element. The curve uc can be a very
“wild” function—the released nodes can move unhindered—and because the strain
energy in the blank fictitious element Ωe is measured with the full stiffness, d(u, v) =
a(u, v), the net effect J (e) can be quite large. It will no longer do to approximate εc

by ε. The plot of G� can only give hints as to which parts of a structure are the most
affected by a total loss of the stiffness.

5.12.3 Beams

The strain energy in a beam is

a(u, û) =
l∫

0

E I u′′ û′′ dx =
l∫

0

M M̂

E I
dx M := −E I u′′ (5.264)

and so a modification E I → E I +ΔE I = E Ic in an element (0, le) produces the
shift

J (e) = −ΔE I d(uc, G) = −ΔE I

le∫

0

u′′c G ′′ dy

= −ΔE I

E I

l∫

0

Mc

E Ic
MG dy MG = −E I G ′′ (5.265)

in any linear functional. Applying the previous logic it follows that

J (e) = −ΔE I

E I

le∫

0

Mc

E Ic
J (G M [y])(x) dy (5.266)
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j j

Fig. 5.26 The center element has a constant curvature

where G M [y] = G M (y, x) is the influence function for the bending moment M =
−E I u′′ at the integration point y.

While in a bar element the integrands in the strain energy d(uc, G) were constant
they are now linear. This requires some more effort.

To prepare for the following recall that

J (u)(x) = g(x)T f (5.267)

where the vector g is the nodal vector of the Green’s function Gh associated with
the functional J (u) and f are the nodal forces belonging to u.

So if the curvature κc = −Mc/E Ic in the element is constant then (5.266) is
identical with

J (e) = ΔE I

E I
κc

le∫

0

J (G M [y])(x) dy = ΔE I

E I
κc

le∫

0

g(x)T f (y) dy

= ΔE I

E I
κc g(x)T f � = ΔE I

E I
κc J (G�) (5.268)

where G� is the influence function for the integral of M in the element.
The influence function G M (y, x) is generated by the nodal forces

ji = −E I ϕ′′i (y) i = 1, 2, 3, 4 (5.269)

where the ϕi are the four shape functions of the beam, see (1.91). So that G� is
generated by the integrals of these forces

j�i =
le∫

0

fi (y) dy = E I (0,−1, 0, 1). (5.270)

These two couples produce a constant curvature κ = 1 in the element if the element
can deflect unhindered that is if the beam is statically determinate as in Fig. 5.26.

If κc = u′′c is not constant then it is linear (the shape functions ϕi are cubic)
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κc = κc
1 ψ1(x)+ κc

2 ψ2(x) = κc
1

le − x

le
+ κc

2
x

le
(5.271)

and it follows

J (e) = ΔE I

E I

le∫

0

(κc
1 ψ1(y)+ κc

2 ψ2(y)) J (G M [y])(x) dy (5.272)

so that this expression could be split into two influence functions

J (e) = ΔE I

E I

(
κc

1 J
(
G�

(1)

)+ κc
2 J

(
G�

(2)

))
(5.273)

where G�
(1) is generated by the nodal forces

j� (1)
i =

le∫

0

fi (y)ψ1(y) dy = E I
( 1

le
,−1,

−1

le
, 0
)

(5.274)

and G�
(2) by the nodal forces

j� (2)
i =

le∫

0

fi (y)ψ2(y) dy = E I
(−1

le
, 0,

1

le
, 1
)
. (5.275)

5.12.4 Poisson Problem

The extension to 2-D problems—in principle—is straightforward. Let u the solution
to the problem

− κΔu = p on Ω u = 0 on Γ . (5.276)

If the coefficient κ changes in an element Ωe of Ω from a value κ to a value κ+ κΔ

then the corresponding change in any linear functional J (u) amounts to
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J (e)(x) = −d(uc, G) = −κΔ

κ

∫

Ωe

∇uc · ∇G dΩ y

= −κΔ

κ

∫

Ωe

(uc,1 ( y) G,1 ( y, x)+ uc,2 ( y) G,2 ( y, x)) dΩ y

(5.277)

where G is the Green’s function of the functional J (u)(x).
When the shape functions are linear this equation can be recast in the form

J (e)(x) = −κΔ

κ

[
J (G�

1 )(x) u,1 ( yc)+ J (G�
2 )(x) u,2 ( yc)

] |Ωe| (5.278)

where G�
1 and G�

2 are the influence functions for the integrals of u,1 and u,2
respectively over the element Ωe and the values uc,1 and uc,2 are the derivatives of
the solution uc at the center yc of the element.

