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PREFACE 

The purpose of this book is the study of non-self-adjoint boundary eigenvalue 
problems for first order systems of ordinary differential equations and n-th or- 
der scalar differential equations. The coefficients of the differential equations as 
well as the boundary conditions are allowed to depend polynomially, holomor- 
phically or asymptotically on the eigenvalue parameter. The boundary conditions 
may contain infinitely many interior points and an integral term. With the bound- 
ary eigenvalue problem a bounded operator function is associated which consists 
of two components, the differential operator function and the boundary operator 
function. These operator functions depend in general nonlinearly on the eigen- 
value parameter. 

Various eigenfunction expansions are proved by the contour integral method 
under regularity conditions which originally were introduced by BIRKHOFF and 
STONE in case of A-independent boundary condtitions. The calculation of the 
Fourier coefficients of these expansions is based on the theory of the inverses of 
holomorphic Fredholm operator valued functions which for the sake of complete- 
ness is included in this book. An important aspect of this theory is the representa- 
tion of the principal parts of the inverses of these functions at their poles by root 
functions (eigenvectors and associated vectors) of the given operator functions 
and their adjoints. The proofs of the eigenfunction expansions are based on sharp 
asymptotic estimates of the resolvents (Green's functions) for large values of the 
eigenvalue parameter. 

Our approach is based on functional analytic methods. The reader should 
be familiar with basic concepts of Banach spaces and Lebesgue integration and 
should have some knowledge about distributions. Whenever we use these ba- 
sic results we give references so that the reader unfamiliar with these concepts 
can easily find them. Our main references to the basic topics are the monograph 
[KA] of T. KATO for Banach spaces, the monograph [HS] of E. HEWITT and K. 
STROMBERG for the theory of Lebesgue integration, and the monograph [ H O ~ ]  
of L. HORMANDER for the theory of distributions. 

Each chapter ends with a short section containing historical notes 

Chapters I and I1 are concerned with preparations from filnctional analysis 
and Sobolev space theory. In Chapters 111-V first order systems are considered, 
followed by n-th order equations in Chapters VI-IX. Since n-th order equations 
are reduced to first order systems, some of the results of Chapters 111-V are needed 



in Chapters VI-IX. Chapter X contains applications to problems from physics and 
engineering. 

The literature for n-th order linear differential equations and first order sys- 
tems is vast, and the bibliography is only a selection of publications in this field. 
The list of notations and the index should help the reader to navigate through the 
text. 
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INTRODUCTION 

In this monograph we consider first order systems of ordinary differential equa- 
tions 

Y' = (LA, +A,)Y 
on a bounded interval [a, b] together with boundary conditions of the form 

where a. = a ,  a ,  = b and the other points a j  lie in the interior of [a, b] and are 

mutually distinct. The n x n matrices w(j)(A) and W (x, A) depend polynomially 
on A, A. and A, are n x n matrix functions depending on the independent variable 
x E [a, b] ,  and A, (x) is a not necessarily invertible diagonal matrix, but satisfies 
certain other restrictions. 

Apart from A-nonlinear boundary eigenvalue problems for first order systems 
such problems for n-th order scalar differential equations will be investigated, 
more precisely, 

i=O 
together with boundary conditions 

The functions pi are polynomials in A whose coefficients are, for example, con- 
tinuous functions on [a, b], and w ( O )  (A), w(') (A) are n x n-matrices depending 
polynomially on A.  For simplicity we have here only written down two-point 
boundary conditions, but in the general treatment we will also have multipoint 
and integral boundary terms as in the case of first order systems. 

Boundary eigenvalue problems of these types occur in various branches of 
engineering and physics, e. g. in elasticity theory, control theory, hydrodynamics, 
magnetohydrodynamics, and even in meteorology. For more details we refer to 
Chapter X of this monograph. 

Since every n-th order differential equation can be transformed into a first 
order system, we will first develop a spectral theory for first order systems. State- 
ments about n-th order differential equations will then be proved by using results 
for first order systems, with possible special attention to improvements due to the 
special structure of n-th order differential equations. 



xii Introduction 

With a boundary eigenvalue problem for a first order systems we will associate 
the operator pencil 

where Hl (a, b) is the Sobolev space of order 1, and 

Similarly, for an n-th order scalar differential equation we introduce the operator 
pencil 

where Hn(a, b) denotes the Sobolev space of order n and 

It is the particular goal of this monograph to prove eigenfunction expansions for 
such A-nonlinear boundary eigenvalue problems, both for first order systems and 
for n-th order differential equations. In the following paragraphs of this intro- 
duction we will restrict our considerations to boundary eigenvalue problems for 
first order systems and consequently to operator functions T(A); nearly analogous 
statements hold in the case of differential equations and for the operator function 
L(A). 

The realization of eigenfunction expansions consists of two parts: first explicit 
formulas for the Fourier coefficient of these expansion have to be found, and sec- 
ondly the convergence of these expansions for a suitable class of functions has to 
be proved. The solution of both problems is highly nontrivial. For a satisfactory 
solution of the first problem a functional analytic setting is appropriate. For the 
convergence proof we apply the powerful contour integral method. 

Such a functional analytic setting has already been put into place in the def- 
inition of the operator function T (A). For fixed A E C, T (A) is a bounded Fred- 
holm operator defined on the whole domain (Hl (a, 6))". With respect to A it is a 
holomorphic function in C. For such operator functions a well-established spec- 
tral theory is available: The notions resolvent set, spectrum, discrete spectrum, 
eigenvector and associated vectors or rootfunctions are well-known. The adjoint 
operator function T* (A) is also a holomorphic bounded Fredholm operator valued 
function in C. Thus the same notions as for T(A) are available. 
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If the resolvent set of such an operator function is non-empty, i. e., there is 
a point Lo E C such that T(Ao) has a bounded inverse, then the spectrum of this 
opel-ator function is discrete and its resolvent is a finitely mesomorphic operator 
function in C. According to a theorem of I. C. G O I ~ B E R G  and E.  I. S I G A L  [GS], 
in a special case due to M.  V. KELDYSH [KEI], [KE2], the finite rank operators 
in the principal part of T ( A ) - '  of the Laurent expansion in a neighbourhood of 
an eigenvalue A. can be represented by biorthogonal canonical systems the eigen- 
vectors and associated vectors of T(A) and T*(A) at A = A(,. 

To explain how this representation yields the Fourier coefficients in the eigen- 
function expansions, let us assume for simplicity that the operator function T(A) 
is linear in A ,  i .  e., T(A) = 7;) + ATl. Then for A in the resolvent set of T ,  the 
identity 

holds. If we integrate this identity along a contour around 0 in the resolvent set, 
say, a circle with centre 0 and radius r, then we obtain 

where the sulnlnation is taken ovel- all finitely many eigenvalues of T with Ipl < r .  
An application of the above mentioned representation theorem yields the corre- 
sponding partial sum of the eigenfunction expansion for f with explicit folmula 
for the Fourier coefficients. If we extend the summation in this partial sun1 over all 
eigenvalues of T and the question of convergence of this series is not addressed, 
then it is referred to as the formal eigenfunction expansion of j'. 

In order to prove the convergence of the formal eigenfunction expansion, we 
have to impose so-called regularity conditions, originally introduced by C;. D. 
BIRKHOFF and M.  H. STONE, respectively, on the give11 boundary eigenvalue 
problen~, i .  e., on T(A), and certain boundary conditions on the function f which 
is to be expanded. By a tedious estimate of the resolvent T - I  (A), Birkhoff regu- 
larity yields that this resolvent is bounded on a certain sequence of circles T,, with 
centres 0 and radii r,, tending to infinity. The Stone regularity condition is weaker 
and means that the resolvent divided by some power of A ,  say A" is bounded 
on such a sequence of circles. If such regularity conditions assure that in a suit- 
able function space the integral in the foregoing equation tends to zero as r = r,, 
tends to infinity, then in this function space the convergence of the eigenfunction 
expansion holds. Otherwise conditions have to be imposed on the function f .  

We will explain how this leads to boundary conditions on f in a quite natural 
way. Choose a function f [ ' ]  in ( H I  (u :  h))" such that 
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and substitute TI,f[ '1 for To f  in the above identity for T - ' ( A ) T ]  f .  By this proce- 
dure we obtain 

1 1  
T 1 ( ) T 1 f  = f +  - T - ' ( A ) T ,  f [ ' ]  a a 

and further by iteration 

whence 

where the su~nmation is again taken over all eigenvalues p of T  with /pi < t . .  If 
now the second term on the right-hand side of this equation converges to 0 in the 
considered function space, then we stop this procedure. Otherwise, we repeat it. 
Since by the regularity conditions the function A - T ( a )  is bounded on the circles 
r,, as 11 tends to infinity, the procedure will stop after at most s + I iterations. 
Next we will illustrate the meaning of the above condition on , f [ ' ] .  Recall that 
the operator function T ( a )  consists of two components: namely the differential 
operator part 

TD(A).v  = y' - ( L A ,  + Ao))i 

and the boundary part 
~ ' ( 1 ) ~  = T:!: +  AT;'^. 

Let us assume for silnplicity that the matrix A ,  ( x )  is invertible for all .x E [a,/)]. 

Then the differential part of the equation for f [ l ]  means that 

and the boundary part yields the boundary condition 

which the function ,f has to fitlfil. If the boundary condition is independent of 1 ,  
then this condition reduces to the usual boundary condition 

R .  To j = O .  

If the lnatrix Al  ( x )  is not invertible or the boundary conditions are polynomial in 
a ,  the foregoing procedure has to be modified, but works in priciple in the same 
way. 

Some hard analysis consists in the derivation of practical criteria for Birkhoff 
or Stone regularity and in the proof of asymptotic estimates of the resolvent, i .  e., 
of the Green's matrix function. The proofs of these criteria and estimates rely on 
the construction of a suitable asymptotic fundamental system of solutions of the 
first order system. With respect to the n t h  order scalar differential equation it is 
advantageous to transform it into a first order system. The transformed system is 
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then asymptotically linearized with respect to the eigenvalue parameter. For this 
reason we consider a slightly more general first order system than written down 
above, namely 

where the n x n matrix function A,(., A) is uniformly bounded as A tends to infin- 
ity, together with the above given boundary conditions in an appropriate asymptot- 
ically constant form. For the asymptotic system a suitable fundamental system is 
constructed. With respect to this fundamental system the determinant of the char- 
acteristic matrix associated with the asymptotic boundary conditions becomes an 
exponential sum whose coefficients are A-asymptotic polynomials. This repre- 
sentation yields the regularity criteria. Birkhoff regularity is characterized by the 
leading term of the asymptotic fundamental system and the constant terms of the 
asymptotic boundary conditions at the endpoints of the interval [a, b]. A char- 
acterization of Stone regularity is much more involved. We present a practical 
geometric criterion due to R. H. COLE [C03] in a slightly generalized form. 

The estimates of the Green's matrix function and the resolvent of the A- 
asymptotic boundary eigenvalue problem are established in various function spa- 
ces. They require a careful analysis of the Green's matrix function and skilful 
arrangements of its components. The resulting estimates for the A-asymptotic 
boundary eigenvalue problem which are valuable for themselves lead to a vari- 
ety of eigenfunction expansion theorems concerning Birkhoff and Stone regular 
boundary eigenvalue problems both for first order systems and n-th order scalar 
differential equations as stated at the beginning of this introduction. 

In this monograph we only deal with the problem of expandability in terms 
of eigenfunctions and associated functions. Expandability implies completeness, 
but does not imply minimality or basisness of these functions. Only recently, the 
problems of minimality and basisness for Birkhoff regular boundary eigenvalue 
problems defined by systems of differential equations y' = (AA, +Ao)y and n-th 
order scalar differential equations Kq = A IHIq both with A-polynomial boundary 
conditions were successfully approached by C. TRETTER in a series of papers 
[TR7], [TR8], [TR9], and [TRIO]. The key point is a new linearization method of 
the A-polynomial boundary conditions which leaves the structure of the diagonal 
matrix unchanged by blowing it up with additional zeros. Boundary eigenvalue 
problems with such noninvertible diagonal matrices were first investigated in the 
authors' publications [MM4], [MM5]. 

Purely functional analytic methods, not considering the Green's function, are 
applied to A-polynomial boundary eigenvalue problems of different types in nu- 
merous publications. A. DIJKSMA [DIJ] and A. DIJKSMA, H. LANGER and 
H. DE SNOO [DLSl], [DLS2], [DLS3] treated self-adjoint A-polynomial bound- 
ary eigenvalue problems and transformed them to common spectral problems for 
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self-adjoint operators in Hilbert or Krein spaces by problem oriented linearization 
methods. M .  V. KELDYSH [KEI], [KE2], I .  C.  GOHBERG and M.  G. KREIN 
[GK], V. M.  V ~ Z ~ T E ~  and A. S .  M A R K U S  [VM], M. FAIERMAN,  A. S .  MARKUS,  
V. MATSAEV and M.  MOLLER [FMMM], for numerous further references see 
the substantial monograph of A. S.  MARKUS [MA4], developed a comprehen- 
sive spectral theory for operator polynomials in Hilbert and Banach spaces using 
abstract linearization procedures and perturbation arguments to prove so-called 
11-fold completeness, minimality and basisness for the corresponding eigenvec- 
tors and associated vectors. These publications include various applications to 
1-polynomial ordinary and partial differential equations, however, nearly exclu- 
sively with A-independent boundary conditions. An exception is A. A. S H K A -  
L I K O V ' S  paper [SH5] which treats boundary eigenvalue problems fol- 11-th order 
scalar differential equations where the differential equations as well as the bound- 
ary conditions depend polynomially on the eigenvalue parameter. 

The functional analytic approach of combining the differential operator and 
the boundary operator to a two-component operator defined on a fixed space, not 
depending on the eigenvalue parameter, was introduced for S-Hermitean bound- 
ary eigenvalue problems by F. W. SCHAFKE and A. SCHNEIDER in [SCHSCHl], 
[SCHSCH2], [SCHSCH_?], see also H.-D. NIESSEN [NI]. For non-self-adjoint 
boundary eigenvalue problems this setting is due to R. Mennicken and M. Moller 
in [MM4], [MM5]. One advantage of this approach is the fact that the boundary 
conditions are considered inhomogeneously in a natural way, see also the mono- 
graph [STV] of S .  SCHWABIK, M. TVRD?  and 0 .  VEJVODA. Another advan- 
tage is that, in the case of a non-self-adjoint problem, the adjoint boundary value 
problem including all spectral data, as for example associated vectors, is defined 
without any additional restrictions. 

Because of the diversity of the subject and the enormous number of publica- 
tions we abstain here from a further historical excursion, but refer the reader to 
special sections with historical remarks at the end of each chapter. 

Chapter I deals with spectral theory for holomorphic Fredholm valued oper- 
ator functions, in particular, the principal parts of their inverses at the poles are 
investigated. It is shown that these principal parts can be written in terms of eigen- 
vectors and associated vectors of the operator function and its adjoint. One-to-one 
connections between biorthogonal systems of eigenvectors and associated vectors 
and the principal parts of the inverse operator functions are established. Special 
attention is paid to the case of 1-linear problems. 

Chapter I1 contains the preriquisites for the study of differential operators. 
Sobolev spaces on intervals are introduced and their properties are investigated. 
These results are essentially well-known but, in general, are stated and proved for 
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subsets of Rn. The one dimensional case is easier and gives some additional prop- 
erties. Therefore, and to make the monograph more self-contained, this chapter is 
included. Also, some basic results for differential equations are stated. 

Chapter I11 starts with the definition of boundary eigenvalue problems for first 
order systems. The adjoint and the inverse are calculated, and their relations to the 
"classical" adjoint and inverse for the differential operator considered in Lp spaces 
are discussed. Some examples show the difficulties which arise if one considers 
the classical adjoint. The inverse is an extension of the classical inverse, which is 
an integral operator whose kernel is the GREEN'S matrix function. 

Chapter IV is devoted to the estimate of the GREEN'S matrix function. To 
this end, Birkhoff regularity is introduced for systems which are asymptotically 
linear in the eigenvalue parameter, and necessary and sufficient conditions for 
Birkhoff regularity are given. The characteristic determinant is estimated below 
away from its zeros, which are the eigenvalues of the given boundary eigenvalue 
problem. Then the GREEN'S matrix function and finally the resolvent of the 
boundary eigenvalue operator functions are estimated on suitable circles in the 
complex plane tending to infinity. 

In Chapter V the estimates of the previous chapter are used to prove expansion 
theorems for first order systems which are linear in the parameter; the boundary 
conditions are still allowed to depend polynomially on the parameter. Not only 
Birkhoff regularity is considered but also Stone regularity. Whereas all functions 
in Lp(a,  b), 1 < p < m, are expandable in eigenfunctions and associated functions 
if the problem is Birkhoff regular, the expandable functions must be sufficiently 
smooth and must satisfy certain auxiliary boundary conditions if the problem is 
Stone regular. Also uniform convergence is investigated, where even for Birkhoff 
regular problems the expandable functions have to satisfy certain regularity con- 
ditions and some boundary conditions. 

Chapter VI is concerned with n-th order differential equations. Here the cor- 
responding results of Chapter I11 are obtained for an n-th order differential equa- 
tion, where also the equivalence of this problem to one for a first order system is 
established. 

Chapter VII deals with boundary value problems for differential equations 
whose equivalent first order system can be linearized asymptotically. Using the 
estimates of Chapter IV, expansion theorems are proved. 

Chapter VIII is concerned with regular two-point boundary eigenvalue prob- 
lems for the differential equation Kq = AHq, where K and H are differential 
operators such that K is of higher order than H. The structures of the fundamen- 
tal system, its adjoint, and the Green's function are investigated more thoroughly. 
However, the estimates of Chapter IV can still be used. Some applications to 
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problems from mechanics are given, to which the results of Chapter VII are not 
directly applicable. 

In Chapter IX problems depending polynomially on the eigenvalue parameter 
A are linearized with respect to A.  The corresponding convergence theorems for 
first order systems lead to n-fold expansions for the original problem. Complete- 
ness and minimality for these problems are considered. 

Chapter X contains further examples dealing with problems from mechanics 
like elastic bars and control of beams, fluid mechanics, magnetohydrodynamics, 
and meteorology. 

Appendix A deals with estimates of exponential sums. They are needed for 
the estimate of the characteristic determinant in Chapter IV. 



Chapter I 

OPERATOR FUNCTIONS IN BANACH SPACES 

This chapter deals with holomorphic Fredholm operator valued functions in Ba- 
nach spaces. The structure of the resolvent of such an operator function is dis- 
cussed in detail. It is shown that, on a domain in @ its resolvent is finitely mero- 
morphic if its resolvent set is non-empty (Theorem 1.3.1). The operators in the 
principal parts of the resolvent are expressed in terms of biorthogonal canonical 
systems of root functions (eigenvectors and associated vectors) of the correspond- 
ing operator function and its adjoint operator function (Theorems 1.5.4, 1.5.9 and 
1.6.5, 1.6.7). This representation can be understood as the formal eigenfunction 
expansion with respect to the given operator function since it yields explicit for- 
mulae for the corresponding Fourier coefficients. As a consequence of this repre- 
sentation theorem concerning the principal parts of the resolvent we obtain a local 
factorization theorem for the operator function itself (Theorem 1.8.4). Particular 
properties, such as minimality of the system of eigenvectors and associated vec- 
tors, are discussed for Fredholm operator valued functions which are linear in the 
eigenvalue parameter. 

Boundary eigenvalue problems as considered in later chapters have an under- 
lying abstract operator theoretic structure, which is investigated in Section 1.1 1. 
For these abstract boundary eigenvalue problems the notions fundamental ma- 
trix function and characteristic matrix function are introduced, generalizing the 
concepts of fundamental matrix and characteristic matrix, which is well-known 
for boundary value problems for ordinary linear differential equations and sys- 
tems. It is shown that the operator function defined by such an abstract bound- 
ary eigenvalue problem, shortly called boundary eigenvalue operator function, is 
globally holomorphically equivalent to a canonical extension of its characteristic 
matrix function (Theorem 1.1 1.1). The characteristic matrix function is defined 
on a smaller (finite-dimensional) Banach space than the corresponding boundary 
eigenvalue operator function, but nevertheless contains all the information about 
its spectral data. 



2 I. Operator functions in Banach spaces 

1.1. Banach spaces 

Let E be a vector space. We always assume that E is a vector space over the field 
of complex numbers C. A map I I : E +- R is called a norm if 

If I I is a norm on E ,  then E = ( E ,  I I) is called a normed space. 
Let E be a normed space, y E E and ( Y , ) , ~ , ~  be a sequence in E.  Then ( Y , , ) , ~ , ~  

is said to converge to y if 

and we write 
y,, + y as n -+ w or lim y, = y . 

n- im 

The sequence (y,l),,N is said to be a Cauchy sequence in E if for each E > 0 there 
is a number no E N such that ly, - y,,I 5 E for all n,  m > no . A normed space E is 
called a Banach space if each Cauchy sequence in E converges to some y in E.  A 
Banach space is a complete metric space, see e. g. [DI, p. 881. 

Let E and F be Banach spaces. Then L(E ,  F )  denotes the space of all con- 
tinuous linear operators on E to F, i. e., T € L(E ,  F) if and only if T : E -+ F is 
linear and 

IT1 := sup{lTylz : Y E  E ,  Iyl, I 1) < 
where ( 1 ,  and 1 l 2  are the norms on E and F ,  respectively. It is well-known that 

I I is a norm on L ( E ,  F) which makes L ( E ,  F )  a Banach space, see e. g. [KA, 
p. 1501. We write L ( E )  instead of L ( E ,  E ) .  By idE we denote the identity on E ,  
i.e., i d E x = x f o r x E  E.  For an operator T E L ( E , F ) ,  N(T) := {xE E :  T x = 0 )  
denotes the null space and R(T) := {Tx : x E E )  the range of T. T E L(E ,  F )  is 
called a Fredholm operator if both its nullity nu1 T := dimN(T) and its dejiciency 
def T := codimR(T) are finite. @ ( E ,  F )  denotes the set of all Fredholm operators 
on E to F.  If T E @ ( E ,  F ) ,  then ind T := nu1 T - def T is well-defined and called 
the index of T. 

The operator T E L ( E ,  F )  is called invertible if there is an operator T - I  € 

L(F ,E)  such that TT-' = id, and T-'T = idE. If T is invertible, then T-' is 
unique. From the closed graph theorem, see e. g. [KA, p.1661, we know that T is 
invertible if and only if T is bijective. 

El := L(E ,  C) is called the dual space of E.  The bilinear form ( , ) on E x E' 
is defined by (y ,  u )  = u ( y ) ,  where y E E and ~i E El. With respect to the norm 
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which is the operator norm on L(E,@),  E' is a Banach space. For T in L(E ,  F )  
there is a unique T* E L(F1, E') such that 

(Ty ,v )=(y ,T*v)  ( y € E , v € ~ ' ) .  

The operator T*  is called the adjoint of T .  Note that IT I = IT* 1, cf. e. g. [KA, 
p. 1541. If T is a Fredholm operator, then T*  is also a Fredholm operator, cf. 
e. g. [KA, p. 2341. T is invertible if and only if T* is invertible, and in this case 
(T- ' )*  = (T*) - ' .  

Note that E' is the set of continuous linear functionals on E and not the set of 
continuous complex conjugate linear functionals. This is advantageous since we 
are often dealing with holomorphic operator functions, in which case the adjoint 
will be holomomorphic, see Proposition 1.2.6. Otherwise, the adjoint would be 
anti-holomorphic, which would generate unnecesssary complications. Although 
T' might seem to be more appropriate as a notation for the adjoint of T ,  we have 
chosen T* since T' is reserved for the derivative. 

For a set G we denote the set of k x n  matrices with entries from G by Mk,+(G). 

We write G~ if n  = 1, and M,(G) if n  = k. For 

we set 

Then Mk,,(E) is a Banach space with respect to this norm. 

If y  is given by (1.1. I), then 

For y  E E and v  E F' we define the tensor products y  @ v  and v @ y  by 

( v @ Y ) ( u )  := (y,u)v ( U  E E') .  

PROPOSITION 1.1.1. Let y  E E  and v  E F'. Then y  @ v  E L(F, E ) ,  v@y E L(E1,  F'),  
( y @ v ) *  = v@y,  and ly@vl = Iv@yl = lyl 1.1. 

Pro05 Obviously, y  @ v  and v  8 y  are linear. We have 

ly@vl =sup{I(y@v)(w)I : w EF,  Iwl 5 1) 

= S U P { I ( ~ , V ) I  lYl : w E F, lwl 5 1) 
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which implies y @ v E L(F, E ) .  Let w E F and u E El. Then 

This proves ( y  @ v) * = v @ y. 

PROPOSITION 1.1.2. Let E, F and G be Banach spaces, y E E, v E F', S1 E 
L ( E ,  G )  and S2 E L(G, F) .  Then 

s l ( y @ v )  = ( S l y ) @ v  and (y@v)S2  = y @ ( S ; v ) .  

Pro05 For w E F and u E G we have 

and 

A set A C E is called bounded if sup{lyl : y E A )  < -. 
Let T E L(E ,  F ) .  Since the Banach space F is a complete metric space, the 

following three conditions are equivalent: 
i) for each bounded subset B of E,  the set T ( B )  is relatively compact; 
ii) for each bounded subset B of E,  the set T ( B )  is precompact; 
iii) for each bounded sequence (y,),,, in E there is a convergent subsequence 

of ( T Y ~ ) , ~ M  ; 
see e. g. [DI, 3.16.11. The operator T is called compact if it fulfils one of these 
equivalent conditions. 

DEFINITION 1.1.3. Let E and F be Banach spaces, G be a nonempty open subset 
of E ,  and f : G -+ F .  Then f is called differentiable if for each yo E G there are 
a linear operator f l (yo)  E L ( E ,  F )  and a map : G -+ F such that &,,(y) --+ 0 as 
Y -+ Yo  and 

f ( y )  = f ( ~ o )  + ~ ' ( Y O ) ( Y  -yo) + E Y ~ ( Y ) I Y  -yo1 
for all y E G. The operator f l ( yo )  is called the derivative off  at yo. 

PROPOSITION 1.1.4. Let E and F be Banach spaces and assume that the set 
9 ( E ,  F )  of invertible continuous linear operators from E to F is nonempty. 
i) Let T E Y ( E , F )  and B E L ( E ,  F )  such that IBI < ( ~ - ' l - ' .  
Then T + B E 9 ( E ,  F )  and 

(I.  1.3) 

where 6 := I B T - ' ~  < 1. 
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ii) The set # ( E , F )  is open, the map T  + T - I  from 9 ( E , F )  to 9 ( F , E )  is 
differentiable, and its derivative at So E 9 ( E ,  F )  is given by T + -s~ 'Ts; '  
( T  E L ( E , F ) ) .  

Proot i): From 6 = I B T - ' ~  5 IBI I T - ' [  < 1 we infer 

m 

Hence the series (- 1 ) ' ~ - I  ( B T - I )  converges in L ( E ,  F )  and thus defines an 
v=o 

element in L ( E ,  F ) .  The equations 

and 

yield that T  + B  is invertible and 

From (1.1.5) we infer (1.1.3). Finally, 

completes the proof of part i). 
ii): Let So E # ( E ,  F ) .  For each S  E L ( E , F )  with IS-Sol < IS;~I-', part i) yields 
S  E 9 ( E ,  F ) ,  which proves the openness of 9 ( E ,  F ) .  For S  E 9 ( E ,  F )  we set 

Then 
s-1 = s-1- S - l  

0 0 ( ~ - ~ o ) ~ , - l + I s - ~ o l ~ s o s , ( ~ )  
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holds for S E $ ( E ,  F ) .  For IS - Sol < IS;' I - '  and S # So we conclude from 
(1 .1 .6)wi thT=SoandB=S-So that 

This proves ( S )  + 0 as S -+ So. Obviously, T H -%' T S ~ '  is a linear map 

from L(E ,  F )  to L(F, E ) ,  and I -s;'Ts;' I 5 1%' l21Tl proves its continuity. 

1.2. Holomorphic vector valued functions 

Let R be an open nonempty subset of @. 
DEFINITION 1.2.1. Let E be a Banach space, y : R -+ E,  and lo E R. The vector 
function y is called holomorphic at & if there are a number r > 0 and y, E E 
( n  E N) such that Kr(Ao) : = { A  E @ :  13L --&,I < r )  C R ,  

and 

for all A E Kr(ilo). Because of (1.2.1) the series (1.2.2) is absolutely convergent, 
and thus y ( L )  is well-defined. The vector function y is called holomorphic in R if 
it is holomorphic at each A E R .  

H ( R ,  E )  denotes the set of all holomorphic functions from R to E ;  if Eo is 
any subset of E,  then 

H ( a , E o )  := { f  E H ( a ,  E )  : f ( R )  C E,}. 

REMARK 1.2.2. A function f : R + E is holomorphic if and only if it is (contin- 
uously) differentiable, see e. g. [DI, (9.3.6) and 9.10, Problem I)]. 
PROPOSITION 1.2.3. Let El ,  E2, E3 be Banach spaces and . : El x E2 + E3 be 
a bilinear and continuous mapping, i. e., Ix.yl < Clxl Iyl for some C > 0 and all 
x E El andy E E2. Zfu E H ( Q , E l )  and v E H ( R , E 2 ) ,  then u . v  E H ( R , E 3 ) ,  where 
( u .  V )  ( a )  := ~ ( a )  (a  E R).  

ProoJ: Let & E R .  There are r > 0, u, E El and v, E E2 for n E N such that 
K(&) c a7 

m m 

C f l I ~ n I  < w, C YIvnl < w, 
n=O n=O 
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and 
m m 

.(A) = C ( A  - &)nun, v ( h )  = C (1 - & ) n ~ n  
n=O t1=0 

for all A E K,(ho). Then 

and 

We immediately infer 

COROLLARY 1.2.4. Let E, F, and G be Banach spaces, T E H ( R , L ( E , F ) ) ,  
S E H(R,L(F ,G) ) ,  y E H ( R , E )  and v E H ( R ,  F'). 
Then ST E H ( R ,  L (E ,  G) ) ,  Ty E H ( R ,  F )  andy@ v E H ( R ,  L(F, E ) ) .  

For T E H ( R , L ( E , F ) ) ,  

p ( T )  := { A  E R : T ( A )  is invertible) 

is called the resolvent set of T and o ( T )  := R \ p ( T )  the spectrum of T .  We 
set T - ' ( A )  := ~ ( h ) - '  for A E p ( T ) .  The operator function T-' is called the 
resolvent of T .  

PROPOSITION 1.2.5. Let E and F be Banach spaces and T E H ( R , L ( E , F ) ) .  
Then p ( T )  is open and T-' E H ( p ( T ) ,  L(F, E ) ) .  

Proo$ Let & E p ( T ) .  From the holomorphy of T and the openness of 9 ( E ,  F ) ,  
see Proposition 1.1.4 ii), we infer that A E p ( T )  for all A in some neighbourhood 
of lo. This proves the openness of p ( T ) .  

T-' is the composition of A F+ T ( A )  ( A  E p ( T ) )  and S I-+ S--' (S  E 9 ( E ,  F ) ) .  
The first map is differentiable by assumption, cf. Remark 1.2.2. Since the second 
map is also differentiable, see Proposition 1.1.4 ii), the map T-' is differentiable 
as the composition of differentiable maps is differentiable, see e. g. [DI, 8.2.11. 
This proves T-' E H ( p ( T ) ,  L(F, E ) ) ,  once more because of Remark 1.2.2. 

Proposition 1.2.5 can also be proved by calculating the power series expansion 
of T-' in a neighbourhood of h E R. Conversely, Proposition 1.2.3 can be proved 
as Proposition 1.2.5 by using the differentiability of the bilinear map, see e. g. [DI, 
8.1.41. 

PROPOSITION 1.2.6. Let E and F be Banach spaces and T E H ( R , L ( E ,  F ) ) .  Set 
T * ( A )  := ( T ( A ) ) *  for A E R. Then T* E H(R,L(F1 ,E ' ) ) .  
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Pro05 Let A. € E. Then there are a number r > 0 and, for n E N, T,, € L(E, F )  
such that Kr(ko) c E, 

m 

and 
m 

Since IT: 1 = lTnl, we obtain 

whence 
m 

is well-defined. For y E E, v E F' and il E K,(&) we obtain 

= C (A - it,)" (Y, q:v) 
n=O 

which proves that 
m 

Thus T* is holomorphic. 

Let p E (C and y E H ( U 1  \ {p}, E )  for some open neighbourhood U' of p. We 
say that y is meromorphic at p if there is a nonnegative integer s such that (. - p)Sy 
has a holomorphic continuation to all of U'. The smallest such number s is called 
the pole order of y at p, and p is called apole of y if this number is positive. Note 
that y has a holomorphic extension to p if and only if the pole order is zero. Since 
(. - p)Sy is holomorphic at p ,  the Laurent series expansion 

holds in some punctured neighbourhood of p .  We call 

the principal part of y at p. 
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Let U be an open subset of R and y E H ( U ,  E ) .  We say that y is meromorphic 
in R if R \ U is a discrete subset of R and y is meromorphic at each point p  in 
n\u. 

1.3. The inverse of a Fredholm operator valued function 

Let R be a domain in C and E  and F be Banach spaces. 

THEOREM 1.3.1. Let T  E H ( R ,  @ ( E ,  F ) )  and assume that p ( T )  # 0. Then o ( T )  
is a discrete subset of R and T - l  is a rneromorphic operator function in R. I f  
p  € o ( T ) ,  then T-'  has apole at p, i. e., 

in some punctured neighbourhood of p, where s, E N\ ( 0 )  and S-sp,, # 0. In 
addition, for -s, 5 j 5 - 1 the operators Sj,, are degenerate operators, i. e., 

dimR(S,,,) < m, and So,, t @(F, E) with indSo,  = 0. T-' is called a finitely 
meromorphic operatorfunction, cJ: GOHBERG and SIGAL [GS]. 

Prooj Let R1 be the set of all p  E R such that U  \ { p )  c p ( T )  for some neigh- 
bourhood U  of p. Define Q2 to be the set of all p  E E  having a neighbourhood 
which is contained in o ( T ) .  We assert that R = R1 U Q2. Obviously, p ( T )  C R1 
since p ( T )  is open by Proposition 1.2.5. Now let p  CL o ( T ) .  Since T ( p )  is a 
Fredholm operator, there are a finite-codimensional subspace M C E and a finite- 
dimensional subspace N  C F  such that 

We may assume that M is a closed subspace of E,  see e. g. [KA, p. 1351. T ( p )  is 
a Fredholm operator and thus R ( T ( p ) )  is a closed subspace of F, see e. g. [GO, 
Corollary IV. 1.131. Hence the direct sums in (1.3.2) are also topologically direct, 
see e. g [TL, p. 2471. This yields the operator matrix representation 

for A  E R. The operators Tij (i, j = 1,2) are holomorphic in Q. For example, 
Tl l  ( A )  = QT(A)P ,  where P  is the continuous embedding of M into M / N ( T ( p ) )  
and Q  is the continuous projection of R ( T ( p ) )  + N  onto R(T ( p ) ) .  For rn E M and 
n E N  (T  ( p ) )  we have 

This immediately shows that N(Tl ( p ) )  = ( 0 )  and R(T l ,  ( y ) )  = R ( T ( p ) ) .  Hence 
Tl l  ( p )  is invertible. Thus the operator Tl ( A )  : M + R ( T ( p ) )  is invertible for 
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each A in some neighbourhood U of p since p (Tl ) is open by Proposition 1.2.5. 
In U we consider the SCHUR factorization 

It is easy to see that the right-hand factor and the left-hand factor on the right-hand 
side of (1.3.4) are invertible on U ,  e. g. 

( i d  2 ) - = (if: 
O i d ~ ( 7 ( P ) )  i d ~ ( ~ ( P ) )  

on U. We set 

S(J-1 := T22(3L) - T21 (A)Ti1(il)T12(L) ( A  E U). 

The representation (1.3.4) yields that T(k)  is invertible for A E U if and only if 

is invertible. Since Tl is invertible on U ,  we infer for il E U that T(A) is invert- 
ible if and only if S(L) has this property. S(A) : N(T(p))  -+ N is a linear operator 
in finite-dimensional spaces. If dimN # dimN(T(p)), then S(A) is not invertible 
for any il E U ,  and p belongs to R2 . If dim N = dim N(T(p)) ,  then S(A) is invert- 
ible if and only if detS(A) # 0, where the determinant is taken relative to some 
bases of N and N(T (p)) .  Since the holomorphic function detS is zero in some 
neighbourhood of p or does not have a zero in some punctured neighbourhood 
of p ,  we infer that p belongs to R1  UR2. The openness of the sets R 1  and R2 and 
R 1  n R2 = 0 are obvious by definition of R 1  and R 2 .  Since R is connected and 
R ,  3 p(T)  # 0, the set R2 is empty, which proves the discreteness of o ( T ) .  

Now let p E o ( T )  and S be defined as above. By CRAMER'S rule, applied to 
the matrix corresponding to S(A) with respect to some bases of N and N(T(p)),  
we obtain a holomorphic operator function S :  U + L(N,N(T(p)))  such that 

detS(A) id, = s(A)$(A). 

The SCHUR factorization (1.3.4) yields 



1.3. The inverse of a Fredholm operator valued function 11 

in some punctured neighbourhood of p.  Since det S  is a holomorphic function 
which is not identically zero and 5 is an operator function in finite-dimensional 
spaces, we obtain 

T , ; ~ T ~ ~ ~ T ~ ~ T I ; ~  w 

(det s)-' = E (. - P ) ~ A , , ~  
-ST2, T i 1  S J = - s ~  . - 

in some punctured neighbourhood of p ,  where sP is the order of the zero of detS 
at p  and all are degenerate operators. Suppose that T - I  is holomorphic at 

p.  Since T T - I  = id, and T - I T  = id, in some punctured neighbourhood of p, 
this would imply T ( p ) T P 1  ( p )  = id, and T - I  ( p ) T  ( p )  = id, , which contradicts 
p  E o ( T ) .  Hence T-' has a pole of order sP 5 SF at p ,  the representation (1.3.1) 
holds with Sj ,p  = Aj,P for -sP 5 j 5 - 1, 

since the sum of a Fredholm operator and a degenerate operator is a Fredholm 
operator, and 

For the the arguments used in the proof of the properties of So,,, see e. g. [KA, 
Theorem IV.5.261. 

PROPOSITION 1.3.2. Let T  E H ( R , @ ( E , F ) )  such that p ( T )  # 0 and let p  E 
o ( T ) .  The holomorphic part in the Laurent series expansion (1.3.1) is called the 
reduced resolvent of T  with respect to p  and denoted by SP.  In a neighbourhood 
of p  we have 

m - 1 

(1.3.5) S P - - 1 (. - p)js,,,, = T - I  - (. - p ) , ~ , , ~ ,  
J=O J=-Sp 

which shows that SP E H  ( p  ( T )  u { p ) ,  L(F,  E ) ) .  I f  the pole order of T - I  at p  is 1, 
then 

I f  T  is a polynomial of degree 1 ,  then 

Proofi Let 
m 
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be the power series expansion of T at p.  First we consider the case that T-' has a 
pole of order 1 at p.  From T - ' T  = id, we infer 

and TT- '  = idF yields 

(1.3.8) TOSO,, + TIS-l ,p = idF . 
Thus 

T ( P )  = TO~,,,TO+TIS-,,,TO = T ( P ) S , ( P ) T ( P ) .  
Now let T be a polynomial of degree 1. In this case, (1.3.8) also holds. Hence 

s,(P)T(P)S,(P) = so,, - So,PTlS-l,P 

From T- 'T  = idE and TT-'  = idF we infer 

, = s + , T  and TOS-k-l,p = -T1S-k-2,p 

for k E N, where S-j,, := 0 for j > s, . These identities yield 

~O, ,Tl~- l , ,  = -~ l , ,To~- l , ,  = 5'l,,TlS-2,, 
= .. .  - - SSp,,TlS-sp-1,, = 0. 

Hence (1.3.7) is proved. 

In the following examples we shall see that (1.3.6) and (1.3.7) are not neces- 
sarily true without the restrictions imposed in Proposition 1.3.2. 

EXAMPLE 1.3.3. Let T E H ( C , L ( C ~ ) )  be given by 

T ( A )  = (t ) ( A  E C ) .  

T is a polynomial of degree 1 and 

i. e., 0 is a pole of T of order 2. Obviously, 

Hence (1.3.6) does not hold. 
EXAMPLE 1.3.4. Let T E H ( @ ,  L ( C 2 ) )  be given by 

T is a polynomial of degree 2 and 
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i. e., 0 is a pole of T  of order 1. Obviously, 

This shows that (1.3.7) does not hold. 

EXAMPLE 1.3.5. Let T  E H ( @ ,  L ( @ ~ ) )  be given by 

T  is a polynomial of degree 2 and 

i. e., 0 is a pole of T  of order 2. Obviously, 

Hence neither (1.3.6) nor (1.3.7) holds. 

1.4. Root functions of holomorphic operator functions 

Let R be a domain in @ and E and F be Banach spaces. 

DEFINITION 1.4.1. Let T  E H  (R,  @ ( E ,  F ) )  and p  E R .  The vector function y  in 
H (R ,  E )  is called a root function of T  at p  if y ( p )  # 0 and ( T y ) ( p )  = 0. The 
number v ( y )  denotes the order of the zero of Ty at p  and is called the multiplicity 
of y  (with respect to T  at p).  

Since, by Theorem 1.3.1, the inverse of a holomorphic Fredholm operator 
valued function on a domain is meromorphic if its resolvent set is nonempty, we 
obtain 

LEMMA 1.4.2. Let T  E H ( R , @ ( E , F ) )  such that p ( T )  # 0. Let p  E o ( T )  and 
denote the pole order of T-' at p  by sp. Then 

sp = max{v(y)  : y  rootfunction of T  at p ) .  

Pro05 Let y  be a root function of T  at p. Since (. - / L ) ~ ~ T - '  is holomorphic at 

P7 
(. - p ) S ~  = (. - p ) S ~ ~ - l ~ y  

has a zero of order 2 V ( Y )  there. From ~ ( p )  # 0 we infer v ( y )  5 sp .  This proves 

sp 2 max{v(y )  : y  root function of T  at p). 
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For the proof of the reverse inequality, we use the Laurent series expansion 

in a punctured neighbourhood of p ,  where the operators Sj,,, belong to L(F, E) 
for j = s , , ,  -s,, + 1 , .  . . and S-Sp,p # 0. Choose xo E F such that S -sp,,, xo # 0. 

Set z := (. - p)$p T - ~ X ~ .  The function z is holomorphic at p ,  z ( p )  = S-su,,,xo # 0, 
and T z  = (. - p)'pxO has a zero of order s,, at p.  Then the Taylor polynomial 

of z at p of order s,, - 1 is a root function of T at p with v ( y )  2 s,,. 

Though it is useful to have a root function defined as a holomorphic function, 
in general we only need the "principal part" 

of a root function y at p ,  where 
m 

is the power series expansion of y at p. Thus we can deal with polynomials, if 
necessary. On the other hand, we often only need a power series expansion in a 
neighbourhood of p ;  i. e., it is sufficient to have a root function of T at p defined 
in a neighbourhood of p.  

Let T E H (R,@(E, F)) such that p ( T )  # 0. Let p E o ( T )  and n E N\ (0). 
Then Z,, denotes the set of all yo E N ( T ( p ) )  such that there is a root function y 
with y ( p )  = yo and v ( y )  > n. Obviously, 

is a subspace of N ( T ( p ) ) .  For j E N with 0 < j 5 nu1 T ( p )  we define 

(1.4.2) m j  := max{n E N\ (0) : dim L, > j). 
The numbers m j  are called the partial multiplicities of T at p.  They are well- 
defined since L1 = N ( T ( p ) )  and L, = (0) if n is larger than the pole order of T-' 
at p.  Obviously, m j  2 mj+, . 

The number r = d i m N ( T ( p ) )  is called the geometric multiplicity of T at p ,  
and the number r 

is called the algebraic multiplicity of T at p.  
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REMARK 1.4.3. Let 0 < j 5 nu1 T ( p ) .  Then dimLn,,+l < j 5 dimL,, 
I 

PROPOSITION 1.4.4. Let T E H ( Q ,  @ ( E ,  F ) ) ,  assume that p ( T )  $1 0 and let p E 
o ( T ) .  Let 0 < r 5 nu1 T ( p )  and let y l  , . . . ,y, be rootfunctions of T at p such that 
y1 ( p ) ,  . . . ,y ,(p)  are linearly independent. 
The following conditions are equivalent: 

i) v (y,) = max { v ( y )  : y is a root function of T at p and 

Y ( P )  @ span{yl(~),. . ,Y , - , (P ) } }  ( j  = 1 , -  
ii) v ( y , ) = m j  ( j = l ,  ..., r) ,  
iii) v ( y j )  > m j  ( j =  I ,  . . . ,  r). 

Pro05 i) + ii). The condition i) implies v ( Y ~ )  2 v(yk+ ) ( k  = 1 ,  . . . , r - 1). Let 
j~ { 1 ,  . . . ,  r}.  Then 

We infer dimL,,(y,, 2 j. Hence m j  2 v(y,) by (1.4.2). We know that there is 

a vector yo E L , ,  \ span{yl ( p )  , . . . ,yj-! ( p )  } since j - 1 < dim L,,, see Remark 
1.4.3. By the definition of L,,, there IS a root function y with y ( p )  = yo and 
v ( y )  > m,. Hence the number on the right-hand side of i) is greater or equal m,, 
i. e., v ( y j )  2 mi. Thus we have proved v ( y j )  = m,. 

The conclusion ii) + iii) is obvious. 

iii) + 1). Let j E 1 . , r} .  Since y j ( p )  @ span{yl ( p ) ,  . . . , y j_ ,  ( p ) } ,  we see 
that v ( y j )  does not exceed the number on the right-hand side of 1). We set i := 
v ( y j )  + 1. For k = I , .  . . , dimL, we have i 5 mi: and thus i 5 v ( y k )  by assumption 
iii). This proves that y k ( p )  E Li for k = 1 ,  . . . ,dim L,. Hence 

From v ( y j )  = i - 1 and the assumption v ( y j )  2 m j  we conclude mi < i and thus 
j > dimL, . In view of (1.4.3) we infer 

Now let y be a root function of T at p with y ( p )  @ span{yl (p) , .  .. , y j - , ( p ) ) .  
Because of (1.4.4), y ( p )  $! L,, which implies v ( y )  < i. Therefore v ( y )  5 i - 1 = 
v(y,) .  This proves that i) holds. 

DEFINITION 1.4.5. Let T E H(Q,  @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  A system 
{ y ,  , . . . , y,} of root functions of T at p is called a canonical system of rootfunc- 
tions (CSRF) if { y l  ( p ) ,  . . . , y r ( p ) )  is a basis of N(T  ( p ) )  and one of the equivalent 
conditions i), ii) or iii) in Proposition 1.4.4 is fulfilled. 
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PROPOSITION 1.4.6. Let T E H ( R ,  @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  We set 
r := nu1 T ( p )  and let k E ( 0 , .  . . , r - 1). Let y , ,  . . . ,yk be rootfunctions of T at p 
with v ( y j )  2 m j  for j = 1 ,  . . . , k such that yl ( p ) ,  . . . , y k ( p )  are linearly indepen- 
dent, where the numbers m j  are the partial multiplicities dejined in (1.4.2). Then 
there are rootfunctions yk+,, . . . , yr of T at p such that { y ,  , . . . , y,) is a canonical 
system of rootfunctions of T at p. 

Proofi With rn := dim Ln we have r = rl . If m,, := m ,  + 1, then Lmo = ( 0 )  by 
definition of m,.  From v ( y j )  > m j  > mk for j = 1 , .  . . , k we infer 

Choose root functions yk+,,. . . ,yT,,k such that 

a n d v ( y j )  > m k ( > m j )  for j = k + l ,  ..., rnlk. Forn=mk-  l , m k - 2  ,..., 1 there 
are root functions y rn+,+17' . . ,yr,, of T at p such that 

and v ( y j )  > n for j = r,,+, + 1 , .  . . ,r,,. For these j we have j > r,+, = dimLn+, 
and hence n + 1 > m j .  Thus mi < n 5 v ( y j ) .  This proves that condition iii) of 
Proposition 1.4.4 holds for all j E { I , .  . . , r) .  From 

we infer that { y ,  ( p ) ,  . . . , y , (p ) )  is a basis of N ( T ( p ) ) .  

Talung k = 0 in the above proposition we obtain 

PROPOSITION 1.4.7. Let T E H ( R , ( P ( E , F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Set r := 
nu1 T ( p ) .  Then there is a canonical system of rootfunctions { y ,  , . . . , y,) of T at p. 

Another result on completing incomplete systems of root functions is the fol- 
lowing one: 

PROPOSITION 1.4.8. Let T E H ( R , @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Set 
r := nu1 T ( p ) .  Let x ,  , . . . , xk ( 0  < k < r )  be root functions of T at p such that 
x1 ( p )  , . . . , xk ( p )  are linearly independent and such that for each set A C { 1 , .  . . , k )  
and for each rootfunction y'of T at p with y ( p )  E span{xj(p) : j E A )  the estimate 

holds. Then there is a canonical system of root functions yl , . . . ,y ,  of T at p such 

that { X I , . . .  ,xk) C { y l , . . .  , ~ r ) .  
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Proof: We first take those xjl ( p ) ,  . . . ,X,,~ ( p )  which belong to LnlI. Then we choose 

z ,+~ ,  . . . ,zrnIl E Lml such that {x,] (p),  . . . ,x, (p),z,+, , . . . , zhI ) is a basis of Lml . 
Here r,,, := dimL,,. Now we set yi := x .  for i = 1, .  . . ,s,  and we choose root 

J ,  

functions yS+, , . . . ,y,,, of T at p of multiplicity ml such that y ,(p)  = Z, for j = 

s + 1, . . . , r,,,] . 
Next we take those xkl ( p ) ,  . . . , ~ ~ , ~ ( p )  which belong to Lnl1-, \ Lnl,. The as- 

sumption (1.4.5) says that 

Then we choose wit,, . . . , wi, where s' := dim L,,, - ,  - dimLml, such that 

We set := x for i = 1, . . . ,Sand for j = J+ 1, .  . . , s we choose root functions 
k' 

Yj+rnLl of T at p of multiplicity ml - 1 such that y,+,l, ( p )  = w,. Proceeding in 
this way, we obtain a system {y l , .  . . ,y,.) of root functions with {x i , .  . . ,xk)  C 
{yl , . . . ,yr). By construction, yl  (p),  . . . , y,.(p) are linearly independent. From 
j < dim Lmj we infer y,(p) E L,,,, . Therefore v(y,) 2 mj follows if we show 
that v(y) 5 v(yj) holds for each root function y of T at p with y (p )  = yj (p) .  If 
yj  = x,, for some j', this follows from (1.4.5) with A = j'. And if yj @ {xl , . . . ,xk),  
it holds by construction. 

PROPOSITION 1.4.9. Let T E H ( Q , @ ( E , F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 
{yl,  . . . ,y,) be a canonical system of rootfunctions of T a t  p .  Then 

L, = span{y,(p) : j 5 dim L,) = span{yj(p) : mj > n) 

holds for each n E N\ (0). 

Proof: Since there are no root functions y of T at p with v(y) > ml ,  we have 

L,, = (0) = span{y,(p) : j < dimL,) for n > mi .  

Now let n E N\ ( 0 )  with n < ml and set r, := dim L, 5 r. The definition of mj in 
(1.4.2) yields n 5 m,, and hence v(y , )  > . . . > v(y,) 2 n follows. This proves 
that L, > span{yj(p) : j 5 r,). Since yl  (p),  . . . ,yrn (p) are linearly independent, 
we obtain that span{yj(p) : j < r,,) is an r,-dimensional subspace of L,. From 
r, = dimL,, we infer L,, = span{y,(p) : j < dim L,). 

The second equality follows since, by definiton of m,, dimL, > j holds if and 
only if mi > n. C1 
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1.5. Representation of the principal part of a finitely rneromorphic operator 
function 

Let R be a domain in @ and E and F be Banach spaces. 

PROPOSITION 1.5.1. Let N be aJinite-dimensional subspace of E and { y l ,  . . . , yk)  
be a basis of N .  Assume that A E L(F, E )  and R(A)  C N. 
Then there are vl , . . . , vk E F' such that 

Pro06 The HAHN- 
thogonal to (y,)f=,, 
It follows that 

.BANACH theorem yields a family ( u ~ ) ! = ~  in E' which is bior- 
i. e., ( y j ,  u,) = 6,, holds for i ,  j = 1,. . . , k; see e. g. [HO, p. 511. 

For i = 1,. . . , k we set vi := A*u,. Let w E F. Since Aw E N, the above equation 
yields 

REMARK 1 S.2. Let N be a finite-dimensional subspace of F' and { v ,  , . . . , v k )  be a 
basis of N. Assume that A E L(F, E )  and R(A*) C N. Then there F e  y,, . . . ,yk E E 
such that 

k 

A = X y ;  @ v;. 

ProoJ: The linear independence of the v, ,  . . . , vk implies that there is a family 
in F which is biorthogonal to ( ~ ~ ) f = ~ ;  see e. g. [RR, p. 321. Setting yi :=Ax,, 

we obtain as in the proof of Proposition 1.5.1 that 

PROPOSITION 1.5.3. Let El and E2 be Banach spaces and p  E R. Assume 
that x ,  , . . . , xr E H (R,  E l )  and z l  , . . . , zr E H (R \ { p ) ,  Ei) .  Assume that the vec- 
tors xl ( p ) ,  . . . ,xr ( p )  are linearly independent and that thefunctions z l  , . . . , zr are 

r 
meromorphic at p. If 1 x, @ z j  is holomorphic at p, then all the z j  ( j  = 1,. . . , r )  

i= l 

are holomorphic at p. 
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ProoJ: There are a neighbourhood U c R of p and for each j E ( 1 , .  . . , r )  an 
integer s j  E N such that 

Suppose that the assertion of the proposition does not hold. Then it follows that 
s := max{i E N : 3 j E ( 1 , .  . . , r )  z(.-') # 0 )  > 0. From the holomorphy of the xi 

I 
r 

and of 1 xi €3 zi at p we obtain 
i= 1 

We fix some j E ( 1 , .  . . , r )  such that z(.?) # 0. Since the x i@)  are linearly inde- 
I 

pendent, the HAHN-BANACH theorem yields an element w E Ei such that 

( x i ( p ) , w )  = 6 . .  ( i =  1 ,..., r ) ,  
J 

see e. g. [HO, p. 5 11. Then (1.5.1) leads to the contradiction 

,(,-.) = ( ( p )  W ) z -  = 0 
1 

THEOREM 1.5.4. Let T E H ( Q , @ ( E , F ) ) ,  p ( T )  # 0, and let p E o ( T ) .  Let 
{y l  , . . . , y,) be a CSRF of T at p. Then there are polynomials v j  : @ i F' of 
degree less than m j  and afunction D E H(U,  L(F, E ) ) ,  where U C R is a suitable 
neighbourhood of p, such that 

for all A E U \ { p ) .  The polynomials v j  are uniquely determined by the system 

{ ~ l , . . . , ~ r ) r  

V ( V  .) = m . ( j  = 1 , .  . . , r) ,  where ml  , . . . , mr are the partial multiplicities of T at 
I J 

p, and the biorthogonal relationships 

1 d' 
-- 
,! d ~ [  ( q i , h " j )  (lo = 'ij6ni,-h,l 

arefuljilled, where 

rli,(A) := ( A  - P ) - ~ ( T Y , ) ( , ) ( ~ ) .  



20 I. Operator functions in Banach spaces 

Pro05 Let s be the pole order of T-' at p. First we prove the following statement 
by induction: 
(1.5.5) For K = 0 , .  . . ,s and j = 1,. . . ,r there are polynomials vy : C F' of 
degree less than mi such that the pole order of 

at p does not exceed s - K. 

For K = 0, (1.5.5) holds with vy = 0 ( j  = I , .  . . , r) .  Suppose that the statement 
(1.5.5) is fulfilled for some 0 5 K < s. We set 

m 

(1.5.7) A ( A )  : = z ( a  - ~ ) I A [  

/=-S+ K 

r 

: = T - 1  ( a )  - x ( A  - p ) - n l l y , ( ~ )  8 v Y ( ~ )  
j= 1 

for A in some punctured neighbourhood of p (where A, E L(F,E)) .  For j E 
(1 , .  . . , r ) ,  (. - p)-"jTy, is holomorphic at p because of m j  = ~ ( y , ) .  Hence, 
by (1.5.7), Proposition 1.1.2 and Corollary 1.2.4, TA  is holomorphic at p.  For 
yo E R(A-,+,) \ ( 0 )  choose some x E F such that yo =A-,+,x and define y (A)  := 
( A  - p ) S - K A ( A ) ~ .  y is a root function of T at p with y ( p )  = yo and v ( y )  2 s - K. 

This proves R(A-,+,) C L,-, , where Ls-, is defined by (1.4.1). By Proposition 
1.5.1 with N = Ls-, and Proposition 1.4.9 we find z j  E F' ( j  = 1,. . . , r)  such that 

dim L,s_ r 

(1.5.8) A-,+K= E Y ~ ( P )  8 2 ,  = E y j ( ~ ) @ z j ,  
j= 1 J= 1 

where z, := 0 if m, < s - K. We set 

vx+l ( a )  := ~ : ( r )  + ( A  - p)nll-s+K 
J z j  ( j  = 1 ,  ..., r ) .  

The v:" : C -+ F' are polynomials of degree less than m,. From (1.5.7) and 
(1.5.8) we conclude that 

T - I  ( A )  - z ( A  - p ) - " ' ~ y ~ ( A )  @ vy" ( A )  
j= 1 

whence (1.5.5) holds for K +  1 since the pole order of (. - p)-S+K(yj  - y j ( p ) )  at 
p is less than s - K. 
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The assertion (1.5.2) follows if we set vj  := vg ( j  = 1,. . . , r) .  
To prove uniqueness let 

r 

T - l  ( a )  = E(a - p)-*l ly j (n)  W , ( A )  +5(1) 
j= 1 

for A in a punctured neighbourhood of p ,  where C, : C + F' ( j  = 1,. . . , r )  are 

polynomials of degree less than m j  and 6 is holomorphic in a neighbourhood of 
p.  Then 

- 
y j ( ( - p ) n ' ~ ( v . - C j ) )  J = D - D  
j= 1 

is holomorphic in a neighbourhood of p. Since yl ( p ) ,  . . . , y r ( p )  are linearly in- 
dependent, the functions (. - p)-"'j ( v j  - 5) are holomorphic at p by Proposition 
1.5.3. As v j  and C j  are polynomials of degree less than mi ,  we obtain v j  - C j  = 0. 

