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Foreword

This book by Richard Bellman brought together a large number of results
which were scattered throughout the literature, The book had enormous impact in
such fields as numerical analysis, control theory, and statistics. It provided the
vision and spirit for the SIAM Journal on Matrix Analysis and Applications,

The reader should note that the problem sections contain many useful results
that are not easily found elsewhere. We believe this new SIAM edition will be of
continual benefit to researchers in the applied sciences where matrix analysis plays
a vital role.

Gene Golub
Editor-in-Chief
Classics in Applied Mathematics
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Preface to Second Edition

Since the publication of the First Edition of this book in 1960, the field of
matrix theory has expanded at a furious rate. In preparing a Second Edition, the
question arises of how to take into account this vast proliferation of topics,
methods, and results. Clearly, it would be impossible to retain any reasonable size
and also to cover the developments in new and old areas in some meaningful
fashion.

A compromise is, therefore, essential. We decided after much soulsearching
to add some new results in areas already covered by including exercises at the ends
of chapters and by updating references. New areas, on the other hand, are
represented by three additional chapters devoted to control theory, invariant
imbedding, and numerical inversion of the Laplace transform,

AsintheFirst Edition, we wish to emphasize the manner in which mathematical
investigations of new scientific problems generate novel and interesting questions
in matrix theory. Secondly, we hope to illustrate how the scientific background
provides valuable clues as to the results to expect and even as to the methods of
proof to employ. Many new areas have not been touched upon at all, or have been
just barely mentioned: graph theory, scheduling theory, network theory, linear
inequalities, and numerical analysis. We have preferred, for obvious reasons, to
concentrate on topics to which a considerable amount of personal effort has been
devoted.

Matrix theory is replete with fascinating results and elegant techniques. It is
a domain constantly stimulated by interactions with the outside world and it
contributes to all areas of the physical and social sciences. It represents a healthy
trend in modern mathematics.

Richard Bellman
University of Southern California

XX1




Preface

Our aim in this volume is to introduce the reader to the study of matrix theory,
a field which with a great deal of justice may be called the arithmetic of higher
mathematics.

Although this is a rather sweeping claim, let us see if we can justify it.
Surveying any of the classical domains of mathematics, we observe that the more
interesting and significant parts are characterized by an interplay of factors. This
interaction between individual elements manifests itself in the appearance of
functions of several variables and correspondingly in the shape of variables which
depend upon several functions. The analysis of these functions leads to
transformations of multidimensional type.

It soon becomes clear that the very problem of describing the problems that
arise is itself of formidable nature. One has only to refer to various texts of one
hundred years ago to be convinced that at the outset of any investigation there is
a very real danger of being swamped by a sea of arithmetical and algebraical detail.
And this is without regard of many conceptual and analytic difficulties that
multidimensional analysis inevitably conjures up.

It follows that at the very beginning a determined effort must be made to
devise a useful, sensitive, and perceptive notation. Although it would certainly be
rash to attempt to assign a numerical value to the dependence of successful
research upon well-conceived notation, it is not difficult to cite numerous examples
where the solutions become apparent when the questions are appropriately
formulated. Conversely, a major effort and great ingenuity would be required were
aclumsy and unrevealing notation employed. Think, for instance, of how it would
be to do arithmetic or algebra in terms of Roman numerals.

A well-designed notation attempts to express the essence of the underlying
mathematics without obscuring or distracting.

With this as our introduction, we can now furnish a very simple syllogism.
Matrices represent the most important of transformations, the linear transformations;
transformations lie at the heart of mathematics, consequently, our first statement.

This volume, the first of a series of volumes devoted to an exposition of the
results and methods of modern matrix theory, is intended to acquaint the reader
with the fundamental concepts of matrix theory. Subsequent volumes will expand
the domain in various directions. Here we shall pay particular attention to the field
of analysis, both from the standpoint of motivation and application.

In consequence, the contents are specifically slanted toward the needs and
aspirations of analysts, mathematical physicists, engineers of all shadings, and
mathematical economists.

It turns out that the analytical theory of matrices, at the level at which we shall

XXiii



XXiv Preface

treat it, falls rather neatly into three main categories: the theory of symmetric
matrices, which invades all fields, matrices and differential equations, of particular
concern to the engineer and physicist, and positive matrices, crucial in the areas of
probability theory and mathematical economics.

Although we have made no attempt to tie our exposition in with any actual
applications, we have consistently tried to show the origin of the principal
problems we consider.

We begin with the question of determining the maximum or minimum of a
function of several variables. Using the methods of calculus, we see that the
determination of a local maximum or minimum leads to the corresponding
question for functions of much simpler form, namely functions which are quadratic
in all the variables, under reasonable assumptions concerning the existence of a
sufficient number of partial derivatives.

In this fashion, we are led to consider quadratic forms, and thus symmetric
matrices,

We first treat the case of functions of two variables where the usual notation
suffices to derive all results of interest. Turning to the higher dimensional case, it
becomes clear a better notation will prove of value. Nevertheless, a thorough
understanding of the two-dimensional case is quite worthwhile, since all the
methods used in the multidimensional case are contained therein.

We turn aside, then, from the multidimensional maximization problem to
develop matrix notation. However, we systematically try to introduce at each stage
only those new symbols and ideas which are necessary for the problem at hand. It
may surprise the reader, for example, to see how far into the theory of symmetric
matrices one can penetrate without the concept of an inverse matrix.

Consistent with these ideas, we have not followed the usual approach of
deluging the novice with a flood of results concerning the solutions of linear
systems of equations. Without for one moment attempting to minimize the
importance of this study, it is still true that a significant number of interesting and
important results can be presented without slogging down this long and somewhat
wearisome road. The concept of linear independence is introduced in connection
with the orthogonalization process, where it plays a vital role. In the appendix we
present a proof of the fundamental result concerning the solutions of linear
systems, and a discussion of some of the principal results concerning the rank of
a matrix.

This concept of much significance in many areas of matrix theory is not as
important as might be thought in the regions we explore here. Too often, in many
parts of mathematics, the reader is required to swallow on faith a large quantity of
predigested material before being allowed to chew over any meaty questions, We
have tried to avoid this. Once it has been seen that a real problem exists, then there
is motivation for introducing more sophisticated concepts. This is the situation that
the mathematician faces in actual research and in many applications.

Although we have tried throughout to make the presentation logical, we have
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not belabored the point. Logic, after all, is a trick devised by the human mind to
solve certain types of problems. But mathematics is more than logic, it is logic plus
the creative process. How the logical devices that constitute the tools of mathematics
are to be combined to yield the desired results is not necessarily logical, no more
than the writing of a symphony is a logical exercise, or the painting of a picture an
exercise in syllogisms.

Having introduced square matrices, the class of greatest importance for our
work here, we turn to the problem of the canonical representation of real quadratic
forms, or alternatively of a real symmetric matrix. The most important result of this
analysis, and one that is basic for all subsequent development of the theory of
symmetric matrices, is the equivalence, in a sense that will be made precise below,
of every real symmetric matrix with a diagonal matrix.

In other words, multidimensional transformations of this type to a very great
extent can be regarded as a number of one-dimensional transformations performed
simultaneously.

The results of these preliminary chapters are instructive for several reasons.
In the first place, they show what a great simplification in proof can be obtained
by making an initial assumption concerning the simplicity of the characteristic
roots. Secondly, they show that two methods can frequently be employed to
circumvent the difficulties attendant upon multiplicity of roots. Both are potent
tools of the analyst. The first is induction, the second is continuity.

Of the two, continuity is the more delicate method, and requires for its
rigorous use, quite a bit more of sophistication than is required elsewhere in the
book. Consequently, although we indicate the applicability of this technique
wherever possible, we leave it to the ambitious reader to fill in the details.

Once having obtained the diagonal representation, we are ready to derive the
min-max properties of the characteristic roots discovered by Courant and Fischer.
The extension of these results to the more general operators arising from partial
differential equations by Courant is a fundamental result in the domain of analysis.

Having reached this point, it is now appropriate to introduce some other
properties of matrices. We turn then to a brief study of some of the important matrix
functions. The question of defining a general function of a matrix is quite abit more
complicated than might be imagined, and we discuss this only briefly. A number
of references to the extensive literature on the subject are given.

We now return to our original stimulus, the question of the range of values of
a quadratic form. However, we complicate the problem to the extent of adding
certain linear constraints. Not only is the problem of interest in itself, but it also
supplies a good reason for introducing rectangular matrices. Having gone this far,
it also turns out to be expedient to discuss matrices whose elements are themselves
matrices. This further refinement of the matrix notation is often exceedingly
useful.

Following this, we consider a number of interesting inequalities relating to
characteristic roots and various functions of the characteristic roots. This chapter




XXvi Preface

is rather more specialized than any of the others in the volume and reflects perhaps
the personal taste of the author more than the needs of the reader.

The last chapter in the part devoted to symmetric matrices deals with the
functional equation technique of dynamic programming. A number of problems
related to maximization and minimization of quadratic forms and the solution of
linear systems are treated in this fashion. The analytic results are interesting in their
dependence upon parameters which are usually taken to be constant, while the
recurrence relations obtained in this way yield algorithms which are sometimes of
computational value.

In the second third of the volume, we turn our attention to the application of
matrix theory to the study of linear systems of differential equations, No previous
knowledge of differential equations is assumed or required. The requisite existence
and uniqueness theorems for linear systems will be demonstrated in the course of
the discussion.

The first important concept that enters in the study of linear systems with
constant coefficients is that of the matrix exponential. In terms of this matrix
function, we have an explicit solution of the differential equation. The case of
variable coefficients does not permit resolution in this easy fashion. To obtain an
analogous expression, it is necessary to introduce the product integral, a concept
we shall not enter into here. The product integral plays an important role in modern
quantum mechanics.

Although the construction of the exponential matrix solves in a very elegant
fashion the problem of constructing an explicit solution of the linear equation with
constant coefficients, it does not yield a useful representation for the individual
components of the vector solution. For this purpose, we employ a method due to
Euler for finding particular solutions of exponential type. In this way we are once
again led to the problem of determining characteristic roots and vectors of a matrix.

Since the matrix is in general no longer symmetric, the problem is very much
more complicated than before. Although there are again a number of canonical
forms, none of these are as convenient as that obtained for the case of the
symmetric or hermitian matrix.

The representation of the solution as a sum of exponentials, and limiting cases,
permits us to state a necessary and sufficient condition that all solutions of a
homogeneous system tend to the zero vector as the time becomes arbitrarily large.
This leads to a discussion of stability and the problem of determining in a simple
fashion when a given system is stable. The general problem is quite complicated.

Having obtained a variety of results for general, not necessarily symmetric,
matrices, we turn to what appears to be a problem of rather specialized interest.
Given a matrix A, how do we determine a matrix whose characteristic roots are
specified functions of the characteristic roots of A? If we ask that these functions
be certain symmetric functions of the characteristic roots of A, then in a very
natural fashion we are led to one of the important concepts of the algebraic side of
matrix theory, the Kronecker product of two matrices. As we shall see, however,
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in the concluding part of the book, this function of two matrices arises also in the
study of stochastic matrices.

The final part of the volume is devoted to the study of matrices all of whose
elements are non-negative. Matrices of this apparently specialized type arise in
two important ways. First in the study of Markoff processes, and secondly in the
study of various economic processes.

A consideration of the physical origin of these matrices makes intuitively
clear a number of quite important and interesting limit theorems associated with
the names of Markoff, Perron, and Frobenius. In particular, a variational
representation due to Wielandt plays a fundamental role in much of the theory of
positive matrices.

Abrief chapteris devoted to the study of stochastic matrices. This area dealing
with the multiplicative, and hence noncommutative, aspect of stochastic processes,
rather than the additive, and hence commutative, aspect, is almost completely
unexplored. The results we present are quite elementary and introductory.

Finally, in a series of appendices, we have added some results which were
either tangential to the main exposition, or else of quite specialized interest. The
applications of Selberg, Hermite, and Fischer of the theory of symmetric matrices
are, however, of such singular elegance that we felt that it was absolutely
imperative that they be included.

Now a few words to the reader first entering this fascinating field. As stated
above, this volume is designed to be an introduction to the theory of matrix
analysis. Although all the chapters are thus introductory in this sense, to paraphrase
Orwell, some are more introductory than others.

Consequently, it is not intended that the chapters be read consecutively. The
beginner is urged to read Chaps. 1 through 5 for a general introduction to
operations with matrices, and for the rudiments of the theory of symmetric
matrices. At this point, it would be appropriate to jump to the study of general
square matrices, using Chaps. 10 and 11 for this purpose. Finally, Chaps. 14 and
16 should be studied in order to understand the origins of Markoff matrices and
non-negative matrices in general. Together with the working out of a number of
the exercises, this should cover a semester course at an undergraduate senior, or
first-year graduate level.

The reader who is studying matrix theory on his own can follow the same
program.

Having attained this level, the next important topic is that of the minimum-
maximum characterization of the characteristic roots. Following this, we would
suggest Kronecker products. From here, Chap. 6 seems appropriate. At this point,
the remaining chapters can be taken in any order.

Now a few comments concerning the exercises. Since the purpose of
mathematics is to solve problems, it is impossible to judge one’s progress without
breaking a lance on a few problems from stage to stage. What we have attempted
to do is to provide problems of all levels of difficulty, starting from those which
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merely illustrate the text and ending with those which are of considerable
difficulty. These latter have usually been lifted from current research papers.

Generally, the problems immediately following the sections are routine and
included for drill purpose. A few are on a higher level, containing results which we
shall use at a subsequent time. Since they can be established without too much
effort we felt that it would be better to use them as exercises than to expand the text
unduly by furnishing the proofs. In any case, the repetition of the same technique
would make for tedious reading,

On the other hand, the problems at the end of the chapter in the Miscellaneous
Exercises are usuaily of a higher level, with some of greater complexity than
others. Although the temptation is to star those problems which we consider more
difficult, a little thought shows that this is bad pedagogy. After all, the purpose of
a text such as this is to prepare the student to solve problems on his own, as they
appear in research in the fields of analysis, mathematical physics, engineering,
mathematical economics, and so forth. It is very seldom the case that a problem
arising in this fashion is neatly stated with a star attached. Furthermore, it is
important for the student to observe that the complication of a problem can
practically never be gauged by its formulation. One very quickly learns that some
very simple statements can conceal major difficulties. Taking this all into account,
we have mixed problems of all levels together in a fairly random fashion and with
no warning as to their complexity. It follows that in attacking these problems, one
should do those that can be done, struggle for a while with the more obdurate ones,
and then return to these from time to time, as maturity and analytic ability increase.

Next, a word about the general plan of the volume, Not only do we wish to
present a number of the fundamental results, but far more importantly, we wish to
present a variety of fundamental methods. In order to do this, we have at several
places presented alternative proofs of theorems, or indicated alternative proofs in
the exercises. It is essential to realize that there are many different approaches to
matrix theory, as indeed to all parts of mathematics. The importance of having all
approaches available lies in the fact that different extensions may require different
approaches. Indeed, some extensions may be routine with one approach and
formidable, or impossible, following other routes.

In this direction, although it is quite elegant and useful to derive many of the
results of matrix theory from results valid for general operators, it is also important
to point out various special techniques and devices which are particularly valuable
in dealing with finite-dimensional transformations. It is for this reason that we
have tried to rescue from oblivion a number of simple and powerful approaches
which were used fifty to seventy-five years ago in the days of halcyon innocence.

The human mind being what it is, repetition and cross-sections from different
angles are powerful pedagogical devices. In this connection, it is appropriate to
quote Lewis Carroll in the Hunting of the Snark, Fit the First—"I have said it
thrice: What I tell you three times is true.”—The Bellman.

Let us now briefly indicate some of the many fundamental aspects of matrix
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theory which have reluctantly not been discussed in this volume.

Inthe first place, we have omitted any discussion of the theory of computational
treatment of matrices. This theory has vastly expanded in recent years, stimulated
by the extraordinary abilities of modern computers and those that are planned for
the immediate future, and by the extraordinary demands of the current physical and
economic scenes.

The necessity for the development of new techniques in the numerical
treatment of matrices lies in the fact that the problem of solving systems of linear
equations involving a large number of variables, or that of finding the characteristic
roots and vectors of a matrix of high dimension, cannot be treated in any routine
fashion. Any successful treatment of these problems requires the use of new and
subtle techniques. So much work has been done in this field that we thought it wise
to devote a separate volume of this series to its recital. This volume will be written
by George Forsythe.

In a different direction, the combinatorial theory of matrices has mushroomed
inrecent years. The mathematical theory of games of Borel and von Neumann, the
theory of linear programming, and the mathematical study of scheduling theory
have all combined to create virtually a new field of matrix theory. Not only do
novel and significant analytic and algebraic problems arise directly in this way, but
the pressure of obtaining computational results also has resulted inthe development
of still further techniques and concepts. A volume devoted to this field will be
written by Alan Hoffman.

Classically, topological aspects of matrix theory entered by way of the study
of electrical networks. Here we encounter a beautiful blend of analytic, algebraic,
and geometric theory. A volume on this important field is to be written by Louis
Weinberg.

We have, of course, barely penetrated the domain of matrix theory in the
foregoing enumeration of topics.

On the distant horizon, we foresee a volume on the advanced theory of matrix
analysis. This would contain, among other results, various aspects of the theory of
functions of matrices, the Loewner theory, the Siegel theory of modular functions
of matrices, and the R matrices of Wigner. In the more general theory of func-
tionals of matrices, the Baker-Campbell-Hausdorff theory leads to the study of
product integrals. These theories have assumed dominant roles in many parts of
modern mathematical physics.

Another vast field of matrix analysis has developed in connection with the
study of multivariate analysis in mathematical statistics. Again we have felt that
results in this domain are best presented with the background and motivation of
statistics.

In a common ground between analysis and algebra, we meet the theory of
group representation with its many beautiful applications to algebra, analysis, and
mathematical physics. This subject also requires a separate volume.

In the purely algebraic domain, there is the treatment of ideal theory by way
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of matrices due to Poincaré, We have not mentioned this because of the necessity
for the introduction of rather sophisticated concepts. In the exercises, however,
there are constant reminders of the interconnection between complex numbers,
quaternions, and matrices, and hints of more general connections.

Closely related is the study of matrices with integer elements, a number theory
of matrices. Despite the attractiveness of these topics, we felt that it would be best
to have them discussed in detail in a separate volume.

It is important to note that not even the foregoing enumeration exhausts the
many roles played by matrices in modern mathematics and its applications.

Wehave includedinthe discussions at the ends of the chapters, and occasionally
in the exercises, a large number of references to original papers, current research
papers, and various books on matrix theory. The reader who becomes particularly
interested in a topic may thus pursue it thoroughly. Nonetheless, we make no
pretension to an exhaustive bibliography, and many significant papers are not
mentioned.

Finally, I wish to express my heartfelt appreciation of the efforts of a number
of friends who devotedly read through several drafts of the manuscript. Through
their comments and criticisms, a number of significant improvements resulted in
content, in style, and in the form of many interesting exercises. To Paul Brock, Ky
Fan, and Olga Taussky, thanks.

My sincere thanks are also due to Albert Madansky and Ingram Olkin who
read several chapters and furnished a number of interesting exercises.

I would like especially to express my gratitude to The RAND Corporation for
its research policies which have permitted generous support of my work in the
basic field of matrix theory. This has been merely one aspect of the freedom
offered by RAND to pursue those endeavors which simultaneously advance
science and serve the national interest.

Atthelast, a vote of thanks to my secretary, Jeanette Hiebert, who unflinchingly
typed hundreds of pages of equations, uncomplainingly made revision after
revision, and devotedly helped with the proofreading.

Richard Bellman
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Mazximization, Minimization, and
Motwation

1. Introduction. The purpose of this opening chapter is to show how
the question of ascertaining the range of values of a homogeneous quad-
ratic function of two variables enters in a very natural way in connection
with the problem of determining the maximum or minimum of a general
function of two variables.

We shall treat the problem of determining the extreme values of a
quadratic function of two variables, or as we shall say, a quadratic form
in two variables, in great detail. There are several important reasons for
doing so. In the first place, the three different techniques we employ,
algebraic, analytic, and geometric, can all, suitably interpreted, be gen-
eralized to apply to the multidimensional cases we consider subsequently.
Even more important from the pedagogical point of view is the fact that
the algebraic and analytic detail, to some extent threatening in the two-
dimensional case but truly formidable in the N-dimensional case, rather
pointedly impels us to devise a new notation.

A detailed examination of this case thus furnishes excellent motivation
for the introduction of new concepts.

2. Maximization of Functions of One Variable. Let f(z) be a real
function of the real variable z for z in the closed interval [a,b], and let us
suppose that it possesses a convergent Taylor series of the form

J@) = fle) + (z = of'(c) + @ 2!")21'"(0) + - (1)

around each point in the open interval (a,b).

Let c be a stationary point of f(z), which is to say a point where f'(z) = 0,
and let it be required to determine whether ¢ is a point at which f(z) is a
relative maximum, a relative minimum, or a stationary point of more

complicated nature.
1
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If ¢ is a stationary point, the expansion appearing in (1) takes the
simpler form

5@ = 1) + E=L ) + - @

If f'(c) = 0, we must consider further terms in the expansion. If,
however, f"/(c) # 0, its sign tells the story. When f(c) > 0, f(z) has a
relative minimum at z = ¢; when f"’(¢) < 0, f(z) has a relative maximum
atz = ¢,

EXERCISE
1. If f"(c) = O, what are sufficient conditions that ¢ furnish a relative maximum?

8. Maximization of Functions of Two Variables. Let us now pursue
the same question for a function of two variables, f(z,y), defined over the
rectangle @, < z < by, a2 € ¥ < by, and possessing a convergent Taylor
series around each point (cy,c;) inside this region. Thus, for |z — ¢
and |y — ¢} sufficiently small, we have

fzy) = fley,es) + (2 — ¢1) af + (g — o) 5o af -+ (= —201)’ ::;f
+(x—cn)(y—c.)acgc +(y—¢:a)’::f2+ Co)
Here
aacj; a’iatx—cl Y = C2 (2)
:—;f;=%atx=c, Y = ce
and so on.

Let (c1,¢2) be a stationary point of f(z,y) which means that we have the
equations

Hoo Aoy (3)

dcy dcs

Then, as in the foregoing section, the nature of f(z,y) in the immediate
neighborhood of (¢y,cs) depends upon the behavior of the quadratic terms
appearing in the expansion in (1), namely,

Qi(z,y) = a(z — c1)? + 2b(z — c)(y — ¢2) +c(y — c2)? €Y

where to simplify the notation we have set

1 _ 1%
3oc 2= 3eoe  © = 338 (6)
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To simplify the algebra still further, let us set
T =u y—c=v (6)
and consider the homogeneous quadratic expression
Q(uw) = au® + 2bwv + cv? )

An expression of this type will be called a guadratic form, specifically a
quadratic form in the two variables u and v.

Although we are interested only in the behavior of Q(u,v) in the vicinity
of u = v = 0, the fact that Q(«,») is homogeneous permits us to examine,
if we wish, the range of values of Q(u,v) as u and v take all real values, or,
if it is more convenient, the set of values assumed on u® + v? = 1,

The fact that Q(kukv) = k*Q(u,v) for any value of k shows that the
set of values assumed on the circle ©? + v* = k?is related in a very simple
way to the values assumed on u? + »* = 1.

If Q(u,v) > O for all u and v distinct from u = v = 0, f(z,y) will have a
relative minimum at z = ¢,, ¥ = cq;if @Q(u,v) < 0, there will be a relative
maximum. If @(u,») can assume both negative and positive values, we
face a stationary point of more complicated type—a saddle point.

Although a number of quite interesting algebraic and geometric ques-
tions arise in connection with saddle points, we shall not be concerned
with these matters in this volume.

If Q(u,v) is identically zero, the problem is, of course, even more com-
plicated, but one, fortunately, of no particular importance.

EXERCISE

1. Can the study of the pesitivity or negativity of a homogeneous form of the fourth
degree, @(u,v) = asut + aud + a:ut? 4 a,uv® + av, be reduced to the study of the
corresponding problem for quadratic forms?

4. Algebraic Approach. Let us now see if we can obtain some simple
relations connecting the coefficients a, b, and ¢ which will tell us which of
the three situations described above actually occurs for any given
quadratic form, au? 4+ 2buy + cv?, with real coefficients.

In order to determine the sign of Q(«,v), we complete the square in the
expression au? + 2buy and write Q(u,v) in the following form:

Q) = a (u + %5’)' + (c - %f) o 1)

provided that a » 0.
If a = 0, but ¢ # 0, we carry out the same type of transformation,
reversing the roles of w and ». If a = ¢ = 0, then Q(%,) reduces to
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2uv. If b= 0, it is clear that Q(u,v) can assume both negative and
positive values, If b = 0, the quadratic form disappears.

Let us then henceforth assume that ¢ # 0, since otherwise the problem
is readily reselved.

From (1) it follows that Q(u,w) > O for all nontrivial » and v (i.e., for
all » and ¢ distinct from the pair (0,0). We shall employ this expression
frequently below), provided that

b!
a>0 c—a—>0 )

Similarly, @(x,v) < 0 for all nontrivial % and v, provided that we have the

inequalities
2
a<0 c— % <0 3)

Conversely, if @ is positive for all nontrivial  and », then the two
inequalities in (2) must hold, with a similar result holding for the case
where @ is negative for all nontrivial » and v,

We have thus proved the following theorem.

Theorem 1. A set of necessary and sufficient conditions that Q(u,v) be-
positive for all nontrivial u and v 7s that

g b
b

Observe that we say a set of necessary and sufficient conditions, since
there may be, and actually are, a number of alternative, but, of course,
equivalent, sets of necessary and sufficient conditions. We usually try
to obtain as many alternative sets as possible, since some are more con-
venient to apply than others in various situations.

a>0 >0 4)

EXERCISE
1. Show that a set of necessary and sufficient conditions that Q(u,v) be positive is
that ¢ > 0,ac — b > 0.

6. Analytic Approach. As noted above, to determine the range of
values of Q(u,v) it is sufficient to examine the set of values assumed by

Q(u,v) on the circle u? 4+ v?* = 1. If @ is to be positive for all nontrivial
values of » and v, we must have
min Q(up) > 0 (1
uldvim1

while the condition
max Quy) <0 2

[MEZSZE B



Maximization, Minimization, and Motivation 5

is the required condition that Q(u,v) be negative for all % and v on the unit
circumference.

To treat these variational problems in a symmetric fashion, we employ
a Lagrange multiplier. Consider the problem of determining the
stationary points of the new quadratic expression

R(up) = au? + 2buv + cv? — Mu?® + »?) 3)
The conditions dR/du = dR/dv = 0 yield the two linear expressions

au +bv—Au=20

bu+cv—N=0 (4)

Eliminating % and v from these two equations, we see that A satisfies
the determinantal equation

a—X\ b
b c—)\l_o (5)

or N —(a+e)h+ac—b= (6)

Since the discriminant is
(a + ¢)* — 4(ac — b?) = (a — c)? + 4b? )

clearly non-negative, we see that the roots of (6) which we shall call
M\ and ), are always real. Unless a = ¢ and b = 0, these roots are dis-
tinct. Let us consider the case of distinct roots in detail.

If b =0, the roots of the quadratic in (6) are Ay = a, s =¢. In
the first case, \; = a, the equations in (4) are

(@—Mu=0 (c—A)p=0 (8)

which leaves u arbitrary and v = 0, if a # ¢. Since we are considering
only the case of distinct roots, this must be so.

If b > 0, we obtain the nontrivial solutions of (4) by using one of the
equations and discarding the other. Thus % and v are connected by the

relation
(a —Mu= —by 9
In order to talk about a particular solution, let us add the requirement
that u2 4 v> = 1. This is called a normalization. The values of u and
v determined in this way are
w = —b/®* + (a — M))® (10)
v = (a — M)/(®* + (a — M))*
with another set (us,v,) determined in a similar fashion when X, is used in
place of \,.




6 Introduction to Matrix Analysis

6. Analytic Approach—II. Once A\, and A3 have been determined by
way of (5.6),! u; and v; are determined by the formulas of (5.10). These
values, when substituted, yield the required minimum and maximum
values of au? + 2buy + cv? on u? + v = 1,

It turns out, however, that we can proceed in a very much more adroit
fashion. Returning to the linear equations in (5.4), and multiplying the
first by % and the second by », we obtain

au + 2bur + e — Aut4+ v =0 (1

This result is not unexpected; it is & special case of Euler’s theorem con-
cerning homogeneous functions, i.e.,

u§§+v%g=2q @)

if Q(u,v) is homogeneous of degree 2. Since u;? + v? = 1,for? = 1, 2,
we see that
)\, = aul’ + 2bu',v, + (Jl)[2 (3)
Aa = au,’ + 2bu,vg + (Jl)z2

Hence one solution of the quadratic equation in (5.6) is the required
maximum, with the other the required minimum.

We observe then the remarkable fact that the maximum and minimum
values of @(u,v) can be obtained without any explicit calculation of the
points at which they are obtained. Nonetheless, as we shall see, these
points have important features of their own,

Let us now derive an important property of the points (u;,), still
without using their explicit values.

As we have seen in the foregoing sections, these points are determined
by the sets of equations

oy + by, — \Nu, =0 aus + bvg — hug = 0
bu, + oy — My =0 bua + cvy — AUy = 0 (4)
u|’+v.’=l ug’+vg’l

Considering the first set, we have, upon multiplying the first equation by
us, the second by v, and adding,

us(auy + bvy — Muy) + va(buy + ey — Mvy)
= auus + b(uw, + uws) + cvws — M(wrus + vyw3) = 0 (5)

Similarly, the second set yields
auus + b(uwy + wwe) + cviws — Aa(ugus + v1v3) = 0 6

! Double numbers in parentheses refer to equations in another section of the
chapter.




Maximization, Minimization, and Motivation 7
Subtracting, we have
A\t — M) (e +v402) =0 ()]
Since \; # \; (by assumption), we obtain the result that
Uy + vy = 0 ()

The geometric significance of this relation will be discussed below.

Let us also note that the quantity w,v2 — ., is nonzero. For assume
that it were zero. Then, together with (8), we would have the two linear
equations in %, and v,,

ULU + Ve = 0 (9)

UWwe — VU = 0

Since 4y and v, are not both zero, a consequence of the normalization
conditions in (4), we must have the determinantal relation

U2 Ve
V2 — U2

=0 (10)

or u;? + v, = 0, contradicting the last relation in (4).

EXERCISE

1. Show that for any two sets of values (u:,u,) and (v,v;) we have the relation
12 + 1) (us? + vs?) = (uus + vis)? + (Uws — uavy)?,
and thus again that uw, — uw; » 0 if the u; and v; are as above.

7. A Simplifying Transformation. Armed with a knowledge of the
properties of the (%;,;) contained in (6.4) and (6.8), let us see what hap-
pens if we make the change of variable

U = wu + unv' )
v=uvu + v

This is a one-to-one transformation since the determinant u,v, — g,
is nonzero, as noted at the end of Sec. 6.
In the first place, we see that

u? + v = (u1’ + vlz)u” + (uz’ + 022)0’2
+ 2(urus + vi)u'y’ = uw't + v’ (2)

Itfollowsthat thesetof values assumed by @(u,v) onthecircleu? 4 v* = 1
is the same as the set of values assumed by Q(u %’ + ust’, v1u’ + v2') on
the circle w’? 4 »"2 = 1,

Let us now see what the expression for Q looks like in terms of the new
variables. We have, upon collecting terms,



8 Introduction to Matrix Analysis

Q(ut’ + ug’, v’ + vav')
= (l.l‘l«lq2 + 2bu|vl + 0')1’)“’2 + (l.lua2 + 2bug, + cva’)v”
+ 2(awrus + b(uws + ugwy) + cvw)u’v’ (3)

Referring to (6.3), (6.6), and (6.8), we see that this reduces to
Mu'? 4 'l “)

The effect of the change of variable has been to eliminate the eross-
product term 2buy.

This is quite convenient for various algebraic, analytic and geometric
purposes, as we shall have occasion to observe in subsequent chapters
where & similar transformation will be applied in the multidimensional
case.

As a matter of fact, the principal part of the theory of quadratic forms
rests upon the fact that an analogous result holds for quadratic forms in
any number of variables.

EXERCISE

1. Referring to (4), determine the conic section described by the equation Q(u,v) = 1
in the following cases:

@ A >0,2 >0
® M>02m<0
€ M =2 >0

(d A\ =0,2>0

8. Another Necessary and Sufficient Condition. Using the preceding
representation, we see that we can make the following statement.

Theorem 2. A necessary and sufficient condition that Q(u,v) be postiive
Jor all nontrivial u and v is that the roots of the determinanial equation

a;’\ cf)\,=0 ()

be positive.
EXERCISE

1. Show directly that the condition stated above is equivalent to that given in
Theorem 1.

9. Definite and Indefinite Forms. Let us now introduee some termi-
nology. If Q(u,w) = au® + 2buv + cv? > O for all nontrivial » and v, we
shall say that Q(u,v) is posttive definite. If Q(u,v) < O for these values of
u and », we shall call Q(u,v) negative definite. If Q(u,v) can be of either
sign, we shall say that it is sndefinite. If we merely have the inequality
Q(u,) 2 0 for all nontrivial v and », we say that Q is non-negative
definite, with non-positive definite defined analogously. Occasionally,
the term positive indefinite is used in place of non-negative definite.
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EXERCISES

1. Show that if aju? + 2byuv + cv* and a.u? + 2bsuv + cs? are both positive
definite, then a,a;u? + 2bibsuv + cicw?is positive definite.

2. Under what conditions is {aiu;: + asus)? + (byu: + bsu,)? positive definite?

8. In terms of the foregoing notation, how can one tell whether au? 4 2buy +
¢v* = 1 represents an ellipse, a hyperbola, or a parabola?

10. Geometric Approach. Let us now consider a variant of the fore-
going method which will yield a valuable insight into the geometrical
significance of the roots, \; and \., and the values ().

Assume that the equation

au + 2bwy + q? = 1 1)

represents an ellipse, as pictured:

14
Q\;J\
7
\@Wl

The quantity r = (u? + »?)* denotes the length of the radius vector
from the origin to a point (u,») on the ellipse.

Let us use the fact that the problem of determining the maximum of
Q(u,v) on u? + vt = 1 is equivalent to that of determining the minimum
of u? + »? on the curve Q(u,v) = 1.

The Lagrange multiplier formalism as before leads to the equations

w— Nau+ ) =0
v—ANbu+ao) =0 2)

These yield the equation

1—ax —=0b\
—bx l—cx_o ®)
or
a—% b
1=0 4)
b c—x

If )\ is a root of this equation and (w;v;) the corresponding extremum
point, we see as above that

ul ol = N (5)
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From this we conclude that one root of (4) is the square of the minimum
distance from the origin to the ellipse and that the other is the square of
the maximum distance. We observe then that the variational problem
we have posed yields in the course of its solution the lengths of the major
and minor axes of the ellipse. The condition of (6.8) we now recognize
as the well-known perpendicularity or orthogonality of the principal axes
of an ellipse.

The linear transformation of (7.1) is clearly a rotation, since it pre-
serves both the origin and distance from the origin. We see that it is
precisely the rotation which aligns the coordinate axes and the axes of
the ellipse.

EXERCISES

1. From the foregoing facts, conclude that the area of the ellipse is given by
x/(ac — b)K,

2. Following the algebraic approach, show that necessary and sufficient conditions
that the form @ = au? + 2buv + cv? + 2duw + ew® 4 2fvw be positive definite are
that

a b a b d
a>0 b e >0 b ¢ f1>0
d f e

8. Similarly, following the analytic approach, show that a necessary and sufficient
condition that @ be positive definite is that all the roots of the determinantal equation

a—\ b d
b c—-2A b
d I e — A

=0

be positive.
4. If @ is positive definite, show that the equation @(u,»,w) = 1 represents an
ellipsoid and determine its volume.

11. Discussion. We have pursued the details of the two-dimensional
case, details which are elementary but whose origins are perhaps obscure,
in order that the reader will more readily understand the need for a better
notation and appreciate its advantages. The results which seem so
providential here, and which have essentially been verified by direct
calculation, will be derived quite naturally in the general case.

The basic ideas, however, and the basic devices are all contained in the
preceding discussions.

MISCELLANEOUS EXERCISES

1. For what values of z, and z; is the quadratic form (@121 + @uz: — b:)? +
(a5:21 + G2272 — bs)? a minimum, and what is the minimum value?
2. Show that (z:* + ¥:?)(z2* + ¥.?) can be written in the form

(@12:Z2 + asZiyz + aZ2yr + 61Y2)? + iz + bazays + batayn + bayaye)?
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for values of a; and b; which are independent of z; and y;, and determine all such
values.
8. Show that there exists no corresponding result for

(2 + y? + z213) (23 + Y2 + 22?)
4. If zu® + 2z5uv + zyv? and yu? + 2ysuv + ysv? are positive definite, then

Z)Y:r TiYs
TaYs TsYs

8. Utilize this result to treat Exercise 1 of Sec. 9.

8. Establish the validity of the Lagrange multiplier formalism by considering the
maximum and minimum values of (au? + 2buv + cv?)/(u? + v¥).

7. What linear transformations leave the quadratic form @(z:,z;) = A(z\* + z3?) +
(1 = N(@1 + z,)* invariant? " Here 0 <A < L

Ty 22
Ty Ts

yr Vs ‘
Ys VUs

Bibliography
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Vectors and Matrices

1. Introduction. In Chap. 1 we studied the question of determining
the local maxima and minima of a function of two variables. If we con-
sider the corresponding problem for functions of N variables, and proceed
as before, we immediately encounter the problem of determining simple
necessary and sufficient conditions which ensure the positivity of a

quadratiec form in N variables, v

Qeres, - . . o0 = ) oy ®
ii=1

As we ghall see later, in Chap. 5, the algebraic method presented in the
previous chapter yields a simple and elegant solution of this problem:.
However, since we really want a much deeper understanding of quadratic
forms than merely that required for this particular problem, we shall pre-
tend here that this solution does not exist.

Our objective in this chapter then is to develop & notation which will
enable us to pursue the analytic approach with a very minimum of
arithmetic or analytic caleulation. Pursuant to this aim, we want a
notation as independent of dimension as possible.

Oddly enough, the study of quadratic functions of the form appearing
above is enormously simplified by a notation introduced initially to study
linear transformations of the form

N
y.-=za.-,¢j i=1,2...,N @)
F=1
2, Vectors. Let us begin by defining a vector, a set of N complex
numbers which we shall write in the form

)
Te

z=| . 0

B2
12
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A vector of this type is called a column veclor. If N numbers are
arranged in horizontal array,

= (T,%s . . . ,TN) 2
z is called a row vector.

Since we can do all that we wish to do here working with column
vectors, we shall henceforth reserve the term ‘‘vector” to denote a
quantity having the form in (1).

Lower-case letters such as z, y, z or a, b, ¢ will be employed throughout
to designate vectors. When discussing a particular set of vectors, we
shall use superscripts, thus !, x?, etc.

The quantities z; are called the components of z, while N is called the
dimension of the vector z. One-dimensional vectors are called scalars.
These are the usual quantities of analysis.

By 2 we shall dénote the vector whose components are the complex
conjugates of the elements of . If the components of x are all real, we
shall say that z is real.

3. Vector Addition. Let us now proceed to develop an algebra of
vectors, which is to say a set of rules for manipulating these quantities.
Since arbitrarily many sets of rules can be devised, the justification for
those we present will and must lie in the demonstration that they permit
us to treat some important problems in a straightforward and elegant
fashion.

Two vectors z and y are said to be equal if and only if their components
areequal, 2; = y;forv = 1,2, . . . ; N. The simplest operation acting
on two vectors is addition. The sum of two vectors, z and y, is written
z + y and defined to be the vector

)+ i
T2 + Yo

r+y= . (1)

Ty + yn

It should be noted that the plus sign connecting « and y is not the same
as the sign connecting z; and y;. However, since, as we readily see, it
enjoys the same analytic properties, there is no harm in using the same
symbol in both cases.

EXERCISES
1. Show that we have commutativity, = +y = y + £, and associativity, z +

W+ =@+y) ta
2. Hence, show that 2! + 2 + - . - + z¥ is an unambiguous vector.
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8. Define subtraction of two vectors directly, and in terms of addition; that is,
z — y is a vector z such that y + z = z.

4. Scalar Multiplication. Multiplication of a vector by a scalar ¢,
is defined by means of the relation

- -
(2% 3
1T
ax =ze =| (1)
| C\TN ]
EXERCISES

1. Show that (¢) + ¢3)(z + y) = ¢c1z + c1y + cax + €Y.
2. Define the null vector, written 0, to be the vector all of whose components are
zero. Show that it is uniquely determined as the vector 0 for which z + 0 = z for

all =
3. Show that it is uniquely determined by the condition that ¢;0 = 0for all scalars ¢;.
6. The Inner Product of Two Vectors. We now introduce a most
important scalar function of two vectors = and y, the inner product. This
function will be written (z,y) and defined by the relation
N
(zy) = 2 s 1
i=1
The following properties of the inner product are derived directly from
‘the definition:

(x;y) = (y;x) (20')
z+yz+w = (2 + (z,w) + ¥2) + (yw) (2b)
(C[.’E,y) = C[(x,y) (26)

This is one way of ‘‘multiplying”’ two vectors, However, there are
other ways, which we shall not use here.

The importance of the inner product lies in the fact that (z,z) can he
considered to represent the square of the ‘‘length’’ of the real vector z.
We thus possess a method for evaluating these non-numerical quantities.

EXERCISES

1. If z is real, show that (z,z) > O unless z = 0.

2. Show that (uz + vy, uz + vy) = ui(z,z) + 2ur(z,y) + v*(y,y) is a non-negative
definite quadratic form in the scalar variables u and v if z and y are real and hence that

(z,y? £ (=,2)WY)

for any two real vectors z and y (Cauchy’s inequality).
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8. What is the geometric interpretation of this result?
4. Using this result, show that

(x+y z+ )< (@) + )

for any two real vectors.
8. Why is this inequality called the “triangle inequality”?
8. Show that for any two complex vectors z and y we have

@ < @8 w9
6. Orthogonality. If two real vectors are connected by the relation
(zy) =0 (1)
they are said to be orthogonal. The importance of this concept derives
to a great extent from the following easily established result.
Theorem 1, Let 2%} be a set of real vectors which are mutually orthogo-
nal; that 1s, (z!,2') = 0, 1  j, and normalized by the condition that
(ztz") =1

Then if a particular vector = has the representation

M
T = cxt 2
2
we have the following values for the coefficients
¢ = (z,7%) (3
and, tn addition,
M
(@2) = ) o @
i=1
EXERCISES

1. Why is the proper concept of orthogonality for complex vectors the relation
(3117) =0

and the proper normalization the condition (z,2) = 1?
2. Show that (z,7) = (Z,1).
8. In N-dimensional Euclidean space, consider the coordinate vectors

-,

1] 07 0
0 1 0
0 0 0
=\ V=" y |

_OJ 0 1
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Show that the ¥t are mutually orthogonal, :nd are, in addition, normalised. A set of
this type is called orthonormal. If z = z ciy*, determine the values of the ¢;, and

im]
discuss the geometric meaning of the result.

7. Matrices. Let us now introduce the concept of a mairiz. An array
of complex numbers written in the form

an G2 ' OGN
Q. G2 ' ' GeN

A= (1)
| GNvy GN2 " ' ' GNN]

will be called a square matriz. Since these are the only types of matrices
we shall consider to any extent, we shall reserve the term “matrix” for
these entities. When other types of matrices are introduced subse-
quently, we shall use an appropriate modifying adjective.

The quantities a;; are called the elements of A and the integer N is the
dimension. The quantities a;;, i, . . . , auv are said to constitute the
tth row of A, and the quantities @y, ay, . . . , an; are said to constitute
the jth column. Throughout, matrices will be denoted by upper-case
letters, X, ¥, Z and A, B, C. From time to time we shall use the short-

hand notation
4 = (ay) (2)

The determinant associated with the array in (1) will be written
|4] or |ay].

The simplest relation between matrices is that of equality ; two matrices
are galled equal if and only if their elements are equal. Following the
same path as for vectors, we next define the operation of addition. The
sum of two matrices 4 and B is written A + B and defined by the
notation

A+ B = (a; + by) 3
Multiplication of a matrix A by a scalar ¢, is defined by the relation
ad = Acy = (ciay) 4

Finally, by A we shall mean the matrix whose elements are the com-
plex conjugates of A, When the elements of A are real, we shall call A
a real matrix.

EXERCISES

1. S8how that 0, the null matrix defined by the condition that all its elements are
zero, is uniquely determined by the condition that 4 + 0 = A for all 4.
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9. Show that matrix addition is commutative and associative.
8. Show that A, + A; + - - - + Ay is unambiguously defined.

8. Matrix Multiplication—Vector by Matrix. In order to make our
algebra more interesting, we shall define some multiplicative operations.
In order to render these concepts reasonable, we return to linear trans-
formations of the form

N
y‘.=za‘jxj’ £=1,2,...,N (1)

where the coeflicients a;; are complex quantities. Since, after all, the
whole purpose of our introduction of vector-matrix notation is to facilitate
the study of these transformations, it is only fair that in deriving the
fundamental properties of vectors and matrices we turn occasionally to
the defining equations for guidance.

The point we wish to make is that the definitions of addition and multi-
plication of vectors and matrices are not arbitrary, but, on the contrary,
are essentially forced upon us by the analytic and geometric properties
of the entities we are studying.

Given two vectors z and y related as in (1), we write

y = Az )

This relation defines multiplication of a vector by a matrix A. Observe
carefully the order in which the product is written.

EXERCISES

1. Show that (4 + B)(z +y) = Az + Ay + Bz + By.
2. Consider the identity matriz I defined by the tableau

Explicitly, I = (5:;), where &;; i8 the Kronecker delta symbol defined by the relation

5; =0, i#j
=1, i=j
Show that
N
b = z Bindyy
k=1
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8. Show that Iz = x for all z, and that this relation uniquely determines I.

4. Bhow that
N N

(Az,Adz) = z ( z auz,).

i=1 j=1
9. Matrix Multiplication—Matrix by Matrix. Now let us see how to
define the product of a matrix by a matrix. Consider a second linear
transformation
z = By 1
which converts the components of y into the components of z. In order
to express the components of 2 in terms of the components of z, where, as
above, y = Az, we write

N N N
bzl bagn = kzl ba (z akixj)

N N =1
5 (5 sum)e ®
J=1 -l

If we now introduce a new matrix C = (¢;) defined by the relations

2

N
G= ) baoy ii=12...,N 3
k=1
we may write
z2=Czr 4)
Since, formally,
z = By = B(Az) = (BA)z (5)
we are led to define the product of A by B,
C = BA (6)

where C is determined by (3). Once again, note carefully the order in
which the product is written.

EXERCISES
1. Show that (4 + B)(C + D) = AC + AD + BC + BD,
2 If
cos 8 —siné
Te) = [sin 9 cos 0]
show that

T6)T(6s) = T(9:)T(8:) = T (6, + 6y)

8. Let A be a matrix with the property that a:; = 0, if j = ¢, a diagonal matrix,
and let B be a matrix of similar type. Show that AB is again a diagonal matrix, and
that AB = BA,
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4. Let A be a matrix with the property that ai; = 0, j > 7, a triangular or semi-
diagonal matrix, and let B be a matrix of similar type. Show that AB is again a
triangular matrix, but that AB # BA, in general.

8. Let
= a; as - b1 b:]
4 [“a: 01] B [—b: b,
Show that AB is again a matrix of the same type, and that AB = BA. (As we shall
subsequently see, these matrices are equivalent to complex numbers of the form

a; + ta; if a; and ay are real.)
8. Use the relation |AB| = {4]| |B| to show that

(a1 + as®)(b:* + ba?) = (a1d; — asbs)® + (ash: + aby)?
7. Let
+ tas as + 104
o ]

—a; +ia; a; — tas

and B be a matrix of similar type. Show that 4B is a matrix of similar type, but that
AB » BA in general.

8. Use the relation |AB| = |A| |B| to express (g, + a,! + a2 + a2)(b? + byt +
bs* + b?) as a sum of four squares.

9. Let
a; as as a,
—as a; —ay ay
A=
—ay -7} a as
—a4 ay -—a: ap

and B be a matrix of similar type. Show that A B is a matrix of similar type, but that
AB # BAingeneral, Evaluate |4|. (These matrices are equivalent to quaternions.)
10. Consider the linear fractional transformation

- az + b1 =
R

If T'3(z) is a similar transformation, with coefficients a1, by, ¢1, di replaced by as, by,
¢z, di, show that T:(T:(z)) and T»(T:(z)) are again transformations of the same type.
11, If the expression a,d; — bic; # 0, show that T,~1(z) is a transformation of the
same type, If aid; — bic; = 0, what type of a transformation is T:(z)?
12. Consider a correspondence between T,(z) and the matrix

_ a; b1
4= [01 dl]
written 4; ~ T1(z). Show thatif A; ~ T1(z) and A, ~ Ts(z), then 4143 ~ T (Ts(z)).

What then is the condition that T,(T:(z)) = Ts(T:(z)) for all 2?
18. How can the foregoing results be used to obtain a representation for the iterates

of T(z)?
[T "ol -1

14. Show that
18. If X = (zi,), where z;; = (—1)¥-i (I,V__i’) (the binomial coefficient), then
Xs = ],
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16. From the fact that we can establish a correspondence

10 01
i~[o 3] —~[0 o
deduce that arithmetic can be carried out without the aid of negative numbera.

10. Noncommutativity. What makes the study of matrices so fasci-
nating, albeit occasionally thorny, is the fact that multiplication is not
commutative. In other words, in general,

AB # BA (1)

A simple example is furnished by the 2 X 2 matrices

1 2 21
2] e
and more interesting examples by the matrices appearing.in Exercises
7 and 9 of Sec. 9. Then,

10 7 5 8
AB“[22 15] BA“[ls 20] @)

If AB = BA, we shall say that 4 and B commute.

The theory of matrices yields a very natural transition from the tame
domain of sealars and their amenable algebra to the more interesting and
realistic world where many different species of algebras abound, each
with its own singular and yet compensating properties.

EXERCISES

1, Show that AI = IA = A for all A, and that this relation uniquely determines
the identity matrix,

2. Show that 40 = 04 = 0 for all 4, and that this relation uniquely determines
the null matrix.

8. Let the rows of A be considered to consist, respectively, of the componenta of

the vectors al, a?, . . . , aV, and the columns of B to consist of the components of
b, b, . .., b¥. Then we may write
AB = [(a'b)]

§. If AX = XA for all X, then A is & scala - multiple of I.

11. Associativity. Fortunately, although commutativity does not
hold, associativity of multiplication is preserved in this new algebra.
In other words, for all A, B, and C we have

(AB)C = A(BC) (1
This means that the product A BC is unambiguously defined without the
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aid of parentheses. To establish this result most simply, let us employ
the ‘“‘dummy index" convention, which asserts that any index which is
repeated is to be summed over all of its admissible values. The #jth
element in AB may then be written

Qirbyy @)

Employing this convention and the definition of multiplication given
above, we see that
(AB)C = [(a"'kbkl)clj] (3)
A(BC) = [aun(bucry)]

which establishes the equality of (4B)C and A (BC).

EXERCISES

1. Show that ABCD = A(BCD) = (AB)(CD) = (ABC)D, and generally that
A1A; ¢ - - Ay has a unique significance.

2. Show that A» = 4 - A : (n times) A is unambiguously defined, and that A»*" =
AmAn, mn =1,2, ., ..

8. Show that A™ and B" commute if 4 and B commute.

4. Write
n o JT(n) za(n) _[z 2
X [h(n) 14(")] where X [11 14]

a given matrix. Using the relation X»*! = XX», derive recurrence relations for the
z4(n) and thus derive the analytic form of the zi(n).
8. Use these relations for the case where

T oz
X = [ xl x’] 71, Z3 real
—d42 1

r: 23
or X [ —% f:] Z1, I, complex

8. Use these relations to find explicit representations for the elements of X" where

A 10
X=[8 1] X=0x1]
0 0 A

7. Find all 2 X 2 matrix solutions of X* = X.
8. Find all 2 X 2 matrix solutions of X~ = X, where n is a positive integer.

12. Invariant Vectors. Proceeding as in Sec. 5 of Chap. 1, we see that

the problem of determining the maximum and minimum values of
N N

Q= z aiz.z; for x; satisfying the relation Z z; = 1 can be reduced to

i =1 i=]
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the problem of determining the values of A for which the linear homoge-
neous equations

2

N
2a.~,~x,-=xx.- i=1,2...,N (1)

[

possess nontrivial solutions.
In vector-matrix terms, we can write these equations in the form of a

single equation
Az = Az (2)

Written in this way, the equation has a very simple significance. We are
looking for those vectors z which are transformed into scalar multiples of
themselves by the matrix A. Thinking of = 28 representing a direction
indicated by the N direction numbers z,, z,, . . . , 2n, we are searching
for invariant directions.

We shall pursue this investigation vigorously in the following chapters.
In the meantime, we wish to introduce a small amount of further nota-
tion which will be useful to us in what follows.

18. Quadratic Forms as Inner Products. Let us now present another
justification of the notation we have introduced. The quadratic form
Q(u,y) = au? + 2buv + cv? can be written in the form

u(au + bv) + v(bu + cv) (€3]

Hence, if the vector z and the matrix A are defined by

- -5 @

we see that
Q(u,v) = (z,4x) 3
Similarly, given the N-dimensional quadratic form
N
Qz) = 2 ijTT; 4)

where without loss of generality we may take a; = a;;, we can write

Qz) = x.[i aux;] +$2[2 az,-x;] + - +x~[i aijj]
< 1

=1 i i=

= (z,4z) (6)

where z has the components z; and 4 = (a,;).




Vectors and Matrices 23

EXERCISES

1. Does (z,Az) = (z,Bz) for all  imply that A = B?
2. Under what conditions does (r,4z) = 0 for all 2?

14. The Transpose Matrix. Let us now define a most important
matrix function of A4, the transpose matrix, by means of the relation

A’ = (az) O

The rows of A’ are the columns of A and the rows of A are the columns of
A’

We are led to consider this new matrix in the following fashion. Con-
sider a set of vectors {z} and another set {y}, and form all inner products
(z,y) composed of one vector from one set and one from the other.

Suppose now that we transform the set {z} by means of matrix multi-
plication of A4, obtaining the new set {Az}. Forming inner products as
before, we obtain the set of values (Az,y).

Observe that

N

N
(Az,y) = n [z a,jx;] + ¥ [Z azm] + - +yn [i am'x;] 2

J=1 J=1 J=1

or, rearranging,

(Az,y) = = [i a.»:y.'] + z, [i a.-zy.-] + - Fax [i aeNye]
t=1 i=1 1=1
= (z,4y) (3

In other words, as far as the inner produect is concerned, the effect of
the transformation A on the set of 2’s is equivalent to the transformation
A’ on the set of y’s. We can then regard A’ as an induced transformation
or adjoint transformation. This simple, but powerful, idea pervades
much of classical and modern analysis.

18. Symmetric Matrices. From the foregoing discussion, it is plausible
that matrices satisfying the condition

A=A (1

should enjoy special properties and play an important role in the study
of quadratic forms. This is indeed the case. These matrices are called
symmetric, and are characterized by the condition that

aij = Qj; 2)

The first part of this volume will be devoted to a study of the basic
properties of this class of matrices for the case where the a; are real.
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Henceforth, we shall use the term ‘‘symmetric” to denote real sym-
metric. When there is any danger of confusion, we shall say real sym-
metric or complex symmetric, depending upon the type of matrix we are
considering.

EXERCISES

1. Show that (4’) = A.

2. Show that (A + B) = A’ + B', (AB) = B'A’, (A1dy ... A, = A" . ..
A4, (A% = (A

8. Show that AB is not necessarily symmetric if A and B are.

4. Show that A’BA is symmetric if B is symmetric.

8. Show that (4x,By) = (z,4'By).

8. Show that [A| = |4’}

7. Show that when we write @(z) = z a:jz:z;, there is no loss of generality in
=1
assuming that ay; = ay.

16. Hermitian Matrices. As we have mentioned above, the important
scalar function for complex vectors turns out not to be the usual inner
product, but the expression (z,7). If we note that

(Az,5) = (z,2) (1

where z = Ay, we see that the induced transformation is now 47, the
complex conjugate of the transform of 4. Matrices for which

A=7 @)

are called Hermitian, after the great French mathematician Charles
Hermite.

We shall write A* in place of A7 for simplicity of notation.

As we shall see, all the vital properties of symmetric matrices have
immediate analogues for Hermitian matrices. Furthermore, if we had
wished, we could have introduced a notation

[z9] = (z,0) @3)

in terms of which the properties of both types of matrices can be derived
simultaneously. There are advantages to both procedures, and the
reader can take his choice, once he has absorbed the basic techniques.

EXERCISES
1. A real Hermitian matrix is symmetric.

2 (A*)* = A, (AB)* = B*A* (A, 4y - - - A,)* = A} . . . A}A}
3. If A + {Bis Hermitian, 4,B real, then A’ = 4, B' = —B,
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17. Invariance of Distance—Orthogonal Matrices. Taking as our
guide the Euclidean measure of distance, we introduced the quantity
(z,z) 28 a measure of the magnitude of the real vector z.

It is a matter of some curiosity, and importance too as we shall see,
to determine the linear transformations y = Tx which leave (z,)
unchanged. In other words, we wish to determine T so that the equation

(z,2) = (Tz,Tx) (1)
is satisfied for all z. Since
(Tz,Tz) = (2,T'Tx) )
and T'T is symmetric, we see that (1) yields the relation
T =1 3)

A real matrix T possessing this property is called orthogonal,

EXERCISES

1, Show that T is orthogonal whenever T is.
2. Show that every 2 X 2 orthogonal matrix with determinant +1 can be written
in the form
[cos 6 —sing
sin 8 cos 0]
What is the geometrical significance of this result?
8. Show that the columns of T are orthogonal vectors.
4. Show that the product of two orthogonal matrices is again an orthogonal matrix
6. Show that the determinant of an orthogonal matrix is +1.
6. Let Tw be an orthogonal matrix of dimension N, and form the (N 4 1)-dimen.
sional matrix
10 +++ 0
0

Tryr=| | Ty
0
Show that Tw,: is orthogonal.
7. Show that if 7 is orthogonal, z = Ty implies that y = T’z.
8. If AB = BA, then TAT and TBT' commute if T is orthogonal.
18. Unitary Matrices. Since the appropriate measure for a complex
vector is (z,%), we see that the analogue of the invariance condition of

(17.3) is
T*T =1 (1)

Matrices possessing this property are called unitary, and play the same
role in the treatment of Hermitian matrices that orthogonal matrices
enjoy in the theory of symmetric matrices.
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EXERCISES

1. Show that T'* is unitary if T is.

8. Show that the product of two unitary matrices is again unitary.

8. Show that the determinant of a unitary matrix has absolute value 1.

4. Show that if T is unitary, x = Ty implies that y = T*z.

5. Obtain a result corresponding to that given in Exercise 2 of Sec. 17 for the ele-
ments of & 2 X 2 unitary matrix. (Analogous, but more complicated, results hold
for the representation of the elements of 3 X 3 orthogonal matrices in terms of
elliptic functions. See F. Caspary, Zur Theorie der Thetafunktionen mit zwei Argu-
menten, Kronecker J., XC1V, pp. 74-86; and F. Caspary, Sur les systémes ortho-
gonaux, formés par les fonctions théta, Comptes Rendus de Paris, CIV, pp. 490-493.)

8. Is a real unitary matrix orthogonal?

7. Is a complex orthogonal matrix unitary?

8. Every 3 X 3 orthogonal matrix can be represented as the product of

cosa sina O0||cosb 0 -—sinb 1 0 0
—sina cosa 0 0 1 0 0 cos ¢ 8in ¢
0 0 1]|sind 0 cosb]|0 —sinec cosc

What is the geometric origin of this result?

MISCELLANEOUS EXERCISES
1. Prove that

Qi Gy - ** GIN Ty
Q31 QG2 "~ * GwN T3

. = -Gz + - - (@ +ai)mz; + - )

GNy GNg * *° GNN 2N
zy x - a2y O

where aéi is the cofactor of a;; in |as;l.
2. Let I;; denote the matrix obtained by interchanging the ¢th and jth rows of the
unit matrix I. Prove that
Lip =1 Talyl i = I

8. Show that I;;4 is a matrix identical to 4 except that the ith and jth rows have
been interchanged, while AI;, yields the interchange of the ith and jth columns,

4. Let H;; denote the matrix whose ijth element is 4, and whose other elements are
zero. Show that (I + H;;)A yields a matrix identical with A except that the ith
row has been replaced by the ¢th row plus & times the jth row, while A(] + H,;)
has a similar effect upon columns,

8. Let H, denote the matrix equal to I except for the fact that the element one in
the rr position is equal to k. What are H.A and AH, equal to?