The function G�
1 is generated by applying the nodal forces

j�i =
∫

Ωe

ϕi ,x dΩ (5.279)

and for G�
2 the derivatives are taken with respect to y.

5.12.4.1 Elasticity

In 2-D elasticity the strain energy integral is the integral

a(u, v) =
∫

Ω

(σ11 ε11 + 2 σ12 ε12 + σ22 ε22) dΩ (5.280)

and so, given a change EΔ in Young’s modulus, the corresponding expression for
linear elements would be

J (e)(x) = − EΔ

E
(J (G�

11)(x) ε11( yc)+ 2 J (G�
12)(x) ε12( yc)

+ J (G�
22)(x) ε22( yc)) |Ωe| (5.281)

where the εi j are the constant strains and the Green’s function G�
i j (which are dis-

placement fields=vector valued functions) are the influence functions for the integral
values of the stresses
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∫

Ωe

σkl(x) dΩ =
∫

Ω

G�
kl (x) · p(x) dΩ (5.282)

each of which would be generated by the application of 2 · 3 nodal forces

j� kl
i =

∫

Ωe

σkl(Φ i ) dΩ y. (5.283)

The Φ i are the six displacement fields corresponding to horizontal and vertical unit
displacements respectively of the nodes. If we would let Poisson’s ratio ν = 0 then
the number of nodal forces would reduce to three, but we would still have to solve
three additional load cases to determine the three functions G�

kl (x). Whether this
is worth the effort or whether it is not just simpler to modify the system directly to
watch for the effects of E → E + EΔ depends on the circumstances and the aim of
the analysis.

This approach has one advantage namely that influence functions can be generated
which signal how important an element is for the safety of a structure. Basically the
message is that the negative influence which an element that cracks has is proportional
to by how much the element is able to spread uniformly, εxx = 1, εyy = 1 and
εxy = 1 in all three “directions” . The more the neighboring elements can hinder
these movements the less important the element is.

Of course additionally the stress distribution due to the load in the element factors
in but in the sense of signals or weights the influence functions carry the message.

5.12.5 Kirchhoff Plates

The strain energy of a Kirchhoff plate is the expression

a(u, v̂) =
∫

Ω

mi j κ̂i j dΩ

=
∫

Ω

(m11 κ̂11 + 2 m12 κ̂12 + m22 κ̂22) dΩ. (5.284)

It has the same structure as the equations before and so

J (e)(x) = − KΔ

K
(J (G�

11)(x)κ11( yc)+ 2 J (G�
12)(x)κ12( yc)

+ J (G�
22)(x)κ22( yc)) |Ωe| (5.285)
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would be the analogous expression where the three functions G�
i j are the Green’s

function for the integral values of the three moments, m11, m12, m22

∫

Ωe

mi j (x) dΩ =
∫

Ω

G�
i j (x) p(x) dΩ. (5.286)

5.12.6 Analysis

Let us shortly recap the logic we applied. The typical influence function for J (e) has
the form

J (e)(x) =
le∫

0

J (Gσ[y])(x) εc(y) dy. (5.287)

First it is assumed that εc(y) = εc is constant

J (e)(x) = εc

le∫

0

J (Gσ[y])(x) dy (5.288)

and then the functional is placed outside the integral

J (e)(x) = εc J
( le∫

0

Gσ[y] dy
)
(x) (5.289)

which maneuver implicitly introduces the Green’s function G� for the integral of σ

J (u)(x) = εc J (G�)(x). (5.290)

This influence function

le∫

0

σ(x) dx =
l∫

0

G�(x) p(x) dx (5.291)

is generated by applying the integrals

j�i =
l∫

0

σ(ϕi )(x) dx (5.292)
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of the shape functions as equivalent nodal forces.
If εc(y) is not constant then we have at least an estimate

|J (e)(x)| ≤ max
(0,le)
|εc| |J (G�)(x)|. (5.293)

In 2-D and 3-D problems σ is a tensor S = [σi j ] and so the estimate becomes

|J (e)(x)| ≤
n∑

i, j=1

max
Ωe
|εi j | |J (G�

i j )(x)| n = 2, 3 (5.294)

where
G�

11 G�
12 G�

22 (n = 2) (5.295)

are the influence functions for the integral values of the stresses

∫

Ωe

σi j (x) dΩ =
∫

Ω

G�
i j (x) · p(x) dΩ. (5.296)

The forces j�k which generate these influence functions would stretch—if unimpeded
by the neighboring elements—the element Ωe uniformly in horizontal (ε11 = 1) and
vertical direction (ε22 = 1) respectively while the third set would produce a shear
deformation (ε12 = 1).

