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Preface

As technology advances, so does our need to understand and characterize it. This
is one of the traditional roles of mathematics, and now that we are more than a
decade into the 21°* century, no area of mathematics has been more versatile suc- @
cessful in this endeavor than that of linear algebra. The elements of linear algebra
are the essential underpinnings of a wide range of modern applications, from
mathematical modeling in economics to optimization procedures in airline
scheduling and inventory control. Linear algebra furnishes today’s analysts in
business, engineering, and the social sciences with the tools they need to describe
and define the theories that drive their disciplines. It also provides mathemati-
cians with compact constructs for presenting central ideas in probability, differ-
ential equations, and operations research.

The third edition of this book presents the fundamental structures of linear
algebra and develops the foundation for using those structures. Many of the con-
cepts in linear algebra are abstract; indeed, linear algebra introduces students to
formal deductive analysis. Formulating proofs and logical reasoning are skills
that require nurturing, and it has been our aim to provide this.

We have streamlined our approach, in this third edition, while striving to have
the material presented in a more logical and orderly manner. Regarding math-
ematical rigor, in the early sections, the proofs are relatively simple, not more
than a few lines in length, and deal with concrete structures, such as matrices.
Complexity builds as the book progresses.

We have also introduced some graph theoretical concepts in this edition of Linear
Algebra. Matrices associated with graphs have been studied extensively, and we
attempt to introduce the reader to some of these matrices and their applications.

A number of learning aids are included to assist readers. New concepts are care-
fully introduced and tied to the reader’s experience. In the beginning, the basic
concepts of matrix algebra are made concrete by relating them to a store’s inven-
tory. Linear transformations are tied to more familiar functions, and vector
spaces are introduced in the context of column matrices. Illustrations give geo-
metrical insight on the number of solutions to simultaneous linear equations,
vector arithmetic, determinants, and projections to list just a few.

As in the previous edition, we have highlighted material to emphasize important
ideas throughout the text. Computational methods—for calculating the inverse
of a matrix, performing a Gram-Schmidt orthonormalization process, or the
like—are presented as a sequence of operational steps. Theorems are clearly
marked, and there is a summary of important terms and concepts at the end



of each chapter. Each section ends with numerous exercises of progressive diffi-
culty, allowing readers to gain proficiency in the techniques presented and
expand their understanding of the underlying theory.

For about two-thirds of the text, the only prerequisite for understanding this
material is a facility with high-school algebra. These topics can be covered in
any course of 10 weeks or more in duration. Depending on the background
of the readers, selected applications and numerical methods may also be consid-
ered in a quarter system.

We would like to thank the many people who helped shape the focus and con-
tent of this book; in particular, the administrative and educational leaders at
Fairleigh Dickinson University, Seton Hall University and West Point.

I, Gabriel Costa, would particularly like to thank my Archbishop, the Most Rev-
erend John J. Myers, J.C.D., D.D., for his continued support and blessing
throughout the years. I would also like to acknowledge Dr. Bethany Kubik for
her professional assistance. I, John T. Saccoman, would like to acknowledge
the influence of the late Professor Frank Boesch of Stevens Institute of Technol-
ogy, and the assistance of Dr. Sarah Bleiler and Dr. John J. Saccoman.

Lastly, our heartfelt gratitude is given to the bevy of professionals at Elsevier,
whom we have been privileged to work. They have provided us with valuable
suggestions and technical expertise throughout this endeavor.
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1.1 BASIC CONCEPTS

We live in a complex world of finite resources, competing demands, and infor-
mation streams that must be analyzed before resources can be allocated fairly to
the demands for those resources. Any mechanism that makes the processing of
information more manageable is a mechanism to be valued.

Consider an inventory of T-shirts for one department of a large store. The T-shirt
comes in three different sizes and five colors, and each evening, the department’s
supervisor prepares an inventory report for management. A paragraph from such
a report dealing with the T-shirts is reproduced in Figure 1.1.

This report is not easy to analyze. In particular, one must read the entire para-
graph to determine the number of sand-colored, small T-shirts in current stock.
In contrast, the rectangular array of data presented in Figure 1.2 summarizes the
same information better. Using Figure 1.2, we see at a glance that no small, sand-
colored T-shirts are in stock.

A matrix is a rectangular array of elements arranged in horizontal rows and ver-
tical columns. The array in Figure 1.1 is a matrix, as are

Linear Algebra
Copyright © 2014, Elsevier Inc. All rights reserved.

A matrix is a rectangular
array of elements
arranged in horizontal
rows and vertical
columns.
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T-shirts

Nine teal small and five teal medium; eight
plum small and six plum medium; large sizes
are nearly depleted with only three sand, one
rose, and two peach still available; we also
have three medium rose, five medium sand,
one peach medium, and seven peach small.

L~

FIGURE 1.1
Rose Teal Plum Sand Peach
0 9 8 0 7 small
$=|3 5 6 5 1 | medum
1 0 0 3 2 large
FIGURE 1.2
1 3
L=|5 21, (1 1)
0 -1
4 1 1
M=1|3 2 1], (1.2)
0 4 2
and
19.5
N=| —n |. (1.3)
V2

The rows and columns of a matrix may be labeled, as in Figure 1.1, or not labeled,
as in matrices (1.1) through (1.3).

The matrix in Equation (1.1) has three rows and two columns; it is said to have
order (or size) 3 x 2 (read three by two). By convention, the row index is always
given before the column index. The matrix in Equation (1.2) has order 3 x 3,
whereas that in Equation (1.3) has order 3 x 1. The order of the stock matrix
in Figure 1.2 is 3 x 5.

The entries of a matrix are called elements. We use uppercase boldface letters to
denote matrices and lowercase letters for elements. The letter identifier for an ele-
ment is generally the same letter as its host matrix. Two subscripts are attached to
element labels to identify their location in a matrix; the first subscript specifies
the row position and the second subscript the column position. Thus, I;, denotes
the element in the first row and second column of a matrix L; for the matrix L in


Figure 1.1
Figure 1.2
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Equation (1.2), l;,=3. Similarly, ms, denotes the element in the third row and
second column of a matrix M; for the matrix M in Equation (1.3), ms,=4.
In general, a matrix A of order p x n has the form

a;p di2 a1z ... Qi
dzr dz2 A4z ... dyp

A= |4d31 d4s2 4sz ... dsp (1.4)
apr  dp2  4p3 ... dpy

which is often abbreviated to [a;],. Or just [a;], where a;; denotes an element in
the ith row and jth column.

Any element having its row index equal to its column index is a diagonal element.
Diagonal elements of a matrix are the elements in the 1-1 position, 2-2 position,
3-3 position, and so on, for as many elements of this type that exist in a particular
matrix. Matrix (1.1) has 1 and 2 asits diagonal elements, whereas matrix (1.2) has 4,
2, and 2 as its diagonal elements. Matrix (1.3) has only 19.5 as a diagonal element.

A matrix is square if it has the same number of rows as columns. In general,
a square matrix has the form

ay; di2 a3 ... Qdip
dz1 dz2 43 ... dp
asy ds3z dsz ... d3p
an ano an3 N ¢
with the elements a;;, a,5, as3s, - .., a,, forming the main (or principal) diagonal.

The elements of a matrix need not be numbers; they can be functions or, as we
shall see later, matrices themselves. Hence

1
J(t2+l)dt B V3t o2,

0

[ sin 0 cosﬂ}

—cosf sin0
and
¥ x
e % In x
5 x+2

are all good examples of matrices.

A row matrix is a matrix having a single row; a column matrix is a matrix having
a single column. The elements of such a matrix are commonly called its



An n-tuple is a row matrix
or a column matrix
having n-components.

Two matrices are equal
if they have the same
order and if their
corresponding elements
are equal.

The sum of two matrices
of the same order is

the matrix obtained

by adding together
corresponding elements
of the original two
matrices.

components, and the number of components its dimension. We use lowercase
boldface letters to distinguish row matrices and column matrices from more gen-
eral matrices. Thus,

1
x= |2
3
is a 3-dimensional column vector, whereas

u=[t 2t —t 0]

is a 4-dimensional row vector. The term n-tuple refers to either a row matrix or a
column matrix having dimension n. In particular, x is a 3-tuple because it has
three components while u is a 4-tuple because it has four components.

Two matrices A= [a;] and B=[b;] are equal if they have the same order and if
their corresponding elements are equal; that is, both A and B have order p xn
and a;=b; (i=1,2,3,...,p:j=1,2, ..., n). Thus, the equality

5x+2y| |7
x—y | |1
implies that 5x+2y=7 and x—3y=1.
Figure 1.2 lists a stock matrix for T-shirts as

Rose Teal Plum Sand Peach

S — 0 9 8 0 7 small
| 3 5 6 5 1 medium
1 0 0 3 2 large

If the overnight arrival of new T-shirts is given by the delivery matrix

Rose Teal Plum Sand Peach

D— 9 0 0 9 0 small
| 3 3 3 3 3 medium
6 8 8 6 6 large

then the new inventory matrix is

Rose Teal Plum Sand Peach

S+D— 9 9 8 9 7 small
| 6 8 9 8 4 medium
7 8 8 9 8 large

The sum of two matrices of the same order is a matrix obtained by adding together
corresponding elements of the original two matrices; that is, if both A={[a;] and
B=[b;] have order pxn, then A+B=[a;+b;](i=1,2,3,...,p;,j=1,2,...,n).
Addition is not defined for matrices of different orders.
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Example 1
5 1 -6 3 54(-6) 1+3 -1 4
7 3|4+ 2 -1|=|7+2 34(-1)|=1| 9 2/,
-2 -1 4 1 —2414 —-1+1 2 0
and
2 5 n 1 —-6| [£24+1 -1
3t 0 t o—t| | 4t —t
The matrices
5 0
-1 2| and [? ﬂ
2 1

cannot be added because they are not of the same order.
4 N

» THEOREM 1

If matrices A, B, and C all have the same order, then

(a) the commutative law of addition holds; that is,

A+B=B-+A,
(b) the associative law of addition holds; that is,
A+(B+C)=(A+B)+C.«

\. J

Proof: We leave the proof of part (a) as an exercise (see Problem 38). To prove
part (b), we set A=[a;], B=[b;], and C=[c;]. Then

A+ (B+C) = [az] + ([by] + lcy])
= [aj] + [bj + ci] definition of matrix addition
= [aj + (bj + cy)] definition of matrix addition
= [(aj + bj) + ] associative property of regularaddition
= [(aij + by)] + [ci] definition of matrix addition
= ([ag] + [by]) + [ci] definition of matrix addition
=(A+B)+C

The difference A —B of
. . .. two matrices of the same
We define the zero matrix 0 to be a matrix consisting of only zero elements. (qer is the matrix
When a zero matrix has the same order as another matrix A, we have the addi- obtained by subtracting
tional property from the elements of A
the corresponding
A+0=A (1.5) elements of B.



The product of a scalar A
by a matrix A is the
matrix obtained by
multiplying every
element of A by /.

Subtraction of matrices is defined analogously to addition; the orders of the
matrices must be identical and the operation is performed elementwise on all
entries in corresponding locations.

Example 2
5 1 —6 5—(—6) 1-3 11 -2
7 3|-| 2 -1]|=]|7-2 3—(-1) 5 4
-2 -1 4 1 —-2-4 -1-1 -6 -2

Example 3 The inventory of T-shirts at the beginning of a business day is given by
the stock matrix

Rose Teal Plum Sand Peach

S— 9 9 8 9 7 small
| o6 8 9 8 4 | medium
7 8 8 9 g | large

What will the stock matrix be at the end of the day if sales for the day are five
small rose, three medium rose, two large rose, five large teal, five large plum, four
medium plum, and one each of large sand and large peach?

Solution: Purchases for the day can be tabulated as

Rose Teal Plum Sand Peach

p_ 5 0 0 0 0 small
| 3 0 4 0 0 | medium
2 5 5 1 1 | large

The stock matrix at the end of the day is

Rose Teal Plum Sand Peach

4 9 8 9 7 small
S—-P= .

3 8 5 8 4 medium

5 3 3 8 7 | large

A matrix A can always be added to itself, forming the sum A + A. If A tabulates inven-
tory, A+ A represents a doubling of that inventory, and we would like to write

A+A=2A (1.6)

The right side of Equation (1.6) is a number times a matrix, a product known as
scalar multiplication. If the equality in Equation (1.6) is to be true, we must define
2A as the matrix having each of its elements equal to twice the corresponding
elements in A. This leads naturally to the following definition: If A=[a;] is a
p X n matrix, and if 4 is a real number, then

M= [lag](i=12....,p; j=12,...,n) (1.7)
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Equation (1.7) can also be extended to complex numbers 4, so we use the
term scalar to stand for an arbitrary real number or an arbitrary complex
number when we need to work in the complex plane. Because Equation (1.7)
is true for all real numbers, it is also true when 1 denotes a real-valued
function.

Example 4
5 1 35 7
1 0 t O
7 7 3| = 49 21 and t =
3 2 3t 2t
-2 -1 —-14 -7
. 1.
Example 5 Find 5A—5 B if
4 1 6 —-20
A{O 3] and BLS 8}
Solution:
1 4 1 1 6 —-20
5A—-B=5 -
2 0 3 2118 8
B 20 5 3 —-10 B 17 15
Lo 15 9 41 [-9 11

[ » THEOREM 2

If A and B are matrices of the same order and if A1 and ., denote scalars, then the following
distributive laws hold:

(a) 24(A+B)=1,A+1,B

a
(b) (/11 + ;Q)A — ;LlA + /12A
(©) (2122)A=141(22A) A

Proof: We leave the proofs of (b) and (c) as exercises (see Problems 40 and 41).
To prove (a), we set A=[a;] and B=[b;]. Then

A1(A+B) =11 ([ay] + [bs])

= 1 [(aj + by)] definition of matrixaddition
= [M(aj + by)] definition of scalar multiplication
= [(Mai + Mby)] distributive property of scalars
= [Mag] + [Mby] definition of matrix addition
= M [ay] + M [by] definition of scalar multiplication

=M A+MB



Problems 1.1

(1) Determine the orders of the following matrices:

12 5 6 -1 0
S E O E A I

301 -2 2 0 1
-1 2 0 -2 -1 0
P=1 13 o BE=| 5 3" F=| 0 o)
26 5 1) 2 2

172 13 1/4

~12/3 3/5 —5/6/ H=

G

S
S
5%

J=[0 0 0 0 0]

(2) Find, if they exist, the elements in the 1-2 and 3-1 positions for each of the
matrices defined in Problem 1.

(3) Find, if they exist, a1, dz1, bso, dsa, d23, €22, §23, h33, and j,; for the matrices
defined in Problem 1.

(4) Determine which, if any, of the matrices defined in Problem 1 are square.

(5) Determine which, if any, of the matrices defined in Problem 1 are row
matrices and which are column matrices.

(6) Construct a 4-dimensional column matrix having the value j as its jth
component.

(7) Construct a 5-dimensional row matrix having the value i* as its ith
component.

(8) Construct the 2 x 2 matrix A having a;;= (—1).
(9) Construct the 3 x 3 matrix A having a;;=1i/j.

(10) Construct the n x n matrix B having b;j=n —i—j. What will this matrix be
when specialized to the 3 x 3 case?

(11) Construct the 2 x 4 matrix C having
o i wheni=1
"7 1j wheni=2
(12) Construct the 3 x 4 matrix D having
i+j wheni>j
dj=4q 0 wheni=j
i—j wheni<j
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In Problems 13 through 30, perform the indicated operations on the matrices
defined in Problem 1.

(13) 2A. (14) —5A. (15) 3D. (16) 10E.
(17) —F. (18) A+B. (19) C+A. (20) D+E.
(21) D+F. (22) A+D. (23) A—B. (24) C-A.
(25) D—E. (26) D—F. (27) 2A+3B. (28) 3A—2C.

(29) 0.1A+0.2C. (30) —2E+F.
The matrices A through F in Problems 31 through 36 are defined in Problem 1.

(31) Find X if A+ X=B.

(32) Find Y if 2B+Y=C.
(33) Find X if 3D —X=E.
(34) Find Yif E— 2Y=F.
(35) Find R if 4A+ 5R=10C.
(36) Find S if 3 F— 28 =D.
(37) Find 6A— 0B if

2 2
A:[e 20—1] and B:{e -1 i 6 .
4 1/0 3/0  0°+20+1

(38) Prove part (a) of Theorem 1.
(39) Prove that if 0 is a zero matrix having the same order as A, then A+0=A.
(40) Prove part (b) of Theorem 2.
(41) Prove part (c¢) of Theorem 2.

(42) Store 1 of a three-store chain has 3 refrigerators, 5 stoves, 3 washing
machines, and 4 dryers in stock. Store 2 has in stock no refrigerators, 2
stoves, 9 washing machines, and 5 dryers; while store 3 has in stock 4 refrig-
erators, 2 stoves, and no washing machines or dryers. Present the inventory
of the entire chain as a matrix.

(43) The number of damaged items delivered by the SleepTight Mattress
Company from its various plants during the past year is given by the damage
matrix

80 12 16
50 40 16
90 10 50



The rows pertain to its three plants in Michigan, Texas, and Utah; the col-
umns pertain to its regular model, its firm model, and its extra-firm model,
respectively. The company’s goal for next year is to reduce by 10% the num-
ber of damaged regular mattresses shipped by each plant, to reduce by 20%
the number of damaged firm mattresses shipped by its Texas plant, to
reduce by 30% the number of damaged extra-firm mattresses shipped by
its Utah plant, and to keep all other entries the same as last year. What will
next year’s damage matrix be if all goals are realized?

(44) On January 1, Ms. Smith buys three certificates of deposit from different
institutions, all maturing in one year. The first is for $1000 at 7%, the sec-
ond is for $2000 at 7.5%, and the third is for $3000 at 7.25%. All interest
rates are effective on an annual basis. Represent in a matrix all the relevant
information regarding Ms. Smith’s investments.

(45) (a) Mr.Jones owns 200 shares of IBM and 150 shares of AT&T. Construct a
1 x 2 portfolio matrix that reflects Mr. Jones” holdings.

(b) Over the next year, Mr. Jones triples his holdings in each company.
What is his new portfolio matrix?

(c) The following year, Mr. Jones sells shares of each company in his port-
folio. The number of shares sold is given by the matrix [50 100], where
the first component refers to shares of IBM stock. What is his new port-
folio matrix?

(46) The inventory of an appliance store can be given by a 1 x 4 matrix in which
the first entry represents the number of television sets, the second entry the
number of air conditioners, the third entry the number of refrigerators, and
the fourth entry the number of dishwashers.

(a) Determine the inventory given on January 1 by [152 86].

(b) January sales are given by [40 23]. What is the inventory matrix on
February 17?

(c) February sales are given by [5 0 3 3], and new stock added in February is
given by [32 78]. What is the inventory matrix on March 1?

(47) The daily gasoline supply of a local service station is given by a 1 x 3 matrix
in which the first entry represents gallons of regular, the second entry gal-
lons of premium, and the third entry gallons of super.

(a) Determine the supply of gasoline at the close of business on Monday
given by [14,000 8000 6000].

(b) Tuesday's sales are given by [35002000 1500]. What is the inventory
matrix at day’s end?

(c) Wednesday’s sales are given by [500015001200]. In addition, the
station received a delivery of 30,000 gallons of regular, 10,000 gallons
of premium, but no super. What is the inventory at day’s end?

1.2 MATRIX MULTIPLICATION

Matrix multiplication is the first operation where our intuition fails. First, two
matrices are not multiplied together elementwise. Second, it is not always
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possible to multiply matrices of the same order while often it is possible to mul-
tiply matrices of different orders. Our purpose in introducing a new construct,
such as the matrix, is to use it to enhance our understanding of real-world phe-
nomena and to solve problems that were previously difficult to solve. A matrix is
just a table of values, and not really new. Operations on tables, such as matrix
addition, are new, but all operations considered in Section 1.1 are natural exten-
sions of the analogous operations on real numbers. If we expect to use matrices
to analyze problems differently, we must change something, and that something
is the way we multiply matrices.

The motivation for matrix multiplication comes from the desire to solve systems
of linear equations with the same ease and in the same way as one linear equa-
tion in one variable. A linear equation in one variable has the general form

[constant]-[variable] = constant

We solve for the variable by dividing the entire equation by the multiplicative
constant on the left. We want to mimic this process for many equations in many
variables. Ideally, we want a single master equation of the form

package package package
of . of = of
constants variables constants

which we can divide by the package of constants on the left to solve for all the
variables at one time. To do this, we need an arithmetic of “packages,” first to
define the multiplication of such “packages” and then to divide “packages” to
solve for the unknowns. The “packages” are, of course, matrices.

A simple system of two linear equations in two unknowns is

2%+ 3y = 10

(1.8)
4x 4 5y = 20

Combining all the coefficients of the variables on the left of each equation into a
coefficient matrix, all the variables into column matrix of variables, and the con-
stants on the right of each equation into another column matrix, we generate the

matrix system
2 3 10
s L] ®9
4 5| |y 20

We want to define matrix multiplication so that system (1.9) is equivalent to
system (1.8); that is, we want multiplication defined so that

il I

4 5] |y (4x + 5y)



The product of two
matrices AB is defined
if the number of
columns of A equals the
number of rows of B.

Then system (1.9) becomes

2] Lo

(4x + 5y) 20

which, from our definition of matrix equality, is equivalent to system (1.8).

We shall define the product AB of two matrices A and B when the number of col-
umns of A is equal to the number of rows of B, and the result will be a matrix
having the same number of rows as A and the same number of columns as B.
Thus, if A and B are

— 0 1 0
6 1 0

A= and B= 3 2 =21
-1 2 1

1 0

then the product AB is defined, because A has three columns and B has three
rows. Furthermore, the product AB will be 2 x 4 matrix, because A has two rows
and B has four columns. In contrast, the product BA is not defined, because the
number of columns in B is a different number from the number of rows in A.

A simple schematic for matrix multiplication is to write the orders of the matrices
to be multiplied next to each other in the sequence the multiplication is to be
done and then check whether the abutting numbers match. If the numbers
match, then the multiplication is defined and the order of the product matrix
is found by deleting the matching numbers and collapsing the two “x” symbols
into one. If the abutting numbers do not match, then the product is not defined.

In particular, if AB is to be found for A having order 2 x 3 and B having order
3 x 4, we write

(2x3) (3x4) (1.11)
A

where the abutting numbers are distinguished by the curved arrow. These abut-
ting numbers are equal, both are 3, hence the multiplication is defined. Further-
more, by deleting the abutting threes in Equation (1.11), we are left with 2 x 2,
which is the order of the product AB. In contrast, the product BA yields the
schematic

(3 x4) (2x3)
N A

where we write the order of B before the order of A because that is the order of the
proposed multiplication. The abutting numbers are again distinguished by the
curved arrow, but here the abutting numbers are not equal, one is 4 and the other
is 2, so the product BA is not defined. In general, if A is an n X r matrix and B is an
T X p matrix, then the product AB is defined as an n x p matrix. The schematic is

(nxr) (rxp)=(nxp) (1.12)
A
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When the product AB is considered, A is said to premultiply B while B is said to
postmultiply A.

Knowing the order of a product is helpful in calculating the product. If A and B
have the orders indicated in Equation (1.12), so that the multiplication is
defined, we take as our motivation the multiplication in Equation (1.10) and
calculate thei-jelement (i=1,2,...,n;j=1,2,...,p) of the product AB=C=[c;]
by multiplying the elements in the ith row of A by the corresponding elements
in the jth row column of B and summing the results. That is,

a adpn air b1 b1z blp €11 C12 aip
ay; dpp ayy by b b2p €1 €22 C2p
dn1  Adn2 Anr brl br2 brp Cn1 Cn2 Cnp

.
Cij = aibij + ainbyj + aisbsj + - - + aiby = E aibyj
k=1

In particular, ¢, is obtained by multiplying the elements in the first row of A by
the corresponding elements in the first column of B and adding; hence

c11 = ai1bir + a2boy + aisbsy + -+ -+ aibn

The element ¢, is obtained by multiplying the elements in the first row of A by
the corresponding elements in the second column of B and adding; hence

€12 = d11b12 + a12byy + a13 by + - - + aybp

The element cs5, if it exists, is obtained by multiplying the elements in the third
row of A by the corresponding elements in the fifth column of B and adding;
hence

35 = az1bis + asabos + assbss + - - - + ascbys

Example 1 Find AB and BA for

-7 -8
1 2 3

A= and B= 9 10
4 5 6

0 —11

Solution: A has order 2 x 3 and B has order 3 x 2, so our schematic for the product
AB is
(2x3) (3x2)
N A

The abutting numbers are both 3; hence the product AB is defined. Deleting both
abutting numbers, we have 2 x 2 as the order of the product.

To calculate the i-f
element of AB, when the
multiplication is defined,
multiply the elements in
the ith row of A by the
corresponding elements
in the jth column of B and
sum the results.



-7 -8

12 3]
AB = 9 10
4 5 6
0 —11
C [1(=7)+2(9) +3(0) 1(—8)+2(10) + 3(-11)
~ 14(=7)+5(9) +6(0) 4(—8)+5(10) 4+ 6(—11)
S J1ro-21
17 —48]

Our schematic for the product BA is
(3x2) (2x3)
A
The abutting numbers are now both 2; hence the product BA is defined.
Deleting both abutting numbers, we have 3x3 as the order of the
product BA.

-7 -8
1 2 3
BA=| 9 10 [ ]
4 5 6
| 0 -11
[(=7)1+(-8)4 (=7)2+(-8)5 (-=7)3+(-8)6
=1 9(1)+10(4) 9(2) 4+ 10(5) 9(3) 4+ 10(6)
0(1)+ (-11)4  0(2)+(-11)5 0(3)+(-11)6
(-39 —54 —69
=] 48 68 87
| —44 —55 —66

Example 2 Find AB and BA for

2 1
3 1 5 -1
A=|-1 0 and B= { }
|: 3 1 ] 4 -2 1 0
Solution: A has two columns and B has two rows, so the product AB is defined.

2 1
[3 15 —1}
AB=|-1 0
4 -2 1 0
| 3 1
[ 23)+1(4) 2(1)+1(-2 2(5)+1(1 2(-1)+1(0
=|-13)+0(4) —-1(1)+0(-2) —1(5)+0(1) —1(-=1)+0(0
| 3(3)+1(4) 3(1)+1(-2) 3(5)+1(1 3(=1)+1(0
(10 0 11 -2
=|(-3 -1 -5 1
|13 1 16 -3
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In contrast, B has four columns and A has three rows, so the product BA is not
defined.

Observe from Examples 1 and 2 that AB#BA! In Example 1, AB is a 2 x 2 Ingeneral, AB#BA.
matrix, whereas BA is a 3 x3 matrix. In Example 2, AB is a 3 x4 matrix,

whereas BA is not defined. In general, the product of two matrices is not

commutative.

Example 3 Find AB and BA for

Solution: 3 1171 1
AB=1, 4_[ 2}

[3(1) + 1(0) 31)+1(2]
L0(1) +4(0) 0(1) +4(2)
S

o s8]

117173 1
BA=1, 2] [o 4]
_ [13) +1(0) 1(1)+1(4)}
L0(3) +2(0) 0(1) +2(4)
_ 3 5}
0 8

In Example 3, the products AB and BA are defined and equal. Although matrix
multiplication is not commutative, as a general rule, some matrix products are
commutative. Matrix multiplication also lacks other familiar properties besides
commutativity. We know from our experiences with real numbers that if the
product ab=0, then either a=0 or b=0 or both are zero. This is not true, in gen-
eral, for matrices. Matrices exist for which AB =0 without either A or B being zero
(see Problems 20 and 21). The cancellation law also does not hold for matrix
multiplication. In general, the equation AB=AC does not imply that B=C
(see Problems 22 and 23). Matrix multiplication, however, does retain some
important properties.

[ » THEOREM 1

If A, B, and C have appropriate orders so that the following additions and multiplications
are defined, then

(a) A(BC)=(AB)C (associate lawof multiplication)
(b) A(B+C)=AB-+AC (leftdistributive law)
(c) (B+C)A=BA+CA (rightdistributive law) d




Proof: We leave the proofs of parts (a) and (c) as exercises (see Problems 37
and 38). To prove part (b), we assume that A= [a;j] is an m x n matrix and both
B=[b;] and C=|c;] are n x p matrices. Then

A(B+C) = [a] ([by] + [c3])

= [ai] [ (b + ci)] definition of matrix addition

definition of matrix multiplication

[ n
= > au(by + ay)
| k=1

n
= E aixbyj + aicrj
=1

B n n
= E aibyi + E AikCrj
Lk=1 k=1

[n n

= Za,—kbk]— + Zaikbkj] definition of matrix addition
| k=1 =1

= [alﬂ [bij] + [aij] [cij] definition of matrix mulitiplication

With multiplication defined as it is, we can decouple a system of linear equations
so that all of the variables in the system are packaged together. In particular, the
set of simultaneous linear equations

50 —3y+2z=14
x+y—4z=-7 (1.13)
7x—3z=1

can be written as the matrix equation Ax=b where

5 -3 2 X 14
A= |1 1 —-4|, x=|y|, and b= |-7
7 0 -3 pé 1

The column matrix x lists all the variables in Equation (1.13), the column matrix
b enumerates the constants on the right sides of the equations in Equation (1.13),
and the matrix A holds the coefficients of the variables. A is known as a coefficient
matrix and care must taken in constructing A to place all the x coefficients in the
first column, all the y coefficients in the second column, and all the z coefficients
in the third column. The zero in 3-2 location in A appears because the coefficient
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of yin the third equation of Equation (1.13) is zero. By redefining the matrices A, Any system of simulta-
x, and b appropriately, we can represent any system of simultaneous linear equa- neous linear equations

tions by the matrix equation can be written as the
matrix equation Ax=h.

Ax=b (1.14)

Example 4 The system of linear equations
x+y—z=4
3x+2y4+2w=0
x—2y+3z+4w= -1

has the matrix form Ax=Db with

2 1 -1 O 4
A= |3 2 0 2|, x= Z , and b= 0
1 -2 3 4 —1

w

We have accomplished part of the goal we set in the beginning of this section: to
write a system of simultaneous linear equations in the matrix form Ax=b, where
all the variables are segregated into the column matrix x. All that remains is to
develop a matrix operation to solve the matrix equation Ax=b for x. To do
s0, at least for a large class of square coefficient matrices, we first introduce some
additional matrix notation and review the traditional techniques for solving sys-
tems of equations, because those techniques form the basis for the missing
matrix operation.

Problems 1.2

(1) Determine the orders of the following products if the order of Ais 2 x 4, the
order of B is 4 x 2, the order of C is 4 x 1, the order of D is 1 x 2, and the
order of E is 4 x 4.

(a) AB, (b) BA, (c) AC, (d) cA, (e) CD, (f) AE,
(g) EB, (h) EA, (i) ABC, (j) DAE, (k) EBA, (I) EECD.

In Problems 2 through 19, find the indicated products for

12 56 -1 0 1
A[3 4]’ B[7 8}’ C{ 3 =2 1]' D=1-13)
2 -2
-2 2 1 0 1 2
E=| 0 -2 —-1|, F=|-1 -1 0},
1 0 1 1 23



(2)AB.  (3)BA. (4)AC. (5)BC. (6)CB. (7)xA.
(8)xB.  (9)xC. (10)Ax. (11)CD. (12)DC. (13)yD.
(14)yC. (15)Dx. (16)xD. (17)EF. (18) FE.  (19)yF.

39 -1
A nor B equals the zero matrix.

(20) Find AB for A = {2 6] and B = [ 3 _g}.NotethatAB:Obutneither

. 4 2 3 —4
(21)F1ndABforA—[2 1]andB—{_6 8]'

21 2 1 0o -1
What does this result imply about the cancellation law for matrices?

(22)FindABandACforA:{4 2}, B:{l 1], and C:[z 2]_

1 0 1 2 3 —4
Show that AB=CB but A#C.

(23)FindABandCBforA_{3 2], B_[z 4], and C—{l 6}

1 2] [«
(24) Calculate the product 3 4] L}}

1T o0 -1 X
(25) Calculate the product |3 1 1] [y} .

(26) Calculate the product an alz} [x]

_ X
(27) Calculate the product b by blﬂ AR
| ba1 by b3 .

1 2
(28) Evaluate the expression A? — 4A — 51 for the matrix A = {4 3} .

3 5
(29) Evaluate the expression (A —1I)(A+ 2I) for the matrix A = [ 2 4} '

2 -1 1
(30) Evaluate the expression (I—A)(A% —1) for the matrix A = [3 -2 1 } .
0 0 1

(31) Use the definition of matrix multiplication to show that

jthcolumnof (AB) = A x (jth columnof B).
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(32) Use the definition of matrix multiplication to show that

ithrowof (AB) = (ithrowof A) x B.

(33) Prove that if A has a row of zeros and B is any matrix for which the product
AB is defined, then AB also has a row of zeros.

(34) Show by example that if B has a row of zeros and A is any matrix for which
the product AB is defined, then AB need not have a row of zeros.

(35) Prove that if B has a column of zeros and A is any matrix for which the prod-
uct AB is defined, then AB also has a column of zeros.

(36) Show by example that if A has a column of zeros and B is any matrix for
which the product AB is defined, then AB need not have a column of zeros.

(37) Prove part (a) of Theorem 1.
(38) Prove part (c) of Theorem 1.

In Problems 39 through 50, write each system in matrix form Ax=b.

(39) 2x+3y =10 (40) 5x+ 20y =80
4x — 5y =11 —x+4y =—-64
(41) 3x+ 3y =100 (42) x+3y=4
3x — 8y =300 2x—y=1
—x + 2y = 500 —2x — 6y =—8
4x — 9y = -5
—6x+ 3y = -3
(43) x+y—2=0 (44) 2x —y =12
3x+2y+4z=20 —4x—z=15
(45) x+2y —2z= -1 (46) 2x+y—2z=0
2x+y+z=5 X+2+2z=0
—X+y—z=-2 3x—y+2z2=0
(47) x+z+y=2 (48) x+2y—z=5
3z+2x+y=5 2x—y+2z2=1
3y+x=1 2+2y—2z=7
X+2y+z=3
(49) 5x+3y+2z+4w=>5 (50) 2x—y+z—w=1
x+y+w=0 X+2y—z+2w=-1
3x+2y+2z=-3 x—3y+2z—-3w=2

X+y+2z2+3w=4

(51) The price schedule for a Chicago to Los Angeles flight is given by
p=[200 350 500]



where row matrix elements pertain, respectively, to coach ticket prices,
business-class ticket prices and first-class ticket prices. The number of tickets
purchased in each class for a particular flight is given by the column matrix

130
n=| 20
10

Calculate the products (a) pn and (b) np, and determine the significance
of each.

(52) The closing prices of a person’s portfolio during the past week are tabulated as

1 7
40 40E 4O§ 41 41

p_ |3t 32 3L 4 37
4 8 8

3 1 5

10 92 100 10 9

where the columns pertain to the days of the week, Monday through Friday, and
the rows pertain to the prices of Orchard Fruits, Lion Airways, and Arrow Oil.
The person’s holdings in each of these companies are given by the row matrix

h=[100 500 400]
Calculatetheproducts (a) hPand (b) Ph, and determine thesignificance of each.

(53) The time requirements for a company to produce three products is tabu-

lated in
0.2 0.5 04
T=1]12 23 1.7
0.8 3.1 1.2

where the rows pertain to lamp bases, cabinets, and tables, respectively. The
columns pertain to the hours of labor required for cutting the wood, assem-
bling, and painting, respectively. The hourly wages of a carpenter to cut
wood, of a craftsperson to assemble a product, and of a decorator to paint
are given, respectively, by the columns of the matrix

10.50
w = | 14.00
12.25

Calculate the product Tw and determine its significance.

(54) Continuing with the information provided in the previous problem,
assume further that the number of items on order for lamp bases, cabinets,
and tables, respectively, are given in the rows of

q=[1000 100 200]

Calculate the product qTw and determine its significance.
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(55) The results of a flue epidemic at a college campus are collected in the matrix
0.20 0.20 0.15 0.15

F= 010 030 030 0.40

0.70 0.50 0.55 0.45

where each element is a percent converted to a decimal. The columns per-
tain to freshmen, sophomores, juniors, and seniors, respectively; whereas
the rows represent bedridden students, students who are infected but
ambulatory, and well students, respectively. The male-female composition
of each class is given by the matrix

1050 950
1100 1050
N 360 500
860 1000

Calculate the product FC and determine its significance.

1.3 SPECIAL MATRICES

Certain types of matrices appear so frequently that it is advisable to discuss them The transpose A is

separately. The transpose of a matrix A, denoted by AT, is obtained by converting obtained by converting

all the rows of A into the columns of A" while preserving the ordering of the alllthe mWE,IOf Ainto

rows/columns. The first row of A becomes the first column of A", the second Cc0\UmMns While preserving
T the ordering of the

row of A becomes the second column of A’, and the last row of A becomes | s/columns.

the last column of A". More formally, if A={[a;] is an n x p matrix, then the trans-

pose of A, denoted by A"=|bj|, is a p x n matrix where ajj=aj;.

1 2 3 1 4 7
Example 1IfA= (4 5 6|, then A"= |2 5 8], whilethetranspose of
7 8 9 3 69

[0 BN B o) W)

|1 2 3 4. 1
B—[S 6 7 8}13Bl

= Wi =

[ » THEOREM 1

The following properties are true for any scalar A and any matrices for which the indicated
additions and multiplications are defined:




A submatrix of a

matrix A is a matrix
obtained from A by
removing any number of
rows or columns from A.

Proof: We prove part (d) and leave the others as exercises (see Problems 21
through 23). Let A=[a;] and B=[b;] have orders n x m and m x p, so that the
product AB is defined. Then

([as] [b3])"

(AB)"

T

- _

= Zaikbkj definition of matrix multiplication
Lk=1 i
- i

= Zajkbki definition of the transpose
Lk=1 i

- -
= Zazjb;; definition of the transpose
Lk=1 J

[ m
_ T T
= E bikakj
L =1

= bﬂ [aﬂ definition of matrix multiplication

— BTAT
Observation: The transpose of a product of matrices is not the product of the

transposes but rather the commuted product of the transposes.

A matrix A is symmetric if it equals its own transpose; that is, if A= AT A matrix A is
skew-symmetric if it equals the negative of its transpose; that is, if A=—A".

1 2 3 0o 2 -3
Example 2 A= |2 4 5| is symmetric while B=|-2 0 1] is
3 560 3 —-1 0

skew-symmetric.

A submatrix of a matrix A is a matrix obtained from A by removing any number of
rows or columns from A. In particular, if

1 2 3 4
5 6 7 8
A= 9 10 11 12 (1.16)

13 14 15 16

10 12
14 16
obtained by removing the first and second rows together with the first and third
columns from A, while C is obtained by removing from A the second, third, and
fourth rows together with the first column. By removing no rows and no col-
umns from A, it follows that A is a submatrix of itself.

then both B = [ } and C=[2 3 4] are submatrices of A. Here B is
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A matrix is partitioned if it is divided into submatrices by horizontal and Amatrixis partitioned if it
vertical lines between rows and columns. By varying the choices of where is divided into subma-

to place the horizontal and vertical lines, one can partition a matrix in differ- [fices by horizontal and
vertical lines between

ent ways. Thus, rows and columns.

CG + DJ|CH + DK
EG + FJ|EH + FK

AB =

provided the partitioning was such that the indicated multiplications are
defined.

Example 3 Find AB if

3 1|0
2 001 2 110 0 0
A= 10 0|3| and B= |1 1]0 0 0
0 01 0 10 0 1
0 0(0
Solution: From the indicated partitions, we find that
_31'21'+0[0 1] 31'000'+0[001]_
2 0f|-1 1] 0 2 0/[0 0 O] 0
0 01 2 17 3 0 0770 0 0] 3
AB = 1 1
{0 0]_—1 1_+[1][0 ] [0 0] 10 0 0_+{1][0 01
2 1] [0 0 0]
00 0] [0 1 00 0][0 0 1
0 01|y | #1000 11|10 0] | o]+ 1010 0 1))

[ T Y e
B W
NS SN
| IS

+
[ —
o O
o O
| IS

~ |5 4], J00
4270 o
170 0] +[0 0] | [0 0 0] +[0 0 0]
2‘2‘888 5400 0
4 2] 4200 0
— 1o 3lo03l=|0300 3
010 0 1 01001
0 0l0 0 o 00000

Note that we partitioned to make maximum use of the zero submatrices of both
A and B.

A zero row in a matrix is a row containing only zero elements, whereas a nonzero
row is a row that contains at least one nonzero element.
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A matrix is in row-reduced form if it satisfies the following four conditions:

(i) All zero rows appear below nonzero rows when both types are present in the matrix.
(ii) The first nonzero element in any nonzero row is 1.
(iii) All elements directly below (that is, in the same column but in succeeding rows from)
the first nonzero element of a nonzero row are zero.
(iv) The first nonzero element of any nonzero row appears in a later column (further to the
right) than the first nonzero element in any preceding row.

Row-reduced matrices are invaluable for solving sets of simultaneous linear
equations. We shall use these matrices extensively in succeeding sections, but
at present we are interested only in determining whether a given matrix is or
is not in row-reduced form.

Example 4
11 -2 4 7
0 0 -6 57
A =
0 0 0 0 0
0 0 0 0 O

is not in row-reduced form because the first nonzero element in the second row is
not 1. If a,5 was 1 instead of —6, then the matrix would be in row-reduced form.

1 2 3
B=|0 0 O
0 0 1
is not in row-reduced form because the second row is a zero row and it appears
before the third row, which is a nonzero row. If the second and third rows had
been interchanged, then the matrix would be in row-reduced form.
1 2 3 4
C=]0 0 1 2
01 0 5
is not in row-reduced form because the first nonzero element in row two appears
in a later column, column 3, than the first nonzero element in row three. If the

second and third rows had been interchanged, then the matrix would be in row-
reduced form.
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is not in row-reduced form because the first nonzero element in row two appears
in the third column and everything below this element is not zero. Had ds3 been
zero instead of 1, then the matrix would be in row-reduced form.

For the remainder of this section, we restrict ourselves to square matrices, matri-
ces having the same number of rows as columns. Recall that the main diagonal of
an n x n matrix A= [a;] consists of all the diagonal elements a;1, a5, ..., aun.
A diagonal matrix is a square matrix having only zeros as non-diagonal elements.

Thus,
3
5 0
and 0
0o -1

are both diagonal matrices or orders 2 x 2 and 3 x 3, respectively. A square zero
matrix is a special diagonal matrix having all its elements equal to zero.

An identity matrix, denoted as I, is a diagonal matrix having all its diagonal ele- ,, identity matrix 1 is a

ments equal to 1. The 2 x 2 and 4 x 4 identity matrices are, respectively, diagonal matrix having all
its diagonal elements
1000 equal to 1.
1 0 01 0 O
and
0 -1 0 0 1 0
0 0 0 1

If A and I are square matrices of the same order, then
Al=1A = A. (1.17)
A block diagonal matrix A is one that can be partitioned into the form
A 0

A,
A — A3

0 Ay
where A, A,, ..., Aj, are square submatrices. Block diagonal matrices are partic-

ularly easy to multiply because in partitioned form they act as diagonal matrices.

A matrix A= [aj] is upper triangular if a;= 0 for i > j; that is, if all elements below
the main diagonal are zero. If a;;= 0 for i <j, that s, if all elements above the main
diagonal are zero, then A is lower triangular. Examples of upper and lower trian-
gular matrices are, respectively,

1 2 4 1 500 0
01 3 -1 12 0 0
002 5| ad 0130
000 5 201 4 1
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The product of two lower (upper) triangular matrices of the same order is also lower (upper)
triangular. €

Proof: We prove this proposition for lower triangular matrices and leave the upper
triangular case as an exercise (see Problem 35). Let A=[a;] and B=[b;] both be
n x n lower triangular matrices, and set AB=C=[c;]. We need to show that C is
lower triangular, or equivalently, that ¢;=0 when i <j. Now

n j—1 n
ci=> auby =Y anby+ Y _ ayby
=1 k=1 k=1

We are given that both A and B are lower triangular, hence a;,=0 when i <k and
bij=0 when k <j. Thus,

j—1 j—1
> aubiy = an(0) =0
=1 k=1

because in this summation k is always less than j. Furthermore, if we restrict i <j,
then

n n
> awbii =Y (0)by; =0
k=1 1

k=
because i <j<k. Thus, ¢;;=0 when i <j.

Finally, we define positive integral powers of matrix in the obvious manner:
A’=AA, A>=AAA=AA’ and, in general, for any positive integer n

A" = AA.. A (1.18)
——

n—times

For n=0, we define A°=1.

1 -2 , 1 =271 2] _[-1 -8
Example5IfA_[1 3], then A _[1 3}{1 3}_{ 4 7]

It follows directly from part (d) of Theorem 1 that
(82)" = (AA)" = ATAT = (a1)?,

which may be generalized to

Aan" = (A")" (1.19)
for any positive integer n.
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Problems 1.3

(1) For each of the following pairs of matrices A and B, find the products (AB)",
A'B', and B'A" and verify that (AB)" =B"A".

a8 o= [33 )

r 12
(b)A:zzz}, B=|3 4
- 56

w
N
Ul

-1
3
0 7 -8

(c) A=

1
N =
—
| I |
=
Il
—
|

(2) Verify that (A+B)"=A" +B' for the matrices given in part (c) of Problem 1.

N

(3) Find x'x and xx' for x = [3] .

N

(4) Simplify the following expressions:
(a) (AB")"
(b) (A+B")'+A"
(©) [A'(B+CH]
(d) [(AB)'+C]"
(e) [(A+AT) (A-AD]"

1
(5) Which of the following matrices are submatrices of A = {4
7

4

7

(a) [; ;} b) (1l () {; ﬁ] (d) { o

(6) Identify all of the nonempty submatrices of A = {i b] .

d
4 1 00
(7) Partition A = 3 (2) (1) 8 intoblockdiagonalformandthencalculateAz.
001 2
320 O
(8) Partition B = {(1) (1) g (1) into block diagonal form and then
0 01 -1

calculate B2.



(9) Use the matrices defined in Problems (7) and (8), partitioned into block
diagonal form, to calculate AB.

(10) Use partitioning to calculate A and A° for

[N eNoNeoNeN
S oo oONNO
[N eNolNelNoNol
el eNeN el
el oNoNe]
S = O OO0

What is A" for any positive integer n > 3?

(11) Determine which, if any, of the following matrices are in row-reduced form:

[0 1 0 4 -7 1 1 0 4 -7
0001 2 0101 2
A*0000 1’B*0010 1|’
(0 0 0 0 O] 0001 5
(1 1 0 4 =77 01 0 4 -7
0101 2 00 0 0 O
C_0000 1’D_0010 1]
|00 0 1 5] 000 O0 O
(2 2 27 0 0 O
E=|0 2 2|, F=]|0 0 0],
|0 0 2] 0 0 0
[1 2 3] 0 0O
G=|0 0 1|, H=|0 1 o/,
|1 0 0] 0 00
1 1 1
J=11 21, K=|0 -1 1],
0 00 0 0
2 00 [1 1/2 1/3
L=|0 2 0|, M=|0 1 1/4],
0 00 0 0 1
1 00 -
N=1{0o o 1], Q=[] []
0 0 0 L
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11 10
w=lo o) 5|1 3

o[ 12]

(12) Determine which, if any, of the matrices in Problem 11 are upper
triangular.

(13) Must a square matrix in row-reduced form necessarily be upper triangular?

(14) Must an upper triangular matrix be in row-reduced form?

(15) Can a matrix be both upper triangular and lower triangular simultaneously?

(16) Show that AB=BA for
-1 0 O 5 0 0
A= 0 3 0, and B=|0 3 0
0 0 1 0O 0 2
(17) Prove that if A and B are diagonal matrices of the same order, then AB=BA.

(18) Does a 2 x 2 diagonal matrix commute with every other 2 x 2 matrix?

(19) Calculate the products AD and BD for

1 1 1 01 2 2 0 0
A= 1 , B=1|3 4 5|, and D=|0 3 0
1 1 1 6 7 8 0O 0 -5

What conclusions can you make about postmultiplying a square matrix by
a diagonal matrix?

(20) Calculate the products DA and DB for the matrices defined in Problem 19.
What conclusions can you make about premultiplying a square matrix by a
diagonal matrix?

(21) Prove that (A")"=A for any matrix A.
(22) Prove that (1A)"=JA" for any matrix A and any scalar /.
(23) Prove that if A and B are matrices of the same order then (A+B)'=A"+B",

(24) Let A, B, and C be matrices of orders m x p, p xr, and r x s, respectively.
Prove that (ABC)'=C'B'A".

(25) Prove that if A is a square matrix, then B=(A+A")/2 is a symmetric matrix.

(26) Prove that if A is a square matrix, then C=(A—A")/2 is a skew-symmetric
matrix.



(27) Use the results of the last two problems to prove that any square matrix
can be written as the sum of a symmetric matrix and a skew-symmetric
matrix.

(28) Write the matrix A in part (c) of Problem 1 as the sum of a symmetric matrix
and a skew-symmetric matrix.

(29) Write the matrix B in part (c) of Problem 1 as the sum of a symmetric matrix
and a skew-symmetric matrix.

(30) Prove that AA" is symmetric for any matrix A.

(31) Prove that the diagonal elements of a skew-symmetric matrix must
be zero.

(32) Prove that if a 2 x 2 matrix A commutes with every 2 x 2 diagonal matrix,
then A must be diagonal. Hint: Consider, in particular, the diagonal

. 1 0
matrix D = [0 0}.

(33) Prove that if a n x n matrix A commutes with every n x n diagonal matrix,
the A must be diagonal.

(34) Prove that if D=d;] is a diagonal matrix, then D*=[d}].

(35) Prove that the product of two upper triangular matrices is upper
triangular.

1.4 LINEAR SYSTEMS OF EQUATIONS

Systems of simultaneous linear equations appear frequently in engineering
and scientific problems. The need for efficient methods that solve such
systems was one of the historical forces behind the introduction of matrices,
and that need continues today, especially for solution techniques that are appli-
cable to large systems containing hundreds of equations and hundreds of
variables.

A system of m-linear equations in n-variables x;, x,, ..., x,, has the general form

a11x1 + dinXy + -+ aaXn = by

Az1X1 + dXy + -+ + Aoy = by
(1.20)

Am1X1 + AmaXy + -+ AgnXn = by
where the coefficients a;; (i=1,2, ..., m;j=1, 2, ..., n) and the quantities b; are

all known scalars. The variables in a linear equation appear only to the first
power and are multiplied only by known scalars. Linear equations do not involve
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products of variables, variables raised to powers other than one, or variables
appearing as arguments of transcendental functions.

For systems containing a few variables, it is common to denote the variables by
distinct letters such as x, y, and z. Such labeling is impractical for systems involv-
ing hundreds of variables; instead a single letter identifies all variables with dif-
ferent numerical subscripts used to distinguished different variables, such as x;,
X, ooy Xy

Example 1 The system
2x+3y—2z=12,000
4x — 5y + 6z = 35, 600

of two equations in the variables x, y, and z is linear, as is the system

20x7 + 80x; + 35x5 + 40x4 + 55x5 = —0.005
90x; — 15x5 — 70x3 + 25x4 + 55x5 = 0.015
30x; + 35x, — 35x3 + 10x4 4+ 65x5 = —0.015

of three equations with five variables x;, x,, ..., x5. In contrast, the system

2x 4 3xy = 25
4+/x + siny = 50
is not linear for many reasons: it contains a product xy of variables; it contains the

variable x raised to the one-half power; and it contains the variable y as the argu-
ment of the transcendental sine function.

As shown in Section 1.2, any linear system of form (1.20) can be rewritten in the
matrix form

Ax=Db (1.14 repeated)
with
a;n  an dip X1 b,
ax dx aon X2 b,
A= , x=1| .|, and b=| .
am1  Am2 Amn Xn by,

If m+#n, then A is not square and the dimensions of x and b will be different.

A solution to linear system (1.20) is a set of scalar values for the variables x;,
Xa, ..., X, that when substituted into each equation of the system makes each
equation true.

A solution to linear
system of equations is

a set of scalar values for
the variables that when
substituted into each
equation of the system
makes each

equation true.



Example 2 The scalar values x=2 and y=3 are a solution to the system

3x+2y =12
6x +4y =24

A second solution is x=—4 and y=12. In contrast, the scalar values x=1, y=2,
and z=3 are not a solution to the system

2x+3y+4z=120
4x + 5y + 6z =32
7x+ 8y +9z2=40

because these values do not make the third equation true, even though they do
satisfy the first two equations of the system.

» THEOREM 1
If x1 and x, are two different solutions of Ax=b, then z=ax4 + fX is also a solution for any
real numbers o and B with o+ f=1. <4

\ J

Proof: x; and x, are given as solutions of Ax=b, hence Ax; =b, and Ax, =b. Then
Az = A(oxy + fixa) = a(Ax1) + f(Axy) = ab + fb = (e + f)b =Db.

so z is also a solution.

Because there are infinitely many ways to form o+ =1 (let « be any real number
and set =1 —a), it follows from Theorem 1 that once we identify two solutions
we can combine them into infinitely many other solutions. Consequently, the
number of possible solutions to a system of linear equations is either none,
one, or infinitely many.

The graph of a linear equation in two variables is a line in the plane; hence a sys-
tem of linear equations in two variables is depicted graphically by a set of lines.
A solution to such a system is a set of coordinates for a point in the plane that lies
on all the lines defined by the equations. In particular, the graphs of the equa-
tions in the system

x+y=1

1.21
x—y=0 ( )

are shown in Figure 1.3. There is only one point of intersection, and the coordi-
nates of this pointx=y=1/2 is the unique solution to system (1.21). In contrast,
the graphs of the equations in the system

x+y=1

1.22
x+y=2 ( )
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are shown in Figure 1.4. The lines are parallel and have no points of intersection,
so system (1.22) has no solution. Finally, the graphs of the equations in the
system

x+y=0

(1.23)
2x+2y=0

are shown in Figure 1.5. The lines overlap, hence every point on either line is a
point of intersection and system (1.23) has infinitely many solutions.

A system of simultaneous linear equations is consistent if it possesses at least one
solution. If no solution exists, the system is inconsistent. Systems (1.21) and
(1.23) are consistent; system (1.22) in inconsistent.

The graph of a linear equation in three variables is a plane in space; hence a sys-
tem of linear equations in three variables is depicted graphically by a set of
planes. A solution to such a system is the set of coordinates for a point in space
that lies on all the planes defined by the equations. Such a system can have no
solutions, one solution, or infinitely many solutions.

Figure 1.6 shows three planes that intersect at a single point, and it represents a
system of three linear equations in three variables with a unique solution.


Figure 1.3
Figure 1.4
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Figures 1.7 and 1.8 show systems of planes that have no points that lie on all
three planes; each figure depicts a different system of three linear equations in
three unknowns with no solutions. Figure 1.9 shows three planes intersecting
at aline, and it represents a system of three equations in three variables with infi-
nitely many solutions, one solution corresponding to each point on the line.
A different example of infinitely many solutions is obtained by collapsing the


Figure 1.5
Figure 1.6
Figure 1.7
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FIGURE 1.8

FIGURE 1.9

three planes in Figure 1.7 onto each other so that each plane is an exact copy of
the others. Then every point on one plane is also on the other two.

System (1.20) is homogeneous if the right side of each equation is 0; that is, if A homogeneous system

b;=b,=...=b,,=0. In matrix form, we say that the system Ax=Db is homoge- of linear equations has

neous if b=0, a zero column matrix. If b0, which implies that at least one 1€ matrix form Ax=0;
. : : one solution is the trivial

component of b differs from 0, then the system of equations is nonhomogeneous. solution X—0.

System (1.23) is homogeneous; systems (1.21) and (1.22) are nonhomoge-

neous. One solution to a homogeneous system of equations is obtained by set-

ting all variables equal to 0. This solution is called the trivial solution. Thus, we

have the following theorem.

» THEOREM 2

A homogeneous system of linear equations is consistent.
\ J
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Figure 1.9
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The augmented matrix
for Ax=Dh is the
partitioned matrix [Alb].

All the scalars contained in the system of equations Ax=b appear in the coeffi-
cient matrix A and the column matrix b. These scalars can be combined into the
single partitioned matrix [A|b], known as the augmented matrix for the system of
equations.

Example 3 The system
X1+ Xy — 2.X'3 =-3
2x1 + SXQ +3JC3 =11
—X1+3x, +x3=5

can be written as the matrix equation

1 1 =2 X1 -3
2 5 3 x| =1 11
-1 3 1 X3 5

which has as its augmented matrix

11 —2|-3
Abl=| 2 5 3|11
-1 3 1| 5

Example 4 Write the set of equation in x, ¥, and z associated with the augmented
matrix

(O IR

—2x+y+3z= 8
4y +5z= -3

Solution:

The traditional approach to solving a system of linear equations is to manipulate
the equations so that the resulting equations are easy to solve and have the same
solutions as the original equations. Three operations that alter equations but do
not change their solutions are:

(i) Interchange the positions of any two equations.
(i) Multiply an equation by a nonzero scalar.
(iii) Add to one equation a scalar times another equation.

If we restate these operations in words appropriate to an augmented matrix, we
obtain the three elementary row operations:

(R4) Interchange any two rows in a matrix.
(R2) Multiply any row of a matrix by a nonzero scalar.

(R3) Add to one row of a matrix a scalar times another row of that same
matrix.
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Gaussian elimination is a four-step matrix method, centered on the three elemen-
tary row operations, for solving simultaneous linear equations.

GAUSSIAN ELIMINATION

Step 1. Construct an augmented matrix for the given system of equations.

Step 2. Use elementary row operations to transform the augmented matrix into an
augmented matrix in row-reduced form.

Step 3. Write the equations associated with the resulting augmented matrix.

Step 4. Solve the new set of equations by back substitution.

The new set of equations resulting from Step 3 is called the derived set, and it is
solved easily by back-substitution. Each equation in the derived set is solved for
the first unknown that appears in that equation with a nonzero coefficient,
beginning with the last equation and sequentially moving through the system
until we reach the first equation. By limiting Gaussian elimination to elementary
row operations, we are assured that the derived set of equations has the same
solutions as the original set.

Most of the work in Gaussian elimination occurs in the second step: the trans-
formation of an augmented matrix to row-reduced form. In transforming a
matrix to row-reduced form, it is advisable to adhere to three basic principles:

(i) Completely transform one column to the required form before consider-
ing another column.
(i) Work on columns in order, from left to right.
(iii) Never use an operation that changes a zero in a previously transformed
column.

Example 5 Use Gaussian elimination to solve the system

x+3y=4,
2x—y=1,
3x+ 2y =5,
5x + 15y = 20.

Solution: The augmented matrix for this system is

1 3| 4
2 -1 1
3 21 5
5 15120

We transform this augmented matrix into row-reduced form using only the three
elementary row operations. The first nonzero element in the first row appears in
the 1-1 position, so use elementary row operation R; to transform all other
elements in the first column to zero.



A pivot is transformed to
unity prior to using it to
cancel other elements
to zero.

1 3| 4 (1 3| 4 by adding to the
2 -1 1 0o 7| -7 second row —2
— .
3 2 5 3 2 5 times the first row
5 1520 |5 15| 20 |
(1 3| 4] by adding to the
0 -7\ -7 third row —3
— .
0 —-7|-7 times the first row
|5 15| 20
(1 3| 4] by adding to the
0 -7 -7 fourth row —5
— .
0o -7\ -7 times the first row
0o o o]

The first row and the first column are correctly formatted, so we turn our atten-
tion to the second row and second column. We use elementary row operations
on the current augmented matrix to transform the first nonzero element in the
second row to one and then all elements under it, in the second column, to
zero. Thus,

1 3 4 by multiplying the
0 —-1| -1 second row by —1/7
“lo —7|-7
00 | o0
(1 3|4 by adding to the
0 1|1 third row 7 times
1o o]o the second row
(0 0]0

This augmented matrix is in row-reduced form, and the system of equations asso-
ciated with it is the derived set

x+3y=4
y=1
0=0
0=0.

Solving the second equation for y and then the first equation for x, we obtain
x=1and y=1 as the solution to both this last set of equations and also the orig-
inal set of equations.

When one element in a matrix is used to convert another element to zero by ele-
mentary row operation Rj, the first element is called a, pivot. In Example 5, we
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used the element in the 1-1 position first to cancel the element in the 2-1 position
and then to cancel the elements in the 3-1 and 4-1 positions. In each case, the
unity element in the 1-1 position was the pivot. Later, we used the unity element
in the 2-2 position to cancel the element —7 in the 3-2 position; here, the 2-2
element served as the pivot. We shall always use elementary row operation R,
to transform a pivot to unity before using the pivot to transform other elements
to zero.

Example 6 Use Gaussian elimination to solve the system

xX+2y+z=23,
2x+ 3y —z = —06,
3x — 2y — 4z = —2.

Solution: Transforming the augmented matrix for this system into row-reduced
form using only elementary row operations, we obtain

1 2 1| 3 ) 1 3 by adding to
27 3 116!l =10 -1 =31 -12 the second row —2
3 _2 _4| -2 3 -2 _4| -2 times the first row
(1 2 1 3] by adding to
1o -1 =3 -12 the third row —3
0o -8 -7|-11 times the first row
(1 2 1 3] by multiplying the
—~ 1o 1 3| _12 second row by —1
0 -8 —7|-11
(1 2 1] 3 by adding to the
N 1 3112 third row 8 times
0 o0 17185 the second row
(1 2 1| 3 by multiplying the
- 1 31|12 third row by 1/17
0 0 1| 5

This augmented matrix is in row-reduced form; the derived set is
x+2y+z=3
y+3z=12
z=5



Solving the third equation for z, then the second equation for y, and lastly, the
first equation for x, we obtain x=4, y=—3, and z=5 as the solution to both this
last system and the original system of equations.

Elementary row operation R; is used to move potential pivots into more useful
locations by rearranging the positions of rows.

Example 7 Use Gaussian elimination to solve the system
2x3+3x4 =0
X1+ 3x3+x4=0
X1 +x+2x3=0

Solution: The augmented matrix for this system is

0 0 2 370
1 0 3 1|0
11 2 010

Normally, we would use the element in the 1-1 position to transform to zero the
two elements directly below it, but we cannot because the 1-1 element is itself
zero. To move a nonzero element into the ideal pivot position, we interchange
the first row with either of the other two rows. The choice is arbitrary.

by interchanging the

002 3lo] [1 03 1]o0
10 3 1lol =10 0 2 3o first and second rows
1 1 2 0]0 11 2 0]0
1 0 3 1o by adding to the
N 0 2 310 third row —1 times
o 1 -1 -1lo the first row
[ 3 1]o by interchanging the
- 1 -1 —11lo0 second and third rows
0 0 2 310
(1 o0 3 1101 by multiplying the
1o 1 -1 -1lo third row by 1/2
0 o 1 3/2|0

This augmented matrix is in row-reduced form; the derived set is
X1 + 33(33 +x4=0
X2 — X3 — X4 = 0

3
X3 +E.X4:0
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We use the third equation to solve for x3, then the second equation to solve Ifthe solution to a derived
for x,, and lastly, the first equation to solve for x;, because in each case Set involves at least one
those are the variables that appear first in the respective equations. There is ?gg'gﬁgnl;?gzx% tr:‘::
no defining equation for x4, so this variable remains arbitrary, and we solve infinitely many solutions.
for the other variables in terms of it. The solution to both this last set of equa-

tions and the original set of equations is x; =(7/2)x4, x2=(—1/2)x, and

x3=(—3/2)x, with x, arbitrary. The solution can be written as the column

matrix

X1 (7/2)x4 7
X (—1/2)x4 xq | —1
*= X3 - (—=3/2)x4 T2 -3
X4 X4 2

Example 7 is a system of equations with infinitely many solutions, one for each
real number assigned to the arbitrary variable x,. Infinitely many solutions occur
when the derived set of equations is consistent and has more unknowns than
equations. If a derived set contains n variables and r equations, n>r, then each
equation in the derived set is solved for the first variable in that equation with a
nonzero coefficient; this defines r variables and leaves the remaining n —r vari-
ables as arbitrary. These arbitrary variables may be chosen in infinitely many
ways to produce solutions.

A homogeneous set of linear equations is always consistent. If such a system has
more variables than equations, then its derived set will also have more variables
than equations, resulting in infinitely many solutions. Thus, we have the follow-
ing important result:

» THEOREM 3

A homogeneous system of linear equations containing more variables than equations has
infinitely many solutions.

In contrast to homogeneous systems, a nonhomogeneous system may Ifa derived set contains a

have no solutions. If a derived set of equations contains a false equation, false equation, then the

such as 0=1, that set is inconsistent because no values for the variables °rdinal set of equations
. . has no solution.

can make the false equation true. Because the derived set has the same

solutions as the original set, it follows that the original set is also

inconsistent.

Example 8 Use Gaussian elimination to solve the system
xX+2y=2,
3x+ 6y = 7.



Solution: Transforming the augmented matrix for this system into row-reduced
form, we obtain

1 22 1 22 by adding the second row
3 6/7] o o1 —3 times the first row

This augmented matrix is in row-reduced form; the derived set is

xX+2y=2
0=1

No values of x and y can make this last equation true, so the derived set, as well as
the original set of equations, has no solution.

Finally, we note that most augmented matrices can be transformed into a variety
of row-reduced forms. If a row-reduced augmented matrix has two nonzero
rows, then a different row-reduced augmented matrix is easily constructed by
adding to the first row any nonzero constant times the second row. The equa-
tions associated with both augmented matrices, different as they may be, will
have identical solutions.

Problems 1.4

(1) Determine whether the proposed values of x, y, and z are solutions to:

x+y+2z=2,
x—y—2z=0,
X+2y+2z=1.
(@) x=1, y=-3, z=2. (b) x=1, y=-1, z=1.

(2) Determine whether the proposed values of x;, x,, and x5 are solutions to:

X1 + 2XQ + 39('3 = 6,
X1 — 3JC2 + 2X3 =0,
3x1 — 4JC2 + 7X3 =0.

(@) x1=1, x=1, x3=1.
(b) X1:2, x2:2, x3:0.
(c) x1=14, x,=2, x3=—4.

(3) Find a value for k such that x=2 and y=Fk is a solution of the system

3x 4 5y = 11,
2x— 7y = —-3.
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(4) Find a value for k such that x=2k, y=—k, and z=0 is a solution of the
system

x+2y+z2=0,
—2x—4y+2z2=0,
3x — 6y —4z=1.

(5) Find a value for k such that x=2k, y=—k, and z=0 is a solution of the
system

X+2y+2z2=0,
2x+4y+2z2=0,
—3x— 6y —4z=0.

In Problems 6 through 11, write the set of equations associated with the
given augmented matrix and the specified variables and then solve.

(1 2
10 1

(6) ‘ Z} for x and y.

1 -2 31 10

(7) | 0 1 -5| -3 for x, y, and z.
0 0 1 4

1 -3 12 40
(8) |0 1 —-6| —200 for x1, xp, and x3.

0 0 1 25
(1 3 0] -8
(9910 1 4 2 | forx, y, andz.
0O 0 O 0
1 - 200
(10) | O 1 —-1|0]| forx;,x,and x3.
0 0 0|0
(1 -1 ol 1
0 1 -2 2
(11) 0 0 113 for x1, x,, and x3.
0 0 0 1

In Problems 12 through 29, use Gaussian elimination to solve the given sys-
tem of equations.

(12) x—-2y=35, (13) 4x+ 24y = 20,
—3x+7y=28. 2x+ 11y = 8.



(14) —y=6, (15) —x+3y =0,

2x + 7y = —5. 3x+ 5y =0.
(16) —x+3y=0, (17) x+2y+3z2=4,
3x -9y =0. —x—7+4+2z=3,
—2x+3y=0.
(18) y—2z=4, (19) x+3y+2z=0,
x+3y+2z2=1, —x—4y+3z= -1,
—2x+3y+z=2. 2x—z=3,
2x—y+4z=2.
(200 2x+4y—-z=0, (21) —3x+6y—3z=0,
—4x — 8y +2z=0, x—=2y+z2=0,
—2x—4y+z=—-1. x—2y+z=0.
(22) —3x+3y—3z=0, (23) —3x; + 6x3 —3x3 =0,
x—y+2z=0, X1 —xy +x3 =0.
2x—2y+z=0,
x+y+z=0.
(24) x —x+2x3 =0, (25) x1 + 2%, = -3,
2x1 — Z.XQ +4X3 =0. 3X1 +x, = 1.
(26)  x1+2x +x3 =—1, (27) x1+2x, =5,
le — 3.X‘2 + 2X3 =4. —3x1 +xp; = 13,
4x1+3x2:0.
(28) 2X1+4XQ:2, (29) 2x1+3x2—4x3:2,
3x1 + 2%, +x3 = 8§, 3% — 2% = —1,
5x1 — 3x; + 7x3 = 15. 8x1 —xp — 4x3 = 10.

(30) Show graphically that the number of solutions to a linear system of two
equations in three variables is either none or infinitely many.

(31) Let y be a solution to Ax=Db and let z be a solution to the associated
homogeneous system Ax=0. Prove that u=y+z is also a solution to
Ax=Db.

(32) Let y and z be as defined in Problem 31.
(a) For what scalars o is u=y+ 0z also a solution to Ax=b?
(b) For what scalars o is u=ay+z also a solution to Ax=Db?

In Problems 33 through 40, establish a set of equations that models each
process and then solve.
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(33) A manufacturer receives daily shipments of 70,000 springs and 45,000
pounds of stuffing for producing regular and support mattresses. Regu-
lar mattresses r require 50 springs and 30 pounds of stuffing; support
mattresses s require 60 springs and 40 pounds of stuffing. How many
mattresses of each type should be produced daily to utilize all available
inventory?

(34) A manufacturer produces desks and bookcases. Desks d require 5 hours
of cutting time and 10 hours of assembling time. Bookcases b require
15 minutes of cutting time and 1 hour of assembling time. Each day
the manufacturer has available 200 hours for cutting and 500 hours
for assembling. How many desks and bookcases should be scheduled
for completion each day to utilize all available workpower?

(35) A mining company has a contract to supply 70,000 tons of low-grade ore,
181,000 tons of medium-grade ore, and 41,000 tons of high-grade ore to
a supplier. The company has three mines that it can work. Mine A pro-
duces 8000 tons of low-grade ore, 5000 tons of medium-grade ore, and
1000 tons of high-grade ore during each day of operation. Mine B pro-
duces 3000 tons of low-grade ore, 12,000 tons of medium-grade ore,
and 3000 tons of high-grade ore for each day it is in operation. The figures
for mine C are 1000, 10,000, and 2000, respectively. How many days
must each mine operate to meet contractual demands without producing
a surplus?

(36) A small company computes its end-of-the- year bonus b as 5% of the net
profit after city and state taxes have been paid. The city tax ¢ is 2% of
taxable income, while the state tax s is 3% of taxable income with credit
allowed for the city tax as a pretax deduction. This year, taxable income
was $400,000. What is the bonus?

(37) A gasoline producer has $800,000 in fixed annual costs and incurs an
additional variable cost of $30 per barrel B of gasoline. The total cost
C is the sum of the fixed and variable costs. The net sales S is computed
on a wholesale price of $40 per barrel.
(a) Show that C, B, and S are related by two simultaneous equations.
(b) How many barrels must be produced to break even, that is, for net
sales to equal cost?

(38) (Leontief Closed Models) A closed economic model involves a society
in which all the goods and services produced by members of the soci-
ety are consumed by those members. No goods and services are
imported from without and none are exported. Such a system involves
N members, each of whom produces goods or services and charges for
their use. The problem is to determine the prices each member should
charge for his or her labor so that everyone breaks even after one year.
For simplicity, it is assumed that each member produces one unit
per year.



Consider a simple closed system limited to a farmer, a carpenter, and a
weaver. The farmer produces one unit of food each year, the carpenter
produces one unit of finished wood products each year, and the weaver
produces one unit of clothing each year. Let p; denote the farmer’s
annual income (that is, the price she charges for her unit of food),
let p, denote the carpenter’s annual income (that is, the price he
charges for his unit of finished wood products), and let p; denote
the weaver's annual income. Assume on an annual basis that the
farmer and the carpenter consume 40% each of the available food,
while the weaver eats the remaining 20%. Assume that the carpenter
uses 25% of the wood products he makes, while the farmer uses
30% and the weaver uses 45%. Assume further that the farmer uses
50% of the weaver’s clothing while the carpenter uses 35% and the
weaver consumes the remaining 15%. Show that a break-even equa-
tion for the farmer is

0.40p; + 0.30p, + 0.50p5 = p;
while the break-even equation for the carpenter is

0.40p; + 0.25p, + 035p3 = p,

What is the break-even equation for the weaver? Rewrite all three equa-
tions as a homogeneous system and then find the annual incomes of
each sector.

(39) Paul, Jim, and Mary decide to help each other build houses. Paul will
spend half his time on his own house and a quarter of his time on each
of the houses of Jim and Mary. Jim will spend one third of his time on
each of the three houses under construction. Mary will spend one sixth
of her time on Paul’s house, one third on Jim's house, and one half of
her time on her own house. For tax purposes, each must place a price on
his or her labor, but they want to do so in a way that each will break-
even. Show that the process of determining break-even wages is a Leon-
tief closed model containing three homogeneous equations and then
find the wages of each person.

(40) Four third-world countries each grow a different fruit for export and
each uses the income from that fruit to pay for imports of the fruits from
the other countries. Country A exports 20% of its fruit to country B, 30%
to country C, 35% to country D, and uses the rest of its fruit for internal
consumption. Country B exports 10% of its fruit to country A, 15% to
country C, 35% to country D, and retains the rest for its own citizens.
Country C does not export to country A; it divides its crop equally
between countries B and D and its own people. Country D does not con-
sume its own fruit; all is for export with 15% going to country A, 40% to
country B, and 45% to country C. Show that the problem of determining
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prices on the annual harvests of fruit so that each country breaks even is
equivalent to solving four homogeneous equations in four unknowns
and then find the prices.

Gaussian elimination is often programmed for computer implementa-
tion, but because all computers store numbers as a finite string of
digits, round-off error can be significant. A popular strategy for mini-
mizing round-off errors is partial pivoting, which requires that a pivot
always be larger than or equal in absolute value than any element
below the pivot in the same column. This is accomplished by using ele-
mentary row operation R; to interchange rows whenever necessary. In
Problems 41 through 46, determine the first pivot under a partial
pivoting strategy for the given augmented matrix.

[1 3] 35 (1 —-2] =5
(41)_4 8‘15} (42)_5 3‘ 85]

[ —2 8 —31100 (1 2 3| 4
(43) 4 5 4 | 75 (44) | 5 6 7 8

-3 -1 21250 9 10 11|12

1 8 8400 [0 2 34 |o
45) |0 1 71800 (46) |1 04 08 0.1 |90

0 3 9600 4 10 1 8 |40

1.5 DETERMINANTS

Every linear transformation from one finite-dimensional vector space V
back to itself can be represented by a square matrix. Each matrix represen-
tation is basis dependent, and, in general, a linear transformation will have
a different matrix representation for each basis in V. Some of these matrix
representations may be simpler than others. In this chapter, we begin the
process of identifying bases that generate simple matrix representations
for linear transformations. This search will focus on a special class of vectors
known as eigenvectors and will use some of the basic properties of
determinants.

Every square matrix has associated with it a scalar called its determinant. Until
very recently, determinants were central to the study of linear algebra, the hub
around which much of the theory revolved. Determinants were used for calcu-
lating inverses, solving systems of simultaneous equations, and a host of other
applications. No more. In their place are other techniques, often based on ele-
mentary row operations, which are more efficient and better adapted to com-
puters. The applications of determinants have been reduced to less than a
handful.



The determinant of a

1 x 1 matrix [a] is the
scalar a; the determinant
of a 2 x 2 matrix is the
product of its diagonal
terms less the product of
its off-diagonal terms.

A minor of a matrix A is
the determinant of any
square submatrix of A.

Determinants are defined in terms of permutations on positive integers. The the-
ory is arduous and, once completed, gives way to simpler methods for calculating
determinants. Because we make such limited use of determinants, we will not
develop its theory here, restricting ourselves instead to the standard computa-
tional techniques.

Determinants are defined only for square matrices. Given a square matrix A, we
use det(A) or |A| to designate the determinant of A. If a matrix can be exhibited,
we designate its determinant by replacing the brackets with vertical straight lines.
For example, if

1 2 3
A=1|4 5 6 (1.24)
7 8 9
then
1 2 3
det (A)=|4 5 6 (1.25)
7 8 9

We cannot overemphasize the fact that Equations (1.24) and (1.25) represent
entirely different structures. Equation (1.24) is a matrix, a rectangular array of
elements, whereas Equation (1.24) represents a scalar, a number associated with
the matrix in Equation (1.25).

The determinant of a 1x 1 matrix [a] is defined as the scalar a. Thus, the
determinant of the matrix [5] is 5 and the determinant of the matrix [—3]

is —3. The determinant of a 2 x 2 matrix [i J

b} is defined as the scalar ad — bc.

Example 1 det[; i] = [1 2] =1(3) —2(4) =3 — 8 = —5, while

det{i ‘31} - B _31] —2(3) = (—1)(4) = 6+ 4 = 10,

We could list separate rules for calculating determinants of 3 x 3, 4 x4, and
higher order matrices, but this is unnecessary. Instead we develop a method
based on minors and cofactors that lets us reduce determinants of order n>2
(if A has order n x n, then det(A) is said to have order n) to a sum of determinants
of order 2.

A minor of a matrix A is the determinant of any square submatrix of A. A minor is
formed from a square matrix A by removing an equal number of rows and col-
umns from A and then taking the determinant of the resulting submatrix. In par-
ticular, if

>

I
N R =
© U N
O W
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1 2 5 6 . . 1 2
then [7 8] and [8 9] are both minors because the matrices [7 8} and

{'g g} are both submatrices of A. In contrast, {; ;} and |1 2| are not

minors because [ é ; ] isnotasubmatrixofAand [1 2], although a submatrix
of A, is not square.

If A= [a;] is a square matrix, then the cofactor of the element a;; is the scalar obtained  The cofactor of the

by multiplying (—1)"*’ with the minor obtained from A by removing the jth row element g; in a square

and jth column. In other words, to compute the cofactor of an element a; in a Malrx A the product of
. . . (=1 with the minor

matrix A, first form a submatrix of A by deleting from A both the row and column o4 ¢0m A by

in which the element a;; appears, then calculate the determinant of that submatrix, deleting its ith row and jth

and finally multiply the determinant by the number (—1)"". column.

Example 2 To find the cofactor of the element 4 in the matrix

1
A= |4
7

o U1 N
o o W

we note that 4 appears in the second row and first column, hencei=2,j=1, and
(—=1)"7=(=1)>""=(—~1)>=—1. The submatrix of A obtained by deleting the
second row and first column is

2 3

8 9

which has a determinant equal to 2(9) —3(8) =—6. The cofactor of 4 is (—1)
(—6)=6.

The element 9 appears in the third row and third column of A, hence i=3, j=3,
and (—1)"7=(—=1)>"=(—1)®=1. The submatrix of A obtained by deleting the
third row and third column is [i ﬂ , which has a determinant equal to
1(5) —2(4) =—3. The cofactor of 9 is (1)(—3)=-3.

A cofactoris the product of aminor with the number (—1)"7. This number (—1)"7is
either+1 or —1, depending on thevalues ofiand j, and its effect is to imparta plus or
minus sign in front of the minor of interest. A useful schematic for quickly evaluat-
ing (—1)"" is to use the sign in the i-jth position of the patterned matrix:

+ -+ - 4+

+ - + -+



EXPANSION BY COFACTORS (TO CALCULATE THE
DETERMINANT OF A SQUARE MATRIX):

Step 1. Pick any one row or any one column of the matrix (dealer’s choice).

Step 2. Calculate the cofactor of each element in the row or column selected.

Step 3. Multiply each element in the selected row or column by its cofactor and sum the
results.

We now can find the determinant of any square matrix.

3 50
Example 3 Find det(A) forA= | -1 2 1
3 -6 4

Solution: We arbitrarily expand by the second column. Thus,

|A| = 5 (cofactorof 5) + 2 (cofactor of 2) + (—6)(cofactorof — 6)
-1 1
3 4
— 5(=1)(~4 — 3) + 2(1)(12 — 0) + (~6)(~1)(3 — 0)
=(=5)(=7)+2(12) + 6(3) = 77

0 3 0

:5(_1)1+2 +2(_1)2+2 +(_6)(_1)3+2

4 -1 1

Example 4 Redo Example 3 expanding by the first row.

Solution:
|A| = 3 (cofactorof 3) + 5 (cofactorof 2) + 0 (cofactor of 0)
2 1 -1 1
3 4
3(1)(8 +6) +5(—1)(—4 —3) + 0
=3(14) + (=5)(=7) =77

:3(_1)1+1 +5(_1)1+2 +0

-6 4

Expanding by a row or
column containing the
most zeros minimizes the
number of computations

Examples 3 and 4 illustrate two important properties of expansion by cofactors.
First, the value of a determinant is the same regardless of which row or column

needed to evaluate a selected and second, expanding by a row or column containing zeros signifi-
determinant. cantly reduces the number of computations.
1 0 5 2
, -1 4 1 0
Example 5 Find det(A) for A =
0 4 1
-2 1 1 3
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Solution: The row or column containing the most zeros is, for this matrix, the
second column, so we expand by it.

|A| = 0 (cofactorof 0) + 4 (cofactor of 4) + 0 (cofactor of zero) + 1 (cofactorof 1)

1 5 2 1 5 2
=0+4(-1)°7 3 4 1[+0+1(-D)*? -1 1 0
-2 1 3 3 4 1

1 5 2 1 5 2

=4 3 4 1|+|-1 1 O
-2 1 3 3 4 1

Using expansion of cofactors on each of these two determinants of order 3, we
calculate

b5 2 4 1 1 3 4
3 4 1 :1(_1)1+1 ’+5(_1)1+2 ‘+2(_1)1+3 '
1 3 -2 3 -2 1
-2 1 3
=11 — 55+ 22 = —22(expanding by the firstrow)
and
1 5 2
143 343 >
-1 1 o|=2(-1)'" +0+1(-1)°"
3 4 -1 1
3 4 1

—14 + 6 = —8 (expanding by the third column)

Consequently, |A|=4(—22)+1(—8)=—96.

With no zero entries, the determinant of a 3 x 3 matrix requires 3 -2 =3! multi-
plications, a 4 x4 matrix requires 4-3-2=4! multiplications, and an nxn
matrix requires n! multiplications. Note that 10! =3,628,000 and 13! is over
1 billion, so the number of multiplications needed to evaluate a determinant
becomes prohibitive as the order of a matrix increases. Clearly, calculating a
determinant is a complicated and time-consuming process, one that is avoided
whenever possible.

Another complicated operation is matrix multiplication, which is why the fol-
lowing result is so surprising. Its proof, however, is beyond the scope of this
book.



» THEOREM 1
If A and B are of the same order, then det(AB)=det(A)det(B). €

Example 6 Verify Theorem 1 for A = ﬁ Z] and B = [g _i]

33 10

Solution: |A|=5 and |B|=31. Also AB = [34 15

], hence |AB|=155=|A||B|.
Any two column matrices in R? that do not lie on the same straight line form the
sides of a parallelogram, as illustrated in Figure 1.10. Here the column matrices

u= [21} and v= [Zj (1.26)

2

appear graphically as directed line segments with the tip of u falling on the point
A= (ay, a,) in the x-y plane and the tip of v falling on the point B= (b, b*). The
parallelogram generated by these two vectors is OACB, where O denotes the ori-
gin and C=(a; +b;, a,+b,). To calculate the area of this parallelogram, we
note that

Area of parallelogram OACB

= area of triangle OPB + area of trapezoid PRCB — area of triangle OQA

— areaof trapezoid QRCA
= Tbiby + 2 ar(by + @y +by) — 2 aray + 1 bi(ar + @ + bo)
a b
= alby_ — dzb] = ! !
ap bz
y
C=(aj+ by, ax + by)
B = (b, by) !
[ A=la, &)
. o X
o P Q R
(by, 0) (a1, 0) (ay + by,0)

FIGURE 1.10


Figure 1.10
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If we interchange the positions of the two columns in this last determinant,
a quick computation shows that the resulting determinant is the
negative of the area of the parallelogram. Because the area of the paral-
lelogram is the same regardless which vector in Equation (A.3) is
listed first and which second, we avoid any concern about ordering by
simply placing absolute values around the determinant. Thus, we have
proven:

» THEOREM 2
If u=[aq az]T and v=[by b,] are two column matrices in R?, then the area of the
parallelogram generated by u and v is |det[u v]l. <«

\ J

Example 7 The area of the parallelogram defined by the column matrices

6 6] . -4 0
u= {2} and v = [2} is det{ 4 2
umn matrices and the parallelogram they generate are illustrated in Figure 1.11.

} ‘ = |-32| = 32 square units. These col-

Example 8 The area of the parallelogram defined by the column matrices
u= -3 and v=v = 6 is |det 36
-1 T2

-1 2
These vectors are illustrated in Figure 1.12. Because both vectors lie on
the same straight line, the parallelogram generated by these vectors
collapses into the line segment joining (—3, —1) and (6, 2), which has
Zero area.

} ‘ = |0] = 0 square units.

Expansion by cofactors is often a tedious procedure for calculating determi-
nants, especially for matrices of large order. Triangular matrices, however,
contain many zeros and have determinants that are particularly easy to
evaluate.

(_4| 4)

N A\

u i 6,2)

—'6—21—'22 2 4 68 10

41

FIGURE 1.11


Figure 1.11

6.
4.
2 6,2
-4 -2
+ + X
2 4 6 8
(-8,-1) -2
—41
FIGURE 1.12
» THEOREM 3

The determinant of an upper or lower triangular matrix is the product of the elements on the
main diagonal. d

Proof: We shall prove the proposition for upper triangular matrices by math-
ematical induction on the order of the determinant. (For an explanation of
this proof technique, please refer to Appendix E.) The proof for lower triangu-
lar matrices is nearly identical and is left as an exercise for the reader. We first
show that the proposition is true for all 1 x 1 upper triangular matrices and
then we show that if the proposition is true for all (k—1) x (k—1) upper tri-
angular matrices, then it must also be true for all kxk upper triangular
matrices.

A1 x 1 upper triangular matrix has the general form A=|a,,|, containing a single
diagonal element. Its determinant is a;;, which is the product of all diagonal
elements in A, thus the proposition is true for n=1.

We now assume that the proposition is true for all (k—1) x (k—1) upper
triangular matrices, and we use this assumption to prove the proposi-
tion for all kxk upper triangular matrices A. Such a matrix has the
general form

a;; a2 ad13 - 4, k-1 A1k
0 axp dax - ayp-1 dx
A=| 0 0 as -+ asp1 as

0 0 0 0 Ayl


Figure 1.12
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Evaluating det(A) by expansion by cofactors using the cofactors of the elements
in the first column, the column containing the most zeros, we obtain

det(A) = a;; - det(B) (1.27)
where
Ay dz3 - A4 -1 A2k
0 azx - asp-1 as
B =
0 o .- 0 ik

Matrix B is an upper triangular matrix of order (k—1)x(k—1) so by
the induction hypothesis its determinant is the product of its diagonal elements.
Consequently, det(B)=a,,d33---dj,, and Equation (1.27) becomes det(A)=
a11d7,433 - - - Ay, Which is the product of the diagonal elements of A. Thus, The-
orem 1 is proved by mathematical induction.

Example 10
2 6 —4 1
05 7 —4
det 00 -5 8|~ 2(5)(—5)(3) = —150
00 0 3

Because diagonal matrices are both upper and lower triangular, the following
corollary is immediate.

»COROLLARY 1

The determinant of a diagonal matrix is the product of the elements on its main diagonal. €

Expansion by a row or column having many zeros simplifies the calculation of a
determinant; expansion by a zero row or zero column, when it exists, makes the
process trivial. Multiplying each zero element by its cofactor yields zero products
that when summed are still 0. We have, therefore, Theorem 2.

» THEOREM 4

If a square matrix has a zero row or a zero column, then its determinant is 0.

A useful property of determinants involves a square matrix and its transpose.



» THEOREM 5

For any square matrix A, det(A)=det(A"). «

Proof: (by mathematical induction on the order of the determinant): A 1x 1
matrix has the general form A=[a;;]. Here A=A", hence |A|=a;; =|A"|, and
the proposition is true for n=1.

We now assume that the proposition is true for all (k— 1) x (k— 1) matrices, and
we use this assumption to prove the proposition for all k x k matrices A. Such a
matrix has the general form

ayj; di2 a1z - Agg
dz1 dzp dz3 - Ak
A= |a31 dads2 ass --- d4azp
dp1 A2 4z o dpk

Evaluating det(A) by expansion by cofactors using the first column, we
obtain

dyy dz3 - Ay
- dasp ds3z - 4zg
det(A) =a;;(—1) " det
dpy Az - dpk
a2 diz - dik
dasy d3z - d3g
+as (—1)2+1d€t
ary  ap3 s dik
a2 a3 cee air
az; aszs ce [¢5)

kt1
4 ap (=1)  det
ak—1,2 Q4p-1,3 ' Qp—1,k

Each of the matrices on the right side of this last equality has order
(k—1)x (k—1) so by the induction hypothesis each of their determinants
equals, respectively, the determinants of their transposes. Consequently,



az

141 423
det(A) = a;;(—1) " det

asy

a2

142 a13
+d21(—1) det

a1k

+oo o ap (—1) T det

air dz1 asi
a2 dy2 4s2
= det | 413 d23 as3

ai,  dor  4sk

az3
ass

asy,

asz
ass

asy,

ain
a3

aik

az
as3

ay

ap1
ak2
a3

Ak

k2
a3

Ak

g2
a3

Ak

ap—1,2
k-1, 3

ap—1,k
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where this last determinant is evaluated by expansion by cofactors using its first
row. Since this last matrix is A", we have det(A)=det(A"), and Theorem 5 is

proven by mathematical induction.

An elegant method for substantially reducing the number of arithmetic operations
needed to evaluate determinants of matrices whose elements are all constants is
based on elementary row operations. For the sake of expediency, we state the rel-

evant properties and then demonstrate their validity for 3 x 3 matrices.

» THEOREM 6

If matrix B is obtained from a square matrix A by interchanging the position of two rows in A
(the first elementary row operation), then |Bl=—|Al. <«

Demonstration of Validity: Consider

ay; di2 a3
A= [ay axn ax

asp dsz 4ss

(1.28)



Expanding |A| by cofactors using its third row, we obtain
|A| = 6131(&126123 - 61136122) - 032(0116123 - 0136121) + 6133(6111022 - dlzazl)

Now consider the matrix B obtained from A by interchanging the positions of the
second and third rows of A:

ain diz a3
B=|a31 as as;

daz1 dp2 43

Expanding |B| by cofactors using its second row, we obtain

|B| = —ﬂsl(alzazs - 013022) - 032(0116123 - 013021) - a33(a11a22 - 0112021)

Thus, |B|=—|A|. Through similar reasoning, we can show that the result is valid
regardless of which two rows of A are interchanged.

As an immediate consequence of Theorem 6, we have the following corollary:

» COROLLARY 2

If two rows of a square matrix are identical, then its determinant is 0. <

Proof: The matrix remains unaltered if the two identical rows are interchanged,
hence its determinant must remain constant. It follows from Theorem 6, how-
ever, that interchanging two rows of a matrix changes the sign of its determinant.
Thus, the determinant must, on the one hand, remain the same and, on the other
hand, change sign. The only way both conditions are met simultaneously is for
the determinant to be 0.

» THEOREM 7

If matrix B is obtained from a square matrix A by multiplying every element in one row of A
by the scalar /. (the second elementary row operation), then IBl=/IAl. d

Demonstration of Validity: Consider the matrix A given in Equation (1.28) and
construct B from A by multiplying the first row of A by 1. Then expanding |B| by
cofactors using its first row, we obtain

id]] ).dlz idlg

, dz1 dzs
Bl =|ax ax axp |=lan

31 432

dz1 dz3
31

dzy dz3
asn

2

— Ad1) +/1a13

asy asn ass
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dzy dz3 dz1  dz3 dz1  d2

:j. a1
a
a;; di2 a3
=/2la) axn ax;|=AA|

lp) + di3

32 433 asy  dss asy  dsz

asy  ds2 4ss

Through similar reasoning, we can show that the result is valid regardless of
which row of A is multiplied by /.

Multiplying a scalar times a matrix multiplies every element of the matrix by that
scalar. In contrast, it follows from Theorem 7 that a scalar times a determinant is
equivalent to multiplying one row of the associated matrix by the scalar and then
evaluating the determinant of the resulting matrix. Thus,

8 16 1 2 1 2
det[3 4]:8det[3 4}:det[24 32]

while

1 2 8 16 1 2 1 2
det{8[3 4]}:det[24 32}:8det[24 32}:8(8)det{3 4]

Therefore, as an immediate extension of Theorem 7, we have the next
corollary.

» COROLLARY 3

If A is an n x n matrix and 2 a scalar, then det(AA)= /" det(A). d

Applying the first two elementary row operations to a matrix changes the deter-
minant of the matrix. Surprisingly, the third elementary row operation has no
effect on the determinant of a matrix.

» THEOREM 8
If matrix B is obtained from a square matrix A by adding to one row of A a scalar times
another row of A (the third elementary row operation), then |Bl=1Al. d

\ J

Demonstration of Validity: Consider the matrix A given in Equation (1.28) and
construct B from A by adding to the third row of A the scalar / times the first row
of A. Thus,



ai a2 a3
B= a a; a3

asi +Aayn asy +Aay  ass + Aas

Expanding |B| by cofactors using its third row, we obtain

a2 413 air  adis
|B‘ = (6131 + )Lau) — (Ll32 + Aalz)
dzz 43 dz1 dzs
a2 43 ain  dis ain  dis
= as; — a3 — das3
dzz 43 dz1 43 dz1 a4
aip 43 ajr a3 air  adis
+ A9 an —di2 + di3
dzz  dz3 azr 43 dz1  d2

The first three terms of this sum are exactly |A| (expand det(A) by its third row)
while the last three terms of the sum are

a;; di2 a3
Alax  axn  ax

ay; di2 a3

(expand this determinant by its third row). Thus,

ainr di2 ai3
Bl = |A| + a1 a2 azs
air diz ai3

It follows from Corollary 2 that this last determinant is O because its first and
third rows are identical, hence |B|=]A|.

Example 11 Without expanding, use the properties of determinants to show
that

a b c a-r b—-s c—t
ros t|=|r+2x s+2y t+2z

Xy z X y z



Solution:

Pivotal condensation is an efficient algorithm for calculating the determinant of a
matrix whose elements are all constants. Elementary row operations are used to
transform a matrix to row-reduced form, because such a matrix is upper triangu-
lar and its determinant is easy to evaluate using Theorem 3. A record is kept of all
the changes made to the determinant of a matrix while reducing the matrix to
row-reduced form. The product of these changes with the determinant of the
row-reduced matrix is the determinant of the original matrix.

Example 12 Use pivotal condensation to evaluate det | —2

Solution:

Example 13 Use pivotal condensation to evaluate det | 1

® =

(%)

~ o
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a—71 b—s c¢—t| Theorem8 :adding
s t tothefirstrow — 1
x y z times the second row
a—1 b-s c¢—t| Theorem8 :adding
r+2x s+2y t+2z| tothesecondrow?2
X y times the third row

1 23
2l=lo0 7 8
1 13 -1 1
1 2 3
=lo 7 8
3 -7 -8
1 2
=710 1
3 -7
1 2 3
=70 1 8/7
00 0
—7(0)=0

Pivotal Condensation
Transform a matrix into
row-reduced form using
elementary row opera-
tions, keeping a record of
the changes made. Eval-
uate the determinant by
using Theorems 3, 6, 7,
and 8.

1

2 3
3 2
3 -1 1

Theorem 8 : adding
to thesecond row 2
times the firstrow

Theorem 8 : adding
to thethirdrow — 3
times the firstrow

Theorem 8 : applied
to thesecond row

Theorem 8 : adding
tothethirdrow7
times the second row

Theorem 3

0 -1 4
-5 1
—6 2 =3



Any property about
determinants dealing
with row operations is
equally true for the
analogous operations on
columns.

Solution:

0 -5 1

1 =5 1|=(-1)] 0 =1 4| Theorem6 : interchanging
—6 2 -—3| thefirstandsecondrows

1 -5 1| Theorem8:adding
=(-1)[0 -1 4| tothethirdrow6

0 —28 3| timesthefirstrow

1 5 1

=(-1)(-1)]0 1 _a| Theorem?7 :applied

3| to thesecond row

0 -28
1 =5 1| Theorem8 : adding
=10 1 —4| tothethirdrow28
0 0 —109| timesthesecondrow

1 —
Theorem 7 : applied
=—(109)]0 1 - .
to the third row
0 0 1

= (-109)(1) = —109 Theorem 3

It follows from Theorem 6 that any property about determinants dealing with
row operations is equally true for the analogous operations on columns, because
a row operation on the transpose of a matrix is the same as a column operation
on the matrix itself. Therefore, if two columns of a matrix are interchanged, its
determinant changes sign; if two columns of a matrix are identical, its determi-
nant is 0; multiplying a determinant by a scalar is equivalent to multiplying one
column of the matrix by that scalar and then evaluating the new determinant;
and the third elementary column operation when applied to a matrix does
not change the determinant of the matrix.

We have from Theorem 6 of Section 2.7 that a square matrix has an inverse if and
only if the matrix can be transformed by elementary row operations to row-
reduced form with all ones on its main diagonal. Using pivotal condensation,
we also have that a matrix can be transformed by elementary row operations
to row-reduced form with all ones on its main diagonal if and only if its deter-
minant is nonzero. Thus, we have Theorem 9.
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» THEOREM 9

A square matrix has an inverse if and only if its determinant is nonzero. <

The matrix given in Example 12 does not have an inverse because its determinant
is 0, while the matrix given in Example 4 is invertible because its determinant is
nonzero. Inverses, when they exist, are obtained by the method developed in
Section 2.4. Techniques also exist for finding inverses using determinants, but
they are far less efficient and rarely used in practice.