6. If Aisreal and A4’ =0, then 4 = 0,

7. If AA* =0, then 4 = 0.

8. Show that if T is orthogenal, its elements are uniformly bounded. Similarly,
if U is unitary, its elements are uniformly bounded in absolute value,

9. Let ¢; denote the determinant of the system of linear homogeneous equations
derived from the relations
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N N
[Zaa,-z,-][zag,-z;]=0 k=12 ...,N
j=1 j =1

j= j=

regarding the N(N + 1)/2 quantities z:z;, 7,7 = 1,2, . . . , N, as unknowns. Then
dy = |a;|V¥-D13 (Schifly).
10. Show lim A4n, lim B" may exist as n — ©, without lim (A4B)~ existing. It

n— o n— o n— o

is sufficient to take A and B two-dimensional.
N

11, Suppose that we are given the system of linear equations z aiiz; = b,
)=1
t=1,2 ..., N. Ifitis possible to obtain the equations z; = ¢;, 2, = ¢3, . . . ,
Zy = cy, by forming linear combinations of the given equations, then these equations
yield a solution of the given equations, and the only solution (R. M. Robinson).
12. Introduce the Jacobi bracket symbol {4,B] = AB —~ BA, the commutator of A
and B. Show, by direct calculation, that

[A,[B,C]] + [B![C)A” + [C)[A!B" =0

18. Let r, = i/ be an irreducible root of unity, and let ry = e3*itin, k =1, 2,
.+.,n —1 Consider the matrix

11 vee 1
L rg o ot
T =
boray o+ o0 mag?
n—~1 n—1
Show that T/n!é is unitary. Hence, if 2, = E edrikilng . then y, = '-ll z g~ ¥mikiing
i=0 j=0

n—1 n—1
and Z Jzel* = n Z Jyslt. This transformation is called a finite Fourier transform.
k=0 k=0

14. Suppose that

N N N N
5 = 5 (v {5
=1 k=1 s=k t=Fk
N
with by = di = 1for all k. Then la;;| = [] ex. See J. L. Burchnall.t
k=1

16. Consider the Gauss transform B = (b;;) of the matrix 4 = (ayy),
b = daai, b = an~YHanas — anan), k>1
let Ay = (au), 1:,] = 2, co o N Show that

IN = B| = antAA — Aul| — N — A]]
(D. M. Kotelyanskir)

1 J. L. Burchnall, Proc. Edinburgh Math. Soc., (2}, vol. 9, pp. 100-104, 1954.
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16. S8how that the matrices

1 ay b] 1 b 31 —b)
4=]101 0 B=|0 1 0
00 1 0 0 1

satisfy the relation AB = I.
17. Show that

rr Y1 %t
21 Ty Y| = @+ y F2) @+ ey + w3n) (@ + Wty + w2i)
hh 22 =

= ) 4y + 20 - 3Ty

where w is & cube root of unity.

18. Hence, show that if Q(x) = z,? + ! + 23 — 327274, then Q(x)Q(y) = Q(2),
where z is a bilinear form in the z; and y;, that is, 2; = Zg;;x;y:, where the coefficients
aij» are independent of the x; and y;.

19. Show that

1 r: Zs Ty
—~23 T —% T3 3
= (21} 4 23* + zs* + 23)?
-2 s b 3] s ( + )
bt 71 Ly —% 21

and thus that
(2 422 + 22 + 2 + 0’ Fyt )t at Lt + o2

where the z; are bilinear forms in the z; and y;. It was shown by Hurwitz that a
product of N squares multiplied by a product of N squares is a product of N squares
in the above sense, only when N = 1, 2, 4, 8; see A, Hurwitz,! For an exposition of
the theory of reproducing forms, see C, C. MacDuffee.??

20. Prove that a matrix A whose elements are given by the relations

a = (—1)i (J' - 1) .
i-1) *+<J

= (—1)i-? i=j
=0 i>j

satisfies the relation A% = I. Here (2) is the binomial coefficient, nl/kl(n — k)1

21, Let y; = yi(z:xs, . . . ,z~) be a set of N functionsof thex;, 1 = 1,2, . . . , N.
The matrix J = J(y,2) = (dy:/dz;) is called the Jacobian matrix and its determinant
the Jacobian of the transformation. Show that

J(zry)l’(y;.z) = J(z;z)

22. Consider the relation between the N? variables y;; and the N? variables z;;
given by ¥ = AXB, where A and B are constant matrices. Show that |J(Y,X)| =
|4 ¥|BY.

! A, Hurwitz, Uber die Komposition der quadratischen Formen von beliebig vielen
Variablen, Math. Werke, bd 11, Basel, 1933, pp. 565571,

1C. C. MacDuffee, On the Composition of Algebraic Forms of Higher Degree,
Bull. Amer, Math, Soc., vol. 51 (1945), pp. 198-211.

!J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Hamb., vol.
1 (1921), pp. 1-14,
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N
28. If Y = XX’, where X is triangular, then |J(¥,X)| = 2¥ n TN,
i1

24. Show that the problem of determining the maximum of the function (z,Az) —
2(z,b) leads to the vector equation Az = b.

26. Similarly, show that the problem of minimizing (»,Bx) + 2(z,4y) + (y,By) ~
2(a,x) — 2(b,y) over ali z and y leads to the simultaneous equations Bz + Ay = q,
A'z 4+ By = b.

26. Let f(x) be a function of the variable z which assumes only two values, z = 0,
z = 1, Show that f(x) may be written in the form a + bz, where a = f(0), b =
1(1) — £(0).

27. Let g(z) be a function of the same type, which itself assumes only two values
0 or 1. Then f(g(x)) = ay 4 byx. Show that a, and b, are linear combinations of
a and b, and thus that the effect of replacing z by g(z) is equivalent to a matrix trans-
formation of the vector whose components are a and b.

28. Let f(z1,%5) be a function of the two variables z, and z, each of which assumes
only the values 0 and 1. Show that we may write f(z1,22) = a1 + asx1 + a2 + a£:12s.

29. Let g1(2,73), g3(1,23) be functions of the same type, each of which itself assumes
only two values, 0 or 1. Then if we write

f(g’rg’) = a’] + a'gzl + a;z: + a'.zlz,

we have a matrix transformation

’

a, az
’

a as
=M

ay as
[

a, ay

For the case where gi(21,23) = 2123, g2(21,22) = z1(1 — =), evaluate M.

80. Generalize the foregoing results to the case where we have a function of N
variables, f(;,zs, . . . ,Zn), and to the case where the z: can assume any of a given
finite set of values.

(The foregoing results are useful in the study of various types of logical nets; see,
for example, R. Bellman, J. Holland, and R. Kalaba, Dynamic Programming and the
Synthesis of Logical Nets, J. Assoc. Comp. Mach., 1959.)

81. If A is a given 2 X 2 matrix and X an unknown 2 X 2 matrix, show that the
equation AX — XA = [ has no solution.

82. Show that the same result holds for the case where 4 and X are N X N matrices.

83. Consider the relation between the N(N 4 1)/2 variables y;; and the N(N + 1)/2
variables zi; given by Y = AXA’, where X and Y are symmetric. Show that
[J(Y,X)| = |]A|¥*), Two semiexpository papers discussing matters of this nature
have been written by W. L. Deemer and I. Olkin.!

84. Construct a 4 X 4 symmetric orthogonal matrix whose elements are *1.
This question, and extensions, is of interest in connection with Hadamard’s inequality,
see Sec. 7 of Chap. 8, and (amazingly!), in connection with the design of experimenta.
See R. E. A, C. Paley? and R, L. Plackett and J, P, Burman.?

1 W. L. Deemer and I. Olkin, Jacobians of Matrix Transformations Useful in Multi-
variate Analysis, Biometrika, vol. 38, pp. 345-367, 1951.

I. Okkin, Note on ‘Jacobians of Matrix Transformations Useful in Multivariate
Analysis,”’ Biometrika, vol. 40, pp. 43-46, 1953.

tR. E. A. C. Paley, On Orthogonal Matrices, J. Math. and Physics, vol. 12, pp.
311-320, 1933.

$ R. L. Plackett and J. P. Burman, The Design of Optimum Multifactorial Experi-
ments, Biometrika, vol. 33, pp. 305-325, 1946.
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G. A. Birkhoff and 8. Maclane, Survey of Modern Algebra, The
Macmillan Company, New York, 1958.
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§14. In the case of more general transformations or operators, A’ is
often called the adjoint transformation or operator. The reason for its
importance resides in the fact that occasionally the induced transforma-
tion may be simpler to study than the original transformation. Further-
more, in many cases, certain properties of 4 are only simply expressed
when stated in terms of A’.

In our discussion of Markoff matrices in Chap. 14, we shall see an
example of this.

§16. The notation H* for H’ appears to be due to Ostrowski:

A. Ostrowski, Uber die Existenz einer endlichen Basis bei gewissen
Funktionensystemen, Math. Ann., vol. 78, pp. 94-119, 1917,

For an interesting geometric interpretation of the Jacobi bracket
identity of Exercise 12 in the Miscellaneous Exercises, see
W. A. Hoffman, Q. Appl. Math., 1968,
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number of multiplications required for matrix multiplication. See

8. Winograd, The Number of Multiplications Involved in Computing
Certain Functions, Proc. IFIP Congress, 1968.

For some extensions of scalar number theory, see

F. A. Ficken, Rosser’s Generalization of the Euclidean Algorithm,
Duke Math. J., vol. 10, pp. 355-379, 1943.

A paper of importance is
M. R. Hestenes, A Ternary Algebra with Applications to Matrices

and Linear Transformations, Archive Rat. Mech. Anal., vol. 11, pp.
138-194, 1962,
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Diagonalization and Canonical Forms
for Symmetric Matrices

1. Recapitulation. Qur discussion of the problem of determining the
N

stationary values of the quadratic form Q(z) = z a;;zx; on the sphere
Sl
224224+ - - - 4 252 =1 led us to the problem of finding nontrivial
solutions of the linear homogeneous equations
N
2m;x;=kx,~ 'i=l,2,...,N (l)
s=1

We interrupted our story at this point to introduce vector-matrix
notation, stating in extenuation of our excursion that this tool would
permit us to treat this and related questions in a simple and elegant
fashion.

Observe that the condition of symmetry a; = a;; is automatically satis-
fied in (1) in view of the origins of these equations. This simple but
significant property will permit us to deduce a great deal of information
concerning the nature of the solutions. On the basis of this knowledge,
we shall transform @(z) into a simpler form which plays a paramount role
in the higher theory of matrices and quadratic forms.

Now to resume our story!

2. The Solution of Linear Homogeneous Equations. We require the
following fundamental result.

Lemma. A necessary and sufficient condilion that the linear system

N
Zb,-,x,-=0 i=12...,N )
i=1

possess a nontrivial solution vs that we have the determinantal relation

bl =0 @)
32
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As usual, by “nontrivial”’ we mean that at least one z; is nonzero.

This result is actually a special case of a more general result concerning
linear systems in which the number of equations is not necessarily equal
to the number of variables, a matter which is discussed in Appendix A.
Here, however, we shall give a simple inductive proof which establishes
all that we need.

Proof of Lemma. The necessity is clear. If |b;| #¢ 0, we can solve by
Cramer’s rule, obtaining thereby the unique solutionz, = z; = - -+ =0,

Let us concentrate then on the sufficiency. It is clear that the result is
true for N = 1. Let us then see if we can establish its truth for N,
assuming its validity for ¥ — 1. Since at least one of the b;; is nonzero,
or else the result is trivially true, assume that one of the elements in the
first row is nonzero, and then, without loss of generality, that this element
is b“.

Turning to the linear system in (1), let us eliminate z, between the first
and second equations, the first and third, and so on. The resulting
system has the form

(bzz _ bgﬁn) T2+ -+ (bzzv - bz(;?:zv) zy =0

&)

(sz - bzszn) Zo4 -+ (bNN - bzvabm) =0
11 11
Let us obtain a relation between the determinant of this system and the
original N X N determinant, |b,;|, in the following way.
Subtracting bs;/b, times the first row of |b;;| from the second, bs, /by
times the first row from the third row and so on, we obtain the relation

bu b - - b bun ca

ba b - b |=]|0 (bn - b_’b.'ﬁ?) R (b:N - bz;)bm)
1 "

| | | . baibie bribiy

R

4

Hence, the determinant of (N — 1)-dimensional system in (3) is zero,
since by assumption by, # 0 and |b;;| = 0. From our inductive hypothe-
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sis it follows that there exists a nontrivial solution of (3), zs, 23, . . . , 2n.
Setting
N
2= = ) bus/bu (5)
i=2
we obtain, thereby, the desired nontrivial solution of (1), 1, 2, . . . , zw.
EXERCISE

1. Show that if A is real, the equation Az = 0 always possesses a real nontrivial
solution if it possesses any nontrivial solution.

8. Characteristic Roots and Vectors. Setting z equal to the vector
whose components are z; and A = (a;;), we may write (1.1) in the form

Az = )z 1

Referring to the lemma of Sec. 2, we know that a necessary and suf-
ficient condition that there exist a nontrivial vector z satisfying this
equation is that \ be a root of the determinantal equation

oz — Nyl = 0 @)
or, as we shall usually write,
[A -} =0 3)

This equation is called the characteristic equation of A. As a poly-
nomial equation in ), it possesses N roots, distinct or not, which are called
the characteristic roots or characleristic values. If the roots are distinct,
we shall occasionally use the term simple, as opposed to multiple.

The hybrid word eigenvalue appears with great frequency in the
literature, a bilingual compromise between the German word ‘‘Eigen-
werte’’ and the English expression given above. Despite its ugliness,
it seems to be too firmly entrenched to dislodge.

Associated with each distinct characteristic value A, there is a character-
i8tic vector, determined up to a scalar multiple. This characteristic vector
may be found via the inductive route sketched in Sec. 2, or following the
path traced in Appendix A. Neither of these is particularly attractive
for large values of ¥, since they involve a large number of arithmetic
operations. In actuality, there are no easy methods for obtaining the
characteristic roots and characteristic vectors of matrices of large
dimension.

As stated in the Preface, we have deliberately avoided in this volume
any references to computational techniques which can be employed to
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determine numerical values for characteristic roots and vectors.

If A is a multiple root, there may or may not be an equal number of
associated characteristic vectors if A is an arbitrary square matrix.
These matters will be discussed in the second part of the book, devoted to
the study of general, not necessarily symmetric, matrices.

For the case of symmetric matrices, multiple roots cause a certain
amount of inconvenience, but nothing of any moment. We will show
that a real symmetric matrix of order N has N distinct characteristic
vectors.

EXERCISES

1. 4 and A4’ have the same characteristic values.

2 T'AT — M = T'(A — \I)T if T is orthogonal. Hence, 4 and T'AT have the
same characteristic values if 7 is orthogonal.

8. A and T*AT have the same characteristic values if T is unitary.

4. SAT and A have the same characteristic values if ST = I.

8. Show by direct calculation for A and B, 2 X 2 matrices, that AB and BA have
the same characteristic equation,

8. Does the result hold generally?

7. Show that any scalar multiple apart from zero of a characteristic vector is also
a characteristic vector. Hence, show that we can always choose a characteristic
vector z so that (z,2) = 1,

8. Show, by considering 2 X 2 matrices, that the characteristic roots of A + B
cannot be obtained in general 2s sums of characteristic roots of A and of B.

9. Show that a similar comment is true for the characteristic roots of AB.

10. For the 2 X 2 case, obtain the relation between the characteristic roots of 4
and those of A?.

11. Does a corresponding relation hold for the characteristic roots of 4 and A"

forn =3,4,...7

4. Two Fundamental Properties of Symmetric Matrices. Let us now
give the simple proofs of the two fundamental results upon which the
entire analysis of real symmetric matrices hinges.

Although we are interested only in symmetric matrices whose elements
are real, we shall ingert the word ‘“real” here and there in order to
emphasize this fact and prevent any possible confusion.

Theorem 1. The characteristic roots of a real symmelric malriz are real.

Proof. Assume the contrary. Since A is a real matrix, it follows from
the characteristic equation [4A — M| = 0 that the conjugate of any com-
plex characteristic root \ is also a characteristic root. We obtain this
result and further information from the fact that if the equation

Az = Mz ¢}
holds, then the relation
A% = XE (2)
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is also valid. From these equations, we obtain the further relations

(2,42) = \(2,2)
(@.A%) = X(z,%) ()

Since A is symmetric, which implies that (%, 4z) = (4%,2) = (z,4%),
the foregoing relations yield

0= (- X(z32), 4

whence X = X, a contradiction.

This means that the characteristic vectors of a real symmetric matrix A
can always be taken to be real, and we shall consistently do this.

The second result is:

Theorem 2. Characteristic vectors associated with distinct character-
istic roots of a real symmetric malriz A are orthogonal.

Proof. From
Az = Az
Ay = py ®)
N # u, we obtain
(y,Az) = My,z) ©6)
(z,4y) = p(z,¥)
Since (z,4Ay) = (Az,y) = (y,Az), subtraction yields
0= (A - “')(xyy) (7)

whence (z,y) = 0.
This result is of basic importance. Its generalization to more general
operators is one of the cornerstones of classical analysis.

EXERCISES

1. A characteristic vector cannot be associated with two distinct characteristic
values.

2. Show by means of a 2 X 2 matrix, however, that two distinct vectors can be
associated with the same characteristic root.

8. Show by means of an example that there exist 2 X 2 symmetric matrices 4 and
B with the property that |4 — AB| is identically zero. Hence, under what conditions
on B can we assert that all roots of |[A — AB| = 0 are real?

4. Show that if A and B are real symmetric matrices, and if B is positive definite,
the roots of {4 — AB] = 0 are all real.

5. Show that the characteristic roots of a Hermitian matrix are real and that the
characteristic vectors corresponding to distinct characteristic roots are orthogonal
using the generalized inner product (z,7).

8. Let the elements a;; of A depend upon a parameter . Show that the derivatives
of |A] with respect to ¢ can be written as the sum of N determinants, where the kth
determinant is obtained by differentiating the elements of the kth row and leaving
the others unaltered.
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N

7. Show that the derivative of {4 — AI| with respect to Aisequalto — 2 |Ax — NI,
kw1

where A;is the (N — 1) X (N — 1) matrix obtained from A by striking out the kth

row and column.

8. From this, conclude that if ) is a simple root of 4, then at least one of the deter-
minants [Ax — M| is nonzero.

9. Use this result to show that if \ is a simple root of A4, a characteristic vector =
associated with A can always be taken to be a vector whose components are poly-
nomials in A and the elements of A.

6. Reduction to Diagonal Form—Distinct Characteristic Roots. We
can obtain an important result quite painlessly at this juncture, if we
agree to make the simplifying assumption that A has distinct character-
isticroots A, Az, . . . , Av. Let z!, 22, . . ., z¥ be an associated set of
characteristic vectors, normalized by the condition that

(ziz) =1 i=42 ...,N 1

Consider the matrix T formed upon using the vectors z¢ as columns.
Schematically,

T = (z,22, . .. ,a") @)

Then 7" is the matrix obtained using the ' as rows,

.’El
xz
T = 3
xN
Since
T'T = ((,2) = (&) €))

(in view of the orthogonality of the 2 as characteristic vectors associated
with distinet characteristic roots of the symmetric matrix A), we see
that T is an orthogonal matrix.

We now assert that the product AT has the simple form

AT = (\zhez?, . . . yab) (5)

by which we mean that the matrix AT has as its tth column the vector
)\,-x‘.
It follows that
T'AT = (\(242%)) = (\by) (6)
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(recalling once again the orthogonality of the z),

R 7
0
A2
0
_ v
The matrix on the right-hand side has as its main diagonal the charac-
teristic values Ay, A3, . . . , Aw, and zeros every place else. A matrix of

this type is, as earlier noted, called a diagonal matrix.
Multiplying on the right by 7" and on the left by T, and using the fact
that 7T’ = I, we obtain the important result

r~. -

M

As
A=T | T (N

AN

This process is called reduction to diagonal form. As we shall see, this
representation plays a fundamental role in the theory of symmetric
matrices. Let us use the notation

p- —

M

A2
A= ’ 8)

Av_|

EXERCISES

1. Show that A% = (\*3;;), and that A* = TA¥T fork =1,2, ....
2. Show that if A has distinet characteristic roots, then 4 satisfies its own charac-
teristic equation. This is a particular case of a more general result we shall establish

later on.
8. If A has distinet characteristic roots, obtain the set of characteristic vectors

associated with the characteristic roots of A%, k = 2,3, . . ..
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6. Reduction of Quadratic Forms to Canonical Form. Let us now
show that this matrix transformation leads to an important transforma-
tion of Q(z). Setting z = Ty, where T is as defined in (2) of Sec. 5,
we have

(z,Az) = (Ty,ATy) = (y,T'ATy) = (y,Ay) (H
or the fundamental relation
N N
AT = ) Ay? (2
t:z=1 ' ’ ‘21

Bince T is orthogonal, we see that x = Ty implies that
T'z =T'Ty =y (3)

Hence to each value of z corresponds precisely one value of y and
conversely.

We thus obtain the exceedingly useful result that the set of values
assumed by Q(z) on the sphere (z,x) = 1 isidentical with the set of values
assumed by (y,Ay) on the sphere (y,y) = 1.

So far we have only established this for the case where the A, are all
distinct. As we shall see in Chap. 4, it is true in general, constituting the
foundation stone of the theory of quadratic forms.

EXERCISES

1. Let A have distinct characteristic roots which are all positive. Use the preceding
result to compute the volume of the N-dimensional ellipsoid (z,4zx) =

2. Prove along the preceding lines that the characteristic roots of Hermitian
matrices are real and that characteristic vectors associated with distinct character-
istic roots are orthogonal in terms of the notation [z,y] of Sec. 16 of Chap. 2.

8. Show that if the characteristic roots of a Hermitian matrix A are distinct, we
can find a unitary matrix T such that A = TAT*. This again is a particular case of a
more general result we shall prove in the following chapter.

4. Let A be a real matrix with the property that 4’ = —~A4, & skew-symmelric
matrix. Show that the characteristic roots are either zero or pure imaginary.

8. Let T be an orthogonal matrix. Show that all characteristic roots have absolute
value one.

8. Let T be a unitary matrix. Show that all characteristic roots have absolute
value one.

7. Suppose that we attempt to obtain the representation of (5.2) under no restric-
tion on the characteristic roots of the symmetric matrix 4 in the following way.
To begin with, we assert that we can always find a symmetric matrix B, with elements
arbitrarily small, possessing the property that A + B has simple characteristic roots.
We do not dwell upon this point since the proof is a bit more complicated than might
be suspected ; see Sec. 16 of Chap. 11. Let {u:) be the characteristic roots of A 4 B
Then, as we know, there exists an orthogonal matrix 8 such that
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m
0

K
A+B=8 . s

uN_]

Since 8 is an orthogonal matrix, its elements are uniformly bounded. Let {Ba] be
a sequence of matrices approaching 0 such that the corresponding sequence of orthog-
onal matrices {Sa} converges. The limit matrix must then be an orthogonal matrix,
say T. Since lim g = A, we have
Nt @
lim '3
n—w
A=1lim (A+ B, = lim 8§, . lim &S
n—sw n—s o , n—w
lim MN

R—b 0

Since this proof relies upon a number of analytic concepts which we do not wish to
mtroduce until much later, we have not put it into the text. It is an illustration of a
quite useful metamathematical principle that results valid for general real symmetric
matrices can always be established by first considering matrices with distinct charac-
teristic roots and then passing to the limit.

7. Positive Definite Quadratic Forms and Matrices. In Sec. 9 of
Chap. 1, we introduced the concept of a positive definite quadratic
form in two variables, and the allied concepts of positive indefinite or
non-negative definite. Let us now extend this to N-dimensional quad-
ratic forms. If A = (a,) is a real symmetric matrix, and

N
Qn(z) = Z aigxs > 0

=1

for all real nontrivial z,, we shall say that Qx(x) is positive definite and that
A is positive definite. If Qn(z) > 0, we shall say that Qu(z) and A are
positive indefinile.

N
Similarly, if H is & Hermitian form and Py(z) = ) hszi; > 0 for
y=1
all complex nontrivial z;, we shall say that Py(z) and H are positive
definite.

EXERCISES

1. If A is a symmetric matrix with distinct characteristic roots, obtain a set of
necessary and sufficient conditions that A be positive definite,

2. There exists a scalar ¢; such that A + ¢,] is positive definite, given any sym-
metric matrix 4.
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8. Show that we can write A in the form
N
A= z MNE;
im1
where the E; are non-negative definite matrices. Then
N
Ak = z A*E;
tm]

fork=12 ....

m
4. If p(\) is a polynomial in \ with scalar coefficients, p(\) = Z cirk, let p(A)
k=0
m
denote the matrix p(4) = Z czAk  Show that p(4) = 2 p(N) E;.
k=0 T=1

MISCELLANEOUS EXERCISES

1. Let A and B be two symmetric matrices. Then the roots of |4 — AB| = 0 are
all real if B is positive definite. What can be said of the vectors satisfying the relations
Az = MBzx?

2. Every matrix is uniquely expressible in the form A = H + S, where H is
Hermitian and S is skew-Hermitian, that is, S* = —8.

8. As an extension of Theorem 1, show that if \ is a characteristic root of a real
matrix 4, then {Im (A\)| < d(N(N — 1)/2)}4, where

d = max |a;; — a;]/2 (I. Bendizson)
1<i <N

4. Generally, let A be complex; then if
di = maxfai]  di = max Jai; + a5l/2
8] . iJ
d; = Mmax |G¢i - Gf¢|/2
we have
I\ £Ndy  |Re (A\)] £ Ndy |Im ()] < Nd,t

8. Show that for any complex matrix A, we have the inequalities

N N
Zm P Y oyl
§=1 =1

N
[Re (A)[? < Z l(a; + ape) /202

i=1 ty=1
N N
Zum Ml < Z lass — a /2t (L. Schur)
§=1 f5=1

t Far more sophisticated results are available. See the papers by A. Brauer in
Duke Math. J., 1946, 1947, 1948, where further references are given. See also W. V.,
Parker, Characteristic Roots and Ficlds of Value of a Matrix, Bull. Am. Math. Soc.,
vol. 67, pp. 103-108, 1951.
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6. So far, we have not dismissed the possibility that a characteristic root may have
several associated characteristic vectors, not all multiples of a particular character-
istic vector. As we shall see, this can happen if A has multiple characteristic roots.
For the case of distinct characteristic roots, this cannot occur. Although the sim-
plest proof uses concepts of the succeeding chapter, consider & proof along the fol-
lowing lines:

(@) Let z! and y be two characteristic vectors associated with \; and suppose that
y # ¢,z! for any scalar ¢;. Then 2! and 2z = y — z¥(zY,y)/(z},z!) are characteristic
‘vectors and z! and z are orthogonal.

(b) Let 2! be the normalized multiple of 2. Then

2z 2 Ny
S =
is an orthogonal transformation.
(¢) A = SDS’, where
=y -
M 0
D = As
(1]
L Ay

(d) It follows that the transformation z = Sy changes (z,4z) into (y,Dy).
(¢) Assume that A is positive definite (if not, consider A + ¢;), then, on one hand,
the volume of the ellipsoid (z,4z) = 1 is equal to the volume of the ellipsoid

Ay Ayt + - - Mvyat =,
and, on the other hand, from what has just preceded, is equal to the volume of
My + Ayt + - - gt =1

This is a contradiction if A, = A,
Bibliography
§2. This proof is taken from the book by L. Mirsky,

L. Mirsky, Introduction to Linear Algebra, Oxford University Press,
New York, 1955.
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§8. The term ‘““latent root’’ for characteristic value is due to Sylvester.
For the reason, and full quotation, see

N. Dunford and J. T. Schwartz, Linear Operators, part I, Inter-
science Publishers, New York, 1958, pp. 606—607.

The term “spectrum’ for set of characteristic values is due to Hilbert.

§6. Throughout the volume we shall use this device of examining the
case of distinct characteristic roots before treating the general case. In
many cases, we can employ continuity techniques to deduce the general
case from the special case, as in Exercise 7, Sec. 6. Apart from the fact
that the method must be used with care, since occasionally there is a
vast difference between the behaviors of the two types of matrices, we
have not emphasized the method because of its occasional dependence
upon quite sophisticated analysis.

It is, however, a most powerful technique, and one that is well worth
acquiring,
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Reduction of General Symmetric Malrices
to Diagonal Form

1. Introduction. In this chapter, we wish to demonstrate that the
results obtained in Chap. 3 under the assumption of simple characteristic
roots are actually valid for general symmetric matrices. The proof we
will present will afford us excellent motivation for discussing the useful
concept of linear dependence and for demonstrating the Gram-Schmidt
orthogonalization technique.

Along the way we will have opportunities to discuss some other inter-
esting techniques, and finally, to illustrate the inductive method for deal-
ing with matrices of arbitrary order.

2. Linear Dependence. Let z!, 22, . . ., z* be a set of & N-dimen-

sional vectors. If a set of scalars, ¢y, ¢z, . . . , ¢, at least one of which is
nonzero, exists with the property that
ar! + et + - - - 4 ok = 1

where 0 represents the null vector, we say that the vectors are linearly
dependent. If no such set of scalars exist, we say that the vectors are
linearly independent.

Referring to the results concerning linear systems established in
Appendix A, we see that this concept is only of interest if k¥ < N, since
any k vectors, where k > N, are related by a relation of the type given
in (1).

EXERCISES

1. Show that any set of mutually orthogonal nontrivial vectors is linearly inde-
pendent.

2. Given any nontrivial vector in N-dimensional space, we can always find N — 1
vectors which together with the given N-dimensional vector constitute a linearly
independent set.

8. Gram-Schmidt Orthogonalization. Let z!, 22, . . . , 2V be a set of
N real linearly independent N-dimensional vectors. We wish to show
44
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that we can form suitable linear combinations of these base vectors which
will constitute a set of mutually orthogonal vectors.
The procedure we follow is inductive. We begin by defining two new
vectors as follows.
yl =gt
y? =2 + ana’ (1)

where a4, is a scalar to be determined by the condition that »* and y* are
orthogonal. The relation

W) = (@', 22 +auz') =0 (2)

ay = —(z',2%)/(z',x') (3)

yields the value

Since the set of ¢ is by assumption linearly independent, we cannot have
2! equal to the null vector, and thus (z},2') is not equal to zero.
Let us next set
Yy = 2 + 09,2 + aqu? 4)

where now the two scalar coeflicients a., and a,; are to be determined by
the conditions of orthogonality

W) =0 (¥y) =0 %

These conditions are easier to employ if we note that (1) shows that the
equation in (5) is equivalent to the relations

¥e) =0 () =0 (6)
These equations reduce to the simultaneous equations

(x%x)) + an(r',x) + az(z22) =0 M
(%22 + an(r',x2?) + az(z?) =0

which we hope determine the unknown coefficients a;; and az.. We
can solve for these quantities, using Cramer’s rule, provided that the
determinant

_ | &) (zh2?)

D=1y @ia

®)

is not equal to zero.

To show that D; is not equal to zero, we can proceed as follows. If
D, = 0, we know from the lemma established in Sec. 2 of Chap. 3 there
are two scalars , and 8;, not both equal to zero, such that the linear
equations

ri(zhzt) + szl =0 )
ri(@',x?) + s1(z%2?) =0
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are satisfied. These equations may be written in the form

(z!, 1zt + 8129 =0

(z2, riet + 8122 = 0 (10)

Multiplying the first equation by r, and the second by s, and adding, we
obtain the resultant equation

(riet + 822, ri@t + 82?) =0 (11)

This equation, however, in view of our assumption of reality, can hold
only if rz! + 822 = 0, contradicting the assumed linear independence
of the z°. Hence D; » 0, and there is a unique solution for the quantities
Ga1 and Qas.

At the next step, we introduce the vector

Yt = 24 + anz! + a2:2? + agsx? (12)
As above, the conditions of mutual orthogonality yield the equations
W'Y = (¥42?) = (¥42") =0 (13)

which lead to the simultaneous equations
(z42) + an(x),x?) + as(2?, %) + asns(2’2) =0 1=123 (14)

We can solve for the coefficients asi, @32, and ass, provided that the

determinant
Dl = |(xi1xi)| i:j = lx 2: 3 (15)

is nonzero. The proof that D, is nonzero is precisely analogous to that
given above in the two-dimensional case. Hence, we may continue this
procedure, step by step, until we have obtained a complete set of vectors
{y*} which are mutually orthogonal.

These vectors can then be normalized by the condition (yiy’) = 1.
We then say they form an orthonormal set. The determinants D, are
called Gramians,

EXERCISES

1, Consider the interval [ —1,1] and define the inner product of two real functions
f(®) and g(t) in the following way:

o) = [ 1000 a

Let Py(t) = 34, and define the other elements of the sequence of real polynomials
{Pa(¢) } by the condition that Pa(t) is of degree n and (Pa,Pm) = 0, m # n, (PaP.) = 1.
Prove that we have (P,i™) =0, for 0 € m < n — 1, and construct the first few
members of the sequence in this way.
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8. With the same definition of an inner product as above, prove that

(@) a-ore) =0

0 <m <n -1, and thus express P, in terms of the expression (d%)n (1 —)m,
These polynomials are, apart from constant factors, the classical Legendre polynomials.
8. Consider the interval (0, ») and define the inner product (f,g) = ]; ® e~ (t)g(t) dt

for any two real polynomials f(t) and g(t). Let the sequence of polynomials {La(¢)}
be determined by the conditions Lo(t) = 1, La(f) is a polynomial of degree n, and
(La,Lm) = 0, n ¢ m, (Ln,L,) = 1. Prove that these conditions imply that (L.,t®) =
0,0 <m <n —1, and construct the first few terms of the sequence using these
relations.

4. Prove that (ef(d/dt)"(et"), t™) =0, 0 <m <n — 1, and thus express L, in
terms of ef(d/dt)"(e%"). These polynomials are apart from constant factors the

classical Laguerre polynomials,
8. Consider the interval (— =, «) and define the inner product

) = [ 7, oo a

for any two real polynomials f(f) and g(t). Let the sequence of polynomials {H,(t)}
be determined as follows. Ho(f) = 1, Hu({) is a polynomial of degree n, and (Hn, H,) =
0, m < n, (H,H,) = 1. Prove that (Hn,t") =0, 0 <m <n — 1, and construct
the first few terms of the sequence in this fashion.

6. Prove that (ef*(d/dt)"(e~*), t™) = 0,0 < m < n — 1 and hence express H, in
terms of e*(d/df)*(e~%"). These polynomials are apart from constant factors the
classical Hermite polynomials.

7. Show that given a real N-dimensional vector z!, normalized by the condition
that (z4,z') = 1, we can find (N — 1) additional vectors z3, z3% . . . , z¥ with the
property that the matrix T = (2!,2%, . . . ,2V) is orthogonal.

8. Obtain the analogue of the Gram-Schmidt method for complex vectors.

4. On the Positivity of the Di. All that was required in the foregoing
section on orthogonalization was the nonvanishing of the determinants
D.. Let us now show that a slight extension of the previous argument
will enable us to conclude that actually the D, are positive. The result
is not particularly important at this stage, but the method is an important
and occasionally useful one.

Consider the quadratic form

Quryuz, « o . ux) = (Wiz' + uax® + + -+ + w¥,
wa' 4wzt + ¢+ wat)

k
Y @ euy M
=1
where the u; are real quantities, and the z* as above constitute a system of
real linearly independent vectors.
In view of the linear independence of the vectors 2f, we see that @ > 0
for all nontrivial sets of values of the u;, Consequently, the result we
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wish to establish can be made a corollary of the more general result that
the determinant

D = |ay} @)
of any positive definite quadratic form
N
Q= z iUl 3)
=1

is positive. We shall show that this positivity is a simple consequence
of the fact that it is nonzero.

All this, as we shall see, can easily be derived from results we shall
obtain further on. It is, however, interesting and profitable to see the
depth of various results, and to note how far one can go by means of
fairly simple reasoning.

Let us begin by observing that D is never zero. For, if D = 0, there
is & nontrivial solution of the system of linear equations

N
za.-;u;=0 i=12...,N @

=1

From these equations, we conclude that

N N
Q=) w() aw)=0 ®

i=1 =1

a contradiction. This is essentially the same proof we used in Sec. 3.
The novelty arises in the proof that D is positive. Consider the family
of quadratie forms defined by the relation

N
PO =M@+ (=N ) (6)
=]

where \ is a scalar parameter ranging over the interval [0,1]. For all A

in this interval, it is clear that P()\) is positive for all nontrivial v, Con-

sequently, the determinant of the quadratic form P(}) is never zero.
For A = 0, the determinant has the simple form

1

1 =1 o)
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clearly positive. Since the determinant of P(\) is continuous in \ for
0 <) <1, and never zero in this range, it follows that positivity at
A = 0 implies positivity at A = 1, the desired result.

5. An Identity. An alternative method of establishing the positivity
of the D, when the vectors z* are linearly independent depends upon the
following identity, which we shall call upon again in a later chapter
devoted to inequalities.

Theorem 1. Letz',t = 1,2, . . . ,k, be a set of N-dimensional vectors,
N>k Then

x'_‘l x‘,'l P xikl 2
1 x'.‘z x'.'z e x'_kz
(25,2 s 2.k = 2 ) 1)
{¢}
Tk oz - ak

where the sum is over all sets of integers {4,} with 1 <41<4,< - -+ - <& <N.
Proof. Before presenting the proof, let us observe that the case k = 2
is the identity of Lagrange

N N N N
(2 (Do) -(Qow) =% ) Gui-sa @

1t is sufficient to consider the case & = 3 in order to indicate the method of
proof, and it is helpful to employ a less barbarous notation. We wish to
demonstrate that

N N N 2
z z? z ZYs z za; Ty B Tm
1=1 1=1 f=1
N N N 1
z Ty Y5t z Ys&s | = 3 E Ye Y1 Ym 3)
i=1 = i=1 T 1<kIm<N

N N

5: x,2, Z Yz Z 2, ) Zou im

Let us begin with the result

T & Ta| (T 32 F2. BT TaYe T2t T2+ Tnlm
Ye Yi Ym| = |2t tTalhn U2 0t Fyn® pm vzt ymea|  (4)
B 2 Zm Tz, 02 +Zm2m Yn2x F Y21t YmZm 22 +21° +2p?

which we obtain from the rule for multiplying determinants. The
lagt determinant may be written as the sum of three determinants, of
which the first is typical,
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T2 T + Tt TolYm T2 + T2t + T
e Yt Yt Un® Ya + Y2t Ymiem (6)
Tz Yatx + Y2t + Ym2m 2 + 2 4 2,0

Subtracting y:/z: times the first column from the second column, and
21/, times the first column from the third column, we are left with the
determinant

Tl T+ Tmlhm T2+ Tmlm

Tiye Wit + Ym? Yzt + Ymem (6)

T2e Yoo + Ymem 20+ 2wt

Writing this determinant as a sum of two determinants, of which the
following is typical, we are left with

o my T2+ Teie
Ty Y Yt + Ymim )]
Tk Y21 212 + zmz

and subtracting z;/y; times the second column from the third column, we
obtain the determinant
5 Ty Tmim
Ty Y' Ymem (8)
Ttk Yot Zm?

Summing over all k, I, and m, we obtain the left side of (3). Observing
that the above procedures reduce us to a determinant of the form given
in (8) in 3 X 2 ways, we see that a factor of 1/3! is required.

6. The Diagonalization of General Symmetric Matrices—Two Dimen-
sional. In order to show that a general real symmetric matrix can be
reduced to diagonal form by means of an orthogonal transformation, we
shall proceed inductively, considering the 2 X 2 case first.

Let
_|en @] _ja!
Ar = [au an] B [a’] M
be a symmetric matrix, and let \; and z! be an associated characteristic

root and characteristic vector. This statement is equivalent to the
relations

Az' = Mzt or (a',2') = Mz (a%z!) = \Zr2 @)

where z1; and z,; are the components of z!, which we take to be normal-
ized by the condition (z!,2') = 1.

As we know, we can form a 2 X 2 orthogonal matrix T, one of whose
columns is z!. Let the other column be designated by x2

We wish to show that

T,AT, = [3' g,] @3)
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where \; and ). are the two characteristic values of 4, which need not be
distinct. This, of course, constitutes the difficulty of the general case.
We already have a very simple proof for the case where the roots are
distinct.
Let us show first that
’ _ xl bl2

T, AT, = [0 b"J “)
where b and b, are a8 yet unknown parameters. The significant fact
is that the element below the main diagonal is zero. We have

' _ v | M0 (a',xz)
T,AT, = T, [ o (3t ®)
upon referring to the equationsin (2). Since T;T: = I, we obtain, upon
carrying through the multiplication,

Mz (@a) | [M bie
Ty [)\lxn (a%,z?) T |0 by (©)
where b,; and b,; are parameters whose value we shall determine below.

Let us begin with b,, and show that it has the value zero. This follows
from the fact that T; AT, is a symmetric matrix, for

(TLATY) = TLAN(T)Y = T,A'Ty = T,AT, )

Finally, let us show that bz, must be the other characteristic root of A.
This follows from the fact already noted that the characteristic roots of 4
are identical with the characteristic roots of T, AT.. Hence bz = Xa.

This completes the proof of the two-dimensional case. Not only is
this case essential for our induction, but it is valuable because it contains
in its treatment precisely the same ingredients we shall use for the general
case.

7. N-dimensional Case. Let us proceed inductively. Assume that
foreach k, k = 1,2, ..., N, we can determine an orthogonal matrix

T+ which reduces a real symmetric matrix 4 = (a;),¢,7 = 1,2, . . . , %,
to diagonal form,
L
0
A2
TLAT, = " M
0
i M.

The elements of the main diagonal \; must then be characteristic roots
of A. Under this assumption, which we know to be valid for N = 2,
let us show that the same reduction can be carried out for N + 1.
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Let

F'al

al

Any = (ay) = )

_aN+l_

and let \; and 2! be, respectively, an associated characteristic value and
normalized characteristic vector of Aw,:.

Proceeding as in the two-dimensional case, we form an orthogonal
matrix T'; whose first column is z!. Let the other columns be designated
as 23, 2%, . . ., 2¥*1 g0 that T has the form

T = (21,28, . .. 2N 3)

Then as before, the first step consists of showing that the matrix
TiAn41T: has the representation

A1 b b+ -0 by
0

TAxuTi=| | Ay @
Y .

where
a. The elements of the first column are all zero

except for the first which is \;

b. The quantities bla, bu, “ ey b will be (5)
determined below

c. The matrix Ay is an N X N matrix

Carrying out the multiplication, we have

"(al,xn) (al,xﬁ) e (al’xh’+l)
(at2") (a%z®) - - (a%2¥)

ATy = . .
(aN+l,xl) (aN+l’xl) e (aN+l,xN+l)
"'Mx“ (a',x’) e (al,xh'+l) (6)
AMiZ12 (a’,x’) P (a’,x"“)
 Mizive (aV+igd) . (a¥+1,gN+1) |




Reduction of General Symmetric Matrices 53
Since T, is an orthogonal matrix, we see that

AN by e bl.N+1
0

T;AN-HTI = (7)

AN
0
To determine the values of the quantities b,;, we use the fact that
T An41T) is symmetric. This shows that these quantities are zero and
simultaneously that the matrix Ay must be symmetric.

The result of all this is to establish the fact that there is an orthogonal
matrix T, with the property that

")‘l o0 -+ 0]
(]

T;AN+|T| = (8)

An

-

with Ay a symmetric matrix. L0

Finally, let us note that the characteristic roots of the matrix A5 must
be Az, As, . . . , AN41, the remaining N characteristic roots of the matrix
Any1.  This follows from what we have already observed concerning the
identity of the characteristic roots of An,1 and T14n.1 T, and the fact
that the characteristic equation of the matrix appearing on the right-
hand side of (7) has the form |\, — \| |[Ax — M| = 0.

Let us now employ our inductive hypothesis. Let T'v be an orthogonal
matrix which reduces Anx to diagonal form. Form the (¥ + 1)-dimen-
sional matrix 10 --. 0

0
SN+I = : TN (9)
0
which, as we know, is also orthogonal.
It is readily verified that B
1

Az
Sy (T AN TSN = - (10)

AN
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Since we may write
Var(TIAN TSN = (T1S841)' AN1(T1Sh41) (11)

we see that T Sy, is the required diagonalizing orthogonal matrix for
AN.'.X.

We have thus proved the following basic result.

Theorem 2. Let A be a real symmetric matriz. Then it may be trans-
formed into diagonal form by means of an orthogonal transformation,
which is to say, there is an orthogonal mairiz T such that

a 0
Az
T'AT = o (12)
| 0 A
where \; are the characteristic roots of A.
Equivalently,
N
(z,42) = z Ayt (13)
i=1
where y = T'z.
EXERCISE

1. What can be said if A is a complex symmetric matrix?

8. A Necessary and Sufficient Condition for Positive Definiteness.
The previous result immediately yields Theorem 3.

Theorem 3. A necessary and sufficient condition that A be positive
definile is that all the characteristic roots of A be positive.

Similarly, we see that a necessary and sufficient condition that 4 be
positive indefinite, or non-negative definite, is that all characteristic roots
of 4 be non-negative.

EXERCISES

1. A = BB’ is positive definite if B is real and |B| = 0.
2. H = CC* is positive definite if |C] »= 0.
8. If A is symmetric, then I 4 eA is positive definite if e is sufficiently small.

9, Characteristic Vectors Associated with Multiple Characteristic
Roots. If the characteristic roots of A4 are distinct, it follows from the
orthogonality of the associated characteristic vectors that these vectors
are linearly independent.

Let us now examine the general case. Suppose that )\ is a root of
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multiplicity k. Is it true that there exist k linearly independent charac-
teristic vectors with A\, as the associated characteristic root? If so, is it
true that every characteristic vector associated with ), is a linear com-
bination of these k vectors?

To answer the question, let us refer to the representation in (7.12), and
suppose that A==+ = )\k; but that N #F N for

i=k+1 ..., N
Retracing our steps and writing

[\ 0
Ae

AT =T . 1)

| 0 Av_]
it follows that the jth column of T is a characteristic vector of 4 with the
characteristic value A\, Since T is orthogonal, its columns are linearly
independent. Hence, if \, is a root of multiplicity k, it possesses k
linearly independent characteristic vectors.

It remains to show that any other characteristic vector y associated
with A, is a linear combination of these k& vectors. Let y be written as a
linear combination of the N columns of T,

N
y = z o’ (2)

t=1

The coefficients ¢; can be determined by Cramer’s rule since the deter-
minant is nonzero as a consequence of the linear independence of the z*.

Since characteristic vectors associated with distinct characteristic
roots are orthogonal, we see that ¢; = 0 unless @ is a characteristic vector
associated with A,. This shows that y is a linear combination of the
characteristic vectors associated with )\, obtained from the columns of 7.

10. The Cayley-Hamilton Theorem for Symmetric Matrices. From
(7.12), we see that for any polynomial p(\) we have the relation

p(\1) ]

p(\2)

p(4) =T T 1

L p(\w)_
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If, in particular, we choose p(\) = |4 — M|, the characteristic poly-
nomial of A, we see that p(A) = 0. This furnishes a proof of the follow-
ing special case of a famous result of Cayley and Hamilton.
Theorem 4. Every symmetric matriz satisfies its characteristic equation.
As we shall see subsequently, this result can be extended to arbitrary
square matrices.

EXERCISE

1. Use the method of continuity to derive the Cayley-Hamilton theorem for gen-
eral symmetric matrices from the result for symmetric matrices for simple roots.

11. Simultaneous Reduction to Diagonal Form, Having seen that we
can reduce a real symmetric matrix to diagonal form by means of an
orthogonal transformation, it is natural to ask whether or not we can
simultaneously reduce two real symmetric matrices to diagonal form.
The answer is given by the following result.

Theorem b. A necessary and sufficient condition that there exist an
orthogonal matriz T with the property that
a - " -
0 0
A2 M“2
T'AT = T'BT = . (1)
0 0
5 Av_| | uy |

is that A and B commule.

Proof. The proof of the sufficiency is quite simple if either 4 or B
has distinct characteristic roots. Assume that A has distinct character~
istic roots. Then from

Az =\ 2)
we obtain
A(Bz) = B(Az) = B(\z) = \(Bz) 3)

From this we see that Bz is a characteristic vector assoriated with
M whenever z is. Since the characteristic roots are assumed distinct,
any two characteristic vectors associated with the same characteristic
root must be proportional. Hence we have

i=12 ... ,N 4)

where the u; are scalars—which must then be the characteristic roots of
the matrix B. We see then that 4 and B have the same characteristic
vectors, z!, 23, . . ., zV.

Bzt = pgt
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T can be taken to be
= (z4,2%, ... V) (5)
Consider now the general case where )\, is a characteristic root of
multiplicity ¥ with associated characteristic vectors z!, z%, . . ., z*
Then from (3) we can only conclude that
k
Br=) e i=12 ...,k 6)
s=1
Let us, however, see whether we can form suitable linear combinations of
the z* which will be characteristic vectors of B. We note, to begin with,
that the matrix C = (c¢y;) is symmetric for the orthonormality of the zf

yields
(¢,Bz) = ¢;; = (Br/,x") = ¢; )

Consider the linear combination z a;x'. We have

5(Jos) = Ya(Jew) =3 Sen)s @

=] t=]1

Hence if the a; are chosen so that
k

Cilly = 1a; i=L2 ...
i=1

Lo

9)

we will have
k k

B (2 ax) = 1, (2 o) (10)

i=1 t=1

which means that r, is a characteristic root of B and z a,2% is an associ-
i=m}]
ated characteristic vector.

The relation in (9) shows that r; is a characteristic root of ¢ and the q;
components of an associated characteristic vector. Thus, if T, is a
k-dimensional orthogonal transformation which reduces ¢ to diagonal
form, the set of vectors 2 furnished by the relation
2] 2]

zz (xz

=1l (11)
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will be an orthonormal set which are simultaneously characteristic vectors
of A and B.

Performing similar transformations for the characteristic vectors
associated with each multiple characteristic root, we obtain the desired
matrix T.

The necessity of the condition follows from the fact that two matrices
of the form

= -1

)\1 M1

A2 “e
A=T - " B=T - T (12)

)w__ #NJ

e

always commute if 7' is orthogonal,

12. Simultaneous Reduction to Sum of Squares. As was pointed out
in the previous section, the simultaneous reduction of two symmetric
matrices A and B to diagonal form by means of an orthogonal transforma-
tion is possible if and only if 4 and B commute. For many purposes,
however, it is sufficient to reduce A and B simultaneously to diagonal
form by means of a nonsingular matrix. We wish to demonstrate
Theorem 6.

Theorem 6. Given lwo real symmelric matrices, A and B, with A positive
definite, there exists a nonsingular matriz T such thal

T'AT =1 ¢))

1

™
T'BT =

0

A

Proof. Let S be an orthogonal matrix such that

[\ )
0
A2

4=5 - s (2)

L Av |
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Then, if 2 = Sy, we have
N

(z,47) = 2 it (3)

(z,Bz) = (y,5'BSy)
Now perform a ‘‘stretching” transformation
(=2 =12 N
y-—)“‘% t=1,4 ... (4)

that is y = Sz
Then

N
z Nyt = (2,2)
(y,8'BSy) = (2,8,5’BSS:z)

)

Denote by € the matrix S3S’BSS,, and let S; be an orthogonal matrix
which reduces C to diagonal form. Then, if we set z = S;w, we have

N
(5,C2) = (@,S\CSw) = ) wand? 6)
y=1
while (z,2) = (w,w). It follows that
T = S8:8s (7

is the desired nonsingular matrix.

EXERCISES

1, What is the corresponding result in case A is non-negative definite?

2. Let the notation A > B for two symmetric matrices denote the fact that A — B
is positive definite, Use the foregoing result to show that A > B > 0 implies that
Bt > A,

13. Hermitian Matrices. It isclear that precisely the same techniques
a8 used in establishing Theorem 2 enable one to establish Theorem 7.
Theorem 7. If H is a Hermitian malriz, there exists a unitary matriz U
such that
[\ T

A2
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14. The Original Maximization Problem. We are now in a position
to resolve the problem we used to motivate this study of the positivity
and negativity of quadratic forms, namely, that of deciding when a sta-
tionary point of a function f(z,zs, . . . ,2n) i8 actually a local maximum
or a local minimum,

Let ¢ = (ci,¢3, . . . ,cn) be a stationary point, and suppose that f
possesses continuous mixed derivatives of the second order. It is conse-
quently sufficient to consider the nature of the quadratic form

- (L) - ¢ o

where, as before,

f oy
dcidc; 9dz0z; 2

evaluated at the point 2, = ¢, e =¢2, . . . , Ty = cn.

We see then that a sufficient condition that ¢ be a local minimum is
that @ be positive definite, and a necessary condition that ¢ be a local
minimum is that @ be positive indefinite. The criterion given in Sec. 8
furnishes a method for determining whether @ is positive or negative
definite. If Q vanishes identically, higher order terms must be examined.

If N is large, it is, however, not a useful method. Subsequently, in
Chap. 6, we shall derive the most useful criterion for the positive definite-
ness of a matrix.

EXERCISE

1. Show that a set of sufficient conditions for f(z1,22) to have a local maximum is

Joren <0 ;“" Jeren >0

cicy f"!"!

15. Perturbation Theory—I. We can now discuss a problem of great
theoretical and practical interest. Let 4 be a symmetric matrix possess-
ing the known characteristic values A\j, A, . . . , Ay and corresponding
characteristic vectors z!, 22, ..., z¥. What can we say about the
characteristic roots and vectors of A + ¢B, where B is a symmetric
matrix and e is a ‘‘small” quantity? How small ¢ has to be in order to
be called so will not be discussed here, since we are interested only in
the formal theory,

If A and B commute, both may be reduced to diagonal form by the
same orthogonal transformation. Consequently, with a suitable reorder-
ing of the characteristic roots of B, the characteristic roots of A + B
will be \; + eu;, 2 = 1,2, ., ., N, while the characteristic vectors will
be as before.

Let us then consider the interesting case where AB > BA. For the
sake of simplicity, we shall consider only the case where the character-
istie roots are distinct.
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It is to be expected that the characteristic roots of A + B will be
distinct, for e sufficiently small, and that they will be close to the charac-
teristic roots of A, It will follow from this, that the characteristic vee-
tors of A + «B will be close to those of 4.

One way to proceed is the following. In place of the character-
istic equation |4 — NI| = 0, we now have the characteristic equation
|A + eB — M| = 0. The problem thus reduces to finding approximate
expressions for the roots of this equation, given the roots of the original
equation and the fact that ¢ is small.

To do this, let T be an orthogonal matrix reducing A to diagonal form,
Then the determinantal equation may be written

M+ en — A €C12 cr €CIN
€C21 Ae+ecaa — A €CaN
. ‘ _ o
N1 s Av + ecnv — A

where T'"BT = C = (¢).
We now look for a set of solutions of this equation of the form

AN=N+dyet+du+ - - -

We leave it as a set of exercises for the reader versed in determinantal
expansions to obtain the coeflicients dy;, ds;, and so on, in terms of the
elements cy;.

We do not wish to pursue it in any detail since the method we present
in the following section is more powerful, and, in addition, can be used to
treat perturbation problems arising from more general operators.

16. Perturbation Theory—II. Let us now suppose not only that the
characteristic roots and vectors of 4 + B are close to those of 4, but
that we actually have power series in ¢ for these new quantities.

Write u;, §* as an associated pair of characteristic root and character-
istic vector of 4 + B and \,, = as a similar set for A. Then we set

wi=N+e\y+ e+ - - (1)
Y=o+ er't + et 4 - oo
To determine the unknown coeflicients Ay, A%, . . . and the unknown
vectors z%!, 22, . . . , we substitute these expressions in the equation

(4 + By = py 2)
and equate coefficients,
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We thus obtain

(A + E.B)(.’E" + exh! + e2xi? + .o .)
=t oatNat )@ tattantt ) ()

and the series of relations

Azt = \a'
Azit + B.’E‘ = )\.-x“ + )\.-.x‘

Az 4 Bzt = \a®? + Nax™ + Nzt @

.

Examining these equations, we see that the first is identically satisfied,
but that the second equation introduces two unknown quantities, the
scalar A\;; and the vector 2. Similarly, the third equation introduces
two further unknowns, the scalar \;; and the vector z*2.

At first sight this appears to invalidate the method. However, examin-
ing the second equation, we see that it has the form

(4 — NDz¥ = (I — Bzt (5)

where the coefficient matrix 4 — M\ is singular, Consequently, there
will be a solution of this equation only if the right-hand-side vector
(\al — B)z* possesses special properties.

When we express the fact that (A, — B)x possesses these properties,
we will determine the unknown scalar \;,.

Let us simplify the notation, writing

xil = y
(al — B)z' = 2 ©
Then we wish to determine under what conditions upon z the equation
(4 -NDy == ™

has a solution, when A, is a characteristic root of A, and what this solu-
tion is,

Let 2, 22, . . ., 2¥ be the normalized characteristic vectors of 4,
and consider the expressions for y and z as linear combinations of these

vectors,
N
y = 2 by
J-Nl (8)
z2 = 2 cix!

J=1
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where
bj=@wa) ¢=(@ i=12...,N )]

Substituting in (7), we obtain the equation

N N
A4-xD Y bt = ¥ oot (10)
22
or, since Az’ = N\af, g =1,2, ... N,
N N
Y by = a = ) o (11)
=1 j=1

Equating the coeflicients of 2/, we obtain the relations
bk - N =¢ J=1,2...,N (12)
We see that these equations are consistent if and only if
=0 (13)
Then b; is arbitrary, but the remaining b; are given by
bij=¢/—N) =12 ...,N,j=1 (14)

What the condition in (13) asserts is that (7) has a solution if and
only if z is orthogonal to 2%, the characteristic vector associated with A
If 80, there is a one-parameter family of solutions of (7), having the form

y=bait Y O (15)

Fial)

where b; is arbitrary.

Returning to (6), we see that we can take b, = 0, since a different
choice of b; merely affects the normalization of the new characteristic
vector '

The orthogonality condition yields the relation

(@, Wil — B)2') =0 (16)
or, the simple result,
A = (x",Bx") (17)
EXERCISES

1. Find the value of A2
2. Consider the case of multiple roots, first for the 2 X 2 case, and then, in general.
8. Let ); denote the characteristic roots of 4 and A;(z) those of A + zB. Show
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that
M(4 + 2B) = z Afmgm M0 m ),
m=0
where A[™ = (—1)"m"ltr( BS#B8H . . . BS,'»-)
kit thamm—1
& 20
8; = _Ei
The E, are defined by the relation 4 = ZA,E;, and 8 = EE,,/(M -
i kyts
(T. Kato).
4. Let A and B be 10 X 10 matrices of the form
01 ...0 01 .. .0
01 . 0 1 .
S I I
. | 1
0 0 10-10 0

A and B are identical except for the element in the (10,1) place, which is 10-1°in the
case of B. Show that [\ — A} = AM%and that |]\] — B} = Al — 10-1%, Hence, the
characteristic roota of B are 10-}, 104w, . . . , 10-1w° where w is an irreducible tenth
root of unity. What i8 the explanation of this phenomenon? (Forsythe.)

MISCELLANEOUS EXERCISES

1. Show that a real symmetric matrix may be written in the form

N
A= z NE;
=1
where the E; are non-negative definite matrices satisfying the conditions
EE; = 0, i #j, B = E;

and the )\; are the characteristic roots of A. This is called the spectral decomposition
of A.

2. Let A be a real skew-symmetric matrix; a;; = —a;;i. Then the characteristic
roots are pure imaginary or zero. Let z + iy be a characteristic vector associated
with #u, where u is a real nonzero quantity and where z and y are real. Show that
z and y are orthogonal.

8. Referring to the above problem, let T’ be an orthogonal matrix whose first two
columns are z and ¥,

T, = (z,y,2%2% . . . 2V)

0
T;AT-[(—,. o) © ]

m
0 An_s

Show that

where Ay_s is again skew-symmetric.
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4. Prove inductively that if A is a real skew-symmetric matrix of even dimension
we can find an orthogonal matrix T such that
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00w -
- 0 0
0
—nr 0
T'AT = .
0 0 wun
L. — KN 0 -

where some of the u; may be zero.
8. If A is of odd dimension, show that the canonical form is

o

0
—u

M1
0

T'AT =

(0 BN
—-uy 0

0 0

where again some of the u; may be zero.

8. Show that the determinant of a skew-symmetric matrix of odd dimension is zero.

7. The determinant of a skew-symmetric matrix of even dimension is the square
of a polynomial in the elements of the matrix.

8. Let A be an orthogonal matrix, and let A be a characteristic root of absolute
value 1 but not equal to +1, with z -+ 7y an associated characteristic vector, z and y
real, Show that z and y are orthogonal.

9. Proceeding inductively as before, show that every orthogonal matrix 4 can be
reduced to the form

(

cos M
8in \;

- sin X])
co8 \;

(cos A

sin A\

— 8in M)
co8 A

+1

TI

+1]

10. Prove that TAT’ is a positive definite matrix whenever T is an orthogonal
matrix and A is a diagonsl matrix with positive elements down the main diagonal,
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11, Prove Theorem 5 by means of an inductive argument, along the lines of the

proof given in Sec. 6.
12. Establish the analogue of the result in Exercise 9 for unitary matrices,
18. Write down a sufficient condition that the function f(z1,2s, . . . ,zy) possess a

local maximum at z; = ¢;, ¢t = 1, 2, ., N.
14. Given that A is a positive deﬁmte matrix, find all solutions of XX’ = 4,
15. Define the Gramian of N real functions fi, fs, . . . , fv over (a,b) by means of

the expression

G -« - g = | [ s0n0 e

Qs - . . n) = /; ’ [g(t) - i z‘fg(t)]’dt

Prove that if

then

. = G(Q!fbft s e e rfN)
min Q= G ot )

For some further results, see J. Geronimus.! For many further results, see G. Szego.*
18. If we consider the (N — 1)-dimensional matrix

2 -1
-1 2 -1

-1 2 -1
-1 1

where all undesignated elements are zero, show that

N-1

2kx
- H = [] (x—z—zcoszN 1)
k=1

and determine the characteristic vectors.
17. Hence, show that if z; = 0 and the z; are real, then

N-1 N
2 (x; — zi41)? > 4 5in? 2(2N SN = 1) 221:.-’
=1 t=

Determine the case of equality.
18. Show that if the z; are all real and zo = zy,: = 0 that

N
z (¢ — Zi41)? > 48in? M__ﬂ:—f——ﬁ 'zo zd
i=

O

1J, Geronimus, On Some Persymmetric Determinants Formed by the Polynomials

of M. Appeli, J. London Math. Soc., vol. 8, pp. 556-58, 1931.
£ Q. Szego, Orthogonal Polynommls Am. Math, Soc. Collog. Publ., vol. 23, 1939.
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N
and that if z;, = zy,, z z; = 0, then
f=]
N N
2 (i —zi1)3 2 4 sin’% 2 zs?
=1 =1

(Ky Fan, O. Taussky, and J. Todd)
19. Find the characteristic roots and vectors of the matrix associated with the
N

quadratic form 2 (c — )%
=1

20. Let 4 andJB be real symmetric matrices such that A is non-negative definite.
Then if |A 4 ¢B| = 0, there exists a nontrivial real vector such that (4 4 ¢B)z = 0
(Peremans-Duparc-Lekkerkerker).