The more these movements can spread unhindered over a domain Ω the larger
the effect a change in the element stiffness will have on the results.

5.13 Equations for the Unknown Stresses on Ωe

The formula

J (e) = −d(uc, G) (5.297)

allows to calculate the change in any internal action so why not apply this formula
to calculate the unknown strains or stresses of the modified solution uc within the
defective element Ωe itself?

To be specific let us choose the frame in Fig. 5.27 as a test problem. The parameters
of the beam are

E I = 3,320 kNm2 E A = 996,000 kN. (5.298)

When the longitudinal stiffness of the vertical pier drops by 50 %
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1.
0

(a) (b) (c)

(f)(e)(d)

Fig. 5.27 Frame. a System and load; b internal actions M and N ; c the same quantities when E A
drops to half its values; d nodal force for FE-influence function G for N ; e internal actions of G;
f fixed end forces resulting from a unit dislocation of an internal point

E Ac = E A +ΔE A = 996,000− 0.5 · 996,000 = 498,000 kN (5.299)

then the changes in the frame are

J (e) = −ΔE A

le∫

0

u′c G ′ dy = −ΔE A

le∫

0

Nc

E Ac

NG

E A
dy (5.300)

where the integral extends over the length (0, le) of the pier. To quantify these changes
the derivative u′c = Nc/E Ac of the modified solution in the pier and the derivative
G ′ of the Green’s function must be known; the latter poses no problem, it can be
extracted from K−1.

To determine Nc the idea is to apply (5.300) to Nc itself
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Nc − N = −ΔE A

le∫

0

Nc

E Ac

NG

E A
dy, (5.301)

in which case G is the influence function for the normal force N in the pier and
NG = E A G ′ is the E A-fold strain or normal force of G in the pier itself.

To calculate G the force

j = E Aϕ′1(0) = − E A

le
= −249,000 kN (5.302)

is applied at the upper node of the pier, see Fig. 5.27; it results in a normal force
N = 239,460 kN in the pier. To this force must be added the normal force N =
−249,000 kN when the pier, spread by one unit apart, presses against the fixed ends,
see Fig. 5.27, so that the total force in the pier is

NG = −249,000 kN+ 239,460 kN = −9,540 kN (5.303)

and consequently the change in the normal force, see (5.301), should come out as

Nc − N = 0.13 = −498,000 · 3.47

498,000
· −9, 540

996,000
· 4 = 0.13 (5.304)

which it does. The general form of this equation is

Nc = E A E Ac

E A E Ac −ΔE A NG le
N . (5.305)

5.13.1 Computational Aspects

The nodal vector g of the Green’s function is the solution of the system

K g = j (5.306)

where ji = E Aϕ′i (x), x ∈ (0, le). If the global degrees of freedom of the two end
nodes are i and k then—with ji = −E A/ le, jk = E A/ le and all other ji being
zero—g is a linear combination of the two columns ci and ck of K−1

g = − E A

le
ci + E A

le
ck (5.307)

and gi and gk are the corresponding entries in g. The Green’s function is linear on
(0, le)
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Gh(y, x) = gi ϕ1(y)+ gk ϕ2(y) = gi
le − y

le
+ gk

y

le
(5.308)

so that its normal force is E A (gi − gk) and this force plus the compressional force
−E A/ l is the normal force

NG = − E A

l
+ E A (gi − gk). (5.309)

5.13.1.1 Beam

This technique can be applied to any expression d(uc, G). In the case of a beam the
linear bending moment distribution

Mc(y) = Mc
1 ψ1(y)+ Mc

2 ψ2(y) = Mc
1

le − y

le
+ Mc

2
y

le
(5.310)

on the element must be known to apply the formula

J (e) = −d(uc, G) = −ΔE I

le∫

0

Mc

E Ic

MG

E I
dy. (5.311)

Following the same line of reasoning as before a system of two equations for the two
nodal values