If a determinant of a matrix is nonzero, then its determinant and that of its
inverse are related.

» THEOREM 10

If a matrix A is invertible, then det(A~1)=1/det(A). «

Proof: If A is invertible, then det(A)#0 and AA™' =1I. Therefore,

det(AA™") = det(I
det(AA™") =
det(A)-det(A™") =
det(A™") = 1/det(A

» THEOREM 11

Similar matrices have the same determinant.

Proof: If A and B are similar matrices, then there exists an invertible matrix P such
that A=P~! BP. It follows from Theorem 1 and Theorem 10 that

det(A) = det(P~'BP) = det(P")det(B)det(P)
= [1/det(P)]det(B)det(P) = det(B)

Problems 1.5

In Problems 1 through 31, find the determinants of the given matrices.

(1) {3 ‘6‘] 2) B “6‘] (3) [_; ‘6‘]

5 6 5 6 5 6
(4) {7 8]. (5) [_7 8]. (6) [7 _8].
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1

(32) Find t so that

=0.

t
t+2

t—2
3

(33) Find t so that
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4 -4 2

(34) Find 4 so that 1 1-2

o

- 5

. ) 1
(35) Find 4 so that 1 1

o

In Problems 36 through 43, find det(A — AI) when A is:
(36) The matrix defined in Problem 1.

(37) The matrix defined in Problem 2.

(38) The matrix defined in Problem 4.

(39) The matrix defined in Problem 7.

(40) The matrix defined in Problem 11.

(41) The matrix defined in Problem 12.

(42) The matrix defined in Problem 13.

(43) The matrix defined in Problem 14.

(44) Verify Theorem 1 for A = [? ;] and B = [3 _1]

(45) Find the area of the parallelogram generated by the vectors [—1 31"
and [2 -3]".

(46) Find the area of the parallelogram generated by the vectors [1 —5]"
and [-4 —4]".

(47) Find the area of the parallelogram generated by the vectors [2  4]" and
[3 —8]"

In Problems 48 through 65, find the determinants of the given matrices using
pivotal condensation.

(1 2 =27 1 2 3 [ 3 —4 2
(48) |1 3 3. (49) |4 5 6. (50) | -1 5 7].
|2 5 0] 7 8 9 | 1 9 -6
[—1 3 3] 1 -3 -3 [2 1 -9
(51) 1 1 4]. (52) |2 8 4|. (B3) |3 -1 1

-1 1 2] 3 5 1 3 -1 2

[2 1 3] -1 3 3
(54) |3 -1 2. (55) 4 6.

5
12 3 5] -1 3 3 2 -5 -1
(2 0 -1 3 5 2 1 -3 -3
(57) |1 1 1 (58) | -1 0 4. (59) |2 8 3
13 2 -3 -2 2 7 4 5 0



3 5 4 6 -1 2 1 2
-2 1 0 7 1 0 3 -1
(60) -5 4 7 2 (61) 2 2 -1 1
| 8 -3 1 1 | 2 0 -3 2
! 1 2 =2 [—1 3 2 =2
1 5 2 -1 1 -5 -4 6
(62) -2 -2 1 3| (63) 3 -6 1 1
-3 4 -1 8 | 3 -4 3 -3
[ 1 1 0 -2 [—2 0 1 3
1 5 0 -1 4 0 2 =2
(64) -2 =2 0 3| (65) -3 1 0 1
-3 4 0 8 | 5 4 1 7

In Problems 66 through 72, use the properties of determinants to prove the
stated identities.

a b ¢ 2a  4b 2c
(66) |r s t :—% —r =25 —t|.
X y z x 2y z
a—3x b—3y c¢—3z
(67) l[a+5x b+5y c+5z|=0.
X y z
2a 3a c¢
(68) |2r 3t t|=0.
2x 3x z
b ¢ a x
(69) |r s t|=|b y
Yy z c z
a r x a+x r—x X
(70) (b s y|=|b+y s—y V|
c t z c+z t—z z
a r x 2a 3r X
(71) —12|b s y|=| 4b 6s 2y
c t z —2c -3t -z

a r x a—3b r—3s x—3y
(72) 5|b s y|=|b—2c s—2t y-—2z|.
ct z 5¢ 5t 5z

(73) Verify Theorem 5 directly for the matrices in Problems 48 through 51.

(74) Verify Corollary 3 directly for A=3 and A = {; ﬂ .
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(75) Verify Corollary 3 directly for A=—2 and A = [_; _;} .

(76) Verify Corollary 3 directly for A=—1 and A given by the matrix in
Problem 1.

1.6 THE INVERSE

In Section 1.2, we defined matrix multiplication so that any system of linear
equations can be written in the matrix form

Ax=Db (1.14 repeated)

with the intent of solving this equation for x and obtaining all the variables in the
original system at the same time. Unfortunately, we cannot divide (Equation 1.14)
by the coefficient matrix A because matrix division is an undefined operation. An
equally good operation is, however, available to us.

Division of real numbers is equivalent to multiplication by reciprocals. We can

solve the linear equation 5x =20 for the variable x either by dividing the equation

by 5 or by multiplying the equation by 0.2, the reciprocal of 5. A real number b is

the reciprocal of a if and only if ab=1, in which case we write b=a'. The con-

cept of reciprocals can be extended to matrices. The matrix counterpart of the

number 1 is an identity matrix I, and the word inverse is used for a matrix A _

instead of reciprocal even though the notation A~ is retained. Thus, a matrix mZtlr?xvi\rﬁ? XLETE;,’?
B is an inverse of a matrix A if A—L. ;

AB =BA =1 (1.29)

An nx n matrix A~ is

in which case we write B=A"".

The requirement that a matrix commute with its inverse implies that both
matrices are square and of the same order. Thus, inverses are only defined
for square matrices. If a square matrix A has an inverse, then A is said to be
invertible or nonsingular; if A does not have an inverse, then A is said to be
singular.

-2
1.5

| AR T P B

and we write
12 S o[-2
3 4 1.5 —-0.5

1 1/2
1/3 1/4

1

2
3 4 } because

Example 1 The matrix B = [ _ (l) 5} is an inverse of A = [

In contrast, C = [ ] is not an inverse of A because



An elementary matrix E is
a square matrix that
generates an elementary
row operation on a matrix
A under the multiplication
EA.

1 2171 1/2] _[5/3 1
AC= [3 4] [1/3 1/4] - [13/3 5/2} 71
Equation (1.24) is a test for checking whether one matrix is an inverse of another
matrix. In Section 2.6, we prove that if AB =1 for two square matrices of the same
order, then A and B commute under multiplication and BA=1. If we borrow this
result, we reduce the checking procedure by half. A square matrix B is an inverse
of a square matrix A if either AB=1 or BA=I; each equality guarantees the other.

We also show later in this section that an inverse is unique; that is, if a square
matrix has an inverse, it has only one.

We can write the inverses of some simple matrices by inspections. The inverse of
a diagonal matrix D having all nonzero elements on its main diagonal is a diag-
onal matrix whose diagonal elements are the reciprocals of the corresponding
diagonal elements of D. The inverse of

A4 0 0 -~ 0 1/24 0 0 0

o 4 0 --- 0 0 1/2, 0 0
D=0 0 43 -+ 0|isD!'= 0 0 1/23 -~ 0

0O 0 0 - A 0 0 0 oo 1/ g

if none of the diagonal elements is zero. It is easy to show that if any diagonal
element in a diagonal matrix is zero, then that matrix is singular (see
Problem 56).

An elementary matrix E is a square matrix that generates an elementary row oper-
ation on a matrix A (which need not be square) under the multiplication EA.
Elementary matrices are constructed by applying the desired elementary row
operation to an identity matrix of appropriate order. That order is a square matrix
having as many columns as there are rows in A so that the multiplication EA is
defined. Identity matrices contain many zeros, and because nothing is accom-
plished by interchanging the positions of zeros, or multiplying zeros by con-
stants, or adding zeros together, the construction of an elementary matrix can
be simplified.

CREATING ELEMENTARY MATRICES:

(i) To construct an elementary matrix that interchanges the ith row with the jth row, begin
with an identity matrix I. First interchange the 1 in the i-i position with the O in the j-i
position and then interchange the 1 in the j4 position with the O in the i position.

(ii) To construct an elementary matrix that multiplies the ith row of a matrix by the nonzero
scalar k, begin with an identity matrix I and replace the 1 in the i-i position with k.

(iii) To construct an elementary matrix that adds to the jth row of a matrix the scalar k times
the ith row of that matrix, begin with an identity matrix and replace the O in the j-i
position with k.
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Example 2 Find elementary matrices that when multiplied on the right by any
3 x 5 matrix A will (a) interchange the first and second rows of A, (b) multiply
the third row of Aby —0.5, and (c) add to the third row of A 4 times its second row.

Solution:
01 0 1 0 0 1 0 O
(@ [1 0 0|, ® o1 o0 |, (¢ |0 1 0
0 0 1 0 0 -0.5 0 4 1

Example 3 Find elementary matrices that when multiplied on the right by any
4 x 3 matrix A will (a) interchange the second and fourth rows of A, (b) multiply
the third row of A by 3, and (c) add to the fourth row of A —5 times its
second row.

Solution:
100 0 100 0 1 0 0 0
000 1 0100 0 0 0 0
@ 1o 010" ® o030l @ |o o0 10
0100 000 1 0 -5 0 1

[ » THEOREM 1

(a) The inverse of an elementary matrix that interchanges two rows is the elementary
matrix itself.

(b) The inverse of an elementary matrix that multiplies one row by a nonzero scalar k is a
matrix obtained by replacing the scalar k in the elementary matrix by 1/k.

(c) The inverse of an elementary matrix that adds to one row a constant k times another
row is a matrix obtained by replacing the scalar k in the elementary matrix by —k.

\ J

Proof:

(a) LetE be an elementary matrix that has the effect interchanging the ith and ith
rows of a matrix. E comes from interchanging the ith and jth rows of the iden-
tity matrix having the same order as E. Then EE =1, because interchanging the
positions of the ith row of an identity matrix with jth row twice in succession
does not alter the original matrix. With EE=1, it follows that E"' =E.

(b) Let E be an elementary matrix that has the effect of multiplying the ith row of a
matrix by a nonzero scalar k, and let F be an elementary matrix that has the
effect of multiplying the ith row of a matrix by a nonzero scalar 1/k. E comes
from multiplying the ith of the identity matrix having the same order as E by k.
Then FE=I, because multiplying the ith row of an identity matrix first by k
and then by 1/k does not alter the original matrix. With FE=I, it follows that
F=E .

(c) The proofis similar to the part (b) and is left as an exercise for the reader (see
Problem 63).



Example 4 The inverses of the elementary matrices found in Example 2 are,
respectively,

010 10 0 1 00
(@ |1 0 0|, b |01 o0f, () |0 1 0
00 1 00 —2 0 —4 1

The inverses of the elementary matrices found in Example 3 are, respectively,

1000 10 0 0 100 0
000 1 01 0 0 0000
@ 1o 010l ® Joo 13 0" © oo 1 o0
0100 00 0 1 05 0 1

Elementary row operations are the backbone of a popular method for calculating
inverses. We shall show in Section 2.6 that a square matrix is invertible if and
only if it can be transformed into a row-reduced matrix having all ones on the
main diagonal. If such a transformation is possible, then the original matrix
can be reduced still further, all the way to an identity matrix. This is done by
applying elementary row operation R;—adding to one row of a matrix a scalar
times another row of the same matrix—to each column, beginning with the last
column and moving sequentially towards the first column, placing zeros in all posi-
tions above the diagonal elements.

Example 5 Use elementary row operations to transform the row-reduced matrix
1 21
A=]10 1 3
0 0 1

to the identity matrix.

Solution:
1 21 [1 2 17 by adding to the second row —3 times the
01 3[—=1]01 third row
0 0 1 0 1

1 20 by adding to the first row —1 times the third
— 1 0 row

1 01 by adding to the first row —2 times the
— 1 0 second row

Thus, a square A has an inverse if and only if A can be transformed into an iden-
tity matrix with elementary row operations. Because each elementary row
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operation can be represented by an elementary matrix, we conclude that a matrix

A has an inverse if and only if there exists a sequence of elementary matrices
Ei, E,, ..., E, such that

EnEp1.. . ERE A =1

Denoting the product of these elementary matrices by B, we have BA=I, which
implies that B =A"!. To calculate the inverse of a matrix A, we need only record
the product of the elementary row operations used to transform A to I. This

is accomplished by applying the same elementary row operations to both A
and I simultaneously.

CALCULATING INVERSES

Step 1. Create an augmented matrix [A | 1], where A is the n x n matrix to be inverted and |
is the n x n identity matrix.

Step 2. Use elementary row operations on [A | I] to transform the left partition A to row-
reduced form, applying each operation to the full augmented matrix.

Step 3. If the left partition of the row-reduced matrix has zero elements on its
main diagonal, stop: A does not have inverse. Otherwise, continue.

Step 4. Use elementary row operations on the row-reduced augmented matrix to transform

the left partition to the n x n identity matrix, applying each operation to the full
augmented matrix.

Step 5. The right partition of the final augmented matrix is the inverse of A.

Example 6 Find the inverse of A = B ﬂ .

Solution:

1 2|1 0 1 2 1 0 by adding to the second row
— .
—3 times the first row

0 0| -2 0 by multiplying the second row
1o 1[3/2 -1/2| by-1)2

A has been transformed into row-reduced form with a main diagonal of only
ones; A has an inverse. Continuing with the transformation process, we get

0 0|-2 0 by adding to the first row -2
“lo 1 3/2 —-1/2 times the second row

Thus,

S T



5 8 1
Example 7 Find the inverse of A= |0 2 1

4 3 -1
Solution:
5 8 1 1 0 O
0o 2 1 o 1 O
4 3 -1/0 0 1
(1 16 02102 0 0 by multiplying the first row
—~lo 2 110 1 o0 by 0.2
| 4 3 —1 0 0 1
1 1.6 02| 02 0 0 by adding to the third row
~1lo 2 1 0 1 0 -4 times the first row

0 -34 -18| -08 0 1

1 1.6 0.2 02 0 0 by multiplying the second
— o 1 05 0 05 o] rowbyl/2
0O —-34 -18)| —0.8 0 1

1 1.6 0.2 02 0 0 by adding to the third row
1o 1 0.5 0 05 0 3.4 times the second row

0 0 -01| -08 17 1

1 1.6 02] 0.2 0 0 by multiplying the third row
—l0o 1 05| 0 05 0 by -10
0 0 1 8 —-17 —-10

A has been transformed into row-reduced form with a main diagonal of only
ones; A has an inverse. Continuing with the transformation process, we get

1 16 021 02 0 o | by adding to the second row
~lo 1 0| —4 9 5 -0.5 times the third row
0 1 8§ —17 -10
(1 16 o] —14 34 5] by adding to the first row
1o 1 ol -4 9 5 -0.2 times the third row
0 0 1 8 -17  -10



—_

Thus,

Example 8 Find the inverse of A =

Solution:
1
— 10
1
1
— |0
0
1
— |0
0
1
— 10
0
1
— |0
0
1
— |0
0

S = S = S = S =

)

S =

o O

S O

5 11 6 by adding to the first row -1.6
_4 9 5 times the second row

8§ —-17 -10

5 —11 -6
Al=]|-4 9 5
8 —17 —10
0 1 1
1 1 1
1 1 3
1 11 0 O
1 1 110 1 O
1 1 3({0 0 1
1 0 by interchanging the first and
1 0 0 second rows
0 1
0 1 0 by adding to the third row -1 times
1 0 o0 the first row
0 -1 1
1 0 by multiplying the third row by 1/2
1 0 0
-1/2 1/2
0 1 o | by adding to the second row -1
1 1/2 -1/2 times the third row

0 -1/2  1/2 |

0 3/2 -1/2 1 by adding to the first row -1 times
1 1/2 -1/2 the third row

0 —-1/2 1/2

-1 1 0 | by adding to the first row -1 times

1 1/2 -1/2 the second row
0 —-1/2 1/2

CHAPTER1 @@



Thus,
—1 1 0

A= 1 1/2 -1)2
0 —-1/2 1)2

Example 9 Find the inverse of A = [; i] .

Solution:

1 2|11 0 1 2 1 0 by adding to the second row
2 4]0 o] |o o] -2 1 -2 times the first row

A has been transformed into row-reduced form. Because the main diagonal con-
tains a zero entry, A does not have an inverse; A is singular.

» THEOREM 2

The inverse of a matrix is unique. 4

Proof: If B and C are both inverses of the matrix A, then
AB=1, BA=1 AC=1 and CA=L
It now follows that
C=Cl=C(AB) = (CA)B=1IB =B.

Thus, if B and C are both inverses of A, they must be equal; hence, the inverse is
unique.

Using Theorem 2, we can prove some useful properties of inverses.

4 N\
» THEOREM 3
If A and B are n x n nonsingular matrices, then
(@) (A " =
(b) (AB)*=B*A ™",
(©) (AT) " = (AT,
(d) (AAYr=(1/2)A™L, if A is a nonzero scalar.
\ J

Proof: We prove parts (b) and (c) and leave parts (a) and (d) as exercises (see
Problems 59 and 60). To prove (b), we note that
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(B'A7")(AB) =B '(A'A)B=B 'IB=B'B=1

Thus, B~! A™! is an inverse of AB. Because the inverse is unique, it follows that
(AB) '=B'A"".
To prove (c), we note that

AH@AahH =@a) =1r=r
Thus, (A™")" is an inverse of A". Because the inverse is unique, it follows that
(AT)—l — (A_l)T.

The process of finding an inverse is known as inversion, and, interestingly, some
matrix forms are preserved under this process.

» THEOREM 4

(a) The inverse of a nonsingular symmetric matrix is symmetric.
(b) The inverse of a nonsingular upper or lower triangular matrix is again an upper or lower
triangular matrix, respectively. €

Proof: If A is symmetric, then A" =A. Combining this observation with part (c) of
Theorem 2, we find that
A =@ =)

so A~ ! also equals its transpose and is symmetric. This proves part (a). Part (b) is
immediate from Theorem 2 and the constructive procedure used for calculating
inverses. The details are left as an exercise (see Problem 62).

A system of simultaneously linear equations has the matrix form
Ax=Db (1.14 repeated)
If the coefficient matrix A is invertible, we can premultiply both sides of
Equation (1.14) by A~ to obtain
A'(Ax)=A"'b
(A"'A)x=A""b
Ix=A"'b
or

x=A"b (1.30) , _
The matrix equation
Ax=b has x=A""b as
its solution if the coeffi-
This is precisely the form we sought in Section 1.2. With this formula, we can ¢jent matrix A is

solve for all the variables in a system of linear equations at the same time. invertible.



Example 10 The system of equations

x4+ 2y =150
3x + 4y = 250

can be written as Ax=b with

1 2 X 150
A_[3 4], X_L/]' and b_[ZSO}
Using the results of Example 6, we have that the coefficient matrix A is invertible
and
x] . [-2 1 ][150] [-50
M =x=A"b= [3/2 —1/2} {250} - {100 }

Hence, x=—50 and y=100.

Example 11 The system of equations

5+ 8y+z=2
2y+z=-1
4x+3y—2z=3
can be written as Ax=Db with
5 8 1 X 2
A=|(0 2 1, x=]|y|, and b= |-1
4 3 -1 z 3

Using the results of Example 7, we have that the coefficient matrix A is
invertible and

. 5 —11 -6 2 3
[ ]:x:Alb: —4 9 50, =-1]|-=-2
Y 8 —17 —10 3 3

Hence, x=3, y=—2, and z=3.

Not only does the invertibility of the coefficient matrix A provide us with a solu-
tion to the system Ax=Db, it also provides us with a means to show that this solu-
tion is the only solution to the system.

» THEOREM 5

If Ais invertible, then the system of simultaneous linear equations defined by Ax=b has a
unique (one and only one) solution. d
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Proof: Definew=A""'b. Then
Aw=AA"'b=1b=b (1.31)

and w is one solution to the system Ax=b. Let y be another solution to this
system. Then necessarily

Ay =b (1.32)
Equations (1.26) and (1.27) imply that
Aw = Ay

Premultiplying both sides of this last equation by A~", we find

A (Aw) = A" (Ay)
(A'A)w = (A 'A)y
Iw=1y
or

wW=Yy

Thus, if y is a solution of Ax=Db, then it must equal w. Therefore, w=A"'bis
the only solution to this system.

If A is singular, so that A~! does not exist, then Equation (1.25) is not valid and
other methods, such as Gaussian elimination, must be used to solve the given
system of simultaneous equations.

Problems 1.6

(1) Determine if any of the following matrices are inverses for A = [ L 3} :

29
@ [1p 1) o) | o)
(c) [2/3 1_/;] (d) {g _ﬂ
(2) Determine if any of the following matrices are inverses for A = [1 ” :
ol w[ ]
Ol @l

In Problems 3 through 12, find elementary matrices that when multiplied on
the right by the given matrix A will generate the specified result.



(3) Interchange the order of the first and second rows of a 2 x 2 matrix A.

(4) Multiply the first row of a 2 x 2 matrix A by 3.

(5) Multiply the second row of a 2 x 2 matrix A by —5.

(6) Multiply the second row of a 3 x 3 matrix A by —5.

(7) Add to the second row of a 2 x 2 matrix A three times its first row.

(8) Add to the first row of a 2 x 2 matrix A three times its second row.

(9) Add to the second row of a 3 x 3 matrix A three times its third row.

(10) Add to the third row of a 3 x 4 matrix A five times its first row.

(11) Interchange the order of the second and fourth rows of a 6 x 6 matrix A.

(12) Multiply the second row of a 2 x 5 matrix A by 7.

In Problems 13 through 22, find the inverses of the given elementary matrices.

(13)

(16)

(19)

(22)

[2
0

!
!

oS = O
_ o W

o O = O
S = O O

14 |,

(17)

(20)

- o O O

1

S O =

O =

2
1

o~ O S N O

o o

—_

(15) [_

(18)

(21)

[N ]

S O O

1 0
3 1

S O = O S O =
— O O O© — O O
o —= O O

In Problems 23 through 39, find the inverses of the given matrices, if they exist.

(23)

(26)

(29)

1
13
M1

—_

= =

co L1l N = O =
W
1

(24) [

(27)

(30)

2
1

9

—_ = O

—~ oo <o~

4
(25) {4

(28)

(31)

2

0
3
2
0
0

|

0 -1
1
1
1
3 -1
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3 2 1 1 2 -1
(32) |4 0 1 (33) 2 0 1
13 9 2 -1 1 3]
1 2 1 (2 4 1
(34) |3 -2 -4 (35) |3 —4 -4
2 3 —1] 5 0 —1]
(5 0 -1 3 1 1
(36) |2 -1 2 37) |1 3 -1
L 3 -1 2 3 -1
11 1 2 1T 0 0 O
01 -1 1 2 -1 0 0
(38) 00 2 3 (39) 4 6 2 0
0 0 0 -2 3 2 4 -1
a b

(40) Show directly that the inverse of A = L ] when ad —bc#£0 is

d

L1 [ d b
A _ad—bc{—c a}’

(41) Use the result of Problem (40) to calculate the inverses of

o[} et [ 1]

In Problems 42 through 51, use matrix inversion, if possible, to solve the
given systems of equations:

(42) x+2y = -3 (43) a+2b=5
3x+y=1 —3a+b=13
(44) 4x+2y=6 (45) 4l—p=1
2x—3y=1 51-2p=-1
(46) 2x+3y=38 (47) *+2y—z=-1
6x 4 9y =24 2x+3y+2z2=5
y—z=2
(48) 2x+3y—z=4 (49) 60l +30m+20n=0
—Xx—=2y+z=-2 3014 20m + 15n = —10
3x—y=2 2014 15m + 12n = —10
(50) 2r +3s—4t =12 (51) x+2y —2z=-1
3r—2s=-1 2x+y+z=5

8r—s—4t =10 —X+y—z=-2



(52) Solve each of the following systems using the same inverse:

(a) 3x+5y=10
2x+3y =20

() 3x+5y=0.2
2x+3y=0.5

(b) 3x+5y=-8
2x+ 3y =22

(d) 3x+5y=0
2x+3y=5

(53) Solve each of the following systems using the same inverse:

(a) 2x+4y =2 (b) 2x+4y =3
3x+2y+z=38 3x+2y+z=38
5 -3y +7z=15 5x—=3y+7z=15

() 2x+4y =2 (d) 2x+4y =1
3x+2y+z=9 3x+2y+z=7

5x—3y+7z=15 5x—3y+7z=14

(54) If A is nonsingular matrix, we may define A™"=(A"")", for any positive
integer n. Use this definition to find A~> and A~ for the following

matrices:

() {1 1] (b) (2 5 () {1 1}

a ’ ’ C ’
2 3 1 2 3 4
1 1 1 1 2 -1

(d (o 1 1}, () [0 1 -1
0 0 1 L0 O 1

(55) Prove that a square zero matrix does not have an inverse.

(56) Prove that if a diagonal matrix has at least one zero on its main diagonal,
then that matrix does not have an inverse.

(57) Prove that if A>=1, then A" ' =A.
(58) If A is symmetric, prove the identity (BA™!)' (A"'BT) ' = L
(59) Prove that if A is invertible, then (A1) ' = A.

(60) Prove that if A is invertible and if A is a nonzero scalar, then
(M) =(1/M)A

(61) Prove that if A, B, and C are nxn nonsingular matrices, then
(ABC)'=C'B'A"".

(62) Prove that the inverse of a nonsingular upper (lower) triangular matrix is
itself upper (lower) triangular.

(63) Prove part (c) of Theorem 1.



(64) Show that if A can be partitioned into the block diagonal form

A 0
A,
A — As

0 Ay,
with A;, A,,..., A, all invertible, then

A7l 0

1.7 LU DECOMPOSITION

CHAPTER1 €D

Matrix inversion of elementary matrices is at the core of still another popular
method, known as LU decomposition, for solving simultaneous equations in
the matrix form Ax=Db. The method rests on factoring a nonsingular coefficient
matrix A into the product of a lower triangular matrix L with an upper triangular
matrix U. Generally, there are many such factorizations. If L is required to have
all diagonal elements equal to 1, then the decomposition, when it exists, is

unique and we may write

A=LU
with

M1 0 0 07

by 1 0 0

L= |11 I 1 0
_lnl ln2 ln3 1 J

[U1n U2 U1z - Uip |

0 uxp Uz -+ Uy
u=1|90 0 us - us

(1.33)



To decompose A into form (1.33), we first transform A to upper triangular form
using just the third elementary row operation Rs. This is similar to transforming a
matrix to row-reduced form, except we no longer use the first two elementary row
operations. We do not interchange rows, and we do not multiply rows by non-
zero constants. Consequently, we no longer require that the first nonzero ele-
ment of each nonzero row be 1, and if any of the pivots are 0—which would
indicate a row interchange in the transformation to row-reduced form—then
the decomposition scheme we seek cannot be done.

Example 1 Use the third elementary row operation to transform the matrix

2 -1 3
A= 4 2 1
-6 -1 2
into upper triangular form.
Solution:
2 -1 3 r 2 -1 3 by adding to the second row
A= 4 2 1| — 0 4 -5 — 2 times the first row
-6 -1 2 -6 -1 2
2 -1 37 by adding to the third row 3 times
~lo 4 —s the first row
L0 —4 11|
2 —1 37 by adding to the third row 1 times
—~lo 4 =s the second row
LO 0 6

If a square matrix A can be reduced to upper triangular form U by a sequence of
elementary row operations of the third type, then there exists a sequence of ele-
mentary matrices E;, Esq, Eqy, ..., E, 1 such that

(Enlnfl...E41E31E21)A:U (134)

where E,; denotes the elementary matrix that places a 0 in the 2-1 position, Es;
denotes the elementary matrix that places a 0 in the 3-1 position, E4; denotes the
elementary matrix that places a 0 in the 4-1 position, and so on. Since elementary
matrices have inverses, we can write Equation (1.29) as

A= (B BB, B, U (1.35)

Each elementary matrix in Equation (1.34) is lower triangular. It follows from
Theorem 4 of Section 1.5 that each of the inverses in Equation (1.35) are lower
triangular and then from Theorem 2 of Section 1.3 that the product of these
lower triangular inverses is itself lower triangular. If we set
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“1p-1p-1 -1
L= (E21 Es B - 'En, n71>

then L is lower triangular and Equation (1.35) may be rewritten as A=LU, which

is the decomposition we seek. A square matrix A has an
.. .. . LU decomposition if A

Example 2 Construct an LU decomposition for the matrix given in Example 1. can be transformed to

upper triangular form

Solution: The elementary matrices associated with the elementary row operations using only the third ele-

described in Example 1 are mentary row operation.
1 0 O 1 0 O 1 0 0
E21 = -2 1 0], E31 = 01 0], and E32 =10 1 0
0 0 1 -3 0 1 0 -1 1

with inverses given respectively by

1 00 1 00 1 00
E))=1(2 1 0|, E)=| 0 1 0|, and E;;=|0 1 0
0 0 1 -3 0 1 0 -1 1

Then,
2 -1 3 1 00 1 0 0J[1t o0 O[22 -1 3
4 2 1|=1]2 1 0 0 1 o[|0 1 of||l0 4 -5
-6 -1 2 0 0 1J][-3 0 1][0 -1 1]|0 O 6

or, upon multiplying together the inverses of the elementary matrices,

2 -1 3 1 0 0][2 =1 3
4 2 1|=| 2 1 0]]|o0 -5
-6 -1 2 -3 -1 1]|0 O 6

Example 2 suggests an important simplification of the decomposition process.
Note that the elements in L located below the main diagonal are the negatives
of the scalars used in the elementary row operations in Example 1 to reduce A
to upper triangular form! This is no coincidence.

» OBSERVATION 1

If, in transforming a square matrix A to upper triangular form, a zero is placed in the i
position by adding to row i a scalar k times row j, then the i-j element of L in the LU decom-
position of A is —k. 4

\ J

We summarize the decomposition process as follows: Use only the third elemen-
tary row operation to transform a square matrix A to upper triangular form. If this
is not possible, because of a zero pivot, then stop. Otherwise, the LU decompo-
sition is found by defining the resulting upper triangular matrix as U and con-
structing the lower triangular matrix L according to Observation 1.



Example 3 Construct an LU decomposition for the matrix

2 1 2 3
6 2 4 8
A= 1 -1 0 4
0 1 -3 —4

Solution: Transforming A to upper triangular form, we get

2 1 2 3 2 1 2 3] byadding to the second row
6 2 4 8 0 -1 -2 -1 —3 times the first row
1 -1 0 4| |1 -1 0o a4
0 1 -3 —4| [0 1 -3 —4]
(2 1 2 37 byadding to the third row
0 -1 -2 -1 —1/2 times the first row
—
0o -3 -1 2
0 1 -3 —4
[2 1 2 37 byadding to the third row
0 -1 -2 -1 —3/2 times the second row
“lo 0o 2 4
0 1 -3 —4]
[2 1 2 3] byaddingto the fourth row 1
0 -1 -2 -1 times the second row
o 0o 2 4
0 0 -5 —5]
[2 1 2 37 by adding to the fourth row
0 -1 -2 -1 5/2 times the third row
o 0o 2 4
0 0 o 5]

We now have an upper triangular matrix U. To get the lower triangular matrix L
in the decomposition, we note that we used the scalar —3 to place a 0 in the 2-1
position, so its negative —(—3) =3 goes into the 2-1 position of L. We used the
scalar —1/2 to place a 0 in the 3-1 position in the second step of the preceding
triangularization process, so its negative, 1/2, becomes the 3-1 element in L; we
used the scalar 5/2 to place a 0 in the 4-3 position during the last step of the tri-
angularization process, so its negative, —5/2, becomes the 4-3 element in L. Con-
tinuing in this manner, we generate the decomposition
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1 0 00

2 1 2 3 3 olf2 1 2 3

6 2 4 8 3 0 -1 -2 -1
=1 3 10

1 -1 0 4 o 0 2 4

0 1 -3 -4 0 -1 -3 1{[0 0 0 5

LU decompositions, when they exist, are used to solve systems of simultaneous
linear equations. If a square matrix A can be factored into A=LU, then the system
of equations Ax=Db can be written as L(Ux)=Db. To find x, we first solve the
system

Ly =b (1.36)
. . If A=LU for a square
for y, and then once y is determined, we solve the system matrix A, then ﬂ?e equa-
tion Ax=b is solved by
Ux =y (1.37) first solving the equation

Ly=b for y and then
for x. Both systems (1.36) and (1.37) are easy to solve, the first by forward sub- sglving theyequation

stitution and the second by backward substitution. Ux=y for x.

Example 4 Solve the system of equations:

2x—y+3z2=9
4x+2y+z=9
—6x —y+2z=12

Solution: This system has the matrix form

2 -1 377«x 9
4 2 1||yl=1] 09
-6 -1 2]lz 12

The LU decomposition for the coefficient matrix A is given in Example 2. If
we define the components of y by o, 5, and v, respectively, the matrix system
Ly=b is

1 0 07[a 9
2 1 0o||gl=1]09
-3 -1 1]y 12

which is equivalent to the system of equations

«=29
20+ =9
—3o—f+y=12

Solving this system from top to bottom, we get =9, f=—9, and y=30. Con-
sequently, the matrix system Ux=y is



2 -1 3 X 9
0 4 —5||yl=1-9
0 0 6] |z 30

which is equivalent to the system of equations

2x—y+3z2=9
4y —5z=-9
6z = 30

Solving this system from bottom to top, we obtain the final solution x=—1,
y=4, and z=5.

Example 5 Solve the system
2a+b+2c+3d=5
6a+2b+4c+8d=38
a—b+4d=-4
b—3c—4d = -3

Solution: The matrix representation for this system has as its coefficient matrix
the matrix A of Example 3. Define

y = [0 8,7,0]"

Then, using the decomposition determined in Example 3, we can write the
matrix system Ly=Db as the system of equations

a=>5
30+ pf =38

L 3sy A
1, .3,
X TPy
5
p 2y+

which has as its solution =5, f=—7, y=4, and 6=0. Thus, the matrix system
Ux =y is equivalent to the system of equations
2a+b+2c+3d=5
—b—2c—d=-7

2c+4d =4
5d=0
Solving this set from bottom to top, we calculate the final solution as a=—1,

b=3,c=2,and d=0.
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Problems 1.7

In Problems 1 through 14, A and b are given. Construct an LU decomposition for
the matrix A and then use it to solve the system Ax=Db for x.

(1 1 1 2 1 11
wa-[} 4] w1} @a-[2 ] e-]M)
- 1 10 4
(3)A = g 3] b:[gég]. @A=1]10 1| b=| 1|
L 01 1 -1
[—1 2 0 -1
(5) A= 1 =3 1|, b=|-2].
2 -2 3 3
[ 2 1 3 10
(6) A= 4 1 0f, b=|-40].
-2 -1 =2 0
(3 2 1 50
(7Y)A=1{4 0 1|, b=|80].
13 9 2 20
1 2 -1 80
(8A=| 2 0 1|, b=|159].
-1 1 3 —75
[1 2 -1 8
(9A=|0 2 1|, b=|-1].
0 0 1 5
1 0 0 27
(10)A=|{3 2 0|, b=|4
11 2 2 |
(1 0 1 1 [ 4
1 1 0 1 -3
(1A= 11 1 0}’ b= -2
01 1 1 -2
(2 1 -1 3 1000
1 4 21 200
(12) A= 00 -1 1| b 100
[0 1 1 1 100




1 2 1 1 30
11 2 1 30
(13) A= 1 1 1 2}/ b= 10
01 1 1 10
2 0 2 0 -2
2 2 0 6 4
(14) A = , b=
-4 3 1 1 9
1 0 3 1 4

(15) (a) Use LU decomposition to solve the system
—Xx+2y=-9
2 +3y=4

(b) Use the decomposition to solve the preceding system when the right
sides of the equations are replaced by 1 and —1, respectively.

(16) (a) Use LU decomposition to solve the system
x+3y—z=-1
2x+5y+z=4
2x+7y —4z= -6

(b) Use the decomposition to solve the preceding system when the right
side of each equation is replaced by 10, 10, and 10, respectively.

(17) Solve the system Ax=Db for the following vectors b when A is given as in

Problem 4:
5 2 40 1
(a) 71, (b) (2], (c) |50, (d) |1
—4 0 20 3
(18) Solve the system Ax=Db for the following vectors b when A is given as in
Problem 13:
-1 0 190 1
1 0 130 1
@ [ ;1 O (ol © il @],
1 0 60 1

(19) Show that LU decomposition cannot be used to solve the system

2y+z=-1
X+y+3z=38
x—y—z=1

but that the decomposition can be used if the first two equations are
interchanged.
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(20) Show that LU decomposition cannot be used to solve the system

X+2y+z=2
2x+4y—z2=7
X+y+2z=2

but that the decomposition can be used if the first and third equations are
interchanged.

(21) (a) Show that the LU decomposition procedure given in this section
cannot be applied to
0o 2
o 3]

(b) Verify that A=LU, when

1 0] 0 2]
L__1 1] and U—_0 7
(c) Verify that A=LU, when
(1 0] [0 2]
L__3 1) and U__O 3]

(d) Why do you think the LU decomposition procedure fails for this A?
What might explain the fact that A has more than one LU
decomposition?

CHAPTER 1 REVIEW
Important Terms

augmented matrix elementary row operations
block diagonal matrix equivalent directed line segments
coefficient matrix expansion by cofactor
cofactor Gaussian elimination
column matrix homogeneous equations
component identity matrix

consistent equations inconsistent equations
derived set inverse

determinant invertible matrix

diagonal element linear equation

diagonal matrix lower triangular matrix
dimension LU decomposition
directed line segment main diagonal

element mathematical induction

elementary matrix matrix



nonhomogeneous equations scalar

nonsingular matrix singular matrix

n-tuple skew-symmetric matrix
order square

partitioned matrix submatrix

pivot symmetric matrix
pivotal condersation transpose

power of a matrix trivial solution

TrOw matrix upper triangular matrix
row-reduced form zero matrix

Important Concepts

Section 1.1

= Two matrices are equal if they have the same order and if their corresponding
elements are equal.

= The sum of two matrices of the same order is a matrix obtained by adding
together corresponding elements of the original two matrices. Matrix addi-
tion is commutative and associative.

= The difference of two matrices of the same order is a matrix obtained by sub-
tracting corresponding elements of the original two matrices.

= The product of a scalar by a matrix is the matrix obtained by multiplying every
element of the matrix by the scalar.

Section 1.2

= The product AB of two matrices is defined only if the number of columns of A
equals the number of rows of B. Then the i-j element of the product is
obtained by multiplying the elements in the ith row of A by the correspond-
ing elements in they jth column of B and summing the results.

= Matrix multiplication is not commutative. The associative law of multiplica-
tion as well as the left and right distributive laws for multiplication are valid.

= A system of linear equations may be written as the single matrix equation
Ax=Db.

Section 1.3

= The transpose of a matrix A is obtained by converting all the rows of A into
columns while preserving the ordering of the rows/columns.

= The product of two lower (upper) triangular matrices of the same order is also
a lower (upper) triangular matrix.

Section 1.4

= A system of simultaneous linear equations has either no solutions, one solu-
tion, or infinitely many solutions.

= A homogeneous system of linear equations is always consistent and admits
the trivial solution as one solution.
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= Alinear equation in two variables graphs as a straight line. The coordinates of
a point in the plane is a solution to a system of equations in two variables if
and only if the point lies simultaneously on the straight line graph of every
equation in the system.

= A linear equation in three variables graphs as a plane. The coordinates of a
point in space is a solution to a system of equations in three variables if
and only if the point lies simultaneously on the planes that represent every
equation in the system.

= The heart of Gaussian elimination is the transformation of an augmented
matrix to row-reduced form using only elementary row operations.

= If the solution to a derived set involves at least one arbitrary unknown, then
the original set of equations has infinitely many solutions.

= A homogeneous system of linear equations having more variables than equa-
tions has infinitely many solutions.

= Ifaderived set contains a false equation, then the original set of equations has
no solution.

Section 1.5

= Every square matrix has a number associated with it.

= Minors and cofactors are used to evaluate determinants.

= The determinant of the product of square matrices of the same size is the
product of the determinants of the matrices.

Section 1.6

= An inverse, if it exists, is unique.

= The inverse of a diagonal matrix D with no zero elements on its main diag-
onal is another diagonal matrix having diagonal elements that are the recip-
rocals of the diagonal elements of D.

= The inverse of an elementary matrix is again an elementary matrix.

= The inverse of a nonsingular upper (lower) triangular matrix is again an
upper (lower) triangular matrix.

= A square matrix has an inverse if it can be transformed by elementary row
operations to an upper triangular matrix with no zero elements on the main
diagonal.

= The matrix equation Ax=b has as its solution x=A""' b if the A is invertible.

Section 1.7

= A square matrix A has an LU decomposition if A can be transformed to upper
triangular form using only the third elementary row operation.

= If A=LU for a square matrix A, then the equation Ax=Db is solved by first solv-
ing the equation Ly=Db for y and then solving the equation Ux=y for x.
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2.1 PROPERTIES OF R"

At the core of mathematical analysis is the process of identifying fundamental
structures that appear with some regularity in different situations, developing
them in the abstract, and then applying the resulting knowledge base back to
the individual situations. In this way, one can understand simultaneously many
different situations by investigating the properties that govern all of them. Matri-
ces would seem to have little in common with polynomials, which in turn appear
to have little in common with directed line segments, yet they share fundamental
characteristics that, when fully developed, provide a richer understanding of
them all.

In order to motivate the ensuing discussion of these fundamental characteristics,
we first present some of the properties of a common mathematical structure that
should be familiar to readers of this text—the real number system. Points on the
plane in an x-y coordinate system are identified by an ordered pair of real num-
bers; points in space are located by an ordered triplet of real numbers. These are
just two examples of the more general concept of an ordered array of n-real num-
bers known as an n-tuple. We write an n-tuple as a 1 x n row matrix. The elements
in the row matrix are real numbers and the number of elements (columns) 7 is

Linear Algebra
Copyright © 2014, Elsevier Inc. All rights reserved.
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R" is the set of ordered
arrays of nreal numbers.
This set is represented
either by the set of all
n-dimensional row
matrices or by the set
of all n-dimensional
column matrices.

the dimension of the row matrix. The set of all n-tuples is often referred to as
n-space and denoted by R". In particular, the ordered pair [12] is a member of
R?; it is a 2-tuple of dimension two. The ordered triplet [102030] is a member
of R?; it is a 3-tuple of dimension three. The p-tuple a=|a; a, as. . .a,|, where g;
(i=1,2,...,p) is a real number, is a member of R”, and has dimension p.

An ordered array of real numbers also can be written as a column matrix,
and often is. Here we work exclusively with row matrix representations, but
only as a matter of convenience. We could work equally well with column
matrices.

Row matrices are special types of matrices, those matrices having only one row,
so the basic matrix operations defined in Section 1.1 remain valid for n-tuples
represented as row matrices. This means we know how to add and subtract
n-tuples of the same dimension and how to multiple a real number times an
n-tuple (scalar multiplication). If we restrict ourselves to R? and R>, we can
describe these operations geometrically.

A two-dimensional row matrix v=[ab] is identified with the point (a, b) on x-y
plane, measured a units along the horizontal x-axis from the origin and then b
units parallel to the vertical y-axis. If we draw a directed line segment, or arrow,
beginning at the origin and ending at the point (a, b), then this arrow, as shown
in Figure 2.1, is a geometrical representation of the row matrix [ab]. It follows
immediately from Pythagoras’s theorem that the length or magnitude of v,
denoted by ||v]|, is

vl = llfa B}l = Va2 + 12

and from elementary trigonometry that the angle 0 satisfies the equation

tan 0 = —
a
y
(a, b)
br=---~ % )
\
N I
) Ly
a

FIGURE 2.1
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Example 1 Represent the row matrices v=[24] and u=[—11] geometrically
and then determine the magnitude of each and the angle each makes with the
horizontal x-axis.

Solution: The row matrices are graphed in Figure 2.2. For v, we have
2 2 4 o
IVl =4/(2)" 4+ (4)° = 4.47,tan 0 = 5= 2,and0 ~ 63.4

For u, similar computations yield

1
(-1)° + (1) ~ 1.14,tan0 = — = ~1,and0 ~ 135°

lufl =

To geometrically construct the sum of two row matrices u and v in R?, graph
u and v on the same coordinate system, translate v so its initial point coincides
with the terminal point of u, being careful to preserve both the magnitude
and direction of v, and then draw an arrow from the origin to the terminal
point of v after translation. This arrow geometrically represents the sum
u—+v. The process is illustrated in Figure 2.3 for the row matrices u=[—11]
and v=[24].

To construct the difference of two row matrices u — v geometrically, graph both u
and v normally and construct an arrow from the terminal point of v to the ter-
minal point of u. This arrow geometrically represents the difference u—v. The
process is depicted in Figure 2.4 foru=[—11] and v=[24].

Translating an arrow (directed line segment) that represents a two-dimensional
row matrix from one location in the plane to another does not affect the repre-
sentation, providing both the magnitude and direction as defined by the angle
the arrow makes with the positive x-axis are preserved. Many physical phenom-
ena such as velocity and force are completely described by their magnitudes and
directions. A wind velocity of 60 miles per hour in the northwest direction is a
complete description of that velocity, and it is independent of where that wind

To graph u+v in R?,
graph u and v on the
same coordinate system,
translate v so its initial
point coincides with the
terminal point of u, and
then draw an arrow from
the origin to the terminal
point of v after transla-
tion.Tographu —vin R?,
graph u and v on the
same coordinate system
and then draw an arrow
from the terminal point of
v to the terminal point
of u.
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occurs, be it Lawrence, Kansas, or Portland, Oregon. This independence is the
rationale behind translating row matrices geometrically. Geometrically, two-
dimensional row matrices having the same magnitude and direction are call
equivalent, and they are regarded as being equal even though they may be located
at different positions in the plane. The four arrows drawn in Figure 2.5 are all
geometrical representations of the same row matrix [1 —3].

To recapture a row matrix from the directed line segment that represents it, we
translate the directed line segment so that its tail lies on the origin and then read
the coordinates of its tip. Alternatively, we note that if a directed line segment
w does not originate at the origin, then it can be expressed as the difference
between a directed line segment u that begins at the origin and ends at the


Figure 2.3
Figure 2.4

CHAPTER 2 €D

FIGURE 2.5

FIGURE 2.6

tip of w and a directed line segment v that originates at the origin and ends at
the tail of w as shown in Figure 2.6. Therefore, if the tip of w is at the point
(x2, y2) and the tail at the point (x;, y;), then u represents the row matrix
[x272], v represents the row matrix [x;y;], and w is the difference w=u—-v=
[x2 —x1 y2— 1]

Example 2 Determine the two-dimensional row matrix associated with the
directed line segments w and z shown in Figure 2.7.

Solution: The tip of the directed line segment w is at the point (40, 30) while its
tail lies on the point (10, —20), so

w=[40—-10 30— (—20)]=[30 50]
The tip of the directed line segment z is at the point (—10, 30) while its tail lies on
the point (—50, 50), so
z=[-10-(=50) 30—-50]=1[40 -20]


Figure 2.5
Figure 2.6

The graph of k, in R? isa
directed line segment
having length Ikl times
the length of u with the
same direction as u when
the scalar k is positive
and the opposite direc-
tion to u when k is
negative.

y
50
30
20
10+ 2

t t t t t t t t t X
-50 40 -30 -20 7_1‘?0_ 10/[0 30 40 5
—20]
30
40
—~50

FIGURE 2.7

A scalar multiplication ku is defined geometrically in R? to be a directed line seg-
ment having length |k| times the length of u, in the same direction as u when k is
positive and in the opposite direction to u when k is negative. Effectively, ku is an
elongation of the directed line segment representing u when |%| is greater than 1,
or a contraction of u by a factor of |k| when |k| is less than 1, followed by no
rotation when k is positive or a rotation of 180° when & is negative.

Example 3 Find —2u and 1/2 v geometrically for the row matricesu=[—11] and
v=|[24].

Solution: To construct —2u, we double the length of u and then rotate the result-
ing arrow by 180°. To construct 1/2 v, we halve the length of v and effect no rota-
tion. These constructions are illustrated in Figure 2.8.

FIGURE 2.8


Figure 2.7
Figure 2.8
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To graphically depict a three-dimensional row matrix, we first construct a rectan-
gular coordinate system defined by three mutually perpendicular lines, repre-
senting the axes, that intersect at their respective origins. For convenience, we
denote these axes as the x-axis, the y-axis, and the z-axis, and their point of inter-
section as the origin.

Rectangular coordinate systems are of two types: right-handed systems and left-
handed systems. An xyz system is right-handed if the thumb of the right hand
points in the direction of the positive z-axis when the fingers of the right hand
are curled naturally—in a way that does not break the finger bones—from the
positive x-axis towards the positive y-axis. In a left-handed system, the thumb
of the left hand points in the positive z-axis when the fingers of the left hand
are curled naturally from the positive x-axis towards the positive y-axis. Both
types of systems are illustrated in Figure 2.9. In this book, we shall only use
right-handed coordinate systems when graphing in space.

A three-dimensional row matrix v=[abc] is identified with the point (a, b, ¢)
in an xyz-coordinate system, measured a units along the x-axis from the origin,
then b units parallel to the y-axis, and then finally ¢ units parallel to the z-axis.
An arrow or directed line segment having its tail at the origin and its tip at the
point (a, b, ¢) represents the row matrix v geometrically. The geometrical repre-
sentations of the row matrices u=[246] and v=[52—3] are illustrated in
Figures 2.10 and 2.11, respectively.

All of the geometrical processes developed for the addition, subtraction, and sca-
lar multiplication of 2-tuples extend directly to 3-tuples. In particular, to graph
u—v, first graph both directed line segments normally and then construct an
arrow from the tip of v to the tip of u. Multiplication of a directed line segment
u by the scalar k is again an elongation of u by |k| when |k| is greater than unity
and a contraction of u by |k| when |k| is less than unity, followed by no rotation
when k is positive or a rotation of 180° when k is negative. If a directed line seg-
ment has its tip at the point (x,, y,, z,) and its tail at the point (xy, y1, z;), then the
row matrix associated with it is [(x, —x1) (y2 — 1) (z2 —21)]-

Right-handed system Left-handed system
FIGURE 2.9
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Although geometrical representations for R" are limited to n <3, the concept of
magnitude can be extended to all n-tuples. We define the magnitude of the
n-dimensional row matrix a={a; a, as...a,] as

lall = /@ + @3 + a3+ -+ a2 (2.1)


Figure 2.10
Figure 2.11
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Example 4 The magnitude of the 4-tuple a=[1234] is

lall = /(12 + (2)° + (3) + (4)> = V30

while the magnitude of the 5-tuple u=[—4—-5054] is

lufl = \/(—4)2 + (=52 + (0> + (5)° + (4) = V82

An n-tuple is normalized if it has a magnitude equal to one. Any n-tuple (row An r-tuple is normalized

matrix) is normalized by multiplying the n-tuple by the reciprocal of its magnitude. f it hlats a magnitude
equal to one.

Example 5 As shown in Example 4, a=[123 4] has magnitude ||a|| = v/30, so

1 1 2 3 4
E[l 234]2[@@@@]

is normalized. Similarly, u=[—4 —50 54| has magnitude |Ju| = v/82, so

) -4 5 , 5 4
Tl 505 4]—l\/8—2 V&2 VB2 x/8_2]

is normalized.

Two row matrices of the same dimension can be added and subtracted but they
cannot be multiplied. Multiplication of a 1 x n matrix by another 1 x n matrix is
undefined. Scalar multiplication of row matrices is defined but inversion is not
defined for row matrices of dimension greater than 1, because such row matrices
are not square. Thus, row matrices, and therefore n-tuples, do not possess all the
properties of real numbers. Listing the properties that n-tuples do share with real
numbers and then developing an algebra around those properties is the focus of
the next chapter.

In preparation for our work in vectors and vector spaces later in this chapter, we
list some of the important properties shared by all n-tuples. If a, b, and c denote
row matrices of the same dimension n, then it follows from Theorem 1 of Sec-
tion 1.1 that

a+b=b+c (2.2)
and

a+(b+c)=(a+b)+c (2.3)

If we define the zero row matrix of dimension nas 0=[000...0], the row matrix
having entries of zero in each of its n-columns, then it follows from
Equation (1.5) that

a+0=a (2.4)



Setting a=[a;454s...4,] and —a=(—1)a=[—a;—a,—as...—ay,], we also have
a+(—a)=0 (2.5)

It follows from Theorem 2 of Section 1.1 that if 1, and 1, denote arbitrary real
numbers, then

J1(a+b) =4a+1:b (2.6)
(A +2z)a=Aa+Aa (2.7)
and
(M12)a = A1(Aaa) (2.8)
In addition,
1(a)=a (2.9)

Problems 2.1

In Problems 1 through 16, geometrically construct the indicated 2-tuple
operations for

u=[3-1], v=[-25], w=[-4—4], x=[35], and y=[0—2].

(1) u+v. (2) u+w. (3) v+w. (4) x+y.

(5) x—y. (6) y—x. (7) u—vw. (8) w—u.

(9) u—w. (10) 2x. (11) 3x. (12) —2x.
(13) lu. (14) —lu. (15) v. (16) —lw.

(17) Determine the angle that each directed line segment representation for the
following row matrices makes with the positive horizontal x-axis:
(a) u=[3-1], () w=[-4-4], (e) y=[0-2].
(b) v=[-25], (d) x=[35],

(18) For arbitrary two-dimensional row matrices u and v, construct on the same
graph the sums u+v and v+u. Show that u+v=v+u, and show for each
that the sum is the diagonal of a parallelogram having as two of its sides the
directed line segments that represent u and v.

In Problems 19 through 29, determine the magnitudes of the given n-tuples.

(19) [1—1]. (20) [34]. (21) [12].
(22) [-1-11]. (23) [1/21/21/2]. (24) [111].
(25) [21-13]. (26) [1—11—1]. (27) [10 10].

(28) [0—15 32]. (29) [11111].
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In Problems 30 through 39, graph the indicated n-tuples.

(30) [312]. (31) [123]. (32) [-123].
(33) [-12-3]. (34) [20—5010]. (35) [1000 100].
(36) [222]. (37) [-2—12]. (38) [1000 —500200].

(39) [-400—50—300].

In Problems 40 through 48, determine which, if any, of the given row matrices
are normalized.

1 -1
(40) [11]. (41) [1/21/2]. (42) [\ﬁ ﬁ]
(43) [010]. (44) [1/21/31/6].

111 (46) [1/21/21/21/2].
(@9 [\@ V3 \/51'
—1 1 -1
(47) [1/65/63/61/6].  (48) l— 0 7 74.

S

2.2 VECTORS

As stated earlier, matrices, polynomials and directed line segments would seem, on
the surface, to have little in common. However, they share fundamental character-
istics that provide a richer understanding of them all. What are some of these funda-
mental properties? First, they can be added. A matrix can be added to a matrix of the
same order and the result is another matrix of that order. A directed line segment in
the plane can beadded to another directed line segment in the plane and the result is
again a directed line segment of the same type. Thus, we have the concept of closure
under addition: objects in a particular set are defined and an operation of addition is
established on those objects so that the operation is doable and the result is again
another object in the same set. Second, we also have the concept of closure under scalar
multiplication. We know how to multiply a matrix or a directed line segment or a poly-
nomial by a scalar, and the result is always another object of the same type. Also, we
know that the commutative and associate laws hold for addition (see, for example,
Theorem 1 in Section 1.1). Other properties are so obvious we take them for granted.
If we multiply a matrix, directed line segment, or polynomial by the number 1 we
always get back the original object. If we add to any matrix, polynomial, or directed
line segment, respectively, the zero matrix of appropriate order, the zero polynomial,
or the zero directed line segment, we always get back the original object.

Thus, we have very quickly identified a series of common characteristics. Are there
others? More interesting, what is the smallest number of characteristics that we need
to identify so that all the other characteristics immediately follow? To begin, we



In set notation, € is read
“belongs to” and the
vertical line segment | is
read “such that.”

create a new label to apply to any set of objects that have these characteristics, vector
space, and we refer to the objects in this set as vectors. We then show that matrices,
directed line segments, n-tuples, polynomials, and even continuous functions are
just individual examples of vector spaces. Just as cake, ice cream, pie, and JELL-O
are all examples of the more general term dessert, so too will matrices, directed line
segments, and polynomials be examples of the more general term vectors.

7~ )

» DEFINITION 1

A set of objects V={u, v, w, ...} and scalars {o, f3, 7, ...} along with a binary operation of

vector addition & on the objects and a scalar multiplication © is a vector space if it

possesses the following 10 properties:

Addition

(A1) Closure under addition: If u and v belong to V, then so too does u®v.

(A2) Commutative law for addition: If u and v belong to V, then uv=vdu.

(A3) Associative law for addition: If u, v, and w belong to V, thenu® (v w)=(udv) & w.

(A4) There exists a zero vector in V denoted by 0 such that for every vector u in V,
ug0=u.

(A5) For every vector u in V there exists a vector —u, called the additive inverse of u,
such that u® —u=0.

Scalar Multiplication

(S1) Closure under scalar multiplication: If u belongs to V, then so too does o ® u for any
scalar «.

(S2) For any two scalars « and ff and any vectoru in V, o ® (fOu)=(af}) ©u.

(S3) ForanyvectoruinV,1® u=u.

(S4) For any two scalars « and ff and any vectoru in V, (a+f)Qu=aous& foOu.

(S5) For any scalar « and any two vectorsuand vin V, «®uU@v)=aoOudaou. 4

\ J

If the scalars are restricted to be real numbers, then V is called a real vector space; if
the scalars are allowed to be complex numbers, then V is called a complex vector
space. Throughout this book we shall assume that all scalars are real and that we
are dealing with real vector spaces, unless an exception is noted. When we need
to deal with complex scalars, we shall say so explicitly.

Since vector spaces are sets, it is convenient to use set notation. We denote sets by
upper case letters in an outline font, such as V and R. The format for a subset S of
asetWisS = {w € W| property A}. The € is read “belongs to” or “is a member of”
and the vertical line segment | is read “such that.” An element w belongs to S only
if w is a member of W and if w satisfies property A. In particular, the set

S={[x y z]eR’ly=0}

is the set of all real 3-tuples, represented as row matrices, with a second compo-
nent of zero.

Example 1 Determine whether S = {[xy z] € R’|y = 0} is a vector space under
regular addition and scalar multiplication.
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Solution: Following our convention, it is assumed that the scalars are real. Arbi-
trary vectors u and vin S have the form u=[a 0 b] and v=[c 0 d] with a, b, ¢, and d
all real. Now,

ugv=[a 0 b]l+[c 0 dlj=[a+c 0 b+d]
and, for any real scalar o,
a@Qu=afa 0 b]=[oa 0 ob]

which are again three-dimensional row matrices having real components, of
which the second one is 0. Thus, S is closed under vector addition and scalar mul-
tiplication and both properties A1 and S1 are satisfied.

To prove property A2, we observe that
ugv=[a 0 b]l+[c 0 dlj=[a+c 0 b+d]
=[c+a 0 d+bl=[c 0 d]+[a O b]
=vQu

To prove property A3, we set w=[e 0f], with e and f representing real numbers,
and note that

[a 0 b]+[c O d]+[e O f])
a+c 0 b+d]+[e 0 f]
(a+c)+e 0 (b+d) +f]
a+(c+e) 0 b+(d+/)]

a 0 bl+[c+d 0 d+f]

a 0 b]+([c 0 dl+[e 0 f)]

The row matrix [00 0] is an element of S. If we denote it as the zero vector 0, then
u40=[a 0 b]+[0 0 0]=[a+0 0+0 b+0]
=[a 0 b]=u
so property A4 is satisfied. Furthermore, if we define, —u=[—a 0—b], then
ud-u=[a 0 b]+[-a 0 —-b]l=[a+-a 0+0 b+ —Db]
=[0 0 0]=0
and property A5 is valid.

For any two real numbers « and f, we have that

a®Pou)=a@Pla 0 b))=aG[fa 0 pb]l=a[fa 0 Pb])
=(@f)la 0 b]=(2f)©u



so property S2 holds. In addition,
1ou=1[a 0 b]=[la 0 1b]=[a 0 b]=u
so property S3 is valid. To verify properties S4 and S5, we note that

(x+p)ou=(a+p)la 0 b]

[(x+Bla (ax+p)O (o+ p)b]
[¢a+fa O ob+ fb]

[oa O ob]+[pa 0 pb]
=ola 0 b]+Bla 0 b]
=a®a 0 b]+pO[a 0 b]
=0Oud fu

and

rOudv)=ae(a 0 bl+[c 0 d])
=a@®@[a+c 0 b+d]
=[o(a+c) a(0) o(b+d)]
=loat+oac 0 ob + od
=[oa 0 ab]+[ac 0 od]
=afa 0 b]+afc 0 d]
=a@Quda®v

Therefore, all 10 properties are valid, and S is a vector space.

Example 2 Determine whether the set M., of all p x n real matrices under matrix
addition and scalar multiplication is a vector space.

The set M., of all px n~ Selution: This is a vector space for any fixed values of p and n because all 10 prop-

real matrices under erties follow immediately from our work in Chapter 1. The sum of two real p x n

malrix addition and - ayrices is again a matrix of the same order, as is the product of a real number

scalar multiplication is R . . . .

a vector pace. with a real matrix of this order. Thus, properties A1 and S1 are satisfied. Proper-
ties A2 through A4 are precisely Theorem 1 in Section 1.1 and Equation (1.5).
If A=[a;j], then —A=[—a;] is another element in the set and

A® —A = [a] + [-ay] = [(a5 + —ay)] = 0

which verifies property A5. Properties S2, S4, and S5 are Theorem 2 in
Section 1.1. Property S3 is immediate from the definition of scalar

The set R" of n-tuples ~ multiplication.

t iti . .
ggge;czli?drﬁ{ﬁti?)ﬂglallt?gn It follows from Example 2 that the set of all real 3 x 3 matrices (p=n=3) is a

for n-tuples is a vector space, as is M, the set of all real 2 x 6 matrices (p=2 and n=6). Also,
vector space. R" is a vector space, for any positive integer n, because R" is M, when we take
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R" to be the set of all n-dimensional real row matrices, and R" is M,,x; when we
take R" to be the set of all n-dimensional real column matrices.

Example 3 Determine whether the set of all 2 x 2 real matrices is a vector space
under regular scalar multiplication but with vector addition defined to be matrix
multiplication. That is,

udv=uv

Solution: This is not a vector space because it does not satisfy property A2. In
particular,

IR A [ R o
3 B e | N [ T

We use the @ symbol to emphasize that vector addition may be nonstandard, as The symbol &

it is in Example 3. The notation denotes a well-defined process for combining emphasizes that vector
two vectors together, regardless of how unconventional that process may be. addition may be
Generally, vector addition is standard, and many writers discard the & notation nonstandard.

in favor of the more conventional + symbol whenever a standard addition is in

effect. We shall, too, in later sections. For now, however, we want to stress that a

vector space does not require a standard vector addition, only a well-defined

operation for combining two vectors that satisfies the properties listed in Defi-

nition 1, so we shall retain the & notation a while longer.

Example 4 Redo Example 3 with the matrices restricted to being diagonal.

Solution: Diagonal matrices do commute under matrix multiplication, hence
property A2 is now satisfied. The set is closed under vector addition, because
the product of 2 x 2 diagonal matrices is again a diagonal matrix. Property A3
also holds, because matrix multiplication is associative. With vector addition
defined to be matrix multiplication, the zero vector becomes the 2 x 2 identity
matrix; for any matrix A in the set, A®0=AI=A. To verify property A5, we must
show that every real diagonal matrix A has an additive inverse —A with the prop-
erty A® —A=0. Given that we have just identified the zero vector to be the iden-
tity matrix and vector addition to be matrix multiplication, the statement
A®—A=0 is equivalent to the statement A(—A)=1I1. Property A5 is valid if
and only if every matrix in the set has an inverse, in which case we take ~A=A"".
But, a diagonal matrix with at least one 0 on its main diagonal does not have an
inverse. In particular the matrix,

1 0
w=o o]
has no inverse. Thus, property A5 does not hold in general, and the given set is
not a vector space.



Example 5 Redo Example 3 with the matrices restricted to being diagonal and all
elements on the main diagonal restricted to being nonzero.

Solution: Repeating the reasoning used in Example 4, we find that properties
A1-A5 are satisfied for this set. This set, however, is not closed under scalar mul-
tiplication. Whenever we multiply a matrix in the set by the zero scalar, we get

0 0
son-on=[0 0]

which is no longer a diagonal matrix with nonzero elements on the main diag-
onal and, therefore, not an element of the original set. Thus, the given set is not a
vector space.

Example 6 Determine whether the set of nth degree polynomials in the variable ¢
with real coefficients is a vector space under standard addition and scalar mul-
tiplication for polynomials if the scalars are restricted also to being real.

Solution: Arbitrary vectors u and v in this set are polynomials of the form
u=a,l" +a, "'+ +ait+a
V= bat" + by 1 " 4 bit 4 bo
with g; and b; (=0, 1, ..., n) all real, and both a, and b, nonzero. Here,
UDV = (apt" + ap 1"+ ant +ag)
+ (bpt" + by 0"+ byt + bo)
= (an + bp)t" 4 (@n—1 4+ bu1)t" " + -+ (ay + by)t + (a0 + bo)

Note that when a,, = — b, u®vis no longer an nth degree polynomial, but rather
a polynomial of degree less than n, which is not an element of the given set. Thus,
the set is not closed under vector addition and is not a vector space.

Example 7 Determine whether the set P" containing the identically zero polyno-
mial and all polynomials of degree n or less in the variable t with real coefficients
is a vector space under standard addition and scalar multiplication for polyno-
mials, if the scalars also are restricted to being real.

Solution: If u € P" and v € P", then u and v have the form
u=ayt"+a, 1t" '+ +ait+ag

V="b,t"+b, "'+ +bit+ by

with ajand b; (j=0, 1, ..., n) real and possibly 0. Using the results of Example 6,
we see that the sum of two polynomials of degree n or less is either another
polynomial of the same type or the zero polynomial when u and v have
their corresponding coefficients equal in absolute value but opposite in sign.
Thus, property Al is satisfied. If we define the zero vector to be the zero poly-
nomial, then
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u®0=(apt" +ay1t"" 4+ art +ao)
+ (06" +0t" ' + -+ + 0t +0)
= (an 4+ O)t" + (a1 + 0)t" ' + -+ + (ay + 0)t + (ap + 0)
=u
Thus, property A4 is satisfied. Setting

n—-1 _

u=—aut" —a,_1t c-—ait —ag

we note that property A5 is also satisfied. Now,
uev=(an" +an """+ +ait+ao)
+ (but" + by " 4+ byt + bo)
= (an + bp)t" + (@n—1 + by )t"" + -+ + (a1 + by)t + (ao + bo)
= (by + an)t" + (bp—1 + ay_1)t" "+ + (by +a1)t + (bo + ao)
= (bat" +by_1t" "+ + byt + by)
+ (ant" + an "'+ +art +ao)
=védu
so property A2 is satisfied. Property A3 is verified in a similar manner. For any
real number o, we have
2 Ou=ofayt + ay 1t + -+ art+ag) The set P of all polyno-
_ (oca,,)t+ (aanil)tn—l + (ocal)t—i— (Mo) mials of degree less than

or equal to n, including

which is again an element in the original set, so the set is closed under scalar E‘;erﬁgfnﬂﬁigi’ ég;ﬁqgloly'
multlphcatlor}. .Settlng a=1 in ‘fhe precedl.ng equation also verifies propertz addition and scalar mul-
§3. The remaining three properties follow in a straightforward manner, so P" ijpjication for polynomials

is a vector space. is a vector space.

Example 8 Determine whether the set of two-dimensional column matrices with
all real components is a vector space under regular addition but with scalar mul-

tiplication defined as
a —oa
<o [i] = [55)

Solution: Following convention, the scalars are assumed to be real numbers.
Since column matrices are matrices, it follows from our work in Chapter 1 that
properties Al through A5 hold. It is clear from the definition of scalar multi-
plication that the set is closed under this operation; the result of multiplying
a real two-dimensional column matrix by a real number is again a real two-
dimensional column matrix. To check property S2, we note that for any two real
numbers o and f and for any vector



The symbol ®
emphasizes that
scalar multiplication
maybe nonstandard.

we have
(1f) ©u = (af) © m = [iﬁiﬁiﬂ = {:Zgﬂ
while
o pow =xo (po[1]) =xo [ ] = [ - [2]

These two expressions are not equal whenever o and f are nonzero, so property
S2 does not hold and the given set is not a vector space.

Property S3 is also violated with this scalar multiplication. For any vector

i

1@u=1@mz[_b]¢u

Thus, we conclude again that the given set is not a vector space.

we have

We use the ® symbol to emphasize that scalar multiplication may be nonstan-
dard, as it was in Example 8. The ® symbol denotes a well-defined process for
combining a scalar with a vector, regardless of how unconventional the process
may be. In truth, scalar multiplication is generally quite standard, and many
writers discard the © notation whenever it is in effect. We shall, too, in later sec-
tions. For now, however, we want to retain this notation to stress that a vector
space does not require a standard scalar multiplication, only a well-defined pro-
cess for combining scalars and vectors that satisfies properties S1 through S5.

Example 9 Determine whether the set of three-dimensional row matrices with all
components real and equal is a vector space under regular addition and scalar
multiplication if the scalars are complex numbers.

Solution: An arbitrary vector in this set has the form u={[a a a], where a is real.
This is not a vector space, because the set violates property S1. In particular, if o is
any complex number with a nonzero imaginary part, then 2 ®u does not have
real components. For instance, with #=3i and u=[11 1], we have

xoOu=(3i)[1 1 1]=[3i 3i 3i]

which is not a real-valued vector; the components of the row matrix are complex,
not real. Thus, the original set is not closed under scalar multiplication. The
reader can verify that all the other properties given in Definition 1 are applicable.
However, as soon as we find one property that is not satisfied, we can immedi-
ately conclude the given set is not a vector space.
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The purpose of defining a vector space in the abstract is to create a single math-
ematical structure that embodies the characteristics of many different well-
known sets, and then to develop facts about each of those sets simultaneously
by studying the abstract structure. If a fact is true for vector spaces in general, then
that fact is true for M, ,,, the set of all p x n real matrices under regular matrix
addition and scalar multiplication, as well as R" and P", the set of all polyno-
mials of degree less than or equal to n including the zero polynomial, and
any other set we may subsequently show is a vector set.

We first inquire about the zero vector. Does it have properties normally associ-
ated with the word zero? If we multiply the zero vector by a nonzero scalar, must
the result be the zero vector again? If we multiply any vector by the number 0, is
the result the zero vector? The answer in both cases is affirmative, but both results
must be proven. We cannot just take them for granted! The zero vector is not the
number 0, and there is no reason to expect (although one might hope) that facts
about the number 0 are transferable to other structures that just happen to have
the word zero as part of their name.

» THEOREM 1

For any vector u in a vector space V, 0 ©ou=0. <4
\ J

Proof: Because a vector space is closed under scalar multiplication, we know that
0®u is a vector in V (whether it is the zero vector is still to be determined). As a
consequence of property A5, 0 ©®u must possess an additive inverse, denoted
by —0®u, such that

0OuWa&(-00u)=0 (2.10)
Furthermore,
00Gu=(0+0)Gu A property of the number 0
=00ud®00Gu Property S4 of vector spaces

If we add the vector —0®u to each side of this last equation, we get
0Oud-00u=00ud0cu)d-00u

0=00ue06ou)d-00u From Eq.(2.10)
0=00ud(0OuUd-00u) Property A3
0=(00u)®0 From Eq.(2.10)
0=00u Property A4

which proves Theorem 1 using just the properties of a vector space.

» THEOREM 2

In any vector space V, «®0=0, for every scalar o. d




Proof: 0 € V, hencea ® 0 € V, because a vector space is closed under scalar mul-
tiplication. It follows from property A5 that «®0 has an additive inverse,
denoted by —a®0, such that

(@a00)®(-a0)=0 (2.11)

Furthermore,
a®0=a0 (050) Property A4
=a004a®0 Property S5

Adding —x®0 to both sides of this last equation, we get

tO0E—000=(0000a00)d—ac0

0=0e08000)® -0 From Eq.(2.11)
0=000®(00®—x0) Property A3
0=(®0)®0 From Eq.(2.11)
0=000 Property A4

Thus, Theorem 2 follows directly from the properties of a vector space.

Property A4 asserts that every vector space has a zero vector, and property A5
assures us that every vector in a vector space V has an additive inverse. Neither
property indicates whether there is only one zero element or many or whether a
vector can have more than one additive inverse. The next two theorems do.

» THEOREM 3

The additive inverse of any vector v in a vector space V is unique. 4

Proof: Let v; and v, denote additive inverses of the same vector v. Then,

vdv, =0 (2.12)
vdv, =0 (2.13)
It now follows that

vi=vi 60 Property A4

=v;® (VO V) From Eq.(2.13)

=(vVi®v)dv, Property A3

=(Vev) eV, Property A2

=0DV, From Eq.(2.12)

=v,®0 Property A2

=V Property A4
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» THEOREM 4
The zero vector in a vector space V is unique. 4
\

J

Proof: This proof is similar to the previous one and is left as an exercise for the
reader. (See Problem 34.)

» THEOREM 5

For any vector w in a vector space V, —1oOw=—w. 4

Proof: We need to show that —1 ®w is the additive inverse of w. First,

(—1low)aw=(-1ow)® (160w) Property S3
=(-1+1)ow Property S5
=00w Property of real numbers
=0 Theorem 1

Therefore, —1 ®w is an additive inverse of w. By definition, —w is an additive
inverse of w, and because additive inverses are unique (Theorem 3), it follows
that —-1Ow=—w.

» THEOREM 6
For any vector w in a vector space V, —(—w)=w. 4

\ J

Proof: By definition, —w is the additive inverse of w. It then follows that w is the
additive inverse of —w (see Problem 33). Furthermore,

WD —(—w)=-10wd —(—w) Theorem 5
=-10wWd-10(—w) Theorem 5
=-10(Wao -—w) Property S5
=-1060 Property A5
=0 Theorem 2

Therefore, —(—w) is an additive inverse of —w. Since w is also an additive inverse
of —w, it follows from Theorem 3 that the two are equal.

» THEOREM 7

Let o be a scalar and u a vector in a vector space V. Ifa ©u=0, then either =0 oru=0. 4




Proof: We are given

aGu=0 (2.14)

Now either o is 0 or it is not. If « is 0, the theorem is proven. If « is not 0, we form
the scalar 1/o and then multiply Equation (2.14) by 1/a, obtaining

(1/0) ® (x@u)=(1/2) ®0

(1/a) © (x©u) =0 Theorem 2
1
—o | ®Gu=0 Property S2
o
1Gu=0 Property of numbers
u=20 Property S3

Problems 2.2

In Problems 1 through 32 a set of objects is given together with a definition for
vector addition and scalar multiplication. Determine which are vector spaces,
and for those that are not, identify at least one property that fails to hold.

(1) {[? Z}} € M2X2|b =0 under standard matrix addition and scalar

multiplication.

(2) {[i Z}} € M2X2|c: 1 under standard matrix addition and scalar

multiplication.

(3) The set of all 2 x 2 real matrices A=[a;] with a,; =—a,, under standard
matrix addition and scalar multiplication.

(4) The set of all 3 x 3 real upper triangular matrices under standard matrix
addition and scalar multiplication.

(5) The set of all 3 x 3 real lower triangular matrices of the form

1 0 O
a 1 0
b ¢ 1

under standard matrix addition and scalar multiplication.

(6) {[a b]€R’la+b=2} under standard matrix addition and scalar
multiplication.

(7) {la b]€R’la=b} under standard matrix addition and scalar
multiplication.
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(8) The set consisting of the single element 0 with vector addition and scalar
multiplication defined as 00=0 and « ®0=0 for any real number «.

(9) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as o ®[a b]=[00].

(10) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as «® [a b] =[0 ab].

(11) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as a® [a b] — [20a 2ab].

(12) The set of all real two-dimensional row matrices {[a b]} with standard
matrix addition but scalar multiplication defined as o ® [a b] =[5a 5b].

(13) The set of all real three-dimensional row matrices {[a b c]} with standard
scalar multiplication but vector addition defined as

[a b c]®[x y z]=[a+x b+y+1 c+z]

(14) The set of all real three-dimensional row matrices {[a b ¢|} with standard
scalar multiplication but vector addition defined as

[a b c]®x y z]=[a b+y c]
(15) The set of all real three-dimensional row matrices {[a b ¢|} with standard

matrix addition but scalar multiplication defined as « ®[a b ¢] —[oa ab 1].

(16) The set of all real three-dimensional row matrices {[a b ¢]} with positive
components under standard matrix addition but scalar multiplication
defined as

xa®la b c]l=[a* b ]

(17) The set of all real numbers (by convention, the scalars are also real num-
bers) with a®b=a®b=ab, the standard multiplication of numbers.

(18) The set of all positive real numbers with a® b=ab, the standard multiplica-
tion of numbers, and a ® b=ab.

(19) The set of all solutions of the homogeneous set of linear equations Ax=0,
under standard matrix addition and scalar multiplication.

(20) The set of all solutions of the set of linear equations Ax=Db, b#0, under
standard matrix addition and scalar multiplication.

(21) {p(t) € P*|p(0) = 0} under standard addition and scalar multiplication of
polynomials.

(22) The set of all ordered pairs of real numbers such that (a, b)®(c, d)=
(a+c+1,b+d+1) and k® (a, b) =(ka, kb).



A subspace of a vector
space V is a subset of V
that is a vector space in
its own right.

(23) The set of all ordered pairs of real numbers such that (a, b, ¢)®(d, e, f)=
(a+d, b+e c+f)and k®(a, b, ¢)=(0, 0, 0).

(24) The set of all ordered triples of real numbers of the form (1, a, b) such that
(1,a b)®(1, ¢, d)=(1,a+b, c+d) and kO (1, a, b)=(1, ka, kb).

(25) Let w be a vector in a vector space V. Prove that if —w is the additive inverse
of w then the reverse is also true: w is the additive inverse of —w.

(26) Prove Theorem 4.

(27) Prove that v (u—v) —u if u —v is shorthand foru® —wv.

(28) Prove that if u®v=u®w, then v—w.

(29) Prove that u®u—2u if 2u is shorthand for 2 ®u.

(30) Prove that the only solution to the equation uGu—2visu=v.
(31) Prove that if u#0 and «c©Gu=/fdu, then a=p.

(32) Prove that the additive inverse of the zero vector is the zero vector.

2.3 SUBSPACES

To show that a set of objects S is a vector space, we must verify that all 10 prop-
erties of a vector space are satisfied, the 5 properties involving vector addition
and the 5 properties involving scalar multiplication. This process, however,
can be shortened considerably if the set of objects is a subset of a known vector
space V. Then, instead of 10 properties, we need only verify the 2 closure prop-
erties, because the other 8 properties follow immediately from these 2 and the
fact that S is a subset of a known vector space.

We define a nonempty subset S of a vector space V as a subspace of V if S is itself a
vector space under the same operations of vector addition and scalar multiplica-
tion defined on V.

[ » THEOREM 1

Let'S be a nonempty subset of a vector space V with operations and ©. S is a subspace of
V if and only if the following two closure conditions hold:

(i) Closure under addition: Ifue€ Sandv €S, thenu@v € S.
(i) Closure under scalar multiplication: If u € S and o is any scalar, then « ®u € S. d

\ v

Proof: If S is a vector space, then it must satisfy all 10 properties of a vector space,
in particular the closure properties defined by conditions (i) and (ii). Thus, if Sis
a vector space, then (i) and (ii) are satisfied.

We now show the converse: If conditions (i) and (ii) are satisfied, then S is a
vector space; that is, all 10 properties of a vector space specified in Definition 1
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of Section 2.2 follow from the closure properties and the fact that S is a subset
of a known vector space V. Conditions (i) and (ii) are precisely Properties Al
and S1. Properties A2, A3, and S2 through S5 follow for elements in S because
these elements are also in V and V is known to be a vector space whose ele-
ments satisfy all the properties of a vector space. In particular, to verify Property
A2, we let u and v denote arbitrary elements in S. Because S is a subset of V, it
follows that u and v are in V. Because V is a vector space, we have u@év=vau.
To verify S3, we let u again denote an arbitrary element in S. Because S is a sub-
set of V, it follows that u is an element of V. Because V is a vector space, we have
1Gu=u.

All that remains is to verify that the zero vector and additive inverses of elements
in S are themselves members of S. Because S is nonempty, it must contain at least
one element, which we denote as u. Then, for the zero scalar, 0, we know that
0@u is in S, as a result of condition (ii), and this vector is the zero vector as a
result of Theorem 1 of the previous section. Thus, Property A4 is satisfied. If u
is an element of S, then the product —1®u is also an element of S, as a result
of condition (ii); it follows from Theorem 5 of the previous section that
—1@®u is the additive inverse of u, so Property A5 is also satisfied.

» CONVENTION

For the remainder of this book, we drop the ¢ and ® symbols in favor of the traditional
sum symbol (+) and scalar multiplication denoted by juxtaposition. All vector spaces will
involve standard vector addition and scalar multiplication, unless noted otherwise. d

\ J

We use Theorem 1 to significantly shorten the work required to show that some
sets are vector spaces!

b
d

under standard matrix addition and scalar multiplication.

Example 1 Determine whether { {i } € MzXz‘b =c= 0} is a vector space

Solution: The set S of 2 x 2 real matrices with zeros in the 1-2 and 2-1 positions is
a subset of M, and M, is a vector space (see Example 4 in Section 2.2 with
p=n=2). Thus, Theorem 1 is applicable, and instead of verifying all 10 proper-
ties of a vector space, we need only verify closure in S under matrix addition and
scalar multiplication.

Arbitrary elements u and v in S have the form

_|la O d_cO
u=l, 5| and v=1,

for any real numbers g, b, ¢, and d. Here

u+V:{a+c 0 ]

0 b+d



If a set is a subset of a
known vector space, then
the simplest way to show
the set is a vector space
is to show the set is a
subspace.

and for any real scalar o,
ou= | ¥ 0
|0 ab
Because these matrices are again elements in S, each having zeros in their 1-2 and

2-1 positions, it follows from Theorem 1 that S is a subspace of M,,,. The set S is
therefore a vector space.

Example 2 Determine whether the set S = {[xy z] € R’|y = 0} is a vector space
under standard matrix addition and scalar multiplication.

Solution: We first observe that S is a subset of R*, considered as row matrices,
which we know is a vector space from our work in Section 2.2. Thus, Theorem 1
is applicable. Arbitrary elements u and v in S have the form

u=[a 0 b] and v=[c 0 d]
It follows that

ut+v=[a+c 0 b+d]€S
and for any real scalar o,

ou=[oa 0 oB]eS

Thus, S is closed under addition and scalar multiplication, and it follows from
Theorem 1 that S is a subspace of R3. The set S is therefore a vector space.

Compare Example 2 to Example 1 of Section 2.2. In both, we were asked to prove
that the same set is a vector space. In Section 2.2, we did this by verifying all 10
properties of a vector space; in Example 2, we verified the 2 properties of a sub-
space. Clearly it is simpler to verify 2 properties than 10; thus, it is simpler to
show that a set is vector space by showing it is a subspace rather than demonstrat-
ing directly that the set is a vector space. To do so, however, we must recognize that
the given set is a subset of known vector space, in this case R°.

The subspace in Example 2 has an interesting graphical representation. R?, the
set of all 3-tuples, is represented geometrically by all points in three-space. The
set S in Example 2 is the set of all points in R® having a second component of 0.

In an x, y, z coordinate system, these points fill the entire x-z plane, which is illus-
trated graphically by the shaded plane in Figure 2.12.

Example 3 Determine whether the set S, illustrated graphically by the shaded
plane in Figure 2.13, is a subspace of R3.

Solution: The shaded plane is parallel to the y-z plane, intersecting the x-axis at
x=3. The x-coordinate of any point on this plane is fixed at x= 3, and the plane is
defined as
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FIGURE 2.12

FIGURE 2.13

S={[x y z]eR}x=3}

Elements u and v in S have the form
u=[3 a b] and v=[3 ¢ d]
for some choice of the scalars 4, b, ¢, and d. Here
u+v=I[6 at+c b+d]

which is not an element of S because its first component is not 3. Condition (i) of
Theorem 1 is violated. The set S is not closed under addition and, therefore, is not
a subspace.

As an alternative solution to Example 3, we note that the set S does not contain
the zero vector, and therefore cannot be a vector space. The zero vector in R is
0=[00 0], and this vector is clearly not in S because all elements in S have a first


Figure 2.13
Figure 2.12

120

If a subset of a vector
space does not include
the zero vector, that
subset cannot be a
subspace.

component of 3. Often we can determine by inspection whether the zero vector
of a vector space is included in a given subset. If the zero vector is not included, we
may conclude immediately that the subset is not a vector space and, therefore,
not a subspace. If the zero vector is part of the set, then the two closure properties
must be verified before one can determine whether the given set is a subspace.

One simple subspace associated with any vector space is the following:

» THEOREM 2

For any vector space V, the subset containing only the zero vector is a subspace. 4

Proof: It follows from the definition of a zero vector that 0+ 0=0. It also follows
from Theorem 2 of Section 2.2 that «0=0 for any scalar «. Both closure condi-
tions of Theorem 1 are satisfied, and the set S containing just the single element
0 is a subspace.

Example 4 Determine whether the set S= {[o 2o 4a]|o is a real number} is a sub-

space of R>.

Solution: Setting o.= 0, we see that the zero vector, 0=[00 0], of R? is an element
of S, so we can make no conclusion a priori about S as a subspace. We must apply
Theorem 1 directly. Elements u and v in S have the form

u=[t 2t 4t] and v=[s 2s 4s]
for some choice of the scalars s and t. Therefore,
ut+v=_[t+s 2t+2s 4t+4s]
=[(t+s) 2(t+s) 4(t+s)]€eS
and for any real scalar o,
ou=[at a(2t) o(4t)]
= [(at) 2(at) 4(at)] €S
Because S is closed under vector addition and scalar multiplication, it follows
from Theorem 1 that S is a subspace of R>.

The subspace in Example 4 also has an interesting graphical representation. If we
rewrite an arbitrary vector u as

u=|[t 2t 4t]=t[1 2 4]

we see that every vector is a scalar multiple of the directed line segment having its
tail at the origin and its tip at the point (1, 2, 4). Because t can be any real number,
zero, positive or negative, we can reach any point on the line that contains this
directed line segment. Thus, the subspace S is represented graphically by the
straight line in R? illustrated in Figure 2.14.
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3 line that contains u

FIGURE 2.14

As a result of Examples 2 through 4 and Theorem 2, one might suspect that a
proper subset S of R? is a subspace if and only if S is the zero vector or else
the graph of S is either a straight line through the origin or a plane that contains

the origin. This is indeed the case as we shall prove in Section 2.5. Lines through the origin

.. . . i . and planes that contain
The two conditions specified in Theorem 1 can be collapsed into a single the origin are subspaces

condition. of R®.

[ » THEOREM 3

A nonempty subset S of a vector space V is a subspace of V if and only if whenever u and v
are any two elements in S and o and f§ are any two scalars, then

ou + fiv (2.15)
is also in S. <
\ J

Proof: If Sisasubspace, then it must satisfy the two conditions of Theorem 1. In
particular, if u is an element of S and « a scalar, then au is in S as a consequence
of condition (ii). Similarly, fv must be an element of S whenever v is an ele-
ment and f is a scalar. Knowing that ou and pv are two elements in S, we
may conclude that their sum, given by Equation (2.15), is also in S as a conse-
quence of condition (i).

Conversely, if Equation (2.15) is an element in S for all values of the scalars o and
f, then condition (i) of Theorem 1 follows by setting «=ff=1. Condition (ii)
follows by setting =0 and leaving « arbitrary.


Figure 2.14

A vector u is a linear
combination of a finite
number of other vectors if
u can be written as a sum
of scalar multiples of
those vectors.

Example 5 Determine whether S = {p(t) € P?|p(2) = 1} is a subspace of P*.

Solution: P? is a vector space (see Example 7 of Section 2.2 with n=2). The zero
vector 0 in P? has the property 0(t) =0 for all real values of t. Thus, 0(2)=0+#1,
the zero vector is not in S, and S is not a subspace.

Example 6 Determine whether S = {p(t) € P?|p(2) = 0} is a subspace of P*.

Solution: Let u=p and v=gq be any two polynomials in S. Then p(2)=0 and
q(2)=0. Set w=ou+ fv, for arbitrary values of the scalars o and . Then
w is also a polynomial of degree two or less or the zero polynomial.
Furthermore,

w(2) = (ap + B4)(2) = ap(2) + pq(2) = 20 + 0 = O,
so w is also an element of S. It follows from Theorem 3 that S is a subspace of P".

Expression (2.6) in Theorem 3 is a special case of a linear combination. We say
that a vector u in a vector space V is a linear combination of the vectors vy, v,, ...V,
in V if there exists scalars d;, d», ..., d, such that

U:d1V1 +d2V2+"'+ngn (216)

Example 7 Determine whether u=[1 2 3] is a linear combination of

vi=[1 1 1], v»=[2 4 0], and vs=[0 0 1]

Solution: These vectors are all in the vector space R?, considered as row matrices.
We seek scalars d;, d,, and ds that satisfy the equation

(1 2 3]=di[1 1 1]+dy[2 4 0]+d3[0 0 1]
or

(1 2 3)=[di+2dy di+4dy dy+ds]

This last matrix equation is equivalent to the system of equations

1=d;+2d;
2=d; +4d,
3=d; +ds

Using Gaussian elimination, we find that the only solution to this system is
d; =0, dy,=1/2, and d;=3. Thus,

[1 2 3]=0[1 1 1]+[2 4 0]+3[0 0 1]

and the vector u=|1 2 3] is a linear combination of the other three.
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. -1 . . ..
Example 8 Determine whether u = [ 2 2] is a linear combination of

(1) g w32
Vi= |y | M4 V2713 5

Solution: These vectors are in the vector space M, .,. We seek scalars d; and d, that

satisfy the equation
-1 0 1 1 3 2
[ 5 4}:d1[2 2]+d2{3 5} (2.17)

-1 0| | di+3dy di+2d,
2 4| |2dy+3d, 2d,+5d,

or

which is equivalent to the system of equations

—1=d;, +3d;
0=d; +2d,
2 =2d; +3d;
4 =2d; + 5d,

Using Gaussian elimination, we find that this system has no solution. There are
no values of d; and d, that satisfy Equation (2.8), and, therefore, u is not a linear
combination of v; and v,.

The set of all linear combinations of a finite set of vectors, S = {vy,vy,...,V,}, is The span of a finite
called the span of S, denoted as span {v,,v,,...,v,} or simply span(S). Thus, the number of vectors is

. . 2 . s M2 the set of all linear
span O_f the polynomial set {t* t, 1} is P? because every polynomial p(t) in P? can combinations of those
be written as

vectors.
p(t) = dit* + dot + d3(1)
for some choice of the scalars d;, d,, and ds. The span of the set {[1000],

[0100]} are all row-vectors of the form |d; d, 00] for any choice of the real
numbers d, and ds.

The span of a finite set of vectors is useful because it is a subspace! Thus, we create
subspaces conveniently by forming all linear combinations of just a few vectors.

» THEOREM 4

The span of a set of vectors S = {vy,Va, ..., v, } in a vector space V is a subspace of V. |

\ J

Proof: Let u and w be elements of span (S). Then

u=divi+dyvo+---+dyvy, and w=cvi+cvo+-+cvy,



for some choice of the scalars d, through d,, and ¢, through c,. It follows that
ou+ pw = a(dvy +davy + -+ dpvy) + f(c1v1 + Vo + - - + V)
= (ady)v1 + (ad2)va + -+ + (0dn)Ve + (Ber)vi + (Be2)va + -+ - + (Ben)Va
= (ady + fer)vi + (ady + fea)va + -+ + (ody + Pen)va

Each quantity in parentheses on the right side of this last equation is a com-
bination of scalars of the form ad; + fic; (forj=1, 2, ..., n) and is, therefore, itself
a scalar. Thus, cu + fw is a linear combination of the vectors in S and a member
of span(S). It follows from Theorem 3 that span(S) is a subspace of V.

Not only is the span(S) a subspace that includes the vectors in S, but it is the smal-
lest such subspace. We formalize this statement in the following theorem, the
proof of which is left as an exercise for the reader (see Problem 50).

» THEOREM 5

IfS = {v1vy, ..., Vv,} is a set of vectors in a vector space V and if W is a subspace of V that
contains all the vectors in S, then W contains all the vectors in span(S). d

Problems 2.3

In Problems 1 through 23, determine whether each set is a subspace of the indi-
cated vector space.

(1)S={[a b]eR*|a=0}.
(2) S={[a b]eR*a=—b}.
(3)S={[a b]eR’|b=—5a}.
(4)S={la b]eR}b=a+3}.
(5)S={la b]€R’b>a}.
(6)S={[a b]eR’|ja=b=0}.
(1) S={[a c] € R?|a =b}.
(8)S={[a c] eR’|b=0}.
(10) S={[a c]€R}|c=a—b}.

(11) S={[a

b
b

(9S={la b c]eR|la=b+1}.
b
b c]eR|c=ab}.
b

(12) S={[a c]€R’la=bandc=0}.
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(13)S={la b c]eR’|b=3aandc=a+3}.
a 2a O
(14)82{[0 a 2a]
5 % b ¢ em
d e f . 2x3

(16){{2 Z Jf}eMm

(17)82{[0 0 0]}asasubsetofM7_X3.

aisreal } asasubsetof My, 3.

c:e:f:O}.

cefl}.

0 0 O
(18) S = {A € Mj,3|Ais lower triangular}.
(19) S = {A S M3X3|Ais a diagonal rnatrix}.

a a*> a°
(20) S = a2 a a
a a* a

(21) S = {A € My, |Ais invertible}.

ais real} asasubset of M3 5.

(22) S = {A € Mp,|Ais singular}.

(23) S = {f(1) € C[-1, 1]|f(-1) = ~f (1)}

(24) Determine whether u is a linear combination of v; =[12] and v,=[36].
(a) u=[24], (b) u=[2-4],
() u=[-3-06], (d) u=[22].

(25) Determine which, if any, of the vectors u defined in the previous problem
are in span {vy, v,}.

(26) Determine whether u is a linear combination ofv;=[10 1]andv,=[11 1].
(@) u=[323], (b) u=[332],
(c) u=[000], (d) u=J011].

(27) Determine which, if any, of the vectors u defined in the previous problem
are in span {v,, v,}.

(28) Determine whether the following vectors are linear combinations of

[ [}



[17] 1
(@) |0, (b) [ 0},
1 -1

SH! (@) H o |3
3

(29) Determine whether the following matrices are linear combinations of
1 0 0 1 1 1
w=lo o) w=[5 o} m=[i o]
0 1 1 2 1 1
@ [} 1) o) |5 o) © o o)

0 O 2 0 0 0
(30) Determine which, if any, of the matrices given in parts (a) through (f) of the

previous problem are in span {A;, A,, As}.

(31) Determine whether the following polynomials are linear combinations of
P+ +1, 02 +1).

(@) C+E+t, (b) 26—t (c) 5t (d) 26 +1.
(32) Find span {v,, v,} for the vectors given in Problem 24.
(33) Find span {A;, A, A3} for the matrices given in Problem 29.
(34) Find span {p:(t), po(t), ps(t)} for the polynomial given in Problem 31.
(35) Describe the graph of all points in the set S described in Problem 3.

For problems 36 and 37, let S represent a set of vectors of the form [x y z] in R?
that satisfy the given equations. Determine if S forms a subspace in R3.

(36) S={[xyz|x—2y+z=0}

(37)S={xyalx+y—z=1}

(38) Determine if {[1,1,1], [2,2,0] [3,0,0]} spans R3.

(39) Determine if {[1,1,2], [1,0,1] [2,1,3]} spans R>.

(40) Show that P? is a subspace of P>. Generalize to P" and P" when m <n.

(41) Show that if u is a linear combination of the vectors vy, v,, .. .v,, and if each
v; is a linear combination of the vectors (i=1, 2, ..., n), then u can also be
expressed as a linear combination of wy, wy, ... w,,.
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(42) Let A be an n x n matrix and both x and y n x 1 column matrices. Prove that
if y— Ax, then y is a linear combination of the columns of A.

(43) Show that the set of solutions of the matrix equation Ax=0, where A is a
p x n matrix, is a subspace of R".

(44) Show that the set of solutions of the matrix equation Ax=b, where A is a
p X n matrix, is not a subspace of R" when b##0.

(45) Prove that span{u, v} =span{u+v, u—v}.

(46) Prove that span{u, v, w} =span{u+v, v+w, u+w}.
(47) Prove that span{u, v, 0} =span{u, v}.

(48) Prove Theorem 5.

2.4 LINEAR INDEPENDENCE

Most vector spaces contain infinitely many vectors. In particular, if u is a nonzero
vector of a vector space V and if the scalars are real numbers, then it follows from
the closure property of scalar multiplication that ccu € V for every real number o.
It is useful, therefore, to determine whether a vector space can be completely
characterized by just a few representatives. If so, we can describe a vector space
by its representatives. Instead of listing all the vectors in a vector space, which are
often infinitely many in number, we simplify the identification of a vector space
by listing only its representatives. We then use those representatives to study the
entire vector space.

Efficiently characterizing a vector space by its representatives is one of the major
goals in linear algebra, where by efficiently we mean listing as few representatives
as possible. We devote this section and the next to determining properties that
such a set of representatives must possess.

A set of vectors {vy, vy, ..., v,} in a vector space V is linearly dependent if there The set of vectors
exist scalars, ¢y, ¢y, ..., C,, Dot all zero, such that {v1, vz, ..., v is linearly
independent if the only
vy +evo+ - +cepv, =0 (2.18) set of scalars that

satisfy civq+CoVo+- - -
The vectors are linearly independent if the only set of scalars that satisfies Equa- +¢V,=0is
tion (2.18) is the set ¢;=c,=...=¢,=0. o 60

To test whether a given set of vectors is linearly independent, we first form vector
Equation (2.18) and ask, “What values for the ¢’s satisfy this equation?” Clearly,
c1=c;=...=c¢,=0 is a suitable set. If this is the only set of values that satisfies
Equation (2.18), then the vectors are linearly independent. If there exists a set of
values that is not all zero, then the vectors are linearly dependent.