21. If A and B are symmetric, the characteristic roots of AB are real, provided
that at least one is non-negative definite.

22. If A and B are symmetric, the characteristic roots of AB — BA are pure
complex.

28. Reduce Qn(z) = %173 + T2%s + + - + + Zy..Zy to diagonal form, determining
the characteristic vectors and characteristic values. Similarly, reduce Py(z) =
Z:Zy + ZsTa + ¢ -+ TNz + TN,

24. If A is a complex square matrix, then A4 is HU, where H is non-negative definite
Hermitian and U is unitary.

Further results and references to earlier results of Autonne, Wintner, and Murna-
ghan may be found in J. Williamson.!

26. If A, B, and C are symmetric and positive definite, the roots of

A +AB +C =0

have negative real parts (Parodi).

26. Let 4 be a square matrix. Set |A| = |4|, — |4|_, where |A|, denotes the
sum of the terms which are given a positive sign in the determinantal expansion.
Show that if A is a positive definite Hermitian matrix, then |4|_ > 0 (Schur-Leng).

27. Let A be a real matrix with the property that there exists a positive definite
matrix M such that A’M = MA. A matrix A with this property is called sym-
melrizable. Show that this matrix A possesses the following properties:

(a) All characteristic roots are real.

(b) In terms of a generalized inner product [z,y] = (z,My), characteristic vec-
tors associated with distinct characteristic roots are orthogonal.

(¢) Let T be called “orthogonal’’ if it is real and its columns are orthogonal in
the extended sense. Then there exists an “orthogonal’’ matrix T such that
TAT' is diagonal.?

28. Extend in a similar fashion the concept of Hermitian matrix.

29. Call a matrix A idempotent if A? = A. Show that a necessary and sufficient
condition that a symmetric matrix A of rank k be idempotent is that k of the charac-
teristic roots are equal to one and the remaining N — k are equal to zero. (The
notion of rank is defined in Appendix A.)

80. If 4 is a symmetric idempotent matrix, then the rank of A is equal to the

4

trace of 4. (The trace of A is equal to z a.-;.)

T=]
1J. Williamson, A Generalization of the Polar Representation of Nonsingular

Matrices, Bull. Am. Math. Soc., vol. 48, pp. 856-863, 1942,
$ See A. Kolmogoroff, Math. Ann., vol. 112, pp. 155-160, 1936.
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81. The only nonsingular symmetric idempotent matrix is the identity matrix,
82. If A is an N X N symmetric idempotent matrix of rank %, then A is positive
definite if k = N, positive indefinite if ¥k < N.
88. If A is a symmetric idempotent matrix with ai; = 0, for a particular value of ¢,
then every element in the 7th row and zth column is equal to zero.
m
84. If each A; is symmetric, and 2 Ay = [, then the three following conditions
(LR
are equivalent:
(a) Each A; is idempotent,
(M) 4i4; =0 75

(c) z n¢ = N, where n; is the rank of A; and N the dimension of the 4,.

[
86. Let A; be a collection of N X N symmetric matrices where the rank of A;is p:.
Let A = z A; have rank p. Consider the four conditions

[
Cl. Each A; is idempotent.
C2. Ai4; =0 T #J
C3. A is idempotent.
m

Cs p = z Pi.
=1
Then
1. Any two of the three conditions C1, 2, C3 imply all four of the conditions
C1, C2, C3, C4.
2. C3 and C4 imply C1 and C2.
For a proof of the foregoing and some applications, see F, A. Graybill and G. Mar-
saglia,? D. J. Djokovié.?
86. Using the fact that 2z,z; < z:? 4 z,? for any two real quantities z; and 7,
show that the quadratic form
]

k N N k
)\2 bz + Z bzt + z Z ai2i%; + z @i5TiT5
; i=ft1 =1 =41 8

i=1 J=1
is positive definite if b; > 0 and A is sufficiently large.
N

87. Show that z ai;%:x; i8 positive definite if z aiz? + z lai;lziz; is positive
fy=1 [ L)
definite.

88. A matrix A = (ay), ¢, j = 1, 2, 3, 4, is called a Lorentz matrix if the transfor-
mation z = Ay leaves the quadratic form Q(z) = z,* — 72! — z,® — z! unchanged;
that is, Q(z) = Q(y). Show that the product of two Lorentz matrices is again a
Lorents matrix.

89. Show that

y1 = (21 + Bza)/(1 — gH
y: = (Bz1 + z)/(1 — gH)H
V=2,
Ve = T4

where 0 < #* < 1 is a Lorentz transformation.
1 F. A. Graybill and G. Marsaglia, Idempotent Matrices and Quadratic Forms in

the General Linear Hypothesis, Ann. Math. Stat., vol. 28, pp. 678-686, 1957,
t D, J. Djokovié, Note on Two Problems on Matrices, Amer. Math. Monthly, to

appear.
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40. Show that any Lorentz transformation is a combination of an orthogonal
transformation of the variables z,, z,, z, which leaves z, fixed, a transformation of
the type appearing above, and a possible change of sign of one of the variables (a
reflection).! Physical implications of Lorentz transformations may be found in

J. L. Synge.?
41. Let H be a non-negative Hermitian matrix. Show that given any ¢ interval
la,b] we can find a sequence of complex functions {fi(!)},i = 1,2, . . . , such that

hes = L”f«nmdz Li=1,2 ...t

42. Let A = (a;;) bean N X N symmetric matrix, and 4y_, the symmetric matrix
obtained by taking the (N — 1) X (N — 1) matrix whose elements are a;, %, j =

1,2, ...,N — 1. By meansof an orthogonal transformation, reduce 4 to the form
" s ]
ur 0 2y
A= '
0 BNo1 2Nl
_21 Zs ZN-1 QNN "
where u; are the characteristic roots of Ay_,. Using this representation, determine

the relations, if any, between multiple characteristic roots of 4 and the characteristic
roots of Ay_i.

48. Using these results, show that the rank of a symmetric matrix can be defined
88 the order, N, minus the number of zero characteristic roots.

44. If H is a positive indefinite Hermitian matrix, then H = TT*, where T is
triangular and has real and non-negative diagonal elements. See H. C. Lee.?

46. Necessary and sufficient conditions for the numbers d,, d;, . . . , dn to be the
di:’,gonal elements of a proper orthogonal matrix are |d;| < 1,7 =1,2, ..., N,and

|d| <m —2—2\ min |d;|, where A = 1 if the number of negative d; is even
¥h 1<j<N
and 0 otherwise (L. Mirsky, Amer. Math. Monthly, vol. 66, pp. 19-22, 1959).

468. If A is a symmetric matrix with no characteristic root in the interval [a,b},
then (A — alI)(4 — bI) is positive definite (Kato’s lemma)., Can we use this result
to obtain estimates for the location of intervals which are free of characteristic roots
of A?

47. Show that

min A" (A 4al+ - +adr)dt =1/n +1)

ai
min ﬁ,’ (A tal+ - +at)dl = 1/n + 1)
ais

(L. J. Mordell, Equationes Mathematicae, to appear)

1Cf. 1. G. Petrovsky, Lectures on Partial Differential Equations, Interscience Pub-
lishers, Inc., New York, 1954.

3J. L. Synge, Relativity, the Special Theory, Interscience Publishers, Inc., New
York, 1956.

t 1. Schur, Math. Z,, vol. 1, p. 206, 1918.

3 H. C. Lee, Canonical Factorization of Non-negative Hermitian Matrices, J. London
Math. Soc., vol. 23, pp. 100-110, 1948,
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48. Let z be an N-dimensional vector such that (2,2) = 1, Determine the mini-
mum of (2 — 8§, A(s — b)) over this z-region assuming that 4 is Hermitian. See
G. E. Forsythe and G. H, Golub, On the Stationary Values of a Second Degree Poly-
nomial on the Unit Sphere, J. Soc. Indus. Appl. Math., vol. 13, pp. 1050-1068, 1965.

49. Let A\, u, =1, 2, . .., N, be respectively the characteristic roots of 4

and B. Set M = max (Jas;l,|bsjl), @ = ) |b; — aijl/M. To each root A; there is a

4
root uj such that A; — u;| < (N 4 2)MdVN, Furthermore, the A; and u; can be put
into one-to-one correspondence in such a way that |\ — | < 2(N + 1)2MdUN
(A. Ostrowski, Mathemaiical Miscellanea XX VI: On the Continuity of Characteristic
Roots in Their Dependence on the Mairiz Elements, Stanford Universily, 1959).

§0. Let {A.}] be a bounded, monotone-increasing sequence of positive definite
matrices in the sense that there exists a positive definite matrix B such that B — A, is
non-negative definite for any n and such that A, — Aa_1 i8 non-negative definite
for any n. Show that A, converges to a matrix A as n— « (Riesz).

Bibliography and Discussion

8§2. We suppose that the reader has been exposed to the rudiments of
the theory of linear systems of equations. For the occasional few who
may have missed this or wish a review of some of the basic results, we
have collected in Appendix A a statement and proof of the results required
for the discussion in this chapter.

The reader who wishes may accept on faith the few results needed and
at his leisure, at some subsequent time, fill in the proofs.

§6. The result in this section is a particular example of a fundamental
principle of analysis which states that whenever a quantity is positive,
there exists a formula for this quantity which makes this positivity appar-
ent. Many times, it is not a trivial matter to find formulas of this type,
nor to prove that they exist. See the discussion in

G. H. Hardy, J. E. Littlewood, and G. Polya, I'nequalities, Cam-
bridge University Press, New York, pp. 57-60, 1934.

and a related comment at the end of Chap. 5.

88. The concept of a positive definite quadratic form, as a natural
extension of the positivity of a scalar, is one of the most powerful and
fruitful in all of mathematics. The paper by Ky Fan indicates a few
of the many ways this concept can be used in analysis.

Ky Fan, On Positive Definite Sequences, Ann. Math., vol. 47, pp.
593-607, 1946.
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For an elegant and detailed discussion of other applications, see the
monograph
Ky Fan, Les Fonctions définies-posilives et les Fonctions complétement
monolones, fascicule CXIV, Mem. sci. math., 1950.

In the appendices at the end of the volume, we also indicate some of
the ingenious ways in which quadratic forms may be used in various
parts of analysis.

A discussion of the diagonalization of complex non-Hermitian sym-
metric matrices may be found in

C. L. Dolph, J. E. McLaughlin, and I. Marx, Symmetric Linear

Transformations and Complex Quadratic Forms, Comm. Pure and
Appl. Math., vol. 7, 621-632, 1954.

Questions of this nature arise as special cases of more general problems
dealing with the theory of characteristic values and functions of Sturm-
Liouville equations with complex coefficients.

815. For a further discussion of these problems, and additional refer-
ences, see
R. D. Brown and I. M. Bassett, A Method for Calculating the First

Order Perturbation of an Eigenvalue of a Finite Matrix, Proc. Phys.
Soc., vol. 71, pp. 724-732, 1958.

Y. W. Chen, On Series Expansiop of a Determinant and Solution of
the Secular Equation, J. Math. Phys., vol. 7, pp. 27-34, 1966.

H. 8. Green, Matriz Mechanics, Erven P. Noordhoff, Ltd., Groningen,
Netherlands, 1965.

The book by Green contains a discussion of the matrix version of the
factorization techniques of Infeld-Hull.
For some interesting extensions of the concept of positive definiteness, see

M. G. Krein, On an Application of the Fixed Point Principle in the
Theory of Linear Transformations of Spaces with an Indefinite
Metric, Am. Math. Soc. Transl., (2), vol. 1, pp. 27-35, 1955,

where further references may be found.

§16. In a paper devoted to physical applications,
M. Lax, Localized Perturbations, Phys. Rev., vol. 94, p. 1391, 1954,

the problem of obtaining the solution of (4 + B)x = Ar when ouly a
few elements of B are nonzero is discussed.
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For some interesting results concerning skew-symmetric matrices, see
M. P. Drazin, A Note on Skew-symmetric Matrices, Math. Gaz.,
vol. XXXVI, pp. 253-255, 1952.

N. Jacobson, Bull. Amer. Math. Soc., vol. 45, pp. 745-748, 1939.

With regard to Exercise 24, see also

H. Stenzel, Uber die Darstellbarkeit einer Matrix als Product . . . ,
Math. Zeit., vol. 15, pp. 1-25.

Finally, for some interesting connections between orthogonality and
quadratic forms, see
W. Groebner, Uber die Konstruktion von Systemen orthogonaler
Polynome in ein- und zwei-dimensionaler Bereich, Monatsh. Math.,
vol. 52, pp. 38-54, 1948.

H. Larcher, Proc. Amer. Math. Soc., vol. 10, pp. 417-423, 1959.

For an extensive generalization of the results of the two foregoing
chapters, see
F. V. Atkinson, Multiparametric Spectral Theory, Bull. Am. Math.
Soc., vol. 74, pp. 1-27, 1968.
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Constrained Maxima

1. Introduction. In the previous chapters, we have discussed the
problem of determining the set of values assumed by (x,Ax) as z ranged
over the region (r,r) = 1. In particular, we were interested in deter-
mining whether (z,Az) could assume both positive and negative values.
In this chapter we shall investigate this question under the condition
that in addition to the relation (z,r) = 1, z satisfies certain additional
linear constraints of the form

(z,b) = & i=1,2 ...,k (1)

In geometric terms, we were examining the set of values assumed by
(zr,Az) as x roamed over the unit sphere. We now add the condition
that = simultaneously lie on a set of planes, or alternatively, is a point
on a given N — k dimensional plane.

Constraints of this nature arise very naturally in various algebraic,
analytic, and geometric investigations.

As a first step in this direction, we shall carry out the generalization
of the algebraic method used in Chap. 1, obtaining in this way a more
useful set of necessary and sufficient conditions for positive definiteness.
These results, in turn, will be extended in the course of the chapter.

2. Determinantal Criteria for Positive Definiteness. In Chap. 4, it
was demonstrated that a necessary and sufficient condition that a real
symmetric matrix be positive definite is that all of its characteristic roots
be positive, Although this is a result of theoretical value, it is relatively
difficult to verify. TFor analytic and computational purposes, it is impor-
tant to derive more usable criteria.

The reason why a criterion in terms of characteristic roots is not useful
in applications is that the numerical determination of the characteristic
roots of a matrix of large dimension is a very difficult matter. Any
direct attempt based upon a straightforward expansion of the determi-
nant |A — M| is surcly destined for failure because of the extraordinarily
large number of terms appearing in the expansion of a determinant. A

determinant of order N has N! terms in its complete expansion. Since
73
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10! = 3,628,000 and 20! 22 2,433 X 10'S, it is clear that direct methods
cannot be applied, even with the most powerful computers at one's
disposal.!

The numerical determination of the characteristic roots and vectors
constitutes one of the most significant domains of matrix theory. As we
have previously indicated, we will not discuss any aspects of the problem
here.

For the form in two variables,

Q(l’l,xz) = an®? + 2017122 + 272’ 1)

we obtained the representation

Q =an (331 + g:—:xz)z + (azz - ?3) z,? 2

under the assumption that a,, # 0.
From this, we concluded that the relations

a1 G2
a12  Qag2

an>0 >0 3)

were necessary and sufficient for 4 to be positive definite.
Let us now continue inductively from this point. Consider the form in
three variables,

Q(x1,22,23) = anux1® + 201221T2 + G2sT2? + 2022273 + 201371T3 + GgsT5?

(4)

Since a;, > 0 is clearly a necessary condition for positive definiteness,
as we see upon setting ; = z; = 0, we can write

Q(z1,22,23) = an (331 + Z12%2 + M)z + (azz - %%2) z.®

an an
+ 2 (aza - ‘l‘ﬂ'_"’) Zoxs + (aaa - M) zg® (9)
an an

If Q(z1,24,23) is to be positive definite, we see upon taking

2 4 Gzt auzy) _

an

that the quadratic form in z, and z; must be positive definite. It follows,
upon applying the result for 2 X 2 matrices given in (3), that a set of

1 At the rate of one operation per microsecond, 20! operations would require over
50,000 years!
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necessary and sufficient conditions that Q(x1,z,,z3) be positive definite are

2
a2 a120)13
2 Az — —— Az — ———
Az an an
an >0 Ay — — >0 2 >0 (6)
an A12013 a3
Q3 — —— Q33 — —
an an

The first two conditions we recognize. Let us now see if we can per-
suade the third to assume a more tractable appearance. Consider the
determinant

ay ap Q13
an a2 Qg3 ayq? a12013
0 Qg ~ —— Qg3 — —— 7
Dy =lan axn ax|= an a )]
an Q32 Aass 0 Qa3 — Q13012 ass — g_lf
an an

The last equation follows upon subtracting the first row multiplied by
@y2/an from the second, and the first row multiplied by a,3/ay from the
third (a method previously applied in Sec. 2 of Chap. 3).
It follows then that the conditions in (6) may be written in the sug-
gestive form
an a1z Qg
>0 Gy Gy Gy | >0 8)
asn a3y Qs

an iz
Qg Qa2

an>0

Consequently we have all the ingredicnts of an inductive proof of
Theorem 1. A necessary and sufficient set of conditions that A be posi-
tive definile is that the following relations hold:

D.>0 k=12 ...,N 9
where
Di=la) 4i=1,2 ...,k (10)
We leave the details of the complete proof as an exercise for the reader.
3. Representation as Sum of Squares. Pursuing the analysis a bit
further, we see that we can state the following result.
Theorem 2. Provided that no D, is equal to zero, we may wrile

N
Qonas, . . on) = ) (Dy/Deit Do=1 ()
k=1
where
N
yk=xk+j=2+10k3xj k=12 ..., N-1 @)
Yv = TN

The c,; are rational functions of the a;.
This is the general form of the representation given in (2.5).
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EXERCISE
1. What happens if one or more of the D; are zero?

4, Constrained Variation and Finsler’'s Theorem. Let us now con-
sider the problem of determining the positivity or negativity of the quad-
ratic form Q(z1,%z, . . . ,2x) when the variables are allowed to vary over
all z; satisfying the constraints

N

2b,~,~x,=0 i=12...,kk<N )

J=1
As usual, all quantities occurring are taken to be real. Without loss of
generality, we can suppose that these & equations are independent.
Hence, using these equations, we can solve for k of the z; as linear func-
tions of the remaining N — k, substitute these relations in @ and use
the criteria obtained in the preceding sections to treat the resulting
(N — k)-dimensional problem.

Although this method can be carried through successfully, a good deal
of determinantal manipulation is involved. We shall consequently pur-
sue a different tack. However, we urge the reader to attempt an investi-
gation along the lines just sketched at least for the case of one constraint,
in order to appreciate what follows.

Let us begin by demonstrating the following result of Finsler.

Theorem 3. If (z,Ax) > 0 whenever (x,Bx) = 0, where B i3 a positive
indefinite matriz, then there exists a scalar constant N such that (z,Azx) +
N(z,Bz) is positive definile.

Proof. Writexz = Ty, where T is an orthogonal matrix chosen so that

k
(#,B2) = ) wyd wm>01<k<N 2)
f=1
Since B is by assumption positive indefinite, we know that (z,Bz) can be
put in this form. Under this transformation, we have
N
(z,Ax) = Z CisYYs 3)

Hr=1
k

If (2, Az) is to be positive whenever (z,Bz) = Z wyd = 0, we must have
i=1
the relation

N
Z ciiysyi > 0 4
i=k+1

for all nontrivial ¥is1, Yase, « - . , Yn.
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In the (N — k)-dimensional space (Yi+1,Yit+s, - - - ,¥n), make an
orthogonal transformation which converts the quadratic form in (4) into
a sum of squares. Let the variables y,, ¥z, . . . , ¥« remain unchanged.
In N-dimensional y space, write y = Sw to represent this transformation.

In the w; variables, we have

N N

(z,42) = Q(w) = "z-l CisYiYi = i-Z-Q—l poawt
N k
+ 2‘-Z+1 ;21 waw; + Z diswar;  (5)

Our problem then reduces to demonstrating that a quadratic form of
the type

A l wwd + Q(w) (6)
t=1
is positive definite whenever 4, > 0,7 =1,2, ..., N, and X is suf-
ficiently large. Our proof is complete upon using the result indicated in
Exercise 36 at the end of Chap. 4.
Returning to the original variational problem, we now make the obser-
vation that the & equations in (1) can be combined into one equation,

k N
£ Groy -0

Regarding 2 (2 .,:c,) as a positive indefinite form, we see that

t=1 35=1
Theorem 3 ylelds the following result:
A necessary and sufficient condition that Q(x1,%s, . . . ,Zn) be positive
Sor all nontrivial values satisfying the linear egquations in (1) is that the
guadratic form

Pyzs, . . . ,ox) = Q1,85 . . . ,oN) + A z (Z .,x,)

i=1 y=1

be positive definite for all sufficiently large posilive \.

EXERCISE

1. Establish the foregoing result by considering the maximum over all z; of the

function
Q(x:,zz, e 2N)

3(5 wny

(=1 j5=1

f@) =

(I. Herstein)




78 Introduction to Matrix Analysis

6. TheCasek = 1. Let us begin the task of obtaining a usable criterion
from the foregoing result with a case of frequent occurrence, ¥ = 1. The
quadratic form P is then

P =

[}

(as; + Nbibyy)zey 0))
1

=

For this to be positive definite for all large positive A, we must have,
in accord with Theorem 1, the determinantal inequalities

la; + Nbwby] >0 4,i=1,2, ...,k (2
fork=1,2,...,N.

In order to obtain simpler equivalents of these inequalities, we employ
the following matrix relation,

Can @i * *+ au Aby | FI 0
agy Qa2 * * * O )\ba 1 0 0
Ay ke ° " " Okk )\bk 0 1 0
_bx ba e bk —IJ _bx ba vt bk 1_1

(a1 + My? ais 4+ Mbib: ¢ ¢ - an + Abibe  Aby
agr + Abib: a2z + N0 ¢ ¢ ¢ a4 Ao Aby

o ®

Gs + Abib: e + Abe 0 0 aw + A2 A,
0 0 e 0 —1

Taking determinants of both sides, we see that positivity of the
determinant |a; + Abubyl, 4,5 = 1,2, . . ., k, for all large \ is equiva-
lent to negativity of the determinant

;1 G2 ' Gw by
Q21 Q22 * ' (2% Ab,
(4)
G Gk * G Abg
by by - b -1

for large positive A and k = 1,2, . . . , N.
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Hence, we must have the relation

Gz G2 " Ak b @ Qa2 " O
@ G2 " Am b Q21 Q22 *° ° ° QG
' 0
\ _ < (5)
Gk Gr2 ' G b Ay @2 * G
by b -+ b O

for all large positive A\and k = 1,2, . . ., N.
Consequently, we see that a sufficien! condition that Q be positive for
all nontrivial z; satisfying the linear relation in

bigs + b2za+ -+ +byay =0

is that the bordered determinants satisfy the relations

gn G2 ' an b
G @2z * ° ° am b
<0 (6)
Gk G2 O b
by by +++ by O
fork = 1,2 ... ,N. Itisclear that the conditions
an @y *cc ax b
a2y Q22 QA bz
<0 @)
G Gz ¢t G bk
by by - b O
for k = 1,2, ..., N are necessary, but that some of these determi-

nants can be zero without disturbing the positivity property of §. The
simplest way in which these can be zero is for some of the b; to be zero.

Referring to (5), we see that if some element of the sequence of bor-
dered determinants is zero, say the kth, then a necessary condition for
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positivity is that the relation

an * 0w
a1 Q%

>0 8)

(27 S / 111

be valid.
A further discussion of special cases is contained in the exercises

following.
EXERCISES

1. Assuming that by = 0, obtain the foregoing results by solving for zwn, zy =
—(bszy + bsza + + - + + bn—1zN-1)/bN, and considering @(z) as a quadratic form in
Z)y T3y - - + 3 TN-1. Does this yield an inductive approach?

2. If b; = 0, the condition in (7) yields —a;:b2? < 0. Hence, if by » 0, we must
have ay; > 0, What form do the relations in (6) and (7) take if by = by = . . + =
bb=0,1<r <N?

Qs Tx; = 0 and
1

8. Consider in homogeneous coordinates, the quadric surface

5

e

4
the plane uiz; = 0. Prove that a necessary and sufficient condition that the

1=1
plane be tangent to the surface is that!

@11 Gy Gis G Uy
G2y G2 G2y Q34 Uz
Q31 Q32 G3is Q34 U | = 0
G4r Gea G4s Gas U
ur uz uy us 0

4. Determine the minimum distance from the quadric surface (z,4z) = 0 to the
plane (uz) = 0.

6. Prove that a necessary and sufficient condition that the line determined by the
planes (u,z) = (v,z) = 0 be either tangent to (z,Az) = 0 or a generator, is that the
bordered determinant

Ur "
Us V2

A Us VU - 0
Us Vs

uy us us us 0 0
vi vs vy v, 0 O

2 Cf. M. Bocher, Introduction to Higher Algebra, Chap. 12, The Macmillan Company,
New York, 1947.
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8. Determine the minimum distance from the quadric surface (z,4z) = 0 to the
line determined by the planes (u,z) = (v,z) = 0.

6. A Minimization Problem. Closely related to the foregoing is the
problem of determining the minimum of (z,z) over all z satisfying the

constraints
(z,0) = b; i=12 ...,k (1)

As usual, the vectors and scalars appearing are real. Without loss of
generality, we can assume that the vectors a‘ are linearly independent.
For any  we know that the inequality

(x,z) (z,@) - (z,8")
(@) (ala') - - (al,a")

>0 2
(x,a*) (aa*) - - - (a*a)

is valid. This is equivalent to the relation

0 b b ... b
by

(a',a?)

b.
@ 2 = = —aray ®

since the determinant |(a‘,a’)| is positive in view of the linear independ-

ence of the at.
The right side in (3) is the actual minimum value, since equality is
attained in (2) if z is chosen to be a linear combination of the «’,

k
z = c;a! (4)
2
In order to satisfy (1), the ¢; are taken to be the solutions of the

equations
k

Yol@ha) =b  i=1,2 ...,k (5)
i=
Since |(af,a?)| # 0, there is a unique solution, which yields the unique
minimizing vector z.
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EXERCISES

1. Deduce from this result that the quadratic form

0 z 24 * -+ 2N
z1

Qz) = 4

ZN

is negative lefinite whenever A is positive definite.
2. Give an independent proof of this result by showing that the associated quadratic

form
P(z) = 2z:(z129 + 225 + + -+ + Tazng) + (2,42)

cannot be positive definite, or even positive indefinite if A is positive definite.

8. Assuming that (z,4z) possesses a positive minimum on the intersection of the
planes (z,a%) =b;, ¢ = 1, 2, , . ., k, determine this minimum and thus derive the
results of the preceding section in an alternate fashion,

7. General Values of k. Let us now return to the problem posed in
Sec. 4. It is not dificult to utilize the same techniques in the treatment
of the general problem. Since, however, the notation becomes quite
cumbersome, it is worthwhile at this point to introduce the concept of a
rectangular matrix and to show how this new notation greatly facilitates
the handling of the general problem.

Once having introduced rectangular matrices, which it would be well
to distinguish by a name such as “array,” as Cayley himself wished to do,
we are led to discuss matrices whose elements are themselves matrices,
We have hinted at this in some of our previous notation, and we shall
meet it again in the study of Kronecker products.

8. Rectangular Arrays. A set of complex quantities ai; arranged in
the form

™~ =
ai G012 ' GiMm
Qg1 Q22 ' ' QM
A= (1)
.@N1 OGN2 ' ' GNM ]

will be called a rectangular matriz. There is now no restriction that
M = N. We will call this array an M X N matrix. Observe the order
of M and N.

There is no difficulty in adding two M X N matrices, but the concept
of multiplication is perhaps not so clear, We shall allow multiplication
of a K X M matrix B by an M X N matrix A. This arizes as before
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from the iteration of linear transformations., Thus

AB = C = (cy) )
Schematically,
M K K

A|N |B|M=|C|N

a K X N matrix, where
M

Cij = 2 at‘kbki (3)
k=1

The transpose A’ of an M X N matrix is an N X M matrix obtained
by interchanging rows and columns.

In many cases, these rectangular matrices can be used to unify a
presentation in the sense that the distinction between vectors and
matrices disappears. However, since there ¢s a great conceptual differ-
ence between vectors and square matrices, we feel that particularly in
analysis this blending is not always desirable. Consequently, rectangular
matrices, although of great significance in many domains of mathematics,
will play a small role in the parts of matrix theory of interest to us here.

Hence, although in the following section we wish to give an example
of the simplification that occasionally ensues when this notation is used,
we urge the reader to proceed with caution. Since the underlying mathe-
matical ideas are the important quantities, no notation should be adhered
to slavishly. 1t is all a question of who is master.

EXERCISES

1. Let z and y be N-dimensional column vectors. Show that
zy = (z:y3) =42 .,..,N
2. If z is an N-dimensional column vector, then
IN — zz') = N\ — (2’ )NV
9. Composite Matrices. We have previously defined matrices whose

elements were complex quantities. Let us now define matrices whose
elements are complex matrices,

A = (4y) )
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This notation will be particularly useful if it turns out that, for example,
a 4 X 4 matrix may be written in the form

a; a2 Gig Gue

Q21 G2 G23 Qo | _ [Au sz] (2)
asy Q32 Qa3 O Ay Ay
a4y G4z G4z G4y
with the A4,; defined by
Ay = Fau axz] Ay = [au au]
" @21 Q@22 Q23 Qo4 (3)
Ay = Faax aaz] A = [aaa au]
3401 Q42 a4z Qud
or, alternatively, with the definitions
”au aiz Q)3 an
An = |an an ax An = |an 4)
[ 351 G32 O3 Q34
Ay = (au [ 7] au) Ay = (a«)

For various purposes, as we shall see, this new notation possesses certain
advantages. Naturally, we wish to preserve the customary rules for
addition and multiplication.

It is easy to verify that addition is carried out in the expected fashion,
and we leave it as an exercise for the reader to verify that the product of
(44) and (B;) may safely be defined as follows:

(A:)(Byy) = (Cy) (5)
where
N
Ciy = Z AuBy; 6)
Pt

provided that all the products A.B:; are defined. Furthermore, the
associativity of muitiplication is also preserved.

EXERCISES
1. From the relation
[A B][ D —B] - [AD — BC BA —AII]

C DiL-Cc 4 CD -DC DA -CH
deduce that
A B
IC D’ = |AD - BC|

if BA = ABor CD = DC, and the required products exist.
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2 Let M = A +iB, A and B real, and let

A -B
m=[3 4]
Show that
My — M| = |M = M| |M =\ (Szaraki and W azewsk)

3. Hence, show that |M,| = |M||M]{, and that the characteristic roots of M, are

those of M and M.
4. Show that if M is Hermitian, then M, is symmetric.

10. The Result for General k. Let us now discuss the general problem
posed in Sec. 4. As Theorem 3 asserts, the quadratic form
N

P = z (a.'; + A i bnbrj) .75 (1)
r=1

=1

must be positive definite for large A,
Hence we must have the determinantal relations

k
a.-,'+)\2b,.»b,,~>0 4i=12...,n @)

r=1

forn =1,2, ..., N and all sufficiently large positive X.

In order to simplify this relation, we use the same device as employed
in Sec. 5, together with our new notation. Let B~ denote the rectangular
array

bu bzx v bkl
bz b bis

By=| | : (3)
biv b+ biw

Consider the following product of (N + k)-dimensional matrices,
Ax MBy|[|Ix O An + \ByBy By
o] | A e R sl { BEC
where I, is the k-dimensional unit matrix and
Av=(a)) 4,7j=12...,N
Taking determinants of both sides, we have

Ax MBx

By | = 4w+ \ByBY| )

(= 1)*
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Hence, the conditions of (2) are replaced by

Ax \Bxy
’

(=D By -1I. >0 ©

for all large \.

It follows as before that sufficient conditions for positivity are readily
obtained. The necessary conditions require a more detailed discussion
because of the possible occurrence of zero values, both on the part of the
coeflicients b;; and the bordered determinants.

MISCELLANEOUS EXERCISES

1. If {A;} is an arbitrary set of r X r matrices, there are unitary matrices U and
V of order r X r, such that UA:V = D;, D; diagonal and rea), if and only if 4;d; =
A;A;and A;4; = A:A;for all i and j (N. A. Wiegmann).

N

2. Let z a;;z;z; be a positive definite form. Show that
=1

G Gk

T
Gk Qg5 d

(8

is a positive definite form in the N — 1 variables x1, 23, . . « , Zk—t, T4ty + + - 5 TN
What are the characteristic roots and vectors of the matrix of this quadratic form?
Generalize this result.

8. Introduce the following correspondence between complex numbers and matrices:

= .~ == z y
erivean[ ]

Show that

(a) ZW = WZ

) z2~2

) z~2, w ~ W implies that zw ~ ZW

4. Usc this correspondence and de Moivre's theorem to determine the form of
Zrforn=12 ....

6. From Exercise 3, we see that we have the correspondence

[ [0
01 -1 0

Using this in the matrix
Q= [ Z1 + 122 T3 +izc]
—Zs + 124 Z: — 124

o [ )
Q) | (i

we are led to the supermatrix
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or, dropping parentheses,

Z1 Zq Z T4

Qn = —Z2 T —Z Zs
—Zs Z, Ty ~—Z:2

—Z4 s —2 Z1:

Consider the equivalence @ ~ @,. Show that Q ~ @, W ~ W, results in QW ~
Q.W,. Hence, determine |@.|, and the characteristic values of @,.

6. How does one determine the maximum value of (z,Az) subject to the constraints
zz) =1, (z,eh) =0,2=1,2,,..,k?

7. Write, for two symmetric matrices, A and B, A > B to indicate that A — B is
non-negative definite. Show that A > B does not necessarily imply that 42 > B2

8. Let g(t) > 0 and consider the quadratic form

Qn(z) = /;1 g(0) (kzo z,,tk)’ dt

Show that Qu(z) is positive indefinite, and, hence, derive various determinantal
1
inequalities for the quantities m; = ,/0 g(t)tk di (Stieltjes).
9. Let ¢(t) > 0 and consider the Hermitian form

Hy(z) = /01 g(t) LEO 2e3nike

Show that Hy(z) is positive definite, and, hence, derive determinantal inequalities

* dt

1 .
for the quantities m; = /; g()eri* dy (0. Toeplitz).
10. Show that

N N
_ Zola . PN .
mha ¥l <= z 2y (Hilberl's inequality)
m,n=0 n=0

11. Establish Theorem 1 inductively. See C. J. Seelye.!
12. Determine the minimum value over all z; of the expression

N
ei0 — z zret?

k=0

4

* s

@n(2) = [

[¢]

18. What is the limit of the minimum value as N — «? (This result plays an
important role in prediction theory. See U. Grenander and G. Szego, T'oeplitz Forms
and their Applications, University of California Press, 1958.)

14. Determine the minimum value over all z; of the expression

N
?
e — z xd)\il dt

=0

Qn(z) = / o]

where {)\:} is a sequence of real numbers, o < A\ < . . . .

1C. J. Beelye, Am. Math. Monthly, vol. 65, pp. 3556-356, 1958.
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16. Consider the problem of determining the minimum and maximum values of
(z,Az) + 2(b,z) on the sphere (z,z) = 1. How many stationary values are there,
and are they all real?

18. How many normals, real and complex, can one draw from a given point in the
plane (z1,y;) to the eliipse z2/a? 4 y2/b? = 17

17. If A = (a;;), C = (¢i;), and z i =0, za., = 0, ¢c;; = ¢ + ¢;, then AB and

A(B + C) have the same charactenstlc equatlon (A. Brauer).

18. If A, C,, and C; are such that 14 = ACy = 0, C = C; + C,, then AB and
A(B + ©C) have the same characteristic equation (Parker).

19. If ACA = 0, then AB and A(B + C) have the same characteristic equation

(Parker).
20. Let H be a Hermitian matrix with the characteristicroots \; < \; < -+ + <
Aw, and let the characteristic roots of S’HS be uy < u3 £ + « + < un, where S is an

arbitrary real nonsingular matrix. Then the number of positive, negative, and zero
terms in the two lists of characteristic roots is the same. A quantitative sharpening
of this result (due to Sylvester and Jacobi), often called the Law of Inertia, may be
found in A. M. Ostrowski, A Quantitative Formulation of Sylvester’s Law of Inertia,
Proc. Nat. Acad. Sci. U.S., vol. 45, pp. 740-743, 1959.

21. Let A and B be real symmetric matrices. A necessary and sufficient condition
that the pencil of matrices AA + uB, A, u real scalars, contains a positive definite
matrix is that (z,Az) = 0 and (z,Bz) = 0 imply that z = 0, provided that the dimen-
sion N is greater than 2 (Calabs).

22. Any pencil AA 4 uB for which the foregoing holds can be transformed into
diagonal form; see O. Taussky, Positive Definite Matrices, Inequalities, Academic
Press, Inc., New York, 1967.
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Functions of Maltrices

1. Introduction. In this chapter, we wish to concentrate on the con-
cept of a function of a matrix. We shall first discuss two important
matrix functions, the inverse function, defined generally, and the square
root, of particular interest in connection with positive definite matrices.
Following this, we shall consider the most important scalar functions of
a matrix, the coefficients in the characteristic polynomial,

The problem of defining matrix functions of general matrices is a rather
more difficult problem than it might seem at first glance, and we shall in
consequence postpone any detailed discussion of various methods that
have been proposed until a later chapter, Chap. 11. For the case of
symmetric matrices, the existence of the diagonal canonical form removes
most of the difficulty.

This diagonal representation, established in Chap. 4, will also be used
to obtain a parametric representation for the elements of symmetric
matrices which is often useful in demonstrating various results. As an
example of this we shall prove an interesting result due to Schur con-
cerning the composition of two positive definite matrices.

Finally, we shall derive an important relation between the determi-
nant of a positive definite matrix and the associated quadratic form
which will be made a cornerstone of a subsequent chapter devoted to
inequalities, and obtain also an analogous result for Hermitian matrices,

2. Functions of Symmetric Matrices. As we have seen, every real
symmetric matrix can be represented in the form
¥ -

N2 0

A=T . T 1)

AN
90
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where T is an orthogonal matrix. From this it follows that

[\ T
A 0
A* =T T (2)
0
_ At
for any integer k. Hence, for any analytic function f(z) we can define
f(A) to be -
rf()\l)
J(r) 0
f4) =T (i (3)
0 .
L fOw) |

whenever the scalar functions f(\;) are well defined.
3. The Inverse Matrix. Following the path pursued above, we are
led to define an inverse matrix as follows,

— -

Al
At 0

A

L. -

whenever the \; are all nonzero.
It is clear that A~ has the appropriate properties of an inverse, namely,

AA-' = 4714 =] @)

4. Uniqueness of Inverse. It is natural to inquire whether or not the
inverse matrix is unique, if it exists. In the first place, let us observe
that the condition that the \; are all nonzero is equivalent to the con-
dition that |4| # 0. TFor if \ = 0is a root of |4 — NI| = 0, we see that
[A] = 0, and if |[A] = 0, then X\ = 0 is a root.

If A is a matrix for which |4| = 0, it will be called singular. If
|A| # 0, A is called nonsingular.

It is immediately seen that a singular matrix cannot have an inverse.
For, from AB = I, we have |[AB| =1 or |A| |B] = 1. No such equa-
tion can hold if |[4| = 0.

Let us now show, however, that any nonsingular matrix, symmetric or
not, possesses a unique inverse, For the case where A is symmetric, the
matrix found in this new way must coincide with that given by (3.1).
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The equation AB = I is equivalent to the N? equations
N
ailbli = i i’j = 1, 2, ... ’ N (l)
k=1

Fixing the value of j, we obtain N linear equations for the quantities by,
k=12 ...,N. Thedeterminant of this set of equationsis |A| = |a;],
regardless of the value of 7.

It follows then that if A is nonsingular, there is a unique solution of
the equations in (1). Furthermore, we see that the solution is given by

At = (/| A) )

where a;; is the cofactor of a;; in the expansion of the determinant of 4.

EXERCISES

1. Show that A, if it exists, is symmetric if A is symmetric in three ways:
(a) Directly from (3.1)
(b) Using the expression in (4.2)
(c) Using the relations AA~! = A~'4 = [ and the uniqueness of the inverse
2. If A is singular, show that we can find a matrix B whose elements are arbitrarily
small and such that A + B is nonsingular, :
8. Let [Nl — A| = A¥ 4 ¢;A¥"1 4 .+ .« 4 ¢p, the characteristic polynomial of 4.
Show that 4= = —(4A¥-1 4 ¢;A¥-2 4 -« + 4 ¢y_1)/cn, whenever cy = 0.
4. If A, A., By, B, are nonsingular square matrices of the same order, then

[Al Bl]'l - [(Al — B1By 149"t (42 — B:BFIAI)_I]
As B, (By — A1A471By)"t (B — A2A17'BY)?

6. Let A be an M X N matrix and consider the set of inconsistent linear equations
z = Ay, where z is an N-dimensional vector and y an M-dimensional vector. To
obtain an approximate solution to these equations, we determine y as the minimum
of the quadratic function (z — 4y, z — Ay). Show that, under the above assumption
of inconsistency, there is a unique solution given by y = (4'4)~'4’z, and determine
the minimum value of (zx — Ay, z — Ay).

8. Let A > B, for two symmetric matrices A and B, denote as previously the fact
that A — B is non-negative definite. Show that 4 > B implies that B! > 4~
provided that A—!and B! exist.

7. If S is a real skew-symmetric matrix, then I + S is nonsingular,

8. If S is a real skew symmetric, then

r'=(d-8U+8)"
is orthogonal (the Cayley transform),
9. If A is an orthogonal matrix such that A + I is nonsingular, then we can write
A=U-8(UI+4 8
where 8 is a real skew-symmetric matrix.
10. Given a matrix A, we can find a matrix J, having + 1s along the main diagonal

and zeroes elsewhere, such that JA + I is nonsingular.
11. Using this result, show that every orthogonal matrix 4 can be written in the
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form
A =JI -8 + 8!
where J is as above.
12, Show that
(a) Al 2 B), Az Z Bg, imph'es Al + A: 2 Bx + Bz
(b) Ay > By, By 2 Cy, implies 4, > Cy
(¢} Ay > By, A3 2 B,, does not necessarily imply A;4: 2> BiB,, even if 4,4,
and B:B, are both symmetric. Thus, A > B does not necessarily imply
that 4* > B,
(d) Ay > B,implies that T'A,T > T'B,\T
18. Show that A~! can be defined by the relation

(z,A7'z) = max [2(z)9) — (1 Ap)]
v
if A is positive definite.

14. From this, show that B~ > A~'if A and B are symmetricand A > B > 0.

15. If 4 is a matrix whose elements are rational integers, and if |4| = +1, then A-!
is a matrix of the same type.

18. If A is a matrix whose elements are complex integers, i.e., numbers of the form
z, + iy, where z, and y, are rational integers, and if |[4| = +1 or +¢, then A~'isa
matrix of the same type.

17. What is a necessary and sufficient condition that the solutions of Az = y be
integers whenever the components of y are integers, given that the elements of A are
integers?

18. Show that |4 4 iB|2 = |A|?|] + A7'BA-'B|if H = A + iB is Hermitian, and
A is nonsingular.

19. Show that (3,Hz) = (z,4A2) + (y,Ay) + 2(B2,y) if H = A + ¢B is Hermitian
and z =z + iy,

20. Show that (z,42) = (z,A,x) where A, = (4 + A")/2.

21. If A and B are alike except for one column, show how to deduce the elements
of A~ from those of B~

22. If A has the form

0 31 0
y1 0 22 O
0 Y2 0 44

A=1" 0

then, provided that y; = 0, in A~* the element by is given by

bu =0  kodd
k/2-1

T2i

= (—1)F21 k even

?
Yol
0

i=
where 2o = 1. (Clement)
28. From this deduce the form of A1,

B. Square Roots. Since a positive definite matrix represents a natural
generalization of a positive number, it is interesting to inquire whether
or not a positive definite matrix possesses a positive definite square root.
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Proceeding as in Sec. 2, we can define A% by means of the relation

[\
AgH 0

A% =T - i 1

AnH |
obtaining in this way a matrix satisfying the relation B? = A, which is
positive definite if A is positive definite.

There still remains the question of uniqueness. To settle it, we can
proceed as follows. Since B is symmetric, it possesses a representation
™ =

m
[ 4] 0

B=8 . g (@)

| BN_
where S is orthogonal. It follows that B and B? = A commute. Hence,
both can be reduced to diagonal form by the same orthogonal matrix T.
The relation B? = A shows that B has the form given in (1) where the
positive square roots are taken.

EXERCISES

1. How many symmetric square roots does an N X N positive definite matrix
possess?

2. Can a symmetric matrix possess nonsymmetri¢ square roots?

8. If B is Hermitian and B > 0, and if A* = Band (4 4 4*) > 0, then 4 is the
unique non-negative Hermitian square root of B (Putnam, On Square Roots and
Logarithms of Operators, Purdue University, PRF-1421, 1958).

4. If ¢* = B, B positive definite, and 4 < (2 log 2), then A is the unique positive
definite logarithm of B (Putnam).

6. Parametric Representation. The representation

A\
Az 0

i Ax ]
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furnishes us a parametric representation for the elements of a symmetric
matrix in terms of the elements t;; of an orthogonal matrix T, namely,

N
a; = 2 Nelixbin )

k=1

which can be used as we shall see in a moment to derive certain properties
of the a;;.

EXERCISE

1. Obtain a parametric representation in terms of cos 6 and sin 6 for the elements
of a general 2 X 2 symmetric matrix.

7. A Result of I. Schur. Using this representation, we can readily
prove Theorem 1.

Theorem 1. If A = (ay;), B = (by;) are positive definite, then

C = (a:by)
is posttive definite.
Proof. We have
= 2 e ( 2 b.,a:.t.kx,tu) A >0 (1)
1,7=1

N
As a quadratic form in the variables x:: the expression z biziuxi is

positive unless the quantities z.t. are all zero. Since

zxm DEDES - ) (@)

we see that this cannot be true for all 7, unless all the z. are zero.
This establishes the required positive definite character.

EXERCISE

1. Use Exercise 2 of the miscellaneous exercises of Chap. 5 to obtain an inductive
proof of this result, starting with the easily established result for N = 2.

8. The Fundamental Scalar Functions. Let us now consider some
properties of the scalar functions of A determined by the characteristic
polynomial,

NI — A] =AY — ¢i(ANY! 4 do(AMN-2 4 - - -+ (= D¥en(4) (1)
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In this section the matrices which occur are general square matrices, not
necessarily symmetric.

It follows from the relations between the coeflicients and the roots of a
polynomial equation that

$r(Ad) =M+ N+ - + My
$:(A) = z oY

=

on(A) = A2 - - - Ay 2

On the other hand, writing out the term in A¥-! of the characteristic
polynomial as it arises from the expansion of the determinant |4 — A|,
we see that

$1(4) =an+ a6+ -+ any 3)

while setting A = 0 yields
¢n(4) = |A| “4)

The linear function ¢:(4) is of paramount importance in matrix theory.
It is called the trace of A, and usually written tr (A4).
It follows from (3) that

tr (A + B) = tr (4) + tr (B) 5)
and a little calculation shows that
tr (AB) = tr (BA) (6)

for any two matrices A and B. These relations hold despite the fact
that there is no simple relation connecting the characteristic roots of 4,
Band A + B or AB.

This last result is a special case of Theorem 2.

Theorem 2. For any two mairices A and B, we have

$u(AB) = u(BA) k=12 ... ,N ™

The proof will depend upon a fact that we already know, namely, that
the result is valid for & = N, that is, |AB| = |BA| for any two matrices.
If A is nonsingular, we have the relations

N = AB| = |A(AA~! = B)| = |0A—* — B)A| = \I — BA| (8)

which yield the desired result.
If A is singular, we can obtain (8) by way of a limiting relation, starting
with A + eI, where ¢ is small and A + ¢ is nonsingular.
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In the exercises immediately below, we indicate another approach
which does not use any nonalgebraic results.

EXERCISES

1. Show that |1 +¢tA] =1 +¢tr (A) 4 -+ - .

2. Show that ¢x(TAT 1) = ¢u(A); su(TAT') = ¢4(A) if T is orthogonal,

8. Show that any polynomial p(@:,,81s, . . . ,anw) in the elements of A which has
the property that p(AB) = p(BA) for all A and B must be a polynomial in the func-
tions ¢(A).

4. Show that tr ((AB)¥) = tr (BA)*)fork = 1,2, . . . ,and hence that ¢x(4 B) =
¢x(BA)fork =1,2,...,N.

5. Show that tr (AX) = 0 for all X implies that 4 = 0.

8. Exercise 2 and Theorem 2 above are both special cases of the result that for any
m matrices A,, As, . . . , Am, of order N, the quantity ¢r(4;4: + .+ An) remains
unchanged after a cyclic permutation of the factors Ay, 4y, . . ., Am.

9. The Infinite Integral / :_ e~>42 dz.  One of the most important
integrals in analysis is the following:

Iy = /" N /—: e—(x.4%) gy ¢))

where dr = dz, dz, + + - dxy. Although the indefinite integral cannot
be evaluated in finite terms, it turns out that the definite integral has a
quite simple value.

Theorem 3. If A is posilive definite, we have

N2

4]

2

Iy =

b

We shall give two proofs.
First Proof. Let T be an orthogonal matrix reducing A to diagonal
form, and make the change of variable x = Ty. Then

(z,Ax) = (y,Ay) (3)
N

Furthermore, [[ dz; = [ dy;, since the Jacobian of the transformation
i=1 i=1

z = Ty is [T|, which can be taken to be +1. Since x = Ty is a one-to-

one transformation, it follows that

Iy = /” s /” et Mty

N
= n ) et dy, = = 4)
—n N O XY VIR WO 1 ‘

i=1
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N
From the fact that ﬂ A\ = |4|, and the known evaluation

=1

L.d
/ e dr = 7
—— ’

we obtain the result stated in (2).
Let us now give a second proof. In Sec. 3 of Chap. 5, it was shown
that we may write

N
D

(z,Az) = Ei nt  Dy=1 (5)

k=1

where
N
g = 2 + 2 bz, k=12...,N (6)
i=k+1

provided that A is positive definite. Let us then make a change of varia-
ble from the z; to the yx. The Jacobian is again equal to 1, and the
transformation is one-to-one. It follows that

= ([ o) ([ o)
(

aNi2 N2

e—DnvntI DN dyN) =55 = IAI” (7)

EXERCISES

1. Show that if A is positive definite and B symmetric, we have
° T e Am=itz.B) g N
/-.."’/_.° ' B v R 1}

where the principal value of |A + 7B|*$ is taken, in the following steps:
(a) Set z = Ty, where AT = A, a diagonal matrix
(b) Make the further change of variable, y, = z,/A*
(¢) The integrand is now

N
- E 2x%—i(2,C2)
P kw1

Reduce C to diagonal form by means of an orthogonal transformation z = Sw,
(d) Evaluate the remaining integral,
2. Evaluate integrals of the form

Imn = /on/on €T311%1130,4% 34~ 0338stp mp e gy iy
m, n positive integers or zero, in the following fashion. Write

) (P S—
(a0 — an?)ls
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= ()" () e

How does one treat the general case where either m or n may be odd?
8. If A and B are positive definite, evaluate

and thus

v = [ cearm ie
4. Evaluate
IN o= /” e"(‘-‘t)‘f‘ﬁ(t-v) dz
- 20

10. An Analogue for Hermitian Matrices. By analogy with (9.1), let
us consider the integral

JH) = [ eeno dzay )

where dz = dz,dz; * * - dzy, dy = dy1dy: * + - dyx and H is a positive
definite Hermitian matrix.
Write H = A + 1B, where A is real and positive definite and B is

real and skew-symmetric, Then
J(H) = /” e~ (2. AD) 2Bz )~ (. AV dy dy (2)

Since the integral is absolutely convergent, it may be evaluated by inte-
gration first with respect to x and then with respect to y.
Using the relation

(x,Ax) + 2(Bx,y) = (.’.U,A.’.U) - 2(2:,By)
= (A(zx — A"'By),x — A-'By) — (By,A"'By) (3)

we see that
® e~ (= A2)-2(Bz.y) fJr = w (4)
. w = [AT%
ence,
wNiz [ -
R —iy. 4y V. 1
J(H) IAI”/ e~ 1w 4V +0.BAT 1By gy
a2 aNi2
T JA]% A ¥ BA'B[%

N

= [T ¥ A= BA-B]" )

11. Relation between J(H) and |H|. It remains to express J(H) in
terms of |H|. We have

|H| = |A + iB| = |A||I + iA'B| W
|H'| = |A — iB| = |A||I — iA=B|
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Since |H| = |H’|, we have

|H|* = |A]}(T + tA—'B){I — {A-'B)|

= |A]YT + A-'BA-B| @
Combining the foregoing results, we see that
J(H) = =/|H] 3

MISCELLANEOUS EXERCISES

1. Show that the characteristic roots of p(4), where p(A) is a polynomial, are p(\;),
and thus that [p(4)] = n p(N).

]
2. Under what conditions does the corresponding result hold for rational functions?
8. Determine the inverses of the following matrices:

C=|* "V
y z
Z1 T3 Zs z,
—Zs Z1 —Zy Z3
Q ==
—Z Zy 31 T2
-2 Ty —Z2 Z3

4. Let Ay = I, and the sequence of scalars and matrices be determined by ¢, =
tr (Ade-s)/k, b= 1,2, ... ,Ar = AAr_y — cxl. Then A~ = A,_,/c. (Frame).

8. Show that |4 4 ¢B| = |A|(} +ttr (A™'B) + - - ).

8. Using the representation

[A +eB + M| = ¢x(4 + €B) + Apn_1(4 +eB) + - - -
=]A + M1 +etr (A +N)B) + - - )
we obtain the relation

ov-1(4 + eB) = ¢n_1(4) — edn(4) tr (47?B) + - - -

and corresponding results for each ¢i(4).
7. Show that a necessary and sufficient condition that 4 be positive definite is that

tr (AB) > 0 for all positive definite B.
8. Show that

e »-1
.(___Lk).._)\k“(,gk)
[+ 4| = eb=1

and hence, obtain relations connecting ¢x(4) and tr (4%).
9. Show that AB + B and BA + B have the same determinant by showing that

tr ((AB 4 B)*) = tr ((BA 4 B)%) forn =1,2, .. ..
10. Let By = I, By = AB;_, + ki, where k¢ = tr (4 B;_,)/t; then

(—=1)%A — M =M + k-t + - -+ (Leverrier)
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11. Tet 4, B, . .., be commutative matrices, and let f(z,zs, . . .) be any
rational function. The characteristic roots @, as, . . . ,@n0f A, by, by, . . . , ba of
B, . . ., can be ordered in such a way that the characteristic roots of f(A,B, . . .)

are f(alybi, v . -)D f(a’yb’y L ')) and so on.

12. Show that every nonsingular matrix may be represented as a product of two not
necessarily real symmetric matrices in an infinite number of ways (Voss).

18. If H is non-negative definite Hermitian, there exists a triangular matrix 7 such
that H = TT* (Toeplitz).

14. For every A there is a triangular matrix such that T4 is unitary (E. Schmidt).

15. Let P, Q, R, X be matrices of the second order. Then every characteristic root
of a solution X of PX* + QX + R = 0 is a root of |PA\* + @\ + R| = 0 (Sylvester).

16. If 4, B, C are positive definite, then the roota of |AA? 4 B\ 4 C| = 0 have
negative real parts.

17. Consider matrices A and B such that AB = r,BA, where r; is a gth root of
unity. Show that the characteristic roots of A and B, \; and u;, may be arranged so
that those of A + B are (A2 + u;%)''¢, and those of AB are rt~D/\y;. Different
branches of the gth root may have to be chosen for different values of ¢ (Polter).

18. Using the representation

"N” ® ~ (2, A2)~¢€(2 B2
e = [ eesreen [l an

t

and expanding hoth sides in powers of ¢, obtain representations for the coefficients in
the expansion of |A + ¢B| in powers of ¢, and thus of the fundamental functions
du(A).

19. Let A and B be Hermitian matrices with the property that ¢:4 -+ ¢2B has the
characteristic roots c\\; + cou;: for all scalars ¢, and ¢;, where A, u; are, respectively,
the characteristic roots of A and B. Then AB = BA (Motzkin).

20. Show ihat A is nonsingular if |ai| > 2 laali=1,2 ..., N.
=4
21. The characteristic vectors of A are characteristic vectors of p(4), for any poly-
nomial p, but not necessarily conversely.
22. If A and B are symmetric matrices such that

[I = 2A||I = uB| = |[I = AA — uB|

for all X and p, then AB = 0 (Craig-Holelling).

28. Let AB = 0, and let p(A,B) be a polynomial having no constant term. Then
I\ — p(4,B)| = A¥|A — p(A4,0)| IN — p(B,0)| (H. Schneider).

24. Generalize this result to p(A;,A, ... ,A.), where 4;4; =0, i <j (H.
Schnceider).

25. Let A and B be positive definite. By writing [AB| = |43 |B| | A}¢|, show that

N
m_\/B-;;-I - j_”, o—(4Ytz.B4}ex) n dz;

§=1
28. Show that

/” e-(z.A:)!N—(v,z)n dz; = (2r)N|A| e~ wa oz
— o
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27. Let Y be a positive definite 2 X 2 matrix and X a 2 X 2 symmetric matrix.
Consider the integral

JY) = /x>o P (xv)|X|.—95 dzyy dz1e d2ss

where the region of integration is determined by the inequalities zy; > 0, Z112ss —
215* > 0. In other words, this is the region where X is positive definite, Then

HWI(s)T (s — 34)

0=

for Re (8) >3 (Ingham-Siegel). (See the discussion of Sec. 9 for further information
concerning results of this nature.)

28. Let A be a complex matrix of order N, A = (a,,) = (brs + icrs). Let B be the
real matrix of order 2N obtained by replacing b,. + i¢,. by its matrix equivalent

bre + 1Cra ~ [ bre c"]

—Cra bra

Show that A~! can be obtained from B! by reversing this process after B-! has been

obtained.
29. If A is symmetric and |4] = 0, then the bordered determinant

aiy '+ N Ty
Gy * ** Gy T3

@GNt ° " * GNN ZN
zy ce. N 0

multiplied by the leading second minor of 4 is the square of a linear function of the
z; (Burnside-Panton).

30. Consequently, if A is symmetric and the leading first minor vanishes, the
determinant and its leading second minor have opposite signs.

81. Let X and A be 2 X 2 matrices. Find all solutions of the equation X* = 4
which have the form X = ¢,/ + 24, where ¢, and c; are scalars.

82. Similarly, treat the case where X and A are 3 X 3 matrices, with X = ¢,/ +
c1d + Al

88. Let f(¢) be a polynomial of degree less than or equal to N — 1, and let A,,

Ay, . . .+ , Ay be the N distinct characteristic roots of A. Then
S A 1
= . 4=
i =Yoo 1 [5255]
t=] 1<JiS<N
i

(Sylvester interpolation formula)
What is the right-hand side equal to when f()) is a polynomial of degree greater than
N?
84. Is the formula valid for f(A) = A~!?
86. Show that
N3 A%
v dpy = A T
[(z,Az)sl dzy dzs NETN/Z 4+ D)
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86. If the elements a;; of the N X N matrix A are real and satisfy the conditions

a; > z lai;l, ¢ = 1,2, . . ., N, then the absolute term in the Laurent expansion of

imi
N N
-1
f(zltzh D ;3N) = H (ZG,ﬂk/z,)
j=1 k=1
on |2y = |zd] = - - - = |zn| is equal to [A|™
Alternatively,
1 _ dz;
4] (Zn)"¢ ¢ ﬂ [Z J
i=1 a2k

where the contour of integration is |z;| =

This result remains valid if 4 is complex and |aii| > 2 lai]. A number of further
i
results are given in P. Whittle.!
The original result was first given by Jacobi and applications of it may be found in
H. Weyl? and in A. R. Forsyth.?

87. Show that if A and B are non-negative definite, then Za;,»b.»,- > 0, and thus
i
establish Schur’s theorem, given in Sec. 7 (Fejer).
88. Let {A;} be a set of N X N symmetric matrices, and introduce the inner
product
(AnA;) = tr (A:4))
Given a set of M = N(N + 1)/2 linearly independent symmetric matrices {A;},
construct an orthonormal linearly independent set {Y;} using the foregoing inner
product and show that every N X N symmetric matrix X can be written in the form
M
X = z ¢; Y, where ¢; = (X,Y)).
i=1

89. For the case of 2 X 2 matrices, take

R H P

What is the corresponding orthonormal set?
40. Similarly, in the general case, take for the A the matrices obtained in the

analogous fashion, and construct the Y,

41, The Cayley-Hamilton theorem asscrts that A satisfies a scalar polynomial of
degree N. Call the minimum polynomial associated with A the scalar polynomial of
minimum degree, ¢(\), with thc property that ¢(4) = 0. Show that g(\) divides
|4 — M.