We still have to prove the assertions (1.5.3) and (1.5.4). Multiplying (1.5.2) 
with T ( A )  from the right-hand side yields 

r 

(1.5.9) idE = x ( A  - /L)-"'1yj(h) O ( T * v j ) ( A )  + ( D T ) ( A )  
j= 1 

for A E U \ { p ) .  Hence the sum 

is holomorphic in U .  Since yl ( p ) ,  . . . , y r ( p )  are linearly independent, the func- 
tions 

are holomorphic at p by Proposition 1.5.3. We apply (1.5.9) to y,(A) and obtain 

for il E U \ { p ) .  At p the vector function DTyi has a zero of order at least mi, 
whence 

is holomorphic there. Thus, by Proposition 1.5.3 with E2 = C, the functions 

for i, j = 1,. . . , r are holomorphic at p. We infer for i ,  j = 1, .  . . , r and h = I , .  . . ,mi 
that the function 

6. .(. - p)"'ivh - ((. - p ) - h ~ y i ,  v,) 'J 
has a zero of order not less than m j  at p ,  whence the equations (1.5.4) are proved. 
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In (1.5.4) we set h  = mi and 1 = 0 and obtain 

These equations show that the vectors v l  ( p ) ,  . . . , v r ( p )  are linearly independent. 
Since the vector functions in (1.5.10) are holomorphic at p ,  the vj  ( j  = 1,. . . , r) 
are root functions of T* at p  with v(v,) 2 mi 

We multiply the equation (1.5.2) with T ( A )  from the left-hand side and obtain 
r 

idF = ( A  - j l ) - n ' ~  (5,) ( A )  @ v,(A) + ( T D )  ( I )  
j= 1 

for A E U \ { p ) .  Forming the adjoint yields 
r 

idf, = z ( A  - p)-"iv,(A) @ (Ty,)(A) + (D*T*) (A)  
;= 1 

for A E U \ { p ) .  Let v  be a root function of T* at p. The above equation yields 
r 

.(A) = ( A  - p)-- j ( (Ty, ) (h) ,  v(A))v , (A)  + (D*T*v) (h)  
j= 1 

for A E U \ { p ) .  As p  is a zero of T'v, it follows that 
r 

(1.5.12) ' ( P )  = z(((' - P ) - ~ ' J T Y ; )  ( P ) > v ( P ) ) v ~ ( P ) ,  
;= 1 

which proves that v ( p )  E span{vl ( p ) ,  . . . , v r ( p ) ) .  Hence {vl (p), . . . , v r ( p ) )  is a 
basis of N ( T * ( p ) ) .  If 1 < k < r  and 

61 'pan{~l ( P ) , . . .  7 ~ k - 1  ( P I ) ,  
then, by (1.5.12), there is an integer j  2 k such that the function 

has a non-zero value at p. But this function is equal to 

whence v ( v )  < m j .  Since j  2 k, the inequality mi < mk holds. Furthermore, 
mk < v ( v k )  as was shown above. Thus v ( v )  < mk 5 v(vk ) .  We infer that 

v ( v k )  = max { v ( v )  : v  is a root function of T* at p  and 

and v ( v k )  = mk. This proves the assertion (1.5.3). 

An immediate consequence of the properties of the CSRF of T* is 
COROLLARY 1.5.5. Let T  E H ( Q , @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Then 
nu1 T ( p )  = nu1 T* ( p ) ,  and the partial multiplicities of T  and T* at p  coincide. 
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COROLLARY 1.5.6. Let T E H ( R , @ ( E , F ) ) ,  p ( T )  # 0, and p E o ( T ) .  We set 
r = nu1 T ( p ) .  Then there are root functions y,,  . . . ,y, of T at p and v,,  . . . , v, of 
T* at p such that the following properties hold: 

v ( y , ) = v ( v . ) = m .  J J ( j = l ,  ..., r ) ;  

where 
qi := (. - p)-"'iTyi ( i  = 1 , .  . . , r ) ;  

where 
5 .  J := (. - p)-"'jT*vj ( j  = 1 , .  . . , r ) ;  

(1.5.15) D := T-' - (. - p ) - " ' ~ ~ ,  8 vj  ,= 1 

is holomorphic at p. The systems { y l  , . . . , y r )  and {v,, . . . , v,) fuljilling the above 
properties are called biorthogonal CSRFs of T and T* at p. 

Proot Choose a CSRF { y ,  , . . . ,y,) of T at p according to Proposition 1.4.7. Let 
{ v ,  , . . . , v,) be a CSRF of T* at p according to Theorem 1.5.4. Then (1.5.13) and 
(1.5.15) immediately follow from (1.5.4) and (1.5.2). The relationships (1.5.13) 
say that each of the functions 6,, - (qi ,  v,) ( i ,  j = 1 , .  . . , r)  has a zero of order 2 m j  
at p.  The definition of the 5, and the qi immediately yields 

sij- (y i ,&)  = ( . - ) n 1 m ( 6 i j -  ( , , v , ) )  ( i ,  j =  1 ,  . . . ,  r ) .  

Hence each of these functions has a zero of order 2 mi at p.  This proves (1.5.14). 

REMARK 1.5.7. The biorthogonal relationships in (1.5.13) are formally weaker 
than the biorthogonal relationships (1.5.4). But they are easily seen to be equal if 
we observe that (1.5.4) means that, for i ,  j = 1 , .  . . , r and h = 1 , .  . . ,mi, 

has a zero of order 2 m j  at p, whereas (1.5.13) means that this holds for h = mi. 

REMARK 1.5.8. Assume that T E H(Q,@(E,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 
{ v , ,  . . . , v,) be a CSRF of T* at p. Note that the numbers mi = v ( v j )  ( j  = 1 , .  . . , r)  
are the partial multiplicities of T and T* at p.  Then there exist polynomials 
y, : C -+ E of degree less than mi and a function D E H(U,  L(F, E ) ) ,  where U C Q 
is a suitable neighbourhood of p ,  such that { y ,  , . . . , y,) is a CSRF of T at p and 
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the representation (1.5.2) as well as the biorthogonal relationships (1.5.4) hold, 
where the polynomials y , ,  . . . , y,. are uniquely determined by v l , .  . . , v,.. 
ProoJ: This is analogous to the proof of Theorem 1.5.4. We only have to use 
Remark 1 .5.2 instead of Proposition 1.5.1 in order to obtain a representation 

with xj E E. Now we proceed as in the proof of Theorem 1 S.4, considering T* 
instead of T .  

Often i t  is not easy to find the partial multiplicities or to check condition i) 
of Proposition 1.4.4. But the following theorem says that an estimate of the mul- 
tiplicities of root functions and the validity of biorthogonal relationships is suffi- 
cient to find biorthogonal CSRFs. 

THEOREM 1.5.9. Let T E H(Q,<P(E,F)) ,  p ( T )  #0 ,  p E o ( T )  andr:= n u l T ( p ) .  
Let k l  > . . . 2 k,. be positive integers, y l ,  . . . ,y , .  be root functio~zs of T at p,  and 
v , ,  . . . , 1)' be root&~nctions of T* at p. Ass~inze that v ( y J )  > k j  and ~ ( v , )  > k j  for 
j =  1, . . . ,  r. Set 

qi := (. - p)-"Ty, ( i  = 1, .  . . , r ) .  

Then the following properties are equivalent: 
i) the systems { y l , .  . . , y r )  and { v l , .  . . , v,.) are biorthogonal, i. e., 

ii) the operator,function 

is holomorphic at p. 
If one of these properties holds, then {y l  , . . . , y,.) is a CSRF of T at p, {v l  , . . . , v,.) 
i s a C S R F o f T * a t p , a n d v ( y , ) = v ( v j ) = k , f o r j = l ,  . . . ,  r. 

ProoJ: i) + ii): Set 

These functions are holomorphic at p as v ( v j )  2 k,. The definition of 5, and qi 
immediately yields 

(1.5.18) a,, - (y;, c,) = (. - p)ki-k~ (4, - ( q .  v .)) ( i ,  j = 1 , .  . . r ) .  
" J 

By (1.5.16), the function 6,j - (q,,  v,) has a zero of order > k, at p.  Since k, > 0 

we infer that (. - p)'l-'j (ljij - (q;, v,)) has a zero at p. This proves 
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Thus the linear independence of the vectors y, ( p ) ,  . . . , y r ( p )  is proved. From 
r = nu1 T ( p )  we infer that { y ,  ( p ) ,  . . . , y r ( p ) )  is a basis of N ( T ( p ) ) .  Since T - I  

has a pole at p ,  D  also has a pole at ~1 or is holomorphic there. Hence there is an 
integer ~g such that 

in a punctured neighbourhood of p. Suppose that q, < 0 and D$ # 0. From the 
definition of D  in (1.5.17) and the definition of qj  we obtain 

r 

(1.5.21) T D  = idF - q, 8 v,. 
j= 1 

This proves that T D  is holon~orphic at p  as the vector functions q ,  and v ,  are 
holomorphic there. Since T ( p ) D q )  is the coefficient of ( -  - p )  in-the ~auren t  
series expansion of T D  at p ,  we have Z'(p)D?) = 0. Hence 

Choose some x  E F such that D$x # 0. The biorthogonal relationships (1.5.19) 
imply that 

(1.5.22) (D,x, CjO(p) )  # 0 for some jo t { I , .  . . , r ) .  

The function (Dx, T*v jo )  = (TDx,  v jo)  is holomorphic at p.  From (1.5.20) we 
infer the expansion 

(Dx,  T*v ) = (. - p )  4 + k ~ 0  (D$x,  5, ( p ) )  + terms of higher order. 
10 

In view of (1.5.22) and q, < 0 this shows that (Dx, T * I ~ , ~ )  does not have a zero 
of order 2 k  . . For j = 1,.  . . , r the biorthogonal relationships (1.5.16) yield that 

Jo 
the function S,,," - (q ,  v ) has a zero of order _> k," at p .  In view of ( 1.5.2 1) we ' 10 
obtain that 

has a zero of order > kjo . This contradiction proves the holomorphy of D  at p.  
Let i) be fulfilled. We shall prove that { y , ,  . . . ,y,.) is a CSRF of T  at p ,  

{ v , ,  . . . , v,) is a CSRF of T*  at p  and v ( y j )  = v ( v j )  = k, for j = 1,. . . , r. We have 
shown that { y ,  ( p ) ,  . . . , y r ( p ) )  is a basis of N ( T ( p ) ) .  From ( 1  S.16) with 1 = 0 we 
infer that the vectors v ,  ( p ) ,  . . . , v r ( p )  are linearly independent. This shows that 
{ v l  ( p ) ,  . . . , v r ( p ) )  is a basis of N ( T * ( p ) )  as nu1 T ( p )  = nu1 T * ( p ) ,  see Corol- 
lary 1.5.5. By Definition 1.4.5 and Corollary 1 .5.5 we know that { y ,  , . . . , y,) and 
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{vl, . . . , vr) are CSRFs if we prove that k, > mj for 1 5 j < r, where the numbers 
mi are the partial multiplicities of T at p .  Suppose that there is a jo E { I , .  . . , r) 
suchthatkj>mjfor l  5 j<  j o - l a n d k  J O  < m . .  l o  S e t j j . = y . f o r j = l ,  J J  . . . ,  jo-1. 

By Proposition 1.4.6 there are root functions jjjo,. . . ,jjr such that {jj,, . . . ,fi) is a 
CSRF of T at p .  We choose the CSRF {e l , .  . . , Fr) of T* at p according to Theo- 
rem 1.5.4. By (1 S.2) the operator function 

is holomorphic at p .  Since the property ii) holds, we infer that the operator func- 
tion 

r 

is holomorphic at p .  We multiply the above operator function by the holomorphic 
ni. -1 function (. - p )  Jo and obtain that 

-kj+nl - I  . 
is holomorphic at p since (. - p )  lo IS holomorphic for j = jo, . . . , r as kj 5 
kjo < mj0 . Since the jj,(p) are linearly independent, Proposition 1.5.3 yields that 

(. - p)-'cjo is holomorphic at p, i. e., we have e .  ( p )  = 0. But this is impossible 
Jo 

since f .  is a root function. Finally, k, > mj implies mj 5 k, 5 v(yj) = mi, 
Jo 

whence kj = v(yj) and, similarly, k, = v(vj) for j = 1 , .  . . , r .  
ii)*i): Let y E N(T(p)).  Property ii) yields 

whence N(T (p)) c span{yl (p), . . . , yr(p)) .  Here we have used that the vector 
function (. - p)-'jT*vj is holomorphic at p since v(vj) 2 k, . From the assump- 
tion that dim N (T ( p ) )  = r we infer that yl ( p ) ,  . . . , yr(p) are linearly independent. 
By property ii), for each i E (1,. . . , r) the function 
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has a zero of order > k, at p since v(yi) >- k, . From Proposition 1.5.3 with E2 = @. 
we infer that for i, j = 1, .  . . , r the functions 

are holomorphic at p ,  which yields the biorthogonal relationships (1.5.16). 

1.6. Eigenvectors and associated vectors 

Let Q be a domain in @ and E and F be Banach spaces. 

DEFINITION 1.6.1. Let T E H(Q,(P(E, F)), p (T)  # 0 and p E o ( T ) .  
i) An ordered set {yo,y,, . . . ,yh} in E is called a chain of an eigenvector and 
associated vectors (CEAV) of T at p if 

is a root function of T at p with v(y) > h + 1. 
ii) Let yo E N(T(p))  \ (0). Then V(yo) denotes the maximum of all multiplicities 
~ ( y ) ,  where y is a root function of T at p with y(p)  =yo. V(yo) is called the rank 
of the eigenvector yo. 
iii) A system {yjJ) : 1 5 j 5 r, 0 < 1 5 iir, - 1) is called a canonical system of 
eigenvectors and associated vectors (CSEAV) of T at p if 

{y!),...,yt)} is a basis o fN(T(p) ) ,  

{ , y , . .  y m -1 } isaCEAVofT a t p  ( j = l ,  ..., r), 

- 
m, = max{V(y) : y E N(T(p))  \ span{y:) : k < j}} ( j  = 1,.  . . , r). 

PROPOSITION 1.6.2. Let T E H(Q,(P(E, F) ) ,  p (T)  # 0 and let p E o(T) .  Let 
{yi'): 1 5  j < r , O 5 1  < ? ? ? - I }  beaCSEAVofTatpandset  

Then {yl, . . . ,yr} is a CSRF of T at p, and the numbers iii, are the partial multi- 
plicities of T a t  p. 

Proof By assumption, {y, ( p ) ,  . . . ,yr (p)} = {y!), . . . ,yt)} is a basis of N(T(p)) .  
The definition of a CEAV yields v(yj) > mj for j = 1,. . . , r. Hence 

v(yj) t max{V(y) : Y E N(W.4)  \ spanlyr) : k < j}} 

= max{v(y) : y is a root function of T at p and 

Y(P) @SP~~{Y~(P),...,Y~-~(P))}. 
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The above inequality is an equality since the estimate 5 is obvious. So { y ,  , . . . ,y,) 
is a CSRF o f  T at p with v ( y j )  = iii, ( j  = 1,. . . , r ) ,  see Definition 1.4.5. 

P R O P O S I T I O N  1.6.3. Let T E H ( Q , @ ( E , F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 
{ y l , .  . . , yr}  be a CSRF of T at p. Set 

where the numbers m j  are the partial multiplicities of T at p. Then the set of 

vectors { y ( J )  : 1 < j < rl 0 < 1 < m j  - 1 }  is a CSEAVof T at p, and ~ ( y ! ) )  = m 
1 I 

for j =  I ,  . . .  ,r. 

Proof Theset {yt), . . . , y t ) }  is abasis o f N ( T ( p ) )  asv!) =y , (p )  for j =  1, .  . . ,r. 
Since 

is the Taylor polynomial o f  y o f  order mi - 1 at p ,  it is a root function o f  order 

2 v(y,)  at p. Hence {y!),:i.y\j) , . . . ,  :i.y/i) } is a CEAV o f  T at p for j =  1 , . . . ,  r. 
1 - 1  

Finally, for j = 1 , .  . . , r, 

mj = max{v(y )  : y is a root function o f  T at p and 

Y ( P )  gs~an{y,(~),...>Y~-l(~))I 

= max{V(y) : y E N ( T ( p ) )  \ span{y!) : k < j } } .  

P R O P O S ~ T ~ O N  1.6.4. Let T E H ( R , @ ( E ,  F ) ) ,  p ( T )  # 0 and p E E ( T ) .  We set 
r := nu1 T ( p )  and let m,, j  = 1 ,  . . . , r, be the partial multiplicities of T at p. Then 

there is a CSEAV {ylj) : 1 < j < r, 0 < 1 5 mi - I }  of T at p. 

Pro08 The result immediately follows from Propositions 1.4.7 and 1.6.3. 

T H E O R E M  1.6.5. Assume that T E H ( Q , @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 
{y jJ)  : 1 5 j  5 r, 0 < 1 5 m j  - I }  be a CSEAV of T at p. Then there are vectors 

vjji E F' ( j  = 1,. . . , r; 1 = 0 ,  . . , m, - 1 )  and a function 6 t H ( U ,  L(F,  E ) ) ,  where 
U C R is a suitable neighbourhood of p, such that 

( 1  -6.1) T - I  ( A )  = f ( A  - p) - I  2 y f )  @ v!)-,-~ + b(1) 
j=ll=l h=O I 

for all A E U \ { p ) .  The vectors v (J )  are uniquely determined by the given system 
I 

{ $ ) :  15 j < r l O < l < m , - l } ,  

{v(j i  I : 1 5 j < r, 0 < 1 < mi - 1 )  is a CSEAVof T* ar p ,  
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- 
v(v(P))  = m j  ( j  = 1,.  . . , r) ,  and the biorthogonal relationships 

I 

are fulfilled. 

Pro05 Define the CSRF {y, , . . . , y,.) of T at p according to Proposition 1.6.2. By 
Theorem 1.5.4 there are unique root functions 

such that the representation (1.5.2) of T -  ' holds. Since { v ,  , . . . , v,) is a CSRF of 
T* at p by (1.5.3), Proposition 1.6.3 yields that { $ J )  : 1 < j < r, 0 < 1 < mi - I }  
is a CSEAV of T* at p.  An easy calculation gives that 

is the principal part of 

at p.  This proves the representation (1.6. I) ,  and the uniqueness of the v j  implies 

the uniqueness of the v?. 
For i = 1,. . . , r and h = 1,. . . ,mi let qi,h be defined as in Theorem 1.5.4. Since 

Tyi has a zero of order 2 mi, we infer 

Hence 

For i = 1 , .  . . , r, j = 1,.  . . , r, h = mi, and 1 = 0, .  . . , m, - 1 the biorthogonal rela- 
tionships (1 S.4) yield 
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COROLLARY 1.6.6. Let T E H(Q,  O ( E ,  F ) )  such that p ( T )  # 0. Let p E o ( T ) ,  
r = nu1 T ( p ) ,  and m j  ( j  = 1,. . . , r )  be the partial multiplicities of T at p. Then 

t h e r e a r e ~ ~ ~ ~ s y ! )  ,..., yi)-l ( j =  1 ,..., r )  o f T a t p a n d v ! )  , . . . ,  v i ) - ,  ( j =  
I I 

1,. . . , r )  of T* at p such that the following properties hold: 

~ ( y ! ) )  = ~ ( v r ) )  = m .  ( j  = I , .  . . , r ) ,  J 

and the operatorfinction 

is holomorphic at p. We call the systems { y ; ~ )  : 1 < j < r, 0 5 1 < mi - 1)  and 

{ v ~ J )  : 1 < j < r, 0 < 1 < m ,  - 1 } biorthogonal CSEAVs of T and T* at p. 

The above corollary follows from Corollary 1.5.6 in the same way as we ob- 
tained Theorem 1.6.5 from Theorem 1 S.4. Similarly, Theorem 1.5.9 yields 

T H E O R E M  1.6.7. Assume that T E H ( Q ,  O ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 
r = n u l T ( p ) a n d k l  >...>k,bepositiveintegers . ~ e t y r ) , . . . , y [ ) ~  ( j =  1 ,  . . . ,  r )  

be CEAVs of T at p and $1,. . . , V ( J )  ( I , .  . . , r )  be CEAVs of T* at p. Assume 
k,-1  

that B(Y!)) > k j  and B(v:)) > k j  for j = 1,. . . , r. Then the following properties 
are equivalent: 
i )  {yjj) : I <  j < r,O < 1 < m j -  1) and {vjj) : I <  j 5 r,O < 1 < m i -  1)  are 
biorthogonal, i. e. 

ii) the operatorfunction 

is holomorphic at p. 
Ifone of these properties holds, then { y ! ~ )  : 1 _< j < r, 0 < 1 5 m j  - 1) is a CSEAV 

of T a l p .  {vij) : 1 < j < r, 0 < 15 m j -  1)  i sa  C S E A V O ~  T* a l p ,  a n d ~ ( y r ) )  = 
- 
~ ( v ! ) )  = k for j = 1 ,  ..., r. 

J 
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1.7. Semi-simple eigenvalues 

Let !2 be a domain in C and E and F be Banach spaces. 

DEFINITION 1.7.1. Let T E H(IZ,@(E,F))  and p E o ( T ) .  Then p is called a 
semi-simple eigenvalue of T if for each y E N ( T ( p ) )  \ ( 0 )  there is a v € N ( T * ( p ) )  
such that 

If p E o ( T )  is semi-simple and nu1 T ( p )  = 1, then p is called a simple eigenvalue. 

PROPOSITION 1.7.2. Let T E H ( R , @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  The fol- 
lowing properties are equivalent: 
i) p is a semi-simple eigenvalue of T ;  
ii) there are CSRFs { y l , .  . . ,y,) of T at p and { v l , .  . . , v,) of T* at p such that 

iii) for each rootfinction y of T at p we have v ( y )  = 1; 
iv) the pole order of T-' at p is 1. 

Proof iii) H iv) is obvious because of Lemma 1.4.2. 
i) + iii): Suppose that there is a root function y of T at p with v ( y )  > 2. Then 

Now let v E N(T* ( p ) ) .  Then 

which contradicts i) since y ( p )  E N ( T ( p ) )  \ (0). 
iii) + ii): By Corollary 1.5.6 there are biorthogonal CSRFs { y ,  , . . . , y,} of T at 
p and { v ,  , . . . , v,) of T* at p. The assumption iii) implies that mj = 1 for all 
j € { I , .  . . , r} .  For i ,  j € { I , .  . . , r} ,  (1.5.13) yields 

Since 
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we infer 

d 
= (((. - P ) - ' T Y ~ ) ( P ) > V ~ ( P ) )  - ( ( d n ~ i )  ( ~ ) , T * ( p ) v j ( P ) )  

= 6 i j .  

ii) + i): Let y E N ( T ( p ) )  \ (0). Then there are ai E C ( i  = 1,. . . , r )  such that 

where a. # 0 for some io E { 1,. . . , r ) .  We infer 
'0 

which proves i) since vi ( p )  E N ( T  ( p ) ) .  
0 

Using eigenvectors the above proposition reads 

P R O P O S I T I O N  1.7.3. Let T E H ( R , @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  The fol- 
lowing properties are equivalent: 
i) p is a semi-simple eigenvalue of T ;  
ii) there are bases { y , ,  . . . ,y,) of N ( T ( p ) )  and {v,, . . . , v,) o f N ( T * ( p ) )  such that 

iii) each eigenvector of T at p has rank 1 ;  
iv) the pole order of T-' at p is 1. 

The following result shows that we can easily create operators with non-semi- 
simple eigenvalues. 

LEMMA 1.7.4. Let T E H (R ,  @ ( E ,  F ) ) ,  p ( T )  # 0, p E o ( T ) ,  and consider the 

o p e r a t o r S = ( ~  O) E H ( R , @ ( E X E F ~ F ) ) .  i i r n p ( ~ ) = p ( ~ ) . i / p i s  
-T T 

a semi-simple eigenvalue of T ,  then p € o ( S )  is a non-semi-simple eigenvalue of 
S. In particulal; if o ( T )  is in$nite, then T or S has injinitely many eigenvalues 
which are not semi-simple. 

Pro06 For A E p ( T )  we have 
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which shows that s(A)-'  has a pole at each eigenvalue of T ,  i. e., o ( S )  = o ( T ) .  
Since p is a simple pole of T ,  there are biorthogonal systems of eigenvectors of T 
and T* at p such that 

r 

is holomorphic at p ,  see (1.6.1). Therefore the proof of the lemma is complete 
if we show that the coefficient of (it - p)-2 in T ( A ) - ' T ' ( A ) T ( A ) - '  is nonzero. 
But this coefficient is 

where we have used the biorthogonal relationships (1.6.2). 

1.8. Local factorizations 

Let Q be a domain in @ and E and F be Banach spaces. 

PROPOSITION 1.8.1. Let T E H(Q,@(E,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 
{ y l , .  . . , y r )  and { v l , .  . . , v r )  be biorthogonal CSRFs of T and T* at p. Let D, 
q j  and C j  ( j  = 1 , . .  . , r)  be as defined in Corollary 1.5.6. Then: 
i) For all it in some neighbourhood of p we have 

ii) T ( P ) D ( P ) T ( P )  = T ( P ) .  

iii) For all i ,  j = 1,. . . , r and each w in some Banach space G we have 

( w @ Y ~ ( P ) ) C ~ ( P )  = 6ijw= ( w @  C i ( p ) ) y j ( p )  

and 

( w @ v j ( l l ) ) q i ( p )  = aijw= ( w @  q i ( p ) ) v j ( p ) .  
iv )Foral l i= 1, ..., rwehave 

(TDqi)  ( P )  = 0, (T*D* C j )  ( P )  = 0. 



34 I. Operator functions in Banach spaces 

Pro05 i) immediately follows from the definitions of D, q j  and C j  . 
ii) follows from i) since T ( p ) y j ( p )  = 0 for j = 1 , .  . . , r. 
iii) is clear because of the biorthogonal relationships (1.5.14) and (1.5.13). 
iv) immediately follows from i) and iii) if we also take the adjoints in the second 
equation of i). 

REMARK 1.8.2. The .operator function D given by (1.5.15) differs from the re- 
duced resolvent S p  defined in Proposition 1.3.2 by a degenerate operator function. 
The operator D ( p )  depends on the choice of the CSRFs. But for our purposes it 
is more appropriate than S p  ( p )  since T ( p )  D ( p )  T ( p )  = T ( p )  always holds. If p 
is a semi-simple eigenvalue, then we can choose CSRFs of T and T*  at p which 
consist of constant vector functions. In this case, D coincides with S p ,  and (1.3.6) 
is a special case of Proposition 1.8.1 ii). 

PROPOSITION 1.8.3. Let T E H(R,<P(E,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 
{ y l , .  . . , ~ r )  and { v , ,  . . . , v r )  be biorthogonal CSRF of T and T* at p. Let D, 
q j  and C j  ( j = 1, . . . , r )  be as defined in Corollary 1.5.6. Then there are a neigh- 
bourhood U C R of p and holomorphic operator functions C1 € H ( U , L ( F ) ) ,  
C2 E H ( U ,  L ( E ,  F ) )  and Dl  E H ( U ,  L ( E ) )  such that C ,  ( A ) ,  C 2 ( A )  and Dl  ( A )  are 
invertible for all A E U and such that 

hold in U .  

Proofi Let U' C R be a neighbourhood of p in which the operator function D 
defined by (1.5.15) is holomorphic. For iZ E U' we define 

Obviously, C1 E H ( U 1 ,  L ( F ) ) ,  e2 E H(U1,  L (E ,  F ) )  and bl E H ( U 1 ,  L ( E ) ) .  Propo- 
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sition 1.8.1 and T * ( p ) v j ( p )  = 0 yield 

for A  E U'.  Analogously, Proposition 1.8.1 and T ( p ) y j  ( p )  = 0 yield 

for A  E U'.  On the other hand, 

(1.8.5) T ( A ) ~ ,  ( A )  = T ( A ) D ( A ) T ( p )  + ( A  - p)"' jvj(A) @ C j ( p )  
j= 1 

for A  E U'. We shall prove that 

(1 A.6) ( P I ,  C2 ( P )  and 61 ( p )  are invertible. 

Then, by Proposition 1.2.5, there is a neighbourhood U c U' of p  such that ( I ) ,  
C2(a) and 6,  ( A )  are invertible for all A  E U ,  and we define 

This proves the theorem because of (1.8.3), (1 3.4) and (1.8.5). 
Now we are going to prove (1.8.6). Proposition 1.8.1 immediately yields 

Since 
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we infer with the aid of Proposition 1.8.1 and T ( p ) y j ( p )  = 0 that 

In the same way, Proposition 1.8.1 and T * ( p ) v j ( p )  = 0 yield 

Hence G(P)  is invertible. 

THEOREM 1.8.4. Let T E H ( Q , @ ( E ,  F ) )  such that p ( T )  # 0. Let p E o ( T ) ,  
r := nu1 T ( p ) ,  and let m j  ( j  = 1 , .  . . , r )  be the partial multiplicities of T at p. 
Then there are biorthogonal projections 5 E L ( E )  ( i  = 0 , .  . . , r ) ,  i.e., 

(1.8.7) P.P. = 6..P. ( i ,  j = 0 , . . .  , r ) ,  
1 1  1 1 1  

with dim R(P,) = 1 for i = 1,.  . . , r and 

r 

CP, = id,, 
i=O 

a neighbourhood U c i2 of p,  and operator functions C E H ( U ,  L ( E ,  F ) )  and 
Dl  E H ( U ,  L ( E ) )  such that C ( A )  and Dl ( A )  are invertible for all A E U and 

holds in U .  The right-hand side of formula (1.8.9) is called a factorization of T 
at p (see [GS]).  

Proo$ With the notations of Proposition 1.8.3 we set C := C2, 

Then (1.8.9) is just the representation (1.8.2), and (1.8.8) follows from Proposition 
1.8.1 i). Now we shall prove (1.8.7). P: = Po follows from Proposition 1.8.1 ii). 
For j = 1, .  . . , r we have POPj = 0 since yj  is a root function of T at p ,  and PjPo = 0 
because of Proposition 1.8.1 iv). Finally, P,Pj = 6,,P, is valid for i, j = I , .  . . , r  
because of Proposition 1.8.1 iii). 
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Now let E and F be finite-dimensional spaces with dimE = dimF and let 
T E H ( R ,  L (E ,  F ) ) .  For fixed bases of E and F we consider the determinant 

(det T )  ( A )  = det T ( A )  ( A  E R ) .  

Obviously, det T is a holomorphic function on R. With respect to different bases, 
the determinants only differ by a constant nonzero factor. Thus the zeros of det T 
and their multiplicities do not depend on the choice of the bases and we may speak 
of "the zeros" and "the multiplicities of the zeros" of "the determinant". 

Since operators in finite-dimensional spaces are Fredholm operators, p ( T )  # 
0 implies that every p E o ( T )  is a pole of T- '  and an eigenvalue of finite algebraic 
multiplicity. 

PROPOSITION 1.8.5. Let E and F befinite-dimensional spaces such that dimE = 
dimF. Let T E H ( R , L ( E , F ) )  and assume that p ( T )  # 0. For p E o ( T )  the 
algebraic multiplicity of T at p is equal to the multiplicity of the zero of det T 
at p. 

Pro05 We shall apply Theorem 1.8.4. Let the Pi be as defined there. According 
to the representation (1.8.9), the multiplicity of the zero of the determinant of T 
at p is equal to the multiplicity of the zero of the determinant of 

at p. From (1.8.7) and (1.8.8) we infer that there is a basis of E such that 

with respect to this basis. Indeed, let { x ,  , . . . ,x,) be a basis of R(Po) and choose 

X s + ~  E R(Pj)  \ (0) ( j  = 1 , .  . . , r). Then { x ,  , . . . ,xs,xs+, , . . . ,xS+,) is a basis of E 
because of ( 1  3 .7)  and (1.8.8). Finally, 

and 
Sx . = sp .x  . = (. - p)"'ixs+, 

s+ J J S+J ( j =  l , . . . , r ) .  

This completes the proof since det S = (. - p)m with respect to this basis, where 
r 

m = mi is the algebraic multiplicity of T at p.  
j= 1 

1.9. The completion of biorthogonal systems of root functions 

Let R be a domain in C and E and F be Banach spaces. 

In Theorem 1.5.9 we have seen that two systems of root functions {y l  , . . . ,y,) 
and {v,, . . . , v,) of T and T* at p are canonical systems of root functions if r = 
nu1 T ( p )  and if they are biorthogonal. 
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Now assume that there are biorthogonal systems of root functions { y l ,  . . . , y,,) 
and { v l , .  . . , v,) of T and T* at p with r' < r. We ask if they can be completed 
to biorthogonal canonical systems of root functions, i. e., if there are biorthogo- 
nal systems of root functions { Y l , .  . . , Y r )  and { V " , ,  . . . ,Gr) of T and T* at p such 
that { y l ,  . . . , y r )  C {Y l , .  . . ,Y,,) and {v l  , . . . , v,,) c {GI, .  . . , Fr). The next theorem 
shows that this is always possible. 

THEOREM 1.9.1. Let T E H ( i 2 ,  @ ( E ,  F ) ) ,  p ( T )  # 0 and p E o ( T ) .  Let 0 < r' < 
r = nu1 T ( p ) ,  y l ,  . . . ,y,, be rootfunctions of T at p, v l ,  . . . , v,, be rootfunctions of 
T* at p, k j  > 0, v ( y j )  > k,, v(v,) > k, ( j  = I , .  . . ,r l) .  Assume that 

d ' 
=(qi ,v , ) (p)  = 6,j60, ( i ,  j =  1 ,  . . . ,  r ' ; 0 <  15 k,- 1 ) ,  

where 

qi= ( . - p ) - k i ~ y i  ( i =  1 ,  ..., r').  
Then there are biorthogonal canonical systems of root functions { p l , .  . . ,Yr)  and 
{ F l , .  . . , v",) of T and T* at p such that { y l ,  . . . , yr )  C { y l , .  . . ,Y,) and { v l ,  . . . , v,,) 
c {V" ,,... ,Fr). 

ProoJ: First we shall show that { y l ,  . . . , y,,) can be completed to a canonical sys- 
tem of root functions of T at p. Let 

From the definition of q, and [, we immediately infer (see (1.5.18)) that the 
biorthogonal relationships can also be written in the form 

We want to apply Proposition 1.4.8. The linear independence of the vectors 
y1 ( p ) ,  . . . ,y,, ( p )  is an immediate consequence of the above biorthogonal relation- 
ships. Let y be a root function of T at p. We have to show that v ( y )  < m a x { v ( y j )  : 
.i E A )  if 

where A C ( 1 , .  . . , r') and the a, are complex numbers. Suppose that v ( y )  > 
max{v(x,) : j E A ) .  Then ( - has a zero at p for each j E A, which 
implies that 

0 = (6 - P ) - ~ ~ T Y , v , ) ( P )  = ( Y ( P ) , ~ , ( P ) )  = a,. 
This is impossible since y ( p )  # 0. By Proposition 1.4.8 we know that there is a 
canonical system of root functions { j l , .  . . , 9,) of T at p such that { y ,  , . . . , y,,) C 
{ j l , .  . . , j r )  Now let { P I  , . . . , fir) be a canonical system of root functions of T* at 
p which is biorthogonal to { j l , .  . . , j r ) .  Note that the number k j  is the multiplicity 
of yj  since (q,, v,) ( p )  = 1 implies v ( y j )  5 k,. 
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From Theorem 1.8.4 we know that there are a neighbourhood U C R of p and 
operator functions C E H(U,  L (E ,  F ) )  and Dl E H ( U , L ( E ) )  such that C ( A )  and 
Dl ( A )  are invertible for all A E U and such that 

A 

where P, = j , (p)  @ [,(p)  for j = 1 , .  . . ,r and 

see the proofs of Theorem 1.8.4 and Proposition 1.8.3 for the definition of Pj and 
Dl ( A ) .  For any two vector functions y E H(U,  E )  and v E H ( U ,  F')  we have 

Thus the systems of root functions {y', , . . . ,y:) of T at p and {v', , . . . , v:) of T* at p 
are biorthogonal if and only if the systems { D l y i , .  . . , Dly:) and {C*v', , . . . , C*v:) 
are biorthogonal systems of root functions of !? and T^* at p. The definition of 
b, ( A ) ,  ji ( p )  E N ( T ( p ) )  and the biorthogonal relationships ()i, ( p )  , tj @)) = 6ij 
yield r 

' 1  ( ' ) j i ( ~ )  = D ( ' ) T ( ~ ) y i ( p )  + E ( j i ( ~ ) ,  t j ( ~ ) ) ~ j ( ' )  
;= 1 

= j i (A) .  

Hence j , ( p )  = D1ji  for i = 1,. . . , r 

Now we can reformulate the statement of the theorem as follows: 

PROPOSITION 1.9.2. For A E R let 
r 

where ml  2 m2 2 . . . 2 mr > 0, Po, PI , .  . . , Pr are biorthogonal projections on E 
such tha tP ,=x i@wi#Ofor i=  1 ,  ..., r, wherexi E Eandwi  E El, and 

Let { y l , .  . . ,y,,) C { x l , .  . . ,x,) and let v l , . .  . , v,, be rootfunctions of T* at p with 
v ( v j )  2 k j  ( j  = 1 , .  . . , r') such that 

(1.9.1) 
d' 

x ( ~ i , ~ j ) ( ~ ) = 6 i , 6 0 i  ( i j l  . , r ' ; 0 k j - I ) ,  

where k j  = m .  if yj = xi,. Then there are biorthogonal canonical systems of root 
I J  

functions { p l , .  . . , p r )  anh { C ,  , . . . , Cr) of T and T* at p such that {y , ,  . . . ,y i)  C 

{Y1, .  . . ,pr)  and { v l , .  . . , v,,) c {Cl, .  . . , C,). 
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Proo$ In the biorthogonal relationships (1.9.1) we wrote yi instead of qi. This is 
correct since <xi = xi and hence 

T ( ) x i  = ( A i i  = (A - ) x i  (a E Q) 
holds for i = 1,. . . , r as Pj6 = 6ijP, for j = 0, .  . . , r. Also 

T * ( L ) W ~  = (a -p)nl lwi  ( a  E Q) 

holds for i = 1, .  . . , r. Since 
r 

{xI , .  . . ,xr) and {w,, . . . , w,) are biorthogonal CSRFs of T and T* at p by Theo- 
rem 1.5.9. 

By assumption, there is a set of indices { i l , .  . . ,i,,} c (1,. . . , r}  such that 
y . = x. for j = 1,. . . , r'. Now we choose i,,+l?. . . , ir such that {i,,+,,. . . , ir) = 

J I 1  

{ I , .  . . , r )  \ { i l , .  . . ,i,,). We set 

k1-I 1 dk 
Gi1 := -- k 

v ( ) ( - )  for j= 1, . . . ,  r' 
k=O k! dak J 

and - 
vil := W5 

for j = r l + l ?  . . . ,  r. 

Fromk,=m. f o r j =  1, . . . ,  r'and 
'1 

we infer ~ ( 6 ~ )  2 mj for j = 1,. . . , r. Hence (6, , . . . , Fr) is a canonical system of 
root functions of T* at p if the vectors Fl ( p ) ,  . . . ,fir@) are linearly independent. 

We state that for j = 1,. . . , r' the identity 
r 

holds. Indeed, we infer that 
r 

and (1.9.2) follows from the biorthogonal relationships (1.9. I), which yield that 
(yk, fil) = 6 k j  since (yk, Fi1) is a polynomial of degree less than k j .  Observing 

that Gi ( p )  E N(T*(p)) we obtain P;fii ( p )  = 0, which shows that (Fi- (p));,, is 
I I 

obtained from (wi (p)))= I by a linear transformation whose coefficient matrix is a 
I 
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normed triangular matrix, and the linear independence of C l  ( p ) ,  . . . , v , (p)  follows 
from the linear independence of w , ,  . . . , w,. 

According to Remark 1.5.8 we choose a canonical system of root functions 
{ P I , .  . . ,y",) of T  at p  which is biorthogonal to {GI , .  . . , C,). In addition, the y", can 
be chosen to be polynomials of degree less than m,  for all j  = 1, .  . . , r. 

The proof of the proposition will be complete if we show that y, = yi for 
I 

j  = 1,.  . . , r'. Let j E ( 1 , .  . . , r'}. Since 

poy";, = PoTy",, 

has a zero of order 2 mi at p  and is a polynomial of degree < m  , Pay";, is zero. 
I ' I  

F o r k = # +  1 ,  ..., rwehave 

The biorthogonal relationships for { y l ,  . . . ,y",} and {i,,. . . ,C,} prove that P. y". 
' k  ' j  

has a zero of order > m i .  Hence P. y". = 0  for k = r' + 1, .  . . , r. Note that this 
I l k  l ,  

implies ( y i , ,  w .  ) = 0  fork = r'+ 1, .  . . , r .  Thus we have 
I ' k  

rt r 

Now let I E { 1 ,  . . . , r'). From (1.9.2), Poyi, = 0 ,  and (y". w. ) = 0  for the numbers 
I ' I  l k  

k = r' + 1 , .  . . , r it follows that 

Since (9. w .  ) is a polynomial of order < m i  we infer (y". wi ) = 6jl,  and (1.9.3) 
' I  ' I 1  I 1,' 1 

gives yi,  = x . .  = y . .  
] I J  J 

REMARK 1.9.3. If y . = y" and v  . = v" in Theorem 1.9.1, then the biorthogonal 
J I  ki J 2  k2 

relationships show that jl = j2 if and only if k l  = k2. 

1.10. The operator function A  + AB 

Let E and F be Banach spaces. In this section we assume that 

T ( A )  = A + A B ,  

where A  E @, A  and B  are in L ( E ,  F) and B  is a compact operator. If p ( T )  # 0, 
then T E H (@, @(E,  F)), see e. g. [KA, Theorem IV.5.261. 
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PROPOSITION 1.10.1. Let T(A) =A+AB, where A E C, A and Bare in L(E,F),  
and B is compact. Assume that p(T)  # 0 and let p E o(T) .  Let the CSEAVs 
{ : l  < j r 0 < m j - l } o f ~ a t p a n d { v ~ j ) : l <  j < r , O < l < m j - 1 )  
of T* a t  p be given. Then these CSEAVs are biorthogonal if and only if 

ProoJ: This immediately follows from (1.6.5) since on the left-hand side of (1.6.5) 
only the term for k = 0 and q = 1 is different from zero. 

PROPOSITION 1.10.2. Let T ( 1 )  =A + AB, where A E C, A and B are in L(E, F) ,  
and B is compact. Assume that p (T) # 0 and let p E o (T) .  Let yO,yl,. . . ,yk be a 
CEAV of T at p. Then 

Proot The definition of a CEAV yields that the function given by 

PROPOSITION 1.10.3. Let T ( 1 )  =A +AB, where A E C, A and B are in L(E, F), 
and B is compact. Assume that p(T) # 0 and let p E o(T) .  Let the CSEAVs 
{ylj): I <  j < r , O < l < m j - l } o f ~ a t p a n d { v ~ j ) : l  < j s r , O < l < m j - 1 )  
of T* a t  p be given. Then these CSEAVs are biorthogonal ifand only if 

ProoJ: We have to show that the relations (1.10.1) and (1.10.4) are equivalent. 
Obviously, the relations (1.10.4) for 1 = mi - 1 and k = mi - 1 - m coincide with 
(1.10.1). F o r l = O ,  ..., m i - 2 a n d m < m j - 1  wehaveinviewof(1.10.2)and 
(1.10.3) and the corresponding relations for a CEAV of T* at p that 

where v;) := 0 if m < 0. Now the relations (1.10.4) follow from (1.10.1) by a 
recursive application of the above identity. 
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PROPOSITION 1.10.4. Let T ( A )  =A+AB, where A E C, A and B are in L(E ,F) ,  
and B is compact. Assume that p ( T )  # 0 and let p and jl be eigenvalues of T 
such that p # jl. ~ e t  { y j ~ )  : 1 < j < r, 0 < 15 m, - I} be a CSEAVof T at p and 

(9;) : 1 5 j < i, 0 < 1 5 &, - 1) be a CSEAVof T* at jl. Then 

Proof In view of (1.10.2) and (1.10.3) and the corresponding formulas for a 
CEAV of T* at p we have for 1 < mi - 1 and k < f i j  - 1 that 

where y;) := 0 and i7S;i') := 0 for m < 0. Now (1.10.5) follows by induction on 
k+l .  

A system of vectors (y,),,, in a Banach space E is called a minimal if the 
closed linear hull of (y,),,, is different from the closed linear hull of any proper 
subsystem of (y,),,, . In particular, for a series 

with complex numbers a, which converges in parenthesis we obtain a,  = 0 for 
all a E I if (y,),,, is minimal. This also shows that the vectors of a minimal 
system are linearly independent. 

PROPOSITION 1.10.5. Let T ( A )  = A + AB, where A E C, A and B are in L(E ,  F )  
and B is compact. Assume that p ( T )  # 0. For each p E o ( T )  choose a CSEAV 
{ y  : 1 < j < ( p )  0 < 1 < m , )  - 1 of T at p. Then the system of vectors 

, ( 1  1 5 j 5 ( 0 < 5 m , )  - I}  is a minimal system in E. 

Proposition 1.10.5 is a particular case of the following proposition. It is in- 
cluded here because of its simpler formulation. 

PROPOSITION 1.10.6. Let T ( A )  = A  + AB, where A E C, A and B are in L(E ,  F )  
and B is compact. Assume that p ( T )  # 0. Let H be a Banach space which con- 
tains E such that the embedding E L, H is continuous. Assume that B is the 
restriction of a continuous linear operator from H to F. For each p E o ( T )  let 
{ y  : I j 5 r ( ) O  < 1 m , )  - I} bea  C S E A v o f T a t p .  Then the vectors 

{y;,; : p E o ( T ) ,  1 < j < r ( p ) ,  0 < 1 5 m,(p) - I} form a minimal system in H.  

Proof Choose the CSEAV { v ( J )  : 1 5 j 5 r ( p ) ,  0 5 1 < m,(p) - I }  of T* at p 
P J  

according to Theorem 1.6.5. Let y ( ~ )  be one of the eigenvectors or associated 
P?! 
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vectors of the given system. By Propositions 1.10.3 and 1.10.4 we know that 
(y( i ) ,  ~ * , , ( j )  ) = 1 and (yl') , B * V ( J )  ) = 0 if ( p , k , i )  # ( p , l ,  j ) .  We P J  ~ , n l , ( ~ ) - l - f  ~ , k  p ,nl j(p)-1-l  
may assume without loss of generality thBt E is dense in H and therefore that 
HI C El. The assumption on B says that R(B*) c HI. Hence the bilinear form can 
be taken with respect to H and HI. This proves the minimality in H of the system 
of eigenvectors and associated vectors. 

The following simple example shows that A-linearity of the operator function 
is crucial for minimality of a CSEAV. 

EXAMPLE 1.10.7. We consider 

Then T E H(C,  L ( c ~ ) ) ,  detT(A) = A3 and nu1 T (0) = 2 are obvious. Set 

From 

and 

we infer that {y l ,o , y l , l  ) and {y2 o )  are CEAVs of T at 0. Clearly, {y1,0,y2,0) is a 
basis of N(T(O)), m ,  2 2, and i, 2 1. By Proposition 1.8.5, ml +m2 = 3, which 
proves that m,  = 2 and m2 = 1. Hence { y I , 0 , y I , I ; y 2 , 0 )  is a CSEAV of T at 0. 
Since the associated vector yl , ,  is zero, this CSEAV of T at 0 is not minimal. 

PROPOSITION 1.10.8. Let T ( A )  = A + AB, where A E C, A and B are in L (E ,  F )  
and B is compact. Assume that p ( T )  # 0 and let p E o ( T ) .  Then p is a semi- 
simple eigenvalue of T if and only iffor each eigenvector y of T at p there is an 
eigenvector v of T* at p such that 

Pro06 The result immediately follows from the definition of a semi-simple eigen- 
value. 

If E = F is finite-dimensional and B = - id,, i. e. T ( A )  = A - A id,, then 
o ( T )  is also denoted by o ( A ) ,  and eigenvectors and associated vectors of T are 
called eigenvectors and associated vectors of A. 
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THEOREM 1.10.9 (Jordan canonical form). Let E be a finite-dimensional space, 
dim E = n. Let A E L(E) .  Then o ( A )  consists of p 5 n eigenvalues pl , . . . , pp. 
There is an invertible linear operator C E L(@', E )  such that 

where ri = nul(A - pi id,) ( i  = 1,. . . , p)  and ml  ( p i ) ,  . . . , mri ( p i )  are the partial 
multiplicities of A - il id, at pi .  This means that C-'AC is given by the block 
matrix 

(All  
A12 

0 

\ 
where 

is an m j  ( p i )  x m j ( p i )  matrix for i = 1 ,  . . . , p and j = 1 , .  . . , ri. A representation of 

C and C-' is obtained as follows: For i = 1 , .  . . , p choose biorthogonal CSEAVs 
{y$) : 15 j 5 ri,O 5 15 m j ( p i )  - 1 )  and { d l )  : 15 j 5 ri,O 5 15 m j ( p i )  - 1) 

I , /  

of A and A* at pi according to Corollary 1.6.6. Define 

and 

Then C E L(Cn,  E ) ,  D* E L(E,Ct1), and (1.10.6) holds, where C-' = -D*. 

Pro05 The determinant of A - A id, is a polynomial of degree n. Since the eigen- 
values of A - 1 id, are the zeros of det(A - il idE), o ( A )  is finite and consists of 
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at most n elements pl , . . . , pp . Choose biorthogonal CSEAVs as in the statement 
of the theorem. By Proposition 1.8.5, 

'i 

m ( ~ ; )  = mj(rt) 
j= 1 

is the multiplicity of the zero of det(A - h idE) at pi. Since the sum of the multi- 
plicities of all zeros of det(A - h id,) is equal to its degree, we obtain 

Hence C given by (1.10.7) defines a linear operator C : C? -+ E. From Propo- 
sition 1.10.5 we know that the vectors yl$) are linearly independent. Hence C 

is invertible. For each k E (1,. . . ,n)  there are unique numbers ik E { I , .  . . , p ) ,  
s E 1 ,  . r } and lk E 10,. . . ,msk(pik) - 1} such that ' 'k 

Let ek be the k-th unit vector in Cn. Set eiPl  := ekP1 if lk # 0 and eb-l := 0 if 
1, = 0. From (1.10.2) and (1.10.3) we obtain 

= pikce, + Ce;- = c(pik ek + ei- I ) ,  

which proves (1.10.6). 
Finally D E L(Cn, El), and therefore D* E L(E,C1).  Here we have used that 

we can identify E an E'' since E is finite-dimensional, see e. g. [KA, p. 151. For 
j, k E { 1, . . . , n) we have in view of Propositions 1.10.3 and 1.10.4 that 

e : ~ * ~ e ~  = (e,, D*Cek) = (De,, Cek) = -6. ~k 

f o r j , k E { l ,  ..., n ) . ~ h i s p r o v e s ~ - ' = - D * .  

1.11. Abstract boundary eigenvalue operator functions 

Let R be an open subset of C. We consider the Banach spaces E ,  G, F,, F2, 
F = Fl x F2 and operator functions T E H(R,L(E, F ) )  and Z E H(R,L(G,E)).  
According to F = Fl x F2 we have TI E H(R, L(E, F1)) and T2 E H(R,  L(E, F2)) 

such that T ( h )  = for h E R. We assume that for all h E R 

i) TI (A) is right invertible, 

ii) Z ( h )  is injective, 

iii) N(Tl (A)) = R(Z(h)). 
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Condition (1.1 1.1) i) means that there is an operator U  ( A )  E L(F l ,  E )  such that 
TI ( A ) U ( A )  = idF, . We set 

(1.11.2) M A )  := T 2 ( ) ( )  ( A  E R),  

whence M E H ( R , L ( G ,  F2))  by Corollary 1.2.4. We call T  an abstract bound- 
ary eigenvalue operator function, Z  a "fundamental matrix" function and M the 
characteristic "matrix"function associated to T  (with respect to 2 ) .  

THEOREM 1.11.1. There are operatorfunctions 

c E H ( R , L ( F 2  x Fl ,  F ) ) ,  D  E H ( R ,  L ( E , G  x F l ) )  

such that for A  E R the operators C ( A )  and D ( A )  are invertible and the factor- 
iza tion 

holds. 

Pro05 By SUBIN [SU],  see also BART [BA2, p.1831, there is a holomorphic right 
inverse U  of T,, i. e., there is an operator function U  E H ( 0 ,  L (F l ,  E ) )  such that 

We shall show that the operator 

(1.11.4) ( Z ( A ) ,  U  ( A ) )  : G x Fl + E  

is invertible for all A  E R .  First let ( x , y )  E G x Fl and Z ( A ) x +  U ( A ) y  = 0. We 
apply T,  ( A )  to this equation and obtain y = 0 because of (1.1 1. I) iii) and (1.1 1.3). 
Hence Z ( A ) x  = 0, whence x  = 0 since Z ( A )  is injective by (1.1 1.1) ii). Thus the 
operator (1.1 1.4) is injective. To prove its surjectivity let x  E E .  From (1.1 1.3) we 
infer that 

T, ( A )  ( X  - u ( A ) T ]  ( A ) x )  = 0. 

The assumption (1.1 I. I) iii) yields that 

whence x E R ( Z ( A ) )  + R(U ( A ) ) .  This proves the surjectivity. We set 

From BANACH'S closed graph theorem and Proposition 1.2.5 it follows that D  
belongs to H (R,  L ( E ,  G  x F l ) ) .  We define 

and 
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Obviously C  belongs to H(R,L(F2  x F l , F ) ) .  For A  E R the operator C ( A )  is 
invertible and 

- V ( W  c-I ( A )  = ( idF, i:2) 

An easy calculation yields 

for A  E R .  

In the terminology of [GGK] and [KAS], Theorem 1.11.1 states that T  is 
globally equivalent on Q  to the canonical Fl -extension of M. 

In all applications of Theorem 1.1 1.1 it will be shown directly that the right 
inverse U is holomorphic. Therefore, the results of Subin or Bart quoted in the 
proof are not essential for our purposes. 

We assume now that there are Banach spaces X I ,  X2, Y, ,  Y2 and holomorphic 
operator functions 

such that 

We suppose that the operators C ( A ) ,  D ( A ) ,  and J ( A )  are invertible for all A  E Q. 
There are operator functions 

such that 

- I ( )  = ( )  ( A )  = ( D ~ ( ) , D ~ ( ) )  ( A  E Q ) .  

It is obvious that T  E H  (a, @ ( E ,  F ) )  if and only if M  E H  (Q, @ ( X I ,  Yl ) )  and that 
p  ( T )  = p  ( M )  . Also note that nu1 T  ( p )  = nu1 M ( p )  for all p  E o ( T ) .  

L E M M A  1.1 1.2. Let R be a  domain and assume that T E H ( R , @ ( E ,  F ) )  ful- 
j l s  (1.1 1.9). Let p ( T )  # 0 and p  E o ( T ) .  Let { c l , .  . . , c r )  and {d , , .  . . , d r )  be 
biorthogonal CSRFs of M  and M* at p. Dejne 

(1.11.10) y .  := D , c j ,  v .  := C;dj ( j  = 1 , .  . . , r ) .  
J J 
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Then {yl  , . . . , yr } and {v , ,  . . . , v,} are biorthogonal CSRFs of T and T* at p, 
~ ( y  J ) = V ( V  I ) = v ( c j )  = v ( d j )  =: mj for j = 1, . . . , r, and the operator function 

is holomorphic at p. 

Proot An easy calculation yields 

By Theorem 1.5.9 the operator function 

is holomorphic at p, whence 

has the same property. The operators 

are invertible. Hence D ,  ( p )  and C ; ( p )  are injective, which implies y j ( p )  # 0 and 
vj ( p )  # 0. From 

we conclude that Ty, has a zero of order mj at p. In the same way we obtain 

whence T*vj has a zero of order mi at p.  By Theorem 1.5.9 the proof is complete 
if we observe that r = nu1 M (p) = nu1 T ( p ) .  
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THEOREM 1.1 1.3. Let T E H (R ,  @ ( E ,  F ) )  fulfil (1.1 1.1) and let Z, M, V be given 
as in (1.1 I.]), (1.1 1.2) and (1.1 1.6). Let p ( T )  # 0 and p E o(T). Let { c l , .  . . ,c , )  
and { d l , .  . . , d,) be biorthogonal CSRFs of M and M* at p. De$ne 

Then {y , ,  . . . ,y,) and { v l , .  . . ,v,) are biorthogonal CSRFs of T and T* at p, 
~ ( y , )  = v ( v j )  = ~ ( c  I .) = ~ ( d  I .) =: m j  for j = 1, .  . . , r, and the operator function 

is holomorphic at p. 

Proof It is easy to verify the assumptions of Lemma 1.1 1.2. We set XI := G, 
X2 := Fl,  Y, := F2 and Y2 := F,. B~ (1.11.5), D - ~  = ( Z , U )  whence Dl =Z. From 
(1.1 1.8) we obtain 

and hence 

1.12. Notes 

Operator functions as considered in this chapter are also called operator bundles, 
operator pencils, or operator colligations. There are two different aspects of the 
spectral theory of holomorphic operator functions. Given that T ( K )  E L ( E ) ,  E a 
Banach space, depends holomorphically on the complex parameter K,  the ques- 
tion arises how the spectrum of the operator T ( K )  depends on the parameter K. 

Notice that the spectral parameter A occurs linearly in T ( K )  - A idE. Since we are 
not concerned with problems of this kind, we refer the reader to the monographs 
of KATO [KA, Chapter 71 and BAUMGARTEL [BG] for an extensive treatment of 
this question. We study T ( A )  with A as the spectral parameter which in general is 
a nonlinear problem. The aspect considered here is the behavior of the resolvent 
of T ( A )  at its poles. Spectral properties of T ( A )  with A as the spectral param- 
eter, in particular the representation of the principal parts of the resolvent, were 
stated in Hilbert spaces for polynomial operator pencils I - K ( A ) ,  K ( A )  compact, 
by KELDYSH [KEl] and proved in [KE2]. The discreteness of the spectrum in 
case p ( T )  # 0 for holomorphic Fredholm operator valued functions was shown 
by ATKINSON [AT11 and SZ.-NAGY [SZN]. KELDYSH'S theory was extended 
to holomorphic and meromorphic Fredholm operator valued functions by TROFI- 
MOV [TRO], MARKUS and SIGAL [MAS], and GOHBERG and SIGAL [GS]. The 
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proof in [GS] differs from ours in that a local factorization is used, whereas we ob- 
tain the local factorization in Section 1.8 from the representation of the principal 
part. We took this route since our main aim in this chapter is the representation 
of the principal parts of the resolvent. In the special case of an integral opera- 
tor of Fredholm type whose kernel depends holomorphically on a parameter A, 
the meromorphic dependence of the kernel of the inverse operator was shown by 
TAMARKIN [TA4]. Root functions were introduced by TROFIMOV [TRO]. Al- 
though root functions also occur in [GS], the first representation of the principal 
parts of the resolvent in terms of root functions has been proved in [MMI]. Fur- 
ther results in this direction appeared in [MM3, MM4, MM51. A generalization 
to Frkchet spaces has been published in [MM2]. The structure of the resolvent in 
the A-linear case is well-known, see e.g. KATO [KA, p. 1811. The representation 
of eigenvectors and associated vectors of an operator function by those of a re- 
lated characteristic function were first published in [MM3]. The fact that in this 
case the given operator function is a global extension of its characteristic matrix 
function was shown by KAASHOEK [KAS]. 

Representations of the principal parts of meromorphic operator functions and 
in particular inverses of holomorphic operator functions play also a role in other 
publications. Apart from the literature cited above we just mention the contribu- 
tions [BAI] by BART, [JW] by JEGGLE and WENDLAND and the recently pub- 
lished monograph [KM] by K o z ~ o v  and MAZ'YA. 
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Chapter I1 

FIRST ORDER SYSTEMS OF ORDINARY 
DIFFERENTIAL EQUATIONS 

This chapter contains basic elements of the theory of first order systems of ordi- 
nary linear differential equations. Since it is advantageous to treat boundary eigen- 
value problems using weak derivatives in the corresponding differential equations, 
we give a short introduction to the theory of Sobolev spaces on intervals and 
prove properties which are needed in the sequel. A realization of the dual of such 
a Sobolev space is established (Theorem 2.2.5). For first order linear differential 
systems with coefficients depending holomorphically on a parameter the existence 
of a fundamental matrix function which depends holomorphically on this param- 
eter is proved (Theorem 2.5.3). Further investigations concern the asymptotic 
behavior of fundamental matrix functions in case the coefficients of the first or- 
der differential system are asymptotically linear in the parameter (Theorem 2.8.2). 
These properties of the fundamental matrix functions are essential for asymptotic 
estimates of the GREEN'S  function (the resolvent) of boundary eigenvalue prob- 
lems. 

2.1. Sobolev spaces on intervals 

Throughout this chapter we assume that a and b are real numbers with a < b. Fur- 
thermore, let 1 < p 5 ... There is a unique p' with 1 < pi < .. and I / p  + I / p l  = l .  

Let I  C IW be an interval. C ( I )  = @ ( I )  denotes the space of all continuous 
functions on I  to @. For a positive integer k, ck(l) denotes the space of k-times 
continuously differentiable functions on I .  Let 

For f E C ( I )  the set 
supp f := {x E I  : f ( x )  # 0 )  

is called the support o f f ,  where the closure is taken with respect to I .  
If I  is compact, we set 
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It is well-known that ( c~ ( I ) ,  I I(,)) is a Banach space. 

As usual, Lp( I )  denotes the space of measurable functions f on I  (modulo 
functions which vanish almost everywhere) such that 

It is well-known that L p ( l )  is a Banach space with respect to the norm I I p ,  see 
e.g. [HS, (13.1 1) and (20.14)]. 