Mc(xi )− M(xi ) = −ΔE I

E I

l∫

0

Mc

E Ic
MG(y, xi ) dy i = 1, 2 (5.312)

can be formulated where MG is the bending moment of the influence function for
M(xi )

MG(y, xi ) = −E I
4∑

j=1

g j (xi )ϕ
′′
j (y)+ M0(y, xi ) (5.313)

and where

M0(y, xi ) = f2(xi )
le − y

le
+ f4(xi )

y

le
(5.314)

is the bending moment distribution due to the fixed end forces in the frame element
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f2(x1) = f2(0) = 4
E I

le
f4(x1) = f4(0) = −2

E I

le
(5.315)

f2(x2) = f2(le) = −2
E I

le
f4(x2) = f4(le) = 4

E I

le
. (5.316)

This provides a system of two equations for Mc(x1) and Mc(x2)

[
a11 a12
a21 a22

] [
Mc(x1)

Mc(x2)

]
=
[

M(x1)

M(x2)

]
(5.317)

where

a11 = −E I
( 4∑

j=1

g j (x1) b1 j − 1
)

a12 = −E I
4∑

j=1

g j (x1) b2 j (5.318)

a21 = −E I
4∑

j=1

g j (x2) b1 j a22 = −E I
( 4∑

j=1

g j (x2) b2 j − 1
)

(5.319)

with

b1 j =
le∫

0

ψ1(y)ϕ′′j (y) dy = 1

le
(1, −le, −1, 0) (5.320)

b2 j =
le∫

0

ψ2(y)ϕ′′j (y) dy = 1

le
(−1, 0, 1, le). (5.321)

The 2 · 4 eight nodal values g j (xi ), j = 1, 2, 3, 4; i = 1, 2 of the two influence
functions come from the solutions of the two systems

K g(1) = f (x1) K g(2) = f (x2). (5.322)

The two vectors f (x1) and f (x2) have only four non-zero components

fi (x1) = −E I ϕ′′i (x1) = E I

l2
e

(−6, 4 le, 6, 2 le) (5.323)

fi (x2) = −E I ϕ′′i (x2) = E I

l2
e

(6, 2 le, 6, −4 le) (5.324)

where i = 1, 2, 3, 4 are the local degrees of freedom which, when the system is
assembled, are mapped to global degrees of freedom j1, j2, j3, j4.

Let us assume for simplicity that the local and global degrees of freedom of the
end nodes of the beam element coincide. Under these circumstances the solution
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vectors

g(1) =
4∑

i=1

fi (x1) ci g(2) =
4∑

i=1

fi (x2) ci (5.325)

are a linear combination of the first four columns ci of the inverse stiffness matrix
K−1 and the first four entries in these two columns are the g j (xi ) required to evaluate
(5.313)

g(1) = {g1(x1), g2(x1), g3(x1), g4(x1), ∗, ∗, . . . , ∗}T (5.326)

and for g(2) analogously.

Remark 5.9 As a side effect these equations imply that if N or M respectively
are zero before the element cracks then they are also zero afterwards. This applies
of course also in the other direction: no increase in stiffness can revive a “dor-
mant” element.

5.13.1.2 2-D Problem

To trace changes in the solution of a Poisson equation, κ→ κ+ κΔ,

J (e) = −κΔ

∫

Ωe

∇uc · ∇G dΩ y (5.327)

the gradient ∇uc = {uc,x , uc,y } of the modified solution uc on Ωe is needed. To
this end (5.327) is used to formulate a set of equations for the gradient on Ωe itself

uc,xi (x)− u,xi (x) = −κΔ

∫

Ωe

∇uc( y) · ∇G(i)( y, x) dΩ y x ∈ Ωe i = 1, 2

(5.328)
where G(i)( y, x) is the Green’s function for u,xi on Ωe.