It is not necessary for all the ¢s to be different from zero for a set of vectors to be
linearly dependent. Consider the vectors vy =[12], v,=[14], and vs=[24]. The
constants ¢; =2, ¢;=0, and ¢c3=—1 is a set of scalars, not all zero, such that
€1V1+Cva+¢3v3=0. Thus, this set is linearly dependent.



Example 1 Is the set {[12], [34]} in R? linearly independent?
Solution: Here vi=|[1 2], v;=[3 4], and Equation (2.18) becomes
a[l 2]4+c[3 4]=[0 0]
This vector equation can be rewritten as
[c1 2c1]+4[3¢c; 4c]=[0 0]
or as
[c14+3c; 2c1+4c]=[0 0]
Equating components, we generate the system
c1+3c,=0
2c1 +4¢, =0

which has as its only ¢; =c, =0. Consequently, the original set of vectors is lin-
early independent.

Example 2 Determine whether the set of column matrices in R?

27 T3 8
6,11/, 16
—2| |2] | -3

is linearly independent.

Solution: Equation (2.18) becomes

2] 37 8] [0]
(] 6| +c|1|+4+c3| 16| =10 (2.19)
—2 | 2 | -3 | | 0]
which can be rewritten as
2¢; | 3¢, | 8¢ [O]
661 + c | + 1663 =10
—261_ 262_ —3C3_ _O_
or
261 + 362 + 863 0
661 +c + 1663 =10
—261 + 262 — 3C3 | O

This matrix equation is equivalent to the homogeneous system of equations

2¢1 4 3¢, + 863 =0
6¢c1 +¢cy+16¢5 =0
—261 + 262 — 363 =0
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Using Gaussian elimination, we find the solution to this system is ¢; =—2.5, c3,
¢, = —c3, 3 arbitrary. Setting ¢ =2, we obtain ¢;,=—5, c,=—2, c3=2 as a par-
ticular nonzero set of constants that satisfies Equation (2.18). The original set
of vectors is linearly dependent.

Example 3 Determine whether the set of matrices

1 1 0 1 0 0 1 0 1 1
O o’fo 1|1 1|1 1|0 1
in My, is linearly independent.

Solution: Equation (2.17) becomes
1 1 0 1 0 0 1 0 1 1 0 0
Cl{o 0}“2[0 1}”3[1 1]”“{1 1}“5[0 1}_{0 o}

1 +c4+cs c1+c¢+cs _ 0 0
3+ ¢y C)+c¢3+c¢4+cs 0 0

or

which is equivalent to the homogeneous system of equations

ci1+ca+ces=0

cicp+¢5=0

c3+c,=0

c+c3+cy+c5=0
This system has more unknowns than equations, so it follows from Theorem 3 of
Section 1.4 that there are infinitely many solutions, all but one of which are non-

trivial. Because nontrivial solutions exist to Equation (2.18), the set of vectors is
linearly dependent.

Example 4 Determine whether the set {t*+2t— 3, t*+5t, 2t” — 4} of vectors in P?
is linearly independent.

Solution: Equation (2.18) becomes
e (P +2t=3) ¢ (0 +5t) +c3(2° —4) =0
or
(c1 +¢2 +2¢3)8 + (2¢1 + 5¢2)t + (=3¢1 — 4c3) = 02 + 0t + 0
Equating coefficients of like powers of t, we generate the system of equations
c1+c+2c5=0
2c1 +5¢,=0
—3c; —4¢c5=0



Using Gaussian elimination, we find that this system admits only the trivial solu-
tion ¢; =c,=¢3=0. The given set of vectors is linearly independent.

The defining equations for linear combinations and linear dependence, Equa-
tions (2.16) and (2.18), are similar, so we should not be surprised to find that
the concepts are related.

» THEOREM 1

A finite set of vectors is linearly dependent if and only if one of the vectors is a linear com-
bination of the vectors that precede it, in the ordering established by the listing of vectors in
the set. d

\ J

Proof: First, we must prove that if a set of vectors is linearly dependent, then one
of the vectors is a linear combination of other vectors that are listed before it in
the set. Second, we must show the converse: if one of the vectors of a given set is a
linear combination of the vectors that precede it, then the set is linearly
dependent.

Let {v, Vs, ..., v,} bealinearly dependent set. Then there exists scalars ¢y, ¢y, . . .,
¢,,, not all zero, such that Equation (2.18) is satisfied. Let ¢; be the last nonzero
scalar. At the very worst i =n when ¢, #0, butif ¢, =0, then i <n. Equation (2.18)
becomes

V1 + 6V + -+ ¢im1Vicr +6vi + 0V +0vigo + -+ +0v,, =0

which can be rewritten as

C1 (%) Ci—1
Vi=——V] ——Vy — = v (2.20)
Ci Ci Ci
Consequently, v;, is a linear combination of vy, v,, ..., v;_;, with coefficients

di=—c1/c;, dy=—cofci, ..., diy=—ci_1/c;.

Now let one vector of the set {vy, v,, ..., v,}, say v;, be a linear combination of
the vectors in the set that precede it, namely, vy, v,, ..., v;_;. Then there exist
scalars dy, d,, ..., d;_; such that

vi=divi +dyva+ -+ disvieg
which can be rewritten as
divi +dava + -+ disvier + (= 1)Vi + 0Vigg + 0Vip + -+ 4 0v, = 0

This is Equation (2.18) with ¢j=d; (j=1,2,...,i—1),¢c;=—1,and ¢;=0 (j=i+1,
i+2, ..., n). Because this is a set of scalars not all zero, in particular ¢;=—1, it
follows that the original set of vectors is linearly dependent.

It is not necessary for every vector in a given set to be a linear combination of
preceding vectors if that set is linearly dependent, but only that at least one vector
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in the set have this property. For example, the set {[10], [20], [01]} is linearly
dependent because

—2[1 0]+1[2 0]+0[0 1]=[0 0]

Here [0 1] cannot be written as a linear combination of the preceding two vec-
tors; however, [2 0] can be written as a linear combination of the vector that pre-
cedes it, namely, [2 0]=2[10].

» THEOREM 2
A subset of a vector space V consisting of the single vector u is linearly dependent if and
only if u=0.<

\ J

Proof: Iftheset {u} is linearly dependent, then there exists a nonzero scalar ¢ that
satisfies the vector equation

cu=0 (2.21)

It then follows from Theorem 7 of Section 2.2 that u=0. Conversely, if u=0,
then it follows from Theorem 1 of Section 2.2 that Equation (2.21) is valid
for any scalar c¢. Thus nonzero scalars exist that satisfy Equation (2.21) and
the set {u} is linearly dependent.

» THEOREM 3

A subset of a vector space V consisting of two distinct vectors is linearly dependent if and
only if one vector is a scalar multiple of the other. d
|\ J

Proof: 1f the set {vy, v,} is linearly dependent, then it follows from Theorem 1
that v, can be written as a linear combination of v;. That is, v, =d;v;, which
means that v, is a scalar multiple of v;.

Conversely, if one of the two vectors can be written as a scalar multiple of the
other, then either v, =av, or v; =av, for some scalar o.. This implies, respectively,
that either

ovi+(—=1)v,=0 or (1)vi —av, =0

Both equations are in the form of Equation (2.18), the first with ¢c; =o, c,=—1 and
the second with ¢c; =1, ¢, = — a. Either way, we have a set of scalars, not all zero, that
satisfy Equation (2.18), whereupon the set {v;, v,} is linearly dependent.

Theorem 3 has an interesting geometrical representation in both R? and R*. We
know from our work in Section 1.7 that a scalar multiple of a nonzero vector in
R? or R? is an elongation of the nonzero vector (when the scalar in absolute
value is greater than unity) or a contraction of that nonzero vector (when the



Two vectors are linearly

dependent in R?, or R® if
and only if they lie on the
same line.

A set of three vectors in
R® is linearly dependent
if and only if all three
vectors lie on the same
line or all lie in the
same plane.

FIGURE 2.15

scalar in absolute value is less than unity), followed by a rotation of 180° if the
scalar is negative. Figure 2.15 illustrates two possibilities in R? for a particular
nonzero vector v,. If v,=2v;, we have the situation depicted in Figure 2.153a;
if, however, v,=— 1/2v;, we have the situation depicted in Figure 2.15b. Either
way, both vectors lie on the same straight line. The same situation prevails in R3.
We conclude that two vectors are linearly dependent in either R? or R? if and
only if both vectors lie on the same line. Alternatively, two vectors are linearly
independent in either R? or R? if and only if they do not lie on the same line.

A set of three vectors in R3, {v1, v,, v3}, is linearly dependent if any two of the
vectors lie on the same straight line (see Problem 31). If no two vectors lie on the
same straight line but the set is linearly dependent, then it follows from Theorem
1 that v3 must be a linear combination of v; and v, (see Problem 32). In such a
case, there exist scalars d, and d, such that v3 =d;v; + d,v,. This situation is illus-
trated graphically in Figure 2.16 for the particular case where both vectors v; and
v, are in the x-y plane, d, is a positive real number that is less than unity, and d, is
a positive real number that is slightly greater than unity. It follows from our work
in Section 1.7 that vs =d,v, +d,v, is another vector in the x-y plane. The situation


Figure 2.15

CHAPTER 2 €ED

FIGURE 2.16

is analogous for any two vectors in R> that do not lie on the same line: any linear
combination of the two vectors will lie in the plane formed by those two vectors.
We see, therefore, that if a set of three vectors in R? is linearly dependent, then
either all three vectors lie on the same line or all three lie in the same plane.

» THEOREM 4

A set of vectors in a vector space V that contains the zero vector is linearly dependent.
\ J
Proof: Consider the set {vy, v,, ..., Vv,, 0}. Pickc;=c,=...=¢,=0and ¢,,; =5

(any other nonzero number will do equally well). This is a set of scalars, not all
zero, such that

vy + vy + - 4 cpvy + Cn+10 =0

Hence, the set of vectors is linearly dependent.

» THEOREM 5

If a set of vectors S in a vector space V is linearly independent, then any subset of S is also
linearly independent.

Proof: See Problem 42.

» THEOREM 6
If a set of vectors S in a vector space V is linearly dependent, then any larger set containing
S is also linearly dependent. d

\

Proof: See Problem 43.


Figure 2.16

Problems 2.4

In Problems 1 through 30, determine whether each set is linearly independent.
(1) {[1 o], [0 1]}
(2) {[1 1],

r47 37 17
50,{0], 1] 3.
1] L2] L1

1 1 0

(14) {{ [T -1 0]}

(15) {[1 2 3],[-3 -6 —9]}.

(16) {[10 20 20],[10 —10 10],[10 20 10]}.
[

(17) {{10 20 20],[10 —10 10],[10 20 10],[20 10 20]}.
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(18) {[2 1 1],[3 -1 4],[1 3 -=2]}.
2 4 8]
1 -1 1
(19) 11’ 21’4
3 -1 5
(1 0] [o 1] [o o] [o
(20){_0 0]7|0 o |1 0_’[0 1”
(1 1] [1 1] [o O]
(21){_0 0] |1 |1 1_}
(1 171 o] [o o
(22){_0 o]’|1 1[1 1 }
(1 o] [1 171 1 0 1
(23){_1 1’1 o] |0 _’[1 1”
(1 o] [1 172 271771 o
(24){_1 1]”[1 o] |o 2_’[2 OH'

(25) {1,2}.

(26) {£+12, 0+t +1}.

(27) {P+0,0 10,0 -3¢},
(28) {P+%,0 0,0 —t,0+1}.
(29) {P+t,2+t—1,2+1,t).
(30) {P+t,2+t—2,1}.

(31) Consider a set of three vectors in R>. Prove that if two of the vectors lie on
the same straight line, then the set must be linearly dependent.

(32) Consider a linearly dependent set of three vectors {v, v, v3} in R3. Prove
that if no two vectors lie on the same straight line, v must be a linear com-
bination of v; and v,.

(33) Prove that a set of vectors is linearly dependent if and only if one of the vec-
tors is a linear combination of the vectors that follow it.

(34) Prove that if {u, v} is linearly independent, then so too is {u+v, u—v}.

(35) Prove that if {v;, v,, v3} is linearly independent, then so too is the set
{lll, u, U3} where Uy =V1+V+V3, Up=V) +V3, and U3z =Vs.

(36) Prove that if {v,, v,, v3} is linearly independent, then so too is the set
{ul, u,, U3} Where U =Vy+Vy+V3, Up=V) +V3, and U3z =Vs.

(37) Prove that if {v;, v,, v3} is linearly independent, then so too is the set
{o1vy, 025, a3V} for any choice of the nonzero scalars a;, a,, and os.



The set of vectors S is a
spanning set for a vector
space V if every vector in
V can be written as a
linear combination of
vectors in S.

(38) Prove that the nonzero rows, considered as row matrices, of a row-reduced
matrix is a linearly independent set.

(39) Let A be an n x n matrix and let {x;, x,, ... v} and {y;, yo, ... yi} be two
sets of n-dimensional column vectors having the property that
Ax;=y;(i=1,2,...,k). Show that the set {xy, X5, ... V;} is linearly indepen-
dent if the set {y, y2, ... yi} is.

(40) What can be said about a set of vectors that contains as a proper subset a set
of linearly independent vectors?

(41) What can be said about a subset of a linearly dependent set of vectors?
(42) Prove Theorem 5.
(43) Prove Theorem 6.

(44) An extension of Theorem 2 in Section 1.5 to R states that the volume of
parallelpiped generated by three column matrices u;, u,, and us in R? is
|det[u; u, us]|. Find the volumes of the parallelepipeds defined by the vectors:

(@) [121]" [2—10]", [21 1]".
(b) [123]% 321]% [111]"
(o [to1]" [211]" (431"

(45) Use Problem 44 to show that the determinant of a 3 x 3 matrix with linearly
dependent columns must be 0.

(46) What can be said about the determinant of an upper triangular matrix?
A lower triangular matrix?

(47) What can be said about the determinant of a matrix containing a zero row?
A zero column?

2.5 BASIS AND DIMENSION

We began the previous section with a quest for completely characterizing vector
spaces by just a few of its representatives and determining the properties repre-
sentatives must have if the characterization is to be an efficient one. One property
we want is the ability to recreate every vector in a given vector space from its rep-
resentatives; that is, we want the ability to combine representatives to generate all
other vectors in a vector space. The only means we have for combining vectors is
vector addition and scalar multiplication, so the only combinations available to
us are linear combinations (see Section 2.3). We define a set of vectors S in a vec-
tor space V as a spanning set for V if every vector in V can be written as a linear
combination of the vectors in S; that is, if V = span{S}.

Example 1 Determine whether any of the following sets are spanning sets for R?,
considered as column matrices:

@ si={a=|o] «-|}]}
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(b) Sz={el=m'“:m'ﬁ:H}
@ s={n=|1|r=3]

Solution: An arbitrary column matrix u € R? has the form

i

for some choice of the scalars a and b.

HRUBEEH

it follows that every vector in R? is a linear combination of e, and e,. Thus, S; is a

spanning set for R?.
a 1 0 1
o) =<lo] 3]+l

(b) Since
it follows that S, is also a spanning set for R?.

(a) Since

(c) S; is not a spanning set for R?. Every linear combination of vectors in S3
has identical first and second components. The vector [12]" does not have
identical components and, therefore, cannot be written as a linear combi-
nation of f; and f,.

If S is a spanning set for a vector space V, then S is said to span V. As a spanning A basis for a vector space
set, S represents V completely because every vector in V can be gotten from the V is a set of vectors that
vectors in S. If we also require that S be a linearly independent set, then we are 'S lInéarly independent

. . . . . and also spans V.
guaranteed that no vector in S can be written as a linear combination of other
vectors in S (Theorem 1 of Section 2.4). Linear independence ensures that the
set S does not contain any superfluous vectors. A spanning set of vectors, that
is, also a linearly independent set meets all our criteria for efficiently representing
a given vector space. We call such a set a basis.

Example 2 Determine whether the set C = {t> + 2t — 3, + 5t, 2> — 4} is a
basis for P3.

Solution: C is not a spanning set for P?, because £’ is a third-degree polynomial in
P? and no linear combination of the vectors in C can equal it. Because C does not
span IP?, C cannot be a basis. We could show that C is linearly independent (see
Example 4 of Section 2.4), but that is now irrelevant.



Example 3 Determine whether the set

D= 1 1 0 1 0 O 1 0 1 1
- o o|’f0 1|1 1’1 1(’|]0 1
is a basis for M.

Solution: It follows from Example 3 of Section 2.4 that D is linearly dependent,
not independent, so D cannot be a basis. We could show that D does indeed span
M, but that no longer matters.

Example 4 Determine whether the set S = {el = {é], e, = {(l)] } is a basis for

R?, considered as column matrices.

Solution: We need to show that span (S) = R? and also that S is linearly indepen-
dent. We showed in part (a) of Example 1 that S is a spanning set for R?. To dem-
onstrate linear independence, we form the vector equation

alo] valt)=[3]
=[]

The only solution to this vector equation is ¢; =c, =0, so the two vectors are lin-
early independent. It follows that S is a basis for R?.

or

A straightforward extension of Example 4 shows that a basis for R", considered as
column vectors, is the set of the n-tuples

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
ep=| ., e=|.|,es=| .|, ...,ep1=| .| €= (2.22)
0 0 0 1 1
0 0 0 0 0

where ¢; (j=1, 2, 3, ..

., n) has its jth component equal to unity and all other

components equal to zero. This set is known as the standard basis for R".

Example 5 Determine whether the set B = {fl = “],fz = [_” } is a basis

for R?, considered as column matrices.

Solution: An arbitrary vector u in R? has the form

i



CHAPTER 2 €BD

for some choice of the scalars a and b. B is a spanning set for R? if there exist
scalars d; and d, such that

afi]ral ] =[3]

Note that we do not actually have to find the scalars d; and d,, we only need to show
that they exist. System (2.14) is equivalent to the set of simultaneous equations

(2.23)

d1+d2:d
di—by=0

which we solve by Gaussian elimination for the variables d, and d,. The aug-
mented matrix for this system is

T byaddingto the
1 l|a 1 1| a
— secondrow — 1
[1 -1 b] [0 —2 b—a_ times the first row
1 1la ] by multiplying
— [O 11a_1p thesecond row
2727 by —1/2

The system of equations associated with this row-reduced augmented matrix is

dl +d2 =a
1 1
PR D (2.24)
2 2

System (2.24) has a solution for d, and d, for every choice of the scalars a and b.
Therefore, there exist scalars d; and d, that satisfy Equation (2.23) and B is a
spanning set for R.

We next show that B is linearly independent, which is tantamount to showing that
the only solution to the vector equation d;f; +d,f,=0 is the trivial solution
d,=d,=0. This vector equation is precisely Equation (2.23) with a=b=0, and it
reduces to Equation (2.24) with a=b=0. Under these special conditions, the sec-
ond equation of Equation (2.24) is d, =0, and when it is substituted into the first
equationwe find d, = 0. Thus, B is also a linearly independent set, and a basis for R2.

» OBSERVATION

To show that a set of vectors is a basis for a vector space V, first verify that the set spans V.
Much of the work can be reused to determine whether the set is also linearly independent. <

Avector space V is finite-dimensional if it has a basis containing a finite number of
vectors. In particular, R? is finite-dimensional because, as shown in Example 4, it
has a basis with two (a finite number) of the vectors. A vector space that is not

A vector space is finite-
dimensional if it has a
basis containing a finite
number of vectors.



finite-dimensional is called infinite dimensional, but we shall not consider such
vector spaces in this book. It follows from Examples 4 and 5 that a finite-
dimensional vector space can have different bases. The fact that different bases
of a vector space must contain the same number of vectors is a consequence
of the next two theorems.

» THEOREM 1

IfS ={vq,va,..., v, } is a basis for a vector space V, then any set containing more than n

vectors is linearly dependent. d

Proof: Let T = {u;,u,,...,u,} be a set of p vectors in V with p>n. We need to
show that there exist scalars ¢y, ¢, ..., ¢, not all zero, that satisfy the vector
equation

ciup +cup + -+ guy =0 (2.25)
Because S is a spanning set for V, it follows that every vector in V, in particular

those vectors in T, can be written as a linear combination of the vectors in S.
Therefore,

u; =a; vy +anva + -+ amvp

Uy = aipvy +axpvy + -+ anavy
. (2.26)

llp = (11pV1 + aszZ —+ 4 Llann

for some values of the scalars a;; (i=1, 2, ..., n;j=1, 2, ..., p). Substituting the
equations of system (2.26) into the left side of Equation (2.25) and rearranging,
we obtain

(Clﬂn +Cdip+ -+ Cpﬂlp)Vl
+(01¢121 +Can + -+ Cpazp)Vz
+ o (C1ann + €2y + - Cplinp) Vi = O

Because S is a basis, it is a linearly independent set, and the only way the above
equation can be satisfied is for each coefficient of vj (j=1, 2, ..., n) to be zero.
Thus,

aj16, +apcy + -+ A1pCp = 0
az101 + axCy + -+ +agpcy = 0

an1€1 + dp2Ca + -+ -+ dppcy = 0

But this is a set of n-equations in p-unknowns, ¢y, ¢, ..., ¢, with p>n, so it
follows from Theorem 3 of Section 1.4 that this set has infinitely many solutions.
Most of these solutions will be nontrivial, so there exist scalars, not all zero, that
satisfy Equation (2.16).
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As an immediate consequence of Theorem 1, we have

»COROLLARY 1

IfS = {v1,v2,...,Vv,}isa basis for a vector space V, then every linearly independent set of
vectors in V must contain n or fewer vectors. 4

We are now in the position to state and prove one of the fundamental principles
of linear algebra.

» THEOREM 2

Every basis for a finite-dimensional vector space must contain the same number of vectors. d

Proof: LetS = {vy,va,...,v,} and T = {uy,uy,...,u,} be two bases for a finite-
dimensional vector space V. Because S is a basis and T is a linearly independent
set, it follows from Corollary 1 that p <n. Reversing roles, T is a basis and S is a
linearly independent set, so it follows from Corollary 1 that n < p. Together, both
inequalities imply that p=n.

Because the number of vectors in a basis for a finite-dimensional vector space Vis The dimension of a vector

always the same, we can give that number a name. We call it the dimension of the space is the number of

V and denote it as dim(V). ngig;ssigaieb%is for that

The vector space containing just the zero vector is an anomaly. The only nonempty
subset of this vector space is the vector space itself. But the subset {0} is linearly
dependent, as a consequence of Theorem 2 of Section 2.4 and, therefore, cannot
be a basis. We define the dimension of the vector space containing just the zero
vector to be zero, which is equivalent to saying that the empty set is the basis for
this vector space.

Example 6 Determine the dimension of P".

Solution: A basis for this vector space is S = {t", t"~!, ..., t, 1}. First, S is a span-
ning set, because if p(t) is a vector in P", then

p(t) = ant" +an 1 t" '+ Fart +ap(1)

for some choice of the scalars 4; (j=0, 1, ..., n). Second, S is a linearly indepen-
dent set, because the only solution to

Cnt" Fen1t" ot +c(1) =0=0"+ 0"+ + 06+ 0

is co=c¢;=...,=c¢,=0. The basis S contains n+1 elements, and it follows that
dim(P") = n + 1. S is often called the standard basis for P".

Example 7 The standard basis for M, is

s {[s S1[8 82 S5 T}
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dim(R") = n-
dim(P") =n+1
dim (MPX”) =pn

(See Problem 5.) Thus, dim (M, ) = 4. More generally, the standard basis for Ml ..,
is the set of pn matrices, each having a single 1 in a different position with all
other entries equal to zero. Consequently, dim(Myx,) = pn.

Example 8 The dimension of R" is n. R" = M;,,, when we represent n-tuples
as row matrices, whereas R" = M,,.; when we represent n-tuples as column
matrices. FEither way, it follows from Example 7 that dim(R")=
dim(M ) = dim(M, x1) = n. The standard basis for R", considered as column
matrices, is depicted in Equation (2.22).

As an immediate consequence of Theorem 1, we obtain one of the more impor-
tant results in linear algebra.

» THEOREM 3

In an n-dimensional vector space, every set of n+1 or more vectors is linearly
dependent. 4

Example 9 The set A = {[1 5],[2 — 4],[—3 — 4]} is a set of three vectors in the
two-dimensional vector space R?, considered as row matrices. Therefore, A is lin-
early dependent. The set R = {t* +t, t? —t, t + 1, t — 1} is a set of four vectors
in the three-dimensional vector space P?. Therefore, R is linearly dependent.

In Section 2.3, we surmised that lines through the origin and planes that include
the origin are subspaces of R3. The following theorem formalizes this conjecture
and provides a complete geometric interpretation of subspaces in R3.

' ™
» THEOREM 4
Let U be a subspace of R3.
(i) If dim(U) = 0, then U contains just the origin.
(i) If dim(U) = 1, then the graph of U is a straight line through the origin.
(iii) If dim(U) = 2, then the graph of U is a plane that includes the origin. <
\. J

Proof: By definition, a vector space has dimension zero if and only if the vector
space contains just the zero vector, which for R? is the origin [00 0]. This proves
part (i).

If U is a one-dimensional subspace, then it has a basis consisting of a single non-
zero vector, which we denote as u. Every vector in U can be written as a linear
combination of vectors in a basis for U, which here implies that every vector v
in U is a scalar multiple of u; that is, v=ou for some scalar «. The set of all such
vectors graph as a line through the origin that contains u (see Figure 2.14 for the
special caseu=[1 2 4]). In Figure 2.14, o> 1 generates a point on the line that is
further from the origin than u but in the same direction as u; « < 1 but still pos-
itive generates a point on the line that is closer to the origin than u but still in the
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same direction as u; o < 0 generates a point in the opposite direction of u. Finally,
if QJ is a two-dimensional subspace, then it has a basis consisting of two nonzero
vectors, which we denote as v, and v,. The vectors in such a basis must be linearly
independent, so v, cannot be a scalar multiple of v,. Therefore, v, does not lie on
the line through the origin containing v;. Any vector v in U can be written as a
linear combination of v; and v,, so

v=oav] + fv;,

for particular values of the scalars & and f. Consider the plane that contains the
two basis vectors. From the geometric representation of vector addition and sca-
lar multiplication in R* developed in Section 1.5, it follows that every point in
the plane containing the two basis vectors can be reached as a linear combination
of v, and v, and that every linear combination of these two vectors is in the plane
defined by those two vectors. (See Figure 2.17 where v denotes a point in the
plane defined by v; and v,; here 0 <o < 1 and f is negative.)

The standard basis in R?, considered as column vectors, consists of the two

vectors
1 0
el:{o] and ezz[l}

which in many engineering texts are denoted by i and j, respectively. Both are
graphed in Figure 2.18. For an arbitrary vector v in R?, we have

V= {Z} = ae, + be; = ai + bj

The standard basis in R?, considered as column vectors, consists of the three
vectors

1 0
ee=10],ep=|1|,andes = |0
0 1

which in many engineering texts are denoted by i, j, and k, respectively. These are
graphed in Figure 2.19. For an arbitrary vector v in R3, we have

Plane containing v4 and v,

FIGURE 2.17
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More generally, if S = {vy,v,,...,v,} is a basis for a vector space V, then S is a

spanning set V. Consequently, if v € V, then there exist scalars dy, ds, . . ., d,, such
that

V= d]Vl + d2V2 + -4 ngn (227)

We shall prove shortly that this set of scalars is unique for each v; that is, for each
v there is one and only one set of scalars d;, d,, ..., d, that satisfies Equa-
tion (2.27). These scalars are called the coordinates of v with respect to S and
are represented by the n-tuple


Figure 2.19
Figure 2.18
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Example 10 Find the coordinate representations of the vector v=[72]", first with
respect to the standard basis C = {[1 0", [0 1]T} and then with respect to the

basis D; = {[1 1" - 1]T}.

Solution: With respect to the standard basis, we have

2] =7lo] +23

so the coordinates are 7 and 2 and the 2-tuple representation is

HiH

To determine the representation with respect to S;, we need to first write the
given vector as a linear combination of the vectors in S;. We need values of
the scalars d, and d, that satisfy the equation

HEHE

This is equivalent to the system of equations
d+dy =7
d—dy=2

which admits the solution d,=9/2 and d,=5/2. These are the coordinates of v
with respect to S;, and we may write

HEHE IR A

It was no accident in the previous example that the n-tuple representation of the
vector v with respect to the standard basis was the vector itself. This is always the
case for vectors in R" with respect to the standard basis. Consequently, we drop
the subscript notation on the n-tuple representation of the coordinates of a vec-
tor whenever we deal with the standard basis.

. . . . |4 .
Example 11 Determine the coordinate representation of the matrix [ 6 ﬂ with

respect to the basis

{000 L



Solution: We first determine scalars d,, d,, ds, and d, that satisfy the matrix
equation

4 3 01 10 11 11
o 2 =[5 el Al ] ali o)

This is equivalent to the system of equations

dy+ds+ds =4
di+ds+dy =3
di+dy+ds =06
di+dy+ds =2

which admits the solution d, =1, d, =2, d3=—1, and d, = 3. These are the coor-
dinates of the given matrix with respect to S, and we may write

1
4 3 2
—

[6 2] -1
38

The notation « signifies that the n-tuple on the right side equals the sum of the
products of each coordinate times its corresponding vector in the basis. The sub-
script on the n-tuple denotes the basis under consideration. In Example 10, the
notation

9/2 9711 5[ 1
{5/2}Ddenotesthesum5[1}—&-E{_l]

while in Example 11, the notation

1
_1 denotes the sum

3]s

o2 Jeelt Jeeofs eal

Although a vector generally has different coordinate representations for different
bases, a vector’s coordinate representation with respect to any one basis is
unique! In Example 10, we produced two coordinate representations for the vec-
tor [72]", one for each of two bases. Within each basis, however, there is one and
only one coordinate representation for a vector. We formalize this fact in the
following theorem.
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( N
» THEOREM 5
Let {v4, Vo, ..., V,} be a basis for a vector space V and letv € V. If
V=c1V4 +CoVo+---+¢c, and V=dqvi +doVo + -+ +d,V,
are two ways of expressing v as linear combinations of the basis vectors, then c;=d; for
eachi(i=1,2,...,n).4
\ J
Proof:

0=v-—-v

= (Vi + vy + -+ caVin) — (divy +dovy + - - - +dyvy)

= (C] — dl)Vl + (C2 — szz) + -4 (Cn — dn)Vn

Vectors in a basis are linearly independent, so the only solution to the last equa-
tion is for each of the coefficients within the parentheses to be 0. Therefore,

(ci—d;i)=0 for each value of i (i=1, 2, ..

., n), which implies that ¢;=d;.

We conclude this section with a two-part theorem, the proofs of which we leave
as exercises for the reader (see Problems 18 and 22).

[ » THEOREM 6

Let V be an n-dimensional vector space.

(iy IfSisaspanning setforV, then some subset of S forms a basis for V; that is, S can be
reduced to a basis by deleting from S a suitable number (perhaps 0) of vectors.

(i) If Sis a linearly independent set of vectors in V, then there exists a basis for V that
includes in it all the vectors of S; that is, S can be extended to a basis by augmenting
onto it a suitable number (perhaps 0) of vectors. 4

Problems 2.5

(1) Determine which of the following sets are bases for R?, considered as row

matrices.

(@) {[1 o] [1 1]} (b) {[1 O]

(o {[r 1[1 2]} (d) {[1 2]

(e) {[1 2],[2 4]} () {[10 20]
[ [

(g) {[10 20],[-10 —20]}. (h) {[1 1],[1

1,[1
(1



(2) Determine which of the following sets are bases for R?, considered as col-

umn vectors.

@ 5]
SR
20

® {[2]}

of

® {2 [ol}
@ {2} =]}
0 ([T o]}
o {2} L]

2}
Bl

(3) Determine which of the following sets are bases for R?, considered as row

vectors.
(@) {[1
(b) {[1
(o) {[1
(@) {[1
(e) {[1
(M {1
(8) {[1

0
1
0
1
1
1
2
(h) {[1 2

0,]0 1 0],[0 0 1]}
0],[0 1 1L[1 0 1]}.
0l,[1 1 o],[1 1 1]}
0l,[o0 1 1],[1 2 1]}
0],lo0 1 1,[1 3 1]}
0l,]o0 1 1],[1 4 1]}
3,[4 5 6],[0 0 0]}
3,[4 5 6],[7 8 9]}

(4) Determine which of the following sets are bases for R?, considered as col-

umn vectors.

(a) 2
(b)
(9

(d)

2

2

(e)
()
(8)
(h)

{i
{1
{i
{
{in 2
{i
{12
{i

11 2 o]T}.

o, ;1 2 1]%[1 2 2]T}.
o1 2 12 4 1},
0,2 4 of',[2 4 1]'}.
3711 2 ol,[1 o —3]T}.
102 1 12 2 1]T}.
152 2 12 2 —1]T}.

1% 3 151 4 11 s 1}T}.
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(5) Determine which of the following sets are bases for M.

@ {lo of[o o [T o)[o O]}
o {lo of [ 7o o [1 2[5 7}
@ o ol [o o[ ol [ 1}
@ {3 ol Lo 1}l TR

(6) Determine which of the following sets are bases for P'.
(@) {t+1,t}. (b) {t+1,1}.
(o) {t+1,51}. (d) {t+1,e—1}.
(7) Determine which of the following sets are bases for P2.
(@) {F+t+1,t}.
(b) {F+tt+1,2+1,1}.
() {+t+1,t+1,1}.
(d) {£+t+1,t+1,t—1}.
(e) {+tt+1,2+1}.
(f) {£+t+1,t+1,6).
(8) Determine which of the following sets are bases for P>.
(@) {L+C+t,0+t+1,t+1}.
(b) {£,11}.
() {P+2+t,+t+1,t+1,1}.
(d) {£+2,2+t,t+1,1}.
(e) {£+P+t, L+, P+t t,t+1,1}.
() {£+2,0 - t+1,t—1}.
(g) {P++1,+,t+1,t—1}.
(h) {P+C+t, 0+, 0+t +t}.

(9) Find an n-tuple representation for the coordinates of [13] with respect to
the sets given in (a) Problem 1(a) and (b) Problem 1(d).



(10) Find an n-tuple representation for the coordinates of [2 2] with respect to
the sets given in (a) Problem 1(a) and (b) Problem 1(d).

(11) Find an n-tuple representation for the coordinates of [1 — 1] with respect to
the sets given in (a) Problem 1(a) and (b) Problem 1(b).

(12) Find an n-tuple representation for the coordinates of |1 — 2]" with respect to
the sets given in (a) Problem 2(c) and (b) Problem 2(e).

(13) Find an n-tuple representation for the coordinates of [100—100]" with
respect to the sets given in (a) Problem 2(e) and (b) Problem 2(f).

(14) Find an n-tuple representation for the coordinates of [110] with
respect to the sets given in (a) Problem 3(a), (b) Problem 3(b), and (c)
Problem 3(c).

(15) Find an n-tuple representation for the coordinates of t + 2 with respect to the
sets given in (a) Problem 6(a) and (b) Problem 6(b).

(16) Find an n-tuple representation for the coordinates of t* with respect to the
sets given in (a) Problem 8(c) and (b) Problem 8(d).

(17) Let S be a spanning set for a vector space V, and let v € S. Prove that if vis a
linear combination of other vectors in the set, then the set that remains by
deleting v from S is also a spanning set for V.

(18) Show that any spanning set for a vector space V can be reduced to a basis by
deleting from S a suitable number of vectors.

(19) Reduce the set displayed in Example 3 to a basis for M.

(20) Show that the set displayed in Problem 1(h) is a spanning set for R? and
reduce it to a basis.

(21) Show that the set displayed in Problem 7(b) is a spanning set for P? and
reduce it to a basis.

(22) Prove that any linearly independent set of vectors in a vector space V can be
extended to a basis for V. Hint: Append to the set a known basis and then
use Problem 18.

(23) Extend the set displayed in Example 2 into a basis for P°.

(24) Show that the set displayed in Problem 4(a) is linearly independent and
extend it into a basis for R3.

(25) Show that the set displayed in Problem 8(a) is linearly independent and
extend it into a basis for P°.

(26) Prove that a spanning set for a vector space V cannot contain less elements
then the dimension of V.

(27) Prove that any set of two vectors in R? is a basis if one vector is not a scalar
multiple of the other.
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(28) Let W be a subspace of a vector space V and let S be a basis for W. Prove that
S can be extended to a basis for V.

(29) Let W be a subspace of a vector space V. Prove that dim(W) < dim(V).

(30) Let W be a subspace of a vector space V. Prove that if
dim(W) — dim(V), then W = V.

(31) Prove that in an n-dimensional vector space V no set of n— 1 vectors can
span V.

(32) Prove that if {v;, v,} is a basis for a vector space, then so too is {u;, u,},
where u; =v; +v,, and u, =v; —v,.

(33) Provethatif {v, v,, v3} is a basis for a vector space, then so too is {uy, u,, us},
where u; =v; +v, +v3, u,=v, —v3, and u; =vs.

(34) Prove thatif {v, v, ..., v,} is a basis for a vector space, then so too is {k;v;,
kovy, ..., kpvy} {uy, uy, us}, whereky, ks, . .., k, is any set of nonzero scalars.

2.6 ROW SPACE OF A MATRIX

An m X n matrix A contains m-rows and n-columns. Each row, considered as a The row space of a matrix
row matrix in its own right, is an element of R", so it follows from Theorem 4 s the subspace spanned
of Section 2.4 that the span of the rows, considered as row matrices, is a subspace. 2 € 1ows of the matrix;
We call this subspace the row space of the matrix A. The dimension of the row the dimension of the row

€ ca‘ p p ) space is the row rank.
space is known as the row rank of A.

1 2 3
4 5 6
of which are elements of R?. The row space of A consists of all linear combina-
tions of these two vectors; that is, if we set S = {[1 2 3][4 5 6]}, then the row space
of A is span(S). The dimension of span(S) is the row rank of A.

Example 1 The matrix A = [ } 1 has two rows, [12 3] and [4 5 6], both

To determine the row rank of a matrix, we must identify a basis for its row space
and then count the number of vectors in that bases. This sounds formidable, but
as we shall see that it is really quite simple. For a row-reduced matrix, the pro-
cedure is trivial.

» THEOREM 1

The nonzero rows of a row-reduced matrix form a basis for the row space of that matrix, and
the row rank is the number of nonzero rows. 4

Proof: Let v, designate the first nonzero row, v, the second nonzero row, and so
on through v,, which designates the last nonzero row of the row-reduced matrix.
This matrix may still have additional rows, but if so they are all zero. The row
space of this matrix is span {vy, v,, ..., v,}. The zero rows, if any, will add nothing
to the span.



We want to show the nonzero rows form a basis for the row space. Thus, we must
show that these rows, considered as row matrices, span the subspace and are lin-
early independent. They clearly span the subspace, because that is precisely how
the row space is formed. To determine linear independence, we consider the vec-
tor equation

C1V) + V) + .-+ CrVy = 0 (228)
The first nonzero element in the first nonzero row of a row-reduced matrix must
be one. Assume it appears in column j. Then, no other row has a nonzero ele-
ment in column j. Consequently, when the left side of Equation (2.28) is com-
puted, it will have ¢, as its jth component. Because the right side of

Equation (2.28) is the zero vector, it follows that ¢, =0. With ¢; =0, Equa-
tion (2.28) reduces to

CVy +c3v3 + -+ ¢V, =0

A similar argument then shows that ¢, =0. With both ¢; =¢, =0, Equation (2.28)
becomes

C3V3 +C4Vy + -+ ¢V, =0

A repetition of the same argument shows iteratively that ¢, ¢, . . ., ¢, are all zero.
Thus, the nonzero rows are linearly independent.

Example 2 Determine the row rank of the matrix

1 0 -2 5 3
0 0 1 -4 1
A= 0 0 0 1 0
0 0 0 0

Solution: A is in row-reduced form. Because A contains three nonzero rows, the
row rank of A is 3.

Most matrices are not in row-reduced form. All matrices, however, can be trans-
formed to row-reduced form by elementary row operations, and such transfor-
mations do not alter the underlying row space.

» THEOREM 2

If B is obtained from A by an elementary row operation, then the row space of A is the same
as the row space of B. €

Proof: We shall consider only the third elementary row operation and leave the
proofs of the other two as exercises (see Problems 46 and 47). Let B be obtained
from A by adding 4 times the jth row of A to the kth row of A. Consequently,
if we denote the r1ows of A by the set of row matrices
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A={A;,As,...,A},..., A, ..., Ay} and the rtows of B by
B = {By,B,,...,B;,...,By,...,B,}, then B;,=A, for all i=1, 2, ..., n except
i=k, and B,=A;+)A;. We need to show that if v is any vector in the span of
A, then it is also in the span of B and vice versa.

If v is in the span of A, then there exists constants ¢y, ¢,, ..., ¢, such that
V=CA1 + A+ GA -+ QAR+ -+ ChA.
We may rearrange the right side of this equation to show that
V=CA1+ A+ 4 (G Aee — Aep)Aj+ -+ AR+ -+ CiAAg
=c1A1 + Ay + -+ (¢ — hek)Aj+ -+ + (A + AA)) + -+ - + CuAy
= 1B+ 6By + -+ (6 — her)Bj + -+ B + - + By

Thus, v is also in the span of B.

Conversely, if v is in the span of B, then there exists constants dy, d», ..., d,, such
that

v=ouB; +uwBy+ - +dBj+---+dBy+--- +d,B,
We may rearrange the right side of this equation to show that
v=diA; +dA; + -+ dA + -+ dp (A + A + -+ deA,
= diA1 + oAy + A (d A+ AAA - dp A+ doAy

Thus, v is also in the span of A.

As an immediate extension of Theorem 2, it follows that if B is obtained from A To find the row rank of a
by a series of elementary row operations, then both A and B have the same row Malrix, use elementary
space. Together Theorems 1 and 2 suggest a powerful method for determining {ms?g?r;]attlﬁgsmtgtrix 0
the. row rank of any matrix. Simply use elementary row operations to transform "oy oo oo
a given matrix to row-reduced form and then count the number of nonzero rows. then count the number of

. NONZETO rows.
Example 3 Determine the row rank of

1 3 4
2 -1 1
A=13 2 s
5 15 20

Solution: In Example 5 of Section 1.4, we transformed this matrix into the row-
reduced form

S O O
SO = W
S O = b



A basis for the row space
of a matrix is the set of
nonzero rows of that
matrix, after it has been
transformed to row-
reduced form by ele-
mentary row operations.

To find a basis for a set of
n-tuples, create a matrix
having as its rows those
n-tuples and then find a
basis for the row space of
that matrix.

Because B is obtained from A by elementary row operations, both matrices have
the same row space and row rank. B has two nonzero rows, so its row rank, as
well as the row rank of A, is 2.

Example 4 Determine the row rank of

1 2 1 3
A= 12 3 -1 -6
3 -2 -4 =2

Solution: In Example 6 of Section 1.4, we transformed this matrix into the row-
reduced form

1 21 3
B=|0 1 3 12
0 01 5

B has three nonzero rows, so its row rank, as well as the row rank of A, is 3.

A basis for the row space of a matrix is equally obvious: namely, the set of nonzero
rows in the row-reduced matrix. These vectors are linearly independent and, because
they are linear combinations of the original rows, they span the same space.

Example 5 Find a basis for the row space of the matrix A given in Example 3.

Solution: The associated row-reduced matrix B (see Example 3) has as nonzero
rows the row matrices [13 4] and [01 1]. Together these two vectors are a basis
for the row space of A.

Example 6 Find a basis for the row space of the matrix A given in Example 4.

Solution: The associated row-reduced matrix B (see Example 4) has as nonzero
rows the row matrices [12 13], [01 312], and [00 15]. These three vectors form
a basis for the row space of A.

A basis of the row space of a matrix A is a basis for the span of the rows of A. Thus,
we can determine a basis for any set of n-tuples simply by creating a matrix A
having as its rows those n-tuples and then finding a basis for the row space of
A. This is an elegant procedure for describing the span of any finite set of vectors
S in R".

213 8
Example 7 Find a basis for the span of S = 611 16
-2 2 -3

Solution: We create a matrix A having as its rows the vectors in S. Note that the
elements of S are column matrices, so we use their transposes as the rows of A.
Thus,

2
A= |3 1 2
8 16 -3
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Reducing this matrix to row-reduced form, we obtain
1 3 -1
0 1 —5/8
0 0 0

The nonzero rows of this matrix, [13 — 1] and [0 1 —5/8], form a basis for the row
space of A. The set of transposes of these vectors

1 0
B= 3 1
“1| | -5/8

is a basis for the span of S, therefore, span(S) is the set of all linear combinations
of the vectors in B.

We can extend this procedure to all finite-dimensional vector spaces, not just n-
tuples. We know from Section 2.5 that every vector in a finite-dimensional vector
space can be represented by an n-tuple. Therefore, to find a basis for the span of a
set of vectors S that are not n-tuples, we first write coordinate representations for
each vector in S, generally with respect to a standard basis when one exists. We
then create a matrix A having as its rows the coordinate representations of the
vectors in S. We use elementary row operations to identify a basis for the row
space of A. This basis will consist of n-tuples. Transforming each n-tuple in this
basis vector back to the original vector space provides a basis for the span of S.

Example 8 Find a basis for the span of the vectors in

C={P+3c% 20 +2t—2,2 6> +3t—3,3> 1+ 1}

Solution: The vectors in C are elements of the vector space P?, which has as its
standard basis {t’, £, t, 1}. With respect to this basis, the coordinate representa-
tions of the polynomials in C are

1 2
B +32 & g 28 42t —2 (2) ,
0 -2
1 0
3 2 _6 2 3
P —6t°+3t—3 3 ,and 3t —t+1 <« 1
-3 1

We create a matrix A having as its rows these 4-tuples. Thus,

1 3 0 0
2 0 2 =2
A= 1 -6 3 -3
0 3 -1 1



Reducing this matrix to row-reduced form, we obtain

13 0 0
B |0 1 -1/3 1/3
00 0 0
00 0 0

The nonzero rows of B, namely, [13 00] and [01—1/3 1/3], forma basis for the
row space of A. The set of transposes of these vectors are coordinate representa-
tives for the polynomials

1 0

3 3 2 1 11
0 —t°+3t7, and ~1/3 —t 3t+3.
0 1/3

These two polynomials are a basis for span(C).

Example 9 Describe the span of the vectors in set

=={[s 315 4 L0 SH L e])

Solution: The vectors in R are elements of the vector space Ml,..,, which has as its

standard basis
1 0 0 1 0 0 0 0
0O O|’|0 O’|1 O0]’|0 1

Coordinate representations of the matrices in R with respect to the standard
basis are

_ O O =
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| —
- O
O =
—_
|
—
o
=
| —
O =
(o]
—_
—
—_
S~—
| —
(=N ]
[N
—_
—
p—
S~—
| —
- O
(o]
—_
+
—
(e}
S~—
| —
[N
- O
—_
o~ = O

1 1 0 0
01 0 1
A=|1 0 0 -1
00 1 -1
0 1 1 0

Reducing this matrix to row-reduced form, we obtain
0
0
1 -1
0 o0
0 o0

=

Il
cooor
coor

The nonzero rows of B, [11 00],[01 01],and [00 1 — 1], form a basis for the row
space of B. The set of transposes of these vectors are coordinate representatives
for the matrices

ol g oft 5ol 2)-oft 81§
_0_
-0l o o -oft g0l 14 5
_1_



These three matrices form a basis for span(R). Consequently, every matrix in the
span of R must be a linear combination of these three matrices; that is, every
matrix in span(S) must have the form

11 0 1 0 0] [a a+p
o o] =olo o]V ][5
for any choice of the scalars «, f§, and y.

Row rank is also useful for determining if a set of n-tuples is linearly
independent.

» THEOREM 3

Let S be a set of k n-tuples and let A be the k x n matrix having as its rows the n-tuples in S. S
is linearly independent if and only if the row rank of A is k, the number of elements in S. d

Proof: Assume that the k n-tuples of S are linearly independent. Then these
k n-tuples are a basis for span(S), which means that the dimension of span(S)
is k. But the row rank of A is the dimension of the row space of A, and the
row space of A is also span(S). Because every basis for the same vector space must
contain the same number of elements (Theorem 2 of Section 2.5), it follows that
the row rank of A equals k.

Conversely, if the row rank of A equals k, then a basis for span(S) must contain k
n-tuples. The vectors in S are a spanning set for span(S), by definition. Now,
either S is linearly independent or linearly dependent. If it is linearly dependent,
then one vector must be a linear combination of vectors that precede it. Delete
this vector from S. The resulting set still spans S. Keep deleting vectors until no
vector is a linear combination of preceding vectors. At that point we have a lin-
early independent set that spans S that is a basis for span(S), which contains
fewer than k vectors. This contradicts the fact that the dimension of span(S)
equals k. Thus, S cannot be linearly dependent, which implies it must linearly
independent.

Example 10 Determine whether the set

D={0 1 2 3 0],[1 3 -1 2 1]
[2 6 -1 =3 1[4 0 1 0 2]}
is linearly independent.

Solution: We consider the matrix

=N = O
OSSN W =
I

—_
N = = O
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which can be transformed (after the first two rows are interchanged) to the row-
reduced form

1 3 -1 2 1
B— 0 1 2 3 0
0 0 1 -7 -1
0 0 0 1 27/231

Matrix B has four nonzero rows, hence the row rank of B, as well as the row rank
of A, is four. There are four 5-tuples in D, so it follows from Theorem 3 that S is
linearly independent.

We can extend Theorem 3 to all finite-dimensional vector spaces, not just
n-tuples. We represent every vector in a given set S by an n-tuple with respect
to a basis and then apply Theorem 3 directly to the coordinate representations.

Example 11 Determine whether the set of four polynomials in Example 8 is lin-
early independent.

Solution: Coordinate representations for each of the given polynomials with
respect to the standard basis in P> were determined in Example 8. The matrix
A in Example 8 has as its rows each coordinate representation. A can be trans-
formed into the row-reduced form of the matrix B in Example 8. It follows that
the row rank of B is two, which is also the row rank of A. This number is less than
the number of elements in S, hence S is linearly dependent.

Problems 2.6
In Problems 1 through 21, find a basis for span(S).

1 2114
A)S=<¢|1||-1]]|1

2] o] |4

[1][2][4
(2)S=q |1|{]|1]|1] .

2] 0] |4

(27 [—-27 [4] [-4]
(B)S=q | 1{,|-1], ]2/, |-2] -

2] [—2] [4] [-4]

(17 [—-17] [o] [—-1]
(4)S=q|0f,| 1|, [1|,] 2]

2] [-1] [1] | o]
(5)S={[1 2 -1 1],J0 1 2 1},[2 3 -4 1],[2 4 -2 2]}

6)s={0 1 1 1],)1 0 0 1},[-1 1 1 0o},[1 1 0 1]k
(1

(7ys={1 0 -1 1,3 1 0 1],[1 1 2 —1],[3 2 3 -1]},
2 1 0 0]}



(8)s={2 2 1 2,1 -1 0 1],[]0 —4 -1 1],[1 0 2 1]},
[0 -1 2 2]}

(9)S={[1 2 4 0],]2 4 8 0],[]1 -1 0 1],[4 2 8 2]},
(4 -1 4 3]}

(10) S={*+t,t+1,t>+1,1}.

(11) S={* +t+1,2t> — 2t + 1, t* — 3t}.

(12)S={t,t+1,t—1,1}.
(13)S={*+t,t— 1,2 +1}.
(14)S={>+t+1,t+1,1}.

(A5)S={+>—t, 3 +22+ 1,283 +3t> —t + 1, 36% + 562 — t + 2}.

(16)S={28 +2+ 1,2 +,263 —t+1,t+ 1,26 + 2}.

A7) S={+3% 2+ 1,t+ 1, +42 +t+2,t> +t+2}.

ams={[2 313 211 3
s={[1 [ 210 L
ms={[2 3} 31 21
s 21 16

ol

1
-1

oL}
A}
)

In Problems 22 through 43, use row rank to determine whether the given sets are

linearly independent.
(22) {[1 o]fo 1]}
(23) {[1 1][1 —1]}.
(24) {[2 —4][-3

1
25)¢ o], 1], |1
0

17 [2
26)¢ |o],|0],]0
2| |1

27) § 10|, 1],
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o O
w
—

01 31 Mo

(28) 2 )
o] 1] [3]
(17 37 2]

(29) 20,121,111/ ».
_3_. L - L -

(30){[1 1 0][1 -1 o]}

(31) {[1 2 3][-3 -6 -9]}.

(32) {{10 20 20],[10 —10 10][10 20 10]}.
(33){[2 1 1],[3 -1 4],[1 3 —2]}.

[
W

ol 31 9
{3 31 2 )
o[t 81 8 2 )
n{[1 81 2 )
(38) {1,2}.

(39) {£+1,C+t,2+t}.

(40) {£+2,0 -1, —31).

(41) {P+2,0 -0 —t,C+1}.

(42) {P+t,C+t—1,+1,t}.

(43) {+t,2+t—2,1}.

(44) Can a 4 x 3 matrix have linearly independent rows?

(45) Prove that if the row rank of an m x n matrix is k, then k <minimum {m, n}.

(46) Prove that if a matrix B is obtained from a matrix A by interchanging the
positions of any two rows of A, then both A and B have the same row space.

(47) Prove that if a matrix B is obtained from a matrix A by multiplying one row
of A by a nonzero scalar, then both A and B have the same row space.

2.7 RANK OF A MATRIX

We began this chapter noting that much of mathematical analysis is identifying
fundamental structures that appear with regularity in different situations, devel-
oping those structures in the abstract, and then applying the resulting knowledge
base back to the individual situations to further our understanding of those
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The column space of a
matrix is the subspace
spanned by the columns
of the matrix; the
dimension of the column
space is the column rank.

situations. The fundamental structure we developed was that of a vector space.
We now use our knowledge of this structure to further our understanding of sets
of simultaneous linear equations and matrix inversion.

In the last section we defined the row space of a matrix A to be the subspace
spanned by the rows of A, considered as row matrices. We now define the col-
umn space of a matrix A to be the subspace spanned by the columns of A, con-
sidered as column matrices. The dimension of the column space is called the
column rank of A.

1 2 3
4 5 6
The column space of A consists of all linear combinations of the columns of A;

B AR E A

then the column space of A is span(T). The dimension of span(T) is the column
rank of A.

Example 1 The matrix A = [ } has three columns, all belonging to R?.

The row space of a p x n matrix A is a subspace of R" while its column space is a
subspace of R?, and these are very different vector spaces when p and n are
unequal. Surprisingly, both have the same dimension. The proof of this state-
ment is a bit lengthy, so we separate it into two parts.

»LEMMA 1

The column rank of a matrix is less than or equal to its row rank.

Proof: LetA,, A,, ..., A,betherows, considered as row matrices, of a p x n matrix
A=][a;]. Then

A,-:[ail ap ... ain]; (i:1,2,...,p)
Let k denote the row rank of A. Thus, k is the dimension of the subspace spanned
by the rows of A, and this subspace has a basis containing exactly k vectors. Des-

ignate one such basis as the set B = {u;,u,,...,u.}. Each vector in the basis is an
n-tuple of the form
ui:[uil Ujr uin];(i:1,2,...,k)

Since B is a basis, every vector in the subspace spanned by the rows of A can be
written as a linear combination of the vectors in B, including the rows of A them-
selves. Thus,

Ay =djug +dippug + -+ dyuy
Ay =dyuy +dypuy + -+ dypuy,

Ap = dplul + dpzuz +---+ dpkuk
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for some set of uniquely determined scalars d; (i=1,2,..;j=1,2,..., k). In
each of the preceding individual equalities, both the left and right sides are n-
tuples. If we consider just the jth component of each n-tuple (j=1, 2, ..., n), first

the jth component of A;, then the jth component of A,, sequentially through the
jth component of A,, we obtain the equalities

ayj = diunj + diguaj + - - - + dpliyg

agj = darunj + dagthgj + - - - + dorlhy

ap = dplulj + dpzltzj + -+ dpkukj

which can be rewritten as the vector equation

dyj di dis dir

az; da da dop
= Uy + Uy; + o Uy

Ap; dpl dp?. dpk

Thus, the jth column of A can be expressed as a linear combination of k vectors.
Since this is true for each j, it follows that each column of A can be expressed as a
linear combination of the same k vectors, which implies that the dimension of
the column space of A is at most k. That is, the column rank of A <k=the row
rank of A.

» THEOREM 1

The row rank of a matrix equals its column rank.

Proof: For any matrix A, we may apply Lemma 1 to its transpose and conclude
that the column rank of A" is less than or equal to its row rank. But since the
columns of A" are the rows of A and vice versa, it follows that the row rank of
A is less than or equal to its column rank. Combining this result with Lemma
1, we have Theorem 1.

Since the row rank and column rank of a matrix A are equal, we refer to them
both simply as the rank of A, denoted as r(A).

. . . . . . The rank of a matrix A,
With the concepts of vector space, basis, and rank in hand, we can give explicit ;o 0ieq as (A), is the

criteria for determining when solutions to sets of simultaneous linear equations row rank of A, which is
exist. In other words, we can develop a theory of solutions to complement our also the column rank
work in Chapter 1. of A.



A system of m simultaneous linear equations in n unknowns has the form
arXy + apxy + -+ aipXy = by

ax1X1 + axxy + -+ - + apxy = by

(2.29)
AmX1 + AmaXy + -+ AmnXn = bm
or the matrix form
Ax=b (2.30)
If we denote the columns of A by the w-dimensional column matrices
an arn Ain
asi az aan
Ar=| . |, A= |, o A=
Am1 am2 Amn
then we can rewrite Equation (2.20) in the vector form
x1A1 +XQA7_ +"'+ann =b (231)

Example 2 The system of equations

X—2y+3z=7
4x+ 5y —6z=238

Laf o) - ]

Solving (2.29) or (2.30) is equivalent to finding scalars x,2 ..., x,, that satisfy
Equation (2.31). If such scalars exist, then the vector b is a linear combination
of thevectors Ay, A,, ..., A,. Thatis, bisin the span of {A;, A,, ..., A,} or, equiv-
alently, in the column space of A. Consequently, adjoining b to the set of vectors
defined by the columns of A will not change the column rank of A. Therefore, the
column rank of A must equal the column rank of [A|b]. On the other hand, if no
scalars xy, x5, . . ., x, satisfy Equation (2.31), then b is not a linear combination of
Ay A, ..., A, Thatis, bis not in the span of {A}, A,, ..., A,}, in which case, the
column rank of [A|b] must be greater by 1 than the column rank of A. Since
column rank equals row rank equals rank, we have proven Theorem 2.

has the vector form

» THEOREM 2

The system Ax=b is consistent if and only if r(A)=r[Alb]. «
\ J
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Example 3 Determine whether the following system of equations is consistent:

x+y—z=1

x+y—z=0
Solution: o [1 . _1} o [1] [A|b]:[1 1 1 ‘1}
1 1 -1 (VN 1 1 —-1]0
[A|b] is transformed to row-reduced form

{1 ! _1'1}4[1 1 _1‘ 1} by adding to the

1 1 —-110 0 0 0 |—-1 .
second row — 1 times
the first row by 2.32
— { 11—l ‘ 1 ] multiplying the second
000 |1 row by — 1

This matrix has two nonzero rows, hence r[A|b]=2. If we delete the last column
from the matrix in Equation (2.32), we have A in the row-reduced form

1 1 -1
0 0 O

This matrix has one nonzero row, so r(A) =1. Since r(A) #r[A|b], it follows from
Theorem 2 that the given set of equations has no solution and is not consistent.

Example 4 Determine whether the following system of equations is consistent:

x+y+w=3

2X+2y+2w =06

—X—y—-—w=-3
Solution: 1 1 1 3 1 1 11 3
A=| 2 2 2|, b=]| 6|, [Ap]=| 2 2 2| 6
-1 -1 -1 -3 -1 -1 -1/-3

By transforming both A and [A|b] to row-reduced form, we can show that
7(A) =71|A|b] =1. Therefore, the original system is consistent.

Once a system is determined to be consistent, the following theorem specifies the
number of solutions.

» THEOREM 3

If the system Ax =b is consistent and if r(A) =k, then solutions to the system are express-
ible in terms of n — k arbitrary unknowns, where n denotes the total number of unknowns in
the system.<d




A homogeneous system
of equations is always
consistent, and one
solution is always the
trivial solution.

Proof: To determine the rank of the augmented matrix [A|b], reduce the aug-
mented matrix to row-reduced form and count the number of nonzero rows.
With Gaussian elimination, we can solve the resulting row-reduced matrix for
the variables associated with the first nonzero entry in each nonzero row. Thus,
each nonzero row defines one variable and all other variables remain arbitrary.

Example 5 Determine the number of solutions to the system described in
Example 4.

Solution: The system has three unknowns, x, y, and w, hence n=3. Here r(A) =r
[A|b]=1, so k=1. The solutions are expressible in terms of 3 —1=2 arbitrary
unknowns. Using Gaussian elimination, we find the solution as x=3—y—w
with both y and w arbitrary.

Example 6 Determine the number of solutions to the system

2x—3y+z=-1

xX—y+2z=2
2x+y—3z=3
Solution:
2 =3 1 -1 2 -3 11-1
A=|1 -1 2|, b=| 2|, [Ab]=]1 -1 2| 2
2 1 -3 3 2 1 -3 3

By transforming both A and [A|b] to row-reduced form, we can show that r(A) =
7|A|b] =3; hence, the given system is consistent. In this case, n=3 (three vari-
ables) and (rank) k=3; the solutions are expressible in terms of 3 —3 =0 arbi-
trary unknowns. Thus, the solution is unique (none of the unknowns is
arbitrary). Using Gaussian elimination, we find the solution as x=y=2, z=1.

A homogeneous system of simultaneous linear equations has the form

ajix; +apxy+ -+ apx, =0

axixy +axnxy +--- 4+ dyux, =0
(2.33)

A1 X1 + ApaXo + -+ Xy = 0

or the matrix form

Ax =0 (2.34)

Since Equation (2.34) is a special case of Equation (2.30) with b=0, Theorems 2
and 3 remain valid. Because of the simplified structure of a homogeneous sys-
tem, however, we can draw conclusions about it that are not valid for nonhomo-
geneous systems. In particular, a homogeneous system is consistent, because the
trivial solution x=0 is always a solution to Ax=0. Furthermore, if the rank of A
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equals the number of unknowns, then the solution is unique and the trivial solu-
tion is the only solution. On the other hand, it follows from Theorem 3 that if the
rank of A is less than the number of unknowns, then the solution will be in terms
of arbitrary unknowns. Since these arbitrary unknowns can be assigned nonzero
values, nontrivial solutions exist. Thus, we have Theorem 4.

» THEOREM 4

A homogeneous system of equations Ax=0 in n unknowns will admit nontrivial solutions if
and only if r(A)#n. 4

The concept of rank also provides the tools to prove two results we simply stated
in the previous chapter. We can now determine a criterion for the existence of
an inverse and also show that, for square matrices, the equality AB=I implies
the equality BA=I. For convenience, we separate the analysis into segments.

»LEMMA 2

Let A and B be n x n matrices. If AB=I, then the system of equations AX =Yy has a solution
for every choice of the vector y. 4

Proof: Oncey is specified, set x=By. Then
Ax = A(By) = (AB)y = Iy =y

hence x=By is a solution of Ax=y.

»LEMMA 3
If A and B are n x n matrices with AB=1, then the rows of A, considered as n-dimensional
row matrices, are linearly independent. d

\

Proof: Designate the rows of Aby A, A,, ..., A, respectively, and the columns of

I as thevectors ey, e,, ..., e,, respectively. It follows from Lemma 2 that the set of
equations Ax=e; (j=1, 2, ..., n) hasasolution for each j. Denote these solutions
by x3, Xy, ..., X, respectively. Therefore,

Since ¢; is an n-dimensional column matrix having a unity element in row j and
zeros elsewhere, it follows from Equation (2.26) that, fori=1, 2, ..., n,

1 wheni=j

ithcomponent of Ax; = { 0 wheni #]



This equation can be simplified if we make use of the Kronecker delta 6;; defined as

) /1 wheni=j
ithcomponent of Ax; = {O wheni # j (2.36)
Thus, Equation (2.35) may be written as
ithcomponentof Ax;=§;
or, more simply, as
Ain = (3,‘]' (237)
Now consider the vector equation
n
> cAi=0 (2.38)

i=1

We want to show that each constant ¢; (i=1, 2, ..., n) must be 0. Multiplying
both sides of Equation (2.38) on the right by the vector x; and using Equa-
tions (2.36) and (2.37), we have

n n n n
0= OXj = <Z CiAi>XjZ (CiAi)Xj = Zci (Ain) = Zciéij = Cj
i=1 i=1 1 i=1

i=

Thus, for each x; (j=1, 2, ..., n) we have ¢;=0, which implies that
c1=¢,=""=¢,=0 and that the rows of A, namely, A}, A,, ..., A,, are linearly
independent.

It follows directly from Lemma 3 and the definition of an inverse that ifan n x n
matrix A has an inverse, then A must have rank n. This in turn implies that if A
does not have rankn, then A does not have an inverse. We also want the converse:
that is, if A has rank n, then A has an inverse.

»LEMMA 4

If an n x n matrix A has rank n, then there exists a square matrix C such that CA=1. 4

Proof: If an n x n matrix A has rank n, then its row-reduced form is an upper tri-
angular matrix with all elements on the main diagonal equal to 1. Using these
diagonal elements as pivots, we can use elementary row operations to further
transform A to an identity matrix. Corresponding to each elementary row oper-
ation is an elementary matrix. Therefore, if A has rank n, then there is a sequence
of elementary matrices E,, E,, ..., E,_1, E; such that

EE,1.. . ERE1A =1 (2.39)
Setting
C=EE,...EE,
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we have

CA=1 (2.40)

»LEMMA 5
If A and B are n x n matrices such that AB=1, then BA=1. 4

Proof: If AB=I, then it follows from Lemma 3 that A has rank n. It then follows
from Lemma 4 that there exists a matrix C such that CA=1. Consequently,

C=CI=C(AB) = (CAB=IB =B

so the equality CA=1I implies that BA=1.

If we replace A by C and B by A in Lemma 5, we have that, if C and A are n xn
matrices such that CA=I, then it is also true that

AC =1 (2.41)

Therefore, if A is an n x n matrix with rank n, then We want to show that each
constant Equation (2.40) holds, whereupon Equation (2.41) also holds.
Together Equations (2.40) and (2.41) imply that C is the inverse of A. Thus,
we have proven Theorem 5.

» THEOREM 5

An n x n matrix A has an inverse if and only if A has rank n. <

In addition, we also have Theorem 6.

» THEOREM 6

A square matrix has an inverse if and only if it can be transformed by elementary row oper-
ations to an upper triangular matrix with all elements on the main diagonal equal to 1. d

Proof: An n x n matrix A has an inverse if and only if it has rank n (Theorem 5). It
has rank n if and only if it can be transformed by elementary row operations into
a row-reduced matrix B having rank n (Theorem 2 of Section 2.6). B has rank n if
and only if it contains n nonzero rows (Theorem 1 of Section 2.6). A row-
reduced, n x n matrix B has n nonzero rows if and only if it is upper triangular
with just ones on its main diagonal.



Problems 2.7

In Problems 1 through 7, find the ranks of the given matrices.

(1 2 0 [ 2 8 -6
(1) 13 1 5]' (2) -1 —4 3}
4 1 (4 8
(3) {2 3]. 4) |6 12].
2 2 |9 18
1 4 -2 (1 2 4 2
(5) 2 8 —4/. 6 )1 1 3 2.
-1 -4 2 |1 4 6 2
(1 7 0
(7) |0 1 1.
1 1 0

(8) What is the largest possible value for the rank of a 2 x 5 matrix?

(9) What is the largest possible value for the rank of a 4 x 3 matrix?
(10) What is the largest possible value for the rank of a 4 x 6 matrix?
(11) Show that the rows of a 5 x 3 matrix are linearly dependent.
(12) Show that the columns of a 2 x 4 matrix are linearly dependent.
(13) What is the rank of a zero matrix?

(14) Use the concept of rank to determine whether [3 7] can be written as a linear
combination of the following sets of vectors.

() {[12] [48]} (b) {[12] [32]}.

(15) Use the concept of rank to determine whether [2 3] can be written as a linear
combination of the following sets of vectors.

(a) {[1015], [46]}, (b) {[11], [1 =11},
(0) {[2—4] [-36]}.

(16) Use the concept of rank to determine whether [11 1]" can be written as a
linear combination of the following sets of vectors.

SR (0 HH S AR

(17 [17 [ 1
(C) O ) 1 ) -1
1 1 1

—_
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In Problems 17 through 25, discuss the solutions of the given systems of equa-
tions in terms of consistency and number of solutions. Check your answers by
solving the systems wherever possible.

(17) x—2y=0
x+y=1
2x—y=1

(19) x+y+z=1

x—y+z=2
3x+y+3z=4
(21) 2x—y+z=0
X+2y—z=4
x+y+z=1
(23) x—y+22=0
2x+3y—z2=0

—2x+7y—72=0
(25) x—2y+3z+3w=0
y—22z2+2w=20
X+y—3z2+9% =0

(18) x+y=0
2x—-2y=1
x—y=0

(20) x+3y+2z—w=2
2x—y+z+w=3

(22) 2x+3y =0
x—4y =20

(24) X—y+22=0
2x—3y+5z2=0
—2x+7y—-92=0

(26) Prove that if one row of a square matrix is a linear combination of another
row, then the determinant of the matrix must be 0.

(27) Prove that if the determinant of an n x n matrix is 0, then the rank of that

matrix must be less than n.

(28) Prove that if A and B are square matrices of the same order, then AB is non-
singular if and only if both A and B are nonsingular.

CHAPTER 2 REVIEW

Important Terms

additive inverse

basis

column rank

column space

coordinates

dimension

equivalent directed line segments
finite-dimensional vector space
linear combinations

linearly dependent vectors
linearly independent vectors

Mp xn

normalized n-tuple
Py
Rn
rank

right-handed coordinate
system

row rank

row space

span of vectors
spanning set



subspace vector space
vector Zero vector

Important Concepts
Section 2.1

= Addition, subtraction, and scalar multiplication of 2-tuples can be done
graphically in the plane.

Section 2.2

= The zero vector in a vector space is unique.
= The additive inverse of any vector v in a vector space is unique and is equal
to —1-v.

Section 2.3

= A nonempty subset S of a vector space V is a subspace of V if and only if S is
closed under addition and scalar multiplication.

= Ifasubset of a vector space does not include the zero vector, then that subset
cannot be a subspace.

= Lines through the origin and planes that contain the origin are subspaces
of R3.

= The span of a set of vectors S in a vector space V is the smallest subspace of V
that contains S.

Section 2.4

= Asetof vectors is linearly dependent if and only if one of the vectors is a linear
combination of the vectors that precede it.

= Two vectors are linearly dependent in R? or R? if and only if they lie on the
same line.

= Asetof three vectors in R? is linearly dependent if and only if all three vectors
lie on the same line or all lie on the same plane.

Section 2.5

= dim(R") = n; dim(P") = n+ 1; dim(M,x,) = pn.

= Every basis for a finite-dimensional vector space contains the same number of
vectors.

= In an n-dimensional vector space, every set of n+ 1 or more vectors is linearly
dependent.

= A spanning set of vectors for a finite-dimensional vector space V can be
reduced to a basis for V; a linearly independent set of vectors in V can be
expanded into a basis.

Section 2.6

= If matrix B is obtained from matrix A by an elementary row operation, then
the row space of A is the same as the row space of B.
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= To find the row rank of a matrix, use elementary row operations to transform
the matrix to row-reduced form and then count the number of nonzero rows.
The nonzero rows are a basis for the row space of the original matrix.

Section 2.7

= The row rank of a matrix equals its column rank.

= The system of equation Ax=Db is consistent if and only if the rank of A equals
the rank of the augmented matrix [A|b].

= Ifthe system Ax=Db is consistent and if r(A) =k, then the solutions to the sys-
tem are expressible in terms of n — k arbitrary unknowns, where n denotes the
total number of unknowns in the system.

= Ahomogeneous system of equations is always consistent, and one solution is
always the trivial solution.

= An nxn matrix A has an inverse if and only if A has rank n.

= A square matrix has an inverse if and only if it can be transformed by elemen-
tary row operations to an upper triangular matrix with all unity elements on
its main diagonal.
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3.1 FUNCTIONS

Relationships between items are at the heart of everyday interactions, and if
mathematics is to successfully model or explain such interactions, then mathe-
matics must account for relationships. In commerce, there are relationships
between labor and production, between production and profit, and between
profit and investment. In physics, there are relationships between force and
acceleration, and between mass and energy. In sociology, there is a relationship
between control and evasions. We need, therefore, mathematical structures to
represent relationships. One such structure is a function.

A function is a rule of correspondence between two sets, generally called the
domain and range, that assigns to each element in the domain exactly one ele-

ment (but not necessarily a different one) in the range.

. . . A function is a rule of
Example 1 The rules of correspondence described by the arrows in Figures 3.1  correspondence between

and 3.2 between the domain {A, B, C} and therange {1, 2, 3, 4, 5} are functions. two sets, a domain and
In both cases, each element in the domain is assigned exactly one element in the range, that assigns to
range. In Figure 3.1, A is assigned 1, B is assigned 3, and C is assigned 5. Although g?)ﬁ?aﬁ:eg;gga motnh:
some elements in the range are not paired with elements in the domain, thisis of .. (but r¥ot

no consequence. A function must pair every element in the domain with an ele- necessarily a different

ment in the range, but not vice versa. In Figure 3.2, each element in the domain is one) in the range.

Linear Algebra
Copyright © 2014, Elsevier Inc. All rights reserved.
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assigned the same element in the range, namely, 2. This too is of no consequence.
A function must pair every element in the domain with an element in the range,
but not necessarily with a different element.

Example 2 The rule of correspondence described by the arrows in Figure 3.3 between
the domain and range, which are both the set of words {dog, cat, bird}, is not a func-
tion. The word cat, in the domain, is not matched with any element in the range.
A function must match every element in the domain with an element in the range.

dog dog
cat cat
bird bird

FIGURE 3.3
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The image of a function consists of those elements in the range that are matched The image of a function is
with elements in the domain. An element y in the range is in the image only if fhe set of all elements in
there is an element x in the domain such that x is assigned the value y by the rule the range that are

. . . matched with elements
of correspondence. In‘Flgure 3.1, theimage 1s'the set {1,3,5} b?cause 1,3, a.md 5 in the domain by the rule
are the only elements in the range actually assigned to elements in the domain. In  of correspondence.
Figure 3.2, the image is the set {2} because the number 2 is the only number in

the range matched with elements in the domain.

The domain and range of a function can be any type of set, ranging from sets of
letters to sets of colors to sets of animals, while the rule of correspondence can be
specified by arrows, tables, graphs, formulas, or words. If we restrict ourselves to
sets of real numbers and rules of correspondence given by equations, then we
have the functions studied most often in algebra and calculus.

Whenever we have two sets of numbers and a function f relating the
arbitrary element x in the domain to the element y in the range through
an equation, we say that y is a function of x and write y=f(x). Letters
other than x and y may be equally appropriate. The equation R=f(N) is
shorthand notation for the statement that we have a function consisting
of two sets of numbers and an equation, where N and R denote elements
in the domain and range, respectively. If the domain is not specified, it
is assumed to be all real numbers for which the rule of correspondence
makes sense; if the range is not specified, it is taken to be the set of all real
numbers.

If we have a rule of correspondence defined by the formula f(x), then we find the
element in the range associated with a particular value of x by replacing x with
that particular value in the formula. Thus, f(2) is the effect of applying the rule of
correspondence to the domain element 2, while f(5) is the effect of applying the
rule of correspondence to the domain element 5.

Example 3 Find £(2), f(5), and f(—5) for f(x)=1/x".

Solution: The domain and range are not specified, so they assume their default
values. The formula 1/x* is computable for all real numbers except 0, so this
becomes the domain. The range is the set of all real numbers. The image is all
positive real numbers because those are the only numbers actually matched to
elements in the domain by the formula. Now

f2)=1/2)°=1/4 =025
f(5)=1/(5>=1/25 =0.04
f(=5)=1/(=5)*=1/25=0.04

Problems 3.1

In Problems 1 through 16, the rules of correspondence are described by arrows.
Determine whether the given relationships are functions and, for those that are,
identify their images.
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In Problems 16 through 18, determine whether the given tables represent func-
tions where the rule of correspondence is to assign to each element in the top row
the element directly below it in the bottom row.

(16) 1‘2‘3|4‘5 (17)

(18)x1‘2‘3|4‘5

In Problems 19 through 22, determine whether the specified correspondences
constitute functions.

(19) The correspondence between people and their weights.
(20) The correspondence between people and their social security numbers.
(21) The correspondence between cars and the colors they are painted.

(22) The correspondence between stocks listed on the New York Stock Exchange
and their closing prices on a given day.



In Problems 23 through 29, determine whether a domain exists on
the horizontal axis so that the given graphs represent functions. The
rule of correspondence assigns to each x value in the domain all y
values on the vertical axis (the range) for which the points (x, y) lie on
the graph.

(25) (26)

(27)

(0.-4)

(30) Determine whether the following equations represent functions on the
specified domains:

(@) y=+yx for —oo <x<oo.
(b) y=+vx for 0<x< co.
() y==%vx for 0<x<o0.
(d) y=+v/x for —oo<x<o0.
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(31) Given the function y=f(x)=x"—3x+2 defined on all real numbers, find
(a) f(0), (b) f(1), () f(=1), (d) f(2%).

(32) Given the function y=f(x)=2x"—x defined on all real numbers, find
(a) f(1), (b) f(=1), (<) (2%), (d) fla+D).

(33) Given the function y=f(x)=x>—1 defined on all real numbers, find

(a) f(=2), (b) f(0), () (22), (d) fla+b).

(34) A function is onto if its image equals its range. Determine whether either of
the functions defined in Example 1 are onto.

(35) Determine which of the functions defined in Problems 1 through 15
are onto.

(36) A function is one to one if the equality f(x) =f(z) implies that x=z; that is, if
each element in the image is matched with one and only one element in the
domain. Determine whether either of the functions defined in Example 1
are one to one.

(37) Determine which of the functions defined in Problems 1 through 15 are
one to one.

3.2 LINEAR TRANSFORMATIONS

Two frequently used synonyms for the word function are mapping and transforma-
tion. In high-school algebra and calculus, the domain and range are restricted
to subsets of the real numbers and the word function is used almost exclusively.
In linear algebra, the domain and range are vector spaces and the word transfor-
mation is preferred.

A transformation T is a rule of correspondence between two vector spaces, A transformation is a
a domain V and a range W, that assigns to each element in V exactly one function with vector
element (but not necessarily a different one) in W. Such a transformation is SPaces for its domain
denoted by the shorthand notation TV — W. We write w="T(v) whenever the and range.

vector w in W is matched with the vector v in V by the rule of correspondence

associated with T. We will, on occasion, discard the parentheses and write w="Tv

when there is no confusion as to what this notation signifies.

The image of T is the set of all vectors in W that are matched with vectors in V
under the rule of correspondence. Thus, w is in the image of T if and only if there
exists a vector v in V such that w=T(v).

A transformation T: V — W is linear if for any two scalars, « and f, and any two
vectors, u and v, in V the following equality holds:

T(ou + pv) = oT(u) + fT(v) (3.1)
For the special case a=f=1, (3.1) reduces to

T(u+v)=T(u) +T(v) (3.2)



A transformation is linear
if it preserves linear
combinations.

while for the special case =0, (3.1) becomes

T(oa) = oT(u) (3.3)

Verifying (3.1) is equivalent to verifying (3.2) and (3.3) separately (see
Problem 47).

The left side of (3.1) is the mapping of the linear combination ou+ fv
from the vector space V into the vector space W. If T is linear, then the result
of mapping cu+ fv into W is the same as separately mapping u and v into W,
designated as T(u) and T(v), and then forming the identical linear combination
with T(u) and T(v) in W as was formed in V with u and v; namely, o times
the first vector plus f§ times the second vector. Linear combinations are funda-
mental to vector spaces because they involve the only operations, addition and
scalar multiplication, guaranteed to exist in a vector space. Of all possible trans-
formations, linear transformations are those special ones that preserve linear
combinations.

Example 1 Determine whether the transformation T:V — V defined by
T(v)=kv for all vectors v in V and any scalar k is linear.

Solution: In this example, V = W; that is, both the domain and the range are the
same vector space. For any two vectors u and v in V, we have

T(ou + pv) = k(ou + pv) = a(ku) + B(kv) = «T(u) + BT(v)
Thus, (3.1) is valid, and the transformation is linear.

The linear transformation in Example 1 is called a dilation. In R?, a dilation
reduces to a scalar multiple of a 2-tuple, having the geometrical effect of elongat-
ing v by a factor of |k| when |k| > 1 or contracting v by a factor of |k| when |k| <1
followed by a rotation of 180° when k is negative and no rotation when k is pos-
itive. These dilations are illustrated in Figure 3.4. When V = R? and k= — 1, the
transformation T is sometimes called a rotation through the origin. It is illustrated
in Figure 3.5.
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Example 2 Determine whether the transformation T:V — W defined by
T(v) =0 for all vectors v in V is linear.

Solution: For any two scalars o and § and for any two vectors u and vin V, we have
Tlau+fv)=0=04+0=0a0+ 0 =0oT(u) + T(v)

Thus, (3.1) isvalid, and Tis linear. Transformations of this type are called zero trans-
formations because they map all vectors in the domain into the zero vector in W.

Example 3 Determine whether the transformation L is linear if L: P> — P? is
defined by

L(d3t3 + azt2 +ait+ ao) = 3a3t3 + 2art + aq
where g; (i=0, 1, 2, 3) denotes a real number.

Solution: A transformation is linear if it satisfies (3.1) or, equivalently, both (3.2)
and (3.3). For practice, we try to validate (3.2) and (3.3). Setting

u=at> +at? +ait+ao and v =bst> +byt* + bt + by
we have L(u) =3ast> 4+ 2at+a,, L(v) =3bst> 4+ 2b,t+b,, and
L(u+v) = L((ast’ + axt® + art + ag) + (bst> + bat> + byt + by) )
(a5 +b3) + (az + b2)t* + (a1 + by)t + (a0 + bo))
(a3 + b3)t* 4 2(az + by)t + (a1 + b1)
= (3ast® + 2ast + ay) + (3bst? + 2byt + by
= L(u) 4+ L(v)

L
=3
(


Figure 3.5

For any scalar a, we have

(oc(a3t + art* + ayt + ag))

= L((xas)t® + (0ar)t* + (xar)t + (aao))
3(oaz)t* 4 2(oan)t + (oay)

= 06(3ﬂ3t + 2at + al)
= oL(u)

Therefore, both (3.2) and (3.3) are satisfied, and L is linear. Readers familiar with
elementary calculus will recognize this transformation as the derivative.

Example 4 Determine whether the transformation T is linear if T: R — R! is
defined by T[a b] =ab for all real numbers a and b.

Solution: This transformation maps 2-tuples into the product of its compo-
nents. In particular, T[2 —3]=2(—3)=—-6 and T[1 0] =1(0) =0. In general, set-
ting u=|[a b] and v=|[c d], we have T(u)=ab, T(v) =cd, and

T(u) +T(v) =ab+cd (3.4)
while
T(u+v)=T([ab] + [cd])

=Tla+cb+d (3.5)

=(a+c)b+d)=ab+cd+cd+ad
Equations (3.4) and (3.5) are generally not equal, hence (3.2) is not satisfied, and
the transformation is not linear. In particular, foru=[2 —3] and v=|[1 0],

T(u+v) =T([2—3]+[10]) = T[3 —3] =3(=3) = -9
#-6+0=T[2—-3]+T[10]=Tu+Tv

We can also show that (3.3) does not hold, but this is redundant. If either (3.2) or
(3.3) is violated, the transformation is not linear.

Example 5 Determine whether the transformation T is linear if T: R? — R? is
defined by T[a b]=[a —b] for all real numbers a and b.

Solution: This transformation maps 2-tuples into 2-tuples by changing the sign of the
second component. Here, T[2 3]=[2 —3], T[0 —5]=[0 5], and T[—1 0]=[—1 0].
In general, setting u=[a b] and v=|c d], we have T(u) =[a —b], T(v)=][c —d], and

T(u+v)=T(lab] + [cd])
=Tla+c b+d]
=la+c— (b+4d)]
w+c—b d]
[a —
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For any scalar o, we have
T(ou) = T(afa b]) = T[oa ab] = [oa —ab] = afa —b] = «T(u)

Thus, (3.2) and (3.3) are satisfied, and the transformation is linear.

The linear transformation T defined in Example 5 is called a reflection across the
x-axis. For vectors graphed on an x-y coordinate system, the transformation maps
each vector into its mirror image across the horizontal axis. Some illustrations are
given in Figure 3.6. The counterpart to T'is the linear transformation § : R? — R?
defined by S[a b] =[—a b], which is called a reflection across the y-axis. For vectors
graphed on an x-y coordinate system, the transformation S maps each vector into
its mirror image across the vertical axis. Some illustrations are given in Figure 3.7.

Example 6 Determine whether the transformation L is linear if L : R — R? is
defined by L[a b]=[a 0] for all real numbers a and b.

Solution: Here L[—2 5] =[—2 0], L[0 4] =[0 0], and L[4 0] =[4 0]. In general, set-
ting u=|a b] and v=|c d], we have L(u) =[a 0], L(v) =[c 0], and for any scalars o
and p,
L(ou + pv) = L(afa b] + flc d])

= L{aa + fc ab + fd]

= [oa + fc 0]

= ofa 0] + Bc 0]

— aL(u) + BL(v)

Equation (3.1) is satisfied, hence L is linear.


Figure 3.6
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The linear transformation defined in Example 6 is called a projection onto the x-axis.
Its counterpart, the transformation M : R? — R? defined by M[a b] =0 b] for all
real numbers aand b, is also linear and is called a projection onto the y-axis. Some illus-
trations are given in Figure 3.8. Note that for any vector v in R?, v=L(v) +M(v).

Example 7 Determine whether the transformation R is linear, if R is defined by

R4l = cos) —sin0O||a| |acosO—bsin0
b| |sin® cosO |[|b| |asinO+bcosb

where a and b denote arbitrary real numbers and 0 is a constant.
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FIGURE 3.9

Solution: R is a transformation from R? to R? defined by a matrix multiplication.

Setting
a c cos 0 —sin 0
u[b}' V= [b]’ and A = [sin 0 cos 0 }

it follows directly from the properties of matrix multiplication that
R(ou + fv) = A(ou + fv) = aAu + fAv = oR(u) + R(V)
for any choice of the scalars « and . Equation (3.1) is valid, hence R is linear.

The linear transformation defined in Example 7 is called a rotation, because it has
the geometric effect of rotating around the origin each vector v by the angle 6 in
the counterclockwise direction. This is illustrated in Figure 3.9.

The solution to Example 7 is extended easily to any linear transformation defined
by matrix multiplication on n-tuples. Consequently, every matrix defines a linear
transformation.

» THEOREM 1

If L.R" — R™ js defined as L(u)=Au for an m x n matrix A, then L is linear. 4

Proof: It follows from the properties of matrices that for any two vectors u and v
in R", and any two scalars « and f, that

L(au + fpv) = A(ou + fv) = A(ou) + A(Bv)
= a(Au) + f(Av) = oL(u) + SL(v)

Problems 3.2
(1) Define T : R* — R? by T[a b] =[2a 3b]. Find
(a) T[2 3], (b) T[-15],

() T[-8 200], (d) 1[0 —7].


Figure 3.9

188

(2) Redo Problem 1 with T[a b]=[a+2 b—2].

(3) Define S: R* — R? by S[a b c]=[a+b c]. Find
(a) S[123], (b) S[—-23 -3],
(c) S[2 —-20], (d) S[1 4 3].

(4) Redo Problem 3 with S[a b c]=[a—c c—D].

(5) Redo Problem 3 with S[a b ¢c]=[a+2b—3c¢ 0].

(6) Define N: R? — R* by N[a b]=[a-+b 2a+b b+2]. Find
(a) N1 1], (b) N2 -3],
(c) N[3 0], (d) N[0 0].

(7) Redo Problem 6 with N[a b]=[a+b ab a—b].

(8) Define P : My, — M) asP[Z b} = {C a}Find

d d b
1 2 1 -1
(a) P[s 4} ®) PL 3]'
1020 28 32
© P[—5 0} () P{ls 44]'
. a b a+b O
(9) Redo Problem 8w1thP[C d] = [ 0 c—d}
(10) Define T : P? — P? by T(a,t* +a t+ag) = (ar — a,)t* + (a; — ap)t. Find
(a) T(2t* —3t+4), (b) T(£+2¢),
(c) T(3t), (d) T(—+2t—1).

In Problems 11 through 40, determine whether the given transformations are linear.
(11) T: R? — R?, T[a b] =|2a 3b].

(12) T:R? - R?, Tla b]=[a+2 b—2].

(13) T: R? — R?, Tla b]=]a 1].

(14) S: R* — R?, S[a b]=[a’ b?].

(15) S: R* - R?, S[abc]=[a+Dbc].

(16) S: R*> — R?, S[a b c]=[a—cc—D).

(17) S: R®> - R?, S[a b c]=[a+2b—3c 0].

(18) S: R* — R?, S[ab]=[a+b 2a+bb+2].

(19) S: R? — R3, S[a b]=[a 0 b].
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(20) N: R* - R3, N[a b]=[0 0 0].

(21) N: R? = R>, N[a b]=[a+b ab a—b).
(22) N: R? — R3, N[a b]=[0 0 2a— 5b].
(23) T: R? — R?, Tla b] =[a+ —a —8a].
(24) T:R?> - R!, Tlabc]=a—c.

(25) S: R®> — R!, S[a b c] =abc.

(26) L: R — R!, L[a b c]=0.

(27) P:R> - RY, Plabc]=1.

(28) P: M2X2—>M2X2,P:i Z = 2 Z]

(29) P: M2X2—>M2X2,P:i Z = :“gb ng}
(30) T: M., —>M2X2,T:? Z _ :20‘1 8].
(31) T: M., —>M2X2,T:i Z _ :Zj g}
(32) T: Myy, — R, T[‘C’ Z} = ad — bc.

(33) R: M., —>]R1,R[Z Z} =b+2c—3d.

(34) S: M,y — My, S(A)=A".

(35) 8: Myxn — Myxn, S(A) =—A.

(36) L: M, — M, L(A)=A—A".

(37) L: P* — P?, L(a,t* +a t+ap) =aot.

(38) T: P? — P?, T(ayt’ +a,t+aog) =as(t— 1) +a,(t— 1) +ao.
(39) T: P* — P2, T(ayt’ +a,t+ao) = (a, —al) (£ + (a; — ao)t.
(40) S: P> — P?, S(at* +at+ag) = (a, — 1)t

(41) Let S: M,,, — R' map an nxn matrix into the sum of its diagonal
elements. Such a transformation is known as the trace. Is it linear?

A~! if A is nonsingular

IsT
0 if Aissingular s

(42) Let T: M, — M« be defined as T(A) = {

linear?



(43) Let I: V — V denote the identity transformation defined by I(v) =v for all
vectors v in V. Show that I is linear.

(44) Let L: V — V denote a linear transformation and let {v;, v,, ..., v,} bea
basis for V. Prove that if L(v;)=v;, for all i (i=1, 2, ..., n), then L must
be the identity transformation.

(45) Let 0: V — W denote the zero transformation defined by 0(v) =0 for all vec-
tors v in V. Show that 0 is linear.

(46) Let L: V — W denote a linear transformation and let {v,, v, ..., v,} bea
basis for V. Prove that if L(v;) =0 forall (i=1, 2, ..., n), then L must be the
zero transformation.

(47) Prove that Equations (3.2) and (3.3) imply (3.1).

(48) Determine whether T: M, — M, defined by T(A) =AA" is linear.

(49) Find T(u+ 3v) for a linear transformation Tif it is known that T(u) =22 and
T(v)=-8.

(50) Find T(u) for a linear transformation T if it is known that T(u+v) =2u+3v
and T(u—v)=4u+5v.

(51) Find T(v) for a linear transformation T if it is known that T(u+v)=u and
T(u)=u-—2v.

(52) Let L: V — W denote a linear transformation. Prove that L(v; +v,+V3) =
L(vy) 4+ L(v,) +L(vs3) for any three vectors vy, v,, and v; in V. Generalize this
result to the sum of more than three vectors.

(53) Let S: V — W and T:V — W be two linear transformations. Their sum is
another transformation from V into W defined by (S+T)v=S(v)+T(v)
for all v in V. Prove that the transformation S+ T is linear.

(54) Let T: V — W be a linear transformation and k a given scalar. Define a new
transformation kT: V — W by (kT)v=Fk(Tv) for all v in V. Prove that the
transformation kT is linear.

(55) LetS: V — W and T:V — V be two linear transformations and define their
product as another transformation from V into V defined by (ST)v — S(Tv)
forall vin V. This product first applies T to a vector and then S to that result.
Prove that the transformation ST is linear.

(56) LetS: R? — R? be defined by S[a b] =[2a +b 3a] and T: R* — R? be defined
by T[a b] =|b— a]. Find ST(v) for the following vectors v:

(a) [12], (b) [2 0], () [-13]
(d) [-11], (e) [-2-2], (f) [2 -3].

(57) Find TS(v) for the vectors and transformations given in the previous
problem.
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(58) Let S: R? — R? be defined by S[a b]=[a+b a—b] and T: R? — R? be
defined by T|a b] =[2b 3b]. Find ST(v) for the following vectors v:

(a) [12], (b) [20], (0 [-13],
(d) [=11], (e) [-2-2], () [2 -3].

(59) Find TS(v) for the vectors and transformations given in the previous
problem.

(60) Let S:R? — R? be defined by S[a b]=[a a+2b] and T:R? — R? be defined
by T|a b]=[a+ 2b a— 2b]. Find ST(v) for the following vectors v:

() [12], (b) [20], (0 [=13],

(d) [-11], (e) [-2-2] ) [2-3].
(61) Let L be defined as in Example 6. Show that L*=L.

(62) Let L and M be transformations from R? into R?, the first a projection onto
the x-axis and the second a projection onto the y-axis (see Example 6). Show
that their product is the zero transformation.

3.3 MATRIX REPRESENTATIONS

We showed in Chapter 2 that any vector in a finite-dimensional vector space can
be represented as an n-tuple with respect to a given basis. Consequently, we can
study finite-dimensional vector spaces by analyzing n-tuples. We now show that
every linear transformation from an n-dimensional vector space into an m-
dimensional vector space can be represented by an m x n matrix. Thus, we can
reduce the study of linear transformations on finite-dimensional vector space
to the study of matrices!

Recall from Section 2.4 that there is only one way to express v as a linear com-
bination of a given set of basis vectors. If v is any vector in a finite-dimensional

vector space V, and if B = {vy,v,,...,v,} is a basis for V, then there exists a
unique set of scalars ¢, ¢, ..., ¢, such that
V=CV]+CVy+- -+, (36)
We write
C1
(%)
Ve | . (3.7)
Cn g

to indicate that the n-tuple is a coordinate representation for the sum
on the right side of (3.6). The subscript on the n-tuple denotes the underly-
ing basis and emphasizes that the coordinate representation is basis
dependent.



A linear transformation is
described completely by
its actions on a basis for
the domain.

Example 1 Find a coordinate representation for the vector v=4t>+3t+2 in P?
with respect to the basis C = {t* + ¢, t+ 1,t — 1}.

Solution: To write v as a linear combination of the basis vectors, we must
determine scalars c¢;, ¢,, and ¢; that satisfy the equation

47 +3t4+2=c (P + 1)+t +1)+c3(t—1)
=ct? +(cy+cr+c3)t+ (¢ —c3)
Equating coefficients of like powers of ¢, we generate the system of equations
=4
ci+c+ez=3
c3—c3=2

which has as its solution ¢;=4, ¢;=1/2, and c3=—3/2. Accordingly (3.6)
becomes

42 +3t+2=4(C +1) + (1/2)(t+ 1)+ (=3/2)(t = 1)
and (3.7) takes the form

4
47 +3t+2 < | 1/2
-3/2
If T: V — W is a linear transformation and v is any vector in V expressed in form
(3.6), then
T(v) = T(c1v1 + Vo + - + CaVn) (3.8)
= T(vy) +T(vy) + -+ ¢, T(vy) .

Consequently, T is described completely by its actions on a basis. Once we know
how T transforms the basis vectors, we can substitute those results into the right
side of (3.8) and determine how T affects any vector v in V.

Example 2 A linear transformation T: R? — R> has the property that
1 0
T[H =12 and T{(l)]: 3
0 4

Determine T(v) for any vector v € R?.

Solution: If v € R?, then v=[a b]" for some choice of the real numbers a and b.
The set {[1 0]", [0 1]} is the standard basis for R?, and with respect to this basis

)=o) ]3]
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z
5..
4 W2
31
2..
1 +
1 2 3 4
b y
1/ N
2 W4
3
4
X
FIGURE 3.10
Consequently,
1 0 a
a 1 0
T[b} :aT{O]—i—bT{l] =al2| +b|{3|=]|2a+3b
0 4 4b

Example 2 has an interesting geometrical interpretation. We see from the solu-

tion that
1 0
T(a{é}—i—b[ﬂ):a 2| +0b|3
0 4

Thus, linear combinations of the vectors in the standard basis for R? are mapped
into linear combinations of the vectors w; =[1 2 0]" and w,=[0 3 4]". All linear
combinations of the vectors in the standard basis for R? generate the x-y plane. All
linear combinations of w; and w; is the span of {w;, w,}, a plane in R3, which is
partially illustrated by the shaded region in Figure 3.10. Thus, the linear transforma-
tion defined in Example 2 maps the x-y plane onto the plane spanned by {w,, w,}.

Example 3 A linear transformation T:R? — R? has the property that

HR U BN

Determine Tv for any vector v € R?.