For f, g  E L, ( R )  and almost all x  E $ the function y H f ( x  - y)g(y)  belongs 
to L,  ( R ) ;  for these x  the convolution (f * g)  ( x )  off and g  at x  is defined by 

and f * g  belongs to L, (R) ,  see e.g. [HS, (21.31)]. 
Let L ~ ( I )  be the set of measurable functions f on I  (modulo functions which 

vanish almost everywhere) such that f 1, E L, ( K )  for each compact subset K of I. 

For simplicity of notation we identify an element of L ~ ( I )  with any of its 
representatives. Hence identities, inequalities etc. for L~(I)-functions are to be 
understood almost everywhere. 

If the interval is given explicitly, then we shall simplify the notation by omit- 
ting the outer parentheses in the definition of spaces over intervals, e. g. we write 
C[a, b] instead of C([a ,  b ] ) .  

Now let I  be open. A function f E Cm(I )  is called a test function if its support 
is a compact subset of I. The space of all test functions on an open interval I  is 
denoted by C r ( l ) .  We identify C r ( I )  with a subspace of C,"(R) by setting f = 0 
outside of I for each f E C r ( I ) .  Thus 

G ( I )  = U G ( K ) ,  
KCI ,  compact 

where 
G ( K )  := {f E G ( R )  : supp f C K) .  

A linear functional u  on C,"(l) is called a distribution on I  if for each compact 
set K  C I  there are numbers k E N and a C  > 0 such that 

b 

where ( c p ,  u) := u(cp). The space of distributions on I  is denoted by g l ( I ) .  
For u E g l ( I )  the support of u, denoted supp u, is the set of points x  E I  such 

that for each neighbourhood U  c I  of x  there is a function cp E q ( U )  such that 
( c p ,  u )  # 0. 
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According to the definition 

we identify L ~ ( I )  with a subspace of g l ( I ) ,  see e.g. [ H O ~ ,  p. 371. Then we also 
have L p ( I )  C g l ( I )  ( 1  5 p 5 m) and C ( I )  c gl(l) with respect to the bilinear 
form (2.1.1). A distribution on I belonging to LY is called a regular distribution. 

Let u E g l ( I ) .  Then 

defines a distribution u' on I ,  called the derivative in the sense of distributions 
of u. For k = 1,2, . . . we recursively define 

u'"" ':= (u'k')'. 

Hence, for k E N, the k-th derivative u ( ~ )  E . !@(I)  of u E g l ( I )  is well-defined. If 
u E C k ( l ) ,  then the k-th derivative dk)  in the sense of distributions coincides with 
the classical k-th derivative because of the formula for integration by parts. 

Analogously, for u E 9' ( I )  and y E C" ( I ) ,  

defines a unique distribution y u  on I. 

DEFINITION 2.1.1. Let I C R be an open interval and k E N. The space 

w,X(I) := { f  E L p ( I )  : V j  E { I ,  . . . ,  k} f ( ~ )  E L p ( I ) }  

is called a Sobolev space. Here the derivatives f ( j )  are the derivatives in the sense 
of distributions. For f E wpk(I) we set 

Note that W: ( I )  = Lp ( I ) .  

REMARK 2.1.2. Let A C ' O ~ ( I )  be the set of functions f on I such that f 1, is abso- 
lutely continuous for each compact subinterval K of I.  Then, for k > 0, 

Observing the fact that f E AC'OC(I) if and only i f f  is the indefinite integral 
of a locally integrable function, Remark 2.1.2 will be an immediate consequence 
of Proposition 2.1.5 below. 

PROPOSITION 2.1.3. Let I C R be an open interval, y E 7 and g E Lp( I ) .  Set 

Then G is continuous on ? and G' = g in gl(I). 
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More precisely, we should write (GI,)'  = g. But since a continuous function 
on f is uniquely determined by its values on I, we shall often identify G and GII. 

Proof: Let [a,P] be any compact subinterval of f containing y. Then gl[a,pI,I E 

L P ( [ a ,  P ]  n I )  c L,  ( [ a ,  PI), which shows that G is well-defined. It is well-known 
that G is continuous on [a,P], see e.g. [HS, (18.1)]. This proves that G is continu- 
ous. Now let cp E Cr(1) .  Choose a ,  /3 E f such that a 5 y 5 P and supp cp C [a,  PI. 
With the aid of the theorem on integration by parts, see [HS, (18.19)], we obtain 

which proves G' = g. 

COROLLARY 2.1.4. Let k t W and u t 41'(a,b) such that u' E wpk(a, b) .  Then 

u E wpk" (a ,  6 ) .  

Proof We must show that u E Lp(a,  b ) .  With g := u' t wpk(a,b) and G as in 2.1.4 
we obtain (u  - G)' = 0. Hence u - G is a constant, see [ H O ~ ,  Theorem 3.1.41. By 
Proposition 2.1.3 this implies that u is continuous and hence belongs to Lp(a,b) .  

PROPOSITION 2.1.5. Let I C R be an open interval and k E N\ (0). 
i) Let f E L p ( l )  and y E 7. Then f E w,"(I) $and only if there are g E w,"-I ( I )  
and c t @ such that 

rx 

In this case, g = f', f has a continuous extension to 7, which we also denote by f ,  
and c =  f ( y ) .  

ii) w,X ( I )  c ck-I (7) .  

Proof: i): Let f E w;(I). Since k 2 1,  we have f' E L p ( l )  by definition of wpk(1). 
With 

G ( X )  := [ f l ( t )  d t  ( X  E i), 

Proposition 2.1.3 yields G' = f '. Hence G - f is a constant, see [ H O ~ ,  Theorem 
3.1.41, which proves (2.1.5) with g = f'. Since = f(j+')  E L P ( I )  for j = 

1,. . . , k - 1, we have g E w,"-' ( I ) .  Conversely, if 2.1.5 holds with g E w;-' ( I )  C 
L p ( I ) ,  then f' = g by Proposition 2.1.3. Thus f ( ~ )  = g ( ~ - ' )  E Lp( I )  for j = 1,.  . . , k. 
This proves f E w,k(l).  Assume that (2.1.5) holds. Then f has a continuous 
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extension to 7 by Proposition 2.1.3, and (2.1.5) even holds for x E 7. Evaluating 
this equation for y E yields f (y) = c. 
ii): For k = 1 the statement has already been proved in part i). Now let k > 1 
and suppose that ii) holds for k - 1. Let f t wpk (1). Then f E wpk- (1). The 
representation (2.1.5) and ii) for k - 1 complete the proof. 

PROPOSITION 2.1.6. Let I C R be an open interval and k E N Then wpk(1) is a 
Banach space with respect to the norm I I p , k .  
Prooj With respect to the mapping 

the space wpk(1) is isomorphic to the subspace 

of ( ~ , ( l ) ) ~ + ' .  Since ( L ~ ( I ) ) ~ + '  is a product of Banach spaces and hence a Banach 
space, it is sufficient to prove that R is a closed subspace of ( ~ ~ ( l ) ) ~ + ' .  For this let 
( ( f ~ ) : = o ) ~ = o  be a sequence in R which converges to some ( f , ))=,  in ( L , ( I ) ) ~ + ' .  
Let cp E Cr(1) .  Then, for j = 0 , .  . . ,k ,  HOLDER'S inequality yields 

I I c p l p l l f ;  - f,lp + 0 ( n  + 9. 
Hence, for j = 0 ,  . . . , k - 1, 

(q  ' J  f ! )  = - ( c p l  f . )  = - lim(cpl,fj"j ' J 11+m 

= !$(e,f;'+l) = (cp,f,+,). 

This proves f; = f,+, for j = 0 , .  . . , k - 1, and we obtain ( f , ) lZo  E R. 

PROPOSITION 2.1.7. For each k E N and 1 5 p 5 q 5 w we have 

Wit '  (a ,  b )  c c k [ a ,  b] ,  

c k [ a ,  b] C w,"(a, b ) ,  

where the inclusions also hold topologically, i. e., the corresponding inclusion 
maps are continuous. 

Proof From [HS, (13.17)] we infer for q < w that L,(a, b )  c Lp(a,  b ) ,  where the 
inclusion is continuous. A similar proof also holds for q = w. This immediately 
proves (2.1.6) and the continuity of the inclusion. The assertion (2.1.7) is a special 
case of Proposition 2.1.5 ii). The inclusion (2.1.8) is obvious since continuous 
functions on [a, b] belong to L,(a, b ) .  
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Next we shall prove the continuity of the inclusion (2.1.7). For this we choose 
f  t w:+ ' (a ,  b )  and j E ( 0 , .  . . , k ) .  From Proposition 2.1.5 i) we infer 

(2.1.9) f ( ~ ) ( x )  = f ( ~ ) ( a )  + f ( j+ ' ) ( t )  dt  ( x  E [a, b ] ) .  

Hence 
1" 

lf ( j ) (a ) l  5 f ( j ) ( x ) l  + / b l f ( j + ' ) ( t ) l  dt  ( X  E [a,b]) .  
a 

We integrate and obtain 

This estimate, (2.1.9), and HOLDER'S inequality yield 

5 ( b -  a)-'/pl f ( j ) l p  +2(b  - a ) " ' / ~ l  f ( j + l ) l p  . 

Hence 
If I ( , )  < ( ( b  - a)- ' /p+2(b - a ) ' - ' / p  ) If l , x + ~  

holds for all f  E w;+' (a ,  b ) .  This proves the continuity of the inclusion (2.1.7). 
For p = m, the inclusion map in (2.1.8) is an isometry since I I ( , )  and I I _ , ,  

coincide on c k [ a ,  b].  Now let p < w, f E c k [ a ,  b] and j  E ( 0 , .  . . , k ) .  Then 

b 

llp ( j )  ~ f ( ~ ) l ~ =  ( / l f ( ~ ) ( ~ ) I ~ d r ) ' i P <  ( b - a )  If I ( o )  ( j = O ,  ..., k )  
a 

implies 

I f  lp ,k  5 ( b  -4 l i P l f  I(,) . 
The continuity of the inclusion (2.1.8) is proved. 

PROPOSITION 2.1.8. Let k E N. For f  E ~ p k ( a ,  b )  we set 

Then I  E ~ ( ~ ; ( a , b ) , ~ p k + ' ( a , b ) )  with Ill < b - a +  I. 

Proof By Proposition 2.1.5 i) we have that I  maps w;(a, b )  into w?' (a ,  b ) .  Ob- 
viously, I  is linear. For p < w, HOLDER'S inequality yields 
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Obviously, lI f l p  5 ( b  - a )  1 f l p  also holds if p = m. Hence 

I z f  lp,k+l = I 1 f  lP  + I ( ' f ) ' l p , k  5 ( b  - ' ) I f  l P +  I f  lp,k 

5 ( b - a + 1 ) l f l p , k .  

2.2. The dual of ~ , k ( a ,  b )  for p < w 

If we consider distributions defined on different intervals, then we shall often use 
the notion ( , for the bilinear form on C;(I) x gl(I) in order to distinguish be- 
tween the diffent bilinear forms. Only for 1 = (a ,  b )  we shall never use a subscript. 

PROPOSITION 2.2.1. Let k E N. Let I and I' be open intervals with I' C I. A 
continuous linear map from W;(Z) into w;(I') is given by f rt f l r  for f E w;(I). 

In particular: ( f  l l l ) ( j )  = f ( ~ ) l , ,  holds for all f E w;(I) and j = 0 , .  . . , k. For I = R 
and I' = (a ,  b )  we write K ~ , ~  f := f for f E W;(R). Thus 

Kp,k : W;(W) b, 

is a continuous linear map. 

Proot Let f E w,k ( I )  and cp E C;(I1) c C;(I). For j = 0, . . . , k we have 

( T ,  ( f ~ l ' ) ( ~ ) ) l /  = (-1)'(dJ),f I I' ) I' 
= (- l ) j /  cp(j)(x) f ( x )  dx = (- 1 ) ~  [ c p ( ~ ) ( x )  ( x )  dx 

1' 1 

= (cp,f(')ll')lI. 

Hence ( f  i l l ) ( j )  = f ( J )  I r  E Lp(I1)  for j = 0 , .  . . , k, which proves f I,, E w;(I') and 

I f  ll'lp,k I f  lp,k . 
PROPOSITION 2.2.2. Let I C R be an open interval, y E I and k E N\ (0) .  Let f ,  E 
W; (I  f l  (-m, y ) )  and f2 E W ~ ( I  f l  ( y ,  m) ) .  By Proposition 2.1.5 ii) the complex 

numbers <( j ) (y)  are well-defined for i = 1,2 and j = 0 , .  . . , k - 1. Set 

f ( x )  := i f , ( ~ )  i f x  E In(-m,rl, 
f2(x)  i f x  E I n  ( ~ 7 0 3 ) .  

Then f E W; ( I )  if and only i f  f [ j )  ( y) = f ( j )  ( y)  for j = 0 ,  . . . , k - 1. If this holds, 
2 

then 

(2.2.2) f ( ~ ) ( ~ )  = ~ / J ) ( X )  i f x  E zn (-w, y) ,  
~ J J ) ( x )  i f x ~ z n ( y , - ) ,  
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Proof I f f  E w;(I) ,  then f / j ) ( y )  = f ( j ) ( y )  = fij)( 'y) 2 for j = O , . . .  , k -  I since 
f  E c"-' (7) by Proposition 2.1.5 ii). And (2.2.2) immediately follows from Propo- 
sition 2.2.1 as f  ( J )  E L p ( l )  for j = I , . . . , k .  

Conversely, let f j j )  ( y )  = f ( ~ ) ( y )  for j = 0,  . . . ; k - 1. We shall prove f  E w;(I) 
' 2 

for 1 = 0 ,  . . . , k by induction. Obviously, f  E Lp( I ) .  NOW let 1 E (0,.  . . , k - 1 )  and 
suppose that f E w;(I) .  Note that (2.2.2) holds for j = 1 by the first part of the 
proof. Let cp E CF(I)  and choose a,  p E I such that a 5 y < p and supp cp c [a,  PI. 
With the aid of the theorem on integration by parts, see [HS, (18.19)], we infer 
that 

((p, f i r + ' ) )  = -(q,', f ( ' ) )  

where 

( x )  if x E I n  ( -m,  y ) ,  
f ( x )  := 

( I +  1 1  f j l+ ' ) (x)  if x F fn ( y , ~ ) .  

Hence f( ' i ' j  = fil+,, E L p ( I ) ,  and f  E w;(I) implies f  E w;+' ( I ) .  

P R O P O S I T I O N  2.2.3. Let k E N. Then there is a continuozis lit~ear map 

: Wi(a .b )  i w:(R) 

such that K ~ , ~ $ , ~  = id,; (u,,i and rP,, f has compact supportfbr each f  E ~ j ( a ,  b) .  

Proot We choose a test function ly E C;(R) with y = I in a neighbourhood of 
[a, b].  For the existence of such a function see e.g. [ H O ~ ,  Theorem 1.4.11. For 
f E W;(U, b )  we set 

k - l  1 
f , ( ~ ) : = ~ ~ f ( j ~ ( c ) ( x - c ) ~  ( x € R ,  c E { a , b ) )  

j=o 1. 

and 
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Obviously, z ~ , ~  f E Lp(R)  C 9 ' ( R )  and s u p p ( ~ ~ , ~  f )  c supp y, is compact. For 
k = 0 the assertion is obvious. Now let k 2 1 .  From v f, E C f ( R )  we immediately 
infer Vfa 1 E w,*(-..,a) and yrfbllb,m, E w,*(b,w), see Proposition 2.2.1. 
Since y = 1 in a neighbourhood of c = a or c = b, we have 

( ~ f ~ ) ( ' ) ( c )  = f ( ~ ) ( c )  ( j  = 0 , .  . . , k -  1 ) .  

Applying Proposition 2.2.2 first to the interval I = ( -w,  b )  and y = a and then 
to the interval I = R and y = b, we obtain T ~ , ~  f E w;(R). It is obvious that 

K ~ , ~ $ , ~  = . Choose a ,  p E R such that suppyr c [a, PI. From 

we infer that there are C,  2 0,  C2 2 0 such that 

~ f a l ( ~ , ~ ) l p , k  5 ' 1  I f  I(k-1)' 

~ f b l ( b , ~ ) l p , k  C Z f l ( k - l )  

holds for all f E W;(U, b ) .  By (2.2.2) and the continuity of the inclusion (2.1.7), 

l$,kflp,k l ~ f a l ( , , ~ ) l p , k  + Iflp,i + I~fb'fal(b,~)lp,k 

5 ' I f  l p , k  

for some C 2 1 and all f t W; (a ,  b ) .  

The mapping T ~ , ~  depends on the choice of the test function yr. Below, T ~ , ~  

always means an arbitrary mapping fulfilling the assertion of Proposition 2.2.3. 

For 1 5 q < oo and f E Ly(a,  b )  we set 

The function f, is called the canonical extension o f f  to R. 
PROPOSITION 2.2.4. Let p < and k E W \  ( 0 ) .  Set 

k 
Then, for u = Z ( u j ) Y )  E W ~ ; ~ [ U ,  b] and f E w;(a, b). 

j=o 

does not depend on the representation of u. For cp E C r ( R )  we have 

(2.2.5) ( q I ( a , b ) ,  u ) p . k  = ( ( ~ 1  ' )DL .  
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k 
Proof Let ( u ~ ) ) = ~  E ( L ~ .  (a ,  b))kt'  and set u := 1 (u,);). For 9 E C r ( R )  we 

j=O 
have 

which proves (2.2.5). Let f E ~ i ( a , b ) .  Since b,k f E W;(R), there is a sequence 
($n):=l in CF ( R )  such that 

in Lp ( R )  as n + oo for j = 0 ,  . . . , k, see [ H O ~ ,  Theorem 1.3.2 and (4.2.5)]. Using 
f = ~ ~ , ~ - i ~ , ~ f  and ( ~ , , ~ - i ~ , ~ f ) ( j )  = (- ip,kf)( j) l(a,b)  for j =O,. . . ,k ,  seePropositions 
2.2.3 and 2.2.1, we infer that 

= l i m ( ~ ~ , ~ f  * $ n r ~ ) R  
n-t- 

which proves that ( f ,  u ) , , ~  is well-defined. 

THEOREM 2.2.5. Let p < w and k t N\ 10). For u E w i k [ a ,  b] let 

Then (wPTk[a,b], 1 is a Banach space and the dual of ( ~ ; ( a , b ) ,  1 I , , )  with 
respect to the bilinear form ( , )p,k defined in (2.2.4). 

Proof For u E wpTk [a, b] and f E W; (a ,  b )  we set 

k 
Let u = 1 (u,);), where u j  E Lpl(a,  b )  ( j  = 0 , .  . . ,k).  Then, by definition (2.2.4) 

j=O 
of ( , )p,k and HOLDER'S inequality, 
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which proves that Ju E ( ~ ; ( a , b ) ,  1 I , , ) '  and I J U ~ ~ , ~  5 I u ~ , , - ~ .  Here 1 denotes 
the norm on (w;(a, b ) ,  1 lPc)'. Hence 

J t L ( W ~ T ~ [ U ,  b] ,  ( w j ( a , b ) ) ' ) .  

We have to prove that J is bijective and that J-' is continuous. For the proof of 
the injectivity of J let u t wPTk[a, b] such that Ju = 0. There is a representation 

k 
u = (u,)?), where ( u ~ ) ! , ~  E ( ~ ~ , ( a , b ) ) ' + ' .  For q t G ( R )  we have by (2.2.5) 

;=o 
that 

( q 7 ~ ) ~  = ( ~ I ( ~ , b ) , u ) p ~  = ( J u ) ( ~ I ( ~ , ~ ) )  = O ,  

which proves u = 0. 
For the proof of the surjectivity of J let w E (w,k(a,b))' .  Since Wpk(a,b) is 

isomorphic to the subspace R of ( ~ ~ ( a ,  b))k+' defined in the proof of Proposition 
2.1.6, there is a continuous linear functional v on R such that 

for f E w;(a,b). Since Lp,(a, b )  is the dual of Lp(a,b) ,  see [HS, (15.12) and 
(20.20)], the HAHN-BANACH theorem yields that there are u, E Lp, (a ,  b )  for 
j=O, . . . ,  ksuchthat 

and 

Set 
k 

u := L ( U , ) ~ )  E wp7'[a, b]. 
;=o 

Then Proposition 2.2.4 yields 

w ( f )  = ( f  7 u),,x = ( J u ) ( f )  ( f  E ~ j ( a , b ) ) ,  

which proves w = Ju E R(J) .  Finally we obtain from 2.2.6 that 

whence J-'  is continuous. Since the dual of a Banach space is a Banach space, 
we also have proved that ( w y k [ a ,  b] ,  1 I f , - , )  is a Banach space. Note that the two 

P 
norm estimates obtained in the proof show that J is an isometry. 



64 11. Systems of differential equations 

EXAMPLE 2.2.6 (Dirac distribution). Let p < .o and c  E [a, b].  Since f  t+ f  ( c )  is a 
continuous linear functional on C[a, b] ,  it is also a continuous linear functional on 
W; (a ,  b )  because of the continuity of the inclusion W; (a ,  b )  C C[a, b] ,  see (2.1.7). 
By Theorem 2.2.5. there is a distribution 6, t W,T' [a, b] such that 

6, is called the Dirac distribution or Dirac measure at c. 

We can extend the definition of the space wpyk[a, b] to k = 0. In this case, 

W; [a, b] = {u ,  : u  t Lpl(a,  b ) }  

is isomorphic to Lpl(a,  6 ) .  

PROPOSITION 2.2.7. Let k t N, 1 E W \ {O), and u  E ~ ~ : ~ [ a ,  b]. Then we have 

uil) E w,;"' [a, b] . 

Proof By assumption, there are u j  E Lp, (a ,  b )  ( j  = 0 , .  . . , k) such that 

Then 

j=l 

which proves u(') E ~ , ; ~ - ' [ a ,  b ]  

Identifying f E Lpl (a ,  b )  and fe for p < .o we have Lp (a ,  b )  C ~ ~ ; ~ ( a ,  b )  for 
all k E W. In this way we obtain 

(2.2.7) W$ (a ,  b )  c L,. (a ,  b )  C ~ , ; ~ [ a ,  b] 

fork, 1 E W\ { O } .  Thus we may consider y  E w;. (a ,  b)  as a distribution in b] 
if we identify y  and ye. 

But if we consider the derivatives of y as a distribution on (a ,  b )  and R, respec- 
tively, they are different in general, i. e., y; # (Y ' ) ,  (see Proposition 2.6.5). Thus 
we have to be careful in which space we take the derivative. For f E Lpl (a ,  b )  and 

j E N, f ( j )  always means the j-th derivative in g l ( a , b ) ,  and we write f,(j) for the 
j-th derivative in gl(IW). 
PROPOSITION 2.2.8. Let p < m and k > 0. Then L,  (a ,  b )  C Wp7'[a, b]. 

Proof Let f  E L, (a ,  b )  . Choose uo E Corn (a ,  b )  such that 
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and define 

Then uo, ul E w,' (a ,  b )  C Lp,(a,b) with ul ( a )  = 0 = ul ( b ) ,  and it follows from 
Proposition 2.2.2 that fe = ( u ~ ) ~  + ( u 1 ) ; .  

2.3. Multiplication in Sobolev spaces on the interval (a ,  b )  

All of the results on scalar-valued functions in this section extend to vector- 
and matrix-valued functions since it is sufficient to consider their components. 

PROPOSITION 2.3.1. Let 1 5 p 5 r 5 oo and k E N\ (0). Then the multiplication 
operator 

. : w;(a, b )  x W:(a, b )  t W i ( a ,  b )  

is a continuous bilinear map and 

(2.3.1) ( g f  1' = d f  + gf' 

for g E W; (a ,  b )  and f t W,k (a ,  b) .  Also, for k = 0 the multiplication operator 

is a continuous bilinear map. 

Proot For k = 0 the result is clear since g f is measurable for all g t Lp(a,  b )  and 
f E L,(a, b ) ,  see e.g. [HS, (1 1.17)], and Ig f I p  5 Jglpl f 1, by definition of the Lp- 
and L,-norm. 

Now let k > 0 and suppose that the multiplication operator from the product 
space w;-' (a ,  b )  x w:-' (a ,  b )  into w;-' (a ,  b )  is continuous. Let g E W; (a ,  b )  
and f E w,k (a ,  b )  . Since f ,  g E w,' (a ,  b ) ,  Proposition 2.1.5 i) and the theorem on 
integration by parts, see [HS, (18.19)], yield for x E [a, b] that 

By (2.1.6) we have f' t w;-' (a ,  b ) ,  and (2.1.7) and (2.1.8) yield that g and f 
belong to wL-I (a ,  b ) .  Hence, by assumption, 

From Proposition 2.1.5 i) we infer g f t w;(a, b )  and (g f )' = g f' + g'f .  

The continuity of the multiplication operator from w;-' (a ,  b )  x wL-' (a ,  b )  
into w; '  (a ,  b )  and the continuity of the inclusion maps in Proposition 2.1.7 yield 
that there are constants C 1 ,  C2, C3, which do not depend on f and g, such that 



66 11. Systems of differential equations 

Finally, the continuity of the inclusion w,!(a, b )  L, L,(a, b )  yields 

Igf lp,k = lgf lP  + I(gf )'lp,k-1 

5 C41glP/f lr,k + ('2 +C3)Ig/p,kIf lr,k 

5 c51glp,klf lr,k 7 

where C4 and C5 do not depend on f and g. 

Since for 1 > k the embedding wd,(a, b )  L, w;(a, b )  is continuous, Proposition 
2.3.1 immediately yields 

PROPOSITION 2.3.2. Let k E N, 1 1 E\ (0) and k 5 1. Then the multiplication 
operator 

is a continuous bilinear map. 
PROPOSITION 2.3.3. Let k E E, 1 1 E\ {0), k < 1 and n E N\ (0). Then, with re- 
spect to the multiplication Ay ( A  E M,(w;(~ ,  b ) ) ,  y E ( ~ ; ( a , b ) ) " ) ,  M,(wpk(a,b)) 
is isomorphic to a subspace of ~ ( ( w ; ( a , b ) ) " ,  (Wpk(a,b))"). 

Proof For A E M. (wpk(a, b ) )  and y E (w; (a ,  b))" let TAy := Ay. From the con- 
tinuity of the bilinear map (2.3.2) it follows that A c, TA is a continuous linear 
inclusion map from M,(W,k(a,b)) to ~ ( ( w ; ( a , b ) ) " ,  (wpk(a,b))"). The definition 
of the matrix norm, see (1.1.2), gives 

< nsup{lAclp,k : E g;u17 I c 1  5 I). 

Identifying elements from Cn with constant functions we obtain for c E Cn 

Let p < 00, k E N, 1 E N\ {0), k 5 1, and g E W; (a ,  6 ) .  By Proposition 2.3.2, 
g. is a continuous operator from w;(a, b )  to wpk(a,b). Theorem 2.2.5 yields that 
its adjoint (g )*  is an operator from ~ ~ ; ~ [ a , b ]  to wP:'[a, b].  For v E Lp,(a,b) and 

f E W;(a, b )  we have 

i. e., (g.)*v, = (gv),  if v 1 Lp, (a ,  b ) .  Here we have used that gv E L, (a ,  b )  and 
applied Proposition 2.2.8. We use the notation gv, = (gv),  and extend (2.3.3) to 

for all u E ~ ~ ; ~ [ a ,  b]. Therefore we obtain 



2.4. Compact inclusion maps in Sobolev spaces 67 

PROPOSITION 2.3.4. Let p < m, k E N, 1 E N\ {0 ) ,  k < 1, and g E w i ( a ,  b).  Then 
the "multiplication" operator 

g : ~ , 7 ~ [ a ,  b] -+ Wp7'[a, b] 

is a continuous linear map. 

2.4. Compact inclusion maps in Sobolev spaces on (a,  b )  

LEMMA 2.4.1. Let p > 1. Then the inclusion map ~pk(a,  b)  v c k l  [a, b] is com- 
pact for each k E N\ (0) .  

ProoJ: Let 

Bk := { f  E w;(a,b) : I f  I,,, 5 1). 

We have to show that Bk is a relatively compact subset of ck-' [a,b]. Since 
ck-l [a, b] is isomorphic to the subspace 

of (C[a, b])k  with respect to the mapping 

it is sufficient to show that for each j E (0 , .  . . , k - 1) the set { f ( ~ )  : f E Bk)  is rela- 
tively compact in C[a, b]. But in view of { f ( J )  : f E Bk) c Bl for j E (0 , .  . . , k - 1) 
this holds if we prove the lemma for k = 1. 

Thus let k = 1. By Proposition 2.1.7 there is C 2 0 such that 1 f < Cl f I,,, 
for all f E W; (a,  b). Therefore { f ( x )  : f E B 1 )  is bounded for all x E [a, b].  For 
x, y E [a, b] the representation in Proposition 2.1.5 i) and HOLDER'S inequality 
yield 

5 IY - ~ ~ ' - ~ ' ~ l f l ~ , l  

5 ~ y - x ~ l - l ~ p  

for all f E B. Hence B1 is an equicontinuous subset of C([a,b]) .  By ASCOLI'S 
theorem, see e.g. [DIl, 7.5.71, B1 is a relatively compact subset of C[a, b]. 

THEOREM 2.4.2. The inclusion map ~ i ( a ,  b)  L+ w;-' (a ,  b)  is compact for each 
k E N\ (0 ) .  

Pro05 If p > 1, the statement immediately follows from Lemma 2.4.1 and Propo- 
sition 2.1.7 since the composition of a compact linear operator and a continuous 
linear operator is a compact operator, see e. g. [KA, Theorem 111.4.83. Now let 
p = 1 and set 

:= { f  E w : ( u , ~ )  : I f  5 I ) '  
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Since w:-' (a ,  b )  is complete, it is sufficient to show that B is precompact in 
w:-' (a ,b) .  For this let E > 0 and sl;k be an extension operator according to 
Proposition 2.2.3. Set 6 := & , where C is the operator norm of r l ,k  Let f  E B. 
For j=O, . . . ,  k -  1, 

by Proposition 2.1.5 i), and hence the following estimate holds for y E [ -6 ,6] :  

b+ 6 I-, l (r l ,k f ) (J+l) ( t ) l  dt 

5 6 1 ( r ~ , ~ f ) ( ; + ~ ) 1 ,  . 

Set f s  = (r , , , f )*$, ,  where Q6 E C ~ [ - 6 , 6 ] .  $6 >Oand JR$,(x)dx= 1. The 

differentiation of convolutions yields f f )  = ( r l  ,k f  ) ( J )  * Qs . Hence 

which proves 

for all f  E B. Let M := max Q, ( y ) .  Obviously, for 1 = 0,.  . . , k ,  
Ivl56 

and thus 

< CM If6lce ,k  - 

for all f  t B. This proves that B, := { f s ( a , b )  : f  E B )  is a bounded subset of 

w:(a, b) .  By Lemma 2.4.1 there are finitely many elements f l , .  . . , f, in B such 
that foreach f  E Bthereisa j t  ( 1 ,  ..., m )  such that 
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Using (2.4.1) we infer that for each f  E B there is a j E (1,. . . , m )  such that 

f -f;ll,k-l If - f 6 1 ( a , 6 ) 1 1 , k - I +  I f 6 l ( a b 1  -f;,61(a,b11I,k-If l f j f ; , 6 l (a ,b ) / l , k - l  

I E ,  

which completes the proof. 

2.5. Fundamental matrices 

In this section let R be a nonempty open subset of C ,  n  E N \ (0) and A E 
H ( R ,  Mn(Lp(a,  b ) ) ) .  The value of the matrix function A at A E R and x  E ( a ,  b )  is 
denoted by A (x ,  A ) .  We set 

(2.5.1) T D ( A ) y  := y' - A ( . ,  h ) y  ( y  E (w; (a ,  b ) ) " ,  h E R ) .  

LEMMA 2.5.1. T D  E H(R,  L ( ( w ~  (a ,  b ) ) " ,  (Lp(a ,  b ) ) " ) ) .  

Proof: Proposition 2.3.3 yields A E H ( R ,  L ( ( w ~  (a ,  b ) ) " ,  (Lp(a ,  b ) ) " ) ) .  

DEFINITION 2.5.2. Let A. E R .  A matrix Yo E M,,(w; (a ,  b ) )  is called afunda- 
mental matrix of TD(Ao)y  = 0 if for each y  E N ( T ~ ( & ) )  there is a c  E Cn such 
that y  = Yoc. 
A matrix function Y : R -+ M , , ( w ~  (a ,  b ) )  is called afundamental matrixfunction 
of T~~ = 0 if Y ( A )  is a fundamental matrix of T D ( A ) y  = 0 for each A E R .  

THEOREM 2.5.3. Let T D  be given by (2.5.1). Then there is a  fundamental matrix 
function Y  E H ( R ,  M , ( w ~  (a ,  b ) ) )  of T D y  = 0 with Y  (a ,  A)  = id,, for all A  E R. 
In addition, Y  (., A )  is invertible in M,(W,,' (a ,  b ) )  for all A  E R. 

Proof: For A E R ,  B E Mn(Lp(a,  b ) ) ,  y  E (C[a, b])",  and x  E [a, b] we set 

Since By E ( L ,  (a ,  b ) ) " ,  we obtain ( IB)y  E (C[a, b])".  HOLDER'S inequality yields 

for each x  E [a, b].  This proves I E L(M,,(Lp(a, b ) ) ,  L((C[a,  b ] ) " ) ) .  For A E R ,  
y  E (C[a,  b])" ,  and x  E [a, b] we set 

r x  

Since K ( A )  = IA(., A ) ,  Corollary 1.2.4 yields K E H ( R ,  L((C[a,  b ] ) n ) ) .  Let y 2 0 
and set 

llylly := max \y (x)  le-Yix-a) ( y  E (C[a, b] )" ) .  
XE b,bI 
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For each y E (C[a, b] )" we have 

which shows that the norms I I ( o ,  and 1 1  / I y  are equivalent. Hence ( C [ ~ , b l ) ~  is a 
Banach space with respect to thk ;om 1 1  

Let A E R .  We shall prove that there is a y > 0 such that llK(A) 1 1  < 1, where 
IIK(A)lly is the operator norm of K ( A )  on L((C[a,b])")  induced by the norm 1 1  / I y  
on (C[a,  b])". Since the function t  t+ lA(t, A )  1 belongs to LP(a, b )  C Ll ( a ,  b ) ,  the 
function 

is uniformly continuous. Hence there is a 6 E (0 ,  b - a )  such that 

for all a, p E [a, b] with la - p I 5 6. For y E (C[a,  b])" and x E [a, b] we have 

< ~ ' ~ A ( t , A ) l e - ~ ( ~ - ~ )  d t  llyIy. 

For x E [a,a + 61, (2.5.2) implies 

and for x E (a  + 6 ,  b] ,  (2.5.2) implies 

Choose Y 2 0 such that e-y61A(., A)  1 < & . Then the above estimates yield 

1 
llK(A) lly 5 $ 7  

and we obtain that id(,[a,y )" - K ( A )  is invertible for all A E R. From Proposition 

1.2.5 we infer that - K ) - I  E H (R,  L((C[a,  b ] ) " ) ) .  Fork = I , .  . . , n define 

where ek is the k-th unit vector in Cn. Then Y ( . , A )  E Mn(C[a,b]) and depends 
holomorphically on A. 
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We apply id(cla,bi)n - K ( A )  to Y (., A) and obtain 

AsA( . ,A)Y (., A) E Mn(Lp(a,  b ) ) ,  Proposition 2.1.5 i) gives Y (., A )  t M , ( w ~  (a ,  b ) )  
and 

The multiplication from M,, (L,(a, b ) )  x M,(C([a, b ] ) )  to Mn(Lp(a, b ) )  is a con- 
tinuous bilinear map. According to Proposition 1.2.3, AY E H (R,  M, (L,  (a ,  b ) ) )  . 
Proposition 1.2.3, Proposition 2.1.8 and (2.5.4) yield Y E H ( R , M ~ ( w ~ ( ~ , ~ ) ) ) .  
From (2.5.4) we infer Y (a ,  A)  = id, . 

Let A E L2 and y E N ( T ~  ( A ) ) .  Then, by Proposition 2.1.5 i), 

and thus 

((id(cla,blln -K(A) )Y) (x )  = ~ ( a )  ( x  E [a,bI)- 

This proves 

Y = Y( . ,A)y (a ) .  

We still have to prove that Y (., A )  is invertible in M,, (w; (a ,  6 ) )  for each A E R .  

We consider the operator T D ( a )  E L ( ( w ~  (a ,  b ) ) " ,  (Lp(a ,  b ) ) " )  given by 

where AT denotes the transposed matrix function of A. For fixed A E L2 we know - 
that there exists a fundamental matrix Yo of T D ( A ) y  = 0 with Yo(a) = idcn . Set 
Yo := Y (., A) .  Since Y,, & E M,(W; (a ,  b ) ) ,  Proposition 2.1.5 i) and Proposition 
2.3.1 yield 

= id, 

since Yd = A(. ,  A)Yo and = -AT(.,A)F0. This proves that is the inverse of 
Y ( . , A ) .  

PROPOSITION 2.5.4. Let T D  be given by (2.5.1), 4 E R ,  and Y, be a funda- 
mental matrix of TD(&)y  = 0. Then Yo E M,, (w; (a ,  b ) )  is a fundamental matrix 
of T ~ ( & , ) ~  = 0 if and only if there is an invertible matrix C E Mn(C) such that 
Yo = Y,C. 
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Proof Obviously, it is sufficient to consider the case Y, = Y( . ,Ao) ,  where Y is 
the fundamental matrix function obtained in Theorem 2.5.3. Let Yo be a fun- 
damental matrix of TD(A0)y = 0. We define C := Yo(a). Let d E C1'. Since 
TD(A0)y  (., Ao)d = 0 by (2.5.5), there is a vector c E Cn such that Y,c = Y (., Ao)d. 
We infer that Cc = Yo(a)c = d ,  which implies that C is surjective and hence in- 
vertible and that YoC-' = Y (., Ao). 

Now let Yo = Y (., &)C. For y E N ( T ~ ( & ) )  there is a vector d E cC" such that 
y = Y (.,Ao)d. Set c := ~ - ' d .  Then y = Y( . ,&)Cc = Yoc 

From Proposition 2.5.4 and (2.5.5) we immediately infer 

COROLLARY 2.5.5. Let T D  be given by (2.5.1), & E R,  and Yo be afundamental 
matrix of TD(Ao)y  = 0. Then 

For each invertible matrix C in MI, ( C )  there is exactly one fundamental matrix 
Yc of T ~ ( A ~ ) ~  = 0 with Yc(a) = C. In particulal; there is a unique fundamental 
matrixfunction Y of T D y  = 0 with Y (a ,  A )  = idQ for all A E R.  

PROPOSITION 2.5.6. Let T D  be given by (2.5.1) and let Y be the fundamental 
matrixfunction of T D y  = 0 with Y (a ,  A)  = id, for all A E R. Set 

Then Z E H ( R ,  L(@", (w; (a ,  b ) ) " ) ) ,  and Z ( A )  is injective for all A E R. 

Pro08 By Theorem 2.5.3, Y E H(R,  Mn(W; (a ,  b ) ) ) .  For V E M,(w; (a ,  b ) )  and 
c E Cn,  IVcl,,, 5 nlVl,,, lcl. Hence the "multiplication" from M,(w; (a ,  b ) )  to 

L(@ , (w; (a ,  b ) ) " )  is continuous, which proves Z E H ( R ,  L ( @ ,  (w; ( a ,  b ) ) " ) ) .  
Since ( Z ( A ) c )  ( a )  = c, we obtain that Z ( A )  is injective. 

LEMMA 2.5.7. Let T D  be given by (2.5.1) and let Y be the fundamental matrix 
function of T D y  = 0 with Y (a ,  A )  = idc,, for all A E R.  For A E R, f E (Lp(a ,  b))" 
and x E (a ,  b )  we set 

Then U E H ( R 7  L( (Lp(a ,  b ) ) " ,  (w; (a ,  b ) ) " ) )  is a holomorphic right inverse of TD.  

Proof From Theorem 2.5.3 we have that Y E H(R,  M,(W; (a ,  b ) ) ) ,  and therefore 
Y - l  t ~ ( R , M , ( w , ' ( a , b ) ) )  by Theorem 2.5.3 and Propositions 2.3.3 and 1.2.5. 
From Propositions 2.3.3, 2.1.8 and Corollary 1.2.4 we infer that 
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defines a continuous linear map from (L,(a, b))" into (w; (a ,  b ) ) " ,  which depends 
holomorphically on A. An application of Proposition 2.3.3 and Corollary 1.2.4 
shows U E H ( Q ,  L((L,(a, b ) ) " ,  (w; (a ,  b ) ) " ) ) .  Since Y 1 ( - ,  A)  = A ( . ,  l ) Y  ( . , A ) ,  
Propositions 2.3.1 and 2.1.5 i) yield 

( U ( 4 f ) '  =~( . ,Ww)f  + y ( . , W ' ( . , 1 ) - l f  ( f  E (L,(a,b))") ,  

whence 

T D ( A ) ~ ( A ) f  = f ( f  E (Lp(a ,b))") .  

PROPOSITION 2.5.8. Let k E W \ ( 0 )  and C E M,,(wpk(a,b)). Suppose that the 
matrix C ( x )  is invertible for almost all x t (a ,  b )  and that C - I  E M,(L,, ( a ,  b ) ) .  

Then C '  t M, (wpk(a, b ) )  and 

Proofi Since C-'c' E Mn(Ll (a ,  b ) ) ,  Corollary 2.5.5 yields that 

y' + c - ' c ' y  = 0 

has a fundamental matrix Y E M,(w/ (a ,  b ) )  with Y ( a )  = ~ ( a ) - I .  With the aid of 
Proposition 2.3.1 and Corollary 2.5.5 we infer 

Hence CY is constant, see [H02, Theorem 3.1.41, and C(a)Y ( a )  = idcn yields 

C - I  = Y t M,(w;(a,b)). 

In addition, (2.5.8) implies (2.5.7). Since k > 0, (2.5.7) and Proposition 2.3.1 
yield that Y' E Mn(Lp(a,  b ) ) ,  whence Y t M,,(W; (a ,  b ) ) .  Now let 2 5 j 5 k and 
suppose that C - I  = Y E M,(w~- '  (a ,  b ) ) .  From (2.5.7) and Proposition 2.3.1 it 
follows that Y' E M , ( ~ / - ' ( a , b ) ) ,  which proves Y t M,(w,/(a,b)). By induction 
we obtain Y E M, (w; (a ,  b ) ) .  

PROPOSITION 2.5.9. Let Yo E M,(w; (a ,  b ) ) ,  h, E @ and assume that 

Y; -A(.,&)Yo = 0 

and that Yo(c) is invertible for some c E [a, b]. Then Yo is afindamental matrix of 
~ ~ ( 1 ~ ) ~  = 0. 

Proofi Let Y be the fundamental matrix function of T~~ = 0 given in Theorem 
2.5.3. Since Yl := Y (.,;lo) is invertible in M , ( w ~  (a ,  b ) ) ,  Proposition 2.5.8 yields 

Hence Y F ' Y ~  is constant, see [ H O ~ ,  Theorem 3.1.41. Since Y;' (c)Yo(c) is invert- 
ible, an application of Proposition 2.5.4 completes the proof. 
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2.6. Regularity of solutions of differential equations 

PROPOSITION 2.6.1. Let k ,  n E N pi E w F i ( a ,  b )  for i = 0 , .  . . ,n, E L,,,(a, b ) ,  < E Lp(a,  b) .  Ifk = 0, we additionally require that po< E Ll (a ,  b). Assume that 

Then 5 E wpkfn(a,b). 

Proot In case n = k = 0 nothing has to be proved. For n = 0 and k > 0 the 
statement follows from Propositions 2.5.8 and 2.3.1. Let n > 1 and suppose that 
the statement holds for n - 1.  Since pi E wpk(a,b) c L,(a, b )  if k > 1 ,  we have 

for any k and i = 0 , .  . . ,n that pi[ E Ll (a ,b)  c O1(a,b) .  Thus (pi<)(i)  is well- 
defined. Suppose that < @ W;+"(a, b ) .  Then there is a j € ( 0 , .  . . , k + n - 1)  such 
that < E w / ( a ,  b )  \ w/+'(a,  b ) .  Let j' := min{j, k) .  Set q = p if j' > 0 and q = 1 
if j' = 0. Then, in view of (2.6.1) and Proposition 2.3.1, 

whence 

by Corollary 2.1.4. Hence < E w,"+~+"-' (a ,  b )  = wit" (a ,  b )  by induction hy- 
pothesis. In case j' = 0 we obtain 5 E W;(a, b )  c L,(a, b ) .  Therefore po< E 
Lp(a,b) ,  and by repeating the above step we now can take q = p also in case 
j' = 0. If j' = j, we obtain the contradiction < E w/+.(a,b) c W/+'(a,b) .  If 

j' = k, we obtain the contradiction < E w F n ( a ,  b) .  

PROPOSITION 2.6.2. Let 1 E N, n E N\ {0 ) ,  pi E w;(a, b) ( i  = 0 , .  . . , n).  I f 1  = 0,  
we additionally assume that pi E W' 

max{p,pl) 
( a ,  b )  ( i  = 0 , .  . . ,n). Set 

For < E w;(a, b )  we have 

in the sense of distributions, where pi<(i) satisfies the equation 

(2.6.2) ( a ,  pi<"') = ( - 1 ) '  Jb(api) ' i )(X)<(X) ( a  E ~ ( a i b ) )  

if pi defines a regular distribution; otherwise, pi <(') is defined by (2.6.2). 
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Pro05 First we note that in case pi<(') is a regular distribution the theorem on 
integration by parts, see [HS, (1 8.19)], yields (2.6.2). Now let cp E C r ( a ,  b )  and 
j E ( 0 , .  . . ,n) .  A recursive application of Proposition 2.3.1 to cppi shows that the 
LEIBNIZ rule holds: 

Therefore 

which proves 

REMARK 2.6.3. The distribution pi<(') in Proposition 2.6.2 is regular in case i < 1. 
If p > 1 and i > 1, then (<( ' ) ) ,  E w;-'[a,b] by (2.2.7), pi(5( ' ) ) ,  E wjei[a ,  b] in the 

sense of Proposition 2.3.4, and pi<(') is the restriction of P i ( < ( i ) ) e  to (a ,b) .  

PROPOSITION 2.6.4. Let k, 1 E N, n E N \ {0 ) ,  pi E w F i ( a ,  b )  for i = 0 , .  . . ,n, 
p;' E Lp,(a, b), and < E w;(a, b) .  I f  k = 1 = 0, we additionally assume that 

pi ' w A a ~ { p , p l )  ( a ,  b )  ( i  = 0 , .  . . , n).  Assume that 

Then < E wpk+" (a ,  b) .  

Pro05 The assumptions of Proposition 2.6.2 are satisfied. Let q, ,  . . . ,qn be as 

defined there. For (qi<)(i)  the assumptions of Proposition 2.6.1 are satisfied. 
i=O 

Therefore < E wjtn (a ,  b) follows from Proposition 2.6.1. 

PROPOSITION 2.6.5. Let n E Nand u E Wp"(a,b). Then 

holds in gl(IW), where u, is the canonical extension of u. 
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Proot The statement is trivial if n = 0. Let n = 1 and cp E C,"(R). Then, by the 
theorem on integration by parts, see [HS, (1  8.19)], 

= ( c p ,  ( u l ) e ) ,  - (cp,u(b)6,), + ( 9 , u ( a ) 6 a ) n .  

This proves (2.6.3) for n = 1. Suppose that (2.6.3) holds for n - 1, where n 2 2. 
Then an application of (2.6.3) for n - 1 and 1 yields 

= ( u f - l ) ) l  

2.7. Estimates of integrals with a complex parameter 

We shall often deal with functions having a special asymptotic behaviour when 
the parameter A tends to infinity. For this we introduce some notations. 

Let U be an unbounded subset of @, f be a function on U with values in 
Mk,n(C)  and g be a complex-valued function on U. We write 

f ( A )  = O ( g ( A ) )  

if there is a C > 0 such that If ( A )  1 5 Clg(A)l  for A E U .  The notation 

f ( A )  = o ( g ( A ) )  

means that If ( A ) l  Ig(A)l-l -+ 0 as A + m in U .  Let a E Mk,n(C) .  We write 

f (4 = [a1 

i f f  ( A )  - a  = o ( 1 ) .  

Now let f (., A )  E Mk,n(Lp(a ,  b ) )  for A E U and, as above, g be a complex- 
valued function on U .  We write 

f = p or f ( . , A )  = O ( g ( A ) )  in M,,,,(L,(a,b)) 

if there is a C > 0 such that If ( . , A ) l p  5 Clg(A)l  for A E U ,  and 

f ( . , A )  = {o(g( ' ) ) )p  or f ( . , A )  = o(g( ' ) )  in Mk.n(LP(a,b)) 
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if I f  (., A)lplg(A)l-l t 0 as A --+ m. For h E Mk,,,(LP(a, b ) ) ,  we write 

iff  ( . , A )  - h = { o ( l ) ) ,  . 

PROPOSITION 2.7.1. Let r E Lp(a,  b )  such that r (x )  2 0 for all x E (a ,  b )  and 
r- E L,(a, b) .  For x E [a, b] we set 

Let 1 < pl 5 .o and 1 I: p2 5 .o such that 1 + 1 - 1 = 1. Let u E Lp(a,  b )  and 
P P I  p2 

v E Lpl (a ,  b ) .  Then there is afunction h E LPZ (0 ,  R ( b ) )  such that 

and 

Proofi Let p : [O,R(b)] + [a,b] be the inverse of the absolutely continuous in- 
creasing function x I+ R(x).  Then p is also a continuous increasing function. 
Since the function z --+ 1 is the composite of a continuous and a bounded 

r ( p ( r ) )  
measurable function, it is a bounded measurable function. We define the function 
f : [O,R(b)l + IR by 

Since R is absolutely continuous with R' = r, the theorem on integration by sub- 
stitution, see e.g. [HS, (20.5)] or [MS, 38.41, yields 

for x E [a, b].  Hence f = p ,  which proves p E w ~ ( o ,  ~ ( b ) )  and p' = (rap)-', see 
Proposition 2.1.5 i). 
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Let c = a. We apply the substitutions x = p ( t ) ,  { = p ( z )  and z ti, t  - z and 
obtain, again using the theorem on integration by substitution, 

where 

h ( z )  = 

The function h is the convolution of the two functions h ,  and h2 given by 

and 

(.(p(-t))p'(-t) if t  E (-R(b),O),  
h2(t) = if t  E R \  ( -R(b) ,  0 ) .  

Hence we have 

Ihlp, I: I ( V O  P ) P ' I P ,  I b o  p)pllp > 

see [HS, (21.31), (21.32), (21.33), and (21.56)]. For I 5 q < 00 and w E L4(a,b) 
the theorem on integration by substitution yields that 

(2.7.1) [ ( w o  p)pl l j  5 Ip1l:-'I(wo P ) ' P ' ~ ,  = Ir-'lz-ljwl:. 

This completes the proof of the proposition in the case c = a. 
If c = b, we have 

Proceeding as above the proposition is proved. 

We need the following generalization of the RIEMANN-LEBESGUE lemma. 

LEMMA 2.7.2. Let r  E L, (a ,  b )  such that r (x)  2 0 for all x E (a ,  b )  and r-' E 
L,(a, b) .  For x E [a, b] we set 
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For g E Lp(a, b), x,y E [a, b] and A E C we dejine 

and 

v(g,h) := max{lF(g,x,y,A)l : x,y E [a,bl, %(A)(x-y) 5 0 ) .  

We assert: 
i) Let go, g(A) E Lp (a, b), where g( A ) = go + o( 1 ) in Lp (a, b). Then the estimate 
v(g(A), A )  = o(1) holds. 
ii) There is a real number C > 0 such that 

v(8,A) 5 C(1+ I % ( ~ ) l ) l ~ ~ - ' l g / ~  (g E Lp(a,b), A E C). 

iii) Let c(A) = a $%(A) 5 0 or c(A) = b $%(A) > 0. (In case %(A) = 0 we can 
take either value.) Let > p and 1 5 j3 5 .o such that 1 - = 4. Then there is a 

P P P  
C > 0 such that 

IF(g,.,c(A),A)l, 5 ~ ( l +  l % ( ~ ) l ) ' ' ~ - '  l g l p  (g E Lp(a, b), h E C). 

Proot From the theorem on integration by substitution, see [HS, (20.5)], we infer 

for 5 in the interval with the endpoints x and y. 
i): Let E > 0. Then there is a function gl  E C [ a ,  b] such that Igo - g, 1, 5 $, 
see e.g. [ H O ~ ,  Theorem 1.3.21. There are a measurable set M C (a, b) and a real 
number K > 0 such that 

where xM is the characteristic function of M, see [HS, (12.34)] and its proof. 
According to [ H O ~ ,  Theorem 1.3.21 we can choose a test function @ E Cr(R) such 

t h a t @ > O , J @ ( x ) d x =  1 and I (%),*@-$I ,  5 &. Seth :=  (($), * ') 1 [ L I , ~ ]  

Cm[a, b]. From 
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we infer Ihl.. < 191,. Then 

I & .  

Note that 

for all x ,y  E [a, b] and t in the interval with endpoints x  and y  if % ( A )  ( x  - y) 5 0.  
Hence 

I("exp{"(~x) - R ( f ) ) ) ( g o ( f )  - h ( t ) r ( t ) )  d l  5 E 

for all x,y E [a, b] with % ( A )  ( x  - Y )  < 0. The formula for integration by parts, see 
[HS, (18.19)], and (2.7.2) yield 

where IC(x,y, A)  1 5 21hlm + JhIl 1 for all x,y E [a, b] with % ( A ) ( x  - y) 5 0. These 
two estimates prove v(go, A)  < 2 ~  if (A1 is sufficiently large. By assumption, 
v (g (A)  - go, A)  5 lg(A) - g o [ ,  = o(1) as A  -+ m. Then the assertion of part i) 
follows in view of v ( g ( A ) ,  A)  5 v(go, A)  + v (g (A)  - go, A) .  
ii): The statement is obvious for p  = 1. Now let p  > 1 and g  E Lp(a,  b ) .  With 
the aid of HOLDER'S inequality we infer for x,y E [a,b] and A  E C such that 
% ( A ) ( x - y )  5 0 and 1%(A)1 1 :  

- < lr-I lYP l g l p l ~ ~ % ( ~ ) l - ~ + ~ / ~  

< - 2 1 - 1 / ~ l r - 1 1 L - 1 / ~ ( ~  + 1 % ( ~ ) 1 ) - ' + l / p [ ~ l ~  . 

If [ % ( A )  1 5 1 ,  we obtain 
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iii) For p = w this follows from ii). Now let p < ... For v E Lg, (a, b) we obtain 
according to Proposition 2.7.1 that 

= ~R(b)exp{&c(a)Ar}h(r)  d r ,  

1 1  1 where h E Lb(O,R(b)) and lhlb < lr-' lL-'/bv/ p1 - I g 1 P since - + T - 1 = . In view 
P P  P 

of % ( E ~ ( ~ ) A )  5 0, part ii) yields the estimate 

where C' does not depend on h. Since Lp, is the dual space of Lp , we infer 

REMARK 2.7.3. Let the notations be as in Lemma 2.7.2 and assume additionally 
that r E w,' (a ,  b). Then 

Pro05 The estimate was essentially established in the proof of part ii) of Lemma 
2.7.2 if we observe that we can take h = : under the present assumptions. Here 
we also have to note that : belongs to W /  (a, b) by Propositions 2.5.8 and 2.3.1. 

2.8. Asymptotic matrices 

In this section we consider first order systems of differential equations 

where, for some k E N and y > 0, 

L 

(2.8.2) k-1 k jl ( A )  = A j -  A ( ) (111 2 y). 
j=- 1 

We shall construct a fundamental matrix of (2.8.1) which has an appropriate as- 
ymptotic behaviour for A + ... For this purpose we make the following 
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ASSUMPTION 2.8.1. We assume that 
i) A ,  E ~ n ( ~ , k ( a , b ) ) ,  
ii) A - j ~ ~ , ( ~ j - ~ ( a , b ) )  ( j = O  ,..., k ) ,  
iii) A ~ ( . ,  A )  belongs to Mn(Lp(a, b ) )  for IAI 2 y and is bounded in Mn(Lp(a,b))  

as A+ m, 

iv) Al has the diagonal form 

1 
where A; = rvlnV, ( V  = 0 , .  . . , l ) ,  1 n, = n, In,, is the n, x n, unit matrix. 

v=o 
V) For V ,  p E ( 0 , .  . . , I }  there are cpvp E R such that 

holds for all x E [a, b]. Finally we assume 

(2.8.4) ( r  - r )  E L a b )  ( v , p  = 0 , .  . . , I ;  v # p ) .  

We set 

R,(x) := r,(()  d( ( v  = 0 , .  . . ,1;  x E [a, b ] ) ,  IX 
EV(x,A)  := exp(AR,(~))l,,, ( v  = 0 ,  ..., 1 ; x  E [a,b]; A E (C), 

Eo(x, A) 
El (4 A) 0 

(2.8.5) E(x,  A) := 

for x E [a,  b] and A E @. [ o E l ( x , a )  

For the matrices A j  and ~ [ ' l ,  defined below, we form the block matrices 

according to the block structure of A ,  . 
When applying the results of this section we shall not always assume that 

the dimensions n, are positive since some statements are easier to formulate if we 
allow n, to be zero. But n, = 0 means that the corresponding entries do not occur. 
Therefore we may assume for the proofs in this section that all n, are positive. 
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THEOREM 2.8.2. Let Assumption 2.8.1 be satisfied. 
A. There are P['] t Mn(wL+'-'(a, b ) )  ( r  = 0 , .  . . , k )  such that the equations 

(2.8.6) P [ O ] A ,  - A, P[O] = 0 ,  pi0] ( a )  = I, , 

(2.8.7) p[rI' - A- ,p[r-ll + plr+llA - A  pi'+1] = 0 
I I 1  

j=o 
(r=O,  ..., k -  1 ) ,  

I 
1 k 1 

(2.8.8) P ~ J  -A0,,,P~J= E A ~ , ~ ~ P ~ + E  L A  - I , v ~  pik-]] 9~ 
q=O j= 1 q=O 
9 f v  ( v  =o,  ..., 1 )  

hold. 
B. For 1 5 q 5 GO we set 

For r E ( 0 , .  . . , k }  let the matrices P['] belong to M,(wF'-'(a, b ) )  and fulfil 
(2.8.6), (2.8.7), (2.8.8). We assert that for 1A 1 2 y there is a matrix function 
Bk(. ,  A )  E M,(W; (a ,  b ) )  with the following properties: 
i)ForlAl L y, 

is afundamental matrix of the system (2.8.1). 
ii) For large A we have the asymptotic estimates 

(2.8.1 1) B k ( . , 4  = { ~ ( l ) } - ,  

(2.8.12) B k ( . , A )  = { " ( 7 p ( a ) ) } m  7 

(2.8.13) Bk( . ,A)  = { " ( r - ( A ) ) } p  i f k  > ' 7  

iiij Let 1 > 0. I fk  = 0 and p 5 :, then we additionally assume for V ,  p = 0 , .  . . ,1  
with v # p that Ao,Vp E Mn,,,np (Lpvp (a ,  b ) ) ,  where 1 5 pvp 5 are such that 

1 + + - < 2 for all V ,  p ,q  = 0 , .  . . ,1  with v # q and p # q. Then there is a 
p pvq P ~ P  
number E E ( 0 , l -  i) i f p  > 1 or E = 0 i f p  = 1 such that 
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Proot A. The equations (2.8.6), (2.8.7) and (2.8.8) are fulfilled if and only if the 
block submatrices of P['] satisfy the relationships 

(2.8.17) P!; = O  ( v , p  = O  ,..., I ;  v # p ) ,  P!J(a) = Inv ( v  = O  , . . . ,  l ) ,  

s f  v 
( v = 0  , . . . ,  1;r=O , . . . ,  k ) ,  

Indeed, for r = 0 , .  . . , k, 

Hence (2.8.6) is fulfilled if and only if (2.8.17) holds, and (2.8.7) is fulfilled for 
r E ( 0 ,  . . . , k - 1) if and only if (2.8.18) and (2.8.19) hold for this r. Finally, (2.8.8) 
holds if and only if (2.8.18) holds for r = k. 