1 P, Whittle, Some Combinatorial Results for Matrix Powers, Quart. J. Math., vol.
7, pp. 316-320, 1956.

2 H. Weyl, The Classical Groups . . . , Princeton University Press, Princeton, N.J.,

1946,
3 A. R. Forsyth, Lectures Introductory lo the Theory of Functions of Two Complex

Variables, Cambridge University Press, New York, 1914.
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43. Find the Jacobian of the transformation ¥ = X—1,*
48. Evaluate the matrix function

1 -1
o [, @6l - Ay tas
under various assumptions concerning 4 and the contour C.

1
The first use of a contour integral —2—/ O = T)~%()\) dx to represent f(T) is
r Jo

found in Poincaré (H. Poincaré, Sur les groupes conlinus, T'rans, Cambridge Phil.
Soc., vol. 18, pp. 220-22b, 1899, and Oeuvres, vol. 3, pp. 173-212).

44. If Az = b has a solution for all b, then A~! exists,

46. For any two positive constants k; and k3, there exist matrices A and B such that
avery element of AB — [ is less than k; in absolute value and such that there exist
elements of BA — I greater than ky (Householder).

46. If A, is nonsingular, then

j: j: = |41 |4, - AsAri—tAy
&%. If BC = CB, and
o
-B I 0 ...
c -B I o --.
A=l 0o ¢ -B I o
then
I 0 .-,
Dy I 0 ...
o
4 DyD I 0 --.
Ds Dy Dy I 0 .

Determine recurrence relations for the D;.

48. If A is an N X M matrix of rank r, r < N, C an M X N matrix such that
ACA = kA, where k is a scalar, B an M X N matrix, then the characteristic equation
of AB is \W=T$()\) = 0 and that of A(B 4 C) is \W7"¢(\ — k) = 0 (Parker).

49. IfY = (AX + B)(CX + D)~!, express X in terms of ¥,

§0. We have previously encountered the correspondence

. a b
a+bz~l_b e

Prove that a necessary and sufficient condition for

a b

fa@+bi) ~1| 5 o

where f(2) is a power series in ¢, is that f(2) = j@. For a generalization, see D. W.
Robinson, Mathematics Magazine, vol. 32, pp. 213-215, 1959,

*1. Olkin, Note on the Jacobians of Certain Matrix Transformations Useful in
Multivariate Analysis, Biometrika, vol. 40, pp. 43-6, 1953,
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8. If F(2) = cq.2® with ¢ > 0, then F(A) is positive definite whenever 4 is

n=0

positive definite.

83. If F(A) is positive definite for every 4 of the form (a:—;), then F(2) = z CaZ"
n=0
with ¢ca > 0 (W. Rudin). An earlier result is due to Schoenberg, Duke Math. J., 1942,
63. A matrix A = (a;) is called a Jacobi matrix if ai;; = 0, for [§ — j| > 2. If4
i8 a symmetric Jacobi matrix, to what extent are the elements a;; determined, if the
characteristic roots are given? This i8 a finite version of a problem of great impor-
tance in mathematical physics, namely that of determining the coefficient function
-5(z), given the spectrum of "’ + A¢(z)u = 0,8ubject to various boundary conditions.!
64. If A has the form

a1 0 ..
A=|1 a 1 o ...
0 1 a 1 o ...

how does one determine the a; given the characteristic roots?

86. Show that for any A, there is a generalized inverse X such that AXA4 = 4,
XAX = X, XA = (XA)Y, AX = (AX)' (Penrose?),

86. X is called a generalized inverse for 4 if and only if AXA = 4. Show that X
is a generalized inverse if and only if there exist matrices U, V, and W such that

X=Q[€," .

where
_ Ip 0]
PAQ = [ o

and I is the identity matrix of dimension n.
87. X is called a reflexive generalized inverse for A if and only if AXA = 4 and
XAX = X. Show that

X=0 [i, V%]P (C. A. Rhode)

68. Show that if Az = y is consistent, the general solution is given by
z =A%y + (I — A'A)z

where At is the Penrose-Moore inverse and :z is arbitrary (Penrose). For compu-
tational aspects see Urquehart.?

1 G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwerte Aufgabe, 4cta
Math., vol. 78, pp. 1-96, 1946. 1. M. Gelfand and B, M. Leviton, On the Determina-
tion of a Differential Equation from Its Spectral Function, Trans. Am. Math. Soc.,
val. 2, pp. 253-304, 1955.

1 See the reference in the Bibliography and Discussion, Sec. 3.

‘*N. 8. Urquchart, Computation of Generalized Inverse Matrices which Satisfy
Specified Conditions, SIAM Review, vol. 10, pp. 216-218, 1968.
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See also Langenhop,! Radhakrishna Rao,? and Schwerdtfeger.?

59. If A-! exists and if more than N of the elements of A are positive with the
others non-negative, then A-! has at least one negative element. A has the form
PD with P a permutation matrix and D a diagonal matrix with positive elements if
and only if 4 and A-! both have non-negative entries (Spira).

60. Consider the matrix A + B where A is positive definite, B is real and sym-
metric and e is small. Show that we can write (4 + eB)~! = A~¥(1 + «5)~14~},
where 8 is symmetric, and thus obtain a symmetric perturbation formula,

(A+eB) 1= A=t — eAWSAW 4 . . .,

81. Let f(z) be analytic for |¢] <1, f(2) =ao+ a1z + - - - . Write f(2)¢ =
ai +auz+an*+ .- -, k=12 ..,. Can one evaluate Jayl, 7, j =0, 1,
« « .+, N, in simple terms?

62. Write f(z) = biz + bsz® + « « ., and f®(2) = bz + baz® + + « « , where f®
is the kth iterate, that is, f® = 7(f), . . . ,f® = f(f®D), , ... Can one evaluate
beil, 4,7 =0,1, ..., N, in simple terms?

Bibliography and Discussion

§1. There is an extensive discussion of functions of matrices in the
book by MacDuffee,

C. C. MacDuffee, The Theory of Matrices, Ergebnisse der Mathe-
matik, Reprint, Chelsea Publishing Co., New York, 1946.

More recent papers are

R. F. Rinehart, The Denvative of a Matrix Function, Proc. Am.
Math. Soc., vol. 7, pp. 2-5, 1956.

H. Richter, Uber Matrixfunktionen, Math. Ann., vol. 122, pp. 16-34,
1950.

8. N. Afriat, Analytic Functions of Finite Dimensional Linear
Transformations, Proc. Cambridge Phil. Soc., vol. 55, pp. 51-56, 1959.

and an excellent survey of the subject is given in

R. F. Rinehart, The Equivalence of Definitions of a Matric Func-
tion, Am. Math. Monthly, vol. 62, pp. 395-414, 1955.

1C, E. Langenhop, On Generalized Inverses of Matrices, SIAM J. Appl. Math.,
vol. 15, pp. 1239-1246, 1967.

2 C. Radhakrishna Rao, Calculus of Generalized Inverses of Matrices, I: General
Theory, Sankhya, ser. A, vol. 29, pp. 317-342, 1967.

3 H. Schwerdtfeger, Remarks on the Generalized Inverse of a Matrix, Lin. Algebra
Appl., vol. 1, pp. 325-328, 19868.
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See also

P. 8. Dwyer and M. S. Macphail, Symbolic Matrix Derivatives,
Ann, Math. Stat., vol. 19, pp. 517-534, 1948.

The subject is part of the broader field of functions of hypercomplex
quantities. For the case of quaternions, which is to say matrices having
the special form

3 e 23 T3 Ty

Q _ -T2 Ty —X4 Ts
- —x3 Ty ry —2%:
—~Ty —X3 Te )

there is an extensive theory quite analogous to the usual theory of func-
tions of a complex variable (which may, after all, be considered to be the
theory of matrices of the special form

=131

R. Fueter, Functions of a Hyper Complex Variable, University of
Zurich, 1948-1949, reprinted by Argonne National Laboratory, 1959.

R. Fueter, Commentarii Math. Helveticii, vol. 20, pp. 419-20, where
many other references can be found.

with z and y real) ; see

R. F. Rinehart, Elements of a Theory of Intrinsic Functinns on
Algebras, Duke Math. J., vol. 27, pp. 1-20, 1960.

Finally, let us mention a paper by W. E. Roth,

W. E. Roth, A Solution of the Matrix Equation P(X) = A, Trans.
Am. Math. Soc., vol. 30, pp. 597-599, 1928.

which contains a thorough discussion of the early results of Sylvester,
Cayley, and Frobenius on the problem of solving polynomial equations
of this form,

Further references to works dealing with funetions of matrices will be
given at the end of Chap. 10.

§8. The concept of a generalized inverse for singular matrices was dis-
cussed first by
E. H. Moore, General Analysis, Part I, Mem. Am. Phil. Soc., vol. 1,
p- 197, 1935.

and then independently discovered by

R. Penrose, A Generalized Inverse for Matrices, Proc. Cambridge
Phil. Soc., vol. 51, pp. 406-413, 1955.
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These and other matters are discussed in

M. R. Hestenes, Inversion of Matrices by Biorthogonalization,
J. Soc. Indust. Appl. Math., vol. 6, pp. 51-90, 1958,

An exposition of the computational aspects of matrix inversion which
contains a detailed account of many of the associated analytic questions
may be found in

J. von Neumann and H. Goldstine, Numerical Inverting of Matrices
of High Order, Bull. Am. Math. Soc., vol. 53, pp. 1021-1099, 1947.

§4. An excellent account of various methods of matrix inversion,
together with many references, is given in

D. Greenspan, Methods of Matrix Inversion, Am. Math. Monthly,
vol. 62, pp. 303-319, 1955.

The problem of deducing feasible, as distinguished from theoretical,
methods of matrix inversion is one of the fundamental problems of
numerical analysis. It will be extensively discussed in a succeeding
volume by G. Forsythe.

The problem of determining when a matrix is not singular is one of
great importance, and usually one that cannot be answered by any direct
calculation. It is consequently quite convenient to have various simple
tests that can be applied readily to guarantee the nonvanishing of the
determinant of a matrix.

Perhaps the most useful is the following (Exercise 20 of Miscellaneous
Exercises):

If A is a real matrix and |as| > z lai] i=12 ..., N, then

it
|4] # 0.

For the history of this result and a very elegant discussion of exten-

sions, see
O. Taussky, A Recurring Theorem on Determinants, Am. Math.
Monthly, vol. 56, pp. 672-676, 1949.

This topic is intimately related to the problem of determining simple
estimates for the location of the characteristic values of 4 in terms of
the elements of 4, a topic we shall encounter in part in Chap. 16. Gener-
ally, any extensive discussion will be postponed until a later volume.

A useful bibliography of works in this field is

0. Taussky, Bibliography on Bounds for Characteristic Roots of Finite
Matrices, National Bureau of Standards Report, September, 1951,

It should be noted, however, that the foregoing result immediately
yields the useful result of Gersgorin that the characteristic roots of A must
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lie inside the circles of center ai; and radius 2 lagl, fort =1,2, ..., N.
ivdi
The original result is contained in
S. Gersgorin, Uber die Abgrenzung der Eigenwerte einer Matrix,
Izv. Akad. Nauk SSSR, vol. 7, pp. 749-754, 1931,

§6. As mentioned previously, a parametric representation of different
type can be obtained for 3 X 3 matrices in terms of elliptic functions; see

F. Caspary, Zur Theorie der Thetafunktionen mit zwei Argumenten,
Kronecker J., pp. 74-86, vol. 94.

F. Caspary, Sur les systémes orthogonaux formés par les fonctions
théta, Comples Rendus de Paris, pp. 490-493, vol. 104.

as well as a number of other papers by the same author over the same
period.

87. See

1. Schur, Bemerkungen zur Theorie der beschrinkten Bilinearformen
mit unendlich vielen Verénderlichen, J. Math., vol. 140, pp. 1-28,
1911.

See also

L. Fejer, Uber die Eindeutigkeit der Lésung der linearen partiellen
Differentialgleichung zweiter Ordnung, Math. Z., vol. 1, pp. 70-79,
1918.

where there is reference to an earlier work by T. Moutard. See also
H. Lewy, Composition of Solutions of Linear Partial Differential
Equations in Two Independent Variables, J. Math. and Mech., vol.
8, pp. 185-192, 1959.

The inner product (A4,B) = Zaiby; is used by R. Oldenburger for
another purpose in

R. Oldenburger, Expansions of Quadratic Forms, Bull. Am. Math.
Soc., vol. 49, pp. 136-141, 1943

§9. This infinite integral plays a fundamental role in many areas of
analysis. We shall base our discussion in the chapter on inequalities
upon it, and an extension.

An extensive generalization of this representation may be obtained
from integrals first introduced by Ingham and Siegel. See, for the
original results,
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A. E. Ingham, An Integral which Occurs in Statistics, Proc. Cam-
bridge Phil. Soc., vol. 29, pp. 271-276, 1933.

C. L. Siegel, Uber die analytische Theorie der quadratischen Formen,
Ann. Math., vol. 36, pp. 527-606, 1935.

For extensions and related results, see

R. Bellman, A Generalization of Some Integral Identities Due to
Ingham and Siegel, Duke Math. J., vol. 24, pp. 571-578, 1956.

C. 8. Herz, Bessel Functions of Matrix Argument, Ann. Math.,
vol. 61, pp. 474-523, 1955,

I. Olkin, A Class of Integral Identities with Matrix Argument,
Duke Math. J., vol. 26, pp. 207-213, 1959,

8. Bochner, “Group Invariance of Cauchy’s Formula in Several
Variables,” Ann. Math., vol. 45, pp. 686-707, 1944.

R. Bellman, Generalized Eisenstein Series and Nonanalytic Auto-
morphic Functions, Proc. Natl. Acad. Sci. U.8., vol. 36, pp. 356-359,
1950.

H. Maass, Zur Theorie der Kugelfunktionen einer Matrixvariablen,
Math, Z., vol. 135, pp. 391-416, 1958,

H. 8. A. Potter, The Volume of a Certain Matrix Domain, Duke
Math. J., vol. 18, pp. 391-397, 1951.

Integrals of this type, analogues and extensions, arise naturally in
the field of statistics in the domain of multivariate analysis. See, for
example,

T. W. Anderson and M. A. Girshick, Some Extensions of the Wishart
Distribution, Ann. Math. Stat., vol. 15, pp. 345-357, 1944.

G. Rasch, A Functional Equation for Wishart’s Distribution, Ann.
Math. Stat., vol. 19, pp. 262-266, 1948.

R. Sitgreaves, On the Distribution of Two Random Matrices Used
in Classification Procedures, Ann. Math. Stat., vol. 23, pp. 263-270,
1952,

In connection with the concepts of functions of matrices, it is appropri-
ate to mention the researches of Loewner, which have remarkable con-
nections with various parts of mathematical physics and applied mathe-
matics. As we have noted in various exercises, A > B, in the sense
that A, B are symmetric and A — B is non-negative definite, does not
necessarily imply that A? > B2, although it is true that B—! > A1 if
A 2 B > 0. The general question was first discussed in

C. Loewner, Math. Z., vol. 38, pp. 177-216, 1934.
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See also
R. Dobsch, Math. Z., vol. 43, pp. 353-388, 1937.

In his paper Loewner studies the problem of determining functions f(z)
for which 4 > B implies that f(4) > f(B). This leads to a class of
functions called positive real, possessing the property that Re [f(z)] > 0
whenever Re (z) > 0. Not only are these functions of great importance
in modern network theory, cf.

L. Weinberg and P. Slepian, Positive Real Matrices, Hughes Research
Laboratories, Culver City, Calif., 1958.

F. H. Effertz, On the Synthesis of Networks Containing Two Kinds
of Elements, Proc. Symposium on Modern Network Synthesis, Poly-
technic Institute of Brooklyn, 1955,

where an excellent survey of the field is given, and

R. J. Duffin, Elementary Operations Which Generate Network
Matrices, Proc. Am. Math. Soc., vol. 6, pp. 335-339, 1955;

but they also play a paramount role in certain parts of modern physics;
see the expository papers

A. M. Lane and R. G. Thomas, R-matrix Theory of Nuclear Reac-
tions, Revs. Mod. Phystcs, vol. 30, pp. 257-352, 1958.

E. Wigner, On a Class of Analytic Funections from the Quantum
Theory of Collisions, Ann. Math., vol. 53, pp. 36-67, 1951,

Further discussion may be found in a more recent paper,

C. Loewner, Some Classes of Functions Defined by Differenee or
Differential Inequalities, Bull. Am. Math. Soc., vol. 56, pp. 308-319,
1950.

and in
J. Bendat and S. Sherman, Monotone and Convex Operator Func-
tions, Trans. Am. Math. Soc., vol. 79, pp. 58-71, 1955.
The concept of convex matrix functions is also discussed here, treated
first by
F. Kraus, Math. Z., vol. 41, pp. 18-42, 1936.

§10. This result is contained in

R. Bellman, Representation Theorems and Inequalities for Hermitian
Matrices, Duke Math. J., 1959.
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Variational Description of Characteristic
Roots

1. Introduction. In earlier chapters, we saw that both the largest and
smallest characteristic roots had a quite simple geometric significance
which led to variational problems for their determination.

As we shall see, this same geometric setting leads to corresponding
variational problems for the other characteristic values. However, this
variational formulation is far surpassed in usefulness and elegance by
another approach due to R. Courant and E. Fischer. Both depend upon
the canonical form derived in Chap. 4.

We shall then obtain some interesting consequences of this second
representation, which is, in many ways, the link between the elementary
and advanced analytic theory of symmetric matrices.

2. The Rayleigh Quotient. As we know, the set of values assumed by
the quadratic form (z,4x) on the sphere (z,z) = 1 is precisely the same
set taken by the quadratic form (y,Ay) = My:® + Aap2® + -+ - 4 Awyn?
on(y,y) =1,A = T"AT,y = Tz, with T orthogonal. Let us heneeforth
suppose that

R|ZR22"'ZAN (1)
Since, with this convention,
(?/;Ay) 2 AN(ylz + y?z + e + yNz) (2)
W,AY) SM e+ 2+ -+ yad)

we readily obtain the representations
@AY) _ oy (542)

A1 = max b ¢
v (y,y)) z (ﬁx)) (3)
_ o wA) _ (zA
We=min ey W @)
The quotient 4s)
_ (z,Az
o@) = T3 )

is often called the Rayleigh quolient.
112
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From the relation in (3), we see that for all z we have

(z,Az)
(z,2)

A 2 2 My (5)
Relations of this type are of great importance in applications where one
is interested in obtaining quick estimates of the characteristic values.
Remarkably, rudimentary choices of the z; often yield quite accurate
approximations for A1 and Ax. Much of the success of theoretical physics
depends upon this phenomenon.

The reason for this interest in the characteristic roots, and not so much
the characteristic vectors, lies in the fact that in many physical appli-
cations the \; represent characteristic frequencies. Generally speaking,
in applications the \; are more often the observables which allow a com-
parison of theory with experiment.

Matters of this type will be discussed in some slight detail in Sec. 12
below.

8. Variational Description of Characteristic Roots. Let us begin our
investigation of variational properties by proving Theorem 1.

Theorem 1. Let x* be a sel of N characteristic vectors associated with
the \. Then,fork =12 ..., N,

A = n}liax (z,Az)/ (x,x) (1)

where R, 18 the region of & space determined by the orthogonalily relations
(zx) =0 i=12 ..., k—-1Lz#0 (2)

Geometrically, the result is clear. To determine, for example, the
second largest semiaxis of an ellipsoid, we determine the maximum dis-
tance from the origin in a plane perpendicular to the largest semiaxis.

To demonstrate the result analytieally, write

N
= w
Then
N
(z,Ax) = z A 4

k=1

N
(@) = ) w?

k=1

The result for \, is precisely that given in Sec. 2. Consider the expres-
sion for A\.. The condition (z,z!) = 0 is the same as the assertion that
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N
u; = 0. It is clear then that the maximum of Z Ma? subject to
k=2
N
z w3 = 118 equal to Ay,
k=3

In exactly the same fashion, we see that A\, has the stated value for
the remaining values of k.

4. Discussion. It is known from physical considerations that stif-
fening of a bar or plate results in an increase in all the natural frequencies.
The analytic equivalent of this fact is the statement that the character-
istic roots of A + B are uniformly larger than those of 4 if B is positive
definite.

To demonstrate the validity of this statement for A\, or Ay is easy.
We have, using an obvious notation,

[z,(4 + B)a]
(z,2)
(z,47) | (z,Bz)
(z,2) (z,2) ]
. (z,Bx)
M(A) + Mv(B) (1)

Since by assumption Ax(B) > 0, we see that \;(4 + B) > \(A4) if Bis
positive definite. The proof that A\x(4 + B) > Ax(A) proceeds similarly.

If, however, we attempt to carry through a proof of this type for the
roots Ag, Ag, . . . , An—1, We are baffled by the fact that the variational
description of Theorem 1 is inductive. The formula for )\, depends upon
the characteristic vector 1, and so on.

Furthermore, as noted above, in general, in numerous investigations
of engineering and physical origin, we are primarily concerned with the
characteristic values which represent resonant frequencies. The charac-
teristic vectors are of only secondary interest. We wish then to derive
a representation of A\, which is independent of the other characteristic
values and their associated characteristic vectors.

M(A + B) = max

= max [
(z,A7)

2
2

EXERCISES

1. Show that Ay(A + B) > Ay(4) + Av(B) if A and B are positive definite.
2. Suppose that B is merely positive indefinite. Must Av(4 + B) actually he
greater than A\y(4)?

B. Geometric Preliminary. In order to see how to do this, let us take
an ellipsoid of the form z?/a? + y?/b® + 2%/c* = 1, and pass a plane
through the origin of coordinates. The cross section will be an ellipse
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which will have a major semiaxis and a minor semiaxis. If we now rotate
this cross-sectional plane until the major semiaxis assumes its smallest
value, we will have determined the semiaxis of the ellipsoid of second
greatest length.

The analytic transliteration of this observation will furnish us the
desired characterization.. Like many results in analysis which can be
demonstrated quite easily, the great merit of this contribution of Courant
and Fischer lies in its discovery.

6. The Courant-Fischer min-max Theorem. Let us now demonstrate
Theorem 2.

Theorem 2. The characteristic roots \;, 1 =1, 2, . .., N, may be
defined as follows:

M

max (z,Az)/(z,x)

X: = min max (z,A4z)/(z,x)
W) =1 (xy) =0

M = min max (z,4z)/(z,x)
Wy =1 (zi,".?fo

(1)
Equivalently,
Av = min (z,42)/(z,x)
Av-1 = max min (z,4z)/(z,x) )
() =1 (2,4} =0
and so on.

Proof. Let us consider the characteristic root A;. Define the quantity

pz = min max (z,4z)/(z,z) 3)
=1 (z¥)=0

We shall begin by making an orthogonal transformation which converts
A into diagonal form, x = Tz. Then

N N
ne = min max { Z szkz/ Z zk’}
v =1 (T2)=0 ' /) k=1
= min max + 0 4)
(=y) =1 (2,T"y) =0
Setting Ty = y!, this becomes
wz= min max { - (5)

(PyL, Ty =1 (¥} =0
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Since (Ty!,Ty!) = (yl,y!), we may write

s2 = min max §{ - -} (6)
(vy)=1 (9) =0

In other words, it suffices to assume that A is a diagonal matrix.
In place of maximizing over all 2, let us maximize over the subregion

defined by

S: z3=2,= "+ =zy=0and (2,y) =0 ¢h)
Since this is a subregion of the z region defined by (z,5) = 0, we have
w2 2 min max {A2i® + Agz. /21 + 257 8)

=1 8

Since (M21? + Aalze?) /(212 + 222) 2> g for all z; and 2, it follows that we
have demonstrated that us > As. Now let us show that u; < 2. Todo
this, in the region defined by (y,y) = 1, consider the set consisting of the
single value y; = 1. This choice of the vector y forces z to satisfy the
condition that its first component z; must be zero. Since the minimum
over a subset must always be greater than or equal to the minimum over
the larger set, we see that

u < ma;: {2+ hez + 0 0+ Awen?) /@2t 2+ -+ 2a?))
< max {(Ag2e? + -« « + + e/ 4+ - - +2wd)) =\, (9)

It follows that us = X..
Now let us pursue the same techniques to establish the result for

general k. Consider the quantity

wx = min max (z,Az)/(z,x)
(v'v') l(z,‘v_i)-=0

= min max {z PR / z zk} (10)

(v‘v) l (:y') =0

Consider maximization over the subregion defined by

S: Zipu ==+ =2xy=0 (11)
It follows that
b > min  max {- * *} > A (12)
(v, ‘)= 8

i=1, -1

since i Azit / z 22 > A for all 2.

=1 f=1
Similarly, to show that A: < u:, we consider minimization over the
subregion of (¥',4") = 1,7 = 1,2, . . . , k — 1, consisting of the (k — 1)
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vectors
0
B - )
0 1
R .
y : =1 e Y= (13)
Y -
0 ‘
[ 0

The orthogonality eonditions (3i,2) = 0 are then equivalent to
21=22=’"‘=2k_1=0 (14)

As before, we see that u, < A4, and thus that u, = A4

7. Monotone Behavior of A.(A). The representation for A\; given in
Theorem 2 permits us to eonelude the following result.

Theorem 3. Let A and B be symmelric matrices, with B non-negalive
definite. Then

M(A + B) > M(4) k=12 ... ,N (1)
If B s positive definite, then
M(A + B) > AM(A) k=12 ...,N (2)
EXERCISE

1. Obteain a lower bound for the difference Ae(4 + B) — M(4).

8. A Sturmian Separation Theorem. Theorem 2 also permits us to
demonstrate Theorem 4.
Theorem 4, Consider the sequence of symmeltric matrices

4, = (a;) Li=12...,r 03]
forr=12...,N.
Let Mi(A,), k=1,2, ..., r denole the kth characteristic rool of A,
where, consistent with the previous notation,
M(AD) 2 Ae(4) 2 -0 2 M(4) (2
Then
Merr(Air1) < Me(4i) < M(4i) 3

Proof. Let us merely sketch the proof, leaving it as a useful exercise
for the reader to fill in the details. Let us prove

A2(Air) < M(4) € M(4i) 4)
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We have
R1(At') = max (x)Aix)/(x)x)

M(Aiyr) = max (z,4:412)/(2,2) ®)

where the z appearing in the first expression is +-dimensional, and the z
appearing in the second expression is (¢ + 1)-dimensional. Considering
variation over the set of (¢ + 1)-dimensional vectors z with (7 + 1)st
component zero, we see that A1(4;) < M(A4i41).

To obtain the inequality Aa(A¢1) < M(4:), we use the definition of
the \i in terms of max-min. Thus

M(4y) = max min  (z,4z)/(z,2)
Pad =1 (@h)=0
TETE A ST Y =8 )
A(4ip) =  max min  (z,4:u7)/(z,2)
R R, L Y

The vectors appearing in the expression for \1(4;) are all --dimensional,
while those appearing in the expression for Ao(Ayy) are all (¢ + 1)-dimen-
sional. In this second expression, consider only vectors z for which the
(? + 1)st component is zero. Then it is clear that for vectors of this
type we maximize over the y* by taking vectors y* whose (+ + 1)st com-
ponents are zero. It follows that Ao(A4:41) < M(4,).

9. A Necessary and Sufficient Condition that 4 be Positive Definite.
Using the foregoing result, we can obtain another proof of the fact that
a necessary and sufficient condition that A be positive definite is that
|Ax] >0, k=1,2,...,N.

As we know, a necessary and sufficient condition that A be positive
definite is that \,(4) > 0,k =1,2, ... ,N. If A is positive definite,
and thus \;(4) > 0, we must have, by virtue of the abo‘ve separation

theorem, \;(4;) > 0,k = 1,2, . . . , 1, and thus |4 = [] M(4) > 0.
k=1

On the other hand, if the determinants | Ai| are positive for all k, we
must have as the particular case k = 1, A;(4;) > 0. Since

AM(A2) 2 M(A1) 2 M(A2) (1)

the condition | A2] > 0 ensures that A\;(42) > 0. Proceeding inductively,
we establish that \i(4:) >0, k=1,2, ... ,7,fort=1,2,...,N,
and thus obtain the desired result. Again the details of the complete
proof are left as an exercise for the reader.

10. The Poincaré Separation Theorem. Let us now establish the fol-
lowing result which is useful for analytic and computational purposes.
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Theorem b. Let }ry"}, k=1,2, ..., K, be a set of K orthonormal

vectors and sel x = Z ury®, so that
k=1

K
(2,42) = ) wsu(yt, Ay) ()
ki1
Set
Bk = (y*, AyY) ki=12 ... ,K 2
Then
M(Br) < M(4) i=12 ...,K @)
Ae-i(Bx) 2 Av-5(4) j=0,1,2,...,K—-1
The results follow immediately from Theorem 4.
11. A Representation Theorem. Let us introduce the notation
[Als = AwAn-1 © 0 Avoepr (1)
We wish to demonstrate
Theorem 6. If A is positive definile,
1rk/2 —_ —(z,4z) dV 2
il = e J, o @

where the inlegration is over a k-dimensional linear subspace of N-dimen-
stonal space R, whose volume element 1s Vs, and the maximization is over
all R.
Proof. It is easy to see that it is sufficient to take (z,Az) in the form
MZ12 4 Aee? + ¢ - ¢+ 4+ Ayza® Hence, we must show that
ki
(RNAN_l P AN-I:+I)%

= max/ e~ Mzt Azt oo - HhNza?) de (3)
R R

Denote by V,(p) the volume of the region defined by

M2 Azt - - Az <
(z,0%) =0 i=1,2...,N—k (4)

where the a' are N — k linearly independent vectors.
It is clear that
Valo) = p**Va(1) (5

= e Mzii-Raz?— . o —ANTNE de (6)
R (z,a") =0

= /” e*dV,(p) = IEK%Q_) '/‘n e—Ppt/2-1dp

Then
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To complete the proof, we must show that the maximum of V,(1) is
attained when the relations (r,0®) = Garez, = 0,22 =0, . . . ,2: = 0,
This, however, is a consequence of the formula for the volume of the

N

ellipsoid, 1 = Mzl and the min-max characterization of the
t=N—k+1
characteristic roots given in Theorem 2.
12. Approximate Techniques. The problem of determining the mini-

1 . s p s .
mum of f o u't dt over all functions satisfying the constraints

/o' gQutdt = 1 (la)
u(©) =u(l) =0 (1d)

is one that can be treated by means of the calculus of variations. Using
standard variational techniques, we are led to consider the Sturm-
Liouville problem of determining values of A which yield nontrivial
solutions of the equation

' +NOu=0 w(0) =u(l) =0 (2)

Since, in general, the differential equation cannot be solved in terms
of the elementary transcendents, various approximate techniques must
be employed to resolve this problem.

In place of obtaining the exact variational equation of (2) and using an
approximate method to solve it, we can always replace the original vari-
ational problem by an approzimate variational problem, and then use an
exact method to solve this new problem. One way of doing this is the

following,
Let {w;(t)] be a sequence of linearly independent functions over [0,1]

satisfying the conditions of (1b), that is, u;(0) = »;(1) = 0. We attempt
to find an approximate solution to the original variational problem having
the form
N}
u= ) zau(t) (3)
i=1
The problem that confronts us now is finite dimensional, involving
only the unknowns z,, 2z, . . . , zx. We wish to minimize the quad-
ratic form
N
1 4 4
Yz [, wou a @
=1

subject to the constraint

N
Y za; [ auu) dt =1 (5)

ii=1
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It is clear that important simplifications result if we choose the sequence
{ui(t)} so that either

f vovwa=a o [lauouod=s  ©

The first condition is usually easier to arrange, if ¢g(t) is not a function of
particularly simple type. * Thus, for example, we may take

ug(t) = sin wkt N
properly normalized, or
u(t) = Pa(t) 8

the kth Legendre polynomial, again suitably normalized. This last would
be an appropriate choice if ¢(tf) were a polynomial in ¢, since integrals of

the form / 01 tui(t)u;(t) dit are readily evaluated if the u(f) are given by (8).

This procedure leads to a large number of interesting and significant
problems. In the first place, we are concerned with the question of con-
vergence of the solution of the finite-dimensional problem to the solution
of the original problem.

Second, we wish to know something about the rate of convergence,
a matter of great practical importance, and the mode of convergence,
monotonic, oscillatory, and so forth. We shall, however, not pursue this
path any further here.

EXERCISE

1, Let M, A, L, Ay denote characteristic values associated with the
problem posed in (4) and (5), for N = 2, 3, . . . . What inequalities exist con-
necting N and A\;N-D?

MISCELLANEOUS EXERCISES

1. Let A and B be Hermitian matrices with respective characteristic values x; >
Ne> -, m2m> -, and let the characteristic values of A + B be v, >
va 2 ¢« ,then Ay +p; 2 vi;, fort 4+ < N + 1 (Weyl).

2. By considering 4 as already reduced to diagonal form, construct an inductive
proof of the Poincaré separation theorem.

8. What are necessary and sufficient conditions that a;,7:? + 28132172 + @z > 0
for all 1, 22 > 07 .

4. What are necessary and sufficient conditions that z a:,z:z; > 0 for z,, zs,

=1
Xy 2 0?

Q2 ; ?
1

8. Can one obtain corresponding results for

o=

[

A@) = [““' "“']

a2’ G

8. Prove that

is positive definite for r > 0 if A = (ay;) is positive definite and a;; > 0.
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7. Does a eorresponding result hold for 3 X 3 matrices?

8. Prove that (as;) is positive definite if a;c > 0 and (Jai,|) i8 positive definite.

9. Show that the characteristic roots of A}¢2BA% are less than those of A if Bis a
symmetric matrix all of whose roots are between 0 and 1 and 4 is positive definite.

10. If T is orthogonal, z real, is (T'z,Az) < (z,4z) for all z if A is positive definite?

11. Define rank for a symmetric matrix as the order of 4 minus the number of zero
characteristic roots. Show, using the results of this chapter, that this definition is
equivalent to the definition given in Appendix A.

12. Suppose that we have a set of real symmetric matrices depending upon a
parameter, scalar or vector, ¢,{A(q)}. We wish to determine the maximum char-
acteristic root of each matrix, a quantity we shall call f(¢), and then to determine the
maximum over ¢ of this function. Let us proceed in the following way. Choose an
initial value of g, say qo, and let z° be a characteristic vector associated with the char-
acteristic root f(go). To determine our next choice ¢;, we maximize the expression
(z°,A(g)x%)/(z%z°) over all ¢ values. Cali one of the values yielding a maximum ¢,
and let z! be a characteristic vector associated with the characteristic root f(g:). We
continue in this way, determining a sequence of values f(go), f(¢1), . . . . Show that

flgo) <flg) <flga) < - - -
18. Show, however, by means of an example, that we may not reach the value
max f(g) in this way.

ql(. Under what conditions on A(g) can we guarantee reaching the absolute maxi-
mum in this way?

18. Let the spectral radius r(A4), of a square matrix 4 be defined to be the greatest
of the absolute values of its characteristic roots. Let H be a positive definite Her-
mitian matrix and let

¢(A,H) = max [(Az,HAz)/(z,Hz)]%
T
Show that r(4) = n;jn g(A,H).
16. If 4 is a real matrix, show that r(4) = msin ¢(A,8), where now the minimum is

taken over all real symmetric matrices (H. Osborn, The Existence of Conservation Laws,
Annals of Math., vol. 69, pp. 105-118, 1959).
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Inequalities

1. Introduction. In this chapter, we shall establish a number of inter-
esting inequalities concerning characteristic values and determinants of
symmetric matrices. Qur fundamental tools will be the integral identity

a2 o ©
W p— . [ f—” e—(l.Al) dx (l)

valid if 4 is positive definite, its extension given in Theorem 6 of Chap. 7,
and some extensions of min-max characterizations of Courant-Fischer,
due to Ky Fan,

Before deriving some inequalities pertaining to matrix theory, we shall
establish the standard inequalities of Cauchy-Schwarz and Hélder. Sub-
sequently, we shall also prove the arithmetic-geometric mean inequality,
since we shall require it for one of the results of the chapter.

2. The Cauchy-Schwarz Inequality. The first result we obtain has
already been noted in the exercises. However, it is well worth restating.

Theorem 1. For any two real veclors x and y we have

(zy)* < (z,2)(y,y) 1)
Proof. Consider the quadratic form in % and v,

Qu,w) = (uz + vy, ux + vy)
= u¥(z,z) + 2uv(z,y) + v*(y,y) 2

Since Q(u,v) is clearly non-negative definite, we must have the relation
in (1). We see that (1) is a special, but most important case, of the non-
negativity of the Gramian determinant established in Sec. 4 of Chap. 4.
3. Integral Version. In exactly the same way, we can establish the
integral version of the preceding inequality.
Theorem 2. Let f(x), g(x) be funclions of x defined over some region R.

- (f,, fg dV)z < ({,‘;(,f2 dV) (fR g dV) (1)
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Proof. Since (f — g)? > 0, we have

g<fi+g 2
Hence, fy is integrable if f2 and ¢* are. Now consider the integral

fR (fu + gv)2dV 3)

which by virtue of the above inequality exists. As a quadratic form in
u and v, the expression in (3) is non-negative definite. Consequently,
as before, we see that (1) must be satisfied.

EXERCISES

1. We may also proceed as follows:

(z,2)(yy) — (@)t = (v,p) [(m) 2% + %/”—”1;);]
- - (z z,y) (zﬂ/)
) (z 4 W v (y.y))

N N N
2. Prove that ( Z Zkyk) < ( Z M:u’) ( Z yk'/M) if the . are positive.
k=1 k=1 k=1

8. Hence, show that (z,4z)(y,A"') 2 (z,y)? if A is positive definite. Establish
the result without employing the diagonal form.

4. Hoélder Inequality. As an extension of (1), let us prove
Theorem 3. Letp > 1, and ¢ = p/(p — 1); then

N N N
z Ty < ( z xk”)”p ( z yk")”q (1)
1 k=1 k=1

k=
if Ty, yk 2 0-
Proof. Consider the curve
p = ur! @)
where p > 1.

/"'
g R
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It is clear that the area of the rectangle OvRu is less than or equal to
the sum of the areas OPu and OQy,

w < /o“ u,»1du, + ﬁ: 0,/ (®-D dy, 3)

with equality only if v = w»~!. Hence, if ,» > 0, p > 1, we have

u < 7 + 3 4)
Now set successively
N
w = xh/(z x;”)”p
' (®)
v = yk/(z ykq)llﬂ
k=1
k=1,2 ...,N, and sum over k.

The result is

N
2 i 1.,21

= (6)
I

TilYk

< ls
il ip L lg TP
(2,)" ()

Since 1/p + 1/¢ = 1, the result is as stated in (1).
Setting

L.
1A=

f@ = @)

([ f(x)PdV) av)™ ([ g(x)«dv) e
the inequality in (4) yields
f(z)g(x) Sl f(z)? + 1 gl@)e 8)
([o7@r ar)™ ([oa@rav)™ =P [ sy av " & [ gtawav

Integrating over R, the result is

[ot@e@ av < ([, @2 av)"” ([ e@eav)™ ()

valid when f(z), g(z) > 0 and the integrals on the right exist.

6. Concavity of |[A|. Let us now derive some consequences of the
integral identity of (1.1). The first is

Theorem 4. If A and B are positive definile, then

x4 + (1 — NB| > |AP|B|*™ D

for0 <2 <1.
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Proof. We have

1rNI2 L] 0
|)\A F (- )\)Bl” = '/‘_” e '/‘—” £—Mx, A —(1-}) (2,82) @)

Let us now use the integral form of Hélder's inequality given in (4.9)
with p = 1/\, ¢ = 1/(1 — )\). Then

”le < ® « .. ® —(z A:)dx .
|xA+(1—x)B|M—(/_, /_,e ' )

0 0 (1=2)
. PR e—(z_B:) dx
—= — o
xNM2 e NO-N/2

= [ B ®

The result when simplified is precisely (1), which is a special case of a
more general result we shall derive below.

EXERCISES

1. Prove that |A + {B] > |A| if A is positive definite and B is real symmetric.
2. Show that Az + (1 — Ny > oMyt forz, y 20,0 <A < 1.

6. A Useful Inequality. A result we shall use below is given in Theo-

rem 5.
Theorem b. If A is positive definite, then

[A| < anaze ©  © awy (1)
Let us give two proofs.
First Proof, We have

Q2 ¢ Q2N 0 a2 " QW
Q2 = * QN Q2 Q22 * ° * QN
Al = au| | + . I 2
ay2 ' ° " ONN aNy Gy2 * ° ° OGNN
Since A is positive definite, the matrix (a;;), 7,7 = 2, . . . , N, is positive
definite; hence the quadratic form in a9, @13, . . . , a1v appearing as the
second term on the right in (2) is negative definite. Thus
Q22 * *°* OGN
Q32 " QN
|A| S ay) _ (3)
an2 * ' ' ONN

whence the result follows inductively.
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Second Proof. Consider the integral in (1.1) for the case N = 3.
Replacing z, by —z, and adding, we have

]i,‘;; = f" e—onri-20nunT—aunitg—ann? (Z +2Z"l) dxl dxa dxl (4)

where

2z = g~ 28.% 1%y 20,77 (5)

Since z 4+ z2 > 2 for all z > 0, we have

-.-“ L4 ©
‘__l__. > e—(Buztt2onzztonn’ da dx e—oun? dy
4

x 'r
where A; = (ay;), ¢, 7 = 2, 3. Hence,
|au|*| Ao > | 4[4 @)

whence the result for N = 3 follows inductively. The inequality for
general N is derived similarly.

EXERCISE
LLet Dy=layl, t, §=1,2 ..., 0, Da=lagl, §, =m4+1 ..., ny
D, = jail,t,j =ney+1,...,N. Then

|4] < DDy -+ - D,

7. Hadamard’s Inequality. The most famous determinantal inequal-
ity is due to Hadamard.

Theorem 6., Let B be an arbitrary nonsingular real square malriz.
Then

N N
|B|* < “ (z b-'k’) 1)
t=1 k=1

Proof. Apply Theorem 5 to the positive definite square matrix
A = BB’
8. Concavity of AwAx—1 - * + A\i. Now define the matrix function

IAlk = A¥AN-1 * Nk (1)

Then we may state Theorem 7,
Theorem 7. If A and B are positive definite, we have
A4 + (1 — N)Ble 2 |A]Ble* 2

Jro < <1Lk=12 ..., 6N.
The proof follows from Theorem 6 of Chap. 7 in exactly the same way
that Theorem 4 followed from (1.1).
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EXERCISES

1. Show that
oAy = 14 = min (z,Az)
IA"I z

where z is constrained by the condition that z; = 1, and A; is the matriy obtained by
deleting the ith row and sth column of A.
2. Hence, show that

A4 + (1 — N)B] 2 ¢(4)¢(B)D

for 0 < A < 1 (Bergstrom’s tnequality).
8. Let A and B be two positive definite matrices of order N and let = x4 +

(1 -MNB,0<2A<1 Foreachj=12 ... ,N,let A denote the submatrix of
4 obtained by deleting the first (j — 1) rowsand columns, Ifky, ks, . . . ,kyare N
j
real numbers such that 2 ki 2 0, then
i=1
N N

I 1cips > ] 143w Bija-de (Ky Fan)
j=1 i=1
4. Establish Hadamard's inequality for Hermitian matrices.

6. If A is a positive definite N X N matrix and P denotes the product of all
principal k-rowed minors of 4, then

P> p,‘/("f‘) > p|‘/(N:—l) > pN_ll/(x:l:) > Py (Szasz)

See L. Mirsky.!
6. Let A, denote the principal submatrix of A formed by the first p rows and p
columns, and let B, and C, have similar meanings. Then

J__ lI(N"P) |A| H(N-p) H(N-p)
ICyl 2 14| (pr|) (Ky Fan)

9. Additive Inequalities from Multiplicative. Let us now give an
example of a metamathematical principle which asserts that every multi-
plicative inequality has an associated additive analogue. Consider
Theorem 7 applied to the matrices

=]4+eX B=I+¢Y >0 ¢))

where X and Y are now merely restricted to be symmetric. If e is suf-
ficiently small, A and B will be positive definite.

letzi 2> 2e> ¢ » * 22w, y1 2 Y2 > - - - 2 yn be the characteristic
roots of X and Y, respectively, and z; > 2, > - + - 2> 2zx the character-

11. Mirsky, On a Generalization of Hadamard’s Determinantal Inequality Due to
Szasz, Arch. Math,, vol. VIII, pp. 274-275, 1957,
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istic roots of AX + (1 — \)Y. Then Theorem 7 yields the result
(4 ezn)(l +eny) -+ - (1 + e2)

2 +exn)(1 + exn-y) - - - (1 + exa)P
I+ ) +e@yna) - ()] (2)

To first-order terms in e, this relation yields

Ltelew+anat oo +2) 21+ Nelaw+anva+ o + )
+ @ = Nelyy +yva+ - ) + 0 (3)

Letting ¢ — 0, we obtain

zvtavat oo Fa>@Ev+ 0 )
+ v +tyvaa+ -y @)

Let us state this result, due to Ky Fan, in the following form.
Theorem 8. Let us define the mairiz function

Sk(A) =AM +Aa+ 0 N (5)
for a symmelric matriz A. Then
SiA4 + (1 — M)B] 2> A8i(4) + (1 — N)Su(B) (6)

foro<A<Lk=12 ..., 6N
From this follows, upon replacing 4 by — 4,
Theorem 9. If
To(A) =M+ e+ - + N @)

where A is symmelric, then
TirA + (1 — MB] < A\TW(A) + (1 — N Tw(B) 8

fro<a<lLk=12 ...,N.

10. An Alternate Route. Let us obtain these results in a different
fashion, one that will allow us to exhibit some results of independent
interest. We begin by demonstrating Theorem 10.

Theorem 10. We have, if A 7s positive definite

)\x)\z c e )\N_]H_] = max I(Zi,AZi)I
R (1)
AwAn-1 * A\ = min |(2,47)]
R
where R 18 the z region defined by
#Fe)=68; 14,7=1,2 ..., N—-k+1 2
In other words, the minimization is over all sets of N — k + 1 orthonormal
veclors.




Inequalities 133

Proof. Consider the determinant

N N
(c.47) (z.A3) z At z Ntisls
D _ z,Az z,4Y = | k=1 k=1
@8 = | Ay 0,4y i* i*’ ®
PULVy xUk
k=1 k=1

N N
upon setting z = z wmrk, y = Z viz*, where the z* are the character-
k=1 k=1
istic vectors of 4.

The identity of Lagrange yields

Ahj(uw; — uy)? 4

1=

Difzy) =

A\

]

No terms with ¢ = j enter, since then w,w; — uw; = 0.
It follows that

N
Mh Y (wty = up)? > Dfz.y)

t=1
N
2 AN z (u; — um)® )]
t.i=1
Hence
N N N N
u,? U, u? Uiy
iml izl ;Zx 'ZI
Mz N N 2 Dz(I,y) Z MAn-1 N N (6)
Uy v? Uy vt
i=1 .‘=z| 'Zn le
or Mz 2 Da(z,y) 2 Mvdw- 7)

This proves the result for £ = 1. To derive the general result, we use
the identity for the Gramian given in Sec. 5 of Chap. 3, rather than the
Lagrangian identity used above.

EXERCISE
1. Use Theorem 9, together with Theorem 4, to establish Theorem 7.

11. A Simpler Expression for AxAy—: ' * * M. Since determinants
are relatively complicated functions, let us obtain a simpler repre-
sentation than that given in Theorem 10, We wish to prove Theo-
rem 11,
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Theorem 11. If A s positive definile,
ANAN—I o s Ah = n}én (zl’Azl)(zl’Azl) P (zN—k+l’AzN—k+l) (l)
where R is as defined an (10.2).

Proof. We know that (),42),¢,7=1,2,...,N — k+ 1, is posi-
tive definite if A is positive definite. Hence, Theorem 5 yields

N—k+1
14, 427)) <[] ,47) @)
f=1
Thus
N—-k+1
min |(#, 42)| < min [T @429 3)

i=1
Choosing 2 = 2%, i =N, N -1, ..., N — k 4 1, we see that

N—-k+1
min [] (#,47) < v - o N 4)
R

t=1

This result combined with Theorem 9 yields Theorem 10.

EXERCISES

1. Prove Theorem 7, using the foregoing result.
2. Consider the case k = N and specialize 2! so as to show that

Ay < min ag
)

3. Considering the general case, show that
AvAN_y @ ¢ 0 M S GNNGN-aN-p t ¢ ke
4. Show that min tr (4B)/N = |A|"¥, where the minimum is taken over all B
satisfying the com‘fitions B >0, |B| = 1, and 4 is positive definite.

6. Hence, show that |4 + B[¥¥ > |A|*Y 4 |B|'¥ if A and .B are positive definite
(A. Minkowsks).

12. Arithmetic-Geometric Mean Inequality. For our subsequent pur-
poses, we require the fundamental arithmetic-geometric mean inequality.
Theorem 12. If z; > 0, then
N
z z/N > (2122 + -+ ay)'V (1)
i=1
Proof. Although the result can easily be established via calculus, the
following proof is more along the lines we have been pursuing.t Starting
1 This proof is due to Cauchy.
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with the relation (a,* — a.*)* > 0, or

2E0 > ey @
the result for N = 2, we set
a; = (b + b2)/2 a: = (bs + b4)/2 3
The result is
bl+b2+b3+b¢> by + b2\ (bs + b\
4 - 2 2
> (bibobsby) ¥ 4

Continuing in this fashion, we see that (1) is valid for ¥ a power of 2.
To complete the proof, we use a backward induction, namely, we show
that the result is valid for ¥ — 1 if it holds for ¥, To do this, set

Yi =22 o o s 3 YN-1 = TN yn = zy + 2. -i}\-[ -_-l. + Tw_s ®)

and substitute in (1). The result is the same inequality for N — 1.

Examining the steps of the proof, we see that there is strict inequality
unless ) = 2, = * + + = zn.

13. Multiplicative Inequalities from Additive. In a preceding section,
we showed how to deduce additive inequalities from multiplicative
results. Let us now indicate how the converse deduction can be made.

Theorem 13. The inequality

N N
NS (=i, Ax%) (1)
"Zk "=zk ’
k=1,2,...,N,valkd for any set of orthonormal vectors {x'}, yields the
tnequality
N N
I < I @49 2
1=k 1=k

Proof. Consider the sum

M+ Cdirr + 0 0 ey =+ M+ 000 M)
+ (et = )P+ - - W)+ 0 (ev —ew-)dy (3)

If we impose the restriction that

0fasfans < 4
we have, upon using (1), the inequality
GAi + Cepahigr + ¢ ¢ 0 ety < ez, AzY)

+ Cpa(2HHL A + - - 0+ en(a¥,A2Y) ()
for any set of orthonormal vectors {z'} and scalar constants satisfying (2).
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We deduce from (5) that

N
mgn (‘ZN" 0()\.') < IIIliin [ zk c,-(x",Ax‘)] 6)

where R is the region in ¢ space defined by (4).
Now it follows from Theorem 12 that

N

1 20‘)“ > (CiCagr * * * eN)VN-IHD (NN yy « ¢ ¢ Ay)VE-RED ()
=

N-k+1

with equality only if all \ic; are equal, whence
6= (\ehigr * * + Aw) V-RHD /), 8)

Since \i > M1 = - -+ 2> Ay, it followsthat 0 < ¢ <1 £+ - Loy

This means that the minimum over all ¢; is equal to the minimum over
R for the left side of (6). Let us temporarily restrict ourselves to ortho-
normal vectors {z¢} satisfying the restriction

(xk’Axk) S (xk'f'l’Axk'f'l) _<- s e S (xN’AxN) (9)
Then (6) yields the inequality
Mhip1 * * * Ay < (2, Az¥) (@4, Az - - - (2P, AzP) (10)

for these {z'}. However, since it is clear that any set of zf can be
reordered to satisfy (9), the inequality in (10) holds for all orthonormal

{a].
MISCELLANEOUS EXERCISES

%
1. Let n(4) = (Z Ia.-,'l’)’. Show that
)

- 1 N ud 14
1) < n(d%) < el S|
(’_Zl i) < n(a < e (,Z, i)

where m is the maximum multiplicity of any characteristic root of 4 (Gautscht).
2. If X\, u, % are the characteristic values arranged in decreasing order of A*4,
B*B, and (A + B)*(A + B), respectively, then

k k k
Zv;%_{z}q%-{-zm% k=1,2,...,N (KyFan)

t=1] t=1 t=1
Under the same hypothesis, one has
(Vi)Y < N+ uH (Ky Fan)
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8. If H = A + 1B is a Hermitian matrix, then it is positive definite if and only if
the characteristic values of :A™*B are real and less than or equal to 1 (Robertson-
0. Taussky).

4. If H = A + {B is positive definite, where A and B are real, then 4| > |H|, with
equality if and only if B = 0 (0. Taussky).

8. If H,is a positive definite Hermitian matrix and H, is a Hermitian matrix, then
H, + H. is positive definite.if and only if the characteristic values of H,~'H, are all
greater than —1 (Ky Fan-0. Taussky).

8. Let K, be a positive definite matrix and K, such that KK, is Hermitian. Then
KK, is positive definite if and only if all characteristic values of K, are real and posi-
tive (Ky Fan-0. Taussky).

7. If A and B are symmetric matrices, the characteristic roots of AB — BA are pure
complex. Hence, show that tr ((48)?) < tr (A2B?).

8. If A, B are two matrices, the square of the absolute value of any characteristic
root of AB is greater than or equal to the product of the minimum characteristic root
of AA’ by the minimum characteristic root of BB'.

9. Let H = A + B be positive definite Hermitian; then |A| > |B| (Robertson).

10. If A = B + C, where B is positive definite and C is skew-symmetric, then
|A] 2 |B| (0. Taussky).

11. If A is symmetric, A and I — A are non-negative definite, and O is orthogonal,
then |I — AO| > |I — A| (0. Taussky).

12. Establish Schur’s inequality*

Z s < Z ol

18. Let A be symmetric and k be the number of zero characteristic roots, Then
N N-k

DI U

$=1 f=] 1=1

where the summation is now over nonzero roots. From the Cauchy inequality

(3 ) <ov-n (3 w)

(tr A)* < (N — k) tr (AY)

deduce that

whence
Nitr (A7) — (ir 4)?
Tr (A1)

k<

14. From the foregoing, conclude that the rank of a syminetric matrix 4 is greater
than or equal to (tr 4)/tr (4%).

16. Obtain similar relations in terms of tr (4%) for k = 1, 2, 3,
(The foregoing trick was introduced by Schnirelman in econnection wnth the problem of
representing every integer as a sum of at most a fixed number of primes.)

18. Let Ay be the smallest characteristic value and )\, the largest characteristic value
of the positive definite matrix A. Then

(52) < (Az2)(471m2) < P EM gy
AN

1Y, S8chur, Math. Ann., vol. 66, pp. 488-510, 1909.
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This is a special case of more general results given by W. Greub and W,
Rheinboldt.!

17. If X is positive definite, then X + X-! > 21,

18. If X is positive definite, there is a unique ¥ which minimizes tr (XY 1) subject
to the conditions that ¥ be positive definite and have prescribed diagonal elements,

19. This matrix Y satisfies an equation of the form X = YAY, where A is a diagonal
matrix of positive elements ;. N

20. The minimum value of tr (XY 1) isz Aib;i (P. Whiltle).

s=1

21, If B and C are both positive definite, is BC + CB > 2B¥CB%?

22. If A, B, and C are positive definite, is (4 + B)¥%C(4 + B)% < A%CAY +
BYSCRY?

23. Let A and B be N X N complex matrices with the property that I — A*A
and I — B*B are both positive semidefinite. Then |I — A*B|* > |I — A*A|
|[I — B*B|. (Hua, Acta Math. Sinica, vol. 5, pp. 463-470, 1955; see Math, Rev.,
vol. 17, p. 703, 1956.) For extensions, using the representation of Sec. 10 of Chap. 6,
see R. Bellman, Representation Theorems and Inequalities for Hermitian Matrices,
Duke Math. J., 1959, and, for others using a different method, M. Marcus, On a
Determinantal Inequality, Amer. Math. Monthly, vol, 65, pp. 266-268, 1958,

84. Let A, B > 0. Then tr ((AB)**) < tr ((A*BY™), n =0, 1, . . . (Golden).

26. Let X * denote the Penrose-Moore generalized inverse. Define the parallel sum
of two non-negative definite matrices A and B by the expression

A:B = A(A + B)*B

Then A:B = B: 4, (A:B)C = A:(B:C).
28. If Az = Az, Bz = uz, then (A:B)z = (\:ip)2.

27. If ai, by > 0, then (z a.-) (z b() z (a::b;) and if A, B > 0, then tr (4: B)

< (tr A):(tr B), with equahty if and only if A = ¢1B, ¢y a scalar.

28. If A, B > 0, then |4:B| < |4]:|B).

29. Can one derive the result of Exercise 27 from the result of Exercise 28 and
conversely? For the results in Exercises 25-28, and many further results, see W. N.
Anderson, Jr., and R. J. Duffin, Series and Parallel Addition of Matrices, J. Math.
Anal. Appl., to appear.

80. Let Ay, A; > 0 and M(A,,As) denote the convex hull of the set of matrices C
such that C > A4, and C > A,. Similarly define M(4,,44,4;) with 4, > 0. Is it
true that M(A,,4,,4;) = M(M(4,,41),4,), with the obvious definition of the right-
hand side?

81. A matrix is said to be doubly sfochastic if its elements are nonnegative and the
row and eolumn sums are equal to one. A conjecture of Van der Waerden then states
that per(4) > N1/NV¥ with equality only if a;; = 1/N, N the dimension of 4. Here,
per(A) ig the expression obtained from |4| by changing all minus signs into plus signs.
Establish, the conjecture for N = 2, 3. See Marcus and Mine.? For an application
of this result to some interesting problems in statistical mechanics, see Hammersley.?

LW, Greub and W, Rheinboldt, On a Generalization of an Inequality of L. V.
Kanturovich, Proc. Am. Math. Soc., 1959,

2 M. Marcus and H. Mine, Am. Math. Monthly, vol. 72, pp. 577-591, 1965.

1J. M. Hammersley, An Improved Lower Bound for the Multidimensional Dimer
Problem, Proc, Cambridge Phil. Soc., vol. 64, pp. 455-463, 1968.
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A much more extensive account of inequalities pertaining to matrices
and characteristic root will be found therein.
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Hadamard has a quite interesting remark concerning his inequality in his
fascinating monograph,

J. Hadamard, The Psychology of Invention in the Mathematical Field,
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articles where a large number of additional references will be found.

A. Ostrowski, Sur quelques applications des fonctions convexes et
concaves au sens de I. Schur, J. math. pures et appl., vol. 31, no. 9,
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Inequalities 143

Next, a number of interesting matrix inequalities are given in the
papers by Masani and Wiener and by Helson and Lowdeuslager referred
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Math. J., vol. 24, pp. 591-599, 1957,

See also

E. V. Haynsworth, Note on Bounds for Certain Determinants, Duke
Math. J., vol. 24, pp. 313-320, 1957.

M. Marcus and H. Minc, Extensions of Classical Matrix Inequalities,
Lin. Algebra Appl., vol. 1, pp. 421-444, 1968.

H. J. Ryser, Inequalities of Compound and Induced Matrices with
Applications to Combinatorial Analysis, Illinots J. Math., vol. 2,
pp- 240-253, 1958.

H. J. Ryser, Compound and Induced Matrices in Combinatorial
Analysis, Proc. Symp. Appl. Math., Combin. Anal., pp. 149-167, 1960.
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Dynamic Programming

1. Introduction. In Chap. 1, we encountered quadratic forms in con-
nection with maximization and minimization problems, and observed
that systems of linear equations arose in connection with the determi-
nation of the extrema of quadratic functions.

Although simple conceptually, the solution of linear equations by
means of determinants is not feasible computationally for reasons we
have discussed in previous pages. Consequently, we must devise other
types of algorithms to compute the solution. This suggests that it might
be well to develop algorithms connected directly with the original maxi-
mization problem without considering the intermediate linear equations
at all,

In this chapter, we shall study a number of problems in which this
can be done. OQur basic tool will be the functional equation technique
of dynamic programming.

2. A Problem of Minimum Deviation. Given a sequence of real
numbers {a:}, k = 1,2, . . . , N, we wish to determine another sequence
{ze}, k=1,2,..., N, ““close” to the a, and *“close’ to each other.
Specifically, we wish to minimize the quadratic expression

N N

Q) = z cu(ze — ze1)? + z di(ze — a:)? 1)

k=1 k=1

where ¢, and di are prescribed positive quantities, and z, is a given
constant.

Proceeding in the usual fashion, taking partial derivatives, we obtain

the system of linear equations
ci(z1 — zo) — ca(xs — 1) + di(x1 —a1) =0

cx(Th = Tim1) — Crp1(Tapr — ) + di(Ti — ax) =0 2)

cN(xN - xn_x) + d,v(x,v - an) = (
144
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If N is large, the solution of this system requires some care.

In place of using any of a number of existing techniques to resolve this
system of equations, we shall pursue an entirely different course.

3. Functional Equations. Let usconsider the sequence of minimization
problems:

Minimize over all z

N N
Qr(z) = Z Ce(®e — 221)? + 2 di(zs — a)? (H

k

r k=r

with z,_; = u, a given quantity.
It is clear that the minimum value depends upon %, and, of course,
upon r. Let us then introduce the sequence of functions {f,(u)}, where

—w <u< wandr=12 ..., N,defined by the relation
Jr(u) = min Qr(x) (2)
We see that
Iv(w) = min [en(zy — u)? + dy(zy — an)? (3)

a function which can be readily determined.
To derive a relation connecting f,(u) with fr(w), forr=1,2 ...,
N — 1, we proceed as follows:

N N
f,-(u) = min min * - * min [ z Ck(xk — )+ z dk(:tk - ak)z]
Zr Tr4l N k=r k=y

= min {c,(z, ~ u)? + d(z, — a,)?

xr

v w3 e -air s 3 ato- ]

= min [¢,(z, — w)? + di(zr — a,)? + fra(z))] “4)

Since fn(u) is determined by (3), this recurrence relation in principle
determines fy_,(u), fv—2(u), and so on, back to fi(u), the function we
originally wanted.