Solution: The set of vectors {[1 1]", [1 —1]"} is a basis for R?. If v=[a b]" for some
choice of the real numbers a and b, then

b= h] e



Figure 3.10

Every linear transforma-
tion from one finite-
dimensional vector space
into another can be
represented by a matrix.

AS denotes a matrix
representation of a linear
transformation with
respect to the B basis in
the domain and the C
basis in the range.

and

a 1 _
:a+bT a bT

b 2 1 2 -1
a+bl|5 a—bl7 6a—b
2 e 2 8| |7a-b

With these two concepts—first, that any finite-dimensional vector can be repre-
sented as a basis dependent n-tuple, and second, that a linear transformation is
completely described by its actions on a basis—we have the necessary tools to
show that every linear transformation from one finite-dimensional vector space
into another can be represented by a matrix. Let T designate a linear transforma-
tion from an n-dimensional vector space V into an m-dimensional vector space
W, and let B = {vy,v,,...,v,} be abasis for Vand C = {wy,w,,...,wy} bea
basis for W. Then T(v,), T(v2), ..., T(v,) are all vectors in W and each can be
expressed as a linear combination of the basis vectors in C.

In particular,
T(vi) =anwi +anwa + -+ auwpy
for some choice of the scalars a;1, ds1, ..., A1,
T(v2) = ainWi + anwa + - + dpa Wi,
for some choice of the scalars a5, a,,, ..., a,,1, and, in general,
T(Vj) = ayjwi + zjWa + -+ + dyjWi (3.9)

for some choice of the scalars ayj,ayj ... anj(j=1,2,...,m). The coordinate
representations of these vectors are

a1 an

a1 azn
T(Vl) A ’ T(VZ) — ’ ’

am1 C Am2 C

a1 ain

A2j Aon
T(VJ) - ’ ’ T(Vn) A

Amj | ¢ dnm | ¢

If we use these n-tuples as the columns of a matrix A, then, as we shall show
shortly, A is the matrix representation of the linear transformation T. Because this
matrix is basis dependent, in fact dependent on both the basis B in V and the
basis C in W, we write A§ to emphasize these dependencies. The notation A§
denotes the matrix representation of T with respect to the B basis in V and
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the C basis in W. Often, the subscript B or the superscript C is deleted when
either is the standard basis in R" and R", respectively.

Example 4 Find the matrix representation with respect to the standard basis in
R? and the standard basis C = {t?,t,1}in P? for the linear transformation
T: R? — P? defined by

T{Z] = 2at*> + (a +b)t + 3b

Solution:
Té =2+ (1)t +(0)1 |1
L J _0_(C
and
o] 0]
T| | =0+ (1)t+(3)1« |1
L~ J _3_(C
SO
2 0]°¢
AC=1]1 1
0 3

We suppressed the subscript notation for the basis in the domain because it is the
standard basis in R?.

Example 5 Redo Example 4 with the basis for the domain changed to
B={11"[1-1]"}.

Solution:
) 2
T{l]:(2)t2+(2)t+(3)1<—> 2
3 C
and
, 2
T[_l]:(z)t2+(0)t+(—3)1<—> 0
_3 c
hence,
2 21°¢
Aj=12 o0
3 -3,

Example 6 Find the matrix representation with respect to the standard basis in R?
and the basis D* = {t? +¢,t+1,t— 1} in P for the linear transformation
T: R? — P? defined by



T[ﬂ = (4a+b)t* + (3a)t + (2a — b)

Solution: Using the results of Example 1, we have

4

1
T[0]4t2+3t+2<—> 1/2
—-3/21y

Similar reasoning yields

) 1
T[l] =2 —1=1)E+0)+(-D+1)+(0)(t—-1) < {—1]
D

0

4 17"

AP =1 1/2 -1
-3/2 0

Thus,

Example 7 Find the matrix representation for the linear transformation
T: szz — szz defined by

ik b| | a+2b+3c 2b—3c+4d
c d| |3a—4b-5d 0

with respect to the standard basis
B 1 0 0 1 0 0 0 0
o oo of |1 o]0 1
Solution:

Tlo o) =15 o] =0[o

2
wof? -2



Therefore,

w oo
—
_|_
1
w
N
| — |
c o
[
—_
_|_
—
o
N~—
| — |
)
o o
| I

O]B
1 2 3 o071°
0 2 -3 4
Af =
3 -4 0 -5
0 0 0 0]y
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To prove that AS, as we defined it, is a matrix representation for a linear

transformation 7T, we begin with a vector v in the domain V.
B= {V],Vz,..

€1, Ca, ..., €y such that

n
V=CVy+CVy+---+C vy = E Gjvj
=1

The coordinate representation of v with respect to the B basis is

Setting w="T(v), it follows from (3.8) and (3.9) that

w=T(v)=T (ich])
j=1

If
.,Vn} is a basis for V, then there exists a unique set of scalars



n
= E ¢j(ajW1 + agwo + - -+ + QWi )
j=1

n n
=Y ( Sam
=1 j=1

i=1 \j=1
We now have w in terms of the basis vectors in C = {w;,wy,...,wy}. Since
the summation in the last parentheses is the coefficient of each basis

vector, we see that the coordinate representation for w with respect to the C
basis is

. ]
> _aijg
=1

n

> g
=1

n
E :amjc]-
j=1 i

L c
This vector is the matrix product

apnr dip o dip 1

dzy dpp - dp C

a a o a Cﬂ

ml m2 mn
Thus,
T(v) =w < Agve (3.10)

We can calculate T(v) in two ways: first, the direct approach using the left side
of (3.10), by evaluating directly how T affects v; or second, the indirect
approach using the right side of (3.10), by multiplying the matrix representa-
tion of T by the coordinate representation of v to obtain Afvg, the m-tuple
representation of w, from which w itself is easily calculated. These two
processes are shown schematically in Figure 3.11, the direct approach by the-
single solid arrow and the indirect approach by the path of three dashed
arrows.
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Example 8 Calculate T B] using both the direct and indirect approaches illus-

trated in Figure 3.11 for the linear transformation T: R* — P? defined by T [Z}

=2 at? (a + b)t + 3b. With the indirect approach, use B = {[1 1,1 - I]T} as
the basis for R? and C = {t?,t,1} as the basis for P2.

Solution: Using the direct approach, we have
TB] =2+ (1+3)t+3(3) =202 +4t+9

Using the indirect approach, we first determine the coordinate representation for
[1 3]" with the respect to the B basis. It is

] -o[3]+ ] =[], -

Then, using the results of Example 5, we have

2 21° 2
Afvp= {2 0 [_ﬂ =14 o20+4t=9
3 -3 B9

which is the same result obtained by the direct approach.

Example 9 Calculate T [ _g } using both the direct and indirect approaches illus-

trated in Figure 3.11 for the linear transformation and bases described in
Example 6.

> N

o)

B

FIGURE 3.11


Figure 3.11

Solution: Using the direct approach, we have

T[—ﬂ =[4(2) + (=3)]* +3(2)t + [2(2) — (-3)] = 5> + 6t +7

Using the indirect approach, we note that

)=o) o] = 5],

Then, using the results of Example 6, we have

4 175, 5
Afvg| 1/2 -1 {_3] =| 4
—3/2 0], B -3,

o541 +4(t+1)+ (=3)(t—1) =52 +6t+7

which is the same result obtained by the direct approach.

The direct approach illustrated in Figure 3.11 is clearly quicker. The indirect
approach, however, is almost entirely in terms of matrices and matrix
operations, which are conceptually easier to understand and more tangible.
Theorem 1 of Section 2.2 states that every matrix represents a linear trans-
formation. We just showed that every linear transformation can be repre-
sented by a matrix. Thus, matrices and linear transformations are
equivalent concepts dressed somewhat differently. We can analyze one by
studying the other.

The subscript-superscript notation we introduced on matrices and coordi-
nate representations is actually helpful in tracking a linear transformation
T:V — W, where V and W are vector spaces of dimensions n and m, respec-
tively. Suppose w=T(v). We let vg denote the coordinate representation
of v with respect to a B basis and w¢ denote the coordinate representation
of w with respect to a C basis. The indirect approach yields the matrix
equation

Wc = A%V]Bg

The matrix A maps an n-tuple with respect to the B basis into an m-tuple with
respect to the C basis. The subscript on A must match the subscript on v. The
superscript on A matches the subscript on w. Figure 3.12 demonstrates the direc-
tional flow with arrows.

we = AEVB

FIGURE 3.12


Figure 3.12
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Problems 3.3

In Problems 1 through 25, find the matrix representation for T : V — W with
respect to the given bases, B for a vector space V and C for a vector space W.

a+b
(1)T:R2—>R3deﬁnedbmi =|a-b ,Bz{[l],[l}},and

T

(2) Problem 1 with B = [1}, [

(4) Problem 1 with B

(3) Problem 1 with C = {

|
S e AN
w10
oL ])
s ([}
ammnzans={ 1| o] [ 7|} e[ (1)

a
(9) Problem 5 With T{b] _ { a+2b—3c ]
c

9a — 8b—7¢c
R2 _, R2 al | 25a+30b
(10) T: R R deﬁnedbyT[b] = {—4551—&—5011}

B = C = standard basis in R?.

(11) Problem 10 with B = { [ 18} , {g} } and C again the standard basis.



(12) Problem 10 with C = { [ 10} , {0} } and B again the standard basis.

10|"|5
. 10 0
(13) Problem 10 with B =C = {{10], {5]}

(14) Problem 10 with B = { [_i] H} and €= { H m}

. a 2a
(15) Problem 10 with T[b} = Lb —a]'

(16) The transformation in Problem 15 with the bases of Problem 14.

(17) T : P* — P3 defined by T(at’ +bt+c)=t(at’ +bt+c), B = {t>,t,1}, and
C={,?t1}.

(18) Problem 17 with B = {t> + ¢, t> + 1, t + 1} with C = {¢%, > + 1, 1> — 1, t}.
(19) T : P> — P? defined by T(at® + bt? + ct + d) = 3at®> + 2bt +¢,
B={rt?+1,¢—1LtjandC={* +t, >+ 1,t+1}

2a+b ]

P2, R2 2 _
(20) T : P* — R* defined by T(at* + bt + ¢) [3a—4b+c

B={t}?—1,t}and C = {{”7 {_”}

2a+3b
(21) T : P* — R? defined by T(at’> +bt+c)= | 4a—5c|, B={t>, > —1,t}

AT

(22) T: P2 — M,y, defined by T(at2+bt+c):[2a+b c—3a}

4a — 5¢ 6b+7c
g2 . 1 0 1 1 0 0 0 0

. 1 o] [1 171 1] [1 1
(23)Pr0blem22w1th@={[0 0],[0 0]7[0 1}’{1 1}}

(24) T: My, — P*defined by T ‘; Z

(a—4d),

_ 10 11 00 [0 0 s -
IB%{{() 0]’[0 0}[1 1],_1 _1]}, and C= {3, - 1,t—1,1}.

}— (a+b)3+(a—2b)t*+(2a—3b+4c)t+
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. o2 a b|_ |a+b+3c
(25) T: My — R deﬁnedbyT[C d]_ bic_5d|

s={[o o} [s o} [3 S][0 Spemac={[i)-[i]}

In Problems 26 through 37, find the indicated mapping directly and by the
indirect approach illustrated in Figure 3.11.

(26) T ;] with the information provided in Problem 1.
(27) T _i] with the information provided in Problem 1.

(28) T

_35;] with the information provided in Problem 2.

(29) T with the information provided in Problem 5.

(30) T | 2 | with the information provided in Problem 5.

2
(31) T —l] with the information provided in Problem 5.
—1

(32) T _;] with the information provided in Problem 10.

(33) T(3t> — 2t) with the information provided in Problem 19.
(34) T(3t> — 2t +5) with the information provided in Problem 19.
(35) T(* — 2t — 1) with the information provided in Problem 20.
(36) T(* — 2t — 1) with the information provided in Problem 21.

(37) T(4) with the information provided in Problem 21.

1 27"
(38) A matrix representation for T :P' — P! is [3 4} with respect to
B
B={t+1,t—1}. Find T(at+b) for scalars a and b.

C
1 2
(39) A matrix representation for with respect to T : P! — P! is [3 4] with

respect to C={t+1, t+2}. Find T(at+b) for scalars a and b.



In general, a vector has
many coordinate
representations, a
different one for

each basis.

1 2 371°
(40) A matrix representation for T: P> — P?is |1 1 2| with respect to
2 0 1],
B = {t?,t> +t,t> + t + 1}. Find T(at* +bt+c) for scalars a, b, and c.
110 27°
. . . 01 1 0 .
(41) A matrix representation for T : Mj,, — My, is L0 2 1 with
11 1 1],
. 1 0 1 1 1 1 1 1 .
respect to the basis ]B%{[O O}’[O 0},{1 O}L 1]} Find

T[j Z} for scalars a, b, ¢, and d.

3.4 CHANGE OF BASIS

Coordinate representations for vectors in an n-dimensional vector space are basis
dependent, and different bases generally result in different n-tuple representa-
tions for the same vector. In particular, we saw from Example 10 of Section 2.4
that the 2-tuple representation for v=|[7 2]" is

7
Vs = 3.11
s=13). (311)
with respect to the standard basis= {[1 0]", [0 1]"} for R?, but
9/2
vp = / (3.12)
5/2]p
with respect to the basis D = {[11]",,[1 — 1]" }. It is natural to ask, therefore,
whether different coordinate representations fot same vector are related.
Let C = {uy,uy,...,u,} and D = {vy,v,,...,v,} be two bases for a vector
space V. If ve 'V, the v can be expressed as a unique linear combination
of the basis vectors in C; that is, there exists a unique set of scalars ¢y, ¢, ..., ¢,
such that
n
V=ocu; +cuy+ -+ cu, = chuj (3.13)
=1

Similarly, if we consider the D basis instead, there exists a unique set of scalars
dy, d,, ..., d, such that

n
V=divi+dvy+ ot dyvy = Y divi (3.14)
i=1
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The coordinate representations of v with respect to C and D, respectively, are

C1 dl

(%] d2
ve=| . and vp =

C‘rl C d‘rl D

Now since each basis vector in C is also a vector in V, it too can be expressed as a
unique linear combination of the basis vectors in D. In particular,

u; = p11vy + p21va + -+ PV
for some choice of the scalars p11, P21, - - - Pn1s

Uy = P12V1 + p22Vo + -+ + Pu2Va

for some choice of the scalars p5, pso, - .., Pn2; and, in general,
n
Uj = P1jVy + PojVa + -+ PnjVn = Zpiivi (3.15)
i=1
for some choice of the scalars pyj, p2j, ..., pnjs (=1, 2, ..., n). The n-tuple repre-

sentations of these vectors with respect to the D basis are

P11 P12 Pij Pin
P21 P22 P2 Pan

u; <« . R § O B . ...,11]'<—> . P | P .
Pmlp Pn2lp pnj D Pumlp

If we use these n-tuples as the columns of a matrix P, then

P11 P2 - Py o Pin

P21 P22 o P2 o Pon
P2 =

Pn1 P2 - pnj o Pan

where the subscript-superscript notation on P indicates that we are mapping
from the C basis to the ) basis. The matrix P2 is called the transition matrix from
the C basis to the D basis. It follows from (3.13) and (3.15) that

V= Z cu; = Z G (Z pijvi> = Z (Z Pijci> Vi
=1 j=1 j=1 1 \j=1

i=

But we also have from (3.14) that

n
VvV = E diVj
i=1



and because this representation is unique (see Theorem 5 of Section 2.4), we may
infer that

di = Zpijcj
=1

Therefore,

Y P
=1

da Z Payci
=1

. .
> pu
=1 J

which can be written as the matrix product

d; pin P2 - Py o P ||
d, par P22 - P2 o P || 2
dn D pnl Pn2 e pnj T pnn Cn C
or
vp = Plve (3.16)
We have proven:
» THEOREM 1

If ve and vy are the n-tuple (coordinate) representations of a vector v with respect to
the bases C and D, respectively, and if P; is the n-tuple representation of the jth basis
vector in C (j=1, 2, ..., n) with respect to the D basis, then vp = PEVC where the jth
column of P2 is P;.

\ J

Example 1 Find the transition matrix between the bases C = {[1 0',,[0 1]T}

and for P! and D = {[l 1,1 - I]T} in R?, and verify Theorem 1 for the coor-

dinate representations of v=[7 2|" with respect to each basis.

o] =2[a] -2 (4] - [,

Solution: We have
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and

HE It IRIR Rl

and the transition matrix from C to D as

p=[l2 12

The coordinate representation of [7 2]" with respect to the C and D bases were
found in Example 10 of Section 2.4 to be, respectively,

ve = B] and vp = B?ﬂ

Here

e[t (2] 2]

Although Theorem 1 involves the transition matrix from C to ), it is equally valid
in the reverse direction for the transition matrix from I to C. If P§ represents this
matrix, then

ve = PSvp (3.17)
Example 2 Verify (3.17) for the bases and vector v described in Example 1.

Solution: As in Example 1, C={[1 0]%, [0 1]'} and D = {[1 1,1 - l]T}.

Now, however,
1 1 0 1
o =1lo] 1) = [,

R R

and the transition matrix from D to C is

and

Here




Note that the subscript-superscript notation is helpful in tracking which transi-
tion matrix can multiply which coordinate representation. The subscript on the
matrix must match the subscript on the vector being multiplied! The superscript
on the transition matrix must match the subscript on the vector that results from
the multiplication. Equation (3.16) is

¥ oD
vp=Pcve

while equation (3.17) is

V= PCy,
A
The arrows show the matches that must occur if the multiplication is to be mean-
ingful and if the equality is to be valid.

An observant reader will note that the transition matrix P§ found in Example 2 is
the inverse of the transition matrix P2 found in Example 1. This is not a
coincidence.

» THEOREM 2
The transition matrix from C to D, where both C and ID are bases for the same finite dimen-
sional vector space, is invertible and its inverse is the transition matrix from D to C. <

\ J

Proof: Let P2 denote the transition matrix from basis C to basis D and let P
be the transition matrix from D to C. If the underlying vector space is
n-dimensional, then both of these transition matrices have order n x n, and their
product is well defined. Denote this product as A=[a;]. Then

ajp di2 - Ain

Doc a1 dzy - dap
PcPp=A=| (3.18)

an1 an2 crr Apn

We claim that A is the n x n identity matrix.

We have from Theorem 1 that vy = P2P§. Substituting into the right side of this
equation the expression for v given by (3.17), we obtain

vp = (P2P§)vp = Avp (3.19)

Equation (3.18) is valid for any n-tuple representation with respect to the ID basis.
For the special case, vp = [1 00...0]", equation (3.19) reduces to
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1 ain app - dip 1
0 d1 dp2 -+ dop 0
0 0
o =|%1 42 - dsn 0
_0_ L dn1 Aan2 s Apn _O_
or

1 an

0 a1

0| = [asn

0 an1

which defines the first column of the product matrix in (3.18). For the special
case, vp = [010...0]", equation (3.19) reduces to

0 aip di2 -0 dip 0
1 dz1 dza - Ao 1
0 = | 431 d32 -+ Qd3p 0
0 an1  Aan2 - A4pp 0
or

0 a2

1 az

0] = a3

0 an2

which defines the second column of A. Successively, substituting for v, the var-
ious vectors in the standard basis, we find that

DpC _
P2PE = 1
from which we conclude that P2 and P§ are inverses of one another.

Example 3 Find transition matrices between the two bases G = {t +1,t — 1}
and H = {2t + 1, 3t + 1} for P! and verify the results for the coordinate represen-
tations of the polynomial 3¢+ 5 with respect to each basis.

Solution: Setting v=3t+ 5, we may express v as a linear combination of vectors in
either basis. We have

3t+5=[4]t+1)+[-1)(t - 1)
and

3t+5=[12](2t+ 1)+ [-7](3t + 1)



so the coordinate representations of v with respect to these bases are

v { 4} and v 12
S . =7
G H

Now writing each vector in the H basis as a linear combination of the vectors in
the G basis, we obtain

21 =15+ 1) +[0.5](t— 1) = Bg]
: G
and

341 =[+1)+[]t—1) m
G

Consequently, the transition matrix from the H basis to the G basis is
1.5 2
G _
P = {0.5 1}
while the transition matrix from the G basis to the H basis is
G __ G -1 o 2 —4
PH - (PH) - {_1 3}

Then

c. |15 2][12] [ 4] _
PIHIVIHI_[0.5 1 |-7) " |-~

2 —4]1[ 4 12

and

If we graph the standard basis in R? in the x-y plane, we have the directed line
segments e; and e, shown in Figure 3.13. Another basis for R? is obtained

y
y
, fon o>
(—sin 6, cos 0) ol € \005

u 0| Uy

2
0y o
e " (1,0 X

FIGURE 3.13


Figure 3.13
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by rotating these two vectors counterclockwise about the origin by an angle 6,
resulting in the directed line segments u; and u, graphed in Figure 3.13. The
magnitudes of all four directed line segments are one. It then follows from ele-
mentary trigonometry that the arrowhead for u, falls on the point (cos 6, sin )
while that for u, falls on the point (—sin 6, cos 6). Setting S = {e;,e,} and
R = {uy,e,}, we have

cos 0 1 . 0 cos 0
[sin@} o COSO{O] +31n0[1] - {sin@]s
and
—sin 0 . 1 0 —sin 0
{ cos@] - —s1n0{0] +c050{1] - { cos@}S
The transition matrix from the R basis to the S basis is

pS — cos —sin 0
B7 lsin®  cos0

Hence, the transition matrix from the S basis to the R basis is

R _ (psy-1 _ | cosO sin0
Ps = (Py) _{—sinO cos()}

X x
VS[ ] and V]Rli,:|
Vlis Y IR

denote, respectively, the coordinate representation of the vector v with respect to
the standard basis S and the coordinate representation of v with respect to the
R basis, then

X — vo — PRye — cos sin0||x| | xcosO+ysin0
v TR T TS T | —sin0 cosO]|y| | —xsin0+ycos0

Equating components, we have the well-known transformations for a rotation of
the coordinate axis in the x-y plane by an angle of 6 in the counterclockwise
direction:

Consequently, if

!

xcos O + ysin 0

y = —xsin0 + ycos 0 .
In general, a linear

. . . . . transformation has many
We showed in Section 3.3 that a linear transformation from one finite- matrix representations, a

dimensional vector space to another can be represented by a matrix. Such a different matrix for each
matrix, however, is basis dependent; as the basis for either the domain or range Pair of bases in the
is changed, the matrix changes accordingly. domain and range.

Example 4 Find matrix representations for the linear transformation
T : R? — R? defined by



7] = 11a+3b

b] |—5a—5b
(a) with respect to the standard basis C={[1 0]", [0 1]'}, (b) with respect to
the basis D= {[1 15,1 - I]T}, and (c) with respect to the basis

E= {[3 ]t - S}T}.

Solution: (a) Using the standard basis, we have
1 11 1 0 11
o] = [s]=nfo] L3 - [ 5],
0 3 1 0 3
i) = 1) =olo] i) - ]

and

and
D
2 4] AP

Te [12 4

D

(c) Using the E basis, we obtain

=[] =l ] el ] -6,
tls) =[] el - [,

E
10 0| &
T<—>[ 0 _4]E—AE

and

It is natural to ask whether different matrices representing the same linear trans-
formation are related. We limit ourselves to linear transformations from a vector
space into itself, that is, linear transformations of the form T : V — V, because
these are the transformations that will interest us the most. When the domain
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and range are identical, both have the same dimension, and any matrix represen-
tation of T must be square. The more general case of transformations that map
from one vector space V into a different vector space W is addressed in
Problem 40.

Let T: V — V be a linear transformation on an n-dimensional vector space V
with w=T(v). If C is a basis for a vector space V, then the n-tuple representation
for w with respect to C, denoted by wg, can be obtained indirectly (see
Section 3.3), by first determining the n-tuple representation for v with respect
to C, denoted by v, then determining the matrix representation for T with
respect to the C basis, denoted by AS, and finally calculating the product

ASvc. That is,

we = Ave (3.20)
If we use a different basis, denoted by D, then we also have

wp = AgVD (3.21)

Since v and vy are n-tuple representations for the same vector v, but with respect
to different bases, it follows from Theorem 1 that there exists a transition matrix
P% for which

vp = P2ve (3.22)
Because (3.22) is true for any vector in V, it is also true for w, hence
wp = P2we (3.23)
Now, (3.21) and (3.22) imply that
wp = ADvp = ADPRve (3.24)
while (3.23) and (3.20) imply that
wp = P2ve = P2PEve (3.25)
It follows from (3.24) and (3.25) that
PEA%VC = ABPEVC

This equality is valid for all n-tuples v with respect to the C basis. If we succes-
sively take v to be the vector having 1 as its first component with all other com-
ponents equal to zero, then the vector having 1 in its second component with all
other components equal to zero, and so on through the entire standard basis, we
conclude that

P2AS = AZP2

We know from Theorem 2 that the transition matrix is invertible, so we may
rewrite this last equation as



AS = (P2)'ADPR (3.26)

Conversely, the same reasoning shows that if (3.26) is valid, then A% and Ag
are matrix representations for the same linear transformations with respect to
the C basis and D basis, respectively, where these two bases are related by the
transition matrix P2. If we simplify our notation by omitting the subscripts
and superscripts and using different letters to distinguish different matrices,
we have proven:

» THEOREM 3

Two n x n matrices A and B represent the same linear transformation if and only if there
exists an invertible matrix P such that

A =P 'BP (3.27)d

Although equation (3.27) is notationally simpler, equation (3.26) is more
revealing because it explicitly exhibits the dependencies on the different bases.

Example 5 Verify equation (3.26) for the matrix representations obtained in
parts (a) and (b) of Example 4.

Solution: From Example 4,

s_[11 3] ,s_[2 4
AS[—S 5| A= 12 4

and from Example 1,

~
»E
I
Nl—= N~

Therefore,
B\~ 1.B B 1 1 2 4
(P) ABPS_[l —1”12 4

|11 31  .s
13-

Example 6 Verify equation (3.26) for the matrix representations obtained in
parts (a) and (c) of Example 4.

NI~ N~
Nl —= N -

Solution: Here the bases are S = {[1 0", [0 1]T} and E = {[3 151 - S]T}, o)

equation (3.26) takes the notational form
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A3 = (P) 'AZPE
From Example 4,

A%—[BJ_ _35], and A%—[lg _2}

Writing each vector in the S basis as a linear combination of vectors in the E
basis, we find that

o] = v ] el 5]~ [Taal,

) el ] s ) = il

whereupon
PE — 5/14 1/14
ST |-1/14 -3/14
Matrices A and B are
similar if they represent
Therefore, the same linear
/ / transformation, in which
_ 3 1 10 0 5/14 1/14 case there exists a
1
PE) 'AEPE — fransiti irix P such
( S) ELS 1 _s 0 —4a _1/14 _3/14 tﬁ;r;s:inpmflr;; suc
11 3
= = Ag
-5 -5

We say that two matrices are similar if they represent the same linear transforma-
tion. It follows from equation (3.27) that similar matrices satisfy the matrix
equation

A=P'BP (3.27 repeated)

If we premultiply equation (3.27) by P, it follows that A is similar to B if and only
if there exists a nonsingular matrix P such that

PA = BP (3.28)

Of all the similar matrices that can represent a particular linear transforma-
tion, some will be simpler in structure than others and one may be the simplest
of all. In Example 4, we identified three different matrix representations for the
same linear transformation. We now know all three of these matrices are sim-
ilar. One, in particular, is a diagonal matrix, which is in many respects the sim-
plest possible structure for a matrix. Could we have known this in advance?
Could we have known in advance what basis would result in the simplest
matrix representation? The answer is yes in both cases, and we will spend



much of Chapters 4 and 6 developing methods for producing the appropriate
bases and their related matrices.

Problems 3.4

In Problems 1 through 13, find the transition matrix from the first listed basis to
the second.

(1) B = {[1 o', 1 1]T},<C - {[0 1" 1]T}.
(2) B= {[1 o', 1 1]T}, D= {[1 1,0 2]T}.
(3)C= {[0 1", 1]T},JD> - {[1 1", [0 2]T}.

(4) Same as Problem 3 but with D listed first.

(5)E = {[1 2" 3]T}, F = {[71 1", [0 1]T}.

(6) Same as Problem 5 but with F listed first.

(9)S = {[1 00", j010]",[00 1]T}, U= {[1 00", 110,11 1}T}.

(7) G = {[1020]",[10 — 20"}, F = {~11"],[0 1] }

®s={[oo" 01000 1]T},1r: {[1 10" 011]",[10 1]T}.

(10) Same as Problem 9 but with U listed first.

(11) U = {[1 00", (110", [11 1]T}, T = {[1 10", [011]",[10 1]T}.
(12) V = {[1 10/ j011]",[13 1]T}, T = {[1 10", 011]".[10 1]T}.

(13) V = {[1 10/ j011]",[13 l]T},[U - {[1 01]",,110/",11 1]T}.

In Problems 14 through 25, a linear transformation is defined and two bases are
specified. Find (a) the matrix representation for T: V — V with respect to the first
listed bases, (b) the matrix representation for the linear transformation with
respect to the second listed basis, and (c) verify equation (3.26) using the results
of parts (a) and (b) with a suitable transition matrix.

(14) T _Z_ = _Lzla_—;ﬂ; B and C as given in Problem 1.
(15) T _Z_ = _za_—;ﬂ; E and F as given in Problem 5.
(16) T Z = 86aa—_3bb} B and D as given in Problem 2.
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(a]l [ 2a L
anrT b = 30— b]’ B and C as given in Problem 1.
fa] [11a—4b L
(18) T b = 24— 9b]’ E and F as given in Problem 5.
(a] [1la—4b] L
(19) T b = 240 - %], B and D as given in Problem 2.
(20) T Z = g]; E and F as given in Problem 5.
(21) T Z = 8], C and D as given in Problem 3.
[a] [3a—-b+c ]|
(22) T|b| = | 2a— 2 ; Sand T as given in Problem 8.
| ¢ | | 3a—3b+c |
[a] [3a—b+c
(23)T|b| = |2a—2c ; S and U as given in Problem 9.
| c | | 3a —3b+c |
[a] [a—b
(24) T|b | = 2b |; S and T as given in Problem 8.
| €] | a— 3¢
[a] [ a
(25) T|b| = 2b |; S and U as given in Problem 9.
c —3c

(26) Show directly that A = [2 0] and B = [(2) ;] are not similar.

Hint: Set P = [Z Z} and show that no elements of this matrix exist that
make equation (3.27) valid.
(27) Show directly that there does exist an invertible matrix P this satisfies

) 4 3 5 —4
«3quat10n(3.27)forA_[_2 _1] and B—{3 _2}

(28) Prove that if A is similar to B then B is similar to A.

(29) Prove that if A is similar to B and B is similar to C, then A is similar to C.
(30) Prove that if A is similar to B, then A? is similar to B2

(31) Prove that if A is similar to B, then A3 is similar to B>.

(32) Prove that if A is similar to B, then A" is similar to B'.

(33) Prove that every square matrix is similar to itself.



(34) Prove that if A is similar to B, then kA is similar to kB for any constant k.

(35) Prove that if A is similar to B and if A is invertible, then B is also invertible
and A" is similar to B~ .

(36) Show that there are many P matrices that make equation (3.26) valid for
the two matrix representations obtained in Problem 20.

(37) Show that there are many P matrices that make equation (3.26) valid for
the two matrix representations obtained in Problem 21.

(38) Let C={vy, V5, ..., v} and let D = {vy, v3, ..., v, v1} be a re-ordering
of the C basis by listing v; last instead of first. Find the transition matrix
from the C basis to the D basis.

(39) Let S be the standard basis for R" written as column vectors. Show that if
B = {vy,vy,...,V,} is any other basis of column vectors for R", then the
columns of the transition matrix from B to S are the vectors in B.

(40) Let C and E be two bases for a vector space V, D, and F be two bases for a
vector space W, and T:V — W be a linear transformation. Verify the
following:

(i) For any vector v in V there exists a transition matrix P such that
Ve = P%VE.
(ii) For any vector w in W there exists a transition matrix Q such that
wp = Qpvy.
(iii) If A is a matrix representation of T with respect to the C and D bases,
then wp = Alve.

(iv) If A is a matrix representation of T with respect to the E and F bases,
then wy = Afvg.

(v) wp = AZPSvE.

(vi) wp = QPASVE.

(vii) AZPE =QPAE.

(viii) AL =(QB) 'AZPS.

3.5 PROPERTIES OF LINEAR TRANSFORMATIONS

Because a linear transformation from one finite-dimensional vector space to
another can be represented by a matrix, we can use our understanding of matri-
ces to gain a broader understanding of linear transformations. Alternatively,
because matrices are linear transformations, we can transport properties of linear
transformations to properties of matrices. Sometimes it will be easier to discover
properties dealing with matrices, because the structure of a matrix is so concrete.
Other times, it will be easier to work directly with linear transformations in the
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abstract, because their structures are so simple. In either case, knowledge about
one, either linear transformations or matrices, provides an understanding about
the other.

» THEOREM 1

IfT: V — W is a linear transformation, then T(0)=0. <«

Proof: We have from Theorem 1 of Section 2.1 that 00=0. In addition, T(0) is a
vector in W, so 0T(0) =0. Combining these results with the properties of linear
transformations, we conclude that

T(0) = T(00) = 0T(0) = 0

Note how simple Theorem 1 was to prove using the properties of vector spaces
and linear transformations. To understand Theorem 1 in the context of matrices,
we first note that regardless of the basis B = {u1 ,Up, ..., up} selected for a vector
space, the zero vector has the form

(0) = Ou; + Oup + - -~ 4 Ou,

The zero vector is unique (Theorem 4 of Section 2.1) and can be written only one
way as a linear combination of basis vectors (Theorem 5 of Section 2.4), hence
the coordinate representation of the zero vector is a zero column matrix. Thus, in
terms of matrices, Theorem 1 simply states that the product of a matrix with a
zero column matrix is again a zero column matrix. Theorem 1 is obvious in
the context of matrices, but only after we set it up. In contrast, the theorem
was not so obvious in the context of linear transformations, but much simpler
to prove. In a nutshell, that is the advantage (and disadvantage) of each
approach.

Theorem 1 states that a linear transformation always maps the zero vector in the
domain into the zero vector in W. This may not, however, be the only vector
mapped into the zero vector; there may be many more. The projection L: R* —
R? defined in Example 7 of Section 3.2 as

Lja b) = [a 0]

generates the mappings L[0 1]=[0 0]=0, L[0 2]=[0 0]=0, and, in general,

L[0 k] =0 for any real number k. This projection maps infinitely many different

vectors in the domain into the zero vector. In contrast, the identity mapping

I(v)=v maps only the zero vector into the zero vector. We define the kernel The kernel of a linear
(or null space) of a linear transformation T:V — W, denoted by ker(T), as the i, qrormation Tis

set of all vectors v € V that are mapped by T into the zero vector in W; that is, the set of all vectors v in
all v for which T(v) =0. It follows from Theorem 1 that ker(T) always contains the domain for which
the zero vector from the domain, so the kernel is never an empty set. We can say 1(V)=0.

even more.



The set of vectors that
satisfy the homogeneous
matrix equation Ax=0is
a subspace called the
kernel of A.

The image of a linear
transformation T is the
set of all vectors w in the
range for which there is a
vector v in the domain
satisfying T(v) =w.

» THEOREM 2

The kernel of a linear transformation is a subspace of the domain.

Proof: Let u and v be any two vectors in the kernel of a linear transformation T,
where T(u) =0 and T(v) =0. Then for any two scalars « and f3, it follows from the
properties of a linear transformation that

T(ou+ pv) =oT(u) + fT(v) =0+ 0=0+0=0
Thus, au+pv is also in the kernel and the kernel is a subspace.

In terms of a specific matrix A, the kernel is the set of column vectors x that satisfy
the matrix equation Ax=0. That is, ker(A) is the set of all solutions to the system
of homogeneous equations Ax=0. Theorem 2 implies that this set is a subspace.

Example 1 Determine the kernel of the matrix A = [; _i ﬂ .

Solution: The kernel of A is the set of all three-dimensional column matrices
x=[xy z]" that satisfy the matrix equation

or, equivalently, the system of linear equations

x+y+5z=0
2x—y+z=0

The solution to this system is found by Gaussian elimination to be x=—2z,
y=— 3z, with z arbitrary. Thus, x€ker(A) if and only if

X -2
x=|y|3=2z|-3
z 1

where z is an arbitrary real number. The kernel of A is a one-dimensional
subspace of the domain R?; a basis for ker(K) consists of the single vector
[-2 -3 1]"

The image of a transformation T:V — W is the set of vectors in W that
are matched with at least one vector in V; that is, w is in the image of
T if and only if there exists at least one vector v in the domain for which
T(v)=w. We shall denote the image of T by Im(T). If T is linear, it follows
from Theorem 1 that Im(T) always contains the zero vector in W, because the
zero vector in V is mapped into the zero vector in W. We can say even more.
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» THEOREM 3

The image of a linear transformation T:V — W is a sub space of W.<d

Proof: Letw; and w, be any two vectors in the image of a linear transformation T.
Then there must exist vectors v; and v, in the domain having the property that
T(v,) =w; and T(v,) =w,. For any two scalars o and f, it follows from the prop-
erties of a linear transformation that

(awy + pwy) = oT(vy) + pT(vy) = T(avy + avy)

Because V is a vector space, av, +fv, is in the domain, and because this linear
combination maps into aw; +fiw,, it follows that aw; +fw, is in the image of
T. Consequently, Im(T) is a subspace.

In terms of a specific matrix A, the image is the set of column matrices y that sat-
isfy the matrix equation Ax=y. That is, Im(A) is the set of products Ax for any
vector x in the domain. Theorem 3 implies that this set is a subspace. Denote
the columns of A by Aj, A,, ..., A, respectively, and a column matrix x as x=
[x1 %5 ... x,,]T. Then
Ax:x1A1 +XQA2 -+ .- +XnAn

That is, the image of A is the span of the columns of A, which is the column space  1he image of a matrix is
of A. its column space.

. . . 1 1 5
Example 2 Determine the image of the matrix A = > 1 1l

Solution: The column space of A is identical to the row space of A". Using elemen-
tary row operations to transform AT to row-reduced form, we obtain

1 2
0 1
0 O

This matrix has two nonzero rows; hence, its rank is 2. Thus the rank of A", as well
as the rank of A, is 2. A is a 2 x 3 matrix mapping R> into R?. The range R? has
dimension 2, and since the image also has dimension 2, the image must be the
entire range. Thus, Im(A) = R

Example 3 Identify the kernel and the image of the linear transformation
T: P?> — M, defined by

T(at® + bt + c) [a 2b]

0
for all real numbers a, b, and c.

Solution: This transformation maps polynomials in t of degree 2 or less into 2 x 2
matrices. In particular,



T(3t° +4t+5) B 2}

and
T(—t* +5t+2) =T(-*+5:—8) = [_(1) 1?]

A polynomial in the domain is mapped into the zero matrix if and only if
a=b=0, so the kernel is the set of all polynomials of the form 0>+ 0t+c; that
is, the subspace of all zero-degree polynomials. A basis for ker(T) is {1}. Thus, the
kernel is a one-dimensional subspace of P2.

M, > is a four-dimensional vector space. The image of T is the subspace contain-
ing all matrices of the form

o W] =edo 2l

which is spanned by the two matrices

o 3] e [0 3]

Itis a simple matter to prove that these two matrices are linearly independent, so they
form a basis for the image of T. Thus, Im(T) is a two-dimensional subspace of M.

It is important to recognize that the kernel and image of a linear transformation
T:V — W are conceptually different subspaces: the kernel is a subspace of the
domain V while the image is a subspace of the range W. Figure 3.14 is a sche-
matic rendition of these concepts. The vector space V is depicted by the palette
on the left, the vector space W by the palette on the right, and because these vec-
tor spaces can be different, the palettes are drawn differently. Each point in the
interior of a palette denotes a vector in its respective vector space.

Needless to say, both palettes are just symbolic representations of vector spaces
and not true geometrical renditions of either the domain or range.

The palettes in Figure 3.14 are partitioned into two sections, one shaded and one
not. The shaded portion of the left palette represents ker(T), and, as such, every
point in it must be mapped into the zero vector in W. This is shown symbolically
by the vector v;. Vectors in the unshaded portion of the left palette, illustrated by

FIGURE 3.14


Figure 3.14
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the vectors v,, v3, and vy, are mapped into other vectors in W. The zero vector in
V is mapped into the zero vector in W as a consequence of Theorem 1.

The shaded portion of the right palette represents the image of T. Any vector w in
this region has associated with it a vector v in the left palette for which w=T(v).
The unshaded portion of the right palette is not in the image of T and vectors in it
are not matched with any vectors in domain represented by the left palette.

Even though the kernel and image of a linear transformation are conceptually
different, their bases are related.

» THEOREM 4

Let T be a linear transformation from an n-dimensional vector space V into W and let
{v1, Vo, ..., Vi} be a basis for the kernel of T. If this basis is extended to a basis {v1, Vo,
e Vio Vigpas - - - Vb for V, then {T(vy. 1), T(Viy2), - - ., T(V,)} is a basis for the image of T. d

Proof: We must show that {T(vi.1), T(vi12), - - .. T(v,) } is alinearly independent
set that spans the image of T. To prove linear independence, we form the
equation

1 T(Vir1) + 2 T(Vi2) + - + ¢, T(vy) =0 (3.29)

and show that the only solution to this equation is ¢, 1 =¢,, 2= = ---=¢,=0.
Because T is linear, equation (3.29) can be rewritten as

T(Crs1Vier1 + Cer2Vira + -+ Vi) =0

which implies that the sum ¢, Vi1 +CpioViyo + - - - ¢V, in a vector in the kernel
of T. Every vector in the kernel can be expressed as a unique linear combination
of its basis vectors (Theorem 5 of Section 2.5), so there must exist a unique set of
scalars ¢y, ¢, ..., ¢, such that

Cht1Vih+1 + Ckt2Vit2 + - -+ €V = C1VL + C2V2 + - - - + Vi
which can be rewritten as
—C1V1 — V) — =+ + — GV + Cpr1Vier1 + o2V + -+ vy =0 (3.30)

But {vy, v,, ..., v,} is basis for V; consequently, it is linearly independent and the
only solution to equation (3.30) is —¢ci;=—c¢y =+ =—C,=Cp11=Chyo = =
¢,=0. Thus, ¢,y1=c¢x2="--=¢,=0 is the only solution to equation (3.29),
and {T(viy1), T(Vki2), - .. T(v,)} is linearly independent.

It remains to show that {T(vi;1), T(Vi42), - .. T(v,)} spans the image of T. Let
w denote an arbitrary vector in the image. Then there must be at least one vector v
in the domain having the property that T(v) =w. Writing v as a linear combina-
tion of basis vectors, we have v=d v, +d,v,+- - - +divi, + dp 1Vie 1 + it 2Viern
+---+4d,v, for a unique set of scalars d,, d,, ..., d,,. Then



w=T(v) =T(d1vi +dovy + - + &V, + dies1Vir1 + dies2Vira + -+ - + dpvy)
=diT(v1) + dbT(vy) + -+ dT(vi) + des1 T(Vir 1) + dia T(Vier2)
e dT(v,)
=d10+d0+ - 4+ dp0 + dipi 1 T(Vir1) + dis 2 T(Vie2) + - -+ + dnT(v)
= die1T(Vier1) + di 2 T(Vip2) + -+ + dnT (V)

because vy, v,, ..., v; are (basis) vectors in the kernel of T and all vectors in ker(T)
map into the zero vector. We conclude that every vector w in the image of T can
be written as a linear combination of {T(vy.1), T(vii2), - .., T(vs)}, so this set
spans the image.

We have shown that {T(vi.1), T(V42), ... T(v,)} is a linearly independent set
that spans the image of T; hence, it is a basis for that image.

Example 4 Apply Theorem 4 to the linear transformation given in Example 3.

Solution: A basis for the kernel was found to be the set {1} while a basis for the
domain is {1, t, *}. Theorem 4 states that

T(*) =T(1¢* +0t+0) = {(1) ﬂ

and

T(t) = T(0> + 1t +0) = {8 ﬂ

form a basis for the image of T, which is precisely the same result obtained in
Example 3.

Example 5 Apply Theorem 4 to the linear transformation T: R* — R3 defined by

Z a+b

T =|b+c+d
¢ a—c—d
d

Solution: A vector in R? is in the kernel of T if and only if its components 4, b, c,
and d satisfy the system of equations

a+b=0
b+c+d=0
a—c—d=0

Using Gaussian elimination on this system, we obtain as its solution a=c+d,
b= —c—d with ¢ and d arbitrary, which takes the vector form

a c+b 1 1
b _ —c—d e -1 d -1
c c 1

d d 0 1
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Every vector of this form is in the kernel of T. It is clear that the two vectors on the
right side of this last equation span the kernel of T. It is also easy to show that
these two vectors are linearly independent, so they form a basis for ker(T).

This basis for ker(T) can be extended to the set

1 1 1 0
-1 -1 0 1
1| o|” |0]|" |0
0 1 0 0

[N e

form a basis for the image of T.

. . . ) The nullity and rank of a
Because the kernel and image of a linear transformation T:V — W linear transformation are,

are subspaces, each has a dimension. The dimension of the kernel is its respectively, the dimen-
nullity, denoted by v(T); the dimension of the image is its rank, denoted by sions of its kernel
7(T). Assume that dim(V)I = n. It follows from Theorem 4 that if there are k and image.

vectors in the basis {v,, v,, ..., v} for the kernel of T, so that v(T) =k, then

a basis for the image of T given by {T(vi.1), T(Vii2), ..., T(v,)} contains

n—kvectors and r(T) =n — k. Together, r(T) +v(T) = (n — k) +k=n, the dimen-

sion of V.

The proof of Theorem 4 assumes that 1 <k <n. If k=0, then ker(T) contains just
the zero vector, which has dimension 0. In this case, we let {vy, vy, ..., v,} beany
basis for V, and with minor modifications the proof of Theorem 4 can be
adapted to show that {T(v;), T(v>), ..., T(v,)} is a basis for the image of T. Once
again, r(T)+v(T)=n+0=n. Finally, if v(T)=n, then ker(T) must be all of the
domain, all vectors in V map into 0, the image of T is just the zero vector,
r(T)=0, and r(T) +v(T) =0+n=n. We have, therefore, proven one of the more
fundamental results of linear algebra.

»COROLLARY 1

For any linear transformation T from an n-dimensional vector space V to W, the rank of
T plus the nullity of T equals n, the dimension of the domain. That is,

7(T) +o(T) = n.«

The startling aspect of Corollary 1 is that the dimension of W is of no conse-
quence. Although the image of T is a subspace of W, its dimension when



A linear transformation is
one-to-one if it maps
different vectors in the
domain into different
vectors in the range.

summed with the dimension of the null space of T is the dimension of the
domain.

Example 6 Verify Corollary 1 for the linear transformation T:P? — M,,,
defined by

a 2b
T(at” + bt +¢) = [o a}

for all real numbers a, b, and c.

Solution: The domain P? has dimension 3. We showed in Example 3 that a basis
for the kernel contains a single vector and a basis for the image of T contains two
elements. Thus, r(T)=2, v(T)=1, and r(T) +v(T) =2+ 1=3, the dimension of
the domain.

Example 7 Verify Corollary 1 for the linear transformation T: R* — R? defined by
a+b

=|b+c+d
a—c—d

a
T b
c
d

Solution: The domain R* has dimension four. We showed in Example 5 that
bases for both the kernel and the image contain two vectors, so r(T)+v(T) =
2 +2=4, the dimension of the domain.

If we restrict our attention to an n x p matrix A, then the kernel of A is the sub-
space of all solutions to the homogeneous system of equation Ax=0 and the
dimension of this subspace is ¥(A), the nullity of A. The image of A is the column
space of A and its dimension is the column rank of A, which is the rank of the
matrix. Thus, Corollary 1 is simply an alternate formulation of Theorem 3 of
Section 2.6.

A linear transformation T:V — W is one-to-one if the equality T(u)=
T(v) implies u=v. A one-to-one linear transformation maps different vectors
in V into different vectors in W, as illustrated in Figure 3.15a. If two different
vectors u and v in V map into the same vector in W, as illustrated in
Figure 3.15b, then T(u)=T(v) with u#v, and the transformation is not
one-to-one.

Example 8 Determine whether the linear transformation T : P? — M), defined by

a 2b}

2 _
T(at® + bt +c) = [0 .
is one-to-one.

Solution: Here

T(—t* 45t +2) =T(—t> + 5t — 8) = {

-1 10
0 -1
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(a) Tis one-to-one.

T

\

(b) Tis not one-to-one.
FIGURE 3.15

Setting u=—t*+5t+2 and v=—t+5t—8, we have T(u)=T(v) with u#v,
hence T is not one-to-one.

Example 9 Determine whether the linear transformation T : R?> — R3 defined by
4 a+b
T {b} = a—b
2a+3b

is one-to-one.

Solution: Settingu=[ab]",v=[cd]", and T(u) = T(v), we obtain the vector equation

a+b c+d
a—>b| = c—d
2a+ 3b 2c+3d

which is equivalent to the system of equations

a+b=c+d
a—-b=c—d
2a+3b=2c+3d

Solving this system by Gaussian elimination for the variables a and b, thinking of
¢ and d as fixed constants, we generate the single solution a=c and b=d. There-
fore, the equality T(u)=T(v) implies that u=v, and T is one-to-one.

Often, the easiest way to show whether a linear transformation is one-to-one is to
use the following:


Figure 3.15

A linear transformation is
onto if its image is
its range.

» THEOREM 5
A linear transformation T : V — W is one-to-one if and only if the kernel of T contains just
the zero vector, i.e., v(T)=0.d

\ J

Proof: Assume that T is one-to-one. If v€ker(T), then T(v)=0. We know from
Theorem 1 that T(0)=0. Consequently, T(v) =T(0), which implies that v=0,
because T is one-to-one. Thus, if veker(T), then v=0, from which we conclude
that the kernel of T contains just the zero vector.

Conversely, assume that the kernel of T contains just the zero vector. If u and v
are vectors in the domain for which T(u)=T(v), then T(u)—-T(v)=0 and
T(u—v)=0, which implies that the vector u—v is in the kernel of T. Since this
kernel contains only the zero vector, it follows that u —v=0 and u=v. Thus, the
equality T(u) =T(v) implies u=v, from which we conclude that T is one-to-one.

Example 10 Determine whether the linear transformation T :R* — R3
defined by

a
b a+b
T =|b+c+d

c
d a—c—d

is one-to-one.

Solution: We showed in Example 5 that a basis for the kernel of T contained two
vectors. Thus, ¥(T) =2#0, and the transformation is not one-to-one.

A linear transformation T : V — W is onto if the image of T is all of W; that is,
if the image equals the range. The dimension of the image of T is the rank of
T. Thus, T is onto if and only if the rank of T equals the dimension of W. This
provides a straightforward algorithm for testing whether a linear transformation
is onto.

Example 11 Determine whether the linear transformation T :P? — M,,,
defined by

2 _|a 2b

T(at® + bt +¢) = [0 . }

is onto.

Solution: We showed in Example 3 that a basis for the kernel of the trans-
formation is the set {1}, hence v(T)=1. The dimension of the domain P? is
3, so it follows from Corollary 1 that r(T)+1=3 and r(T)=2. Here
W = M,, has dimension 4. Since r(T) = 2 # 4 = dim(W), the transformation
is not onto.
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Example 12 Determine whether the linear transformation T : M,,, — R3
defined by

4 b a+b
T[C d}: b+c
c+d

is onto.

Solution: A matrixin M, is in the kernel of T'if and only if its components 4, b, ¢,
and d satisfy the system of equations

a+b=0
b+c=0
c+d=0

The solution to this system is found immediately by back substitution to be
a=—d,b=d, c=—d, with d arbitrary. Thus, a matrix in ker(T) must have the form

R

which implies that the kernel of T is spanned by the matrix

-1 1

-1 1
This matrix is nonzero. It follows from Theorem 2 of Section 2.4 that, by itself,
this matrix is a linearly independent set. Consequently, this matrix forms a basis
for ker(T), and v(T)=1. The dimension of the domain V = M), is 4, so it fol-

lows from Corollary 1 that 7(T) 4+ 1=4 and r(T) =3. The dimension of the range
R? is also 3, hence the transformation is onto.

Alternatively, we may show that the matrix representation of T with respect to the
standard bases in both M, and R3 is

1 1 0 O
A=]0 1 1 O
0 011

A is in row-reduced form and has rank 3. Therefore, r(T) = r(A) = 3 = dim(R?),
and we once again conclude that the transformation is onto.

In general, the attributes of one-to-one and onto are quite distinct. A linear
transformation can be one-to-one and onto, or one-to-one and not onto,
onto but not one-to-one, or neither one-to-one nor onto. All four possibilities
exist. There is one situation, however, when one-to-one implies onto and
vice versa.



» THEOREM 6

Let a linear transformation T:V — W have the property that the dimension of V equals the
dimension of W. Then T is one-to-one if and only if T is onto. d
\ J

Proof: T is one-to-one if and only if (from Theorem 5) v(T)=0, which is
true if and only if (Corollary 1) r(T) = dim(V). But dim(V) = dim(W); hence,
T is one-to-one if and only if 7(T) = dim(W), which is valid if and only if T
is onto.

Problems 3.5

(1) Define T : R® — R? by T[a b c] =[a+b c]. Determine whether any of the
following vectors are in the kernel of T.

(a) [1—1 3], (b) [1—1 0],
(©) [2—2 0], (d) [1251 0].

(2) Define S : R* — R? by S[a b ¢c] = [a — ¢ ¢ — b]. Determine whether any of the
following vectors are in the kernel of S.

(@) [1-11], (b) [111],
(© [-2 -2 -2], (d) [110].

(3) DefineL : R* — R?, L{abc]=[a+2b— 3c0]. Determine whether any of the
following vectors are in the kernel of L.

(@) [111], (b) [5 -11],
(© [-121], (d) [-153].
(4) Define P : M, HMZXZ,P[Z Z] - [“gb iy

any of the following matrices are in the kernel of P.

N Y i Y FR A

(5) Define T : P? — P2 by T(a,t’ +a,t+ao) = (a, — a;)t> + (a; — ao)t. Determine
whether any of the following vectors are in the kernel of T.

} . Determine whether

(a) 26 —3t+4, (b) £+t (o) 3t+3, (d) —*— t—1.

(6) Determine whether any of the following vectors are in the image of the lin-
ear transformation defined in Problem 1. For each one that is, produce an
element in the domain that maps into it.

(@ [11],  (b) [1 -1, (9 [20],  (d) [12]
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(7) Determine whether any of the following vectors are in the image of the lin-
ear transformation defined in Problem 3. For each one that is, produce an
element in the domain that maps into it.

(@ [11],  (b) [10,  (q) [20],  (d) [12]

(8) Determine whether any of the following matrices are in the image of the
linear transformation defined in Problem 4. For each one that is, produce
an element in the domain that maps into it.

@il e e @l 8

(9) Redo Problem 8 for P: My, — M, by P [i Z] = [2 Z}

(10) Determine whether any of the following vectors are in the image of the lin-
ear transformation defined in Problem 5. For each one that is, produce an
element in the domain that maps into it.

(@) 268-3t+4, (b) £+2¢ (o) 3t (d) 2t—1.

In Problems 11 through 30, find the nullity and rank of the given linear trans-
formations, and determine which are one-to-one and which are onto.

(11) T: R? — R?, T[a b] = [2a3b].
(12) T: R? — R?, T[a b] = [aa + D).
(13) T: R? — R?, T[a b] = [a0).
(14) S: R* — R%, Slabc] = [a+bd].

(15) S: R* - R?, S[abc] =[a—cc—b).
(16) S: R* — R%, Slabc] = [a+ 2b — 3c0].
(17) S: R? — R?, S[ab] = [a+b2a + ba).
(18) S: R? = R>, S[ab

(19) N: R? — R3 Nab] = [a + b2a + b b).

(20) N: R? — R*,N[a b] = [0 0 2a — 5b].

a b] = [a0b].

(21) T:R?> = R* Tlabl=[a —a - 8a.
(22) T:R> = R, Tlabc]=a—c.
(23) L: R* - R, L[abc] = 0.

b
(24) P: My, — szzlp{ccl d] = [2 Z}



. a b . a+b 0
(25)P.M2X2—>M2x21P|:C d:|_|: 0 C—d:|.
b
d

(26) T: Maxz — Masa, T{j

(27) R: M,,.» — R!, R|“ b =b+2c—3d.
c d

(28) L: P> — P?, L(ayt? + ayt + ap) = aot.
(29) T: P? — P2, T(ayt?> + art + ao) = (ay — a))t?> + (a1 — ao)t.
(30) S: P> — P?, S(axt? + art +ag) = 0.

(31) Determine whether any of the following vectors are in the image of

1 3
A=)t 3]
2 0 0
o[t ol efl el
(32) Redo the previous problem for the matrix A = {(1) g] .

(33) Determine whether any of the following vectors are in the image of

1 0

A=1|1 1].

1 1

1 2 4 4

(a) [o}, (b) [0], (0) [3] (d) [4}
1 0 3 3

In Problems 34 through 42, find a basis for the kernels and a basis for the image
of the given matrices.

(1 2 1 2
(34)A:_2 4} (35)3[2 5}
1 -1 0 1 0 2
(36)C:__1 . 0]. (37)D:[3 0 4].
(1 0 1 1 1 1
(38)E= |2 1 3]. (39)F=|1 1 1].
13 1 4 1 1 1
110 1
(40)G=1[1 0 1/{. (41)H=|2].
01 1 3
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(42) K=[1122].
(43) What can be said about the ranks of similar matrices?

(44) Prove that if a linear transformation T: V — W is onto, then the dimension
of W cannot be greater than the dimension of V.

(45) Use the results of the previous problem to show directly that the transfor-
mation defined in Example 3 is not onto.

(46) Use the results of Problem 44 to show directly that the transformation
defined in Example 9 is not onto.

(47) Prove that if {w,, w,, ..., w;,} are linearly independent vectors in the image
of alinear transformation L: V — W, and ifw; =T(v;) (i=1, 2, .. ., k), then
{v1, Vo, ..., v;} is also linearly independent.

(48) Prove that a linear transformation T: V — W cannot be one-to-one if the
dimension of W is less than the dimension of V.

(49) Use the result of the previous problem to show directly that the transforma-
tion defined in Example 5 cannot be one-to-one.

(50) Use the result of Problem 48 to show directly that the transformation
defined in Example 12 cannot be one-to-one.

(51) Let {vy, v5, ..., V,} be a spanning set for V and let T: V — W be a linear
transformation. Prove that {T(v;), T(v,), ..., T(v,)} is a spanning set for
the image of T.

(52) Prove that a linear transformation T: V — W is one-to-one if and only if the
image of every linearly independent set of vectors in V is a linearly indepen-
dent set of vectors in W.

(53) Let T: V — W be a linear transformation having the property that the
dimension of V is the same as the dimension of W. Prove that T is one-
to-one if the image of any basis of V is a basis for W.

(54) Prove that a matrix representation of a linear transformation T: V — V has
an inverse if and only if T is one-to-one.

(55) Prove that a matrix representation of a linear transformation T: V — V has
an inverse if and only if T is onto.

CHAPTER 3 REVIEW
Important Terms

coordinate representation projection onto the x-axis
dilation projection onto the y-axis
domain range

function rank

image reflection across the x-axis



kernel reflection across the y-axis

linear transformation rotations in the x-y plane
nullity similar matrices

null space transformation
one-to-one transition matrix

onto zero transformation

Important Concepts
Section 3.1

A function is a rule of correspondence between two sets, a domain and range,
that assigns to each element in the domain exactly one element (but not nec-
essarily a different one) in the range.

Section 3.2

A transformation T is a rule of correspondence between two vector spaces, a
domain V and a range W, that assigns to each element in V exactly one ele-
ment (but not necessarily a different one) in W.

A transformation is linear if it preserves linear combinations.

Every matrix defines a linear transformation.

Section 3.3

A linear transformation is described completely by its actions on a basis for the
domain.

Every linear transformation from one finite-dimensional vector space to
another can be represented by a matrix that is basis dependent.

Section 3.4

In general, a vector has many coordinate representations, a different one for
each basis.

The transition matrix from C to D, where both C and D are bases for the same
finite-dimensional vector space, is invertible and its inverse is the transition
matrix from D to C.

If vc and vy are the coordinate representations of the same vector with respect
to the bases C and D, respectively, then vy = Pvc where P is the transition
matrix from C to D.

In general, a linear transformation may be represented by many matrices, a
different one for each basis.

Two square matrices A and B represent the same linear transformation if and
only if there exists a transition matrix P such that A=P~' BP.
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Section 3.5

m Alinear transformation always maps the zero vector in the domain to the zero
vector in the range.

m The kernel of a linear transformation is a nonempty subspace of the domain;
the image of a linear transformation is a nonempty subspace of the range.

m The kernel of the linear transformation defined by a matrix A is the set of all
solutions to the system of homogeneous equations Ax=0; the image of the
linear transformation is the column space of A.

m If {vy, vy, ..., v} is a basis for the kernel of a linear transformation T and if
this basis is extended to a basis {vy, v,, ..., Vi, Viy1, ..., Vv, } for the domain,
then {T(vi11), T(Vis2), ..., T(v,)} is a basis for the image of T.

m The rank plus the nullity of a linear transformation from one finite-
dimensional vector space to another equals the dimension of the domain.

m Alinear transformation is one-to-one if and only if its kernel contains just the
Zero vector.

= Alinear transformation is onto if and only if its rank equals the dimension of
the range.

m A linear transformation T:V — W, having the property that
dim(V) = dim(W), is one-to-one if and only if the transformation is onto.
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4.1 EIGENVECTORS AND EIGENVALUES

Many of the uses and applications of linear algebra are especially evident by con-
sidering diagonal matrices. In addition to the fact that they are easy to multiply, a
number of other properties readily emerge: their determinants (see Appendix A)
are trivial to compute, we can quickly determine whether such matrices have
inverses and, when they do, their inverses are easy to obtain. Thus, diagonal matri-
ces are simple matrix representations for linear transformations from a finite-
dimensional vector space V to itself (see Section 3.4). Unfortunately, not all linear
transformations from V to V can be represented by diagonal matrices. In this sec-
tion and Section 4.3, we determine which linear transformations have diagonal
matrix representations and which bases generate those representations.

To gain insight into the conditions needed to produce a diagonal matrix repre-
sentation, we consider a linear transformation T: R®* — R? having the diagonal
matrix representation

i 0 0
D=|0 4, 0
0 0 /4

with respect to the basis B= {x;, x,, x3}. The first column of D is the coordinate
representation of T(x;) with respect to B, the second column of D is the

Linear Algebra
Copyright © 2014, Elsevier Inc. All rights reserved.



A nonzero vector x is an
eigenvector of a square
matrix A if there exists a
scalar /, called an
eigenvalue, such that
Ax=/x.

coordinate representation of T(x,) with respect to B, and the third column of D is
the coordinate representation of T(x3) with respect to B. That is,

T(Xl) = /11X1 + 0X2 + 0X3 = /11X1
T(x;) = 0x; + AyXa + 0X3 = A%y
T(x3) = 0x1 + 0x; + A3X3 = A3X3

Mapping the basis vectors x;, X,, or X3 from the domain of T to the range of T
is equivalent to simply multiplying each vector by the scalar 4,, 1,, or 43,
respectively.

We say that a nonzero vector x is an eigenvector of a linear transformation T if
there exists a scalar 4 such that
T(x) = /x (4.1)

In terms of a matrix representation A for T, we define a nonzero vector x to be an
eigenvector of A if there exists a nonzero scalar / such that

AX = )L,X (42)

The scalar 4 in Equation (4.1) is an eigenvalue of the linear transformation T; the
scalar / in Equation (4.2) is an eigenvalue of the matrix A. Note that an eigenvec-
tor must be nonzero; eigenvalues, however, may be zero.

Eigenvalues and eigenvectors have an interesting geometric interpretation in R?
or R? when the eigenvalues are real. As described in Section 2.1, multiplying a
vector in either vector space by a real number / results in an elongation of the
vector by a factor of |1| when |[A| > 1, or a contraction of the vector by a factor
of |2] when || <1, followed by no rotation when 1 is positive, or a rotation
of 180° when /1 is negative. These four possibilities are illustrated in Figure 4.1
for the vector u in R? with A=1/2 and /= — 1/2, and for the vector v in R? with
/=3 and /= —2. Thus, an eigenvector x of a linear transformation T in R? or R?
is always mapped into a vector T(x) that is parallel to x.

Not every linear transformation has real eigenvalues. Under the rotation trans-
formation R described in Example 7 of Section 3.2, each vector is rotated around
the origin by an angle 0 in the counterclockwise direction (see Figure 4.2). As
long as 6 is not an integral multiple of 180°, no nonzero vector is mapped into
another vector parallel to itself.

Example 1 The vector x = [_1] is an eigenvector of A = B ﬂ because
1 2||-1 -1 -1
e U I R R

The corresponding eigenvalue is 1=—1.

4 1 2 3
Example 2 The vector x = 1| is an eigenvectorof A= |2 4 6 | because
-2 3 6 9
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The corresponding eigenvalue is 1=0.

Eigenvectors and eigenvalues come in pairs. If x is an eigenvector of a matrix A,
then there must exist an eigenvalue A such that Ax = Ax, which is equivalent to the
equation Ax—/x=0 or

(A—iDx =0 (4.3)


Figure 4.2
Figure 4.1

To find eigenvalues

and eigenvectors for a
matrix A, first solve the
characteristic equation,
Equation (4.4), for the
eigenvalues and then for
each eigenvalue solve
Equation (4.3) for the
corresponding
eigenvectors.

Note that we cannot write Equation (4.3) as (A—4)x=0 because subtraction
between a scalar A and a matrix A is undefined. In contrast, A— Al is the dif-
ference between two matrices, which is defined when A and I have the
same order.

Equation (4.3) is a linear homogeneous equation for the vector x. If (A— AI) ™!
exists, we can solve Equation (4.3) for x, obtaining x=(A—AI) '0=0, which
violates the condition that an eigenvector be nonzero. It follows that x is an
eigenvector for A corresponding to the eigenvalue / if and only if (A— AI) does
not have an inverse. Alternatively, because a square matrix has an inverse if and
only if its determinant is nonzero, we may conclude that x is an eigenvector for A
corresponding to the eigenvalue A if and only if

det(A — AI) = 0 (4.4)

Equation (4.4) is the characteristic equation of A. If A has order n xn, then det
(A—AI) is an nth degree polynomial in 4 and the characteristic equation of
A has exactly n roots, which are the eigenvalues of A. Once an eigenvalue is
located, corresponding eigenvectors are obtained by solving Equation (4.3).

Example 3 Find the eigenvalues and eigenvectors of A = [i ﬂ .

Solution:
L1 2 1 0] [1-2 2
A_”I_L 3]_’1[0 1]_[ 4 3—,1]

with det (A —AI)=(1—1)(3 — 1) —8=4%—4.— 5. The characteristic equation of
Ais 2> —4)—5=0, having as its roots 2= —1 and 4 =5. These two roots are the
eigenvalues of A.

Eigenvectors of A have the form x=[x y]". With /= — 1, Equation (4.3) becomes

e {[3 3ot -4
22

The solution to this homogeneous matrix equation is x=—y, with y arbitrary.
The eigenvectors corresponding to A=—1 are

[)-[3)-]

for any nonzero scalar y. We restrict y to be nonzero to insure that the eigen-
vectors are nonzero.

or
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With A=5, Equation (4.3) becomes

w-me={[3 3]=slo SHG]-[0)
|

The solution to this homogeneous matrix equation is x=y/2, with y arbitrary.
The eigenvectors corresponding to 4=5 are

=[]=[7]=:l:]

or

for any nonzero scalar y.

2 -1 0
Example 4 Find the eigenvalues and eigenvectors of A = [3 -2 0] .
0 0 1

Solution:

2 -1 0 1 00 2
A-JI=|3 -2 0| —-4|0 1 0] =
0 0 1 0 0 1

Using expansion by cofactors with the last row, we find that

o w |

io—1 0
—2-4 0

0 1—,1]
det(A—J1) = (1 -2 -A)(-2-2)+3]=(1-2)(2*-1)

The characteristic equation of A is (1 —1)(4*>—1)=0; hence, the eigenvalues of
Aare l;,=/J,=1and A3=—-1.

Eigenvectors of A have the form x=[x y z|]". With 1= 1, Equation (4.3) becomes

2 -1 0 1 00 X 0
0 0 1 0 0 1 z 0
1 -1 0 X 0
3 -3 0f|yl=10
0 0 0|z 0

The solution to this homogeneous matrix equation is x=y, with both y and z
arbitrary. The eigenvectors corresponding to A=1 are

or
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for y and z arbitrary, but not both zero to insure that the eigenvectors
are nonzero.

With 2=-1, Equation (4.3) becomes

2 -1 0 1 0 X 0
A-ix={1]3 =2 0o|—-(-1)]0 1 0 yl=1o
0 0 1 00 1 z 0
or
3 -1 0] [« 0
3 -1 0||yl=1|o0
0 0 2|z 0

The solution to this homogeneous matrix equation is x=y/3 and z=0, with y

arbitrary. The eigenvectors corresponding to 2=—1 are
X y/3 y 1
X=|y| = y = § 3
pé 0 0

for any nonzero scalar y.

The roots of a characteristic equation can be repeated. If 1, =A,=435="---;, the
eigenvalue is said to be of multiplicity k. Thus, in Example 4, 2=1 is an eigenvalue
of multiplicity 2 while /=—1 is an eigenvalue of multiplicity 1.

Locating eigenvalues is a matrix-based process. To find the eigenvalues of a more
general linear transformation, we could identify a matrix representation for the
linear transformation and then find the eigenvalues of that matrix. Because a lin-
ear transformation has many matrix representations, in general a different one
for each basis, this approach would be useless if different matrix representations
of the same linear transformation yielded different eigenvalues. Fortunately, this
cannot happen. We know from Theorem 3 of Section 3.4 that two different
matrix representations of the same linear transformation are similar. To this
we now add:

» THEOREM 1
Similar matrices have the same characteristic equation (and, therefore, the same
eigenvalues). 4

\
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Proof: Let A and B be similar matrices. Then there must exist a nonsingular
matrix P such that A=P~' BP. Since

L= P 'P =P 1P =P LIIP

it follows that

|A—Al| = [P7'BP — P~ 'JIP| = [P~ (B — AI)P|

= |P7!||B — AI||P| Theorem 1 of Appendix A
1

= & |B — All|P| Theorem 8 of Appendix A

=|B— Al

Thus the characteristic equation of A, namely |A— /1| =0, is identical to the
characteristic of B, namely |B— 1| =0.

It follows from Theorem 1 that if two matrices do not have the same characteristic
equations then the matrices cannot be similar. It is important to note, however, If two matrices do
that Theorem 1 makes no conclusions about matrices with the same characteristic N0t have the same
. : . characteristic equations,
equation. Such matrices may or may not be similar. o
then they are not similar.
201 . . . 1 2
] is similar to B = [ } .

Example 5 Determine whether A = [ 1 4 3

4 3
Solution: The characteristic equation of A is 2> —4/.—5=0 while that of B is
J>—3)—10=0. Because these equations are not identical, A cannot be
similar to B.

The eigenvectors x corresponding to the eigenvalue 1 of a matrix A are all nonzero
solutions of the matrix Equation (A— AI)x=0. This matrix equation defines
the kernel of (A — AI), a vector space known as the eigenspace of A for the eigen-
value /. The nonzero vectors of an eigenspace are the eigenvectors. Because basis
vectors must be nonzero, the eigenvectors corresponding to a particular eigen-
value are described most simply by just listing a basis for the corresponding
eigenspace.

2 -1 0
Example 6 Find bases for the eigenspaces of A= |3 -2 0
0 0 1

Solution: We have from Example 4 that the eigenvalues of A are 1 and — 1. Vectors
in the kernel of A— (1)I have the form



D

An eigenspace of A for
the eigenvalue / is the
kernel of A— Al. Nonzero
vectors of this vector
space are eigenvectors
of A.

To find the eigenvalues
and eigenvectors for a
linear transformation
T:V— YV, find the
eigenvalues and eigen-
vectors of any matrix
representation for T.

with y and z arbitrary, but not both zero. Clearly [1 1 0]"and[0 0 1]"span
the eigenspace of A for A= 1, and because these two vectors are linearly indepen-
dent they form a basis for that eigenspace.

Vectors in the kernel of A— (—1)I have the form

1
X = g 3
0
Because every vector in the eigenspace of A for A=—1 is a scalar multiple of

[1 3 0], this vector serves as a basis for that eigenspace.

If AS is a matrix representation of a linear transformation with respect to a
basis C and if AD is a matrix representation of the same linear transformation
but with respect to a basis D, then it follows from Equation (3.26) of
Section 3.4 that

AS = (P2) ' AZP

where P2 denotes a transition matrix from C to D. Let / be an eigenvalue of AS
with a corresponding eigenvalue x. Then

Agx = X

(P2)"'AD P2x = /x

and
Ap P2x = P2(/x) = APZx
If we set
y = P2x (4.5)
we have
Ay =y

which implies that y is an eigenvector of AD. But it follows from Theorem 1 of
Section 3.4 that y is the same vector as x, just expressed in a different basis. Thus,
once we identify an eigenvector for a matrix representation of a linear transfor-
mation T, that eigenvector is a coordinate representation for an eigenvector of T,
in the same basis used to create the matrix.

We now have a procedure for finding the eigenvalues and eigenvectors of a
linear transformation T from one finite-dimensional vector space to itself.
We first identify a matrix representation A for T and then determine the
eigenvalues and eigenvectors of A. Any matrix representation will do, although
a standard basis is used normally when one is available. The eigenvalues of
A are the eigenvalues T (see Theorem 1). The eigenvectors of A are coordinate
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representations for the eigenvectors of T, with respect to the basis used to
generate A.

Example 7 Determine the eigenvalues and a basis for the eigenspaces of
T: P' — P! defined by

T(at +b) = (a+ 2b)t + (4a + 3b)

Solution: A standard basis for P! is B = {t, 1}. With respect to this basis

T(t) =t +4 = (1)t + 4(1) — m

T(1) = 2t +3 = (2)t + 3(1) — H

so the matrix representation of T with respect to B is
1 2
w=[3 3]

We have from Example 3 that the eigenvalues of this matrix are —1 and 5, which
are also the eigenvalues of T. The eigenvectors of A are, respectively,

o[ 7] ana 2[}]

with y arbitrary but nonzero.

The eigenspace of A for = —1 is spanned by [—1 1]", hence this vector serves as
a basis for that eigenspace. Similarly, the eigenspace of A for A=5 is spanned by
[1 2]", so this vector serves as a basis for that eigenspace. These 2-tuples are coor-
dinate representations for

[_1} o (-Dt+()1=—t+1
and

[ﬂ - t+2)1=t+2

Therefore, the polynomial —t+ 1 is a basis for the eigenspace of T for the eigen-
value —1 while the polynomial ¢+ 2 is a basis for the eigenspace of T for the
eigenvalue 5. As a check, we note that

T(—t+1)=t—1=—-1(—t+1)
T(t+2)=5t+10=5(t+2)

The characteristic equation of a real matrix may have complex roots, and these
roots are not eigenvalues for linear transformations on real-valued vector spaces.



If a matrix is real, then eigenvectors corresponding to complex eigenvalues have
complex components and such vectors are not elements of real vector space.
Thus, there are no vectors in a real-valued vector space that satisfy Ax=1x when
A is complex.

Example 8 Determine the eigenvalues of T: R*> — R? defined by

a 2a
T|b|=1]2b+5c
C —-b - 2c

Solution: Using the standard basis for R?, we have

1 2 1 0 0 2

T|{0O|=({0]|=2]0|4+0[1|+0]|0]| «< |O

0 0 0 0 1 0
0 0 (1] 0 0 0
T|1]| = 2l =00 +2|1|+(-=1)|0]| « 2
0 -1 10 ] 0 1 -1
0 0 (1] 0 0 0
T|0]| = 5/=0|0|+5|1|+(=2)|0| < 5
1 -2 Ka 0 1 -2

where (as always when using this basis) the coordinate representation for any
vector in R3 is the vector itself. The matrix representation for T with respect to
the standard basis is

2 0 0
A=1|0 5
0o -1 -2
Here
2—-1 0 0
A-Jl= 0 2-1 5
0 -1 -2-1

Using expansion by cofactors with the first row, we find that
det(A— i) = (2-)[2-2)(-2—-2)+5]=(2-2) (2 +1)

The characteristic equation of A is (2 — 4)(4*+ 1) =0 with roots 4, =2, 1, =i, and
A3 =—1i. The only real root is 2, which is the only eigenvalue for the given linear
transformation.

Once an eigenvalue of a matrix is known, it is straightforward to identify the cor-
responding eigenspace. Unfortunately, determining the eigenvalues of a matrix,
especially a square matrix with more than 10 rows, is difficult. Even some square
matrices with just a few rows, such as
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10 7 8 7

7 5 6 5

A= 8§ 6 10 9
7 5 9 10

can be problematic. In most applications, numerical techniques (see Sections 4.4,
5.4, and Appendix D) are used to approximate the eigenvalues.

Problems 4.1

(1) Determine by direct multiplication which of the following vectors are

eigenvectors for A = [ L 2} .

-4 7
0[] wl] al]
o} el ol
® |73 o [3) o |3
(2) What are the eigenvalues that correspond to the eigenvectors found in
Problem 17

(3) Determine by direct multiplication which of the following vectors are

2 0 -1
eigenvectors for A = 1 2 1.

-1 0 2
1 0 1
(@) 0], (b) [1], () | =21,
0 0 1
-3 —1 1
(d | 6}, () | 0f, (H (o],
-3 1 1]
2 1 0]
(8) 0, (h) | 1], @i |o
-2 1 0]
(4) What are the eigenvalues that correspond to the eigenvectors found in
Problem 3?

(5) Determine by direct evaluation which of the following matrices are eigen-
vectors for the linear transformation T: M., — My, defined by

ik b| |a+3b a—>b
c d| |c+2d 4c+3d|



1 -1 0 0 1 0
@[ o o[ % oS
3 1 0 0 1 1
@i} @l ol
(6) What are the eigenvalues that correspond to the eigenvectors found in
Problem 5?7

(7) Determine by direct evaluation which of the following polyno-

mials are eigenvectors for the linear transformation T: P! — P! defined
by T(at+b)=(3a+5b)t-(2a+4b).

(a) t—1, (b) 2+1,
(d) 50—2, (e) 5t

(c) 5t—5,
(f) —10t+2.

(8) What are the eigenvalues that correspond to the eigenvectors found in
Problem 77?

In Problems 9 through 32, find the eigenvalues and a basis for the eigenspace
associated with each eigenvalue for the given matrices.

(9)

(12) _

(15)

(18) _

(21)

(24)

(27)

(30)

1

-1

2
4

- O O O

J

w = O O

(10)

(13)

(16)

(19)

(22)

(25)

(28)

(31)

[2

— = N O

.

1

1_

1

0

2_

1 0

0 1].
=27 9

1 -1

3 -1
-1 5

0 0

1 1

21

1 2

(11)

(14) _

(17)

(20)

(23)

(26)

(29)

(32)

o

N NN N ==

S O W

B~ O O

~ N

O N~ =

|
N O = N QOO

B~ = O O
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In Problems 33 through 37, find a basis of unit eigenvectors for the eigenspaces
associated with each eigenvalue of the following matrices.

(33) The matrix in Problem 9.

(34) The matrix in Problem 10.
(35) The matrix in Problem 11.
(36) The matrix in Problem 19.
(37) The matrix in Problem 20.

In Problems 38 through 53, find the eigenvalues and a basis for the eigenspace
associated with each eigenvalue for the given linear transformations.

(38) T: P! — P! such that T(at+b) = (3a+ 5b)t+ (5a — 3b).
(39) T: P! — P! such that T(at+b) = (3a+ 5b)t— (2a+ 4b).
(40) T: P? — P? such that T(at> +-bt4c) = (2a—c)t* + (2a+b—2c)t+ (—a+2c).

. T2 2 [a] [2a-b
(41) T: R* — R* such thatT_b} = {“"‘4}’}

(42) T: R?> — R? such that T a} = {401—1— IOb].

b 9a — 5b

[a] [ a+b—c
(43) T:R> > R3*such that T| b | = 0 )

| ¢ | a+2b+ 3c

[a] [ 3a—b+c
(44) T:R? > R3*suchthatT|b| = | —a+3b—c]|.

| ¢ | a—b+3c

(45) T: V — V, where V is the set of all 2 x 2 real upper triangular matrices,

such that
T a b| |b c
0 c¢c| |0 a—3b+3c|

d
(46) T: P! — P! such that T=d/dt; that is, T(at + b) = o (at +b) = a.

d
(47) T: P* — P? such that T=d/ds; that is, T(at*> + bt + c) = — (at® + bt + ¢)

dt
= 2at+b.

2

(48) T: P> — P? such that T=d?/dt’; that is, T(at?> + bt 4 ¢) = % (at® + bt +¢)
= 2a.

(49) T: V — V such that T=d/dt and V = span{e’, e 3'}.
(50) T: V — V such that T=d?/dt* and V = span{e>,e~3'}.



(51) T: V — V such that T=d/dt and V = span{sin t, cos t}.
(52) T: V — V such that T=d?/dt* and V = span{sin t, cos t}.
(53) T: V — V such that T=d?/dt* and V = span{sin 2t, cos 2t}.

(54) Consider the matrix

0 1 0 0
0 0 1 0
Cco .
0 0 0 1
—do —dp —a —dn-1

Use mathematical induction to prove that

det(C — AI) = (71)"(1" Fan A a2 Fad ao).

Deduce that the characteristic equation for this matrix is

M, ANt ait a4 ag = 0.

The matrix C is called the companion matrix for this characteristic equation.

4.2 PROPERTIES OF EIGENVALUES
AND EIGENVECTORS

The eigenvalues of a linear transformation T from a finite-dimensional vector
space to itself are identical to the eigenvalues of any matrix representation for
T. Consequently, we discover information about one by studying the other.

The kernel of A— I is a vector space for any square matrix A, and all nonzero
vectors of this kernel are eigenvectors of A. A vector space is closed under scalar
multiplication, so kx is an eigenvector of A for any nonzero scalar k whenever x is
an eigenvector. Thus, in general, a matrix has a finite number of eigenvalues but
infinitely many eigenvectors. A vector space is also closed under vector addition,
so if xand y are two eigenvectors corresponding to the same eigenvalue /, then so
too is x+y, providing this sum is not the zero vector.

The trace of a square matrix A, designated by tr(A), is the sum of the elements on
the main diagonal of A. In particular, the trace of

-1 2 0
A=|-3 6 8
5 4 =2

istr(A)=—1+6+(-2)=3.

» THEOREM 1

The sum of the eigenvalues of a matrix equals the trace of the matrix. d
\

.
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We leave the proof of Theorem 1 as an exercise (see Problem 21). This result pro-
vides a useful check on the accuracy of computed eigenvalues. If the sum of the
computed eigenvalues of a matrix do not equal the trace of the matrix, there is an
error! Beware, however, that Theorem 1 only provides a necessary condition on
eigenvalues, not a sufficient condition. That is, no conclusions can be drawn
from Theorem 1 if the sum of a set of eigenvalues equals the trace. Eigenvalues
of a matrix can be computed incorrectly and still have their sum equal the trace of
the matrix.

Example 1 Determine whether A, =12 and A, =—4 are eigenvalues for

13
S

Solution: Here tr(A)=114(—5)=6#8=21;+1,, so these numbers are not the
eigenvalues of A. The eigenvalues for this matrix are 10 and —4, and their
sum is the trace of A.

The determinant of an upper (or lower) triangular matrix is the product of ele-
ments on the main diagonal, so it follows immediately that

» THEOREM 2
The eigenvalues of an upper or lower triangular matrix are the elements on the main
diagonal. d
1 0 0
Example 2 The matrix |2 1 0| is lower triangular, so its eigenvalues are
3 4 -1

;Ll:;bzzl and 23:—1

Once the eigenvalues of a matrix are known, one can determine immediately
whether the matrix is singular.

» THEOREM 3

A matrix is singular if and only if it has a zero eigenvalue. 4

Proof: A matrix A has a zero eigenvalue if and only if det (A—0I)=0, or (since
0I=0) if and only if det (A) =0, which is true (see Theorem 11 of Appendix A) if
and only if A is singular.

A nonsingular matrix and its inverse have reciprocal eigenvalues and identical
eigenvectors.



» THEOREM 4

If X is an eigenvector of an invertible matrix A corresponding to the eigenvalue 4, then x is
also an eigenvector of A~ corresponding to the eigenvalue 1//.. 4

Proof: Since A is invertible, Theorem 3 implies that 1#0; hence 1/4 exists. We
have that Ax=/x. Premultiplying both sides of this equation by A™', we obtain

x=/A"'x or A'x=(1/A)x

Thus, x is an eigenvector of A~' with corresponding eigenvalue 1/1.

We may combine Theorem 3 with Theorem 10 of Appendix A and Theorems 5
and 6 of Section 2.6 to obtain the following result.

[ » THEOREM 5

The following statements are equivalent for an n x n matrix A:

(i) A has an inverse.
(ii) A has rank n.
(iii) A can be transformed by elementary row operations to an upper triangular matrix with
only unity elements on the main diagonal.
(iv) A has a nonzero determinant.
(v) Every eigenvalue of A is nonzero.

Multiplying the equation Ax = 1x by a scalar k, we obtain (kA)x= (k1)x. Thus we
have proven Theorem 6.

» THEOREM 6

If x is an eigenvector of A corresponding to the eigenvalue A, then kJ. and x are a corre-
sponding pair of eigenvalues and eigenvectors of kA, for any nonzero scalar k. 4

Theorem 1 provides a relationship between the sum of the eigenvalues of a
matrix and its trace. There is also a relationship between the product of those
eigenvalues and the determinant of the matrix. The proof of the next theorem
is left as an exercise (see Problem 22).

» THEOREM 7

The product of all the eigenvalues of a matrix (counting multiplicity) equals the determinant
of the matrix. d
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11 3

Example 3 The eigenvalues of A = [_ 5 _s5

} are 1;,=10 and 1,=—4. Here

» THEOREM 8

If x is an eigenvector of A corresponding to the eigenvalue /., then /" and x are a
corresponding pair of eigenvalues and eigenvectors of A", for any positive integer n. d

Proof: We are given that Ax=/x and we need to show that
A"x = "x (4.6)

We prove this last equality by mathematical induction on the power n. Equa-
tion (4.6) is true for n=1 as a consequence of the hypothesis of the theorem.
Now assume that the proposition is true for n=k— 1. Then

Ak71X — ikflx

Premultiplying this equation by A, we have
A(A1x) = A(#'x)

or

Afx = 7 1(Ax)
It now follows from the hypothesis of the theorem that

Afx = 1 ()x)
or

Alx = M'x

which implies that the proposition is true for n=Fk. Thus, Theorem 8 is proved by
mathematical induction.

The proofs of the next two results are left as exercises for the reader (see Problems
16 and 17).

[ » THEOREM 9

If X is an eigenvector of A corresponding to the eigenvalue /., then for any scalar ¢, A —c and
X are a corresponding pair of eigenvalues and eigenvectors of A —cl. d

\ J

[ » THEOREM 10

If /. is an eigenvalue of A, then /. also an eigenvalue of A". <
\ y




Problems 4.2

(1) One eigenvalue of the matrix A = [ 3 3

8 2] is known to be 2.

Determine the second eigenvalue by inspection.

3 2
to four decimal places. Determine the second eigenvalue by inspection.

(2) One eigenvalue of the matrix A = [8 3] is known to be 0.7574 rounded

(3) Two eigenvalues of a 3 x 3 matrix are known to be 5 and 8. What can be said
about the third eigenvalue if the trace of the matrix is —4?

(4) Redo Problem 3 if —4 is the determinant of the matrix instead of its trace.

(5) The determinant of a 4 x 4 matrix is 144 and two of its eigenvalues are
known to be — 3 and 2. What can be said about the remaining eigenvalues?

(6) A 2 x 2 matrix A is known to have the eigenvalues —3 and 4. What are the
eigenvalues of

(@ 2A,  (b) 5A, () A=3L,  (d) A+4L

(7) A3 x 3 matrix A is known to have the eigenvalues — 2, 2, and 4. What are the
eigenvalues of
(a) A?, (b) A?, (c) —3A, (d) A+3L

(8) A 2 x 2 matrix A is known to have the eigenvalues — 1 and 1. Find a matrix
in terms of A that has for its eigenvalues

(@) —2 and 2, (b) —5 and 5, (c) 1and 1, (d) 2 and 4.

(9) A 3 x 3 matrix A is known to have the eigenvalues 2, 3, and 4. Find a matrix
in terms of A that has for its eigenvalues

(@) 4,6,and8, (b) 4,9,and 16, (c) 8,27,and 64, (d) 0,1, and 2.

(10) Verify Theorems 1 and 7 for A = {8 3 } .

3 2
1 3 6
(11) Verify Theorems 1 and 7 forA= | -1 2 -1
2 1 7

(12) What are the eigenvalues of A~ for the matrices defined in Problems 10
and 117

(13) Show by example that, in general, an eigenvalue of A+ B is not the sum of
an eigenvalue of A with an eigenvalue of B.

(14) Show by example that, in general, an eigenvalue of AB is not the product of
an eigenvalue of A with an eigenvalue of B.

(15) Show by example that an eigenvector of A need not be an eigenvector of A*.
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(16) Prove Theorem 9.
(17) Prove Theorem 10.
(18) The determinant of A — Al is known as the characteristic polynomial of A. For

an n X n matrix A it has the form

det(A—Al) = (—1)"(A" + ay_12""" + an 2 A" 2 4+ @22 + a1l + ao),

where a,_;, d,_», ..., dy, a;, and a, are constants that depend on the ele-
ments of A. Show that (—1)"ay=det(A).

(19) (Problem 18 continued.) Convince yourself by considering arbitrary 2 x 2,
3 x 3, and 4 x 4 matrices that (—1)a,_;=tr(A).

(20) Consider an n x n matrix A with eigenvalues 44, 45, ..., 4,, where some or
all of the eigenvalues may be equal. Each eigenvalue 4;(i=1,2, ..., n) isa
root of the characteristic polynomial; hence (1 — 4;) must be a factor of that
polynomial. Deduce that det(A — AI)=(—1)"(4 — A1)(4 — 42) ... (4 — 4,).

(21) Use the results of Problems 19 and 20 to prove Theorem 1.
(22) Use the results of Problems 18 and 20 to prove Theorem 7.

(23) The Cayley-Hamilton theorem states that every square matrix A satisfies
its own characteristic equation. That is, if the characteristic equation
of Ais

Ity A by A @t aih +ag =0,
then
A"+ a, AT 4 a, sAT 4 A+ a1A +agl = 0.

Verify the Cayley-Hamilton theorem for

2 0 1
(a) [; ﬂ (b) B i] © 4 o 2|,
00 -1
1 0 0 0
1 -1 2
d |o 3 2 (e)o_100
X X 0 0 -1 0
0 0 0 1

(24) Let the characteristic equation of a square matrix A be as given in Problem
23. Use the results of Problem 18 to prove that A is invertible if and only
if do 7é 0.

(25) Let the characteristic equation of a square matrix A be given as in Problem
23. Use the Cayley-Hamilton theorem to show that



A matrix is diagonalizable
if it is similar to a
diagonal matrix.

—1
ATl = — (A" '+ a4, A2+ A+ )
0

when ay#0.

(26) Use the result of Problem 25 to find the inverses, when they exist, for the
matrices defined in Problem 23.

4.3 DIAGONALIZATION OF MATRICES

We are ready to answer the question that motivated this chapter: Which linear
transformations can be represented by diagonal matrices and what bases gen-
erate such representations? Recall that different matrices represent the same
linear transformation if and only if those matrices are similar (Theorem 3 of
Section 3.4). Therefore, a linear transformation has a diagonal matrix represen-
tation if and only if any matrix representation of the transformation is similar to
a diagonal matrix.

To establish whether a linear transformation T has a diagonal matrix represen-
tation, we first create one matrix representation for the transformation and then
determine whether that matrix is similar to a diagonal matrix. If it is, we say the
matrix is diagonalizable, in which case T has a diagonal matrix representation.

If a matrix A is similar to a diagonal matrix D, then the form of D is determined.
Both A and D have identical eigenvalues, and the eigenvalues of a diagonal
matrix (which is both upper and lower triangular) are the elements on its main
diagonal. Consequently, the main diagonal of D must be the eigenvalues of A. If,

for example,
1 2
w=[i 3]

with eigenvalues —1 and 5, is diagonalizable, then A must be similar to either

o5 e 5 ]

Now let A be an n x n matrix with n linearly independent eigenvectors X1, X5, ..., Xy
corresponding to the eigenvalues Ay, 4,, ..., 4,, respectively. Therefore,

AX]' = /lej (4.7)
forj=1,2, ..., n. There are no restrictions on the multiplicity of the eigenvalues,

so some or all of them may be equal. Set

M=[x; x, ... x,]and
Ay 0 ... 0
0 A ... 0
D:
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Here M is called a modal matrix for A and D a spectral matrix for A. Now

AM =A[x; X3 ... Xy]
= [Ax; AX, ... AXx,]
=[x Axy ... Xy (4.8)
=[x; X2 ... x4]D
=MD

Because the columns of M are linearly independent, the column rank of M is n, the
rank of M is n, and M ™" exists. Premultiplying Equation (4.8) by M~', we obtain

D=M'AM (4.9)
Postmultiplying Equation (4.8) by M~', we have
A =MDM™' (4.10)

Thus, A is similar to D. We can retrace our steps and show that if Equation (4.10)
is satisfied, then M must be an invertible matrix having as its columns a set of
eigenvectors of A. We have proven the following result.

» THEOREM 1

An n x n matrix is diagonalizable if and only if the matrix possesses n linearly independent
eigenvectors. 4

Example 1 Determine whether A = Lll ;] is diagonalizable.

Solution: Using the results of Example 3 of Section 4.1, we have 1,=—1 and
A,=5 as the eigenvalues of A with corresponding eigenspaces spanned by the

vectors
—1 1
X1=|: 1] and X2=|:2]

respectively. These two vectors are linearly independent, so A is diagonalizable.
We can choose either

-1 1 1 -1
M{ 1 2} or M[z 1]

Making the first choice, we find

1{-=2 1771 21[-1 1] T[-1 o]
J— 71 _— P—
P=MEAM=311 114 3| 1 2 0 5|
Making the second choice, we find
_ 1 1 1771 21[1 —-1] [5 0]
— 1 —_— pu—
D=M AM_s_—z 1[4 3][2 1] |0 —1]



In general, neither the modal matrix M nor the spectral matrix D is unique. How-
ever, once M is selected, then D is fully determined. The element of D located in
the jth row and jth column must be the eigenvalue corresponding to the eigen-
vector in the jth column of M. In particular,

M=[x, X1 X3 ... X4]
is matched with
A 0 0 0
0 4 O 0
0 0 0 ... A
while
M=[x, Xy-1 ... Xi]
is matched with
An O 0
0 Ap 0
D= .
0 0 M
2 -1 0
Example 2 Determine whether A= |3 —2 0 | is diagonalizable.
0 0 1

Solution: Using the results of Example 6 of Section 4.1, we have

1 0
x1=|1 and x, = |0
0 1

as a basis for the eigenspace corresponding to eigenvalue 1=1 of multiplicity 2
and

1
X3 = 3
0

as a basis corresponding to eigenvalue A= —1 of multiplicity 1. These three vec-
tors are linearly independent, so A is diagonalizable. If we choose

1 0 1 1 0 0
M=1|1 0 3|, then M!AM=|0 1 0
010 0 0 -1
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The process of determining whether a given set of eigenvectors is linearly inde-
pendent is simplified by the following two results.

» THEOREM 2

Eigenvectors of a matrix corresponding to distinct eigenvalues are linearly independent. 4
\ J

Proof: Let 2y, A3, ..., J denote the distinct eigenvalues of an n xn matrix A
with corresponding eigenvectors Xy, X, ..., X;. If all the eigenvalues have mul-
tiplicity 1, then k=n, otherwise k <n. We use mathematical induction to prove
that {x;, x5, ..., X} is a linearly independent set.

For k=1, the set {x,} is linearly independent because the eigenvector x; cannot
be 0. We now assume that the set {x;, X, ..., X;_;} is linearly independent and
use this to show that the set {x;, x,, ..., X,_1, X;;} is linearly independent. This is
equivalent to showing that the only solution to the vector equation

C1X] + CXp + - -+ + Cp—1Xp—1 + CpXp = 0 (411)
isci=c,=---=c,_1=¢,=0.

Multiplying Equation (4.11) on the left by A and using the fact that Ax;= A;x; for
j: 1721 ey k/ we obtain

C11X1 + 24Xy + -+ + Coo1 Apm1Xp—1 + AKX, = 0 (4.12)

Multiplying Equation (4.11) by 4,, we obtain
C1AX1 + CoApXy + -+ + G 1 Xp—1 + L ARX, = 0 (4.13)
Subtracting Equation (4.13) from (4.12), we have
c1(1 — A)x1 + 2l — A)xa + - + 1 (A—1 — M)Xp—1 = 0
But the vectors {x;, X, ..., X,_1} are linearly independent by the induction
hypothesis, hence the coefficients in the last equation must all be 0; that is,
a(lr =) =c(la—A) = =C1(le1—4) =0

from which we imply that ¢, =c, =" - - =¢;,_; =0, because the eigenvalues are dis-
tinct. Equation (4.11) reduces to ¢;x,=0 and because x;, is an eigenvector, and
therefore nonzero, we also conclude that ¢,=0, and the proof is complete.

It follows from Theorems 1 and 2 that any n x n real matrix having n distinct real
roots of its characteristic equation, that is a matrix having n eigenvalues all of
multiplicity 1, must be diagonalizable (see, in particular, Example 1).

2 0 0
Example 3 Determine whether A= | —3 3 0| is diagonalizable.
2 -1 4



Solution: The matrix is lower triangular so its eigenvalues are the elements on the
main diagonal, namely 2, 3, and 4. Every eigenvalue has multiplicity 1, hence A is
diagonalizable.