We are going to solve the equations (2.8.17), (2.8.18), and (2.8.19). For 
v E ( 0 , .  . . , 1 )  let PFJ E M,(w; (a ,  b ) )  be the fundamental matrix of y' -Ao,,,y = 0 

with p!J(a) = I,,, , see Theorem 2.5.3. For v # p we set P F ~  = 0. Then (2.8.17) 
and, for r = 0, (2.8.18) are valid, see Corollary 2.5.5. Repeated application 
of Propositions 2.3.2 and 2.1.4 to (2.8.18) proves that P[O] E M,(w;+'(a,b)). 
Now we assume that k > 0 and let 0 5 m < k - 1. Suppose that there exist 
P/$ E Mnv,nfl (~;+'-'(o, b ) )  for v , p  = 0 , .  . . ,1  and r = 0 , .  . . ,m such that (2.8.17) 
is fulfilled, (2.8.18) holds for r = 0,  . . . , m, and (2.8.19) holds for r = 0, .  . . , m - I. 
For v # p we define P;it'l by (2.8.19). For v # p ,  r, - r,, E w;(a,b) and 

( r ,  - rP) -' E L,(a, b ) .  Hence ( r ,  - rp )-' E W; (a ,  b )  by Proposition 2.5.8. From 

Proposition 2.3.2 we infer P;~+'I E MMnfl  (wL-"(a,b)). For r = m + 1 the right 

hand side of (2.8.18) belongs to M,~,, (w;-"-' (a ,  b ) )  c Mnv (Lp(a ,  b ) )  by Proposi- 
tion 2.3.2. For the differential operator y ++ y' - Ao,,,y we apply Lemma 2.5.7 to 

each column of this matrix function and obtain that there is a solution P?it'l E 

M,(w; (a ,  b ) )  of (2.8.18) for r = m + 1. By a recursive application of Propositions 

2.3.2 and 2.1.4 we infer P e l ]  E M,,,(w;-"[a,b]). This completes the proof of 
part A. 
B. Because of (2.8.17) and (2.8.18) for r = 0,  P[O]  is the fundamental matrix of 
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with P[O](a) = In by Proposition 2.5.9. Then Theorem 2.5.3 and the uniqueness 
of this fundamental matrix, see Corollary 2.5.5, yield that P[O] is invertible in 
M,(w,' ( a ,  b ) ) .  It follows that there is a K  > 0  such that 

1 
(2.8.21) ~ [ ~ l l ~ < $ ,  lPlOl I _ < $ ,  
see Proposition 2.1.7. Fork E N we define 

- 
and set 6 := Pk if k > 0. If k = 0  we choose a matrix A. = (i0,,,):,,=, in 
Mn(L,(a, b ) )  such that 

- 

{ 
AO,vv =Ao,,, ( v  = 0 , .  . . Ill, - 

(2.8.23) (r ,  - r v ) - l ~ o , v ,  E M,,",,,), (CW[a,b])  ( v ,  P  = 0 , .  . . 7 1 ;  v # PI,  

/Ao - xol 5 ( 1  + I ) - ~ K - ~ .  

This is possible since CW[a, b] is a dense subspace of L, ( a ,  b ) ;  see the proof of 
Lemma 2.7.2 i) for a construction of such functions. In this case we set 

P;; :=o (v=O, . . . ,  l ) ,  
- - P I  := ( r  - r )  l ~ , , , ,  ,, v!J 

P[O]  ( v , p  = 0 , .  . . , 1 ;  v # p ) ,  

which yields Plll = (PF~):, ,=~ E M ~ ( w ~  (a ,  b ) )  and the equation 

We define 
Fo(.,n) := pl01 +a-lp[Il ( A  E C\ { o ) ) .  

Now let k be arbitrary. We set 

where E is the matrix function defined in (2.8.5). Since &(. ,A)  -+ P[O] as A  -t w 

in M, (w; (a ,  b ) ) ,  there is a yl >_ y  such that &(., A )  is invertible in M,(w~! ( a ,  b ) )  
for / A /  2 yl and 

(2.8.25) / P k ( . , ~ ) I w  < K, l F i l ( ' , A ) l w  5 K  ( I A [  2 71). 

For [A1 > y, weset 

6, := Dk if k > 0,  and 
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Let K := max{l, k). Then Proposition 2.3.1, E1( . ,A)  = LAI E( . ,  A )  and the rela- 
tionships (2.8.6), (2.8.7) and, if k = 0 ,  (2.8.24) yield 

With K = k the same proof shows 

For v = 0 , .  . . ,1 let I ( " )  be the n x n  matrix whose v-th diagonal block is InV and 
whose other components are zero. For v,  p = 0 , .  . . , 1 and A # 0 we set xvp ( A )  = a 
if %(AeiVvfl ) 5 0 and xvp ( A )  = b if %(AeiVv~ ) > 0. 

Next we prove that the integral equation 
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has a unique solution in Mn(C[a, b ] )  for all sufficiently large A. For this purpose 
we consider the continuous linear operator 

T, : Mn(C[a,b]) -+ Mn(C[a,bl) 

given by 

where f E Mn(C[a, b]) .  Since E and I ( " )  are diagonal matrices, 

~ ( x ,  A ) I ( ~ ) E ( ~ , A ) - '  = exp{L(Rv(x) - ~ , ( t ) ) ) l ( " ) .  

By assumption, 

Rv(x)  - Rv( t )  + R,(t) - R,(x) = e'qvp 

whence the equation 

x ~(~,a)l(~)F;~(t,a)6~(t,a)f(t)~(t,n)l(~)&~(~,a) dt 

holds for f E M,, (C[a, b] ) .  By the choice of xvp ( A )  we obtain 

for t  in the compact interval with the endpoints x v p ( A )  and x E [a, b].  Note that 
I F ~ ( . , A ) I ( ~ ) I ,  5 l&(.,A)l,. Then 

Since A k ( . , h )  is bounded in Mn(Lp(a,b))  as A + w, there is a constant M > 0 
such that for all sufficiently large 3L 

whence 
ITa[ < lAl-k(l + 1 ) 2 ~ 4 ~  

follows for k > 0. Fork = 0 we obtain with a suitable Mo > 0 that 
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for all sufficiently large A. With the aid of the estimate in (2.8.23) we infer in this 
case that 

We conclude in either case that there is a positive 6 < 1 and a number yo 2 y such 
that ITk ( 5 6 for ( A  ( 2 yo. For /ill 2 yo the operator 

is invertible by Proposition 1.1.4. As (2.8.26) holds if and only if Fat(., A) = In, 
where In : = idc,, , 

C(., A )  := f-pn 
is the unique solution of (2.8.26). In addition, from 

see (l.l.6), we infer 

From (2.8.26) and Propositions 2.3.2 and 2.1.8 we see that C(., A) t M,,(w,' (a, b)). 
Note that the components of C(x, A )  are products of functions of the form f l  (x) 
with f, t w,' (a, b) and Jxx f2(t) dr with f2 t Lp(a, b). Therefore Propositions 

V P ( { )  

2.3.1 and 2.1.3 and (2.5.7) y~eld that 

I 

x 1(p)Si1  (x, A) dr + A-k lx Sk(x, h ) ~ ( ~ ) S i '  (r, A )  x 
v,p=O xvp(A) 

We define 
- - - 

(2.8.30) Y :=CSk =CPkE 
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and infer from (2.3.1) that 

P I  = + c$ = B 
by inserting the right-hand sides of the matrix differential equations which we 
obtained above for Sk and C.  If k = 0 we set 

(2.8.31) B ~ ( . , A )  := (c(., A )  -c)l?,(.,n) + a - lp [ l l ,  

and if k > 1 we set 

These definitions and (2.8.30) immediately yield B,(. ,A) E M , ( w ~  ( a , b ) )  and 

This proves (2.8.10) for 1 ill 2 yo. But for simplicity of notation we may assume 
that yo = y. Indeed, for any fundamental matrix there is a Bk( . ,  A )  such that 
(2.8.32) holds, and the values of B k ( . , A )  for y < lAl 5 yo do not influence the 
asymptotic behaviour of Bk. 

We have to prove the estimates for Bk( . ,  A )  as A + m. First we give the proof 
of (2.8.11), (2.8.12) and (2.8.16). In view of (2.8.31), (2.8.31') and the uniform 
boundedness of Fk( . ,A)  in M,(Lm(a, b ) )  for A1 2 yo, see (2.8.25), it is sufficient 
to estimate the matrix function A k ( c ( . , A )  -I,). We set 

For f E M,(C[a, b ] )  and x E [a, b] we define 

V # P  

x P[~~(x)I(~)P[~I-'(~)Q~~~(~) f ( t ) ~ [ ~ ] ( t ) l ( ~ ) ~ [ ~ l - ' ( x )  dt, 
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{ F k ( x , a ) ~ ( v ) 4 - 1 ( t , h ) h  ( 6 k ( t , ~ )  - ~ [ ~ ' ( t ) )  f  ( t ) e ( t , ~ ) ~ ' ~ ) & - l  ( x , h )  

+ a ( 4 ( ~ ,  a )  - P [ O ] ( X ) )  1(~)6-l ( t , a ) ~ [ ~ l ( t )  f ( t )Fk( t )  a)1@)6-l (x ,  a )  
+ P [ ~ ] ( X ) I ( ~ ) L  (4-1 ( t ) a )  - P[OI-' ( t ) )  ~ [ k ] ( t ) f ( t ) 4 ( t ,  A ) I ( ~ ) < - I  (x,  a )  
+ P [ ~ ] ( X ) I ( ~ ) P [ ~ I - ~  ( t ) ~ [ ~ l  ( l ) f ( t ) a  (Fk(t,  a )  - p[OI(t))~(p)<-l (x, a )  
+ P~~~(X)I(~)P~~~-'(~)Q[~I(~) f  ( t ) ~ [ ~ ] ( t ) I ( p ) h  (&-'(x,A) - P[O]-' ( x ) )  } dt. 

Then 

Ta = Ta,, + Ta,2 + Ta,3. 

The definition of Fk(., h )  yields that &(., h )  = PR + i0(1) in M,(W; (a ,  b ) )  as 
h --+ w. With the aid of Proposition 2.3.3, (1.1.3) and (1.1.4) we infer for A --+ w: 

e ( . , ~ )  = O(1)  in M,(w; (a ,  b ) ) ,  

h ( < ( . , h )  - Plol) = O(1)  in M,(w;(a,b)), 

<-I(., h )  = O(1)  in M,(w; (a ,  b ) ) ,  

h(F; ' ( . ,h)  - P[O]- ' )  = O(1)  in M,(w;(a,b)). 

These estimates and the definitions of bk and elk] yield 

as h + m. It follows that Ak+l Ta,, ( f )  ( x )  is a sum of terms of the form 

where Q I ( . , a ) , Q 3 ( . , h )  = O(1)  in M,(w;(a,b)) and Q 2 ( . , h )  = O(l) l f l ( , )  in 
Mn(Lp (a ,  b ) )  as h -t a. As W; (a ,  b )  is contained continuously in L,(a, b ) ,  it fol- 
lows that lhk~a,31 = { o ( ; ) } ~  . Since ITk[ < 6 < 1 for 111 > yo, there arenumbers 

y, 2 1 a n d 6 , , 4  < 1 s u c h t h a t 6 , + 4  < 1, IT,,,+T,,,I <G,,and IA 'T~, ,~  < 4 
for Ih I 2 y, . We calculate 
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where 

This shows that TI*(&) = O ( h p l )  in M , ( C [ ~ ,  b ] )  and thus also in Mn(LP(a,b)).  

From (2.8.8) and (2.8.23) we conclude that the block diagonal of Q [ ~ ]  is zero. 
This shows that Ta,2(In) = 0 and ~ 2 , ~  = 0. Therefore, 

where 
m 

since IT, + T,,,I 5 6,  < 1.  
It is Llear that Ta,I and TaY2 are uniformly bounded with respect to I .  There- 

fore, in order to establish the estimates (2.8.1 l ) ,  (2.8.12), (2.8.13) and (2.8.16) it 
is sufficient to prove for h E Mn(C[a, b ] )  that 

(2.8.35) hkTa,, h and I ~ T ~ , ~ T , , ,  h satisfy O ( r m ( I ) )  lhl(o, in Mn(LP(a, b ) ) ,  

where (2.8.35) holds under the additional assumptions made in iii). To prove 
(2.8.11) we remark that it is sufficient to estimate IkTa (I,) in Mn(C[a, b ] )  because 
of (2.8.29). Hence it would be sufficient to consider h = In in (2.8.34) for the 
estimate o(1 ) .  

The estimates (2.8.34) and (2.8.35) are trivial in case 1 = 0 since Ta,i = 0 in 
this case. Now let 1 > 0. To estimate Ta,, h we have to consider terms of the form 
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where v # p and u E Lp(a,  b )  such that [ u p  ( Clhl(o) and C > 0 does not depend 
on h. For x  E [a, b] we set 

r(x)  := lrv(x) - rp(x) l .  

Let F be defined as in Lemma 2.7.2. Then 

F ( u , x , ~ )  = ~ ( u , x , x ~ ~ ( A ) , A e ' " p ) .  

As % ( i l e i q v ~ )  ( x  - xvp ( A ) )  < 0,  Lemma 2.7.2 yields the estimates 

Since IT, ,Ta , I = 0 ( 1 - , ~ ) ,  the estimate for T,,, T,, , in (2.8.35) is trivial for 
k > 0. ~herefbre,'let k = 0. The components of T,,,T,,, h  are sums of terms of the 
form 
(2.8.36) 

where v # p, w E W; (a ,  b )  and v E LppV (a ,  b )  are functions depending only on the 
coefficient matrices in TL,, and Ta,2,  and u E LPvq(a, b )  for some q # v satisfies 
lulPVy 5 ClhJ(,,) , where C > 0 depends only on the coefficient matrices in T,,, and 

3 1 Ta,, . Here we take ppv = pvq = p in case p > ?. If p > 1 we choose E E ( 0 , l -  ?) 
such that + + 5 2 - E for all v, p, q under consideration. With r  as above, 

P P v y  P p v  

R(x)  = J:r(t) d t ,  x  E [a,b],  and g E Lp,(a,b)  we obtain 

b 

L b g ( x ) z ( x , h )  'LC = V , ( t )  exp{aeiqvr ( ~ ( 4 )  - R ( t ) ) } u ( t )  dl d t ,  
x v p ( L )  

where 

with i p p ( A )  = b if x p p  ( A )  = a and d p p ( A )  = a if x p p  ( A )  = b. Since 

I 1 1 1 1 
= - + - - I  < I - & - - ,  

Pvq p;v Pvq Ppv P 

it follows from Lemma 2.7.2 iii) with suitable p 2 pvq and jj < pLv that 
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which proves 

l ~ ( . , A ) l ,  5 c, ( l  + ~ ~ ( l e ' " ~ ) ~ ) - ~ - ~ l h l ( ~ ) .  

Finally we shall prove the estimates (2.8.14) and (2.8.15). For IAI > yo we 
have 

B ~ ( . , A )  = a X [ Y ( . , a )  - s k ( . , a ) ] ~ - l ( . , a ) .  

The differential equations fulfilled by Y ( . ,  A ) ,  E ( . ,  A )  and Sk(. ,  A )  yield 

(2.8.37) 

The estimates (2.8.14) and (2.8.15) for i B ; ( . , A )  now follow from the estimates 
(2.8.11),(2.8.12)and(2.8.28). 

COROLLARY 2.8.3. We assume that the conditions i)-iii) in Assumption 2.8.1 are 
sharpened such that the following properties hold for some K E N: 
il) A,  E M,(w;+"(~, b ) ) ,  
iil) A - , E M , , ( W , ~ + " - J ( ~ , ~ ) )  ( j = O  , . . . ,  k ) ,  

iii') Ak( . ,A)  E M,(W;(a,b)) $A1 > yand A".,A) is bounded in M,(W;(a,b)) 
as A + w. 

We assume that the matrix functions P['] belong to M , , ( ~ ~ " - ~ ( a , b ) )  for all 
r E ( 0 ,  . . . , k )  and fu&l (2.8.6), (2.8.7) and (2.8.8). For 1 A 1 2 y let the matrix 
function Bk (., A )  be defined as in part B of Theorem 2.8.2. 
Then PI'] E M,(w;+"+'-' ( a , b ) )  forr E ( 0 ,  ..., k )  andBk( . ,a )  E ~ , (wpK+'(a ,b))  
for 1A 1 > y. We have 

and 

for / A /  2 y and 1 E ( 0 , .  . . , K + I), where zp is thefunction defined in (2.8.9). 

Pro05 The case K = 0 is part of Theorem 2.8.2. Therefore let K > 0. With the aid 
of Proposition 2.3.2 and Corollary 2.1.4, the first assertion follows from (2.8.17), 
(2.8.18) and (2.8.19) by induction. In view of (2.8.37) we infer that the matrix 
function 

$ ( . , A )  -A( . ,A)B,( . ,A)  + hBk( . ,A)A l  = -Dk( - ,A)pk ( . ,h )  
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belongs to Mn(WF(a, b ) )  and is bounded in this space as A -+ m. An application 
of Proposition 2.3.2 and Corollary 2.1.4 proves Bk( . ,A)  E M~(w,"" ' ( u ,~ ) ) .  The 
LEIBNIZ rule, which holds in view of (2.3.1), yields that 

- I B ( j )  (., A )  +A\'-'-J)} - $ (D~P~,('-') 
A' k ( . ,A )  

for 1 = 1,. . . , K + 1. The estimates (2.8.38) and (2.8.39) follow from these equa- 
tions and (2.8.1 l), (2.8.12) by induction on 1 .  

REMARK 2.8.4. Assume additionally that the coefficients A,  ,AO,. . . ,A-k are in- 

definitely differentiable and that Ak = 0. Then the PI'] ( j  = 0 , .  . . , k )  and Bk(.,  1) 
belong to Mn(Cw[a, b] ) .  Here k  can be chosen arbitrarily large. 

REMARK 2.8.5. Assume that A,  = rlIn and write 

Let the fundamental matrix y( . ,  A )  of (2.8.1) be as in Theorem (2.8.2) B. Then 

P(. ,A)  := F(. ,A)E(. ,A)-l  

is a fundamental matrix of yl(x)  - i O ( x ,  A)y(x)  = 0. 

Pro05 We have 

F 1 ( ~ , n )  = LA,  (x)F(x ,a)  +Zo(x,n)F(x,a) 
and 

F1(x,A) = P1(x ,A)E(x ,A)  + P(x,A)AA1 (x )E(x ,A)  

as E( . ,  1) is a fundamental matrix of yl(x)  - LAl (x)y(x)  = 0. Since A,  ( x )  and 
P(x,  A )  commute, this proves that 

Finally, P(a, A )  = F(a, A )  is invertible. Thus P(., A )  is a fundamental matrix of 
y1 = i o ( . ,  A)y by Proposition 2.5.9. 

REMARK 2.8.6. Assume that A,  = r,  In and let E( . ,  A )  and P[O] be the fundamental 
matrices of 

Y ' ( x ) - A A l ( x ) y ( x )  = O  and yl (x) -Ao(x)y(x)  = O  

with E(a ,  A )  = In = p[O](a), respectively. Then P[']E (., A )  is a fundamental matrix 
of 

~ ' ( 4  - (AA, (x )  + ~ o ( x ) ) y ( x )  = 0 
as given in Theorem 2.8.2 B. 
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If the first order system of linear ordinary differential equations (2.8.1) is not 
of the form as considered in Remark 2.8.6, then, in general, one cannot find a 
k E N such that B,(., A)  = 0 for all sufficiently large A. 

If k can be chosen arbitrarily large (see e. g. Remark 2.8.4), then we may 
consider the formal series 

m 

But it may happen that this series does not converge for any A as is seen in the 
following example. 

EXAMPLE 2.8.7. ~ e t  A(., A) = AA, +Ao, where 

and a E Cm[a, b]. 
I 

Then (2.8.17) and (2.8.18) yield PE] (a )  = 1 and = 0 for r E N Hence 

P ~ ] ( x )  = 1 =: co and Plrl(x) = cr for X E  [a,b] and r E N, where c l , c 2 , . .  are 
22 

arbitrary complex numbers. From (2.8.17) and (2.8.19) we infer 

1 I 
P ~ : ] = O  and P [ ' ' ' ] = ~ { P / ~  12 - a c r ) f o r r E N .  

This means that 

Now let us take 0 < a < 1, b = 1 and a ( x )  = . Suppose that we can choose the 
cr in such a way that 

is pointwise convergent almost everywhere for sufficiently large A. Then there is 
an x E [a, b] such that 

converges for sufficiently large A, say [A1 = d. Hence 

converges for this A. Then the sequence (A-'cr)r is bounded for this A, which 
means that there is a C > 0 such that 

(2.8.40) lcrl < Cdr for all r E N. 
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In the same way, the convergence of 

yields 

(2.8.41) 2 - r - 1 + j ~ j a ( r - j ) ( x )  / < cdr+l for r t N, 

where we may take the same constant C in (2.8.40) and (2.8.41). Since 

(- l ) ' l !x - ' - l ,  

the estimates (2.8.40) and (2.8.41) imply 

Hence 

Since 
(2dx) ' + I  

- -+Oasr - -+=~,  
r!  

this implies that 
r ( r  - j ) !  

lim inf (2dx) J - 
r+= 

> 0.  
j= I r !  

For r = 1,2, .  . . we set 

Then 

holds for r = 2 ,3 , .  . . For r > 4dx we obtain 
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This proves that the sequence (b,)T=l is bounded. Thus 

which contradicts (2.8.42). Hence the formal series 

does not converge if the PI'] are chosen according to (2.8.6) and (2.8.7). 
If k = 1,  then we have 

P,( . ,A)  = pIol + A - ~ P [ ~ ]  + A - ~ B , ( . , A ) ,  

where B 1  ( . , A )  = { ~ ( l ) ) , .  Hence there is a fundamental matrix function ? ( . , A )  
of y' - A ( . ,  A ) y  = 0 such that 

Y ( - , A ) E ( . , A ) - ~  = P[O] + { ~ ( a - ~ ) ) , .  

The following example shows that this does not hold in general if k = 0. 

EXAMPLE 2.8.8. ~ e t A ( . , h )  = A A ,  +Ao, where 

a=O,  b =  1,and a E L , ( 0 , 1 ) .  Let 

be a fundamental matrix function of y' - A ( . , A ) y  = 0. It is easy to see that we 
have 

(2.8.43) $ 2 2 ( 4 )  = - A Y 2 2 ( 4 )  

and 

(2.8.44) ~ ' 1 2 ( 4 )  = A Y ~ ~ ( . , A )  S ~ Y ~ ~ ( . , A ) .  

The solution of equation (2.8.43) is 

y22(x, 4 = ~ 2 ( 1 ) e - ~ ~ ,  

where c2 is a complex-valued function. If we require that 

(2.8.45) ? ( . , A )  = (P[O1 + { 0 ( ( 1  + ~ ' X ( A ) ) - " } , ) E ( . , A )  with 11 > 0, 

where P[O] fulfils (2.8.6), then we obtain that c 2 ( A )  = 1 + O ( ( 1  + / % ( A ) j ) - 7 )  as 
1A1 -+ m. The solution of equation (2.8.44) is 

~ , 2 ( x , A )  = ~ " ( c , ( A )  + c 2 ( l )  / x a ( t ) e - 2 a t  o  d t ) ,  
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where cl is a complex-valued function. The representation in (2.8.45) leads to 

as [ill -+ m. For x = 0, (2.8.46) yields c,(A.) = O((1 + 131(3L)1)-q). For our 
purposes it is sufficient to consider the case 1 < 0. Then (2.8.46) holds for 3L < 0 
if and only if 

Now let 
a (x )  = x-Ifp with p E (0 , l ) .  

For3L < -1 a n d x =  -2.-I wehave 

Now assume that (2.8.45) holds whenever a E Lp(O, 1). Since a belongs to 
Lp(O, 1) for P > 1 - l l p ,  it follows that 77 5 1 - l l p  in (2.8.45). Hence, for 
k = 0, the estimate (2.8.12) is sharp in the sense that no 77 > 1 - l l p  exists such 
that 

holds for every first order system of differential equations (2.8.1) fulfilling the 
assumptions of this section. 

REMARK 2.8.9. The additional condition in Theorem 2.8.2B. iii) is due to the 
fact that that the operator Ta,2 defined in the proof of Theorem 2.8.2 does not have 

a bounded extension to L(Mn(Lp(a, b))) if the coefficients of Q [ ~ ]  do not belong to 
LpJ (a, b). 

The condition given in Theorem 2.8.2 B. iii) is satisfied if there is a number 
q E (0,.  . . ,1) such that the coefficients of AosVp belong to Lp, (a, b) for all pairs 

ofnumbers ( v , p )  ~ r , w h e r e e i t h e r r = { ( v , p )  E (0, . . . ,  1 j 2 :  v # p , v # q )  or 
~ = { ( v , c L )  E {0, . . . ,1)2:  V # P , P # 9 ) .  

Another condition under which (2.8.16) holds for k = 0, p 5 : and A. in 
Mn(Lp(a,b)) is that A. is a block triangular matrix. Indeed, in this case, (2.8.35) 
only needs to be shown for block triangular matrices h of the same form since ga 
has obviously this shape. But since Ta,2 annihilates any block triangular matrix of 
the same shape as Ao, the crucial estimate in (2.8.35) is trivially fulfilled. 
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The asymptotic representation of the fundamental system obtained in Theo- 
rem 2.8.2 or Corollary 2.8.3 is stable with respect to change of variables: 

REMARK 2.8.10. Let the assumptions be as in Theorem 2.8.2 or Corollary 2.8.3. 
Let -w < c < d < - and u : [c,d] + [a, b] be surjective with u E wLSK+' ( c , d )  
( K  := 0 for Theorem 2.8.2) and $ E L,(c,d). Then 

has the same properties as Y ( . ,  A ) ;  in particular, pio] o u is invertible, and Bk(u ( . ) ,  A )  
satisfies the same estimates as Bk(. ,  A) .  

Pro06 In order to establish the estimates for Bk(u( . ) ,  A )  we note that, in view of 
the chain rule and LEIBNIZ' rule, it is sufficient to show that (2.8.38) and (2.8.39) 
also hold if we replace the variable x by u(x) .  But this immediately follows from 
the formula on integration by substitution. 

2.9. Notes 

The theory of Sobolev spaces over subsets of Rn is well-known, see e.g. 
ADAMS [AD]. However, here we only deal with intervals. In that case, we obtain 
stronger results and simpler proofs. Therefore, and in order to keep the book more 
self-contained, we have included Sections 2.1-2.4. 

The definition of the fundamental matrix Y (., A )  in Section 2.5 is not the stan- 
dard one. But it is more convenient for our purposes since the conditions are kept 
at a minimum, and it is shown that the property T ~ ( . ,  A)Y (., A)c  = 0 for all c E Cn 
and the invertibility of Y (., A )  follow. The estimates in Section 2.7 are general- 
izations of the RIEMANN-LEBESGUE lemma and will be frequently used in the 
following chapters. 

Asymptotic fundamental matrices and systems are the main ingredient to 
prove the convergence of expansions into eigenfunctions and associated func- 
tions. These asymptotic expansions for systems were obtained by WILDER [WIl], 
TAMARKIN [TA3], BIRKHOFF and LANGER [BIL], LANCER [LA9], WHYBURN 
[WHYl], and COLE [C03], among others. In [LA91 the systems are considered 
in the complex domain, but essentially the same techniques as for intervals are 
applied. 

In our presentation we tried to keep the regularity conditions on the coeffi- 
cients as weak as possible. If all coefficients are infinitely differentiable, then 
the fundamental matrix can be chosen to be an asymptotic polynomial in of 
arbitrary order, and the estimates and their proofs could be simplified. In most 
publications on asymptotics of solutions of differential equations much attention 
is given to a suitable choice of sectors, see e.g. [NAI, Chapter 111. By a suitable 
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choice of the limit of integration X , , ~ ( A ) ,  see (2.8.26), we can avoid to consider 
these sectors. Our proof follows the approach of R. E. LANGER in [LA91 in the 
complex domain and of COLE [C04] in the real domain. 

The fundamental systems for n-th order differential equations will be dis- 
cussed separately in the notes to Chapter VIII. 



Chapter I11 

BOUNDARY EIGENVALUE PROBLEMS FOR FIRST 
ORDER SYSTEMS 

In this chapter boundary eigenvalue problems for first order systems of ordinary 
linear differential equations are considered. The differential system as well as the 
boundary conditions are allowed to depend holomorphically on the eigenvalue 
parameter. .The boundary conditions consist of terms at the endpoints and at in- 
terior points of the underlying interval and of an integral term. Such boundary 
eigenvalue problems are considered in suitable Sobolev spaces, so that both the 
differential operators and the boundary operators define bounded operators on Ba- 
nach spaces. The assumptions on the boundary eigenvalue problems assure that 
these operators depend holomorphically on the eigenvalue parameter. In a canon- 
ical way we associate a holomorphic Fredholm operator valued function to such 
a boundary eigenvalue problem with the variable being the eigenvalue parameter. 
This operator function consists of two components, the first one is the differen- 
tial operator function, the second one is the boundary operator function. Operator 
functions defined in this way are called boundary eigenvalue operator functions. 

The theory of holomorphic Fredholm operator valued functions in Chapter I 
is applied to these boundary eigenvalue operator functions. As a first result we 
obtain that such an operator function is globally holomorphically equivalent to 
a canonical extension of the characteristic matrix function of the corresponding 
boundary eigenvalue problem (Theorem 3.1.2). The principal parts of the resol- 
vent, i. e., the inverse of the boundary eigenvalue operator function, are expressed 
in terms of eigenfunctions and associated functions of this operator function and 
its adjoint (Theorem 3.1.4). The resolvent is defined on the direct sum of a space 
of vector functions and a finite-dimensional space of constants. On the space of 
vector functions, the resolvent is an integral operator whose kernel is the GREEN'S 
matrix; on the space of constants, it is a multiplication operator (Theorem 3.2.2). 

The adjoint operator function of a boundary eigenvalue operator function de- 
fines the adjoint boundary eigenvalue problem (Theorem 3.3.1). The adjoint prob- 
lem in this operator theoretical sense is obtained without further assumptions on 
the original boundary eigenvalue problem. The adjoint operator function maps 
the direct sum of a space of vector functions and a finite-dimensional space of 
constants into a space of distributions. 

101 
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The realization of the original boundary eigenvalue problem in Lp-vector 
spaces leads to the adjoint boundary eigenvalue problem in parametrized form. 
This realization is achieved in the following way: Take the original boundary 
eigenvalue problem with homogeneous boundary conditions and associate to it 
the eigenvalue parameter family of closed linear operators whose domains consist 
of w;-vector functions which fulfil the boundary conditions. These closed lin- 
ear operators are not necessarily densely defined, and their domains may depend 
on the eigenvalue parameter. Consequently, the adjoints of these closed linear 
operators are closed linear relations but in general not operators. Additional as- 
sumptions are needed to assure that these adjoints form a family of operators, in 
which case they define the adjoint boundary eigenvalue problem in parametrized 
form. The relationships between the adjoint boundary eigenvalue problems in op- 
erator theoretical sense on one side and in parametrized form on the other side are 
discussed in detail (Theorems 3.4.3 and 3.4.5). 

As a special case we consider two-point boundary eigenvalue problems. It 
is shown that the coefficients in the classical adjoint boundary conditions depend 
holomorphically on the eigenvalue parameter if the coefficients of the original 
boundary conditions have this property. We state that the classical adjoint bound- 
ary eigenvalue problem coincides with the adjoint problem in parametrized form. 
Root functions (eigenvectors and associated vectors) are defined for the above 
mentioned families of closed linear operators by taking root functions (eigenvec- 
tors and associated vectors) of the corresponding holomorphic boundary eigen- 
value operator function. It is proved that the principal parts of the GREEN'S 
matrix can be represented in terms of eigenfunctions and associated functions 
of the family of closed linear operators for the realization of the boundary eigen- 
value problem in L,-vector spaces and the family of the adjoints of these operators 
(Theorem 3.5.1 1). 

3.1. The boundary eigenvalue problem 

Let R be a domain in C, --oo < a < b < -oo, 1 5 p 5 -oo, p' such that l /p+ llp' = 1, 
andn t N\{O). LetA E H(R,M,,(Lp(a,b))) and T R  E ~ ( R , ~ ( ( w d ( a , b ) ) " , C ~ ) ) .  
We consider boundary eigenvalue problems of the form 

for A E R. Here a solution y t (Wd (a, b))" of the differential system in (3.1.1) is 
to be understood as a weak solution, i. e., a solution in the distributional sense. If, 
e. g., we take 
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for y E (w; (a,  b))" and A E R ,  where W a ,  wb E H ( R ,  Mn(C)),  then (3.1.1) is a 
two-point boundary eigenvalue problem. We define 

From Lemma 2.5.1 we know that T~ E H ( R ,  L((w; (a ,  b ) )" ,  (Lp(a,  b ) ) " ) ) ,  whence 
T E H ( R , L ( ( W ~ ( ~ , ~ ) ) ~ , ( L ~ ( ~ , ~ ) ) ~  x Cn) ) .  Since (3.1.1) is a boundary eigen- 
value problem, we call T given by (3.1.3) a boundary eigenvalue operator func- 
tion. We choose the fundamental matrix function 

with Y (a,  a )  =idc for 3L E R according to Theorem 2.5.3. Define 

(3.1.5) z ( a ) ~  := Y ( . , ~ ) c  ( C  E c, a E R),  

(3.1.6) 

for ;l E R ,  f E (Lp(a,  b))" and x E (a ,  b) .  Since the operator function Z belongs to 
H ( R ,  L(Cn, (w; (a,  b ) ) " ) )  by Proposition 2.5.6, the characteristic matrixfunction 
M defined by 

belongs to H ( R ,  M,,(C)) by Corollary 1.2.4. 

THEOREM 3.1.1. T is an abstract boundary eigenvalue operator function in the 
sense of Section 1.1 1. 

Proof We set E := (w; (a,b))",  F, := (L,(a,b))", G := F2 := @, Tl ( a )  := T D ( a )  
andT2(;1) := TR(A) .  Wemustprovethat(1.11.1)holds. (1.11.1)i)and(1.11.1)ii) 
follow from Lemma 2.5.7 and Proposition 2.5.6, respectively. For the proof of 
(1.1 1.1) iii) let il E R and y E N ( T D ( 1 ) ) .  Then, by Definition 2.5.2, there is a vec- 
tor c E Cn such that y = Y (., A)c  = Z(L)c ,  which proves y E R ( Z ( 2 ) ) .  Conversely, 
let y E R(Z(A) ) .  Then there is a vector c E Cn such that y = Z(3L)c = Y ( . ,A)c .  
Corollary 2.5.5 proves y E N(TD(A) ) .  

Since U depends holomorphically on il by Lemma 2.5.7, we can apply The- 
orem 1.1 1.1 without using SUBIN'S result in the proof of that theorem: 

THEOREM 3.1.2. The operators 

E L ( C  x (Lp(a,  b ) )" ,  (Lp  (a ,  b))" x C ) 
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are invertible and depend holomorphically on A E R.  The operator function T 
is holomorphically equivalent on Q to the (Lp(a ,  b))"-extension of M; more pre- 
cisely, for A E R we have 

T ( A )  = O i d ( l p ( a , b ) ) n  
idc T ~ ( A ) u  ( A )  

ProoJ: The statement is obvious from Theorem 1.11.1 in view of (1.11.5) and 
(1.11.7). 

Since M is an operator function from the finite-dimensional space Crl into 
itself and hence Fredholm operator valued with index zero, we immediately obtain 

COROLLARY 3.1.3. We have T E H(Q,@((W;  (a ,  b) )" ,  ( ~ , ( a ,  b))" x C ) )  and 
indT(A) = O  forall A E Q. 

THEOREM 3.1.4. Let M be the characteristic matrix hnction given by (3.1.7). 
Assume that p ( M )  # 0. Let p E o ( M )  and r := nulM(p). Let {c , ,  . . . ,c,) and 
{d l  , . . . , d,) be biorthogonal CSRFs of M and M* at p. Define 

Then {y l  ,. . . ,y,) and { v  ,,.. . ,v,) are biorthogonal CSRF of T and T* at p, 
v ( y j )  = v ( v j )  = ~ ( c  .) = v ( d  .) =: m, for j = 1,. . . , r, and the operator function 

J J 

is holomorphic at p 

ProoJ: This theorem is merely a restatement of Theorem 1.11.3 in the present 
context. 

PROPOSITION 3.1.5. Let W E H ( R ,  M,(L, (a ,  b ) ) ) ,  ak E [a, b] ( k  E N), a, # ak 

(k  # j ) ,  a, = a, a ,  = b, W ( J )  E H (R ,  M, ( C ) )  ( j  E N) such that 

for each compact subset K of R .  For A € R and y E (w; (a ,  b))" we set 

Then T~ E H ( Q ,  L ( ( w ~  (a ,  b ) ) " ,  P)). 
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Pro08 Integration as a map from ( L l  (a ,  b ) ) n  to Ct' is continuous. From Propo- 
sition 2.3.3 and Corollary 1.2.4 we infer that the assertion holds for the integral 
part. The assumption (3.1.8) implies that 

converges uniformly on compact subsets of i2 as a series of holomorphic operator 
functions in the Banach space L( (C([a ,  b ] ) ) " ,  C n ) .  Hence this series defines a hol- 
omorphic operator function in L((C([a ,  b]) ) 'L ,  C t l ) ,  see [DI,  (9.12.1)]. As W; (a ,  b )  
is contained continuously in C[a, b] ,  this completes the proof. 

REMARK 3.1.6. The statement of Proposition 3.1.5 even holds if we replace 
(3.1.8) by the weaker condition 

sup w ( " ( I )  < m. 

k r c  ,=o 

Pro08 We apply VITALI 'S  theorem in order to obtain the holomorphy. 

3.2. The inhomogeneous boundary eigenvalue problem 

Let T  be the boundary eigenvalue operator function defined by (3.1.3), where T R  
is given by (3.1.9). For A E p ( T ) ,  f l  E (Lp(a ,b))"  and f2 E @' we set 

If A t p ( T )  and y E (w; (a ,  b ) ) " ,  we obtain 

We now give an explicit representation of R l  ( A ) ,  R, ( A )  and T -  ' ( A ) .  For this 
purpose we set 

The matrix function F( . ,A)  is of bounded variation because of the assumptions 
(3.1.8) and W ( A )  E Mn(L,(a,b)) .  
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PROPOSITION 3.2.1. Let A E R and y E (w; (a ,  b))". Then 

where the integral is the Riemann-Stieltjes integral of the vector function y with 
respect to the integrator F(. ,  A).  

Pro05 The integral is well-defined since y is continuous, see [HS, (17.15), (17.16) 
and (8.7)]. There is a sequence a = t,!j < tf < . - < t:lk = b of subdivisions of [a, b] 
such that 

( W " ) ( h ) y ( t f )  + k ~ ( t ,  ~ ) y ( t "  d l )  + ~ ( l ) ( ~ ) y ( b )  
r=l j=O ',-I 

"' k 
converges to S,b d,F( t ,A)y( t )  as k i m, where max(tf - t L l )  -t 0 as k -+ w can 

i= 1 
be assumed. On the other hand, the above sum converges to 

by LEBESGUE'S dominated convergence theorem. Here we take the counting 
measure on N for the convergence of the sum and the LEBESGUE measure on 
[a, b] for the convergence of the integral. 

Let Y E H ( Q , M ~ ( w ~  (a ,  6 ) ) )  be the fundamental matrix function of the first 
order system T D y  = 0 with Y (a ,  A )  = idp for A E R. Let M be the characteristic 
matrix function given by (3.1.7). For A E p ( T )  the GREEN'S matrix of T is 
defined by 

where the integrator is F( . ,  A ) .  From Proposition 2.5.4 we infer that the matrix 
functions Y (x ,  L)M-'  ( A )  and Y (t ,A)Y- '  ( 5 ,  A)  do not depend on the choice of 
the fundamental matrix. Hence also the GREEN'S matrix does not depend on the 
choice of the fundamental matrix. 

We set 

and state 



3.2. The inhomogeneous boundary eigenvalue problem 107 

THEOREM 3.2.2. For 1 E p ( T ) ,  fl E (Lp(a ,  b))",  f2 E Cn and x  E (a ,  b )  we have 
that G(x ,  . ,A)  belongs to Mn(L,(a, b ) )  and that 

(3.2.8) ( R ~ ( a ) f i ) ( x )  = l b ~ ( x , ~ , a ) f I ( 5 ) d 5 ,  

(3.2.9) ( R 2 ( a ) f 2 )  ( x )  = 3 x 7  V f 2 ,  

Prooj Since, for < t2 in [a,x] or [x, b],  respectively, 

G(x ,  . ,A )  is of bounded variation for each A  E SZ and x  E [a, b]. Since the real as 
well as the imaginary part of a function of bounded variation is the difference of 
two monotone functions, a function of bounded variation is measurable. Hence 
each component of G(x,  ., A) is measurable. This shows that G(x,  . ,A )  belongs to 
Mn(L,(a,b)). 

The proof of the theorem will be complete if we show (3.2.10). From 

and Propositions 2.3.1 and 2.1.8 it follows that J: G( . ,  5 ,  A)  f, ( 5 )  d{ belongs to 
(w; ( a ,  b ) ) n .  On the right-hand side of (3.2.11) we add and subtract the term 

We obtain 

since, by Proposition 3.2.1, 



108 111. Boundary eigenvalue problems for first order systems 

Since the first term on the right hand side of (3.2.12) is ( U ( A )  f l ) ( x ) ,  where U ( A )  
is a right inverse of T ~ ( A ) ,  and since T D ( . , A ) Y ( . , A )  = 0, it follows that 

Again from (3.2.12) we deduce in view of Proposition 3.2.1 and FUBINI'S theo- 
rem, applied to the measures d,F (x, A)  and d{ , that 

whence 

This proves (3.2.10) since T ( A )  is invertible by assumption. 

3.3. The adjoint boundary eigenvalue problem 

The adjoint boundary eigenvalue problem in distributional sense consists in find- 
ing nontrivial weak solutions (u ,  d )  E (Lp, (a ,  b))" x (!? of the differential equation 

(3.3.1) u: + A T ( . ,  A ) U ,  - T ~ * ( A ) ~  = 0 

for A E Q, where u, is the canonical extension of u. The following theorem justi- 
fies this definition of the adjoint boundary eigenvalue problem. 

THEOREM 3.3.1. Let the boundary eigenvalue operator function T be given by 
(3.1.3) and assume that p < m. 

Then T* E H(Q,L((Lp, (a ,  b))" x C', (wP7l[a,b])"))  has the representation 

( u  E (LP,(a ,b))" ,  d E @'). I f T R  has the form (3.1.9), then 

and 

Here x ( ~ , ~ , )  is the characteristic function of the interval (a ,  a j ) .  
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Pro08 As for n = 1, we denote the canonical bilinear form on (wpk(a,b))" x 
(w,;'[a, b])" by ( , ),,, . Since Lpl(a ,  b )  is the dual of Lp(a,  b )  and wy;'[a, b] 

is the dual of ~ ; ( a , b )  by Theorem 2.2.5, Proposition 1.2.6 yields that T*  E 
H(R, L((Lp,(a,  b))" x en, (wP7'[a, b ] ) " ) ) .  Let y E (w; (a ,  b))" and u E (Lpl (a ,  b ) ) " .  
Then we infer with the aid of the definition of ( , in (2.2.4) and Proposition 
2.3.4 that 

This proves 

Since, for d E @' , 

we obtain the representation (3.3.2). 
Now let T R  be given by (3.1.9), y t (w; (a ,  0 ) ) "  and d E C'. The definition of 

the Dirac distribution, see Example 2.2.6, and Proposition 2.3.4 yield 

which proves (3.3.3). 
For f E (L,(a,b))" we obtain 
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Now (3.3.4) immediately follows from 

3.4. The adjoint boundary eigenvalue problem in parametrized form 

In this section let p < m. In order to define the adjoint boundary eigenvalue prob- 
lem in parametrized form we consider the family of operators To ( A )  in ( L p  (a ,  b )  )" 
defined by 

and 

This is the operator family which is classically considered together with the bound- 
ary eigenvalue problem (3.1.1). Note that the domain D(To(A)) of To(A) may 
depend on A since T~ depends on A and that the domain of To(A) may be a non- 
dense subspace of (Lp(a ,  b) )" .  For example, the boundary eigenvalue operator 
~ ~ ( 1 )  given by ~ ~ ( h ) y  := ~ : ~ ( t )  dt  is a nonzero continuous linear operator from 
(Lp(a ,b))"  onto C. Hence, in this case, D(To(A))  is a nondense subspace of 
(Lp(a,b))". 

Let pl(To) := { A  E Q : To(A) is bijective) and, as usual for not neccessarily 
bounded operators, p(To) := { A  E pl(To) : T,(A)-' is continuous). 

THEOREM 3.4.1. i) We have p(To) = pl(To) = p ( T )  and T;'(A) f  = T - l  ( A ) ( f  ,0)  
for A E p ( T )  and f  E (Lp(a ,  b))".  
ii) Assume that T~ is of the form (3.1.9) and let G be the GREEN'S matrix given 
by (3.2.6). Then, for A E p(To) and f  E (Lp(a ,  b))", 

Pro05 i) Let A E pl(To) and y E N ( T ( A ) ) .  Then y E (w; (a,b))" and ~ ~ ( i l ) y  = 0. 
Hence y E D(To(A))  and To(A)y = 0. This proves y = 0 since To(A) is injec- 
tive. We have proved that T ( A )  is injective. From Corollary 3.1.3 we know that 
ind T ( A )  = 0. This proves def T ( A )  = nu1 T ( A )  = 0,  i. e., T ( A )  is bijective. 

Let a E p ( T )  For y E N(To(A))  we have ~ ~ ( j l ) y  = 0 and ~ ~ ( 1 ) ~  = 0,  which 
proves y = 0 since T ( A )  is injective. For the proof of the surjectivity of To(A) let 
f  E (Lp(a ,b))" .  Set y := ~ - ' ( A ) ( f , o ) .  Then T ~ ( A ) Y  = 0 shows y E D(To(A)) ,  
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and To(A)y = T D ( A ) y  = f follows. The continuity of T - ' ( A )  immediately im- 
plies T;' ( A )  E L( (Lp(a ,  b ) ) " ) ,  which also proves p(To) = pl(To). 
ii) is clear from i) and Theorem 3.2.2. 

REMARK 3.4.2. For all A E R, the operator TO(A) : (Lp(a ,  b))" -+ (L,(a, b))" is 
closed. 

Proot If A t p(To), this immediately follows from the continuity of T;'(A), 
which was shown in Theorem 3.4.1 i). For arbitrary A E R, let yk E D(To(A))  
(k  E such that yk -+ y in (Lp(a ,  b))" and To(A)yk -+ f in (Lp(a ,  b))" as k -+ =. 
since u ( A ) T ~ ( A ) ~ ~  -yk € N ( T ~ ( A ) ) ,  there is a ck E en such that 

U(A)TO(A)Y, = y,+Y(.,A)c, ( k  E N). 
U ( A )  is continuous as an operator from (Lp(a ,  b))" into (w; (a ,  b) )" ,  whence 
U ( A )  To(il)yk -+ U ( A )  f in ( W; (a ,  b )  )" and therefore also in (Lp(a ,  b))" . Thus 
(Y ( . , A ) C ~ ) ; = ~  converges in (Lp(a ,  b) )" .  But since the set {Y ( . ,A )c  : c E e n )  
is a finite-dimensional subspace of (w; (a ,  b) )" ,  (Y  (., A ) c k ) E o  also converges 
in (w; (a ,b))"  since all norms on finite-dimensional spaces are equivalent, see 
[CON, Theorem 111.3.11. This shows that (yk)yZO converges in (w; (a ,  b))".  There- 
fore y € (w; (a ,  b ) ) " ,  and the continuity of T ( A )  implies that T ~ ( A ) ~  = 0, i. e., 
yED(To(A)) , andTo(A)y=~D(A)y=  f .  

The adjoint T<(A) is a linear relation in (Lpl (a ,  b))" defined by its graph 

G ( T 3 A ) )  = ( G ( - T O ( A ) ) ) ~ ,  

i. e., for u t (Lp,(a,  b))" we have 

and 

Here ( , ) is the canonical bilinear form on (Lp(a ,  b))" x (Lpl(a ,  b) )" .  

Conditions to assure that the linear relations T<(A) ( A  E R) are operators will 
be given below. In that case, 

T<(A)u = 0 ( u  E D(T<(A)) 

is called the classical adjoint boundary eigenvalue problem to the given problem 
T0(WY = 0 0, E D(To(A)). 

For u E !3'(R) we denote its restriction to (a ,  b )  by u, , i. e., u, E .@(a, b )  is 
given by 

(cp1ur) = (cp,u), ( c p  E G ( a , b ) ) .  
Note that (u,), = u for u E Lpl (a ,  b ) .  
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For y  E (w; (a ,  b))" and u E ( ~ ~ ; ' [ a ,  b])" with u = ve and v E (Lp1(R))"  we 
have by (2.2.4) that 

(Y, = ( Y ~ ~ ) ~ , o  = ( Y , u ~ ) .  

THEOREM 3.4.3. i) Let A E R and u  E (L,,(a,b))". Then u E D(T$(A))  if and 
only i f  there is a vector d  E @ such that T * ( A )  ( u , d )  E (Lpl ( R ) ) " .  
ii) Let A E R and u  E D(T$(A)) .  Then 

Pro05 Let u E (L,,(a, b))" and d E @ such that T * ( A ) ( u , d )  E (L,, ( R ) ) " .  For 

y  E D(To(A))  we have T ~ ( A ) Y  = 0. Hence 

This proves u E D(T$(A))  and ( T * ( A ) ( u , d ) ) ,  E T$(A)u. 
Conversely, let u E D(T; ( A ) ) .  Then there is a w E (L,, (a ,  b ) ) n  such that 

for all y E D(To(A)) .  Hence, for y E D(To(A)) ,  

Since T ~ *  ( A )  is defined on the finite-dimensional space Cn , the range R ( T ~ *  ( A ) )  
is finite-dimensional and thus closed. This implies 

see [KA, p. 2341. Thus there is a d  E Cn such that w, - T ~ * ( A ) u  = T ~ * ( A ) ~ .  This 
proves T * ( A )  ( u ,  d )  = we E (Lpl  (R) ) "  and thus the distribution (T* ( A )  (u ,  d)), .  = w 
belongs to (Lpl  (a ,  b) )" .  Since w E T; ( A ) u  satisfying (3.4.4) was arbitrary, we have 

Together with the first part of the proof this shows that ii) holds. 
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PROPOSITION 3.4.4. Let ci E [a,b] ( i  E N) with ci # c, for i # j, 1 E N and 
m 

a,,, E C (i E N, v = 0, .  . . , 1 )  with C la,,,I < ..for v = O,.. . ,l. Let 
i=O 

Then a,,, = 0 for all i E N and v = 0, .  . . ,l. 

Pmot Since the operator norm of q) (v = 0, .  . . , 1) as a continuous linear func- 

tional on ~ ' ( [ a ,  b ] )  does not exceed 1. ai,,6ilV) E L ( c ' ( [ ~ ,  b] ) ,@)  is well- 
v=oi=o 

defined and also belongs to w,-'-' [a, b] by Example 2.2.6 and Proposition 2.2.7. 
1 m  

By assumption, f := a,,,6iLV) E Lp, (R). Choose a nonzero yo E Cr(IR). 
v=oi=o 

Let xo E R such that 1 v!) (xo) 1 = max 1 y i l ) (x )  1 (> 0 ) .  There is a number p > 0 
xER 0 

such that supp yo c [xo - p,xo + p]. Let y ( x )  := (ly!)(xo)pl)-' Yo(px + xo). 

Then y E CT (R), y(') (0)  = 1 ,  I y(') ( x )  I 5 1 for x E I&$ and y ( x )  = 0 for 1x1 2 1. 
Inductively we obtain I y(") ( x )  I 5 1 for v = 1 - 1, l -  2, . . . ,O. Let j E N and set 
~ ( x )  := k-' y ( k ( x  - c;))  (k = 1,2,. . . ). Then qj1)(c,) = 1, 1qjv)(x) 1 < kV-' for 
x E R  v = O  , . . . ,  1 , k = 1 , 2  , . . . ,  a n d q k ( x ) = O f o r k =  1,2 , . . .  a n d x E R w i t h  
Ix - c j /  2 i .  Thus LEBESGUE'S dominated convergence theorem yields 

and, with respect to the counting measure, 

which proves aj,l = 0 since 

A recursive application of this method yields the statement. 
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THEOREM 3.4.5. Let T~ be given by (3.1.9) and assume that A( . ,A )  belongs to 
Mn(Lm(a, 6 ) )  and that W (-, A) belongs to Mn(Lpl (a ,  b ) )  for all A E Q. 
i) Let h E Q and u E (Lpl(a ,  b) )" .  Then u E D(T;(A))  if and only if there is a 
vector d E C" such that 

ii) Let A E Q. Then T;(A) is a linear operator ifand only iffor each d E C" the 
implication 

V j  E N w ( j l T ( A ) d  = 0 + W T ( . , h ) d  = 0 

holds. 
iii) Let A E R. Then T{ (A)  is a linear operator if W ( . ,A )  = 0 or if for each 
d E C" \ ( 0 )  there is an integer j E N such that w ( J ) ~ ( A ) ~  # 0. 

Proot i) is obvious because of Theorem 3.4.3 i), (3.3.2) and (3.3.3). 
ii) We know from Theorem 3.4.3 ii) that 

Since T;(h)  is an operator if and only if T; ( A )  ( 0 )  = (01, the result is obvious 
from Proposition 3.4.4. 
iii) immediately follows from ii). 

COROLLARY 3.4.6. Let T~ be given by (3.1.9), where the sum runs from 0 to k, 
k 2 1. Assume that A(.,  A )  belongs to M,(L,(a, b ) )  and that W (., A )  belongs to 
Mn (L,, (a ,  b )  ) for all A E Q. The set [a, b] \ {ao,  . . . , a k )  is the disjoint union of k 
open intervals 11, . . . , Ik . Let A E Q and u E (Ld (a ,  b))". Then u E D(T;(A))  if 
and only if there is a vector d E C" such that 

u(aj+) - u(a,-) = ~ ( j ) ~ ( A ) d  ( j  = 2,. . . , k ) ,  

where u(c+) and u(c-)  are the right-hand limit and the left-hand limit, respec- 
tively. For such d E C", thefinction T* ( A )  (u ,  d )  E T; ( A ) u  is uniquely determined 
by 

T * ( A ) ( ~ , d ) l l ,  = -(ulI,)' - A T ( A u l , ,  + W T ( 4 ) I I j d  
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Proot For c E $ the Heaviside function Hc is defined by Hc(x) = 0 if x 5 c 
and Hc(x) = 1 if x > c. We have Hc E L ~ ( R )  and Hi = 6,. Therefore, for 
u E (Lpl(a,b))" and d E Cn, 

Theorem 3.4.5 i), and Corollary 3.1.4 yield that u E D(T$(h) )  if and only if there 
is a vector d E Cn such that 

where a < a < b < p. To complete the proof we apply Proposition 2.2.2. 

Now let it E R and suppose that T$(h)  is an operator and that the assump- 
tions of Corollary 3.4.6 are fulfilled. Then Corollary 3.4.6, Theorem 3.4.3 ii), and 
Theorem 3.3.1 show that h is an eigenvalue and u E (Ld(a ,  b))" \ (0) an eigen- 
function of the adjoint boundary eigenvalue problem in parametrized form if and 
only if there is a vector d E @" such that, for j = 1,. . . , k ,  u/,, E (w;/ (a ,  b))" ,  

and the boundary conditions 

are satisfied. 

PROPOSITION 3.4.7. Let M be the characteristic matrixfunction given by (3.1.7) 
and assume that p (M)  # 0. Let p E o ( M )  and r := nulM(p). Let { c l , .  . . ,c,) 
and { d l , .  . . , d,) be biorthogonal CSRF of M and M* at p .  Dejne 

where Z and U are given by (3.1.5) and (3.1.6), respectively. Let mi := v(c,), the 
multiplicity of the rootfunction c j  . Then the operatorjbnction 

r 

j= 1 
is holomorphic at p. 

Pro08 Let J be the canonical injection from (Lp(a,  b))" into (Lp(a,  b))" x Cn.  
Since T-' J = T i '  by Theorem 3.4.1 and 

(y ,  8 vj)J = yj @ (J*v j )  = y . @  u . 
I J  

by Proposition 1.1.2, where vj  is defined as in Theorem 3.1.4, the result follows 
from Theorem 3.1.4 and Corollary 1.2.4. 
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PROPOSITION 3.4.8. Let p E o ( T ) .  
i) Let yo be an eigenvector of T at p. Then yo E D(To(p))  and To(p)yo = 0. 
ii) Assume that T $ ( p )  is an operator and let (uo, do) be an eigenvector of T* at p. 
Then uo E D(T$ ( p ) )  and T$ ( p ) u o  = 0. 

Proot i) From T ( p ) y o  = 0 it follows that ~ ~ ( p ) ~ ~  = 0 ,  and thus yo E D(To(p) ) .  
ii) As T* (uo,  do) = 0 t (Lpl  (It))", the statement follows from Theorem 3.4.3. 

PROPOSITION 3.4.9. Assume that T~ does not depend on A and let p E o ( T ) .  
i) Let (Yl):=o be a CEAV of T at p. Then yl E D(To ( p ) )  for 1 = 0 ,  . . . , h. 
ii) Assume in addition thatA E H ( Q ,  Mn(L,(a, b ) ) )  and that T$(A)  is an operator 
for all A E Q. Let (u l ,  be a CEAV of T* at p. Then u, E D(T$ ( p ) )  for 
1 = 0 ,  . . . ,  h. 

Proot i) By Definition 1.6.1, the function 

has a zero of order 2 h + 1 at p.  Then 

has a zero of order > h + I at p,  which proves that ~ ~ ( p ) ~ ~  = 0 ,  and hence 
yl E D ( T o ( p ) )  for I = 0 , .  . . , h. 
ii) Let k E ( 0 , .  . . , h) .  Since 

has a zero of order 2 h + 1 at p ,  

With the aid of Theorem 3.3.1 we infer 

From Theorem 3.4.3 i) it follows that uk E D(T$ ( p ) ) .  
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EXAMPLE 3.4.10. We consider T(1)  t L ( ( w ~  (0, I ) ) ~ ,  (Lp(O, 1))' x C2) given by 

T ~ ( A ) Y = Y ' - A Y  ( Y € ( w ; ( o , ~ ) ) ~ ) ,  

0 1 + 2 1  

Obviously, 

is a fundamental matrix of TD( l )y  = 0. Then 

From det M(A) = e2' - 1 - 21  we infer that p (M) # 0 and that detM has a zero 
of order 2 at 0. The vector function 

has a zero of order 2 at 0. Hence ( I  +:) is a root function of M at 0 of mul- 

tiplicity 2, and by Proposition 1.8.3 it is'also a CSRF of M at 0. In the same 
way, 

- .!lea - 1 - A1 
3 2 

1 + f 1 - $ 1 2  - L e L  2 -?Ae" 6 

1 - L A  
shows that ( 2i 311) is a CSRF of M* at 0 of multiplicity 2. From 

-- - 

= 1 + a2h2(a) ,  

where hl and h2 are holomorphic functions on C, we see that the CSRFs are 
biorthogonal. According to Theorem 3.1.4 and (3.3.4), 
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are biorthogonal CSRF of T and T* at 0 of multiplicity 2. Hence 

are biorthogonal CSEAVs of T and T* at 0. From 

we see that the associated vector (I:) does not belong to the domain of To(0). 