Using a digital computer, this series of equations can be used to com-
pute the members of the sequence {f.(u)].

In place of solving a particular problem for a single value of N, our aim
has been to imbed this variational problem within a family of problems
of the same general type. Even though an individual problem may be
complex, it may be quite simply related to others members of the family.
This turns out to be the case in a large class of variational questions of
which the one treated above is a quite special example,
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4. Recurrence Relations. Making use of the analytic structure of each
member of the sequence f,(%), we can do much better. Let us begin by
proving inductively that each member of the sequence is a quadratic
function of %, having the form

fr(w) = u + vu + wu? (1)

where u,, v,, and w, are constants, dependent on r, but not on .
The result °s easily seen to be true for r = N, since the minimum value
in (3.1) is furnished by the value

_CyU + dyawx
Ty = vt dn )

Using this value of zy in the right-hand side of (3.3), we see that fy(u) is
indeed quadratic in u.

The same analysis shows that fy_i(%), and so inductively that each
function, is quadratic. This means that the functions f.(u) are deter-
mined once the sequence of coefficients {u,,v,,w,} has been found. Since
we know uy, vy, and wy, it suffices to obtain recurrence relations con-
necting w,, v,, and w, with w1, v,41, wrr1. To accomplish this, we turn
to (3.4) and write

u' + VU + Wruz = min [Cr(:t, - u)z + d,(:t.- - ar)z
+ Uy + VUr 41Ty + ’wr+xIr2] (3)

The minimizing value of z, is seen to be given by

Ursa

(¢ + dr + wepa)z, = cu + doa, — 35 4

Substituting this value in (3) and equating coefficients of powers of wu,
we obtain the desired recurrence relations, which are nonlinear. We
leave the further details as an exercise for the reader.

8. A More Complicated Example. In Sec. 2, we posed the problem of
approximating to a varying sequence {a:} by a sequence {z:} with smaller
variation. Let us now pursue this a step further, and consider the prob-
lem of minimizing the quadratic function

N N
Q(.’E) = z Ck(xk - .’Ek..l)z + z dk(xk - ak)’
k=1 k=1 N

+ ) el@ = 2o+ 7t (1)
k=1
where 2o = 4, z_y = .
As above, we introduce the function of two values f,(u,v) defined by
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the relation

f(wp) = min | i ex(@s = Tasa)? + i di(zs — ax)?

k=r kmy
+ Y a2t )] @
kwy
r=12...,N, —o <u v < o, withz,_; =u 2. =0

It is easy to see, as above, that

fr(u;v) = min [C,-(I,- - u)? + d,(z, — a,)?

+ ez, — 2u + v)? + fenlz,u)] (3)
r=12 ..., N, and that

fr(w,0) = ur + vou + weut + vy + Wt + zaww

where the coefficients depend only upon r.

Combining these relations, we readily derive recurrence relations con-
necting successive members of sequence {u,v,w,u.v.,z}. Since we
easily obtain the values for r = N, we have a simple method for deter-
mining the sequence,.

6. Sturm-Liouville Problems. A problem of great importance in
theoretical physics and applied mathematics is that of determining the
values of A which permit the homogeneous equation

w’ + Ao(tu = 0
w(0) = u(l) = 0 @

to possess a nontrivial solution. The function ¢(t) is assumed to be real,
continuous, and uniformly positive over [0,1].

In Sec. 12 of Chap. 7, we sketched one way of obtaining approximate
solutions to this problem. Let us now present another, once again leav-
ing aside the rigorous aspects. Observe, however, that the questions of
degree of approximation as N — o« are of great importance, since the
efficacy of the method rests upon the answers to these questions,

In place of seeking to determine a function () for 0 <t < 1, we
attempt to determine a sequence {ux = u(kd)}, k=0,1, ... 6 N -1,
where NA = 1. The second derivative u’ is replaced by the second
difference

Urt1 2Au: + U3 @)

with the result that the differential equation in (1) is replaced by a
difference equation which is equivalent to the system of linear homo-
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geneous equations

Ug — 2‘“; + XA’¢{M| =0
Us — 2us + u1 + NA3%pus = 0

—2up_1 + Unv_s + M¥y_juy_; =0 3

where ¢ = ¢(kA).

We see then that the original problem has been approximated to by a
problem of quite familiar type, the problem of determining the charac-
teristic values of the symmetric matrix

[ -2 + A, 1
1 —2 4 A, 1
A= .
1 -2 4 A'y_s 1
|_ 1 -2 + Al¢y1 ]

4)

We shall discuss this type of matrix, a particular example of what is
called a Jacobi matrix, again below.

It is essential to note that this is merely one technique for reducing
the differential equation problem to & matrix problem. There are many
others.

EXERCISES

1. Show that the equation in (8,1), together with the boundary condition, is equiva-
lent to the integral equation

1
U =) /o K(t,8)o(s)u(s) ds

where
K(t,3) = (1 ~8) 1>
- g(l — ) 0<

the form
N

U =\ kisdju; i=12 ...,N
2
7. Functional Equations. Since 4, as given by (6.4), is real and sym-
metric, we know that the characteristic values can be determined from
the problem:
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Minimize
Z (wr — up-1)? (1)
k=1
subject to the conditions
u=1uy =0 (2a)
N-1
Y dut=1 (2b)
k=1

In place of this problem, consider the problem of determining the

minimum of
N

Z (we — w—1)? 6)
k=r
subject to the conditions
Upey =V (4a)
UnN = 0 (4b)
N-1
=1 (40)
k=r
forr=1,2,...,N—1, where —o <v < .
The minimum is then for each r a function of », f.(v). We see that
fra) = V/a = o+ () )
PN_1

and that, arguing as before, we have the relation
() = min [(w, — 9)? + (1 — ¢wuferi(t/V1 = $u?)] (6)

forr=12...,N-1

The sequence of functions {f.(v)} apparently possesses no simple ana-
lytic structure. However, the recurrence relation in (6) can be used to
compute the sequence numerically.

EXERCISE

1. Treat in the same fashion the problem of determining the maximum and mini-
mum of

(@) (az))? + (@ +aza)t + -+ - (x  + 224 + + ¢+ + 2y + azy)? subject to

32t 4 - - Fayt=1
® 4+ (21t az)t+ - - - (21 +azs + ek + - - -+ a¥lzy)? subject to
Pttt - Nt =1

() 22 + (21 + az)? + [z + a2y + (@ + Bzt + ¢ - - + (22 + az +
(a+bzs+ -+« +la+ (N - 2)bjzn|? subject to 22+ 22 4 - -+ +

vt =1
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For a discussion of these questions by other means, see A, M. Ostrowski, On the
Bounds for a One-parameter Family of Matrices, J. fiir Math., vol. 200, pp. 190-200,
1958,

8. Jacobi Matrices. By a Jacob: matriz, we shall mean a matrix with
the property that the only nonzero elements appear along the main
diagonal and the two contiguous diagonals. Thus

a; =0 |i—-jl22 (1
Let us now consider the question of solving the system of equations
Az = ¢ (2)

where A4 is a positive definite Jacobi matrix. As we know, this problem
is equivalent to that of minimizing the inhomogeneous form

Q(z) = (z,4z) — 2(c,2) (3)
Writing this out, we see that we wish to minimize

Q(z) = aux® + 2812172 + G22%2® + 28032028 + ¢ ¢ ¢
+ 2an_1 T2y + azvzv:tzvz - 2,7, — 20923 — * ¢+ — 2wty (4)

Consider then the problem of minimizing

Qi(z,2) = anzi® + 20190172 + 02:22° + 2a052025 + ¢ ¢
+ 2as_1 sxr—1Th + Ali® — 2021 — 2¢929 — + ¢ ¢+ — 22z, (5)

fork=1,2 ..., with

Qi(z,2) = anxs® — 221, (6)
Define
fi(2) = min Qi(z,2) M
Then it is easy to see that
fi(2) = min [anz® — 222, + fi-1(Cro1 — Gr_1.:24)] (8)
fork=23,....
Once again, we observe that each function fi(z) is a quadratic in 2,
f,,(z) = U + /7% 4 + wkz’ k= l, 2, e (9)
2
with A = =
an

Substituting in (8), we obtain recurrence relations connecting w:, v,
and w, with w_y, vi_;, and wi_1. We leave the derivation of these as
exercises for the reader.
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EXERCISES

1. Generalize the procedure above in the case where A is a matrix with the property
that asy; = 0, |] - 'tl > 3.

2. Obtain relations corresponding to those given in Sec. 7 for the largest and smallest
values of a symmetric matrix A witha;; =0, |j —¢{] > 2;and a;; =0, |7 — 4] > 3.

9. Analytic Continuation. We were able to apply variational tech-
niques to the problem of solving the equation Az = ¢ at the expense of
requiring that A be symmetric and positive definite. It is tempting to
assert that the explicit solutions we have found are valid first of all for
symmetric matrices which are not necessarily positive definite, provided
only that none of the denominators which occur is zero, and then suita-
bly interpreted for not necessarily symmetric matrices.

The argument would proceed along the following lines. The expres-
sions for the z; are linear functions of the ¢; and rational functions of the

a;.  An equality of the form
N

z ayz; = 1 (1)

j=1

valid in the domain of a; space where A is positive definite should cer-
tainly be valid for all a;; which satisfy the symmetry condition.

It is clear, however, that the rigorous presentation of an argument of
this type would require a formidable background of the theory of func-
tions of several complex variables. Consequently, we shall abandon this
path, promising as it is, and pursue another which requires only the
rudimentary faets coneerning analytie eontinuation for functions of one
complex variable,

Consider in place of the symmetric matrix A the matrix 2] + A, where
z is a scalar. If z is chosen to be a sufficiently large positive number,
this matrix will be positive definite, and will be a Jacobi matrix if 4 is a
Jacobi matrix.

We can now apply the principle of analytic continuation. The z;, as
given by the formulas derived from the variational technique, are rational
functions of 2z, analytic for the real part of z sufficiently large. Hence,
identities valid in this domain must hold for z = 0, provided none of the
functions appearing has singularities at z = 0. These singularities can
arise only from zeroes of the denominators. In other words, the formulas
are valid whenever they make sense.

10. Nonsymmetric Matrices. In order to apply variational tech-
niques to nonsymmetric matrices, we must use a different device.

Consider the expression

f(xry) = (I,B:t) + 2(IyAy) + (yyBy) = 2((1,1) - 2(b’y) (l)
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where we shall assume that B is symmetric and positive definite and that
A is merely real.
Minimizing over z and y, we obtain the variational equations

Br + Ay =«
A'z + By = b @

In order to ensure that f(z,y) is positive definite in z and y, we must
impose some further conditions upon B. Since we also wish to use ana-
lytic continuation, perhaps the simplest way to attain our ends is to
choose B = zI, where z is a sufficiently large positive quantity.

The functional equation technique can now be invoked as before. We
leave it to the reader to work through the details and to carry out the
analytic continuation.

11, Complex A. Let us now see what can be done in case A is sym-
metric, but complex, A = B + +C, B and C real. The equation Az = ¢
takes the form

(B +1C)(z + 1iy) = a + b (1)
or, equating real and complex parts,
Bx—Cy=a
Cr+By=b )

Observe that these relations establish a natural correspondence between
the N-dimensional complex matrix B + /C and the 2N-dimensional

matrix
[’g "g] 3

a relationship previously noted in the exercises.
In order to relate this matrix, and the system of equations in (2) to a
variational problem, we consider the quadratic form

fz.y) = (2,Cz) + 2(z,By) — (4,Cy) — 2(b,x) — 2(ayy) 4

If we impose the condition that C is positive definite, it follows that
f(z,y) is convex in z and concave in y and hence, as a consequence of
general theorems, which we shall mention again in Chap. 16, that
min max f(z,y) = max min f(z,y) (5)
z y y z
Since f(z,y) is a quadratic form, there is no need to invoke these general
results since both sides can be calculated explicitly and seen to be equal.
We leave this as an exercise for the reader.
Before applying the functional equation technique, we need the further
result that the minimum over the z; and the maximum over the y; can be
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taken in any order. In particular,

min max = min max min max 6)
(121, « o o, ZN) (UrY, .. UN) z vi (%2, o 00 ZN) (U2, o0 UN)

This we also leave to the enterprising reader. Problems of this nature
are fundamental in the theory of games, which we shall discuss briefly in
Chap. 16.

Combining the foregoing results, we can treat the case of complex 4,
If necessary, we consider A + 7zI, where 2 is a sufficiently large positive
quantity, once again introduced for the purposes of analytic continuation.

12. Slightly Intertwined Systems. Let us now consider the problem of
resolving a set of linear equations of the form

auZs + 01222 + 41323 = €1

anT1 + 02Tz + A23Tg = C2

a5%1 + G52T2 + a5T5 + biTe = €y
bizs + a4 + Gusts + GusTs = ¢4

54T + 56T + AseTe = Cs

54Ty + Ge6Ts + AasXs + a7 = Co

by_1%Tsw—3s + Gan—2.av—2Tan—2 + Ban—2.38—1Tan—1 + Gan—2,38Tsn = Can—2
Q3N —1,3N—2T3N—2 + BaN—1,3N-1TaN—-1 + BaN-1.38T3n = C3n—1
Q3N aN—2T3N—2 + GanaN—iTan—1 + Gan,snTay = Cav (1)

If the coeflicients b; were all zero, this problem would separate into
N simple three-dimensional problems. It is reasonable to assume that
there is some way of utilizing the near-diagonal structure. We shall call
matrices of the type formed by the coefficients above slightly inlertwined.
They arise in a variety of physical, engineering, and economic analyses
of multicomponent systems in which there is ‘‘weak coupling'’ between
different parts of the system.

To simplify the notation, let us introduce the matrices

A = (Gipar—sj+ar—-2) ,7=1273 2
and the vectors
Tak—2 Cak—2
= |zpa ¢t = | car—s 3
Tax Cak

k=12 ....
We shall assume initially that the matrix of coeflicients in (1) is a
positive definite. Hence, the solution of the linear system is equivalent
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to determining the minimum of the inhomogeneous quadratic form

(24,42 + (a%,4zY) + - -+ + (&, AzY)
— 2(01,3:1) —_— 2(cz’x2) [ 2(CN,xN)
+ 2bizszs + 2092621 + ¢ ¢ 0+ 2bv_Tav—stav—2  (4)
This we shall attack by means of functional equation techniques.

Introduce the sequence of functions {fy(z)}, —» <2< o, N =1,
2, . . ., defined by the relation

N N N-1
fu@ =min[ Y @42 —2 Y (65) +2 ) bavzs+ 2| (6)
= i=1 t=1 f=1
Proceeding in the usual fashion, we obtain the recurrence relation
fu(z) = nlliin (@Y, Anz®) + 2ezsn — 2(c¥,2V) + fu—1(bv-1Zav—2)] (6)
N
where Ry is three-dimensional region — oo < Z3n, Tsn—1, Tsn—2 < *.
13. Simplifications—I. We can write (12.6) in the form

fv(2) = min [ min [(z¥,Anz¥) + 2220 — 2(c¥,2¥)] + fy1(br-1Tsn-1)]

(1)
Introduce the sequence of functions
gn(z,y) = min [@¥,AVzN) + 2ezen — 2(c¥,zM)] 2
ZaN,ZN -1
where z35v—2: = y. Then
fw(2) = min [gn(2,y) + fy-1(bv-1y)] (3)
v

a simple one-dimensional recurrence relation.
14. Simplifications—II. We can, as in the section on Jacobi matrices,
go even further, if we observe that fx(2) is for each N a quadratic in 2,

fw(2) = un + 2vnz + wyz? 6))

where ux, vy, wy are independent of z. Using this relation in (3), we
readily obtain recurrence relations for {uy,vx,wn}.

EXERCISES

1. Obtain recurrence relations which enable us to compute the largest and smallest
characteristic roots of slightly intertwined matrices.

2. Extend the foregoing technique to the case where the A, are not all of the same
dimension.
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15. The Equation Az = y. Let us now pursue a simple theme. If A4
is a positive definite matrix, we know that the solution of

Az =y (D

given by 2 = A~y can also be obtained as the solution of the problem
of minimizing the quadratic form

Q) = (z,42) — 2(z)y) @

The minimum has the value — (y,4-'y). Comparing the two approaches
to the problem of solving (1), we can obtain some interesting identities.
Introduce the function of N variables

N N
InQyanys « o . yn) = min[ 2 a,Tx; — 2 2 -’l?-'?/-'] 3)

n =1 i=1

Write
N N
2 Ay T.Ty — 2 2 TiY:
17=1 1=1
N-1 N-1
= annZn® + Z a,TT; — 2 Z (Y — anan) — 2znyn  (4)
=1 i=1
From this expression, we obtain the functional equation
fn(yuyz, + - . ,yv) = min [avnTn® — 2zNyNn
N
+ fv-(y1 — awwen,Y2 — GaNIN, . . . YN-1 — Gy NZN)]  (B)
In order to use this relation in some constructive form, we reeall that
fv(ynys, » . un) = —(y,A7'y). Hence, write
N
In(yuye, » - - yN) = 2 cis(N)yys )

=1

Returning to (5), we obtain the relation

2 ¢is(N)yiy; = min [amvxn’ — 2eNnyn
IN

=1
! N—~1

+ 2 ci(N — D(y: — awan)(ys — aJNIN)] M
=1
or, collecting terms,
N N-1
Y euWyps = min [ovt {awy + Y awamwes(N - 1)

ti=1 fy=1
N-1

+ zn {—2y;v -2 Nz_l [yawles(N — l)} + 2 cii(N — 1)!/:'?/:'] (8

ti=1 fi=1
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The minimization can now be readily performed,

N-1

uv+ ) eV — 1)
Ty = et 9
any + z avajnci;(N — 1)
i-j‘l

while the minimum value itself is given by

N-1 N-1
( z (N - l)y.-y,-) (amv + Z aivanc;(N — 1))
i1 Wit

- (yN + Nz_l yianci;(N — 1))

=l
N=i
avy + z a;na;nc;(N — 1)
ig=1
N
Equating coefficients of y.y; in (10) and z ¢:i(N)y:y;, we obtain recur-
ti=1

rence relations connecting the sequences {c;;(N)} and {c;(N — 1)}.
16. Quadratic Deviation. The problem of minimizing over all z; the
quadratic form

@ = [ (10 - ’fj zgh(t) ) dt M
=1

is, in principle, quite easily resolvable. Let {h(f)} denote the ortho-
normal sequence formed from {g:(f)} by means of the Gram-Schmidt
orthogonalization procedure, where, without loss of generality, the g:(f)
are taken to be linearly independent. Then

min Qx(z) = min . (7o - 12 yghk(t))zdt
N
= [rra= Y () moa) @
k=1

This result may be written

Jra= [T [ s@sken dsa ®

where

N
En(et) = ) ha(ha(t) @
k=1




Dynamic Programming 157

Let us now obtain a recurrence relation connecting the members of the
sequence {kn(s,t)]. Introduce the quadratic functional, a function of
the function f(t),

on(f) = min /OT (f - ﬁ xggk)z dt (5)
z =1

Employing the functional equation technique, we have for N = 2,
3 ...,
ox(f) = min ¢x_i(f — zngw) (6)
Ty

and

#i(1) = min [["(f - mg* @

In order to use (6), we employ the technique used above repeatedly—
we take advantage of the quadratic character of ¢x(f). Hence,

on(f) = min [ [[7 (7 = zwgu)? s

- /OT /oT (f(8) — zngn())(f() — zngn(t))kn(s,t) ds dt]
min {[[ra- [ [ bsnron dsa

—2an [ [ awdt = [T [T on(MOn—s(s,0) ds ]
+ zx? [/OT gytdt — /OT /OT kn_1(8,t)gn(8)gn(t) ds dt]} 8)

Obtaining the minimum value of zy, and determining the explicit value
of the minimum, we obtain the recurrence relation

2gx(s) /01' gr(skn_1(t,81) dsy
dy
1 [T [T
+d—/ / gn(s)gn(t)kn—1(s1,8)kn_1(t1,t) dsy dty  (9)
¥ Jo Jo

kn(et) = k(s + 2ON0 _
N

where

dv = ﬁ " on(s) ds — ﬁ ! ﬁ T hwa(sDan@gn(® dsdt (10)

17. A Result of Stieltjes. Since we have been emphasizing in the
preceding sections the connection between the solution of A4z = b and
the minimization of (z,4z) — 2(b,z) when A is positive definite, let us
use the same idea to establish an interesting result of Stieltjes. We shall
obtain a generalization in Chap. 16.

Theorem 1. If A is a postitive definite matriz with the property that
a; < 0 for ¢ # j, then A~ has all positive elements.
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Proof. Consider the problem of minimizing @(z) = (z,4z) — 2(b,2),
where the components of b are all positive. Assume that z,, z,, . . . ,
Zx < 0, Tag1, Thys, . - . , 2y 2> 0, at the minimum point. Writing out
(z,Az) — 2(b,x) in the form

k N
auti? + sz + annzn® + z a;zir; + z z AifTT5
=1 t=]j=k+1
N N N k N
+ Z a;z:x; + z axx; — 2 z bax; — 2 Z bz (1)
fmk+tl =] wi=k+1 =] T=k41

we see, in view of the negativity of a; for 7 # j, that we can obtain a
smaller value of Q(z) by replacing z; by —z;fort=1,2, ...,k and
leaving the other values unchanged, provided at least one of the z;,
i=k+1,...,N,ispositive. In any case, we see that all the z; can
be taken to be non-negative.

To show that they are actually all positive, if the b; are positive, we
observe that one at least must be positive. For if

Ty =Tg = * =$N_|=0

at the minimum point, then zy determined as the value which minimizes
zx? — 2byzy is equal to by and thus positive. Since Ar = b at the
minimum point, we have

a.~.~x,~=b,~—za.~,a:; i=l,2,...,N—l (2)
i
which shows that z; > 0.

We see then that A-'b is a vector with positive components whenever
bislikewise. This establishes the non-negativity of the elements of A,
To show that A—! actually has all positive elements, we must show that
A-1b has positive components whenever b has non-negative components
with at least one positive.

Turning to (2), we see that the condition a; < 0, ¢ # j, establishes this.

MISCELLANEOUS EXERCISES

1. Given two sequences {a:} and {b}, k =0, 1, 2, . . ., N, we often wish to
determine a finite sequence [z}, k = 0, 1, . . . , M which expresses by most closely
M

in the form by = z Ziak .
=0
To estimate the closeness of fit, we use the sum

Qru(z) = 2 (bk z zlak—l)z N>M2>1
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Consider the quadratic form in yo, y1, . . . , yn defined by
fN.u(l/o,l/n, PN ,IIN) = min [(yo — 2om0)® + (1 — Zoty — Z1@0)* + -
z
+ (Yynv = zoN — 10N — -+ + — TMON-M)?)
Show that

N N N
InoWoys - - - YN) = ( 2 yk’) (2 a,,*) - (z akl/k)z
k=0 k=0 k=0

and that, generally,

Ivu(yoys, + . . yn) = min [(yo — z0a0)?
Zo
+ -t m-1(y1 — Ty, Y2 — ZeG2) .- . . , YN — Toln)]
2. Write
N
Ivomoyy, - 0 . JYN) = z cii (N, M)ywy;
1,7=0

and use the preceding recurrence relation to obtain the ¢;;(N,M) in terms of the
ci(N =1, M = 1),

8. Write fv.u(yoyyy - - « ,yn) = (y,Auny) and obtain the recurrence relation in
terms of matrices.

For an alternate discussion of this problem which is paramount in the Kolmogorov-
Wiener theory of prediction, see N. Wiener, The Exirapolation, Interpolation and
Smoothing of Stalionary Time Series and Engineering Applications, John Wiley &
Sons, Inc., 1942, and particularly the Appendix by N. Levinson.

4. Let A and B be two positive definite matrices of order N with AB = BA and ¢
a given N-dimensional vector. Consider the vector zy = ZyZy-1 + - - Z1Z\c, where
each matrix Z; is either an 4 or a B. Suppose that the Z;,7 =1,2, ., ., N, are
to be chosen so as to maximize the inner product (zw,b) where b is a fixed N-dimen-
sional vector.

Define the function

fn(e) = max (zmb)

{zi)
for N =1,2, ... ,and alle. Then

Sile) = max ((Ae,b),(Bc,b)),
Snle) = max (fy-1(Ac),fn-1(Bc)) N=23....

8. Does there exist a scalar A such that fv{c) ~ A¥(c) as N — «?

8. What is the answer to this question if AB = BA?

7. Suppose that C is a given positive definite matrix, and the Z; are to be chosen so
that ZyZn-: + + + Z3Z,C has the maximum maximum characteristic root. Let
g~n(C) denote this maximum maximorum, Then

9:1(C) = max [#(AC),$(BC)],
gn(C) = max [gy1(AC)gn1(BC)) N =2,3, ...,

where ¢(X) is used to denote the maximum characteristic root of X,

8. Does there exist a scalar A such that gn(C) ~ A¥h(c) a8 N — «? See C. Bohm,
Sulla minimizzazione di una funzione del prodotto di enti non commutati, Lincei-
Rend. Sci. fis. Mal. e Nat., vol. 23, pp. 386-388, 1957.
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§12 to §14. The results are taken from

R. Bellman, On Some Applications of Dynamic Programming to
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Matrices and Differential Equations

1. Motivation. In this chapter which begins the second main portion
of the book, we shall discuss the application of matrix theory to the solu-
tion of linear systems of differential equations of the form

N

%=Za,~,xj z0) = ¢ i=1,2,...,N ¢))
i=1
where the a;; are constants.

In order to understand the pivotal positions that equations of this
apparently special type occupy, let us explain a bit of the scientific back-
ground. Consider a physical system S whose state at any time ¢ is
assumed to be completely described by means of the N functions z,(t),
z(t), . . ., zy(t). Now make the further assumption that the rate of
change of all these functions at any time ¢ depends only upon the values
of these functions at this time.

This is always an approximation to the actual state of affairs, but a
very convenient and useful one,

The analytic transliteration of this statement is a set of differential
equations of the form

dz

7{" = fix1, e, ... ,2v) 1=12, ... ,N 2)
with an associated set of initial conditions
z,0) = ¢ i=1,2...,N 3)
The vector ¢ = (c1,¢2, . . . ,cn) represents the initial state of the system,
Sets of constants, {c;}, for which
filcyes, . . . jen) =0 i=12...,N 4)

play a particularly important role. They are obviously equilibrium states
since S cannot depart from them without the intervention of external

forces.
163
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Whenever such states exist, it is of great interest to study the behavior
of the system in the neighborhood of these states. In other words, we
are examining the stability of the system under small disturbances. If
the perturbed system eventually returns to the equilibrium state, we say
that it is stable; otherwise, we say that it is unstable. These consider-
ations are of great practical significance.

In order to carry out this study, we set

=c+ Y (6)

where the y; are taken to be small quantities. Substituting in (2), we
obtain the equations

%=‘fi_z;!’=;(01+1/1,Cz+yz,...,cN+yN) i=12...,N
N
= filer,6ay . . . Jon) + za‘-jyj.‘_ .. ©6)
=1
where
=g—£‘; atxlacl,x,=c,,.“’x_v=cN (7)

and the three dots signify terms involving higher powers of the y;.

The behavior of § in the neighborhood of the equilibrium state, {c;},
is thus determined, to an approximation whose accuracy must be care-
fully examined, by the linear system with constant coefficients given in
().

We have then a powerful motivation for the study of linear systems of
this type. OQOur aim is to determine analytic representations of the solu-
tion which will permit us to ascertain its limiting behavior as { — «,

These questions of stability will be taken up again in Chap. 13.

2. Vector-matrix Notation. To study (1.1), we introduce the vectors
y and ¢, possessing the components y; and ¢;, respectively, and the matrix
A = (a;). It is clear from the way that the difference of two vectors is
defined that the appropriate way to define the derivative of a vector is
the following:
dy: ]
at
4y
dt
dt * (l)

dyn
| dt |
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Similarly, the integral of y(f) is defined to be

F/‘ yi(s) ds

[ vats) as
[vras=| - @)

-~

SRZOLY

The derivatives and integrals of matrices are defined analogously.
It follows that (1.1) can be written

5 = Av y(0) =¢ 3

The matrix 4 will, in general, not be symmetric. Consequently, the
techniques and results of the first part of this volume can be expected to
play a small role. We shall have to develop some new methods for
treating general square matrices.

A vector whose components are functions of ¢ will be called a vector
function, or briefly, a function of t. It will be called continuous if its
components are continuous functions of ¢ in the interval of interest. We
shall use similar terms in describing matrix functions.

EXERCISES
1. Show that

(@) a%(z,y) = E,y) (z, dt)

®) d,(Az) (B)s+a%

© ,u(AB) (%) B+a(%

@ d,(X 9 = —x+(4) x-

@ gom = () x4 x () xr v paxm
2. Obtain an equation for the derivative of X}

8. Norms of Vectors and Matrices. We could, if we so desired, use
the scalar function (z,%) as a measure of the magnitude of z. However,
it is more convenient to use not these Euclidean norms, but the simpler

function
N
lell = ) lad )

i=1
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and, for matrices,

N
l4l =Y los @

=1

It is readily verified that

= + ol < [l=fl + llsll 114 + Bl < 4] + [B]|
|Az|| < 4] llz  [4AB] < A [|BI] (3)
lewall = leal 2l llesAll = leal [l 4]]

The reason why we have chosen the foregoing norms for vectors and
matrices is that the verification of the results in (3) is particularly simple.
As we shall see in the exercises below, there are a large number of choices
of norms which are equally useful when dealing with finite dimensional
vectors and matrices. It is only when we turn to infinite dimensional
vectors and matrices that the choice of a norm becomes critical.

EXERCISES

1. Show that we could déefine as norms satisfying (3) the functions

N
el = (Z aife) = @28

i=1

ne (i Joult)* = tr (4444

tim1
2. If we set ||z]| = max |z:}, what definition should we take for |4 in order that

1
ali of the inequalities of (3) be valid?
8. Let |z]| be & vector norm satisfying the vector relations in (3) and the condition
that ||z]| = 0 and ||z|| = 0 if and only if z = 0. Show that |4]| = 'nT'ax |Az| is &
iz =1

matrix norm which satisfies the remaining relations in (3). (This is the standard way
of inducing a norm for transformations, given a norm for vectors.)

4. If we use the norm for z appearing in Exercise 2, which norm do we obtain for A
using the technique of Exercise 3?

6. Show that convergence of a sequence of vectors [z"} to a vector z implies and is
implied by convergence of the kth components of the members of the sequence [z"}
to the kth component of z.

8. Show that convergence of a sequence of vectors [z"} in one norm satisfying the
conditions of Exercise 3 implies convergence in any other norm satisfying these
conditions.

7. Show that

Ifz@) dt|| < [l=(t)]| de
IJAQ@ dt)| < [l|lAQ@)) de

8. Show that [|[A"|| < ||4lI" for any norm satisfying the condition in (3).
9. Is there any norm satisfying the conditions in (3) for which |[AB| = ||lA| |B||?
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4. Infinite Series of Vectors and Matrices. In the course of establigh-
ing the existence of solutions of the linear vector equation appearing
above, we shall have need of infinite series of vectors and matrices. By

the vector Z z~, we shall mean the vector whose 7th component is the

n=0
L]

sum of the series Z z;». Thus, the convergence of the vector series is

n=0
L ]

equivalent to the simultaneous convergence of the N series, Z zr It
n=0

follows that a sufficient condition for convergence of the vector series

Z z" is that the scalar series |z} converge.
=0

n=0 n
L

Similarly, a matrix series of the form 2 A, represents N? infinite
n=0

series, and a sufficient condition for convergence is that Z | Aall
n=0
converge.

b. Existence and Uniqueness of Solutions of Linear Systems. With
these preliminaries, we are ready to demonstrate the following basic
result.

Theorem 1. 7f A(t) is continuous for t > 0, there ts a unique solution to
the vector differential equation

‘-g = Az 2(0) = ¢ (1)

This solution exists for t > 0, and may be written tn the form
x = X(t)c 2
where X (t) 1s the unique matriz satisfying the matriz differential equation

ax
S = A0X X0 =1 (3)

Proof. We shall employ the method of successive approximations to
establish the existence of a solution of (3). In place of (3), we consider
the integral equation

X=1+ [0‘ A(s)X ds (4)
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Define the sequence of matrices {X.} as follows:
Xo=1 5)
LH=I+ﬁA®XJs n=01,...
Then we have
Xei = Xo= [[A@& = Xo)ds  n=12... ()

Let
m = max [|A(s)] (7
o<ty

Here and in what follows, we are employing the norms defined in (3.1)
and (3.2). Using (6), we obtain

1Xass = Xall = 1| [ A@) (X0 = Xoo) ds]
< [ 14@I Xy = Xooil ds

¢
<m [ 11X, — Xosill ds ®
for 0 £t < ti. Since, in this same interval,
t
1X: = Xoll < [ 4] ds < mt @)
we have inductively from (8),
mn+ltn+l
||Xn+1 - Xn” S m fO!' 0 S 14 S tl (10)

Hence, the series z (Xa4+1 — X.) converges uniformly for 0 < ¢ < ¢,.
n=0

Consequently, X, converges uniformly to a matrix X(¢) which satisfies
(4), and thus (3).

Since, by assumption, A(t) is continuous for ¢ > 0, we may take {,
arbitrarily large. We thus obtain a solution valid for { > 0.

It is easily verified that z = X (t)c is a solution of (1), satisfying the
required initial condition.

Let us now establish uniqueness of this solution. Let Y be another
solution of (3). Then Y satisfies (4), and thus we have the relation

X =Y = [ AG)(X(s) - ¥(s)) ds (11)
Hence
1X = Yl < [, IA@)I 1X@) = Y@l ds (12)
Since Y is differentiable, hence continuous, define
my = max [[X — Y| (13)

0Lt
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From (12), we obtain
IX - ¥l <m [/ 1A@Ids  0<t<t (14)
Using this bound in (12), we obtain
1X = ¥l < mu [S1A@I (f; 14G0] dsi) ds

il ||:<s)|| ds)’ 5

Iterating, we obtain

my ([ 14(5)] ds)™

IX - ¥l € —o s

(16)

Letting n — =, we see that |X — Y|| <0. Hence X =Y.

Having obtained the matrix X, it is easy to see that X(¢)c is a solution
of (1). Since the uniqueness of solutions of (1) is readily established by
means of the same argument as above, it is easy to see X (f)c is the solution.

EXERCISE

1. Establish the existence of a solution of (1) under the condition that A(f) is a
Riemann-integrable function over any finite interval. In this case, need the differen-
tial equation be satisfied everywhere? Examine, in particular, the case where
AQ@) =A4,0<t <ty A({t) = B, t > i

6. The Matrix Exponential. Consider now the particular case where
A(t) is a constant matrix. In the scalar case, the equation

du

F u(0) =¢ (1)
has the solution u = e*c. It would be very convenient to find an analo-
gous solution of the matrix equation

% =AX X(@) =¢C (2)
having the form X = e4:C.

By analogy with the scalar case, or from the method of successive
approximations used in Sec. 5, we are led to define the matrix exponential
function by means of the infinite series

Au‘n
n!

edt =T+ At+ --- + R (3)

Let us now demonstrate
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Theorem 2. The matriz series defined above exists for all A for any fized
value of t, and for all t for any fixed A. It converges uniformly in any finite
region of the complex ¢ plane.

Proof. We have

Al Al

nl — a!

4

Since || A||*|¢|*/n! is a term in the series expansion of e!l4!l 1, we see that
the series in (3) is dominated by a uniformly convergent series, and hence
is itself uniformly convergent in any finite region of the ¢ plane.

EXERCISE

1. Using the infinite series representation, show that d/di(e4*) = Ae4t = g4i4.

7. Functional Equations—I. The scalar exponential function satisfies
the fundamental functional equation

ea(0+t) = eaaeut (l)

Unless there is an analogue of this for the matrix exponential, we have
no right to use the notation of (3).
Let us now demonstrate that

eAlt) = gArgdt @)
Using the series expansions for the three exponentials and the fact that

absolutely convergent series may be rearranged in arbitrary fashion,
we have

Atsk Al
k= 1=0
n sktl
=24 Y, in)
n=0 k+li=n
—_ :1 (8 + t)n = pA(s+t)
= ZOA T = e 3)
From (2) we obtain, upon setting s = —¢, the important result that
eA—tH) = | = —AtgAt 4)

Hence, ¢4t is never singular and its inverse is e~4¢, This is a matrix ana-
logue of the fact that the scalar exponential never vanishes.
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8. Functional Equations—II. The proof of the functional equation in
Sec. 7 was a verification rather than a derivation. In order to under-
stand the result, let us turn to the differential equation

dX
o= AX )
Observe that e4! is a solution with the boundary condition X(0) = I,
and that e4@*) is a solution with the boundary condition X(0) = e4e,
Hence, from the uniqueness theorem, we may conclude that

eA(H»t) = eAteAa (2)

9. Functional Equations—III. Having derived the functional equa-
tion discussed above, the question naturally arises as to the relation
between ¢4+®¢ and e4te?t. Since

(4 + B)?
2

d4+mt = [ + (4 + B)t + £t

euem=(1+At+A—;f+--->(1+Bz+§g—‘2+~-) m

252 2
T4+ A A ¢ BE 4
we see that
e(A+B)t — eAteBt - (BA — AB)§+ PRP (2)

Consequently, ¢(4+®¢ = ¢4tePtforall tonly if AB = BA, which is to say
if A and B commute. It is easy to see that this is a sufficient condition.
10. Nonsingularity of Solution. We observed in Sec. 7 that e4!is never
singular. Let us now point out that this is a special case of the general
result that the solution of the equation
dx

5 = AOX X =1 (1

is nonsingular in any interval 0 < ¢ < ¢, in which [o" | A(t)| dt exists.

There are several ways of establishing this resuit. The first is the
most interesting, while two other methods will be given in the exercises
below. The first method is based upon the following identity of Jacobi:

[
x(] = fo A (2)

To derive this result, let us consider the derivative of the scalar func-
tion |X(t)]. To simplify the notational problem, consider the two-
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dimensional case. We have
|X@®)| =

N
- @)
where

d
o _ @121 + G179 7’?

di
d
% = @1 + GesTy —éyf = anY1 + Gy

aul + a1l

4

and

z1(0) =1 1(0) =0
20 =0 y(0) = 1 (®)
Then

d dz: dy: Ty W

b d dt
1% + G127 GuY1 + GioYa l
g Ye
+ Ty n l
@1i%1 + Gy Ga1Y1 + Qs
rr N 2 W)
(171
T2 Y T2 Yo

(tr A@)IX®)] (6)

=an

Thus

X)) = ot 4o @)
since | X(0)| = L
EXERCISES

1. Consider the equations #"g— = A(1)X, X(0) = I,and dY/dt = —YA(t), Y(0) = I.
Show that ¥ = X-! and conclude that X () is nonsingular in any interval where
lA(®)] is integrable.

2. Congider the second-order differential equation u” 4 p()u’ + g(t)u = 0.
Write ' = v and obtain a first-order system corresponding to this second-order
equation, namely,

du

—— Y

dt
% = —p(t)y — ¢(t)u

8. Consider the integral J = /o‘ w(u” + p(t)u’ + ¢({)u) di. Integrating by parts
we obtain

J=l ]+ /o‘ u(w” + pr(w’ + gr(tw) de
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What is the connection between the vector-matrix system for w” + pr(t)w’ +
@i{()w = 0 and the vector-matrix system for v’ + p()u’ + g()u = 0?

4. Consider the foliowing proof of the nonsingular nature of X(t). If [X(f)] = 0
at & point f, 0 < 3 < f,, there exists & nontrivial relation between the vectors con-
stituting the columns of X(f), c1x! 4 caz® + + -+ + cvz’ = 0. Since ezt +
csx? + + + + + cxaV is & solution of the equation dxz/dt = A(f)z, if it is zero at one
point, it is zero for all ¢in [0,5]. The relation |X(¢)] = 0, however, clearly does not
hold at ¢ = 0; & contradiction.

11. Solution of Inhomogeneous Equation—Constant Coefficients. Let
us now consider the problem of solving the inhomogeneous system

L etzti) a0 =c (1)
The utility of the matrix exponential notation shows to advantage here.

We have

g4t (‘;—f - Ax) = %(e“‘x) = ¢4 )

Hence,
ez = ¢+ [} ef(s) ds 3)
or z = edtc + fo‘ eA0—(s) ds (4)

Observe how the use of matrix exponential function permits us to
obtain the solution of (1) in exactly the same fashion as if we were
dealing with a scalar equation.

12. Inhomogeneous Equation—Variable Coefficients. Consider the
case where A4 is time-dependent., We wish to solve

Z—f =AWz + 1) 20) =¢ (1)
Let us use the Lagrange variation of parameters technique and attempt
to find a solution of the form z = Xy where X = X(f) is the solution of
the equation dX/dt = A(t)X, X(0) = I. Substituting in (1), we obtain
the equation

X'y + Xy = A)Xy + Xy = AD)Xy + 1)) 2

Hence
Xy = f@) (3

whence
y = X(0)f () (4)
or y=rc+ [} X-)f(s) do )

Consequently,

z = XWc + [ XOX-1(9)f(s) ds ®

a generalization of the result of (11.4).
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13. Inhomogeneous Equation—Adjoint Equation. Let us now pursue
a different approach, one of great importance in the general theory of
linear functional equations. Take Y (f) to be a variable matrix, as yet
unspecified, and integrate between 0 and ¢ the equation

Y®) Z - Y402 + YOI0) )
The result is, upon integrating by parts,
Y©) - Y(O) - ﬁ " o) ds = ﬁ ' Y(5)A(5)a(s) ds
+ ﬁ Y@ ds (@)

Without loss of generality, we can take ¢ = 0, since we can obtain the
solution of (12.1) by adding to the solution of this special case the vector
X(t)e. Since our aim is to solve for z(f), suppose that we make the most
convenient assumptions that we can, namely, that

‘% - —Y(@)A() 0<s<t (3a)

Yt =1 (3b)

If we can satisfy both of these equations, we can write z in the simple
form

z = [} Y@fe) ds @

The equation in (3) is called the adjoint equation. We know from the
general existence and uniqueness theorem established previously that a
unique solution to (3) exists. The matrix ¥ will now be a function of
sand ¢

EXERCISE
1. Show that Y(s) = X(t)1X(s).

14. Perturbation Theory. An interesting application of the formula
for the solution of the inhomogeneous equation is in the direction of
perturbation theory, Given the matrix exponential e4*+*2, we wish to
evaluate it as a power series in e,

eAt® = g4 + ) Qu(4,B) %)
n=}

The problem is readily resolved if A and B commute, since then

eA+tB = eAetB

Let us then consider the interesting case where AB » BA.
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If we write

eAteB = [ 4 z (A "7‘”€B)n (2)
n=1

and attempt to collect the terms in ¢, we soon see that it is quite difficult
to do this in a systematic fashion. In place of this direct procedure, we
pursue the following route. The matrix e4*+<2 is the solution of the differ-
ential equation

‘% —(A+eBX X0 =1 @)
evaluated at the point ¢ = 1.
Let us write this equation in the form
% =AX +eBX X(0)=1 4)
It follows from (11.4) that X satisfies the linear integral equation
X = ett + ¢ fot et BX(s) ds (5)

Solving this Volterra integral equation by iteration, we obtain an
infinite series of the form

X = e+ [ et0-mBesnds + - - - (6)
Hence, e4+*? has as the first two terms of its series expansion
eA+teB = g4 4 e,[ol eAU—DBedrdg 4 + - (n
EXERCISES

1. Set X(t) = e4t 4 z e"P.(t) and use (5) to determine recurrence relations
n=1
connecting P.(t) and P._:(t).

2. Assuming for the moment that e4'e? can be written in the form ¢ (a result we
shall establish below), where C = Cyt + Cst? + Csl* + - - -, determine the coefficient
matrices C), Cs, Cs.

8. Assuming that ¢#*¢2 can be written in the form

eAHeB = pAgeC pe2C 60, | | .

determine the matrices C,, C,, st

(The perturbation expansion in (7) possesses the great defect that it takes & matrix
e4*<B, which will be unitary if A and B are skew-Hermitian, and replaces it by an
approximation which is nonunitary. The perturbation expansion given above does
not suffer from this.)

t See also F. Fer, Acad. Roy. Belg. Cl, Sci., vol. 44, no. 5, pp. 818-829, 1958,
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16. Non-negativity of Solution. The following question arises in
mathematical economics. Consider the equation

oA +f0) 20 =c )

where A is a constant matrix. What are necessary and sufficient con-
ditions upon A in order that all the components of z be non-negative for
¢t > 0 whenever the components of ¢ are non-negative and the components
of f(t) are non-negative for { > 0?

Referring to (11.4), we see that a sufficient condition is that all ele-
ments of ¢4 be non-negative for ¢ > 0, and it is easily seen that this con-
dition is necessary as well.

It is rather surprising that there is a very simple criterion for this
condition.

Theorem 3. A necessary and suffictent condition that all elements of
e4t be non-negative for t > 0 is that

a; 20 i) (2)
Proof. Since
edt=T+4 At 4 -~ - 3)

it is clear that the condition in (2) is necessary for the result to be true
for small . To establish the sufficiency, let us show that a; > 0, ¢ = j,
implies that the elements of e4¢ are positive for all {. It is clear that
a;; > 0 implies that e4t has positive elements for small £. Since

eAt = (eAtln)n (4)

for any integer n, the fact that the product of two positive matrices is
positive yields the requisite positivity.

Sinee the elements of e are continuous functions of the a;;, we see that
the positivity of the elements of e4¢ for a;; > 0, ¢ # j, implies the non-
negativity of the elements of e4! for a; > 0, 7 » J.

Another more direct proof proceeds as follows. Let ¢; be a scalar so
that all the elements of A + c¢,J are non-negative. Then, clearly, all the
elements of e(4+aD¢ are non-negative. Also, the elements of e~ are
non-negative since exponentials are always non-negative. Since

eAt = glAt+aDi—alt
= eld+aDig-alt (5)

observing that A 4 ¢;/ and —e¢i/ commute, we have the desired
non-negativity.




Matrices and Differential Equations 177

EXERCISES

1. Prove the foregoing result by using the system of differential equations

N
=Za.~;z,» 2@ =¢ i=12 ...,N
j=1

ds;
di

2. Show that the result a;;(t) > 0, ¢ # j, is sufficient to ensure that the solution of
the corresponding equation with variable coefficients is non-negative if the initial
conditions are non-negative.

16. Polya’s Functional Equation. We have seen that Y (f) = e4t
satisfies the functional equation

Y e+ 1) = YY) —o <st< o Y)=1 (1)

An interesting and important question is whether or not there are any
other types of solutions of this fundamental matrix equation.
If Y(t) has a derivative for all finite ¢, the answer is simple. Differ-
entiating first with respect to s and then with respect to ¢, we obtain the
two equations
Yis+1) =YY () @)
Y+t =YY

Hence
Y(8)Y'(t) = Y'(s)Y (1) (3)

From (1) we see that Y (0) = Y(—£)Y(¢), which shows that Y(f) cannot
be singular for any value of {. Thus (3) yields

Y= s)Y'(s) = Y' ()Y~ (D) (4)

for all sand . Thus we must have Y'({)Y~}(t) = A, a constant matrix.
The equation

Y'(t) = AY(2) ()
then yields V() = e4Y (0) = e.

Let us now prove a stronger result.

Theorem 4. Let Y (t) be a continuous matriz function of t satisfying the
functional equation in (1) for 0 < s,t, s + ¢t < to. Then in [0,to), Y (t) s
of the form eA* for some constant matriz A.

Proof. Consider the Riemann integral

N
]0 ¥(s) ds = lim ,,Zo Y (kd)s (6)

where N is determined by the condition that (N 4+ 1)é = ¢. Since, from
(1) for 6 > 0,

Y(k8) = Y((k — 1)8)Y(8) = Y(§)* Q)
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we see that v
¢ .
J) vy ds = lim kzo Y(5)45 @®)
We also have
[Y(é) 7 2 Y(k8)s = Y((N + 1)8) — 1 9)

which leads to the result

lim ’(Z(—’—)sll) (5: Y(ko)o)': —Y@W -1 (10)

k=0
We have assumed that ¥(0) = I. Hence, for small ¢,

/o‘ Y(s) ds = tI + o(t) 1)

and thus ﬁ)‘ Y (s) ds is nonsingular for small ¢. It follows that for fixed
N

small ¢ and sufficiently small 8, the matrix z Y (k8)$ is nonsingular and

lim (20 v(8)s) " = ([, vy as)™ (12)

Hence (10) yields the fact that [Y(8) — I]/é has a limit as § — 0. Call
this limit A. Then

A = lim (Yﬁ%i') — Y - 1| [ﬁ Y(s) ds]"' (13)

=0
for small &. From this we obtain

Aflveds=vey -1 (14)

and, finally,
Y'(t) = AY Y0) =1 (15)

for small &. Since Y(f) = e4* for small ¢, the functional equation yields
Y(t) = e4* for all ¢ in [0,Lo).

EXERCISES
1. What is wrong with the following eontinuation of (10): From (10) we have

i [28 = im [ § vand] - vo -

1im[m) I]/ Y(s)ds = Y(§) ~ I

&0




Matrices and Differential Equations 179
2. Let Y and Z denote the solutions of

dY dz
¥ =AQ)Y Y0 =1 P = ZB(1) zZ0) =1

Then the solution of

X . AOX +XBO)  X(©) =C

is given by X = YCZ.
8. Write the linear equation u” + p(t)u’ + ¢(t)u = 0 in the form

[1::] = [-ga) —,l,(z)] [1:]

Use the preceding result to show that the linear equation whose general solution is
u = ay? + ayuius + aaus?, where u; and us are a set of linearly independent solutions
of the second-order equation, is

w4+ 3p)w’ + 2p¥0) + p'(1) + 491 + Up(D)e() + 2¢'(W)]u = O
17. The Equation dX/di = AX + XB. Let us now demonstrate

Theorem 5.
Theorem 5. The solution of

%:AX+XB X©0) = C 4)

ts grven by
X = eAtCeBt (2)

The proof follows immediately by direct verification. The result,
although simple (and a special case of Exercise 2 of Sec. 16), plays an
important role in various parts of mathematical physics.

EXERCISES

1. Obtain the solution given above by looking for a solution of the form X = eAty,
2. Let Y(t) be a square root of X(¢). Show that

ay dY dX
@)+ (@) -
18. The Equation AX + XB = (. Using the foregoing result, we can

establish Theorem 6.
Theorem 6. If the expression

X=- fo” eA\CeBt dt (1)

exists for all C, it represents the unigue solution of
AX + XB =C 2)
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Proof. Consider the equation

%%=AZ+ZB Z(0) = C @)
Let us integrate both sides between 0 and «, under the assumption that

lim Z(t) = 0. The result is
e

—c=A(f zas)+ ([ 2as)B 4)

We see then that
- /on Zds = — An eACe?t dt
satisfies (2).

In Chap. 12, we shall discuss in some detail the existence of the inte-
gral in (1) and the solutions of (2).

The uniqueness of solution follows from the linearity of the equation
in (2). Considering this matrix equation as N linear equations for the
elements z;; of X, we see that the existence of a solution for all C implies
that the determinant of the coefficients of the ziy is nonzero. Hence,
there is a unigue solution.

MISCELLANEOUS EXERCISES
1. Consider the gequence of matrices { X,} defined by
X = Xa(2l — AX,) Xo=B

Under what conditions on A and B does this sequence converge, and, if so, to what

does it converge?
2. If AB — BA = I, and ¢) and ¢, are sealars, then

et1AtesB = pciApesBocicyld

See R. A. Sack,! where the general problem of determining the expansion of f(4 + B)

= f(A) + - + -, for the case where AB » BA, isdiscussed. See also W. O. Kermack
and W. H. McCrea? and R. Kubo,? where related expansions in terms of commutators
appear.

8. What is the analogue of the result in Exercise 2 if AB ~ BA = ¢,4?
4. If A is positive definite, B(¢) is positive definite for ¢ > 0, and |A]| < |B(¢)] for all

t >0, then |4] < /on B(t)g®) dtl for any non-negative function g¢(f) such that

/o" g0 dt = 1.

1 R. A. 8ack, Taylor's Theorem for Shift Operators, Phil. Mag., vol. 3, pp. 497-503,

1958.
tW. O. Kermack and W. H. McCrea, Proc. Edinburgh Math. Soc., vol. 2 (220).

3 R. Kubo, J. Chem, Phys., vol. 20, p. 770, 1952,
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6. If A is symmetric positive definite and A4 < I, then the sequence of matrices
defined by the recurrence relation

Xnp = Xa + 45(4 — X,) Xo=0

converges to the positive definite square root of A.f

8. The problem of determining the values of ) satisfying the determinantal equation
[I — My — MFy — « « « — MFy| = 0, where the Fy are square matrices of order N,
is equivalent to determining the characteristic values of

F, Fy ... F,
A= I 0o --- 0
0 I -+«. 0
071 0

See K. G. Guderley, On Nonlinear Eigenvalue Problems for Matrices, J. Ind. and

Apol. Math., vol. 6, pp. 335-353, 1958.
7. Let H be a function of a parameter {, H = H({). Then

-:-te—‘" = — /;‘ g~le—a) i Qg e—uH d81
8. Show that
[AeH] = — ﬁ)' e~G~wH[A Hle~nH ds,

9. If ([A,H(8)] = aH /8¢, then (A, f(H)] = af(H) /at.
10. Show that eABe~4 = B + [A,B] + [4,[4,Bl]/2! 4 - - - .

11, Write ¢® = etet®, Z = 2 Zain, 7' = 2 nZd4~1. Show that

n=l rn=1
1
/; 22/ (t)erE dr = A + et4Be-i4

12. Obtain recurrence relations for the Z, in this fashion, for example Z; = 4 + B,
Zs = [A,B)/2, Zs = [[A,|A,B]] + [l4,B),Bll/12, . . . (Baker-Campbell-Hausdorff for-
mula). For the results of Exercises 7-12 and many further results, see Wilcox! and
Eichler.?

18. Show that e!4+B) = lim (eAt/ngBtin)n,  The result is given in Trotter,? and has

n-—-» o0

interesting applications to the study of the Schrédinger equation and Feynman
integrals. See Faris.*

1 C. Visser, Notes on Linear Operators, Proc. Acad. Sci. Amsterdam, vol. 40, pp.
270-272, 1937.

! R. M. Wilcox, Exponential Operators and Parameter Differentiation in Quantum
Physics, J. Math. Phys., vol. 8, pp. 962-982, 1967.

M. Eichler, A New Proof of the Baker-Campbell-Hausdorff Formula, J. Math.
Soc. Japan, vol. 20, pp. 23-26, 1968.

1 H. F. Trotter, On the Products of Semigroups of Operators, Proc. Am. Math. Soc.,
pp. 545-651, 1959.

¢W. G. Faris, The Trotter Product Formula for Perturbations of Semibounded
Operators, Bull. Am. Math. Sec., vol. 73, pp. 211-215, 1967.
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14. Let z = y + Az where A depends on a parameter t. Write z = y + Ry,
defining the resolvent matrix. Show that B’ = (I 4 R)A'(I + R).
18. Assume that A (2) has distinct characteristic valuesfor 0 < ¢ < &y, Ay Ay .« .

Ay and let 2, 23, . . . , zn, the N associated characteristic vectors, be orthonormal.
Show that
N = (A'zpz,) n=1,2 ...,N
’ (A'zp2i)zq
z, = et
A — N
i¥n

Discuss the use of these results for computational purposes (Kalaba-Schmaedeke-
Vereeke).
18. Consider the matrix operation

af(T) _ f(T)
aT (""" e

where f(T) is a complex-valued function of the N? elements of T and #; = 1,4 = j
= 34,1 » j. Show that

df(T) dg(T)

d
ar (f(T)g(T)) =

T ¢(.f(T)) = ¢'(/(T)) =57~

oT) + A(T) =5+
df(T)

— = -1

21Tl = 7T

The operator d/dT was introduced by Garding in the study of hyperbolic partial
differential equations and has been used by Koecher and Maass in the study of Siegel
modular functions. See Bellman and Lehman! for another application and references

to the foregoing; also see Vetter.?
17. Introduce the norms

N
lAllL = max Zlaﬁl
ISi<N &)
l4lls = max (dz,Az)¥
(z,2)=1
N
lAlle = max Y lal
1SisN &
a(A) = la‘,-l
(%)
34
N4) = (z la.-;l’)
%)

M(4) = N max la|

tR. Bellman and R. S. Lehman, The Reciprocity Formula for Multidimensional
Theta Functions, Proc. Am. Math. Soc., vol. 12, pp. 9564-961, 1961.
2 W. J. Vetter, An Operational Calculus for Malrices, to appear.
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For what A do the ratios of these norms achieve their upper and lower bounds. See
B. J. Stone, Best Possible Ratios of Certain Malriz Norms, Technical Report 19,
Stanford University, 1962.

18. Let u(t) be a function of { n times differentiable over [0,7'] and consider the
quadratic form

T
Qu(a) =ﬁ) (U™ 4 que=H 4 . . . 4 geu)tdt

Does min Qa(a) necessarily approach zero as n — «,

a
19. Consider the case where the interval is {— «,«]. Use Fourier integrals and
the Parseval-Plancherel theorem to obtain an expression for min @,(a) in terms of

a

orthogonal polynomials. (The foregoing is connected with differential approzima-
tion see Bellman and Kalaba! and Lew.?)

20. Consider the matrix equation X — UXV = W. Show that a formal solution
isX = 2 U*WV*, When does the series converge and actually represent a solution?

k=0

See R. A. Smith, Matrix Equation X4 + BX = C, 8IAM J. Appl. Math., vol. 16,
pp. 198-201, 1968.

21. Consider the equation X = C' 4 «(4X 4 XB), ¢ a scalar parameter. Write

X=C+ z e"on(A,B). Bhow that ¢n = Agn_t + @a1B, n 2> 1, with ¢ = C, and
n=1

that

on =A~C+('1')A--ICB 4+ .. 0B

22. Introduce a position operator P with the property that when it operates on
a monomial consisting of powers of A and B in any order with C somewhere, it shifts
all powers of 4 in front of C and all powers of B after C. Thus

P(ABb% -« . A%aBbW(CA%k+1B%s1 -+ . AswBby) = AZaiCBZ%
Further, define P to be additive,

P(m(4,B) + my(4,B)) = P(mi(4,B)) + P(ms(4,B))

where m; and m; are monomials of the foregoing types. Show that ¢.(4,B) =
P((A + B)~C).

23. Hence, show that X, as defined by Exercise 21, may be written X = P({I —
«4 + B)|"'0).

24. Similarly show that if X = E 4 «(4X + XB + CXD), then X = P({I -
(4 4 B + CF)|"'E), with P suitably defined.

tR. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary-value
Problems, American Elsevier Publishing Company, Inc., New York, 1965.

* A. Lew, Some Results in Differential Approzrimation, University of Southern Cali-
fornia Press, Los Angeles, USCEE-314, 1968.
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26. Show that if all the characteristic roots of A are less than one in abgolute value,
the solution of A*XA — X = —@Q is given by

X = @ri) / (A* — rI)1Q(A — 2Dt dz
where / denotes integration round the circle {2} = 1. Alternately,

X = @m /_', (G-)*QG-1 do

where @ = A — [e¥, Bee R. A. Smith.!

Bibliography and Discussion

§1. The equilibrium or stability theory of differential systems was
started independently, and almost simultaneously, by Poincaré and
Lyapunov. Further references and discussion will be found in Chap. 13
and in the book

R. Bellman, Stability Theory of Differential Equations, Dover Publi-
cations, New York, 1969.

Some interesting transformations of matrix differential equations may
be found in the following papers:

J. H. Barrett, Matrix Systems of Second Order Differential Systems,
Portugalicae Math., vol. 14, pp. 79-89, 1956.

J. H. Barrett, A Prufer Transformation for Matrix Differential
Equations, Proc. Am. Math. Soc., vol. 8, pp. 610-518, 1957.2

§2. The matrix exponential lies at the very heart of all advanced work
in the field of linear functional equations. Suitably generalized to arbi-
trary operators, it is the foundation stone of the theory of semigroups, see

E. Hille, Functional Analysis and Semi-groups, Am. Math. Soc. Pub.,
1942,

and its revised form

1R. A. Smith, Matrix Caleulations for Lyapunov Quadratic Forms, J. Diff. Eq.,
vol. 2, pp. 208-217, 1966.

R. A. 8mith, Bounds for Quadratic Lyapunov Funetions, J. Math. Anal, Appl,
vol. 12, pp. 425-435, 1966.

1J. J. Levin, On the Matrix Riccati Equation, Proc. Am. Math. Soc., vol. 10,
pp. 519-524, 1959,




Matrices and Differential Equations 185

E. Hille and R. Phillips, Functional Analysis and Semi-groups, 4m.
Math. Soc. Collog. Pub., vol. 31, 1958.

In a second direction, the problem of expressing e4‘¢?* in the form e,
where 4 and B do not commute, has important ramifications not only in
the theory of Lie groups and algebras, but also in modern quantum field
theory. The interested reader may consult

W. Magnus, Algebraic Aspects of the Theory of Systems of Linear
Differential Equations, Research Rept. BR-3, New York University,
Institute of Mathematical Sciences, June, 1953; also Comm. Pure
Appl. Math., vol. 7, no. 4, 1954.