» THEOREM 3

If 1 is an eigenvalue of multiplicity k of an n x n matrix A, then the number of linearly inde-
pendent eigenvectors of A associated with A is n —r(A— /1), where r denotes rank.

Proof: The eigenvectors of A corresponding to the eigenvalue / are all nonzero
solutions of the vector Equation (A—/I)x=0. This homogeneous system is
consistent, so by Theorem 3 of Section 2.6 the solutions will be in terms
of n—r(A—2I) arbitrary unknowns. Since these unknowns can be picked
independently of each other, they generate n—r(A— AI) linearly independent
eigenvectors.

In Example 2, Ais a 3 x 3 matrix (n=3) and A=1 is an eigenvalue of multiplicity
2. In this case,

1 -1 0
A-—(DI=A-1={3 -3 0
0 00

can be transformed into row-reduced form (by adding to the second row —3
times the first row)

1 -1 0
0 0 0
0 0 0

having rank 1. Thus, n —r(A—I)=3 —1=2 and A has two linearly independent
eigenvectors associated with A= 1. Two such vectors are exhibited in Example 2.

Example 4 Determine whether A = B ﬂ is diagonalizable.

Solution: The matrix is upper triangular so its eigenvalues are the elements on the
main diagonal, namely, 2 and 2. Thus, A is 2 x 2 matrix with one eigenvalue of
multiplicity 2. Here

0 1
[0 ]

has a rank of 1. Thus, n—1(A—2I)=2—1=1 and A has only one linearly inde-
pendent eigenvector associated with its eigenvalues, not two as needed. Matrix A
is not diagonalizable.

We saw in the beginning of Section 4.1 that if a linear transformation T: V — V'is
represented by a diagonal matrix, then the basis that generates such a
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representation is a basis of eigenvectors. To this we now add that a linear trans- If V is an n-dimensional
formation T: V — V, where V is n-dimensional, can be represented by a diagonal Vector space, then a lin-
matrix if and only if T possesses n-linearly independent eigenvectors. When such ' {ransformation

. .. basis for V T:V — V may be
a set exists, 1t 1S a basis for V. represented by a diago-

nal matrix if and only if T
possesses a basis of

T(at+b) = (a+ 2b)t + (4a + 3b) eigenvectors.

Example 5 Determine whether the linear transformation T: P' — P! defined by

can be represented by a diagonal matrix.

Solution: A standard basis for P! is B = {t, 1}, and we showed in Example 7 of
Section 4.1 that a matrix representation for T with respect to this basis is

1 2
St
It now follows from Example 1 that this matrix is diagonalizable; hence T can be

represented by a diagonal matrix D, in fact, either of the two diagonal matrices
produced in Example 1.

Furthermore, we have from Example 7 of Section 4.1 that —t+ 1 is an eigenvector
of T corresponding to A;=—1 while 5¢t+10 is an eigenvector correspon-
ding 4,=5. Since both polynomials correspond to distinct eigenvalues, the
vectors are linearly independent and, therefore, constitute a basis. Setting
C={—-t+1,5t+ 10}, we have the matrix representation of T with respect
to C as

c ~1 0
ACD{ 0 5}

Example 6 Let U be the set of all 2 x 2 real upper triangular matrices. Determine
whether the linear transformation T: U — U defined by

T4 bl [3a+2b+c 2b
0 c| 0 a+2b+ 3¢

can be represented by a diagonal matrix and, if so, produce a basis that generates
such a representation.

Solution: U is closed under addition and scalar multiplication, so it is a sub-space
of M, ,. A simple basis for U is given by

o= {[s 3o o} 5 )

With respect to these basis vectors,

ool =0 Voo o) rola oo i)

— o W



R R R B A N E

_2_
0 0 1 0 10 0 1 00 1]
o 3] =lo S]=rlo ol velo o] oo ) g

and a matrix representation for T is

3 21
A=(0 2 O
1 2 3

The eigenvalues of this matrix are 2, 2, and 4. Even though the eigenvalues are
not all distinct, the matrix still has three linearly independent eigenvectors,
namely,

-2 —1 1
X; = 1], xp= 0|, and x3= {0
0 1 1

Thus, A is diagonalizable and, therefore, T has a diagonal matrix representation.
Setting

-2 -1 1 2 0 0
M= 1 0 0|, wehave D=MT'AM=|0 2 0
0 1 1 0 0 4

which is one diagonal representation for T.

The vectors x;, X,, and x5 are coordinate representations with respect to the B
basis for

-2

[~ ofs 08 ]=os -1 3]
HER BHE R R

1
10 0 1 0 0 10
(1) ‘_’1[0 O}Jro[o O}Jrl[o 1}_[0 1}

e={[% oL [ ST )

is a basis of eigenvectors of T for the vector space U. A matrix representation of
T with respect to the C basis is the diagonal matrix D.

The set
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Problems 4.3

In Problems 1 through 11, determine whether the matrices are diagonalizable. If
they are, identify a modal matrix M and calculate M~ 'AM.

2 -3 4 3
(1)A_[1 _2]. (2)A_[3 _4].
31 1 1 1
(3)A = 1 sl (4)A=1[0 1 0
(0 0 1]
1 0 0 (5 2]
(5)A=|2 -3 3]. (6)A=1|0 3 0
1 2 2 2 1 5]
(1 2 3 3 -1 1
(MHMA=|2 4 6/|. (8)A=|-1 3 -1
13 6 9 1 -1 3
7 3 3 3 1 0
NA=| 0 1 0 (10)0A={0 3 1
-3 -3 1 |0 0 3
(3 0 0
(11)A={0 3 1
|0 0 3

In Problems 12 through 21, determine whether the linear transformations can
be represented by diagonal matrices and, if so, produce bases that will generate
such representations.

(12) T: P' — P! defined by T(at+b)=(2a — 3b)t+ (a — 2b).

(13) T: P! — P! defined by T(at+b)=(4a + 3b)t+ (3a — 4b).

(14) T: P* — P? defined by T(at*+bt+c) =at’ + (2a — 3b+3c)t+ (a+2b+ 2c).
(15) T: P?* — P? defined by T(at’ + bt +c) = (5a+b+2c)¢* + 3bt + (2a+ b+ 5¢).
(16) T: P? — P? defined by T(at* +bt+c) = (3a+b)t> + (3b+c)t+3c.

(17) T: U — U where U is the set of all 2 x 2 real upper triangular matrices and

Tl 2 b| [a+2b+3c 2a+4b+6c
0 c| 0 3a+6b+9c|’

(18) T: U — U where U is the set of all 2 x 2 real upper triangular matrices and

ik b| |7a+3b+3c b
0 c| 0 —3a—-3b+c|’



The exponential of a
square matrix A is
defined by the infinite
series

(19) T: W — W where W is the set of all 2 x 2 real lower triangular matrices and

rla 0] _ 3a—b+c 0
b ¢| |-a+3b—-c a—-b+3c|’
[a] [ c
(20) T: R* — R> defined by T|b | = | a
| | | b
[a] 3a+b
(21) T: R®> — R3 defined by T |b | = | 3b+c
c c

4.4 THE EXPONENTIAL MATRIX

In this section and the next section (Section 4.5), we will use eigenvalues and
eigenvectors extensively and conclude our chapter with sections dealing with
differential equations.

One of the most important functions in the calculus is the exponential function
¢". It should not be surprising, therefore, to find that the “exponentials of matri-
ces” are equally useful and important.

To develop this idea, we extend the idea of Maclaurin series to include matrices.
As we further our discussion, we will make reference to the Jordan canonical
form (see Appendix A).

We recall that this function can be written as a Maclaurin series:

Then we can use this expansion to define the exponential of a square
matrix A as

2 X3
_1+x+5+5+--- (4.14)

w|><

oo Ak 2 3
A A" A
—=1 4.15
}; e TR TR (4.15)
Equation (4.14) converges for all values of the variable x; analogously, it can-
be shown that Equation (4.15) converges for all square matrices A, although
the actual proof is well beyond the scope of this book. Using Equa-
tion (4.14), we can easily sum the right side of Equation (4.15) for any diagonal
matrix.

0

2
Example 1 For A = {0 03

} , we have
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1 0] 12 o 12 o1 12 o7
et = + +5 +a +
o 1| 1|lo —03| 2'|o —o03 310 —0.3

1 0 2/1! 0 (2)%/2! 0
= + +
0 1 0 (-0.3)/1! 0 (—0.3)?/2!
2)%/3! 0
N (2)°/ 3 N
0  (—03)%/3!
= 0
i ! e 0
- 00 k| 03
(-0.3) 0 e
0>
k=0
In general, if D is the diagonal matrix
24 0 ... 0 To calculate the
0 1 0 exponential of a diagonal
D= 2 matrix, replace each
: L . diagonal element by the
exponential of that
0 0 ... 4 diagonal element.
Then
e 0 ... 0
0 e ... 0
= . (4.16)
0 0 e'n
1 0 0
Example 2 Find e’ forD= {0 2 0
0 0 2
Solution:
el 0 0
=10 & 0
0 0 &

If a square matrix A is not diagonal, but diagonalizable, then we know from our
work in Section 4.3 that there exists a modal matrix M such that

A =MDM™! (4.17)



where D is a diagonal matrix. It follows that
A’ = AA = (MDM')(MDM™!) = MD(M 'M)DM '
=MD(I)DM ! = MD’M !
A’ = A’A = (MD°M ') (MDM™') = MD?(M~'M)DM ™! = MD*(I)DM !
=MD’M™!
and, in general,
A" = MD"M ™! (4.18)

for any positive integer n. Consequently,

2 AF S MDFM! DR Dy 1
eA:ZE:ZT:M<ZF>M = MePM (4.19)

1 2
Example 3 Find e for A = {4 3].

Solution: The eigenvalues of A are —1 and 5 with corresponding eigenvectors

1 1
[_1] and {2} Here,

e[ e ) o)

It follows first from Equation (4.19) and then from (4.16) that

1 1(|e!' 0[2/3 -1/3
A =MePM ! = / /
-1 2|0 €||1/3 1/3
_1 24—l
3| 2428 el420

If Ais similar to a matrix J . . . . . e e .. P
in Jordan canonical form, Even if a matrix A is not diagonalizable, it is still similar to a matrix J in Jordan

so that A=MJM ' fora canonical form (see Appendix B). That is, there exists a generalized modal matrix

generalized modal matrix M such that
M, then ¢*=Me'M "
(see Appendix A). A=MM! (4.20)
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Repeating the derivation of (4.18) and (4.19), with J replacing D, we obtain

= MM ™! (4.21)

Thus, once we know how to calculate ¢ for a matrix J in Jordan canonical form,
we can use Equation (4.21) to find ¢* for any square matrix A.

A matrix J in Jordan canonical form has the block diagonal pattern

Ji 0 ... O
o J, ... 0
O (4.22)
o o0 ... J
with each J;(i=1, 2, ..., r) being a Jordan block of the form
[ A 0 0 0]
i1 0 0
Ji= 1 o T (4.23)
0 i1
0 0 /4

Jiu 0 - 015, 0 --- 0 2 0 -~ 0
]2 . 0 J, - 0 0 J, - 0 0 I% o0
0 0 - J|LO 0O - ] 0o 0 - J?
Ji 0 0112 o ... o 3 0 ... 0
0 I, oflo J2 ... 0 0 J ... 0
P=J= . . = . .
0 0 Lo 0 7 0 0 J?
and, in general,
J) o0 ... 0
Jo o Jk 0
o o0 .. Jk

for any positive integer value of k. Consequently,



The exponential of a
matrix in Jordan
canonical form (Equation
4.22) has block diagonal
form (Equation 4.24),
with the exponential of
each Jordan block given
by Equation (4.25).

e 3
Z’]g—ll 0 0
k=0 """
J5 0 0 o i
ke 72
RGN LR NN NN ol 0 Zk! 0
E—ZE—ZE : = k=0
k=0 k=0 . .
k .
00 J; < i | (4.24)
o0 YR
k!
L k=0 """
Jdv0 0
0 - 0
0 0 ... &

Thus, once we know how to calculate the exponential of a Jordan block, we can
use Equation (4.24) to find ¢ for a matrix J in Jordan canonical form and then
Equation (4.21) to obtain ¢* for a square matrix A.

A 1 x 1 Jordan block has the form [1] for some scalar 4. Such a matrix is a diag-
onal matrix, indeed all 1 x 1 matrices are, by default, diagonal matrices, and it
follows directly from Equation (4.16) that e!*! = [¢*]. All other Jordan blocks have
superdiagonal elements, which are all ones. For p x p Jordan block in the form of
Equation (4.23), we can show by direct calculations that each successive power
has one additional diagonal of nonzero entries, until all elements above the
main diagonal become nonzero. On each diagonal, the entries are identical. If
we designate the nth power of a Jordan block as the matrix [ajj], then the entries
can be expressed compactly in terms of derivatives as

1d
. —'—](Af) forj=0,1,... ,n
@iy =\ ) d%
0 otherwise
Equation (4.15) then reduces to
r 1 1 1 1 1 )
1 2t 3! (p—1)!
0 1 1 1 1
] ! —2)!
Ji = e 2 (h—2) (4.25)
0 0 1 ! L
1! (p—3)!
Lo 0 0 0 1]
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2t 1 0
Example 4 Find ¢ forJ= | 0 2t 1
0 0 2t

Solution: J is a single Jordan block with diagonal elements 4; =2t. For this matrix,
Equation (4.25) becomes

2 0 0 0 0 O
0 3 0 0 0 O
. 0O 01 1 0 O
J _
Example 5 Find ¢ for ] = 000 1 1 0
000 0 1 1
0 0 0 0 0 1

Solution: J is in the Jordan canonical form

J, 0 0
J=10 J, O
0 0 Js

with J; =[2] and J,=[3] both of order 1 x 1, and

1 1 0 O
P N
3710 0 1 1
0 0 0 1
Here,
di=1¢%], =[], and
1 1 1/2 1/6 e e e/2 e/6
ol 01 1 1/2 0 e e ¢e/2
o 0 0 1 1 0 0 e e
0 0 0 1 0 0 0 e
Then,
2 0 0 0 O 0
0 & 00 0 0
J_ |0 0 e e e/2 e/6
0 0 0 e e e¢/2
0O 0 0 0 e e
0O 0 0 O 0 e



0 4 2
Example 6 Find ¢* forA= | -3 8 3
4 -8 =2

Solution: A canonical basis for this matrix has one chain of length 2:
x,=[0 0 1]"andx;=[2 3 —4]", and one chain of length 1:y;=[2 1 0]", each
corresponding to the eigenvalue 2. Setting

2 20 2 00
M= |1 3 0 and J=]|0 2 1
0 -4 1 0 0 2

we have A=MJM ™. Here J contains two Jordan blocks, the 1 x 1 matrix J, =[2]

and the 2 x 2 matrix J, = B ﬂ . We have,
1 1 e? &2
1 [,2 h 2 _
=] =e [0 1}_[0 ez}
e 0 0
d=65=|0 &2 ¢
0 0 &
2 2 077Te 0 3/4 —1/2 0
A=MIM'=|1 3 0|0 ¢ &||-1/4 1/2 0
0 —4 1 0 0 ¢ -1 2 1
-1 4 2
=e2|-3 7 3
4 -8 -3

Two important properties of the exponential of a matrix are given in the next
theorems.

» THEOREM 1

€®=1, where 0 is the n x n zero matrix and | is the n x n identity matrix.

Proof: In general,

0 Ak
eA:ZH

0 Ak
> I+ ;ﬁ (4.26)

=

With A=0, we have
o 14

)

NgE
T

=1

T
X

M t=er <«

[»THEOREM 2

~—
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Proof: i
0o Ak o [ a\k
At _k_ofz_: ;(kf!\)
= 1+A+§+§—?+-~ 1+A+§+‘2—?+-~
=1 +A[l - 1] +A? %—14—% +A® —%+%—%+% +--

=1
Thus, e is the inverse of ¢*.

We conclude from Theorem 2 that ¢* is always invertible even when A is not. To
calculate e * directly, set B=—A, and then determine ¢®.

A particularly useful matrix function for solving differential equations is e*,
where A is a square constant matrix (that is, all of its elements are constants)
and t is a variable, usually denoting time. This function may be obtained directly
by setting B=At and then calculating e®.

3 0 4
Example 7 Find e* forA=| 1 2 1
-1 0 -2
3t 0 4t
Solution: Set B = At = t 2t t
-t 0 =2t

A canonical basis for B contains one chain of length 1, corresponding to the
eigenvalue —t of multiplicity 1, and one chain of length 2, corresponding to
the eigenvalue 2t of multiplicity 2. A generalized modal matrix for B is

1 0 4
M=] 0 3t 0
-1 0 -1
Then,
-t 0 0 et 0 0
J=M"'BM=| 0 2t 1|, d=]0 e ¢
0 0 2t 0 0 &t
1 0 47[et 0 07[-1/3 0 —4/3
AN=eB=MIM'=| 0 3t 0|]|0 & & 0 1/(3t) 0
-1 0 -1 0 0 e 1/3 0 1/3
) —e P44 0 —de !+ 4"
= 3tet 3e2t 3te*t
67[ _ e2t 0 4e7t _ e2t

To calculate €', where A
is a square constant

matrix and tis a variable,
set B=At and calculate



Observe that this derivation may not be valid for t=0 because M~ " is undefined
there. Considering the case t=0 separately, we find that ¢*° =¢°=1. Our answer
also reduces to the identity matrix at t=0, so our answer is correct for all t.

The roots of the characteristic equation of B=At may be complex. As noted in
Section 4.1, such a root is not an eigenvalue when the underlying vector space
is R", because there is no corresponding eigenvector with real-valued compo-
nents. Complex roots of a characteristic equation are eigenvalues when the
underlying vector space is the set of all n-tuples with complex-valued compo-
nents. When calculating matrix exponentials, it is convenient to take the under-
lying vector space to be complex-valued n-tuples and to accept each root of a
characteristic equation as an eigenvalue. Consequently, a generalized modal
matrix M may contain complex-valued elements.

If A is a real matrix and t a real-valued variable, then Bt is real-valued. Because all
integral powers of matrices with real elements must also be real, it follows from
Equation (4.26) that ¢® must be real. Thus, even if ] and M have complex-valued
elements, the product ¢® =Mé’M " must be real. Complex roots of the character-
istic equation of a real matrix must appear in conjugate pairs, which often can be
combined into real-valued quantities by using Euler’s relations:

cos =G and sinf =
Example 8 Find ¢* for A = { 01 }

Solution: Set B = At = [ 0 t].
—t 0

The eigenvalues of B are A, =it and 1, =—it, with corresponding eigenvectors
[1 i]"and [1 —i]", respectively. Thus,

11 it 0
M:{i —i]’ ]:[0 —it}

et oll1/2 —i/2
0 e™||1/2 i/2

el 4 git it _ it

2 2i l cost sint]

and

AL B 1 1

i —i

el —e7it gt 4 ot —sint cost

2i 2

If the eigenvalues of B=At are not pure imaginary but rather complex numbers
of the form f+i0 and f — i6, then the algebraic operations needed to simplify e®
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are more tedious. Euler’s relations remain applicable, but as part of the following
identities:

PO | pB—it B eBei® 4 oB =it B o (eié) T eﬂ‘@)

— = =ePcos b
2 2 2

and

B+i0 _ ,p—i0 B0 B ,—i0 B (0 _ ,—i0
e e ele éle e’ (e e
- = - = ( - ) = esin 6
2i 21 2i

The exponential of a matrix is useful in matrix calculus for the same reason the The derivative of a
exponential function is so valuable in the calculus: the derivative of ¢’ is closely Matrix is obtained by
related to the function itself. The derivative of a matrix is obtained by differenti- differentiating each

. . . . AU element in the matrix.
ating each element in the matrix. Thus, a matrix C=|[c;] has a derivative if and
only if each element cij has a derivative, in which case, we write

o,y dC(t)  [dc(t)
C(t) = - { i (427)
2 .
Example 9 If C(z) = Lfl ; S:;t} , then

d(t?)  d(sint)

C(t)—dc(t)— dt dt | 2t cost
Codt d(In ¢) d(elz) 1/t 2t
dt dt
» THEOREM 3

de™
If A is a constant matrix, then —- = A = AA. <

Proof:

e di \ &= k! dt \ &= k! f—dt \ k! c= k!
e AAk71 k—1 oS Akfl k—1
=0+ T = A
k=1 (k=1)! k:l( -1

I
NgE
‘ >
I
>
hgE
=
>
%

If we factor A on the right, instead of the left, we obtain the other identity.



By replacing A with —A in Theorem 3, we obtain:

»COROLLARY 1

If A is a constant matrix, then

—A

t
dedt = A = —MA. <

Problems 4.4

In Problems 1 through 29, find the exponential of each matrix.

(1)

(4)

(7)

(10)

(13)

(16)

(19)

(21)

(23)

(26)

(-1 0
| 0 4]
(0 0
0 o}

(3 1
0 3]

. (14)

(2) [é ;
(5) [—g

(8)

(11)

o N O

—_

S o

eNeNeNS
o O Ut o

au = oo U - o o

]
|

w o oo

(3)

(6)

(9)

SO OON oSN

(12)

(15)

(18)

(20)

SO o ocu OO o u S oo w!m

(22)

(25)

(28) |0

[—7

0 -—

N =
| I

S W o

N =

c o~
I

S O L o S O Ut o

|
o Ul =

O N =
N

0
7

S~ O N — O ~ O O

|

I
= = O
| |

S U~ O S U~ O o Ul © O

= o o U= o O Ul O © O




1 0 0
(29) |2 3 —1|.
1 1 1
(30) Verify Theorem 2 for A = 3} )

(31) Verify Theorem 2 for A = 64 0]

(32) Verify Theorem 2 for A =

o oo

(33) Find ¢*¢®, B*, and ¢*B when

1 1 0 1
A_[O 0] and B_[O 1

and show that e £ e®e® £ B,
(34) Find two matrices A and B such that ¢*e® = A8,

1 0
0 1] . What is the inverse of A?
0 0

J
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(35) Using Equation (4.15) directly, prove that ¢*¢®=¢*"® when A and B

commute.

In Problems 36 through 54, find ¢ for the given matrix A.

(4 4 [ 2 1
e |3 5]. @7 | ] _2].
(39) |} ;] (a0) | _2]

- [0 1 0]
(42) S ;] 43) |0 0 1

i 0 0 0]

[—1 1 (4 1 0]
@5 | 0o -1 1 46) |0 4 0

L0 0 -1 0 0 4]

T2 3 0 31 0
48) | -1 -2 ol. 49) | -1 1 of.

111 12 2
(51) | _ o (1)] (52) [_f _g]
(54) j H

(38) {

(41) [

(44)
(47)

(50)

(53)

(55) Verify Theorem 3 for the matrix A given in Example 7.

(56) Verify Theorem 3 for the matrix A given in Example 8.

4
-1

—10

|



The dominant eigenvalue
of a matrix is the one
having the largest
absolute value.

(57) Using the formula

d[A(t)B(1)] dA(t) dB(t)
dr :< dr )B(t)+A(t)<clt)’

derive a formula for differentiating A*(t). Use this formula to find dA’(t)/
dt when
t 2t2}

A= |

and show that dA”(t)/dt # 2A(t)dA(t)/dt. Therefore, the power rule of differ-
entiation does not hold for matrices unless a matrix commutes with its
derivative.

4.5 POWER METHODS

The analytic methods described in Section 4.1 are impractical for calculating the
eigenvalues and eigenvectors of matrices of large order. Determining the charac-
teristic equations for such matrices involves enormous effort, and finding its roots
algebraically is usually impossible. Instead, iterative methods that lend themselves
to computer implementation are used. Ideally, each iteration yields a new approx-
imation, which converges to an eigenvalue and the corresponding eigenvector.

The dominant eigenvalue of a matrix is the eigenvalue with the largest absolute
value. Thus, if the eigenvalues of a matrix are 2, 5, and —13, then —13 is the dom-
inant eigenvalue because it is the largest in absolute value. The power method is an
algorithm for locating the dominant eigenvalue and a corresponding eigenvector
for a matrix of real numbers when the following two conditions exist:

Condition 1. The dominant eigenvalue of a matrix is real (not complex) and is
strictly greater in absolute value than all other eigenvalues.

Condition 2. If the matrix has order n x n, then it possesses n linearly independent
eigenvectors.

Denote the eigenvalues of a given square matrix A satisfying Conditions 1 and 2
by 41, 23, ..., Z,, and a set of corresponding eigenvectors by vy, v,, .. ., v,,, respec-
tively. Assume the indexing is such that

|21 > 42| > |43] = -+ > | A

Any vector X, can be expressed as a linear combination of the eigenvectors of A,
SO we may write

Xp = C1V1 + CVa + -+ CuVi

Multiplying this equation by A%, for some large, positive integer k, we get

Afxg = Ak(clvl + vy + -+ Vi)
= ClAkVI + CzAsz + -4 CnAkVn
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It follows from Theorem 8 of Section 4.2 that

AkXO = Cli}iVl + Clﬂ.sz + -4 cn)flvn
k k

>
=

A
=% evi + ¢ ™ Vo+ -+
1

Vn

~
<

~ /l;l‘clvl for large k

This last pseudo-equality follows from noting that each quotient of eigenvalues
is less than unity in absolute value, as a result of indexing the first eigenvalue as
the dominant one, and therefore tends to 0 as that quotient is raised to succes-
sively higher powers.

Thus, A*x, approaches a scalar multiple of v;. But any nonzero scalar multiple of
an eigenvector is itself an eigenvector, so A*x, approaches a scalar multiple of v;,
which is itself an eigenvector of A corresponding to the dominant eigenvalue,
providing ¢, is not 0. The scalar ¢, will be 0 only if x, is a linear combination
of {vy, v3, ..., v, }.

The power method begins with an initial vector x,, usually the vector having all
ones for its components, and then iteratively calculates the vectors

X; = Axp
Xy = AX1 = AZXQ
X3 = AX2 = A3X0

X, =AxX,_1 = Akxo

As k gets larger, x;, approaches an eigenvector of A corresponding to its dominant
eigenvalue.

THE POWER METHOD

Step 1. Begin with an initial guess xq for an eigenvector of a matrix A, having the property
that the largest component of xq in absolute value is one. Set a counter k equal
to 1.

Step 2. Calculate x,=Ax,_.

Step 3. Set A equal to the largest component of x, in absolute value and use 1 as an
estimate for the dominant eigenvalue.

Step 4. Rescale x, by dividing each of its components by 4. Relabel the resulting vector
as Xy.

Step 5. If 1 is an adequate estimate for the dominant eigenvalue, with x, as a
corresponding eigenvector, stop; otherwise increment k by one and return to
Step 2.



We can even determine the dominant eigenvalue. If k is large enough so the x; is a
good approximation to the eigenvector to within acceptable roundoff error, then
it follows that Ax;, = 4,x,. If x;, is scaled so that its largest component in absolute
value is 1, then the component of x;,, , =Ax;, = 4,x;, that has the largest absolute
value must be Z,. We can now formalize the power method.

Example 1 Find the dominant eigenvalue and a corresponding eigenvector for
1 2
St
Solution: We initialize xo=[1 1]T. Then, for the first iteration,

e R

Lx~7

1
xi <2 [3 71" =[0.428571 1]

For the second iteration,

{l 2} [0‘428571}
X7 :A.Xl =

4 3 1
A= 4.714286

2.428571
4.714286

X5 [2.428571 4.714286]" =[0.515152 1]

—_ -
4.714286

For the third iteration,

1 2770515152 2.515152
X3 = sz = =
4 3 1 5.060606
/.~ 5.060606
1 T T
X3 — ———[2.515152 5.060606]" =[0.497006 1]
5.060606

For the fourth iteration,
1 2 } [ 0.497006 }

4 3 1
A= 4.988024

[ [2.497006}
Xy = AX3 =

4.988024

X4 [2.497006 4.988024]" = [0.500600 1]

- -
4.988024

The method is converging to the eigenvalue 5 and its corresponding eigenvector
[05 1]"
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Example 2 Find the dominant eigenvalue and a corresponding eigenvector for

0 1 0
A= 0 0 1
18 -1 -7

Solution: We initialize xo=[1 1 1]T. Then, for the first iteration,

o 1 o]f1 1
X1:AX(): 0 1 1 = 1
18 -1 —7||1 10
For the second iteration,
0 1 o0]f[01 0.1
X7 :AX1: O 0 1 01 = 1
18 -1 -7 1 -53
A~ =53
1
X = —=[01 1 —5.3]" =[-0.018868 —0.188679 1]
For the third iteration,
0 1 0][-0.018868 —0.188679
x3=Ax,=| 0 0 1||-0.188679| = 1
18 -1 -7 1 —7.150943
A~ —7.150943
1
X3« ————[—0.188679 1 —7.150943]"
—7.150943

=1[0.026385 —0.139842 1]

Continuing in this manner, we generate Table 4.1, where all entries are rounded
to four decimal places. The algorithm is converging through six decimal places to
the eigenvalue —6.405125 and its corresponding eigenvector

[0.024375 —0.156125 1]

Although effective when it converges, the power method has deficiencies. It does
not converge to the dominant eigenvalue when that eigenvalue is complex, and it
may not converge when there is more than one equally dominant eigenvalue
(see Problem 12). Furthermore, the method, in general, cannot be used to locate
all the eigenvalues.



D

Iteration Eigenvector Components Eigenvalue
0 1.0000 1.0000 1.0000

1 0.1000 0.1000 1.0000 10.0000
2 —0.0189 —0.1887 1.0000 —5.3000
3 0.0264 —0.1398 1.0000 —7.1509
4 0.0219 —0.1566 1.0000 —6.3852
5 0.0243 —0.1551 1.0000 —6.4492
6 0.0242 —0.1561 1.0000 —6.4078
7 0.0244 —0.1560 1.0000 —6.4084
8 0.0244 —0.1561 1.0000 —6.4056

The inverse power
method is the power
method applied to the
inverse of a matrix A; in
general, the inverse
power method converges
to the smallest eigen-
value of A in

absolute value.

A more powerful numerical method is the inverse power method, which is the
power method applied to the inverse of a matrix. This, of course, adds another
assumption: The inverse must exist, or equivalently, the matrix must not have
any zero eigenvalues. Since a nonsingular matrix and its inverse share identical
eigenvectors and reciprocal eigenvalues (see Theorem 4 of Section 4.4), once we
know the eigenvalues and eigenvectors of the inverse of a matrix, we have the
analogous information about the matrix itself.

The power method applied to the inverse of a matrix A will generally converge to
the dominant eigenvalue of A™". Its reciprocal will be the eigenvalue of A having
the smallest absolute value. The advantages of the inverse power method are that
it converges more rapidly than the power method, and it often can be used to
find all real eigenvalues of A; a disadvantage is that it deals with A~*!, which is
laborious to calculate for matrices of large order. Such a calculation, however,
can be avoided using LU decomposition.

The power method generates the sequence of vectors
X = AXp_1
The inverse power method will generate the sequence
X, =A%,
which may be written as
Axj, = Xp, 1
We solve for the unknown vector x;, using LU decomposition (see Section 1.7).

Example 3 Use the inverse power method to find an eigenvalue for
2 1
SN
Solution: We initialize xo=[1 1]". The LU decomposition for A has A= LU with

1 0 2 1
L_[l 1} and U_[O 2}
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For the first iteration, we solve the system LUx; =X, by first solving the system
Ly=x, for y, and then solving the system Ux; =y for x;. Set y=[y; ] and
x;=[a b]". The first system is

y1+0y, =1
n+ty=1

which has as its solution y; = 1 and y,=0. The system Ux; =y becomes

2a+b=1
2b=0

which admits the solution a=0.5 and b=0. Thus,
X1 = A_1X0 = [05 O}T
A~ 0.5 (an approximation to an eigenvalue for A™")

1
X1 = 5[0 0" =[1 ol

For the second iteration, we solve the system LUx, =x; by first solving the system
Ly=x, for y, and then solving the system Ux,=y for x,. Set y=[y; 7,]|' and
x,=[a b]". The first system is

yi+0p=1
y1+y2=0
which has as its solution y; =1 and y,=—1. The system Ux, =y becomes
2a+b=1
2b=-1
which admits the solution a=0.75 and b=—-0.5. Thus,
x; =A7'x; =[0.75 —0.5]"
A= 0.75

1 T T
——[0.75 —0.5]"=[1 —0.666667
X2 = 5ogl =1 ]

For the third iteration, we first solve Ly=x, to obtainy=[1 — 1.666667]", and
then Ux; =y to obtain x;=[0.916667 —0.833333]" Then,

A= 0.916667

X3 [0.916667 —0.833333]" =[1 —0.909091]"

—_
0.916667

Continuing, we converge to the eigenvalue 1 for A~" and its reciprocal 1/1 =1 for
A. The vector approximations are converging to [1 — 1]”, which is an eigenvec-
tor for both A~ and A.



Example 4 Use the inverse power method to find an eigenvalue for
7 2 0
A=12 1 6
0O 6 7

Solution: We initialize x,=[1 1 1]". The LU decomposition for A has A=LU
with

1 0 0 7 2 0
L={0285714 1 O and U= |0 0.428571 6
0 14 1 0 0 =77

For the first iteration, sety=[y; y» 3] andx;=[a b c]|". The first system is

yi+0y2+0y; =1
0.285714y, +y2 + 0ps = 1
Oy1 +14y, +y3 =1

which has as its solution y; =1, y,=0.714286, and y; =—9. The system Ux; =y
becomes

7a+2b=1
0.428571b + 6¢ = 0.714286
—77c = -9

which admits the solution a=0.134199, b=0.030303, and ¢=0.116883. Thus,

x; = A 'xp = [0.134199 0.030303 0.116833]"

47 0.134199 (an approximation to an eigenvalue forA™")

X1 [0.134199 0.030303 0.116833]T

- -
0.134199

=[1 0.225806 0.870968]"
For the second iteration, solving the system Ly=x; for y, we obtain

y=[1 —0.059908 1.709677]"

Then, solving the system Ux, =y for x,, we get

X, = [0.093981 0.171065 —0.022204]"
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Therefore,

A~ 0.171065

X) [0.093981 0.171065 —0.022204 ]T

-
0.171065
=[0.549388 1 —0.129796]"

For the third iteration, solving the system Ly=x, for y, we obtain

y =[0.549388 0.843032 —11.932245]T

Then, solving the system Ux; =y for x3, we get

x3 =[0.136319 —0.202424 0.154964}T

Therefore,

A=~ —0.202424
1

- -

—0.202424

=[-0.673434 1 —0.765542]"

X3 [0.136319 —0.202424 0.154964]T

Continuing in this manner, we generate Table 4.2, where all entries are rounded
to four decimal places. The algorithm is converging to the eigenvalue —1/3 for
A~ and its reciprocal —3 for A. The vector approximations are converging to
[-0.2 1 —0.6]", which is an eigenvector for both A~! and A.

Ilteration Eigenvector Components Eigenvalue
0 1.0000 1.0000 1.0000

1 1.0000 0.2258 0.8710 0.1342
2 0.5494 1.0000 —0.1298 0.1711

3 —0.6734 1.0000 —0.7655 —0.2024
4 —0.0404 1.0000 —0.5782 —0.3921

5 -0.2677 1.0000 —0.5988 -0.3197
6 —0.1723 1.0000 —0.6035 —0.3372

7 -0.2116 1.0000 -0.5977 —0.3323
8 —0.1951 1.0000 —0.6012 —0.3336
9 —0.2021 1.0000 —0.5994 —0.3333
10 —0.1991 1.0000 —0.6003 —0.3334
11 —0.2004 1.0000 —0.5999 —0.3333

12 —0.1998 1.0000 —0.6001 —0.3333




We can use Theorem 9 of Section 4.2 in conjunction with the inverse power
method to develop a procedure for finding all eigenvalues and a set of corre-
sponding eigenvectors for a matrix, providing that the eigenvalues are real and
distinct, and estimates of their locations are known. The algorithm is known
as the shifted inverse power method.

If ¢ is an estimate for an eigenvalue of A, then A — cI will have an eigenvalue near
0 and its reciprocal will be the dominant eigenvalue of (A —cI)~'. We use the
inverse power method with an LU decomposition of A — ¢I to calculate the dom-
inant eigenvalue / and its corresponding eigenvector x for (A —cI)~'. Then 1/
and x are an eigenvalue and eigenvector pair for A — cI whilec+ (1/1) and x are an
eigenvalue and eigenvector pair for A.

THE SHIFTED INVERSE POWER METHOD

Step 1. Begin with an initial guess xq for an eigenvector of a matrix A, having the
property that the largest component of xq in absolute value is one. Set a
counter k equal to 1 and choose a value for the constant c (preferably an
estimate for an eigenvalue if such an estimate is available).

Step 2. Calculate x,=(A—cl)X,_1.

Step 3. Set 1 equal to the largest component of x, in absolute value.

Step 4. Rescale x, by dividing each of its components by /. Relabel the resulting vector
as Xy.

Step 5. If c+(1/4) is an adequate estimate for an eigenvalue of A, with x, as a
corresponding eigenvector, stop; otherwise increment k by one and return to
Step 2.

Example 5 Find a second eigenvalue for the matrix given in Example 4.

Solution: Since we do not have an estimate for any of the eigenvalues, we
arbitrarily choose c=15. Then

-8 2 0
A—cl= 2 —-14 6
0 6 -8

which has an LU decomposition with

1 0 0 -8 2 0
L=|-0.25 1 0 and U= 0 —-135 6
0 —-0.444444 1 0 0 —5.333333

Applying the inverse power method to A — 151, we generate Table 4.3, which is
T
2

1
converging to A=—0.25 and x = lg 3 . The corresponding eigenvalue

of Ais (1/—0.25)+15=11, with the same eigenvector.
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Iteration Eigenvector Components Eigenvalue
0 1.0000 1.0000 1.0000

1 0.6190 0.7619 1.0000 -0.2917
2 0.4687 0.7018 1.0000 —0.2639
3 0.3995 0.6816 1.0000 —0.2557
4 0.3661 0.6736 1.0000 —0.2526
5 0.3496 0.6700 1.0000 —0.2513
6 0.3415 0.6683 1.0000 —0.2506
7 0.3374 0.6675 1.0000 —0.2503
8 0.3354 0.6671 1.0000 —0.2502
9 0.3343 0.6669 1.0000 —0.2501
10 0.3338 0.6668 1.0000 —0.2500
11 0.3336 0.6667 1.0000 —0.2500

Using the results of Examples 4 and 5, we have two eigenvalues, 4, =—3 and
A,=11, of the 3 x 3 matrix defined in Example 4. Since the trace of a matrix
equals the sum of the eigenvalues (Theorem 1 of Section 4.2), we know
74+1+7=—3411+ /3, so the last eigenvalue is 13=7.

Problems 4.5

In Problems 1 through 10, use the power method to locate the dominant eigen-
value and a corresponding eigenvector for the given matrices. Stop after five
iterations.

(2 1 (2 3 3 6
(1) B 3]. (2) 4 6]. (3) [9 6].
[0 1 (8 2 8 3
(4) 4 6}. (5) 3 3]. (6) [3 2].
3 0 0 (7 2 0 3 2 3
(7) 12 6 4. 8) 12 1 6. 912 6 o6].
|2 3 5 0 6 7 3 6 11
2 -17 7
(10) | -17 -4 1
7 1 —14

(11) Use the power method on

2 -1
A= 2 2
-1 2

and explain why it does not converge to the dominant eigenvalue A1=3.

S N O



(12) Use the power method on
3 5
S

and explain why it does not converge.

(13) Shifting can also be used with the power method to locate the next most
dominant eigenvalue, if it is real and distinct, once the dominant eigen-
value has been determined. Construct A — /I, where Z is the dominant
eigenvalue of A, and apply the power method to the shifted matrix. If
the algorithm converges to y, and x, then p+ 1 is an eigenvalue of A with
the corresponding eigenvector x. Apply this shifted power method algo-
rithm to the matrix in Problem 1. Use the result of Problem 1 to deter-
mine the appropriate shift.

(14) Use the shifted power method as described in Problem 13 on the matrix

in Problem 9. Use the results of Problem 9 to determine the appropriate
shift.

(15) Use the inverse power method on the matrix defined in Example 1. Stop
after five iterations.

(16) Use the inverse power method on the matrix defined in Problem 3. Take
xo=[1 —0.5]" and stop after five iterations.

(17) Use the inverse power method on the matrix defined in Problem 5. Stop
after five iterations.

(18) Use the inverse power method on the matrix defined in Problem 6. Stop
after five iterations.

(19) Use the inverse power method on the matrix defined in Problem 9. Stop
after five iterations.

(20) Use the inverse power method on the matrix defined in Problem 10.
Stop after five iterations.

(21) Use the inverse power method on the matrix defined in Problem 11.
Stop after five iterations.

(22) Use the inverse power method on the matrix defined in Problem 4.
Explain the difficulty and suggest a way to avoid it.

(23) Use the inverse power method on the matrix defined in Problem 2.
Explain the difficulty and suggest a way to avoid it.

(24) Can the power method converge to a dominant eigenvalue if that eigen-
value is not distinct?

(25) Apply the shifted inverse power method to the matrix defined in Prob-
lem 9, with a shift constant of 10.

(26) Apply the shifted inverse power method to the matrix defined in
Problem 10, with a shift constant of —25.
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CHAPTER 4 REVIEW
Important Terms

characteristic equation Euler’s relations

determinant exponential of a matrix
derivative of a matrix inverse power method
diagonalizable matrix modal matrix

dominant eigenvalue model

i power method

eigenspace shifted inverse power method
eigenvalue spectral matrix

eigenvector trace

Important Concepts
Section 4.1

= A nonzero vector x is an eigenvector of a square matrix A if there exists a scalar
A, called an eigenvalue, such that Ax=72x.

= Similar matrices have the same characteristic equation (and, therefore, the
same eigenvalues).

= Nonzero vectors in the eigenspace of the matrix A for the eigenvalue A are
eigenvectors of A.

= Figenvalues and eigenvectors for a linear transformation T: V — V are deter-
mined by locating the eigenvalues and eigenvectors of any matrix represen-
tation for T; the eigenvectors of the matrix are coordinate representations of
the eigenvector of T.

Section 4.2

= Any nonzero scalar multiple of an eigenvector is again an eigenvector; the
nonzero sum of two eigenvectors corresponding to the same eigenvalue is
again an eigenvector
= The sum of the eigenvalues of a matrix equals the trace of the matrix.
= The eigenvalues of an upper (lower) triangular matrix are the elements on the
main diagonal of the matrix.
= The product of all the eigenvalues of a matrix (counting multiplicity) equals
the determinant of the matrix.
= A matrix is singular if and only if it has a zero eigenvalue.
= If x is an eigenvector of A corresponding to the eigenvalue /, then
for any nonzero scalar k, k/. and x are a corresponding pair of eigenvalues
and eigenvectors of kA,
A" and x are a corresponding pair of eigenvalues and eigenvectors of A", for
any positive integer n,
for any scalar ¢, A —c¢ and x are a corresponding pair of eigenvalues and
eigenvectors of A—cI,
1/4 and x are a corresponding pair of eigenvalues and eigenvectors of A,
providing the inverse exists,
/. is an eigenvalue of A"
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Section 4.3

An n x n matrix is diagonalizable if and only if it has n linearly independent
eigenvectors.

Eigenvectors of a matrix corresponding to distinct eigenvalues are linearly
independent.

If /. is an eigenvalue of multiplicity k of an n x n matrix A, then the number of
linearly independent eigenvectors of A associated with A is n—r(A—AI),
where r denotes rank.

If V is an n-dimensional vector space, then a linear transformation T: V — V
may be represented by a diagonal matrix if and only if T possesses a basis of
eigenvectors.

Section 4.4

To calculate the exponential of a diagonal matrix, replace each diagonal ele-
ment by the exponential of that diagonal element.

If A is similar to a matrix J in Jordan canonical form, so that A=MJM ™! for
a generalized modal matrix M, then e* =Me'M .

¢®=1, where 0 is the n x n zero matrix and I is the n x n identity matrix.

Section 4.5

The power method is a numerical method for estimating the dominant eigen-
value and a corresponding eigenvector for a matrix.

The inverse power method is the power method applied to the inverse of a
matrix A. In general, the inverse power method converges to the smallest
eigenvalue in absolute value of A.
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5.1 DIFFERENTIAL EQUATIONS

A differential equation is an equation involving an unknown function and one or
more of its derivatives. For the next few sections of this chapter, we will take
advantage of some of the concepts we have thus far developed and apply them
to solving differential equations.

5.2 DIFFERENTIAL EQUATIONS IN
FUNDAMENTAL FORM

An important application of Jordan canonical forms (see Appendix A), in
general, and the exponential of a matrix, in particular, occurs in the solution
of differential equations with constant coefficients. A working knowledge of
the integral calculus and a familiarity with differential equations is required to
understand the scope of this application. In this section, we show how to trans-
form many systems of differential equations into a matrix differential equation.
In the next section, we show how to solve such systems using the exponential of
matrix.

Linear Algebra
Copyright © 2014, Elsevier Inc. All rights reserved.

Applications of Eigenvalues



A differential equation in the unknown functions x;(t), x5(t), ..., x,(¢) is an
equation that involves these functions and one or more of their derivatives.
We shall be interested in systems of first-order differential equations of the form

dxl (t)
dt

de(t)
dt

= a1 x1(t) + a1xa2(t) + - - + arnxa(t) + f1 (1)

= 71X (t) + dzzxz(t) +---+ aann(t) Jrfl(t)
(5.1)

dx, (t)

T = a11X1 (t) + a12X2(t) +--- alnxn(t) +f1 (t)

Here, a;; (i,j=1,2, ..., n) isrestricted to be a constant and f;(t) is presumed to be a
known function of the variable t. If we define,

x1(t) apy a4 fi(r)
x2(t) A azr dxp - doy f2(1)

xn(t) an1  dp2 - dpn fn(t)
then Equation (5.1) is equivalent to the single matrix equation

dx(t)
— = Ax(1) +£(1) (5:3)

Example 1 The system of equations

dj;—it) = 2x() + 3y(t) +42(0) + (¥ — 1)

d);—(:) = 5y(t) + 62(t) + €'

dz_(? = 7x(t) — 8y() — 92(1)

is equivalent to the matrix equation

[ dx(t)/dt 2 3 4] [x(@) 2 —1
dy(t)/dt] = [0 5 6} [y(t)] + { e }
| dz(t)/dt 7 -8 =9zt 0

This matrix equation is in form (4.30) with

[ x(t) 2 3 4 21
x(t) = |p(t)|, A=]0 5 6|, and f(t)=| ¢

| (1) 7 -8 -9 0

In this example, x;(t) =x(t), x2(t) =y(t), and x3(t) =z(t).

|
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We solve Equation (5.3) in the interval a <t <b by identifying a column matrix
x(t) that when substituted into Equation (5.3) makes the equation true for all
values of t in the given interval. Often, however, we need to solve more than just
a set of differential equations. Often, we seek functions x;(t), x»(t), . . ., x,(¢) that
satisfy all the differential equations in Equation (5.1) or, equivalently, Equa-
tion (5.3) and also a set of initial conditions of the form

xl(t()) =, xz(to) =C, ... ,xn(to) =Cp (54)

where ¢y, ¢5, ..., ¢, are all constants, and ¢, is a specific value of the variable
t inside the interval of interest. Upon defining

C1
C
c=1.
Cn
it follows that
X1 (to) C1
x2(to) Cy
x(ty) = . = =c
xn(to) Cn

Thus, initial conditions (Equation 4.31) have the matrix form

X(t()) =C (55)
We say that a system of differential equations is in fundamental form if it is given A system of differential
by the matrix equations equations is in
dx(t) fundamental form if it
= Ax(t) + (1) is given by the matrix
dt (5.6) equations
x(to) = ¢ d);(:) = Ax(t) +f(¢)
Example 2 The system of equations X(to) = c.
dr(t)
= 2r(t) — 3s(t
T = 2r(0) - 3s(0)
ds(t
% = 4r(t) + 55(1)

r(n) = 10, s(n) = —20

is equivalent to the matrix equations

e R FIEH



A system of differential
equations in fundamental
form is homogeneous
when f(t)=0.

sl =1

This set of equations is in fundamental form (4.33) with

x(t) = [:((tt;]A: {421 _i],f(t)z {8], and ¢ = {;g}

In this example, x;(t) =7(t) and x,(t) =s(t).

A system of differential equations in fundamental form is homogeneous when
f(t)=0 and nonhomogeneous when f(t)#0 (i.e., when at least one element of
f(t) is not zero). The system in Example 2 is homogeneous; the system in Exam-
ple 1 is nonhomogeneous.

Generally, systems of differential equations do not appear in fundamental form.
However, many such systems can be transformed into fundamental form by
appropriate reduction techniques. One such group are initial-value problems
of the form

d"x(t) dmx(t) dx(t) _
[ ar +dn -1 +...+a 7 + aox(t) = f(t)
) — oy, B0 ) (5.7)
X\lo) = €1, dt —Cz--~/W—Cn—1

This is a system containing a single nth-order, linear differential equation with
constant coefficients along with n—1 initial conditions at t,. The coefficients
dg, 4y, ..., a are restricted to be constants and the function f(t) is presumed
to be known and continuous on some interval centered around t,.

A method of reduction for transforming system (5.5) into fundamental form is
given by the following six steps.

Step 1. Solve system (5.5) for the nth derivative of x(t).
d'x(t) (a1 d"'x(t) ar\ dx(t) [ao f(1)
Q- ‘(7) a o \a)a \G)f0+,

Step 2. Define n new variables (the same number as the order of the differential

equations) x(t), x2(¢), ..., x,(t) by the equations
dx d*x dn—2x drlx
X1:X(t), X2:E,X3 :W/ ...,xn,lzwj, xn:W (58)
Here, we simplified x;(t) (j=1,2, ..., n) to x;. By differentiating the last
equation in system (5.8), we obtain
d a
Y _2X (5.9)

de dem
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Step 3. Substitute Equations (5.8) and (5.9) into the equation obtained in Step 1,
thereby obtaining an equation for dx,/dt in terms of the new variables.

The result is

dx,
dt

R

(5.10)

Step 4. Using Equations (5.8) and (5.10), construct a system of n first-order

differential equations for x;, x5, ..

dx,

o=

(o)l

.. X,. The system is

o
a 7
v _
a2
dxnfl_x
a "

(5.11)

In this last equation, the order of the terms in Equation (5.10) was rear-
ranged so that x, appears before x,, which appears before x; and so on.
This was done to simplify the next step.

Step 5. Write system (5.11) as a single matrix differential equation. Define

x(t)

Then Equation (5.11) is equivalent to the matrix equation

X1 0
X2 0
g =
Xn—1 0
Xn f(t)/an
0 1 0 0 07
0 0 1 0 0
0 0 0 1 0
0 0 0 0
B =
ay ay ay an an
dx(t)

= Ax(t) +(1).



Step 6. Write the initial conditions as a matrix equation. Define c=[c; ¢, . .. ¢,]
Then,

x1(to) x(to) €1

.X'z(t()) d.X'(to)/dt (%)
x)=| | = : NNE:

Xn(to) d”ilx(to)/dtnil Cn

The results of Steps 5 and 6 are a matrix system in fundamental form.

Example 3 Write the initial-value problem

in fundamental form.

Solution: The differential equation may be rewritten as

d*x(t)
= —x(t) +2
0 (t) +
This is a second-order differential equation, so we define two new variables
dx dx, d*x
x1 = x(t) and x, = Thus, d_tz =2 and the original differential equation
dx

becomes d—tz = —x1 + 2. A first-order system for the new variables is

dx1

— =x; = 0x 1x

i 2 1+ 1x;

dX2

g:—x1+2:—lx1+0x2+2

Deﬂnex(t):{ij, A:{‘l) H f(t):m, and c:{(l)].Then,

the initial-value problem is equivalent to the fundamental form

dx(t)
dt

=Ax(t) +f(t); x(n)=c

Example 4 Write the initial-value problem

G A Bx g dx dx e
dt* a3 a2 dt o

. dx(0)  _ d’x(0) d*x(0)
x(0)=1, T =2 =, =0

in fundamental form.



Solution: The differential equation may be rewritten as

d4x_2d3x @—i—l@—x—i——smt
drt — T de dr2 ' 2dt

This is a fourth-order differential equation, so we define four new variables

x =x(t), x _ X3 = dx and x4 = dx
1 — ’ Z_dtl S_dtzl 4_dt3
dxy d*x
Thus, — T and the original differential equation becomes
dX4 1 1 .
=2 2xy — 8%3 4+ =Xy — X1 +—sint
dt X4 X3 +2X2 X1 +2SIH

A first-order system for the new variables is

dxlix
a7
d.Xz_x
a7
d.X'3_x
a
d.X4 1 1 .
—_— = — —x; — 8x 2x —sint.
T x1+2x2 3+ 4+2
0 1 0 0 0
X1
0 0 1 0 0
X
Define x(t)=| |, A=| 0o 0o o0 1|, f()=]o0 ,and
X3 1 1
-1 - -8 2 —sint
X4 2 2
1
c— 2
-1
0

Then, the initial-value problem is equivalent to the fundamental form

dx(t)

= Ax(1) +£(1); x(0) = ¢
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Problems 5.2

Put the following initial-value problems into fundamental form

(1) d’;_f) — 2x(t) + 3y(0)

d);i—(tt) = 4x(t) + 5y(t)
x(0)=6, y(0)=7

(3) d’;(:) = —3x(t) 4 3p(t) + 1
d):i—(tt) =4dx(t) —4y(t) — 1
x(0)=0, y(0)=0

) d’;(tt) = 3x(t) + 7y(t) + 2
d);—(tt) =x(t) +y(t) + 2t
x(1)=2, y(1)=-3

(7) d’;i(t”: 6p(t) + (1)
WO _ x(0) - 32(0)
EO_ a0

(2)

(4)

(6)

(8)

d(t) = 3y(t) + 2z(t)

dt
dz(tt) = 4y(t) + z(1)
y(0)=1, z(0)=1
dj;(:) =3x(t) +t
dZ—(tt) =2x(t) +t+ 1
x(0)=1, y(0)—1
dz(tt) =u(t) +v(t) + w(r)
dl;(tt) — u(t) — 3u(t) + w(t)
d”;—gt) = u(t) + w(t)

d;(tt) =r(t) — 3s(t) — u(t) + sint
B s et
d;_(tt) =2r(t) + s(t) — u(t) + cost
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(9) d;’;ﬁ” _ zd’;(f) ~3x(t) = 0 (10) d;’iﬁt) + d’;(f) —x(t) =0
(0) = 4, dxd(to) =5 x(1) = 2, d’;(tl) ~0
@) 0 _ - a2) &0 _,80 50 -2
w0) = 3,0 _g 0 =029,
(13) di;gt) -3 d’;(:) +2x(t) = e (14) d;’;?) + d;t(zt) —x(t) =0
P dxd(tl)zz . dx(d:l): . dzdaigt)
— 205
(15) %+%:1+% (16) %4—4%:9—1?
- dsjtg()) = =0 d?ﬁr) =2
% = dsgt(:) =0

5.3 SOLVING DIFFERENTIAL EQUATIONS
IN FUNDAMENTAL FORM

We demonstrated in Section 5.2 how various systems of differential equations
could be transformed into the fundamental matrix form

dx(t)
. Ax(r) +1(t) (5.12)
X(to) =C

The matrix A is assumed to be a matrix of constants, as is the column matrix c. In
contrast, the column matrix f(t) may contain known functions of the variable ¢.
Such differential equations can be solved in terms of e*.

The matrix differential equation in Equation (5.12) can be rewritten as
dx(t)
dt

— Ax(t) = (1)



Al

If we premultiply each side of this equation by e~*', we obtain

e [ mat0)] =

which may be rewritten as (see Corollary 1 of Section 4.4)

4 lex(0)] = ()

Integrating this last equation between the limits of ¢, and ¢, we have

t

J% [e Ax(r)]dt = J e Mf(t)dt

to to

or

t t

— Je_Asf(s)ds (5.13)

to to

e Mx(t)

Note that we have replaced the dummy variable ¢t by the dummy variable s in the
right-side of Equation (5.13), which has no effect on the definite integral (see
Problem 1). Evaluating the left side of Equation (5.13), we obtain

e Mux(t) — erox(to) = Je‘Asf(s)ds

to

or
e Mx(t) = eMoc + Je’Asf(s)ds (5.14)

where we substituted for x(t;) the initial condition x(#,) =c. We solve explic-
itly for x(t) by premultiplying both sides of Equation (5.14) by (e *)},
whence

x(t) = () et + (e*A‘)”Je*ASf(s)ds (5.15)

to
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But (e *) "' =¢* (see Theorem 2 of Section 4.4). Also, At commutes with At,,
so eMero=gAl"h) (see Problem 36 of Section 4.4). Equation (5.15) may be
simplified to

t

x(t) = e Mg 4 eAtJ e (s)ds (5.16)
Io
and we have proven
4 )
» THEOREM 1
The solution to the system dfi—([t) = Ax(t) +f(t); x(to) = ¢ in fundamental form is

t
x(t) = A=) 4 QA [e’Asf(s)ds. <
o
g J

A simple technique for calculating the matrices ¢*( ") and ¢~ i to first find ¢**
and then replace the variable ¢t wherever it appears by the quantities (t—t,) and
(—s), respectively.

—t

—t _
Example 1 = {eo t:_t} for A= [ (1) _” Consequently,
—(t—to) _ —(t—to) e —sé
(t—to) _ | € (t—to)e “As N
PAlt—to) — [0 o (-t0) and e = 0 PO

Note that when t is replaced by (t—t,) in ¢/, the result is e ") = ¢~ and note
e '~ That is, we replace the quantity t by the quantity (t—t,); we do not simply
add —t, to the variable ¢ wherever t appeared.

Example 2 Use matrix methods to solve

d’;ff) —u(t) + 20(1) + 1
d’;—(tt) =4u(t)+3v(t) — 1

u(0) =1,v(0) =2

Solution: This system can be transformed into fundamental form if we define

so-[u] a=[i 3] =[] aa =}

and take t,=0. For this A, we calculate

6

A1 [2@“ +4et 2e — 2e‘t}
4e°t — de7! 4ed 4 2e7t



Hence,

e = =

! [2e55 +4e8 27 —2¢
6

4e> — 4¢*  de > 4 2¢°
and

eA(t*IU) _ eAt
since to=0. Thus,

5t —t 5t —t
Alt-to) e _ 1 2e’" + 4e 2e 2e
6

]

1 ll[zeSf +4e7] + 227 — 2¢7Y] ]
"6

4e° — de™! 46 4 2e7!

1[485[ _ 4871} + 2[465t + 237[]

e5t
= [265t1~ (5.17)

o

1| 1[2e7> + 4€] — 1[2¢ — 2¢7]
6 | 1[de% — 4¢] — 1[4e™> + 2¢]

127> +4¢ 2¢7> —2¢

| de > — 4e° de > + 2¢°

e
= . .
Hence,

t

t t
eds es|() et -1
—A.Sf d == ‘[0 = —
Je (s)ds [jé—esds el e 1
t -
25t 4et 25[_27[ t_l
eAtJe—Aff(s)ds _lj2etact 20t -2t | (€ 1) (5.18)
/ 6|4e" —det 4o +2e" || (1€
) (265 + de]fef — 1] + [26% — 267][1 - ‘ﬂ]
6 | [4€° — de'][e" — 1] + [4€> + 2¢71][1 — €]
(1—e™)

(—1+e)
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Substituting Equations (5.17) and (5.18) into Equation (5.16), we have

{Z((tt))} =x(1) = [iﬂ} * {—1 ;2;} B Bse?ll_fe[f}
or

u(t)y=e* —et+1
v(t) =2e" +et -1

Example 3 Use matrix methods to solve

d’y dy -
dy(1
=1, HW_g

Solution: This system can be transformed into fundamental form if we define

x(t) = {28} A= {g ;] f(r) = Lg],andc: {H

and take t,=0. For this A, we calculate

A _e2 4+ 2t o2 _ ot
T =262 4+ 26t 2e% — ¢t

Thus,
A1) —e2(t=1) 4 9plt=1) Q20=1) _ p(t=1) 1
Cc= _282(171) + 28(171) 262071) _ €<t71) |:O:|
(5.19)
_ez(t—l) +26(t71)
- —2g2(t=1) 4 2e(t=1)
Now



Hence,

. -
[ J(e—Ss e—4s)ds
e f(s)ds = | |
o J(Ze > — e ®)ds
L1 .
- | . -
—5t —4t -5 —4
——Je e e —|-]e
( 5 + + 4
2 2 1
Bl [P —4t < l,5_ | 2],4
( 5 e+ e+ 5 e 1 e
t r (_eZt + 2et) (e2t _ e[)
A e M (s)ds =
o (—2e* +2¢')  (2e* —¢')
Vose 1 a1 s 4
——e —e e ——e
5 +4 +5
X
2 —5t 1 —4t 2 -5 1 4
——e —e e —e
5 +4 +
1 1 1
% g3t +§ p(20=5) _ ~ g4

= 5.20
Ry s L (5-20)

20 5

Substituting Equations (5.19) and (5.20) into Equation (5.16), we have that

i e 3t 4= 1 e(zt 5) 1et—4
(0 'xl(t)} —e2(=1) 4 et~ 20 3 4
X(t) = = +
L x2(t) —2e2(t=1) 4 2pt=1 1 o3 +2 -5y 1 14
20 5 4
[ 1 1 1
—e2(t=1) 4 ggt=1 ¢ % e 3o g p(2t=5) _  pi—4

3 2 1
) 2(t—1) 2et—1 -3t | £ (2t=5) _ - t—4
e + 2e +—20 e +5 e 46
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It follows that the solution to the original initial-value problem is

1 1
2(t—1) t—1 (2t-5) t—4
y(t) =x1(t) = —e + 2e (20>e e

The most tedious step in Example 3 was multiplying the matrix e by the An alternate form of the
t solution to a matrix
column matrix [ e *(s)ds. This step can be eliminated if we are willing to differential equation in

fo fundamental form

tolerate a slightly more complicated integral. The integration in Equa- is x(t) = A 0c+
tion (5.16) is with respect to the dummy variable s. If we bring the matrix 0o
AL o ) o . : A=9f(5)ds.
e™, appearing in front of the integral, inside the integral, we may rewrite S)E
Equation (5.16) as fo

t

x(t) = eM0e + Je’Ate’ASf(s)ds (5.21)
to

But At and —As commute, so e " =¢*""*) and Equation (5.21) becomes

x(t) = A 4 Jt AIf (s)ds (5.22)

to

The matrix ¢*(‘~*) is obtained by replacing the variable ¢ in ¢* by the quantity
(t—s).

Example 4 Use matrix methods to solve

dz_x +x=2
a2 =~
dx(m)
=0, =1
x(n) =0 I

Solution: This system can be transformed into fundamental form if we define

X@Blgﬂ, A_{_(l) é] f(t)—B} and c_[_ﬂ

and take to=m. The solution to this initial-value problem is given by either Equa-
tion (5.16) or (5.22). In this example, we shall evaluate Equation (5.22), thereby
saving one matrix multiplication. For this A, ¢* was determined in Example 8 of
Section 4.4 to be

—sint cost

Al { cost sint}



Thus,

| —sin(t—m) cos(t—m)||—1
[ —sin (t—m)
- _—cos(t—n)]
ACIf(s) [ cos(t—s) sin(t—s) ] [0] (5.23)
| —sin(t—s) cos(t—s) |2
[ 2sin (t —s)
- | 2cos (t— s)]
Hence,
FM”HWBZI?%mG_Qﬁ]
fo | 2cost(t — s)ds 5.21)

|fZ—2cos(t—n)]

2sin (t — )

Substituting Equations (5.23) and (5.24) into Equation (5.22) and using
the trigonometric identities sin(t—n)=—sin ¢ and cos(t—n)=—cos ¢,

we have
[xl(t)l l—sin(t—n)] [22cos(tn)]
= x(1) = o
x(t) —cos (t — m) 2sin (t — )

sint + 2cost + 2

cost — 2sint
Thus, since x(t) =x;(t), it follows that the solution to the initial-value problem is
given by

x(t) =sint + 2cost + 2

A great simplification to both Equation (5.16) and Equation (5.22) is effected
when the differential equation is homogeneous, that is, when () =0. In both
formulas, the integral becomes a zero-column matrix, and the solution
reduces to

x(t) = er)¢ (5.25)
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Occasionally, one needs to solve a differential equation by itself, and not an entire The solution to the

initial-value problem. In such cases, the general solution is (see Problem 2) homogeneous system
dx(t) — Ax(0);
x(t) = Mk + eAfJ M (1)dt (5.26)
X(th) =cis

. . . . . . — oAli—t0) .
where k is an arbitrary column matrix of suitable dimension. The general solu- x(t) =@ ¢

tion to a homogeneous differential equation by itself is
x(t) = Mk (5.27)
Example 5 Use matrix methods to solve
du(t)

dt

dl;—(tt) = 4u(t) + 3v(r)

= u(t) + 2v(t)

Solution: This system can be transformed into fundamental form if we define

o[ o[t 3w 0-[3

This is a homogeneous system with no initial conditions specified; the general
solution is given in Equation (5.27). For this A, we have

Al [2(35‘ +4et 2e — 2ef}
6 [ 4e5 —4et 45 4+ 2et
Thus,
12 +4et 2e% —2e7' | [ Iy
Ak ==
6 | 4e> —de™! 4e +2¢7! | | |y

[k1[2€° + de™!] + ky[2€° — 2¢71)
(5.28)

1
0 | ky[4e5 — 4] + ky[4€%" + 2¢7

-€5t(2k1 + 2k2) + e‘t(4k1 — 2k2)
)

1
6 _65t(4k1 + 4ky) + e"(—4k1 + Zkz)

Substituting Equation (5.28) into Equation (5.27), we have that

lu(t)] ) 1 [e5‘(2k1 + 2ky) + et (4ky — 2k;)
=X 6

6 e5t(4k] + 4k2) + e_[(—4k1 + 2k2)




or

u(t) = (Lﬁ —g 2k2) el + (Lﬁ g 2k2) et
v(t) =2 <72k1 Z 2k2> e+ <7_4k]6+ 2k2) et

We can simplify the expressions for u(t) and v(t) if we introduce two new arbi-
trary constants ks, and k, defined by

(5.29)

2k + 2k, 4ky — 2k,
= —-——— 4 = —

k 7
3 6 6

Substituting these values into Equation (5.29), we obtain

u(t) = kse® + kye™
u(t) = 2kze’ — kye™

Problems 5.3
(1) Show by direct integration that

t t t
J t2dt :J s°ds :J p*dp

to to to

In general, show that if f(t) is integrable on the interval [a, b], then

b b
J f(o)dt :J £(s)ds

Hint: Assume [f(t)dt=F(t)+c. Hence, [f(s)ds=F(s)+c. Then use the
fundamental theorem of integral calculus.

(2) Derive Equation (5.26). Hint: Follow the derivation of Equation (5.16)
using indefinite integration, rather than definite integration, and note that

J% [eAx(t)]dr = e Mx(1) + k

where k is an arbitrary column matrix of integration.
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(3) Find (a) e, (b) 22, (¢) A, (d) e A2, if

(4) Find (a) e, (b) e, () ), if

6

A1 2¢% +4e7t 207 — 2!
6| 4e% —det 4eSt 4 2e!

(5) Find (a) e, (b) e, (c) e 2079, if

A
—2sin 3t sin 3t + 3cos 3t

1 [sin3t+3cost 5sin 3t ]
3

(6) Determine which of the following column vectors x are solutions to the
system
dxi(@] _[ o 1][x()]. [x(0)] _[1
dt | x,(t)]  |—1 0f|x(t))” [x200)]  |O
sint e cost
(a){cost}' (b)[O}' (C)[—sint]'
(7) Determine which of the following column vectors x are solutions to the
system
i xl(t) _ 1 2 xl(t) . Xl(O) _ 1
de |x0) | |4 3| |x)]| |x00)] |2
e—t e—t 85[
@ ) 5] 5]
(8) Determine which of the following column vectors x are solutions to the
system
iloo) =1 el L] =1o]
dt [x(0)]  [-2 3] [x@®)] [x1)] Lo

_e 4 26 _e2(t71) + 26(1—1) ez(t—l)
(a) 2t £l (b) 2(t—1 t—1) |’ (C) :
—2¢* 4 2e —2e2(=1) 4 2e(t=1) 0

Solve the systems described in Problems 9 through 16 by matrix methods.
Note that Problems 9 through 12 have the same coefficient matrix.



dx(t) dx(t)
9) ==\ _ _ 10 [
(9) = 2x(t) + 3y(1) (10) i 2x(t) + 3y(t) + 1
dy(t) dy(t) _
x(2)=2, y2)=4 x(1)=1, y(1)=1
(11) d’;_(tt) = —2x(t) + 3y(t) (12) d’;_(tt) = —2x(t) + 3y(t) + 1
dy(t) _ dy(t) _
(13) % +4x =sint; x(0) =1, dxd(tO) =0
dx _odx(1) o d’x(1)
(14) B (1) =1, T i 3
d’x  dx . ~, dx(0)
(15) W d_ 2x =¢ % x(O) =1, i =0

dr? dt
dy dx
a="a
x(0) = 0, d’;(to) —0,(0) =1

5.4 MODELING AND DIFFERENTIAL EQUATIONS

Mathematical models are used in virtually all branches of science, technology, and
engineering. Many models are presented in terms of differential equations. There
is a delicate balance between making sure a model is “reflective enough” to gov-
ern or mirror a situation, and—at the same time—“easy enough” to solve the

associated equations.

In this section, we consider a mixing problem which will be modeled by a system
of differential equations. In our discussion, we will make various assumptions

and then “tweak” the model by changing various parameters.

Consider Figure 5.1. A saline solution, of concentration 2 pounds of salt/gal, is
introduced into Tank 1 at a rate of 5 gal/min. As we can see from the diagram, the

tanks are connected by a system of pipes.
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i 3 gal/min
5 gal/min Tank 1 2 gal/min Tank 2 4 gal/min Tank 3
2 Ib/gal
100 50 100
gal gal gal
 EEE— 1 gal/min
3 gal/min —Il
5 gal/min

FIGURE 5.1

Assuming that the salt is distributed uniformly in the solution, we will model the
problem with the following variables:
t=time (min)
S1(t) =amount of salt in Tank 1 at time ¢ (pounds)
S,(t) =amount of salt in Tank 2 at time ¢ (pounds)
S5(t) =amount of salt in Tank 3 at time ¢ (pounds)

dsy . .
d—;:rate of change of salt in Tank k (pounds/min), k=1,2,3

Let us now consider Tank 1. Because there are three pipes connected to the tank,
the rate of change of the salt in this tank will have three terms:

@_Sgalxﬂbs_ S:1b ><2gal_ Silb 3gal
dt  min~ gal 100gal  min 100gal = min

(5.30)

We note in this equation the consistency of units (Ibs/min) and the division by
the capacity of Tank 1 (100 gal).

The two other tanks are modeled as follows:

s, _ S;lb ngal S;1b ><4gal_ S;1b " lgal  S1b ><3ga1
dt  100gal " min 100gal = min 50gal = min 50gal ~ min

(5.31)

das;  S;lb _ 1gal S31b ><4gal_@x3gal

= _ — 32
dt  50gal " Tin 100gal min gal min (5.32)

We note here that the last term of Equation (5.32) is 0, because there is no salt in
the incoming solution from the right.

Finally, let us assume that initially there is no salt in any tank. That is,

$1(0) = 52(0) = 83(0) = 0


Figure 5.1

We now will rewrite our problem in matrix notation
- _s -

— 0 o0
100
T Sl I B Bl B
1521 = 1100 50 100||S2|+| O (5.33)
S5 C s 0
0 - =
50 100

We can now expand on the techniques discussed in Sections 5.2 and 5.3 to solve
this problem. However, in this case, the use of technological methods is preferred
(see Appendix D). This is primarily due to the fact that we have a 3-by-3 coeffi-
cient matrix instead of a 2-by-2 matrix.

We end our discussion with the following observations and ask the following
questions:

We note that the system was “closed”; that is, the amount of solution coming in
(8 gal) is equal to the amount going out (8 gal). What if this was not the case?

We assumed no salt was initially present. What if this was not the case?

If the salt in the solution was not uniformly distributed, the modeling of our
problem becomes much more difficult. The same is true if the solution is not
introduced continuously. In these cases, our approach must be radically altered
and a numerical approach might be more useful.

Problems 5.4

(1) Assume vat V] is placed above vat V, and that both vats have a capacity of
100 L. If 71 of a sucrose solution (5 kg sugar/1) is poured into V; every
minute, how much sugar is in each vat at time ¢, if V; drains into V, at
the rate of 7 I/min, while V, drains off at the same rate and there is no
sugar in either vat initially?

(2) Consider the previous problem. If vat V, drains off at a rate of 8 I/min,
how much sugar will it contain in the long run, realizing that it will even-
tually be empty?

(3) Consider the previous problem. If vat V, drains off at a rate of 6 1/min,
how much sugar will it contain in the long run, realizing that it will even-
tually overflow?

(4) Solve problem 1 if V;(0)=5 and V,(0)=12.

(5) Suppose two lakes (x and y) are connected by a series of canals in such a
way that the rate of change of the pollution in each lake can be modeled
by the following matrix equation:

als] =15 151l
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where x(t) and y(t) represent the amount of pollution (in tons) at time ¢
(months). If both lakes are initially clean, find the amount of pollution at
time t, along with the long-range pollution in each lake.

(6) Do the previous problem if the model is given by

=12 28]+

(7) Suppose Problem 5 is modeled by

il =[5 3]0

with x(0) =100, and y(0) = 300. Find the long-range pollution of each lake.

5.5 A BRIEF INTRODUCTION TO GRAPHS
AND NETWORKS

One area of Mathematics that has a definite starting point is the field of Graph
Theory, which can trace its origin to Leonhard Euler's 1736 solution to the
Konigsberg Bridge Problem (for more information, see Hopkins, Brian, and
Robin J. Wilson, (2004). “The bridges of Konigsberg.” The College Mathematics
Journal 35.3: 198-207). A graph can be thought of as a picture that shows a set
of points, some of which are related. The relationship is indicated by the place-
ment of lines between the points. In graphs, the lines have no direction, so tra-
versal between the points can occur in either direction along the line. If the order
mattered, they would be called directed graphs, but they are not under
consideration here.

The points are called vertices, and lines are called edges. If a pair of vertices is
joined by more than one edge, the edge is called a multiple edge, and the graph
is called a multigraph. Graphs without multiple edges are called simple graphs.
When a graph on n vertices has an edge between every pair of vertices, the graph
is called a complete graph on n vertices, denoted K,,. The number of edges incident
on avertex is the degree of the vertex, and if all the vertices have equal degree r, the
graph is regular of degree r.

If in a graph, one can begin at a particular vertex, traverse through several other
vertices via incident edges, never repeated a vertex or edge, and return to the start-
ing vertex, then the part of the graph just described is called a cycle. Figure 5.6 of
Section 5.6 depicts the graph C,, a cycle on four vertices. Not every graph con-
tains a cycle, or cycles. In some graphs, it might not be possible to find a sequence
of vertices and edges between every pair of vertices. If there is a pair of vertices
for which such a sequence does not exist, the graph is said to be disconnected.
Otherwise, the graph is connected, and there is a sequence of vertices and edges



between every pair of vertices. If such a sequence exists and is unique for every
pair of vertices, then the graph is a tree. Trees also are acyclic, that is, they have no
cycles. A tree which includes every vertex of a graph is a spanning tree.

In Figure 5.2 of Section 5.6, the vertex sequence (and incident edges) formed by
1-2-3 is a tree, while 1-2-3-1 is a cycle (as is 1-2-3-4-1), and 1-2-3-4 is a
spanning tree.

Graphs can be used to model different types of networks, such as transportation
networks, communications networks, or computer networks. The actual behav-
ior of such a network can be modeled more completely by including some
assumptions about the vertices and edges, and matrices play a critical role in this
analysis. One such model assumes that the vertices (i.e., the landmasses, tele-
phones, or computers) are always “operational”, while the edges (i.e., the brid-
ges, telephone lines, or computer cables) fail with some numerical probability.
This is an example of a problem in network reliability: can any pair of vertices com-
municate with each other via a path through the surviving links? Our way of
framing the question is: does failure of certain links still lead to a surviving graph
that has a spanning tree? If so, how many spanning trees does it have?

5.6 THE ADJACENCY MATRIX

Figure 5.2 shows a graph,; its vertices are labeled 1, 2, 3, and 4 arbitrarily, and its
edges are labeled using the end vertices in numerical order, although such an
order does not matter for undirected graphs. We define Adjacency Matrix of a
simple graph A(G) to be an n xn matrix with entry a; denoting the number
of edges from v; to v;. For simple graphs these entries are always either 0 or 1.
The adjacency matrix for the graph in Figure 5.2 would, therefore, have first
row [0,1,1,0] because there are no edges labeled “(1,1) ” or “(1,4)”, but one edge
each has label “(1,2)" and “(1,3).” Note that, if edge “(1,1)” were to exist, it
would be a so-called self-loop from vertex 1 to itself. The existence of at least
one self-loop means that the graph would be termed a pseudograph. The full adja-

01 1 0

. - 1 0 1 1

cency matrix for the graph in Figure 5.2 would therefore be A = 11 0 1
01 10

(1,3) | (2,3) (2,4)

FIGURE 5.2


Figure 5.2
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self-loops. We note that A is symmetric about the main diagonal, that is, the (x,y)
entry is equal to the (y,x) entry, where x and y represent a row or column number.

We will define the left hand side of the characteristic equation, det(A— AI)=
0 (4.4), as the characteristic polynomial for the matrix in question. The character-
istic polynomial for the adjacency matrix of a graph contains some very impor-
tant information about the graph, as we see in our next theorem.

» THEOREM 2

Let G be a graph having adjacency matrix A and characteristic polynomial det(A — Al)=
ao+aiA+asi’+...+a, 2A""%+a, 1471+ 2". Then the coefficients of the characteristic
polynomial give the following information about the graph:

(i) —an_o is the number of edges in G;
(i) —a,_z is twice the number of triangles in G;
(iii) the number of edge sequences of length k joining the vertices v; and v; of a graph G is
equal to the ij-th entry of the matrix A(G)~. «

We will explore the proof of part (iii) of Theorem 1 in the exercises, and observe
that part (iii) is demonstrated when the exponent k=1, that is, any edge is itself
an edge sequence of length one between its end vertices. We further observe that
the numbering convention we select is not absolute, that is, we would obtain the
same characteristic polynomial and information if the nodes were numbered dif-
ferently, and the matrix entries altered accordingly. It is beyond the scope of this
text to prove this notion.

Example 1 For the graph in Figure 5.2,
-2 1 1 0
det(A — AI) = det L= =—4,—5)2+2* Here, n=4,

indicating that there are —a, ,=-—a, ,=—a,=—(—5)=5 edges in the
graph, and —a, 3=—a4 3=—a,=-(—4)=4=2(2), so G has two triangles
(namely, formed by vertices 1-2-3 and their incident edges, and vertices 2-3-
4 and their incident edges). If we raise A to the second power, we will find
out the number of paths of length two between each pair of vertices, including

01 1 0
. ) 1 01 1
those that begin and end at the same vertex, sSoA” = A X A = 11 0 1 X
01 1 0
01 1 0 21 1 2
1 0 1 1 1 3 2 1
11011711 2 3 1 Thus, for example, the (1,4) (and, of course,
o1 1 0 21 1 2



(4,1)) entry of A” is 2, so there are two paths of length 2 between that pair of ver-
ticesin G, thatis, 1-2-4 and 1-3-4, and no others. The (2,2) entry is 3, indicating 3-
4-3, 3-2-3, and 3-1-3 are the only paths of length 2 from vertex 2 to itself.

As was demonstrated in Chapter 4, the zeros of the characteristic polynomial are
the eigenvalues for the matrix, and the eigenvalues of adjacency matrices contain
more information about the graph'’s structure. The list of a matrix’s eigenvalues is
its spectrum. Theorem 3 gives some details about the spectra of adjacency matrices.

" N
» THEOREM 3

Let G be a (nonpseudo) graph having adjacency matrix A, whose characteristic

polynomial det(A—il)=ao+al+asi’+...+an "2 +a, 12" 1+ /" has factorization

(A—oq)(A—0p) - -(A—0tp_1)(A—0p), where oq <ap<---<o,. Then

() 2E2 =D

(ii) Z;’ﬂai —0:
(i) 3" ()" = 2(~a,-2). 4

\ S

Example 2 For the graph given in Figure 5.2, its characteristic polynomial
1 V17 1 V1
L*—5)1% — 42 has roots 575 -1,0, 2+T Clearly, the upper bound on
V2(=ay-2)(n—1) \/2 (4-1)

n 4

1 V17 1
,/ 1/ 1+—7, satisfying (i), wh11e———+( )+0+§+

2

2
1 V1 17
2 —0 demonstrating (ii), and (E_T7> +(_1)2+02+ <§+ 27) _

10 = 2(5), or twice the number of edges of, as per (iii).

the largest eigenvalue for this graph is

As stated earlier, graphs that have vertices of all the same degree, say, r, are called
regular graphs. We present the following theorem regarding the eigenvalues of
regular graphs.

» THEOREM 4

Let G be a graph that is regular of degree r having adjacency matrix A. Then

(i) ris an eigenvalue of A;
(i) ris the largest magnitude of an eigenvalue for A, that is, lo;l <r for all i. d

Problems 5.6

We recommend the use of computer software to assist in the computation of
characteristic polynomials and eigenvalues in the next two sections.
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1 2 3 4
000
FIGURE 5.3

Problems 1-6 refer to the graph in Figure 5.3. The graph is a path on four vertices
and will be referred to as P,.

(1) Find the adjacency matrix for the graph P,.
(2) Find the characteristic polynomial for the adjacency matrix for P,.
(3) Verify Theorem 2, parts (i) and (ii) for P,.

(4) (a) Find A’ for P,.
(b) How many paths of length 3 are there between vertex “1” and each of
the other vertices in P,?

(5) Find the eigenvalues for the characteristic polynomial found in
problem 2.

(6) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 2.

(7) Prove Theorem 2, part (iii).

Problems 8-13 refer to the graph in Figure 5.4. The graph is on four vertices and
will be referred to as G;.

2@
1@ @

FIGURE 5.4

(8) Find the adjacency matrix for the graph G;.
(9) Find the characteristic polynomial for the adjacency matrix for G;.
(10) Verify Theorem 2, parts (i) and (ii) for G;.

(11) (a) Find A® for G;.
(b) How many paths of length 3 are there between vertex “2” and each of
the other vertices in G;?

(12) Find the eigenvalues for the characteristic polynomial found in
problem 9.

(13) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 9.


Figure 5.4
Figure 5.3

Problems 14-17 refer to the graph in Figure 5.5. The graph is on four vertices and
will be referred to as G,.

1 2
@ O
e O
3 4
FIGURE 5.5

(14) Find the adjacency matrix for the graph G,.
(15) Find the characteristic polynomial for the adjacency matrix for G,.

(16) Find the eigenvalues for the characteristic polynomial found in

problem 15.
(17) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 15.
1 2
DO
D €
3 4
FIGURE 5.6

Problems 18-22 refer to the graph in Figure 5.6. The graph is on four vertices and
will be referred to as Cj.

(18) Find the adjacency matrix for the graph C,.
(19) Find the characteristic polynomial for the adjacency matrix for Cj.

(20) Find the eigenvalues for the characteristic polynomial found in
problem 19.

(21) Verify Theorem 3, parts (i)-(iii), for the characteristic polynomial found in
problem 19.

(22) Verify Theorem 4, part (i), for the characteristic polynomial found in
problem 19.

(23) Prove Theorem 4, part (i).


Figure 5.6
Figure 5.5

CHAPTER5 €D

5.7 THE LAPLACIAN MATRIX

For example 1, we consider the graph in Figure 5.2.

Example 1 Since the degree of vertices 1, 2, 3, and 4 are, respectively, 2, 3, 3,
and 2, we can form a diagonal matrix using the degrees of the corres-
ponding vertices as the diagonal entries. For the graph in Figure 5.2, the

2 0 0 O
.. 3 0 O
matrix is D = 00 3 0
0O 0 0 2
01 1 0
. . 1 0 1 1
Recall that the graph had adjacency matrix A = 110 1 . We can form
01 1 0
the Laplacian matrix for the graph, denoted L, where L=D-A, by
2 0 0 O 01 1 0 2 -1 -1 O
L_l03 00 (1ol 1) |-1 3 -1 -1
10 0 3 0 110 1| -1 -1 3 -1
0o 0 0 2 01 1 0 o -1 -1 2

We remark that the Laplacian matrix is sometimes referred to as the nodal admit-
tance matrix in Electrical Engineering applications. Further, this matrix’s main
diagonal is comprised of the degrees of its corresponding vertices, it has a
“—1" wherever there is an edge between the two associated vertices, and each
row and column sum up to “0.”

In 1847, Gustav Robert Kirchhoff published a paper, the title of which trans-
lates to “On the solution of the equations obtained from the investigation
of the linear distribution of galvanic currents,” Annalen der Physik und
Chemie, in which his work led to the study of spanning trees of connected
graphs.

» THEOREM 5. KIRCHHOFF’S MATRIX-TREE THEOREM

All cofactors of L are equal and their common value is the number of spanning trees in the
associated graph. €

\ J

The proof of this well-known theorem involves some advanced matrix theory
that is beyond the scope of this text.

Theorem 5 can be employed to prove a more useful way to determine the number
of spanning trees of a graph. It appeared in the paper by A. K. Kelmans and V. M.
Chelnokov, (1974). “A certain polynomial of graph and graphs with an extremal
number of trees,” Journal of Combinatorial Theory B 16: 197-214 and we state it here.



» THEOREM 6

The number of spanning trees t(G) of the Laplacian matrix of a graph is related to the eigen-

1 n
values as follows: t(G) = EH/}(C), 0=/1 </ <..<1, 4
=2

2 -1 -1 0
A -1 3 -1 -1
Example 2 For the graph in Figure 5.2, we have L = | 1 -1 3 1 and

0 -1 -1 2

2-4 -1 -1 0
det(L — A1) = j 3__1/1 3__11 j =2'—102° + 3227 — 32
o -1 -1 2-i

=l =2)(1—4)

1
This translates to 1 (2)(4)(4) =8 spanning trees for the graph in Figure 5.2. One

such spanning tree is 1-2-3-4; yet another is 1-2-4-3. In the exercises, you will be
asked to determine the remaining six spanning trees for the graph.

We note that the eigenvalue product to determine the number of spanning trees
of a graph eliminates the first (smallest) eigenvalue, which is always zero. The
number of Laplacian eigenvalues that equal zero indicates the number of con-
nected pieces (called components) that constitute the graph. Therefore, a con-
nected graph will have a single eigenvalue equal to zero, and a graph that has
three distinct pieces, between which there are not any links, will have three eigen-
values equaling zero. Since the formula only removes one such eigenvalue, there
will be zeros in the spanning tree product, which indicates zero spanning trees
for a disconnected graph (which, of course, is the case).

We illustrate this fact with an example.

Example 3 For the graph in Figure 5.5, we have

1 0 00 0010 1 -1 0
01 0 0 0 0 0 1 1 0 -1
L=D-A=14 010l |1 000l |21 o 1

0 0 0 1 01 00 0 —1 1

and
1-7 0 -1 0
. 0 1—-7 0 -1 | .4 3 22 42 2

det(L — AI) = 1 0 1 o =" =4 +4)° =2"(A-2)".

0 -1 0 1-24

1
This translates to 1 (0)(2)(2) =0 spanning trees.
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We conclude this section with some useful results about a graph’s Laplacian
eigenvalues.

4 N
» THEOREM 7
Let G be a graph on n vertices and e edges, and L its associated Laplacian matrix. Then,
(i) for all i, 4;>0;
(ii) Z1n<n;
(iii) trace(L)=2e=> 11/, 4
. J

Problems 5.7

We recommend the use of computer software to assist in the computation of
characteristic polynomials and eigenvalues in this section and the previous
section.

(1) List the spanning trees for the graph in Figure 5.2 of the previous section.
Problems 2-6 refer to the graph P, in Figure 5.3 of the previous section.

(2) Find the Laplacian matrix for the graph P,.

(3) Find the characteristic polynomial for the Laplacian matrix for P,.

(4) Find the eigenvalues for the characteristic polynomial found in problem 3.

(5) Apply Theorem 6 to determine the number of spanning trees for P,.

(6) Verify Theorem 7 for the eigenvalues of the Laplacian matrix associated

Problems 7-12 refer to the graph G, depicted in Figure 5.4 of the previous
section.

(7) List the spanning trees for the graph in Figure 5.4.

(8) Find the Laplacian matrix for the graph G;.

(9) Find the characteristic polynomial for the Laplacian matrix for G;.
(10) Find the eigenvalues for the characteristic polynomial found in problem 9.
(11) Apply Theorem 6 to determine the number of spanning trees for G;.
(12) VerifyTheorem 7 for the eigenvalues for the Laplacian matrix associated with G

Recall: When a graph on n vertices has an edge between every pair of vertices, the
graph is a complete graph on n vertices, denoted K,,. Exercises 13-17 ask you to work
with complete graphs and conjecture a general formula for their number of
spanning trees.

(13) (i) Draw Ks.
(ii) Find the Laplacian matrix for Kj,
(iii) Find the eigenvalues for K3,



(14) (i) Draw K,.
(ii) Find the Laplacian matrix for Kj.
(iii) Find the eigenvalues for Kj.

(15) (i) Draw Ks.
(ii) Find the Laplacian matrix for Ks.
(iii) Find the eigenvalues for K.

(16) What pattern do you see in your responses to questions 13¢, 14¢, and 15¢?
Can you formulate a conjecture about the Laplacian eigenvalues for any
complete graph K,?

(17) Using your response to question 16, and using Theorem 6, can you gener-
alize a formula for the number of spanning trees for any graph K,,? This
result is known as Cayley’s Theorem, after Arthur Cayley.

CHAPTER 5 REVIEW
Important Terms

fundamental form of differential regular graph
equations complete graph
homogeneous differential adjacency matrix
equation Laplacian matrix
initial conditions spanning trees
model

nonhomogeneous differential

equation

Important Concepts

Section 5.1

= A differential equation in the unknown functions x;(t), x5(t), ..., x,(¢) is
an equation that involves these functions and one or more of their
derivatives.

Section 5.2

= Ax(t) +f(t);  x(to) = cis
= The solution to the system dt (t) (0) (to)

x(t) = A0 + eAtJt e M (s)ds

to

t
= Ao 4 J e A (5)ds

to
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= The solution to the homogenous equation

d’;(t‘):Ax(t); x(to) = c s
x(t) = eMi=h)¢

Section 5.3

= Models are useful in everyday life.

Section 5.4

= Graphs can be used to model different types of networks, such as transpor-
tation networks, communications networks, or computer networks.
= Matrices can play a critical role in analysis of networks represented by graphs.

Section 5.5

= The coefficients in the characteristic polynomial and the eigenvalues of the
adjacency matrix give information about the corresponding graph.

Section 5.6

= The Laplacian matrix of a graph can be formed from the adjacency matrix.
= The eigenvalues of the Laplacian matrix can be used to determine the number
of spanning trees in the corresponding network represented by the graph.
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6.1 ORTHOGONALITY

Perpendicularity is such a useful concept in Euclidean geometry that we want to
extend the notion to all finite dimensional vector spaces. This is relatively easy for
vector spaces of two or three dimensions, because such vectors have graphical
representations. Each vector in a two-dimensional vector space can be written
as a 2-tuple and graphed as a directed line segment (arrow) in the plane. Simi-
larly, each vector in a three-dimensional vector space can be written as a 3-tuple
and graphed as a directed line segment in space. Using geometrical principles on
such graphs, we can determine whether directed line segments from the same
vector space meet at right angles. However, to extend the concept of perpendic-
ularity to R", n> 3, we need a different approach.

The Euclidean inner product of two column matrices x=[x; x, x3---x,]" and
y=[y1¥2¥3---¥a]" in R", denoted by (x, y) is

(X,y) = x1y1 +X2y2 + X33 + -+ + XnYn (6.1)

To calculate the Euclidean inner product, we multiply corresponding compo-
nents of two column matrices in R"” and sum the resulting products. Although
we will work exclusively in this chapter with n-tuples written as column matrices,
the Euclidean inner product is equally applicable to row matrices. Either way, the

Linear Algebra
Copyright © 2014, Elsevier Inc. All rights reserved.
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The inner product of two
vectorsxand y in R”is a
real number determined
by multiplying
corresponding
components of x and y
and then summing the
resulting products.

Euclidean inner product of two vectors in R" is a real number and not another
vector in R". In terms of column matrices,

(x,y) =x'y (6.2)
1 4
Example 1 The Euclidean inner product of x = |2 | andy = | -5 | in R’ is
3 6
(x,y) =1(4) +2(=5) + 3(6) =12
20 10
while the Euclidean inner product of u = gg and v = :55; in R is
10 —6
(u,v) = 20(10) + (—4)(—5) + 30(—8) + 10(—6) = —80
e N
» THEOREM 1
If X, y, and z are vectors in R”, then
(a) (x, x) is positive if x#0; (x, x) =0 if and only if x=0.
(0) (x, y)={y, x).
(c) (Ax,y)=N(x,y), for any real number M.
(d) (x+z,y)=(xy)+(@zY).
(e) (0,y)=0.4
\ J

Proof: We prove parts (a) and (b) here and leave the proofs of the other parts as
exercises (see Problems 28 through 30). With x=[x; x, x5. .. x,]", we have

(x,x) = (x1)2 4 (x2)* + (x3)° + ... + (x,)°

This sum of squares is zero if and only if x; =x,=x3=... =x,=0, which in turn
implies that x=0. If any component is not zero, that is, if x is not the zero vector
in R", then the sum of the squares must be positive.

For part (b), we set y=|[y; y2 3. .. yn]". Then
(X,y) = x1y1 +X2¥2 + X33 + ...+ XnYn
=P1X1 +YaXo +Y3x3 + ..+ Yuky

= <ya X>

The magnitude of an n-tuple x (see Section 2.1) is related to the Euclidean inner
product by the formula

Il = Vixx) = \/x} +x3 455 + ...

+x2. (6.3)
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Example 2 The magnitude of x=[2 -3 —4]"inR%is The magnitude of a

vector x in R” is the

Ix|| = m _ \/(2)2 + (_3)2 + (_4)2 - v29 square root of the inner

product of x with itself.

while the magnitude of y=[1 -1 1 —1]"inR%is

Iyl = V) = /(12 + (—1)2 + (1) + (-1) =2

A unit vector is a vector having a magnitude of 1. A nonzero vector x is normalized
if it is divided by its magnitude. It follows that

1 1 1 1
— X, —X)=— (X, —X Part (c) of Theorem 1
[/ x| (]|

— 1 <1x, x> Part (b) of Theorem 1

1
= Tl (x,x) Part(c) of Theorem1
X
2
1 2
= x|
[l

=1

Thus, a normalized vector is always a unit vector.

As with other vector operations, the Euclidean inner product has a geometrical
interpretation in two or three dimensions. For simplicity, we consider two-
dimensional vectors here; the extension to three dimensions is straightforward.

Let u and v be two nonzero vectors in R” represented by directed line segments in
the plane, each emanating from the origin. The angle between u and v is the angle 0
between the two line segments, with 0° <0 < 180° as illustrated in Figure 6.1. The

FIGURE 6.1


Figure 6.1

FIGURE 6.2

vectors u and v, along with their difference u—v, form a triangle (see Figure 6.2)
having sides ||ul|, ||v||, and |Jju—v]||. It follows from the law of cosines that

la = v* = [ull® + [IvI* = 2|jull|]v]icos 0

where upon

Juflvlicos 0 =3 (hall? + IvIF ~ ju — vIP)
:%((u,u> +{v,v) —{(u—v,u—v))
(6.4)
= 2 () + v, v) — [, 0) — 20u,) + v, v)
- <11,V>
and
)
08 0= Tulivi (6:5)

We use Equation (6.5) to calculate the angle between two directed line segments
in R?.

Example 3 Find the angle between the vectors u = [;] and v = [i] .

Solution:
(u,v) =2(=3)(=3)+5(4) =14, |lu]| =v4+25=v29, |v| =vV9+ 16 =5,
14
$0,co8 = ——~0.5199, and 0 ~ 58.7°.

5v29

If u is a nonzero vector in R?, we have from Theorem 1 that (u, u) is positive and
then, from Equation (6.3), that |lu|| > 0. Similarly, if v is a nonzero vector in R?,
then ||v|]| >0. Because


Figure 6.2
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(u,v) = ||ul|||v||cos 8 (6.4 repeated)

We see that the inner product of two nonzero vectors in R? is 0 if and only if Two vectors in the same
cos 0=0. The angle 6 is the angle between the two directed line segments repre- VECtor space are
senting u and v (see Figure 6.1) with 0° <6< 180°. Thus, cos =0 if and only if (Erthggonall I their

. . uclidean inner product
0=90°, from which we conclude that the inner product of two nonzero vectors g saro.
in R? is 0 if and only if their directed line segments form a right angle. Here now
is a characteristic of perpendicularity we can extend to n-tuples of all dimensions!
We use the word orthogonal instead of perpendicularity for generalizations to
higher dimensions, and say that two vectors in the same vector space are orthog-
onal if their inner product is 0.

1 -3 0
Example 4 For the vectorsx= |2 |,y= | —6|,andz= |5 | in R> we have
3 5 6

that x is orthogonal to y and y is orthogonal to z, because
(x,y) =1(=3)+2(-6)+3(5)=0
and
(y,2) = (=3)(0) + (=6)(5) +5(6) = 0
but x is not orthogonal to z, because
(x,2) = 1(0) 4+ 2(5) + 3(6) =28 # 0

As a direct consequence of Theorem 1, part (e), we have that the zero vector in R"
is orthogonal to every vector in R".