In view of Theorem 3.3.1 and Proposition 2.6.5 we have 

I - 2  + ( $  +d2)%+ ( f  +dl)S l  
= z + ( - $ + d i ) 6 0 + ( i + d 2 ) 6 1  ) -  

For any choice of dl ,d2 E C not all the coefficients of 60 and 6, are zero. Hence, 
according to Theorem 3.4.3 i) and Proposition 3.4.4, we see that the first compo- 

1 1  - - + 2 x  
nent ( {- I ) of the associated vector of T* at 0 does not belong to the domain 

The above result shows that the statements of Proposition 3.4.9 may be false 
if T~ depends on A: 
PROPOSITION 3.4.1 1. There are two-point boundary eigenvalue problems (3.1.1) 
with associated operatorfinction T given by (3.1.3) having the following proper- 
ties: 
i) p ( T )  Z 0; 
ii) there is an eigenvalue p E o ( T )  which is not semi-simple; 
iii) for each CEAV (yo,y l )  of T at p, the associated vector yl does not belong to 
D(To(N);  
iv) for each CEAV (vo, v, ) of T* at p, where vl = (u ,  d )  E (4, x @II, u does 
not belong to D(T$ ( p ) ) .  

Pro05 The boundary eigenvalue problem considered in Example 3.4.10 fulfils i) 
and ii) with p = 0. 
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iii) Let (y!),y\')) be the 

( y t ) ,  y y ) )  be an arbitrary 

From nu1 T (0)  = nu1 M (0)  

CEAV of T at 0 defined in Example 3.4.10 and let 

CEAV of T at 0. Then y!) and y f )  are eigenvectors. 

= 1 we infer y(2) = a y t )  for some a E C\ (0 ) .  Since 
0 

~ ( 0 ) ~  j') + T ' ( o ) ~ ! )  = o ( i  = 1,2), 

we obtain that 

T(o)yj2) = aT(0)y\li + a ~ ' ( 0 ) ~ t )  - T ' ( O ) ~ ( ~ )  o = a ~ ( 0 ) ~ j ' ) .  

Hence 

TR(0)yy)  = aTR(0)y ,  ( I )  - - (2:) # 0. 

iv) Let ( v t ) ,  v ! ' ) )  be the CEAV of T* at 0 defined in Example 3.4.10 and let 

( v f ) ,  v y ) )  be an arbitrary CEAV of T* at 0. As in the proof of iii) we obtain 

T*(O)V?) = ~ T * ( o ) v \ ' )  

for a suitable a E @\ ( 0 ) .  We write 

v(') = (LA'), d( ' ) )  E ( L ~ !  (R) )" x C ( i  = 1,2). 
1 

Let 2 E @' . Then 

T*(O)(u('),d) = T * ( O ) V ~ )  + T * ( o ) ( o , ~ - d ( 2 ) )  

= aT*(O) (u ( ' ) , d ( ' )  + a-'(d- d ( 2 ) ) )  $! (Lpf(R))"  

by the above example. Hence u(2) @ D(T; ( 0 ) ) .  

3.5. Two-point boundary eigenvalue problems in (Lp(a, b))" 

In this section let p < oo and 

(3.5.1) TD(A)Y = Y' - A ( . , ~ ) Y ,  

TR(L)Y = Wa(a)y (a )  + wb(A)y(b) ,  

for I E R and y E ( ~ d ( a , b ) ) " ,  where A E H(R,M,(L,(a,b))) and wa, wb E 

H(Q,M,(C)) with rank(wa(A),  wb(a))  = n for all A E R. 

PROPOSITION 3.5.1. There are A,B E H(Q,M,(@)) such that the matrix 

(3.5.2) 

is invertible for all a E R. 
Proposition 3.5.1 is a special case of the following lemma, see also [BA2, 

Theorem 5.31. 



120 111. Boundary eigenvalue problems for first order systems 

LEMMA 3.5.2. Let k > 1 > 1, x, E H(R,C!) ( j  = 1 , .  . . , l )  and assume that the 
vectors x, (A), . . . ,xl (A) are linearly independent for all A E R. Then there are 
x, E H ( R ,  @X) ( j  = 1 + 1,.  . . , k) such that x, (A), . . . , x k ( l )  are linearly indepen- 
dent for all A E R. In case x , , .  . . ,x, are polynomials in A, x,+,, . . . ,xk can be 
chosen to be polynomials. 

ProoJ: Set 
x := (x, , .  . . ,x,). 

Then X E H (R,  Mki (C)). With respect to the decomposition @I = @' @ d-' we 
write XT =: (XO,X1). Since rankX(A) = 1 for all A E R ,  we may assume without 
loss of generality that rankXo(Ao) = 1 for some A. E R. Thus the function detXo 
is not identically zero. Let Bo(A) be the transpose of the matrix of the cofactors 
of Xo(A). Then Bo is holomorphic and fulfils 

XoBo = (detXo)ll . 
Let c E (0) @ (Ck-' \ (0)) c Ck and define z E H(R,  Ck) by 

z(A) := ( Bo(A) -Bo(A)X, (A) ) c (A E R) .  
0 (detXo(A))lk-l 

Then z(Ao) f 0 since the matrix 

is invertible. This shows that the set of the zeros of z is a discrete subset of R. By 
WEIERSTRASS' theorem (see e.g. [BU, Theorem 7.321) there is a holomorphic 
function y : R -+ C such that the set of the zeros and their multiplicities coincide 
for y and z. Hence 

Z 
Z ,  := - 

Y 
is a holomorphic function with z, (A) # 0 for all A E R. In case x, ,  . . . ,xl are 
polynomials, also z is a polynomial. Then we can take a polynomial for y, and z, 
is a polynomial. We have 

= ((detXo)ll, 0)c = 0. 

Thus, for all A E R, 

In particular, z ,  ( A ) T ~ i ( A )  = 0 for i = 1,. . . , 1  and A E R. Since z l  (A) # 0 for 
all A E R, i. e., the components of z ,  do not have common zeros, and since every 
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finitely generated ideal in H ( R )  is a principal ideal, see e g. [BU, Corollary 1 1.421, 
there is xl+, E H ( R , P )  such that z ,  (A)Tx,+, = 1 for all A E R .  From the proof 
of this result we also see that xl+, can be chosen to be a polynomial if x , , .  . . ,xl 
are polynomials. It follows that x ,  ( A ) ,  . . . ,x,+, ( A )  are linearly independent for all 
A E R. The statement of the lemma follows by induction. 

Apart from T D  we consider TD+ E H(C,  L((w$ (a ,  b ) ) " ,  ( L p  (a ,  b ) ) " ) )  defined 

by 

(3.5.3) T D + ( h ) y  = -3 - A T ( . ,  A)y (h  E C, y  E ( w i 1 ( a ,  b ) ) " ) .  

The differerential operator T D f  ( A )  is called the formally adjoint of the differential 
operator T D  ( A ) .  

PROPOSITION 3.5.3. For all u  E ( ~ ~ . ( a , b ) ) "  and d  E Cn we have 

ProoJ: With the aid of (3.3.5) and Proposition 2.6.5 we infer 
D* T  u =  - U ; - - A ~ U ~  

- - - (u l ) ,  - u(a)6, +u(b)Fb -ATue 

= (TD+u) ,  - u(a)Fa + u(b)Fb. 

Then (3.5.4) follows because of (3.3.2), (3.3.3) and the special boundary condi- 
tions (3.5.1). 

Then the LAGRANGE identity 

holds for all A  E R, y  E (w; (a ,  b))" and u  E (w; (al  b) )" .  

ProoJ: Since TD*u = T*(u,O),  we immediately infer from Proposition 3.5.3 that 

We can also prove Proposition 3.5.4 without applying T* if we use (2.3.1) and 
Proposition 2.1.5 i). 
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With a matrix function of the form (3.5.2) which is invertible for all A t Q 
we define 

where the matrix on the left-hand side is divided into n x n block matrices. In case 
W a ( A )  and w b ( A )  depend polynomially on A E C, we infer from Lemma 3.5.2 
that we can choose x ( A )  and B(A) to be polynomials in A. Since the determinant 

of is a polynomial which is invertible for all A t @, it is con- a T B(A)  
stant. Therefore the matrix function (3.5.5) depends polynomially on A. Hence 
we may assume that W a ( A )  and K b ( A )  depend polynomially on A E C if this 
holds for W a  ( A )  and w b ( A ) .  

Analogous to the operator To(A) we define the operator To+ ( A )  in (Lpl (a ,  b))" 

by 

(3.5.6) D(T: ( A ) )  

:= { U  E (Lp,(a,b))" : u E (w i1 (a ,b ) ) " ,  W a ( l ) u ( a )  +Uib(A)u(b) =0}  

and 

B IRKHOFF and LANGER [BL4, p. 641 considered adjoint boundary conditions 
in the case of invertible boundary matrices W a ( A )  and w b ( L ) .  In our notation, 
these adjoint boundary conditions are given by 

It is easy to see that the boundary conditions are of the form (3.5.6), i. e., that 
waT(l ) - '  = W a ( a ) ,  wbT(jl)-l = W b ( a ) ,  if we set A(A) := 0, E(a)  := w ~ ( A ) T .  
Then we also have e ( A j =  - w a T ( A ) - I ,  6(a) = 0. 

By Theorem 3.4.5 iii), To* ( A )  is a linear operator. 

THEOREM 3.5.5. For all A E R we have 
i) TO+(A) = T,'(A), 
ii) (T:(A))* = T,(A) i f p  > 1. 

Proof i) Let y E D(To(A)) and u E D(To+ ( A ) ) .  From Proposition 3.5.4 we know 
that 
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From (3.5.5) and the definitions of D(To(A)) and D ( T c  ( A ) )  we infer 

Thus 
(TO(WY. u )  = (Y, T ~ + ( I ) ~ ) ,  

which proves u E D ( T t ( A ) )  and T$(A)u = T c ( A ) u .  
Conversely, let u E D(Tt  ( A ) ) .  We have to prove u E D ( T ~  ( A ) ) .  From Corol- 

lary 3.4.6 we know that u E D ( T t ( A ) )  implies that there is a vector d E C? with 
u E (w;(a ,b))" ,  u(a)  = Wa(A)Td and u(b) = -wb(A)Td.  From (3.5.5) we infer 

which proves u E D(T:(A)). 

ii) Obviously, - ( - T ~ + ) + ( I )  = T ~ ( A ) .  From (3.5.5) and HT = H we infer 

which proves D(T,(A)) = D(-(-T:)+(A)). Hence TO(A) = -(-T:)+(A). Fi- 
nally, apply part i) to -Tof ( A )  obtain (T: (A))'  = - (-T:)+ ( A )  = To(A). 

REMARK 3.5.6. Since A and B are not uniquely determined, also the boundary 
matrix functions W a  and W b  are not uniquely determined. But Theorem 3.5.5 i) 
shows that the definition of T c  is unambiguous, i. e., the boundary conditions 

are uniquely determined by the boundary conditions 

W a ( A ) y ( a )  + w b ( A ) y ( b )  = 0. 



124 111. Boundary eigenvalue problems for first order systems 

From Proposition 3.4.1 1 we know that there are two-point boundary value 
problems for which no associated vector of the corresponding operator func- 
tions T and T* at some p belongs to the domain of D(To(p) )  and D(T,*(p))  = 
D(T:(p)), respectively. Hence we have to go beyond the domain of To@) for 
the definition of a root function of To at p.  

DEFINITION 3.5.7. Let y E H ( R ,  (w; (a ,  b ) ) " )  and p E R .  The vector function 
y is called a root function of To at p if and only if y ( p )  # 0 ,  ( ~ ~ ~ ) ( p )  = 0 and 
W a ( p ) y ( a , p )  + ~ ~ ( p ) ~ ( b , p )  = 0. The minimum of the orders of the zeros of 
T~~ and Way(a,  .) + Wby(b,  .) at p is called the multiplicity of y. 

From T~~ = Way(a,  .) + Wby(b ,  .) we obtain 

PROPOSITION 3.5.8. Let y E H ( R ,  (w; (a ,  b) )") ,  p E R and v E N Then y is a 
rootfinction of To of multiplicity v at p ifand only i f y  is a rootfinction of T of 
multiplicity v at p. 

Canonical systems of root functions of To are defined in the same way as for 
T .  Hence a system of root functions is a canonical system of root functions of To 
at p if and only if it is a canonical system of root functions of T at p.  

The situation is different for T: = T t  and T*.  

PROPOSITION 3.5.9. Let (u ,d )  E H (R,  (Lp,(a,  b))" x C1) be a rootfunction of T* 
at p of multiplicity V. We may assume that u is a polynomial of order 5 v - 1. 
Then u E H ( R ,  (W;(U, b) )") ,  u is a rootfunction of T: of multiplicity vl at p, and - 
d + Cu(a, .) + b u ( b ,  .) has a zero of order v2 at p, where v = min{vl , v2). 

Pro05 By assumption we have 

where ui E (Lpl (a ,  b))" ( i  = 0 , .  . . , v - 1). In order to show ui t (w;, (a ,  b))" set 
1 d' 

d i :=  ,!(=d)(p) ( i=O,  ..., V -  1 ) .  

Since (u ,d )  is a root function of T* of multiplicity v at p we have 

From (3.3.2) and (3.3.3) we infer 

u: = - (T*(p) (u i ,d i ) ) r  - A T ( . , p ) u  

Hence ui E (w; (a ,  b))" by Corollary 2.1.4. From Proposition 3.5.3 we know that 
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Since ( u , d )  is a root function of T* of multiplicity v at p ,  Proposition 3.4.4 yields 
that -u(a, .) + w a T d  and u(b,  .) + w b T d  have a zero of order > v at p.  Thus T~~ u 
also has a zero of order > v at p.  In view of (3.5.5), 

has a zero of order > v at p.  Since ( ;!ti) is invertible for all 1 E C. 

we see that Wau(a,  .) + Wbu(b,  .) has a zero of order > v at p. Furthermore, 

has a zero of order 2 v at p. This together with (u ,  d )  ( p )  # 0 proves u(. ,  p )  # 0. 
The above considerations immediately yield v = min{v, , v,). 

PROPOSITION 3.5.10. Let u t H(R, (w; (a ,b ) ) " )  be a rootfunction of T l  of mul- 

tiplicity v at p. Set d := -&(a, .) - b u ( b ,  .). Then ( u , d )  is a rootfunction of T* 
of multiplicity v at p. 

Pro08 By assumption, Wau(a,  .) + Wbu(b,  .) has a zero of order > v at p. Hence 
the matrix function (3.5.9) has a zero of order 2 v at p.  With the aid of (3.5.5) 
we infer that -u(a, .) + w a T d  and u(b, .) + w b T d  have a zero of order > v at p.  
By assumption, this also holds for T ~ + u .  For at least one of these three functions 
in ( ~ ~ : l [ a ,  b])" the order of the zero at p is exactly v. In view of (3.5.4) and 
Proposition 3.4.4 the proof is complete. 

We define eigenvectors, associated vectors, and canonical systems of eigen- 
vectors and associated vectors of To and Tof via corresponding root functions and 
canonical systems of root functions as we did for T and T* in Section 1.6. 

THEOREM 3.5.1 1. Let p t o(To)  and let {yi) : 1 5 i < r, 0 < h < mi - 1) be a 
canonical system of eigenvectors and associated vectors of To at p. Then there is a 
canonical system { u f )  : 1 < i < r, 0 5 h < mi - I} of eigenvectors and associated 
vectors of T l  at p such that the principal part of the G R E E N ' S  matrix G(x ,  5 ,  .) 
at p has the form 

m;-1 I 

I f  W a  and wb do not depend on 1, then the biorthogonal relationships 

hold. 
( 1 5 i 5 r ,  15 j < r , O < l < m , - 1 )  
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Pro05 Since a CSEAV of To at p is a CSEAV of T at p ,  by Theorem 1.6.5 there 
is a CSEAV { ( u i ) , d f ) )  : 1 5 i < r, 0 5 h 5 mi - 1) of T* at p such that 

is the principal part of T-' at p ,  and the biorthogonal relationships 

1 " i  1 d k + q ~  
(3.5.13) z p(-(~)y!!-ql (';!kl d/!)k))  = 6ij601 

k=o q= I ( k +  q) !  dilk+9 

( I < i < r ,  15 j < r , O < l < m , - 1 )  

hold. 
By Proposition 3.5.9, for each i E { I , .  . . , r ) ,  { u t )  : 0 5 h < mi - 1 ) is a CEAV 

of T,i at p ,  and d t )  = - C ( p )  u!) ( a )  - D ( p )  up) (b).  Hence u t  ) , . . . , u!) are lin- 

early independent as (u:), $ I ) ) ,  . . . , (u!), d t ) )  are linearly independent. Since the 
multiplicities of a CSEAV of T: at p cannot exceed the multiplicities of a CSEAV 
of T* at p by Proposition 3.5.10, { u t )  : 1 < i < r, 0 < h 5 mi - 1)  is a CSEAV of 

To+ at p.  Theorem 3.4.1 i) yields that the principal part of T;' at p is 

Since the GREEN'S matrix is uniquely determined by (3.4.3), we obtain (3.5.10)- 
recall that we understand this identity to hold almost everywhere. Let 

If Wa and w b  are constant, then T~~~ is a polynomial of degree 5 mi - 1 and has 
a zero of order > mi at p.  Hence ~ ~ y ,  = 0 for i = 1,. . . , r. Thus (3.5.13) leads to 
(3.5.1 1 ) .  

3.6. Notes 

Historically, boundary eigenvalue problems have been investigated for scalar n-th 
order differential equations before they were considered for first order systems. 
However, since each boundary eigenvalue problem for an n-th order differential 
equation is equivalent to one for a first order system, we can use the results of this 
chapter also for n-th order differential equations. Of course, also higher order sys- 
tems are equivalent to first order systems. In this monograph we do not consider 
systems of higher order differential equations. We just mention that in this case 
certain restrictions have to apply: for systems of differential equations of mixed 
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order the associated operators may not be Fredholm, see [ALMS, Section 41. But 
even if one only wants to consider n-th order scalar differential equations, it is 
often advisable also to deal with first order systems since it is in general easier to 
consider first order systems because solutions of first order systems of differential 
equations are easier to handle than solutions of n-th order differential equations. 

It was first shown by Kaashoek [KAS] that the operator functions associated 
with two-point boundary eigenvalue problems are globally equivalent to an exten- 
sion of their characteristic matrices, see Theorem 1.2. 

Since the boundary part is considered nonhomogeneously, the vector d occurs 
naturally in the adjoint boundary conditions, see Theorem 3.3.1. If one considers 
a homogeneous boundary part, the integral term in the boundary conditions of the 
original system together with this parametric vector occur in the adjoint system 
of differential equations, whereas the boundary conditions of the adjoint operator 
are interface conditions at those points where the original boundary conditions are 
taken, involving the parametric vector, see Corollary 3.4.6. This form of the ad- 
joint problem was established by R. H. Cole in [C03]. A. M. Krall [KR2] showed 
that Cole's definition coincides with the functional analytic adjoint operator. He 
called these adjoint problems differential-boundary problems since the boundary 
conditions are linked with the differential equation via the parameter. In a se- 
ries of papers, [KR3]-[KRl I], Krall investigated properties of these differential 
boundary operators. Krall's results were generalized by Moller in [MOII-[MO~]. 
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Chapter IV 

BIRKHOFF REGULAR AND STONE REGULAR 
BOUNDARY EIGENVALUE PROBLEMS 

This chapter deals with regular boundary eigenvalue problems for first order n x n 
systems of ordinary differential equations. These first order systems are asymp- 
totically linear in the eigenvalue parameter A.  The leading matrix, i. e., the co- 
efficient matrix of A ,  is supposed to be a diagonal matrix whose nonzero diag- 
onal elements as well as their nonzero differences are assumed to have constant 
arguments and to be bounded away from zero (almost everywhere). The bound- 
ary conditions are allowed to have infinitely many interior points and an integral 
term. The coefficients of the boundary conditions may depend on the eigenvalue 
parameter A ,  with respect to which they are asymptotically constant as A tends to 
infinity. 

First Birkhoff regular boundary eigenvalue problems are dealt with (Defini- 
tion 4.1.2). This regularity property is given in terms of the arguments of the 
nonzero diagonal elements of the leading matrix in the differential system, further 
by the zero-approximand of the it-asymptotic fundamental matrix of the differen- 
tial system, and by the limits of the coefficient matrices in the boundary condi- 
tions. If the leading matrix in the differential system is invertible, then Birkhoff 
regularity is easy to check since in this case it only depends on the arguments of 
the diagonal elements of the leading matrix in the differential system and on the 
limits of the coefficient matrices in the boundary conditions at the endpoints of the 
underlying interval. To illustrate the notion of Birkhoff regularity, some boundary 
eigenvalue problems for 2 x 2 differential systems are classified with respect to 
this property. One of the most important consequences of Birkhoff regularity of 
a boundary eigenvalue problem is the fact that the determinant of a suitable char- 
acteristic matrix function is bounded away from zero for A in the union of circles 
r, (V E N) with centres at zero and radii p, which tend to infinity as v tends to 
infinity (Theorem 4.3.9). 

Stone regularity is also considered in this chapter. For a natural number s 
we call a boundary eigenvalue problem s-regular if there exists a sequence of 
circles r, (V E N) with centres at zero and radii p, which tend to infinity such 
that the determinant of an appropriate characteristic matrix multiplied by AS is 
bounded away from zero for A in the union of the circles T, . Birkhoff regular 
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boundary eigenvalue problems are O-regular. A boundary eigenvalue problem is 
called Stone regular if it is s-regular for some natural number s. 

In the next chapter eigenfunction expansions for regular boundary eigenvalue 
problems will be proved by the contour integral method, i. e., by integrating cer- 
tain operator functions which essentially consist of the product of some negative 
power of L and the resolvent of the boundary eigenvalue problem along the circles 
I?,, (V E N) which are given by the regularity assumptions. The exponent of this 
power of L is determined by the order of regularity of the boundary eigenvalue 
problem. In the present fourth chapter we prepare the proofs of these expansion 
theorems by establishing several estimates of the operator functions which will 
be used in the contour integral method. These estimates yield the convergence of 
the contour integrals taken along the sequence of the regularity circles T,, (Theo- 
rems 4.4.9 and 4.4.1 1). With the aid (of a special case) of the Hilbert transform 
these first results are sharpened for Birkhoff regular boundary eigenvalue prob- 
lems. Under this regularity condition and some other technical assumptions it is 
shown that the sequence of certain contour integrals taken along the regularity 
circles I-,, (v E N) converge strongly in the Lp-norm to the identity operator on a 
subspace of (L,(a, b))" (Theorem 4.6.9 for 1 < p < w, Theorem 4.7.5 for p = m). 
In the case 1 < p < m this subspace is explicitly determined by the structure of the 
leading (diagonal) matrix in the differential system. For p = w it is not that easy 
to describe: it consists of the class of continuous functions which are of bounded 
variation and fulfil certain boundary conditions. 

4.1. Definitions and basic results 

Let -m < a < b < w, 1 < p < w and n E N\ (0). For sufficiently large complex 
numbers L, say 13LI 2 y ( >  0), we consider the boundary eigenvalue problem 

where y varies in (w; (a, b))". 

For the system of differential equations (4.1.1) we assume that the coefficient 
matrices A. and A , belong to Mn (Lp(a, b)), that A'(., L) belongs to Mn (Lp(a, b)) 
for [ A [  2 y and depends holomorphically on L there, and that 

A'(., A) is bounded in Mn (Lp(a, b)) as il -+ w. 
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We suppose that Al is a diagonal matrix function, more precisely, 

where 1 is a positive integer, 

with no E N and n, E N\ (0) for v = 1,. . . ,1. According to the block structure of 
1 Al , we write A. = (Ao,v,,)v,,,=O. 

For the diagonal elements of Al we assume: 

I) ro = 0, and for v , p  = 0,. . . ,1 there are numbers cp,,, E [0,2n) such that 

~ o t e t h a t p  =Ogivesr i l  E L,(a,b) f o r v =  1, ..., 1 and 

(4.1.5) rv (x) = (rv (x) le'qv a. e. in (a, b) (v  = 1, . . . , l ) ,  

wherecp, :=cpvo= qovf n f o r v =  I , . . . , / .  
If no = 0, then we need the conditions (4.1.3) and (4.1.4) only for v, p E 

(1,. . . ,1). On the other hand, the conditions r;' E L,(a, b) for v = 1,. . . ,1 and 
(4.1.5) are needed in any case. Hence it is no additional assumption if we take 
v , p  E (0,. . . ,1) in (4.1.3) and (4.1.4) also in the case no = 0. 

To give a more explicit representation of condition I), we consider the follow- 
ing conditions (we remind that identities and inequalities of functions are under- 
stood to hold almost everywhere): 

11) ro = 0, and there are a number a E C and for v = 0,.  . . ,1 real-valued functions 
P, E Lp(a,b) such that for all v , p  = 0,.  . . ,1 

(4.1.6) rv = a?,, 

(4.1.7) (r, - r,,)-' E L,(a,b) if v # p, 
(4.1.8) ?, - Pp is a positive or negative function if v # p. 

111) ro = 0, and there are a positive real-valued function r E Lp(a, b) such that 

r-' E L,(a, b) and a, E C (v  = 0,.  . . ,1 )  such that r, = a,,r and a, # a,, for 
v , p = O  ,..., l a n d v # p .  

PROPOSITION 4.1 . l .  Let r l ,  . . . , rl E Lp(a, b). Then I) H 11) V 111). 
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Proot I)*II)vIII): Observe that cp,p, qvo and qp,o for v , p  E (1,. . . ,1) satisfy 

(4.1.9) ( r, ( x )  - r p  ( x )  lewvp = r, ( x )  - rp (x) = ( I ~ v  ( x )  1 - ei(%' - q v o )  1 rp  ( x )  1 )  eiqvo 

for x E (a ,  b) .  Condition (4.1.3) implies that r,  # 0. If qvo - qpo E n Z  for all 

v , p  E (1,. . . , I ) ,  then we set a = ei" and 7, := a-'r,. Then the functions 7, are 
real-valued, (4.1.6) and (4.1.7) are obvious, and (4.1.8) follows from 

since (4.1.9) implies that qvp - qvo E TCZ. Thus 11) holds in this case. Now 
suppose that there are v,  p E ( 1 , .  . . ,1) such that qvo - qpo 6 nZ. For x t (a ,  b )  
we infer from (4.1.9) that 

1 rv ( x )  - rp ( x )  lei(mvc~vu) + 1rp ( x )  lei(ho-"J = 1 r, ( x )  1 .  

The imaginary part yields 

Since Irp(x)l # 0 a. e. and sin(qpo - qvo) # 0 by assumption, we obtain that 
sin(q,, - qvo) # 0. Hence 

sin('fJ,o-cpvo) We set r(x)  := r p ( x ) / ,  ap := e'%, a,, := (ei%0 - . 
"'"(4'vp -vv0) 

el(+'vp), and % = 0. 

Now let K E  {I ,  . . . ,  l ) \ { v , p ) .  Then q , , - q p o @ ~ Z o r  qKo-qvo @ n Z .  If 
q,, - qMO 6 nZ, then as above there is a complex number a, E C such that 
r,(x) = a K l r p ( x ) ( .  If (P,, - qvo $2 r Z ,  then there is a complex number a; E C 
such that r,(x) = aLlr, ( x )  1 .  Set a, := a;[ a, 1. This proves that 111) holds since 
(4.1.3) implies that the a, are pairwise different. 
II)+I) immediately follows from 

III)*I) is obvious since r-' E L,(a, b) .  

For the boundary conditions (4.1.2) we assume that a j  E [a, b] for j E N, that 
a j  # ak if j # k, and that a. = a,  a ,  = b. We suppose that the matrix function 

w (., I) belongs to Mn(Ll (a ,  b)) for hl > y and that there is Wo E Mn(Ll (a ,  b ) )  
such that 

(4.1.10) @ ( . , A )  - Wo = ~ ( h - I )  in Mn(L, (a ,  b ) )  as h i m. 
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Finally we assume that the @,(A) are n x n matrices, defined for 1 h 1 > y, and that 

there are n x n matrices w J ~ )  such that the estimates 

and 

hold. Since 

the boundary conditions (4.1.2) are well-defined for ( A  I 2 y, see Section 3.1. 

By Theorem 2.8.2 there is a fundamental matrix function 

of the differential equation (4.1.1) having the following properties: The matrix 
function E ( . ,  A )  belongs to M,, (w~  (a ,  b ) )  and 

for x E [a, b] and h E C, where 

The matrix function PI0] belongs to M,(W; (a ,  b ) )  and has block diagonal form 
according to the block structure of Al  , i. e., 

The diagonal elements P!; are uniquely given as solutions of the initial value 
problems 

where the n,  x n, matrix functions Ao,,, are the block diagonal elements of Ao. 

The matrix function Bo( . ,h )  belongs to M,,(w;(a,b)) for /I/ 2 y and fulfils the 
estimates 
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where 

r , ( ~ )  = mix ( 1  + l % ( A e ' q v ~ ) ~ ) - ~ + ~ / ~ .  
v,p=o 
,#I* 

In case 1 < p 5 $ we require that there are numbers 1 5 pvp 5 m for v ,  p = 
0, .  . . ,1, v # p,  such that 

1 1 1 
E MnV,n, (LPvP (a ,  b ) )  and - + - < 2 - - 

PVY Pqp P 

for all v ,  p ,  q = 0, .  . . , 1  with v # q and p # q, where Ao,vq is the ( v ,  q )  block entry 

of A, according to the block structure of Al . If p > or 1 < p 5 and (4.1.19) 
holds, then there is a number E E (0 , l  - i) such that 

For the definition of Birkhoff regularity we need some further notations: For 
v = 1,. . . , I  let cp, be as defined in (4.1.5) and let A E @.\ ( 0 ) .  We set 

1 if %(Aeiqv) > 0,  s,(a) := 
0 if %(Aeiqv) = 0 and 3(Aeiqv) > 0,  

( 1 if %(lei") = 0 and 3(Aeiqv) < 0. 

For convenience let 6,(A) = ( A ) .  We define the block diagonal matrices 

which (by definition) reduce to 

(4.1.23) A )  = diag(6 ( ) Z n I . .  , A n )  A. := In ,  

if no = 0. Finally we set 

m 

n;l, := W J J ) P ~ ~ I  ( a j )  + W ~ ( X ) P [ ~ I  ( x )  dx. 
j=o I" 

From the definition of the 6,(A) we immediately infer that 

A(-A) = In - A(A).  

This is one reason for the choice of 6,. Another reason is that the values of A only 
depend on the values of 4 ,  . . . ,4. 
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DEFINITION 4.1.2. The boundary eigenvalue problem (4.1. I), (4.1.2) is called 
Birkhoff regular if 

is invertible for A E C\ (0). 

We would like to mention that the first no columns of the matrices in (4.1.25) 
do not depend on A and are the corresponding columns of M2. For j > no and 
A E C\ (01, the j-th column in the matrix (4.1.25) is the j-th column of wJO) if 

the j-th diagonal element of A(A) is 0, and it is the j-th column of wi') if the j-th 
diagonal element of A(A) is 1. 

Obviously, a necessary condition for Birkhoff regularity is that none of the 
first no columns of 4 and none of the last n - no columns of wJO) and wJ') is 
zero. For example, a sufficient condition for Birkhoff regularity is that no = 0 
and w:') = aWJo) such that a # 0 and W J O )  is invertible. We shall call boundary 

conditions with wJ') = awi0) asymptotically periodic boundary conditions. 

F o r v =  1, ..., 1 wedefine 

and 

where 

(4.1.28) 6; := 1 if 'Pp E [ 'Pv,  'Pv + n)  m o d ( 2 ~ )  
0 if 'Pp e [ 'Pv,  'Pv + n)  mod(2n) 

for v, p = 1, .  . . ,l. Here qp E Zmod(2n) for a subset Z of IR means that there is a 
number a E Z such that cp, - a E 2nZ. 
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THEOREM 4.1.3. The boundary eigenvalue problem (4.1. l), (4.1.2) is Birkhoff 
regular i f  and only i f  the matrices 

and 

(4.1.30) w!O)A: + w ! ' ) A ~  + M2(ltI - Ao) 

are invertible for all v = 1 , .  . . ,1, where w!') and wJ') are uniquely determined 

by @ ( j i  ( A )  - W!J) = O(A)- '  as A + for j = 0,1, and 6 is defned in (4.1.24). 

First we are going to discuss the Birkhoff regularity conditions before we 
prove this theorem. 

We shall call the matrices occuring in (4.1.25) or in (4.1.29) and (4.1.30), 
respectively, the Birkhoff matrices of the boundary eigenvalue problem (4.1. I ) ,  
(4.1.2). If A,  (x )  is invertible a. e. in (a,b), i. e., no = 0 and hence A. = I,, then the 
Birkhoff matrices only depend on Al  and the boundary matrices 

w," = lim wo(n), - lim wl ( A )  
a i m  Wo -a+.. 

at the endpoints of the interval [a, b].  Thus, in this important special case, we do 
not need any information neither on the "boundary" matrices W j ( A )  at the interior 
points ( j  @ { 0 , 1 ) )  nor on the matrix W (., A )  in the integral term in order to decide 
whether the boundary eigenvalue problem is Birkhoff regular or not. 

The situation is different if no # 0,  i. e., A. # I,. In this case the limit matrices 
of all W i ( A )  and W (., A)  and the matrix P[O] have to be considered since they occur 

in 4. Fortunately, 
I,, - A, = diag(It1, , 0 .  I,-,,), 

so that we only need to know the no x no block matrix P$ which is defined by 

P!] ( a )  = I,, , 

see (4.1.17), and the first no columns of the matrices w!') and Wo. 
J 

REMARK 4.1.4. There are lo real numbers 0 5 x1 < . . . < x6 < 2 n  such that 

Let x,, := X ,  - 2 n  and set 
0 

where, for convenience, arg A is taken in the interval [- - xo, - $ - xo) .  Then 
@ \  ( 0 )  is divided into the lo sectors Ek ( k  = I , .  . . ,lo). The number lo is an even 
number with 2 5 lo 5 21. 



4.1. Definitions and basic results 137 

Here X = Z mod(2n) for two subsets X and Z of R means that for each a E X 
there is a number b E Z such that a - b E 2nZ and for each b E Z there is a number 
a E X such that a - b E 2nZ. 

PROPOSITION 4.1.5. The matrixfunction A defined in (4.1.22) is constant on each 
Ck ( k =  1 ,  . . . ,  lo). 

Proof Let k E (1, .  . . , lo)  and v E (1, .  . . ,1). Then 

for otherwise 

(Pv E (xk-1 xk) mod(2n) Or (Pv + ( x k - l  , ~ k )  mod(2n), 

which contradicts the definition of xkPl and xk. If 

then we obtain 

for all A E Ck and hence 6, (A) = 0 for these A.  If 

then we obtain 

for all A E Ck and hence 6, ( A )  = 1 for these A. 

PROPOSITION 4.1.6. The matrixfunction A defined in (4.1.22) !akes the values 

A(-iexp(-icp,)), I,, - A(-;exp(-icp,)) ( V  = 1, .  . . , l ) .  

Proof Since exp(i(- $ - xk))  E Ck, A has the values 

n 
~ ( e x p ( i ( - -  - xk)))  = ~ ( - i e x p ( - i x ~ ) )  (k = 1, .  . . ,lo) 

2 
by Remark 4.1.4 and Proposition 4.1.5. Since the values of all the xk are the values 
of all the cp, or (P, f n, exp(-i(qV f n) )  = - exp(-iq,) and A(-A) = I, - A(A), 
the proposition is proved. 

Proof of Theorem 4.1.3. The definition of 6p immediately yields that the identity 
6p(-iexp(-icpv)) = Gp (exp(-i($ + (P,))) = 1 holds if and only if 

i. e., we have 

(4.1.3 1) 6p(-iex~(-icpv)) = 1 w qp E [(P,, cp, + n)  mod(2n) 
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for all p, v = 1,. . . , l .  From the definition of the 6f we conclude that 

whence 
2 

A; = ~ ( - i e x ~ ( - i c p , ) ) ~ ~ ,  A, = [I, - A(-iexp(-icp,)] 4 
for v = I , .  . . , I, which proves Theorem 4.1.3 because of Proposition 4.1.6. 

We are going to investigate two special cases in more detail. First we consider 
the simple case that no = 0 and 1 = 1, i. e., Al (x) = r, (x)I, a. e. in (a, b), where 
r;' E L,(a, b) and rl  fulfils (4.1.5). Then A has only the values I,, and 0, and the 
problem (4.1. l),  (4.1.2) is Birkhoff regular if and only if the matrices WJ0) and 

w:') are invertible. The second case is more important and treated in 

PROPOSITION 4.1.7. Let 1 = n and A(A) = diag(61 (A), . . . ,6, (A)) as given by 
(4.1.23). We suppose that 

2s(v-  1 )  
(Pv = 7 ( V  = 1,. . . ,n). 

i) Ifn is even, then the values of A are the diagonal matrices with : consecutive 
ones and 5 consecutive zeros in the diagonal in a cyclic arrangement. 
ii) Ifn is odd, then the values of A are the diagonal matrices with consecutive 
ones and consecutive zeros in the diagonal and the diagonal matrices with 

consecutive ones and consecutive zeros in the diagonal, each in a cyclic 
arrangement. 

Proot Since I = n, we have no = 0. In this case, the values of A are the matrices 
A: and A: ( V  = 1,.  . . , n). Obviously, for v, p = 1 , .  . . ,1 we have 

(Pp E [ (Pv,R+~)mod(21r)  o p  E [ v , v + i ) m o d ( n ) .  

If n is even, then cpV+: = ((P, + n) mod(27c) for v = 1,. . . , n. Hence A: = A:, , 

where v' - v = f mod(n), and we only have to consider the matrices A:. The 
definition of the diagonal elements 6: immediately yields that the consecutive 
diagonal elements of A: starting with the v-th entry are 1 and that the others are 
0, which proves the assertion in case n is even. 

If n is odd, the same argument as above shows that the y consecutive di- 
agonal elements of A; starting with the v-th entry are 1 and that the others are 
0. Since A: = I, - A:, the y consecutive diagonal elements of A? starting with 
the v-th entry are 0 and the others are 1. 

We state the following obvious generalization of Proposition 4.1.7. 

COROLLARY 4.1.8. Ifno # 0, 1 = n - no, and cpv = ( V  = I , .  . . , I), then the 
assertions of Proposition 4.1.7 hold for the last I columns of A given by (4.1.22), 
where n has to be substituted by 1. 
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4.2. Examples of Birkhoff regular problems 

In general, the boundary matrices are not asymptotically constant in the applica- 
tions. Hence we multiply the boundary conditions, given in matrix form, by a 
matrix function C2 from the left. Of course, if, for some given a, C2(A) is invert- 
ible, then the old boundary conditions at A are equivalent to the new ones at a .  We 
shall call the boundary conditions obtained by multiplication with C2 equivalent 
to the given ones if C2(3L) is invertible for all but finitely many numbers A. 
EXAMPLE 4.2.1. Here we consider the first order 2 x 2 system 

where a and p are nonzero complex numbers and the functions aij belong to 
Lp(O, 1). To this system we first associate the boundary conditions 

These conditions are not asymptotically constant. A simple method to make them 
asymptotically constant is the multiplication by A-'. But in this case the sec- 
ond columns of both boundary matrices are asymptotically zero, and the bound- 
ary eigenvalue problem would not be Birkhoff regular. If we only consider the 
1-terms, we see that the first row and the second row are the same for both bound- 
ary matrices. Therefore we multiply the boundary conditions by the invertible 
matrix 

from the left and obtain 

Now, for 3L # 0, we multiply the boundary conditions by the matrix 

from the left, which yields 

These boundary conditions are equivalent to the original boundary conditions and 
are asymptotically constant with 

~ ( 0 )  = z2 = will. 
0 

Hence, for any values of a and p ,  the boundary eigenvalue problem is Birkhoff 
regular; the Birkhoff matrices are equal to 12. 
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Now we consider the boundary condition 

where y is a complex number. In this case A takes the values 

( :) and (: y) if arg a = (arg p + n) mod(2n), 

and all these four matrices if arg a # argp mod(n). 

As Birkhoff matrices we obtain 

( i) and (A Y )  if arg a = (arg p + n)  mod (2n),  

and all these four matrices if arg a # argp mod(n) 

Hence, in this case, the boundary eigenvalue problem is Birkhoff regular if and 
only if 

y # O  i f a r g a = a r g p ,  

y # 1 if arg a = (arg p + n) mod(2n), 

y # 0, I if arg a # arg P mod(n). 

EXAMPLE 4.2.2. We consider the second order linear differential equation 

for q E w;(o, I ) .  We assume that p , ,  and po2 are complex numbers and that the 
other coefficients belong to Lp(a,b) .  To this second order equation we associate 
the first order 2 x 2 system 

where j j  E (wj (0 ,  I ) ) ~ .  If q E wj(0,  1) is a solution of (4.2.1), then )7 = 

obviously belongs to (w; (0, 1))' and fulfils the equation (4.2.2). Vice versa, let 

jj = (;:) E (w; (0, I) ) '  be a solution of (4.2.2). The first component of this 

equation yields y', = y2 whence q := y I  E w;(o, 1) .  The second component of 
(4.2.2) shows that 77 solves (4.2.1). 
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The system (4.2.2) is not asymptotically linear in A. In order to obtain an 
asymptotically linear system, we apply the transformation y" = C(A)y with 

where r l  and r2 are the roots of the equation 

P ~ + P I I P + P O ~ = O .  

We require that C(A) is invertible for A # 0, i. e., that the roots rl and r2 of the 
above quadratic equation are different. If one root is zero, we assume without loss 
of generality that then rl = 0. In order to obtain a system where the coefficient 
matrix of the derivative is the identity, we have to multiply the transformed system 
by c(A)- '  from the left which leads to 

An easy calculation yields 

Hence we obtain an asymptotically linear system 

(4.2.3) y' - (AA, +A, + A - ' A O ( . ~  = 0, 

where 

We consider two different lunds of boundary conditions. First we take peri- 
odic boundary conditions 

In terms of the first order system (4.2.2), these boundary conditions can be written 
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The transformation of (4.2.2) to the system (4.2.3) changes these boundary con- 

In order to make them asymptotically constant, we multiply this equation from 
the left by 

and obtain 

If r,  # 0 and r2 # 0, i. e., po2 # 0, then (4.2.3), (4.2.5) is a boundary eigenvalue 
problem with no = 0 and periodic boundary conditions, see page 135. Hence, in 
this case, the problem is Birkhoff regular. 

Now let rl = 0, i. e., pO2 = 0. Obviously no = 1. Since the element in the 
upper left comer of A. is r;lpol ,  the element in the upper left comer of plol is the 
solution of v' - r;'pol v = 0 with "(0) = 1, whence 

It is easy to see that 

Thus the Birkhoff matrices are 

These matrices are invertible if and only if 

Thus the boundary eigenvalue problem for the first order system (4.2.3), (4.2.5) 
associated to the boundary eigenvalue problem (4.2.1), (4.2.4) with pYl # 4p02 
for a second order differential equation is Birkhoff regular if and only if 

where we have to note that p ,  , # 0 if po2 = 0. 
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Now we take separated boundary conditions: 

with 1 a, 1 + 1 a, 1 > 0 and IP1 I + lP2 1 > 0. As above, this leads to the boundary 
conditions 

and 

For any transformation, i. e., multiplication from the left by a A-depending 2 x 2 
matrix, which makes these boundary conditions asymptotically constant, these 
constant boundary matrices are not invertible. The discussion in Example 4.2.1 
shows that the identity matrix and the zero matrix are values of A if r l r2  # 0 
and arg r2 # (argr, + n)  mod(2n). Hence the boundary eigenvalue problem is not 
Birkhoff regular if rl r2 # 0 and arg r2 # (arg rl + n) mod(2n). 

Now let us assume that rlr2 = 0 or arg r2 = (arg r ,  + n) mod(2n). We consider 
the special case a2 = 0 and P2 = 0. Then the boundary conditions do not depend 
on A. In this case they are (asymptotically) constant. If a;? # 0 or P2 # 0, we 
multiply the boundary conditions by @A) from the left, where 

[ (7 i) if a2 # 0 and P2 = 0, 

In all these cases the asymptotic boundary matrices are 

where, for j = 1,2, 

and 
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If r ,  = 0, then 

Thus the Birkhoff matrices are 

( "  61v(l) ") 0 and ( O ) .  
6,v(l) 62 

It is always true that 62 and y2 are nonzero. Since r, = 0, the problem is not 
Birkhoff regular if % # 0 or P2 # 0. But if = P2 = 0, then y, = a, # 0 and 
6, = PI # 0. Therefore, the problem is Birkhoff regular in this case. 

If r, # 0 and arg r2 = (arg r ,  + n)  mod(2n), then the Birkhoff matrices are 

('I (I 62 O )  and ( O  y2) 
6, 0 

by the discussion of the values of A in Example 4.2.1. Hence the problem is 
Birkhoff regular if r, # 0 and arg r2 = (arg r, + z) mod(2n). 

Now we shall express these conditions in terms of the coefficients of the dif- 
ferential equation. The condition 

is fulfilled if and only if 0 lies on the line segment connecting r, and r2. Since the 
roots of 

are 

this means that there is a t E [O,1] such that 

This holds if and only if 

Since 2t - 1 varies in the interval [- 1,1], this condition is satisfied if and only if 
there is a z E [O,1] such that 
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i. e., if there is a z E [0, 11 such that 

This holds if and only if 0 lies on the line segment with the endpoints p:, and 4p02, 
i. e., if and only if p l l  = 0,  po2 = 0 or 2argpll = (argpO2 + n) m o d ( 2 ~ ) .  Thus the 
boundary eigenvalue problem for the first order system (4.2.3) with the asymp- 
totic boundary conditions (4.2.7) associated to the boundary eigenvalue problem 
(4.2. I ) ,  (4.2.6) with p:l # 4p02 for a second order differential equation is Birkhoff 
regular if and only if 

where in the case pO2 = 0 also = P2 = 0 has to be satisfied. For example, this 
is fulfilled if pO2 is a negative real number and p l l  is a real number. 
EXAMPLE 4.2.3. Suppose that the boundary eigenvalue problem (4.1. I) ,  (4.1.2) 
satisfies the general assumptions stated in Section 4.1 and that no = 0 and 1 = 1 .  
Let 

1 1  

w [ and W J 1 ) = l n .  

Then the problem is Birkhoff regular. 

We shall continue the discussion of this example on page 156. 
27r(v- 1) EXAMPLE 4.2.4. Assume that no = n - 1, cp, = --T-- ( v  = 1,. . . , 1 )  and that 

the boundary eigenvalue problem is asyrnprorically separated, i. e., W ~ J )  = 0 for 

j 6 {0 ,1} ,  Wo = 0,  and for each j E { I , .  . . , n )  either the j-th row of WJO) or 

the j-th row of W i l )  is zero. We may assume without loss of generality that 

there is an s E ( 0 , .  . . , n )  such that e?w(O) = 0 for j = 1,. . . ,s and e ? w ( ' )  = 0 for 
J O  J 0 

j = s + 1 , .  . . , n. In this case, each of the Birkhoff matrices has the form 

up to a permutation of the last 1 columns. Here the first line indicates from which 
matrices the columns are taken. The terms s x no etc. denote the size of the corre- 
sponding blocks, and r = if 1 is even, r = or r = if 1 is odd by Corollary 
4.1.8. The last n - no - r columns of (4.2.8) are linearly dependent if its right up- 
per block has more columns than rows. Thus a necessary condition for Birkhoff 
regularity is s > n - no - r. The same consideration for the middle lower block 
of (4.2.8) yields n - s > r. Hence n - no - r < s 5 n - r is a necessary condition 

s x no 

( n - S )  x n o  

0 

( n - s )  x r 

s x ( n  - no - r )  

0 
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for Birkhoff regularity. If 1 = n - no is even, then 7 5 s 5 7 is a necessary 
n-n +I n+no-1 condition for Birkhoff regularity. If 1 = n - no is odd, then 2° 5 s 5 

is a necessary condition for Birkhoff regularity. 
Note that there are no Birkhoff regular asymptotically separated boundary 

eigenvalue problems if no = 0 and n is odd. 

In general, one cannot reduce the number of the matrices which are necessary 
to check for Birkhoff regularity as is seen in the following 

THEOREM 4.2.5. Let Ak = exp(i(-5 - xk)) (k = 1,. . . ,lo), where the xk are de- 
fined in Remark 4.1.4. For each ko E { 1,. . . , lo) there are n x n matrices A and B 
such that 

det [A (1, - A(Ak)) + BA(Ak)& + (AP['] (a) + BP~O] (b)) (I, - A ~ ) ]  

is zero ifk = ko and different from zero ifk E (1,. . . ,lo) \ {ko). 

ProoJ: A pair (A, B) of n x n matrices fulfilling the property of the statement is 
said to be ko-singular. If no # 0, take (n - no) x (n - no) matrices A. and Bo and set 
A = P:](a)-' @Ao, B = P['](b)-' 00 @Bo. Let A1(A) = diag(t$ (A)lnI , . . . ,4(A)&,).  
Then 

Obviously, (A, B) is ko-singular if and only if (Ao, Bo) is ko-singular. Since the 
latter case corresponds to the case no = 0, it is sufficient to consider the case 
no = 0. 

We have Xko = qv or x = (q, + n) mod(2n) for some v E (1, . . . , I). If 
ko 

Xko $? {ql,. . . , w), we choose v E { I , .  . . , I )  such that xk = (9, + n) mod(2n). 
0 

There is a kl E { I , .  . . ,lo} such that xkI = qv . By the definition of the Ak we 

obtain Ak, = -Ako since xkI = (xk, + n) mod(2a). Since 

we infer that (A, B) is ko-singular if (and only if) (B,A) is k, -singular. 
Hence it is sufficient to consider the case that xk0 = (p, for some v E (1,. . . ,I). 

Without loss of generality we may assume v = 1. We consider matrices of the 

From the definition of 61 and from x = ql we immediately infer that, for k E 
ko 

(1, ..., lo), 6,(Ak) = 1 holds if and only if 
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We note that this implies 6, (Ak0) = 1. 

For those k E (1,. . . , I )  for which 6, (Ak) = 0, the first column of 

is the first column of A, and the matrix (4.2.10) is a normed upper triangular 
matrix. Hence its determinant is nonzero. 

We still have to show that there are suitable a,  P ,  y, 6 such that the matrix 
(4.2.10) is invertible for those k E (1,. . . , I )  \ {ko) for which (Ak) = 1 and that 
it is not invertible for k = ko. If xk I = xkO - n, then 6, (Ak) = 1 if and only if 

0 - 

k = ko. In this case, the proposition is proved if we set a = 0, P = 0, y = 0, and 
6=O. 

Now we consider the case xk > xk - n. Then there is a p E (1,. . . ,1) such 
0 - 0 

that qp = xkO-, mod(2n) or qp = (xkO-, + n) mod(2n). Choose some j such that 
the diagonal element of A in the j + 1-th column is the function Sp. From xkO- > 
x - n we infer that ql # cp,, , i. e., we have p # 1. This implies j > 0. Now 

ko 
we set p = 1 and 6 = (0,. . . ,0,1,0, .  . . ,O)T, where the 1 is at the j-th position. If 
qp = xb-, mod(2n) we set a = ST and y = 0. If qp = (xkO-, + n)  mod(2n), we 
set y =  6T and a = O .  

First we consider the case qp = xk -, mod(2n). We have ap(Ak) = 0 if and 
0 

only if 

Let k E { I , .  . . ,lo} such that 6, (Ak) = 1. From xk - n < xkO- I < xkO we infer that 
0 

(xkO - n,  xkO] and (xkO-,, xkO- + n] are subsets of (xkO - n, xkO + n]. Since (4.2.9) 
and (4.2.11) can be written as 

for some j, , j2 E Z, this immediately implies jl = j2. Hence 6p (Ak) = 0 holds if 
and only if 

xk (xkO- I ~ k , ]  mod(2a) 7 

i. e., if and only if k = ko. 
For k E (1,. . . , lo) \ {ko) with 6, (Ak) = 1 we thus have 4 ( A k )  = 1. In this case 

the first column and the j+ 1-th column of (4.2.10) are the corresponding columns 
of B. Hence (4.2.10) is a normed lower triangular matrix and thus invertible. 

Finally, 6, (Ak ) = 1 and 6 ( A  ) = 0 imply that the first column of (4.2.10) is 
0 k0 

the first column of B and its j + 1-th column is the j + 1-th column of A. Since 
these columns coincide, the determinant of (4.2.10) is zero. This completes the 
proof in the case qp = X, , mod(2n). 

0- 
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In the case Q = (xk,-, + n) mod(2n) we have to replace %(Ak)  = 0 by 

tjP(Ak) = 1 in the above considerations. Hence 6 ,  (Ak)  = 1 and i$( j tk)  = 1 if 
and only if k = ko. In this case the matrix (4.2.10) is a normed lower triangular 
matrix if k # ko, and its determinant is zero if k = ko. 

4.3. Estimates of the characteristic determinant 

We introduce the fundamental matrix ?(., A )  of (4.1.1) which is given by 

where Y ( . , A )  is the fundamental matrix as considered in (4.1.14) and A(A)  is 
defined in (4.1.22). For 1 A 1 2 y we set 

(4.3.4) ( A )  := w J J ) P [ ~ ] ( ~ , ) E ( ~ , ,  A ) ( &  - A ( A ) )  
j=O 

see (4.1.2) to (4.1.17) for the definition of the terms on the right-hand sides. We 
also need the matrix $ defined in (4.1.24). Note that the matrices ~ ~ ( 1 )  and 
M ,  ( A )  are well-defined for all A E C \ (0). 
PROPOSITION 4.3.1. The boundary eigenvalue problem (4.1. l), (4.1.2) is BirkhofS 
regular i f  and only if 

(4.3.5) M ~ ( A )  := M ~ ( ~ ) A ~  +&(I, - A ~ )  

is invertible for all A E @\ (0). 

Pro05 For all A E C, 

PIO1 ( a )  (I, - A(h) )Ao  + ~ [ ~ l ( b ) A ( h ) A ,  + I, - A. 

is invertible and its inverse is 

~ [ O l ( a ) - ~  ( I ,  - A(h) )A0  + P ~ ~ ] ( ~ ) ' A ( I ) A ~  + & - Ao. 

For this we have to note that P[O] commutes with A(A)  and A, since P[O]  is a block 
diagonal matrix. Now the assertion of the proposition follows from 

Mo(A) = (wJo)(I, - A(h) )A0  + WJ1)A(A)A0  + M2(ln -Ao) )  X 

x ( P [ ~ ] ( ~ ) ( I ,  - A ( A ) ) A o + ~ ~ O l ( b ) ~ ( ~ ) ~ o + I ,  -A,) 

and the definition of Birkhoff regularity. 
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From Proposition 4.1.5 and the definition of Mo we immediately infer 

REMARK 4.3.2. Mo is constant on each Ek (k = 1 , .  . . ,lo) and has at most lo dif- 
ferent values, where lo and the sets Ck are defined in Remark 4.1.4. 

PROPOSITION 4.3.3. Let c,d E [a, b]. We assert: 
i) I E ( ~ , A ) E ( ~ , A ) - ~ ( I ~  - A(A))l  5 1 i f c  2 d, 
ii) I E ( c , A ) E ( ~ , A ) - ~ A ( A ) ) I  5 1 i f c  5 d, 

iii) E ( c , ~ ) E ( d , l ) - ' ( L  - A ( A ) ) A ~  = 0 (mkx(l+ V= I l % ( l e ' " ) I ) l )  i f c  > d, 

iv) E ( c , ~ ) E ( ~ , ~ ) - ~ A ( ~ ) A ,  = 0 ( v = l  m ~ x ( l +  l ~ ( ~ e i q v ) l ) - l )  i f c  < d. 

Pro05 Since all matrices under consideration are diagonal matrices, it is sufficient 
to prove the assertions for the diagonal elements. For v = 0 , .  . . ,1  and 2 E C\ (0) 
it follows from 

that 

and 

Now the assertions follow from the fact that I Rv ( t l  ) 1 > I Rv (t2) 1 for > t2 and 
v = 0,.  . . , l ,  that IRv(51)1 > IRv(t2)1 for 4 ,  > t2 and v = 1, .  .. ,1  and that the set 
{(I  + t )  exp(ta) : t > 0) is bounded if a < 0. 

COROLLARY 4.3.4. i) The matrix function ?( . ,A)  is uniformly bounded in the 
space M,,(C[a,bl) for 13L.I > y. 
ii) The matrixfunction M ( L )  is bounded for 2 y. 
iii) The matrixfunction is bounded on C\ (0). 

Pro08 Using Proposition 4.3.3 i), ii) we obtain that i) follows from the estimate 
(4.1.18) of Bo(., A ) ,  that ii) follows from (4.1 .lo), (4.1.13), and part i), and that 
iii) follows from (4.1.1 1). 
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PROPOSITION 4.3.5. Let fl  E (Lp(a ,b))" .  We assert that 

and 

have the asymptotic behaviour 

{0(1)}=-44)> 

as A + m, where 4 varies in [a, b] and the two latter estimates hold uniformly for 
a u f ,  E (Lp(a,b))". 

Proot Let v E ( 1 , .  . . , I} ,  g be the v-th component off , ,  and F be defined as in 
Lemma 2.7.2 with r(x)  := Jrv(x)I ( x  E (a ,  b ) ) .  Then Lemma 2.7.2 yields that 

5 
= - (1 - s V  J exp{-leimv ( I R ~ ( S ) I  - I R ~ ( ~ ) I )  dl 

b 

= - ( 1  - & ( A ) )  F ( ~ ,  4 ,  b ,  -Aeimv) 

has the asserted asymptotic behaviour. In the same way we see that 

= 6,(A)F(g,{,a,-Aeimv) 

has the asserted asymptotic behaviour. 
Since the nonzero components of the first and the third vector function in the 

assertion are of the form as considered above, the proposition holds for them. 
Since A(A)  = I,, - A(-A)  and E ( z , A )  = E ( Z ,  --A)- ' ,  the two other vector func- 
tions in the assertion are of the same form. 
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Obviously, the assertions of Proposition 4.3.5 also hold if we multiply the 
transposed vector function f: from the left instead of f l  from the right or if we 
take a matrix function instead of a vector function. - - 
PROPOSITION 4.3.6. Let M, Mo, M, , &&, A. be as dejned in (4.3.2)-(4.3.4), 
(4.1.24), (4.1.22). We assert: 

1 
i) (M(A) - Mo(A))Ao = o(1) as min I%(Iei")/ + w. 

v=l 
ii) (M(A) - M, (I))A0 = o(1) as A + w. 

iii) ( M ( I )  - M2)(ln - Ao) = o(1) as I + m. 

i v ) ( ~ ( I ) - & ) ( I n - A O ) = O  m~x(l+l%(Iei") l ) -  l+llp 
v,jl=o ( .,jl 

no accumulation points of the set {a, : j E N, w!J) f 0 )  Then 

) .  
v) Let p > I. Suppose that Wo E Mn (Lq (a, b)) for some q > 1 and that a and b are 

where a = min{l - l /p ,  1 - l /q)  > 0. 

Pro05 Using the representation 

Y ( . ,  A )  = (Pi0] + B 0 ( . , I ) ) E ( . , I )  

of the fundamental matrix given by (4.1.14), we obtain 

w(J ) (A)f (a , , I )  - w!j)PM(aj)E(aj,A) 

= [@(J)(A)B,(u~,A) + ( % ( j ) ( ~ )  - w ( J ) ) P [ ~ ] ( ~ , ) ] E ( ~ ~ , L ) .  o 

The estimates of BO, the assumptions (4.1.1 1) and (4.1.12) on gj and W$ and 
Proposition 4.3.3 i), ii) for c = a j  and d = a or d = b, respectively, imply that 

and 
m 

are of the form o(1) and ~ ( m a x j ~ ; $ ~ ~ ' ( l  + l % ( h e i ~ ) l ) - l i l i p ) .  In the same 
way, 

@ (x, I)? (x, I) - WO(x) P[O] (x) E (x, I) 

= [ B ( x , ~ ) ~ o ( x , ~ )  + ( r t ( ~ , n )  - W ~ ( ~ ) ) P ~ ~ ~ ( X ) ] E ( X , A )  
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shows that 

(4.3.8) lb [ @ ( X 7 A ) ~ ( X , ~ )  - W ~ ( X ) P ' O ~ ( X ) E ( X , A ) ]  &(In -A(*) )  

and 

(4.3.9) l b [ @ ( ~ , A ) ~ ( ~ , A )  - W ~ ( X ) P [ ~ ~ ( X ) E ( X , ~ ) ]  d x E ( b , I ) ' A ( A )  

are of the form o(1)  and 0 mBx ( 1  + I%(ieiPv~) 1 ) -  ' + l i p  . Since the equation 
v,p=o ( v+p ) 

E(x ,  A )  (I,  - Ao) = I, - 4 holds for all x  E [a, b] and A  E @, the matrix function 
(~(1) - M ~ )  (In - Ao) is the sum of the four terms (4.3.6)-(4.3.9) multiplied by 
(I, - AO) from the right. Thus the estimates of (4.3.6)-(4.3.9) prove iii) and iv). 