H, F. Baker, On the Integration of Linear Differential Equations,
Proc. London Math. Soc., vol. 34, pp. 347-360, 1902; vol. 35, pp.
333-374, 1903; second series, vol. 2, pp. 293-296, 1904.

H. F. Baker, Alternants and Continuous Groups, Proc. London
Math. Soc., second series, vol. 3, pp. 24-47, 1904,

H. B. Keller and J. B. Keller, On Systems of Linear Ordinary Dif-
ferential Equations, Research Rept. EM-33, New York University,
Washington Square College, Mathematics Research Group, 1957.

F. Hausdorff, Die symbolische exponential Formel in der Gruppen-
theorie, Saechsischen Akademie der Wissenschafien zu Leipzig,
Math.-phys. Klasse, vol. 58, pp. 1948, 1906.

K. Goldberg, The Formal Power Series for log (e*e¥), Duke Math. J.,
vol. 23, pp. 13-21, 1956,

In another, and related direction, we meet the problem of expressing
the solution of a linear system of the form dX/dt = A()X, X(0) = I,
in the form of an ‘““exponential.”” This question leads to the study of
‘‘product integrals’’; see

L. Schlesinger, Neue Grundlagen fiir einen Infinitesimalkalkul der
Matrizen, Math. Z., vol. 33, pp. 33-61, 1931.

L. Schlesinger, Weitere Beitrage zum Infinitesimalkalkul der Matri-
zen, Math. Z., vol. 35, pp. 485-501, 1932.

G. Rasch, Zur Theorie und Anwendung des Produktintegrals,
J. retne angew, Math., vol. 171, pp. 65-119, 1934.

B. W. Helton, Integral Equations and Product Integrals, Pacific J.
Math., vol. 16, pp. 207-322, 1968.

t See also Kuo-Tsai Chen, Integration of Paths, Geometric Invariants and a Gen-
eralized Baker-Hausdorffi Formula, Ann. Math., vol. 65, pp. 163-178, 1957,




186 Introduction to Matrix Analysis
For more recent developments, see

W. Magnus, On the Exponential Solution of Differential Equations
for a Linear Operator, Comm. Pure Appl. Math., vol. 7, pp. 649673,
1954.

For an understanding of the physical interest in this problem, see

R. P. Feynman, An Operator Calculus Having Applications in
Quantum Electrodynamics, Phys. Rev., vol. 84, pp. 108-128, 1951,

Finally, let us mention that a great deal of effort has been devoted to
the generalization of the foregoing results and methods to infinite sys-
tems of linear differential equations with constant coefficients. Systems
of this type arise in a natural fashion in probability theory, particularly
in its applications to physics and biology in the study of ‘‘birth-and-
death” processes. These matters will be discussed again in Chap. 16.
See

N. Arley and A. Borchsenius, On the Theory of Infinite Systems of
Differential Equations and Their Applications to the Theory of
Stochastic Processes and the Perturbation Theory of Quantum
Mechanics, Acta Math., vol. 76, pp. 261-322, 1945.

R. Bellman, The Boundedness of Solutions of Infinite Systems of
Linear Differential Equations, Duke Math J., vol. 14, pp. 6956-706,
1947,

§8. Further results concerning norms of matrices, and further refer-
ences, may be found in

A. S. Householder, The Approximate Solution of Matrix Problems,
J. Assoc. Comp. Mach., vol. 5, pp. 205-243, 1958.

J. von Neumann and H. Goldstine, Numerical Inverting of Matrices
of High Order, Bull. Am. Math. Soc., vol. 53, pp. 1021-1099, 1947.

A. Ostrowski, Uber Normen von Matrizen, Math. Z., Bd. 63, pp.
2-18, 1955,

K. Fan and A. J. Hoffman, Some Metric Inequalities in the Space
of Matrices, Proc. Am. Math. Soc., vol. 6, pp. 111-1186, 1955.

T. E. Easterfield, Matrix Norms and Vector Measures, Duke Math.
J., vol. 24, pp. 663-671, 1957.

86. The reader who is familiar with the theory of Lebesgue integration
will see that the result of Theorem 1 can be obtained under much weaker
conditions on A(f). However, since we have no need for the stronger
result, we have not stated it.



Matrices and Differential Equations 187

§14. Variation of the characteristic values and characteristic roots of
A as the dimenston changes can be discussed using the techniques pre-
sented in

R. Bellman and 8. Lehman, Functional Equations in the Theory of
Dynamic Programming-X: Resolvents, Characteristic Values and
Functions, Duke Math. J., 1960.

816. Non-negativity results of this type play an important role in
probability theory and mathematical economics, where the physical
model makes the result intuitively clear. This point will be discussed
again in Chap. 16. They also play a role in the study of various classes
of nonlinear equations; see

R. Bellman, Functional Equations in the Theory of Dynamic Pro-

gramming—YV: Positivity and Quasi-linearity, Proc. Natl. Acad. Sci.
U.S., vol. 41, pp. 743-746, 1955.

R. Kalaba, On Nonlinear Differential Equations, the Maximum
Operation, and Monotone Convergence, Ph.D. Thesis, New York
University, February, 1958.

For an extensive discussion of the positivity of operators, see Chap. 5 of
E. F. Beckenbach and R. Bellman, Inequalities, Springer, 1961.

The first proof is due to S. Karlin, and the second proof to O. Taussky.
The result was first presented in
R. Bellman, I. Glicksberg, and O. Gross, On Some Variational
Problems Occurring in the Theory of Dynamic Programming, Rend.
Circ. Palermo, Serie I1, pp. 1-35, 1954,

§16. The result and proof follow

G. Polya, Uber die Funktionalgleichung der Exponentialfunktion in
Matrizkalkul, Sitzber. Akad. Berlin, pp. 9699, 1928.

The nature of the solutions of Y (s + t) = Y(s) Y (¢) without the normal-
izing condition Y(0) = I is also of interest. See Shaffer.}

§17. We are not aware of the origin of this result which may be found
in the papers of many authors. For an extensive discussion of this and
related equations, see

J. A. Lappo-Danilevsky, Mémoires sur la théorie des systémes des

équations différentielles linéaires, Chelsea Publishing Co., New York,
1953.

1. V. Bhaffer, On Singular Solutions to Polya’s Functional Equation, IEEE, vol.
AC-13, pp. 135136, 1968.




188 Introduction to Matrix Analysis
The fact that the solution of the equation dX/dt = AX 4 XB has the

indicated form becomes quite natural when one examines the way in
which it arises in quantum mechanics; of.

D. ter Haar, Elements of Statistical Mechanics, Rinehart & Company,
Inc., New York, p. 149, 1954.

Y. Nambu, Progr. Theoret. Phys. (Kyoto), vol. 4, p. 331, 1949,

H. Primas and H. Gunthard, Eine Methode zur direkten Berech-
nung . . . , Helv. Phys. Acta, vol. 31, pp. 413434, 1958,

§18. For a discussion of the operator T defined by TX = AX — XB,
see
M. Rosenbloom, On the Operator Equation BX — XA = @, Duke
Math. J., vol. 23, pp. 263-269, 1956.

For a generalization to the operator S defined by SX = EA,XB,-, see

G. Lumer and M. Rosenbloom, Linear Operator Equations, Proc.
Am. Math. Soc., vol. 10, pp. 3241, 1959.

Exercises 2 and 3 are taken from
R. Bellman, On the Linear Differential Equation Whose Solutions
Are the Products of Solutions of Two Given Linear Differential
Equations, Bol. unione mat. Ital{ana, ser. I1I, anno XII, pp. 12-15,
1957.

The intimate connection between matrix theory and the theory of the
behavior of the solutions of linear differential equations and thus with
the study of linear oscillatory systems leads to the beautiful theory of
Gantmacher and Krein,

V. Gantmacher and M. Krein, Sur les matrices complétement non
négatives et oscillatoires, Comp. math., vol. 4, pp. 445476, 1937.

As pointed out at the end of the remarks on Chap. 16, these results have
important applications in probability theory.

For a treatment of the equation

d*z dz
AZF+B'Jt-+Cx=f

where A, B, and C are symmetric by variational techniques, under
suitable hypotheses concerning A, B, and C, see



Matrices and Differential Equations 189

R. J. Duffin, A Minimax Theory for Overdamped Networks, J. Rat.
Mech. and Analysis, vol. 4, pp. 221-233, 1955.

See also

A. M. Ostrowski, On Lancaster's Decomposition of a Matrix Differ-
ential Operator, Arch. Rat. Mech. Anal., vol. 8, pp. 238-241, 1961.

H. Langer, Uber Lancaster's Zerlegung von Matrizen-Scharen, 4rch.
Rat. Mech, Anal., vol. 29, pp. 75-80, 1968.

The study of linear circuits leads in another way to an interesting
domain of matrix theory, namely, the study of when a given matrix of
rational functions can be considered to be the open-circuit impedance
matrix of an n-port network. The concept of a positive real matrix enters
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Ezxplicit Solutions and Canonical Forms

1. Introduction. Although the results obtained in Chap. 10 are of

great elegance, it must be confessed that they do not satisfactorily resolve
the problem of obtaining explicit scalar solutions.

In this chapter, we shall pursue this question and show that it leads us
to the question of determining the characteristic roots and vectors of
matrices which are not necessarily symmetric. As in the case of sym-
metric matrices, this leads us to the study of various canonical forms for
matrices.

2. Euler’s Method. In Chap. 10, we demonstrated the fact that the
vector-matrix equation

%—7 = Az z(0) = ¢ 1)

possessed a unique solution which could be represented in the form
z = el 2)

Here, we traverse another road. Following the method of Euler, let us
begin by looking for special solutions of the form z = e*c!, where ) is a
scalar and c! a vector, ignoring for the moment the initial condition
z(0) = ¢. Substituting, we see that A and ¢! are bound by the relation

Act = Act 3)

Since c! is to be nontrivial, A must be a root of the characteristic
equation
[A—=X|=0 4)

and ¢! must be an associated characteristic vector.

From this quite different direction then, we are led to the basic prob-
lem treated in the first part of the book—the determination of charac-
teristic roots and vectors. Here, however, the analysis is both more
complicated and less complete due to the fact that the matrices we

encounter are not necessarily symmetric,
190
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EXERCISE

1. Find the characteristic roots and vectors of the matrix

8. Construction of a Solution. Let us now see if we can construct a
solution of the initial value problem along the preceding lines. As before,
denote the characteristic roots by Ay, Az, . . ., Ay. Since these will, in
general, be complex, there is now no attached ordering,.

To simplify our initial discussion, let us assume initially that the
characteristic roots are distinct. Let ¢*, c% . . . , ¢V, be a set of associ-
ated characteristic vectors, also, in general, complex.

To put together the required solution, we use the principle of super-
position. Since e*c* is a solution for k =1, 2, . .., N, the linear
combination

N
T = areMick (1)
2,

is a solution of dx/dt = Az for any set of scalars ay.
The question is now whether or not these scalars can be chosen so that
z(0) = ¢. This condition leads to the vector equation

N

c= ) met @)

LT)
This system has a unique solution provided that C is nonsingular, where
C = (clc? -+ cN) (3)

and, as before, this represents the matrix whose columns are the vec-
tors c’.

4. Nonsingularity of C. There are several ways of establishing the fact
that C is nonsingular. The first method proceeds as follows. Suppose
that |[C| = 0. Then there exist a nontrivial set of scalars by, b, . . . , bn
such that

0= ﬁbw" (0]

k=1
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It follows that

N
2= backerst 2
kzl @

is a solution of dz/dt = Az satisfying the initial condition z(0) = 0.
The uniqueness theorem asserts that actually z = 0 for all ¢.
We must then show that the relation

N
0= z buckerst 3)

k=1

cannot hold for all ¢ if the {b.} are a nontrivial set of scalars, none of the
¢* is trivial, and the ); are all distinct.

Without loss of generality, assume that by # 0. Divide through by
e in (3) and differentiate the resultant expression with respect to .
The new expression has the form

N
z bic*(Ar — Aee—2t = 4)

k=2

Since the A, have been assumed distinct, the quantities Ay — A,
k=23 ...,N, are all distinct. We may now appeal to an induc-
tive argument, or merely repeat the above procedure.

It is clear that in this way we eventually reach a relation of the form

chN(XN —_— xl)(xN — xz) « e e (XN — XN_l)e(XN—XN-l)G = 0 (5)

Since ¢¥ is nontrivial, we must have by = 0, a contradiction.
6. Second Method. Beginning with the relation in (4.1), multiply
both sides by A. The result is

N
0= bihic* (1)
2,

Repeating this operation (N — 1) times, the result is the system of linear
equations

N
o=Zb,,x,,rck r=012...,N-1 @)
k=]

Considering only the ith components of the ct, the quantities ¢;*, we obtain
the scalar equations
N

0=Zb,,)\,,'c,* r=012...,N—1 3)

k=1
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Since not all of the b are zero, and since all of the ¢# cannot be zero as
7 and k take the values 1, 2, . . . , N, we see that (3) possesses a non-
trivial solution for some ¢.

It follows then that the determinant of the coefficients

| =1,2...,Nr=012...,N—-1 4)

must be zero. This, however, is not true, as we shall see in a moment.
6. The Vandermonde Determinant. The determinant

1 1 e 1
)\1 X2 XN
A2 A2?
el = : M
xlN—l sz—l . e . XNN—I

is a very famous one, bearing the name, Vandermonde determinant.

We wish to show that [As| # 0if A\; # A;for¢ » j. The simplest way
to do this is to evaluate the determinant. Regard |A:"| as a polynomial of
degree N — 1in A;. Asa polynomial of degree N — 1, |As"| has the roots
A1 = A2, A1 = Ag, . . . , A1 = An, since the determinant is zero whenever
two columns are equal.

It follows that
Pl = A1 = A)QAr— Ag) 0 A — M)gAag, - . . AN) (2)
where ¢ is a function depending only upon Az, A;, . . . , Ay. Similarly,
viewed as a polynomial of degree N — 1 in X, |\ must possess the
factor (A2 — A1)(A2 — A3) * * - (A2 — Ax). Continuing in this way, we
see that
M= TT =My . .. 2N (3)

1<i<iEN

where ¢ is a polynomial in the A\;,, Comparing, however, the degrees in
the \; of the two sides, we see that ¢ must be a constant. Examining the
coefficients of AAq2 « + + Ay_1¥! on both sides, we see that ¢ = 1.
From this explicit representation, we see that |[\y| 0 if A, > ); for
T #J.
EXERCISE

1. Using similar reasoning, evaluate the Cauchy determinant

1 .
I)“_'_ml ,j=,2,...,N
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7. Explicit Solution of Linear Differential Equations—Diagonal
Matrices. Let us now consider another approach, quite different from
that given in the preceding sections.

Given the equation

dz

> Az z(0) = ¢ (1)
make a change of variable, z = Ty, where T is a constant nonsingular
matrix to be chosen in a moment. The equation for y is then

%=P%M y(0) = T-%¢c @)

What choice of T will simplify this equation to the point where the
solution can be immediately obtained? Suppose that we can find a
matrix T such that

- -

M1
2

T-AT = " 3)

0
| N |

a diagonal matrix.

If this can be done, the equation in (2) decomposes into N independent

equations of the form

W—wm WO = i=13...,N @
having the elementary solutions y; = e**c;. Once y has been determined,
z is readily determined.

8. Diagonalization of a Matrix. Let us now discuss the possibility of
the diagonalization of A, a problem of great interest and difficulty. As
we know from the first part of the book, if A is symmetric, real or com-
plex, a matrix T possessing the required property can be found, with
T-' = T'. As we shall see, there are a number of other important classes
of matrices which can be diagonalized, and, what is more important, there
are other types of canonical representations which are equally useful.

Consider, however, the general case. To begin with, we know that
the {x;} must be the same set as the {\;} since the characteristic roots of
T—*AT are the same as those of A.

It follows then, as in previous chapters, that the columns of T must be
characteristic vectors of A.
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Conversely, if the A; are distinct and T is the matrix formed using the
associated characteristic vectors as columns, it follows that

— —

A

Az
AT =T - ¢y,

v

We have thus established the following important result.
Theorem 1. If the characterisiic roots of A are distinct, there exisis a
matriz T such that
2 ]

Az
T-1AT = - @)

L Av |

As we shall see, the assumption that the roots are distinct is now quite
an important one. In the general case, no such simple representation
holds, as we shall see in Sec. 10.

EXERCISES

1. Show that the Cayley~-Hamilton theorem is valid for matrices with distinct
characteristic roots,

2. Show that the assumption concerning N distinct characteristic roots may be
replaced by one requiring N linearly independent characteristic vectors.

9. Connection between Approaches. As we have seen, one method of
solution of the linear equation

dz
i Az z(0) = ¢ 4]
leads to the expression = e4‘c, while on the other hand, a method based
upon charagteristic roots and vectors produces scalar exponentials.

To obtain the connection between these approaches (still under the
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assumption that A, # );), which must exist because of uniqueness of solu-

tion, in the equation

dX
S =AX  XO =1 @)

make the change of variable X = TY, where T is as in Sec. 8. Then Y
satisfies the equation

ay

i T-ATY Y) =1 3)
or
F)\l ]
0
Az
dY .
- . Y v =1 @
0
Av_
It follows that
—ehl "
0
eh'
Y = - T ®)
0
s e)m_j
whence
rehl T
0
e)l'
X=ett=T " T- (6)
0
exm_‘

Let us again note that this representation has been established under
the assumption that the characteristic roots of 4 are distinct.

EXERCISES

1. Eastablish the representation in (6) directly from the exponential series and the
representation for A.
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2. Use (8) to show that [e4]| = etr (4,
8. Use the method of continuity to show that this result is valid for any square
matrix 4.

10. Multiple Characteristic Roots. Let us now turn to a discussion of
the case where A has multiple roots. In order to appreciate some of the
difficulties that we may expect to encounter, let us begin by showing that
it may not always be possible to obtain a canonical representation such
as that given in (8.2).

Theorem 2. There exist mairices which cannot be reduced lo a diagonal
form by means of a nonsingular matriz, as in (8.2). Equivalently, there
exist malrices of dimension N which do not possess N linearly independent
characteristic vectors.

Proof. Consider the particular matrix

11
A= [0 1] &)
If there exists a T such that

- _ im0
r-ar =3 9] @

we know that the columns of T must be characteristic vectors of A. Let
us then determine the characteristic roots and vectors.
The characteristic equation is

1= 1
0 1-2A

=(1-X22=0 3)

Hence 1 is a double root. The characteristic vectors are determined by
the equations
r+ 2z =2
%, = s (4)

It follows that z, = 0, with z, arbitrary. Consequently, all character-
istic vectors are scalar multiples of

¢! = [(l)] (5)

This means that T must be a singular matrix.

Observe then the surprising fact that an arbitrary matrix need not
possess a full complement of characteristic vectors. This makes us more
appreciative of what a strong restriction on a matrix symmetry is.

The fact that diagonalization may not be always available greatly
complicates the study of general matrices—and, in return, adds equally
to their interest. As we shall see below, there are several methods we
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can use, based upon the use of alternate canonical forms and approxi-
mation theorems, to bypass some of these hurdles.

EXERCISES

1. Why can’t we use a continuity argument to deduce a diagonal representation for
general matrices from the result for matrices with distinct characteristic roots?
2. Derive the solution of the differential equation

% =24z 21(0) =0y

& 23 23(0) = ¢y

dt
11
4= [o 1]
cannot be reduced to diagonal form.

11, Jordan Canonical Form. Let us now discuss a canonical form for
an arbitrary square matrix which is useful in the treatment of a number
of problems, Since its proof is quite detailed and is readily available in
a number of texts, and furthermore since its use can always be avoided
by one means or another (at least in our encounters), we shall merely
state the result without a proof.

Theorem 3. Let us denote by L,(\) a k X k matriz of the form

A 1 0 --- 0]
Ox1-:---0

and thus show that the matrix

Le(\) = . (1)
Co A1
0 0 RIS
where L:(A\) = M. There exists a matrix T such that
—Lk,o\l) ]
0
L"a(x2)
T-1AT = - 2
0
L, L"r(x')_l
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withky 4+ k24 -+ - + k., = N. The \; are the characteristic roots of A,
not necessarily distinct.

This representation is called the Jordan canonical form.

For example, if A is of the third degree and has A, as a root of multi-
plicity three, it may be reduced to one of the three forms

M 0O M 0O
A] = 0 )\1 0 A2 = 0 xl 1
_0 0 7\1J 0 0 xl
F)\1 1 0] @)
A3 = 0 )\1 1
0 0 A
EXERCISES

1. Using the Jordan canonical form, determine the form of e# for general 4.

2. Use this result to obtain the necessary and sufficient condition that e4‘-— 0 as
t— o,

8. Prove that the A;, i = 1, 2, 3, are distinct in the sense that there exists no T for
which T-1A:T = A, fori # j. Give both an algebraic proof and one depending upon
the solutions of the associated linear differential equations.

4. Show that Ly(A) ~ A when raised to the kth power yields the null matrix.

12. Multiple Characteristic Roots. Using the Jordan canonical form,
we possess & systematic method for obtaining the explicit analytic struc-
ture of the solutions of linear differential equations with constant coef-
ficients. Thus, if the equation is reduced to

dditl =Mi+y: 90)=o@a

(1)
d
di; = Ay, yz(O) = C»

we have y; = eMey, and y, determined as the solution of

%y?’ =M1+ e 1i0) = o 2

Using the integrating factor ¢~*, this yields

o e = e ®

whence
= cie™ + coleM (4)
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This is one way of seeing why terms of the form te™, and generally
terms of the form t*¢™, enter into the solution in the case of multiple roots.
Let us now discuss an alternative approach.

If A has distinct characteristic roots, A1, Az, . . . , Av, We may write
N particular solutions of dy/dt = Ay in the form y = c(\)e, A = A,
Az . . . , Av, where c(A) is a polynomial funstion of A. This we can see
in the following way.

As we know, to obtain a solution of the equation, we set y = eMe,
where c is a scalar, and determine A and ¢ from the equation

Ac = Xe or (A—=—2ADe=0 )
Once A has been determined from the characteristic equation
A —M|=0
we must determine a solution of the linear system in (5). Let
by = |4 — M|, (6)

denote the cofactor of the term a;; — AJ;; in the determinantal expansion
of |A — A,
Then
¢ = by i=1,2,...,N (7)

is a solution of (5), with the property that the ¢; are polynomials in A.
It may happen that this is a trivial solution in the sense that all the
c; are zero. In that case, we may try the alternative sets of solutions

¢i = by 1:=l,2,...=,N (8)

fork=23,...,N.

Let us now show that one of these sets of solutions must be nontrivial
if the characteristic roots of A are all distinet. In particular, let us show
that for any particular characteristic root, A\ = ,, not all the expressions
bi; can be zero if A; is not a multiple root.

Consider the characteristic equation

a; — A (13 ce (374
as Q3 — N " sy

JO) =14 == =0 (9

an1 ay: rrcoann — A
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Then, using the rule for differentiating a determinant, we have
—1 0 0
@y Qg — A (1374
f'e) =
an ans ayy — A
an — N ap aN
0 -1 0
+ .
any an? anny — A
an — A aye aN
a9 Qg — A QN
+ -+
0 0 e =1
= —by —bp— **+ — bay (10)
If, for A = A\, we have b;(\;) =0,2=1,2, ..., N, then f/(A;) = 0,

which means that A, is & multiple root, a contradiction.
It follows that we have a solution of the desired form which we use in

the following fashion,
If X, and A\, are two distinet characteristic roots, then

_ c()\,)e“‘ — c()\z)e“‘
z = P (11)
is also a solution of the differential equation. The case where A, is a
multiple root can be considered to be a limiting case of the situation
where A, approaches \;. Taking the limit as A, — X;, we find, as a
candidate for a solution, the expression

(12)

Aeshy

z = [%()?—2 et te“c()\)]

We leave as an exercise for the reader the task of putting this on a
rigorous foundation. Let us merely point out that there are two ways
of establishing this result, direct verification, or as a consequence of
general theorems concerning the continuous dependence of solutions
upon the matrix 4.
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EXERCISE
1. How do weobtainsolutionsif A, is a double root, using a direct algebraic approach?

13. Semidiagonal or Triangular Form—Schur’s Theorem. Let us
now prove one of the most useful reduction theorems in matrix theory.
Theorem 4. Given any matriz A, there exists a unitary matriz T such
that
P\l b2 - blN—
Az

T*AT = - (1)

[ 0 Av |
where, as the notation indicates, the elements below the main diagonal are
zero.

Proof. Let us proceed by induction, beginning with the 2 X 2 case.
Let \; be a characteristic root of A and ¢! an associated characteristic

vector normalized by the condition (¢l¢') = 1. Let T be a matrix
whose first column is ¢! and whose second column is chosen so that
T is unitary., Then evaluating the expression T-'AT as the product
T-1(AT), we see that

A b
— 1 -
T-'AT [0 bn] 2

The quantity b, must equal X; since T—?AT has the same characteristic
roots as A.

Let us now show that we can use the reduction for Nth-order matrices
to demonstrate the result for (N 4+ 1)-dimensional matrices. As before,
let ¢! be a normalized characteristic vector associated with A, and let N

other vectors a’, a?, . . . , a¥, be chosen so that the matrix T;, whose
columns are ¢!, a!,a?, . . . , aV,isunitary. Then,asfor N = 2, we have
r)\l by? - .- b1N+1l-
0
-1 = :
T\"AT, . By (3)
Lo ]

where By is an N X N matrix.
Since the characteristic equation of the right-hand side is

(M= MN|By =M =0 (4)
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it follows that the characteristic roots of By are A, Az, . . . , An+41, the
remaining N characteristic roots of A. The inductive hypothesis asserts
that there exists a unitary matrix Ty such that

P\z 13 an
A3 (Y
Tw~'ByTy = . (5)
L 0 AN
Let T'xy. be the unitary (N + 1) X (¥ + 1) matrix formed as follows:
1. 0 -+ Q]
0
TN+1 = . TN (6)
.0 J
Consider the expression
(T\Tw4)'A(T1Trga) = T (T AT ) Ty
-)\, bn bl,N+l—‘
Az
- L )
K Avgr

The matrix T, Ty, is thus the required unitary matrix which reduces 4
to semidiagonal form.

EXERCISES
1. Show that if A has k simple roots, there exists a matrix 7 such that
™ 0 0 bign bun]
0 X 0 bakss bz
T-1AT = |0 M bees be.n
xk+l
|0 0 AN

2. Using the semidiagonal form derived above, obtain the general solution of

dz/dl = Az, z(0) = c.

8. Determine a necessary and sufficient condition that no terms of the form teM

occur.
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4. Determine the general solution of z’' 4 Az = 0, where A4 is positive definite.

8. Use the triangular form to obtain necessary and sufficient conditions that
edt—Dagt— o, R

8. Consider the difference equation z(n 4 1) = Az(n), n =0, 1, ..., where
z(0) = ¢. Show that the solution is given by z(n) = Ane,

7. Find particular solutions by setting z(n) = A%, and determine the set of possible
Aand c.

8. Show that the general solution has the form

N

z(n) = z pi(n)N®
T=]
where the p:(n) are vectors whose components are polynomials in n of degree at most
N -1

9. What is the necessary and sufficient condition that every solution of z(n + 1) =
Az(n) approach zero ag n — «?

10. Consider the difference equation z((n + 1)A) = z(nA) + 4 Az(na), n = 0,
1, .. .,z(0) = ¢, where A is a positive scalar. As A — 0, show that z(nA) — =z(¢),
the solution of the differential equation dz/dt = Az, z(0) = ¢, provided that nA — ¢.
Give two proofs, one using the explicit form of the solution, and the other without
this aid.

14. Normal Matrices. Real matrices which commute with their
transposes, or, more generally, complex matrices which commute with
their conjugate transposes, are called normal. Explicitly, we must have

AA* = A*A (1)

The utility of this concept lies in the following theorem.

Theorem 8. If A s normal, it can be reduced to diagonal form by a
unitary matriz.

Proof. As we know, we can find a unitary transformation, T, which
reduces A to semidiagonal form,

—

Mo b o b |
xz [ sz
A=T - T-1 = TST (2)
[0 Av |
Then, since T is unitary,
Ee -
_ 0
biz A2
A*=T| - . T-1 = TS*T- (3)
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Hence,
AA* = TSS*T!
= A*A = TS*ST 4)
Thus, we must have
S8* = §*§ (5)

Equating corresponding elements in the products, we see that
by =0 1<7i<j<N (6)
which means that the semidiagonal form in (2) is actually diagonal.

EXERCISES

1. If A is a normal matrix with all characteristic roots real, it is Hermitian, and it
can be reduced to diagonal form by an orthogonal transformation.

2. Show that (Az,Az) = (A'z,A*z) if A is normal.

8. Show that A — AJ is normal if 4 is normal.

4. Using the foregoing exercises, or otherwise, show that if 4 is normal, then z is a
characteristic vector of A if and only if it is a characteristic vector of A*.

6. If A is normal, characteristic vectors z, y belonging to distinet characteristic
values are orthogonal in the sense that (z,7) = 0.

8. Establish Theorem 5 using this fact.

7. Prove that the converse of Theorem 5 is also true,

8. If B is normal and there exists an angle 8 such that Ae'® 4+ A*%e~® > 0 where
A? = B, then 4 is normal (Putnam, Proc. Am. Math. Soc., vol. 8, pp. 768-769, 1957).

9. If A and B commute, then A* and B commute if A is normal.

16. An Approximation Theorem. Let us now state a very useful
approximation theorem which can often be used to treat questions involv-
ing general square matrices.

Theorem 6. We can find a matriz T such that

—)1 bn e ble
Ag

T-AT = . 1)

0 Av ]

with Z |bs] < e, where € s any preassigned positive constant.

L)
Proof. Let T, be a matrix which reduces A to semidiagonal form.
Then the change of variable y = Tz converts dy/dt = Ay into
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%zt—l =M21+ buza+ - - + biven

d

-5;=7\azz+ © v+ banven

dz

—(—ltﬁ = An2Zn (2)

It is now easy to see how to choose T so as to obtain the stated result.
In (2) make the change of variable

2 = rifz! 3
Then the new variables z;! satisfy the system of equations
dz;' 1 N—
@ Azl + ribiaze? + ¢ 0 0 4 1 ¥ lbyvent
1
% = Ae2zo! + -+ 1V yneat (4)
dzn!

With a suitable choice of r,, the sum of the absolute values of the
off-diagonal terms can be made as small as possible. The last change
of variable is equivalent to a transformation z = Ez!, where E is non-
singular. Hence we can take T to be T.E.

At first sight, the above result may seem to contradict the result that
a general matrix possessing multiple characteristic roots may not be
reducible to diagonal form. The point is that T depends upon e. If we
attempt to let ¢ — 0, we find that either T approaches a singular matrix,
or else possesses no limit.

16. Another Approximation Theorem. A further result which can
similarly be used to reduce the proof of results involving general matrices
to a proof involving diagonal matrices is given in Theorem 7.

Theorem 7. Given any matriz A, we can find a matriz B with distinct
characteristic rools such that |A — B|| <, where ¢ s any preassigned
posttive quantity.

Proof. Consider the matrix A + E, where E = (e;) with the e;; inde-
pendent complex variables. If A + E has a multiple characteristic root,
then f(A) = |A + E — M| and f’(\) have a root in common., If f(A)
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and f'(A) have a root in common, the resultant of the two polynomials,
R(E), a polynomial in the ¢; must vanish. We wish to show that we can

find a set of values of the ¢;; for which 2 leij| is arbitrarily small, and for

47
which R(E) ¢ 0. The negation of this is the statement that R(E)
vanishes identically in the neighborhood of the origin in e; space. If
this is true, the polynomial RB(E) vanishes identically, which means that
JF(\) always has a multiple root.
Consider, however, the following choice of the ¢;,

& = —@; 1] !
e.-.-=i-—a.-.- 1:=1,2,...,N ()

The matrix A + E clearly does not have multiple roots. Hence, R(E)
does not vanish identically, and we can find a matrix B = A 4 E with
the desired properties.

EXERCISE

1. Construct a proof of this result which depends only upon the fact that A can be
reduced to triangular form. (The point of this is that the foregoing proof, although
short and rigorous, makes use of the concept and properties of the resultant of two
polynomials which are not as easy to establish rigorously as might be thought.)

17. The Cayley-Hamilton Theorem. Using the approximation theo-
rem established in Sec. 16, we can finally establish in full generality the
famous Cayley-Hamilton theorem,

Theorem 8. Every matriz satvsfies 1ts characteristsc equation.

Proof. Let A + E, with ||E|| < ¢, be a matrix with distinet charac-
teristic roots. Then, as we know, A 4 E satisfies its characteristic equa-
tion. The characteristic polynomial of A + Eisf(\E) = |A + E — A,
a polynomial in A whose coefficients are polynomials in the elements of E,
and thus continuous in the elements of £. Hence,

lim f(A + E,E) = f(4) (1)
E—0

Since f(A + E,E) = 0, we see that f(A) = 0.

EXERCISES

1. Establish the Cayley-Hamilton theorem using the Jordan canonical form.

2. Establish the Cayley-Hamilton theorem under the assumption that A possesses
a full set of characteristic vectors which are linearly independent.

8. Use the Cayley-Hamilton theorem to derive a representation for A~! as a poly-
nomial in 4, provided that A is nonsingular.

18. Alternate Proof of Cayley-Hamilton Theorem. Once we know
what we wish to prove, it is much easier to devise a variety of short and
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elegant proofs. Let us present one of purely algebraic nature, making
no appeal to continuity.

Consider the matrix inverse to A — A, (A — M)}, for X not a charac-
teristic value. We see that

(4 = M)~ = B(N/I(N) 1)

where the elements of B(\) are polynomials in A of degree N — 1 and
JF(2) is the characteristic polynomial of A — A, the determinant |4 — A]|.
Hence,
(A = ADBM) = fMI (2
Write
B(\) = MW-By_, + A"?By_2+ * + * + By

f()\) = (-1)"7\" F+ e AV - - s Fen 3)

where the B; are matrices independent of A, Equating coefficients, we
obtain a sequence of relations

—BN_1 = (—I)NI
ABy_y — Bn2 =l (4)
ABN_z - BN_a = CzI

and so on. We see that each B; is a polynomial in A with scalar coef-
ficients, and hence that B;A = AB; for each 7. It follows then that the
identity in (2) is valid not only for all scalar quantities A, but also for
all matrices which commute with A,

In particular, it is valid for A = A. Substituting in (2), we see that
J(A) = 0, the desired result.

19, Linear Equations with Periodic Coefficients. Let us now examine
the problem of solving a linear differential equation with periodic
coeflicients,

dz
7= P(t)z z(0) =¢ (1)

where P(f) is a continuous function of ¢ satisfying the condition
P+ 1) = P(Y) 2
for all £. Surprisingly, the problem is one of extreme difficulty. Even
the relatively simple scalar equation
d*u

FTE + (a+beost)u =0 3

the Mathieu equation, poses major difficulties, and has essentially a

theory of its own.
In obtaining a canonical representation of the solution of (1), we are
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led to discuss a problem of independent interest, namely the representa-
tion of a nonsingular matrix as an exponential.

As usual, it is convenient to discuss the matrix equation first.

We shall prove Theorem 9.

Theorem 9. The solution of

dX
S =POX X©O=1I 4)

where P(t) is periodic of pertod 1, may be written in the form
X(@®) = Q) (5)

where Q(t) is periodic of period 1.

Proof. 1t is clear from the periodicity of P(t), that X (¢ + 1) is a solu-
tion of the differential equation in (4) whenever X({) is. Since X(1) is
not singular, we see that X (¢ + 1)X(1)! is a solution of (4) with the
initial value I. It follows from the uniqueness theorem that

X+ DX~ = X0 (6)
Suppose that it were possible to write
X(1) =€ @
Consider, then, the matrix @(¢) = X({)e=**. We have

QU+ 1) = X(t + 1e~t®@n = X (1 4 1)e=Ce=Ct
= X(t 4 1)X1)~'e=C = X(t)e-c* = Q(t) )

'This establishes (5).

It remains to prove that (7) is valid.

20. A Nonsingular Matrix Is an Exponential. Let us now establish
Theorem 10.

Theorem 10. A nonsingular malriz is an exponential.

Let A be nonsingular with distinet characteristic roots, so that A
may be written

—

A\

Ay

Av |
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Then A = ¢ where

_log A

log A,
C=T o T @)

log XN_

which proves the result for this case.
If A has multiple characteristic roots, we can use the Jordan canonical
form with equal effect. Let

—L"x(xl)

L"z(x2)
A=T - T (3)

Li,(A)

1t is sufficient to show that each of the matrices Ly,(;) has a logarithm.
For if B, is a logarithm of Lg,()), then

B,

B,
B=T - T (4)

B,

is a logarithm of 4.
We have noted above in Exercise 4 of Sec. 11 that

[Le(\) = M} =0 (5)
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It follows then that the formal logarithm

B = log Li(\) = log M + Li\) — M)

= Tlogh+ z (_n;)»nﬂ (L) = M

newl

(_1)n+l
=TIlogh+ e [Le(N) = M)
nw]

exists and is actually a logarithm in the sense that ¢? = 4.

EXERCISES

1. A nonsingular matrix has a kth root for k = 2, 3,
2. The solution of dX/dt = Q()X, X(0) = I, can be put in the form efeft -

ePn - - . ' whereP =];‘Q(a) d8, &ndPn =[0 Qndal with

~1
Qn - e-—Pu-lQn_lePn-l +[0 C‘P"‘lQn_le_'P"-l ds

The infinite product converges if ¢ is sufficiently small (F. Fer, Bull. classe sci., Acad.
roy. Belg., vol. 44, no. 5, pp. 818-829, 1958).

21. An Alternate Proof. Since we have not proved the Jordan
representation, let us present an independent proof of an inductive
nature. Assume that the result holds for N X N matrices and that we
have already converted the nonsingular (N + 1)-dimensional matrix
under consideration to triangular form,

Anyp = [g" w ] 1)

Avq

where Ay is an N-dimensional matrix in triangular form and ay denotes
an N-dimensional column vector.
Let By be a logarithm of Ay, which is nonsingular if Ay, is, and write

By = [f” f] %)

where I = log Ax4; and z is an unknown N-dimensional vector.
It remains to show that z may be determined so that eB*+ = An,,.
It is easy to see inductively that

k k-1 k=2 4 ... k1]
By, = [glv (By*"' + IBx ;— +1 )I] @)

fork=1,2, ..
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Hence

eBrst = (By*=' + By*4 + + + » + P Da/k) (4)

0 xI\!-q.l

where the first two terms are taken to be 0 and 1.
If 1 is not a characteristic root of By, we have

CO) = ) (B + Bt + - - - + D) kI
k=0

z (By* — BI)(By — U)=1/k! = (eB* — oI)(By — L)~ (5)
k=0

Hence
N

|eBr — | e — ¢t
€Ol = 3= H =1 (6)

where 7, rs, . . . , ry are the characteristic roots of By.

Since |C(l)| is a continuous function of I for all I, as we see from the
series, it follows that (6) derived under the assumption that I £ r; holds
for all I,

If 1 # ri or any of the other values of the logarithms of the A, it is
clear that |[C(1)| # 0. Ifl = ri, then the factor (e* — e!)/(r, — I) reduces
to e 7 0. Restricting ourselves to principal values of the logarithms,
we see that C(l) is never singular.

Hence, we see that x may be determined so that C(l)z = ax.

This completes the demonstration.

22. Some Interesting Transformations. The reduction of differential
equations with variable matrix,

%’; — AWz (0) =¢ 1)
to canonical form is a problem of some difficulty. Since it lies more
within the province of the theory of differential equations than of matrix
theory, we shall not pursue it further here.

Some interesting transformations, however, arise at the very beginning
of the investigation. Set z = Ty, where T is a function of {. Then y
satisfies the equation

dy = T-VAT — dT/dt)y )
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Write
f(A,T) = T- (AT — dT/ds) 3)

Then we see from the derivation that f(A,T) satisfies the functional

equation
f(A,8T) = f(T-(AT — dT/dy), S) 4)

EXERCISE
1. Use the scalar equation

n dn—l
T raBE - fau=0

and the transformations u = sv, { = ¢(s), to derive similar classes of functional
equations,

23. Biorthogonality. In the first part of the book, dealing with sym-
metric matrices, we observed that every N-dimensional vector could be
written as a linear combination of N orthonormal characteristic vectors
associated with the N characteristic roots of an N X N matrix 4.

Thus, if

N
z = z a;zt 1)

the coefficients are determined very simply by means of the formula
a; = (z,2%) (2

If A is not symmetric, we face two difficulties in obtaining an analogue
of this result. In the first place, A may not have a full quota of charac-
teristic vectors, and in the second place, these need not be mutually
orthogonal.

To overcome the first difficulty, we need merely make an assumption
that we consider only matrices that do possess N linearly independent
characteristic vectors. To overcome the second difficulty, we shall use
the adjoint matrix and the concept of biorthogonality, rather than

orthogonality.

Let y!, ¥, y% . . ., ¥y~ be a set of linear independent characteristic
vectors associated with the characteristic roots Ay, Ay, . . ., Ay of 4.
Then

T =@ ....9" 3)

is nonsingular and possesses the property of transforming 4 to diagonal
form,
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P ‘
0
A
T-AT = - (4)
0
_ Av |
From this, it follows that _
B
0
A
T*A%(T*) = . ®)
0
L A |

Hence, A* also possesses the property of possessing N linearly inde-
pendent characteristic vectors, furnished by the columns of (7*)~! and
associated with the characteristic roots X,, X, . . . , Av. Call these
characteristic vectors 2!, 2%, . . . , 2V, respectively. To determine the
coefficients in the representation

N
z = 2 ayt (6)
V=1
we proceed as follows, From
Ay‘ = )\.-y‘ (7)
A% = Xz
we obtain the further relations
(Ayig) = (g2 8)
and thus 3 _
(y‘,:{ Z’) = (y"szi) = (x‘y‘;z’)
Hence,

M = 2)(@z) =0 9

Hence, if A; # );, we have
¥'\#) =0 (10)

It is clear that (%,2%) # 0, since 2%, being nontrivial, cannot be orthogonal
to all of the 3*.
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Thus, in the special case where the A; are all distinct, we can write,
for the coefficients in (6),

_ (=) 1
Y (n

Two sets of vectors {y'}, {2*], satisfying the condition
W) =0 i#j (12)

are said to be biorthogonal. It is clear that we can normalize the vectors
80 as to obtain the additional condition

(¥ =1 (13)

This technique for expanding z as a linear combination of the y bears
out a comment made earlier that often the properties of a matrix are
most easily understood in terms of the properties of its transpose.

EXERCISES

1. How does one treat the case of multiple characteristic roots?
2. What simplifications ensue if 4 is normal?

24. The Laplace Transform. Once we know that the solution of a
linear differential equation with constant coefficients has the form

N
z= ) ep) )

k=1

where p.(f) is a vector whose components are polynomials of degree at
most N — 1, we can use the Laplace transform to determine the solution
without paying any attention to a number of details of rigor which usu-
ally necessitate an involved preliminary discussion.

The value of the Laplace transform lies in the fact that it can be used
to transform a transcendental function into an algebraic function. Spe-
cifically, it transforms the simplest exponential function into the simplest
rational function,

The integral

o) = [, ey at @)

is called the Laplace transform of f(t), provided that it exists. Since we
shall be interested only in functions f(f) having the form given in (1), it is
clear that g(s) will always exist if Re (s) is sufficiently large.
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The basic formula is
ettt di = 1
0 8—a

3)

for Re (s) > Re (a). It follows that if we know that f(f) has the form

J(t) = c,e* (4)
then the equality

[, enf@ dt = ea/(s - a) (5)

means that ¢; = ¢; and A\, = a.
Similarly, from the additivity of the integral, it follows that if f(¢) is
of the form given in (1), and if g(s) has the form

g(8) = ci/(s — a1) + ¢2/(s — @) (6)

then we must have
J(t) = c1e™t + coe (7

26. An Example. Consider the problem of solving the linear differen-
tial equation

W' -3 +2u=0 1

u(0) =1 u'(0) =0 0

Since the characteristic equation is
M—3\4+2=0 @)

with roots A = 1 and A = 2, we see that the solution of (1) will have
the form
U = c1e% + cqe 3)

where ¢, and ¢, will be determined by the initial conditions in (1). Thus
we obtain the linear system

C) + Cqy = 1
201 + Cy = 0 (4)
yielding
¢ = —1 Cy =2 5)
so that the solution is
u = 2¢ — e2 (6)

In place of this procedure, let us use the Laplace transform. From (1),
for Re (s) > 2, we obtain the relation

[o" wedt — 3 [0" wedt + 2 L" ue— dt = 0 )
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In order to evaluate the first two terms, we integrate by parts, obtaining
/;)-: we=t di = ue"“]: +3 /;)w ue—" di
-1+ sfow ue*t dt
fou u''e* dt = u'e““]; + s fou u'e " di
=0+4+s fou e~ di
= s+ s [T et ®)

upon referring to the relation for /;)., e dt.
Thus, (7) yields the equation
(2= 3s+2) [Tuerrdi=s5 -3 9)

et — §s—3
or ﬁue dt P P (10)

The rational function on the right side of (10) has a partial fraction
decomposition

s —3 _ ay a2
82—3S+2—S—1+S—2 (11)
with
o {(8=D(s—3) s—3 _
a,—}grll s2 —3s+ 2 _s—-2,,=1-2
(12)
a, = lim (_s.:?l_(j:,fi):s:j = —1
2T ey 82— 3s+ 2 §— 1{,=2
Hence,
= 2 1
—st —_ —_—
[)ue dt sT1 5= (13)

whence u(t) has the form stated in (6).

26. Discussion. If, in place of the second-order system appearing in
(5.1), we had studied a tenth-order system, the straightforward approach,
based upon undetermined coefficients, would have required the solution
of ten simultaneous linear equations in ten unknowns—a formidable
problem. The use of the Laplace transform technique avoids this.
Actually, this is only a small part of the reason why the Laplace trans-
form plays a fundamental role in analysis.

EXERCISES

/u: {re=etput dt - nl
0

(s —ayh

1. Show that
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using
(a) Integration by parts
(b) Differentiation with respect to s or a
2. Using this formula, show how to solve linear differential equations whose char-
acteristic equations have multiple roots. In particular, solve

W =24 +u=0 u(0) =1 W) =0

8. Use the Laplace transform solution of an associated differential equation to
obtain a representation for the solution of the system of linear equations b, =
n
etz { = 1,2, ..., N, where the z; are the unknowns.
tm]
4. How does one treat the corresponding problem when the z; and N are unknowns?

27. Matrix Case. Consider the equation

‘% — Az 2(0) = ¢ (1)
where A is a constant matrix. Taking transforms, we have
/‘ d—ze"‘ dt=A /‘ ze ™ di 2
o di 0
whence, integrating by parts,
(A — sI) fon zetdl = —¢ 3)

Thus, the Laplace transform of the solution is given by
L” zet dt = (s — A)'e (4)
In order to solve this, we can use the same type of partial fraction
decomposition referred to above, namely
N
(I = A)7 = Y Auls — M) (5)
k=1

We shall assume, for the sake of simplicity, that the characteristic roots
of A are distinct. Then

A, = lim (s — \)(s] — A)™ (6)
—+ Nk
EXERCISES

1. Find an explicit representation for 4,, using the Sylvester interpolation formula
of Exercise 34, Miscellaneous Exercises, Chap. 6.
2. What happens if A has multiple characteristic roots?
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8. Use the Laplace transform of a linear differential equation of the form u®™ +

UM+ - .. fayvu =0, u0) =ay w0 =ay ..., u¥V0) =ay.y, to
obtain a solution of the linear system

N

Z)\i'ai=ar r=01...,N—-1

i=1

where A; # A; for ¢ # j.

MISCELLANEOUS EXERCISES

1. If A = I 4+ B, under what conditions does
A'=]-B+B2—~ ...°

2. By considering the equation z’’ + Az = 0, where A is positive definite, show
that the characteristic roots of a positive definite matrix are positive.

8. Let A = HU be a representation of the complex matrix A where H is a positive
definite Hermitian matrix and U is unitary. Show that A is normal if and only if
H and U commute.

4. Prove that if A, B and AB are normal, then B4 is normal (N. A. Wiegmann).

6. A necessary and sufficient condition that the product of two normal matrices be
normal is that each commute with the H matrices of the otiier. By the H matrix
of 4, we mean the non-negative definite square root of AA* (N. A. Wiegmann).

8. A" = I for some n if and only if the characteristic roots of A are roots of unity.

7. If B* = 0 for some k, then |A + B| = |4l

8. If |4 + M| = O hasreciprocal roots, 4 iseither orthogonal, or A? = I (Burgatts).

8. Let P, @, R, X be matrices of the second order. Then every characteristic root
of a solution X of PX? + QX + R = 0is a root of |PA\2 + QX + R| = 0 (Sylvester).

10. Prove that the result holds for N-dimensional matrices and the equation

AXm 4 AX™ V4 o 4 A X 4 An =0

11. The scalar equation '’ + p(H)u’ + g(t)n = 0is converted into the Riceati equa-
tion v’ + v2 + p(t)v + ¢(¢) = O by means of the change of variable u = exp (fv dt)
or v = u'/u. Show that there is a similar connection between the matrix Riccatian
equation X' = A() + B{)X + XC()X and a second-order linear differential
equation.

12. Every matrix 4 with |A| = | can be written in the form A = BCB-'C-!
(Shoda).

18. If |X| = | Y] # 0, then two matrices C' and D can be found such that

X = C'D'YCD
(0. Taussky).

14- Let
- 0 i O ;
—in 0 i
—iAs
Hy =
0 TAN_;
L —iAnvoy O _j
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Show that

N
Jim_ Jlog [Hy + M| = lim L} log I\ + W]
im]
where 2,(\) represents the continued fraction
2a(A) = X¥/AF Xat¥/A 4 - - -
Hint: Start with the recurrence relation
Hy(WAAg oo Ave) = AHy (VA - oo dva) + M2HN (VAN - o ANe)

for N > 3, where Hy(A) = |Hy + Al
16. If A and B are both normal, then if ;A + ¢.B has the characteristic values
¢iA¢ + cau; for all ¢) and ¢;, we must have AB = BA (N. A. Wiegmann-H. Wielandt).

16. Write
eheB = AtBHI(AB)

Show that f(A,B) = [4,B/2 + ¢(A,B) + h(A,B), [4,B] = AB — BA, where g(4,B)
is a homogeneous polynomial of degree 3 in A and B satisfying the relation g(4,B8) =
g(B,A), and h(A,B) is & sum of homogeneous polynomials beginning with one of
degree 4.

17. Show that

f(B,C) +f(4, B + C +£(B,C)) = f(4,B) + f(A + B + f(4,B), C)
18. Using this result, show that
[4,[8,Cl] + [B)C,4]l + [C,[4,Bl] =0

where [4,B) is the Jacobi bracket symbol.
19. A necessary and sufficient condition that lim B» = 0, for B real or complex,

n— o
is that there exist a positive definite Hermitian matrix H such that H — B*HB is
positive definite (P. Stein).

20. A is diagonalizable if and only if HAH™! is normal for some positive definite
Hermitian matrix H (Mitchell).

21. Let r be a root of the quadratic equation r2 + a;r + a2: = 0. Write y = zo +
Zyr, yr = zor + z[—air — az] = —a:x, + (zo — 71a1)r. Introduce the matrix

X = [ i - ]
~—&2 ZTo — T:.G
and write X ~ 2, + z,7.

If X ~zo + zir and Y ~ yo + yir, to what does XY correspond?
22. Determine the characteristic roots of X.
28. Generalize the foregoing results to the case where r is a root of the Nth-order
polynomial equation
™4ar¥ 14+ fav =0

24. There exists an orthogonal matrix B({) such that y = B(l)2 transforms dy/dt =
A(t)y into dz/dl = A,(t)z where A,(t) is semidiagonal (Diliberto). _

26. B(t) can be chosen to be bounded and nonsingular and A,{¢) diagonal (Diliberlo).

26. Given one characteristic vector of an N X N matrix 4, can this information
be used to reduce the problem of determining all characteristic vectors of A to that
of determining all characteristic vectors of an (N — 1) X (N ~ 1) matrix?

27. The matrix A is called circular if A* = A-). Show that '® is circular if R is
real,
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28. The matrix A has the form ¢% where 8 is real skew-symmetric if and only if
A is a real orthogonal matrix with |A| = 1 (Taber).
29. Every nonsingular matrix can be expressed as the product of
(@) A symmetric matrix and an orthogonal matrix, if real
(b) A Hermitian matrix and a unitary matrix, if complex
If the first factor is chosen to be positive definite, the factors are uniquely deter-
mined. These and many other results are derived by DeBruijn and Szekeres in the
paper cited below,! using the logarithm of a matrix.
80. Derive the result of Exercise 28 from the canonical representation given above
for orthogonal matrices.
81. Let u,, uz . . . , un be a set of linearly independent solutions of the Nth-order
linear differential equation

u™ + g (QuND 4+ - - F pyu =0
The determinant

Uy Uz un
! ! !
Uy U, Uy

W{usus, . . . ,un) =
W=D (V=D L (VD

is called the Wronskian of the function u,, us, . . . , u~. Show that

!
- (s)d
W) = W, . . . ) = Wito)e [ipoas

For an extension of the concept of the Wronskian, see A. Ostrowski.?
The corresponding determinant associated with the solution of a linear difference
equation of the form

u(z + N) + po(u{z + N - 1) + « -« « + py(@)ulz) =0

z=0,12 ...,
L ui(z) us(z) e un(z)
w(z + 1) us(z + 1) s un(z + 1)
C(ul, Ve ,lt)v) = -
wmE +N -1 we+N-1) - uvz+ N -1)

is called a Casorati determinant.?
Many further results concerning Wronskians can be found in G. Polya and

G. Szego.!

t N. G. DeBruijn and G. Szekeres, Nieuw. Arch. Wisk., (3), vol. 111, pp. 20-32,
1955.

1 A. Ostrowski, Uber ein Analogon der Wronskischen Determinante bei Funktionen
mehrerer Verinderlicher, Math. Z., vol. 4, pp. 223-230, 1919.

2 For some of its properties, see P. Montel, Legons sur les recurrences el leurs appli-
cations, Gauthier-Villars, Paris, 1957.

See also D. M. Krabill, On Extension of Wronskian Matrices, Bull. Am. Math. Sec.,
vol. 49, pp. 593-601, 1943.

1 G. Polya and G. Szego, Aufgaben und Lehrsatze aus der Analysis, Zweiter Band,
p. 113, Dover Publications, New York, 1945.
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82. A unitary matrix U can be expressed in the form U = V-1W~iVW with unitary
V, W, if and only if det U = 1,

83. The unitary matrices U, V can be expressed in the form U = W,W:W,,
V = WWiW, with unitary Wy, W, W, if and only if det U = det V.

84. If AA* — A™*A has all non-negative elements, then actually 4 is normal.

86. If H; and H, are Hermitian and one, at least, is positive definite, then H,H,
can be transformed into diagonal form (0. Taussky).

86. If AA + uB can be diagonalized for all scalars A and u, then AB = BA
(T. 8. Motzkin and O. Taussky).

87. Show that a matrix A, which is similar to a real diagonal matrix D in the
sense that 4 = T'DT-1, is the product of two Hermitian matrices (0. Taussky).

88. The characteristic roots of

F -
o Qo
P

c a

are given by M =a — 2vVbccos k, k =1, 2,. .., N, where § = x/(N 4 1).
Show that Ay(A) = |A — \I| satisfies the difference equation

An(A) = (@ — N)AN-1(A) — bcAn_a(N)
89. The characteristic roots of

[z —b 2 b T
2a z 2 b
b 2¢ z 2a b

b 28 2z 2a b
b 2 =2 2a
b 2a z-—1b]

are given by

A =z —2b — b-{a? - (@ — 2b cos k6)?} k=12 ...,N
(Rutherford, Todd)
Obtain the result by relating B to 42
(A detailed discussion of the behavior of the characteristic roots and vectors of the
matrix A (a)’A(«) may be found in A. Ostrowski.!)
The matrix A («) is given by the expression

«a O «-- 0

I a« -+ 0

11 a 0
Ala) =| -

1 1 - &

! A. Ostrowski, On the Spectruin of a One-parametric Family of Matrices, J. reine
angew. Math., Bd. 193, pp. 143-160, 1954,
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(Another detailed discussion of the properties of a particularly interesting matrix
may be found in T. Kato.!)
40. Denote by s(A4) the function max |\ — A;|, and by [[A|| the quantity

(3 )

s4) < (21417 - Z1or 41)”

Show that

and thus that s(A) < 28} Al (L. Mirsky).

41. Let {A,B] = AB — BA, as above. If [A4,{A,4*%] =0, then A is normal
(Putnam).

See T. Kato and O. Taussky.?

42, If A, Az . . ., Ay are the characteristic values of 4, ¢; and ¢; are two nonzero
complex numbers, and the characteristic values of ¢;A + c:A* are i\ + cidj(,
where j(1) is a permutation of the integers 1, . . . , N, then A4 is normal.

48. Let A and B commute. Then the characteristic values of f(4,B) are f(\i,u:),
where A; and u; are the characteristic values of A and B arranged in a fixed order,
independent of f (G. Frobentus).

(Pairs of matrices A-and B for which ¢;4 + ¢,B has the characteristic roots ¢;\; 4
Cap; are said to possess property L.?)

44. Prove that A is normal if and only if

N
tr (A*4) = Z [nel2 (1. Schur)

1=1

46. Use this result to establish Wiegmann’s result that BA is normal if 4, B and
A B are normal (L. Mirsky).
46. If A is a Hermitian matrix, show that with s(A) defined as in Exercise 40,

§(A) = 2 sup |(4,Av)]

where the upper bound is taken with respect to all pairs of orthogonal vectors u and »
(L. Mirsky).
47. If A is Hermitian, then s(A) > 2 max |a,,| (Parker, Mirsky).
T#s

48. If A is normal, then
*
(4) < sup s (i’i—‘%’—"-) (L. Mirsky)*
2l =

1 T, Kato, On the Hilbert Matrix, Proc. Am. Math. Soc., vol. 8, pp. 73-81, 1957.

¢ T. Kato and O. Taussky, Commutators of 4 and A4*, J. Washington Acad. Sci.,
vol. 46, pp. 38-40, 1956,

2 For a discussion and further references, see T. 8. Motzkin and O. Taussky, Pairs
of Matrices with Property L, Trans. Am. Math. Soc., vol. 73, pp. 108-114, 1952,

4 For the preceding results, and further ones, see L. Mirsky, Inequalities for Normal
and Hermitian Matrices, Duke Math. J., vol. 24, pp. 592-600, 1957.
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49, If A and B are normal matrices with characteristic values A; and p;, respec-
tively, then there exists a suitable rearrangement of the characteristic values so that

z A — wilt < ||4 — BIl%, where ||A]|2 = z |ai;|2, as above (Hoffman-Wielandt).
[ %)

60. As we know, every matrix A can be written in the form B + {C, where B and C
are Hermitian. Let the characteristic roots of B be contained between b, and bs and
those of C be between ¢, and ¢:. Then if we consider the rectangle in the complex
plane with the vertices by + e, by + ics, b2 + iy, b2 + 1cs, all the characteristic roots
of A are contained within this rectangle (Bendizson-Hirsch).

61. By the domain D of a matrix A, let us mean the set of complex values assumed
by the quadratic form (z,42) for values of z satisfying the constraint (z,2) = 1.
Show that the characteristic values of A belong to the domain of A.!

62. Let K be the smallest convex domain which includes all characteristic values
of A, and let D be a domain of A. If A is normal, K and D are the same.

68. Show, by considering 2 X 2 matrices, that the result need not be valid if 4 is
not normal,

84. The boundary of D is a convex curve, whether or not 4 is normal.

66. In addition, D itseif is a convex set.* For a bibliography of recent results
concerning this and related problems, see O. Taussky.?

66. Associated with the equation z’ = Az, where z is an N-dimensional vector and
A an N X N matrix, is an Nth-order linear differential equation satisfied by each
component of . Suppose that every solution of the corresponding equation associ-
ated with y’ = By is a solution of the equation associated with 2’ = Az. What can
be said about the relation between the matrices 4 and B?

67. Consider the equation dz/dl = Bz, z£(0) = ¢, where B is a constant matrix to
be chosen so that the function (z,z) remains constant over time. Show that B will
have the required property if and only if it is skew-symmetric. From this, conclude
that e? is orthogonal.

68. Using the fact that the vector differential equation 4 d*z/di* + B dz/dt +
Cz = 0 can be considered to be equivalent to the system dz/dl = y, A dy/dt + By +
Cz = 0, obtain a determinantal relation equivalent to |AA* + BXx + C| = 0 involving
only linear terms in A,

69. Let z1, 23, . . . , Zm be scalars, and F(z,7s, . . . ,2m) denote the matrix
Awzy + Aszs + ¢+ -+ + AmZm, where A; are pairwise commutative. Then if
f(zuZ2y . . . ,Zm) = |F(zy22, . . . Zm)| (the determinant of F), we have f(X,X,,
<+ .,Xm) = 0if the X; are matrices such that 4, X, + 4;X: 4+ « + + + AnXm = 0.
(This generalization of the Hamilton-Cayley theorem is due to H. B. Phillips.)

60. Show that the result remains valid if the linear form z A;z; is replaced by a
i

polynomial in the z; with matrix coefficients, See Chao Ko and H. C. Lee,* where
references to earlier work by Ostrowski and Phillips will be found.

1 For this and the following results see O. Toeplitz, Das algebraische Analogon zu
einem Satze von Fejer, Math. Z., vol. 2, pp. 187-197, 1919.
* F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z., vol. 3, pp. 314-316,

1919.
3 0. Taussky, Bibliography on Bounds for Characleristic Roots of Finile Matrices,

National Bureau of Standards, September, 1951.
4Chao Ko and H. C. Lee, A Further Generalization of the Hamilton-Cayley

Theorem, J. London Math. Soc., vol. 15, pp. 153-158, 1940.
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61. If E;,,2 = 1,2, . .. ,n, are 4 X 4 matrices satisfying the relations E;2 = ~1,
EE; = —E;E;, i # j, then n £ 5 (Eddington).