[ » THEOREM 2. (GENERALIZED THEOREM OF PYTHAGORAS) ]

If u and v are orthogonal vectors in R", then [lu—v|*=|u||®+|v||*. €
\\ J

Proof: In the special case of R?, this result reduces directly to Pythagoras’s theo-
rem when we consider the right triangle bounded by the directed line segments
representing u, v and u — v (see Figure 6.3). More generally, if u and v are orthog-
onal, then (u, v) =0 and

={u—v,u—v)
= (u,u) = 2(u,v) + (v, )
(u,u) = 2(0) + (v,v)
) + 1w

lu —vJ*

» THEOREM 3. (CAUCHY-SCHWARZ INEQUALITY)

If uand v are vectors in R”, then [(u,v)| <|ul|[|v|.




A"
X
u-v
u
FIGURE 6.3
Proof: In the special case of R?, we have
(u,v) = [[ulf[[v]|cos 0, (6.4 repeated)
hence
[(u, v)[ = [[[ul[[|v]|cos 0]
= [l[ull[[vl[cos 6]
< [ulf{fv]

because |cos 0| < 1 for any angle 0. The proof for more general vector spaces is left
as an exercise (see Problems 35 and 36).

Matrices can form a Euclidean inner product, but not every combination of
matrices produces a Euclidean inner product.

Example 5 Show that (A,B)=det(AB) does not represent a Euclidean inner
product in the vector space M, ».

:O,

2 2
Solution: Let A = [x x] and B = [x x] .Then det(AB) = det {2962 2x2 ]
X X X X 2x-  2x

but A#0, so part (a) of Theorem 1 is violated.

The Euclidean inner product in R” induces an inner product on pairs of vectors in
other n-dimensional vector spaces. A vector in an n-dimensional vector space V
has a coordinate representation with respect to an underlying basis (see
Section 2.5). We define an inner product on two vectors x and y in V by forming
the Euclidean inner product on the coordinate representations of both vectors
with respect to the same underlying basis.


Figure 6.3
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6 2
space M., with respect to the standard basis

= {[o oo ol 2 S [6 i}

Solution: The coordinate representations with respect to this basis are

1 2
and [1 2]H

Example 6 Calculate (A,B) forA = {4 3 L2

} and ]E%:[l 2]inthevector

4

4 3 3
>

6 2 6

2

The induced inner product is

(A,B) = 4(1) +3(2) + 6(1) + 2(2) = 20

N = N =

With respect to the standard basis, the induced inner product of two matrices of

the same order is obtained by multiplying corresponding elements of both matri-
ces and summing the results.

Example 7 Redo Example 6 with respect to the basis

= {23100 G o

Solution: The coordinate representations with respect to this basis is (see
Example 13 of Section 2.5)

1 1
X_[4 3}(_} 2 andy:{l 2]H 0
6 2 -1 1 2 1

3 0

B
The induced inner product is now

(A,B) =1(1)+2(0)+ (-1)(1) +3(0) =0
which is different from the inner product calculated in Example 6.

It follows from the previous two examples that an inner product depends on the
underlying basis; different bases can induce different inner products. Conse-
quently, two vectors can be orthogonal with respect to one basis, as in Example
6, and notorthogonal with respect to another basis, as in Example 5. We can see
this distinction graphically, by considering the vectors

g - [

An inner product is basis
dependent. Two vectors
can be orthogonal with
respect to one basis and
not orthogonal with
respect to another basis.

An inner product is basis
dependent. Two vectors
can be orthogonal with
respect to one basis and
not orthogonal with
respect to another basis.



2 L
1 L
X
X
—2 -1 1 2
y
.
-2+

FIGURE 6.4

With respect to the standard basis

= {oe[i}- )

(%, y) =0, and x is perpendicular to y, as illustrated in Figure 6.4. If, instead, we

oot )
(1] -ofi)- (2 ],
[-eofi)-of2)- (7]
a=[2]-oft]-o[g]- [},
a-[2]-oft]ofg]- 1,

Graphing the coordinate representations in the D basis, we generate
Figure 6.5. Note that x and y are no longer perpendicular. Indeed, (x, y)=3
(=7)+(—1)(3) =24 #0. Furthermore, (x, x)=(3)>+(—-1)*>=10, {y, y)=(-7)?
+(3)*=58, and it follows from Equation (6.5) that the angle between x
and vy is

—24
0 = arccos —————~ 175°

V10+/58


Figure 6.4
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N W s

1..
8 7 -6 5-4-3-2™ '{’/1. 2 3 4

FIGURE 6.5

Example 8 Calculate (p(t), q(t)) with respect to the standard basis in P? for
p(t) =32 —t+5 and q(t) = —26> + 4t +2

Solution: Using the standard basis S ={t’t1}, we have the coordinate
representations

3 -2
3t —t+5« | —1| and -2t +4t+2« | 4
5 2 An induced inner product
of two polynomials is
obtained by multiplying
The induced inner product is the coefficients of like
powers of the variable
p(),q(0)y =3(-2)+(-1)(4) +5(2)=0 and summing the results.

and the polynomials are orthogonal. With respect to the standard basis, the
induced inner product of two polynomials is obtained by multiplying the coef-
ficients of like powers of the variable and summing the results.

Problems 6.1

In Problems 1 through 17, (a) find (x, y), (b) find |x|, and (c) determine whether
x and y are orthogonal.

Wx=[1 2], y=[3 4]"
2)x=[1 1], y=[-4 4]"
3B)x=[-5 7], y=[3 -5]".


Figure 6.5

4 x=[-2 -8]",y=[20 —5]".
(5)x=[-3 4], y=[0 o]".

@) x=[2 0o 1], y=[1 2 4]"

(M x=[-2 2 -4), y=[-4 3 -3]"
8)x=[-3 -2 5], y=[6 —4 -—4]".
(9 x=[10 20 30]", y=[5 -7 3]"
@x=[ 3 " y=5 14"

A x=[1 0o 1 1] y=[1 1 0o 1]"
(12)x=[1 0 1 —-1],y=[1 1 0o 1]".

anx=B 314 y=n2s -4
as)x=f 3oy y-f 13

(18) Normalize the following vectors:
(a) vy as defined in Problem 1.
(b) vy as defined in Problem 4.
(c) vy as defined in Problem 6.
(d) 1y as defined in Problem 7.
(e) vy as defined in Problem 10.
(f) 'y as defined in Problem 17.

In Problems 19 through 26, find the angle between the given vectors.
19)x=[1 2], y=[2 1]"

(20)x=[1 1], y=[3 5]".

(21)x=[3 -2]", y=[3 3]"

(22)x=[4 —-1]", y=[2 8]"

(23)x=[-7 2] y=[2 9]".

(24)x=[2 1 o], y=[2 o 2]".
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25)x=[1 1 0], y=[2 2 1]"
(26)x=[0 3 4], y=[2 5 5]".

(27) Show that, for real numbers a,b, (a,b) =|a+b| does not form a Euclidean
inner product over the set of real numbers.

(28) Prove that ifx and y are vectors in R”, then (Ax,y) =A(x, y) for any real num-
ber A.

(29) Prove that if x, y and z are vectors in R", then (x+z,y)=(x, y)+(z, y).
(30) Prove for any vector y in R" that (0, y)=0.

(31) Prove that if x and y are orthogonal vectors in R", then
Ix+ 1% = [1x]|* + [lyll*.

(32) Prove the following: ||x+y||=|x—y]| if and only if x and y are orthogonal.

(33) Prove the parallelogram law for any two vectors x and y in R"™:
Ix +ylI* + [lx = ylI* = 2[x|I* + 2[ly|*

(34) Prove that for any two vectors x and y in R™:

Ix+ylI* = lx—y|* = 4(x,y).

(35) Let x, y and z be vectors in R". Show that if x is orthogonal to y and if x is
orthogonal to z then x is also orthogonal to all linear combinations of the
vectors y and z.

(36) (a) Prove that, for any scalar \,

0 < [Ax —yl* = N|x|” - 2hx,y) + [yl

(36) (b) Take A= (x, y)/||x||* and show that

_<X7Y>2

0<
Ix]|?

+lyll®

From this deduce that

(xy)* < Ixl*llyll®
and then the Cauchy-Schwarz inequality.

(37) Prove that the Cauchy-Schwarz inequality is an equality in R” if and only if
one vector is a scalar multiple of the other.

(38) Use the Cauchy-Schwarz inequality to show that



(u,v)
= ulfiv =

Thus, Equation (6.5) can be used to define the cosine of the angle between
any two vectors in R". Use Equation (6.5) to find the cosine of the angle
between the following x and y vectors

(a x=[0 1 1 1] y=[1 1 1 o],
(b) x=[1 2 3 4], y=[1 -2 0 -1],
© x=[5 3

(d x=[1 1 2 2 3],y

=
N=
i
]
<
Il
I
—_
I
—
I
—_
I
—
—

Il
—
N
[SS]

N

—
NG

() x=[1 2 3 4 5 6], y=[1 11 1 1 1]"
(39) Verify the following relationships:
Ix+yl* =[x +2¢x,y) + llyll*

< [IxI* + 2=/l Iyll + llyll*

= (JIxIl + llyl)*
and then, using the Cauchy-Schwarz inequality, deduce the triangle
inequality

[+l < [lx[] + [lyll

(40) Calculate induced inner products for the following pairs of matrices with
respect to standard bases:

(a) A= 1 5] and B:{S }inMZXz,

3 —3]

(b) A= 2 8]

in My,

(C) A= in MZXZ/

(e) A=

(4 2 1 2]
(d) A={1 —-3| and B= |3 4| inMs,,,
3 5 6
3
6

2
5
1 2 3 -3 4 1
) A=1|4 5 6 and B= 2 0 —4| inMsy.;.
7 8 9
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(41) Redo parts (a), (b), and (c) of Problem 40 with respect to the basis

e={lo ollo LI LT S}

(42) A generalization of the inner product for n-dimensional column matrices
with real components is

<X7Y>A = <AX7 AY>

where the inner product on the right is the Euclidean inner product
between Ax and Ay for a given n x n real, nonsingular matrix A. Show that
(%, y)a satisfies all the properties of Theorem 1.

(43) Calculate (x, y)4 for the vectors in Problem 1 when A = ﬁ 3} .

1
(44) Calculate (x, y)4 for the vectors in Problem 7 when A = [1

—_ O M

—_— = O
| I |

1 -1 1
(45) Redo Problem 44 with A = {0 1 —1:| .
1 1 1

(46) Show that (x, y)s is the Euclidean inner product when x and y are
coordinate representations with respect to a basis B made up of the col-
umns of A and A is the transition matrix from the B basis to the
standard basis.

(47) Calculate induced inner products for the following pairs of polynomials
with respect to standard bases:
(@) p(t)=t"+2t+3 and q(t)=t>+3t—5 in P?,
(b) p(t)=10£>—5t+1 and ¢(t)=2t>—t—30 in P?,
(c) p(t)=t>+5 and q(t)=2t*—2t+1 in P?,
(d) p(t)=2>43tand q(t)=t+8 in P?,
() p(t)=3C+2"—t+4 and q(t)=t+tin P?,
() p()=—t+2tand q(t)=£"+t+1 in P°.
(48) Redo parts (a) through (d) of Problem 47 with respect to the basis

B={ t+1, t}.

(49) A different inner product on P" is defined by



(o(1), 4(1)) = jp(t)q(t)dr

a

for polynomials p(t) and ¢(t) and real numbers a and b with b>a. Show
that this inner product satisfies all the properties of Theorem 1.

(50) Redo Problem 47 with the inner product defined in Problem 48, taking
a=0and b=1.

6.2 PROJECTIONS AND GRAM-SCHMIDT
ORTHONORMALIZATION

An important problem in the applied sciences is to write a given nonzero vector x
in R? or R? as the sum of two vectors u+v where u is parallel to a known refer-
ence vector a and v is perpendicular to a (see Figure 6.6). In physics, u is called
the parallel component of x and v is called the perpendicular component of x, where
parallel and perpendicular are relative to the reference vector a.

If u is to be parallel to a, it must be a scalar multiple of a; that is, u=/a for some
value of the scalar /. If x=u+v, then necessarily v=x—u=x—4a. Ifu and v are
to be perpendicular, then

0= (u,v) = (la,x — a)
= J(a,x) — /*(a,a)
= A[{a,x) — A{a,a)]

Either =0 or A=(a, x)/(a, a). If 1=0, then u=1a=0a=0, and x=u-+v=y,
from which we conclude that x and a, the given vector and the reference vector,
are perpendicular and (a, x) =0. Thus, 1=(a, x)/(a, a) is always true and

u:<a’x>a and v:x—<a’X>

(a,a) (a,a)

FIGURE 6.6


Figure 6.6
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In this context, u is the projection of x onto a and v is the orthogonal complement.
. 2
Example 1 Write the vector x = {7] as the sum of two vectors, one parallel to
-3 .
a=| and one perpendicular to a.

Solution:

e a1 e
e il e b

Then, x=u+v, with u parallel to a and v perpendicular to a.
Example 2 Find the point on the line x+4y=0 closest to (—3, —1).

Solution: One point on the line is (4, —1), so a =[4 — 1]" is a reference vector in
the plane parallel to the line. The given point (—3, —1) is associated with the
vector x=[-3 —1]', and we seek the coordinates of the point P (see
Figure 6.7) on the line x+4y=0. The vector u that begins at the origin and
terminates at P is the projection of x onto a. Therefore,

(a,x) =4(=3)+ (-1)(-1) =-11
(a,a) = (4)* 4 (-1)2 =17

(a,x) —11 4 —44/17
u= a=—— =
(a,a) 17 | -1 11/17
y
T4
+3
Line:i(+ 4y =0 1o
P 11
v u
B4y 2| 2 b 4
X 11 a
(-3,-1) 1o (4,-1)
+-3
t—4

FIGURE 6.7


Figure 6.7

If x is a nonzero vector,
then x minus its
projection onto another
nonzero vector a yields a
vector that is orthogonal
to both a and the
projection of x onto a.

P = (—44/17,11/17)

The concepts of projections and orthogonal complements in R? can be extended
to any finite dimensional vector space V with an inner product. Given a nonzero
vector x and a reference vector a, both in V, we define the projections of x onto a as

o _(ax)
proj,x = @ a) a (6.6)
It then follows (see Problem 34) that
_lax) a is orthogonal to a (6.7)

(a,a)

Subtracting from a nonzero vector x the projection x onto another nonzero vec-
tor a leaves a vector that is orthogonal to both a and the projection of x onto a.

Example 3 Write the polynomial x(t) =2t* +3t+4 in P? as the sum of two poly-
nomials, one that is the projection of x(t) onto a(t) = 5t* + 6 and one that is orthog-
onal to a(t) under the inner product induced by the Euclidean inner product in R>.

Solution: The induced inner product between two polynomials is obtained by
multiplying the coefficients of like powers of t and summing the resulting prod-
ucts (see Example 7 of Section 6.1). Thus,

(a(t), x(t)) = 5(2) + 0(3) + 6(4) = 34

(a(t), a(t)) = (5)% + (0) + (6) = 61

a(t), x() . 34,_, 170, 204
is the projection of x(t) onto a(t).
v(t) = x(t) —u(t) = —gtz + 3t+2—(1)

is orthogonal to a(t), and x(t) =u(t) +v(t).

A set of vectors is called an orthogonal set if each vector in the set is orthogonal to
every other vector in the set.

Example 4 The vectors {x, y, z} in R> defined by

1 1
x=|1]|,y= 1l,z=| -1
1 -2

are an orthogonal set of vectors because (x, y) = (x, z) = (y, z) =0. In contrast, the
set of vectors {a, b, ¢} in R* defined by

a=[1 1 0 1/"b=[-1 1 2 0"c=[1 1 0 2"

is not an orthogonal set because (a, ¢) #0. If c is redefined as
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c=[1 1 0 2]
then {a, b, ¢} is orthogonal, because now (a, b)=(a, ¢)=(b, ¢)=0.

An orthogonal set of unit vectors (vectors all having magnitude 1) is called an An orthonormal set of

orthonormal set. Using the Kronecker delta notation, vectors is an orthogonal
set of unit vectors.
1 ifi=j
5”_{0 if i ] (6.8)
We say that a set of vectors {xi, X,, ..., X,} is orthonormal if and only if
<Xl‘,Xj> :61']' (i,j: 1,2, ,m) (6.9)

Example 5 The set of vectors {u, v, w} in R? defined by

1/V2 1/v2 0
u= (1/y/2|,v=|-1/y2|,w=|0
0 0 1

is an orthonormal set of vectors because each vector is orthogonal to the other
two and each vector is a unit vector.

Any orthogonal set of nonzero vectors can be transformed into an orthonormal
set by dividing each vector by its magnitude. It follows from Example 4 that the
vectors

1 1 1
x=|(1]|,y= 1{,z=| -1
1 -2 0

form an orthogonal set. Dividing each vector by its magnitude, we generate

. ) 1/V3 1/v6 1/v2
el e
(X ly (1 [l 1/v3] | -2/v6 0

as an orthonormal set.

» THEOREM 1

An orthonormal set of a finite number of vectors is linearly independent.

Proof: Let {xy, X5, ..., X,} be an orthonormal set and consider the vector
equation

C1X1 +6xp + ...+ Xy = 0 (610)
where ¢j(j=1, 2, ..., n) is a scalar. This set of vectors is linearly independent if
and only if the only solution to Equation (6.10) is ¢;=c¢,=... =¢,=0. Taking

the inner product of both sides of Equation (6.10) with x;, we have



(c1X1 + €% + oo 4+ GXj + ... + X, X)) = (0,X)

Using parts (c), (d), and (e) of Theorem 1 of Section 6.1, we rewrite this last
equation as

1 (X1, %)) + 2(X2, %)) + - 4+ (X}, X)) + . 4 a(Xn,Xj) = 0

or

n

ZC{<X1‘,X]‘> =0
i=1
As a consequence of Equation (6.9),

n
Z C,’éij =0
i=1

or¢=0(j=1,2,...,n).

If B={xy, x5, ..., X,,} is a basis for V, then any vector x in V can be written as a
linear combination of the basis vectors in one and only one way (see Theorem 5
of Section 2.5). That is,

n
X =C1X] + Xy + ... + Xy = E CiX;i
i=1

with each¢j(i=1, 2, ..., n) uniquely determined by the choice of the basis. If the
basis is orthonormal, we can use the additional structure of an inner product to
say more. In particular,

n
<X, Xj> = <Zcixi, X]'>
i=1
n
= (i x))
i=1
n
= Zci<xivxj>
i=1
n
= Zciéij = (.
i=1

We have proven Theorem 2.

» THEOREM 2
If {X1, X2, ..., X,} is orthonormal basis for a vector space V, then for any vector X in V,
X=(X,X1)X1 + (X,X2)Xo +. .. + (X,X,)X, 4

\

.
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Theorem 2 is one of those wonderful results that saves time and effort. In general,
to write a vector in an n-dimensional vector space in terms of a given basis, we
must solve a set n simultaneous linear equations (see Example 11, Section 2.5).
If, however, the basis is orthonormal, the work is reduced to taking n-inner prod-

ucts and solving no simultaneous equations.

Example 6 Write x=[1 2 3]" as a linear combination of the vectors

1/v3 1/v6 1/v2
q, = ll/ﬁ],qz [ 1/\/51,% [_1/ﬁ]
1/V3 —-2/V6 0

Proof: The set {qi, 2, qs} is an orthonormal basis for R*. Consequently,

o =1L w2 L) es( L) - C
o V3 V3 V3] V3
(x,q,) =1 1 +2 1 +3 I
R W3 /6 NG G
1 ~1 ~1
(x,q5) =1 7 +2 7 +3(0):ﬁ
1 1/V3 [ 1/V6 1/v2
2 :% 1/V3 +<\_/§) 1/v/6 +<\_/%> —1/V2
3 1/V3 L—2/V6 0

Example 7 Write A = [ !

2 . . . .
] as a linear combination of the four matrices

3 4
[ 1/V/3 1/V3
R VY S 1
0 —1/\/1
Q, = ’
-1/V3  1/V3
[1/v/3 0
YN 1/@1’
[—-1/V/3 1/V/3
o[




Solution: The set {Q;, Q,, Qs3, Q4} is an orthonormal basis for M,,, under
the induced inner product (see Example 5 of Section 6.1) defined by multiplying
corresponding elements and summing the resulting products. Consequently,

/2 1/vV3 1/V3
([ 3 L )

=1<L> +2(i) +3(_—1) +4(0)=0
V3 V3 V3

/[ 2] 0 -1/V3
<A’Q2>_<L 4-’[—1% 1/¢§]>

1(0) + 2 _—1) +3(_—1) +4(L) _ 1
V3 V3 V3] V3

/[ 2] v oo
<A’Q3>_<L 4-’[1% 1N§]>
—1(2 200) +3( s L) =8
“H) RO E) I E) T
/[ 2] [-1v3 V3
<A’Q4>_<[3 4’[ 0 1/\/§>
Y i) VP B 30) 44| =) =2
“Hs) ) PO GE) T

and
[1 2}_(0) 1/vV3 1/V3 Y 0 -1/V/3
3 4] | -1/V3 0 V3|1 -1/v/3 1/V3

N 8 \|1/vV/3 0 N 5\|-1/V3 1/V/3
V3] 11/V3 1/V3 V3 0 1/V3|
An'inner product space is - An inner product space is a vector space with an inner product defined between
a vector space with an pairs of vectors. Using projections, we can transform any basis for a finite
inner product defined . . . . .
between pairs of vectors. dimensional inner product space V into an orthonormal basis for V. To see

how, let {x;, X, X3} be a basis for R*. Taking x, as our reference vector, it follows
from Equation (6.7), with x, replacing x, that

(x1,%2)

MR <X1,X1>

x; is orthogonal to x;
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Similarly, it follows from Equation (6.7), with x5 replacing x, that

<X17X3>

x; is orthogonal to x;
<X1 ) X1>

X5 = X3 —
These formulas may be simplified when x; is a unit vector, because
(x1,%;) = ||%;]|* = 1. We can guarantee that the first vector in any basis be a unit
vector by dividing that vector by its magnitude. Assuming this has been done
and noting that (x;, X,) = (X5, X;) and (x;, X3) = (X3, X;), we have that

X4 = X; — (Xp,X1)X; is orthogonal to x;
and

X5 = X3 — (X3,X1)X; is orthogonal to x;

Furthermore, x, #0 because it is a linear combination of x; and x,, which are
linearly independent, with the coefficient of x, equal to 1. The only way for a
linear combination of linearly independent vectors to be 0 is for all the coeffi-
cients of the vectors to be 0. Similarly x5 #0 because it is a linear combination
of x; and x5 with the coefficient of x5 set to 1. Thus, the set {x;, x4, x5} has
the property that x; is a unit vector orthogonal to both nonzero vectors x4
and xs. The vectors x4 and x5 are not necessarily unit vectors and may not be
orthogonal, but we have made progress in our attempt to create an orthonormal
set. Now, taking x, as our reference vector, it follows from Equation (6.7), with x5
replacing x, that

<X47 X5>
(X4,X4)
This formula may be simplified if x, is a unit vector, a condition we can force by

dividing x, by its magnitude. Assuming this has been done and noting that
(X4, X5) = (X5, X4), we have that

X = X5 — x4 is orthogonal to x4

Xs = X5 — (X5,X4)X4 is orthogonal to x4

Also,

<X6;X1> X5 — <X5,X4>X4,X1>

(
(x5,%1) — ({X5,%X4)X4, X1)
(X5,X1) — (X5,X4) (X4, X1)

=0

because x; is orthogonal to both x4 and xs. Thus, x; is orthogonal to both x, and
Xs and these last two vectors are themselves orthogonal. Furthermore, x5#0,
because it can be written as a linear combination of the linearly independent vec-
tors X;, X,, and x5 with the coefficient of x5 set to one. If X¢ is not a unit vector, we
may force it to become a unit vector by dividing xs by its magnitude. Assuming
this is done, we have that {x;, x4, X} is an orthonormal set.



If we apply this construction to arbitrary n-dimensional inner product
spaces, and use q; to denote the ith vector in an orthonormal set, we have
Theorem 3.

7~

» THEOREM 3. (THE GRAM-SCHMIDT ORTHONORMALIZATION A
PROCESS)

Let {X4, X5, ..., X,} be a basis for an inner product space V. For k=1, 2, ..., n, do
iteratively:

Step 1. Calculate ri= |X]| -

Step 2. Set q,=(1/r)Xk-

Step 3. For j=k+1, k+2, ..., n, calculate r;=(X;qx).
Step 4. For j=k+1, k42, ..., n, replace X; with y;=X; — rQly; that is, X; < X; — ri;ql.
After the kth iteration (k=1, 2, ..., n), {q4, 9o, - .., qx} is an ortho-normal set, the span of
{91, 92, - .., qi} equals the span of {X4, Xo, . .., Xg}, and each new X; j=k+1,k+2,...,n)
is @ nonzero vector orthogonal to each q; (i=1, 2, ..., k)4

\, J

Proof: (by mathematical induction on the iterations). Setting q; =x,/||x,||, we
have span{q,}=span{x;} and ||q,||=1. Furthermore, it follows from Equa-
tion (6.7) that x;—1y;q;, (j=2, 3, ..., n) is orthogonal to q;. Thus, the proposi-
tion is true for n=1.

Assume that the proposition is true for n=*k. Then x;,,; is nonzero and orthog-
onal to qy, qo, - .., qr, hence q; .1 =X; 1/||X1|| is a unit vector and {q, qa, - . .,
Qi Qr+1} is an orthonormal set. From the induction hypothesis,

span{q,,dy, - - ,q,} = span{x1,Xa,... , Xz}, SO

Span{ql,(h) s aqk7qk+l} - SPLlTl{Xl,Xz, s 7Xk7qk+1}

= span{xy,Xa, ... , Xp, X1/ ||Xes1 ||
= Span{xlvx27 s axk7xk+1}'
For j=k+2, k+3, ..., n, we construct y;j=x;—T; 1, jdr+1. It follows from

Equation (6.7) that each y; vector is orthogonal to qi,. In addition, for
i=1,2, ...,k

(390 = (5 = 1o s )

= <xj,qi> - rk+1rj<qk+17 Qi>
=0

Here (x;, q;) =0 as a result of the induction hypothesis and (q;.;1, q;) =0 because
{41,492 .., Qi Q.41 } is an orthonormal set. Letting ;< y;, j=k+2,k+3, ..., n,
we have that each new x; is orthogonal to each q; i=1, 2, ..., k+1. Thus,
Theorem 3 is proved by mathematical induction (see Appendix A).
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The first two steps in the orthonormalization process create unit vectors; the third and
fourth steps subtract projections from vectors, thereby generating orthogonality.
These four steps are also known as the revised (or modified) Gram-Schmidt algorithm.

Example 8 Use the Gram-Schmidt orthonormalization process to construct an
orthonormal set of vectors from the linearly independent set {x;, x,, X3}, where

1 1
X = 1 , X2 = 1 ;X3 = 0
0 1 1

Solution: For the first iteration (k=1),

= <X17X1> = \/5

1 1/V2
1 1
a T ! V2 /\/-
0 0

1
T2 = (X2,qy) :75

1
13 = (X3,q;) = 75
(07 1/V2 —-1/2
1
X=X —Tpq; = |1| ——|1/V2]| = 1/2
V2
L1} 0 1
17 1/V2 1/2
1 1
X3 X3 —ri3q = |0| ——=——7=[1/V2|=|-1/2
V2 V2
L1} 0 1

Note that both x, and x5 are now orthogonal to q;.

For the second iteration (k=2), using vectors from the first iteration, we compute

2 =/ (X2,X2) = \/3/2

1 1 m1/2 -1/V6
) = —X) = ———= 1/2 | = 1 6
4 22 V3/2 1/ 2?%
1
13 = (X3,q,) = 7@
1/2 ~1/v/6 2/3
X3 X3 —T123q, = | —1/2 _LG 1/V6 | =|-2/3

1 2/V6 2/3



For the third iteration (k= 3), using vectors from the second iteration, we compute

2
T33 = v/ (x3,X3) = ﬁ
1 1 2/3 1/V3

The orthonormal set is {qy, q», q3}-

Example 9 Use the Gram-Schmidt orthonormalization process to construct an
orthonormal set of vectors from the linearly independent set {x;, x,, X3, X4},
where

X1 = ;X3 =

— = O =

1
2
1
0

Solution: Carrying eight significant figures through all computations but round-
ing to four decimals for presentation purposes, we get

For the first iteration (k=1)

= /(x1,x1) = V3 = 1.7321,

1 0.5774
1 1 |1 0.5774

D= T3 0| T 00000 |
1 0.5774

T = <X2, q1> = 1.7321,
13 = <X3, q1> =1.1547,
T4 = <X4/ q1> = 11547,

(17 [0.57747 [ 0.00007
2 0.5774 1.0000
Xy =Xy —T12q; = —1.7321 =
1 0.0000 1.0000
L 0] | 0.5774 | L —1.0000 |
[0 [0.57747 [ —0.6667
1 0.5774 0.3333
X3 < X3 —1'13q; = — 1.1547 =
2 0.0000 2.0000
1) 05774 | 0.3333]



0.5774
0.5774
0.0000
0.5774

Xy — Xq4 —Tyqg = —1.1547

_— = O

0.
—0.
1.
0.

3333
6667
0000
3333
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For the second iteration (k=2), using vectors from the first iteration, we compute

T2 =/ (X2,Xp) = 1.7321,
0.0000 0.0000
1 1 1.0000 0.5774
L S WEST 1.0000 | | 0.5774
—1.0000 —0.5774
23 = (X3,q,) = 1.1547,
24 = (X4,q,) = 0.0000,
[ —0.6667] 0.0000 ]
0.3333 0.5774
X3 < X3 — 23qQ, = —1.1547 =
2.0000 0.5774
0.3333 | | —0.5774 |
0.3333] 0.0000 ]
—0.6667 0.5774
X4 X4 —T24q, = — 0.0000 =
1.0000 0.5774
0.3333 | | —0.5774 |

—0.6667
—0.3333
1.3333
1.0000
0.3333
—0.6667
1.0000
0.3333

For the third iteration (k=3), using vectors from the second iteration, we

compute

33 = <X3,X3> = 1.8257,

—0.6667
1 1 —0.3333

B T 18257 | 13333
1.0000

T34 = <X4,q3> =0.9129,

—0.3651
—0.1826

0.7303
0.5477



0.3333 —0.3651 0.6667

% T _ | —06667 | g 59| 01826 | _ | ~0.5000
4 47493 = |1 0000 : 0.7303 | — | 0.3333
0.3333 0.5477 —0.1667

For the fourth iteration (k=4), using vectors from the third iteration, we
compute

T4 = <X4,X4> =0.9129,

0.6667 0.7303
1 1 —0.5000 —0.5477

q4 = —X4 = =
Tas 0.9129 | 0.3333 0.3651
—0.1667 —0.1826

The orthonormal set is {q1, q2, q3, q4}-

IfB={x;,X,, ..., X,} is a linearly independent set of vectors in an inner product
space U, and not necessarily a basis, then the Gram-Schmidt orthonormalization
process can be applied directly on B to transform it into an orthonormal set of
vectors with the same span as B. This follows immediately from Theorem 3
because B is a basis for the subspace V=span{x;, x5, ..., X,}.

Problems 6.2

In Problems 1 through 10, determine (a) the projection of x; onto x,, and (b) the
orthogonal complement.

1 2 (1 3
(1)X1_2}X2L} (2)X1_1}X2{5]-
[ 3 3 [ 4 2
@n-[ n-[2] @x-[ Hn-[2]
[—7 2 (27 (27
(8)x: = _—2}”‘2 {9} ®)x,=[1],x,=]0].
_O_ _2_
(1] (27 (0] (27
(7) X = 1 Xy = 2. (8) X] = 3 Xy = 5
0 | 1] | 4 | |5 ]
(0] (17 (17 !
1 1 2 -2
(9)x; = 1,X2— 1 (10) x; = 3 Xy = 0
1] 1 0] | 4 | -1
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In Problems 11 through 23, show that the set B is an orthonormal basis
(under the Euclidean inner product or the inner product induced by the
Euclidean inner product) for the given vector space and then write x as a
linear combination of those basis vectors.

_[]3/5 4/5 MR x— |3
e {[32] [ 33 pmex=[]
C[Tyv2T [ V2 e . [3
s (AL [ e 1]
= 1/\/— 2/\/— inR? x =
wam = {[3va) [ sl pmmx= 3]
3/51 [ 4/5] [0] [1
(14)13:{ 4/5|,1-3/5|,|0 }inRS;x: 2}
Lo | [ 0o | [1] 3
[3/57 [ 4/57 [0] [ 10
(15)13%:{ 4/5|,1-3/5(,|0 }inRS;x: o}
Lo | [ 0o | [1] | —20
[1/v2] [-1/V6 1/v/3 10
(16)182{ 1/ﬁ],[ 1/\/8},[—1/@]}111}1@;:(:[ o].
Y 2/V6 1/V3 -20
[—1/v2 1/v/6] [-1/V3 10
(17) B = 1/vV2|,| 1/v6|.|-1/V3]| pinR% x= 0.
| O -2/V/6] |-1/V3 -20

(18) B={0.6t—0.8, 0.8t+0.6} in P'; x=2t+1.
(19) B={0.6>—0.8, 0.8¢°+0.6, t} in P% x=1"+2t+3.
(20) B={0.6t>—0.8, 0.8+ 0.6, t} in P%; x=1>—1.

- {[ 1VE WAL o il v o ] T vl

. 1 1
in My, x = [_1 2}

(22)18—{[3(/)5 4(/)5}{4(/)5 _%/5]7{3(/)5 —2/5]’{—2/5 —;)/5”;

. 1 2
lanxz; X = |:3 4:|

o= VI L L )

. 4 5
lanxz;X:[_G 7}



In Problems 24 through 32, use the Gram-Schmidt orthonormalization
process to construct an orthonormal set from the given set of linearly inde-
pendent vectors.

(24) The vectors in Problem 1.
(25) The vectors in Problem 2.
(26) The vectors in Problem 3.

1 1
(27) X] = 2 Xy = 0 ;X3 = 0
| 1] | 1] | 2 ]
[2] [0] (2]
(28) X = 1 Xy = 1 X3 = 0
| 0 | | 1] | 2 |
(1] (27 [27]
(29) X] = 1 Xy = 0 , X3 = 2
| 0| | 1] | 1]
(0] 37 [27]
(30)x;=1|3|,x=|5|,x3=15
| 4 ] 1 0] | 5|
[0] 1] 1] 1]
1 0 1 1
(31)X1: 1 X2 = 1 ;X3 = 0 1 X4 = 1
| 1] | 1] | 1] 0]
[1] [0 1 [ 1
1 1 0 0
(32) x; = ol’X2= | 4 ['BT | 4% = 0
| 0] 0 0 | —1
1 0 1
(33) Thevectorsx; = |1 |,xo = [1],x3 = 0
1 -1

are linearly dependent. Apply the Gram-Schmidt orthonormalization pro-
cess to them and use the results to deduce what occurs when the process is
applied to a linearly dependent set of vectors.

(a,x)
(a,a)

(35) Prove that if x and y are orthonormal, then ||sx+ ty||>=s”4-¢* for any two
scalars s and t.

(34) Prove directly that x — a is orthogonal to a.

(36) Let Q be any n x n real matrix having columns that, when considered as
n-dimensional vectors, form an orthonormal set. What can one say about
the product Q'Q?
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(37) Prove that if (y, x) =0 for every n-dimensional vector y, then x=0.

(38) Let A be an n x n real matrix and p be a real n-dimensional column matrix.
Show that if p is orthogonal to the columns of A, then (Ay, p) =0 for every
n-dimensional real column matrix y.

(39) Prove that if B is an orthonormal set of vectors that span a vector space U,
then B is a basis for U.

6.3 THE QR ALGORITHM

To express a matrix in a more convenient form as a product of two other matrices
is called a factorization. One of the more useful of these is the QR factorization,
which is based on Gram-Schmidt orthonormalization. The QR algorithm is a
robust numerical method for computing eigenvalues of real matrices. In contrast
to the power methods described in Section 4.5, which converge to a single dom-
inant real eigenvalue, the QR algorithm generally locates all eigenvalues of a
matrix, both real and complex, regardless of multiplicity.

To use the algorithm, we must factor a given matrix A into the matrix product
A=QR (6.11)

where R is an upper (or right) triangular matrix and the columns of Q, consid-
ered as individual column matrices, form an orthonormal set. Equation (6.11) is
a QR decomposition of A. Such a decomposition is always possible when the
columns of A are linearly independent.

Example 1 Two QR decompositions are

1 31:[1/\/5 —1/\/§H\/§ 4/\/51

15 1/vV2 1/V2] 0 V2
and

oo |22 ]

2 1 2/3 —7/V/153 v1s3/9

It is apparent from Example 1 that QR decompositions exist for square and rect-
angular matrices. The orders of A and Q are the same and R is a square matrix
having the same number of columns as A. For the remainder of this section,
we restrict A to be square because we are interested in locating eigenvalues,
and eigenvalues are defined only for square matrices. Then both Q and R are
square and have the same order as A.

A QR decomposition of a matrix A comes directly from the Gram-Schmidt ortho-
normalization process (see Theorem 3 of Section 6.2) applied to the linearly
independent columns of A. The elements of R=[r;] are the scalars from Steps
1 and 3 of the orthonormalization process, and the columns of Q are the ortho-
normal column matrices constructed in Step 2 of that process. To see why, we let

In a QR decomposition
of a matrix A, the
elements of R=[r;] are
the scalars from Steps
1 and 3 of the
Gram-Schmidt
orthonormalization
process applied to the
linearly independent
columns of A, while the
columns of Q are the
orthonormal column
matrices constructed

in Step 2 of the
Gram-Schmidt process.



x](i) denote x; after the ith iteration of the Gram-Schmidt process (j>1). Thus, xj(l)
is the new value of x; after the first iteration of the orthonormalization process,
x](z) is value of x; after the second iteration, and so on. In this context, x](O) is the
initial value of x;.

» THEOREM 1
©

After the ith iteration of the Gram-Schmidt orthonormalization process, x{"=x\"—r,
}q17r2,j qz—... 7”1’,] ql4

Proof: (by mathematical induction on the iterations): After the first iteration, we
have from Step 4 of the process that x{") =x{®) —r, ; q, forj=2, 3, ..., n, so the
proposition is true for n=1.

Assume the proposition is true for n=i. Then after the i+ 1 iteration, it follows
from Step 4 that for j=i+2, i+3, ..., n.

(i+1) (i) ) )
Xj =% —Tit1,j 9ipx

and then from the induction hypothesis that

(i+1) _ [.(0)
X=X Ty — 12, - T 9|~ Tig, i

which is of the required form. Therefore, Theorem 1 is proved by mathematical
induction.

Designate the columns of an n x n matrix A as Xy, X, . . . , X, respectively, so that
A: [Xl XH . Xn]~ Set
Q =14, 4,4, (6.12)
and
(111 T2 T3 e T
0 122 7123 - T
R = 0 0 33 =+ T3y (613)
(0 0 0 - Tp

Then it follows from Theorem 1 that A=QR.

—_— -0
— o

1
Example 2 Construct a QR decomposition forA = | 1
0
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Solution: The columns of A are

1 0 1
X1 = 1 , Xy = 1 , X3 = 0
0 1 1

Using the results of Example 8 of Section 6.2, we have immediately that

1/vV2 -1/V/6  1/V/3 V2 1/V2 1/V2
Q=|1/v2 1/vV6 —-1/V/3|.R=| 0 /3/2 1/V6
0 2/V/6  1/4/3 0 0 2/V3
from which A=QR.
1 1 0 1
.. 1 21 0
Example 3 Construct a QR decomposition for A = 01 2 1
1 0 1 1
Solution: The columns of A are
1 1 0 1
|1 12 |1 10
X1 = 0 Xy = 1 ;X3 = 2 1 Xy = 1
1 0 1 1

Using the results of Example 9 of Section 6.2, we have immediately that

[0.5774 0.0000 —0.3651 0.7303

0.5774 0.5774 —-0.1826 —0.5477

Q= 0.0000 0.5774 0.7303 0.3651 ,
| 0.5774 —0.5774 0.5477 —0.1826
[1.7321 1.7321 1.1547 1.1547

0 1.7321 1.1547 0.0000

= 0 0 1.8257 0.9129

0 0 0 0.9129

from which A=QR to within round-off error.

The QR algorithm uses QR decompositions to identify the eigenvalues of a
square matrix. The algorithm involves many arithmetic calculations, making it
unattractive for hand computations but ideal for implementation on a com-
puter. Although a proof of the QR algorithm is beyond the scope of this book,
the algorithm itself is deceptively simple.



We begin with a square real matrix Ay having linearly independent columns. To
determine its eigenvalues, we create a sequence of new matrices Ay, Ay, ..., Ap_1,
Ay, ..., having the property that each new matrix has the same eigenvalues as A,
and that these eigenvalues become increasingly obvious as the sequence pro-
gresses. To calculate A, (k=1, 2, ... ) once A;,_; is known, we construct a QR
decomposition of A;_:

Ap-1 = Q1R
and then reverse the order of the product to define

Ak = Rk_le71 (614)

Each matrix in the sequence {A;} has identical eigenvalues (see Problem 29),
and the sequence generally converges to one of the following two partitioned
forms:

S T
[a"d*b":fb*(ﬂ (6.15)
or
[ ¢ B LV
{0 00 - 0D c} (6.16)
000 - 0de

If matrix (6.15) occurs, then the element a is an eigenvalue, and the remaining
eigenvalues are found by applying the QR algorithm anew to the submatrix S. If,
on the other hand, matrix (6.16) occurs, then two eigenvalues are determined by
solving for the roots of the characteristic equation of the 2 x 2 matrix in the lower
right partition, namely,

A —(b+e)h+ (be—cd) =0

The remaining eigenvalues are found by applying the QR algorithm anew to the
submatrix U.

Convergence of the algorithm is accelerated by performing a shift at each itera-
tion. If the orders of all matrices are n x n, we denote the element in the (n, n)
position of the matrix Aj,_; as wy_;, and construct a QR decomposition for
the shifted matrix A;,_; —w;_1. That is,

Ak—l — Wk_ll = Qk*le—l (617)
We define
Ay = Rk—le—l + w11 (618)

Example 4 Find the eigenvalues of

Ao=|0 0 1
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Solution: Using the QR algorithm with shifting, carrying all calculations to eight
significant figures but rounding to four decimals for presentation, we compute

Ao—(=7)1
r 7 1 0
= 0 7 1
118 -1 0

[0.3624 0.1695 -0.9165 19.3132 —-0.5696 0.0000
= | 0.0000 0.9833 0.1818 0.0000 7.1187 0.9833

010.9320 —0.0659 0.3564 0.0000 0.0000 0.1818

= QoRo

=RoQp + (7)1

[19.3132 —0.5696 0.00007 [0.3624 0.1695 —-0.9165 -7 0 0

A

—_

= | 0.0000 7.1187 0.9833 | | 0.0000 0.9833 0.1818 | + 0 -7 0
L 0.0000 0.0000 0.1818 ] L0.9320 —0.0659 0.3564 0 0 -7
[0.0000 2.7130 —17.80357
= 10.9165 6.8704 1.6449

L0.1695 —-0.0120 —6.9352]

A, — (—6.9352)I

6.9352  2.7130 —178035

= 109165 6.8704  1.6449

[0.1695 —0.0120  0.0000

10.9911 —0.1306 —0.02607 [6.9975 3.5884 —17.4294
=10.1310 09913  0.0120 | | 0.0000 6.4565  3.9562

10.0242 —0.0153 0.9996 0.0000 0.0000 0.4829
= QR
0.0478 29101 —-17.5612
A; =RiQ; +(—6.9352)I = [ 0.9414 —0.5954 4.0322
0.0117 —-0.0074 —6.4525



Continuing in this manner, we generate sequentially
[0.5511  2.7835 —16.8072]
A; = |0.7826 —1.1455 6.5200

| 0.0001 —0.0001 —6.4056 |
[0.9259  2.5510 —15.9729]

Ay = [ 05497 —1.5207 8.3583
| 0.0000 —0.0000 —6.4051 |

A, has form (6.15) with

0.9259  2.5510
$=105497 _1.5207| 2nd @=—-6.4051

One eigenvalue is —6.4051, which is identical to the value obtained in Example 2
of Section 4.6. In addition, the characteristic equation of R is
1> 40.5948) —2.8103 =0, which admits both —2 and 1.4052 as roots. These
are the other two eigenvalues of A,.

Example 5 Find the eigenvalues of

0 0 0 —25
1 0 0 30
A=1p 01 —18
0 0 1 6

Solution: Using the QR algorithm with shifting, carrying all calculations to eight
significant figures but rounding to four decimals for presentation, we compute
[—6 0 0 —-25

1 -6 0 30

0 1 -6 -—-18

0 0 1 0

Ao — (6)I =

[—0.9864 —-0.1621 -0.0270 —0.0046
0.1644 —-0.9726 —-0.1620 —-0.0274
0.0000 0.1666 —-0.9722 —-0.1643
0.0000 0.0000 0.1667 —0.9860

6.0828 —0.9864 0.0000 29.5918
0.0000 6.0023 -0.9996 -—28.1246
0.0000 0.0000 6.0001 13.3142
0.0000 0.0000 0.0000 2.2505

= QuRo



[—0.1622 —0.0266 49275 —29.1787]
0.9868 —0.0044 —4.6881 27.7311

A =RoQ, + (6)I =
0.0000 0.9996 2.3858 —14.1140
0.0000 0.0000 0.3751 3.7810 |

[—3.9432 —0.0266 4.9275 —29.1787]
0.9868 —3.7854 —4.6881 27.7311

A, — (3.7810)1 =
0.0000  0.9996 —1.3954 —14.1140

0.0000 0.0000 0.3751 0.0000 |
[—0.9701 —0.2343 -0.0628 —0.0106
0.2428 —-0.9361 —-0.2509 —0.0423
0.0000 0.2622 -0.9516 —-0.1604
0.0000 0.0000 0.1662 —-0.9861
4.0647 —-0.8931 —-5.9182 35.0379

0.0000 3.8120  2.8684 —22.8257

) 0.0000  0.0000  2.2569 8.3060

0.0000  0.0000  0.0000 1.3998

=QR,
A; =R;Q; +(3.7810)I

—0.3790 —1.6681 11.4235 —33.6068
0.9254  0.9646 —7.4792  21.8871
0.0000 0.5918 3.0137 —8.5524

0.0000 0.0000 0.23206 2.4006
Continuing in this manner, we generate, after 25 iterations,

4.8641 —4.4404 18.1956 —28.7675
4.2635 —2.8641 13.3357 —21.3371
0.0000 0.0000 2.7641 —4.1438
0.0000 0.0000 0.3822 1.2359

A5 =

which has form (6.16) with

4.8641 —4.4404} {b c]
and
d e

©14.2635 —2.8641

2.7641 —4.1438
0.3822 1.2359
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The characteristic equation of U is A>—2A+5=0, which has as its roots

14+2i; the

characteristic

eigenvalues of A,.

Problems 6.3

(1) Given the matrix A =

equation of the
M —4h+4.9999=0, which has as its roots 2+i. These roots are the four

1
2 0
0o 2

N

and matrix Q =

other

V5

5
25

5

0

find an upper triangular matrix R such that A= QR_.

4./5
15

25

15
V5

3

2 X2 matrix

2

3

1
3
2
3

is

In Problems 2 through 12, construct QR decompositions for the given

matrices.
(1 2
(2) 21 ] .

(4)

— =
S =

(6)

81

(8)

—_
—_

(120)

= W
S U

(12)

)

©C O
|

[ 3 3
-2 3]

S =

(3)

(5)

(7)

(9)

(11)

—_

Ul W

— NN

— O N

—_ = O

— e

,_.'\_)MI.—I

—_— O =
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(13) Use one iteration of the QR algorithm to calculate A; for
0 1 0
Ap=1] 0 0 1
18 -1 7
Note that this matrix differs from the one in Example 4 by a single sign.

(14) Use one iteration of the QR algorithm to calculate A; for

2 17 7
Ap=|-17 -4 1
7 1 14

(15) Use one iteration of the QR algorithm to calculate A; for

0 0 0 —13
1 00 4
A=101 0 —14
0 0 1 4

In Problems 16 through 24, use the QR algorithm to calculate the eigen-
values of the given matrices.

(16) The matrix in Problem 13.
(17) The matrix in Problem 14.

(3 0 0 (7 2 0
(18) (2 6 4 (19) [2 1 o6

2 3 5 0 6 7

(3 2 3 1 1 0
(200 |2 6 6 (21) o 1 1

13 6 11 5 -9 6
(22) The matrix in Problem 15.

[0 3 2 -1 (10 7 8 7

1 0 2 -3 7 5 6 5
(23) 3 1 0 -1 (24) 8 6 10 9

2 -2 1 1 | 7 5 9 10

(25) Prove that R is nonsingular in a QR decomposition.

(26) Evaluate Q'Q for any square matrix Q in a QR decomposition, and then
prove that Q is nonsingular.

(27) Using Problem 25, show that Ay is similar to A;,_, in the QR algorithm and
deduce that both matrices have the same eigenvalues.



Small random variations
from expected patterns
are called noise.

6.4 LEAST SQUARES

Analyzing data to interpret and predict events is common to business, engineer-
ing, and the physical and social sciences. If such data are plotted, as in Figure 6.8,
they constitute a scatter diagram, which may provide insight into the underlying
relationship between system variables. Figure 6.8 could represent a relationship
between advertising expenditures and sales in a business environment, or
between time and velocity in physics, or between formal control and deterrence
in sociology.

The data in Figure 6.8 appears to follow a straight line relationship, but with
minor random distortions. Such distortions, called noise, are expected when data
are obtained experimentally. To understand why, assume you are asked to ride a
bicycle on a painted line down the middle of a straight path. A paint pot with a
mechanism that releases a drop of paint intermittently is attached to the bicycle
to check your accuracy. If you ride flawlessly, the paint spots will all fall on the
line you are to follow. A perfect ride, however, is not likely. Wind, road imper-
fections, fatigue, and other random events will move the bicycle slightly away
from its intended path. Repeat this experiment three times, and the paint spots
from all three rides would look like the data points in Figure 6.8.

Generally, we have a set of data points obtained experimentally from a process of
interest, such as those in Figure 6.8, and we want the equation of the underlying
theoretical relationship. For example, we have the spots left by a bicycle, and we
want the equation of the path the rider followed. In this section, we limit our-
selves to relationships that appear linear.

A straight line in the variables x and y satisfying the equation
y=mx+c (6.19)

where m and ¢ are constants, will have one y value on the line for each value of x.
This y value may not agree with the data at each value of x where data exists (see
Figure 6.9). The difference between the y value of the data point at x and the y
value defined by Equation (6.19) for this same value of x is known as the residual
at x, which we denote ¢(x).

FIGURE 6.8


Figure 6.8
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FIGURE 6.9

Example 1 Calculate the residuals between the five data points in Figure 6.9 and
their corresponding points on the line defined by y=2x+1.5.

Solution: Data points are provided at x=0, x=1, x=2, x=3, and x=4. Evaluat-
ing the equation y=2x-+ 1.5 at these values of x, we generate Table 6.1. The resid-
uals are

e(0)=1-1.5=-05
e(1)=5-3.5=1.5
e(2)=3-55=-25
e(3)=6—-75=—1.5
e(4)=9-95=-05

Note that these residuals can be read directly from Figure 6.9.

In general, we have N data points at (x1, y1), (x2, ¥2), (%3, ¥3), ... (N, Yn) With

residuals e(x1), e(x2), e(x3), .. . , e(xn) between the data points and a straight line

T=ne 0.1

Given Data Evaluated from
y=2x+1.5

X y y
0 1 1.5
1 5 3.5
2 3 5.5
3 6 7.5
4 9 9.5



Figure 6.9

The least-squares error is
the sum of the squares of
the individual residuals,
and the least-squares
straight line is the line
that minimizes the least-
squares error.

approximation to the data. Residuals may be positive, negative, or 0, with a zero
residual occurring only when a data point is on the straight line approximation.
The least-squares error E is the sum of the squares of the individual residuals. That is,

E = [e(x1)]” + [e(xa)]” + [e(x3)] + ... + [e(xn)]®
The least-squares error is 0 if and only if all the residuals are 0.

Example 2 Calculate the least-squares error made in approximating the data in
Figure 6.9 by the straight line defined by y=2x+1.5.

Solution: Using the residuals determined in Example 1, we have
E = [e(0)]” + [e(1)]* + [e(2)]” + [e(3)]” + [e(4))”
= (=0.5)> 4+ (1.5)* 4 (=2.5)> + (=1.5)* + (—0.5)?
=0.25+225+06.25+2.25+0.25
=11.25

Corresponding to every straight line approximation to a given set of data is a set of
residuals and a least-squares error. Different straight lines can produce different
least-squares errors, and we define the least-squares straight line to be the line that
minimizes the least-squares error. A nonvertical straight line satisfies the equation

y=mx-+c (6.19 repeated)
and has residuals
e(x;) = yi — (mx; +¢)

atx;(i=1, 2, ..., N). We seek values of m and ¢ that minimize

This occurs when

om
0E
P 22()/,- —mx;—c)(—1)=0

(6.20)
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18
6 36

Xj
0
1
2
3
4 16
5 5 5
> xi=10 > =24 > (x)? =30 > " xiy = 65
: : : £

System (6.20) makes up the normal equations for a least-squares fit in two variables.
Example 3 Find the least-squares straight line for the following xy data:

x|01 23 4

Y1 5369
Solution: Table 6.2 contains the required summations. For this data, the normal
equations become

30m + 10c = 65
10m + 5¢c = 24

which has as its solution m=1.7 and ¢=1.4. The least-squares straight line is
y=17x+14.

The normal equations have a simple matrix representation. Ideally, we would
like to choose m and ¢ for Equation (6.19) so that,

yi=mx; +¢

for all data pairs (x;, y;), i=1, 2, ..., N. That is, we want the constants m and ¢ to
solve the system

mx1+c:y1
me+C:yZ
mxs +C:y3

mxy + ¢ = yn

or, equivalently, the matrix equation

x1 1 Y1
ER
X3 =173

xy 1 YN

e



This system has the standard form Ax=b, where A is defined as a matrix having
two columns, the first being the data vector [x; X, x3 ... xn]', and the
second containing all ones, x=[m ¢|', and b is the data vector
[y1 ¥2 ¥s ... yn]" In this context, Ax=b has a solution for x if and only
if the data falls on a straight line. If not, then the matrix system is inconsistent,
and we seek the least-squares solution. That is, we seek the vector x that
minimizes the least-squares error having the matrix form

E = ||Ax — b|? (6.21)

The solution is the vector x satisfying the normal equations, which take the
matrix form

A'Ax = A'b (6.22)
System (6.22) is identical to system (6.20) when A and b are as just defined.

We now generalize to all linear systems of the form Ax=b. We are primarily
interested in cases where the system is inconsistent (rendering the methods
developed in Chapter 1 useless), and this generally occurs when A has more rows
than columns. We place no restrictions on the number of columns in A, but we
will assume that the columns are linearly independent. We seek the vector x that
minimizes the least-squares error defined by Equation (6.21).

» THEOREM 1

If X has the property that AX—b is orthogonal to the columns of A, then X minimizes
|Ax —b|°. <

Proof: For any vector x, of appropriate dimension,

IAxo —b|I* = || (Axo — Ax) + (Ax — b)||?
Axp — Ax) + (Ax — b), (Ax¢ — Ax) + (Ax — b))
Axo — Ax), (Axo — Ax)) + ((Ax — b), (Ax — b))

+2((Axo — Ax), (Ax — b))

= [|(Axo — Ax)||* + [|(Ax — b)||” + 2(Axo, (Ax — b)) — 2(Ax, (Ax — b))
It follows directly from Problem 38 of Section 6.2 that the last two inner products
are both 0 (take p=Ax—Db). Therefore,
IAxo = b||* = [|(Axo — AX)|* + [|(Ax — b)||?
> || (Ax — b)|?

and x minimizes Equation (6.21).
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As a consequence of Theorem 1, we seek a vector x having the property that
Ax—b is orthogonal to the columns of A. Denoting the columns of A as
Ay, Ay, ..., A, tespectively, we require

(AL Ax—b) =0 (i=1,2, ...,n)

Ify=[y: y» ... ya]" denotes an arbitrary vector of appropriate dimension,
then

n
Ay = Ay + Ay + -+ A = ZAiYi
=1

(Ay, (Ax — b)) = <iAiYi(Ax - b)>

i=1

=3 (A (ax b)) (62
= Yl (ax b))
o
It follows from
x,y) =x'y (6.2 repeated)
that
(Ay, (Ax — b)) = (Ay)(Axb)
= (y'A")(Ax ~b) (6.24)

Equations (6.23) and (6.24) imply that (y,(A"Ax—A"b)) =0 for any y. Using
the results of Problem 37 of Section 6.2, we conclude that (A"Ax—A"b)=0
or that A"TAx=A"b, which has the same form as Equation (6.22)! thus, we have
Theorem 2.

» THEOREM 2

A vector X is the least-squares solution to Ax=Db if and only if x is a solution to the normal
equations ATAx=ATb. €
\ J




The set of normal equations has a unique solution whenever the columns of A
are linearly independent, and these normal equations may be solved using any of
the methods presented in the previous chapters for solving systems of simulta-
neous linear equations.

Example 4 Find the least-squares solution to

xX+2y+z=1
3x—y=2
X+y—z=2

x+2y+2z=1

Solution: This system takes the matrix form Ax=b, with

1 2 1 x 1
3 - 0 2
A= 5 1 —1 /X7 z , and b= 5
1 2 1
Then,
15 3 1 12
ATA=| 3 10 5| and ATb=| 4
1 5 6 1

—

Using Gaussian elimination, we obtain as the unique solution to this set of equa-
tions x=0.7597, y=0.2607, and z=—0.1772, rounded to four decimals, which
is also the least-squares solution to the original system.

Example 5 Find the least-squares solution to

Ox + 3y =180
2x + 5y = 100
5x —2y =60
—x+ 8y =130

10x —y =150
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Solution: This system takes the matrix form Ax=b, with

1 3 80
2 5 . 100
A= 5 =2 ,x{ ] and b= 60
-1 8 Y 130
10 —1 150
Then,
o [131 -15 . [1950
AA= [—15 103 ad Ab=15,

and the normal equations become
131 —=15||x| _ [1950
—-15 103 ||y| | 1510

The unique solution to this set of equations isx=16.8450 and y= 17.1134, rounded
to four decimals, which is also the least-squares solution to the original system.

Problems 6.4

In Problems 1 through 8, find the least-squares solution to the given systems of
equations.

(1) 2x+ 3y =8, (2) 2x+y =35,
3x —y=25, y =4,
x+y=0. —-x+y=0,

3x+y=13.

(3) x+3y=65, (4) 2x+y=6,
2x—y =0, x+y=38,
3x +y =50, —2x+y=11,

2x + 2y = 55. —x+y=38,
3x+y=4.

(5) 2x+3y—4z=1,
X—2y+3z=3,
x+4y+2z=0,
2x+y—3z=1.

(7) x+y—2z=90,

2x+y+z=200,
x+ 2y + 2z = 320,
3x — 2y — 4z = 10,
3x + 2y — 3z = 220.

(6) 2x + 3y + 2z = 25,
2x —y+ 3z =30,

3x 44y — 2z = 20,

3x + 5y + 4z = 55.

(8) x+2y+2z=1
2x+3y+2z2=2,
2x + 4y + 4z = -2,
3x+5y+4z=1,
x+3y+2z=—-1.



(9) The monthly sales figures (in thousands of dollars) for a newly opened shoe
store are

Month |1 2 3 4 5
Sales |9 16 14 15 21

(a) Plot a scatter diagram for this data.
(b) Find the least-squares straight line that best fits this data.
(c) Use this line to predict sales revenue for month 6.

(10) Major League Baseball attendance for every ten years since 1960 is

Year Attendance (in millions)
1960 19.9
1970 28.7
1980 43.0
1990 54.8
2000 72.7
2010 73.1

Source: www.ballparksofbaseball.com
(a) Find the least-squares straight line that best fits this data.
(b) Use this line to predict total major league baseball attendance in 2020.
(11) Annual rainfall data (in inches) for a given town over the last seven years are
Year | 1 2 3 4 5 6 7

Rainfall ‘10.5 10.8 109 11.7 114 11.8 12.2

(a) Find the least-squares straight line that best fits this data.
(b) Use this line to predict next year’s rainfall.

(12) Solve system (6.20) algebraically and explain why the solution would be
susceptible to round-off error.

(13) (Coding) To minimize the round-off error associated with solving the nor-
mal equations for a least-squares straight line fit, the (x;, y;) data are coded
before using them in calculations. Each x; value is replaced by the difference
between x; and the average of all x; data. That is, if

Ly
X =— Xi
N=
then set x, = x; — X and fit a straight line to the (x,, yi) data instead.

Explain why this coding scheme avoids the round-off errors associated with
un-coded data.


http://www.ballparksofbaseball.com
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(14) (a) Code the data given in Problem 9 using the procedure described in
Problem 13.

(b) Find the least-squares straight line fit for this coded data.

(15) Census figures for the population (in millions of people) for a particular
region of the country are as follows:

Year |1950 1960 1970 1980 1990
Population ‘25.3 235 206 18.7 17.8

(a) Code this data using the procedure described in Problem 13, and then
find the least-squares straight line that best fits it.

(b) Use this line to predict the population in 2000.

(16) Show thatif A=QRis a QR decomposition of A, then the normal equations
given by Equation (6.22) can be written as R"Rx=R"Q"b, which reduces to
Rx=Q"b. This is a numerically stable set of equations to solve, not subject
to the same round-off errors associated with solving the normal equations
directly.

(17) Use the procedure described in Problem 16 to solve Problem 1.
(18) Use the procedure described in Problem 16 to solve Problem 2.
(19) Use the procedure described in Problem 16 to solve Problem 5.
(20) Use the procedure described in Problem 16 to solve Problem 6.

(21) Determine the column matrix of residuals associated with the least-squares
solution of Problem 1, and then calculate the inner product of this vector
with each of the columns of the coefficient matrix associated with the given
set of equations.

(22) Determine the column matrix of residuals associated with the least-squares
solution of Problem 5, and then calculate the inner product of this vector
with each of the columns of the coefficient matrix associated with the given
set of equations.

6.5 ORTHOGONAL COMPLEMENTS

Two vectors in the same inner product space are orthogonal if their inner productis Two subspaces U and W
zero. More generally, we say that the two subspaces U and W of an inner product 0f the inner product

. . _ space V are orthogonal if
space V are orthogonal, written ULW, if (u,w) =0 for every u€ U and every we W. (U, W) =0 for every ue U

Example 1 The subspaces and every we W,
U={a®+bt+ceP’b=0}and W= {a® + bt +c€P*la=c=0}

are orthogonal with respect to the induced Euclidean inner product. If p(t) €U,
then p(t) =at> +c, for some choice of the real numbers a and c. If g(t) € W, then
q(t) ="bt for some choice of the real number b. Then



(p(t), q(1)) = {at® + ¢, bt) = {ar> + 0t + ¢, 0> + bt + 0)
=a(0)+0(b) +¢(0) =0
Example 2 The subspaces U= span{[ 11 151 -1 O]T} and

W = span{[ 1 1 —2]T} in R? are orthogonal with respect to the Euclidean

inner product. Every vector in u€U must have the form

(-

for some choice of scalars a and b, while every vector in w € W must have the form

u—=a

for some choice of scalar ¢. Here,
(u,w) = (a+b)(c)+ (a—b)(c)+a(-2c) =0

Orthogonal subspaces in R* do not always agree with our understanding of perpen-
dicularity. The xy-plane is perpendicular to the yz-plane, as illustrated in Figure 6.10,
but the two planes are not orthogonal. The xy-plane is the subspace defined by

U= {[x y z]TeR3|z:0}

Therefore, u=[1 1 0]"isavectorin U. The yz-plane is the subspace defined by
W= {[x y 2 eR3x= 0}

andw=[0 1 1]"isin W. Here,

FIGURE 6.10


Figure 6.10
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(u,v) = 1(0) + 1(1) +0(1) =1 #£0

If U is a subspace of an inner product space V, we define the orthogonal comple-
ment of U, denoted as UL, as the set of all vectors in V that are orthogonal to every
vector in U, that is,

Ut = {v € V|{u,v) = 0 for every u € U} (6.25)
Example 3 In R?, the orthogonal complement of the z-axis is the xy-plane. The If U is a subspace of an
z-axis is the subspace inner product space V,
then T, the orthogonal
Y = { T e R3x =y — 0} complement of U, is the
ey €Rox =y set of all vectors in V that

are orthogonal to every

. . T .
s0 any vector in this subspace has the form [0 0 4] for some choice of the scalar a. vector in U

A general vector in R? has the form [x y z] " for any choice of the scalars x, y, and z. If

X 0
<y, O>za
z 0

is to be zero for every choice of the scalar a, then z=0. Thus, the orthogonal com-
plement of the z-axis is the set

{[x y z|' e ]R3|z:0}

which defines the xy-plane.

» THEOREM 1

If U is a subspace of an inner product space V, then so too is the orthogonal complement
of U.d

Proof: Letxandy be elements of U4, and letu € U. Then (x,u)=0, (y,u)=0, and
for any two scalars o and f

(o + By, u) = (o5, w) + By, u) = afx,w) + By, u) = x(0) + B(0) = 0.

Thus, ax+ ﬁyeUJ' and UL is a subspace of V.

» THEOREM 2

If U is a subspace of an inner product space V, then the only vector common to both U and
Ut is the zero vector.
\

Proof: Let x be a vector in both U and UL. Since x€ UL, it must be orthogonal to
every vector in U, hence x must be orthogonal to itself, because x€U. Thus,
(x, x) =0, and it follows immediately from Theorem 1 of Section 6.1 that x=0.



Identifying the orthogonal complement of subspaces U of R" is straightforward

when we know a spanning set S= {u;, u,, ..., u} for U. We define a matrix A
to be
uy
ut
A= (6.26)
uj

where the column matrices in S become the rows of A. We then transform A to
row-reduced form using elementary row operations, obtaining

T
L&
T
v
A— 2

T

Vi,
The nonzero rows of this row-reduced matrix are a basis for U. Any vector x € vt
must be orthogonal to each basis vector in U, so

(viyx)=0 (j=1,2,...,k). (6.27)

Equation (6.27) yields a set of k; equations (some of which will be 0 =0 when the
rank of A is less than k) for the components of x. These equations define all vec-
tors in the orthogonal complement of U. But Equation (6.27) also defines the
kernel of the matrix A in Equation (6.26), so we have proven Theorem 3.

» THEOREM 3

If S is a spanning set for a subspace U of R" (considered as column matrices) and if a
matrix A is created so that each row of A is the transpose of the vectors in S, then
UL =ker(A). €

\ J

Example 4 Find the orthogonal complement of the sub space in R* spanned by

S:

)

1
3
1
-1

= NN
N = =

Solution: For these vectors, matrix (6.26) becomes

1 3 1 -1
A=|2 7 2 1
1 4 1 2

which is transformed by elementary row operation to the row-reduced form
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1 3 1 -1
— 10 1 0 3
(0 1 0 3]
(1 3 1 —1]
— 10 1 0 3
|0 0 0 O]

A basis for Uis {[1 3 1 —1]", [0 1 0 3]'}, hence U is a two-
dimensional subspace of R*. If we let x=[xy, x5, 3, xl]T, denote an arbitrary ele-
ment in the kernel of A, then
X1 +3.X'2 + X3 — X4 = 0
X2 + 3x4 =0
0=0

whence, x; =—x3+10x4, x,=—3x4 with x3 and x, arbitrary. Thus the kernel
of Ais

—X3 + 1Ox4 —1 10
—3%4 = X3 O + X4 -3 x3 and x4 arearbitrary

X3 1 0

Xg 0 1

A basis for and UL is {[-1 0 1 o] ,[10 =3 0 1]}, and U" also a two-
dimensional subspace of R*.

» THEOREM 4
If U is a subspace of R", then dim(U)+dim(UJ-):n.4

Proof: The proposition is true when U= {0}, because (0, y) =0 for every ye R"
and (U-L:R". In all other cases, let S={uy, u,, ..., u,} be a basis for U, and
construct A as in Equation (6.26). Then A is a linear transformation from R" to
R*. Because S is a basis, r(A) =dim(U) =k, where r(A) denotes the rank of A. The
nullity of A, v(A), is the dimension of the kernel of A, hence v(A) is the dimen-
sion of UL. But 7(A) +v(A)=n (Corollary 1 of Section 3.5), so Theorem 4 is
immediate.

» THEOREM 5
If U is a subspace of R", then (U1 L=U. <
J

.

Proof: IfueU, then u is orthogonal to every vector in Ul soue (U—L)J- andUisa
subset of (UJ')J'. Denote the dimension of U as k. It follows from Theorem 4 that



dim IUJ-) =n—k. But it also follows from Theorem 4 that dim(U'L) +dim
(U )J- =n,  whereupon dim((IUJ')J') =n—(n—k)=k=dim(U).  Thus,
UC(U )J' with each subspace having the same dimension, hence U= ([UJ-)J'.

We began Section 6.2 by writing a vector x€ R” as the sum of two vectors u+v,
which were orthogonal to one another. We now do even more.

» THEOREM 6
If U is a subspace of R", then each vector x€R" can be written uniquely as x:u+uJ-,
where ueU and ute 1. «

\ J

Proof: If U=R", then UJ-:{O}, and, conversely, if U={0}, then UL:R”,

because x=x+0=0+x. In all other cases, let {u;, u,, ..., u,} be a basis for
U(k<n), and let {u,,q, U0 ..., u,} be a basis for UL We first claim that
theset S={uy, uy, ..., W, W4y, Upn, ..., U, } is linearly independent, which

is equivalent to showing that the only solution to

c1uy + Uy + -+ + U + Cr1Upg1 + CeraUpin + -+ + ity = 0 (6.28)
isci=c,=...=¢,=0. If we rewrite Equation (6.28) as
ciuy + Uy + -+ + U = —Cr1Uk+1 — Crp2Upt2 — =+ * — Cplp

we see that the left side of this equation is a vector in U while the right side is a
vector in UL. Since the vectors are equal, they represent a vector in both U and vt
that, from Theorem 2, must be the zero vector. Thus,

aqu; +ouy+---+cagu, =0

and since {u;, u,, ..., u} is a linearly independent set (it is a basis for U), we
conclude that ¢;=c¢,=... =¢,=0. Similarly

Crt1Upr1 + oWy + -+ cqty, =0

and since {u,+, u,+,, ..., u,} is a linearly independent set (it is as basis for
IUJ-), we conclude that ¢, +;=c,+,=... =c¢,=0.Thus, S is linearly independent
as claimed.

Since the dimension of R" is n and S is a linearly independent set of n-vectors in
R", it follows that S is a basis for R". We now have (see Theorem 5 of Section 2.5)
that each vector in R" can be written uniquely as a linear combination of the vec-
tors in S. That is, if x€R", then there exists a unique set of scalars
di=d,=...=d, such that

X =dyuy +douy + - -+ dipug, + diy 1 W+ dig2 gy + - Hdyuy

Setting u=du; +dou,+... +dyu, and ul= AU+ i 20 o+ .. +Hdou,
we have ueU, ute U, and x=u+ul.
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Example 5 Decompose x=[—14 —10 }2]T into the sum of two vectors, one
in the subspace Uspanned by {[1 1 5]",[2 —1 1]"} and the other in vt

Solution: The vectors u;=[1 1 5]"and u,=[2 —1 1]" are linearly inde-
pendent, so they form a basis for U. We set

1 15
A[z -1 1]

and then determine thatus=[—2 —2 1]"is a basis for ker(A) (see Example 1
of Section 3.5) and, therefore, a basis for Ut Thus, B={u,, u,, us} is a basis
for R3.

We want the coordinates of the given vector x=[—-14 —10 12]|" with
respect to the B basis; that is, we want the values of the scalars d;, d,, and
d5 so that

1 2 -2 —14
di|1| +dy|-1|+ds|-3|=|-10
5 5 1 12

Solving the associated system of simultaneous linear equations by Gaussian
elimination, we find d; =2, d,=—3, and d;=>5. Finally setting

1 2 —4
u=2u+(-3u,=21|+(=3)|-1]| =
5 5 7
-10
ui:5u3: —15
5

we have ueT, uLJ- IUL and x=u+ut.

Whenever we have a decomposition of a given vector x into the sum of two vec-
tors as described in Theorem 6, x=u+ul, then u is called the projection of x on U.
In the special case where U is a one-dimensional subspace spanned by a single
vector a, the projection of x on U is obtained most easily by Equation (6.6) in
Section 6.2.

Example 6 Using the results of Example 5, we have thatu=[—4 5 7]"isthe A vector space V is the

projection of the vector x=[—14 —10 12]T on the subspace U spanned by direct sum of two

{1 1 51 [2 -1 1]T}_ subspaces U and W if
each vector in V can be

A vector space V is the direct sum of two subspaces U and W, written Written uniquely as the

V=U&W, if each vector in V can be written uniquely as the sum u+v, where Sum 0f a vectorin U and

ueUand veV. It follows from Theorem 6 that R"=U UL for each subspace * vectorin .

U of R".



Problems 6.5
In Problems 1 through 10, (a) find the orthogonal complement for the subspace

U of R? spanned by the given set of vectors, and then (b) find the projection of
x=[1 1 0]"onT.

1) {0 1 1]}

(2 {1 1 1]}

3) {2 1 1"}

@ {1 1 1150 1 2"}

B5){[2 1 110 1 2]}

6 {0 1 1] [0 1 2]}

(Mm{ 1 112 2 o'}

@ {1 1 152 2 2|

@1 1 110 1 113 2 2]}
(10) {j1 1 111 o 11 1 o]}

In Problems 11 through 20, (a) find the orthogonal complement for the
subspace U of R* spanned by the given set of vectors, and then (b) find the
projection of x=[1 0 1 0]"onU.

(11) {[0 o 1 1]"}.

(12) {[0 1 1 1]"}.

(13){jo o 1 110 1 1 1]}

(14){[o 1 o 1]5[0 1 0 2]}
(15) {1 1 1 o] (1 1 o 1]}
(a6){f1 1 1 o[t 1 o 1J,[1 11"
@7 {1 1 0% 1 1 151 1 2]

0
1
(a8){[1 1 o o]0 1 o 1]%[1 o 1 o]}
19 {1 1 1 o1 1 o 1151 o 1 10 1 1 1]}
(200{j1 1 1 o] (1 1 o 1511 2 1 1][3 4 2 2]}
(21) Is it possible forx=[1 1 0]" to be in the kernel of a 3 x 3 matrix A and

also fory=[1 0 1]" to be in the row space of A?

(22) Show that if x=u-u" as in Theorem 6, then |l = A/ Nlu?]] + [Jut]]?.
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(23) Let U be a subspace of a finite-dimensional vector space V with a basis B,
and let W be subspace of V with basis C. Show thatif V=U&W, thenBUC

is a basis for V.

(24) Prove that if U and W are subspaces of a finite-dimensional vector space V
with V=U&®W, then the only vector common to both U and W is 0.

(25) Prove that if U and W are subspaces of a finite-dimensional vector space V
with V=U®W, then dim(U) +dim(W)=dim(V).

CHAPTER 6 REVIEW
Important Terms

angle between n-tuples
Cauchy-Schwarz Inequality
direct sum

Euclidean inner product
Gram-Schmidt orthonormalization
process

induced inner product
inner product space
Kronecker delta
least-squares error
least-squares straight line
magnitude of an n-tuple
noise

Important Concepts

Section 6.1

normal equations
normalized vector
orthogonal complement
orthogonal vectors
orthonormal set of vectors
orthogonal subspaces
projection

QR algorithm

QR decomposition
residual

scatter diagram

unit vector

The Euclidean inner product of two vectors x and y in R" is a real number
obtained by multiplying corresponding components of x and y and then
summing the resulting products.

The inner product of a vector with itself is positive, unless the vector is the
zero vector, in which case the inner product is zero.

The inner product of a vector with the zero vector yields the zero scalar.

(x, y)={(y, x)={(y, x) for vectors x and y in R".

(A%, y)=A(x, y), for any real number .

(x+z, y) =y +(zy)

The magnitude of a vector x € R” is the square root of the inner product of x
with itself.

If u and v are vectors in R", then |(u,v)|<|u| |v||.

An induced inner product on two matrices of the same order is obtained by
multiplying corresponding elements of both matrices and summing the
results.



An induced inner product of two polynomials is obtained by multiplying the
coefficients of like powers of the variable and summing the results.

Two vectors can be orthogonal with respect to one basis and not orthogonal
with respect to another basis.

Section 6.2

Subtracting from a nonzero vector x its projection onto another nonzero
vector a yields a vector that is orthogonal to both a and the projection of x
onto a.

An orthonormal set of vectors is an orthogonal set of unit vectors.

An orthonormal set of a finite number of vectors is linearly independent.
If {x,, X5, ..., X,,} is orthonormal basis for a vector space V, then for any vec-
tor x€V, x= (X, X1)X1 + (X, Xo)Xp+ - - - + (X, Xp)Xp-

Every set of linearly independent vectors in an inner product space can be
transformed into an orthonormal set of vectors that spans the same subspace.

Section 6.3

If the columns of a matrix A are linearly independent, then A can be factored
into the product of a matrix Q, having columns that form an orthonormal set,
and another matrix R, that is upper triangular.

The QR algorithm is a numerical method of locating all eigenvalues of a real
matrix.

Section 6.4

The least-squares straight line is the line that minimizes the least-squares error
for a given set of data.

A vector x is the least-squares solution to Ax=b if and only if x is a solution to
the normal equation A"TAx=A"b.

Section 6.5

If U is a subspace of an inner product space V, then so too is the orthogonal
complement of U.

If U is a subspace of an inner product space V, then the only vector common
to both U and U is the zero vector.

If S is a spanning set for a subspace U of R" (considered as column matrices)
and if a matrix A is created so that each row of A is the transpose of the vectors
in S, then Ul:ker(A).

If U is a subspace of R", then dim(U) +dim(UJ-) =n.

If U is a subspace of R”, then each vector x€R" can be written uniquely as
x=u+ul, where ueU and uteUl.



APPENDIX A

Jordan Canonical Forms

In Chapter 4, we began identifying bases that generate simple matrix represent-
ations for linear transformations of the form T:V —V, when V is an
n-dimensional vector space. Every basis for V contains n-vectors, and every matrix
representation of T has order n x n. We concluded (see Section 4.3) that T may be
represented by a diagonal matrix if and only if T possesses n linearly independent
eigenvectors.

Eigenvectors for a linear transformation T are found by first producing a matrix rep-
resentation for T, generally the matrix with respect to a standard basis, and then cal-
culating the eigenvectors of that matrix. Let A denotes a matrix representation of T.
Eigenvectors of A are coordinate representations for the eigenvectors of T. If A has n
linearly independent eigenvectors, then so does T, and T can be represented by a
diagonal matrix that is similar to A. If A does not have n linearly independent eigen-
vectors, then neither does T, and T does not have a diagonal matrix representation.

In this appendix, we focus on identifying simple matrix representations for all lin-
ear transformations from a finite-dimensional vector space back to itself. We clas-
sify a matrix representation as simple if it contains many zeros. The more zeros, the
simpler the matrix. By this criterion, the simplest matrix is the zero matrix. The zero
matrix represents the zero transformation 0, having the property 0(v) = 0 for every
vector ve V. The next simplest class of matrices is diagonal matrices, because they
have zeros for all elements not on the main diagonal. These matrices represent lin-
ear transformations having sufficiently many linearly independent eigenvectors.
The elements on the main diagonal are the eigenvalues.

Another simple class of matrices are block diagonal matrices having the parti-
tioned form
A 0

A= = _ (A1)

0

We will show that every linear transformation from a finite-dimensional
vector space V back to itself can be represented by a matrix in block

The more zeros a matrix
has, the simpler it is as a
matrix representation for
a linear transformation.



diagonal form. To do so, we must develop the concepts of direct sums and
invariant subspaces.

Direct sums were introduced in Section 6.5. A vector space V is the direct
sum of two subspaces U and W, written V = U & W, if each vector in V can be writ-
ten uniquely as the sum of a vector in U and a vector in W. We know from our work
in the last chapter that if V is an inner product space and if U is any subspace of V,
then V = U @ U< However, there are many other direct sums available to us.

» THEOREM 1
Let Ml and N be subspaces of a finite dimensional vector space V, with B being a basis for
M and C being a basis for N. V =M @ N if and only if BUC is a basis for V. d

\ J

Proof: Assume that V=M@ N. If x € V, then x can be written uniquely as the
sumy+zwithyeMandzeN. Let B = {m;,m;,...,m,}. Since B is a basis

for M, there exist scalars ¢y, ¢y, ..., ¢ such that
y=c¢m; +com; + -+ -+ ¢m;y (A.2)
Let C = {n;,n,,...,ns}. Since C is a basis for N, there exist scalars and

dq, dy, ..., ds such that
z=dn; +dyny; + - +dsng (A.3)
Therefore,
X=y+z=cm +cmy+---+c¢m; +din; +dyny + -+ ding (A.4)
and BUC is a spanning set for V.

To show that B U C is a linearly independent set of vectors, we consider the vector
equation

0= (cym; +comy + - -+ ¢my) + (ding +dony + - - - + diny)
Clearly,
0= (0m; + Om;, + - -- + Om,) 4+ (On; 4+ Ony + - - - + Ony)

The last two equations are two representations of the vector 0 as the sum of a
vector in M (the terms in the first set of parentheses of each equation) and a vec-
tor in N (the terms in the second set of parentheses of each equation). Since
V =M @ N, the zero vector can only be represented one way as a vector in M with
avectorin N, so it must be the case that¢;=0forj=1,2,...,randd,=0fork=1,
2,...,s.Thus, BU C is a linearly independent set of vectors. A linearly indepen-
dent spanning set of vectors is a basis, hence B U C is a basis for V. Conversely,
assume that B U C is a basis for V. If x € V, then there exists a unique set of scalars
€1, €y ..., ¢-and dy, ds, ..., ds such that Eq. (A.4) is satisfied. If we now use
Egs. (A.2) and (A.3) to define y and z, we have x written uniquely as the sum
of a vector y € M and a vector z € N. Therefore, V=M & N.
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1 5 1 —1
Example 1 D = x; = (1) Xy = 3 , X3 = _(1) Xy = (1) is a basis
0 0 2 3

for R®. If we set B = {x;,x:}, C = {x3,%4}, M = span{B}, and N = span{C},
then it follows from Theorem 1 that R* = M @ N. Alternatively, if we set
Q = span{x,,x3} and S = span{x;,x,;}, then R* = Q @ S. Still a third possibility
is to set U = span{x;,X,,x3} and W = span{x,}, in which case R* = U & W.

A subspace U of an n-dimensional vector space V is invariant under a linear trans-
formation T: V — V if T(u) € U whenever u € U. That is, T maps vectors in U
back into vectors in U.

Example 2 The subspace ker{T} is invariant under T because T maps every vector in
the kernel into the zero vector, which is itself in the kernel. The subspace Im(T) is
invariant under T because T(u) € Im(T) for every vector in V, including those in
Im(T). If x is an eigenvector of T corresponding to the eigenvalue A, then span{x}
is invariant under T if u € span{x}, then u=ax, for some choice of the scalar o, and

T(u) = T(0x) = oT(x) = a(/x) = (¢d)x € span{x}.

» THEOREM 2

Let B = {us,uy,...,u,} be basis for a subspace U of an n-dimensional vector space V. U

is an invariant subspace under the linear transformation T: V — V if and only if T(u;) € U
forj=1,2,...,m. 4

Proof: If U is an invariant subspace under T, then T(u) € U for every vector
u € U. Since the basis vectors u;(j=1, 2, ..., m) are vectors in U, it follows that
T(u;) €U. Conversely, if u € U, then there exist scalars ¢y, ¢, ..., ¢, such that

u=cu; +cu;+- --+cuuy,

Now
T(u) =T(ciu; + couy + -+ - + Cpay)
=T(u) +cT(ay) + -+ cT(uy)
Thus, T(u) is a linear combination of the vectors T(u;) for j=1, 2, ..., m. Since

each vector T(u;) €U, it follows that T(u) € U and that U in invariant under T.

Example 3 Determine whether the subspace

1 5 a a+b—d
M = span ! isinvariantunder T bl _ b

01’10 c c+d

0 0 d d

Solution: The two vectors that span M are linearly independent and, therefore,
are a basis for M. Here,



17 (27 1 5
1 1 1 1 1 2
T = =|= + 1= eM
0 0 3 0 3 0
L0 L0 0 0
(57 K& 1 5
2 2 41 (1 5112
T = =|-= + 1= eM
0 0 3/10 3110
0 0 0 0

It follows from Theorem 2 that M is an invariant subspace of R* under T.

Example 4 Determine whether the subspace

1 -1

0

N = span L 1
2 3

is invariant under the linear transformation defined in Example 3.

Solution: The two vectors that span N are linearly independent and, therefore, are
a basis for N. Here,

To17 17 T -1
0 0 1 0 4 0
T = =|-= +{= eN
-1 1 5/ -1 500 1
L 21 L 2] | 2]
(17 [—4] 1T -1
0 9\ | o 11| o
1 5/ | -1 5 1
L 3 L 3. L 2]

It follows from Theorem 2 that N is an invariant subspace of R* under T.

The next result establishes a link between direct sums of invariant subspaces and
matrix representations in block diagonal form.

[ » THEOREM 3

If Mland N are invariant subspaces of a finite-dimensional vector space VwithV = M & N,
and if T: V — V is linear, then T has a matrix representation of the form

B O
A=
Y
where B and C are square matrices having as many rows (and columns) as the dimensions
of M and N, respectively. €
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Proof: LetB={m;, m,, ..., m,} beabasis forMandletC={ny, n,, ..., n} bea
basis for N. Then, because V is the direct sum of M and N, it follows that

D=BUC={m;,my,...,m;,n;,ny,...,0}

is a basis for V (see Theorem 1). M is given to be an invariant subspace of T,
so all vectors in M, in particular the basis vectors themselves, map into
vectors in M. Every vector in M can be written uniquely as a linear com-
bination of the basis vectors for M. Thus, for jth basis vector in
M (=12, ...,1), we have

T(m]) = bljml + szmz R brjmr
:bljml —|—b2jm2—|—---+b,jmr+0n1 +0n2—|—--~+0ns

for some choice of the scalars byj, by, ..., by T(m;) has the coordinate
representation

T(m]) — [blijj . b,jOO e O]T.

Similarly, N is an invariant subspace of T, so all vectors in N, in particular the
basis vectors themselves, map into vectors in N. Every vector in N can be written
uniquely as a linear combination of the basis vectors for N. Thus, for kth basis
vector in N (k=1, 2, ..., s), we have

T(ny) = cpny + CMp + -+ - + CgeNs
=0m; +0my = --- +0m; + cypny + Gy + -+ - + Gl

for some choice of the scalars ¢y, Cop ... , g T(my) has the coordinate
representation

T(Ilk) Ad [0 0... O(Jlk v Csk}T.
These coordinate representations for T(m;) (j=1,2,...,r)and T(n;) (k=1,2,...,s)

become columns of the matrix representation for T with respect to the D basis.
That is,

bin b1 by 0 0 O
by by by 0 0 O
by bpo by O 0 0

T — A2 =
< Ap 0 0 0 c¢1 c12 13

0 0 0 Cy1 Cp2 (33
0 0 0 ¢ € G

which is the form claimed in Theorem 3.



Example 5 We showed in Example 1 that R* = M & N when

1 5 1 1

M 12 dN = 0 0
=spanq | || g and N=spanq | 7

0 0 2 3

We established in Examples 3 and 4 that both M and N are invariant subspaces
under

a a+b—-d
b b

c| ~ c+d

d d

T

It now follows from Theorem 3 and its proof that T has a matrix representation in
block diagonal form with respect to the basis

1 5 1 —1
1 2 0 0
]D): b ) b
o|l"lo||-1
0 0 2 3
for R*. Here,
1 1 57 1 -1 1/3
1 1 1\ |1 1\ | 2 0 0 1/3
T = =3 +13 + (0 + (0
0 0 (3) 0 (3) o TO] [ FO] =]
0 0 0 0] 2 3 0 1p
51 [7 1 (5] 1] -1 —4/3
2 2 4 |1 5\ | 2 0 0 5/3
T = =(—-= + (= + (0 + (0 —
0 0 ( 3) 0 (3) 0 © -1 © 1 0
o] [o 0 10 2] 3 0 1y
1] [—1 1 5] 17 -1 0
o] — ) 1 0 2 +( 1) 0 +(4) 0 0
-1 B 0 0 5)| -1 5 1 -1/5
2] | 2 0 0] 2] 3 4/5 |p
-1 —4 1 5 1 -1 0
o ° 0 © 1 0 2 +( 9) 0 (11> 0 0
1 | a4l 0 0 5) -1 5 1 -9/5
3 0 0 2 3 11/5 |
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The matrix representation of T with respect to the ID basis is

1/3 -4/3 0 0
o |13 530 0
" lo 0 -1/5 -9/5

o o0 4/5 11/5

Theorem 3 deals with two invariant subspaces, but that result is easily general-
ized to any finite number of subspaces. If M}, Ml,, . .., M, are invariant subspaces
of a linear transformation T: V — V with V=M,; & M, & - - - & M, then the
union of bases for each subspace is a basis for V. A matrix representation of T
with respect to this basis for V has the block diagonal form displayed in Eq. (A.1).
Thus, the key to developing block diagonal matrix representations for linear
transformations is to identify invariant subspaces.

The span of any set of eigenvectors of a linear transformation generates an invari-
ant subspace for that transformation (see Problem 35), but there may not be
enough linearly independent eigenvectors to form a basis for the entire vector
space. A vector x,, is a generalized eigenvector of type m for the linear transformation
T corresponding to the eigenvalue A if

(T—AD)"(x,) =0 and (T —A)" ' (x,) #0 (A.5)
As was the case with eigenvectors, it is often easier to find generalized eigenvec-
tors for a matrix representation for a linear transformation than for the linear
transformations, per se. A vector x,, is a generalized eigenvector of type m corre-
sponding to the eigenvalue A for the matrix A if

(A=M)"%, =0 and (A—AD)"'x, #0 (A.6)

Example 6 x;=[0 0 1]"is a generalized eigenvector of type 3 corresponding

to A=2 for
21 -1
A=|0 2 1
00 2
because
0 0 o]fo 0
(A-—21x3={0 0 0O =10
0 0 0|1 0
while
0 0o o]fo 1
A-21’x3=|0 0 of|o|=]0]#0
0 0 0]]1 0

A vector x,, is a gener-
alized eigenvector of type
m corresponding to the
eigenvalue X for the
matrix A if (A —2Al)"
(X)=0and (A— Al)™"
(Xm) #0.



The chain propagated by
Xm, @ generalized eigen-
vector of type m corre-
sponding to the
eigenvalue A for a matrix
A, is the set of vectors
{xrm Xm—1y -+ X1}
defined sequentially by
Xj=(A— DX for j=1,
2,...,m—1.

Also, x,=[—1 1 0]" is a generalized eigenvector of type 2 corresponding to
A =2 for this same matrix because

00 1][-1 0
(A—2IP°x3= {0 0 0 1{=10
0 0 0 0 0
while
00 —17[- 1
A-2D)'x,=|0 0 1 1|=1]0]+#0
0 0 0 0 0

Furthermore, x;,=[1 0 0]" is a generalized eigenvector of type 1 correspond-
ing to A =2 for A because (A —2I)'x; =0 but (A —21)%%; =1Ix; =x; #0.

Example 7 It is known, and we shall see why later, that the matrix

51 -2 4
0 5 2 2
A= 0 0 5 3
0 0 0 4

has a generalized eigenvector of type 3 corresponding to A=5. Find it.

Solution: We seek a vector x5 such that
(A—51)°x3 =0 and (A—5I)°x#0

Setxs=[w x y z|'. Then

0 0 0 147[w 14z
5. |00 0 —4f|lx| |-4z
A=5D%=10 0 0 3||y|7]| 3
0O 0 0 —-1]1|[z= z

0 0 2 -8][w 2y — 8z
> |00 0 4||x| | 4z
A=53D%=15 0 0 3|y —3z
0 0O 1]z z

To satisfy the condition (A — 5I)*x; =0, we must have z= 0. To satisfy the condi-
tion (A — 51)%x3 #0, with z= 0, we must have y# 0. No restrictions are placed on
w and x. By choosing w=x=z=0, y=1, we obtainx;=[0 0 1 0]  asagen-
eralized eigenvector of type 3 corresponding to A=5. There are infinitely many
other generalized eigenvector of type 3, each obtained by selecting other values
for w, x, and y (y#0) with z=0. In particular, the values w=—1, x=2, y=15,
z=0leadtoxs=[— 1 2 15 0]". Our first choice, however, is the simplest.

Generalized eigenvectors are the building blocks for invariant subspaces. Each
generalized eigenvector propagates a chain of vectors that serves as a basis for
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an invariant subspace. The chain propagated by x,, a generalized eigenvector
of type m corresponding to the eigenvalue A for A, is the set of vectors
{Xm Xm_1, ..., X1} given by

Xm—1 = (A — )\.I)Xm
Xm-2 = (A — M)*Xpn = (A — M)Xp 1

Xm_3 = (A = M)’x = (A — M)Xp_2 (A7)

x1 = (A—AD)"""x, = (A — M)x,

In general, forj=1,2,...,m—1,

xj = (A — M) x, = (A — AD)xj4q (A.8)

» THEOREM 4

The jth vector in a chain, x;, as defined by equation (B.8), is a generalized eigenvector of
type j corresponding to the same matrix and eigenvalue associated with the generalized
eigenvector of type m that propagated the chain.

Proof: Let x,, be a generalized eigenvector of type m for a matrix A with eigen-
value A. Then, (A—A)"x,,=0 and (A—AI)" 'x,,#0. Using equation (A.8),
we conclude that

(A — AIYx; = (A — ALY [(A - M)’"*fxm} — (A —A)"xp = 0
and
(A— ALY 'x; = (A— A1y [(A - M)”’*fxm} —(A—AD)""x £0

Thus, x; is a generalized eigenvector of type j corresponding to the eigenvalue
A for A.

It follows from Theorem 4 that once we have a generalized eigenvector of type m,
for any positive integer m, we can use Eq. (A.8) to produce other generalized
eigenvectors of type less than m.

Example 8 In Example 7, we showed that x;=[0 0 1 0]" is a generalized
eigenvector of type 3 for

[N eNNE,|
S O Ul =
o UL NN
B W N
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corresponding to A=5. Using Theorem 4, we now can state that

01 -2 477(o0 )
oo 2 2o 2
A-Shxs=\g 6 o 3|[1]=]| o
00 o0 —1]]o0 0

is a generalized eigenvector of type 2 for A corresponding to A =5, while

01 —2 47[=2 2
oo 2 2| 2 2
@A-shx=1, 05 o 3| o|=]| o
00 o0 —1|| o 0

is a generalized eigenvector of type 1, and, therefore, an eigenvector of A
corresponding to A=5. The set

{X37X23X1} -

o= OO0
S oOoONN
SO OoON

is the chain propagated by the x;.

The relationship between chains of generalized eigenvectors and invariant sub-
spaces is established by the next two theorems.

» THEOREM 5

A chain is a linearly independent set of vectors. d

Proof: Let {X,,, Xpy_1, - . ., X; } be a chain propagated from x,,, a generalized eigen-
vector of type m corresponding to the eigenvalue A for A. We consider the vector
equation

CnXm + Cn—1Xm—1 + - +cx1 =0 (A.9)

To prove that this chain is linearly independent, we must show that the only
solution to Eq. (A.9) is the trivial solution ¢,,=c¢,;_1=...=c¢;=0. We shall do
this iteratively. First, we multiply both sides of Eq. (A.9) by (A — AI)™~'. Note that
forj=1,2,..., m—1,

(A —2D)" ' gx; = (A — AD)" ! [(A - M)fxm]
= (A — AD)™ 771 0] becausex;isageneralized
eigenvector of type j
=0

Thus, Eq. (A.9) becomes ¢,,(A—AI)" ' x,,=0. ButXx,, is a generalized eigenvector
of type m, so the vector (A—AI)""" x,,#0. It then follows (see Section 2.2) that
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¢ =0. Substituting ¢,, =0 into Eq. (A.9) and then multiplying the resulting equa-
tion by (A —AI)™ 2, we find, by similar reasoning, that c,,_; = 0. Continuing this
process, we find iteratively that ¢,,=c,,_;=---=¢; =0, which implies that the
chain is linearly independent.

» THEOREM 6

The span of a set of vectors that forms a chain of generalized eigenvectors for a matrix A
corresponding to an eigenvalue A is an invariant subspace for A. 4

Proof: The span of any set of vectors in a vector space is a subspace, so it only
remains to show that the subspace is invariant under A. Let {X,;, X1, ..., X1}
be a chain propagated from x,, a generalized eigenvector of type m for A
corresponding to the eigenvalue A. It follows that

Xi=A-M)x1(=12 ..., m—1) (A.8 repeated)
This equation may be rewritten as
AXj =Mxi1(j=1,2...,m—1) (A.10)
A generalized eigenvector of type 1 is an eigenvector, so we also have
Ax; = Axy (A.11)
If vespan{xy, Xm_1, - .., X2, X1}, then there exists a set of scalars d,,,, d,;,_1, ..., da,
d, such that
V=duXy +dpn_1Xm_1 + -+ +doxo +dix4
Multiplying this equation by A and then using (A.10) and (A.11), we have

AV = dpAxy + dpo1AXp_1 + - - - + daAX,y + d1AX,
= dn(AMXpm + Xm—1) + dm-1(AXm—1 + Xm—2) + - - -da(Axy + x1) + d1 (Ax1)
= (Mp)Xm + (dm + Mm—1)Xm-1 + (dn-1 + Mm—2)Xm—2 + - - -
+ (ds + Ady)xs + (da + Mdy)xy

which is also a linear combination of the vectors in the chain and, therefore, in
the subspace spanned by the vectors in the chain. Thus, if vespan{x,,, x,,_1, . - .,
X,, X1}, then AveEspan{X,,, X1, . .., X2, X1} and span{X,,, X1, ..., Xp, X1 } is an
invariant subspace of A.