Since wo~IO] E Mn(Ll (a ,  b ) ) ,  the estimates in Proposition 4.3.5 yield 

and 

(4.3. I 1) ~ b ~ o ( x ) ~ [ O ~ ( x ) ~ ( x , ~ )  d x ~ ( b , 1 ) - ' 4 ( l ) A ~  = o(1)  as h -+ m. 

Since ( M ( I )  - M I  (*))Ao is the sum of the four terms (4.3.6)-(4.3.9) multiplied 
by A. from the right and the two terms (4.3.10) and (4.3.1 l),  ii) follows from the 
estimates of (4.3.6)-(4.3.11). 

Let E > 0. Then there is a jo E N such that 

1 
For sufficiently large a and all A  E (C with min131(Aeiqv)I 2 a we obtain from 

v= 1 
Proposition 4.3.3 iii) with c = a,  and d = a  that 

Hence 

In the same way we obtain with the aid of Proposition 4.3.3 iv) with c = a, and 
d = b  that 

m 1 
W ~ ~ ) P [ ~ ~ ( ~ , ) E ( ~ ~ , A ) E ( ~ , I ) - ~ A ( L ) A ~  = 4 1 )  as min l%(~e '") l  + KJ. 

i=o v= 1 
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These two estimates and ii) prove i). 
Suppose that the assumptions of v) hold. We apply Proposition 4.3.5 to the 

matrix functions on the left-hand sides of (4.3.10) and (4.3.1 1) and obtain 
(4.3.12) 

b l+llq Wo(x)P[Ol (~)E(~ ,h )  &(In -A(l))AO = 0 (rnkx(l V = I  + l%( ie iqv) I ) -  ) 
and 
(4.3.13) 

Ib  l+llq W ~ ( X ) P [ ~ I ( X ) E ( ~ , ~ )  d r ~ ( b , i ) - ~ ~ ( a ) ~ ~  = o (miax(l+ v=l l s ( ~ e i q v ) l ) -  ) 
By assumption, 

d := inf{aj : j t W \  {0}, W ~ J )  # 0) > a 

and 

g := sup{a, : j t W \  {I}, W ~ J )  # 0) < b. 

Hence 

and 

are of the form 0 + I ~ ( l e i q v ) l ) - l )  by Proposition 4.3.3. These esti- 

mates, the estimates (4.3.12) and (4.3.13) and the estimates of (4.3.6)-(4.3.9) 
prove part v). 

PROPOSITION 4.3.7. Suppose the boundary eigenvalue problem (4.1. l), (4.1.2) 
is Birkhoff regular. Let M be given by (4.3.2). Then there are numbers a > 0 and 

I 
6 > 0 such that I d e t ~ ( ~ ) l  2 6 ifminI%(Aeiqv)I > a. 

v=l 
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Prooj The matrix function Mo is invertible and has only a finite number of differ- 
ent values for 1 E (C\ (0) by Proposition 4.3.1 and Remark 4.3.2. Hence there is 
a positive number 6 such that 

(4.3.14) IdetMo(A)J 2 26 fo ra l l1  E C\{O). 

Proposition 4.3.6 i), iii) yields 

M(1)  = $(1)A,, +&(In -A,,) + o(1) 

The components of Mo(A) are bounded functions with respect to 1 since Mo has 
only a finite number of different values by Remark 4.3.2. Hence 

1 
detf i (1)  -+ det M o ( l )  as min l%(Ae"P.) 1 -+ -, 

v= 1 

i. e., there is a positive number a such that 
1 

(4.3.15) ldetM(1) - detMo(l)l 5 6 if min l%(lei '+")~ 2 a. 
v= 1 

The assertion of the proposition follows from (4.3.14) and (4.3.15). 

PROPOSITION 4.3.8. Let 

(4.3.16) M,(A) := M l ( 1 ) A , , + M 2 ( ~  -Ao). 

Then 
detM(1) = detM, (A) + o(1) as A -t w. 

Prooj This is obvious from Proposition 4.3.6 ii), iii) since the components of 
M, (A) are bounded by Corollary 4.3.4. 

THEOREM 4.3.9. Suppose that the boundary eigenvalue problem (4.1. l), (4.1.2) 
is Birkhoff regular. Let M be the characteristic matrixfunction given by (4.3.2). 
Then there are circles T, = {A E (C : 1Al = pv)  (v  E N) with pv /' - as v -t - 

m 

andanumber 6 > 0 such that ~det$(A)( > 6 for all A E U r v .  
v=o 

Prooj For 1 E @ we set 

We shall prove that d e t k  is an exponential sum in the sense of Section A.2. We 
set 

A 

iq:=r, ,  Rq:=R,, $:=s, and Gq:= q, for r n n , < q <  E n , ,  
r=O ,=o 
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( a g j ) ~ , = ~  : = WJO)P[O] (ao)% 
b 

+ (5 W J ~ ) P [ O I  (a  J .) + w0(x) P'OI ( x )  cix) ( I ,  - A ~ ) ,  
j=O 

: = w J j ) P [ O ] ( a j ) 4  ( j  E N\ {O)),  

and 

where S,, is the set of permutations of the numbers I , .  . . , n. We set 

m m 

From 1 1 w J ~ )  1 < m and P[O] t M,(W; (a ,  b ) )  C Mn(C[a, b])  we infer 7, < m. 
j=O j=O 

Hence 

Thus 

where the sum is absolutely convergent. Hence detfi(L) is an exponential sum in 
the sense of Section A.2. 

Let 1, , xk and Ck be as defined in Remark 4.1.4, k = 1,. . . ,lo . Let 

and set Lk := e-'(it*). Then Lk E $, $(ak) = 1 if q t Bk and $(ak) = 0  if 
q~ { n o + l ,  ..., n}\ek .  Let 
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Since &(ajx) t 0,  z,(b), the convex hull of 8 is a convex polygon by Theorem 
A.1.3. Set 

A 

b,:= Z R , ( ~ )  ( k =  1 , . . . , lo) .  
j E 9 k  

Since the numbers x,, . . . , xl,, are the numbers q l ,  . . . , q2,, of Section A. 1, the set 

{b, : k E { I , .  . . ,lo}} is the set 2 of the vertices of 8. The representation of these 
points is unique by Theorem A.1.3 iii). Hence we obtain that the coefficient of 

A 

exp{Abk} in detM is := aj,,+l,...,in) where the numbers jno+,,.  . . , jn are 
A 

given by A(&) = diag(*, . . . , *, jn0+, , . . . , j,) if we observe that Rj(ao) = 0 and 

E j (a l )  = g,(b). Since (4.1. I), (4.1.2) is Birkhoff regular, 

By Remark A.2.13 the exponential sum detfi(A) fulfils the assumptions of The- 
orem A.2.15, and we accordingly choose r and (p,); from the statement of that 

m 

theorem. Now let A E C, f l  U I-,, . From Proposition 4.1.5 we infer A(A) = A(Ak). 
v=o 

Hence 
det(ln -A(A) + E ( b , A ) - ' ~ ( 1 ) )  = expi-b$}. 

Since 

we obtain 
detM, (A) = detG(A) exp{-bkA}. 

Therefore Theorem A.2.15 yields 

IdetM,(A)I 2 E .  

From Proposition 4.3.8 we coclude that I det M(A) - det M, (A)] 5 5 holds for 
2 po if we choose po sufficiently large. Then the assertion of the theorem 

follows with 6 = 5 . 
We now continue the discussion of Example 4.2.3. For simplicity we assume 

n = 2, a = 0, b = 1. We take the first order system 

where a is a complex constant and A varies in C. An asymptotic fundamental 
matrix function in the sense of Theorem 2.8.2 B of this system is given by 
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where k = 0 and Bo = 0. Indeed, this follows from Remark 2.8.6 since 

is the fundamental matrix of y'(x) - I y ( x )  = 0 which is the identity at 0, and 

is the fundamental matrix of 

which is the identity at 0. The characteristic matrix with respect to the boundary 
conditions 

A multiplication of (4.3.20) by 
O )  

from the left shows that this problem 

is of the form considered in Example 4.2.3 and hence Birkhoff regular. 
First let p = 0. Then the eigenvalues of M are 0 and (2k + 1 ) n i  (k E Z). For 

a = 1 the dimension of the eigenspaces corresponding to the nonzero eigenvalues 
is 2. For a # 1 the dimension of the eigenspaces corresponding to the nonzero 
eigenvalues is 1, and there is a chain of an eigenvector and an associated vector 
by Proposition 1.8.5. 

For p # 0 we have two sequences of eigenvalues: (2k+ 1 ) n i  (k E Z),  and the 
zeros of ( 1  + g)e" 1 .  

Now we are going to deduce an asymptotic representation of the zeros of 
( 1  + g)e% 1 for large I .  Using the results of Section A.2, we see that they have 
the form 

(2k+ l ) n i + o ( l )  as Ikl +..fork E Z. 
But we shall give a more accurate representation and estimate. For this we note 
that 

(4.3.22) ( l + : ) e % l  = 0  
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holds if and only if 
P e-k+xi = 1 + - 
* 
h 

Taking the logarithm we see that (4.3.22) holds if and only if there is a k E Z such 
that 

- .A + xi = log 1 + - - 2kni, ( !) 
where we choose the argument of the logarithm in the interval [- n, n ) .  For k E Z 
we set 

f k ( k )  = (2k+ 1)ai- log (1 + [) (1 E C\{O,-P}).  

P Thus we have to determine the fixed points of fk for large 1. Since log(l + 
tends to zero as 3L -+ m, a large fixed point corresponds to a large value of Ikl. On 
the other hand, for each A E C\  (0) we have 

l f k ( * ) I  > I3 fk (* ) l  2 2 ( l k l  - l)" 

This shows that the fixed points of fk are of the form 

Hence it is sufficient to consider the case 

Ikl > 1 + IPIn-' and A E B1((2k+ 1)ni). 

where B, ((2k + 1 )xi)  is the closed disc with centre (2k + 1) ni and radius 1 .  In the 
following considerations of this example we shall always take k and 3L according 
to these conditions. We have 

The mean value theorem gives 

1 2IPI log I + -  2 -  sup -<- I ( !)I :: ,;Is, I , + ,  - * I  

From 

f2*) = 
P 

n2 ( i  + 
we infer 
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This estimate and 

Ifk(A) - (2k+ 1)nil = log 1 + -  < 1 I ( :>I 
show that fk : El ((2k + 1)ni) + K1 ((2k + 1)ni) is a contractive mapping. By 
BANACH'S fixed point theorem, fk has exactly one fixed point pk in the disk - 
B1 ((2k + 1 )  x i ) .  The a priori estimate yields 

Using the Taylor series expansion of log(1 + z )  we obtain 

8 1 ~ 1 3  where JykJ 5 - 
3 

since 

I d3 
8 

sup - -log(l +z) l  5 -. , 3!  dz3 l z l l z  3 

Thus we have 

where 

since I(2k+ 1)ln 2 2((lkl - l ) n +  1 ) .  

If we consider 4 := (2k+ 1)ni as a first approximation, we may take 

as a second approximation. Repeating the above method with p: instead of pik', we 
get an approximation 4 such that p: - (2k + 1)ni is a polynomial in (2k + I)- '  
and pl - pi = O(lklP5).  Proceeding in this way we see that pk - (2k + 1)ni can 
be written as an asymptotic polynomial in 2k + 1 of arbitrary order. 
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REMARK 4.3.10. The above example shows that there are Birkhoff regular eigen- 
value problems with i) infinitely many eigenvalues for which the dimension of the 
eigenspace is larger that 1 or ii) infinitely many eigenvalues which are not semi- 
simple or iii) the infimum of the distance of different eigenvalues is zero, i. e., 
there are sequences of eigenvalues (Ak): and (pk):  such that Ak + m, pk + m, 

and 0 # Ak - pk + 0 as k + w. Of course, it is possible to construct examples 
where i, ii), and iii) occur simultaneously. 

4.4. Estimates of the Green's matrix 

Besides Birkhoff regularity we shall also consider Stone regularity. In this sec- 
tion, no additional investigations are necessary if we prove the results for Stone 
regularity. 

DEFlNlTION 4.4.1. Let s E N. The boundary eigenvalue problem (4.1. I), (4.1.2) 
is called s-regular if there are circles Tv = { A  E @. : IAI = pv) ( V  E N),  where 
( P , ) , , ~  is a strictly increasing sequence of positive numbers with pv 7 w as 

m 

v + w, and a number 6 > 0 such that 1Asde t~(A)  I 2 6 for all A E U T V ,  where 
v=o 

16 is the characteristic matrix function given by (4.3.2). 
The boundary eigenvalue problem (4.1. l) ,  (4.1.2) is called Stone regular if there 
is an integer s E N such that the boundary eigenvalue problem (4.1. I), (4.1.2) is 
s-regular. 

From Theorem 4.3.9 we know that Birkhoff regular problems are 0-regular. 
Throughout this section we suppose that the boundary eigenvalue problem (4.1. l ) ,  
(4.1.2) is Stone regular. 

Together with the boundary eigenvalue problem (4.1. l) ,  (4.1.2) we consider 
the operator function 

where y is a fixed positive number and 

and y varies in (w; ( ( a ,  b))". 

We have seen that we can take any fundamental matrix in the definition of the 
GREEN'S matrix function G(. , . ,A)  and in the definition of G^(.,A). Here we take 
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the fundamental matrix ?(., A )  as defined in (4.3.1). Theorem 3.2.2 and formula 
(3.2.12) yield 

m 

forA E U rv,  fl E & ( ~ , b ) ) ~ ,  f2 E P andx E (a,b), where 
v=o 

fo ra  <x < band 
m 

(4.4.3) F ( ~ , A )  := G ( ~ ) ( A )  +Lb ~ ( t , l )  dt. 
j=O 

We subtract and add the term (see Proposition 3.2.1) 

and obtain with f = ( f l  , f2) that 

(4.4.4) (T- '(n)f)(x) = ~ , ( x , f ~ , ~ )  + P ( x , ~ ) G - ~ ( n ) ~ , ( f , n ) ,  

where 

b  5 

+J, d , F ( t , ~ ) Q ( t , ~ ) ~ ( ~ ) ? ( e , h ) - ' f ,  (5) d5. 

Note that we can take Y instead o f ?  in (4.4.5) and (4.4.6). 
The main task in this section will be to estimate 11, ?, and I,. For this we need 

some propositions. Define 

(4.4.7) $(x,A) := P[O](X) ((ln - A(A))E(x, A) + A(A)E(X, A)E(b, A)-'). 
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PROPOSITION 4.4.2. i) The matrix function ?(., A) - $(., A) satisfies the esti- 
mates { O ( r p ( A ) ) ) ,  and { o ( l ) ) ,  . 
ii) I f p  > 1 and, in case p j $, the conditions (4.1.19) are satisfied, then there is 
a number e E ( 0 , l -  f )  such that 

Proof: The asymptotic representation (4.1.14) of Y yields 
A 

y(xl  A )  = (p[O](x) + Bo(x1 A ) )  ((I , ,  - A(A) )E(x ,  A )  + A ( A ) E ( X ,  h ) ~ ( b ,  A ) - ' )  

for x E (a,b) and lAl 2 y. The assertion of the proposition immediately follows 
from the estimates (4.1.18) and (4.1.20) of Bo and from Proposition 4.3.3 i), ii). 
0 

PROPOSITION 4.4.3. we have E( . ,  A)?(., A)-' = P[O]-' +$(.,A), where go(. ,  A) 
satisjes the estimates {O(z ,  ( A ) ) ) ,  and {o( 1 ) ), . 

Proof: Since P[O] is invertible in M,,(W; (a ,b) )  and hence in M,(~,(a,b)),  and 
since Bo(., A )  = { ~ ( l ) ) , ,  the estimate 

holds for all x E (a,  b)  and all sufficiently large A. Then we have the Neumann 
expansion 

With 

it follows that 

( P [ O ] ( X )  + B ~ ( X , A ) ) - ~  = P[o]-' ( X )  +iio(Xla) 
and 
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Finally, Bo(. ,A) = {O(z,(;l))),, Bo(.,il) = { ~ ( l ) ) , ,  and the above estimate 
yields 

B,(-, h )  = { O ( % ( h ) ) ) ,  and Bo(., 1) = { ~ ( l ) ) , .  

We set 
(4.4.8) 

$ ( x , f 1 , n )  := pn(x)(ln - A ( . I ) ) E ( x , ~ )  / x ~ ( { , ~ ) - l ~ l O 1 - l ( { ) f l ( { )  d{ 

- PIO1(x)A(h)E(x ,~)  E ( { , ~ ) - ' P [ ~ ] - ' ( E , )  f l ( { )  d{. Lb 
PROPOSITION 4.4.4. Let II be as defined in (4.4.5) and let fl E (Lp(a,  b)),. Then 

i) I l ( . , f ' , h )  - c ( . , f l , a )  is of theform { O ( ~ p ( ~ ) ) ) w l f l I p  and {o(1))mIf1Ip. 
ii) Let p > I .  I f  no = 0 or p > or p 5 and the conditions in (4.1.19) are 
satisfied, then there is a number E > 0 such that 

A,,l,(.iA,,fl,h) -hofl(-,A,,f1J) 

ProoJ: Let x E (a ,  b )  . The representation (4.1.14) of Y and Proposition 4.4.3 yield 

+P'o'(x) (1, - A ( ~ ) ) E ( X , I )  /x~(<,l)-l$(<,l)fl  ( 5 )  d5 

+ ~ o ( x , a )  (In - ~ ( ~ ) ) ~ ( ~ , ~ ) ~ ~ ( { , ~ ) - ~ g ~ ( t , h ) f ~ ( e ) d c .  

Observing B ~ ( - , L )  = { o ( ~ , ( h ) ) ) , ,  s 0 ( . , n )  = {o(I) ) , ,  Bo(. ,n) = { o ( ~ ~ ( n ) ) ) , ,  
go(.,  A )  = {o( 1)),, and the estimate in Proposition 4.3.3 i), this shows that the 
right-hand side of (4.4.9) is of the form { O ( z p ( h ) ) ) , ( x ) ~  fl 1 ,  and {o(l)),(x)I fl  lp. 
Since analogous estimates hold for 

this proves part i). 
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For the proof of ii) we multiply (4.4.9) from the left by A. and replace f l  by 
A. f , .  Since the first term on the right-hand side is 

Proposition 4.3.5 yields that it has the estimate 

Similarly, the second term satisfies the estimate 

From Bo(. ,A) = { O ( z , ( A ) ) ) ,  and E0(. ,A) = { O ( z p ( A ) ) ) ,  we obtain that the 
desired estimate is fulfilled for the first two terms. The last term can be estimated 
in the same way if no = 0. Otherwise, we use (4.1.20) and Proposition 4.4.3. 
Analogous estimates of (4.4.10) complete the proof. 

PROPOSITION 4.4.5. For { E (a ,  b)  we have that 

- l W o ( t ) P [ O l ( t ) E ( t , ~ ) E ( { , ~ ) - l ( I n  - A ( A ) )  clt 

and 

fu&l the estimate O ( z p ( A ) )  and o (1 )  uniformly. 



4.4. Estimates of the Green's matrix 165 

Proof. Let a,P E [a,b] with a < P and set I := [a,P) if P #band  I := [a,P] if 
p = b. An obvious generalization of Proposition 3.2.1 yields 

m 

+ ~ d ~ ) B ~ ( a ~ , A ) E ( a ~ , l )  +lfi Wo(t)Bo( t ,A)E( t ,A)  d t .  
i=O 

For the proof of the estimate for the first term we set a = 6 ,  P = b,  and mul- 
tiply (4.4.11) by E ( ( , A ) - '  ( I ,  - A ( A ) )  from the right. The assertion now fol- 

m - 
lows from the estimates @ ( . , A )  - Wo = 0(h- ' ) .  L - W J ' ) I =  o ( A - ' ) ,  

i=o 
B o ( , A )  = { 0 ( 2 p ( A ) ) } ~ ,  BO(. ,A) = { ~ ( l ) } ,  , see (4.1.10), (4.1.12), (4.1.18) and 
Proposition 4.3.3 i) with c = a j  or c = t and d = 4. 

For the proof of the estimate for the second term we set a = a,  P = 4 ,  and 
multiply (4.4.11) with ~ ( 6 ,  A)- 'A(A)  from the right. The assertion now follows 
again from the estimates (4.1. lo), (4.1.12), (4.1.18) and Proposition 4.3.3 ii) with 
c = a . o r c = t a n d d = t .  J 

LEMMA 4.4.6. Suppose that the boundary eigenvalue problem (4.1. I), (4.1.2) is 
s-regulal: Then the characteristic matrixfinction M given by (4.3.2) satisjies the 
estimate 

m 

M(A)- '  = O(As)  ( A  E U rv), 
v=o 

where the circles rv are as in Definition 4.4.1. 

Proof. The set {GI ( h ) A o  + k 2 ( I n  - Ao) : A E C\ (0)) is bounded in Mn(C) by 
Corollary 4.3.4 iii). Hence M ( A )  = O(1)  as A + m by Proposition 4.3.6 ii), iii). 
Let Mad(A) be the matrix of the cofactors of M ( A ) .  Then the boundedness of M 
implies that M a d ( a )  = 0(1) as A -+ m. Since k ( A ) - '  = (det M(A))-'liTjad(a), 
the assertion of the proposition follows from the definition of s-regularity. 
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For f = ( fl , f2 )  E (Lp(a,  b))" x CY we set 

+ Ib  Wo(r)P[ol(t)/bE(t,A)~({,A)-1~(A)~[011(5) t f l ( { )  d5 dt. 

PROPOSITION 4.4.7. The vectorfunction I3 ( f ,  A )  - $( f ,  A) sa'tisjies the estimates 

o ( rp (A) )  I f  I , ,  and 4 1 )  I f  lip,.] 1 where I f  I I P , n l  := I f 1  l p  + If210 1 and 13 * 9 are 
given by (4.4.6), (4.4.12). 

Pro05 We multiply the matrix functions in the assertion of Proposition 4.4.5 by 
the vector function E ( 5 ,  A ) Y ( { ,  A)-' fl ( 5 )  from the right and integrate from a to 
b with respect to {. From Propositions 4.4.5 and 4.4.3 we infer that these integrals 
are O(rp(A))lf1 Ip and 0( l ) l f '  Ip, i. e.7 

and 

'3(f7A) - $ ( ( ( ~ + p ' ~ ~ ~ o ( . , h ) ) f l , f ~ ) , l )  = o ( l ) / f l l p  
m 

From Propositions 4.4.3 and 4.3.3 i), ii) and I W J J ) ~  < m we infer 
j=o 

and 

$ ( ( p [ O 1 ~ o ( . , ~ ) f l  , o ) , ~ )  = o ( l ) l f ~  l p -  

This proves the proposition since is linear with respect to the first variable. 

In the following we shall use contour integrals of holomorphic vector valued 
functions. For this we briefly recall the definition and some properties of line in- 
tegrals. A piecewise smooth path in @ is a continuous and piecewise continuously 
differentiable mapping y of a compact interval [a,P], a < P, into @. Let E be a 
Banach space and h : y ( [a ,  P I )  -+ E be continuous. Then the integral 
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is well-defined. Let y : [a,P] + C and yl : [al,&] + C be piecewise smooth 
paths. The path y is called equivalent to y, if there is a continuous strictly in- 
creasing function cp : [al,pl] + [a,p] whith cp(al) = a and cp(P1) = P such that 
yl = yo cp.  A piecewise smooth curve is an equivalence class of piecewise smooth 
paths. For equivalent paths as above we have 

i.e., Syh(h)  d A  only depends on the curve. Hence we shall not distinguish between 
a smooth curve and its representative. A piecewise smooth contour is a piecewise 
smooth simply closed curve. We shall mostly take circles. They will be traversed 
anti-clockwise, i.e., they are given by the path 

y(t)  =.+reit ( t  E [ 0 , 2 ~ ] ) ,  

where c is the centre and r the radius of the circle. For a piecewise smooth curve 
y : [a, b] + C and a continuous function h : y ( [ a ,  P I )  + E we define 

We have the following estimate, see e.g. [DIN, 5 8, Proposition 41, 

Note that for each A E ~ ( p )  and f = ( f l  , f2) E (Lp(a ,  b))" x Cn it follows 
from (4.4.4) that 

(4.4.14) p - ' ( A ) f  = r p ( . , f l , ~ )  + g ( . , a ) M ( ~ ) - ' g ( f , a )  

+ I , ( - , ~ , , A )  - l p ( . , f , , ~ )  + F ( . , a ) f i ( ~ ) - l  ( I , ( ~ , A )  - g ( f , n ) )  

+ ( F ( . , N  - g( . ,n))M(n)- 'g( f ,n) ,  
where the terms on the right-hand side are defined in (4.3.1), (4.3.2), (4.4.5), 
(4.4.6), (4.4.7), (4.4.8), and (4.4.12). 

PROPOSITION 4.4.8. Lets E N and assume that the boundary eigenvalue problem 
(4.1. I), (4.1.2) is s-regulal: Then 

Prooj From Proposition 4.3.3 i), ii) it follows that c(., fl , A) = { 0 ( 1 ) ) ,  1 f ,  1, and 
m 

$( . ,A)  = { O ( l ) } m .  In the same way, Proposition 4.3.3 i), ii) and I W ~ J ) ~  < m 
j=O 
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yields I:( f ,  2.) = O(1)  1 f l lp,nl.  From (4.4.14), Proposition 4.4.4 i), Proposition 
4.4.2, Lemma 4.4.6 and Proposition 4.4.7 the estimates of (4.4.15) follow. 

THEOREM 4.4.9. Let s E N and assume that the boundary eigenvalue problem 
m 

(4.1. I), (4.1.2) is s-regula,: Let lo E E \ U TV , where the circles rv are as 
v=o 

in Definition 4.4.1 of s-regularity. Let J1 : (Lp(a,b))" + (Lp(a ,b))"  x Cn and 
J  : ( W; (a ,  b )  )" -+ ( L p  (a ,  b )  )" be the canonical embeddings. We set 

where T is given by (4.4.1.). 
i) For all v E N we have S,,, E L( (Lp(a ,  b))" x @, (w; (a ,  b) )") .  

m 

ii) For each compact set G C C\ U Tv we have 
v=o 

iii) We have JS,+I,v -+ 0 in L((Lp(a ,b))"  x C", (Lp(a ,b ) ) " )  as v -+ w. 

Pro05 i) is obvious since T-' depends holomorphically and hence continuously 
m 

on 2. in U Tv. 
v=o 

ii) Proposition 4.4.8 and the estimates of I:(., f l  ,A), $(.,A), and c( f ,  2.) stated 
in the proof of Proposition 4.4.8 yield 

m 

for 2. E U rv . Since sup 12.- = o ( I ~ . J - ' - ~ )  for these A, we have 
v=o PEG 

iii) immediately follows from ii). 

PROPOSITION 4.4.10. We have 

for f ,  E (Lp(a ,  b))", where is given by (4.4.12). 
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ProoJC: By Proposition 4.3.5 there is C > 0 such that for all fl  E (L,(a,b))" the 
CY-norm of the integrals with respect to 5 in g ( ( A o  fl , O ) ,  A )  has the upper bound 

1 
~ m a x ( 1  + I%(heiqj) 1 )  l + " P l  fl l p .  Now the assertion of the proposition immedi- 

j= 1 

ately follows in view of (4.1.11). 

THEOREM 4.4.11. Let s E N and assume that the boundary eigenvalue problem 
m 

(4.1. I), (4.1.2) is s-regular. Let I. E @\ U Tv , where the circles Tv are as in Def- 
v=o 

inition 4.4.1 of s-regulari~ ~ e t  4 : (Lp(a ,  b))" 1 (Lp(a ,  b))" x @ be defined by - 
Jl f = (Ao f ,  0 )  ( f  E (Lp(a ,  b ) ) " )  and let 7: (w; (a ,  b))" -+ (Lp(a ,  b))" be defined - 
by Jy = Aoy ( y  E (w; (a ,  b ) ) " ) ,  where A. is defined in (4.1.22). We set 

where T is given by (4.4.1). 
m 

i) For 1 < p < oo and a compact set G c @ \  U Tv we have 
v=o 

ii) For 1 < p < m we have a,, + 0 in L ( (Lp(a ,  b))" x C, (Lp(a ,  b ) ) " )  as V -+ w. 
m 

iii) For 1 5 p 5 .a and a compact set G c @\ IJ Tv we have 
v=o 

iv) For 1 5 p 5 a, we have &,,4 -t 0 in L((L,(a,b))")  as v -+ a,. 

ProoJC: i) For f = ( f l ,  f2)  E (Lp(a ,b))"  x CY Proposition 4.4.8 yields 

(4.4.17) E - l ( I ) f  = A,IY(., f , ,  I )  + ~ ~ ~ ( . , ~ ) f i ( ~ ) - ' e ( f  , I )  

+ { 0 ( I f ~ p ( W ) } m l f  . 

From Proposition 4.3.5 we obtain the estimate 

Let v E (Lp,  (a ,  b))" where l l p  + lip' = 1. By definition of I;, The non-zero 

components of J: vT(x)A&(x, I )  dx are sums of integrals of the form 
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and 
s , ( i )  Sb c(X) exp{ieiqJ(lRj(x)l - I R , ( ~ ) I ) )  h, 

a 

where j E (1,. . . , I )  and F is a component of V T A ~ P [ ~ ] .  By Lemma 2.7.2 ii), these 

integrals fulfil the estimates 0 max(1 + /%(ieiqj) / ) - I i P  /vIp, . AS (Lp, (a, b))" 
j= I ( l  

is the dual of (Lp(a, b))", this yields 

Note that the above proof also holds for p = 1, and that (4.4.19) is also true for 
p = w. Finally, e( f ,  I-) = O(1) / f llp ,n l  (see the proof of Theorem 4.4.9 ii)) and 
Lemma 4.4.6 give the estimate 

where 77 := min{ 1 /p, 1 - l /p) .  Hence we have 

as v -+ by LEBESGUE'S dominated convergence theorem. 
ii) immediately follows from i). 
iii) For f E (Lp(a, b))" Proposition 4.4.8 yields that 

E 1 ( 4 J ; f  = 4,1p(.,4,f74 + 4,G(.,i)G-l(i)e((~Of,o),i) 
+ {0( iS)  ),If lp . 

Hence we obtain in view of (4.4.18), (4.4.19), Lemma 4.4.6 and Propositions 4.4.7 
and 4.4.10 that 

Proceeding as in part i), the assertion iii) is proved. 
iv) immediately follows from iii). 



4.5. A special case of the Hilbert transform 

4.5. A special case of the Hilbert transform 

In order to obtain better estimates for Birkhoff-regular operators we need two 
special cases of the Hilbert transform stated in Propositions 4.5.2 and 4.5.3 below. 
Since the proof of these propositions is easier than the proof of the existence 
and the boundedness of the Hilbert transform, we shall prove these propositions 
directly. The statement and the proof of Proposition 4.5.1 are extracted from the 
proof of [TI, Theorem 1011. 

PROPOSITION 4.5.1. Let 1 < p < w and -w < c < d < w. For f  E Lp(c,d)  and 
z E C with 3 ( z )  > 0 we deJine 

Then @ f ( .  + iy) E L p ( - w , ~ )  for ally > 0 and there is a  constant C > 0 such that 

for all f  E Lp(c, d )  and all y  > 0. 

ProoJ: Since qf is holomorphic, @ f ( .  + iy) is measurable for all f  E Lp(c,d)  and 

all y > 0. Also @ f ( z )  = o(:) as lzl t m. Hence @ f ( .  + iy) E Lp(-w, m) for all 
f E Lp(c,d)  and all y > 0. Thus it is sufficient to prove that there is a constant 
C2 > 0 such that I@f(. + iy) l p  5 C21 f  l P  for each nonnegative f E Lp(c,  d )  \ (0 ) .  

In the following we need the function 

z t-, za = exp{alogz) (z E C\ { O ) ) ,  0" := 0,  

where a > 0 and log is the principal value of the logarithm, i. e., logz = log lzl+ 
iarg z for z E C \ { 0 ) ,  where arg z E [- n, n). This function is holomorphic on 
{z E C : 3 ( 2 )  < 0 )  and continuous on { z  E C : 3 (2) I 0). 
i) First we consider the case 1 < p 5 2. Let 2 I p' < w such that l l p  + l lp '  = 1. 
We set C, := p 2 : ( ~ - 1 )  and 

C : = n  sup r > ~ : ~ , ( l + r ' - p  ( { 
which is finite since rl-p -t 0 as r  t w and cos(p5) # 0. Let f  E Lp(c,d)  \ ( 0 )  
be real-valued and nonnegative. Then we write 

where x,y E $ y > 0, z = x+ iy, and u, v are real-valued functions. For all x E R 
and y > 0 we obtain 

f ( t ) ( t  + ') dt, v(x,y) = y J d  *(') dt > 0. 
c (t+x)2+y2 
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This shows 3 ( q J ( z ) )  < 0 for all z E @. with 3 ( z )  > 0. Hence 

defines a holomorphic function on { z  E @ : 3 ( z )  > 0). We consider the contour 
integral 

along the straight line from -R + iy to R + iy and along the semicircle above it. 
Since qbf(z) = o(;). we obtain that 

Hence 

for all y > 0. From 

we infer 

With the aid of (4.5. I )  we conclude 

Since 

we obtain 
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Then, by HOLDER'S inequality, 

P 
5 c1 {lu( . , y )d  I z l v ( - , ~ ) l ,  + Iv(.,Y)l;) 

= c l { l u ( ~ , ~ ) l ; - ' I v ( . , ~ ) l P  + Iv(.,y)l;). 

Dividing the above inequality by lu(. ,y) I$' l v (+,y)  1 ,  if u( . ,y )  is not identically 
zero and setting r := ( ~ ( . , ~ ) ( ~ ( v ( . , y ) ( ; ~  we obtain ( c o s ( p f ) ( r  5 C1  ( 1  + rl-P). 
Hence r  5 ($ - 1) by definition of C, i. e., 

which trivially holds if u  is identically zero. Applying HOLDER'S inequality to 

f 1 , E L p ( c , d )  and t Lp, ( c ,  d )  
((. +x)2 + y 2 ) ,  ((. + X ) 2  + y2) + 

we obtain that 

Hence 

= aPl f  1;. 
Together with (4.5.2) we infer 

l4f(.+iY)IP 5 Cl f lp .  

ii) Now let 2 < p  < 00 and 1 < p' < 2 such that 1 / p  + l / p l  = 1 .  Applying part i) 
of the proof to p1 we obtain that there is a C > 0 such that 

I@&?(. + iY)Ip' 5 CI&lp' 

for all y  > 0 and g t Lp, ( W )  with compact support. Here y e  have to note that the 
number C in part i) does not depend on c  and d .  Let f  E Lp(c ,d ) ,  r  > 0, y  > 0 and 
g  E L  ,(-r, r ) .  By FUBINI 'S  theorem and HOLDER'S inequality we have 

P 
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Since Lp(-r, r) is the dual of Lp, (-r) r ) ,  we obtain qf (. + iy) I ( - , , )  E Lp(-r, r)  

< Cl f 1 ,  . B. LEVI'S theorem yields qf (. + iy) E Lp(IR) and and l@f(.+i~)l(-~, ,) lP - 

l4f (. + iY)Ip I Clf l p  - 

PROPOSITION 4.5.2. Let 1 < p < m, cl > 0 and c2 > 0. For f E Lp(O, c l )  we set 

ProoJ: It is sufficient to consider the case f 2 0. Let q5f and u be as in Proposi- 
tion 4.5.1. Since ~ ( . , y ) l ( ~ , ~ , )  2 0 and ~ ( . , y ) l ( ~ , ~ , )  j1 X ( f )  as y \ 0,  B. LEVI'S 

theorem and Proposition 4.5.1 yield X ( f )  E Lp(O, c2) and 

There are simpler proofs of Proposition 4.5.2, see e. g. [HLP, Theorem 3161. 
But since we need Proposition 4.5.1 to prove Proposition 4.5.3, we have also used 
it for the proof of Proposition 4.5.2. 

PROPOSITION 4.5.3. Let 1 < p < w and r E Lp(a,b) such that r 2 0 and 
r-' E L,(a, b).  Set 

and, for a > 0, f E Lp(a,b) and x E (a,b),  

Then yf a E Lp(a, b), and there is a constant C > 0 such that 

for all a > 0 and f E Lp(ar b). 

ProoJ: Since yf,, depends continuously on x it is clear that yf,, E Lp(a, 6 ) .  Let 
g E Lp, (a ,  b )  where I / p  + I /p l  = 1. Applying the transformations p which is the 
inverse of x t, R(x) ,  and t = - R ( ( ) ,  we obtain with the aid of the theorem on 
integration by substitution, see [HS, (20.5)], that 

g(p(x) )p l (x )  la lo eiT('+') f ( p ( - t ) )p ' ( - t )  dt drdx.  
-a -R(b) 
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For h E Lp(-R(b),O) and z E C we define 

For 3 ( z )  > 0, integration with respect to r yields 

We set h,(t) := h(t)eIar. Then, with the notation Qf from Proposition 4.5.1, 

ph,. ( z )  = -ieia'Qha ( z )  + ie-iazfi-a (2 )  , 
and Proposition 4.5.1 implies that there is a constant C' > 0 such that 

< (e-ay + eaY)C'Ihlp. I + i ~ )  I(O,R(b)) I P  - 
since + i ~ ) l ( ~ , ~ ( ~ ) )  converges uniformly to I & ~ I ( ~ , ~ ( ~ ) )  as y -+ 0 ,  we obtain 

< 2C1lhlP. I %.a 1,o,R,b)) I P  - 
Hence (4.5.3) yields in view of HOLDER'S inequality and (2.7.1) that 

Now RIESZ' theorem yields the assertion of the proposition with C := 2~ ' I r - l  I,. 

Proposition 4.5.3 does not hold for p = w. But since p = w is the case of 
uniform convergence, it is desirable to include this case. For this we have to 
restrict the class of functions to functions of bounded variation, see e. g. [HS, 
p. 2661 for a definition of these functions. Here we use the fact that f is of bounded 
variation if and only if there are bounded nonnegative nondecreasing functions fl , 
f 2 7  f3,  f4 such that 

(4.5.4) f = f i  - f 2 + i f 3  - i f4.  

We denote the set of all functions of bounded variation on [a, b] by BV[a, b]. It is 
a Banach space with respect to the norm 

where the infimum is taken over all decompositions (4.5.4) having the above prop- 
erties. The norm on BV[a, b] is usually defined as 
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The two norms are equivalent since 

I f  5 I f  lBV 2 1 f  lLV ' 

PROPOSITION 4.5.4. Let r E L,(a,b) such that r > 0 and r-' E L,(a, b) .  Set 

R(x )  := l x r ( t )  dr ( x  E [a, b ] )  

and, for a > 0, f E L,(a, b )  and x E ( a ,  b) ,  

Then yf a E BV[a, b],  and there are constants C, > 0 ( a  > 0) such that 

I Y ~ , , I B V  5 Calf I= 

for all a > 0 and f E L,(a, b) ,  and a constant C > 0 such that 

I y f , a  Im 5 Cl f  IBV 

for all a > 0 and f E BV[a, b]. 

Proof The function yf,, belongs to W ~ ( U ,  b )  and 

In view of Proposition 2.1.5 i) this implies 

Therefore the first estimate holds. We have proved it for functions in L, ( a ,  b ) ,  but 
we shall only apply it to functions in L,(a,b). 

Let p be the inverse of x I-+ R(x)  and 77 = R(x) ,  x E [a, b]. Then integrating 
with respect to z and the theorem on integration by substitution, see [HS, (20.5)], 
yield 

R ( b )  s in(a(q  - t ) )  
f ( p ( t ) ) p l ( t )  dl. 

We set h( t )  = f ( p ( t ) ) p 1 ( t )  and obtain that h is of bounded variation with lhlBv < 
If lBvlr-' 1 -  - Let h = h ,  - h2 + ih3 - ih4 be the decomposition (4.5.4) for h, and 
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set f j (<)  := hi(R(<))r(<) for j = 1 , . . . ,4. With the substitutions a(q - t )  rt t 
and a ( q  - t) + -t we obtain 

ag sint t a(R(b)-l1) sint 
( x ) = ~ L  T h j ( i - a )  d t + 2 L  -IhjImdt 

f j P  t 

Each of the above integrals is an integral of the product of with a nonnegative 
nonincreasing function. Hence an upper bound of the absolute value of each of 
these integrals is the corresponding integral over [0, XI. This yields 

x)l < 6alh,l,v < 6~lhlBV < 6 x 1 ~ '  I-If IBV 7 ly4,a' - 

and the desired estimate holds with C = 24nJr-' 1, . 

LEMMA 4.5.5. Let c > 0 and Hc be the class of all continuous real-valuedfunc- 
tions h on an interval (0, c) with the following properties: 
(0,c) can be divided into kh subintervals such that h is monotonic and does not 
change sign on any of these subintervals; 

sup Ith(t)l =: Ch < m. 

te(O,c) 

Then for each 0 < P < 1 there is a constant C > 0 such that 

holds for all c > 0, h E H,, f E BV[O, c], r > 0, and a E [0, 11. Here x denotes the 
characteristic finction. 

Pro08 We shall prove the four estimates with different constants C. Then we take 
the maximum of these four constants as a common estimate. For the proof of 
(4.5.6) it is sufficient to consider nonnegative nondecreasing f E BV[O,c] and a 
subinterval [c,, c2] C [0, C] on which h is monotonic and does not change sign; we 
may even assume that h is nonnegative. Then 

sin(rt) h(t) f (t) dt = l: sin(rt)h(t) 1 1.. dt - Ic2 sin(rt)h(t) ( 1  f 1- - f (t)) dt. 
I 

Taking the left-hand side if h is nondecreasing and the right-hand side if h is non- 
increasing, we see that in each of these integrals the integrand is the product of 
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sin(rt) with a nonnegative monotonic function. An.upper bound for the modu- 
lus of such an integral is obtained if we take the modulus of the integral over a 
subinterval [q:, (q + 1) ;] n [cl , c2] for a suitable nonnegative integer q. From the 
assumptions on h we infer 

This proves (4.5.6) with C = 2n. 
To prove (4.5.7) we calculate for c' = min{c, $1 

In case c > we obtain from (4.5.6) that 

since 

This proves (4.5.7) for P = 1. If 0 < P < 1 ,  then we replace r by fir. The differ- 
ence to the integral in (4.5.7) can be estimated by 

This completes the proof of (4.5.7). 
Again with c' = min{c, 6)  and for arbitrary f E BV[a, b] (we can even take 

f E L,(a, b) ) ,  the estimate 

and, in case c > 5 , the estimate 

prove the inequalities (4.5.8) and (4.5.9). 
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PROPOSITION 4.5.6. Let yl, y2 E R and T. be a sector in the complex plane which 
is bounded by the rays argL = y, and argL = y2. Let q l ,  q2  'E R be such that 
yv+qp  E [ f , in]mod(2z)  for v , ~  E {1,2). Zfql # q2 we require y2 - yl $! nZ. 
Let cl ,c2 > 0. For f E BV[O,c,], r > 0, a n d x ~  [0,c2] wedefine 

Then there is a constant C > 0 such that 

Iyf,rIm 5 Clf I,, 
for all r > 0 and f E BV[O, cl]. 

Pro05 Integrating with respect to 3L yields 

Subtracting and adding x (z  + x) in the numerator, it is sufficient to prove the 
[O, $1 

estimate for 

where y = y, or y = y2. Since y2 - yl $! z Z  in case q ,  # q2 and yv + qp E 
[ f ,  i n ]  mod(2n), we infer q2 - q1 $! n + 2nZ. Replacing y + q, with q v  we 
thus have to estimate (4.5.10) for y = 0, ql  , q2 E [$, 5x1 and q2 - q ,  $ n + 2x23. 
The denominator becomes e-'Y(eiql x + eiq2 z) . Since the constant e-'r has modu- 
lus 1, we can omit it in the sequel. We further simplify the numerator by writing 
it as 

exp{r(eiqlx + eiq2z)) - exp{r(eiqlx + eiql 7)) 

+ exp{r(e1q1x+ e'ql 7)) - x (z +x). 
[O,$I 

In the first two terms, we factor out the z-independent term exp{reiqlx), whose 
modulus does not exceed 1. We write the remaining part of this term as 

exp{reiq2~) - x [ ~ , ~ ~  (7) - [exp{reigl 7) - xIO 1 El 2r @)I. 

Hence we have to estimate the integrals 

and 
C, exp{r(eiqlx+ eiql z)} - ~ ~ ~ , ~ ~ ( r + x )  

S, x + eiq2 z f (4 dz. 
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With the transformation r + x  F+ r ,  the latter integral can be written as 

where f ( 4 )  := 0 if 4  < 0.  Since the norm in BV[O,c,] of r F+ f (7)  and the norm 
in BV[O, c, + x] of r I-+ f ( z  - x) coincide, it is therefore sufficient to prove that 

where w is a complex number which is not a negative real and the constant C is 
independent of x and c. Again, we split up the numerator. We have eiV1 = -a + iP, 
where a and p are real numbers with a 2 0.  If p # 0,  then we write 

If p = 0, then we simply have 

Hence the result follows from Lemma 4.5.5 if we show that the real and imag- 
inary parts h ,  , h2 of 

are functions of class H,, where an upper bound for kh and Ch ( j  = 1,2) can be 
J J 

found which does not depend on x 2 0, c > 0,  and s 2 0. This is obvious if w = 0.  
For w # 0 we have 

From 

we infer that h,  and h2 have at most one zero and three turning points. Thus the 
numbers kh and k are at most 5. 

h2 
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4.6. Improved estimates of the Green's matrix 

PROPOSITION 4.6.1. Let f E (Lp(a ,  b))".  Then each component of the matrix 
function $((Ao f ,  O ) ,  A)  deJined in (4.4.12) is a sum of terms of the form 

and 

where v E ( 1 , .  . . , I), u E Lp(a,  b) ,  and lulp 5 Cl f l p  for some C > 0 which does 
not depend on f .  

Pro05 Let p, be the inverse function of x e IR,(x) I. In the proof of Proposition 
2.7.1 we have shown that p, E W: (0 ,  JR,  ( b )  1). The theorem on integration by 
substitution, see [HS, (20.5)], shows for g E Lp(a,b)  that 

where 

and g" E Lp(O, IRv(b)I) with lglp 5 C ,  lglp for some C, > 0 which does not depend 
on g, see (2.7.1). This representation and a similar representation for the integra- 
tion over [a, a j ]  prove that the components of the sums in $((Ao f ,  0 ) ,  A)  are sums 
of terms of the form (4.6.1) and (4.6.2) which fulfil the estimate lulp 5 C21 f l P  for 
some C2 independent of u in view of assumption (4.1.1 1). From Proposition 2.7.1 
we infer that this also holds for the double integrals in $((Ao f ,  0 ) ,  A) .  

Let xk (k = 1,. . . ,lo) be as defined in Remark 4.1.4. Set 

0 if %(keixk) < 0 ,  

1 if ~e(2e 'Xk)  > 0 ,  sk(a)  := 
0 if %(Leixk) = 0 and 3(Aeixk) > 0 ,  

1 if %(aeixk) = 0 and 3(Aeixk) < 0 .  

The following result is obvious: 

REMARK 4.6.2. For each v E ( 1 , .  . . , l } ,  A E C\ ( 0 )  and z E R we have 

6,(1) exp{-heiqvz)  = 6 k ( ~ )  exp{-;leixkz) 

if xk = q v ,  and 

( 1  - & ( A ) )  exp{hei'Pvz) = 6 k ( ~ ) e x p { - A e i x k z ]  
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PROPOSITION 4.6.3. Let 1 < p < w and suppose that the boundary eigenvalue 
problem (4.1. I), (4.1.2) is Birkhoff regular. Then we obtain 

where f varies in (Lp(a ,  b))" and A. , Mo , $, are defined in (4.1.22), ( 4 . 3 3 ,  
(4.4.7), (4.4.12). 

Pro08 By Remark 4.3.2, Mo is constant in each C, ( m  = 1,. . . ,lo). From Propo- 
sition 4.6.1 and Remark 4.6.2 we infer that in every sector C, ( m  = I , .  . . , lo) each 
component of A ~ $ ( X ,  A ) M i l  ( A ) g ( ( &  f ,  O ) ,  A )  is a linear combination of terms 
of the form 

where w E L,(a, b )  is a component of the matrix function P['], c ,  is one of the 
numbers J R l ( b ) J 7 . .  . , J R [ ( b ) J ,  u E L ~ ( O , C , ) ,  and J u J p  5 C J  f J p  for some C > 0 not 
depending on f .  Let pi be the inverse of x I-+ IRj(x)I. We apply the transfoma- 
tions x I-+ p j ( < )  and x I-+ pj( lRj (b)  1 - <), respectively, and obtain as in the proof 
of Proposition 4.6.1 with the aid of the theorem on integration by substitution, see 
[HS, (20.5)], that Proposition 4.6.3 is proved if we show that 
(4.6.3) 

C I  1 h e x n l  ~ J ( A ) ~ ~ ( A )  exp{-aeixj 1 exp{-Aeixkr)u(r) dr dA1 = O(l) lu lp  
ILI=r P 

for j7k  E { I , .  . . , lo} and for u E Lp(O,c1), where c l , c ,  > 0 and the norm on 
the left hand side is taken in Lp(0,c2).  Since 6 ~ ,  6k  are constant on C, (see 
Proposition 4.1.5), we only have to consider those j, k E { 1 , .  . . , lo) for which 
6 J ( l )  = a k ( l )  = 1 for all A EX,. 

First let j # k. Since 31(AeiXj) > 0 and 31(Aeixk) 2 0 as 6 j ( A )  = 6 k ( L )  = 1, 
Lemma 2.7.2 ii) yields that there is a C > 0 such that, for v E Lp, (0 ,  c2 ) ,  

The integrand is bounded by the function 
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We have X, - xk @ { -K,  K)  since 6 j ( I ) 6 k ( I )  = 1  for I  in the non-empty set 
C,. We infer that the function g is piecewise bounded by functions of the form 
Ccos(- + a)-' with p E { l l p ,  1  - llp). Since 

is the product of a bounded function and an integrable function in a neighbourhood 
of 0, g is an integrable function, which proves (4.6.3) for j # k. 

Now let j = k. We calculate 

Since %(heixj)  is nonnegative for all I  E Em, we obtain that % ( e ' ( f - ~ ~ ~ + ~ j ) )  and 
%(e ' ($ -~n l - l+~ j ) )  are nonpositive. Thus (4.6.3) is proved because of Proposition 
4.5.2. 

PROPOSITION 4.6.4. Let P > 0. Then 

Pro08 We calculate 
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PROPOSITION 4.6.5. Let 1 < p < m. Then we obtain for f E ( L p ( a ,  b ) ) n  

where A. and I: are defined in (4.1.22) and (4.4.8). 

Prooj We set 

y,v : = { I  E C : IIJ = r, %(he i%)  > O), 

y; : = { I  E @ : r l l =  r, % ( l e i " )  < 0). 

Let I ( ' )  be the n x n-matrix whose v-th diagonal block is Inv and whose other 
components are zero. We have 

1 
Since A. and P [ O ~ -  commute, we obtain 

where we have used that the contour integrals along the semicircle y:. and the 
' li 

line segment ref(?-qv), -rei($-qv) and the contour integrals along the semicircle 

yrTv and the line segment -rei(?-"), rei( 5-9,) are 0 by CAUCHY'S theorem. Now 
the assertion of the proposition immediately follows from Proposition 4.5.3. 
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PROPOSITION 4.6.6. Let 1 < p < = and suppose that there is a number ji > p 
such that A,,,, E M,,,,,,, (Lg(a ,  b ) )  for v = 1 , .  . . ,1. Here Ao,ov is the block of A. 
with index (0, V )  according to the block structure of Al . Then there is a number 
77 < 1 / p  such that 

for f E ( L p  (a ,  b ) )n ,  where A. , 13,  are dejned in (4.1.22), (4.4.6), (4.4.12). 

Proot We have 

We multiply the matrix functions in Proposition 4.4.5 by E ( 5 ,  h ) F ( { ,  A)-'Ao f (6 )  
from the right and integrate from a to b. In view of (4.4.1 1) we obtain with the 
aid of Proposition 4.4.3, (4.1. lo), (4.1.12) and Proposition 4.3.3 i), ii) that 

Since Bo(., A )  and go(., A )  are of the form {0 ( zP(A) ) ) , ,  see (4.1.18) and Propo- 
sition 4.4.3, we infer that 
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+~b~O(f)~o(f,a)p~(~,a)E(~,a)-lA(a)P~~l-1(5)4f(5)d5 t df 

+ {o(n-') + o ( ~ p ( a ) ) ~ )  l f  l p .  

With the aid of Proposition 4.3.5 it follows that 

I3((Aof>O),a)  -$(((In +P[O1$( . ,a ) )~o f ,O) ,a )  

Hence 

I 3 ( ( 4 f , o ) , l )  -$(((In + p [ 0 1 g o ( . 7 ~ ) ) ~ o f , o ) , a )  

where q' = max{O, - I-+ 2 / p } .  From the definition of io (see the proof of Propo- 
sition 4.4.3) we infer 

= -Bo(., A)P[O]-' + {O(T , (A) )~} , .  

Thus we obtain the estimate 

z 3 ( ( A O f > 0 ) > a )  - $ ( ( A ( ) ~ > o ) , ~ )  

The proof of the estimate of Tk,, h and T,,,T,,,h in (2.8.35) yields that 

(In -Ao)Bo(. ,a)  = { O ( T ~ ( ~ ) ) } -  

since (In - A ~ ) Q [ O ]  E Mn(Lp(a,  b ) )  by the assumption on the Aoav. From 

Bo(.,a)Ao = AOBO(.,a)AO + (In - 4 ) B o ( . ,  l ) A O  
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we infer 

I 3 ( ( 4 f , o ) , a )  - $ ( ( ~ o f , o ) J )  

where q := max{ql,  1 / p )  < 1/p. Finally, Proposition 4.4.10 yields 

L E M M A  4.6.7. Let 1 < p < 00. Suppose that Al E Mn(Lm(a, b ) )  and that there is 
a number p > p such that Aopv E Mno,", (Lp(al  b ) )  for v = 1 , .  . . ,1. Here Ao,Ov is 

the block of A. with index (0, V )  according to the block structure of Al . I f p  5 
we require that the condition (4.1.19) holds. Let Wo be defined by (4.1.10) and 
suppose that Wo E M,(L,(a, b ) )  for some number q > 1 and that a and b are no 
accumulation points of the set of points {a j  : j E N, w ~ J )  # 0) .  Suppose that the 
boundary eigenvalue problem (4.1. l ) ,  (4.1.2) is Birkhoff regular and choose the 
curves rv ( v  E N) according to Theorem 4.3.9. We define 

where I :  ( W; (a,  b))" + (Lp (al b)  )" is defined by fi = Aoy and 4 is given by 
(4.1.22). Then {Pv : v E N) is bounded in L((Lp(a,  b))").  

Proot By Al = AoAl, (4.4.14), Proposition 4.4.4 ii), (4.4.19), Proposition 4.4.2 ii), 
Lemma 4.4.6, Proposition 4.6.6, and Proposition 4.4.10 it follows that 

m 

for f E (Lp(a,b))" and l E U r v ,  where p1 :=min{&,l - l / p , l / p - q )  > 0, E 
v=n 

is as in Proposition 4.4.2 i i) ,  and q is as in Proposition 4.6.6. From Proposition 
4.3.6 iv), v )  and the definition o f  Mo in (4.3.5) we obtain 

where p := min{pl, a )  > 0 and a is as in Proposition 4.3.6 v). Hence Lemma 
4.4.6 with s = 0, Proposition 4.3.1 and Remark 4.3.2 yield 



188 IV. Birkhoff regular and Stone regular boundary eigenvalue problems 

m 

for A E U Tv . This estimate, (4.4.19) and Proposition 4.4.10 yield 
v=o 

~ , T - ' ( ~ ) ( ~ l f > o )  = ~ o t ( . , ~ , f , A )  +~o~;(.,~)~;'(~)~;((~'f,o),~) 

m 

for f E (Lp(a ,b))"  and A E U I?,. The statement of the theorem now follows 
v=o 

from Proposition 4.6.5, Proposition 4.6.3, Proposition 4.6.4, and (4.4.13) with 
respect to the Banach space Mn(Lp(a,  b ) ) .  

LEMMA 4.6.8. Let E and F be Banach spaces such that F is contained continu- 
ously in E. Denote the corresponding embedding by JF. For v E N let Pv E L(E) .  
Suppose that {PvJF : v E N) is bounded in L(F, E) .  Let H c F such that Pvw -i w 

in E as V -+ w for all w E H.  Then Pvz i z in E as v -+ w holds for all z E g F .  

Proof We may assume without loss of generality that I JF 1 < I .  Let z E R' and 
E > 0. Set M := sup IPvJF(. Choose w E H such that lz - wIF 5 & and vo E N 

V E M  
such that IPvw - wIE 5 & for v > vO. We obtain 

THEOREM 4.6.9. Let 1 < p < w. Suppose that Al E Mn(Lm(a,b))  and that there 
is a number > p such that Ao,ov E Mno,", (Lg(a ,  b ) )  for v = 1 , .  . . ,l. Here Ao,o, 

is the block of A. with index (0 ,  V )  according to the block structure of Al  . I f p  < 1 
we require that the condition (4.1.19) holds. Let Wo be dejned by (4.1.10) and 
suppose that Wo E M,(L,(a, b ) )  for some number q > 1 and that a and b are no 
accumulation points of the set of points { a j  : j E N, w ~ J )  # 0). Suppose that the 
boundary eigenvalue problem (4.1. l ) ,  (4.1.2) is Birkhoff regular and choose the 
curves rv ( V  E N )  according to Theorem 4.3.9. We dejne 

where 7: ( W; (a ,  b))" -+ (Lp  (a ,  b )  )" is defrned by yy = Aoy and A. is given by 
(4.1.22). Then lim Pv f = f holds for all f E (Lp(a ,  b))" with f = AO f .  

v+- 
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Proot We are going to show that the assumptions of the foregoing lemma are 
fulfilled. Here we take E = F = (Lp(a ,  b))".  The boundedness of {PvJF : v E W} 
was shown in Lemma 4.6.7. Let R := { A  E @ : IA I > y}. For A, p E R we define 

Then B ( A , p )  E ~ ( ( ~ d ( a , b ) ) " , ( ~ ~ ( a , b ) ) "  x C"), and the operators B ( A , p )  are 
uniformly bounded in L ( ( w ~  (a ,  b ) ) " ,  (Lp(a ,  b))" x Cn) for A, p E R. Set Jo f := 

(A, f ,O)  ( f  E (Lp(a,b))".  Then 

-(a - p ) - l ( T ( h )  - T ( P )  - B ( ~ , P ) )  ( L , P  E Q, A # P )  
m 

since Al  = AIAo. For A,, E R \ U rv we have with So,, as defined in (4.4.15) that 
v=o 

With the aid of Theorem 4.4.1 1 i) we infer 

as v -+ w. Thus, in view of Theorem 4.4.11 ii), - - 
J = lim P,J. 

v+m 

Hence we can take H = A ~ ( w ~  (a ,  b))".  Since C' ( [a ,  b ] )  c W; (a ,  b )  is a dense 

subspace of Lp(a,  b ) ,  see [H02, p. 171, we obtain H = AO(LP(a, b ) ) " .  

4.7. Uniform estimates of the Green's matrix 

In this section we consider p = m, i. e., the norm of uniform convergence. In 
particular, all general assumptions involving p are understood to hold for p = m 

unless otherwise stated. 