Assume the mesh consist of triangles with linear shape functions ϕi . So to calcu-
late G(i) we would apply the nodal forces

j (i)j = ϕ j ,xi j = 1, 2, 3 (5.329)

at the three nodes of Ωe, solve the system K g(i) = j (i), construct

Ḡ(i) =
3∑

j=1

g
(i)
j ϕ j (x) (5.330)



5.13 Equations for the Unknown Stresses on Ωe 313

(we again assume for simplicity that on Ωe local and global degrees of freedom
coincide) and add to its gradient the local gradient field generated when the center
point of the element is spread by one unit apart in xi -direction while the nodes are
fixed. These two latter fields can be expressed in terms of the equivalent nodal forces
j (i)j so that

∇ G(i) = ∇ Ḡ(i) +
3∑

j=1

j (i)j ∇ ϕ j =
3∑

j=1

(
g

(i)
j + j (i)j

)∇ ϕ j (5.331)

which is a constant vector.
The further treatment of the linear system (5.328) contains no new aspects so that

we can skip it here.

5.14 Adjoint Method of Sensitivity Analysis

Sensitivity analysis and Green’s functions are closely related [3, 5]. We only want
to show that the adjoint method of sensitivity analysis, is identical with the d-form
in its simplified form

J (e) ≈ −d(u, G). (5.332)

Let u (n-components) be the displacement vector and let p (m-components) be the
vector of design variables or model parameters. The functional J (u, p) depends on
u and (possibly) directly on p. The displacement vector u must satisfy a system of
equations K u = f so that we can speak of the evaluation of a functional J under
certain side conditions:

f unctional J (u, p) side condition K ( p) u = f . (5.333)

We are interested in the total differential of J (·, ·) with respect to an increment d p
of the model parameter

d J = d J

d p
d p = d J

dp1
dp1 + · · · d J

dpn
dpn . (5.334)

The gradient of J (here as a row vector)

d J

d p
= {J,p1 , J,p2 , . . . , J,pn } (5.335)

has the components
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J,pi =
∂ J

∂ pi
+ ∂ J

∂uk

∂uk

∂ pi
(5.336)

or in matrix notation

d J

d p
= ∂ J

∂ p
+ ∂ J

∂u
U p (5.337)

(1× m) = (1× m)+ (1× n) (n × m)

where

∂ J

∂ p
=
{ ∂ J

∂ p1
,
∂ J

∂ p2
, . . . ,

∂ J

∂ pn

} ∂ J

∂u
=
{ ∂ J

∂u1
,
∂ J

∂u2
, . . . ,

∂ J

∂un

}
(5.338)

and

U p =
[
∂ui

∂ p j

]
= (n × m). (5.339)

Because K u − f = 0 holds true for any choice of p the side condition is invariant
with respect to the single pi

∂

∂ pi
(K u − f ) = K ,pi u + K u,pi − f ,pi = 0 (n × 1) (5.340)

or if this equation is solved for column i of U p

u,pi = −K−1(K ,pi u − f ,pi ) =: −K−1 di (n × 1) (5.341)

so that (the columns of the matrix D are the vectors di )

U p = −K−1 D (n × m) (5.342)

and we finally have

d J

d p
= ∂ J

∂ p
+ ∂ J

∂u
U p = ∂ J

∂ p
− ∂ J

∂u
K−1 D (1× m) . (5.343)

Let the (column) vector λ the solution of the system

K λ =
(
∂ J

∂u

)T

⇒ λT = ∂ J

∂u
K−1 T = ∂ J

∂u
K−1 (5.344)

then follows
d J

d p
= ∂ J

∂ p
− λT D (1× m) . (5.345)
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If the functional J is linear

∂ J

∂u
= j (n × 1) ji = J (ϕi ) (5.346)

and does not directly depend on p so that ∂ J/∂ p = 0 then (5.345) reduces to

d J

d p
= −λT D (1× m). (5.347)

To keep it simple it is assumed that the single element matrix is of the type

K i = ki

[
1 −1
−1 1

]
⇒ ∂K i

∂ki
=
[

1 −1
−1 1

]
= 1

ki
K i (5.348)

and that only one parameter, the stiffness in one element i changes, dpi = Δki and
f does not depend on pi then

d J

dpi
= −λT di = −λT K ,pi u = −λT 1

ki
K i u (5.349)

and so it follows

J (e) = J (uc)− J (u) = d J

dpi
dpi = −λT Δki

ki
K i u (5.350)

which is exactly the expression

J (e) � −d(G, u) (5.351)

in vector notation (finite elements) with λ being the nodal vector of the Green’s
function.