It follows from Theorems 5 and 6 that a chain of generalized eigenvectors is a
basis for the invariant subspace spanned by that chain.

We now have the mathematical tools to produce a simple matrix representation
for a linear transformation T : V — V on a finite-dimensional vector space V. A
linear transformation T may not have enough linearly independent eigenvectors
to serve as a basis for V and, therefore, as a basis for a diagonal matrix represen-
tation of T. We shall see shortly that a linear transformation always has enough



generalized eigenvectors to form a basis for V, and the matrix representation of T
with respect to such a basis is indeed simple.

A generalized eigenvector x; of type j in the chain propagated by x,, is related to its
immediate ancestor, the generalized eigenvector x;. ; of type j+ 1, by the formula

Xj = [T — }\.I] (X]qu) = T(Xj+1) — 7\.Xj+1
which may be rewritten as

T(xi11) =M1 +% (=12 ...,m—1) (A.12)
Since a generalized eigenvector of type 1 is an eigenvector, we also have
T(Xl) = 7\,X1 (A13)

Now let U be the invariant subspace of V spanned by the chain propagated by x,,.
This chain forms a basis for U. If we extend this chain into a basis for V, say

B = {X15X27"'7Xm713XMaV17V2a"'avn7m}

and define W = span{v,, vy, ..., v,_p}, then it follows from Theorem 1 that
V=U®W. IfW is also an invariant subspace of T, then we have from Theorem 3
thata matrix representation of Twith respect to the B basis has the block diagonal form

A= [g g} (A.14)

But now we can say even more.
Using (A.12) and (A.13), we have

T(x1) = Ax; = Axy + 0%y + 0x3 + - - - + 0Xpp—1 + Oxyy
+0vy +0vy +--- 4+ 0vy_py

with a coordinate representation with respect to the B basis of
T(x;) < [100...0]"
T(xy) = Axp + X1 = Axy + AxXy + 0x3 + - - + 0Xpp—q
+0x,;, +0vy +0vy 4+ -+ 0v,_py
with a coordinate representation of
T(x,) < [110...0]"

T(X3> = 7\,X3 +X2 = 0X1 + 1X2 + )\.X3 —+ -+ OXm,1 + OXm
+0vy 4+ 0vy + -+ -+ 0v,_py

with a coordinate representation of
T(x3) = [01%0...0"
This pattern continues through T(x,,). In particular,
T(x4) = [001%0...0]"

T(x;) = [000110...0]"



APPENDIXA €D

and so on. The resulting coordinate representations become the first m columns
A as given by (A.14). Because the basis for U is a chain, the submatrix B in (A.13)
has the upper triangular form

a1 0 0
0L 1 -+ 0 0
B=1: o 0 (A.15)
000 -+ & 1
000 -~ 0 X

with all of its diagonal elements equal to A, all elements on its superdiagonal (i.e., all _To emphasize, a_matrix is
elements directly above the diagonal elements) equal to 1, and all of its other ele- [ Jordan canonical form

if it is a block diagonal
ments equal to 0. matrix in which every

We call matrices having form (A.15) Jordan blocks. Jordan blocks contain many diagonal block is a
zeros and are simple building blocks for matrix representations of linear trans- Jordan block
formations. A matrix representation is in Jordan canonical form if it is a block diag-

onal matrix in which every diagonal block is a Jordan block.

Example 9 The linear transformation T: R* —R* defined by

a da—c—d

T b _ —4a+2b+2c+2d
c 2a+b+ 2c
d 2a—b—2c

has a matrix representation with respect to the standard basis of

4 0o -1 -1

—4 2 2 2

G= 2 1 2 0
2 -1 =2 0

which is not simple. We will show in Example 11 that G has two linearly inde-
pendent generalized eigenvectors of type 2 corresponding to the eigenvalue 2.
Using the techniques previously discussed, we find that two such vectors are

Xy = and Vy =

S O O+

1
0
0
0

Creating chains from each of these two vectors, we obtain

2 0 -1 —-17[1 2

4 0o 2 2|]o —4

x=G-2Dx=1 5, 1 5 ollo|=| 2
2 -1 -2 —2]|o] | 2
2 0 —1 —1770] [ 0]

4 0 2 2|1 0

i=G=2va=1 5 1 o5 oflo|T| 1
| 2 -1 -2 —2]|o] |[-1]




Setting U = span{x;,x,} and W = span{vy, v, }, we have two invariant subspaces
of R?, each having as a basis a single chain. Thus, we expect the matrix represen-
tation of T with respect to the basis B = {x1,x,,v1,Vv,} to contain two Jordan
blocks. Using this basis, we have

2 4 2 1 0 0 2
—4 -8 —4 0 0 1 0
T 5| = 4l = (2) 5 + (0) 0 + (0) 1 +(0) ol < lo
2 4 1 0 -1 0 0]p
(17 [ 4] [ 2] [17] [ 0] (0] [17]
0 —4 —4 0 0 1 2
1 0] | 2] | 1] | 0| | —1] | 0| 10 g
[17] [ 0] [ 2] [17] [ 0] (0] [07]
0 0 —4 0 0 1 0
T ol = 2 = (0) 5 + (0) 0 +(2) 1 + (0) ol < |2
1 0| | —2 | | 2] | 0 | | —1] | 0| 10 |5
[0] 0] [ 27 [17] [ 0] (0] [07]
1 2 —4 0 0 1 0
1 0| | —1] | 2] | 0| | —1] 1 0 125
The matrix representation of T with respect to the B basis is
21 0 O
A 0 2 0 O
0 0 2 1
0O 0 0 2

A 1x 1 Jordan block has only a single diagonal element. Therefore, a diagonal
matrix is a matrix in Jordan canonical form in which every diagonal block is a
1 x 1 Jordan block.

In Example 9, we wrote the domain R* of a linear transformation as the direct
sum of two invariant subspaces, with each subspace having a single chain as a
basis. Perhaps it is possible to always write the domain of a linear transformation
T:V—YV as the direct sum of a finite number of subspaces, say
V=0U,®U, @@ U, whereeach subspaceis invariant under T, and each sub-
space has as a basis a single chain of generalized eigenvectors for T. If so, we could
produce a matrix representation of T that is in Jordan canonical form.

When finding eigenvalues and eigenvectors, we generally work with matrix
representations of linear transformations rather than with the linear transforma-
tions per se because it is easier to do so. Either we begin with a matrix or we
construct a matrix representation for a given linear transformation, generally
a matrix with respect to a standard basis as we did with the matrix G in
Example 9.
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A generalized eigenvector x,, of rank m corresponding to an eigenvalue A of an
n x n matrix A has the property that

(A—AD)"x, =0 and (A—AD" 'x, #0 (A.6 repeated)

Thus, x,, is in the kernel of (A—AI)" but not in the kernel of (A—AI)""'.
Clearly, if x € ker[(A—AI)"™ '], then x € ker[ (A — M)™]. Consequently, the dimen-
sion of ker[(A—AI)""'| <ker[(A—M)™] or, in terms of rank (see Corollary 1
of Section 3.5),

r[(A =AD" > r[(A - D" (A.16)

The converse is also true. If (A.16) is valid, then there must exist a vector x,, that
satisfies (A.6), in which case x,, is a generalized eigenvector of type m correspond-
ing to A and A. The difference

P =T[(A =AD" —r[(A — AD)"] (A.17)

is the number of linearly independent generalized eigenvectors of type m corre-
sponding to A and its eigenvalue A. The differences p,,, m=1, 2, ... are called
index numbers.

Example 10 The matrix

2 1 -1 0 0 07
0 2 1 0 0O
0 O 2 0 0 O
A=
0 O 0 210
0 O 0 0 21
LO O 0 0 0 44

has an eigenvalue 4 of multiplicity 1 and an eigenvalue 2 of multiplicity 5. Here,

ro 1 -1 0 0 07
0 O 1 0 0 O
0 0 0O 0 0O

A—-2]=
0 0 0O 01 0
0 0 0 0 0 1
LO O 0 0 0 2]

has rank 4.

[0 01 0 0 O]
0O 0 0 0 0 O
0O 0 0 0 0 O

(A—21)7 =
0O 0 0 0 0 1
0O 0 0 0 0 2
(0000 0 4]




has rank 2.

(A—21) =

S O © © © O
S ©O © © © O
S O © © © O
S ©O © © © O
S O © © © O

has rank 1.

(A—21)* =

o O © O O

o O © O O

©c O © O O

o O © O O
]

S O O O © O

0 0 0 0 16

also has rank 1. Therefore, we have the index numbers
pr=r[(A-2D°"] —r[A-2D)'] =r(]) —4=6-4=2

py=r1[(A-2D)"] —r[(A—21)]

=l
ps =r[(A—21)"] —r[(A—21)’]
] =rl

py =r[(A—21)° (A —21)*

r

Corresponding to A =2, A has two linearly independent generalized eigenvectors
of type 1 (which are eigenvectors), two linearly independent generalized eigen-
vectors of type 2, one linearly independent generalized eigenvector of type 3, and
no generalized eigenvectors of type 4. There are also no generalized eigenvectors
of type greater than 4 because if one existed we could create a chain from it and
produce a generalized eigenvector of type 4. The eigenvalue 4 has multiplicity 1
and only one linearly independent eigenvector associated with it.

Example 11 The matrix

4 0o -1 -1

—4 2 2

G= 2 1 2 0
2 -1 =2 0

has an eigenvalue 2 of multiplicity 4. Here,

2 0 -1 -1
-4 0 2 2
2 1 0 0
2 -1 =2 =2

G-2I=



APPENDIXA €D

has rank 2.
0O 0 0 O
2 {0 0 0 O
(G-21)" = 00 00
0 0 0 O

has rank 0, as will every power of G — 21 greater than 2. The associated index
numbers are

pr=1[(G-2D°] —r[(G-2D)!] =r(l) —2=4-2=2

2-0=2

py =1[(G—2D)"] —r[(G - 21)?]

p3 =1[(G-21)"] —=r[(G-21)’] =0-0=0

Corresponding to A =2, G has two linearly independent generalized eigenvectors
of type 1 (eigenvectors) and two linearly independent generalized eigenvectors
of type 2.

Once we have a generalized eigenvector x,, of type m, we can identify a sequence
of generalized eigenvectors of decreasing types by constructing the chain prop-
agated by x,,. An n x n matrix A may not have enough linearly independent eigen-
vectors to constitute a basis for R"”, but A will always have n linearly independent
generalized eigenvectors that can serve as a basis. If these generalized eigenvec-
tors are chains, then they form invariant subspaces.

We define a canonical basis for an n x n matrix to be a set of n linearly independent A canonical basis for an
generalized eigenvectors composed entirely of chains. Therefore, once we have Ifi,nfe :r l??;ggggﬂ%:ﬁf of n
detgrmmed that a generalized eigenvector x,, of type m is p.art of a cz?nomcal generalized eigenvectors
basis, then so too are the vectors X,,_1, X;,—2, - .., X; that are in the chain prop- composed entirely of
agated by x,,. The following result, the proof of which is beyond the scope of this chains.

book, summarizes the relevant theory.

» THEOREM 7

Every n x n matrix possesses a canonical basis in R". <

In terms of a linear transformation T: V — V, where V is an n-dimensional vec-
tor space, Theorem 1 states that V has a basis consisting entirely of chains of gen-
eralized eigenvectors of T. With respect to such a basis, a matrix representation of
Twill be in Jordan canonical form. This is as simple a matrix representation as we
can get for any linear transformation. The trick is to identify a canonical basis. It
is one thing to know such a basis exists, and it is another matter entirely to find it.

If x,, is a generalized eigenvector of type m corresponding to the eigenvalue A for
the matrix A, then

(A—AD)"x, =0 and (A—AD)"'x, #0 (A.6 repeated)



This means that x,, is in the kernel of (A—AI)™ and in the range of (A—AI)""".
If we find a basis for the range of (A—AI)" "' composed only of vectors that are
also in the kernel of (A — AI)", we will then have a maximal set of linearly indepen-
dent generalized eigenvectors of type m. This number will equal the index number
pm- Let us momentarily assume that p,,=r, and let us designate these generalized
eigenvectors of type m as vy, V5, ..., v,. These r vectors are linearly independent
vectors in the range of (A—AI)™ !, so the only constants that satisfy the equation

aA=A)""vi+A—M)"" o+ o (A=) v, =0 (A.18)
arec; =c¢,="""=¢,=0.Itfollows that {vy, v,, ..., v,} isalinearly independent set,
because if we multiply the equation

C1V1 + vy + ...+ Cpvy = 0

by (A—AI)™ !, we obtain (A.18) and conclude that ¢; =c,=...=c¢,=0. It also
follows that the set {(A—AI)vy, (A—AI)v,, ..., (A—AI)v,} of generalized eigen-
vectors of type m—1 is also linearly independent, because if we multiply the
equation

ci(A=A)v; +c(A—A)vy+ -+ cy(A—Av, =0

by (A—AI)"?, we again obtain (A.18) and conclude that ¢c;=c,=...=c,=0.
Thus, we have proved Theorem 8.

» THEOREM 8

IfS={v4, Vs, ..., V,}is a set of generalized eigenvectors of type m such that {(A — A" vy,
(A=2)""Yv,, ..., (A=A)™"2v,} is a linearly independent set, then S itself is a linearly
independent set as is the set {(A —Al)vq, (A—ADvo, ..., (A —Al)v,} of generalized eigenvec-
tors of type m—1. d

Example 12 The linear transformation T: R® — R® defined by

a 5a+b+c
b 5b+c¢c
c 5¢
=14 5d+4e—f
e 5e+f
f 5f
has as its matrix representation with respect to the standard basis
5 1 1 0 0 0
051 0 0 0
A_|0 0500 0
“ 1o 0 0 5 1 -1
0 0 0 0 5 1
0O 0 0 0 O 5
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This matrix (as well as T) has one eigenvalue 5 of multiplicity 6. Here,

[eNeNolelolNe)

[N eNoleNoR

SO OO

[N eNolN ool

SO~ OO
I

has rank 4,

(A—51)* =

[N elNoNeloNo)
el eNoNeNo)
S OO OO~
[eNeNoNelNoNe)
el eNoNeloNe)
[eNeN N oNoNe)

o

has rank 2, and all higher powers equal the zero matrix with rank 0. The index
numbers are

0

r

r

I
I
rl(
I

(A — 51)
A—5I)!
(A — 51

r[(A = 51)°

)] -
] -
)] -
)] -

A has two generalized eigenvectors of type 3, two generalized eigenvectors of type 2,
and two generalized eigenvectors of type 1. Generalized eigenvectors of type 3 must
satisfy the two conditions (A — 51)°> x=0and (A — 5I)°x#0. Here, (A—51)>=0, so
the first condition places norestrictionsonx. Ifweletx=[a b ¢ d e f]', then

(A —51)°x =

COHRO ON

and, this will be 0 if either ¢ or f is nonzero. If we first take c=1 with
a=b=d=e=f=0 and then take f=1 with a=b=c=d=e=0, we generate

X3 = and V5 =

N A0 S
[cNeoNeN ool
R /L0 S
_ O O O o o



as two generalized eigenvectors of type 3. It is important to note that x; and y;
were not chosen to be linearly independent; they were chosen so that

0

x; = (A —51)%x3 = and y, = (A—51)y, =

[eNeNoNoNol
(=l e ]

are linearly independent. It follows from Theorem 2 that x5 and y; are linearly
independent, as are

x; = (A— 51)2X3 = and y,=(A-5l)y, =

OO OO ==
|
O R OOoO

The vectors x;, X,, X3 form a chain as do the vectors y,, y», ys. A canonical basis is
{x1, X2, X3, Y1, Y2, 3 }, and with respect to this basis a matrix representation of T'is
in the Jordan canonical form

5100 00
051000
oo 5000
=10 005 1 0
0000O0S5 1
0000O0O0SGS

Theorem 8 provides the foundation for obtaining canonical bases. We begin with a
setofindex numbers for an eigenvalue. Let m denotes the highest type of generalized
eigenvector. We first find a set of generalized eigenvectors of type m, {vy, v, ..., v;},
such that {(A—AD)" 'vy, (A—AD)" 'v,, ..., (A—AI)"v,} is a basis for the range of
(A—AD)""'. The vectors {w; = (A—A)vy, wo=(A—A)V,, ..., w,= (A—Al)v,} are
a linearly independent set of generalized eigenvectors of type m — 1. If more gener-
alized eigenvectors of type m — 1 are needed, we find them. That is, if p,,,_,=s>T,
then we find s — r additional generalized eigenvectors, w,_ , W, 5, .. ., Wy, such that

{(A=2D)" 7wy, (A=AD)" 72, wy, ... (A =AD" Pw,,
(A=M)" 2w, iy, oo, (A =AD" 2wy}
is a basis for the range of (A —\I)" 2. It follows from Theorem 8 that
{(A=MD)wy, (A= ADwy, ..., (A= ADw,, (A = ADw,iq, ..., (A — AMD)w,}

is a linearly independent set of generalized eigenvectors of type m — 2. Now the
process is repeated sequentially, in decreasing order, through all types of gener-
alized eigenvectors.
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TO CREATE A CANONICAL BASIS

For each distinct eigenvalue of a matrix A, do the following:

Step 1. Using the index numbers, determine the number of linearly independent
generalized eigenvectors of highest type, say type m, corresponding to A.
Determine one such set, {v4, v, ..., V,}, so that the product of each of these
vectors with (A — Al)™~* forms a basis for the range of (A — AL, Call the set
of v vectors the current set.

Step 2. If m=1, stop; otherwise continue.

Step 3. For each vector v in the current set of vectors, calculate (A—Al)v, the next
vector in its chain.

Step 4. Using the index numbers, determine the number of linearly independent
generalized eigenvectors of the type m — 1. If this number coincides with the
number of vectors obtained in Step 3, call this new set of vectors the current
set and go to Step 6; otherwise continue.

Step 5. Find additional generalized eigenvectors of type m — 1 so that when these new
vectors are adjoined to the current set, the product of each vector in the newly
expanded set with (A—Al)™~2 forms a basis for the range of (A —Al)™~2. Call
this newly expanded set the current set of vectors.

Step 6. Decrement m by 1 and return to Step 2.

Example 13 Find a matrix representation in Jordan canonical form for the linear
transformation T: R® — R defined by

[a [2a+b— ¢

b 2b+c¢

c 2c
T: =

d 2d+e

e 2e+f

Lfl L 4

Solution: The matrix representation of T with respect to the standard basis is the
matrix A exhibited in Example 10. It follows from Example 10 that A has one
eigenvalue 2 of multiplicity 5 and one eigenvalue 4 of multiplicity 1. Associated
with the eigenvalue 2 are one generalized eigenvector of type 3, two generalized
eigenvectors of type 2, and two generalized eigenvectors of type 1. A generalized
eigenvector of type 3 is

X3 =

o ©O ©O = O O




Then,

Xy = (A — 2I)X3

S O O = =

0

is a generalized eigenvector of type 2. We still need another generalized eigenvec-
tor of type 2, sowesety,=[a b ¢ d e f]', and choose the components so
thaty, is in the kernel of (A — 2I)? and also so that (A — 2I)y, and (A — 2I)x, con-
stitute a basis for the range of (A — 2I). Ify, is to be in the kernel of (A — 2I)?, then
c¢=f=0. Furthermore,

I Tb -
0
0
= ,(A—2I)X2:
e
0

0 0 0

(A — 20}y, (A —21)

QU O S o
S O © O ~

[\

and y, must be chosen so that these two vectors are linearly
independent. A simple choice is b=0 and e=1. There are many choices for
yo=[a 0 0 d 1 0]", depending how a and d are selected. The simplest is
to take a=d=0, whereupon

0

0

0

Y2 = 0

1

0

Next,

0 1
0 0
0 0
y, =(A-2Dy, = 1 and x; =(A-2D)x, = 0
0 0
0 0

are the required generalized eigenvectors of type 1. There is only one linearly
independent generalized eigenvector associated with the eigenvalue 4. A suitable
candidate is



7z, =

=N = O O O
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We take our canonical basis to be {z;, yy, y,, X1, X5, X3} . With respect to this basis,

T is represented by the matrix in Jordan canonical form

4

0

S O © O N

0

S O O N

0

=l SEl e e)

0

0

S N = O O

N m O © O O

The Jordan canonical form found in Example 13 contained a 1 x 1 Jordan block
with the eigenvalue 4 on the main diagonal, a 2 x 2 Jordan block with the eigen-
value 2 on the main diagonal, and a 3 x 3 Jordan block again with the eigenvalue
2 on the main diagonal. The 1 x 1 Jordan block corresponds to the single element
chain z, in the canonical basis, the 2 x 2 Jordan block corresponds to the two
element chain y;, y, in the canonical basis, while the 3 x 3 Jordan block corre-
sponds to the three element chain in the canonical basis. If we rearrange the
ordering of the chains in the canonical basis, then the Jordan blocks in the Jordan
canonical form will be rearranged in a corresponding manner. In particular, if we
take the canonical basis to be {x;, X,, X3, Y1, Y2, 21 }, then the corresponding Jor-

dan canonical form becomes

S O O O OoON

S O O O N

S O o N = O

S O N O O O

SN = O O O

s O O O © O

If, instead, we take the ordering of the canonical basis to be {x;, x5, X3, 21, y1, >},

then the corresponding Jordan canonical form becomes

2

o ©O O © O

S O O o N

S O O N = =

0

S O b~ © O

S O O O o O

0

N O O O




D

In a canonical basis, all
vectors from the same
chain are grouped
together, and generalized
eigenvectors in each
chain are ordered by
increasing type.

Two criteria must be observed if a canonical basis is to generate a matrix in Jordan
canonical form. First, all vectors in the same chain must be grouped together (not
separated by vectors from other chains), and second, each chain must be ordered
by increasing type (so that the generalized eigenvector of type 1 appears before
the generalized eigenvector of type 2 of the same chain, which appears before the
generalized eigenvector of type 3 of the same chain, and so on). If either criterion
is violated, then the ones will not appear, in general, on the superdiagonal.
In particular, if vectors are ordered by decreasing type, then all the ones appear
on the subdiagonal, the diagonal just below the main diagonal.

Let A denote a matrix representation of a linear transformation T: V — V with
respect to a basis B (perhaps the standard basis), and let J be a matrix represen-
tation in Jordan canonical form for T. J is the matrix representation with respect
to a canonical basis C. Since J and A are two matrix representations of the same
linear transformation, with respect to different basis, they must be similar. Using
the notation developed in Section 3.4 we may write

-1
J& = (PE)  ARPE (A.19)
where PZ is the transition matrix from the B basis to the C basis.

Let {x;, X5, ..., X,} be a canonical basis of generalized eigenvectors for A. A gen-
eralized modal matrix is a matrix M whose columns are the vectors in the canonical
basis, that is,

M = [x1 X5+ - Xy] (A.20)

Ifx;,  is a direct ancestor of x, in the same chain corresponding to the eigenvalue
A, then

AXj 1 = AXjqq +X; (A.10 repeated)
If x; is an eigenvector corresponding to A, then
Ax; = Axy (A.11 repeated)
Using these relationships, it is a simple matter to show that AM =M]. Since the
columns of M are linearly independent, M has an inverse. Therefore,
J=M'AM (A.21)
A=MM! (A.22)
Comparing (A.21) with (A.22), we see that the generalized modal matrix is just

the transition matrix from the canonical basis C to the B basis. It then follows
that M~ is the transition matrix from the B basis to the C basis.

PROBLEMS APPENDIX A
(1) LetL: RzaszedeﬁnedbyT[ﬂ = [:a—:_z?)bb} . Determine whether the sub-

spaces spanned by the following sets of vectors are invariant subspaces of L.
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on{A) ee-{RLED
o e={[2} o o-{[2]}
o=-{[s]} or-{s[ 1]}
a 4b+ 2¢
(2) Let T: R*>—R> be defined by T!b] = {—3a—%8b—k36}. Determine
c 4a — 8b — 2c

whether the subspaces spanned by the following sets of vectors are invari-
ant subspaces of T.

(2T [ 2 [0 4
{1 e
0 —4 | 4 —4
27 o [0
(QC—{I, 4}, (@D_{ 4
0 1 |1
[0 2
ol ()
1 —4

(3) Let R: R* - R* be defined by T

—_

= . Determine whether

the subspaces spanned by the following sets of vectors are invariant
subspaces of R.

1 -1 1 0
0 1 0 0
(a) A= 0 ’ 0 ’ (b) B= 0 ) 0 ’
10 | O] 0 1
(17 [ o] 0 0
o | -1 0| | -1
(C) Ci 0 ) 1 / (d) Di 0 ) 1 ’
10] |—1] 1 -1
1 -1 0 1 -1 0
0 1| |o _J o 1| |1
(e) E: 0 ) 0 ’ 0 ’ (f) F_ 0 I 0 9 1 ’
0 0 1 0 0 -1




(4) Determine whether the subspaces spanned by the following sets of vectors
31
-1 5]

o ={(2) wo- ()3}
(b)B{}:}’ (e)vﬂﬂm}
©c={[2]} o= {[i}[2]}

(5) Determine whether the subspaces spanned by the following sets of vectors
[o] [ 2] _
(a)A: 0 ’ 3 ' (d)D_{[ :|},
1 —4
57 o1 -
(b) ]B B ’ 2 ' (e) E B { [ }/
_0 .
1

(6) Determine whether the subspaces spanned by the following sets of vectors

are invariant subspaces of A =

5 1 -1
are invariant subspaces of A= | 0 5 2.
0 0 5

— oo ocoN

3 1 0 -1
. . 0 3 1 0
are invariant subspaces of A = 00 4 1
0 0 O 4
17 [0 0 1
1 1
d) D= ,
(a) A: O , ]- , ( ) O b 1
0 0 0 0
_O_ _0_
hE
(b) B= 0 7 1 ) (e) E= ol 1] 0 /
0 1 0 0 -1
_0_ ._0_
1] [0] 1 0 1
0 0 0 1 1
(C) (C* 0 ) 1 ’ (f) ]F* 0 ’ 0 9 1 ’
o] [1] o] [o] |o
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(7) Using the information provided in Problem 1, determine which of the fol-
lowing statements are true:
(a) R? = span{A} @ span{B} (c) R? = span{C} @ span{D}
(b) R? = span{A} @ span{C} (d) R? = span{D} @ span{E}

(8) Using the information provided in Problem 2, determine which of the
following statements are true:

(a) R?® =span{A} @ span{B} (c) R? = span{B} @ span{F}
(b) R? = span{A} @ span{E} (d) R? = span{C} @ span{F}

(9) Using the information provided in Problem 4, determine which of the
following statements are true:
(a) R? = span{A} © span{B} () R? = span{B} & span{C}
(b) R? = span{A} & span{C} (d) R? = span{E} & span{F}

(10) Using the information provided in Problem 5, determine which of the
following statements are true:
(a) R? = span{A} @ span{D} () R® = span{B} @ span{E}
(b) R? = span{B} @ span{D} (d) R? =span{D} @ span{E}

(11) Characterize the subspace U = span{D)} @ span{E} for the sets D and E
described in Problem 5.

a 3a+b—d 1
(12) Let T : R* — R* be defined by T bl 3v+e | gep—{|! o
c 4c+d 0 0
d 4d 0 0
—1
-1 1
C= N , M = span(B), and N = span(C).

(a) Show that M and N are both invariant subspaces of Twith R* = M @ N.
(b) Show that T has a matrix representation in the block diagonal form
with respect to the basis B U C.

a 2a+b—d 0
(13) Let T: B — B be defined by 7| " | = | 2 F 4| seem={| 1|},
d 2d
1 1 0
C= 1 -1 0 M = span(B), and N = span(C)
“Nlol | of ol PN = span(L).
0 0 1

(a) Show that M and N are both invariant subspaces of Twith R* = M @ N.
(b) Show that T has a matrix representation in the block diagonal form
with respect to the basis B U C.



a 4a+c 0 0
4 4 b 2a+2b+ 3¢ 1 0
(14) Let T: R® — R" be defined by T = .SetB = , ,
c —a—+ 2c 0 0
d da+c+2d 1 1
1 1
—1 3
C= , , M = span(B), and N = span(C).
—1 0

3 1

(a) Show that M and N are both invariant subspaces of Twith R* = M @ N.
(b) Show that T has a matrix representation in the block diagonal form
with respect to the basis B U C.

(15) Determine whether the following vectors are generalized eigenvectors of
type 3 corresponding to the eigenvalue A =2 for the matrix

2 2 1 1
0 2 -1 0
A =
0 0 2 0
0 0 0 1
1 0 0 2 0 0
1 1 0 0 0 0
a , (b . (c ,(d . (e ,(f
@l [ o @ @] @] O
0 0 0 0 1 0
For the matrices in Problems 16 through 20, find a generalized eigenvector of
type 2 corresponding the eigenvalue A=—1.
ST -1 10 0o 4 2
(16) 0 —1 (17) 0 -1 1 (18) -1 4 1
- 0 0 1 -1 -7 -4
3 =2 2 2 0 3
19 | 2 —2 1 (200 2 -1 1
-9 9 -4 -1 0 -2

(21) Find a generalized eigenvector of type 3 corresponding to A=3 and a gen-
eralized eigenvector of type 2 corresponding to A=4 for

4 1 0 0 1
04000
A=|0 0 3 1 0
000 3 2
0 0 0 0 3]
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(22) Thevector[1 1 1 0]"isknown to be a generalized eigenvector of type 3
corresponding to the eigenvalue 2 for

2 2 1 1

02 -1 0
A=

0 0 2 0

0 0 0 1

Construct a chain from this vector.

(23) Redo Problem 22 for the generalized eigenvector [0 0 1 0]", which is
also of type 3 corresponding to the same eigenvalue and matrix.

(24) Thevector [0 0 0 0 1] is known to be a generalized eigenvector of
type 4 corresponding to the eigenvalue 1 for

1 0 1 0 -1
01 0 0 0
A=(0 0 1 -1 2
0 0 O 1 1
0 0 O 0 1

Construct a chain from this vector.

(25) Redo Problem 24 for the generalized eigenvector [0 0 0 1 0]*, which
is of type 3 corresponding to the same eigenvalue and matrix.

(26) Thevector[1 0 0 0 —1]"isknown to be a generalized eigenvector of
type 3 corresponding to the eigenvalue 3 for

4 1 0 0 1
0 4 0 0 O
A=|(0 0 3 1 O
0 0 0 3 2
0 0 0 0 3

Construct a chain from this vector.

(27) Redo Problem 26 for the generalized eigenvector [0 1 0 0 0]", which
is of type 2 corresponding to the eigenvalue 4 for the same matrix.

(28) Find a generalized eigenvector of type 2 corresponding to the eigenvalue
—1 for
-1 1
S

and construct a chain from this vector.

(29) Find a generalized eigenvector of type 2 corresponding to the eigenvalue

—1 for
—1 1 0
A= 0 -1 1
0 0 1

and construct a chain from this vector.
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(30) Find a generalized eigenvector of type 2 corresponding to the eigenvalue

—1 for
0 4 2
A=|-1 4 1
-1 -7 —4

and construct a chain from this vector.

(31) Find a generalized eigenvector of type 4 corresponding to the eigenvalue

2 for
2 1 3 -1
0o 2 -1 4
A:
0 0 2 1
0 0 0 2

and construct a chain from this vector.

(32) Find a generalized eigenvector of type 3 corresponding to the eigenvalue

3 for
4 1 1 2 2
-1 2 1 3 O
A= 0O 0 3 00
0O 0 0 2 1
O 0 01 2

and construct a chain from this vector.
(33) Prove that a generalized eigenvector of type 1 is an eigenvector.
(34) Prove that a generalized eigenvector of any type cannot be a zero vector.

(35) Let T: V — V be a linear transformation. Prove that the following sets are
invariant subspaces under T.
(a) {0},
(b) V,
(c) span{vy, v, ..., vi} where each vector is an eigenvector of T (not nec-
essarily corresponding to the same eigenvalue).

(36) Let V be a finite-dimensional vector space. Prove that V is the direct sum of
two subspaces U and W if and only if (i) each vector in V can be written as
the sum of a vector in U with a vector in W, and (ii) the only vector com-
mon to both U and W is the zero vector.

(37) Let B be a basis of k-vectors for U, an invariant subspace of the linear trans-
formation T: V — V, and let C be a basis for W, another subspace (but not
invariant) with V = U @ W. Show that the matrix representation of T with
respect to the basis B U C has the partitioned form

A A
A_{ 0 A3:|

with A; having order k x k.
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(38) Determine the length of the chains in a canonical basis if each chain is asso-
ciated with the same eigenvalue A and if a full set of index numbers is given
by each of the following.

(@) ps=pa=p1=1, (b) p3=p2=p1=2,

() p3=1 py=p1=2, (d) ps=1,p,=2,p1=3,
(e) ps=p2=1,p1=3, (f) p3=3, p2=4, p1=3,
(8) p2=2,p1=4, (h) p2=4,p1=2,

(1) p2=2, p1=3, () pa=p1=2.

In Problems 39 through 45, find a canonical basis for the given matrices.

SR 7 3 3
(39)_11 (40) | o 1 0
L -3 -3 1
(5 1 —1 (5 1 2
(41) |0 5 2 (42) |0 3 0
|0 0 5 2 1 5
(2 1 0 -1 (3 1 0 -1
0 2 1 1 031 o0
(43)002 0| (44)004 1
|0 00 2 0 00 4
4 1 1 0 0 —17
0 4 2 00 1
0 0410 1
(45)
00051 0
000 O0S5 2
L0 OO 0 0 4]

In Problems 46 through 50, a full set of index numbers are specified for the
eigenvalue 2 of multiplicity 5 for a 5 x 5 matrix A. In each case, find a matrix
in Jordan canonical form that is similar to A. Assume that a canonical basis is
ordered so that chains of length 1 appear before chains of length 2, which appear
before chains of length 3, and so on.

(46) p3=p,=1, p;=3. (47) p3=1, pa=p1=2.
(48) py,=2, p1=3. (49) pa=p3=pr=1, p1=2.
(50) ps=pa=ps=pa=p:1=1.

In Problems 51 through 56, a full set of index numbers are specified for the
eigenvalue 3 of multiplicity 6 for a 6 x 6 matrix A. In each case, find a matrix
in Jordan canonical form that is similar to A. Assume that a canonical basis is
ordered so that chains of length 1 appear before chains of length 2, which appear
before chains of length 3, and so on.



(51) p3=pr=p1=2. (52) p5=1, po=2, p,=3.

(53) p3=p2=1, p1=4. (54) pa=p1=3.

(55) p2=2, p1=4. (56) po=1, p1=5.

(57) A canonical basis for a linear transformation T: R* —R* contains three
chains corresponding to the eigenvalue 2: two chains x; and y;, each of

length 1, and one chain w;, w, of length 2. Find the matrix representation
of T with respect to this canonical basis, ordered as follows.

(a) {Xlr Y1/ Wi, Wz}r (b) {er Wi, Wy, Xl}r
(C) {er W3, Xy, y1}r (d) {er W), y11 Xl}r

(58) A canonical basis for a linear transformation T: R® —R° contains two
chains corresponding to the eigenvalue 3: one chain x; of length 1 and
one chain y;, y, of length 2, and two chains corresponding to the eigen-
value 5: one chain u, of length 1 and one chain of v;, v, of length 2. Find
the matrix representation of T with respect to this canonical basis, ordered

as follows.

(a) {Xh Y1, Y2, Uy, Vy, Vz}z (b) {Y]z Y2, Xy, Uy, Vy, Vz},
() {xu uy, vi, va, y1, Y2}, (d) {yu y2 vi, va, X1, us },
(e) {x1 uy, yi, y2 V1, Va}, (0) {vi v u, X1, 71, 2}

In Problems 59 through 73, find a matrix representation in Jordan canonical
form for the given linear transformation.

[a] [2a-3b fa] [ 3a+b
(59)T_b___a—2b} (GO)T_b___—a—i—Sb}

[a] [2a-b fa] [ a+2b
LT, | = _a+4b]' 62T, | = _—a+4b}

al [ 2a+b fa]l [2a-5b
3T b___2a+3b} (64)T_b_—_a—zb]'

[a] [ 9a+3b+ 3¢ [a]  [2a+2b—2c
(65)T|(b| = 3b . (66) T|(b| = 2b+c¢

| C | | —3a—3b+ 3¢ | ¢ | i 2c

[a] b+ 2¢ [a] [ 2a—c¢
(67)T|b| = -2b |. (68) T|(b| =|2a+b-2c

| ¢ ] | 2a+D | C | | —a+2c

[a] [ a+b+c [a] [ a+2b+3c
(69)T|b| = 0 . (70) T{b| = |2a+4b+6¢

| C | la+2b+ 2c | C | | 3a+6b+9c

[a] [3a+b—d [a] [a+b—d

b| |3b+c+d b| | b+c
(71 T c| 3¢ ‘ (72) T c| | 2c+d

| C | 3d L ¢ 2d
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(73) [a —a—c+d+e+3f
b b
c 2a+b+2c—d—d—6f
T|{d|=| —2a—c+2d+e+3f |,with k=1 as the only eigenvalue.
e e
f
| 8 | |—a—b+d+2e+4f +g|

(74) The generalized null space of an n x n matrix A and eigenvalue ), denoted by
N, (A), is the set of all vectors x € R" such that (A —AI)* x=0 for some non-
negative integer k. Show that if x is a generalized eigenvector of any type
corresponding to A, then x € N, (A).

(75) Prove that N, (A), as defined in Problem 74, is a subspace of R".

(76) Prove that every square matrix A commutes with (A — AI)" for every positive
integer n and every scalar A.

(77) Prove that N, (A) is an invariant subspace of R" under A.

(78) Prove that if A has order n x n and x € N,(A), then (A—A)"x=0.
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Markov Chains

Eigenvalues and eigenvectors arise naturally in the study of matrix representa-
tions of linear transformations, but that is far from their only use. In this Appen-
dix, we present an application to those probabilistic systems known as Markov
chains.

An elementary understanding of Markov chains requires only a little knowledge
of probabilities; in particular, that probabilities describe the likelihoods of dif-
ferent events occurring, that probabilities are numbers between 0 and 1, and that
if the set of all possible events is limited to a finite number that are mutually
exclusive then the sum of the probabilities of each event occurring is 1. Signifi-
cantly more probability theory is needed to prove the relevant theorems about
Markov chains, so we limit ourselves in this section to simply understanding the
application.

4 )
»DEFINITION 1
A finite Markov chain is a set of objects (perhaps people), a set of consecutive time
periods (perhaps five-year intervals), and a finite set of different states (perhaps
employed and unemployed) such that

(i) during any given time period, each object is in only one state (although different
objects can be in different states) and

(if) the probability that an object will move from one state to another state (or remain
in the same state) over a time period depends only on the beginning and ending
states. «

We denote the states as state 1, state 2, state 3, through state N, and let p;; desig-
nate the probability of moving in one time period into state i from state j(i, j=1,
2, ..., N). The matrix P={p;] is called a transition matrix.

Example 1 Construct a transition matrix for the following Markov chain. A traffic
control administrator in the Midwest classifies each day as either clear or cloudy.
Historical data show that the probability of a clear day following a cloudy day is
0.6, whereas the probability of a clear day following a clear day is 0.9.

A transition matrix for an
N-state Markov chain is
an Nx N matrix with
nonnegative entries; the
sum of the entries in each
column is 1.



Solution: Although one can conceive of many other classifications such as rainy,
very cloudy, partly sunny, and so on, this particular administrator opted for only
two, so we have just two states: clear and cloudy, and each day must fall into one
and only one of these two states. Arbitrarily, we take clear to be state 1 and cloudy
to be state 2. The natural time unit is 1 day. We are given that p,, =0.6, so it must
follow that p,, = 0.4, because after a cloudy, day the next day must be either clear
or cloudy and the probability that one or the other of these two events occurring
is 1. Similarly, we are given that p;; =0.9, so it also follows that p,; =0.1. The
transition matrix is

clear cloudy
P=| 09 0.6
0.1 0.4

clear
cloudy

Example 2 Construct a transition matrix for the following Markov chain. A med-
ical survey lists individuals as thin, normal, or obese. A review of yearly check-
ups from doctors’ records showed that 80% of all thin people remained thin
1 year later while the other 20% gained enough weight to be reclassified as nor-
mal. For individuals of normal weight, 10% became thin, 60% remained nor-
mal, and 30% became obese the following year. Of all obese people, 90%
remained obese 1 year later while the other 10% lost sufficient weight to fall into
the normal range. Although some thin people became obese a year later, and vice
versa, their numbers were insignificant when rounded to two decimals.

Solution: We take state 1 to be thin, state 2 to be normal, and state 3 to be obese.
One time period equals 1 year. Converting each percent to its decimal represen-
tation so that it may also represent a probability, we have p,; =0.2, the proba-
bility of an individual having normal weight after being thin the previous
year, p3, =0.3, the probability of an individual becoming obese 1 year after hav-
ing a normal weight, and, in general,

thin normal obese

thin
0.8 0.1
P= normal
0.2 0.6 0.1
obese

0 0.3 0.9

Powers of a transition matrix have the same properties of a transition matrix: all
elements are between 0 and 1, and every column sum equals 1 (see Problem 20).
Furthermore,

» THEOREM 1

If P is a transition matrix for a finite Markov chain, and if pif’ denotes the i-j element of P¥,
the kth power of P, then pf-jk’ is the probability of moving to state i from state j in k time
periods. 4

\
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For the transition matrix created in Example 2, we calculate the second and third
powers as

thin normal obese .
thin
, loe6 o014 o001
P’ = normal
0.28 0.41 0.15

0.06 0.45 0.84

obese

and

thin normal obese

thin
3 0.556 0.153 0.023
= normal
0.306 0.319 0.176
obese

0.138 0.528 0.801

Here, p{3) 5=0.66 is the probability of a thin person remaining thin 2 years
later, p{% 6=0.45 is the probability of a normal person becoming fat 2 years
later, while p{3) 7=0.023 is the probability of a fat person becoming thin
3 years later.

For the transition matrix created in Example 1, we calculate the second power to be
clear cloudy

P2=10.87 0.78
0.13 0.22

clear
cloudy

Consequently, p{3) 9 =0.78 is the probability of a cloudy day being followed by a
clear day 2 days later, while p3) 10=0.22 is the probability of a cloudy day being
followed by a cloudy day 2 days later. Calculating the 10th power of this same
transition matrix and rounding all entries to four decimal places for presentation
purposes, we have

clear cloudy
10 clear
P'%= {08571 0.8571 (B.1)
cloudy
0.1429 0.1429

Since p{i? 12=p{%” 13=0.8571, it follows that the probability of having a
clear day 10 days after a cloudy day is the same as the probability of having a
clear day 10 days after a clear day.

An object in a Markov chain must be in one and only one state at any time, but
that state is not always known with certainty. Often, probabilities are provided to
describe the likelihood of an object being in any one of the states at any given
time. These probabilities can be combined into an n-tuple. A distribution vector
d for an N-state Markov chain at a given time is an N-dimensional column matrix



D

A distribution vector for
an N-state Markov chain
at a given time is a col-
umn matrix whose ith
component is the proba-
bility that an object is in
the th state at that
given time.

having as its components, one for each state, the probabilities that an object in
the system is in each of the respective states at that time.

Example 3 Find the distribution vector for the Markov chain described in Exam-
ple 1 if the current day is known to be cloudy.

Solution: The objects in the system are days, which are classified as either clear,
state 1, or cloudy, state 2. We are told with certainty that the current day is cloudy,
so the probability that the day is cloudy is 1 and the probability that the day is
clear is 0. Therefore,
0
d=

Example 4 Find the distribution vector for the Markov chain described in Exam-
ple 2 if it is known that currently 7% of the population is thin, 31% of popula-
tion is of normal weight, and 62% of the population is obese.

Solution: The objects in the system are people. Converting the stated percentages
into their decimal representations, we have

0.07
d=] 031
0.62

Different time periods can have different distribution vectors, so we let d®
denote a distribution vector after k time periods. In particular, d*) is a distribu-
tion vector after 1 time period, d® is a distribution vector after 2 time periods,
and d('? is a distribution vector after 10 time periods. An initial distribution vec-
tor for the beginning of a Markov chain is designated by d®. The distribution
vectors for various time periods are related.

» THEOREM 2
If P is a transition matrix for a Markov chain, then
d(k;] — P}:d(10> _ Pd(k 1)’

where P* denotes the kth power of P. <
\ J

For the distribution vector and transition matrix created in Examples 1 and 3, we
calculate
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09 0.6][0] 0.6
d® = pq® — _
0.1 04][1] 0.4

0.87 0.787[0 0.78
d?@ = p2q©@ — = (B.2)
0.13 0.22]|1 0.22

0.8571 0.8571 |0 0.8571
d(lo) — PlOd(O) _ —
0.1429 0.1429 1 0.1429

The probabilities of following a cloudy day with a cloudy day after 1 time period,
2 time periods, and 10 time periods, respectively, are 0.4, 0.22, and 0.1429.

For the distribution vector and transition matrix created in Examples 2 and 4, we
calculate

0.556 0.153 0.0237 [0.07 0.10061
d® =p3d® = | 0306 0.319 0.176| | 0.31 | = | 0.22943
0.138 0.528 0.801 ] |0.62 0.66996

Rounding to three decimal places, we have that the probabilities of an arbitrarily
chosen individual being thin, normal weight, or obese after three time periods
(years) are, respectively, 0.101, 0.229, and 0.700.

The 10th power of the transition matrix created in Example 1 is given by Eq. (B.1)
as

_10.8571 0.8571

PIO —
0.1429 0.1429

Continuing to calculate successively higher powers of P, we find that each is iden-
tical to P'® when we round all entries to four decimal places. Convergence is a bit
slower for the transition matrix associated with Example 3, but it also occurs. As
we calculate successively higher powers of that matrix, we find that

[0.2283 0.1287 0.0857]
P®= |0.2575 0.2280 0.2144

10.5142 0.6433 0.6999 |
(B.3)
[(0.1294 0.1139 0.10727

P20 = | 0.2277 0.2230 0.2210
0.6429 0.6631 0.6718 |




A transition matrix is
regular if one of its
powers has only
positive elements.

and

0.1111 0.1111 0.1111
lim P" = | 0.2222 0.2222 0.2222
n—oo

0.6667 0.6667 0.6667

where all entries have been rounded to four decimal places for presentation
purposes.

Not all transition matrices have powers that converge to a limiting matrix L, but
many do. A transition matrix for a finite Markov chain is regular if it or one of its
powers contains only positive elements. Powers of a regular matrix always con-
verge to a limiting matrix L.

The transition matrix created in Example 1 is regular because all of its elements
are positive. The transition matrix P created in Example 2 is also regular because
all elements of P?, its second power, are positive. In contrast, the transition

matrix
0 1
P=[7 o]

is not regular because each of its powers is either itself or the 2 x 2 identity matrix,
both of which contain zero entries.

By definition, some power of a regular matrix P, say the mth, contains only pos-
itive elements. Since the elements of P are nonnegative, it follows from matrix
multiplication that every power of P greater than m must also have all positive

components. Furthermore, if L = lim P*, then it is also true that L = lim P* !,

k—o00 k—o00
Therefore,
L = lim Pt = Jim (PPF1) = P(klim Pk1> =PL (B.4)
Denote the columns of L as xy, X5, . . ., Xy, respectively, so that L=[x; X, , ... xn].
Then equation (C.4) becomes
[X1,X2,...,Xn] = P[X1,X2,...,XN]

wherex;=Px;, (j=1, 2, ..., N), or Px;=(1)x;. Thus, each column of L is an eigen-
vector of P corresponding to the eigenvalue 1. We have proved part of the follow-
ing important result.

» THEOREM 3

Ifan N x N transition matrix P is regular, then successive integral powers of P converge to a
limiting matrix L whose columns are eigenvectors of P associated with eigenvalue L =1.
The components of this eigenvector are positive and sum to unity.

\ J
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Even more is true. If P is regular, then its eigenvalue A =1 has multiplicity 1, and
there is only one linearly independent eigenvector associated with that eigen-
value. This eigenvector will be in terms of one arbitrary constant, which is
uniquely determined by the requirement that the sum of the components is
1. Thus, each column of L is the same eigenvector.

We define the limiting state distribution vector for an N-state Markov chain as an
N-dimensional column vector d®) having as its components the limiting
probabilities that an object in the system is in each of the respective states after
a large number of time periods. That is,

d® = lim d™

n—oo

Consequently,

d*) = lim ) = lim (P"d®) = (lim P")d® = 14!

n—oo n—oo n—oo

Each column of L is identical to every other column, so each row of L contains a
single number repeated N times. Combining this with the fact that d® has com-
ponents that sum to 1, it follows that the product Ld®) is equal to each of the
identical columns of L. That is, d*) is the eigenvector of P corresponding to
A=1, having the sum of its components equal to 1.

Example 5 Find the limiting state distribution vector for the Markov chain The limiting state distri-

described in Example 1. bution vector for a tran-
sition matrix P is the

Solution: The transition matrix is unique eigenvector of P
corresponding to A=1,

09 0.6 having the sum of its
P = components equal to 1.
0.1 04

which is regular. Eigenvectors for this matrix have the form

-l

Eigenvectors corresponding to A =1 satisfy the matrix equation (P — 1I)x=0, or
equivalently, the set of equations

—0.1x4+09y =0
0.1x—0.6y=0

Solving by Gaussian elimination, we find x =6y with y arbitrary. Thus,

<[5



If we choose y so that the sum of the components of x sum to 1, we have 7y=1, or
y=1/7.The resulting eigenvector is the limiting state distribution vector, namely,

469 — [6/71

1/7

Furthermore,
L 6/7 6/7
17 17

Over the long run, 6 out of 7 days will be clear and 1 out of 7 days will be cloudy.
We see from Egs. (B.1) and (B.2) that convergence to four decimal places for the
limiting state distribution and L is achieved after 10 time periods.

Example 6 Find the limiting state distribution vector for the Markov chain
described in Example 2.

Solution: The transition matrix is

0.8 0.1 O
P=]02 06 0.1
0 03 09

P? has only positive elements, so P is regular. Eigenvectors for this matrix have
the form

X
X=1Y
X

Eigenvectors corresponding to A =1 satisfy the matrix equation (P — 1I)x=0, or
equivalently, the set of equations

—02x+0.1y=0
0.2x—0.4y+0.1z=0
03y—0.1z=0

Solving by Gaussian elimination, we find x=(1/6)z, y=(1/3)z, with z arbitrary.
Thus,
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We choose z so that the sum of the components of x sum to 1, hence (1/6)z+
(1/3)z+2z=1, or z=2/3. The resulting eigenvector is the limiting state distribu-
tion vector, namely,

1/9
d® = 12/9
6/9
Furthermore,
1/9 1/9 1/9
L=[2/9 2/9 2/9
6/9 6/9 6/9

Compare L with Eq. (B.3). The components of d>) imply that, over the long run,
one out of nine people will be thin, two out of nine people will be of normal
weight, and six out of nine people will be obese.

PROBLEMS APPENDIX B

(1) Determine which of the following matrices cannot be transition matrices
and explain why:

0.15 0.57] [0.27 0.74
(@) {0.85 0.43 |’ (b) 10.63 0.16}’
0.45 0.53] [ 1.27 0.23
() {055 0.57 ] )| 027 077}’
(1 1/2 0] [1/2 1/2 1/3
() |0 1/3 0], ) [(1/4 1/3 1/4 |,
|0 1/6 0] [1/4 1/6 7/12
[0.34 0.18 0.53 [ 034 032 -0.17
(g |0.38 0.42 0.21], (h) 0.78 0.65 0.80
| 0.35 0.47 0.19 | —0.12 0.03  0.37

(2) Construct a transition matrix for the following Markov chain: Census fig-
ures show a population shift away from a large midwestern metropolitan
city to its suburbs. Each year, 5% of all families living in the city move to
the suburbs, while during the same time period, only 1% of those living
in the suburbs move into the city. Hint: Take state 1 to represent families
living in the city, state 2 to represent families living in the suburbs, and
1 year as one time period.

(3) Construct a transition matrix for the following Markov chain: Every
4 years, voters in a New England town elect a new mayor because a town
ordinance prohibits mayors from succeeding themselves. Past data



indicate that a Democratic mayor is succeeded by another Democrat 30%
of the time and by a Republican 70% of the time. A Republican mayor,
however, is succeeded by another Republican 60% of the time and by a
Democrat 40% of the time. Hint: Take state 1 to represent a Republican
mayor in office, state 2 to represent a Democratic mayor in office, and
4 years as one time period.

(4) Construct a transition matrix for the following Markov chain: The apple
harvest in New York orchards is classified as poor, average, or good. His-
torical data indicate that if the harvest is poor 1 year then there is a 40%
chance of having a good harvest the next year, a 50% chance of having
an average harvest, and a 10% chance of having another poor harvest.
If a harvest is average 1 year, the chance of a poor, average, or good harvest
the next year is 20%, 60%, and 20%, respectively. If a harvest is good, then
the chance of a poor, average, or good harvest the next year is 25%, 65%,
and 10%, respectively. Hint: Take state 1 to be a poor harvest, state 2 to
be an average harvest, state 3 to be a good harvest, and 1 year as one
time period.

(5) Construct a transition matrix for the following Markov chain: Brand X and
brand Y control the majority of the soap powder market in a particular
region, and each has promoted its own product extensively. As a result
of past advertising campaigns, it is known that over a two-year period
of time, 10% of brand Y customers change to brand X and 25% of all other
customers change to brand X. Furthermore, 15% of brand X customers
change to brand Y and 30% of all other customers change to brand Y.
The major brands also lose customers to smaller competitors, with 5%
of brand X customers switching to a minor brand during a two-year time
period and 2% of brand Y customers doing likewise. All other customers
remain loyal to their past brand of soap powder. Hint: Take state 1 to be
a brand X customer, state 2 a brand Y customer, state 3 another brand'’s
customer, and 2 years as one time period.

(6) (a) Calculate P* and P* for the two-state transition matrix:

0.1 0.4
I)_[0.9 0.6}

(b) Determine the probability of an object beginning in state 1 and
remaining in state 1 after two time periods.

(c) Determine the probability of an object beginning in state 1 and
ending in state 2 after two time periods.

(d) Determine the probability of an object beginning in state 1 and
ending in state 2 after three time periods.

(e) Determine the probability of an object beginning in state 2 and
remaining in state 2 after three time periods.
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(7) Consider a two-state Markov chain. List the number of ways an object in
state 1 can end in state 1 after three time periods.

(8) Consider the Markov chain described in Problem 2. Determine (a) the
probability a family living in the city will find themselves in the suburbs
after 2 years, and (b) the probability a family living in the suburbs will
find themselves living in the city after 2 years.

(9) Consider the Markov chain described in Problem 3. Determine (a) the
probability there will be a Republican mayor 8 years after a Republican
mayor serves, and (b) the probability there will be a Republican mayor
12 years after a Republican mayor serves.

(10) Consider the Markov chain described in Problem 4. It is known that this
year that the apple harvest was poor. Determine (a) the probability next
year’s harvest will be poor, and (b) the probability that the harvest in
2 years will be poor.

(11) Consider the Markov chain described in Problem 5. Determine (a) the
probability that a brand X customer will remain a brand X customer after
4 years, (b) after 6 years, and (c) the probability that a brand X customer
will become a brand Y customer after 4 years.

(12) Consider the Markov chain described in Problem 2. (a) Explain the signif-
icance of each component of d©=[0.6  0.4]". (b) Use this vector to find
d™ and d®.

(13) Consider the Markov chain described in Problem 5. (a) Explain the signif-
icance of each component of d”=[0.4 0.5 0.1]". (b) Use this vector
to find d" and d®.

(14) Consider the Markov chain described in Problem 3. (a) Determine an
initial distribution vector if the town currently has a Democratic mayor,
and (b) show that the components of d(*) are the probabilities that the
next mayor will be a Republican and a Democrat, respectively.

(15) Consider the Markov chain described in Problem 4. (a) Determine an ini-
tial distribution vector if this year’s crop is known to be poor, (b) Calculate
d® and use it to determine the probability that the harvest will be good
in 3 years.

(16) Find the limiting distribution vector for the Markov chain described in
Problem 2, and use it to determine the probability that a family eventually
will reside in the city.

(17) Find the limiting distribution vector for the Markov chain described in
Problem 3, and use it to determine the probability of having a Republican
mayor over the long run.



(18) Find the limiting distribution vector for the Markov chain described in
Problem 4, and use it to determine the probability of having a good harvest
over the long run.

(19) Find the limiting distribution vector for the Markov chain described in
Problem 5, and use it to determine the probability that a person will
become a Brand Y customer over the long run.

(20) Use mathematical induction to prove that if P is a transition matrix for an
n-state Markov chain, then any integral power of P has the properties that
(a) all elements are nonnegative numbers between 0 and 1, and (b) the
sum of the elements in each column is 1.

(21) A nonzero row vector y is a left eigenvector for a matrix A if there exists a
scalar A such that yA=J\y. Prove that if x and A are a corresponding pair
of eigenvectors and eigenvalues for a matrix B, then x" and A are a corre-
sponding pair of left eigenvectors and eigenvalues for B'.

(22) Show directly that the n-dimensional row vector y=[1 11 ... 1] is a left
eigenvector for any N x N transition matrix P. Then, using the results of
Problem 20, deduce that =1 is an eigenvalue for any transition matrix.

(23) Prove that every eigenvalue A of a transition matrix P satisfies the inequality
|M| < 1. Hint: Let x=[x; x> ...xn]" be an eigenvector of P corresponding
to the eigenvalue 2, and let x;=max {x;, x5, ..., xn}. Consider the ith
component of the vector equation Px=2x, and show that |A| |x;| <|x;].

(24) A state in a Markov chain is absorbing if no objects in the system can leave
the state after they enter it. Describe the ith column of a transition matrix
for a Markov chain in which the ith state is absorbing.

(25) Prove that a transition matrix for a Markov chain with one or more
absorbing states cannot be regular.
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More on Spanning Trees
of Graphs

As we explored in Chapter 5, Sections 5-7, some networks can be modeled by
graphs, these graphs can be represented by some special matrices, and the eigen-
values and characteristic polynomials in turn tell us some important information
about the graphs (and hence, the networks they represent).

A graph is bipartite if its vertex set can be decomposed into two disjoint sets such
that no two graph vertices within the same set are adjacent. In Figure C.1, we
observe that vertices 2, 4, and 6 do not have any edges between them, but each
has an edge between it and vertices 1, 3, and 5. Vertices 1, 3, and 5 have no edges
between them as well. Thus, the graph is bipartite.

We first state four theorems about adjacency matrices of bipartite graphs.

» THEOREM 1

A graph G is bipartite if and only if —r is an adjacency matrix eigenvalue of G
(where r denotes the largest positive eigenvalue of G).

Proof: We will prove this in the forward direction only, i.e., if G is bipartite, then
-1 is an eigenvalue of G. Assume G is bipartite, then A(G) can be written in the

form ( L(;)t 13) where B is a p X ¢ matrix. Let r be the largest eigenvalue of G and

x . . . .
let {y} denote its corresponding eigenvector, where x is a p X 1 column vector

and yisa g x 1 column vector. It follows that B-y=r-x and that (B') -x=r-y. Also,
B-(—y)=(-7)-x and (B")-x=(—7)-(—y). Therefore, (—r) is an eigenvalue and

{—y} is the corresponding eigenvector.

We present another theorem about adjacency matrix eigenvalues for bipartite
graphs.

» THEOREM 2

The adjacency matrix eigenvalues of a graph G are paired ifand only if G is a bipartite graph.




FIGURE C.1

Proof: Necessity: If G is bipatrtite, then the eigenvalues of G are paired. Assume G
is bipartite, then A(G) can be written in the form ( 1(3)‘ g), where Bisapxq
matrix. Let A be an eigenvalue of G and let its corresponding eigenvector be

[ﬂ, where x is a px 1 vector and y is a ¢ X 1 column matrix. It follows that
B-y=/-x and that (B)-x=4-y. Also, B-(—y)=(—4)-x and (B)-x=(—4)-(—y).
Therefore, (—1) is an eigenvalue and [_ﬂ is the corresponding eigenvector,

and hence the eigenvalues of G are paired. Sufficiency. If the eigenvalues of G
are paired, then G is bipartite. From Theorem 1, we know that if (—r) is an eigen-
value of G, then G is bipartite. Since the eigenvalues of the graph are paired, then
it follows that the largest eigenvalue, denoted by r, is paired. Hence, —r is also an
eigenvalue. Therefore, G is bipartite.

A complete bipartite graph is a set of graph vertices decomposed into 2 disjoint sets
such that no two graph vertices within the same set are adjacent but every pair of
graph vertices in the 2 disjoint sets are adjacent. It is represented by K,
where p and g represent the number of nodes in the partite sets. The graph in
Figure C.1 is a representative of this special type of bipartite graph, namely, Kj 3.

» THEOREM 3

The adjacency matrix eigenvalues of the complete bipartite graph k, 4 are zero with multi-
plicity (p+q—2) and +./pq. 4
\ J

Proof: Let A be the adjacency matrix of a complete bipartite graph K, ;. Then A

Bl
entirely of ones (since complete). By looking at the matrix A —Al,,, ;, we can use
basic row reduction techniques to see that p+g— 2 of the eigenvalues are zero.
We also know from Theorem 2 that if a graph is bipartite, its eigenvalues are
paired. Therefore, the remaining 2 eigenvalues are paired, call them % and —F.
From Theorem 3, part (iii), of Chapter 5, section 6, we know that the sum of

can be written in the form < 0 1(3; > , where B denotes the p x ¢ matrix consisting


�Figure C.1
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the squares of the eigenvalues of G is equal to twice the number of edges in G,
so (07+05+:-+0;,, 5)+k>+(—k)*=2¢, and for any complete bipartite
graph, the number of edges is equal to p.q. Thus, we have 2k*=2(p.q), and
so k= /pq and —k = —./pq.

Example 1 The graph in Figure C.1 has adjacency matrix

01 01 01

1 01 01 O

01 01 01 . . . .
A= 10101 0 This matrix has characteristic polynomial

01 01 01

1 01 01 0

A =9\t =(A—0)(L—0)(A—0)(L—0)(A—3)(L+3), so its eigenvalues are 3, 0,
0,0, 0, —3. Since p and g are both 3, (p+q—2)=(3 +3 —2) =4, confirming that
0 occurs with multiplicity 4, and £,/pg = £v/3.3 = £3.

Our final Theorem for bipartite graphs refers to Theorem 3, part (iii), of Chapter 5,
section 6, on the adjacency matrix raised to a power.

» THEOREM 4

A graph G is bipartite if and only if no power of its adjacency matrix A consists entirely of
strictly positive entries (i.e., every power of A must contain zeros). 4

Proof: We will sketch the proof of the sufficiency only, i.e., if a graph G is bipar-
tite, then no power of its adjacency matrix A consists entirely of strictly positive

. L . . . . 0 B
entries. Again, since bipartite, A can be written in the form ( )

B 0
,_(0 B 0 B\ _ (BB 0
A= (B‘ o)"\B 0o/ \ o BB
o (BB O\ (0 BY_( 0 BBB
“\o BB)"\B 0) \BBB o0

A4 — 0 BB'B . 0 B\ (BBBB 0
~ \ B'BB! 0 B 0) 0 B'BB'B

And so on So for all k, this demonstrates that A* will have entries that are zero.
Since G is bipartite, the vertices can be split into two disjoint sets {u,,u,,...u,}
and {vy,v,,...,v,}. There is no path of even length from any u, to v,. Therefore, fol-
lowingTheorem 3, part (iii), of Chapter 5, section 6, there will be zeros in every even
power of the adjacency matrix. In the same manner, there is no path of odd length
from any u, to u, or v, to v, and thus, there will be zeros in every odd power of the
adjacency matrix. Hence, no power of A consists entirely of strictly positive entries.



We defined a regular graph to be one in which all n of its vertices have the same
degree, . The adjacency matrix eigenvalues for these graphs can help us to deter-
mine their number of spanning trees, and we know from Theorem 4 of Chapter 5
that the maximum eigenvalue of such graphs is r itself.

» THEOREM 5

The number of spanning trees for a graph G on n vertices that is relgular of degree r and
n—
having adjacency matrix eigenvalues a; <a,<---<a,=ris %Hl ) (r—a;). 4

Proof: Recall that the Laplacian matrix L =diag(d,,do, . . .,d,) — A, where A is the
adjacency matrix of the graph G and d;, d,, .. ., d,, are the degrees of the vertices.
Thus, if G is a regular graph, each vertex having degree equal to r, it follows that
hi=r—a;forl=1,2,...,n—1.

Example 2 Besides being complete bipatrtite, the graph in Figure C.1 is regular of
degree 3. As seen in Example 1, its adjacency matrix has entries of each row after
the first one is formed by shifting the entries (and wrapping around the last entry
back to the beginning). This is called a circulant matrix. When a graph’s vertices can
be ordered in such a way that its adjacency matrix is a circulant matrix, the graph is
called a circulant graph. As stated earlier, this matrix has eigenvalues 3, 0, 0, 0, 0, —3.
We eliminate the largest eigenvalue (namely, r=3) and produce the product

+3- 0)*(3 — (-3))" = 81, meaningthegraphin Figure C.1 has 81 spanningtrees.

In Chapter 5, section 7, we discussed the calculation of the number of spanning
trees using Laplacian eigenvalues. Consider a graph on n vertices. If we then con-
sider a complete graph on n vertices, K,,, and “subtract” the edges of G from K,
then the resulting n vertex graph is called the complement of G, denoted G. We
present the following theorem specifying the relationship between the Laplacian
eigenvalues of G and those of G.

» THEOREM 6

If a graph G has Laplacian eigenvalues 0 <\, <A, <---<A,, then G has Laplacian eigen-

values ., =n—ML, y k=2,...n. 4

Example 3 The graph in Figure C.2 depicts the complement of the graph in
Figure C.1. Note that the complement of Kj 3 is two disjoint K3 graphs. (In fact,
the complement of any complete bipartite graph K, ; is K,and K. In question 16
of Chapter 5, section 7, the Laplacian eigenvalues for the complete graph K,
are shown to be n with multiplicity n — 1 and 0. Thus, the Laplacian eigenvalues
for a graph comprised of two disjoint K3 graphs are 0, 0, 3, 3, 3, 3, and then the
Laplacian eigenvalues for Kj 5 are 6-0, 6-3, 6-3, 6-3, 6-3, and the obligatory zero
eigenvalue, i.e., 0, 3, 3, 3, 3, 6. We will use this technique to determine the number
of spanning trees in complete bipartite graphs in exercises 7-12 in this appendix.
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FIGURE C.2

PROBLEMS APPENDIX C

We recommend the use of computer software to assist in the computation of char-
acteristic polynomials and eigenvalues in this appendix, particularly problem 6.

Complete graphs are also regular graphs. In fact, every K, is regular of degree
n— 1. Exercises 1-5 deal with complete graphs and conjecture a general formula
for their number of spanning trees using the adjacency matrix.

(1) (a) Draw Ks.

(b) Find the adjacency matrix for Kj,
(c) Find the eigenvalues for K;

(2) (a) Draw K,.

(b) Find the adjacency matrix for Kj.
(c) Find the eigenvalues for K,

(3) (a) Draw K.

(b) Find the adjacency matrix for K,
(c) Find the eigenvalues for K

(4) What pattern do you see in your responses to questions 1¢, 2¢, and 3c? Can
you formulate a conjecture about the adjacency eigenvalues for any com-
plete graph K,?

(5) Usingyour response to question (4), and using Theorem 5 of this appendix,
can you generalize a formula for the number of spanning trees for any
graph K, How does this compare with the one that you found in Chapter
5, section 7?

Figure C.3 depicts a very famous and interesting graph, the Petersen Graph.
It is regular of degree 3.
(6) (a) Find the adjacency matrix for the Petersen Graph.

(b) Find the adjacency eigenvalues for the Petersen graph.

(c) Does Theorem 1 of this appendix apply to the Petersen graph? What, if
anything, can be concluded?

(d) DoesTheorem 2 of this appendix apply to the Petersen graph? What, if
anything, can be concluded?

(e) Use Theorem 5 to determine the number of spanning trees in the
Petersen graph.

(f) Find the Laplacian eigenvalues for the Petersen graph.
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(8)

(7) (a)
(b)
(9

(8) (a)
(b)
()

(9) (a)
(b)
(9

(10) (a)
(b)
()
(11) (a)

(b)
©

Use Theorem 6 of Section 5.7 to calculate the number of spanning trees
in the Petersen graph. Does your answer agree with the one you found

in part (e)?

Exercises 7-12 deal with complete bipartite graphs and conjecture a
general formula for their number of spanning trees using the Laplacian

matrix.

Draw K 4.

Find Ky, 4.

Use Theorem 6 and Example
Laplacian eigenvalues for K, 4.
Draw K 5.

Find Ky, 5.

Use Theorem 6 and Example
Laplacian eigenvalues for Ky 5.
Draw Ky 6.

Find Ky, 6.

Use Theorem 6 and Example
Laplacian eigenvalues for K, 6.
Draw K s.

Find K, 5.

Use Theorem 6 and Example
Laplacian eigenvalues for Ks s
Draw Ks ;.

Find K, 7.

Use Theorem 6 and Example
Laplacian eigenvalues for Ks ;.
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(12) (a) Based on your answers to part (c) of questions 7-11, conjecture a for-
mula for the Laplacian eigenvalues for a complete bipartite graph.
(b) Based on your answer to part (a) of this question, conjecture a formula
for the number of spanning trees for a complete bipartite graph.

A graph is complete multipartite on k parts if its vertex set can be decom-
posed into k disjoint sets such that no vertex is adjacent to any of the
other vertices in its part, but each vertex is adjacent to all the vertices in
the K— 1 other parts. A complete multipartite graph having k parts of
order r;, 15, ..., 1, respectively, on n=r;+r,+ ...+1, nodes is
denoted K;, ,, .., . Inproblems 13-17, we will formulate a conjecture
about the number of spanning trees of such graphs, but consider
only multipartite sets with equal part sizes, ie., K, ., .. , with
r;=1,=...=1. We will also confine our study to complete multipar-
tite graphs having exactly three parts. We will refer to the graphs under
consideration as regular complete tripartite graphs.

(13) (a) Draw K33 3.
(b) Determine K3, 3, 3.
(c) Use Theorem 6 and Example 3 of this section to compute the
Laplacian eigenvalues for K; 3 3.
(14) For Ky 4 4.
(a) Determine Ky, 4, 4.
(b) Use Theorem 6 and Example 3 of this section to compute the
Laplacian eigenvalues for Ky 4 4.
(15) For K5 5 5.
(a) Determine Ks, 5, 5.
(b) Use Theorem 6 and Example 3 of this section to compute the
Laplacian eigenvalues for K5 s s.
(16) For K 6 6.
(a) Determine Kg, 6, 6.
(b) UseTheorem 6 and Example 3 of this section to compute the Laplacian
eigenvalues for Kg 6 6.

(17) (a) Based on your answers to part (c) of question 13 and part (b) of ques-
tions 14-16, conjecture a formula for the Laplacian eigenvalues for a
regular complete tripartite graphs.

(b) Based on your answer to part (a) of this question, conjecture a formula
for the number of spanning trees for regular complete tripartite graphs.
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Technology

As we have demonstrated in this text, linear algebra is a very powerful tool. It can
be applied to such diverse areas as differential equations (see Chapter 5) and to
least-squares techniques (see Chapter 6). Yet the actual calculations needed to
arrive at solutions can be very tedious. The computation of higher-order determi-
nants (see Chapter 1) and the application of the QR algorithm (see Section 6.3)
can likewise require much time.

The field of numerical analysis can assist with calculations and, if appropriate,
with approximations. But even when numerical techniques are uses, one almost
always needs computational assistance in the form of technology.

One of the most useful tools is MATLAB® (http://www.mathworks.com/prod
ucts/matlab/). This software is employed by educators and is very useful with
respect to many topics in linear algebra.

Another software package is MATHEMATICA®™ (http://www.wolfram.com/). To
illustrate this computer algebra system, the reader is asked to refer to the model-
ing problem of Section 5.4.

The syntax for the system of differential equations is given by:
DSolve[{S1[t] = 10 — S1[t]/20, S2[t] = S1[t]/50 + S3[t]/25 — (6/50)*S2[t], S3'[t]
= S3[t]/25 + S2[t]/50, S1[0] = 0, S2[0] = 0, S3[0] = 0},
{S1[t], S2[t], S3]t]}, t]

The solution, obtained by hitting the “Shift” and “Enter” keys simultaneously, is
as follows:


http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.wolfram.com/

1
t] — 200e7/20(—1 + €'/29), S2[t] — ——
[t] — 200e7/20(~1 +€/20), 82 — 7755

5 —(-2132)t (2432 & (232
( —1512e —330e
S A2 (o33t 5+ (-2+3vE)t

—205v2e +1182e¢

35 T0(~2+3v2)t 35 50 (-2-3v2)t+55(-243v2)t
+205v2¢ +330e

% +a5 (-2-3V2)t+25(—2+3V2)t & +a5 (-2-3V2) t425(—2+3V2)t
+205V2e —756e

& a5 (-2-3V2)t+a5(-2+3v2)t % +as(-2+3v2)t
—560v2e +330e

L 4L(23va) L 4ak(—2+3va)t 15 +s(-2+3v2)t
—205v2e —756e 45602

35 35 (—2-3V2) tgg(14+6v2)t 35 T35 (—2-3V2) tHgg(1+6v2)t

+756€ +560V2e

20+ (—2+3V2) tggg(1+6v2)t
+756e€ —560v2e¢

S

’

(- 2+3ﬂ)t+ﬁ(1+6ﬂ)t)>

1 —35 ~5o(~2+3V2)t (-2+3v2)t
S$3[] — ——— | 50e —336e
1491

5+ (232 %5+ +(-2-3va) % +a5(-2+3va)t
+45¢ —85V2e +38le
+a5(-2+3v2)t 35 T35 (-2-3V2)t+55(-2+3v2)t
+85\/§ e —45e
%5 +35 (-2-3V2)t+g5(-2+3v2)t %5 +55 (-2-3V2)t+g5(-2+3v2)t
+852e — 168e
15 +55 (-2 3\/—t+50 ~2+3v2)t 35 Tas(-2+3v2)t
—14+/2e —45e
L A(—2+3V2)t & +(-243vI)t &+ (-243v2)t
—85\/2e —168e 11426
L4 (~2-3v2) i (1+6v2)t 5 s (—2-3V2) k5 (1+6v2)t
+168e +142e
L ek (—243v2) s (1+6v2)t s (72+3\/§)l+ﬁ(1+6\/§)l
+168e —142e

One readily sees why this problem would be difficult to solve without technology.
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Mathematical Induction

D

In Problems 1 through 10, prove the given propositions using mathematical If a proposition is true for
induction. First show proposition is true for k= 1. Then show proposition is true 7=1and also if the

for k=n+ 1 assuming proposition is true for k=n. proposition is true for
n=k whenever it is

assumed true for

(1) 1+2+---+n+n(n+1)/2. n=k—1, then the prop-
2 osition is true for all nat-
(2) 14+3+5+---+(2n—1)=n". ural numbers n=1, 2, 3,

(3) 1’+2°+---+n’+n(n+1)(2n+1)/6.
(4) P +2° 4+ +n’4+n’(n+1)%/4.
(5) 1°+3% 452+ -+ (2n—1)>=n(4n’ — 1)/3.

(6) Z (3K* — k) =n?(n+1).
k=1

n

~ 1
() ;k(lw 1) - (n+1)

n
(8) Y 2'=2"-1.
k=1

(9) For any real number x#1, Zxk_l =1
=1

(10) 7"+ 2 is a multiple of 3.






Answers and Hints to
Selected Problems

CHAPTER 1
Section 1.1

(1) Ais2x2, Bis2x2, Cis2x2, Dis4x2,
Fis4x2, Gis2x3, His 3x3, Jis1x5.
a12=2, asq does not exist;
b15>=6, b3 does not exist;
cq12=0, ¢3¢ does not exist;
dip=1, dss = 3;
€12=2, ez = 5;
f12=1, fay =0;
g12=1/3, e3¢ does not exist;
h1a = V3, hat = V/5;
J12=0, Jja1 does not exist.
a1 =1, ax1=3, bz, does not exist,
doz does not exist, e,,=-2, 9o3=-5/6,
has = V/3, jo1 does not exist.

(4) A, B, C, and H. (5) J is a row matrix.
1
2
31 (7)[1 4 9 16 25].
4

1 1 1 1/2 1/3
(8)A:[_1 1]. (99A={(2 1 2/3
3 3/2 1

1 0 -1
1 1 1 1
(10) B= 0 -1 -2 (11) C = { ]
|:_1 5 _3] 1 2 3 4



5|

ol

1 -1 =2
12)D=1{3 0 -1
4 5 0
[ -5 —10
(14) | —15 —20}'
_ 1
1 0
(17) o ol
__2 _2_
ST
-1 0
(20) s _s|
- 7 7_
[—4 —4
(23) 4 4]
(3 0
0o 2
(26) 3 o)
0 4
[—0.1 0.2
(29) K —0.2]'
[—11 —-12
(32)Yf__11 _19].
[—1.0 0.5]
0.5 —1.0
B9 Y= 25 —1.
| 1.5 -05
[—1.5 1.0
-1.0 -1.0
(36) S = -15 1.
2.0 0
—®+60*+0
7
(37) 21

-3
-2
-1
[ 9
-3
(15) 9
| 6
[ 6
(18) 10
[ 3
-2
(21) 3
4
[—2
(24) 0
[17
(27) |27
!
-1
(30) 10
| -8
60 —6

2 4
(13) [6 8}'
3 -20 20
6 0 —-20
—6 | (16) 50 —-30 /|
18 50 10
8 0o 2
d )
2
2 .
ol (22) Does not exist.
8
[ 5 -1
) -1 4
_7]. (25) 5 e
| -3 5
22 (5 6
32}' (28) _3 18]'
-3
4 4 4
6l (31)X:{4 4].
O —
11 1
-3 8
(33) X = 4 3
1 17
[—2.8 —1.6
(35) R = | 3.6 9.2

0>~ 20> - 0+6/0]




(38) [ay] + [by] = [ai+ by] = [bij + a;z] = [by] + [a;].
(39) [a;j] +[04] = [a;;+ 05] = [a;;+ O] = [a;].

(40) (/11 + /12)[511‘]‘] = [(11 +)v2)ai]‘] = [/11611‘]‘ + Azaij] = [}Llaij] +

[}Qaij] = /11 [ai]’] + ;uz [a,»j] .

(41) (Lid2)[ag] =[(4142)ag] = [41(42a5) | = Ai[A2ai] = 21 (2] ai])-

Refrigerators Stoves Washing machines
3 5 3
(42) [ 0 2 9
4 2 0
[ 72 12 16 }
(43) |45 32 16/|.
81 10 35

Purchase price Interest rate

1,000 0.07
(44) 2,000 0.075
3,000 0.0725

(45) (a) [200 150], (b) [600 450,
(46) (b) [11 2 6 3]

(47) (d) [10,500 6,000 4,500],

Section 1.2
(1) () 2x2, (b) 4x4,
(d) Not defined, (e) 4x2,
(g) 4x2, (h) Not defined,
(G) 1x4, (k) 4x4,
19 22 23 24
(2) [43 50]’ (3) [31 46}'
13 —-12 11
(5) A= [17 ~16 15]‘
(6) Not defined. (7) [-5 -6].

9)[-7 4 -1]. (10) Not defined.

Dryers

store 1
store 2
store 3

first cerificate
second cerificate

third cerificate

() [550 350].

(9 4 10 8]
(e) [35,500 14,500 3,300].

(c) 2x1,
(f) 2x4,
(i) Not defined,
1) 4x2.

@[5 % 3

(8) [-9 -10].

(11) B :;}



2 -2 2 (13) [1 3]
(12) 7 —4 1|

-8 4 0
(14) Not defined. (15) Not defined.
(16) Not defined. -1 -2 -1
@an| 1 o -3
1 3 5
2 -2 1 (19) [-1 1 5]
(18) | 2 0 0.
1 -2 2
(21) AB=0. (22) AB — AC — [8 6}.
4 3
(8 16 -
pr— pr— 2
(23) AB=CB ) 4}. (24) X+ y].
- | 3x + 4y
xX—2z (26) -a11x+a12)’}.
(25) |3x+y+z|. | d21X + d22)y
L x+3y |
[b11x + bioy + bisz [0 0
27 . 28 .
( ) _b21x+b22y+b23z ( ) _0 0
[0 40 [0 0 0
(29| 16 8}' (30) |0 0 0.
0 0 0
(33) Let the ith row of an m x n matrix A be 0. If C=AB, then forj=1,2,...,n,

n n
Cij = Zaikbkj :Z (0)by = 0

k=1 k=1
(34) [1 2] [1 1}_{1 1]'
1 4| (0 0 3 3

(35) Let they jth column of an mxn matrix B be 0. If C=AB, then for
i=1,2,...,m,

n n
Cij = Zaikbkj :Z ag(0) = 0
k=1 P

e o] [5 3= 2]



(37) lag] ([by] [e5])

[2 31 [« 10 5 20] [« 80
S R I ) ST B B W I
1 3 4
[ 3 3 . 100 2 -1 . 1
(41) | 6 -8 [ ] = [300|. (42) |-2 -6 [ } = | -8
-1 2| U 500 4 —o| UV -5
-6 3 -3
- x r 1 [«x]
11 -1 0 2 -1 0 12
@315 4] [y] - [o]' @0 4 1| |V = {15
- z - - 7]
1 2 =2 X -1 2 1 =17 [x] 0
45) | 2 1 1 yl=15 | 46) |1 2 1 vl = |of.
-1 1 -1 z -2 13 -1 2] [z] 0
(11 17 [« 2 ; j _é [x] f
47 (2 1 3 y| = |4 (48) Y| =
1 3 0 z 1 22 -1 z /
L 12 1 b 3
5 3 2 4 x ] 5
110 1 v | 0
(49) 3 22 0 z | | -3
11 2 3 w | 4
2 -1 1 —1 X 1
50) |1 2 -1 2| |Y] = |[-1].
1 -3 2 -3 “ 2
- _w

(51) (a) pn=][38,000], which is the total revenue for the flight.

(b) np =

26,000 45,500
4,000 7,000
2,000 3,500

|

65,000
10,000

, which is of no significance.
5,000



(52) (a) hP=1[9,6259,762.50 9,887.50 10,100 9,887.50], which tabulates the
value of the portfolio each day.
(b) Ph does not exist.

(53) Tw=[14.00 65.625 66.50]", which tabulates the cost of producing each
product.

(54) qTw=[33,862.50], which is the cost of producing all items on order.

613 625
(55) FC = [ 887 960} , which tabulates the number of each gender in each
1870 1915

state of sickness.

Section 1.3

-3 -1

(1) (a) (AB)" =BTAT = [ 6 —7], A"BT is not defined.
3 4

8 18 28
18 40

(b) (AB)" = BTAT = ,  ATBT |10 22 34|

24 52

12 26 40

27 11 22 8 2 -15
(c) (AB)' =B™AT=| 8 —-19 56|, ATBT 54 3 2|

-4 11 =23 -27 6 -36
7 4 —1
(2) |6 1 0]
2 2 -6

4 6 8
(3) x'x = [29] xx' = [6 9 12}.
8 12 16

(4) () BA,  (b) 2A"+B, () (B"+C)A,  (d) AB+C",
(e) ATAT+ATA-AAT-AA.
(5) (a), (b), and (d).

@ o o©oa |l

(7) Partition A into four 2 x 2 submatrices. Then A% =




1 00000 1 0] 0000
0410000 0 8/ 0000
(10) A2 [0 O 00 1 0], AS— |0 0 000 1f

00 0 0 0 1 0 0 00 0 0
00 0 0 0 O 0 0 00 0 0
00 [0 000 00| 0O0O0OO0
[1 0 0 0 0 O
02" 00 00

[0 0 0 0 00 _

A"=10 0 00 0 ol n=456,...
00 0000
0 0 0000

(11) A,B,F, M, N, R, and T.

(12) E,F, H, K, L M, N, R, and T.
(13) Yes.

(14) No, see H and L in Problem 11.
(15) Yes, see L in Problem 11.

-5 0 0
(16) AB=BA=| 0 9 0]
0 0 2

(18) No.

(19) If D=[d;j] is a diagonal matrix, then they jth column of AD is they jth col-
umn of A multiplied by dj;.

(20) If D=[dj;] is a diagonal matrix, then the ith row of DA is the ith row of A
multiplied by d;;.

(21) Let A=[a;]. Then (A")"=[a;]" =[a;] =A.
(22) Let A=[a;]. Then (AA)"=ra;] =A[a;] =2A".
(23) (A+B)"=([asj] +[by])" = [a;+by]" =[aji+bji] = [a;] + [bji] = AT+ B".



(24) (ABC)"=[(AB)C]"=C"(AB)"=C"(B"A").

(25) BT = [(A+AT)/2]" = (A + AT)" = Z[AT+ (AT)"] =S (A + ) = B.

(26) ¢t~ [(a—AT)/2]" =S (A - A" =2 [AT— (aT)"]
:%(AT—A) = —%(A—AT) =—C.

(27)A:%(A+AT)+%(A—AT).

1 7/2 -1/2 0 3/2 —1/2
(28) | 7/2 1 5] + [-3/2 0 -2
|-1/2 5 -8 /2 2 0
[ 6 3/2 1 0 —-1/2 2
(29) [3/2 0 —4| + [1/2 0 3|
| 1 -4 2 -2 -3 0

(30) (AAT)T: (AT)TAT:AAT
(31) Each diagonal element must equal its own negative and, therefore, must

be zero.

(33) For any n xn matrix A, consider sequentially the equations AD;=DjA,
where all the elements in D; (i=1,2,...,n) are zero except for a single 1
in the i-i position.

Section 1.4
(1) (a) No. (b) Yes.
(2) (a) Yes. (b) No. (c) Yes.
(3) k=1.
(4) k=1/12.

(5) k is arbitrary; any value will work.

(7) *x—2y+3z2=10
y—>5z=-3
z=4
Solution: x =32, y=17,z=14

(6) x+2y=>5
y=2=8
Solution: x = —11, y =38

(8) x1 — 3x; + 12x3 = 40

Xy — 5x3 = —200 (9) x+3y=—8

x3 =25 yraz=2
Solution: x; = —410 0=0
. '_1__50 ! Solution: x = —14 + 12z,
e y=2-4z

x3 =25



(10) X1 —7x2 +2x3 =0 (11) x1—x =1

xz—X3:O x2—2x3:2

0=0 x3 =—3
Solution: x; = 5x3, 0=1
Xy = X3, No solution

x5 is arbitrary
(12) x=51,y=23.
(13) x=-103,y=18.
(14) x=18.5,y=-6.
(15) x=y=0.
(16) x=3y, y is arbitrary.
(17) x=-3/29,y=-2/29,2=41/29.
(18) x=3/23,y=28/23,2=-32/23.
(19) x=48/35,y=-10/35,z=-9/35.
(20) No solution.
(21) x=2y — z, y and z are arbitrary.
(22) x=y=2z=0.
(23) x;=- x3, x,=0, x5 is arbitrary.
(24) x;=x, - 2 x3, x, and x5 are arbitrary.
(25) x;=1,x,=-2.
(26) x; =2 —x3, x, = —$, x3 is arbitrary.
(27) x1=-3,x,=4.
(28) x; =13/3,x,=x3=-5/3.
(29) No solution.

(30) Each equation graphs as a plane. If the planes do not intersect, the equa-
tions have no solutions. If the planes do intersect, their intersection is either
a line or a plane, each yielding infinitely many solutions.

(31) Au=A(y+2z)=Ay+Az=b+0=b.

(32) (a) « can be any real number.
(b) a=1.

(33) 50r + 60s = 70, 000
30r +40s = 45, 000
Solution: r = 500, s = 750



(34) 5d + 0.25b = 200
10d + b = 500
Solution: d = 30, b = 200

(35) 8,000A + 3,0005B + 1, 000C = 70, 000
5,000A + 12, 0005B + 10, 000C = 181, 000
1,000A + 3, 0005B + 2, 000C = 41, 000

Solution: A =5, B =238, C=6
(36) b+ 0.05¢+ 0.05s =20, 000
¢ = 8,000

0.03c+s=12,000
Solution: b = $19, 012

(37) (a) C= 800,000+ 30B
S =40B

(b) Add the additional equation S=C. Then B=280,000.
(38) —0.60p; + 030p, + 0.50p3 = 0

0.40p, — 0.75p, + 0.350p3 = 0

0.20p; + 0.45p, 4 0.85p3 = 0

Solution: p; = (48/33)ps, p2 = (41/33)ps, psis arbitrary.
(39) (=1/2)p1 + (1/3)p2 + (1/6)ps =0

(1/4)p1 = (2/3)p2 + (1/3)ps = 0

(1/4)p1 + (1/3)p2 — (1/2)p3 = 0

Solution: p; = (8/9)ps. p2 = (5/6)ps, psis arbitrary.

—0.85p1 4+ 0.10p, 4 0.15p5 = 0

0.20p; — 0.60p; +1ps +0.40ps = 0
(40) 0.30p; +0.15p, — 2p3 4 0.45p, = 0

0.35p; + 0.35p; + 1p3 —ps =0

Solution: p; = 0.3435p4, p2 = 1.4195p4, p3 ~ 1.1489p4, p4is arbitrary.

(41) 4. (42)5. (43)4. (44)9. (45)3. (46)4.

Section 1.5
(1) -2. (2) 38. (3) 38. (4) -2.
(5) 82. (6) -82. (7) 9. (8) -20.
(9) 21. (10) -6. (11) 22. (12) o.
(13) -9. (14) -33. (15) 15. (16) -5.
(17) -10. (18) 0. (19) 0. (20) 0.
(21) 119. (22) -8. (23) 22. (24) -7.

(25) -40. (26) 52. (27) 25. (28) 0.



(29) 0. (30) -11. (31) 0.

(32) 0 and 2. (33) -1 and 4. (34) 2 and 3.
(35) £v6. (36) A2 - 9 - 2.

(37) A2 - 90+ 38. (38) A? - 13A - 2.

(39) A2 - 8A+9. (40) 2* + 70 +22.

(41) 22 4+42° - 170 (42) -A>+6X - 9.

(43) -23+1020% - 22 - 33.
(44) |A|=11, |B|=5, |AB|=55.

(45) 3. (46) 24. (47) 28.
(48) -1. (49) 0. (50) -311.
(51) -10. (52) 0. (53) -5.
(54) 0. (55) 0. (56) 119.
(57) -9. (58) -33. (59) 15.
(60) 2187. (61) 52. (62) 25.
(63) 0. (64) 0. (65) 152.

(66) Multiply the first row by 2, the second row by -1, and the second column
by 2.

(67) Apply the third elementary row operation with the third row to make the
first two rows identical.

(68) Multiply the first column by 1/2, the second column by 1/3, to obtain iden-
tical columns.

(69) Interchange the second and third rows, and then transpose.
(70) Use the third column to simplify both the first and second columns.

(71) Factor the numbers -1, 2, 2, and 3 from the third row, second row, first col-
umn, and second column, respectively.

(72) Factor a 5 from the third row. Then use this new third row to simplify the
second row and the new second row to simplify the first row.

(74) det{S{_; Z]} - ‘ _g 13‘ — 117 = 9(13) = (3)?

1 3'.

2 3 -4 —06 2 3
(75) det{—2{3 2“:' p 4‘:20:4(5)—( 2’| 3 2‘.
12 =2 -1 -2 2 1 2 -2
(76) det{—l[l 3 3]}‘—1 -3 3|=1=(-1)(-1)=(-1)°|1 3 3|
2 5 0 -2 -5 0 25 0




448

Section 1.6
(1) (c)

(3)

(5)

(7)

(9)

(11)

(13)

(15)

(17)

(20)

(23)

(26) 1

(28) {

|1

1
W =

|

6
-3

0

(3
|0

NN HeoNoNe] (= )

[cNeNeNeN el

o~ O OO O0o

— O O O OO0

(18)

(21)

(=)

oS o~ O S O

(2) None.

(4)30}.
(1 0 o

(6) |0 —5 0.
0

(8)

S =
— W
| I

(10)

1
U O =
o = O
- O O
1

a2) |,

—
N O
[

(14) [(1) 12}.

(16) [_11 ﬂ

0
0
Nk
1

0 [1 0 -3
ol @9 [0 1 o |.
1 0 0 1
0 0 1 0 O
0 0 01 O
0 1 (22) 3 0 1
1 0 0 0 0
-1 } (25) Does not exist.
01 0
(27) (0 0 1.
1 0 O

(29) Does not exist.



1 -2 2
9 -5 -2
32)| 5 -3 -1
36 21 8

10 4 2 s
(38) 42l0 o 2 3
0 0 0 -2

(42) x=1, y=-2.
(43) a=-3, b=4.
(44) x=5/4, y=1/2.
(45) I=1, p=3.

17 =2
(33) |7 -2 3
2 3 4

(35) Does not exist.

3 7 -
1 0 o0
2 1 0

BN 5 3 1p
-25 10 2

(46) Not possible; the coefficient matrix is singular.

(47) x=-8, y=5,z=3.
(48) x=y=z=1.
(49) I=1, m=-2, n=0.

(50) Not possible; the coefficient matrix is singular.

(51) x=y =1, z=2.
(52) (a) x=70, y=-40.

(53) (a) x=13/3, y=-5/3, z=-5/3.

(b) x =113/30, y=-34/30, z=-31/30.
(c) x =79/15, y=-32/15, z=-38/15.
(d) x =41/10, y=-18/10, z=-17/10.

(54) (a) A2 = {_8

11 -4

]

41 -—15
-30 11



(b) A2:|:_Z —2(9)} A3:[—38 85].
o[ 23] e )

1 -2 1 1 -3 3
(dA?=|0 1 -2|, A3=]|0 1 -3]|.
0 0

1 -4 -4 1 -6 -9
() A?2=1(0 1 2|, A?=|0 1 3].
0o 0 1 0 0 1
(56) Use the result of Problem 19 or Problem 20 of Section 1.3.
(58) (BA™')"(A'B") " = [(a7)"B") [(B") (A7) '] = [(A)'BT)]
[(B") '] =A7'[B"(B") '[A=ATIA=ATIA =1
(60) [(1/2)A'][MA] = (1/A)(MA'A=11=1.

(61) (ABC)'=[(AB)C]'=C! (AB)'=C' (B7'A™))

Section 1.7
[1 o]f1 1 _T10
1) 3 1”0 1]"‘[—9]'
(1 o2 1 8
) 0.5 1} {0 1.5}' x= [5}
3) [ 1 o][8 3 < | 400
10625 1]|0 0125 %~ | 1275 ]
1 0 011 1 O 3
@11 1 o|lo -1 1|, x=]| 1].
0 -1 1Jlo0 o 2 -2
1 0 0][-1 2 O 5
B)|-1 1 ofllo -1 1|, x=| 2/.
-2 -2 1]l0o o 5 -1
1 0 0772 1 3 -10
6112 1 0o||l0 -1 -6/, x= 0
-1 0 1]/]l0 o 1 10
1T 0 07r3 2 1
4 1 0 0 8 8 10
™ |3 33 x=|-10
1 ;21 1 0 0 1 40
8 8




8 | 2 1 o0

—
N

(9)

o
o
=)
o
o

(10)

N = O
N

—
o o
o

(11)

—_— = O
N = O O

R

—_

o o
o
)

(12)

NN O©
NjUlT =
= O
=)

(13)

14
(14) -2 15 1

(05 0 025

1
O = =
|
L= =0
rl)Hoo
— o oo
~ oo o —

(15) (a) x=5, y=-2;
(16) (a) x=1,y=0,z=2;

g7
-3,
-1

(17) (a) (b)

-1
-1
1l
1

(21) (d) A is singular.

(18) (a) (b)

N O

S O dN - o o~ O

S O O+

2 1 79
4 3 |,x=]1
0 425 1
19
, Xx=1|-3
5
2
,x= 1| —1
1/2
11 1
-1 0| __|-5
1 1" 7 2
3 1
-1 3 266.67
5 _1
2 T2 ~166.67
, X~
1 1 166.67
o 3 266.67
2 1 10
1 0 | 10
o -1 1"*7 | 10
0 0 3 ~10
20 2 0 25
02 -2 6 ~15
; X =
00 8 -8 1.5
00 0 3 2.0

(b) x=-5/7, y=1/7.
(b) x=140, y=-50, z=-20.

2 [ 35

01, © | 5( (d)
0| | 15

0] 80

0 50

ol @1 L @
0| 20

-0.5

1.5
1.5

-1/3
1/3
1/3
1/3



CHAPTER 2

Section 2.1

2345

1

\ A4

(4)

B

-1
o7t

34

4+

(6)

y

3 2 -1




(7)

-
\S]

“NwhooNwoOo

-
n

“NwphoONOOO

(12)

12345678910 12

—12-10 -8 -6 -4 -

41
61
-8l
104

-2z

5678910 12



\S]
t

(16) 54321 [-aw X
"'1'/__1'éé4'1'

—_

& T2
L-3
L4
(17) (a) 341.57°, (b) 111.80°, (c) 225°,
(d) 59.04°, (e) 270°.
(19) v2. (20) 5. (21) /5. (22) /3.
(23) \/3/4. (24) V3. (25) V/15. (26) 2.
(27) V2. (28) /39. (29) /5.
(30) z
4 4
3 4
2 4
f
(312 T2 s 4 g
]
2
3 (3,1,0)
4 /(3,0,0)



IS
T
-
n
&L

(33)

800
600
400
1200

(38)

(1000, 500, 200) A" Sop
i 800

’ 1000, 0, 0
(10007500, 0)/ 7% )
7900

(-400, 0, 0) /
(-400, -50, 0) %

7\ 4

o, [0
z \@:00
o

SSL %

(-400, 50, —-300)




(40) Not normalized.

(43) Normalized.
(46) Normalized.

Section 2.2
(1) Vector space.

(4) Vector space.

(7) Vector space.

(10) Violates (S3).
(13) Violates (A4).
(16) Violates (S5).

(19) Vector space.

(22) Violates (54,S5).

(41) Not normalized.
(44) Not normalized.

(47) Normalized.