PROPOSITION 4.7.1. Suppose the boundary eigenvalue problem (4.1. I), (4.1.2) 
is Birkhoff-regular: Then we obtain 

where f varies in (BV[a,  b])" and Ao, Mo,  $, $ are given by (4.1.22), (4.3.5), 
(4.4.7), (4.4.12). 



190 IV. Birkhoff regular and Stone regular boundary eigenvalue problems 

Proof First we note that Proposition 4.6.1 also holds if we replace Lp(a,b)  and 
its norm by BV[a, b] and its norm. Also note that BV[a, b] is a Banach algebra and 

that P[O] and P[O]-' belong to M,(W; (a ,  b ) )  C Mn(BV[a, b] ) .  For the application 
of Proposition 2.7.1 in the proof of Proposition 4.6.1 we have to observe that the 
convolution from Ll(a ,b)  x BV[a, b] is a continuous bilinear map into BV[a,b]. 
Proceeding as in the proof of Proposition 4.6.3 we see that it is sufficient to show 
that there is a constant C such that 

holds for x E [0, c2] ,  u E BV[O, c,] and r > 0 ,  where the notations and conditions are 
as in the proof of Proposition 4.6.3. Now we are going to show that the assump- 
tions of Proposition 4.5.6 are satisfied. We set = - 5 - X,, , y2 = - 5 - Xm-l , 
q1 = xj + ?c, q2 = xk + n. Since, for sufficiently small E > 0 ,  

we infer yv + xI, E [- 5 ,  51 mod(2n) for v = 1,2 and p = j, k ,  and it follows that 
yv+qI, E [$ , i~ ]mod(2x )  for v , p  E {1,2). Wehave y2- yl @nZunless lo=2.  
If j # k and lo = 2, then 6 J ( l ) A k ( l )  = Ofor all A E (C\ (0 ) .  Hence only j = k has 
to be considered in case yl - y2 E nZ. Therefore Proposition 4.5.6 is applicable, 
and the desired estimate holds. 

PROPOSITION 4.7.2. For f E (BV[a,b])" we have 

where A. , I: are defined in (4.1.22), (4.4.8). 

Pro08 This is the same proof as for Proposition 4.6.5. Only in the last step we 
have to apply Proposition 4.5.4 instead of Proposition 4.5.3. 

PROPOSITION 4.7.3. Suppose that r l  , . . . , r, E W; (a ,  b )  and that AO,OY belongs to 

M,,,,,," (w,' (a ,  b ) )  for v = I , .  . . , I ,  where Ao,ov is the block of A. with index ( 0 ,  v )  
according to the block structure of A . Then 

for f E ( L p  (a ,  b))",  where A. , I3 , $ are dejned in (4.1.22), (4.4.6), (4.4.12). 
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Pro05 As in the proof of Proposition 4.6.6 we obtain 

Then the required estimate will follow from 

To obtain this estimate we return to the proof of the estimates of Bo(., A )  in 
Section (2.8). It is sufficient to show that, with fa defined in (2.8.33), 

satisfies the estimate { O ( A p ' )  + O ( G , ( A ) ) ~ ) } ,  , where g, = {0(1))_ . 

We have the estimates (In - Ao)T,,l(In) = { 0 ( 1 - l ) ) _  in view of Remark 

2.7.3 and T:, , ga = { O ( T , ( A ) ) ~ ) ~  . Also Tk,, is bounded from Mn (L,(a, b ) )  to 

M,(w;(~,  b ) )  and independent of A, which implies Tk,l T,,,g, = {0(1-~)}_ in 
view of Remark 2.7.3. Therefore we still have to consider T,,2TA,lga, i. e., we 
have to consider the function z(x, A )  as in (2.8.36): 

Writing the outer integral as an integral from x p p ( A )  to x v p ( A )  and an integral 
from xvp ( A )  to x, we see that we may assume that x p p  ( A )  = xvp ( A )  in order to 
find an L,-estimate of z(x, A).  We cannot apply Remark 2.7.3 directly. Therefore 
we interchange the order of integration in z(x, A)  and obtain 

where 

I u I -  < Clgn 1, = 0(1), and v E W; (a ,  b )  contains the components of (In - Ao)Ao. 
Remark 2.7.3 shows that z l  ( x , t ,A )  = 0 ( A P 1 )  uniformly for all x E [a,b] and t 
between x v p ( A )  and x, and the estimate (4.7.1) is proved. 
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LEMMA 4.7.4. Suppose that A I  € M,,(W~' (a ,  b ) )  and thatAo,ov t Mno,nv (w,' (a ,  b ) )  
for v = 1, . . . ,1,  where Ao,ov is the block of A. with index (0 ,  V )  according to the 
block structure of A . Suppose that the matrix function Wo defined in (4.1.10) 
belongs to Mt,(Lq(a, b ) )  for some q > 1 and that a and b are no accumulation 
points of the set { a ,  : j E W ,  w ~ J )  # 0 ) .  Suppose that the boundary eigenvalue 
problem (4.1 . I ) ,  (4.1.2) is Birkhoff regular and choose the curves Tv ( V  E N) 
according to Theorem 4.3.9. We define 

where T :  (w:(a, b))" + (L,(a,b))" is defined by .& = AOy and AO is given by 
(4. .22). Then {'v 1 (BVlo,bl)n : v E W) is bounded in L ( ( B v [ ~ ,  b])" , (L ,  ( a ,  b ) ) " ) .  

Proot We use estimates similar to those in the proof of Lemma 4.6.7. Using 
Proposition 4.7.3 instead of Proposition 4.6.6 we obtain 

and then 

~ o T - ' ( i l ) ( ~ ~ f , o )  = A ~ I ? ( . , A ~ ~  , A )  + A ~ ~ ~ ( . , A ) M ~ ' ( A ) ~ ( ( A ,  f , o ) , A )  

m 

for f E (L,(a, b ) ) " ,  A E (J Tv and some P > 0. The statement of the theorem 
v=o 

now follows from Propositions 4.7.2, 4.7.1, and 4.6.4. 

Apart from the operator function T we shall also consider 

where - 
~ o j ( A ) y  := y' - ( L A l  +Ao)y 

and 

for y E (w;(a,b))".  Note that ey can also be defined for y E (C[a,  b])".  
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THEOREM 4.7.5. Suppose that A ,  E M,(W; (a ,  b ) )  and A0,,, t MrlO,,,,, (w: (a ,  b ) )  
for v = 1,. . . ,1, where Ao,ov is the block of A. with index (0 ,  v )  according to the 
block structure of A . Suppose that the matrix finction Wo defined in (4.1.10) 
belongs to Mn(Lq(a, b ) )  for some q > 1 and that a and b are no accumulation 
points of the set {a ,  : j E W, w ~ J )  # 0 ) .  Suppose that the boundary eigenwlue 
problem (4.1. l ) ,  (4.1.2) is Birkhoff regular and choose the curves Tv ( V  E N) 
according to Theorem 4.3.9. We define 

where y : (w: (a ,  b )  )" --+ (L,  (a ,  b))" is defined by Jj? = Aoy and A. is given by 
(4.1.22). Then lim P, f = f holds for all f E (C[a,  b] f? BV[a, b])" satisjjing 

v+m 
f = A. f and 

for some A E C\ {0 ) ,  where Mo, 1: are given by (4.3.5), (4.4.12). The condition 
B ( A )  f = 0 is independent of A, and there are exactly n - no linearly independent 
linearfunctionals given by B(A) .  

Pro05 We shall show that the assumptions of Lemma 4.6.8 are fulfilled if we take 
E = (L,(a,b))", F = (BV[a,  b])" ,  and 

The uniform boundedness of the operators PvJF was shown in Lemma 4.7.4. Next 
we prove that Pvy --+ y as v + w in (L,(a, b))" for all y E H. In the following we 
shall use that the condition B(A)y  = 0 is independent of A E C\ ( 0 ) .  The proof 
of the independence will be postponed to the end of the proof of Theorem 4.7.5. 
L e t E : =  { A  E C :  1A1 > y).  ForA,p  E E  wedefine 

Then B(A,  p )  E L ( ( W ; ( ~ ,  b ) ) " ,  (L,(u, b))" x C n ) ,  and the operators B(A,  p )  are 
uniformly bounded in L ( ( w ~  (a ,  b ) ) " ,  (Lm(a,  b))" x Cn ) for A, p FL E. Further- 
more, IB(A, p)l = 0 ( A P ' )  + ~ ( p - ' )  as A , p  --+ w. This is clear for the first 
component, and it follows from (4.1.10) and (4.1.12) for the second component. 
The representation (4.4.17) also holds in case p = w. We immediately infer that 

m 

IF-'(A) 1 = O(1)  on U rv , whence 
v=o 
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Here we have written So,,(&) instead of So,, since we shall vary & and have to 

observe the dependence of So,, on & . Since I T ( & )  - To(&) 1 = O ( A i l ) ,  we infer 

Then 

As in the proof of Theorem 4.6.9 we obtain that 

5 pVT= ys0,, (&) 7(&) + PV,% 

holds for every v E N and every & E R such that 141 < p,. Also, by Theorem 
4.4.1 1 iv) we have 

m 

for all & E R \ IJ TV . This shows that 
v=o 

m 

for all Lo E R \ U Tv . Again from the estimates in the proof of Theorem 4.4.11 i) 

lim sup 
v-4, 

v=o 
we infer that only the terms coming from 

T- P, 7- Js0,, (A,J 

in yso,v(%) ( ( In  - y do not necessarily tend to zero as v -+ w. 

Hence Pvy -+ y in (Lm(a,  b))" as v -+ w for all y E H. Therefore, we can 
apply Lemma 4.6.8, and the convergence result in Theorem 4.7.5 follows if we 
show that 

?7 = { y  E Ao(C[a,b] n BV[a, b])" : B(A)y  = 01, 

where the closure is taken in (BV[a,  b])". Since H consists of continuous functions 
and since the BV-norm is stronger than the L,-norm, we have that H C (C[a,  b])n .  
Also, B ( A )  : (C[a, b])" -+ C? is continuous. Hence B(A)y  = 0 for all y E H .  

We still have to show that every function z E Ao(C[a,b] f l  BV[a,b])" with 
B(A)z  = 0 belongs to E. To this end we first note that ~ ' [ a ,  b] is a dense subset 
of C[a, b] n BV[a, b] with respect to the norm of bounded variation. It is sufficient 
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to show this for nonnegative nondecreasing functions f  in C[a, b] rl BV[a, b].  Set 
f  ( x )  = f  ( a )  for x  < a  and f  ( x )  = f  ( b )  for x  > b. Take any sequence of nonnega- 
tive functions (@j)T=o in Cr(R) with JR O,(x) dx = 1 and supp @, c [ - E ~ ,  E J ]  with 
E, -+ 0  as j -+ w. Then the convolution f  * @, belongs to Cm(IR) and tends to f 
uniformly, see e. g. [ H O ~ ,  Theorem 1.3.21 and its proof. Also, since f  is nonneg- 
ative and nondecreasing, all the f  * @ i  have the same property. Hence f  * @i also 
converges in BV [a, b] to f .  

Let {y , ,  . . . , y jo}  C ~ ~ ( w J ( a , b ) ) ~  such that { B ( A ) y l , .  . . ,B (A)y jo}  is a basis 

of {B(A)y  : y  E A o ( ~ ~ ( a , b ) ) " > .  Now let z E Ao(C[a,b] rl BV[a, b])" such that 
B(A)z  = 0. Since C' [a, b] C w;(a, b ) ,  the denseness result from the previous 
paragraph shows that there is a sequence ( z k ) ;  in ~ ~ ( w : ( a , b ) ) ~  with zk -+ z in 
Ao(C[a, b] r l  BV[a, b])n.  There are E C such that 

From B(3L)z = 0  we infer B(A)zk + 0  as k -+ w. Hence a .  -+ 0 for j  = 1,.  . . , jo J J  
as k -+ w because of the linear independence of B ( A ) y l , .  . . , B(A)yjo . This shows 
that 

belongs to H and tends to z as k + w, and z E 77 is proved. 
Now we shall prove that the condition B ( A )  f  = 0  does not depend on A. Let c2' and $)2 be defined as I: as in (4.4.12) with A(A)  replaced by arbitrary diagonal 

matrices A' ( A )  and A2(A) ,  respectively. Then E ( t ,  A)(] ,  - Ao) = In - A, yields 

This shows that B' ( A )  = B~ ( A ) ,  where B' ( A )  and B ~ ( A )  are defined as B ( A )  with 
replaced by q1 and c12, respectively. Talung A 1 ( A )  = A ( l )  and A2(A)  = 0  we 

infer that 

B ( A ) f  = & M o ( " - ' ~ " ( ( ( A o  - ' n ) ~ o f  ,Ttf),A), 
where it is easy to see that q 2 ( ( ( A o  - In)Ao f ,  T t  f ) ,  A )  does not depend on A. Let 
A,& E C\  ( 0 ) .  Then 
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implies that 

The right-hand side shows that this matrix is independent of A, whereas the left- 
hand side for A  = & shows that it is I, - Ao. Hence, with & fixed, it follows 
that 

with suitable matrix functions D,  ( A )  and D2(A) .  Now 

shows that B ( A )  f  = 0  is independent of A  since D2 ( A )  is invertible. 
This also shows that the number of conditions given by B ( A )  f  = 0  is at most 

n  - no since A. has rank n  - no. We still have to prove that it is at least n  - no. 
To this end we observe that, for any co,cl  E @' and any & > 0 ,  we can find 
f, E (C[a,  b] n BV [a, b])" such that f E ( a )  = co, f,(b) = c , ,  I f E l ,  I E and 

T,Rf, = w J O ) f E ( a )  + ~ d ' ) f , ( b )  = wJO)co + w i ' ) c 1  

(note that we assume that a  and b  are no accumulation points of the a i  for which 

W ~ J )  # 0).  For example, we can take for f, the function whose graph consists 
of the line segments connecting the points (a, c0),  (a  + 6,, 0 ) ,  ( b  - 6,, O), (b ,  c l  ), 
where 6, is a sufficiently small positive number. Then 

lim B ( A )  f, = AoM0(A)-' (WdO)co + w d l ) c l )  
E--10 

yields that it is sufficient to show that 

A ~ M ~ ( A ) - ~ ( W J ~ ) ,  wdl)) 
has rank n  - no. But this is obvious since 

REMARK 4.7.6. i) If no = 0,  then A. = I,, and the condition B ( A )  f  = 0  reduces 
to T: f  = 0. 
ii) Let A be a diagonal matrix whose first no diagonal elements are zero and whose 
other diagonal elements are zero or one. Then it is immediately clear from the 
proof of Theorem 4.7.5 that lim AP,, f  = f  holds for f  E A(C(a,  b )  f l  BV [a, b])" if 

V 4 m  . , 

A M o ( A ) - ' I ~ ( ( ( A o  - I,)A, f ,  f ) , A )  = 0  for A  E C\  (0). From Theorem 4.7.5 
we know that there are exactly n  - no conditions given by B ( A )  f = 0. Therefore, 
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for such A with rank A = m, the number of conditions lies between m and n - no. 
In general, the conditions depend on 2, and have to be evaluated for each sector 
Zk (see Remark 4.1.4). 

REMARK 4.7.7. In case @ f  = 0 is a two-point boundary condition we have 

B o ( a ) f  := $( ( (Ao  - ~~)~~ f , e f ) ,h )  = wJ0) f ( a )  + w:" f ( b )  

As was seen in the proof of Theorem 4.7.5 we can take A(A)(In - A,) = 0 or 
A(A)(In - A,) = In - A,. 

REMARK 4.7.8. If y E (w:(a, b ) ) n  and lim Pvy = y in (L,(a, b ) ) n ,  then it follows 
v+- 

that y E Ao(w: (a ,  b))" and B(A)y  = 0, where Pv and B ( 2 )  are as in Theorem 4.7.5 
and A. is defined in (4.1.22). 

Proot Since R(Pv) C A,(w:(~, b))' ,  the condition y E A,(W:(U, b)) .  is neces- 
sary. And from the proof of Theorem 4.7.5 we immediately infer that lim Pvy = y 

V-- tm 

holds for y E A,(W:(U, b))" if and only if 

uniformly for all x E [a, b]. It is easy to see that the limit superior does not de- 
pend on &. For simplicity, we thus may take Lo = 0. We also may multiply 

$ ( x , p v a )  by P[']-'(x) from the left. Hence we have that lim Pvy = y holds for 
V--+m 

y E A,(w:(~, b ) )n  if and only if 

(TV y )  ( x )  : = 

tends to 0 as v -+ 00 uniformly for all x E [a, b]. The components of this integral 
are of the form 
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where ml and m2 are step functions consisting of those parts of the components of 
B ( A ) y  which only depend on arg A, and j E { 1,. . . , I } .  We are going to show that 
ml = 0 and m2 = 0. Assume that the first integral in (4.7.3) is different from zero 
for some vo E N and xvo E [ a , b ] .  Since lRjl is strictly increasing and continuous 
with R j ( a )  = 0, there is a (unique) x, E [a,  b )  such that p, lRj ( x , )  I = pvo lR,(xvo) 1 
for v > vo. From pv lRj (b)  I -+ M as v + w we infer that, with these x,, the second 
integral tends to zero as v + (x, by LEBESGUE'S dominated convergence theorem. 
This shows that Fvy(xv) would not tend to zero as v + w. A similar argument with 
the second integral shows that both integrals in (4.7.3) must be zero for all v E N 
and all x  E [a ,  b ] .  

It follows that 

( x e x p { e i q p J m j ( D )  d9 = 0 

for j = 1 ,2  and all p  > 0. Differentiating with respect to p  gives 

for all nonnegative integers k. Integrating with respect to p  gives 

where 0 5 p  5 pl . For pl + M, 

by LEBESGUE'S dominated convergence theorem. Hence 

for all p  > 0. Repeating this integration we see that (4.7.4) holds for all integers k. 
Since {e2'q : k E Z} is a basis in L~ (5 IK), we infer that e x p { e @ p } m j ( q )  = 0 
and hence ml = 0 and m2 = 0. This shows that B(A)y  = 0. 

EXAMPLE 4.7.9. We consider the boundary eigenvalue problem 
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where a and p are complex numbers. We shall determine the conditions given 
by B(L)y  = 0. In this example, P [ O ] ( X )  is the identity matrix for all x since 1 = 2, 
no = nl = n2 = 1, and the diagonal elements of A. are zero. Also, A. is constant, 
and we obtain in view of Remark 4.7.7 that 

We have 

* ( l ) = ( B  ; i), . I 1 ) = ( i  & ;) 
Mo has the two values 

Since M o ( l )  and Mo(- I )  are invertible, the problem is Birkhoff regular. From 

and 



200 IV. Birkhoff regular and Stone regular boundary eigenvalue problems 

it follows that 

We have to consider arbitrary y = (0,y2,y3) E &(C[O, 11 n BV[O, 11)~ .  We see 
that the conditions given by B(1)y = 0 and B(- l )y = 0 are the same. Of course, 
we already know this from Theorem 4.7.5. Explicitly, the conditions given by 
B(L)y = 0 are 

In case a = p = 0 it is easy to see that any y E Ao(CIO, 11 n BV[O, 1 1 ) ~  satisfy- 
ing the given boundary conditions also satisfies B(L)y = 0. But there is no obvious 
way how to deduce the conditions B(1)y = 0 from the boundary conditions. 

Now let us assume that we only want the convergence for the third compo- 
nent. In view of Remark 4.7.6 ii) we have to consider only the third component of 
B(- 1) and B(1). This gives the two conditions 

that is, here we have to consider both B(1) and B(- 1) to find a minimal set of 
conditions. Also, if we only consider the second component, we obtain two con- 
ditions. In this case, there is no reduction of the number of conditions obtained for 
general (0,y2 ,y3). But there are other boundary conditions for which the number 
of conditions for y, or y3 alone reduces to one. 



4.8. Notes 

4.8. Notes 

The boundary conditions in this section are kept as general as possible and 
may include (infinitely many) interior point boundary conditions as well as in- 
tegral terms. In this sense, they coincide with those in COLE [C03]. Although 
this makes many proofs more involved (and certain restrictions may have to be 
imposed), the interior point boundary terms and the integral term do not enter 
into the condition for Birkhoff regularity if A ,  is invertible. The regularity con- 
dition in COLE [C03, p. 5411 yields Stone regularity as defined in Section 4.4, 
see Lemma 5.7.8. Our estimates of the resovent follow the approach of LANCER 
[LA91 and COLE [C02], [C03]. The main idea for the estimates of the inverse 
of the characteristic matrix is to write all terms as a product of bounded matrices, 
where the factorization may be different for different values of the variables and 
the parameters. This splitting is been taken care of in the matrices A(A) ,  so that 
one can handle different cases with one formula. This, and staying with matrices, 
if possible, makes the proofs more manageable. 

Eigenfunction expansions are often stated as being equiconvergent with 
Fourier series. Although we do not make any statements of that form, Proposition 
4.6.5 may be considered as a result on the convergence of the Fourier expansion. 
In this light, Proposition 4.6.5 may be seen as the main estimate, whereas the other 
estimates would be perturbation results stating equiconvergence with expansions 
for a simplified problem. 
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Chapter V 

EXPANSION THEOREMS FOR REGULAR 
BOUNDARY EIGENVALUE PROBLEMS FOR FIRST 

ORDER SYSTEMS 

In this chapter eigenfunction expansions for regular boundary eigenvalue prob- 
lems for first order n x n systems of ordinary differential equations are proved. 
The boundary conditions are allowed to contain countably many interior points 
and also an integral term. The first order differential system depends linearly 
on the eigenvalue parameter A and the coefficients in the boundary conditions 
are n x n matrix polynomials in A. The notions Birkhoff regularity and Stone 
regularity are introduced for such boundary eigenvalue problems in terms of the 
corresponding notions defined in the preceding chapter for boundary eigenvalue 
problems with asymptotically constant boundary conditions (Definitions 5.2.1 and 
5.5.1). For this the A-polynomial boundary conditions of this chapter have to be 
transformed to asymptotically constant boundary conditions as considered in the 
fourth chapter. Indeed, it depends on this transformation whether a boundary 
eigenvalue problem of the present type is Birkhoff regular or Stone regular, and 
sometimes an appropriate choice is not obvious. A method to check Birkhoff 
regularity is deduced, first for the more important and simpler case of two-point 
boundary eigenvalue problems (Theorem 5.2.2), and afterwards in the general 
case (Theorem 5.2.3). Also a procedure is described by which Stone regularity 
can be checked. The actual conditions which have to be satisfied are rather so- 
phisticated, and the calculations which have to be performed are very laborious. 

Under the assumption that the endpoints of the underlying interval are no ac- 
cumulation points of the interior points occurring in the boundary conditions, it is 
shown for Birkhoff regular boundary eigenvalue problems in the case 1 < p < = 
that certain components of the vector functions in (Lp(a,b))" are expandable 
into series of the corresponding eigenfunctions and associated functions (Theo- 
rem 5.3.2). These series are Lp-convergent. If the leading matrix A ,  in the dif- 
ferential system is invertible, each vector function in (Lp(a, b))n is expandable. 
For p = w, which means uniform convergence of the eigenfunction expansions, 
a more restrictive result holds (Theorem 5.3.3). As in the case of Fourier series, 
only continuous vector functions which are of bounded variation and fulfil certain 
boundary conditions can be expanded. 

203 
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For Stone regular boundary eigenvalue problems the situation is more compli- 
cated. In this case the resolvent behaves like some nonnegative power of L on the 
regularity circles Tv (v E N). It is shown that for 1 < p < w certain components 
of the eigenfunction expansions of such problems converge to these components 
of a given vector function if this function is smooth enough, i. e., belongs to some 
Sobolev space of sufficiently high order, and fulfils certain boundary conditions 
(Theorems 5.6.7,5.6.9,5.6.10 and 5.6.1 1). These boundary conditions are defined 
by an iterative procedure. 

Finally, the notion of strong s-regularity is introduced. This concept yields 
some improvements of the above mentioned expansion theorems. 

5.1. First order systems which are linear in the eigenvalue parameter 

Let -w < a < b  < w, 1 5 p 5 w and n E N\ (0). Here we consider the boundary 
eigenvalue problem 

(5.1.1) y' - (LA, +A,)Y = 0, 

where y varies in (w; (a, b))". 
For the system of differential equations (5.1.1) we assume that the coefficient 

matrices A. and A belong to M,, (L, (a, b) ) .  As in Section 4.1 we suppose that A , 
is a diagonal matrix, 

where 1 is a positive integer, 

where no E N and nv E N\ (0) for v = 1,. . . , l .  According to the block structure 
1 of A, , we write A. = (Ao,vp)v,p=l . For the diagonal elements of A, we assume: 

ro = 0, and for V,  p = 0,. . . ,1, there are numbers cpvp E [O, 2 ~ )  such that 
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Note that ,u = 0 gives r;' E Lm(a, b )  for v = 1, .  . . , I  and 

~ ~ ( x ) = I r , ( x ) ( e ' ~ ~  a.e. i n ( a , b )  ( v =  1 ,..., l ) ,  

where qv := qvo= q o v f  "for v = 1, . . . ,  1. 

For the boundary conditions (5.1.2) we assume that a j  E [a, b] for j E N, that 
a j  # ak if j # k, and that a. = a, a ,  = b. We suppose that the matrix function 

W (., A )  is a polynomial with coefficients in Mn (Ll (a ,  b ) )  and that the w(J )  ( A )  are 
polynomials in Mn(@) with a common upper bound for their degrees. 

The first order system (5.1.1) fulfils the assumptions of Section 4.1, but the 
boundary conditions (5.1.2) are not asymptotically constant if W or one of the 
W ( J )  depends on A. In order to obtain the conditions (4.1.10)-(4.1.12) we require 
that there is an n x n matrix polynomial C2(A)  whose determinant is not identically 
zero such that the following properties hold: 
There is a matrix function Wo E Mn(Ll (a ,  b ) )  such that 

and there are n x n matrices w J ~ ) ,  j E N, such that the estimates 

and 

hold. 

We have to check that the boundary conditions (5.1.2) are well-defined. Since 
the determinant of C2(A)  is a polynomial and since C2(A)  is invertible if its deter- 
minant is nonzero, C2(3L) is invertible for all sufficiently large A. Hence condition 
(5.1.3) makes sense. From 

as 3L -+ w (see Section 4.1) we infer that 

is locally uniformly bounded and convergent for sufficiently large A, say I > 7. 
Since C2(A)  is invertible for all sufficiently large A, we may assume that C2(A)  is 
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invertible for ( A  ( 2 y. For I < y and k E N we obtain by the maximum modulus 
principle that 

Hence (5.1.6) is locally uniformly bounded on C. By VITALI'S theorem, (5.1.6) 
converges for all 1 E C and represents a holomorphic vector function. Thus 

defines a holomorphic operator function T R  on L ( ( w ~  (a,  b))" ,  Cn ). Here we have 
to note that the strong holomorphy, i. e., the holomorphy of TRY for each function 
y E (w; (a,  b))",  implies the (norm) holomorphy of T R ,  see e. g. [KAl, Theorems 
111.1.37 and 111.3.121. For 2 y and y E W:(a, b))" we set 

Then T R ( 1 )  belongs to L(w,' (a ,  b ) ) " ,@)  and depends holomorphically on I for 
a E R := { a  E (C : la1 > y}. 

5.2. Birkhoff regular first order systems 

DEFINITION 5.2.1. The boundary eigenvalue problem (5.1. l ) ,  (5.1.2) is called 
Birkhof regular if there is an n x n matrix polynomial C2(A) fulfilling the as- 
sumptions (5.1.3)-(5.1.5) such that the differential system (5.1.1) with the bound- 
ary conditions TR( l i )y  = 0 is Birkhoff regular in the sense of Definition 4.1.2. 

Now we present a method how to check Birkhoff regularity. If v is the maxi- 
mum of the orders of the polynomials W and w ( J ) ,  then we can take C2 ( A )  = A "In. 
In this case 

c,-'(a)w(n) - w0 = o(a-l) 
and 

c;l(n)w(j)(a) - wdj) = o(a-I) ( j  E N) 
holds for suitable Wo and wdj). But in order to obtain Birkhoff regularity one often 
has to take a more sophisticated matrix polynomial C2, see e.g. the examples in 
Section 4.2. 

First we consider two-point boundary eigenvalue problems with no = 0. Thus 
W = 0 and ~ ( j )  = 0 for j  2 2. Then we write 

%(a)  := (w(O)(a), w ( l ) (a ) )  := 
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If one component wj(A) is identically zero, then the matrix @ ( I )  has rank n - 1, 

and so c ; ' ( I )@(I)  has rank n - 1 for any C 2 ( I )  such that c;'(I)@(L) is 
asymptotically constant. But then the determinants of all n x n submatrices of 
c;~(L)@ (A) are identically zero. Thus the determinants of all n x n submatrices 
of 

(wJO), wJ1)) = lim c;' (A)@(A) 
a-+m 

are zero, which proves that none of the corresponding Birkhoff matrices-which 
are certain n x n submatrices of (wJ0), w;'))-is invertible. 

Hence a necessary condition for Birkhoff regularity is that none of the w,(I )  
is identically zero. 

Let V, be the degree of the vector polynomial wj and let wy be its coefficient of 
A?. If the wy ( j  = 1,.  . . ,n) are linearly dependent, then there are a,, . . . , an E @ 
such that 

n 
a,wy = 0 and ( a l  , .. . , an) # 0. 

j= 1 

We choose a number jo E (1,. . . , n) with 

We may assume that aj0 = 1. We define c ( I )  = (cl (A), . . . , cn(A)) by 

if a .  = 0 or j = j,, 
I 

if a, # 0 and j # jo. 

Then 
C ( I )  := In - ej0c(L) 

is invertible with 
c v l ( I )  = In + ej0c(I) 

since c ( I ) e .  = 0. Now we consider C-' ( h ) @ ( I ) .  This is again a matrix poly- 
10 

nomial. For j E {I ,  . . . , n) \ { jo), the j-th row of ( I )@(L)  is the j-th row of 
@(A), and the jo-th row of C-I (A)@(A) is 

From the definition of the v, we know that this row is a polynomial of degree less 

or equal vj0, and its coefficient of I V j o  is 



208 V. Expansion theorems for first order systems 

Hence the jo-th row of C-'(A)@(A) is a polynomial of degree less than vj0 . If 
the jo-th row of C-'(h)@(A) is identically zero, then we already know that the 
boundary eigenvalue problem cannot be Birkhoff regular. If it is nonzero, then 
we repeat the above procedure. The sum of the degrees of the vector polynomials 
formed by the rows decreases strictly. After a finite number of steps we thus 
obtain an n x 2n matrix function C-'@ with the following properties: 
i) C is a polynomial and C(A) is invertible for all A E C, 
ii) either one of the rows of C-'(A)@(A) is identically zero or for each j E 

{I , .  . . , n )  the j-th row of C-' (A)@(h) is a polynomial, say of degree v,, 
0 and if its coefficient of IVj is denoted by wy, then we have that wp, . . . , w, 

are linearly independent. 

Boundary conditions fulfilling these properties are called normalized. Since 
this procedure is done by multiplying the boundary matrices with an invertible 
matrix polynomial from the left, it would be no restriction to require that the 
boundary conditions are normalized. 

Finally we multiply the normalized boundary conditions by 

from the left. Then we obtain the representation 

where C2 (A) is the product of diag(Avl , . . . , il 'n) and a finite number of matrices 
of the form In - ej0c(A), i.e., C2(A) is a matrix polynomial and invertible for 
a # O .  

THEOREM 5.2.2. We consider the two-point boundary eigenvalue problem 

and assume that A is invertible, i. e., no = 0. Then the two-point boundary eigen- 
value problem (5.2.1) is Birkhoff regular ifand only ifthe following two properties 
hold: 
i) There is a matrix polynomial C2 whose determinant is not identically zero such 
that 

where (w!'), w;')) is an n x 2n matrix of rank n. 
ii) For any matrix polynomial C2 fuljilling i) the boundary eigenvalue problem 
(5.2.1) is Birkhoff regular in the sense of Definition 4.1.2. 
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Proo$ The sufficiency of the conditions is obvious by the definition of Birkhoff 
regularity. We have already seen above that i) is necessary. Now let the problem 
be Birkhoff regular and C2 be a matrix polynomial fulfilling i), i. e., 

where @(A) := ( w ( O )  (A), ~ ( l )  (I)) and rank G2 = n. By definition of Birkhoff 
regularity, there is a matrix polynomial C1 such that 

with rank Gl = n such that 

el (L a;?)) is invertible for all h E C\ (0). 

The matrix c2ad(il) is the matrix of the cofactors of C2(il), i. e., its entries are the 
determinants of (n - 1) x (n - 1) submatrices of C2(A). Hence c;~ is a matrix 
polynomial. Since the determinant of C2(il) is a polynomial which is not identi- 
cally zero, we have 

for some integer r and some a # 0. Hence 

which proves that 

for some integer s and a nonzero n x n-matrix C. Then 

Since G1 has rank n and C is nonzero, the matrix is nonzero. Hence s = 0 
and cG1 = G2. Since rank G2 = n, we infer that C is invertible. But this proves 
that 

is invertible for all A E @ \ (0). 
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If s E N and f is a complex-valued function defined on an unbounded subset 
U of C,  then we call f an asymptotic polynomial of order s (with respect to i) if 
there are f j  E C ( j  = 0, .  . . ,s)  such that 

S 

f ( n )  = a - J f ,  + n-so( i )  
j=O 

as l. + w. f is called an asymptotic polynomial if it is an asymptotic polynomial 
of some order s. Asymptotic polynomials for vector-valued functions are defined 
analogously. 

THEOREM 5.2.3. Let no = 0. The boundary eigenvalue problem (5.1. I), (5.1.2) is 
Birkhoff regular i f  and only if the following three properties hold: 
i) There is a matrix polynomial C2 whose determinant is not identically zero such 
that 

and (WJo), w!')) is an n x 2n matrix of rank n. 
ii) For any matrix polynomial C2 fulfilling i) the two-point boundary eigenvalue 
problem (5.1.1). W J ~ ) ~ ( U )  + ~ ! ' ) ~ ( b )  = 0 is Birkhoff regular in the sense of Dej- 
nition 4.1.2. 
iii) For any matrix polynomial C2 filfilling i) the estimates 

and, for j E N, 
C T ~ ( A ) W ( J ) ( ~ ) = O ( ~ )  inMn(C) 

hold, and the properties (5.1.4) and (5.1.5) are fulfilled, where the matrices W!J) 

are uniquely determined by C2. I f  w(J )  # 0 only forfinitely many j, then (5.1.4) 
and (5.1.5) are automatically satisfied. 

ProoJ: First we suppose that there is a matrix polynomial C2 fulfilling i)-iii). Here 
we have to note that 

c;-l (n )  = nsE2(n), 
where s is a suitable integer and C2(n) is an asymptotic polynomial of arbitrary 
order. Indeed, 

with r E N and q, # 0 shows that (detc2(iZ))-' is an asymptotic polynomial of 
arbitrary order. As in the proof of Theorem 5.2.2 we infer that 
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has the representation stated above. Thus c;' ( 1 1 ) ~  (., 11) and the c;' ( A )  W ( j ) ( j l )  
are asymptotic polynomials which proves the representations (5.1.3) and 

Conversely, let the problem (5.1. I), (5.1.2) be Birkhoff regular. Then also the 
two-point boundary eigenvalue problems (5.1. I), w ( O )  (A )y (a )  + w(')  (11)y(b) = 0 
is Birkhoff regular. Hence condition ii) is necessary by Theorem 5.2.2. Let C2 be 
any matrix polynomial fulfilling i). We have to prove that iii) is fulfilled. Choose 
some matrix polynomial C1 such that the boundary eigenvalue problem (5.1.1), 
c , ' ( ? L ) T ~ ( A ) ~  = 0 is Birkhoff regular in the sense of Definition 4.1.2. Since the 
corresponding two-point boundary eigenvalue problem is also Birkhoff regular, 
we know from the proof of Theorem 5.2.2 that 

where C  is an invertible n x n matrix. But this immediately proves that iii) does 
not only hold with respect to C1 but also with respect to C2. 

REMARK 5.2.4. In case no # 0 we have to substitute 

for (W( ' ) (L) ,  w ( ' ) (A ) )  in condition i) of Theorem 5.2.2 or 5.2.3, respectively. 
Also, the boundary condition in ii) has to be replaced by 

We leave the details to the reader. 

5.3. Expansion theorems for Birkhoff regular problems 

We suppose that the boundary eigenvalue problem (5.1. I), (5.1.2) is Birkhoff reg- 
ular and associate to it the operator function 

where 

(5.3.1) 

(5.3.2) 



212 V. Expansion theorems for first order systems 

for A E C and y E (w; (a ,  b) )" .  We choose a matrix polynomial C2 according to 
Definition 5.2.1 of Birkhoff regularity and set 

Then the boundary eigenvalue problem T ( A ) ~  = 0 is Birkhoff regular in the sense 
of Definition 4.1.2. By Theorem 4.3.9 and the discussion following Definition 
4.4.1 we obtain that there are circles T v  centred at 0 with radii pv (V  E I+?) such 
that pv /' w as v + w and F ( A )  is invertible for all A E T v  and v E N. Since we 
may assume that C2(A)  is invertible for these A, T ( A )  is invertible for all A E T, 
and v E N Hence, for f E (Lp  (a ,  b) )" ,  

is well-defined, where 5 (w; (a ,  b))" i (Lp(a ,  b))" is given by 6 = Aoy. Because 
of (5.3.3) we obtain 

(5.3.5) T - l ( w f l l f 2 )  = ~ - ' ( A ) ( f , , c ~ ( A ) f ~ )  

for A E p ( T )  and ( f , ,  f2)  E (L,(a, b))" x @'. We immediately infer that 

Qv=Pv  EN), 

where the P, are defined in Lemma 4.6.7, i. e., 

p f = - -  v ' / JY- ' (A)(A,  f , o )  dn ( V  E w).  
2xi  r, 

As an immediate consequence of Theorem 4.6.9 we obtain 

THEOREM 5.3.1. Let 1 < p < w. Suppose that Al  E M,(L,(a,b)) and that there 
is a number p > p such that A,,,, E M,,o,nv (Lp(a ,  b ) )  for v = 1,. . . ,l. Here A,,,, 

is the block of A, with index (0 ,  V )  according to the block structure of A,. I f p  < 
we require that the condition (4.1.22) holds. Let W, be defined by (5.1.3) and 
suppose that W, belongs to M,(Lq(a, b ) )  for some q > 1. Assume that a and b 
are no accumulation points of the set { a j  : j E N, w ~ J )  # 0 ) .  Suppose that the 
boundary eigenvalue problem (5.1. l ) ,  (5.1.2) is Birkhoff regular and let Qv be 
deJined by (5.3.4). Then lim Q, f = f in (Lp(a ,  b ) ) n  holds for all f E (Lp(a ,  b ) ) n  

V+-= 

with f = A, f ,  where A, is defined in (4.1.22). 

Since T is a Fredholm operator function, we can represent the principal parts 
of T-' in terms of eigen- and associated vectors of T and T*. Since an eigen- 
vector or associated vector v of T* belongs to (Lp, (a, b))" x Cn,  we can write 
v = (u ,  d )  with u E (Lpl  (a ,  b))" and d E P. For an eigenvalue A, of T we define 
r(A,) := dim N(T(A,) )  and let m . ( j  = 1 ,  . . . , r,) denote the partial multiplici- 

K > l  

ties of T at A,. Theorem 5.3.1 and Corollary 1.6.6 lead to 
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THEOREM 5.3.2. Let 1 < p < w. Suppose that A ,  E M,(L,(a, b ) )  and that there 
is a number > p such that Ao,OV E Mno,", (Lp(a ,  b ) )  for v = 1 , .  . . ,l. Here Ao,Ov 

is the block of A. with index (0, V )  according to the block structure of A'. I f p  < 
we require that the condition (4.1.22) holds. Let Wo be defined by (5.1.3) and 
suppose that Wo belongs to Mn(Lq(a,b))  for some q > 1. Assume that a and b 
are no accumulation points of the set { a j  : j E N, W ~ J )  # 0) .  Suppose that the 
boundary eigenvalue problem (5.1. l ) ,  (5.1.2) is Birkhoff regular and choose the 
curves r, (V  E N) according to Theorem 4.3.9. Let Lo, A l l . .  . be the eigenvalues 
of T and let 

{ y ( ~ )  : j = I , .  . . , r (AK);  1 = o 1 .  . . ,rnK,, 
K, l  - 1 1  

and 

{ ( U ( J ) ~ ~ ( J ) ) :  K,I I C , ~  j =  l l . . . l r ( A K ) ; l = O  ,..., mK,, -1)  

be biorthogonal CSEAVs of T and T* at A,. Then 

holds in (Lp(a ,  b))" for all f E (Lp(a ,  b))" with f = A. f ,  where A. is dejlned in 
(4.1.22). 

Now we consider the case p = w. In the above theorem, we used the eigen- 
functions and the associated functions of the adjoint operator function to find the 
coefficients of the expansion. But for p = w we want to refrain from this since 
the dual of L,(a, b )  has a much more complicated representation than the dual of 
Lp(a,  b )  for p < w. 

The choice of a suitable p for the boundary eigenvalue operator depends on 
the functions we want to expand and the regularity of the coefficients in the dif- 
ferential equation. If T is defined for po, then it is also defined for all p < po. 
But the characteristic matrix of T does not depend on p. Hence the partial multi- 
plicities are independent of p, and any CSEAV of T corresponding to po is also a 
CSEAV of T corresponding to p < po. In addition, a CSEAV of T* for p is also 
a CSEAV of T* for po if po < m. In particular, the principal part of T-' at a pole 
is independent of p as a linear combination of tensor products of the eigenvectors 
and associated vectors of T and T * .  

Since T-' ( A )  for p = w is the restriction of T-' ( A )  for any p < w, say p = 2, 
we can consider p = 2 to find the residues of T-' in the case p = w. Thus we do 
not need the representation of the dual of L,(a, b )  or even the dual of W ~ ( U ,  b )  in 
the following theorem. 

The analog of Theorem 5.3.1 is obtained for p = m if we use Theorem 4.7.5. 
And with the above considerations we obtain 
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THEOREM 5.3.3. Suppose that Al E M,(W/ (a ,  b ) )  and E Mn,,,n, (w/ (a,  b ) )  
for v = 1 , .  . . , 1. Here Ao,ov is the block of A. with index (0 ,  V )  according to the 
block structure of Al .  Let Wo be dejined by (5.1.3) and suppose that Wo belongs 
to Mn(Lq(a, b ) )  for some q > 1. Assume that a and b are no accumulation points 
of the set {a j  : j E N, w ~ J )  # 0) .  Suppose that the boundary eigenvalue problem 
(5.1. I), (5.1.2) is Birkhoff regular and choose the curves Tv ( V  E N) according to 
Theorem 4.3.9. Let 4, A,, . . . be the eigenvalues of T and let 

and 
{ ( u ( ~ ) , d ( ~ ) )  K , L  ~ , l  : j=  1 ,..., r (AK); l=O ,..., mK,,- I }  

be biorthogonal CSEAVs of T and T* at A,, respectively. Then 

holds in (C(a, b))" for all f E (C[a, b] n BV[a, b])" with f = A. f and 

for some 3L E C\ (01, where 4 and $ are dejined in (4.1.22) and (4.4.12), 

and Wo , w J ~ )  ( j  E N) are dejined in (5.1.3)-(5.1.5). 

5.4. Examples for expansions in eigenfunctions and associated functions 

We continue the discussion of the boundary eigenvalue problem (4.3.18), (4.3.20) 
given by 

We have shown that this boundary eigenvalue problem is Birkhoff regular. For 
the expansion of arbitrary functions with respect to eigenfunctions and associated 
functions of this boundary eigenvalue problem we have to determine biorthogonal 
CSEAVs of the corresponding boundary eigenvalue operator function T and its ad- 
joint T*. But since we know the characteristic matrix of the boundary eigenvalue 
problem explicitly, we shall first determine biorthogonal CSEAVs of M and M*. 
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We have seen that the algebraic and the geometric multiplicities of the eigen- 
values depend on the values of a and P .  Therefore, we shall consider three cases. 
First let us state some general properties. A fundamental matrix function of the 
differential system (4.3.18) is 

(see (4.3.19)). The characteristic matrix is given by (4.3.21): 

According to Theorem 3.1.4 we need the operator function (TRu)* in order to 
determine the eigenfunctions and associated functions of T* from the eigenvectors 
and associated vectors of M*. In (3.3.4) we have calculated 

((TRu)*(a)d) (x) = Y-'(X,I)TY (1, A)TW(')(I)T~.  

Since W(')(L) is the coefficient matrix of y(1) in (4.3.20), we obtain 

The asymptotic boundary conditions were obtained with C,(L) = (i :). Thus 

Remark 4.7.6 i) yields that the boundary condition B(L) f = 0 in   he or em 5.3.3 is 

equivalent to 

If p = 0, the eigenvalues of M are 0, 3Lk := (2k - 1)ni and := (-2k+ 1)zi 
fork= 1,2, .... 

CASEI. P =Oand a =  1. Fork€  Z\{O) weset 

and obtain 

since 

We set 

eA + 1 
lim - = -1. 

h a ,  a - ak 
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Since M(Ak)  = 0 ,  any nonzero element of C2 is an eigenvector of M or M*, re- 
spectively. From 

we immediately infer that {cL1),c;)) and { d i 1 ) , d j 2 ) }  are biorthogonal CSEAVs 
of M and M* at Ak. 

Now we have to find the corresponding eigenfunctions of T and T*. We set 

From Theorem 3.1.4 we know that {yL1),y!)) and { v ~ ' ) , v f ) )  are biorthogonal 
CSEAVs of T and T* at Aka An easy calculation yields 

u ~ ( x )  = ( ~ ~ ~ i ~ ~ )  7 u;) ( X I  = ( - e'kkx) 

We still have to consider the eigenvalue 0. For this a can be arbitrary. Since 0 is 

a simple eigenvalue and M ( 0 )  = ( a i l ) , d : =  ( y )  isaCSEAVofM* a t p .  

But as 
u := ( T ~ u ) * ( o ) ~  = 0 ,  

the eigenvalue 0 does not contribute to the expansion. In view of Theorem 5.3.2 
we thus obtain that the eigenfunction expansion 

holds for all f E (Lp(O, I))., 1 < p < M, and the series converges in (Lp(O, I)).. 
In case p = w we infer from Theorem 5.3.3 that the above series converges in 

(L-(0,  1 ) ) .  for all f E ( ~ [ u ,  b] tl BV[U, b ~ ) ~  satisfying 

For example, if we take f ( x )  = , then the first component yields (9 
in Lp(O, 1 )  for 1 < p < m. But the right hand side is the Fourier series on (- 1 , l )  
of the function which is 1 on ( 0 , l )  and - 1 on (- 1 , O ) .  Therefore, the above 
expansion does not hold uniformly on [0, 11. 
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CASE 11. P = 0 and a # 1. As we have already seen in the discussion of 
Case I, the eigenvalue 0 does not contribute to the eigenfunction expansion. For 
k €Z \{O)wese t  

Since 

as ;1 --+ Ak, we obtain 

This proves that ck is a root function of M  at Lk of order 2. It is easy to see that 

is a root function of M* at 3Lk of order 2. Furthermore we obtain that 

Since the dimension of the null space of M(Lk)  is 1, this proves that ck and dk are 
biorthogonal CSRFs of M  and M* at p. 

Now we calculate 

axeLx 
1 

y x a c a  = ( a ) ( a  a ; )  
1-a 
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and 

- ( ( ~ ~ u ) * ( A ) d k ( A ) )  (x) 

For k E Z \ (0) we set 

Then { Y ~ , ~ , Y ~ , ~  ) and { (;;:) , (I:::)} are biorthogonal canonical systems of 

eigenfunctions and associated functions at Ah. With the aid of Theorem 5.3.2 we 
obtain that 

holds for all f E (Lp(O, I ) ) ~ ,  1  < p < w, and the series converges in (Lp(O, I ) ) ~ .  
Furthermore, we know from Theorem 5.3.3 that the series converges in (L,(O, 

for all f E (C[a, b] f l  BV[a, b])2 with ( : ) f ( o ) + f ( l ) = o .  

CASE 111. P # 0. We already know that the eigenvalues are Ak (k E Z \ (0)) 
as defined above and additionally the zeros of ( A  + P)ea + A .  We assume that 
the zeros of (A + P)ea + A are simple, i. e., that this function and its derivative 
( A  + p + l)ea + 1 do not have common zeros. This condition holds if and only if 
(A+p)ea+A a n d e a + l  - A  or, equivalently, e a + l  - A  and (A+P)(L-  1)+A 
have no common zeros. Thus we exclude those P = _If_ - p where p is any root 

1 -P 
of ea + 1 - A = 0. Then the zeros of (A + P)ea + A and of ea + 1 are different and 
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simple. Thus the boundary eigenvalue problem has only simple eigenvalues. We 
have already given an estimate for the large zeros of ( A  + P)ea + A (we slightly 
change the notation): 

Hence, for sufficiently large natural numbers ko, the zeros of ( A  + P)ea + A with 
I%(A) 1 > 2kox or 13(A) 1 > 2kox are exactly 

We shall show that ( A  + P)ea + A has exactly 2ko + 1 zeros with I%(A) I 5 2kox 
and 13 ( A )  I 5 2kox if ko is sufficiently large. Thus we can denote the zeros of 
( A  + /3)ea + A  by pk (k E Z)  such that the asymptotic behaviour (5.4.1) holds. 
We know that Lea + A has exactly 2ko + 1 simple zeros with [ % ( A ) [  5 2kox and 
13 ( A )  I 5 2kon, namely (-2ko + l ) x i ,  (-2ko + 3)  xi , .  . . , (2k0 - 3)  xi ,  (2k0 - 1) xi ,  
and 0. Let ko E N such that IP I < kox. For 3 ( A )  = &2k0x we have ea = e'(') > 0, 
and hence 

[ f l ea /  < 111 lea + 11. 

For % ( A )  = 2kox we have because of lea I > 2 that 

For % ( A )  = -2kox we have because of lea 1 < that 

Hence ROUCHE'S theorem yields that ( A  + P)ea + A and Aea + A have the same 
number of zeros inside the rectangle [%(A)  1 5 2k0x and 13 ( A )  I 5 2kon. 

Fork€Z\{O),ck:= is an eigenvector of M at Ak, and dk := 

is an eigenvector of M* at $. From 
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we immediately infer that ck and dk are a biorthogonal CSEAVs of M and M* at 

kk. The corresponding CSEAVs yk and (2 )  of the boundary eigenvalue problem 

are given by 

yx(x)  := Y (x ,  kk)ck = ( e r )  

and 
- e-kkx 

uk(x)  := - ( ( T R u ) * ( k k ) d k )  ( x )  = ' k  + P ) ' a(1 - x ) + ( l  - a ) -  
P 

Fork E Z, 
aepk + 1 

is an eigenvector of M at pk, and 

is an eigenvector of M* at pk. An easy calculation yields 

which proves that Fk and d;, are biorthogonal CSEAVs of M and M* at pk. We set 

With the aid of Theorem 5.3.2 we obtain that 
v 

v-+- k=l l = f k  k=-v 
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holds for all f E (Lp(O, I ) ) ~ ,  1 < p < m, and the series converges in ( ~ ~ ( 6 ,  I ) ) ~ .  
Furthermore, we know from Theorem 5.3.3 that the series converges in (L,(O, I ) ) ~  

for all f E (C[a, b] n l ? ~ [ a , b ] ) ~  with (i i)  f (0) + f (1) = 0. 

In case p = & - p for some root p of e" 1 - A = 0, p is a non-simple 
eigenvalue. Hence we have at most two eigenvalues for which a CSEAV contains 
an associated vector. We shall not pursue this exceptional case further. 

5.5. Stone regular boundary eigenvalue problems 

In Section 4.4 we have defined Stone regularity for the boundary eigenvalue prob- 
lem (4.1.1), (4.1.2). In an analogous manner to Definition 5.2.1 we define Stone 
regularity for the boundary eigenvalue problem (5.1. I), (5.1.2): 

DEFlNITION 5.5.1. Let s E N. The boundary eigenvalue problem (5.1. l) ,  (5.1.2) 
is called s-regular if there is an n x n matrix polynomial C2(A) satisfying the as- 
sumptions made at the beginning of Section 5.1 such that the boundary eigenvalue 
problem (5.1.1), !?R(A)y = 0 is s-regular in the sense of Definition 4.4.1, where 
FR(A) is defined in (5.1.8). The boundary eigenvalue problem (5.1. I), (5.1.2) is 
called Stone regular if it is s-regular for some s E N. 

We now deduce a method how to check Stone regularity. As in Section 5.1 
we can construct a matrix polynomial C2 such that 

c;l(a)w(J)(n) = w$J) + o ( r l ) ,  
(5.5.1) 

c,-'(n)w(.,n) = W, + O(A-I) in M,(L, (a, b)) 

as A -+ m, and such that the following alternative holds: 
i) either one row of 

is identically zero, or 
ii) the rows of 

are linearly independent. 

In the first case, the determinant of the characteristic matrix is identically zero, 
and hence the problem cannot be Stone regular. 

Thus we shall assume that the condition ii) holds. We suppose that the as- 
sumptions of Theorem 2.8.2 are fulfilled for some k > 0. First we shall see that 
the asymptotic behaviour of the boundary matrices (5.5.1) can be described more 
precisely. In the proof of Theorem 5.2.3 we have seen that c;' ( A )  = AsF2(n), 
where e2(A) is an asymptotic polynomial of arbitrary order. Since (5.5.1) holds, 
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there are n x n matrices w:') (v  = 1 , .  . . , k;  j E N) and n x n matrix functions 
Wv E M,(Ll (a ,  b ) )  such that 

as 3L + =. If only finitely many matrix functions ~ ( j )  are different from zero, 
then we obtain 

as 3L + =. This immediately implies that 

holds, where y varies in (C( [a ,  b]))" and 

for sufficiently large 3L. Now we shall show that this estimate also holds if in- 
finitely many matrix functions ~ ( j )  are different from zero and if the estimates 
(5.1.4) and (5.1.5) hold with respect to C2. The matrix functions $ ( j )  ( j  E W) are 
holomorphic in a neighbourhood of =, and 

by (5.1.5). The estimates (5.1.4) and (5.1.5) give 

for y E (C[a,  b])" as A + =. This proves that 

is uniformly bounded and convergent in a neighbourhood of w. By VITALI'S 

theorem there is a neighbourhood of = where w ( j ) y ( a j )  converges uniformly 
j=o 
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and defines a holomorphic function at 00. Because of the uniform convergence we 
have for sufficiently large r and v E N that 

In view of the above estimate this shows that 
ce 

converges unconditionally in L((C[a, b])",  @) and that 

m 

Taking constant functions, e. g. the unit vectors in @, we obtain that w$j) 
j=O 

converges unconditionally and hence also absolutely, i. e., 

- 
The Taylor expansion of ~ ( j ) ( h ) y ( a , )  at m yields that 

j=O 

as A + .o for y E (C([a, b]))".  
PROPOSITION 5.5.2. Let k E N be such that the assumptions of Theorem 2.8.2 are 
satisfied. The rnatrixfitnctions P['] ( r  = 0, .  . . , k) and E ( . ,  h )  are as in Theorem 
2.8.2. The matrices wJJ) and the matrixfunctions Wv are as given by (5.5.2). In 
addition, we assume that Wv E M,, (w:-' (a,  b ) )  for v = 0,  . . . , k. For r = 0, . . . , k 
we set 

( ~ 1 ~ 1  m,9,r ) m , q = ~  := 2 ~ ~ ~ l ~ - ~ l  E M. (w;-'(a, b ) ) .  
v=o 

With f9 (q = no + I , .  . . , n) given by Al  =: diag(0,. . . ,0, a+, , . . . ,in) we define 
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f o r m €  ( 1  ,..., n) ,  q E  {no+l  ,..., n) ,  r~ {0  ,..., k - l ) ,  and j=O ,... k - r - 1 .  
Form= 1 ,..., n a n d r = O  ,..., kwese t  

( 0  for q = 1,. . . ,no,  

( 0  for q = 1,. . . ,no. 

F o r j = 0 , 1  a n d r E  { I ,  . . . ,  k )  weset 

For j > 1 and r E ( 0 , .  . . , k )  let := 0. We set 

where 

and A. is defined in (4.1.22). Let 

denote the characteristic matrix of the boundary eigenvalue problem (5.1.1), 
TR(a  ) y  = 0, where T R  ( A )  is defined in (5.1.8) and the fundamental matrix func- 
tion 

is as in Theorem 2.8.2. Then 

(5.5.8) G ( A )  - G l , k ( A )  (1, - A(A)  + E ( b , A ) - l ~ ( h ) )  = o ( A p k ) ,  

where A( A ) is defined in (4.1.22). 

ProoJ: For sufficiently large A, the matrix function 
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is well-defined by (5.5.3). For c E Cn we set 

Then we obtain 

Let D j ( A )  be either E ( a j , A ) ( I n  - A ( A ) )  or E ( ~ ~ , A ) E ( ~ , L ) - ' A ( A ) .  The estimate 
(5.5.4) and Proposition 4.3.3 i), ii) for c = a j  and d = a  or d = b, respectively, 
yield that 

With the aid of the estimates (2.8.1 1) and (2.8.12) of Bk we also infer that 

is of the form o ( A - ~ )  and o ( A - ~ ~ ,  ( A ) )  as A+ w. And the estimates (5.5.3) yield 
that 

Altogether we obtain that 
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and 

are of the form o ( I P k )  and 0( ;1-~z~(I) )  as I -+ 00. A similar proof shows that 
the same estimates hold for 

and 

x ~ ( b ,  1 ) - ' ~ ( 1 ) .  

We thus obtain 

Let r E {O,. . . , k). Theorem 2.8.2 yields P['-"] E M , ( W ~ ' - ' + ~  (a$)) for 
v = 0,.  . . , r. By Propositions 2.3.1 and 2.1.7 we have 

(ul0I nl,q,r ), ni,q=l EM,(w:-'(a,b)). 

The functions ukil) E W:-'-j(a, b) are well-defined because of Propositions 2.3.1 

and 2.5.8 since tq E W,k(a, b). An integration by parts, see [HS, (18.19)], yields 

b 
A 1 ' m q r  (t) .. b l uk!q,r (t) ~ X P { L R ~  (t)} dt = - + ex~{'ll, (t) 1 1 a 

r9(t) 



5.5. Stone regular boundary eigenvalue problems 227 

A r 
for j = 0, . . . , k - r - 1, where Rq ( t )  = J fq (z) dz. Hence we obtain 

a 

by a recursive application of the foregoing equation. In the proof of Proposition 
4.3.5 we have seen that, for v = 1,. . . ,1  and q such that fq = r,, 

and 

are o(1)  as I -+ co. Altogether the representation (5.5.8) is proved. 

PROPOSITION 5.5.3. Let the notations and assumptions be as in Proposition 
5.5.2. We set 

k 

and 
"0 n 

(5.5.10) >...,Jn (I) := E sgn(0) n 
O€Sn q= 1 

where jnO+, , . . . , j ,  E N and Sn is the set of permutations of the numbers 1 , .  . . , n. 

Let GI , ,(I) be as defined in (5.5.5). Then 
n m 

detGl,,(I) = E sgn(o) n (z ( I )  exp{h&(aj)}) 
a€Sn q=1 j=o o(q),q 

where the sum is absolutely convergent. 
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Proot The representation is as in the proof of Theorem 4.3.9, where this was done 
for k = 0. Since all the estimates also hold here in view of (5.5.3), the convergence 
also holds for k > 0. 

The following criterion states a sufficient condition for Stone regularity which 
is essentially due to COLE [C02], [C04]. 