62. If the E; are restricted to be either real or pure imaginary, then 2 are real and
3 are imaginary (Eddinglon). For a generalization, see M. H. A. Newman.!

68. If B commutes with every matrix that commutes with A, then B is a scalar
polynomial in A. See J. M. Wedderburn.?

64. Let A be a complex matrix with characteristic roots Ay, Az, . . . , Av. Then,
if we set [ X[|2 = ) [zi]? we have
L5
N
Inf [ S-1AS]* = z N2
8 i=1

where the lower bound is taken with respect to all nonsingular 8. The lower bound is
attained if and only if A is diagonizable (L. Mirsky).

66. Let A, B, and X denote N X N matrices. Show that a sufficient condition
for the existence of at least one solution X of the matrix equation X2 — 24X 4+ B =0
is that the characteristic values of

A 1
k= (Az ~B A)
be distinct (T'reuenfels).

66. Let {X} be a set of N X N matrices with the property that every real linear
combination has only real characteristic values. Then Amax(X), the largest charac-
teristic value, is & convex matrix function, and Amin(X), the smallest characteristic
value, is a concave matrix function (P. D. Laz).

67. Let X and Y be two matrices all of whose linear comblnatlona have real charac-
teristic values, and suppose that those of X are negative, Then any characteristic
root of X + {¥ has negative real part (P. D, Laz).

68. Let {X} be a set of N X N real matrices with the property that every real
linear combination has only real characteristic values. Then if X, and X, are two
matrices in the set with the property that X, ~ X, has non-negative characteristic
roots, we have \:(X,) > \(X2),7 = 1,2, ..., N, where A\(X) is the ¢th character-
istic root arranged in order of magnitude (P. D. Laz). For proofs of these results
based upon the theory of hyperbolic partial differential equations, see P. D, Lax.?

For proofs along more elementary lines, see A, F. Weinberger.4

89. Let [a:}, {8i] (1 €7 < n) be complex numbers, each of absolute value 1.
Prove: There exist two unitary matrices A, B of order n with the preassigned char-
acteristic roots {a:}, {8:}, respectively, and such that 1 is a characteristic root of AB,
if and only if, in the complex plane, the convex hull of the points |a;} and the convex
hull of the points {3;} have a point in common (Ky Fan).5

1 M. H. A, Newman, J. London Math. Soc., vol. 7, pp. 93-99, 1932.

t J, M. Wedderburn, Lectures on Matrices, Am, Math. Soc. Collog. Publ., vol. 17,
p. 106, 1934,

1 P, D. Lax, Differential Equations, Difference Equations and Matrix Theory,
Comm. Pure Appl. Math., vol. XI, pp. 175-194, 1958.

4+ A. F. Weinberger, Remarks on the Preceding Paper of Lax, Comm. Pure Appl.
Math., vol. XI, pp. 195-196, 1958.

8 This result is analogous to a theorem of H. Wielandt, Pacific J. Math., vol. 5, pp.
633-638, 1955, concerning the characteristic values of the sum of two normal matrices.
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70. We know that ¢4 may be written a8 a polynomial in 4, e4* = u,(()1 + ()4 +
» o« + un(t)AM1.  Determine differential equations for the ui(f) using the fact
that d/dt(edt) = Ae4t.

71. Let A be an N X N matrix and A(+) be formed from A by replacing with
zeros all elements of A which are either on or below the principal diagonal. Let
A(-~) = A — A(+) and suppose that A(+) and A(—) commute. Write e4 = PQ,
where P — I has nongzero terms only above the diagonal and @ — 7 has nonzero
terms only on or below the diagonal. Then

P = edA® Q = ¢4t

and the factorization is unique (G. Baxter, An Operalor Identity, Pacific J. Math.,
vol. 8, pp. 649-664, 1958). The analogy betwcen this factorization and the Wiener-
Hopf factorization is more than superficial.

72. Consider the linear functional equation f = ¢ 4+ AT'(fg), where ¢ is the identity
element, A is a scalar, and T is an operator satisfying a relation of the form (Tu)(Tv) =
T(uT(v)) + T(u)v — 6uy, for any two functions u and v with 8 a fixed scalar. Show

that for small A .
f =exp [T ( Z n"l()\g)nor-l)]
nom]

The result is due to Baxter. For proofs dependent on differential equations, see
Atkinson! and Wendel.? Operators of the foregoing nature are connected with the
Reynolds operator of importance in turbulence theory.

78. Let [A + M| =M+ ax»t + - - - + a,. Show that

a = — tr (4) as = —la, tr (4) + tr (49)}, .

and obtain & general recurrence relation connecting ap with ay, as, . . ., ax2
(Bocher). .

74. A matrix A whose main diagonal elements are 0s and 1s, with other elements
satisfying the relation a;; + a;v = I is called a fournament matriz. Let Ay, Xy . . .,
A~ be the N characteristic roots of A, with [\1| 2> \2| 2> - -+ > [An|. Then —14 <
Re (\) S (n —1)/2, M| € (n = 1)/2 and I\ < (n(n — 1)/2k)% for k > 2. (4.
Braver and 1. C. Gentry, On the Characleristic Roots of Tournament Malrices, Bull. Am.
Math. Soc., vol. 74, pp. 11331135, 1968.)

78. If B = lim A", what can be said about the characteristic roots of B? (0.

n—
Taussky, Matrices with C» — 0, J. Algebra, vol. 1, pp. 5-10, 1964.)
76. Let A be a matrix with complex elements. Show that A is normal (that is,
AA® = A*4), if and only if one of the following holds:

(@) A = B + iC, where B and C are Hermitian and commute.

(b) A4 has a complete set of orthonormal characteristic vectors.

(¢) A = U*DU where U is unitary and D is diagonal.

() A = UH where U is unitary and H is Hermitian and U and H commute.

(e) The characteristic roots of AA*are [\]%, . . ., [Av[*where Xy, . . . , AN
are the characteristic roots of A.
(f) The characteristic roots of A + A*are Ay + Xy, . . . , Av + ’.

The foregoing properties indicate the value of approximating to a given complex
matrix B by a normal matrix A in the sense of minimizing a suitable matrix norm

LF. V. Atkinson, ‘“Some Aspects of Baxter's Functional Equation,” J. Math. Anal.
Appl., vol. 6, pp. 1-29, 1963.

3J. G. Wendel, ‘‘Brief Proof of a Theorem of Baxter,” Math. Scand., vol. 11,
pp. 107-108, 1962.
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IB — All. This question was first investigated by Minsky; see Causey! and Hoffman
and O. Taussky.?

77. Consider the matrix differential equation X’ = (P1(f) + Pa(t + )X, X(0) = 1,
where Pi(t + 1) = Pi(t), Ps(t 4+ A) = P.(?), A is irrational, and 6 is a real parameter.
Write X((,8) for the solution. Show that X(¢, 8 + 1) = X(,8), Xt + 1, 8) =
X, 8+ 1)X(1,8), and hence that X(t +n, 8) = X(t, 0 +n)X(1, 64+ n —1)
X(,84+n-2) - - X(1,0).

n

78. Does || X(1, & + k) possess & limiting behaviorasn — «? See R. Bellman,

k=0
A Note on Linear Differential Equations with Quasiperiodic Coefficients, J. Math.

Anal. Appl., to appear.
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Symmelric Functions, Kronecker
Products and Circulants

1, Introduction. In this chapter, we shall show that some problems of
apparently minor import, connected with various symmetric functions
of the characteristic roots, lead to a quite important concept in matrix
theory, the Kronecker product of two matrices. As a limiting case, we
obtain the Kronecker sum, a matrix function which plays a basic role in
the theory of the matrix equation

AX+ XB=2C (1)

We have already met this equation in an earlier chapter, and we shall
encounter it again in connection with stability theory. Furthermore,
the Kronecker produet will crop up in a subsequent chapter devoted’ to
stochastic matrices.

Following this, we shall construct another class of compound matrices
which arise from the consideration of certain skew-symmetric functions.
Although these are closely tied in with the geometry of N-dimensional
Euclidean space, we shall not enter into these matters here.

Finally, again motivated by conditions of symmetry, we shall discuss
circulants.

Throughout the chapter, we shall employ the same basic device to
determine the characteristic roots and vectors of the matrices under dis-
cussion, namely, that of viewing a matrix as an equivalent of a trans-
formation of one set of quantities into another. A number of problems
in the exercises will further emphasize this point of view.

2. Powers of Characteristic Roots. A very simple set of symmetric
functions of the characteristic roots are the power sums

N
P = Z A2 (1

fel
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N
Suppose that we wish to determine Z A2 Since

i=1

N N
Z A = (z x.-)’ _9 z AN @)
i=1 1 Ty

1=1

we can determine the sum of the squares of the characteristic roots in
terms of two of the coefficients of the characteristic polynomial. More-
N

over, since z AY k=12 ... ,isasymmetric function of the charac-
i=1
teristic roots, we know, in advance, that it can be written as a polynomial
in the elementary symmetric functions.
For many purposes, however, this is not the most convenient repre-
sentation. We wish to demonstrate
Theorem 1. Fork =1,2, ..., we have

N
Z At = tr (A% 3)
=1

Proof. If A has distinct characteristic roots, the diagonal represen-
tation

[\ ]
0
A,
A=T . T-! 4)
0
| Ay ]
which yields the representation for A¥
A -
A
0
A =T 7! (5)
0
L At

makes the result evident. It is easily seen that an appeal to continuity
along by now familiar lines yields (3) for general matrices.
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If we do not like this route, we can employ the triangular representation

iy -
Az

A=T N I it (6)

v |

where the elements above the main diagonal are not necessarily zero and'
the A; are not necessarily distinet.
It is easily seen that

—

A e n
Ak .

- @

I
~3

Ak

L At
This representation yields an alternative proof of (3).

3. Polynomials and Characteristic Equations. Although we know
that every characteristic equation produces a polynomial, it is not clear
that every polynomial can be written as the characteristic polynomial
of a matrix.

Theorem 2. The matriz

-

—a; —a Tt T Gpy —0a
1 0 s 0 0
1 0 0
4= : (1)
Lo o .- 1 0 |

has the characteristic equation
[A=MN|=0=M+ar"'+ - +a, (2)

We leave the proof as an exercise.

EXERCISE

1. Using the result given above, determine the sum of the cubes of the roots of the
equation A" + A"t + . 4 an = 0.
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4. Symmetric Functions. Although we have soived the problem of
determining matrices which have as characteristic roots the quantities
A, A%, L. ., A%, we do not as yet possess matrices whose character-
istic roots are prescribed functions of the characteristic roots, such as
AN, =1,2,...,N.

In order to solve this problem, we begin with the apparently more
difficult problem of determining a matrix whose characteristic roots are
Awj, where ); are the characteristic roots of A and u; those of B. Special-
izing A; = p;, we obtain the solution of the original problem.

Let us discuss the 2 XX 2 case where the algebra is more transparent.
Start with the two sets of equations

Az = an?1 + a2, w1y = bupr + biaye (1)
M2y = an?) + ant, iy = bayr + basys

and perform the following multiplications:

Mty = anbuiys + aubie iy + @1duays + @19b1aTay»
MpiZ1ys = anbnziyy + anbaaays + @1baZeyn + arbaatsys (@)
MpiZays = anbnuziyy + anbiaiyz + Gebnays + Gasbiatays
My = aubuZiys + anbatiys + @abaZays + a2b2azsy,

We note that the four quantities z,y:, Zi1ys, Zay1, Za¥s, Occur on the
right and on the left in (2). Hence if we introduce the four-dimensional
vector

a1
_ | T1ye
2z = -, (3)
Tal/e
and the 4 X 4 matrix
anbi  anbiy abdn  ashie
anbar  anbas  apby @iz
¢= anbiy  anbiz a@ubn @b )
anby  Goobsy  Gobyy  @asbas

we may write the equations of (2) in the form
)\m;z = CZ (5)

It follows that z is a characteristic vector of C with the associated
characteristic value Au;.  In precisely the same way, we see that C has
Mgz, Aauy, and Aqu, as characteristic roots with associated characteristic
vectors formed in the same fashion as in (3).

We thus have solved the problem of dctermining a matrix whose char-
acteristic roots are A, ¢, 7 = 1, 2.
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6. Kronecker Products. Since even the 2 X 2 case appears to intro-
duce an unpleasant amount of calculation, let us see whether or not we
can introduce a better notation. Referring to (4.4), we note that there
i8 a certain regularity to the structure of C. Closer observation shows
that C may be written as a compound matrix

_ auB a,,B
¢= [ale azzB] o
or, even more simply,

C = (a;B) (2

Once this representation has been obtained, it is eagy to see that it is
independent of the dimensions of A and B. Hence

Definition. Let A be an M-dimensional matriz and B an N-dimensional
matriz. The M N-dimensional matriz defined by (2) is called the Kronecker
product of A and B and wrilten

A XB= (a,-,-B) (3)

The above argumentation readily yields Theorem 3.

Theorem 8. The characteristic roots of A X B are \u; where \; are the
characteristic roots of A and u; the characleristic rools of B.

The characleristic vectors have the form

x,'yl
xg"y"
Zij = . (4)
iy
Here by i, k= 1,2, ..., M, we mean the componenis of the charac-

teristic vector x' of A, while y' is a characteristic vector of B.

EXERCISES

1. Show that tr (A X B) = (tr A)(tr B).
2. Determine |4 X B|.
8. Show that

I XB=
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6. Algebra of Kronecker Products. In order to justify the name
*Kronecker product’ and the notation we have used, we must show that
A X B possesses a number of the properties of a produect.

We shall leave as exercises for the reader proofs of the following results:

AXBXC=(AXB)XC=A4AX(BXO0) (1a)
(A+B)X(C+D)=AXC+AXD+BXC+BXD (1b
(4 X B)(C X D) = (AC) X (BD) (1e)

7. Kronecker Powers—I. We shall also consider the Kronecker power

and write
Al2l = 4 X A
AW+l = 4 X AW

If A and B do not commute, (AB)* % A*B* in general; and never if
k = 2. It is, however, true that

(AB)M = Apa (2)

(1)

for all A and B.

This important property removes many of the difficulties due to non-
commutativity, and will be used for this purpose in a later chapter
devoted to stochastic matrices.

EXERCISE
1. Prove that AW = ARl X A,

8. Kronecker Powers—II. If we are interested only in Kronecker
powers of a particular matrix, rather than general products, we can define
matrices with these properties which are of much smaller dimension.
Starting with the equations

AT = any + aet (1)
MT: = anzy + axx:
we form the products

M = an’rn? + 2anm0490122 + ar%20?
Mz, = anann® + (anan + anan)xxxz + @12a:22,% (2)
M22? = a0?2? + 2031020122 + Q227257

It is clear then that the matrix

ant 2an.a;2 a2t
A[z] = janan (anan + anazx) ay2Q22 (3)
ax?® 2a2a,; az’®

possesses the characteristic roots X\i%, M\, and A2 The corresponding
characteristic vectors are readily obtained.
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To obtain the expression for A\, we proceed in a more systematic

fashion.
9. Kronecker Products—III. Consider the equations, for a fixed

integer k,

(a1r1 + a1222)* = ar*zd* + kay*~lagert e, + - - -
(anz + a1272)* N (anTy + Getz) = antlanzyt
+ (kb — Dan*"%a2a1 + an*law)z¥ 'z,

(anzy + arxx2)*(anty + agszs)® = an*asfe + - - - ¢))

where:i =0,1,2, ...,k
The matrix A, is then defined by the tableau of coefficients of the
terms z,)¥ 2,7, ¢ = 0,1,2, . . . |k,

ant kan*'ase
ant'an  ((k — Dantanan + an*lag)

Ap = ' 2)

This representation holds only for 2 X 2 matrices. The representation
of Ay for matrices of dimension N can be obtained similarly.

EXERCISES

1. Show that (4 B) ) = A B
2. Show that Ay = AwAn.

10. Kronecker Logarithm. Let us now derive an infinite matrix which
we can think of as a Kronecker logarithm. We begin by forming a
generalized kth power for nonintegral k. To do this, we consider the
infinite sequence of expression (@112, + a1922)* (anz: + asx.)', 1 =0, 1,
2, . . ., for k nonintegral.

This yields, in place of the finite tableau of (8.2), an infinite array,
since the binomial series (@,,z, + @,,2)*~ is now not finite.

The change of variable
’
) _ T,
HELH ®

(AB)py = AwBw 2

shows that

holds for arbitrary values of k.
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Let us now expand each element in Ay about & = 0. Write
A = Agg + kL(A) + - - - @)

This defines an infinite matrix L(A), which we can think of as a
Kronecker logarithm. Substituting in (2), we see that

L(AB) = AqL(B) + L(A)Byq (4)

an analogue of the functional equation for the scalar logarithm. Observe
that A is not an identity matrix.

EXERCISE
1. Determine the ¢jth element in L(A4),fori =0,1,j = 0, 1.

11, Kronecker Sum—I. Let us now turn to the problem of deter-
mining matrices which possess the characteristic values \; + y;. Follow-
ing a method used before, we shall derive the additive result from the
multiplicative case. Consider, for a parameter ¢, the relation

(Iu + €4) X (In + B)
=IyXIn+e(lyXB+AXIN)+e&AXB (1)

Since the characteristic roots of (In + €4) X (Ix + €B) are
(1 4+ A + ) =1 4 (i + 1) + XNy
we see that the characteristic rootsof Iy X B + A X Iy must be \; + p;.

EXERCISE
1. Determine the characteristic vectors of I X B + A X In.

12, Kronecker Sum—II. The matrix I X B + A X Iy can also be
obtained by use of differential equations.
Consider the equations

dz, = a2, + 0122, ay _ buyr + bieye
dt di (1)
dxz

d
-(_lt— = anZ) + azl: —éy; = bayy + bn!/z

Let us now compute the derivatives of the four products z.y,, z.1y2, 291,
Zsy:. We have

(% (@1y1) = (enzy + aez2)yy + 21(buyy + biaye)
= (an + bhi)zwyy + bitaye + arezays 2)




Symmetric Functions, Kronecker Products and Circulants 239

and so on. It is easy to see that the matrix we obtain is precisely
AXIv+ Iy XB.
13. The Equation AX + XB = C, the Lyapunov Equation. In Chap.
11, we showed that the equation
AX + XB=2¢C (1)

possessed the unique solution
X = — [ etcomay @)

provided that the integral on the right exists for all C.

Let us now complete this result.

Consider the case where A, B, C, and X are 2 X 2 matrices. The
equations to determine the unknown components z;; are

anzn + a19Ta + Tubn + Tibn = en

aZrs + @192 + 2ubiz + Zihe = a1y (3)
antn + @Za + Tabn + Tba
anZi2 + 23Tz + Tabis + Tasbss

C21

C22
The matrix of coefficients is

an + bn ban 0
by an + by 0 a9 @)
ag 0 as + bn ba
0 (1231 bis as + by

which we recognize as the matrix A X I + I X B’

The characteristic roots are thus X; + u;, since B and B’ have the same
characteristic roots. It is easy to see that the same results generalize to
matrices of arbitrary dimension so that we have established Theorem 4.

Theorem 4. A necessary and sufficient condition that (1) have a solution
for all C is that N\; + u; = O where \; are the characterisiic roots of A and
us the characteristic roots of B.

EXERCISES

1. Prove that a necessary and sufficient condition that AX + XA’ = C have a
unique solution for all C' is that A; + A; # 0.
2. Prove the foregoing result in the following steps:
(a) Let T be a matrix reducing A to triangular form,

bll b|2 ot bIN
bﬂ ct sz

TAT =B =

0 bww,
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(b) Then AX + XA’ = C becomes B'(T'XT) + (T"XT)B = T'CT.
(¢) Let Y = T'XT and consider the linear equations for the elements of Y.
N

Show that the determinant of the coefficients is " (bss + bj;) and thus
5,j=1

derive the stated results (Hahn).

14. An Alternate Route. We observed in the foregoing sections how
Kronecker products arose from the consideration of various symmetric
functions of the roots of two distinet matrices, 4 and B, and how a par-
ticular Kronecker power could be formed from a single matrix A.

Let us now consider a different type of matrix * power’’ which is formed
if we consider certain skew-symmetric functions, namely, determinants.
There is strong geometric motivation for what at first sight may seem to
be quite formal manipulation. The reader who is interested in the geo-
metric background will find references to books by Bocher and Klein
listed in the Bibliography at the end of the chapter.

To emphasize the basic idea with the arithmetic and algebraic level
kept at a minimum, we shall consider a 3 X 3 matrix and a set of 2 X 2
determinants formed from the characteristic veetors. In principle, it is
clear how the procedure can be generalized to treat B X R determinants
associated with the characteristic vectors of N X N matrices. In practice,
to carry out the program would require too painstaking a digression into
the field of determinants. Consequently, we shall leave the details, by
no means trivial, to the interested reader.

Consider the matrix

a; Qs AQas
A=|b b bs (1)
[3] C2 C3

where we have momentarily departed from our usual notation to simplify
keeping track of various terms, whose characteristic roots are Ay, Az, As,
with associated characteristic vectors z, 22, z3

For any two characteristic vectors, 2 and 27, 7 # j, we wish to obtain a
set of linear equations for the 2 X 2 determinants y,, v, ys given by the
relations

) _ X;JL' 1i ij 1i 3. _ )\.-xz" )\,»xz"
X'ijl - 7\.-:1:," ijz’. 7\.7\,yz - N‘Scai )\,-xa’
Axy A @
w3 j 3
MAiys = Az, 7\1'551"

Since
Al = iz + aszy’ + aszd
Azy = bizy' + Doz 4+ byxs 3
ATyt = ey + cord + cprdd
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with a similar equation for the components of z7, we see that

aiz + aszd + azd ey + axrd + axy
bizs* + byt + baxsd bixi + baxd + baxy

If a is the vector whose components are the a;, and b the vector whose
components are the b;, we see that (4) is equivalent to the equation

(a,2) (a2
(b2)  (b)

What we want at this point is a generalization of the expansion for the
Gramian given in Sec. 5 of Chap. 4. Fortunately, it exists, It is easy
to verify that

ANy, = 4)

ANy = (5)

(a,2") (a,2%) _|m billx)y zyf
(b,x")  (b,x?) a; ba||rxs zv
a; bi|lzst zy a; billzsd zv
+ a; byllzd zy a bz zy (6)

From this it follows immediately from consideration of symmetry that

Ui g12(a,b)  g2a(a,b) gala,d) | i 11
AN e | = | gialae)  gasla,e) gulae) | | ve (7
Y3 gl?(byc) 923(17)6) g3l(b)c) Ys
where
T Y
32y = 8
g:i(z,y) 2 yfl (8)

Our first observation is that A\, is a characteristic root and y an assoei-
ated characteristic vector of the matrix occurring in (7). Again, since
the matrix is independent of 7 and 7, we see that the three characteristic
roots must be Az AAs, and AzA;.

We now have a means of obtaining a matrix whose characteristic roots
are M;, 7 # J.

EXERCISES

1. Reverting to the usual notation for the elements of A, write out the representa-
tion for the 7jth element of the matrix appearing in (7).

2. Let A be an N X N matrix. Write out the formuia for the elements of the
N(N — 1)/2-dimensional matrix, obtained in the foregoing fashion, whose roots are
NN, © %]

8. For the case where 4 is symmetric, show that we can obtain the inequality

ay G

M2 2>
1 Gz Q2

fromn the preceding results, and many similar inequalities.
4. Let A bean N X N matrix and let r be an integer between 1 and N. Denote by
S, the ensemble of all sets of r distinct integers chosen from the integers 1,2, . . . , N.
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Let s and ¢ be two elements of S, and A denote the matrix formed from A by delc.ing
all rows whose indices do not belong to s and ali columns whose elements do not belong
to ¢.

Let the elements of S, be enumerated in some fixed order, say in numerical value,
81,82, » . » , 8. The M X M matrix, where M = N!/r!(N — r)|,

Ce(4) = (|[4ua))

i8 called the rth compound or rth adjugate of A.
Establish the following results.
®) C.(4") = C.(A)
(c) C(4™Y) = C(4)™!
@ [CA) = AP k=N —DY(r=1)IN —1)!

(¢) The characteristic roots of C,(A) are the expressions ui, ps, . . . , uy, Where
a1 + p2 + + + ¢ + pais the rth elementary symmetric functionof Ay, Ay, . . &
ANy €, p1l = MAg ¢ ¢ ARy M2 = pipr 0 AR<IAR4y - e s

For a discussion of when a given matrix is a compound of another, see D. E, Ruther-
ford, Compound Matrices, Koninkl, Ned. Akad. Wetenschap. Amsterdam, Proc. Sect.

Sci., ser. A, vol. 54, pp. 16-22, 1951,
Finally, for the connection with invariant theory, see R. Weitzenbuck, Invariant-
entheorie, Groningen, 1923,

16. Circulants. Matrices of the form

FCO 1 C e eNer
CN—-1 Co *tt CN-2
CN—2 CN-1 Co " " CN-3
C = . . (1)
&1 Cc2 C g _J

oceur in a variety of investigations. Let us determine the characteristic

roots and vectors.
Let 1 be a root of the scalar equation r¥ = 1, and set

i=co+eri+ 0+ ev-mN!? 2
Then we see that y, satisfies the following system of equations:

th=coteri+ - +oevr¥?
Y = en—a F om0 0+ ever V2

- @)
Yy =t e+ o+ e

1 See, for further results and references, H. J. Ryser, Inequalities of Compound and
Induced Matrices with Applications to Combinatorial Analysis, Illinois J. Math.,
vol. 2, pp. 240-253, 1958.
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It follows that y,; is a characteristic root of C with associated charac-
teristic vector

o -

1
T

o= 4)

N1

Since the equation r¥ = 1 has N distinet roots, we see that we obtain
N distinet characteristic vectors. Consequently, we have the complete
set of characteristic roots and vectors in this way.

EXERCISES

1. Use the scalar equation r5 = a)r + 1 in a similar fashion to obtain the character-
istic roots and vectors of the matrix

(1] [} C2 C2 Ca
€ €2+ 0@ €3+ €t cs+ €@ Co + Caa
€2 €1+ ¢ ot Ci@ €0+ cua €1
€3 €4+ Caa Co+ Cia [ €2
Cs Co + Ca@ 1 C2 C:
2. Generalize, using the defining equation ¥ = by 4 - - . + by,

MISCELLANEOUS EXERCISES

1. Let f(X) be a function of the N? variables z;; possessing a power series develop-
ment in these variables about zero. Show that we may write

£(X) = z tr (X190,)
k=0
2. Is it true that

etr.\’ = zw ?
k!
k=0

8. If A and B are positive definite, then 4 X B is positive definite.
4. If A and B are symmetric matrices with A > B, then Al'l > Bi*l, for n =

,2....

8. If r satisfies the equation in Exercise 23 of Chap. 11 and s the equation s¥ +
bis¥-t 4 . . . 4 by = 0, how does one form an equation whose roots are rs;?

8. Let 1, @), . . ., an-.1 be the elements of a finite group. Write 2z = zo +
ZTiay + + + + + ZTnoan-1 where the z; are sealars. Consider the products aiz =
ai(0)zo + a:(1)zs + - + + + ai(N — 1)zn-1, where the elements o:(j) are the ar in

some order, or oz = zo(f) + z:1(D)ar + - - - + zy_1(Q)an-1, where the z:(j) are the z;
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in some order. Introduce the matrix X = (2;(f)) and write X ~ 2, If X ~2
Y ~y, does XY ~ zy?

7. Let 1, a1, . . . , an—1 be the elements of a finite group G, and 1, 8, . . . , Brt
the elements of a finite group H. Consider the direct product of G and H defined as the
group of order MN whose elements are «;8;. Using the procedure outlined in the
preceding exercise, form & matrix corresponding to

(=) (L)

What is the connection between this inatrix and the matrices

N-1 M-
X ~ Z Tiog Y ~ Z y;B8i?
1=0 j=0

For an interesting relation between the concept of group matrices and normality, see
0. Taussky.!

8. The equation AX —~ XA = AX possesses nontrivial solutions for X if and only
if X = N\ — A; where Ay, Ay, . . ., An are the characteristic values of A (Lappo-
Danilevsky).

9. Let F be a matrix of order N?, portioned into an array of N submatrices f;;, each
of order N, such that each f;; is a rational function, f;;(4), of a fixed matrix A of order
N. If the characteristic values of A are Ay, Ay, . . . , Aw, then those of F are given
by the characteristic values of the N matrices, (f;;(A\e)), k = 1,2, . . . , N, each of
order N. See J. Williamsoa? and 8. N. Afriat.? For an application to the solution
of partial differential equations by numerical techniques, see J. Todd* and A. N.
Lowan.*®

10. Let f(0) be a real function of @ for —x < @ < v, and form the Fourier coeffi-
cients of f(8),

_1 r —inf =
¢ =5, /_'f(o)e dé n=0 %1, +2, ...

The finite matrices
Ty = (ce) kl1=01,2...,N

are called Toeplitz matrices of order N. Show that T’y is Hermitian.
11. Show that if we denote by M\, Ay, | . | | Ay, ™, the N + 1 characteristic
values of T'v, then

. M® L AWM 4 - 4 AN - -—l-jt
i NF1 oul BELULL

1 0. Taussky, A Note on Group Matrices, Proc. Am. Math. Soc., vol. 6, pp. 984~986,
1955.

t J, Williamson, The Latent Roots of a Matrix of Special Type, Bull. Am. Math.
Soc., vol. 87, pp. 585-590, 1931.

3 8. N. Afriat, Composite Matrices, Quart. J. Math., Ozford 2d, ser. 5, pp. 81-98,
1954.

4J. Todd, The Condition of Certain Matrices, ITI, J. Research Natl. Bur. Standards,
vol. 60, pp. 1-7, 1958.

¢ A. N. Lowan, The Operator Approach to Problems of Stability and Convergence
of Solutions of Difference Equations, Scripta Math., no. 8, 1957.
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12. Show that

C ) ) - Q™) 1 [
o NFT o=y MCE

(These last two results are particular results of a general result established by Szego
in 1917. A discussion of the most recent results, plus a large number of references to
the ways in which these matrices enter in various parts of analysis, will be found in
Kac, Murdock, and Szego.!)

Generalizations of the Toeplitz matrix have been considered in U. Grenander.?
See aiso H. Widom.?

18. Having defined what we mean by the Kronecker sum of two matrices, A @ B,
define a Kronecker derivative of a variable matrix X(¢) as follows:

LG li
4 h—0

im XC+H) ? (= X®)

14. Consider the differential equation

S-axy vo-=I
Does it have a solution, and if so, what is it?
15. Establish the Schur result that C = (a;;b;;) is positive definite if A and B are
by considering C as a suitable submatrix of the Kronecker product 4 X B (Marcus).
16. Let a®) be the ith column of A. Introduce the “stacking operator,” S(4),
which transforms a matrix into a vector

alv
a®

S(4) =
a(‘N)

Prove that S(PAQ) = (@' ® P)S(4). See D. Nissen, A Note on the Variance of a
Matrix, Economelrica, vol. 36, pp. 603-604, 1968.

N
17. Consider the Selberg quadratic form (see Appendix B), Q(z) = Z ( Z x.,) ’
k=1 v/ax
wherea,, k = 1,2, ..., N, is a set of positive integers, z; = 1, and the remaining

N
3
z, are real. Consider the extended form @,(z,2) = z (z; + z z.,) and write
k=1 v/ak
f+(2) = min Q,(z,z), where the minimization is over z; Zssy, . - . , zv. Obtain a
z

recurrence reiation connecting f,(z) with f, ().

1 M. Kac, W. L. Murdock, and G. Szego, On the Eigenvalues of Certain Hermitian
Forms, J. Ral. Mech. Analysis, vol. 2, pp. 767-800, 1953.

tJ. Grenander, Trans. Am. Math. Soc., 1958.

*H. Widom, On the Eigenvalues of Certain Hermitian Operators, Trans. Am.
Math. Soc., vol. 88, 491-522, 1958.
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18. Use the fact that f,(2) is quadratic in z to simplify this recurrence relation; see
Chap. 9.

19, Discuss the use of the recurrence reiation for analytic and computational pur-
poses. See R. Beliman, Dynamic Programming and the Quadratic Form of Selberg,
J. Math. Anal. Appl., vol. 15, pp. 30-32, 1966.

20. What conditions must b and ¢ satisfy so that Xb = ¢ where X is positive
definite? (Wimmer)

21, Establish the Schur result concerning (a;;b;;) using Kronecker products and a
suitable submatrix (Marcus).

Bibliography and Discussion
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Duke Math. J., vol. 21, pp. 491-500, 1954.
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Math. Nachr., 14 Band., Heft 4/6, pp. 349-354, 1956.
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R. Bellman, Kronecker Products and the Second Method of
Lyapunov, Math. Nachr., 1959.
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The 2 X 2 determinants are the Plucker coordinates. The basic idea is
that every linear transformation possesses a large set of associated induced
transformations that permit us to derive certain properties of the original
transformation in a quite simple fashion. As indicated in the text, we
have not penetrated into this area in any depth because of a desire to
avoid a certain amount of determinantal manipulation.

See also

H. Schwerdtfeger, Skew-symmetric Matrices and Projective Geom-
etry, Am. Math. Monthly, vol. LI, pp. 137-148, 1944.

It will be clear from the exerecises that once this determinantal ground-
work has been laid, we have a new way of obtaining a number of the
inequalities of Chap. 8.
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For an elegant probabilistic interpretation of Plucker coordinates, and
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Stability Theory

1. Introduction. A problem of great importance is that of determining
the behavior of a physical system in the neighborhood of an equilibrium
state. If the system returns to this state after being subjected to small
disturbances, it is called stable; if not, it is called unstable.

Although physieal systems can often be tested for this property, in
many cases this experimental procedure is both too expensive and too
time-consuming. Consequently, when designing a system we would like
to have mathematical criteria for stability available.

It was pointed out in Chap. 11 that a linear equation of the form

%x=Ax 2(0) = ¢ )
can often be used to study the behavior of a system in the vieinity of an
equilibrium position, which in this case is z = 0.

Consequently, we shall begin by determining a necessary and sufficient
condition that the solution of (1) approach zero as t — », The actual
economie, engineering, or physical problem is, however, more complicated,
since the equation describing the process is not (1), but nonlinear of the
form

- =4y +g9@® y0) =c 2

The question then is whether or not criteria derived for linear systems are
of any help in deciding the stability of nonlinear systems. It turns out
that under quite reasonable conditions, the two are equivalent. This is
the substance of the classical work of Poincaré and Lyapunov. How-
ever, we shall not delve into these more recondite matters here, restrict-
ing ourselves solely to the consideration of the more tractable linear
equations.

2. A Necessary and Sufficient Condition for Stability. Let us begin
by demonstrating the fundamental result in these investigations.

249
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Theorem 1. A necessary and sufficient condition that the solution of

dx

= Az z(0) =¢ (1)

regardless of the value of ¢, approach zero as t — o, is that all the charac-
teristic roots of A have negative real parts.
Proof. If A has distinct characteristic roots, then the representation

rem N,

eh'

et =T ™ (2)

em_

L.

establishes the result. We cannot make an immediate appeal to con-
tinuity to obtain the result for general matrices, but we can proceed in
the following way.

In place of reducing A to diagonal form, let us transform it into tri-
angular form by means of a similarity transformation, T-'AT = B,
The system of equations in (1) takes the form

g; —B: 20 =¢ 3)

where B is a triangular matrix upon the substitution x = Tz, Written
out in terms of the components, we have

Bt st bus F by a(0) =
%’5 = byzz + - - - Fbavey 2:0) =¢;

. 4)
d—dzTN = bNNzN zN(O) = c}v

Since the by are the charaeteristic roots of A, we have, by assumption,
Re (by) < Ofort=1,2 ...,N.
Solving for zw,
oy = ciyebnnt (5)

we see that zy — 0 as t — o,
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In order to show that all z;— 0 as t— «, we proceed inductively
based upon the following result.
If v(t) > 0 as t — «, then u(t) as determined by

'Z_’; =bu+ol) w0 =a (6)

approaches zero as { — =, provided that Re (b)) < 0.
Since
¢
u(t) = aevt + o [P esvu(s) d @)

it is easy to see that the stated result is valid.
Starting with the result for zx based upon (5), we obtain successively
the corresponding results for zy_y, . . . , 21

EXERCISE
1. Prove Theorem 1 using the Jordan canonical form.

3. Stability Matrices. To avoid wearisome repetition, let us introduce
a new term.

Definition. A mairix A will be called a stability matriz if all of its
characteristic roots have negative real parts.

EXERCISES

1. Derive a necessary and sufficient condition that a real matrix be a stability
matrix in terms of the matrix (tr (A5+/)) (Bass).
2. What is the corresponding condition if A is complex?

4. A Method of Lyapunov. Let us now see how we can use quadratic
forms to discuss questions of asymptotic behavior of the solutions of
linear differential equations, This method was devised by Lyapunov
and is of great importance in the modern study of the stability of solu-
tions of nonlinear functional equations of all types.

Consider the equation

%“f — Az z(0) = ¢ 1)
where ¢ and A are taken to be real, and the quadratic form
u = (z,Yz) @)
where Y is a symmetric constant matrix as yet undetermined. We have
du

ai = (x':yx) + (z,Y2')

= (Az,Yz) + (2,YAx)
= (z,(A’'Y 4+ YA)z) 3)
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Suppose that we can determine Y so that
A'Y + Y4 = -1 )

with the further condition that Y be positive definite. Then the relation
in (3) becomes
du

—d—i = —(x:x) (5)
which yields

du 1

m < - )\—N u (6)

where Ay is the largest characteristic root of ¥, From (6) we have
u < u(0)e*™. Hence u— 0 as t — ». It follows from the positive
definite property of Y that each component of z must approach zero as
tl— .

We know, however, from the result of Sec. 13 of Chap. 12 that if A is
a stability matrix, we can determine the symmetric matrix ¥ uniquely
from (4). Since Y has the representation

Y = /0., ed'hgdn gty (7N
we have
(z,Yz) = ﬁ)u (z,e4'1edtr) dt,
= [[7 (eArzetn) aty ®)

It follows that Y is positive definite, since e4 is mever singular.

EXERCISES

1. Consider the equation dz/dt = Az + g(z), z(0) = ¢, where
(a) A is a stability matrix,
® lg@I/l=ll — 0 as [|lz]l — O,
(©) |l is sufficiently smali,
Let Y be the matrix determined above. Prove that if z satisfics the foregoing non-
linear equation and the preceding conditions arc satisfied, then

%(x,}’x) < —rni(z,Ya)

where 7, i8 & positive constant, Hence, show that z = D as({— .,
2. Extend the foregoing argument to treat the case of complex A.

b. Mean-square Deviation. Suppose that A is a stability matrix and
that we wish to caleulate

J = [0': (z,Bz) dt (1)

where z is a solution of (4.1),
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It is interesting to note that J can be calculated as a rational funection
of the elements of 4 without the necessity of solving the linear differ-
ential equation for z. In particular, it is not necessary to calculate the
characteristic roots of A.

Let us determine a constant matrix Y such that

(z,Bz) = 3 (z,¥7) @

We see that
B =AY+ VYA 3)

With this determination of ¥, the value of J is given by
J = —(c,Yc) 4

Since 4 is a stability matrix, (3) has a unique solution which can be
found using determinants.

6. Effective Tests for Stability. The problem of determining when a
given matrix is a stability matrix is a formidable one, and at the present
time there is no simple solution. What complicates the problem is that
we are not so much interested in resolving the problem for a particular
matrix A as we are in deriving conditions which enable us to state when
various members of a class of matrices, A(u), are stability matrices,
Questions of this type arise constantly in the design of control mecha-
nisms, in the field of mathematical economics, and in the study of com-
putational algorithms.

Once the characteristic polynomial of A has been calculated, there are
a variety of eriteria which can be applied to determine whether or not
all the roots have negative real parts. Perhaps the most useful of these
are the criteria of Hurwitz.

Consider the equation

‘)\I — Al =AN 4+ a4+ - - - Fav AFav =0 1)

and the associated infinite array

a;y 1 0 0 0 O
a; a, a, 1 0 O
as as a; a, a, 0O

ar Qg as Gy Az @y * ° * 2)

where a; is taken to be zero for k > N,
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A necessary and sufficient condition that all the roots of (1) have
negative real parts is that the sequence of determinants

a 1 ai 1 0
h = |al| hy = ! hs =|as a, a, (3)
as as
s Qa4 Q3

formed from the preceding array, be positive.

There are no simple direct proofs of this result, although there are a
number of elegant proofs. We shall indicate in the following section
one line that can be followed, and in Appendix C discuss briefly the
chain of ideas, originating in Hermite, giving rise to Hurwitz’s proof.
Both of these depend upon quadratic forms. References to other types
of proof will be found at the end of the chapter.

The reason why this result is not particularly useful in dealing with
stability matrices is that it requires the evaluation of |\ — A, some-
thing we wish strenuously to avoid if the dimension of A is high.

EXERCISES

1. Using the foregoing criteria, show that a necessary and sufficient condition that
A + aX + as be a stability polynomial is that a, > 0, ay > 0. By this we mean
that the roots of the polynomial have negative real parts.

2. For \* 4 a1\* + as\ + as show that corresponding conditions are

a, @y as >0 aas > a;

8. For M\ 4 ai\* 4 a:\? 4 ag\ 4 a, show that the conditions are a), a4 > 0,
@103 > as, as(@as — as) > arta,.

7. A Necessary and Sufficient Condition for Stability Matrices. Let
us now show that the results of Sec. 4 yield
Theorem 2. Let Y be determined by the relation
A'Y + YA = -1 (4]
Then a necessary and suffictent condition that the real matrix A be a sta-
bility matriz is that Y be positive definite.
Proof. Referring to Sec. 5, we see that

[T @o) dt = @(0),720) — @(T),Y=(T)) %)
or @(T),Y2(T) + [, (5,2) dt = (2(0),Y2(0)) 3)

Here z is a solution of the equation dz/dt = Ax.
T
If Y is positive definite, /0 (z,z) dt is uniformly bounded, which means

that z({) — 0as{— «, whence A is a stability matrix. We have already
established the fact that Y is positive definite if A is a stability matrix.
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8. Differential Equations and Characteristic Values. Consider the
differential equation

Az + 2B’ +Cx =0 z2(0) =¢* z'(0) =¢c? 1)
which, if considered to arise from the study of electric circuits possessing

capacitances, inductances, and resistances, is such that A, B, and C are
non-negative definite.
On these grounds, it is intuitively clear that the following result holds.
Theorem 3. If A, B, and-C are non-negalive definite, and either A or C

positive definite, then
NA+2B+C|l =0 2

has no roots with positive real parts.

If A and C are non-negative definite and B s positive definite, then the
only root with zero real part ts X = 0.

Proof. Let us give a proof which makes use of the physical back-
ground of the statement. In this case, we shall use energy considerations.

Starting with (1), let us write

(', A2y + 2(2',Bz’) + (¢/,Cx) = 0 3)
Thus, for any s > 0,

ﬁ)‘ (@', Az") + 2(z',Bz’) + (&',Cx)] dt = 0 4)
or @420 | + 4 [ @B dt + @0 [ = 0 )
This is equivalent to the equation

('), 42'(5) + 4 [, @\ Be) dt + @@),C2(s) =es  (6)

where ¢; = (¢,4c?) + (c},Ce).

If A is a root of (2), then (1) has a solution of the form eMc. If A is real,
cis real. If A is complex, A = r, + ir,, then the real part of e¢, which
has the form ent(a® cos ryf + a? sin r.t), is also a solution, Substituting

in (6), we see that
o (61,40") + 4 [ (br0), BOD) di + e ACH) = e (7)

where b! and b® are constant vectors and b? is a variable vector given
by (ari + a?r;) cos rot + (a1 — a'ry) sin r4f,
If A or C is positive definite, with B > 0, we see that r, > 0 leads to

a contradiction as § — 0.
If A, C > 0, then B positive definite requires that r, < 0. Further-
more, since a' cos rif + a? sin ryf is periodic, we see that the integral

ﬁ: (b%(¢),Bb*(t)) dt diverges to plus infinity as s — o, unless r: = 0, if

ri=0.
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We have presented this argument in some detail since it can be extended
to treat similar questions for equations in which the coefficients A, B,
and C are variable.

EXERCISES

L]
1. Following Anke,! let us use the foregoing techniques to evaluate [0 ut dt, given

that u is a solution of w'"* + a.u" + awu' + aee = 0, all of whose solutions tend to
zero. Let u(D) = ¢o, u'(D) = ¢), u''(D) = ¢,. Establish the results

/0 wudl = u'u o ~ ﬁ) uuw dt = —coc2 + ¢%/2

«© - . u:_ «© re - _ « re
ﬁ) wudl = u'ul ﬁ)u dt ) ﬁ)u dd

/0 uudl = —co?/2

2. Derive from the equations
-
-[0 u"')(u"’ + az’u" + alu' + auu) dt=0 t = 0, 1, 2

w0
and the results of Exercise 1, a set of linear equations for the quantities j;) utdl,

/0 W) dy, /0 ® Wt

o«
8. Using these linear equations, express /;) ut dt as a quadratic form in ¢, ¢, €2

4. Using this quadratic form, obtain a set of nccessary and sufficient conditions
that r* + a,r? + ar + a, be a stability polynomial.

6. Show that these conditions are equivalent to the Hurwitz conditions given in
Exercise 2 of Sec. 6.

9. Effective Tests for Stability Matrices. As indicated in the fore-
going sections, there exist reasonably effective techniques for determin-
ing when the roots of a given polynomial have negative real parts. Since,
however, the task of determining the characteristic polynomial of a matrix
of large dimension is a formidable onc, we cannot feel that we have a
satisfactory solution to the problem of determining when a given matrix
18 a stability matrix.

In some special cases, nonetheless, very elegant criteria exist. Thus:

Theorem 4. If A has the form

a+b a
-1 b, a; e
A= - -1 b o (1)
-1 by an
. . -1 by

1Z. angew. Math. u. Phys., vol. VI, pp. 327-332, 1955.
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where the dots indicate that all other terms are zero, the a; are real, and the b;
are zero or pure imaginary, then the number of positive terms in the sequence
of products ay, @@z, . . . , @18z . . . an—1an 18 the number of character-
1stic roots of A with positive real part.

For the proof, which is earried out by means of the theory of Sturmian
sequences, we refer to the paper by Schwarz given in the Bibliography
at the end of the chapter. In this paper it is also shown that any matrix
B with complex elements can be transformed into the form appearing in
(1) by means of a transformation of the type A = T-'BT.

As we shall see in Chap. 16, the theory of positive matrices gives us
a foothold on the stability question when A is a matrix all of whose
off-diagonal elements are non-negative.

MISCELLANEOUS EXERCISES

1. Obtain the solution of the scalar equation u” + u = f,(f) by writing «’ = v,
v = —u + f1({) and determining the elements of ¢4t where

-1

2. Let the characteristic roots of A be distinct and B(f) — 0 as { = . Then the
characteristic roots of A + B(f), which we shall call A;(¢), are distinct for ¢ > (.

8. If, in addition, ® {B(f)|| d¢ < eo,there exists a matrix T'(¢) having the property

that the change of variable y = Tzconverts y’ = (A + B(f))yinto 2’ = (L(f) + C(t))z
where

M) 0
Az(t)
L) =
0 An(D)
and [ 7 1@ dt < .
N
4. If Z /;) las;(¢) + aj:(f)| dt < =, all solutions of ¥ = A(f)y are bounded as
ti=1

t-» oo,

8. There exists an orthogonal matrix B(f) such that the transformation y = B(f)z
converts ¥’ = A(l)y into 2/ = C({)z where C(t) is semidiagonal (Diliberto).

8. There exists a bounded nonsingular matrix B(f) with the property that C(t) is
diagonal.

7. The usual rule for differentiation of a product of two functions u and v has the
form d(wv)/dt = udv/dt + (du/dt)v. Consider the linear matrix function d(X)
defined by the relation

d(X) = AX — X4
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where A is a fixed matrix. Show that
d(XY) = Xd(Y) + dX)Y

8. Obtain a representation for d(X,,Xs « + + Xy) and thus for d(X¥).
9. Let da(X) = AX — XA, dp(X) = BX — XB. Show that

da(da(X)) = da(da(X))

10. When does the equation d(X) = AX, A a scalar, have a solution, and what is it ?

For an extensive and intensive discussion of these and related questions, see J. A.
Lappo-Danilevsky.!

11. When do the equations

d(X1) = anX, + aX,
d(Xs) = anX + a2X,

have solutions, and what are they?

12. Since d(X) is an analogue of a derivative, are there analogues of a Taylor series
expansion?

18. Given a real matrix 4, can we always find a diagonal matrix B with elements
+1 such that ali solutions of Bdz/dt = Az approach zero as t —» « (Brock)?

14. Let A be nonsingular. Then a permutation matrix P and a diagonal matrix D
can be chosen so that DPA is a stability matrix with distinct characteristic roots
(Folkman).

156. What is the connection between the foregoing results and the idea of solving
Az = bby use of the limit of the solutionof y¥ = Ay — bast{— =? (Unfortunately,
the result of Exercise 14 is an existence proof. No constructive way of choosing
D and P is known.)

16. If C has all characteristic roots less than one in absolute value, there exists a
positive definite @ such that @ — CGC* is positive definite (Stein).

17. Establish Stein’s result using difference equations. For extensions of the
results in Exercises 14-17 and additional references, see O. Taussky, On Stable
Matrices, Programmation en mathématiques numériques, Besangon, pp. 75-88, 1966.

18. Let A be an N X N complex matrix with characteristic roots \;, A\; + Xz = 0.
Then the N X N matrix G = G*, the solution of AG + GA* = [ is nonsingular and
has as many positive characteristic roots as there are \; with positive real parts.
(0. Taussky, A Generalization of a Theorem of Lyapunov, J. Soc. Ind. Appl. Math.,
vol. 9, pp. 640-643, 1961.)

19. Given the equation A* + a\*! + - - . 4 a, = 0, withtheroots Ay, s, . . .,
As, find the equation of degree n? whose roots are \; + 2, 4,7 =1,2, ..., n.

20. Find the equation of degreen(n + 1)/2 whoseroots are\; + A;,t = 1,2, . . .,
n,§=12 ...,4 and the equation of degree n(n — 1)/2 whose roots are \; + A
t1=23 ...,0§=1,2,...,1—1.

21. Use these equations to determine necessary and sufficient conditions that all
of the roots of the original equation have negative real parts (Clifford-Routh). See
Fuller,* where many additional resuits will be found, and Barnett and Storey? and
the survey paper by O. Taussky cited above.

1J. A. Lappo-Danilevsky, Mémoires sur la théorie des systémes des équations différ-
entielles linéaires, vol. 1, Chelsea Publishing Co., New York, 1953.

1 A. T. Fuller, Conditions for a Matrix to Have Only Characteristic Roots with
Negative Real Parts, J. Math. Anal. Appl., vol. 23, pp. 71-98, 1968.

*S. Barnett and C. Storey, Analysis and Synthesis of Stability Matrices, J. Diff.
Eq., vol. 3, pp. 414-422, 1967.
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E. Frank, On the Zeros of Polynomials with Complex Coeflicients,
Bull. Am. Math. Soc., vol. 52, pp. 144-157, 1946.
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R. Bellman, A Survey of the Theory of the Boundedness, Stability, and
Asymplotic Behavior of Solutions of Linear and Non-linear Differ-
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ential and Difference Equations, Office of Naval Research, Depart- .
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New York, 1970,
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random coefficients, see

0. Sefl, On Stability of a Randomized Linear System, Sci. Sinica,
vol, 7, pp. 1027-1034, 1958.

S. Sninivasan and R. Vasodevan, Linear Differential Equations with
Random Coefficients, American Elsevier Publishing Company, Inc.,
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Systems, IRE Trans. on Circuit Theory, May, 1959, Special Supple-
ment (Transactions of the 1959 International Symposium on Circuit
and Information Theory), pp. 248-259.

where many additional references to earlier work by Rosenbloom and
others will be found.
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Markoff Mairices and Probability Theory

1, Introduction. In this and the following chapters, which constitute
the last third of the book, we wish to study a class of matrices which
are generated by some fundamental questions of probability theory and
mathematical economics. The techniques we shall employ here are quite
different from those utilized in the study of quadratic forms, or in con-
nection with differential equations.

The basic concept is now that of non-negativity, non-negative matrices
and non-negative vectors. A matrix M = (m,;) is said to be non-negative
if my > 0 for all / and j. Similarly, a vector z is said to be non-negative
if all its components are non-negative, z; > 0.

The subclass of non-negative matrices for which the stronger condition
miy; > 0 holds is called positive. These matrices possess particularly
interesting and elegant properties.

The terms ‘“‘positive’’ and ‘“‘non-negative’ are frequently used to
describe what we have previously called ‘“positive definite’’ and ‘“non-
negative definite.” Since the two types of matrices will not appear
together in what follows, we feel that there is no danger of confusion,
The adjective ‘“positive’’ is such a useful and descriptive term that it is
understandable that it should be a bit overworked.

We have restricted ourselves in this volume to a discussion of the more
elementary properties of non-negative matrices. Detailed discussions,
which would require separate volumes, either in connection with proba-
bility theory or mathematical economics, will be found in references at
the end of the chapter.

This chapter, and the one following, will be devoted to stochastic
processes, while the next chapter will cover various aspects of matrix
theory and mathematical economics.

2. A Simple Stochastic Process. In order to set the stage for the
entrance of Markoff matrices, let us review the concept of a delerministic
process. Consider a system S which is changing over time in such a
way that its state at any instant ¢ can be described in terms of a finite

263
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dimensional vector z. Assume further, that the state at any time s + ¢,
s > 0, can be expressed as a predetermined function of the state at time ¢,
and the elapsed time s, namely,

z(s + 1) = g(=(),9) 1)

Under reasonable conditions of continuity on the function g(f), we can
derive, by expansion of both sides in powers of s, a differential equation
for z(¢), of the form

92 = ha) @

Finite-dimensional deterministic systems of the foregoing type are thus
equivalent to systems governed by ordinary differential equations. If
we introduce functions of more complicated type which depend upon the
past history of the process, then more complicated functional equations
than (2) result.

The assumption that the present state of the system completely deter-
mines the future states is a very strong one. It is clear that it must
always fail to some degree in any realistic process. If the deviation is
slight, we keep the deterministic model because of its conceptual sim-
plicity. It is, however, essential that other types of mathematical models
be constructed, since many phenomena cannot, at the present time, be
explained in the foregoing terms.

Let us then consider the following stochastic process. To simplify the
formulation, and to avoid a number of thorny questions which arise
otherwise, we shall suppose that we are investigating a physical system S
which can exist only in one of a finite number of states, and which can
change its state only at discrete points in time.

Let the states be designated by the integers 1, 2, . . . , N, and the
times by ¢t =0, 1, 2, .. .. To introduce the random element, we
assume that there is a fixed probability that a system in stage 7 at time ¢
will transform into state ¢ at time ¢ 4+ 1. This is, of course, again a very
strong assumption of regularity. A ‘“‘random process’’ in mathematical
parlance is not at all what we ordinarily think of as a “random process”
in ordinary verbal terms,

Pursuant to the above, let us then introduce the iransition matriz
M = (my), where
my; = the probability that a system in state j at time ¢ will be in

state ¢ at time ¢ + 1
Observe that we take M to be independent of time. This is the most
important and interesting case.

In view of the way in which M has been introduced, it is clear that we
wish to impose the following conditions:
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my > 0 (3a)

mg=1 j=12...,N (3b)

That my; is non-negative is an obvious requirement that it be con-
sidered a probability. The second condition expresses the fact that a
particle in state j at time ¢ must be somewhere, which i8 to say in one of
the allowable states, at time ¢ + 1.

8. Markoff Matrices and Probability Vectors, Let us now introduce
some notation. A matrix M whose elements satisfy the restrictions of
(2.4) will be called a Markoff matrix.

A vector z whose components z; satisfy the conditions

T 2_ 0 (la)
N

2; zi=1 (1b)

will be called a probability vector. Generally, a vector all of whose com-
ponents are positive will be called a positive vector.

EXERCISES

1. Prove that AP 4 (1 — A)@is a Markoff matrix for 0 < A < 1 whenever P and Q
are Markoff matrices.

2. Prove that P@ is a Markoff matrix under similar agsumptions.

8. Prove that Mz is a probability vector whenever z is a probability vector and M
is a Markoff matrix.

4. Prove that Markoff matrices can be characterized in the following way: A
matrix M is a Markoff matrix if and only if Mz is a probability vector whenever zis a

probability vector.
§. Prove that if M’ is the transpose of a Markoff matrix M and M’ = (a:;), then
N
a; =lfori =12 ...,N.
i=1
8. Prove that a positive Markoff matrix transforms non-trivial vectors with non-
negative components into vectors with positive components.

4. Analytic Formulation of Discrete Markoff Processes. A stochastic
process of the type described in Sec. 2 is usually called a discrete Markoff
process. Let us now see how this process can be described in analytic
terms.

Since the state of the system S at any time ¢ is a random variable,
assuming any one of the values 7 = 1,2, . . . , N, we introduce the N
functions of ¢ defined as follows:

zi(t) = the probability that the system is in state 7 at time ¢ (1)
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At t = 0 we have the relation
I&(O) = 8y (2)

where k is the initial state of S.
The following relations must then be valid:
N
z(t+ 1) = Z mgt) i=12 ...,N 3)
=1
One aspect of the problem of predicting regular behavior of § is that
of studying the behavior of the solutions of the system of equations in (3),
which we may write more compactly in the form

¢+ 1) =Mz(t) ¢=012 ... 4)

The full problem is one of great complexity and interest, with analytic,
algebraic, topological, and physical overtones. A number of monographs
have been written on this topic, and there seems to be an unlimited area
for research.

It turns out that particularly simple and elegant results can be obtained
in the case in which the elements of M are all positive. Consequently,
we shall restrict ourselves principally to a discussion of this case by
several methods, and only lightly touch upon the general case.

EXERCISE
1. Prove that z(¢) = M z(0), z(t + 3) = M'z(s).

6. Asymptotic Behavior. The next few sections will be devoted to two
proofs of the following remarkable result:

Theorem 1. If M is a positive Markoff mairiz and if z(t) satisfies (4)
of Sec. 4, then

lim z(t) = y, where y is a probability vecior, (la)
t—r w0
y 18 independent of z(0), (1b)
y s a characteristic vector of M with assoctated characteristic rootl (lc)

That z(t) should settle down to a fixed probability vector y is interest-
ing and perhaps not unexpected in view of the mixing property implied
in the assumption m;; > 0. That this limit should be independent of the
initial state is certainly surprising.

6. First Proof. We shall present two proofs in this chapter. A third
proof can be derived as a consequence of results obtained for general
positive matrices in Chap. 16. The first proof, which we present first
because of its simplicity, illustrates a point we have stressed before,
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namely, the usefulness of considering transformations together with their
adjoints.

Since ¢ assumes only the discrete sequence of values 0, 1, 2, . . .,
let us replace it by »n and speak of z(n) in place of z(f). To establish
the fact that z(n) has a limit as n — «, we consider the inner product of
z(n) with an arbitrary vector b. Since, by virtue of (4.4), x(n) = M*z(0),
we see, upon setting £(0) = ¢, that

(z(n),b) = (Mrc,b) = (c,(M")'b) = (c,(M")*b) )

where M’ is the transpose of M.

If we show that (3’)"b converges as n — =, for any given b, it will
follow that z(n) converges as n — o« since we can choose for b first the
vector all of whose components are zero, except for the first, then the
vector all of whose components are zero except for the second, and so on.
Let us then introduce the vector

z(n) = (M')"b )
which satisfies the difference equation
zn+ 1) = M'z(n) 2(0) =b 3)

Let, for each n, u(n) be the component of z(n) of largest value and
v(n) the component of z(n) of smallest value. We shall show that the
properties of M’ imply that u(n) — v(n) > 0asn — .

Since

N
an+ 1) = ) mzn) @

=1
N
and since z mi = 1, my; > 0, we see that
i=1
u(n + 1) < u(n) )
v(n + 1) = v(n)
Since {u(n)] is a monotone decreasing sequence, bounded from below by
zero, and {¥(n)} is a monotone increasing sequence, bounded from above
by one, we see that both sequences converge. Let
un) = u  v(n)—>v (6)

To show that u = v, which will yield the desired convergence, we pro-
ceed as follows.
Using the component form of (3), we see that
u(n + 1) < (1 = dju(n) + dv(n) )
v(n + 1) 2 (1 — d)p(n) + du(n)

where d is the assumed positive lower bound for m,;, ¢,j = 1,2, . . . , N.
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From (7) we derive

u(n + 1) — v(n + 1) < [(1 — d)un) + dv(n) — 1 — d)v(n) — du(n)]
< (1 = 2d)(u(n) — v(n)) (8)
We see that (8) yields

u(n) — v(n) < (1 = 2d)*(u(0) — »(0)) 9

and hence, since d £ 3§ if N > 2, that u(n) — v(n) > 0asn— o,
Thus, not only does z(n) converge as n — =, but it converges to a
vector all of whose components are equal. From the convergence of
2(n) we deduce immediately the convergence of z(n), while the equality
of the components will yield, as we shall see, the independence of initial
value.
Let lim 2(n) = zand lim z(n) = y. As we know, all of the compo-

n— < n—«

nents of z are equal. Let us call each of these components a;. Then

w,b) = lim (x(n),b) = (¢,2) = asles+ 2+ - - - +¢al = a1 (10)

where a; is a quantity dependent only upon b. It follows that y is inde-
pendent of ¢.