(2) Violates (Al).
(5) Violates (A1).
(8) Vector space.
(11) Violates (S3).
(14) Violates (A5).
(17) Violates (S5).
(20) Violates (A1).
(23) Violates (S3).

(42) Normalized.
(45) Normalized.
(48) Normalized.

(3) Vector space.
(6) Violates (A1).
(9) Violates (S3).
(12) Violates (S3).
(15) Violates (S4).
(18) Violates (S3).
(21) Vector space.
(24) Vector space.

(26) Let 0, and 0, be two zero vectors. Then 0, =0, +0,=0,.

27) v (u-v)=vO (uD-v)=vP (-vou)=(vh-v)Gu=0Qu=u.
(28) v =04V = (—udu)dv=—ud(udv)

= —ud(udw) = (—udu)dw = 06w = 0.

(29) udu=10udlou=(1+1)0Ou=20u.
(30) Given 2®u=20@®v. Then,

u=10u=(402)Eu=%LeR2eu)=%e20V)=(02)%eVv=10vV=V.

(31) First show that -BOu=(-B)©u. Then

0=(ax0u)®(-BoOu)=00ud (-B)ou=[a+(-p)|ou=(a-f)ou
the result follows from Theorem 7.

(32) 000=0. Thus, 0 is an additive inverse of 0, and the additive inverse is

unique.

Section 2.3

Problems 4, 5, 9, 11, 13, 16, 20, 21, and 22 are not subspaces; all the others are

subspaces.
(24) (a) and (¢).
(26) (a) and (¢).

(28) All except (f).

(25) (a) and (c).
(27) (a) and (¢).
(29) (b), (), (d), and (e).



(30) (b), (), (d), and (e). (31) (a), (b), and (¢).

(32) { m € R?

(34) {ast® + ayt® + at + age P*|ag = 0}.

y = 2x}. (33) {[“ Z} € My,

! d=0}.

(35) The straight line through the origin defined by the equation y=5xinanx -y
coordinate system.

(36) Yes (37) No (38) Yes (39) Yes

n m
(41) Given thatu = Z ¢iv; and v; = Z aijw;. Then,

i=1 j=1

n m nom m n
u= E Ci E (/lijo = E E Ci(/lijW]‘ = E E ciaij Wj.
i=1 j=1 i=1

i=1 j=1 j=1

n
Define d]‘ = Z Cidijj.

i=1

(42) Denote the columns of A as A;, Ay, ..., A, and x = [x1x;. . .xn]T. Then
y:x1A1 +x2A2+ e +ann.

(43) Let Ay=Az=0. Then A(ay+ pBz) =a(Ay) + B(Az) =a(0) + p(0)=0.

(44) A(2x)=2(Ax) =2b #£b.

(45) u+vandu - vbelong to span{u,v}. Also,u=1(u+v) +1(u-v)andv=

2
(u+v) -1 (u-v), souandv belong to span{u+v,u - v}.

1
2

(46) u+v, v+w, and u+w belong to span{u,v,w}. Also,
u=3(u+v)-1(v+w)+i(utw)
lu+v)+1v+w)—Lu+w)
w=—3U+V)+3 (VW) +3(utw)
so u, v, and w belong to span{u+v, v+w, u+w}.

(48) W contains all linear combinations of vectors in S, hence it contains all
vectors in the span(S).

Section 2.4
(1) Independent. (2) Independent. (3) Dependent.

(4) Dependent. (5) Independent. (6) Dependent.
(7) Independent. (8) Dependent. (9) Dependent.



(10) Dependent.

(13) Independent.
(16) Independent.

(19) Dependent.

(22) Independent.
(25) Independent.
(28) Independent.

(11) Independent.
(14) Independent.

(17) Dependent.

(20) Independent.
(23) Independent.
(26) Independent.

(29) Dependent.

(12) Dependent.
(15) Dependent.
(18) Dependent.
(21) Dependent.
(24) Dependent.
(27) Dependent.
(30) Dependent.

(31) One vector is a scalar multiple of the other.
(32) v, is not a scalar multiple of v, and the result follows from Theorem 1.

(34) 0=ci(u+v)+cy(u - v)=(c;+c)u+(c; - c2)v. Then (¢;+¢,)=0 and
(¢1 - ¢2)=0, whereupon ¢; =¢,=0.

(35) 0261(V1 - V2) +C2(V1 +V3)+C3(V2 - V3)
= (C] +C2)V1 +( - C +C3)V2+ (CQ - Cg)Vg.

Then (c;+¢)=0, ( - ¢14+¢)=0, and (c; - ¢3)=0, whereupon
C1:C2:C3:0.

(36) 0=c(vy +Vo+V3) +co(Va+V3) +c5(v3)
=(c1)vi+(c1+c)va+(c1+ 2 +c3)vs.

Then (¢1)=0, (¢1+¢,)=0, and (¢; + ¢, +¢3) =0, whereupon ¢; =c, =¢;=0.
(38) Let Ry, R,,.. ., R, be the nonzero rows, and form the equation
ClRl +62R2+...+CPRP =0
Let k& be the column containing the first nonzero element in R;. Since no
other row has an element in this column, it follows that the kth component
on the left side of the equation, after it is summed, is just ¢;. Thus, ¢;=0.

Now repeat this argument for the second row, using ¢; =0 and conclude
that ¢c,=0.

(39) Consider c¢ix;+¢Xy+...+0xx=0. Then c,AX|+CAX,+. ..+ AX,=
A0=0 and c¢;y; + ¥+ .. +cyr=0, whereupon ¢; =c¢,=...=¢,=0.

(40) Nothing.

(41) Nothing.

(43) If {vy, vy, ..., v;} is linearly dependent, then there exists a set of scalars
€1, €3, ..., ¢ Dot all zero such that ¢;v; +covo+. .. 4+¢v,=0. For the set
{vi, Vo, .. Viy Wy, Wo, ..., W}, we have c;vi+covo+. ..+ Vi + 0wy +
Ow,+...4+0w,=0.

(44) (a) 1, (b) 0, (¢) O.



(45) If the columns are linearly independent, then the parallelpiped generated
by the three vectors collapses into either a parallelogram, a line segment, or
the origin (Theorem 4 of Section 2.4), all of which have zero volume.

(46) It is the product of the diagonal elements.

(47) It must be zero.

Section 2.5

(1) (a), (b), (¢), (d), and (f).
(3) (a), (b), (c), (e), and ().

(5) (a), (b), (c), and (d).
(7) (), (d), and (e).

(9 (@) [-2 3]",

(10) (a) [0 2],

(11) (a) [2 -1]%,

(12) (a) [0 1]",

(13) (a) [-50 30]",
(14) (@) [1 1 o],
(15) (a) [2 -1]%,

(16)(a) [0 1 -1 0],

(2) (a), (<), (e), and ().
(4) (e), (f), and (g).
(6) (), (b), and (d).
(8) (b), (c), (d), and ().

(b) [0 1]

(b) [4 -2I".

(b) [-2 11",

(b) [-0.7 0.4]".

(b) [-10 6]"

(b) [1 0o o], ([0 1 o]".
(b) 1 11"

()y[o 1 -1 11"

n
(17) Denote the spanning set as {x1, X, . .., X, v} withv = Z dixy. Ify € V, then

k=1

n

n n n
y= E CpXp + Cnp 1V = E CiXi + Cny1 E dpx, = E (e + Cns1di) X
=1 P =1

k=1

(18) Delete any zero vectors from the set. Order the remaining vectors in the
spanning set, and then consider them one at a time in the order selected.
Determine whether each vector is a linear combination of the ones preced-
ingit. If it is, delete it and use Problem 17 to conclude that the remaining set
spans V. After all vectors have been considered and, perhaps, deleted, the
set remaining has the property that no vector is a linear combination of the

vectors preceding it.
(19) First four matrices.
(20) {[1 1], 11 2]}.
(21) {£+t, t+1, £+ 1}



(23) {42t -3, 45t 262 - 4, £},
(24) {1 2 115110 2 o1 o o]}
(25) {P+C+t, C+t+1, t+1, C}.

(26) If it did, then the process described in Problem 18 would yield a basis hav-
ing less vectors than the dimension of the vector space.

(27) If the second vector is not a scalar multiple of the first vector, then the sec-
ond vector is not a linear combination of the first, and the two vectors are
linearly independent.

(28) Choose a basis for W, then use the results of Problem 22.

(29) Let {w;, wy,..., w,,} be a basis for W and extend it into a basis for V.
(30) Use Problem 26.

(31) Use Problem 18.

Section 2.6
(1 1 2][0 1 4/3] 21 1 20 1 4]0 o 1]

T
(3)[1 % 1‘|.

(5) First two vectors.

@[1 o 210 1 1]".

(6)[1 0 0 1,0 1 0 0],[0 O
—-2],[0 0 1 0]

(7)[1 0 -1 1],[0 1

(8)[1 0 2 1],/0 1 2 0],|0 O

(9)[1 2 4 o0][0 1 4/3

(10) 2 +t+1, t+1.

(12) ¢, 1.

(14) First two vectors.

(16) £ + 10 + 4, P41, t+1.

(1.8) First two vectors.

(20) First two vectors.

(22) Independent.

(23) Independent.

1 1]
1 %[0 o o 1]

(11) 241, t+1, L.

(13) First two vectors.
(15) £+ - t, P 4t+1.
(17) E+3¢, 241, t+1.

1 1 0 1 0 0
w [13L 3 Y

@ |3 3)[5 1)

(24) Dependent.



(25) Independent.
(28) Dependent.
(31) Dependent.
(34) Dependent
(37) Dependent.
(40) Dependent.
(43) Dependent.

(26) Dependent.

(29) Independent.
(32) Independent.
(35) Independent.
(38) Independent.
(41) Independent.

(44) No

(27) Dependent.
(30) Independent.
(33) Dependent.
(36) Independent.
(39) Independent.
(42) Dependent.

(45) k=row rank <number of rows=m. Also, each row, considered as a row
matrix, is an n-tuple and, therefore, an element in an n-dimensional vector
space. Every subset of such vectors contains most n-linearly independent

vectors (Corollary 1 of Section 2.5), thus k<n.

Section 2.7

(1) 2. (2) 1.
(6) 2. (7) 3.

(11) Row rank < 3.
(14) (a) No,
(15) (a) Yes,

(16) (a) Yes,

(3) 2.
(8) 2.

(12) Column rank <2.

(b) Yes.
(b) Yes,

(b) No,

(17) Consistent with no arbitrary unknowns:

(18) Inconsistent.

(19) Consistent with one arbitrary unknown:

(20) Consistent with two arbitrary unknowns:

(1 - 3z+3w).

(21) Consistent with no arbitrary unknowns:

(22) Consistent with no arbitrary unknowns:

(23) Consistent with no arbitrary unknowns:

(4) 1. (5) 1.
(9) 3. (10) 4.
(13) 0.
() No.
(c) Yes.

x=2/3,y=1/3

x=(1/2) (3 - 22), y=—1/2
x=(1/7) (11 - 5z - 2w), y=(1/7)

x=y=1,z=-1.

x=y=2z=0.

(24) Consistent with one arbitrary unknown: x=-z, y=z.

(25) Consistent with two arbitrary unknowns: x=z - 7w, y=2z - 2w.

(26) That row can be transformed into a zero row using elementary row

operations.



(27) Transform the matrix to row-reduced form by elementary row operations;
at least one row will be zero.

(28) Use Theorem 1 and Theorem 10 of section 1.5.

CHAPTER 3
Section 3.1

(1) Function; image={1, 2, 3,4, 5}. (2) Not a function.

(3) Not a function. (4) Function; image= {2, 4}.

(5) Not a function. (6) Function; image= {10, 30,

40, 50}.

(7) Not a function. (8) Function; image= {6}.

(9) Function; image={a, ¢, d, f}. (10) Function; image={a, b, ¢, d, f}.
(11) Not a function. (12) Function; image = {2, 4, 6, 8, 10}.

(13) Not a function.
(14) Function; image= {blue, yellow}.
(15) Function; image= {10.3, 18.6, 22.7}.

(16) Function. (17) Function.
(18) Function. (19) Function.
(20) Not a function. (21) Not a function.
(22) Function. (23) Not a function.
(24) Function. (25) Function.

(26) Not a function.

(27) A function when the domain is restricted to be all real numbers excluding
-3 <x<3.

(28) Not a function.

(29) A function when the domain is limited to -4 <x<4.

(30) (a) No, (b) Yes, (c) No, (d) Yes.

(31) (a) 2, (b) 0, (c) 6, (d) 4x” - 6x+2.

(32) (a) 1, (b) 3, (c) 8x%-2x, (d) 2a’+4ab+2b*-a-b.
(33) (a) -9, (b) -1,

(c) 82° -1, (d) @’ - 3a’b+3ab® - b° - 1.



(34) Neither is onto.

(36) Figure 3.1 is one-to-one; Figure 3.2 is not.

(37) 1, 6, and 10.

Section 3.2
(1) (a) [49],
(c) [-16 600],

(2) (a) [41],
(c) [-6 198],

(3) (@) [33]
(c) [00],

(4) (a) [-21],
(9 [22],

(5) (a) [-4 0],
(0 [-20],

(6) () [233],
() [362],

(7) (@) [210]
(c) [303],

® @ |5 ﬂ

© 1 o 20

© @ |2 0} :

0 -1

© % -5

[—5 10}

[30 o}

(b)
(d)

(b)
(d)

(b)
(d)

(b)
(d)

(b)
(d)

(b)
(d)

(b)
(d)

(b)

(d)

(b)

(d)

(35) 1, 12, and 15.

[-2 15],
[0 -21].

[13],
[2 -9].

[1-3],
5 3].

[1 _G]r
[-2 -1].

[13 0],
[0 0].

[-11-1],
[002].

[-1 -6 5],
[000].
(3 1
13 —-1]"
(13 28
|44 —32 |

[0 0
10 0]’

[—4 0
| 0 31




(10) (a) 56 - 7t,
(c) -3£2+3t,

(11) Linear.

(15) Linear.

(19) Linear.

(23) Linear.

(27) Not linear.

(31) Not linear.

(35) Linear.

(39) Linear.

(43) I(ou+pv) =ou+pv=oal(u) +PI(v).

(12) Not linear.

(16) Linear.
(20) Linear.
(24) Linear.
(28) Linear.

(32) Not linear.

(36) Linear.

(40) Not linear.

(44) If ve V, thenv = Zcivi and

i=1

(b) -2 +2¢,

(d) -32+3t.

(13) Not linear.
(17) Linear.
(21) Not linear.
(25) Not linear.
(29) Linear.
(33) Linear.
(37) Linear.
(41) Linear.

L(v) = L(Zn: civ,-> = iciL(vi) = Zn:civi =v.

(45) 0(cu—+Pv)=0=a0+ PO=00(u)+BO(v).

(46) If ve V, thenv = Zcivi and

i=1

n

(14) Not linear.
(18) Not linear.
(22) Linear.
(26) Linear.
(30) Linear.
(34) Linear.
(38) Linear.
(42) Not linear.

Liv)=L (i: civi> = iciL(vi) = Z ¢;0 =0.

i=1

(47) T(ou+ Pv) =T(ou) +T(Bv) from equation (3.2)
= oT(u)+ BT(v) from equation (3.3)

(48) Not Linear.
(49) -2.

(50) 3u-4v.
(51) 2v.

(52) L(vi+Vy+v3)=L[vy+ (Vo+V3)|=L(vy) + L(v2+V3) = L(vy) + L(v2) + L(v3).



(53) (S+T)(x

e

(54) (kT) (oqu

o+

o + Bv)] = S[aT(u) + BT(v)]
aS[T(u)] + BS[T(v)] = o(ST)(u) + B(ST)(v).

(55) (ST) (o

I+
2

[
i)
=

(56) (a) [3 6], (b) [-2 0] () [7 9]
(d) [3 3] (e) [-2 -o6], (f) [-8 -9].
(57) (@) [3 -4], (b) [6 -4], (0 [-3 -1],
(d) [-3 1]. (e) [-6 6] (f) [6 -1].
(58) (a) [10 -2], (b) [0 0], () [15 -3],
(d) [5 -1]. (e) [-10 2], 0 [-15 3].
(59) (@) [-2 -3], (b) [4 6] (o) [-8 -12],
(d) [-4 -6]. (e) [0 0], (f) [10 15].
(60) (a) [5 -1], (b) [2 6], () [5 -9
(d) [1 -5]. (e) [-6 -2], (f) [-4 12].

(61) L2 [a b]=L(L[a b])=L(la 0])=[a O]=L[a b].
(62) (LM)[a b]=L(M[a b])=L[0 b]=[0 0]=0.

Section 3.3
1 27 (2 37

(1) |1 0]. (2) |0 —-1].
L0 2] 2 4
(1 07 [0 —1]

(3) (0 2. 4) |2 4.
[0 0] 0 0

(5) [ 2 5 4 6) -1 3 0
-2 -1 5] -3 -8 9]




) 1 9/2 13/2}

(9)1 3 0].

8 -2 -6

(11) (550 150}

| 50 250

[ 55 15
(13) | —100 20}

(15) 2 0].

(17)

o= OO0

(49) | 3/2 -1 -1 1/2

(23)
(25)

M1
27| 3.

(29) 22]

(31) _;]

(33) 6t - 2.

1 12 —5/2]

[—2 -7 3
(21) 4 16 -6/|.

[-1/3 0 -11/33
| 2/3 1 10/30

[—-5/2 -1 9/2
@ 30 4 —9p
o | 3 5}

(12) _5{2 i]

[-185/3 25/3
19| gs/3 115/3}

[-10/3  8/3
(16| gy3 —1/3}

1 1 o0

1/2 0 1/2
@8 110 o 12

0 1 1

[ 5/2 2 -3)2
(20) —1/2 0 5/2]'

[ 5 6 1

| 2 8 -3

1 2 00
@ |38

4 -1 35

e
(26) | —2|.
6_

T
(28) | -8 |.

_—6_

[ 8
(30) _18].

2 | 40
(34) 6t - 2.

J



(35) [18]

0
(37) [20] .
28

(38) (5a -b)t - 2a

(39) (2a + 2b)t+ (4a +3b).

—4
(36) 9.
~19

(40) (4a - b+3c)>+(3a - 2b+2c)t+(2a - 2b+c).

3a+c

(41) {2a—b+2c—d

Section 3.4

@[
@[]
@[3 )
[—10 -—10
() e —10]'
1 -1 0
910 1 -1].
0o 0 1
1 2 1
(11)3|-1 0 1].
1 0 1
0 -1 =2
13) |1 o0 2.
0 1 1

(19) (a) [i _i]

17 23
(15) (@) [—13 —18]’

2a+2c—2d

(12)




468

(16) () | ¢ 2] ® |3 g]
(17) (a) | 3 g] ® [Ty 9]
(18) (a) | _(1)], ®) | . _1‘31
(19) @) | . }ﬂ b) | 5 3
(20) (a) (1) (1)] (b) (1) ﬂ
@ [0 3] w [ 9]
(3 —1 1] (2 0 0
(22) (@) |2 0 -2, (b) |0 —2 o].
3 -3 1] 0 0 4
3 -1 1] [ 1 0 3
(23) (@) |2 0 -2, (b) [-1 2 —-1].
3 -3 1) 3.0 1
[1 -1 0 1/2 -1 -3/2
(24) (a) |0 2 of, ®b) | 3/2 3 3/2].
1 0 3 -1/2 0 5)2
10 0 1o-1 —1
(25)(a) [0 2 0], (b) [0 2 5]_
0 0 -3 o 0 -3

}, which is singular.

a

0
(27) If PA=BP, then P = ¢ {_ ;} with d arbitrary. Choose d#0 to make P
invertible.

(29) Given that transition matrices P; and P, exist such that A=P7'BP; and
B=P;'CP,.

Then
A =P (P;'CP,)P; = A = (P7'P,')C(P,P;) = A = (P,P;)” 'C(P,P).
Take P=P,P;.
(30) If A=P~'BP, then
A’=AA= (P 'BP)(P"'BP)= (P 'B)(PP')(BP)= (P 'B)I(BP) =P 'B°P.

(32) If A=P"'BP, then A"= (P 'BP)' =P'BT(P"')' =P'B"(P")"". Take the new
transition matrix to be P".



(33) Take P=1.

(35) If A=P"'BP, then B=PAP™"'. First show that PA"'P~! is the inverse of B.

Next, A”'=(P"'BP)'=P'B"/(P"")"'=P'B'P.
(36) P can be any invertible 2 x 2 matrix.

(37) P can be any invertible 2 x 2 matrix.

01 0 0 ... 0]
0010 ...0
0001 ..0
38)p=|. . . . )
00 0 0 1
(1 0 0 0 0]

Section 3.5
(1) (b) and (¢).
(2) (b) and (c).
(3) (a), (b), (c), and (d).
(4) (b) and (d).

(5) (d).
© @1 0 1, (b)[1 0 -1, (92 0 o]
(7) (a) Not in the range. (b) [1 0 O],

() [2 0 0], (d) Not in the range.
(8) (a) Not in the range, (b) Ll) g],

(c) Notin the range, (d) [g g]

CION O H N CR F
(10) (a) Not in the range. (b) -2, (c) -3,
(11) Nullity is 0, rank is 2, one-to-one and onto.

(12) Nullity is 0, rank is 2, one-to-one and onto.
(13) Nullity is 1, rank is 1, neither one-to-one nor onto.

(14) Nullity is 1, rank is 2, not one-to-one but onto.

(15) Nullity is 1, rank is 2, not one-to-one but onto.

@1 o 2]

o s 3]

(d) Notin the range.



(16) Nullity is 2, rank is 1, neither one-to-one nor onto.
(17) Nullity is 0, rank is 2, one-to-one but not onto.
(18) Nullity is 0, rank is 2, one-to-one but not onto.
(19) Nullity is 0, rank is 2, one-to-one but not onto.
(20) Nullity is 1, rank is 1, neither one-to-one nor onto.
(21) Nullity is 1, rank is 1, neither one-to-one nor onto.
(22) Nullity is 2, rank is 1, not one-to-one but onto.
(23) Nullity is 3, rank is 0, neither one-to-one nor onto.
(24) Nullity is 0, rank is 4, one-to-one and onto.

(25) Nullity is 2, rank is 2, neither one-to-one nor onto.
(26) Nullity is 3, rank is 1, neither one-to-one nor onto.
(27) Nullity is 3, rank is 1, not one-to-one but onto.
(28) Nullity is 2, rank is 1, neither one-to-one nor onto.
(29) Nullity is 1, rank is 2, neither one-to-one nor onto.
(30) Nullity is 3, rank is 0, neither one-to-one nor onto.
(31) (b) and (d).

(32) (a) and (d).

(33) (b) and (¢).

(34) { [_12} } for the kernel; { B] } for the range.

(35) The kernel contains only the zero vector; the range is R?.

1 0
(36) 11, |0 for the kernel; { [_” } for the range.
0 1
0
(37) 1 for the kernel; the range is R”.
- 0 -
[—17] 1 0
(38) -1 for the kernel; 21, |1 for the range.
| 0] 3 1
[—17 -1 1
(39) 1], 0 for the kernel; 1 for the range.
0 1 1

(40) The kernel contains only the zero vector; the range is R”.



(41) The kernel contains only the zero vector; the range is R'.

—1 -2 -2

1 0 0 . o1

(42) ol NE 0 for the kernel; the range is R".
0 0 1

(43) They are the same.

(44) Rank of T=dimension of W. Use Corollary 1 and the fact that the nullity of
T is nonnegative.

(45) dim(M,y,) = 4 > 3 = dim(P?).

(46) dim(R?) = 3 > 2 = dim(R?).

k
(47)If§£:qv;::0,then
i=1

1

k k k
0=T(0) = T(ch,) = Zc,-Tvi = Zciwi, and ¢c; =¢;=...¢, = 0.
i=1 i=1 '

i=1
(48) If dim (W) < dim (V), then the nullity of V is greater than zero and many
vectors map into the zero vector.
(49) dim(R’) = 3 < 4 = dim(R?).
(50) dim(R?) = 3 < 4 = dim(Mx.).
(51) If w € Im(T), then there exists a vector v € V such that T(v) =w. Since

p
V= Zc,—vi, it follows that
i—=1

1

p P
W = T(V) = T<Z CiV,'> = ZC{T(V,’).

k k k
(52) 0 = Z ¢;T(v;) implies that 0 =T (Z c,'vi> . Then Z ¢ivi = 0 if T is one-
i=1 i=1 i=1
to-oneand ¢; =c¢,=...=¢,=0 if {v;, v,..., v,} islinearly independent.
Conversely, let {v;, v,..., v, } beabasisfor V. This set is linearly indepen-
dent, and by hypothesis so is {T(v;), T(v2)..., T(v,)}.

If T(u)=T(v), with u= ZCin’ and v= Zdivi, then

Zn:ciT(vi) =T(u)=T(v) = zn:d,'T(Vi) and i (¢i —d)T(v;) =0,

whereupon ¢; - d;=0(i=1, 2, ..., n), and u=v.



(53) Let {vy,v,...,v,} beabasis for V. We are given that {T(v,), T(v,) ..., T(v,) }.
is a basis for W. If T(u)=T(v), with u = ZCin‘ and v = Zdivi, then
i=1 i—1

n n
ZciT(vi) =T()=T(v) = ZdiT(vi), and it follows from Theorem 5
i—1 i=1

of Section 2.5 that u=v.

(54) Let the dimension of V =n. Tis one-to-one if and only if v(T) =0 (Theorem
5) if and only if the rank of T equals n (Corollary 1) if and only ifan n xn
matrix representation of T has rank n if and only if the matrix has an inverse
(Theorem 5 of Section 2.7).

(55) Tis onto if and only if T is one-to-one (Theorem 6). Then use the results of
Problem 54.

CHAPTER 4
Section 4.1

(1) (a), (d), (e), (g), and (i).

(2) A=3 for (a), (e), and (g); =5 for (d) and (i).

(3) (b), (c), (d), (e), and (g).

(4) =2 for (b); A=1 for (c) and (d); A=3 for (e) and (g).
(5) (a), (b), and (d).

(6) A=-2 for (a); A=-1 for (b); A=2 for (d).

(7) (a), (c), and (d).

(8) A=-2 for (b) and (c); A=1 for (d).

(o= {[i] -
o {[ s [
o {[ s {[Lfpors
(s [
o {[{] s ([ L]

(14) No real eigenvalues.

f =




} for A = 3; with multiplicity 2.

(1) , [(1)] } for 3 = 3; with multiplicity 2.

(1] -1
_1_}for7u—t, {{ 2]}fork——2t.
1 }forkzze; {{ﬂ}fork:%.

[ 1] [0] [—17]
—4 for A = 2; 1 for A = 3; 0 for A = 4.
| 1] 1 0] | 1]
[ 1] 1 1
of,|-1 for A = 1; with multiplicity 2; 0 for A = 3.
1] [0 1
1 1
0 for A = 1; with multiplicity 2; 0 for A = 3.
-1 1

[ 3] [-1 1
0], { 5] } for A = 0; with multiplicity 2 [2] } for L = 14.
-1 -3 3

3} } for A = 3; with multiplicity 3.

—_

[—-1] [-2 1
O], { 1 ] } for 1 = 3; with multiplicity 2 { [2] } forA=09.
1 0 1



o —17 1

(27){ ll}forle; {[ 0 }fork:—2 {[1}}fork:5.
L1 1] 1
[—17 17 —1

(28){ 1 }fork:2; {|:1 }fork:?); {[—ll}fork:&
L O] 1] 2

1
1 . .
(29) ) for A = 1; with multiplicity 4.
L 1 -
(17 [0
0 1 . C ..
(30) ol 11 for A = 1; with multiplicity 4.
| 0] 1
-1 -17 [-1 0
0 0 . T 1
(31) ol 110 for & = 1 with multiplicity 3; ) for A = 4.
1 o] [ 1 1
0] [-1 1
—1 —1 . T 0 . T
(32) el o for & = 2 with multiplicity 2; 0 for & = 3 with multiplicity 2.
0 1 0

[2/V/5 s 1/V2 B
(33) _1/\/51}f0r7»2, {L/ﬁ]}forXS.

(34) - l/ﬁ]}fork_ ; {[l/ﬁ]}fork:4.
L -1/v2 2/V5
(35) -S/E]}forkz ; {[1/ﬁ]}fork:8.
[ -2/V13 2/V5
K 1/V3 -1/V2
(36) 1 for A = 2; 1/V3 for A = 4; 0 for A = —2.

—_—N— — =

0 1/V3 1/V2



1/V/18 0 -1/v2

(37) —4/y/18 forh = 1; 1 for A = 2; 0 for A = 3.
1/V/18 0 1/vV2

(38) {-5t+(3 —V/34)} for A = \/34; {-5t+(3 +/34)} for 1 = —/34
(39) {-5t+2} forh=1{t- 1} forh = -2
(40) {+1,t} forh=1{-> -2t +1} forh =3

1
(41) { l 1 } for A = 3 with multiplicity 2.
-1

ol [ ([

5 -1
(43) —4 | sfor =0 0 for A = 2 with multiplicity 2.
| 1] 1
17 1 1
(44) 0], |2]| pfor k=2 with multiplicity 2; -1 forh =5.
L—1 ] 1 1

1 1
(45) { lo 1] } for A = 1 with multiplicity 3.

(46) {1} for =0 of multiplicity 2.

(47) {1} for A=0 of multiplicity 3.

(48) {t, 1} for A=0 of multiplicity 3.

(49) {e}{e*} for A=3; {7} for L=-3.
(50) {e*, e} for A=9 of multiplicity 2.
(51) No real eigenvalues.

(52) {sin t, cos t} for A=1 of multiplicity 2.

(53) {sin 2 ¢, cos 2 t} for A=4 of multiplicity 2.



(54) Expanding by the first column,

-\ 1 0 0 0
0 -\ 1 0 0
0 0 0 1 0
0 0 0 —A 1
—dp —adiy —dp —Adp—1 —Aay-
-\ 1 0 0 0
0 —A 0 0 0
=) :
0 0 0 -\ 1
—a; —a, —dads —dp_1 —a, — A
1 0 0 0
-A 1 0 O
+(=D%o| *
o o0 --- 1 0
0o 0 -+ —A 1

Use the induction hypothesis on the first determinant and note that the second
determinant is the determinant of a lower triangular matrix.

Section 4.2

(1) 9.

(2) 9.2426.

(3) 5+8+r=-4, A=-17.
(4) (5)(8)A=-4, A=-0.1
(5) Their product is -24.

(6) (a) -6, 8; (b) -15, 20; (c) -6, 1; (d) 1,8;

(7) (a) 4,4, 16; (b) -8, 8, 64; (c) 6, -6, -12; (d) 1,5, 7.
(8) (a) 24, (b) 5A, (c) A%, (d) A+3L

(9) (a) 24, (b) A?, (c) A%, (d) A-2L

(10) 84+2=10= (5+V18) + (5 — V18) = /4y + /o;
det(A) =7=(5 + V18) (5 - V18) = Li}s.

(11) 142+7=10=0+(5 4+ V10) + (5 =V10) = &y + Ay + A3;
det(A)=0=(0)(5 + V10) (5 - V10) = A1 hshs.



1 1 1 1
12) ————=—-(5-+v18)and ——==—
( )5+\/18 7( )an 5—-+v18 7

The matrix in Problem 11 has a zero eigenvalue and no inverse.

(5 +V 18)) for Problem 10.

2 -1

(13)A_{ P

L 2} has eigenvalues -1 and 5; A = {

4 3 } has eigenvalues 1

3

and -1; A+ B = {7

i ] has eigenvalues 2 + 2+/2.

8§ 5

(14) Use A and B from the solution to Problem 13. Then AB = [ 14 —10

} has

eigenvalues —1 £+ v/11.

17, . 12 . [1 4][-1]
(15)x_[ 1}1sanelg.;envectorofA—{4 ?)],butAx—{2 ]{ ]—

{ﬂ # Jx for any real constant A.
(16) (A - cI)x=Ax - cx = Ax - cx=(A - O)x.

(17) det(A" - M) =det(A - M) = (det(A - AI).

2 aa e [1 2771 27 [t 2] .[1 o] _[o o
@@ w-an-si=[1 21 2]l 2] 58 ][0 9]
s a1 271 2] [t 2] .[1 o] _fo o
 at-sa= 5 5] 1o 8 -ela 8 sl 1) =[0 o)
(24) Use the results of Problem 18 and Theorem 7 of Appendix A.

(25) A"+a, A"+ . aA+al=0
AA" Y +a, (A" 4+ ag]] = —agl
or

1
A - (A" ' +a, A"+t a]) | =1
0

Thus, (-1/ao)(A" ' +a,_;A"? +.. .+ a;I) is the inverse of A.

(26) (a) A™! = {3/22 _11/2], (b) since ag=0, the inverse does not exist,
(c) since ag=0, the inverse does not exist,
[—1/3 -1/3  2/3 ] (1) _? g 8
(dA'l'=|-1/3 1/6 1/6 |, (e) Al=
0 0 -1 0
/2 1/4 -1/4 o o0 o 1



Section 4.3

o [3 11 . 1 o0
(1)Yes,M[l 1],D{O _1}

(2) No, if the vector space is the set of real two-tuples.

(3) No.

(4) No.
[—10 0 © 1 0 O

(5) Yes; M = 1 1 -3[(,D=|0 3 0
8 2 1 0 0 —4
1 0 1] (3 0 0

(6) Yess M= | -2 —2 0of|,D=[0 3 0
0 1 1] 0 0 7
[ 3 —2 1] [0 0 O

(7)Ye; M=| 0 1 2|,D=|0 0 0
-1 0 3] |0 0 14
1 0 17 (2 0 0

(8) Yes; M = 01 —-1(,D=|0 2 0
-1 1 | |0 0 5

(9) No.

(10) No.

(11) No.

(12) Yes;{3¢t+1, t+1}.

(13) Yes; {3 ¢t+1, -t+3}.

(14) Yes;{-10 *+t+8, t+2, -3 t +1}.
(15) Yes;{* - 2t, - 2t+1, £ +1}.
(16) No.

3 0]l [-1 5 1 2
(17)Yes'{ o —1|'[ o 3]’[0 3”
(18) No.

1 o]l 1 0 1 0
(19)Yes'{ 0 —1]|2 1]’[1 1”

(20) No.
(21) No.




Section 4.4
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0 0
21
(21) 0 0 e

—e—5 e—5 1675 le 5 ]
2 6
1
(22) | 0 e3> €7 Ee_s
0 0 ¢ -3
L O 0 0 e

2 0 & (24) 1 [3¢° + 4¢72 3¢5 — 3¢2
(23) [0 & O 71 45 2 5 2|
0 0 & | 4e° — 4e 4e” + 3e
1 0 1 3
3
N P (26) 2| -1 2 5
| 00 1
(1 n/3 n?/12—-= (1 1 1
(27)e"|0 1 n/2 (28)¢*|0 1 2
0 o 1 0 0 1
e 0 0
(29) | —e+2e2 2¢*2 —¢&?
e’ e 0
(30) A = | © 3e ande A = el =3¢
10 e ) el |
L s, -siy —icsi_ s Losi s L8 s
5(68+es) E(es—es) 5(68+98) —1—6(98—68)
(31) & = ' o1 | ande™® = ' _ 1 _
4i(€8’ _ e—81) E (e81 + e—Sz) _4i(e81 _ e—81) 5 (881 + e—Bl)
11 1/2 1 -1 1/2
(32)A=10 1 1 ande®=1|0 1 —1|. A hasnoinverse.
0 O 1 0 O 1
e e-1 5 [1 e—1 5 |e 2e%—2e
(33)&—{0 1 ], e—[o . }, eAe—{O . ,
BA_|€e 2e—2 iB_ | € 2e
eeA{O : ] o {0 2.
1 0 3 0
(34) A= ,B= .
0 2 0 4
38t 4t 48[_4t
(36) 17 es +4e e8 a
3e% — 3¢t 468 + 3¢t



(2/+/3)sinhv/3t + coshv/3t (1/+/3)sinhv/3¢

(37)

(=1//3)sinhv/3¢ (=2/+/3)sinhv/3t + cosh/3t .

' VAV Vi g3
Note: sinhv/3t = €= and cosh /3t = €24

2

(38) & 1+t ¢ .
-t 1-—t
1.4e* — 0.4¢7" 0.2¢% — 0.2 ]

(39)
2.8¢2t —2.8¢7" —0.4e 2 4+ 1.4e "

(40) 0.8¢72 +0.2¢77" 0.4e7% — 0.4 "
0.4e 2 —0.4e 7" 02e2+08e 7|
(41) 0.5¢ % 4+ 0.5¢7 1t (.5¢ 4 — 0.5¢ 16t
0.5¢ % — 0.5¢ 16t (.5¢~% 4 0.5¢ 16 |
- 1 ¢t )2
(42)e2t[0 1]. 43)|o 1 ¢t
00 1
126 0

0

1
(44) o —9¢t + 1463 —5e73t 863t 4¢3 4¢3 — 473
—24¢' + 1463 + 10e73t  8e3 — 8e 3t 4¢3 4 873

1t %)2 1 ¢t 0
(45)e |0 1t |. (46)e*|0 1 0
0 0 1 0 0 1
e te? 0 —e~! 4 3¢
(47) |0 €* 0 |. (48) (1/2)| et—¢t
0O 0 et 2tet
1+t t 0
—t 1-t 0
(49) g2t 1, 1,
t——t> 2t—=t> 1
2
> +4t—7/2 21> -2t 2t
t? )
2t —— 2?—t+1 t
(50) ¢ 2
3t? 5
— 7t —3t24+5t —3t+1

2

—3e7" + 3¢t
3¢t — ¢
2tet

0
0
2et



[ cos (8t)  lsin (St)]

8sin (8t) cos(8t)

(52) 2sin (t) + cos( ) 5sin (t)
—sin ( —2sin (t) + cos (t) |
(53) 1 s 4sin (3t) + 3cos (3t) sin (3t)
3 —25sin (3t) —4sin (3t) + 3cos (3t)
4| —sint + cost sint
(54) ¢ { —2sint sint + cos t} ’
el + 8e* 0 4e7t 4 8¢t
(55) - 3e2‘ + 6te?  6e?t  3e? + 6te*t
-2 0 —det—2e%
44 0 —4de ' 4 4e* 3 0 4
= § 3tezf 3¢ 3te? 1 2 1
et — et 0 4e7t — % -1 0 -2
(56) —sint  cost | cost sint 0 1
—cost —sint| |-—sint cost||—-1 0}
2t + 40t* 6t? + 4te' + 2t3¢!
7 dA2 t dt == 7
(57) 0/ Lsﬁ + 12626 + 4136 401> + 2%

2t +48t*  8t2 + 412¢!
813 + 241%e"  32t* + 2% |

2A(t)dA(t)/dt = {

Section 4.5
(1) TABLE
Iteration Eigenvector Components Eigenvalue
0 1.0000 1.0000
1 0.6000 1.0000 5.0000
2 0.5238 1.0000 4.2000
3 0.5059 1.0000 4.0476
4 0.5015 1.0000 4.0118
5 0.5004 1.0000 4.0029
(2) TABLE
Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 0.5000 1.0000 10.0000
2 0.5000 1.0000 8.0000
3 0.5000 1.0000 8.0000




(3) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 0.6000 1.0000 15.0000

2 0.6842 1.0000 11.4000

3 0.6623 1.0000 12.1579

4 0.6678 1.0000 11.9610

5 0.6664 1.0000 12.0098
(4) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 0.5000 1.0000 2.0000

2 0.2500 1.0000 4.0000

3 0.2000 1.0000 5.0000

4 0.1923 1.0000 5.2000

5 0.1912 1.0000 5.2308
(5) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 1.0000 0.6000 10.0000

2 1.0000 0.5217 9.2000

3 1.0000 0.5048 9.0435

4 1.0000 0.5011 9.0096

5 1.0000 0.5002 9.0021
(6) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 1.0000 0.4545 11.0000

2 1.0000 0.4175 9.3636

3 1.0000 0.4145 9.2524

4 1.0000 0.4142 9.2434

5 1.0000 0.4142 9.2427
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(7) TABLE

Iteration Eigenvector Components Eigenvalue
0 1.0000 1.0000 1.0000

1 0.2500 1.0000 0.8333 12.0000

2 0.0763 1.0000 0.7797 9.8333

3 0.0247 1.0000 0.7605 9.2712

4 0.0081 1.0000 0.7537 9.0914

5 0.0027 1.0000 0.7513 9.0310

(8) TABLE

Iteration Eigenvector Components Eigenvalue
0 1.0000 1.0000 1.0000

1 0.6923 0.6923 1.0000 13.0000

2 0.5586 0.7241 1.0000 11.1538

3 0.4723 0.6912 1.0000 11.3448

4 0.4206 0.6850 1.0000 11.1471

5 0.3883 0.6774 1.0000 11.1101

(9) TABLE

Iteration Eigenvector Components Eigenvalue
0 1.0000 1.0000 1.0000

1 0.4000 0.7000 1.0000 20.0000

2 0.3415 0.6707 1.0000 16.4000

3 0.3343 0.6672 1.0000 16.0488

4 0.3335 0.6667 1.0000 16.0061

5 0.3333 0.6667 1.0000 16.0008

(10) TABLE

Iteration Eigenvector Components Eigenvalue
0 1.0000 1.0000 1.0000

1 0.4000 1.0000 0.3000 —20.0000
2 1.0000 0.7447 0.0284 -14.1000
3 0.5244 1.0000 -0.3683 -19.9504
4 1.0000 0.7168 -0.5303 —-18.5293
5 0.6814 1.0000 -0.7423 —20.3976

1 1 0
corresponding to A=1 and A =2, not A=3. Thus, the power method con-
verges to A=2.

1 1 0
(11) [1] is a linear combination of [—4] and {1] , which are eigenvectors



(12) There is no single dominant eigenvalue. Here, |A;| = [1,| = v/34.

2 -1
because one eigenvalue is zero. We will not be able to obtain a dominant
value for this matrix regardless of the initial value used (see answer to
problem 25).

(13) If we shift by A=4, the power method on A = [_2 ! ] will not work

—13 2 3
(14) Shift by A=16. The power method on A = 2 —10 6| converges
3 6 —5
after three iterations to u=—14. A+pu=2.

(15) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 -0.3333 1.0000 0.6000

2 1.0000 -0.7778 0.6000

3 —0.9535 1.0000 0.9556

4 1.0000 -0.9904 0.9721

5 -0.9981 1.0000 0.9981
(16) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 -0.5000

1 -0.8571 1.0000 0.2917

2 1.0000 -0.9615 0.3095

3 -0.9903 1.0000 0.3301

4 1.0000 -0.9976 0.3317

5 -0.9994 1.0000 0.3331
(17) TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 0.2000 1.0000 0.2778

2 -0.1892 1.0000 0.4111

3 -0.2997 1.0000 0.4760

4 -0.3258 1.0000 0.4944

5 -0.3316 1.0000 0.4987
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(18)

(19)

(20)

(21)

TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000

1 -0.2000 1.0000 0.7143

2 -0.3953 1.0000 1.2286

3 -0.4127 1.0000 1.3123

4 -0.4141 1.0000 1.3197

5 -0.4142 1.0000 1.3203
TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000

1 1.0000 0.4000 -0.2000 0.3125

2 1.0000 0.2703 -0.4595 0.4625

3 1.0000 0.2526 -0.4949 0.4949

4 1.0000 0.2503 -0.4994 0.4994

5 1.0000 0.2500 -0.4999 0.4999
TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000

1 0.3846 1.0000 0.9487 -0.1043

2 0.5004 0.7042 1.0000 -0.0969

3 0.3296 0.7720 1.0000 -0.0916

4 0.3857 0.6633 1.0000 -0.0940

5 0.3244 0.7002 1.0000 -0.0907
TABLE

Iteration Eigenvector Components Eigenvalue

0 1.0000 1.0000 1.0000

1 -0.6667 1.0000 -0.6667 -1.5000

2 -0.3636 1.0000 -0.3636 1.8333

3 -0.2963 1.0000 -0.2963 1.2273

4 -0.2712 1.0000 -0.2712 1.0926

5 -0.2602 1.0000 -0.2602 1.0424




(22) We cannot construct an LU decomposition. Shift as explained in
Problem 13.

(23) We cannot solve for Lx; =y uniquely for x;, because one eigenvalue is zero.
Since the rows are linearly dependent, we have at least one “free variable”.
In this case, we could try to eliminate a variable to obtain a system which is
both “smaller” and “determined”.

(24) Yes, on occasion.

SSII RN
|
RN

3
(25) Inverse power method applied to A = { 6} converges to
1

u=1/6. A+1/u=10+6 =16.

27 —17
(26) Inverse power method applied to A = [—17 21 1] converges to
7 1 11
pu=1/3.A+1/u=-25+3=-22.
CHAPTER 5
Section 5.2
T S e O P
o [9]a- [} T G- [ o
(3) x(t) = ’;8 A= —_Z _ﬂ,f(t): F_J,c: {8],%:0
[x(t) ] (3 0 t 1
(4)X(t):_y(t)_,A:_2 0},f(t): [t+l},c:[_l],to:0
R 1 O A G
mu(r) 1 11 0 0
(© x(0 - ,,@]A[l B }foH[ }
L w(t) 0 1 1 0 ~1
"x(t) 0 6 1 0 10
(7) x(t) = y(t)],A:[l 0 —3],f(t):[0]c:[10],t0:0
| 2(1) 0 -2 0 0 20
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Section 5.3

(t-2)
1

(t-2) (t-27/2
1
0

— O O

(b) e3(t—2) [

1
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1
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1
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0
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1 —(t—2) (t—2)%)2
(d) e32 |0 1 —(t—2)
0 0 1
@ () 1] 2e 5t—|—4e 2e7° — 26t
a J—
6 | 4e” 4e™ 4 2¢t
1]2e7> +4e 2¢7 —2¢°
6 | 4¢~ 4e™> 4 2¢°
1 esz 3) + de~ (t-3) 265(t—3) _ 2e—(t—3)
6 | 450 —(1=3)  4g5(t-3) 4 9p—(1-3) '
(5) () 1 | sin 3t + 3cos 3¢ —5sin 3t
a - 4
3 2sin 3t —sin 3¢ + 3cos 3t
(b) 1 |'sin 3s + 3cos 3s —5sin 3s
3 2sin 3s —sin 35+ 3cos3s |’
© 1|sin3(t —s) + 3cos3(t —s) —5sin 3(t — )
C J—
3 2sin 3(t — s) —sin3(t —s) + 3cos 3(t — s)
(6) Only (¢). (7) Only (c). (8) Only (b).

(9) x(t)=5e") = 3¢, y(1) =52 — ¢ (72,
(10) x(1)=2¢""D - 1, y()=2eV - 1.
(11) x(t) =kse' + 3kde™, y(t) =kse' + kse™".
(12) x(t) =kse'+3kqe™ - 1, y(t) =kse' +kye™" -
(13) x(t)=cos 2t — (1/6) sin 2t+(1/3) sin t.
t* 5t 2t 5

(15) x(1)=(2/9)e* +(5/9)e™" - (11/3)te™".
(16) x(t)=-8 cos t - 6 sin t+8+6¢, y(t)=4 cost - 2 sin t - 3.

Section 5.4

Note that the units are kg of sugar for problems (1) through (4) and tons of
pollution for problems (5) through (7).

(1)  x(t) = 500e7/100 (-1 4+ e7t/100)
y(l‘) = 56—7t/100 (_100 —7t+ 10067t/100)

(2) x(t)— 500, y(t)—437.5 (kg of sugar)



(3) x(t)— 500, y(t) — 583.333 (kg of sugar)

7t

~100
(4) x(t)=—495¢  + 500

7t _7t
0

34751 488 1o 500
y(t) = —Wte — e +

1
(5) x(t) = ﬁe’m(—l — 7¢% + 8¢™")

26—6t
y(t) = oF (6e” —7¢* +1)

x(t) = o0, y(t) = 0 as t — o0

Le*G‘(—l — 7¢% + 8¢™")

(6) x(t)= 12

-2
0 = 21 P14 2036 e e 6o

x(t) — 00, y(t) — - 00 as t— oo (Note that this is not a realistic model, due
to the behavior of y(t).)

(7) x(t) — —o0, y(t) — 0 as t— oo.

Section 5.6
010 0
1 010 . _
(1) 01 0 1 (2) 2" =34 +1 (3) 3 edges, 0 triangles
00 1 0
02 0 1
(4) (a) é g g (2) , (b) entry (1,1)=0, (1,2)=2, (1,3)=0, (1,4)=
1 020
1
0100
—1+£v5 1+£V5 101 1
G @10 1 01
0110

(9) A*—422—-22+1(10) 4 edges, 1 triangle

0 3 1 1
3 2 4 4

@@ |] 5 5 sl ) enuy(21)=3(22)=2 (23)=4, (24)=4
1 4 3 2

(12) approx.. -1.48, -1, 0.31, 2.17



01 0 0
00 1 0 4 o2
(14) 100 0 (15) A" —22"+1 (16) -1,-1,1,1
01 0 0]
[0 1 0 0]
1 00 1 440
(18) 1 0 0 1 (19) A" -4
01 1 0]
(20) 0,0,-2,2 (23) hint: use definition of eigenvalue and let eigenvector
x=[1,1,...,1]
Section 5.7
0 -1 0 0
2)L—D-A—|"L 2 -1 0

0 -1 2 -1

0o 0 -1 1
(3) 2*—62>+10/2—42

(4)0,2,2+£V2

(5) 1 spanning tree (i.e., the graph itself)

1 -1 O 0
-1 3 -1 -1
o -1 2 -1
o -1 -1 2

(9) 2*—81°4+191%—122
(10) 0,1,3,4
(11) 3 spanning trees

(8)L=D—-A=

[ 2 -1 -1
(13) (b) |1 2 -1 (c) 0,33
-1 -1 2

3 -1 -1 -1
-1 3 -1 -1

() (c) 0,4,4,4
-1 -1 -1 3
(4 -1 —1 -1 -1
-1 4 -1 -1 -1

(5) (b) [-1 -1 4 -1 -1 () 0,5,5,5,5

-1 -1 -1 4 -1
-1 -1 -1 -1 4

(16) For K,,, 0 with multiplicity 1 and n with multiplicity n -1
(17) t(G) = 1n""! = n""2, which is Cayley’s formula



CHAPTER 6

Section 6.1

(1) (a) 11, (b) V5, (c) no.
(2) (a) o, (b) v2, (c) yes.
(3) (a) -50, (b) V74, (c) no.
(4) (@) o, (b) V68, (c) yes.
(5) (a) 0, (b) 5, (c) yes.
(6) (a) 6, (b) V5, (c) no.
(7) (a) 26, (b) V24, (c) no.
(8) (a) -30, (b) V38, (c) no.
(9) (a) o, (b) /1400, (c) yes.
(10) (a) 7/24, V21 (c) no.

(b) ——

(11) (a) 2, (b) V3, (c) no.
(12) (a) O, (b) V3, (c) yes.
(13) (a) O, (b) V2, (c) yes.
(14) (a) 1, (b) 1, (c) no.
(15) (a) 1/12, (b) \/7§, (c) no.
(16) (a) -13, (b) /55, (c) no.

(17) Inner product undefined.
(18) (a) [3/5 4/5]",

(b) [20/v425 5/va25]",

() [1/vaT 2/v21 av2d),

(d) [-4/v34 3/v3i —3v3d]",

(© [V3/3 Vv3/3 V373",

(0 [1/V55 2/V55 3V 4/FS 5v55]

(19) 36.9°. (20) 14.0°. (21) 78.7°.
(22) 90°. (23) 118.5°. (24) 50.8°.
(25) 19.5°. (26) 17.7°. (27) violates 1c

(28) With x=[x; % x3...x," and y=[y1 y2 ¥3....]"
<Axy>= (hx1)(y1) + (Ax2) (y2) + - - -+ (Ax) ()
= Muayyr 20y +x3y3+ - . XY =A<XY>.



(29) X1 21 V1 X1 +2z1 13!

X2 o) V2 X2 + 22 V2
A e ol N P = . -

Xn 2 Vn Xp 4 Zn Vn
= (1 +z)y + (2 +22)y2 + - (%0 + Z0)Yn
= (X1y1 + %220 + o+ XnYa) + (2101 F22¥2 - A ZaYn)
=Xy +(zy)

(30) (0,y)=(00,y)=0(0,y) =0

(31) |x+yl° = x+yx+y) = (x,x) + (x, y) + (v, %)+ (v.y)
(XX>+0+0+<Y/ y) = [|x[|* +||Y||

(32) Note: (x,y) =0 when x and y are orthogonal.

Ix+yll = lx =yl < Ix+yI* = |x-y|* <

2 2 2 2
Ix[1” +2(x,y) + [lyllI” = [x[I” = 2(x,y) +[lylI” & 2{x,y) = =2(x,y) &
4(x,y) =0 < (x,y) = 0.

(33) [x+yl* +Ix—ylI’ = x+y.x+y) + (x—y,x—y)
=[(x,x) + X y) + (¥, x) + {y, )]+ &xx) =[x y) =y, x) + (V. V)]
2(x,x) + 2(y, x) = 2|[x||* + 2|)y||®
(31)  [x+ylP—Ix-yl’=(x+yx+y) - (x—yx—y)
=[(x,x) + xy)+ . x) +{yy] - &xx) - [xy) = (y.x)+ )]
=2(x,y) + 2(y, x) = 4(xy)
(35) (x, ay + Pz) = (ay + Bz, x) = (ay, x) + (Bz x) = oy, x) + B(z x)
= 2(0) + $(0) 0
(36) 0<|Mx+y)*=x+y x+y)
(a) = (Ax, Ax) — (Ax, y) — (v, Ax) + (y, y)
= 22(x,x) = Mx, y) = My, X) + (. y)
(37) From Problem 35, 0 = ||/x—y]||* ifand only if \x - y =0 if and only ify = Ax.

(38) (a) 48.2°, (b) 121.4°, (c) 180°, (d) 32.6°, (e) 26.0°.
(40) (a) 44, (b) -23, (o) -17, (d) -16, (e) -11, (f) 53.
(41) (a) 22, (b) -11.5, (c) -8.5.

(42) 145. (43) 27. (44) 32.

(47) (a) -8, (b) -5, (9 7 (d) 3, (e) 2, ) 1.
(48) (a) -22,  (b) -184,  (c) 22,  (d) -21.



(50) (a) -763/60,
(d) 113/6,
Section 6.2
(1) (@) [;g]
o [472].
(3) (@) gg}
(4) (@) 8}
(5) (a) :g;ggg}
1
(6) (@) 0},
|1
[8/9
(7 (@) 8/9],
[ 4/9
1.2963
(8) (a) [32407},
3.2407
[2/3
© @ |33
| 0
[—-7/6
@@ | 2
| 7/6

(11)

H

3
(12)_5]

[ 2
(13)_73

(b) -325/6,
(e) 303/70,

(c) 107/30,
(f) 2.

o) |35

® | o776

oa

(b)

s 15s]

V2

-4

s [
1/v2

b

[ 4
o) |
[ —6.2471
(b) I 13882]
M1
(b) 1].
!
1/9
(b) 1/9}.
| —4/9
[—1.2963
(b) (l2407]
0.7593
—2/3
1/3
(b) 1/3
- 1 .
[ 13/6 ]
-1/3
(b) 3 |
| 17/6 |
A
V2 [-1/v2]

e

V5L 1/V5]



R G AR
(14) 2| =—1|4/5| -=|-3/5]| +3 :
5 5
L3 0 0 1
T 107 3/5 4/5 0
(15) 0 :6{4/5] +8[—3/5} —20{ }
| —20 ] 0 0 1
[ 107 1/v2 -1/V6 1/V3
10 50 10
(16) 0| =— 1/f}—[ 1/xf]l—1/\/§}
|20, ﬁl ol Vol ayvsl V3l 1
(3-8 2 )-8
(17) Ol =—7%=| 1/V2|+—=]| 1/V6|+—7=]|-1/V3].
20| V2 o] Vel el V3loivs

(18) 2t+1=0.4(0.6t - 0.8)+2.2(0.8 t+0.6).
(19) #+2t+3=-1.8(0.6 " - 0.8)+2.6(0.8 * +0.6) +2(1).
(20) # - 1 =1.4(0.6 * - 0.8)+0.2 (0.8 *40.6) +0(t).

(21) [_1 j > [ L/vs 1/\6%2[ 0 _l/ﬁ].

V3 |-1/Vv3 o] V3|-1/V3 1/V3
+i 1/V3 0 +i -1/V/3 1/V3
V3 |[1/v3 1/V/3| V3 0 1/V3]|
(22) [1 2]2[3/5 4/512[4/5 —3/51
3 4 5/ o of 5 0 0

[S2IRN

0 o] 24 0 0]
3/5 —4/5] 5 |-4/5 —3/5]

(23) [ 4 5]:9—6\/§l 1/2 12
—6 7

9+6v2[-1/2 —1/21

2 1/v2 0 2 |12 0
+1+7ﬁ —1/2 121 1-7y2|1/2 -1/2
2 0 1/V2 2 0 1/V2|

1/V5 1/v/5
) [ ais)
1/\5] {—1/\/5}
V2] L 1/v2])

(24) {

(25) [



26 | 2VB| [2/v13
| —2/V13|"|3/V13]
(1/V6] [ 1/Vv3] [-1/v2
(27) | 2/V6 |, 1/\/5}{ 0 .
[1/vV6] L 1/V3 1/v2
[2/V5] [—2/V45 1/3
(28) | 1/V5 |, 4/\/61,[2/3].
. o | | 5/V45 2/3
[1/v2] [ 1/v3] [-1/v6
(29) | 1/v2 |, 1/\/5},[ 1/\/5}
Lo I L 1/v3 2/V6
[0 3/51 [ 4/5
(30) |3/5|,| 16/25], 12/25].
14/5] |-12/25] | 9/25
[0 1 [ 3/V15] 3/4/35 | 1/V7
(31) 1/V3| | =2/V/15 3/V/35 1/V7
V3| 1v/a5 | | —-4/v35 || 1/V7 ]
[1/v3] L yvis] | 1/v35] [-2/v7
(1/v27] [-1/V6] [ 1/V3 0
(32) 1/V2 1/V6 | | —-1/V3 0
o |"|-2/v6| |-1/v3|"| of
Lo 1L o 0 -1

(33) One of the q vectors becomes zero.
B (a,x)

aat) =N (R =0y

a
(35) [lsx + ty||* = (sx + ty, sx + ty) = s2(x,X) + 2st(x,y) + £2(y,y)
=5%(1) +st(0) + (1)

(36) An identity matrix.

(34) <a,x (a,a) = 0.

(37) Set y=x and use part (a) of Theorem 1 of Section 6.1.

(38) Denote the columns of Aas Ay, A,,. . ., A, and the elements of yasy, y», - . .
va respectively. Then, Ay Ay, +A,y,+...+Ayy, and (Ay,p)=yi{A,,
P)+72(Ayp) +...+yu(An, p).

(39) Use Theorem 1.



Section 6.3

2+/5
\/g l
5
(1) 0 6v5
5
| 0 0
2) [0.4472  0.89447 [2.2361 1.7889]
10.8944 —0.4472| | 0.0000 1.3416
3) [0.7071 —0.70717 [1.4142 5.6569]
10.7071 0.7071 ] | 0.0000 1.4142 |
@) [ 0.8321 0.55477 [3.6056 0.8321]
| —0.5547 0.8321] | 0.0000 4.1603 |
r0.3333  0.80857 . B}
3.0000 2.6667
(5) | 0.6667 0.1617 )
0.0000 1.3744
1 0.6667 —0.5659] * -
r0.3015 —0.27527 B}
3.3166 4.8242
(6) | 0.3015 —0.8808 )
0.0000 1.6514
10.9045 0.3853] * -
0.7746  0.4034 ]
7 —0.5164 0.5714 | [3.8730 0.2582]
0.2582 0.4706 | |0.0000 1.9833 |
| —0.2582 0.5378 |
r0.8944 —0.2981 0.33337 [2.2361
(8) | 0.4472  0.5963 —0.6667 0.0000
10.0000 0.7454  0.6667] [0.0000
r0.7071 0.5774 —0.40827 [1.4142
(9) |0.7071 —0.5774  0.4082 0.0000
10.0000 0.5774  0.8165] [0.0000
r0.00 0.60 0.80 5 3 7
(10) [0.60 0.64 —0.48 05 2
10.80 —0.48 0.36 0 0 1
[0.0000 0.7746  0.5071
1.7321
0.5774 —0.5164 0.5071
(11) 0.0000
0.5774  0.2582 —0.6761
0.0000
|0.5774  0.2582  0.1690

0.4472
1.3416
0.0000

1.4142
1.7321
0.0000

1.1547
1.2970
0.0000

1.7889 7
0.8944
2.0000 ]

2.82847
0.5774
0.8165 |

1.1547
0.5164
1.1832



498

0.7071 —-0.4082 0.5774
1.4142 0.7071 0.7071

0.7071 0.4082 —-0.5774
(12) 0.0000 1.2247 0.4082

0.0000 —-0.8165 —-0.5774
0.0000 0.0000 1.1547

0.0000  0.0000  0.0000
(13) A1 =RoQo+71
19.3132 —1.2945  0.00007 [ —0.3624  0.0756 0.9289

= | 0.0000 7.0231 —-0.9967 0.0000 —-0.9967 0.0811
0.0000 0.0000 0.0811 0.9320 0.0294 0.3613

1 00 0.0000 2.7499 17.8357
+710 1 0| =[-0.9289 —-0.0293 0.2095
0 0 1 0.0756 0.0024  70.293

(14) Al :ROQO - 14[
243721 —17.8483 3.8979 0.6565 —0.6250 0.4223

= | 0.0000 8.4522 —4.6650 —0.6975 —0.2898 0.6553
0.0000 0.0000 3.6117 0.2872 0.7248 0.6262
1 00 15.5690 —7.2354 1.0373

—14|10 1 0| = |—-7.2354 —-19.8307 2.6178
0 0 1 1.0373 2.6178 —11.7383

(15) Shifr by 4.

4.1231 -0.9701 0.0000 13.5820
0.0000 4.0073 —09982 —4.1982

Ry =
0 0.0000 0.0000 4.0005 12.9509
0.0000 0.0000 0.0000  3.3435
—-0.9701 -0.2349 -0.0586 —0.0151
Q 0.225 —-0.9395 -0.2344 —-0.0605
0=

0.0000 0.2495 -0.9376 —0.2421
0.0000 0.0000 0.2500 —0.9683

—0.2353 —-0.0570 3.3809 —13.1545
0.9719 —-0.0138 —1.0529 4.0640
0.0000 0.9983 3.1864 —13.5081
0.0000 0.0000 0.8358 0.7626

A =RoQ, +4I =

(16) 7.2077, - 0.1039+1.5769i. (17) -11, - 22, 17. (18) 2,3, 9.

(19) Method fails. Ay - 7I does not have linearly independent columns, so no
QR decomposition is possible.



(20) 2, 2, 16. (21) 2, 3+i. (22) +i, 2+3i
(23) 3.1265 4 1.2638i, - 2.6265 £ 0.7590i.
(24) 0.0102, 0.8431, 3.8581, 30.2887.

(25) Each diagonal element of the upper triangular matrix R is the magnitude of
a nonzero vector (see Theorem 3 of Section 6.2) and is, therefore, nonzero.
Use Theorems 4 and 10 of Section 1.5.

(26) Q"Q=I. Thus, Q"=Q".
(27) ArRy.1 =Ry 1Qi_1Rp1 =Ry 1Ap .

Set P=(R;_;)”" and use Theorem 1 of Section 4.1.

Section 6.4
(1) x = 2.225, y = 1.464.

(2) x~=3,y~=3.

(3) x =~ 9.879, y =~ 18.398.

(4) x =~ -1.174, y =~ 8.105.

(5) x =~ 1.512, y = 0.639, z = 0.945.

(6) x ~ 7.845, y ~ 1.548, z ~ 5.190.

(7) x =~ 81.003, y = 50.870, z ~ 38.801.

(8) x =~ 2.818, y = -0.364, z = -1.364.

(9) (b) y=2.3x+38.1 (c) 21.9.
(10) (a) y=1.2x+194,

(b) y=1.2(60)+19.4=91.4, so total mlb attendance in 2020 projects to
91.4 million

(11) (a) y=0.27x+10.24, (b) 12.4.
N N N N N N N
NY_KVEY_ WY Vi D NQ KD %) i
(12) m= i=1 i=1 i=1 —,c= i=1 i=1 i=1 i=1 )

N N N N 2
S SR Eb

i=1 i=1 i i
IfN Zﬁ-ilx,-z is near (Ziilx,-)z, then the denominator is near 0.

(13) Zﬁilx} =0 so the denominators for m and ¢ found in Problem 13 reduce to
N N2
im1(xi).

(14) y=2.3x' +15.



(15) (a) y=-0.198x'+21.18 (b) year 2000 is coded as x' =30; y(30) =15.24.

0542 0161
(21)E= | 0.211 . (22) E = ' .
5311 —0.042
: -0.172
Section 6.5

(1) (a) span

(1 0 0
0 1 1/2

(=17 [-=1] [2/37]
1] ol % m]2/3].

(2) (a) span

(4) (a) span

(5) (a) span

(6) (a) span

[—1] [-1] [ 1]
(3) (a) span{ 2(,1 O },(b) 1/2].
| 0] | 2] _1/2_

{ :

-1 1
(7) (a) span {[ 1] },(b) {1]
0 0

(8) Same as Problem 2

0] 1
(9) (a) span { [1 },(b) [1/2].
1] 1/2

E
(10) (a) {0}, (b) [1 :
0




(11) (a) span

(12) (a) span

(13) (a) span

(14) (a) span

(15) (a) span

(16) (a) span

(17) (a) span

T 1
[ e
L |
o o~ O

[17 o
0 0
0’11
0] |0
-1

1

0

0
27
1

11 ¢ (®)
1_

T 1
[ oo
L |
T 1
|
S == 0O
L 1
1

—_

o O O~
|
— o O
L 1
—_———
:—\
=3
S~—"

1 [-1 [ 3/5
0 3/5
| 1 | —1/5

0
, (b) 1‘/’2 .
1/2

1 0
, (b) %g .
i 1/3

[ o
0
1/2 |
| 1/2

],

:—1' -1 2/3
1 0 2/3
ol'| 1] ® 2/3 |

| 0] 0 0

1
(18) (a) span :i , (b) (1) .
1 0

1
(19) (a) {0}, (b) M -
0



0 1

(20) (@) span { | 1| 6 0) |33
1 ~1/3

(21) No.
(22) [x|I> = (u+u", u+u) = (u,u) + (u,u") + (", u) + (u*,, ut)

= (u,u) +0+0+ (u*,,ut) = [jul|” + HULHZ'
(23) Let B={u;, w,..., w} and C={wi, ws...,w}. If v €V, then there

.
exists a u €U and we W such that v=u+w. But U:Zciui and
i=1

N
w= E djwi for scalars Ci/e-0Crs and dy, ... ds Then,
j=1

T N
v = Zciui + Zdjwj and BUC is a spanning set for V. Consider the

i=1 j=1
T N T S
equation Z ciu; + Z djw; = 0. Since Z (0)u; + Z (0)w; = 0, it follows
i=1 j=1 i=1 j=1

from uniqueness that c;=0(i=1,2,...,r) and d;j=0(j=1,2,...,s). Thus,
B U C is linearly independent.

.
(24) Let v € U with basic B = {u;,u,,...,u,}. Then v= Zciui for scalars
=1

i=

Cl, -+ Cr
Let v e W with basic C = {w;,w,,...,w,}. Then v = Zdjwi for scalars
dl, ey ds~ j=1
O=v-v= Zrciui - Zd]-wj. But0 = Z (0O)u; — Z (0)wj, so it follows

i=1 j=1 i=1 =1
from uniqueness that¢;=0(i=1,2,...,r)andd;=0(j=1, 2, ..., s).Thus,
V= Zciui = Z (O)ui =0.
i=1 j=1

(25) Use the results of Problem 23.

APPENDICES

Appendix A

(1) (a) Yes, (b) No, (c) No, (d) Yes,

(e) Yes, (f) Yes.



(2) (a) Yes, (b) Yes, (c) No, (d) Yes,

(e) No, (f) Yes.
(3) (a) Yes, (b) No, (©) Yes, (d) No,
() Yes, (f) Yes.
(4) (a) No, (b) Yes, (©) No, (d) Yes,
() Yes, (f) Yes.
(5) (a) No, (b) No, (©) No, (d) Yes,
(€) No, (f) No.
(6) (a) Yes, (b) Yes, (©) No, (d) No,
() Yes, (f) Yes.
(7) (a) No, (b) No, () Yes, (d) No.
(8) (a) No, (b) Yes, (©) No, (d) Yes.
(9) (a) Yes, (b) Yes, () Yes, (d) No.
(10) (a) Yes, (b) No, () Yes, (d) No.
(11) { [Z] eRp= o}.
C
[7/2 —1/2 0 0
(12) 1(/)2 5(/)2 2 (1)] .
0 0 0 4
2 0 0 0
|2 32 - ]
0 0 0 2
:2 0O 0 O
a2 20 }
0 0 0 3

(15) (;1) Yes, (b) No, (c) Yes, (d) Yes, (e) No, (f) No.

0 0 0 0 1
(16) [1] (A7) [ 1{. (18) | 0. (19) |0 . (20) 0].
0 1 1 -1



S~ O OO

4,x2 = |:

1
0
0 |,and for A
0
-1

3,X3 = {

(21) For A

. N —
1 |
=)
. | IR .
1 1
e ReNeNe) :1 — O OO
| iy = |
e — ~ S —
—_— i
Il o — o o — I
— . L 1 L ] —
E S —— I I E
T 1 T 1 T 1T T O O NO O ~ ~ —
NOOO NOOO NO—-O0OO0O =0 00O | 2 2 N~ OO
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0 1 2
0 1 -2
(32) X3 = 1 , Xy = 0 X1 = 0
0 0 0
0 0 0

(33) x is a generalized eigenvector of type 1 corresponding to the eigenvalue A if
(A-A)' x=0and (A - M)° x#0. That is, if Ax=2x and x#0.

(34) If x=0, then (A - AI)"x=(A - AI)" 0=0 for every positive integer .
(35) (a) Use Theorem 1 of Section 3.5.
(b) By the definition of T, T(v) € V for each v € V.

(c) Let T(v;)=A\v;. If v € span{vy, v,,..., v}, then there exist scalars

k k
€1,Ca, ..., ¢, such thatv = Z ¢ivi. Consequently, T(v) =T (Z c,-v,-) =
i= =1

i=1

K k K
ZciT(vi) = Zci(%ivi) = Z (cihi)vi, which also belongs to span{v,,
i=1 i=1 i=1
V2,. . .,Vk}.

(36) If V=U @ W, then (i) and (ii) follow from the definition of a direct sum
and Problem 24 of Section 6.5. To show the converse, assume that
v=u;+w; and also v=u,+w,, where u; and u, are vectors in U, and
w; and w, are vectors in W. Then 0=v - v=(u;+w;)=(u,+w;)=
(u; —uy) + (wy —wy), or (u;y —u,) = (w, — wy). The left-side of this last equa-
tionisin U, and the right side is in W. Both sides are equal, so both sides are
in U and W. It follows from (ii) that (u; - u,) =0 and (w, - w;)=0. Thus,
u;=u, and w; =w,.

(38) (a) One chain of length 3;
(b) two chains of length 3;
(c) one chain of length 3, and one chain of length 2;
(d) one chain of length 3, one chain of length 2, and one chain of length 1;
(e) one chain of length 3 and two chains of length 1;
(f) cannot be done, the numbers as given are not compatible;
(g) two chains of length 2, and two chains of length 1;
(h) cannot be done, the numbers as given are not compatible;
(i) two chains of length 2 and one chain of length 1;
(j) two chains of length 2.

@)= Q] x=|_}].



—1
(40) x; = 1
i 1
to A=4.
[0
(41)x3= |0
_1
[ 1
(42) x; = | —2
0

corresl_)onds to A=7

0
0
(43) x3 = |
._1_

o7

(44) x, = 1
27 1o

_0_

correspond to A

0

0
(@s)x, = | 7
-2

| 1

[ -5

-2

. 0
)’2 - 1
1

0

(46)

S oo ON

0 3
correspondsto A=1andy,= |0|,y, = | O/ correspond
1 -3
-1 2
;X2 = 2 X1 = 0
0 0
0 1
,y1=|—-2| both correspond to A=3 and z = |0
1 1

o] 1 0
R I U D N
rA2 — ol 1 — 0 V1= 1
0 0 -1
M1 3 —1
0 1 —1
= correspond to A=3 and y, = ol'"1=1_4
K -1 0
=4,
[—1 3 4
1 4 0
2 0 0
X3 = ol =10l = 1o . correspond to A=4, and
0 0 0
0 0 0
3
2
V1= 1 correspond to 1=>5.
0
0
0 0] 210 00
0 0 02 0 0 O
10 47) o 0 2 1 0
21 0O 0 0 2 1
0 2] 0O 0 0 0 2
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-2 00 ! 0 1
(67) 0 —2 0| with baiss -21,1-21,10
| 0 0 2 | 0 1 1
[1 0 0] [0 [1 1
(68) |0 1 0| with baiss 1,0/, 2 )
|0 0 3] o] [1 -1
[0 0 0] [ 5 -1 1
(69) |0 2 1| with basis —4 |, , 10
|0 0 2] ! 1 0
[0 0 O 3 -1 1
(70) |0 0 0| with basis of,| 51,]2
|0 0 14 -1 -3 3
(3 0 0 0] ) 1 -1 0]
0 3 1 0| . ) -1 0 1 0
(71) 00 3 1 with basis ol ol 1o
|0 0 0 3 | -1 0 0 1]
(1 1 0 0] (1 0 -1 3]
01 0 of . . 0 1 -1 1
(72) 00 2 1 with basis ol 1ol 211 0
|0 0 0 2] K 0 0 —1|
1 0 0 0 0 0 O]
01 00 O0O0O
0 01 1000
(73) |0 0 0 1 1 0 O] with basis
000 0T1O0O0
000 001 1
|0 000 0 0 1]
o] 171 =17 [ o1 o] [-=27 [17
0 3 0 0 1 0 0
-1 1 1 1 0 2 0
—210,]0f,|-=11],] of,lo],|-21,10
1 0 0 0 0 0 0
0 1 0 0 0 0 0
. o] [o] | of [-1] |o] [-1] [oO]

(74) Ifxis a generalized eigenvector of type m corresponding to the eigenvalue A,
then (A - AI)"x=0.

(75) Let u and v belong to NA(A). Then there exist nonnegative integers m and n
such that (A—AI)"u=0 and (A—-A)"v=0. If n>m, then
(A—M)"u=(A-AD)"""(A—A)"u=(A—AI)"" ™0=0. For any scalars o



and B, (A—A)"(cu+pv)=0o[(A—A)"u]+B[(A—A)"V)]|=a0+B0O=0.
The reasoning is similar if m >n.

(76) (A - AI), is an nth degree polynomial in A, and A commutes with every

polynomial in A.

(77) If (A - AI)*x=0, then (A—AI)*(Ax) =A[(A— AI)*x] =A0=0.

(78) If this was not so, then there exists a vector x € R" such that (A - A\I)*=0and

(A - NI)*"! £0 with k> n. Therefore, x is a generalized eigenvector of type k
with k> n. The chain propagated by x is a linearly independent set of k vec-
tors in R" with k> n. This contradicts Theorem 3 of Section 2.5.

Appendix B

(1)

(2)

(3)

(4)

(5)

(6)

(7)
(8)

(9)

Matrix (a) can be a transition matrix. The other matrices are not transition
matrices because: (b) Second column sum is less than unity. (c) Both col-
umn sums are greater than unity. (d) Matrix contains a negative element.
(e) Third column sum is less than unity. (f) Third column sum is greater
than unity. (g) None of the column sums is unity. (h) Matrix contains neg-
ative elements.

[0.95 0.01
10.05 0.99]

(0.6 0.7
104 03]

[0.10 0.20 0.25]
0.50 0.60 0.65].
040 0.20 0.10 |

[0.80 0.10 0.25]
0.15 0.88 0.30 .
[0.05 0.02 0.45 |

. [037 0.63 5 [0.289 0316
() P7= [0.28 072 | MP=10711 0.684]
(b) 0.37,
(©) 0.63,
(d) 0.711,
(e) 0.684.

1-1-1—-1,1-1-2—-1,1-2—-1—1,1—-2—2—1.

(a) 0.097,
(b) 0.0194.

(a) 0.64,
(b) 0.636.



(10) (a) 0.1,
(b) 0.21.

(11) (a) 0.6675,
(b) 0.577075,
(c) 0.267.

(12) (a) Thereis a 0.6 probability that an individual chosen at random initially
will live in the city; thus, 60% of the population initially lives in
the city, while 40% lives in the suburbs.

(b) dM=[0.574 0.426]",
(c) d®=[0.54956 0.45044]".

(13) (a) 40% of customers now use brand X, 50% use brand Y, and 10% use
other brands.
(b) dM=[0.395 0.490 0.075]",
(c) d®=[0.3875 0.47343 0.06330]".

(14) (a) d9=[01]",
(b) dV=[0.7 0.3]".
(15) (a) d”=[010]",
(b) d®=[0.1920.5920.216]". There is a probability of 0.216 that the har-
vest will be good in three years.
(16) (a) [1/65/6]",
(b) 1/6.
(17) [7/11  4/11]"; probability of having a Republican is 7/11~0.636.
(18) [23/120 71/120 26/120]"; probability of a good harvest is
26/120~0.217.

(19) [40/111 65/111 6/111]"; probability of a person using brand Y is
65/111=0.586.

Appendix C
[0 1 1
(1)) {1 0 1 () —1,—-1,2
1 10
(0 1 1 1
1 0 1 1
1110
(0 1 1 1 1
1 01 1 1
3)(b) |1 1 0 1 1 () -1,-1,-1,-1,4
1 11 0 1
11110




(4) The adjacency eigenvalues of K,, are n—1 copies of —1 and one copy of n—1.

1
(5) t(G) = . (n—1—(=1))""=n""2, , which is Cayley’s Theorem.

(6) (b) 5 copies of 1, 4 copies of —2, 1 copy of 3,

(9

an eigenvalue of 3 but none of —3 so not bipartite,

(d) not paired

(e)
)
(8)

2000 spanning trees
0,22,2,2,2,55,55
2000

(7) (b) complement is two disjoint K, graphs,

(9

8 with multiplicity 1, 4 with multiplicity 6, 0 with multiplicity 1

(8) (b) complement is disjoint K5 and K, graphs

()

(9) (b)
(9

(10) (b)
()
(11) (b)
()

(12) (a)

(b)
(13) (b)
()
(14) (a)
(b)
(15) (a)
(b)
(16) (a)
(b)
(17) (a)

(b)

9 with multiplicity 1, 5 with multiplicity 3, 4 with multiplicity 4, 0 with
multiplicity 1

complement is disjoint K5 and K, graphs,
10 with multiplicity 1, 6 with multiplicity 3, 4 with multiplicity 5,
0 with multiplicity 1

complement is two disjoint K5 graphs,
10 with multiplicity 1, 5 with multiplicity 8, 0 with multiplicity 1

complement is disjoint Ks and K, graphs,
12 with multiplicity 1, 7 with multiplicity 4, 5 with multiplicity 6, 0 with
multiplicity 1

For K,,; has eigenvalues 0 with multiplicity 1, ¢ with multiplicity p - 1,
p with multiplicity ¢ —1, p+ ¢ with multiplicity 1,
(G) == @ (0" p+aq) = (@ ()"

complement is three disjoint K3 graphs,
9 with multiplicity 2, 6 with multiplicity 6, 0 with multiplicity 1

complement is three disjoint K, graphs,

12 with multiplicity 2, 8 with multiplicity 9, 0 with multiplicity 1

complement is three disjoint K5 graphs,

15 with multiplicity 2, 10 with multiplicity 12, 0 with multiplicity 1

complement is three disjoint K graphs,

18 with multiplicity 2, 12 with multiplicity 15, 0 with multiplicity 1,

complement is three disjoint K, graphs, graph has eigenvalues 3r with
multiplicity 2, 2r with multiplicity 3(r-1), 0 with multiplicity 1,

t(G) = £ (3r)*(2r)*""V



Appendix D
(1) x=30 x model bicycles; y=20 y model bicycles; P=%$410.
(2) x=35 x model bicycles; y=0 y model bicycles; P=$3500.
(3) x=120 x model bicycles; y=120 y model bicycles; P=$2640.

Appendix E
1) (1+2+---+n)+(n+1)=n(n+1)/2+n+1)=(n+1)(n+2)/2.
(2) [1+3+5+...+(2n—1)]+(2n+1)=n’+(2n+1)=(n+1)>

(3) (12+22+ A1)+ (n+1)?
=nn+1)2n+1)/6+ (n+1)>
(n+1)[n(2n+1)/6 + (n+1)]
(n+1)[2n* +7n+6]/6
(n+1)(n+2)(2n+3)/6

@) (P+22+...+m)+n+1)°
=n(n+1Y/4+n+1)°
= (n+1)*n%/4+ (n+1)]
=(n+1)>%(n+2)*/4.

(5) 12432452+ ...+(2n— 1)’ + (2n+ 1)
= n(4n? —1)/3+(2n+1)2
=n(2n—1)2n+1)/3+ (2n+1)?

=(2n+1)[n2n—-1)/3+ (2n+1)]

[n
=2n+1)2n+3)(n+1)/3
=[2(n+1)-1][2(n+1) +1](n+1)/3
=[4(n+1)*-1](n+1)/3
(6) % 3k -3 (3K —k) + [3(n+1)* — (n+1)]
k=1
=n’(n+1)+ [3(n+1)°+(n+1)]
=n+Dn*+3n+1)+1]
(n+1)( +2)(n+1)
(n+1) (n+2)



n+1

1
(7) PYTREEERY
;k(w 1)

_ " 1 1
T Z(k+ 1) (et D(n+2)
n 1
= -
n+1 (n+1)(n+2)
_on’42n+1
C(n+1)(n+2)
_n+1
S n+2
n+1 n
(s)zzk—l :sz—1+2n:[2n_1]_’_2n:2(2n)_1:2n+1_1.
k=1 k=1

n+1 n xn 1
@ St =Y =Tl
k=1 k=1 =

X" = 14x"(x—1) a1

x—1 x—1

(10) 7" +2=7"(6+1)+2=6(7")+ (7" +1).6(7") is a multiple of 3 because 6
is, and (7"+1) is a multiple of 3 by the induction hypothesis.



Note: Page numbers followed by f indicate figures and ¢ indicate tables.

A

Additive inverse, vectors in vector
space, 112, 113
Adjacency matrix
characteristic polynomial, 314
definition, 313-314
regular graphs, eigenvalues, 315
spectrum, 315
Angle between vectors, 325-326,
325f, 326f, 327
Answers to selected problems,
437-514
Area, parallelogram, 52-53, 52f, 53f,
54-55
Associativity
matrix addition, 4, 5
matrix multiplication, 15-17
Augmented matrix
definition, 36-37
Gaussian elimination, 37-39, 40,
41, 42, 43
inverse, 71, 72, 73-74

Basis
change of, 125, 204, 205-207,
208-210, 210f, 211-216
eigenspace, 243, 244-246
image of linear transformation,
223-224
kernel of linear transformation, 223
linear transformation, 195-198,
199, 199f, 200, 200f
orthogonal vector, 329, 330, 330f,
331
orthonormal basis, 340, 341
row space, 155-157, 158
vector space, 136, 137, 138-141,
155
Block diagonal matrix, 25, 382-384

C

Canonical basis
creation, 399, 400

definition, 395
generalized eigenvector,
379-412
Cauchy-Schwartz Inequality, 327
Chain. See Markov chain; Vector
Chain
Characteristic equation, 240
Closure under addition, 103, 104
Closure under scalar multiplication,
104
Coefficient matrix, 11, 16-17, 75,
76, 85
Cofactor, 49, 50-51
Column index, 3
Column matrix, 3-4
Column rank, matrix, 162-163, 164
Column space, 162
Commutativity, matrix addition, 5
Complete graph on n vertices, 312
Complex vector space, 104
Component, matrix, 3-4
Connected graph, 312-313
Consistent system, simultaneous
linear equations, 33, 35,
165-166
Coordinate representation basis
change, 204, 205-207,
208-211
Euclidean inner product,
325-326, 325f, 326f
handedness, 99, 99f
vector, 142-143, 143f
Correspondence, rules of, 175-176,
176f, 177

D

Dependence, linear. See Linear
dependence

Derivative, of a matrix, 273

Derived set, linear equations, 37-39,
40, 41, 42

Determinant

calculation
cofactors, 49, 50-52

diagonal matrix, 55
elementary row operations, 57,
58-59
pivotal condensation, 61,
62-63
rules based on minors, 48
triangular matrices, 54-55, 54f
definition, 47
invertible matrices, 63
parallelogram area, 52, 52f, 53,
53f, 54-55
similar matrices, 63
Diagonal element, matrix, 3
Diagonal matrix
definition, 25
derivative, 55
diagonalization, 237, 256-264
Differential equations
adjacency matrix, 313-317
definition, 289
fundamental form
definition, 292, 293
solution, 298-309
transformation, 293, 294, 295
graphs and networks, 312-313
Laplacian matrix, 318-321
matrix representation, 289-298,
291t
modeling, 309-312, 310f
software solutions, 433-434
Dilation, linear transformation, 182
Dimension
matrix, 3-4
n-space, 95
nullity and kernel dimension,
225
vector space, 141
Directed line segment, 95-97, 95f,
96f, 97f
Direct sum, 380-381, 382-384
Disconnected graph, 312-313
Distribution vector, 415-417
Domain, 175-176, 176f, 181
Dominant eigenvalue, 276, 278, 279

D



. Index

E

Eigenspace
basis, 243, 244-245
definition, 243
Eigenvalue
applications
adjacency matrix, 313-317
differential equation, 289-312
graphs and networks,
312-313
Laplacian matrix, 318-321
calculation for matrix, 240,
241-247
definition, 238
dominant eigenvalue, 276, 278,
279
eigenvector pair, 239
exponential matrices, 266
geometric interpretation in n-
space, 238
inverse power method, 280, 281,
282, 283, 283t, 284
multiplicity, 242
properties, 250, 251-252,
253-254
QR algorithm for determination,
354, 355, 356-357, 358
similar matrices, 242, 243
Eigenvector
calculation for matrix, 240,
241-242, 243
definition, 238
diagonalization of matrices, 256,
257, 258, 259, 260-262
eigenvalue pair, 239
exponential matrices, 272
generalized, 395, 396,
397-398
geometric interpretation in
n-space, 238
properties, 250, 251, 252,
253-254
type 2, 387-388
type 3, 385, 386
Elementary matrix, 68, 69-71
Elementary row operations
elementary matrix, 69-71
pivot, 38-39
Element, matrix, 2-3
Equations, simultaneous linear.
See Simultaneous linear
equations
Equivalent directed line segments,
96-97

Euclidean inner product.
See also Orthogonal
complement
calculation, 323-325
definition, 323
geometrical interpretation,
325-326
induced inner product, 329
Euler’s relations, 272
Expansion by cofactors, 50, 51
Exponential matrix
calculation, 264-266, 267-268
definition, 264
inverse, 271
Jordan canonical form, 266,
267-268, 269, 270

F

Finite-dimensional vector space,
139-141
Finite Markov chain, 413,
414, 418
Function. See also Transformation
definition, 175
notation, 177
rules of correspondence,
175-176, 177
Fundamental form, differential
equations
definition, 292
solution, 184, 185, 187, 188,
298-309
transformation, 293, 294, 295

G

Gaussian elimination, simultaneous
linear equation solution,
37-39, 40, 41, 42, 139, 166

Generalized eigenvector, 395, 396,
397-398

Generalized modal matrix, 402

Generalized Theorem of Pythagoras,
327

Gram-Schmidt orthonormalization
process, 344, 345,

346-351
Graphs
cycle, 312-313
definition, 312
directed graphs, 312
networks, 313
tree, 312-313
types, 312
vertices and edges, 312

H

Homogeneous system
differential equations, 293
simultaneous linear equations,
35, 36

Identity matrix, 25
Image, linear transformation,
221-224, 225
Inconsistent system, simultaneous
linear equations, 33
Independence, linear. See Linear
independence
Index numbers, 393-394
Induced inner product, 329, 338
Infinite-dimensional vector space,
139-141
Initial conditions, 292, 293, 304
Initial-value problem, 293, 294, 295,
296
Inner product space, 342
Invariant subspace, 381-382, 383,
384, 385, 389
Inverse
determinant of matrix, 62
exponential matrix, 271
matrix, 67-68, 70-71, 72-74, 75,
76-77
Inverse power method, 280, 281,
282, 283, 284

Jordan block, 391, 392
Jordan canonical form, matrix, 245,
247-248, 266, 267-268, 269

K

Kernel, linear transformation, 219,
220-224, 225
Kronecker delta, 339

L

Laplacian matrix
diagonal matrix, 318
graph’s Laplacian eigenvalues,
320
Kirchhoff's matrix-tree theorem,
318
spanning trees of graph, 319
Least-squares error, 361-362
Least-squares solution, 365, 366,
367
Least-squares straight line, 362



Left distributive law, matrix
multiplication, 15
Limiting state distribution vector,
419, 420
Linear combination, vectors
determination, 122
span, 123
Linear dependence
definition, 127
vector sets, 130-133, 132f, 133f,
140
Linear equations. See Simultaneous
linear equations
Linear independence
definition, 127
matrices, 129
polynomials, 159
row matrix, 167
row rank in determination,
158-159
three-dimensional row matrices,
128
two-dimensional row matrices,
128
vector sets, 129, 130-133
vectors in a basis, 147
Linear transformation.
See Transformation
Line segment, directed, 96-97
Lower triangular matrix, 25-26, 231,
251
LU decomposition, 81, 82-83,
84-86

MacLaurin series, 264
Magnitude
n-tuple, 324-325
row matrix, 95-97
vector, 325
Main diagonal, 3
Markov chain
definition, 413
distribution vector, 416
limiting state distribution vector,
419, 420
transition matrix construction,
413
MATHEMATICA®, 433
MATLAB®, 433
Matrix. See al so n-tuple
block diagonal matrix, 25
column matrix, 3-4
definition, 1-2

diagonal element, 1-2
diagonal matrix, 25
differential equation
representation, 289-298
element(s), 2-3
elementary matrix, 68, 69-70
Gaussian elimination for
simultaneous linear equation
solution, 37-39, 40, 41, 42
identity matrix, 25
inverse, 67-68, 70-71, 72-74, 75,
76-77
lower triangular matrix, 25-26
LU decomposition, 81, 82-83,
84-86
partitioned matrix, 23
row matrix, 3-4, 89
row space, 151, 152-153, 154,
155-157, 158-159
square matrix, 3
submatrix, 22
technology, 433-434
trace, 250-251
transpose of matrix, 21, 22
upper triangular matrix, 26
zero row, 23-25
Matrix addition
associativity, 5
commutativity, 5
sum of matrices of same order, 4
Matrix multiplication
associativity, 15
coefficient matrix, 11, 16-17, 75,
76, 85
left distributive law, 15
packages approach, 11
postmultiplication, 13
premultiplication, 13
product of two matrices, 12,
13-14, 15-17
right distributive law, 15
scalar multiplication, 6, 7
Matrix representation
change of basis, 212-216
linear transformation, 191, 192,
193-194, 195-198, 199,
200, 211
Matrix subtraction, 6
Minor, matrix, 48-49
Modal matrix, 257, 265-266
Modeling, differential equations,
309-312
Multigraph, 312
Multiplicity, eigenvalue, 242

Index ‘

N
Noise, 360
Nonhomogeneous system
differential equations, 293
simultaneous linear equations, 35
Nonpseudo graph, 315
Nonsingular matrix, 67, 74, 75
Normal equations, 363, 366
Normalization, n-tuples, 101
Normalized vector, 325
n-space
definition, 93-94
linear transformation, 193-194,
195-196
row space (see Row space)
subspace, 118-120, 121-122
three-dimensional row matrices,
99
two-dimensional row matrices,
93-94, 95-97, 98, 99
n-tuple
definition, 4
normalization, 101
sets. See (n-space)
three-dimensional row matrices,
99
4-tuple, 101
5-tuple, 101
two-dimensional row matrices,
94, 95-97
Nullity, kernel dimension, 225
Null space, linear transformation, 219

o

One-to-one linear transformation,
226, 227-228, 227f, 229-230
Order, matrix, 2
Orthogonal complement
definition, 371
projection, 337-338, 337f
subspaces, 369-370, 370f, 371,
372-374
Orthogonal vector, 327, 329, 330,
330f, 331, 331f
Orthonormal basis, 340, 341
Orthonormalization, Gram-Schmidt
orthonormalization process,
344, 345, 346-348
Orthonormal set, 339-341, 343

Parallelogram, area, 52-53, 54-56
Partitioned matrix, 23



. Index

Pivot
definition, 38-39
elementary matrix, 70-71
Pivotal condensation, 61, 62-63
Postmultiplication, matrices, 13
Power method
calculation, 277, 278
conditions, 276
inverse power method, 280, 281,
282, 283
shifted inverse power method,
284, 285
Premultiplication, matrices, 13
Problems, answers to, 437-514
Product, inner. See Inner product
Projection
onto x-axis, 186
onto y-axis, 186
orthogonal complement,
337-338
vector, 336, 337-341, 342, 343,
344-345, 346-348
Pythagorean theorem, 327

QR algorithm, 351-359, 433
QR decomposition, 351-352,
353

R

R". See n-space
Range, 175-176, 176f, 181
Rank, 393-394, 397
Real number space. See n-space
Real vector space, 104
Reciprocal. See Inverse
Rectangular coordinate system,
handedness, 99
Reflection
across x-axis, 185
across y-axis, 185
Regular graphs, eigenvalues, 315
Regular of degree r graph, 312
Regular transition matrix, 418,
419
Representation, matrix. See Matrix
representation
Residual, 360
Right distributive law, matrix
multiplication, 15
Row matrix. See also n-tuple
features, 3-4
linear independence, 167
three-dimensional row matrices,
99, 100f

two-dimensional row matrices,
94, 94f, 95, 95f, 96-97, 96f,
97f, 98f
Row rank
column rank relationship,
162-163, 164
definition, 151
determination, 152-153, 154
linear independence
determination, 158-159
Row-reduced matrix
Gaussian elimination, 37-39, 40,
41, 42
transformation, 71
Row space
basis, 155-157, 158
definition, 151
operations, 151, 152-153, 154,
155-157, 158-159
Rules of correspondence, 175-176,
176f, 177

S

Scalar. See also Cofactor;
Determinant; Eigenvalue
definition, 7
linear equations, 32-33
Scalar multiplication
closure under scalar
multiplication, 187
matrix, 6, 7-8
subspace, 117-118
vector space, 104, 109, 111, 112
Scatter diagram, 98f, 360
Shifted inverse power method,
284
Similar matrices
definition, 215-216
determinants, 63
eigenvalues, 242
Simple graphs, 312
Simultaneous linear equations
consistent system, 33, 35, 164,
165-166
forms, 30-31, 32-33, 33f
Gaussian elimination for
solution, 37-39, 40, 41, 42
homogeneous system, 35, 36, 41,
166
inconsistent system, 33
matrix representations, 31, 36
nonhomogeneous system, 35
trivial solution, 35
Singular matrix, 67, 251-252
Skew symmetric matrix, 22

Span
basis, 155-156
row space of matrix, 151
subspace, 123-124, 136-137,
218
vector chain, 389
Spanning trees, 312-313, 319
Spectral matrix, 257
Square matrix, 3
Standard basis, 141-144
Submatrix, 15-17
Subspace
definition, 116-117
kernel of linear transformation,
219, 220-221
n-space, 118, 119-120, 119f,
121-122, 121f
scalar multiplication, 117-118,
119f
span, 123-124, 136-137, 218
vector space, 122
Superdiagonal, 389
Symmetric matrix, 22

T

Three-dimensional row matrices, 99,
100f
Trace, 250, 251
Transformation. See also Function
change of basis, 204-218
definition, 181
diagonalization of matrices, 237,
256-264
dilation, 182
image, 220-222, 222f, 223-224,
225-226
kernel, 220-222, 222f, 223-224,
225
linear transformation
determinations, 182, 182f, 183,
183f, 184, 185, 185f, 186/,
187, 187f
properties, 218-233
matrix representation, 191-204
one-to-one transformation, 226,
227-228, 227f, 229-230
Transition matrix
change of basis, 205-207,
208-210, 210f, 211
construction for Markov chain,
413, 414
definition, 413
powers of, 414-418
regular, 418, 419
Transpose, of matrix, 21, 22



Triangular matrix
triangular matrix, lower, 25-26,
231, 251
triangular matrix, upper, 25-26,
54, 261
Two-dimensional row matrices, 94,
94f, 95, 95f, 96-97, 96f,
97f, 98f

U

Unit vector, 325
Upper triangular matrix, 25-26,
54, 261

'}

Vector. See also Eigenvector; n-tuple

angle between vectors, 325-327,
326f

distribution vector, 415-417

least-squares solution, 365, 366,
367

limiting state distribution vector,
419, 420

linear combination
determination, 93-174
span, 123
linear independence, 129,
130-133, 133f, 147
magnitude, 324-325
orthogonal vector, 329, 330, 330f
orthonormal set, 339-341, 343
projection, 336-351
unit vector, 325
zero vector, 111-114
Vector chain, 386-391
Vector multiplication. See Inner
product
Vector space
additive inverse of vectors, 112,
113
basis, 136, 137, 138-141
closure under addition, 103, 104
closure under scalar
multiplication, 103, 104, 109
complex vector space, 104
definition, 93-174

Index ‘

dimension, 141

efficient characterization,
127

finite-dimensional vector space,
139-141

infinite-dimensional vector space,
139-141

linear independence,
127-136

proof of properties, 105-107,
108-109

real vector space, 104

row space of matrix, 151-161

set notation, 104

standard basis, 141-144, 143f,
144f

subspace (see Subspace)

y4

Zero matrix, 379

Zero row, 23-24

Zero transformation, 183, 190
Zero vector, 93-174
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