5.15 Linear Versus Nonlinear

What is the error of a linear analysis of a structure compared with a nonlinear analysis?
The governing equations of the linear problem are

EL(u)− E = 0
1

2
(ui , j +u j ,i )− εi j = 0

C[E] − S = 0 Ckli jεkl − σi j = 0

−div S = p −(σi j ), j = pi (5.352)

and of the nonlinear problem
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EN L(u)− E = 0
1

2
(ui , j +u j ,i +uk,i uk, j )− εi j = 0

C[E] − S = 0 Ckli jεkl − σi j = 0

−div(S+∇ u S) = p −(σi j + ui ,k σk j ), j = pi (5.353)

The variational formulation of the linear problem is

a(u, v) :=
∫

Ω

EL(v) · SL(u) dΩ = ( p, v) (5.354)

where
SL(u) := C[EL(u)] (5.355)

and of the nonlinear problem

aN L(u, v) :=
∫

Ω

Eu(v) · SN L(u) dΩ = ( p, v) (5.356)

where

Eu(v) := 1

2
(∇v +∇vT + ∇uT ∇ v + ∇ vT ∇ u) (5.357)

is the Gateaux derivative of the tensor E(u)

d

dε
[E(u + ε v)]|ε=0 = Eu(v) (5.358)

and
SN L(u) := C[EN L(u)]. (5.359)

It is evident that both tensors in the nonlinear formulation can be split into linear and
nonlinear terms

Eu(v) = EL(v)+ΔE(u, v) (5.360)

SN L(u) = SL(u)+ΔS(u) (5.361)

where

ΔE(u, v) : = 1

2
(∇uT ∇ v +∇ vT ∇ u) (5.362)

ΔS(u) : = C
[

1

2
(∇T u ∇u)

]
. (5.363)

On substituting these expressions into (5.356) it follows
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aN L(u, v) = a(u, v)+ d(u, v) (5.364)

where

d(u, v) =
∫

Ω

(EL(û)ΔS(u)+ΔE(u, û) SL(u)

+ΔE(u, û)ΔS(u)) dΩ (5.365)

and so the error in a linear functional J (u) amounts to

J (e) = −d(uc, G) (5.366)

where uc is the nonlinear solution and G the Green’s function of the functional.
For an approximate analysis one could try to replace uc by the linear solution so

that
J (e) � −d(u, G) (5.367)

though experience shows that this produces an acceptable solution only in mildly
nonlinear problems [6].

There is an additional problem. In nonlinear problems some functionals as for
example the horizontal stresses

J (u)(x) = σxx (x) (5.368)

are defined differently with respect to linear problems. In such cases one needs to
think about how to modify the Green’s function of the linear problem to predict the
nonlinear J (u).
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Chapter 6
Appendix

6.1 Nonlinear Elasticity

In the triple {u, E, S} the tensor E is the Green-Lagrangian strain tensor and S the
second Piola-Kirchhoff stress tensor, and we assume the material to be hyperelastic,
i.e., there exists a strain-energy function W such that S = ∂W/∂ E. Given volume
forces p the elastic state S = {u, E, S} satisfies at every point x of the undeformed
body the system

E(u) − E = 0
1

2
(ui, j + u j,i + uk,i uk, j ) − εi j = 0

W ′(E) − S = 0
∂W

∂εi j
− σi j = 0 (6.1)

−div(S + ∇ u S) = p −(σi j + ui,k σk j ), j = pi

and satisfies displacement boundary conditions u = ū on a part ΓD of the boundary
and stress boundary conditions t(S, u) = t̄ on the complementary part ΓN where

t(S, u) := (S + ∇u S) n (6.2)

is the traction vector at a boundary point with outward normal vector n.
With symmetric stress tensors S we have the identity

∫

Ω

−div(S + ∇ u S) · û dΩ

= −
∫

Γ

t(S, u) · û ds +
∫

Ω

Eu(û) · S dΩ (6.3)
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where

Eu(û) := 1

2
(∇ û + ∇ ûT + ∇uT ∇ û + ∇ ûT ∇ u) (6.4)

is the Gateaux derivative of the matrix E(u)

d

dε
[E(u + ε û)]|ε=0 = Eu(û). (6.5)

Collecting terms we can formulate Green’s first identity of the operator A(S), that
is the system (6.1)

G(S, Ŝ) = 〈A(S), Ŝ〉 +
∫

Γ

t(S, u) · ûds

︸ ︷︷ ︸
δWe

− a(S, Ŝ)︸ ︷︷ ︸
δWi

= 0 (6.6)

where

〈A(S), Ŝ〉 :=
l∫

0

(E(u) − E) · Ŝ dΩ +
∫

Ω

(C[E] − S) · Ê dΩ

+
∫

Ω

−div S · û dΩ (6.7)

and

a(S, Ŝ) =
∫

Ω

(E(u) − E) · Ŝ dΩ

+
∫

Ω

(W ′(E) − S) · Ê dΩ +
∫

Ω

Eu(û) · S dΩ. (6.8)

The identity (6.6) is the basis of many variational principles in nonlinear mechanics
and can be formulated in the same way also for beams and slabs, [1].