That y is a characteristic vector of M with characteristic root 1 follows
easily. We have

y= lim Mrtie =M lim Mrc = My (11)
n— © n—«

In other words, y is a “fixed point” of the transformation represented
by M.

EXERCISE

1. Use the fact that 7 is a non-negative Markoff matrix to show that conditions of
positivity cannot be completely relaxed.

7. Second Proof of Independence of Initial State. Another method
for establishing independence of the initial state is the following. We
already know that lim Mr¢ exists for any initial probability vector c.

n— o

Let y and 2 be two limits corresponding to different initial probability

vectors ¢ and d, respectively. Choose the scalar ¢, so that y — ¢z has

at least one zero component, with all other components positive. As we

know, M(y — t;2) must then be a positive vector if y — ;2 is nontrivial.
However,

My —teg) =My —tMz=y — 412 1)

a contradiction unless y — ¢;2 = 0. This means that ¢; = 1, since yand 2
are both probability vectors.
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8. Some Properties of Positive Markoff Matrices. Combining the
results and techniques of the foregoing sections, we can derive some inter-
esting results concerning positive Markoff matrices.

To begin with, what we have shown by means of the preceding argument
is that a positive Markoff matrix cannot possess two linearly independent
positive characteristic vectors associated with the characteristic root one.

Furthermore, the same argument shows that a positive Markoff matrix
cannot possess any characteristic vector associated with the character-
istic root one which is linearly independent of the probability vector y
found above. For, let z be such a vector.! Then for ¢, sufficiently large,
z + tiy is a positive vector. Dividing each component by the scalar
t» = (2 + tiy, ¢), where ¢ is a vector all of whose components are ones,
we obtain a probability vector. Hence (z 4 tiy)/t: = y, which means
that z and y are actually linearly dependent.

It is easy to see that no characteristic root of M can exceed one in
absolute value. For, let z be a characteristic vector of M, A be a charac-
teristic root, and m be the absolute value of a component of z of greatest
magnitude. Then the relation Az = M’z shows that

N
Afm < m z_m,-; =m (§))]
i=

whence (A} < 1,
We can, however, readily show that A = 1 is the only characteristic
root of absolute value one, provided that M is a positive Markoff matrix.
To do this, let 1 be another characteristic root with {u| = 1, and w + 42
an associated characteristic vector with w and 2 real. Then, choosing ¢,
large enough, we can make w + ey and z 4+ eqy both positive vectors,
It follows that '

M(w + iz + (1l + 9)y) = w(w + i2) + (1 + )y @
Hence, on one hand, we have
M*(w + iz + ei(1 + 7)y) = p(w + i2) + a(l + £y 3)
On the other hand, as n — «, we see that
Mr(w + iz + ei(l + 2)y) = M"(w + ey + i(2 + cry)) @

converges, because of the positivity of w 4+ ¢;y and 2 + ¢y, to a certain
scalar multiple of y.

The vector u"(w + ¢z), however, converges as n — o only if p = 1,
if u is constrained to have absolute value one. This completes the proof.

We see then that we have established Theorem 2.

11t is readily seen that it suffices to take 2 real.
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Theorem 2. If M is a positive Markoff matrix, the characteristic root
of largest absolute value i¢ 1. Any characteristic vector associated with this
characteristic root is a scalar multiple of a probability vector.

EXERCISE

1. If X is a oharacteristioc root with an associated characteristic vector which is
positive, then X\ = 1,

9. Second Proof of Limiting Behavior. Let us now turn to a second
direct proof of the fact that z(n) has a limit as n — «., Writing out the
equations connecting the components of z(n) and z(n + 1), we have

N
zn + 1) = ) myzi(n) M
iml
This yields
N
z(n + 1) = z(n) = ) maley(n) — an — 1] @
i=1
N
Since z zj(n) = 1 for all n, it is impossible to have z;(n) > z;(n — 1)
i=1

for all j, unless we have equality. In this case z(rn) = z(n — 1), a rela-
tion which yields z(m) = z(n — 1) for m > n, and thus the desired
convergence.

In any case, for each n let S(n) denote the set of j for which z;(n) >
zj(n — 1) and T(n) the set of j for which z;(n) < zj(n — 1). The com-
ment in the preceding paragraph shows that there is no loss of generality
in assuming that S(n) and T'(n) possess at least one element for each n.

Referring to (2), we see that

}; milzi(n) — z5(n — 1)] < z(n + 1) — 2n)
jeT(n)
< 2 mylzi(n) — g(n = D} (3)
7eS(n)
Hence

[zi(n + 1) — zi(n)] < if [@i(n) = zi(n ~ 1] (4
1eS(n+1) jeg(n) {ﬁS(Z-{-l)m } s

which yields, since m;; > d > 0 for all < and j,

[n + O — sl < (1 —d) Y [n) = 0 — D] (5)
$e8(n+1) jeS(n)




Markoff Matrices and Probability Theory 271

Similarly, summing over 7eT(n + 1), we have

1=d) Y o) —gn— DI Y [l(n+1) —z(n)] (6)

jeT'(n) ieT(nt+1)
Combining (5) and (6), we see that
N N
Y+ ) —sm A —d) ) lum) —5n-D @)
i=1 j=1

and hence that the series z lz(n) — z(n — 1)| converges.

n=1

This completes the proof of convergence of z(n).

EXERCISES

1. If M is a Markoff matrix and M? is a positive Markoff matrix, show that the
sequences [M?7¢c} and (M3***ic} converge. Does |M"c} converge?
2. What is the limit of M" if M is a positive Markoff matrix?

10. General Markoff Matrices. As mentioned above, the study of the
general theory of Markoff matrices is quite complex, and best carried on
from a background of probability theory.

In order to see how complex roots of absolute value 1 can arise, con-
sider a system with only two states, 1 and 2, in which state 1 is always
transformed into state 2 and state 2 into state 1. The corresponding
transition matrix is then

01
w=0 0] M

which has the characteristic roots A\, = 1, A, = —1.

By considering cyclic situations of higher order, we can obtain charac-
teristic roots which are roots of unity of arbitrary order.

Let us, however, discuss briefly an important result which asserts that
even in the case where there is no unique limiting behavior, there is an
average limiting behavior.

Let us suppose for the moment that M has only simple characteristic
roots, so that we may write

rxl

) ¥
M=T . = @)

An
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Then

F z )\;"/ n 0

kw1l

(i M4)/n =1 _ T (3)

km1

If |\ < 1, we have z A/n—0asn— . If A = 1, the limit
F=1
lim z A/n = g )
n— o k_l

exists. If A\; = e%, where 6/2r is an integer, then a; = 1; if 8/2r is not
an integer, then a; = 0.

In any case, under the assumption of distinct characteristic roots, we
can assert the existence of a quasi-limiting state

v =t (AL I ®

which is a characteristic vector of M, that is, My = y. The limit vec-
tor y is a probability vector if z is a probability vector.

The general case can be discussed along similar, but more complicated,
lines; see the exercises at the end of the chapter.

EXERCISE

1. If ) is a characteristic root of a Markoff matrix M, with the property that
|\] = 1, must A be a root of unity?

11. A Continuous Stochastic Process. Let us now consider the
stochastic process described in Sec. 2 under the assumption that the sys-
tem is observed continuously., We begin with the discrete process in
which observations are made at the times ¢t =0, A, 24, . . . . Since
we want the continuous process to be meaningful, we introduce a con-
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tinuity hypothesis in the form of a statement that the probability of the
system remaining in the same state over any time interval of length A is
1 — 0(4).
To make this statement precise, we define the following quantities:
a;A = the probability that S is in state  at ¢ + A, given that

it is in state j at time ¢, for { > j 1
1 — a;A = the probability that S is in state ¢ at ¢ + A, given that

it is in state 7 at time ¢

The quantities a;; are assumed to satisfy the following conditions:

(27 Z 0 (20)
ai = ) a (26)
I

Then the equations governing the quantities z.(f) are
2t + 8) = (1 — asd)a(t) + A Z () i=12...,N @3
I

fort =04, 24, ....
Writing, in a purely formal way,

it + A) = z.(t) + Ar(t) + 0(A?) (1)
and letting A — 0 in (2), we obtain the system of differential equations
% = —a% + Z Q55 z:(0) = ¢ ()
i
i=12...,N,wheree,7 =1,2, ..., N, are the initial probabilities.

We shall bypass here all the thorny conceptual problems connected
with continuous stochastic processes by defining our process in terms of
this system of differential equations. In order for this to be an oper-
ationally useful technique, we must show that the functions generated
(5) act like probabilities. This we shall do below.

There are a number of interesting questions arising in this way which
we shall not treat here. Some of these are:

1. How does one define a continuous stochastic process directly and
derive the differential equations of (5) directly?

2. In what sense can the continuous stochastic process defined by (5)
be considered the limit of the discrete stochastic process defined by (3)?

Since these are problems within the sphere of probability theory, we
shall content ourselves with mentioning them, and restrain ourselves here
to the matrix aspects of (§). As usual, however, we shall not scruple to
use these ideas to guide our analysis.
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12. Proof of Probabilistic Behavior. Let us now demonstrate that the
system of differential equations

B ot Yo w0 =6 i=L%.. N D
IS
where
620 Ye=1 (20)
a; >0 (2b)
i = s (2¢)
i

produces a set of functions satisfying the relations

)20 t2>0 (3a)
Z z(l) = 1 (3b)

tml

Let us demonstrate (3b) first. From (1) we have

4(T0) = (ot S -

i i s

=]

(4)

by virtue of (2¢). Hence, for all ¢,
Yo =Y a(0) =1 )

1]

To show that z; > 0, write (1) in the form

5 o) = o )
Foés
Since z; = 0 at ¢t = 0, this shows that the quantities % are monotone
increasing.

In place of following this procedure, we could use the easily established
fact that the solutions of (1) are the limits of the solutions of (11.3) as
A— 0. Hence, properties of the solutions of (11.3) valid for all A must
carry over to the solutions of (1). We recommend that the reader sup-
ply a rigorous proof.

13. Generalized Probabilities—Unitary Transformations. Any set of
non-negative quantities [z} satisfying the conditions

X 2 0 (la)
N
=1 (1v)

i=]
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can be considered to represent a set of probabilities, where z; is the proba~
bility that a system S is in state 7.
A set of transformations

z; = gi(x1, s . . . ,ZN) i=12...,N 2

which preserves the relations in (1) can then be considered to represent
the effects of certain physical transformations upon S.

The simplest such transformations are the linear, homogeneous
transformations

N
z; = z ;%5 (3)
5=
As we know, a necessary and sufficient condition that the relations in (1)
be preserved is that A = (a;) be a Markoff matrix.

Let us now consider a quadratic transformation. Let z be a complex
vector with components z; and let

z'=Tz 4)

where T is a unitary transformation. Then (z',7") = (z,%).
Hence, if we consider |z;|? |z2|% . . . , |z~|? to represent a set of proba-
bilities, we see that |z|%, |z3]%, . . ., |ry|? can also be considered to be

a set of probabilities.
We leave it to the reader to establish the relevant limit theorems for
the sequence {r(n)} defined recurrently by

z(n 4+ 1) = Tz(n) (5)

where T is unitary and (2(0),2(0)) = 1

14. Generalized Probabilities—Matrix Transformations. Let us now
generalize the concept of probabilities in the following fashion. If { X}
is a finite set of symmetric matrices satisfying the ¢onditions

X.>0 i=12...,N (1a)
N
Ztr (X)) =1 (1b)

i=]

we shall call them a set of probabilities. The condition X; > 0 here
signifies that X, is non-negative definite.
Consider the transformation

N
Yi= ) 4iX Ay i=12...,N 2)

i=1
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It is easy to establish the following analogue of the result concerning
Markoff matrices.

Theorem 3. A necessary and sufficient condition that the transformation
in (2) preserve the relations in (1) is that

N
ZAL'A"":I i=12...,N @)

tm1

Although analogues of the limit theorems established for the usual
Markoff transformations can be established for the transformations of
(2), the results are more difficult to establish, and we shall therefore
not discuss these matters any further here.

EXERCISES
n
1. Let M be a Markoff matrix. Consider a proof of the fact that lim My/n
A T

exists along the following lines. Using the Schur transformation, we can write

-

e bya biv
eits
M=T e Vi
Akt1
| O Ay _
where the 6; are real and I\} < 1,7 =k +1, . . . , N.

It suffices to consider the iterates of the triangular matrix. - To do this, consider
the system of equations

zi(n + 1) = etz (n) + bize(n) + - + < + biven(n)
za(n + 1) = eizy(n) + + -+ + banvan(n)

zvin + 1) = Avzn(n)

n=01,2.... Show that |zi(n)] S ey’ 0 <r <1, i=k+1,..., N.
Using the equation zi(n + 1) = eiszi(n) + yi(n), where [ya(n)| < car®, show that
n

lim zi(m)/n exists, Then continue inductively.

n—> ® m-o

2. Prove the stated result using the Jordan canonical form.
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MISCELLANEOUS EXERCISES
1. Consider the matrix
[ —Xo o N
m =+ o) M
ua —Mtu) M
A = :
s =Mt F pa1) M
L Bn =+ pa) ]
where the A; and u; are positive quantities.
Denote by ¢a()) the quantity |A™ + AI|. Show that

%(X) - (k + M+ Fn)d’n—'l(x) + xn—ll‘n'j’n—!(x) =0

forn 2 11 ¢_;(\) =1, ¢o(A) == X\ + Ao (W. Ledermann and G. E. Reuter).

2. Thus, or otherwise, show that the characteristic roots are A™ are distinct and
negative or zero, and separate those of A1 (W, Ledermann and G. E. Reuter).

8. In the notation of Exercise 27 of the Miscellaneous Exercises of Chap. 4, is
A®™ symmetrizable?

4. By a permutaiion mairiz P of order N, we mean a matrix possessing exactly one
nongero element of value one in each row and column. Show that there are N1
permutation matrices of order N.

6. Prove that the product of two permutation matrices is again a permutation
matrix, and likewise the inverse. What are the possible vaiues for the determinant
of a permutation matrix?

6. By a doubly stochastic matriz of order N we mean a matrix A whose elements
satisfy the following conditions:

(@) ai; 20
(b)Za.»,-sl i=12...,N
;

(c)Za.-,-=l j=1,2,...,N
s

Is the product of two doubly stochastic matrices doubly stochaatic?
7. Prove that any doubly stochastic matrix 4 may be written in the form

zw.-:al

r

A=Zw,P, r=12...,N w20
r

where {P,} is the set of permutation niatrices of order N. Tle result is due to
Birkhoff.!

Another proof, together with a number of applications to scheduling theory, may
be found in T. C. Koopmans and M. J. Beckman.?

1 G. Birkhoff, Tres observaciones sobre el algebra lineal, Rev. univ. nac. Tucumdn,
ser. A, vol. 5, pp. 147-151, 1946.

1 T. C. Koopmans and M. J. Beckman, Assignment Problems and the Location of
Economic Activities, Econometrica, vol. 25, pp. 53-76, 1957.
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For some further resuits concerning doubly stochastic matrices, see 8. Schreiber!
and L. Mirsky.

Mirsky’s paper contains a partieularly simple proof of the Birkhoff results cited
above and of an interesting connection between doubly stochastic matrices and the
theory of inequalities.

8. Let A be a 2 X 2 Markoff matrix. Show that A is a square of a Markoff
matrix if and only if a;, > a;..

9. Hence, show that if A is a square of a Markoff matrix, it can be written as the
27 power of a Markoff matrix forn =1,2, . .

10. From this, conclude that if A has a square root which is a Markoff matrix,
it has a root of every order which is a Markoff matrix.

11. From this, conclude that we can construct a family of Markoff matrices 4 (f)
with the property that A(s + ) = A(s)A(¢), for s, ¢ > 0, A(0) = I, and 4A(1) = A.

12. Using this result, or otherwise, show that A = ¢?, where B has the form

B = [_g: _g:] a, bl ?_0

18. If B is a matrix of the type described in Sec. 12, we know that ¢® is a Markoff
matrix. Let B, and B: be two matrices of this type and let 4, = ¢B1, A, = ¢82. s
A4, a matrix of this type?

14. Let A be a Markoff matrix of dimension N with the property that it has a
root of any order which is again a Markoff matrix. Let A, denote a particular 2°-th
root which is a Markoff matrix, and write A(l) = An,4a, . . . , when ¢ has the form
t =242 4 - .. where the sum is finite. Can we define A(¢) for0 <¢ <1
a8 a limit of values of A(f) for ¢ in the original set of values? If so, show that
A3 +1¢t) = A(8)A(t) for 0 < 8, t < 1. Define A(0) to be I. If the foregoing rela-
tion holds, does it follow that A(¢) is the solution of a differential equation of the form
dX/dt = BX, X(0) = I, where B is & matrix of the type occurring in Sec. 127

18. Let pi(n) = the probability of going from state a to state ¢ in n steps, and gi(n)
be similarly defined starting in state b. Consider the 2 X 2 determinant

oy = [P pi(n)
() \q.-(n) gi(n)

Prove that
dij(n) = zafraj.du(ﬂ -1

r.8

(Cf. the matrices formed in Sec. 14 of Chap. 12.)
16. Let ¢i;(n) = the probability of two particles going from Initial distinct states
a and b to states 7 and 7 at time n without ever being in the same state. Show that

¢i;(n) = zafraja¢ra(n -1

r.8

In these two exercises, a;; denotes the probability of going from state j to state i in
any particular move.

1 8. Schreiber, On a Result of 8. Sherman Concerning Doubly Stochastie Matrices,
Proc. Am. Math. Soc., vol. 9, pp. 350-353, 1953.

L. Mirsky, Proofs of Two Theorems on Doubly-stochastic Matrlces, Proc. Am.
Math. Soc., vol. 9, pp. 371-374, 1958,
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What is the connection between di;(n) and ¢,,(n)? See S. Karlin and J. Mac-
Gregor, Coincidence Probabilities, Stanford University Department of Statistics, Tech.
Rept. 8, 1958, for a detailed discussion.

17. Let M be a positive Markoff matrix and let the unique probability vector z
satisfying Mz = z be determined by the relation z = lim M"b where b is a proba-

n— o

bility vector. If we wish to use this result for numerical purposes, should we arrange
the calculation so as to obtain M™ first by use of My, = M, My = MM,, . . ., and
then Mab, or should we calculate M»b by way of z; = b, z; = Mz, . .. ? Which
procedure is more conducive to round-off error?

18. Suppose that n = 2¢ and we calculate M, = M, M, = M}, M, = M,?, ..
Which of the two procedures sketched above is more desirable?

19. What are necessary and sufficient conditions on a complex matrix A that AH
be a stability matrix whenever H is positive definite Hermitian? See Carlson! and
the interesting survey paper by O. Taussky.?
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Stochastic Mairices

1. Introduction. In this chapter we wish to discuss in very brief fash-
ion stochastic matrices and a way in which they enter into the study of
differential and difference equations. As we shall see, Xronecker prod-
ucts occur in a very natural fashion when we seek to determine the
moments of solutions of linear functional equations of the foregoing type
with random coefficients.

2. Limiting Behavior of Physical Systems. Consider, as usual, a
physical system 8, specified at any time ¢ by a vector z(¢). In previous
chapters, we considered the case in which z(¢ P A) was determined from
a knowledge of z(f) by means of a linear transformation

z(t + A) = I + Za)z() ¢))
and the limiting form of (1) in which A is taken to be an infinitesimal,

dx

Suppose that we now assume that Z is a stochastic matrix. By this
we mean that the elements of Z are stochastic variables whose distribu-
tions depend upon ¢ Since the concept of a continuous stochastic
process, and particularly that of the solution of a stochastic differential
equation, is one of great subtlety, with many pitfalls, we shall consider
only discrete processes. There is no difficulty, however, in applying the
formalism developed here, and the reader versed in these matters is
urged to do so.

Returning to (1), let us write z(kA) = zx to simplify the notation.
Then (1) may be written

ey = (I + ZpA)ze 3)

Since Z is a stochastic matrix, its value at any time becomes a function

of time, and we denote this fuct by writing Zx.
281




282 Introduction to Matrix Analysis
We see then that

n—1
zo=[I +2a)]x (4)
k=0
If A is small, we can write this
n—1
o= [1+a [l 2 + 09 ] 20 (5)
k=0

Hence, to terms in A%, we can regard the effect of repeated transfor-
mations as an additive effect. Additive stochastic processes have been
extensively treated in the theory of probability, and we shall in conge-
quence devote no further attention to them here. Instead, we shall
examine the problem of determining the limiting behavior of z, when
Z,A cannot be regarded as a small quantity.

Since this problem is one of great difficulty, we shall consider only the
question of the asymptotic behavior of the expected value of the kth
powers of the components of z, asn— o fork=1,2, . ...

8. Expected Values. To illustrate the ideas and techniques, it is
sufficient to consider the case where the z; are two-dimensional matrices
and the Z; are 2 X 2 matrices. Let us write out the relations of (3) in
terms of the components of zx, which we call u; and v for simplicity of
notation.

Then

U1 = 2ZnUx + 2120 (l)
Vep1 = ZalUx + Zoglk

We shall assume that the Z; are independent random matrices with a
common distribution. More difficult problems involving situations in
which the distribution of Z; depends upon the values assumed by Z;_,
will be discussed in a subsequent volume.

The assumption that the Z: are independent means that we can write

E'(u,,H) = euE'(uk) + 912E(”k) (2)
E(ey) = enE(w) + es9E (vi)

where E(w:) and E(2:) represent the expected values of u, and v, respec-
tively, and e;; is the expected value of 2.
We see then that

E(2i11) = E(Z2)E(n) = E(Z)* 20 @)

This means that the asymptotic behavior of E(z.) as n — « depends
upon the characteristic roots of E(Z).
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EXERCISE

1. Assume that with probability %4 Z is a positive Markofl matrix 4, and with
probability 14 a positive Markoff matrix B. Prove that E(z.) — y, a probability
vector independent of z,, assumed also to be a probability vector.

4. Expected Values of Squares. Suppose that we wish to determine
the expected values of u.? and v,>. From (3.1) we have

Urp1? = 2wl + 2enziguatn + 219%0%° 1
Ve1® = 2nfw? + 22020tk + 2g00?

We see then that in order to determine E(u?) and E(v:?) for all k we
must determine the values of E(uwi). From (3.1), we have

Uk 2Vky1 = 2nzaue’ + (211222 + 219200) Uatx + 2192990;° 2
Hence
E(uri1?) E(us?)
E(urywrr) | = E(Z™) | E(uive)
E(vesr?) E(v?)

where Z!% is the Kronecker square of Z = (z;;), as defined in Sec. 8 of
Chap. 12.

Observe how stochastic matrices introduce Kronecker products in a
very natural fashion.

MISCELLANEOUS EXERCISES

1. Show that E(ZI") arises from the problem of determining E(u:").

2. Show that the Kronecker square arises in the following fashion. Let Y be a
matrix, to be determined, possessing the property that E(z(n),Yz(n)) is readily
obtained. Determine Y by the condition that

E(Z'YZ) = \Y

What are the vajues of A?
8. If Z has the distribution of Exercise 1 of Sec. 3, do the sequences |E(u.?)],
{E(wa?) | converge? If so, to what?
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Positive Mairices, Perron’s Theorem,
and Mathematical Economics

1. Introduction. In this chapter, we propose to discuss a variety of
problems arising in the domain of mathematical economics which center
about the themes of linearity and positivity.

To begin our study, however, we shall study some simple branching
processes which arise both in the growth of biological entities and in the
generation of elementary particles, as in nuclear fission and cosmic-ray
cascades.

Oddly enough, the fundamental result concerning positive matrices
was established by Perron in connection with his investigation of the
multidimensional continued fraction expansions of Jacobi. His result
was then considerably extended by Frobenius in a series of papers.

Rather remarkably, a result which arose in number-theoretic research
now occupies a central position in mathematical economics, particularly
in connection with the ‘‘input-output” analysis of Leontieff. The
matrices arising in this study were first noted by Minkowski. This
result also plays an important role in the theory of branching processes.

What we present here is a very small and specialized part of the
modern theory of positive operators, just as the results for symmetric
matrices were principally special cases of results valid for Hermitian
operators.

Finally, at the end of the chapter, we shall touch quickly upon the
basic problem of linear programming and the connection with the theory
of games of Borel and von Neumann. In conclusion, we shall mention
some Markovian decision processes arising in the theory of dynamic
programming,

2. Some Simple Growth Processes. Let us consider the following
simple model of the growth of a set of biological objects. Suppose
that there are N different types, which we designate by the numbers
1,2, ..., N, and that at the times t =0, 1, 2, . . . , each of these

different types gives birth to a certain number of each of the other types.
286
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One case of some importance is that where there are only two types,
the normal species and the mutant species. Another case of interest is
that where we wish to determine the number of females in different age
groups. As each year goes by, females of age ¢ go over into females of
age 7 + 1, from time to time giving birth to a female of age zero. It is
rather essential to attempt to predict the age distribution by means of a
mathematical model since the actual data are usually difficult to obtain.

Let us introduce the quantities

a;; = the number of type ¢ derived at any stage from a single item of
types, 4, 7=1,2,...,N. (1)

As usual, we are primarily intercsted in growth processes whose
mechanism does not change over time.
The state of the system at time » is determined by the N quantities

z:(n) = the number of type ¢ at time n 2)
t=12 ...,N. Wethen have the relations
N
zin + 1) = z a;jx;(n) i=1,2 ...,N 3)
i=1

where the relations 2;(0) = ¢;, 7 =1, 2, ..., N, determine the initial
state of the system.,

The problem we would like to solve is that of determining the behavior
of the components z,(n) as n — «. This depends upon the nature of the
characteristic roots of A = (ay;), and, in particular, upon those of greatest
absolute value.

As we know from our discussion of Markoff matrices, this problem is
one of great complexity. We suspect, however, that the problems may
be quite simple in the special case where all the a;; are positive, and this is
indeed the case.

3. Notation. As in Chap. 14, we shall call a matrix positive if all of its
elements are positive. If A is positive, we shall write A > 0. The
notation A > B is equivalent to the statement that A — B > 0. Simi-
larly, we may conceive of non-negative matrices, denoted by 4 > 0.

This notation definitely conflicts with previous notation used in our
discussion of positive definite matrices. At this point, we have the
option of proceeding with caution, making sure that we are never dis-
cussing both types of matrices at the same time, or of introducing a new
notation, such as A > > B, or something equally barbarous. Of the
alternatives, we prefer the one that uses the simpler notation, but which
requires that the reader keep in mind what is being discussed, This is,
after all, the more desirable situation.
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A vector z will be called posttive if all of its components are positive,
and non-negative if the components are merely non-negative. We shall
write z > 0, and z > 0 in the second. The relation z > y is equivalent
toz—y 20.

EXERCISES

1, Show that z > y, 4 > 0, imply that Azx > Ay.
2. Prove that Az > Ofor all z > 0 implies A > 0.

4, The Theorem of Perron, Let us now state the fundamental result
of Perron.

Theorem 1. If A s a positive mairiz, there is a unique characteristic
root of A, M(A), which has greatest absolute value. This root is positive and
simple, and 1ts assoctated characteristic vector may be taken to be positive.

There are many proofs of this result, of quite diverse origin, structure,
and analytical level. The.proof we shall give is in some ways the most
important since it provides a variational formulation for A(A4) which
makes many of its properties immediate, and, in addition, can be extended
to handle more general operators.

6. Proof of Theorem 1. Our proof of Theorem 1 will be given in the
course of demonstrating Theorem 2.

Theorem 2. Let A be a positive mairiz and let A\(A) be defined as above.
Let S(\) be the set of non-negalive N for which there exist non-negative vec-
tors x such that Az > M\x. Let T(\) be the set of positive \ for which there
exist postiive vectors x such that Az < \x. Then

A(4)

max A AeS(A)
= min A AeT(N) (1)

Proof of Theorem 2. Let us begin by normalizing all the vectors we
shall consider, so that
N

lell = ) = =1 (@)

i=1
This automatically excludes the null vector. Let us once more set
N
14| = z ;. If \r < Az, we have
ijml
Mzl <
or 0<x< 4] 3)

This shows that S(A) is a bounded set, which is clearly not empty if A is
positive.
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Let Ao = Sup A for AeS(A); let {A:} be a sequence of As in S(A) con-
verging to Ao; and let {x¥} be an associated set of vectors, which is to say

Az < Az §=1,2, ... (4)

Since ||z®| = 1, we may choose a subsequence of the z®, say {z%}
which converges to z, a non-negative, nontrivial vector. Since
Aoz® < Az it follows that AeS(A), which means that the supremum
is actually & maximum.

Let us now demonstrate that the inequality is actually an equality,
that is, Az® = Az, The proof is by contradiction. Let us suppose,
without loss of generality, that

N
z ayr; — Aoz = d1 >0
¥ (5)
Y awri— M@ 20 k=2...,N
jel
where z;, ¢ = 1,2, . , ., N are the components of z®,
Consider now the vector

"d, /2o |
0

yr® 4| (6)

| o
It follows from (5) that Ay > \ey. This, however, contradicts the maxi-
mum property of Ao, Hence d, = 0, and there must be equality in all the
terms in (5).

Consequently \q is a characteristic root of A and z(9 a characteristic
vector which is necessarily positive.

Let us now show that A = A(A). Assume that there exists a charac-
teristic root A of A for which |A| 2> Ao, with z an associated characteristic
vector. Then from Az = \z we have

Al 2] < Alel o

where |z| denotes the vector whose components are the absolute values
of the components of z. It follows from this last inequality and the defi-
nition of Ao, that |A| < Xe. Since |\| = \,, the argument above shows that
the inequality |A| |2| < Alz] must be an equality. Hence |Az| = Alz|;
and thus 2 = ¢)w, with w > 0 and ¢, a complex number. Consequently,
Az = Mz is equivalent to Aw = \w; whence ) is real and positive and
hence equal to Ao
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To show that w is equivalent to z©®, let us show that apart from scalar
multiples there is only one characteristic vector associated with Ao. Let
2 be another characteristic vector of A, not necessarily positive, associ-
ated with A(A). Then z'® + ez, for all scalar ¢, is a characteristic vector
of A. Varying ¢ about ¢ = 0, we reach a first value of ¢ for which one or
several components of z(® - ez are zero, with the remaining components
positive, provided that 2 and z are actually linearly independent. How-
ever, the relation

A@E® 4 e2) = AMA) @O + e2) 8)

shows that 2(® 4 ez > 0 implies 2 + ez > 0. Thus a contradiction.

EXERCISES

1. Show that A > B > 0 implies that A(4) > A(B).
2. Show by means of 2 X 2 matrices that A(AB) < A(A)A(B) is not universally
valid.

6. First Proof that A(4) Is Simple. Let us now turn to the proof that
A(A) is a simple characteristic root. We shall give two demonstrations,
one based upon the Jordan canonical form and the other upon more
elementary considerations.

Assume that A(4) is not a simple root. The Jordan canonical form
shows that there exists a vector y with the property that

(A-MA)Dry=0 (4A-MAHH-ly#=0 1)

for'some k > 2.

This means that (4 — A(A)I)*'y is a characteristic vector of A and
hence a scalar multiple of z(®. By suitable choice of y we may take this
multiple to be one. Hence

r® = (4 — MA)I)Yy 2)
Now let
z=(4 — \NA)I)% 3)
Then
Az = MA)z + 2 > A(A)2 4)

This yields A|z| > A(A4)|z|, which contradicts the maximum definition of
AA).

(7. Second Proof of the Simplicity of A(4). Let us now present an
alternate proof of the simplicity of A(A) based upon the minimum
property.

We begin by proving the following lemma.

Lemma. Let Ay be a positive N X N matriz (ay), and An_, any

(N — 1) X (N — 1) matriz obtained by striking out an ith row and jth
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column. Then
A(Awn) > MAro) n

Proof. Let us proceed by contradiction. Write
Ay = X(AN) Ay = 7\(AN_1)

Assume for the moment that Ay < Ay_,, and take, without loss of

generality, Ay, = (a,), 1,7 =1,2,...,N — 1. We have then the
equations
N-1
Y ey =y i=1,2 ... N-1Ly>0 @)
N
and z air; = ANZ, i=12 ... ,Nz2,>0 3)
j=1

Using the first N — 1 equations in (3), we obtain
N-1
El Q%5 = ANT — GNTN
=

= M(z: — aiven/Mv) < Anz: (4)

which contradicts the minimum property of Ay-1.

Let us now apply this result to show that A(A4) is a simple root of
fQ\) =14 — AI| = 0. Using the rule for differentiating a determinant,
we obtain readily

F'O) = —|A; = M| — |Az = M| - - - — |Ay — M| (5)

where by A, we denote the matrix obtained from A by striking out the
kth row and column. Since A(A) > A(A:) for each %, and each expres-
sion |Ax — M| is a polynomial in A with the same leading term, each poly-
nomial |4, — M| has the same sign at A = A(4). Hence, f'(A(4)) = 0.

8. Proof of the Minimum Property of A(4). We have given above a
proof of the maximum property of A(A), and used, in what has preceded,
the minimum property. Let us now present a proof of the minimum
property which uses the maximum property rather than just repeating
the steps already given. The technique we shall employ, that of using
the adjoint operator, is one of the most important and useful in analysis,
and one we have already met in the discussion of Markoff matrices.

Let A’ be, as usual, the transpose of A. Since the characteristic
roots of A and A’ are the same, we have A(4) = A(4’). As we know,
(Az,y) = (z,A'y). If Ay < Ay for some y > 0, we have for any z > 0,

Mzyy) 2 (z,4y) = (A'zy) (1)
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Let 2 be a characteristic vector of A’ associated with A(4). Then
Mzy) 2 (A'2y) = MA)(zy) (2)

Since (z,y) > 0, we obtain A > A(4). This completes the proof of the
minimum property.
9. An Equivalent Definition of A(4). In place of the definition of A(4)
given in Theorem 1 above, we may also define A\(4) as follows.
Theorem 3

N
max min { z a.-,zv,-/x.-}

AA) =
z LT
= n;in max { ,Zl a.-,-x,-/x.-} (1)

Here x varies over all non-negative vectors different from zero.

The proof we leave as an exercise.

10. A Limit Theorem. From Theorem 1, we also derive the following
important result.

Theorem 4, Let ¢ be any non-negative vector. Then

v = lim Anc/A(A)"
n— %

exisls and ¢s a characteristic vector of A associated with N(A), unique up to
a scalar multiple determined by the chotice of ¢, but otherwise independent of
the initial state c.

This is an extension of the corresponding result proved in Chap. 14
for the special case of Markoff matrices.

EXERCISE

1. Obtain the foregoing result from the special case established for Markoff matrices.

11. Steady-state Growth. Let us now see what the Perron theorem
predicts for the asymptotic behavior of the growth process discussed in
Sec. 2. We shall suppose that A = (a;;) is a positive matrix.

Then, as n — «, the asymptotic behavior of the vector z(n), defined
by the equation in (3), is given by the relation

z(n) ~ Any (1)

where )\ is the Perron root and ¥ is a characteristic vector associated
with \. We know that ¥ is positive, and that it is a positive multiple
of one particular normalized characteristic vector, say 8. This normali-
zation can be taken to be the condition that the sum of the components
totals one. The constant of proportionality connecting ¥ and § is then
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determined by the values of the initial components of ¢, ¢;, the initial
population.

What this means is that regardless of the initial population, as long as
we have the complete mixing afforded by a positive matrix, asymptoti-
cally as time increases we approach a steady-state situation in which the
total population grows exponentially, but where the proportions of the
various species remain constant.

As we shall see, the same phenomena are predicted by the linear models
of economic systems we shall discuss subsequently.

12. Continuous Growth Processes. Returning to the mathematical
model formulated in Sec. 2, let us suppose that the time intervals at
which the system is observed get closer and closer together. The limiting
case will be a continuous growth process.

Let

a;A = the number of type ¢ produced by a single item of type 7
in a time interval A, j # ¢
1 4+ a;A = the number of type ¢ produced by a single item of type ¢ 0
in a time interval A
i=12 ..., N

Then, we have, as above, the equations

2l + A) = (1 + asl)a(l) + A Z () i=1,2...,N @
ywei
Observe that the a;; are now rates of production. Proceeding formally to
the limit as A — 0, we obtain the differential equations
d-zxt—i=ai,~x;+2a,»,~x,~ i=1,2...,N )

JH{

We can now define the continuous growth process by means of these
equations, with the proviso that this will be meaningful if and only if
we can show that this process is in some sense the limit of the discrete
process.

The asymptotic behavior of the z:(f) as t —» « is now determined by
the characteristic roots of A of largest real part.

13. Analogue of Perron Theorem. Let us now demonstrate Theorem 5.

Theorem b. If

a; >0 1] (1)
then the root of A with largest real part, which we shall call p(A), 78 real and

stimple. There is an assoctaled posilive characteristic vector which s unique
up to a mulliplicative constanl.
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Furthermore,
p(A) = max min { a.-,a:,/xf}
Ed | 3

H

=z V=

= min max { z a;;x,/x,-} @
z s =1
Proof. The easiest way to establish this result is to derive it as a
limiting case of Perron’s theorem. Let p(A) denote a characteristic root
of largest real part. It is clear that a root of €4 of largest absolute value
is given by
)\(e“) — esp(A) (3)

for § > 0. Since €*4 is a positive matrix under our assumptions, as fol-
lows from Sec. 15 of Chap. 10, it follows that p(4) is real and positive,
and simple.

Using the variational characterization for A(¢*4), we have

N
e = max min (1 + 4 z a.'jx;'/x-') + 0(8%) 4)

Jje=1

Letting 6§ — 0, we obtain the desired representation.

EXERCISES

1. If B > 0, and 4 is as above, show that p(4 + B) 2 p(4).
2. Derive Theorem 5 directly from Perron’s theorem for s/ 4 A, where s has been
chosen so0 that s/ + A is a positive matrix,

14. Nuclear Fission. The same type of matrix arises in connection
with some simple models of nuclear fission. Here the N types of objects
may be different types of elementary particles, or the same particle, say
a neutron, in N different energy states.

References to extensive work in this field will be found at the end of
the chapter.

16. Mathematical Economics. As a simple model of an economic
system, let us suppose that we have N different industries, the operation
of which is dependent upon the state of the other industries. Assuming
for the moment that the state of the system at each of the discrete times
n=40,1, ..., can be specified by a vector z(n), where the 7th com-
ponent, z¢(n), in some fashion describes the state of the 7th industry, the
statement concerning interrelation of the industries translates into a sys-
tem of recurrence relations, or difference equations, of the following type:

xt‘(n + 1) = yf(xl("),xz(”), e lxN(n)) (l)
with 2,(0) = ¢;,2=1,2,...,N.
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This is, however, much too vague a formulation. In order to see how
relations of this type actually arise, let us consider a simple model of
three interdependent industries, which we shall call for identification
purposes the ‘“auto’ industry, the ‘‘steel” industry, and the ‘‘tool”
industry.

Using the same type of ‘“lumped-constant’’ approach that has been so
successful in the study of electric circuits, we shall suppose that each of
these industries can be specified at any time by its stockpile of raw material
and by its capacity to produce new quantities using the raw materials
available.

Let us introduce the following state variables:

z1(n) = number of autos produced up to time n

z2(n) = capacity of auto factories at time n

z3(n) = stockpile of steel at time n @)
z4(n) = capacity of steel mills at time n

zy(n) = stockpile of tools at time n

z¢(n) = capacity of tool factories at time n

In order to obtain relations connecting the x,(n 4+ 1) with the z:(n),
we must make some assumptions concerning the economic interdepend-
ence of the three industries:

To increase auto, steel, or tool capacity, we require only

steel and tools. (3a)
Production of autos requires only auto capacity and steel.  (3b)
Production of steel requires only steel capacity. (3c)

Production of tools requires only tool capacity and steel.  (3d)

The dynamics of the production process are the following: At the
beginning of a time period, n to n 4+ 1, quantities of steel and tools,
taken from their respective stockpiles, are allocated to the production of
additional steel, tuols, and autos, and to increasing existing capacities for
production.

Let
zi(n) = the amount of steel allocated at time n for the purpose of
increasing z.(n) 1=1,2...,6 4)
w;(n) = the amount of tools allocated at time n for the purpose of
increasing x,(n) i=12...,6

Referring to the assumptions in (3), we see that

z3(n) = 0 (5a)
wi(n) = wy(n) = ws(n) = 0 (5b)
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In order to obtain relations connecting z(n + 1) with the z;(n) and
z;(n) and w;(n), we must make some further assumptions concerning the
relation between input and output. The simplest assumption is that we
have a linear production process where the output of a product is directly
proportional to input in shortest supply. Thus production is propor-
tional to capacity whenever there is no constraint on raw materials, and
proportional to the minimum raw material required whenever there is
no limit to capacity.

Processes of this type are called “bottleneck processes.”

To obtain the equations describing the process, we use the principle of
conservation. The quantity of an item at time n + 1 is the quantity at
time n, less what has been used over [n, n 4+ 1], plus what has been pro-
duced over [n, n + 1].

The constraints on the choice of the z; and w; are that we cannot
allocate at any stage more than is available in the stockpiles, and fur-
ther, that there is no point to allocating more raw materials than the
productive capacity can accommodate.

The conservation equations are then, taking account of the bottleneck
aspects,

ri(n + 1) = z1(n) + min (y172(n),012:(n))
za(n + 1) = z5(n) + min (asz:(n),8sws(n))
za(n + 1) = z3(n) — 21(n) — 2:(n) — 24(n)
= 25(n) — z¢(n) + vaxa(n) (6)
z(n + 1) = z4(n) + min (aez4(n),Bawi(n))
zs(n 4+ 1) = zi(n) — wo(n) — wi(n) — we(n) + min [ysze(n),aszs(n))
ze(n + 1) = ze(n) + min (aeze(n),Bews(n))

where a;, 8;, v; are constants.
The stockpile constraints on the choice of the z; and w; are

z, w20 (7a)
st 22t 2+ 2+ 2 < 23 (7b)
W, + Wi + we < s (7¢)

Applying the capacity constraints, we can reduce the equations in (5)
to linear form. We see that

azy = BaWy (8a)
a4 = By (Sb)
Beze = BeWWs (8¢c)

Using these relations, we can eliminate the w; from (7) and obtain the
linear equations
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ziln + 1) = z:(n) + az21(n),2:(0) = &1

Ta(n + 1) = z2(n) + ases(n),r2(0) = c2

z3(n + 1) = 23(n) — z2:(n) — 2:(n) — 24(n) — 2s(n)

— 2¢(n) + v224(n),23(0) = ca (9)

za(n + 1) = 24(n) + ai(n),z0) = ca

zs(n + 1) = 25(n) — ez2(n) — e@i(n) — esze(n)

+ asze(n) & = ai/B, zs(0) = ¢s

Te(n + 1) = ze(n) + asze(n),z6(0) = co

The constraints on the choice of the z; are now

%20 (10a)

syt 2zt a2zttt (100)
Y22 + YR + Yoz < Ts (10c)

21 S fm (lOd)

25 < foTs (10¢)

Suppose that we satisfy these conditions by means of a choice
2y = €T 20 = €42 2¢ = €¢Tp (11)
where the scalars ¢;, ¢,, and e, are chosen to satisfy (10c¢).
2, = fux, 25 = fexe (12)

and suppose that (10b) is satisfied.
Then the foregoing equations have the form

mn+ 1) = (1= adum) + ) am@)  i=1,2...,6 (13
]
where
auZO i,j=l,...,6 (14)
The continuous version of these equations is
dil:,' .
g = W + Q5 i=12 ...,6 (15)
i

What we have wished to emphasize is that a detailed discussion of the
economic model shows that a special type of matrix, sometimes called
an ‘‘input-output’” matrix, plays a paramount role. Unfortunately, in
the most interesting and important cases we cannot replace (14) by the
stronger condition of positivity.

The result is that the study of the asymptotic behavior of the z,(n) as
given by a linear recurrence relation of the form appearing in (13) is
quite complex. References to a great deal of research will be found at
the end of the chapter.
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16. Minkowski-Leontieff Matrices. Let us now discuss a particular
class of non-negative matrices specified by the conditions

0<a; (la)

N
Y as<1 (18)
tm]
They arise in connection with the solution of linear equations of the form
N
x.-=2a.-,~x,-+y.- 1:=l,2,...,N (2)
i=1
which occur in the treatment of models of interindustry production
processes quite similar to that formulated above. Let us demonstrate
Theorem 6.
Theorem 8. If0 < ai; and
N
Za.-,-<l j=12...,N 3)
T=1
then the equations tn (2) have a unique solution which is positive if the y; are
posilive,

If a;; > 0, then (I — A)~' is positive.

Proof. Toshow that (I — A)~!lis a positive matrix under the assump-
tion that a; > 0, it is sufficient to show that its transpose is positive,
which is to say that (I — A’)~!is positive. Consider then the adjoint
system of equations

N
z.-=2a,-.-z,+w,- i=1,2 ..., N (4)
i=1

It is easy to see that the solution obtained by direct iteration con-
verges, in view of the condition in (3), and that this solution is positive if
w; >0for7z=1,2,...,N.

The assumption that a; > 0 shows that z; is positive whenever w is a
nontrivial non-negative vector.

The fact that (I — A)~! exists and is positive establishes the first part
of the theorem.

17. Positivity of |[I — A|. Since the linear system in (16.2) has a
unique solution for all y; under the stated conditions, it follows that
|[I — A| # 0. To show that |[I — A| > 0, let us use the method of
continuity as in Sec. 4 of Chap. 4. If A > 0, the matrix A A satisfies
the same conditions as A. Thus | — AA| is nonzero for 0 < A < 1.
Since the determinant is positive at A = 0 and continuous in }, it is
positive at A = 1.
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N
18, Strengthening of Theorem 6. It is clear that if Z a; = 1 for all

t=1
j, then 1 is a characteristic root of A, whence | — A] = 0. On the
other hand, it is reasonable to suppose that the condition Za.-j < 1 can
be relaxed.
It suffices to assume that

1>a;>0 (1a)
Z a; < 1 for at least one j (1d)
Z a; < 1 for all j (1¢)

3

To prove this, we show that A? is & matrix for which (1b) holds for
all j.

19. Linear Programming. In the first part of this book, we considered
the problem of maximizing quadratic forms subject to quadratic con-
straints, and the problem of maximizing quadratic forms subject to linear
constraints. We have, however, carefully avoided any questions involv-
ing the maximization of linear forms subjeet to linear constraints.

A typical problem of this type would require the maximization of

N
L(z) = z it (1)
i=1
subject to constraints of the form
N
a;z; < b, i=12 ..., M (2a)
i=

The reader will speedily find that none of the techniques discussed in
the first part of the book, devoted to quadratic forms, are of any avail
here. Questions of this type are indeed part of a new domain, the theory
of linear inequalities, which plays an important role in many investiga-
tions, The theorem of Perron, established above, is closely related, as
far as result and method of proof, to various parts of this theory.

In addition to establishing results concerning the existence and nature
of solutions of the problem posed above, it is important to develop vari-
ous algorithms for numerical solution of this problem. This part of the
general theory of linear inequalities is called linear programming.
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Let us now present a very simple example of the way problems of this
type arise in mathematical economics. Suppose that we possess quanti-
ties zy, z2, . . . , za of M different resources, e.g., men, machines, and
money, and that we can utilize various amounts of these resources in
connection with N different aetivities, e.g., drilling for ail, building auto-
mobiles, and so on.

Let

z;; = the quantity of the sth resource alloeated to the jth activity (3)
so that
T = ¢ ’l:=l,2,...,M (4a)

;>0 (4b)

Suppose, and this is usually a erude approximation, that the utility of
allocating z;; is determined by simple proportionality, which is to say that
the utility is ax;;. Making the further assumption that these utilities
are additive, we arrive at the problem of maximizing the linear form

L) = ) oy (5)
43
subject to the constraints of (2).

As another example of the way in which these linear variational prob-
lems arise in mathematical economics, consider the model presented in
Sec. 15. In place of assigning the quantities z; and w; as we did there,
we can ask for the values of those quantities which maximize the total
output of steel over N stages of the process.

20. The Theory of Games. Suppose that two players, A and B, are
engaged in a game of the following simple type. The first player can
make any of M different moves and the second player can make any of
N different moves. If A makes the 7th move and B the jth move,
A receives the quantity a; and B receives — ay;.

The matrix

A = (ay) (1)
is called the payoff matrix.

We now require that both players make their choices of moves simul-
taneously, without knowledge of the other's move. An umpire then
examines both moves and determines the amounts received by the players
according to the rule stated above.

Suppose that this situation is repeated over and over. In general, it
will not be advantageous for cither player to make the same choice at
each play of the game. To guard himself against his opponent taking
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advantage of any advance information, each player will randomize over
choices.

Let
z; = probability that A makes the ith choice,7 =1,2, ..., M @)
y; = probability that B makes the jth choice,j = 1,2, . . . | N

Then the expected quantity received by A after any particular play is

Jy) = zaijx-‘yi 3)

¥

The problem is to determine how the z; and y; should be chosen.

A can reason in the following way: “Suppose that B knew my choice.
Then he would choose the y; so as to minimize f(z,y). Consequently,
I will choose the z; 80 as to maximize.”” Proceeding in this fashion, the
expected return to A will be

v4 = max min f(z,y) 4)

where the = and y regions are defined by

x4 20 (5a)

Y= Yu=1 (5b)

Similarly, B can guarantee that he cannot lose more than

vs = min max f(z,y) (6)

The fundamental result of the theory of games is that »4 = v5. This
is the min-mazx theorem of von Neumann,

What is quite remarkable is that it can be shown that these problems
and the problems arising in the theory of linear inequalities, as described
in Sec. 19, are mathematically equivalent. This equivalence turns out
to be an analytic translation of the duality inherent in N-dimensional
Euclidean geometry.

21. A Markovian Decision Process. Let us now discuss some problems
that arise in the theory of dynamic programming.

Consider a physical system S which at any of the timest =0,1, . . . ,
must be in one of the states 81, S;, . . . , Sv. Let

N

z;(n) = the probability that § is in state S; at timen,7=1,2, . . .,
(1)
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For each ¢, which represents a vector variable, let
M(g) = (mi(q) )

represent a Markoff matrix.

Instead of supposing, as in an ordinary Markoff process, that the proba-
bility distribution at time n is determined by M (g)*z(0), for some fixed g,
we shall suppose that g can change from stage to stage. Specifically, we
shall suppose that this process is being supervised by someone who wants
to maximize the probability that the system is in state 1 at any particular
time.

In place of the usual equations, we obtain the relations

=1 (3)
rin + 1) = Z mi;(q*)zi(n)

i=1

N
zin + 1) = max ) mi(@)zn)
e
N

where g¢* is a value of ¢ which maximizes the expression on the first line.
We leave to the reader the quite interesting problem of determining
simple conditions under which a ‘“steady-state’ or equilibrium solution
exists, In Sec. 22, we shall discuss a more general system.
22. An Economic Model. Suppose that we have N different types of
resources, Let

z;(n) = the quantity of the ith resource at time n (1)

Suppose that, as in the foregoing pages, the following linear relations
exist:

N
2 +1) = ) as(@znn) @)

where ¢ is & vector parameter, as before. If A(g) is a positive matrix,
the Perron theorem determines the asymptotic behavior of the system.

Assume, however, as in Sec. 21, that the process is supervised by some-
one who wishes to maximize each quantity of resource at each time.
The new relations are then

N
zn +1) =max ) ay@u(n) i=1,2...,N @3
q

i=1

The following generalization of the Perron theorem can then be obtained.
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Theorem 7. If q runs over a set of values (qi,q2, . . . ,qu) which allow

the mazimum to be obtained in (3) (4a)
0<m < ay(g) <my < o (4d)
max M A(q)) exists and is altained for a g; (4¢c)

e
then there exists a unique positive N such that the homogeneous system

N
Ny = max ) ay(Q)y (5)
¢ ;=1

has a positive solution y; > 0. This solution is unique up to a multipli-
cative constant and

A = max MA(g) (6)
Q
Furthermore, as n — o,

z,(n) ~ ay\" )

where a, depends on the initial values.
The proof may be found in references cited at the end of the chapter.

MISCELLANEOUS EXERCISES

1. Let A = (a:;) be a non-negative matrix. A necessary and sufficient condition
that all characteristic roots of A be less than 1 in absolute value is that all the principal
minors of J — A be positive (Melzler).

2. If A has all negative diagonal elements, and no negative off-diagonal elements,
if D is a diagonal matrix, and if the real parts of the characteristic roots of both A and
DA are negative, then the diagonal elements of D are positive (K. D. Arrow and A. C.

Enthoven).
8. Consider a matrix Z(t) = (z:;(1)), where the z;; possess the following properties:

(@) 2:;; >0
) fow z;;dt > 1 for some ¢

o«
() /0 zije~e dt < « for somea >0
Then there is a positive vector z and a positive number s, for which

(/w Ze~st dl)x =z
1]

I - fou Zeet di ‘ = 0 with greatest real part, and it is

Furthermore, g, is the root of
a simple root (Bohnenblust); see R. Bellman.!

4. Let A = (a;;), and s8; = |aii| — Z laij|. If 8, >0, 1 <47 <N, then, as we

g

already know, A1 = (b;;) exists, and, furthermore, |b;,| < 1/s; (Ky Fan).

1R, Bellman, A Survey of the Mathematical Theory of Time-lay, Relarded Control,
and Hereditary Processes, with the assistance of J. M. Danskin, Jr., The RAND
Corporation, Rept. R-256, March 1, 1954,
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5. A real matrix A = (a;;) is said to be mazimum increasing if the relation

N
max z; < max Za;,x,
1<IKN 1SiSN &,

holds for any N real numbers z;. Prove that A is maximum increasing if and only if
A™1 = (by;) with

(@) b; 20
N
®) Zb.-,-=l 1<i<N
J=1
(Ky Fan)
8. Let the z; be positive, and f(zy,22, . . . ,2zn), g(21,22, . . . ,Zn) denote, respec-
tively, the least and greatest of the N + 1 quantities z;, £3 + 1/2s, zs + 1/zs, . . .,
zv + 1/zn-yy, 1/2x. Prove that
max f(zyzz, . . . ,2¥) = min g(21,2, . . . ,z¥) = 2 co8 (r/N + 2)
zi>0 zi>0
(Ky Fan)

7. Let a > 0. For any arbitrary partition 0 = {o < {; < + + - < iy =1 of [0,1]
N

into N subintervals, the approximate Riemann sum Z i ~ Lia)/(s + &) to
=1
1
/0 dt/(a + t) always contains a term > [1 — (a/a + 1)]V/V as well as a term less
than this quantity (Ky Fan).
8. Let A be a matrixof the forma;; < 0,7 # j,a;; + Z a;=037=12 ...,N.
j
If A is a characteristic root, then either A = 0 or Re (\) < 0 (A. Brauer-0. Taussky).
N

9. Ifu; 20, ai; 20,7 3, Z ai; = a;; then

i=1]
ant+u  —an - —aw
—ann G +uz - - —a:N
Dn(u) = ) >0
—ani. —anx: - - any + ux

(Minkowsks)

10. Ifa;; > 0,¢ £ j,and b; > Z ai;, then all cofactors of

i
b —a v TN
~—@z21 b L 11
Dy =
—aN1 —ay: .. bn

are non-negative (W. Ledermann).
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11. A real matrix X for which z >\Z |zis] is called an Hadamard matriz. Let

3 ¥
A and B both be Hadamard matrices. Then |A + B| 2 |A| + |B| (E. V. Hayns-
worth).! See also A. Ostrowski.?
Hadamard matrices play an important role in computational analysis.
Matrices of this nature, and of more general type, the dominant matrices, enter in
the study of n-part networks. See

P. Slepian and L. Weinberg, Synthests Applications of Paramount and Dominant
Matrices, Hughes Research Laboratories, 1958.

R. S. Burington, On the Equivalence of Quadrics in m-affine n-space and Its
Relation to the Equivalence of 2m-pole Networks, Trans. Am. Math. Soc.,
vol. 38, pp. 163176, 1935.

R. S. Burington, R-matrices and Equivalent Networks, I, J. Math. and Phys.,
vol. 16, pp. 856-103, 1937.

13, If laij) < mlal, § <4,i=1,2, ... ,N,]a] < Mlaul,j >4,i=1,2 ...,
N — 1, then A is nonsingular if m/(1 +m)¥ <M1 + M)¥, and m < M. If
m = M, then m < 1/(N — 1) is sufficient (A. Ostrowski).?

18. An M matrix is defined to be a real matrix A such that a;; < 0, ¢ » j, possess-
ing one of the following three equivalent properties:

(@) There exist N positive numbers z; such that

N
a;;z; >0 i=12...,N
j=1

(b) A is nonsingular and all eleinents of A~! are non-negative
(¢) All principal minors of A are positive.

M matrices were first introduced by Ostrowski.* See also E. V. Haynsworth,
Note on Bounds for Certain Determinants, Duke Math. J., vol. 24, pp. 313-320, 1957,
and by the same author, Bounds for Determinants with Dominant Main Diagonal,
Duke Math. J., vol. 20, pp. 199-209, 1953, where other references may be found.

14. Let 4 and B be two positive matrices of ordet N, with AB = BA, and ca given
positive N-dimensional vector. Consider the vector zxv = ZnZn_1 + + - Z:Zic,
where each Z; is either an A ora B. Suppose that the Z; are to be chosen to maximize
the inner product (zx,b) where b is a fixed vector. Define the function

= b
fu(© n[\;:; (zwn,b)

Then
fi(e) = max ((Ac,d),(Be,b))
fn(e) = max (fn-1(Ac),fx1(Be)) N=23,...

1E, V. Haynsworth, Bounds for Determinants with Dominant Main Diagonal,
Duke Math. J., vol. 20, pp. 199-209, 1953.

2 A. Ostrowski, Note on Bounds for Some Determinants, Duke Math. J., vol. 22,
pp. 95-102, 1955.

A. Ostrowski, Uber die Determinaten mit iiberwiegender Haupt-Diagonale, Com-
ment. Math. Helveticit, vol. 10, pp. 69-96, 1937-1938.

* A, Ostrowski, On Nearly Triangular Matrices, J. Research Nail. Bur. Standards,
vol. 52, pp. 319-345, 1954.

¢ A, Ostrowski, Comment. Math. Helveticii, vol. 30, pp. 175-210, 1956; 1bid., vol. 10,
pp. 69-96, 1937,
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16. Does there exist a scalar A such that fy(c) ~ ANg(c)?

16. Consider the corresponding problem for the case where we wish to maximize the
Perron root of ZnZy_, - - - Z.Z,.

17. Let 4 be a positive matrix. There exist two positive diagonal matrices, D; and
D,, such that DA D; is doubly stochastic (Sinkkorn; see Menon?).

18. Let A be a non-negative matrix. When does there exist a positive diagonal
matrix such that DAD™1 is positive and symmetric? (The question arose in some
work by Pimbley in neutron transport thcory. See Parter,? Parter and Youngs,?
and Hearon.4)

19. Let A be a non-negative matrix, and let P(4) be the finitc set of non-negative
matrices obtained from 4 by permuting its elements arbitrarily. Let B C P(4).

(a) What are the maxima and minima of tr (B?)?
(b) What are the maximum and minimum values of the Perron root of B?
(B. Schwarz, Rearrangements of Square Matrices with Nonnegalive Elements,
University of Wisconsin, MRC Report #282, 1961.)
20. Let A be a positive matrix. Prove that the Perron root satisfies the inequalities

max {max a,;, (N — 1) min a,; + min ai;)] < A(A4) £ (N — 1) max ai; + max ay
i i $ i4j i

(Szender)
21. Consider the differential equation z’ = Q({)z, 0 < (¢ < {o, where ¢i;({) 2 0O,
15 If

‘[: 'ﬁ(tl) dll - o

as 8 — 0, where y(t) = inf [gi;¢;:I’%, then the equation has a positive solution, unique
)

up to a constant factor. (G. Birkhoff and L. Kotin, Linear Second-order Differential
Equations of Posilive Type, J. Analyse Math., vol. 18, pp. 43-52, 1967.)

22. Consider the matrix product C = A - B where ¢;; = —aibij, ¢ # J, cis = @isbus.
Show that if 4 and B are M matrices (see Exercise 13), then C is an M matrix. For
many further deeper results concerning this matrix product introduced by Ky Fan,
see Ky Fan, Inequalities for M-matrices, Indag. Math., vol. 26, pp. 602-610, 1944.
M matrices play an important role in the study of iterative methods for solving sys-
tems of linear equations, and in the numerical solution of elliptic partial differential
equations using difference methods; see Ostrowskis and Varga.¢

The Fan product is analogous to the Schur product (ci; = ai;b:;), previously intro-
duced for positive definite matrices. In general, there is an amazing parallel between
results for positive definite and M matrices. This phenomenon, noted some time

1 M. V. Menon, Reduction of a Matrix with Positive Elements to a Doubly Sto-
chastic Matrix, Proc. Am. Math. Soc., vol. 18, pp. 244-247, 1967.

8, V. Parter, On the Eigenvalues and Eigenvectors of a Class of Matrices, SIAM
Journal, to appear.

38. V. Parter and J. W. T. Youngs, The Symmetrization by Diagonal Matrices,
J. Math. Anal. Appl., vol. 4, pp. 102-110, 1962.

+J. Z. Hearon, The Kinetics of Linear Systems with Special Reference to Periodic
Reactions, Bull. Math. Biophys., vol. 15, pp. 121-141, 1953.

8 A. M. Ostrowski, Iterative Solution of Linear Systems of Functional Equations,
J. Math. Anal. Appl., vol. 2, pp. 351-369, 1961.

¢ R. 8. Varga, Matriz Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1962.
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ago by O. Taussky (and also by Gantmacher-Krein, and by D. M. Kotelyanskii,
Math. R