In the case of a pure displacement formulation S = {u, E(u), W ′(E(u))} and it
is û = 0 on ΓD , so that (6.6) reduces to

G(u, û) =
∫

Ω

p · û dΩ +
∫

ΓN

t̄ · û ds −
∫

Ω

Eu(û) · S dΩ = 0, (6.9)

where S = W ′(E(u)).
Next let uh = ∑n

j u j ϕ j (x) the FE solution and let û = ϕi a virtual displacement
then
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∫

Ω

Euh (ϕi ) · W ′(E(uh)) dΩ

︸ ︷︷ ︸
ki

=
∫

Ω

p · ϕi dΩ +
∫

ΓN

t̄ · ϕi ds

︸ ︷︷ ︸
fi

(6.10)

or
k(u) = f (6.11)

where u is the vector of nodal coordinates.

6.1.1 Linearization

For computational purposes a linearization of (6.11) is necessary. Let pΔ and t̄Δ be
load increments, and let u + uΔ be the displacement field corresponding to p + pΔ

and t̄ + t̄Δ then

G(u + uΔ, û) =
∫

Ω

( p + pΔ) · û dΩ +
∫

ΓN

( t̄ + t̄Δ) · û ds

− a(u + uΔ, û) = 0 , (6.12)

where

a(u + uΔ, û) :=
∫

Ω

Eu+uΔ(û) · W ′(E(u + uΔ)) dΩ. (6.13)

The Gateaux derivative of the strain energy product

a(u, û) :=
∫

Ω

Eu(û) · W ′(E(u)) dΩ (6.14)

with respect to a displacement increment uΔ is

aT (uΔ, û) : =
[

d

dε
a(u + ε uΔ, û)

]
ε=0

=
∫

Ω

[∇uΔ W ′(E(u)) · ∇ û + Eu(û) · C[Eu(uΔ)]] dΩ, (6.15)

where the tensor

C = ∂2W
∂ E ∂ E

= ∂

∂ E
S (6.16)

is the second derivative of W , which is to be evaluated at u. Note that aT (u, uΔ, û)

is linear in the second and third argument, uΔ and û.
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We then let
a(u + uΔ, û) � a(u, û) + aT (u, uΔ, û), (6.17)

so that (6.11) becomes

K T (u) uΔ = f − k(u), (6.18)

where now uΔ is the vector of nodal displacements of the field uΔ and K T is the
tangent stiffness matrix:

(K T )i j = aT (u,ϕ j ,ϕi ). (6.19)

6.2 Software

The following software

• BE-PLATES
• BE-SLABS
• BE-LAPLACE
• MATHEMATICA™

• MATLAB™

• SOFiSTiK™

• WINFEM

was used to generate the plots and to do the calculations.

BE-PLATES: Figs. 2.17, 3.20, 3.21, 3.22, 3.34, 3.35, 3.37, 3.44, 3.46, 3.47, 3.48,
5.20, 5.22

BE-SLABS: Figs. 1.6, 1.7, 2.15, 2.22, 4.14, 4.15, 4.16, 5.21

BE-LAPLACE: Figs. 2.3, 5.19

MATHEMATICA: Fig. 2.13

MATLAB: Fig. 3.1

SOFiSTiK: Figs. 1.10, 5.1, 5.10, 5.25

WINFEM: Figs. 1.3, 1.4, 1.5, 1.8, 1.9, 1.19, 1.20, 3.4, 3.8, 3.9, 3.13, 3.17, 3.38,
3.39, 4.1, 4.4, 4.5, 4.8, 4.9, 4.11, 4.18

The programs BE-PLATES, BE-SLABS, BE-LAPLACE and WINFEM are
public domain, see www.winfem.de or www.be-statik.de. For an educational ver-
sion of SOFiSTiK contact www.sofistik.de.
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