LEMMA 5.5.4. Let k E N be such that the assumptions of Theorem 2.8.2 are 
satisfied. The matrix functions PI'] ( r  = 0, .  . . , k )  and E (., A) are given accord- 
ing to Theorem 2.8.2. The matrices wJJ) and the matrix functions Wv are as 
given by (5.5.2). In addition, we assume that Wv belongs to M,,(W~~-' (a ,  b ) )  for 
v = 0  , . . . ,  k. F o r v = l ,  . . . ,  1 a n d p =  1,2weset  

6,, (A) := det W,,, (A), 

where A t  is given by (4.1.26) or (4.1.27). respectively, and W ~ J )  is defined in 
(5.5.6). The functions 6,, are asymptotic polynomials. Suppose that 

hvP ( A )  = A-Sv" [by,] 

and 

bv, # 0 
6 

for v = 1,.  . . , I  and p = 1,2. Suppose that the exponential sum det M I  ,k is weakly 

regular in the sense of Definition A.2.12, where GI,, is defined in (5.5.5). If 

then the boundary eigenvalue problem (5.1. I), (5.1.2) is s-regulal: 

Pro05 Let A, =: diag(0,. . . ,0,  ?no+l,.  . . , ? n )  and 

By Theorem A. 1.3 the convex hull of 
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is a convex polygon, and the set of vertices & of this convex polygon has the 
representation 

see (A.1.3), where (t,. . . , *, 6no+l (A), . . . ,&( I ) )  := A(A) and A(A) is defined in 

(4.1.22). Let 6  ̂be as given by (A.2.36). Since, for each c E 8, the coefficient 
function &,(A) of exp(Ac) in detfi1,,(A) is a polynomial in A-', we have either 

bc(A) = A-vc[b,] with b, # 0 or & ( A )  = 0 = A-SIO]. In the latter case c does not 
belong to 2. Therefore the assumptions of Theorem A.2.15 are satisfied for the 
exponential sum detfi,  ,k (A).  Here we have to note that the estimate (A.2.4) holds 

because of (5.5.3) and that the &,, are the coefficients of exp(Ac) for c E g. Thus 
we obtain for 

that there are a number E > 0 and circles rV (v E N) such that 

m 

for A E U I-,,, where v(A) = -vC for a suitable c E E. Here we have assumed 
v=o 

without loss of generality that the radius po is greater or equal 1. Since the es- 
timate M1,k(A) - ~ ( 1 )  = o ( r k )  holds by Proposition 5.5.2, ~ ( 1 )  is bounded 
with respect to A by Corollary 4.3.4 ii), and s 5 k, we may assume that 

m 

f o r i  E U r v .  Then 
v=o 

If there are infinitely many j for which ~ ( j )  # 0, then one has to consider 
infinitely many polynomials in I-' in order to decide whether the exponential 
sum is weakly regular. Since the actual formulation of these conditions would be 
lengthy, we shall not give it here. Instead, we shall consider the special case that 
only finitely many ~ ( 1 )  are different from zero. In this case, the exponential sum 
is weakly regular, see Definition A.2.12 and Remark A.2.9. Therefore Lemma 
5.5.4 yields 
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THEOREM 5.5.5. Let k E N be such that the assumptions of Theorem 2.8.2 are 
satisfied. The matrixfunctions pir] ( r  = 0 , .  . . , k )  and E( . ,  A) are given according 
to Theorem 2.8.2. The matrices w L J )  and the matrixfunctions Wv are as given 
by (5.5.2). In addition, we assume that Wv t M , , ( w ~ ~  (a ,  b ) )  for v = 0, .  . . , k. 
Suppose that there are only finitely many j such that W ( J )  # 0, For v = 1 ,  . . . , I  
and p = 1,2 we set 

where A: is given by (4.1.26) or (4.1.27), respectively, and E>J) is defined in 
(5.5.6). Thefunctions 6,, are asymptotic polynomials. Suppose that 

and 

bv, # 0 
f o r v = l ,  ..., l a n d p = 1 , 2 .  I f  

then the boundary eigenvalue problem (5.1. l ) ,  (5.1.2) is s-regular. 

COROLLARY 5.5.6. Let k E N be such that the assumptions of Theorem 2.8.2 
are satisfied. Suppose that A l  is invertible, that there is no integral term in the 
boundary conditions (5.1.2), and that only finitely many w ( J )  are dflerent from 
zero. The matrices W L J )  are as given by (5.5.2). For v = 1 , .  . . , I  and p = 1,2 set 

- 
6,, ( a )  := det wv, ( A ) ,  

where A t  is given by (4.1.26) or (4.1.27), respectively, and 

The functions 6,, are asymptotic polynomials. Suppose that 
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and 

bv, # 0 
fo rv=1 ,  . . . ,  l andp=1 ,2 .  If 

s := max{sv, : v = 1 ,... ,1 ;  p = 1,2) 5 k,  

then the boundary eigenvalue problem (5.1. I), (5.1.2) is s-regular. 

Proof: Since Al is invertible, we have At  + h ; -p  = I,, . It is also true that A t  
and P[Ol commute. Therefore ~ [ ~ ] ( a ~ ) i \ t  + P [ ~ ] ( ~ , ) A : - P  is invertible, and the 
asymptotic polynomials hVp in Theorem 5.5.5 and Corollary 5.5.6 differ by a 
nonzero constant factor. In view of Theorem 5.5.5 the proof is complete. 

In the formulation of Corollary 5.5.6 we have replaced Plrl by P [ ~ ~ P [ ~ ~ - ' .  As 
we have seen, this is advantageous for Birkhoff regular boundary eigenvalue prob- 

1 
lems since P [ ~ ] P [ ~ ] -  = Z,, . In general, if we would take P[O]-' Pir], then solving the 
differential equation (2.8.18) would reduce to a simple integration. The follow- 
ing proposition shows that this is also true if we assume that the Ao,,, are scalar 
matrix functions. This trivially holds if 1 = n. 

PROPOSITION 5.5.7. Let the assumptions be as in Theorem 2.8.2. Suppose that 
the matrices Ao,,, ( v  = 0, .  . . , l ) ,  which are the block diagonals of A. with index 
( v ,  V )  according to the block structure of Al , are scalar matrix functions. Set 

1 91 := P['IP[O]- . Then the conditions (2.8.18) and (2.8.19) are equivalent to 
1 r 1 

q=o ]=I q=o 
q#v 

(v=O ,..., l ; r =  1 ,..., k ) ,  

( v , p = O  ,..., l ; v + p ; r = O  ,..., k - 1 ) .  

Proof: We have 

.I' - p[rI 'p[01 - - p[rl p[OI - p[ol'p[ol - 
%v - vv vv  vv vv  vv  vv 

1 1 - - p [ r l ' p [ O l -  - plrl pl"l- AO,vv 
vv vv vv vv  

1 
= (P!!' - A ~ , ~ ~ P ! J )  P ~ J -  

and 
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5.6. Expansion theorems for Stone regular problems 

Here we suppose that the assumptions of Theorem 2.8.2 hold for some k > 0. 
According to the decomposition Cn = Cno x Cn-"0 we write 

and 

PROPOSITION 5.6.1. Let f E (w;" (a ,  b ) )n .  We set 

and suppose that 
frll f l o 1  f l o l  = 0.  

1 1  I 12 2 

Then there are fljl E (w;+'-~(a ,b))"  for j E {I , .  . . ,k+ 1) such that 

I 
(5.6.1) f [ j l  - ~ , f [ j l  - A  I f [ j + ' ]  ,O ( j  = 0 , .  . . , k ) .  

Proo/ We are going to prove that there are functions fijl E (W;+'-J(U, b ) ) " ~  and 

fpl E ( ~ ~ + ~ - ~ ( a , b ) ) " ~ ~  ( j  = I , .  . . , k+ I)  such that 

for j = 0 ,  . . . , k. By assumption, f/O] and fF1 satisfy (5.6.2). 

Let 0 < 1 5 k and assume that there are functions frl E ( W F 1 - ~ ( a ,  b ) )% and 

fFl € ((W+'-j(a, b))"-"o for j = I , .  . . , I  such that (5.6.2) holds for j = 0 , .  . . ,l and 

such that (5.6.3) holds for j = 0 , .  . . , 1 -  1. Note that the components of A!. A!, 

A!] and A!, i. e., the components of A,, belong to w i ( a ,  b )  by the assumptions 
of Theorem 2.8.2. Hence 

f!ll -,4[4 f 14 - f [ I ]  E ( W k + l - ( l + l )  
21 1 22 2 P ( a ,  b )  )"-no 

by Proposition 2.3.2. Since the components of Q-I belong to W,k(a, b )  if k > 0 and 
to L,(a,b) if k = 0,  Propositions 2.3.2 and 2.3.1, respectively, yield that (5.6.3) 
defines a unique f!+'l E (Wit ' -( '+')  (a ,  b ) ) " - " ~ .  If 1 < k, we have, again in view 
of Proposition 2.3.2, that 
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Lemma 2.5.7 yields that there is a solution f!'+ll E (w; (a ,  b ) ) " ~  of (5.6.2) with 
j = l + l . F r o m  

and Proposition 2.3.2 we inductively infer that f  j ' + ' l l  E (W:(a, b))" and hence 

f!'+ll t (w:+' (a,b))"o for m = 1 , .  . . , k - 1. For m = k - 1 we obtain f/'+'] E 
k+l-(l+l) (wi+l- ' (a ,  b))' c (wP (a,b))"O. Hence there are f[jl E (w;+'-J ( a ,  b ) )  no 

( j  = 0,.  . . , k )  and fpl E (w,k+'-j(a, b ) )  "-"o ( j  = 0,. . . , k + 1) such that (5.6.2) - 
and (5.6.3) hold. Finally we set frt11 := 0 and f  [ J l  := ($) for j  = 1 . . ,k+ 1 .  

Then (5.6.2) and (5.6.3) immediately prove (5.6.1). 

REMARK 5.6.2. If no = 0, then the condition 

is trivially fulfilled since it is a condition in a 0-dimensional vector space. Hence 
we can always find f  [ j l  for j = 1, .  . . , k + 1, and they are recursively given by 

REMARK 5.6.3. ~ e t  f!] E (w;+' (a,b))"-"0 and Ao,Al t ( w i ( a ,  6) )" .  Then there 

is a function f r ]  E (w?' (a ,  b ) ) " ~  such that 

Proof By Lemma 2.5.7 there is a solution frl E (w; (a ,  b ) ) " ~  of (5.6.4). From 

(5.6.4) we inductively obtain frl E (wkil  (a ,  b ) ) " ~ .  

From Proposition 5.6.1 and Remark 5.6.3 we immediately infer 

REMARK 5.6.4. Let f!] E (w?' (a ,  b))"-"0 and AO,A, E ( w i ( a ,  b))".  Then there 
are f [ j l  E (wk+l-j( 

P 
a,  b))" ( j  = 0 , .  . . , k + 1 )  such that (5.6.1) holds and such that 

f  = (ioI) , where A - - (O 0 In-nO ) ' 
In Section 5.1 we have seen that 

T R ( I )  = 0 ( l C 2 ( I ) l )  in L ( ( w ~  (a ,  b ) ) " , @ )  as I -+ m. 

Since IC2(I)l has a polynomial growth and since T~ is holomorphic on C, it is a 
polynomial by LIOUVILLE'S theorem. Hence there is a q E N such that 



234 V .  Expansion theorems for first order systems 

w h e r e T ~ ~ ~ ( ( ~ ~ ( a , b ) ) " , @ " ) f o r r = O ,  . . . ,q.  For1 € p ( T )  w e s e t R l ( l ) f l  = 

T - ' ( a ) ( f l  ( f l  E (Lp(a,b))") and R2(a ) f2  := T P 1 ( A ) ( 0 , f 2 )  ( f 2  E @), see 
(3.2.1) and (3.2.2). 

PROPOSITION 5.6.5. Let f E ( w F 1 ( a ,  b))". We set 

and assume that 
f ! ~ ] '  -A['] f lo] - f lo] = 0,  

1 1  1 12 2 

For j E { 1 , .  . . , k+ 1) choosefunctions f E (wF1-j (a,  b ) )  " according to Propo- 
sition 5.6.1 such that the equations (5.6.1) hold. Let sl E N such that sl 5 k. Then 

S 1  

(5.6.6) Rl(A)Al  f =-  z ~ - j - ~ f [ ~ l + a - ' l - ~ ~  1 ( a ) ~ ~ f b ~ + l f  
j=o 

$1 + E a - j - l ~ ,  ( a )  ~ ~ ( a ) f [ j l .  
j=O 

Suppose that the "boundary conditions" 

arefuficlfilled for some s2 E N Then 

and 
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ProoJ: The relationships (3.2.3) and (5.6.1) lead to 

1 
R,  ( A ) A ,  f [ ~ ]  = - -R, ( a )  ( ~ ~ ( a ) f [ ~ l  - f [ ~ l '  +A [ J ]  a o f  1 

for j = 0 , .  . . , k. Then a recursive substitution for RI (L )A ,  f[jl for j = 1,.  . . , s, 
yields (5.6.6). We calculate 

- ', a r - j - l T R  [ j ]  - 

r=O j-r+l=-rfl 
r f  

Then (5.6.8) immediately follows from (5.6.7), and (5.6.9) is a consequence of 
(5.6.6) and (5.6.8). 

The following definition is a refinement of the definition of s-regularity, see 
e. g. Theorem 5.6.9 below. 

DEFINITION 5.6.6. Let T be given by (5.3.1) and (5.3.2) and let s ,  ,s2 E N. Let A 
be a diagonal matrix whose diagonal elements are 0  or 1 .  T is said to be (s, , s2, A)-  
regular if there are circles T, = {A E C : ) A )  = p,) ( v  E N )  with p, /' w as v -+ .3 

such that 

and 

where f l  E (Lp(a ,  b))" satisfies the condition that A, f ,  E (Lp(a,  b ) )n ,  f2 E Ql", the 
map J : ($ (a ,  b))" -t (L,(a, b))" is the canonical embedding, J, = N, and R,, 
R2 are given by (3.2.1) and (3.2.2). 
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THEOREM 5.6.7. Let T be given by (5.3.1) and (5.3.2) and let s l , s2  E N. Let 
A be a diagonal matrix whose diagonal elements are 0 or 1. Suppose that T is 
( s l ,  s2, A)-regular and that Ao,Al E Mn(W;l(a, b ) ) .  Let f E (w;lil (a ,  b ) ) "  We 
set 

f =: fiO] =: (2.;) E ( w ;  (a ,  b ) ) "  x (wi1" (a ,  b))"-"o 

and assume that 

For j E {I , .  . . ,s l  + 1) we choosefunctions f[jl E ( ~ ; l + ' - ~ ( a , b ) ) "  according to 
Proposition 5.6.1 such that (5.6.1) holds. Suppose that the "boundary conditions" 

are fuljilled, where 
a 

Choose the curves T v  ( V  E N) according to the definition of ( s l  , s2, A)-regularity. 
Then the expansion 

A f  = lim 
V+-= 

holds in (L,(a, b))".  

Proot The assumptions of Proposition 5.6.5 are fulfilled with k = sl . We multiply 
(5.6.9) by A from the left and integrate along the curves rv . From Definition 5.6.6 
we obtain 

iv A-j AR, ( A )  T; f [ j t r - ' l  d 1  -+ 0 

in (Lp(a ,  b))" as v -+ w. These estimates and the residue theorem complete the 
proof. 

If s2 = 0 in Theorem 5.6.7, then the condition (5.6.10) is void. In this case 
we do not need that the functions to be expanded fulfil some boundary conditions. 
This can always be achieved by introducing an auxiliar eigenvalue: 
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COROLLARY 5.6.8. Let T be given by (5.3.1) and (5.3.2) and let sl ,s2 E N with 
s2 > 0. Let A be a diagonal matrix whose diagonal elements are 0 or 1. Suppose 
that T is (sl , s2, A)-regular and that Ao,Al E Mn(Wil (a,  b ) ) .  For the function 

f E (w;I+' (a ,  b))" we set 

f =: f[O] =: to] E (W;]+' (a,  b ) ) " ~  x (w;I+' (a,  b))"-"0 (;:) 
and assume that 

For j E {I , .  . . ,sl + 1) choose the functions f[jl E (W;l+'-j(a, b))" according to 
Proposition 5.6.1 such that (5.6.1) holds. Choose the curves Tv (v E N) according 
to the dejnition of (sl  , s2, A)-regularity. Let lo E @\ o ( T  ). Then the expansion 

Af  = lim 
v+m 

holds in ( ~ ~ ( a ,  b))".  Zfh E o ( T ) ,  then we obtain the expansion 

Af  = lim 
v+= 

p~a(T)nint  T, 

Proot We replace T R ( i )  by (2. - 2.0)S2 TR(2.) ,  i. e., we consider the boundary 
eigenvalue operator function 

Obviously, 

~ I - l ( 2 . )  = ( R l ( U 2 .  - 4,)-s2R2(a)). 

Thus Tl is ( s l ,  0 ,  A)-regular and the corollary immediately follows from Theorem 
5.6.7. 



238 V. Expansion theorems for first order systems 

THEOREM 5.6.9. 
T is s-regular in 
Choose a matrix 
such that 

Let T be given by (5.3.1) and (5.3.2) and let s E N Suppose thaz 
the sense of Dejniton 5.5.1 and that Ao,Al E M,(w,S+' (a ,  b ) ) .  
polynomial C2 according to Dejnition 5.5.1 and let K E Z be 

c;'(A) = O(lAIK) as A -+ W. 
Let f E ( ~ p S + ~ ( a ,  b))").  We set 

and assume that 

For j E { I ,  . . . , s + 2)  choose functions f [ J ]  E ( W , I + ~ - ~ ( U ,  b))" according to Propo- 
sition 5.6.1 such that (5.6.1) holds. Suppose that the "boundary conditions" 

min{q,s+2- j )  

(5.6.12) T; f Ij+r-ll - - 0  ( j =  1 ,  ..., m i n { s + 2 , s + ~ +  I ) )  
r=O 

arefuljilled, where 
(I 

Choose the curves Tv ( v  E N) according to the definition of s-regularity. Then the 
expansion 

holds in (Lp (a ,  b)),. 

Proot We have already seen in Section 5.1 that we can choose a number K such 
that cgl ( A )  = O(lAIK) as A -+ m. From (5.3.3) we know that 

R ~ ( A ) A i f ~  = F - ' ( ~ ) ( ~ l f 1 7 0 )  ( f l  E Lp(a,b))"),  

R2 (4 f2  = ~ - l ( n ) ( o , c g 1 ( A ) f 2 )  ( f ,  E ar). 
From Theorem 4.4.9 ii) we obtain 

( A I - S - 2 ~ ~ ~ l ( ~ ) ~ l  fll 1dAl -+ 0 as v -+ w 
and, for some C > 0, 
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as v -+ m. Hence T is ( s  + 1 ,  s2, I)-regular, where s2 := max(0, s + K + 1). Now 
the statement o f  this theorem immediately follows from Theorem 5.6.7. 

THEOREM 5.6.10. Let T be given by (5.3.1) and (5.3.2) and lets t N. Suppose 
that T is s-regular in the sense of Definiton 5.5.1 and that Ao,Al E M,(W,S(a, b ) ) .  
Choose a matrix polynomial C2 according to Definition 5.5.1 and let K t Z be 
such that 

( A )  = 0 as A -+ m. 

Let f E (w,S+' (a ,  b))") .  We set 

and assume that 
fpl' - ~ [ O l f [ O l  - ~ W f i O l  = 0. 

1 1  1 12 2 

For j t { I , .  . . , s+ I }  choosefunctions f [ J ]  t (W;+'-J(U, b))" according to Propo- 
sition 5.6.1 such that (5.6.1) holds. Suppose that the "boundary conditions" 

min{q,s+ 1 - j }  

(5.6.14) T ; ~ [ ~ + ~ - ~ I = o  ( j = l ,  ..., m i n { s + l , s + ~ + l } )  
r=O 

arefuljilled, where 

Choose the curves Tv (v E N) according to the definition of s-regularity. Then the 
expansion 

(5.6.15) A,, f = lim 
V-+- 

holdsin (Lp(a,b))",  where4  = (O Inono) t Mn(Cno x CnO). 

ProoJ: Arguing as in the proof of  Theorems 5.6.9 and 5.6.7 we still have to prove 
that 

~ A ~ - " - ' I ~ R ~ ( A ) A ,  f , ~  ldhl -+ 0 as v -+ m. 

But this is true in view of  Theorem 4.4.1 1 iii). Here we have to note that A, = 

implies T - ~ ( A ) ( A ~ ~ , , o )  = T - I ( A ) J I A ~ ~ ~ .  
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THEOREM 5.6.11. Let 1 < p < w, let T be given by (5.3.1) and (5.3.2) and let 
s E N Suppose that T is s-regular in the sense of Dejinition 5.5.1 and that Ao, A 
belong to Mn (W; (a ,  b)) .  Choose a matrix polynomial C2 according to Dejinition 
5.5.1 and let K E Z be such that 

( A )  = 0 as A + w. 

Let f E ( ~ ; + l ( a , b ) ) " )  with Aof = f. Then f =: and we choose some 
. . 

fl E w~s+' (a,  b ) ) " ~  such that 

Set f[O] := (;). b r j t  (1 ,  . s+l)choose f [ ~  c ( ~ 6 " - J  (a ,  b))" according 

to Proposition 5.6.1 such that (5.6.1) holds. Suppose that the "boundary condi- 
tions " 

min{q,s+ 1 - j )  

(5.6.16) ~ r f [ ' + ' - ~ ] = O  ( j = l ,  ..., min{s+l , s+r ) )  
r=O 

arefuljilled, where 
4 

T ~ ( A )  = z A'T;. 
r=O 

Choose the curves T, (V  E N) according to the definition of s-regularity. Then the 
expansion 

holds in (Lp(a,  b))n,  where A - - ( O  0 In-no O )EMn(Cox@"-"o ) .  

Proot In Remark 5.6.4 we have seen that we can define f [ ' I , .  . . , f [ S + l ]  fulfilling 
the statements of Proposition 5.6.1. Since f = f ['I and A, f = A ,  fro], a revision 
of the proofs of Theorems 5.6.7, 5.6.9, and 5.6.10 shows that it is sufficient to 
prove that 

where the norm is taken in L(Cn, (Lp(a,  b))") .  But this estimate holds by Theorem 
4.4.1 1 i). 
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REMARK 5.6.12. In case s = 0, i. e., if the problem is Birkhoff regular, Theorems 
5.6.10 and 5.6.1 1 give expansions for those cases in which the expansion theorems 
5.3.2 and 5.3.3 are not applicable; e. g. if a or b is an accumulation point of those 
a, for which w J ~ )  # 0. 

Finally, we note that the residues which have to be calculated in the expansion 
theorems can be expressed by the eigenvectors and associated vectors of T and T*. 
For simplicity of notation we shall work with the corresponding root functions. 
Let p be any eigenvalue of T and {yl , . . . ,yr), {v,, . . . , v,) be biothogonal CSRFs 
of T and T* at p. We know that these CSRFs can be expressed by biorthogonal 
CSRFs {c,,. . . , c,) and {dl, .  . . ,dr)  of the characteristic matrix function M of T 
and its adjoint M*, see Theorem 3.1.4. We have 

R y J = Yc J ., uj := -(T O)*d,, and v, = (;) . 

In Section 5.3 we have seen that the residues of RIA, can be expressed in terms 
of y, and u,, see Theorem 5.3.2. The principal part of T-I  at p is 

where the mj are the partial multiplicities. Since 

where & : Cn -+ (Lp(a, b))n x Cn is the canonical embedding, and since the map 
: (Lp,(a, b))" x e + C is the canonical projection, we obtain because of 

Proposition 1.1.2 that the principal part of R2 at p is given by 

(-p)-rnjy, @ d,. 
j= 1 

5.7. Improved expansion theorems for Stone regular problems 

DEFINITION 5.7.1. Let M(L) be the characteristic matrix defined in (5.5.7) as- 
sociated with the boundary eigenvalue problem (5.1. l),  F R ( i ) y  = 0, where TIR 
is defined in (5.1.8). The boundary eigenvalue problem (5.1. I), (5.1.2) is called 
strongly s-regular if there are finitely many numbers al < q < ... < a,+l = 
a, + 2n, a positive number p,  and curves rv = {A E (C : = pv)  ( V  E N) with 
pv 7 00 as v -+ w, such that 

holds on U Tv , where the matrix function Mo , is constant on each of the sectors 
VEM 

{ i ~ C \ { ~ ) : a , < a r g l < a , + , }  ( j = l ,  ..., t). 
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REMARK 5.7.2. i) Each s-regular boundary eigenvalue problem is strongly s+ 1- 
regular. 
ii) Each Birkhoff regular problem satisfying the hypotheses of Theorem 5.3.2 is 
strongly 0-regular, see (4.6.4). 

THEOREM 5.7.3. Let 1 < p < 00 and let s be a positive integel: Suppose that A. 
and Al belong to M,(W;(a, b)) .  Suppose that the boundary eigenvalue problem 
(5.1. l), (5.1.2) is strongly s-regular. Let ;30, A,, . . . be the eigenvalues of T and let 

{Y:i : j = I , .  . . , r (AK);  1 = 0, .  . . , m , ,  - I} 

and 

{ (u ( j )  d ( j ) )  : j = I , .  . . , r(AK);  1 = 0,.  . . ,mK,, - I} ~$1' K, l  

be biorthogonal CSEAVs of T and T* at A,, respectively. Then 

holds for all f E (WpS(a, b ) ) ,  with f = A. f and 

where the series converges in parenthesis in (L,,(a,b))", f E (W;(a, b))" is cho- 
sen such that Aof = f and the construction in Remark 5.6.4 holds, and A. = 

Proot Consider the space 

Here we have to note that pol,. . . ,F-'] belong to (w; (a,  b))" if f belongs to 

(W,s(a, b))".  
If no > 0, then f i O ] ,  . . . ,F-'] are not uniquely defined. To make them unique 

we require that, in addition to (5.6.2), ( I ,  - &)Po] (a ) ,  . . . , (I, - 4) f7s-'1 ( a )  are 
certain continuous linear functionals depending on f E F. For any particular 
choice made for ( I ,  - & ) f r o ]  ( a ) ,  . . . , (1, - &)fiS-'1 (a )  for any nonzero f ,  we can 
always satisfy this requirement by the HAHN-BANACH theorem. Of course, we 
could simply take ( I ,  - A O ) T l ( a )  = 0,.  . . , ( I ,  - AO)F- ' l (a)  = 0. But since it is 
desirable to have F as large as possible, a different choice might be better. 
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In view of the definition of f [ j l  and Lemma 2.5.7 we obtain that the maps 
f -i f [ ~ ]  from (Wi (a ,  b))" into ( w i v j ( a ,  b))" are continuous for j = 0 , .  . . , s. For 
f E F we obtain 

by Theorem 4.4.1 1 i) since the problem is s-regular. 
Since F is a closed subspace of (W;(a, b) )" ,  it is a Banach space with respect 

to the norm induced by (W;(a,b))". Let JF : F -+ (Lp(a,b))" be the canonical 
embedding from F into E = (Lp(a ,b))" .  Let Pv(= Q v )  be defined as in Section 
5.3. From (5.6.6) with sl = s - 1 we infer 

We have 

A-'M(A)-' = Mo,s(h) + 0(mkx( l+  ~ % ( ~ e ~ a i ) l ) - ~ ) ,  
j= 1 

where Mo,,(A) is constant on sectors. And that is exactly what we used in the 
proof of Proposition 4.6.3. The actual location of the sectors was inessential; the 
sector C,,, can be replaced by any smaller one. An obvious modification of Lemma 
4.6.7 leads to 

and the boundedness of {P,,JF : v E N) follows. 
Now let f E (w;+' (a ,  b))" f l  F .  Then we have by (5.6.6) that 

where S,,, is defined in Theorem 4.4.1 1 and T in the definition of S,,, is given 
by (5.3.3), and where c E Cn (and depends on f p l ,  . . , f/- ' I).  Here S,,, is taken 
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with respect to A. = 0. From Theorem 4.4.1 1 ii) we know that &,, (0 ,  c )  -+ 0 as 
v -+ w. As in the proof of Theorem 4.6.9 we infer, now for a suitable & # 0,  

Since s > 0 we conclude with the same estimates as in Theorem 4.6.9 that 

as v -+ 0. Applying this to f['] we see that PvJF f -+ f as v -+ w. 

The proof of the theorem will be complete by Lemma 4.6.8 if we show that 
(~pS+'(a ,  b))" n F is dense in F. Since wpSf (a ,  b))" is dense in (WpS(a, b))" and F 
is a finite-codimensional subspace of (W,S(a, b)),,  the result will be a consequence 
of the following lemma. 

LEMMA 5.7.4. Let E be a Banach space, F a closed andJinite-codimensional 
subspace of E, and H a dense subspace of E. Then H n F is dense in F. 

Pro05 Let M be a (finite-dimensional) complementary space of F in E and let P 
be the projection of E onto M along F. Let Q : P ( H )  -+ H be a linear operator 
such that PQ is the identity on P ( H ) .  Since P ( H )  c M is finite-dimensional, Q 
is continuous. Also P is continuous by the closed graph theorem since F and M 
are closed. Now let x E F and choose (x,); c H such that x, -+ x as n -+ m. 

By definition of Q we have y, := x, - QPx, E H for n E N Also Py, = 0 since 
PQ is the identity. Thus y, E H fl F .  Now QPx, -+ QPx = 0 since Q and P are 
continuous and Px = 0. This shows that y, -+ x as n -+ w. 

REMARK 5.7.5. The condition 

in Theorem 5.7.3 can be given in a more explicit form. For this let us write the 
asymptotic boundary conditions in the form 

Then 
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is equivalent to 

r=O 
THEOREM 5.7.6. Let s be a positive integel: Suppose that A. and Al  belong to 
Mn ( W i ( a ,  b ) ) .  Suppose that the boundary eigenvalue problem (5.1. I), (5.1.2) is 
strongly s-regular. Let lo, A] , .  . . be the eigenvalues of T and let 

and 
{ ( u ( J ) , ~ ( J ) )  : j = I , .  . . , r ( l K ) ;  1 = 0 , .  . . ,mK,,  - I} 

K , l  K , l  

be biorthogonal CSEAVs of T and T* at A,, respectively. Then 

holds for all f E (CS[a,b])" with f(') E (BV[a,b])", f = AO f ,  and 

where the series converges in parenthesis in (C[a, b])", f l  E (Wi (a ,  b))" is chosen 
such that ~~f = f and the construction in Remark 5.6.4 holds. 

Pro05 Let E be the set of all f E (CS[a,  b])" such that f ( S )  E (BV[a,b])".  Then E is 
a Banach space with respect to the norm 1 f + , and F, the subset of 
E consisting of functions satisfying (5.7.2), is a closed finite-codimensional sub- 
space of E. Let JF be the canonical embedding from F into (L,(a, b))".  Combin- 
ing the proofs of Theorem 5.7.3 and Lemma 4.7.4 we obtain that {PvJF : v E N) is 
bounded in L(F, (L,(a, b ) ) " ) .  Here we have to note that f ( S )  E (BV[a,  b])" implies 

E (BV[a,b])".  Since also f['+ '1 is defined for f E ( ~ i + ' ( a ,  b ) ) " ,  we can take 
the iteration one step further for these f and obtain with the aid of (5.6.6) that 

Here we have used that (5.7.2), (5.3.3), and Theorem 4.4.9 ii) imply that 

Taking now the representation (5.7.1) with s replaced by s + 1, an application of 
Theorem 4.4.9 iii) shows that PvJF f t f as v -+ w for all f E F fl ( w L + ~ ( ~ ,  b))" .  
As in the proof of Theorem 4.7.5 we can show that (Cr(a ,b))"  is dense in E. 
Therefore, an application of Lemmas 4.6.8 and 5.7.4 completes the proof. 



246 V. Expansion theorems for first order systems 

REMARK 5.7.7. i) If we suppose that A. and Al belong to M,(w,' (a ,  b ) ) ,  then 
also the case s = 0 is covered by Theorem 5.7.6. 
ii) If we consider Example 4.7.9 in light of Theorem 5.7.6, then we obtain that 
we can expand functions (0, f2,  f3)T for which there is a function fl such that 
f ;  = a f2 + P f3 and, for f = ( f , ,  f2, f3)T, w ( O ) ~ ( O )  + w ( l ) f ( l )  = 0. If we choose 

then we obtain exactly the conditions which were deduced in Example 4.7.9. 

The next result states a sufficient condition of an s-regular problem to be 
strongly s-regular. 

LEMMA 5.7.8. Let s be a positive integel: Suppose that Ao,Al E M,(W;(a, b ) ) ,  
where p > 1, and that the Wv given in (5.5.2) belong to M,(W;-"(a, b ) )  for some 
q" > 1 and v = 0 , .  . . , s. Suppose that a and b are no accumulation points of 
{ a j  : w ( J ) ( ~ , )  # 0).  We consider the boundary eigenvalue problem (5.1. l), (5.1.2) 
and the determinant 

where & ( A )  = A-vc[bc] and GI,, is defied in (5.5.5). Suppose that v, = s for all 

c E G and b, # 0 for c E 3, the set of vertices of &. Then the boundary eigenvalue 
problem is strongly s-regular. 

Proof: Without loss of generality we may assume p = q". Let 

G0,,(a) = Gl,,(a) ( ~ n  - A ( a )  + ~ ( b , a ) - l ~ ( I ) )  

In (5.5.8) we have proved that 

In the proof of Proposition 5.5.2 we have seen that we also obtain 

The assumptions imply that the problem is s-regular, and thus [ ~ ' d e t ~ ( A . ) l  2 6 
and las detGo , ( I )  1 2 6 on U rv for some 6 > 0. ~ e n c e  &(A)-'  = O ( I s )  and 

V E M  

o , s ( ) l  = 0 on U rv . This implies 
V E N  
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Hence it is sufficient to show that there is a matrix function MO,S(h) which is 
constant on sectors such that 

Arguing as in the proof of Proposition 4.3.6 iv),v) we infer that 

- 1 "ad $,s(n)-' = (det$,(h)) Mo,,(h), 

where 

4 4 ( h )  = 4 , s ( h )  + o ( a ( h ) )  

and the matrix G2,r(h) is constant on sectors. In the same way it follows that 

& ( I )  = h-"c(b, + O(rp(h))) ,  where 0 5 v, 5 s. An application of Theorem 
A.3.1 completes the proof. Here we have to note that the additional assumption 
on 8 in Theorem A.3.1 are satisfied in view of Proposition A. 1.6 and its proof and 
Corollary A. 1.4. 

5.8. Notes 

We recall that historically n-th order scalar differential equations were consid- 
ered before first order sytems of differential equations. Also, n-th order equations 
have attracted more attention than first order systems, mainly because of its greater 
relevance in applications. See the notes of Chapter VII and Chapter VIII for more 
details. 

The first expansion theorems for systems have been obtained with respect to 
uniform convergence, see the paper [BIL] of BIRKHOFF and LANGER. In the 
sequel, important generalizations have been published by R. E. LANGER [LA5], 
[LA6], [LA91 and R. H. COLE [C02], [C03], [C04]. In most of these publi- 
cations, in case of two-point boundary conditions, the eigenfunction expansions 
are stated as being pointwise convergent or locally uniformly convergent in the 
interior of the interval (a, b). However, we are mostly interested in either Lp con- 
vergence or uniform convergence on the whole interval. Then the behavior of 
the functions at the boundary becomes important; indeed, we see that we have 
to impose some auxiliary boundary conditons for the expandable functions if we 
consider uniform convergence or Stone regular problems. The boundary condi- 
tons which have to be satisfied for Stone regular problems were found explicitly 
in [MM5]. These boundary conditions are fulfilled if the functions which are to 
be expanded and their derivatives up to a certain order vanish at the endpoints of 
the interval (a ,  b) . 

Further results, in particular concerning completeness, minimality and basis- 
ness of the eigenfunctions and associated functions for systems of of differen- 
tial equations of type (5.1.1) with h-polynomial boundary conditions (5.1.2) have 
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very recently been published by C. TRETTER in [TR8]. The proofs of these re- 
sults are based on the spectral theory for linear operator pencils A - AB, on a new 
linearization method for a class of A-nonlinear boundary eigenvalue problems de- 
veloped by C. TRETTER in [TR9] and [TR7] and on sharp asymptotic estimates 
of the Green's matrix function as published in [MM5]. 



Chapter VI 

n-TH ORDER DIFFERENTIAL EQUATIONS 

In this chapter boundary eigenvalue problems for n-th order ordinary linear differ- 
ential equations are considered. The differential equation as well as the boundary 
conditions are allowed to depend holomorphically on the eigenvalue parameter. 
The boundary conditions consist of terms at the endpoints and at interior points of 
the underlying interval and of an integral term. Such boundary eigenvalue prob- 
lems are considered in suitable Sobolev spaces, so that both the differential op- 
erators and the boundary operators define bounded operators on Banach spaces. 
The assumptions on the boundary eigenvalue problems assure that these opera- 
tors depend holomorphically on the eigenvalue parameter. In a canonical way a 
holomorphic Fredholm operator valued function is associated to such a boundary 
eigenvalue problem with independent variable being the eigenvalue parameter. 
This operator function consists of two components, the first one is the differen- 
tial operator function, the second one is the boundary operator function. Operator 
functions defined in this way are briefly called boundary eigenvalue operator func- 
tions. 

The results of this chapter are the analogs of those proved for boundary eigen- 
value problems for first order differential systems in the third chapter. Some of the 
present statements are derived by the usual transformation of boundary eigenvalue 
problems for n-th order differential equations to such problems for first order n x n 
differential systems. A notable feature of this transformation is the fact that the 
characteristic matrix functions of the original boundary eigenvalue problem for 
the n-th order differential equation and the associated problem for the first order 
system coincide. Other results of this chapter are proved directly without refer- 
ence to first order systems. 

We obtain that a boundary eigenvalue operator function associated to an n- 
th order differential equation is globally holomorphically equivalent to a canoni- 
cal extension of the characteristic matrix function of the corresponding boundary 
eigenvalue problem (Theorem 6.3.2). The principal parts of the resolvent, i. e., the 
inverse of the given boundary eigenvalue operator function, is expressed in terms 
of the eigenfunctions and associated functions of this operator function and its 
adjoint (Theorem 6.3.4). As in the third chapter, inhomogeneous boundary con- 
ditions are treated in a natural way. The resolvent is defined on the direct sum of 

249 
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an Lp-function space and a finite-dimensional space of constants. On the function 
space, the resolvent is an integral operator whose kernel is the Green's function; 
on the space of constants, it is a multiplication operator (Theorem 6.4.1). 

The adjoint operator function of a boundary eigenvalue operator function de- 
fines the adjoint boundary eigenvalue problem (Theorem 6.5.1). For the adjoint 
problem in this operator theoretical sense no additional assumptions on the origi- 
nal boundary eigenvalue problem are needed. The adjoint operator function maps 
the direct sum of an Lp-function space and a finite-dimensional space of constants 
into a space of distributions. 

The realization of the original boundary eigenvalue problem within an Lp- 
function space is achieved in the following way: Take the original boundary 
eigenvalue problem with homogeneous boundary conditions and associate to it 
a family of closed linear operators whose domains consist of w;-functions which 
fulfil the boundary conditions. These closed linear operators are not necessarily 
densely defined and their domains may depend on the eigenvalue parameter. The 
adjoints of these closed linear operators are in general not operators but closed 
linear relations. Under additional assumptions these adjoints form a family of 
operators, in which case they yield the adjoint boundary eigenvalue problem in 
the parametrized form. The relationships between the adjoint boundary eigen- 
value problem in operator theoretical sense and the corresponding problem in 
parametrized form is thoroughly discussed (Theorems 6.6.4 and 6.6.5). 

Finally, the special case of two-point boundary eigenvalue problems is con- 
sidered. We state that the classical adjoint boundary eigenvalue problem coincides 
with the adjoint problem in the parametrized form. Root functions (eigenvectors 
and associated vectors) are defined for the above mentioned families of closed lin- 
ear operators by taking root functions (eigenvectors and associated vectors) of the 
corresponding holomorphic boundary eigenvalue operator function. It is shown 
that the principal parts of the GREEN'S function can be represented in terms of 
eigenfunctions and associated functions of the family of closed linear operators 
and the family of the adjoints of these operators (Theorem 6.7.8). 

6.1. Differential equations and systems 

In this chapter let R be a nonempty open subset of @, -w < a < b < w, 1 5 p 5 "0, 

1 5 p' 5 w such that l l p  + l lp '  = 1, and n E N, n 2 2. By ej  we denote the j-th 
unit vector in P. We consider the scalar n-th order differential equation 
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where pi E H (R, Lp(a, b)) (i = 0, . . . , n - 1). Together with this differential equa- 
tion we consider the differential operator 

LEMMA 6.1.1. LD E H(R,  L(W:(a, b), Lp(a, b))). 

Proot From Proposition 2.3.3 we infer that pi E H(R, L(W;-'(~, b), L,(a, b))) 
for i=O,  ..., n-1.  

We associate a first order system to the n-th order differential equation. This 
system is defined by the operator 

where 

PROPOSITION 6.1.2. Let 77 E Wp"(a, b), A E R, and set 

Then y E (w; (a, b))" and 

Pro08 The assertions y E (w; (a, b))" and 

are obvious. For i = 1,. . . , n - 1, (6.1.3) and (6.1.5) yield 
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Finally we obtain 

PROPOSITION 6.1.3. Lety E ( ~ ; ( a , b ) ) " ,  A E R, andassume that e : T D ( l ) y  = 0 
for i= 1 ,..., n -  1. Then q := e:y E Wp"(a,b), 

and 

Pro05 Let i E { 1,. . . , n - 1). By assumption and from (6.1.5) we obtain 

This proves q E W;(U,  b )  and e:y = q('- ') for i = 1,. . . ,n. Indeed, this is true for 

i = 1 .  Assume that q E ~ i ( a , b )  and eTy = q('-') holds for some i < n. Then 
(6.1.8) yields 

(4- T 1 -  T 1 - e i y  - e i + , y € w ; ( a l b )  

which proves q E w?' (a ,  b ) ,  see Corollary 2.1.4. Thus q E Wp"(a, b ) ,  and the 
equation (6.1.6) holds. Because of (6.1.6), the equation (6.1.7) immediately fol- 
lows from Proposition 6.1.2. 

DEFINITION 6.1.4. Let A. E i2 and q,,. . . ,qn E W;(a,b). Then { q I , .  . . , q n )  is 
called a fundamental system of L ~ ( & )  q = 0 if for each q E N ( L ~ ( & ) )  there are 
C, E C  ( j=  1 ,  ..., n )  such that 

A function ( q l , .  . . , qn) : i-2 t M1,,(Wp"(a, b ) )  is called afindamental systemfunc- 
tion of LDy = 0 if { q l  ( A ) ,  . . . , q n ( A ) }  is a fundamental system of LD(il)y = 0 for 
each A E Q. 
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LEMMA 6.1.5. Let & E R and Yo E M,(w,' ( a ,  b ) )  be a fundamental matrix of 
T ~ ( & ) Y  = 0. Then {eiYoel , .  . . , e:Yoen) is afundamental system of LD(&)q = 0, 
and 

holds for i = 1,. . . , n and j = 1,. . . , n. 

Proof: For each j E { I , .  . . , n ) ,  Yoej fulfils the assumptions of Proposition 6.1.3. 

Thus e iYoel , .  . . , e:Yoen E W;(a, b ) ,  and (6.1.9) holds. Now let E N(LD(A0))  
and set y := (7 ,  q', . . . , q ( n - l ) ) ~ .  Then y E N(TD(A,,)) by Proposition 6.1.2. Def- 
inition 2.5.2 yields a vector c = ( c l , .  . . ,cn)T E Cn such that y = Yoc. It follows 
that 

n 

LEMMA 6.1.6. Let & E R and q l , .  . . ,qn E W;(a,b) such that (171,. . . ,'I,,) is 

a fundamental system of L~ (&) = 0. Then ( ' I / ' - ' ) )  j= E M. (w; (a ,  b ) )  is a 

fundamental matrix of T D ( & J y  = 0. 

Proof: Let y E N ( T ~ ( & ) ) .  Proposition 6.1.3 yields that 77 := e l y  E W;(a,b), 

y = (11, q l , .  . . , q ( " - ' ) ) ~  and LD(&)q = ~ , T T ~ ( A ~ ) ~  = 0. Hence there is a vector 
c = ( c 1 , .  . . ,c,,)T E CY such that 

This proves 

PROPOSITION 6.1.7. Let A. E 0 and q l , .  . . , qn  E W;(a,b). Then the following 
conditions are equivalent: 
i) 771,. . . , are linearly independent, LD(Ao) q j  = 0 for each j E { 1,. . . , n) ,  and 
for each 17 E N ( L ~ ( & ) )  there are c j  E C ( j  = 1,. . . , n )  such that 

ii) {'I, , . . . , q n )  is afundamental system of LD(A0) 17 = 0; 
1 - 1 )  n iii) ('I/ ' ) i, ,= is a fundamental matrix of T D  (QY = 0. 
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ProoJ: i) + ii) is clear by definition of a fundamental system'and ii) + iii) follows 
from Lemma 6.1.6. 

Assume that iii) holds. For j = 1,. . . ,n we set y .  := (q , ,q j , .  . . , q ? - ' ) ) ~ .  
I J 

From Corollary 2.5.5 we infer TD(&Iyj  = 0 and hence, by Proposition 6.1.2, 
LD(&) q ,  = 0 for j = 1 ,  . . . , n. Since a fundamental matrix is invertible by Theo- 
rem 2.5.3 and Proposition 2.5.4, yl , . . . ,yn are linearly independent. This implies 
that q l ,  . . . , qn are linearly independent. An application of Lemma 6.1.5 com- 
pletes the proof. 

THEOREM 6.1.8. There is afundamental system function (77, , . . . , q,) of LDq = 0 
such that q ( ' - I )  ( a ,  A )  = a,,, for A E R  and i,  j = 1 ,  . . . , n. Furthermore, thefunda- 

I 
mental system function is uniquely determined and depends holomorphically on 
A E R. More precisely, we have q , E H (R,  WF (a ,  b )  ) for j = 1 ,  . . . , n. 

Pro05 By Theorem 2.5.3 there is a fundamental matrix function Y of T D y  = 0 
such that Y ( a , A )  =In  for all A E R .  For j =  1 ,  ..., n we set q j :=eTYe j .  By 
Lemma 6.1.5 we obtain that ( q l , .  . . , q,,) is a fundamental system function. In 
addition, (6.1.9) and Y (a ,  A )  = In yield q( ' - ' ) (a ,  A )  = 6, for h E R  and i ,  j = 

J 
1 ,  ..., n. 

Now let ( q ,  , . . . , qn) be any fundamental system function of LDq = 0 with 
q( ' - ' ) (a ,  A )  = S, for A E R  and i ,  j = 1,. . . , n. By Corollary 2.5.5 there is a unique 

I 

fundamental matrix function Y of T D y  = 0 with Y ( a , A )  = In for h E R. Since 
1 - 1 )  n ( q j  )i,j=l is a fundamental matrix function with these properties by Lemma 

6.1.6, we obtain that ( q l , .  . . , qn) is uniquely determined. 
Since Y depends holomorphically on A by Theorem 2.5.3, it follows that 

q E H ( R ,  w,' (a ,  b ) )  for i, j = 1 ,  . . . , n. For h h EN the indefinite integral de- 

fines a continuous linear map from w:(~,  b )  to ~ , h + ' ( a ,  b )  by Proposition 2.1.8. 

From q ( ' - ' ) (a)  = 6,, and Proposition 2.1.5 i) we know that 
J 

for j = 1 ,..., n and i = 1 ,... , n -  1. Hence we obtain in view of Corollary 1.2.4 
that 
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6.2. Boundary conditions 

Let LR E H(R, L(W:(a, b ) ,  @)). Suppose that p < w. We fix some & E i2 and 
I E { 1, . . . , n) .  By Theorem 2.2.5 there are u j  E Ld (a ,  b )  ( j  = 0,. . . , n) such that 

e:LR(&) = (u,);) and 
j=O 

for each q E Wp" (a ,  b ) .  Hence 

for each q E W,"(a,b). This proves that for each L E R there is an operator 
T ~ ( A )  E L ( ( w ~  (a ,  b ) ) " , @ )  such that 

holds for all 77 E Wp"(a, b ) .  
In applications, the boundary conditions are mostly given in a form such that 

it is easy to give a representation (6.2.1) with T R  E H(i2,  L((w; (a,b))",@").  For 
example, let 

where the a,, and pij are complex valued functions and where L~ depends holo- 
morphically on A. Choosing functions q for which exactly one of the values 
q ( J - ' )  ( a ) ,  q ( ~ - ' )  ( b )  ( j  = 1, . . . , n )  is different from zero we see that the aij and 
Pi, are holomorphic functions. Then T R ( I ) ,  defined by 

depends holomorphically on A. 

Now we shall show that, if p < w, we can always choose T ~ ( A )  in such a way 
that it also depends holomorphically on A. This immediately follows from 
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PROPOSITION 6.2.1. Let 1 E N, 1 < p < and v  E H ( Q ,  ~,;'[a, b]) .  Then there 
are uo, . . . , ul E H ( R ,  Lp,(a, b ) )  such that 

I 
( A )  = ( A )  ( A  E R). 

i=O 

Pro08 We shall prove the proposition by induction on 1. In case 1 = 0 nothing has 
to be proved. Assume that the assertion holds for 1 - 1 and let v  E H ( R ,  wP;'[a, b] ) .  
For each A E R there are vo(A) ,  . . . , vl ( A )  E L,, (a ,  b )  such that 

For A E SZ and x  E R we set 

where x ( ~ , ~ )  is the characteristic function of (a ,  b )  . Since 

by definition of the bilinear form ( , ),,, (see (2.2.4)), we have w ( A ) ( x )  = 0 for 
x  E R\ ( a ,  b ) .  From Proposition 2.1.5 i) it follows that w ( A )  E W; ( R )  C L p ( R )  
and 

1 
w(A)' = vo(a)e - - ( ~ , V ( A ) ) , , ~ X ( ~ , ~ ) .  b - a  

Then 
1 

; (A) := W ( A )  + Lvi(n)!-l) E ~,;~+'[a ,b] .  
i= l 

We note that 

depends holomorphically on A in the Banach space wP;'[a, b]. Let q E wL-' ( a ,  b )  
and set 

Then v E W; (a ,  b )  and 
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Hence J is (weakly) holomorphic in w;'+' [a, b].  The induction hypothesis yields 
P 

that there are u,  , . . . , ul E H (a, LP, (a ,  b ) )  such that 

1- 1 

( I ) = u ~ + , ( I )  ( n ~ a ) .  
i=O 

We set 
1 

uo(n)  := - ( l , v ( a ) ) p , j ~ ( o , b ) .  b - a 

Then uo E H ( Q ,  Lp, (a ,  b ) ) .  From (6.2.2) we obtain 

1 

.(a) = u,(A) + i(n)'  = C U,(L)! )  (a  E a ) .  
i=O 

We would like to note that the "canonical way" to associate T R  to LR does not 
always yield a holomorphic operator function T R .  For example, the identity 

yields that, for any complex valued function a on @, 

defines a holomorphic operator function 

LR E H ( C , L ( W ~ ~ ( ~ , ~ ) , C ~ ) ) .  

But the operator function T R ,  given by 

where y = (::) E (w: (a ,  b ) ) 2 ,  does not depend holornorphically on I if a does 

not depend holomorphically on A. 

We shall assume also in the case p = w that LR E H(R,L(Wp"(a, b ) , C n ) )  is 
given in such a way that (6.2.1) holds for some T R  E H ( R , L ( ( W ; ( U , ~ ) ) " , C " ) ) .  

6.3. The boundary eigenvalue operator function 

Let LD and LR be as defined in Sections 6.1 and 6.2. We call 

(6.3.1) D R L =  ( L  , L  ) €H(Q,L(W;(a,b),L,(a,b)  x c ) )  

a boundary eigenvalue operatorfunction. 
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Let { q l , .  . . , q n )  be the fundamental system function of LDq = 0 given by 
Theorem 6.1.8 and set Y := ( ' l j i - l ) ) : j=l .  Define 

and 

(6.3.3) ( u , ( a ) f ) ( ~ )  := e : ~ ( x , ~ ) L ~ ~ ( t , ~ ) - l e .  f ( t )  d t  ( f  E ~ , ( a , b ) ) .  

From Lemma 6.1.6 we know that Y is a fundamental matrix function of T~~ = 0. 
Let A E R and U ( A )  be the right inverse of T D ( A )  given by (3.1.6). Then 

A characteristic matrix function of L is defined by 

Note that M is also a characteristic matrix function of the associated first order 
boundary eigenvalue operator function T = ( T D ,  T ~ )  given by (6.1.3) and (6.2.1). 

THEOREM 6.3.1. L is an abstract boundary eigenvalue operator function in the 
sense of Section 1.1 1. 

Proof: We set E := W,"(a,b), Fl := Lp(a,b) ,  G := F2 := C?, Tl := LD, T2 := LR. 
We have to prove that (1.1 1.1) holds. For this let A E R. For each f  E Lp(a,  b )  we 
have 

T ~ ( A ) U  ( n ) e n  f  = en f .  

Thus we can apply Proposition 6.1.3 and obtain eTU (A)en f  E Wp"(a, b )  and 

Then (6.1.7) and (6.3.4) yield 

for each f  E Lp(a, b ) ,  i. e., UL(A)  is a right inverse of LD(A) .  
For each A E R, ZL(A)  is injective since q l , .  . . , 77, are linearly independent 

by Proposition 6.1.7. 
For the proof of (I. 1 1.1) iii) let A E R and E N ( L ~  ( A ) ) .  Then, by Definition 

6.1.4, there is a vector c  E C? such that 77 = (q l  (., A ) ,  . . . , q, (., A))c  = ZL(A)c ,  
which proves 77 E R (ZL(A) ) .  Conversely, let E R(ZL(A) ) .  Then there is a vector 
c  E Cn such that 17 = ZL(A)c  = (q l  (., A ) ,  . . . , qn(., A))c .  Proposition 6.1.7 proves 

77 E N ( L D ( A ) ) .  
We shall show that UL is even a holomorphic right inverse. As in the proof of 

Proposition 2.1.6 we define 

R : =  {(fj))=o: f , tL , (a ,b )  ( j = O  ,..., k ) ,  f j =  f .  ~ + 1  ( j = O  ,..., k - 1 ) ) .  



6.3. The boundary eigenvalue operator function 259 

Because of the isomorphism proved in that proposition it is sufficient to show that 
for j=O, ..., n 

defines a holomorphic map in L(Lp (a ,  b )  , L, (a ,  b )  ) . For j = 0 ,  . . . , n - 1 this fol- 
lows from (6.3.6) since U E H(R,L((L,(a,b))",  ( ~ d ( a , b ) ) ~ ) ) .  Since this also 
yields that 

defines a holomorphic map in L(Lp(a,  b ) ,  W; (a ,  b ) ) ,  we finally obtain that the 
assertion also holds for j = n. 

As in Section 3.1 we apply Theorem 1.1 1.1 and obtain 

THEOREM 6.3.2. The boundary eigenvalue operatorfunction L given by (6.3.1) is 
holomorphically equivalent on R to the Lp(a,  b)-extension of M; more precisely, 
for A E R we have 

o i d~p(a ,b )  ) (M(') 

= (id, LR(A)&(A) 0 idLp(a,b) 

and the operators 

and 

( ~ L ( A ) , U L ( ~ ) )  E L ( c  x Lp(a,b) ,  Wp"(a, b ) )  

are invertible and depend holomorphically on A. 

COROLLARY 6.3.3. The boundary eigenvalue operator function L is Fredholm 
operator valued and p ( L )  = p ( M )  = p ( T ) .  

ProoJ: The first assertion and p(L)  = p ( M )  immediately follow from Theorem 
6.3.2 since M ( A )  is an operator in finite dimensional spaces. As M is also a 
characteristic matrix function of T ,  we have p ( M )  = p ( T )  by Theorem 3.1.2. 

In the same way as Theorem 3.1.4 we obtain 

THEOREM 6.3.4. Let M be the characteristic matrix function given by (6.3.5). 
Suppose that p ( M )  # 0. Let p E o ( M )  and r := nu1 M ( p ) .  Let { c ,  , . . . , c,) and 
{ d l , .  . . ,d,.) be biorthogonal CSRFs of M and M* at p. Dejine 
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Then { q l , .  . . , q r )  and { v l , .  . . , vr )  are biorthogonal CSRF of L and L* at p, 
v(q j )  = v ( v . )  I = v ( c . )  I = v ( d j )  =:mj  ( j =  I , . .  . , r ) ,  and the operatorfinction 

is holomorphic at p. 

PROPOSITION 6.3.5. Let W E H ( R ,  Mn(Ll (a ,  b ) ) ) ,  ak E [a, b] ( k  E N ) ,  a j  # ak 

( k  # j ) ,  a, = a, a l  = b, ~ ( j )  E H ( R , M n ( C ) )  ( j  E W) such that 

m 

for each compact subset K of R .  For 1 E R and q E Wp"(a, b )  we set 

Then LR E H ( R ,  L (Wi (a ,  b ) ,  C n ) ) .  

Prooj This follows from Proposition 3.1.5. 

6.4. The inverse of the boundary eigenvalue operator function 

Let L be the boundary eigenvalue operator function defined by (6.3.1), where L~ 
is given by (6.3.8). For 1 E p ( L ) ,  f l  E Lp(a,  b )  and f2 E Cn we set 

(6.4.1) K l ( 1 ) f l  := L - l ( a ) ( f l l O ) ,  

(6.4.2) K2(1)f2 := L-' ( A ) ( o l f 2 ) .  

As in Section 3.2 we set 
m 

F(x ,A)  := w ( ~ ) ( A )  + J x w ( t , a )  dt (a  x < b ) ,  
i=O a 

m 

(6.4.4) F A )  := ( A )  + W ( t , A )  d t .  
j=o I" 

Let (V 1 ,  . . . , V n )  E H (C, MI ,, (Wp" (a ,  b ) )  ) be the fundamental system function of 

LDV = 0 with q( i - l ) (a ,  1) = 6ij for 1 E @ and set Y := (q j i - l ) ) : j=l .  Let M be 
I 
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the characteristic matrix function defined by (6.3.5). For I E p(L) ,  the GREEN'S 
function of L is defined by 

where the integrator is F (., A) .  We set 

THEOREM 6.4.1. Let L be the boundary eigenvalue operatorfinction as defined 
in (6.3.1), and let KI , K2 be given by (6.4.1), (6.4.2). For I E p(L) ,  fl  E Lp(a,b),  
f2 E Cn and x E (a ,  b )  we have 

Pro05 We only have to prove (6.4.9). By Corollary 6.3.3 we have L E p ( T ) .  
From 

T D ( L ) T - ' ( L ) ( e n f I , f 2 )  = enfl 

we infer that y := T - ' ( I ) ( e n  f l ,  f2)  fulfils the assumptions of Proposition 6.1.3. 
Hence (6.1.7) yields 

and (6.1.6) and (6.2.1) prove that 

Since L ( L )  is invertible by assumption, we have 
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6.5. The adjoint of the boundary eigenvalue problem 

The adjoint boundary eigenvalue problem in distributional sense consists in find- 
ing nontrivial weak solutions (u ,  d )  E Lp, (a ,  b )  x @ of the differential equation 

for A E R, where u, is the canonical extension of u. The following theorem justi- 
fies this definition of the adjoint boundary eigenvalue problem. 

THEOREM 6.5.1. Let the boundary eigenvalue operator function L be given by 
(6.3.1). I f p  < then L* E H(R, L(Lr/ (a ,  b )  x @ , W i n [ a ,  b ] ) )  is given by 

(u E Lp, (a ,  b ) ,  d E C n ) ,  where u, is the canonical extension of u. If LR has the 
form (6.3.8), then 

and, for d E C", 

Here x ( ~ , ~ , )  is the characteristicfunction of the interval (a ,a j ) .  

Pro08 Let q E Wp" (a ,  b )  and u E Lp, (a ,  b ) .  Then we infer with the aid of Proposi- 
tion 2.3.4 for k = 0, 1 = 1 and Theorem 2.2.5 that 

This proves 
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Since, for d E C', 

we obtain the representation (6.5.2). For a function q E W:(a,b) we set y := 

( q ,  q', . . . , v ( ~ - ~ ) ) T  and obtain 

This equation and (3.3.3) yield (6.5.3). 
Since 

~ ~ ( a ) u , ( n )  = T R ( A ) ~ ( A ) e n  

by (6.2.1), (6.3.4), and (6.3.6), we have 

(L~u, )*(A)  = ~ ~ ( T ~ U ) * ( A ) .  

With the aid of (3.3.4) we obtain the representation (6.5.4). 

6.6. The adjoint boundary eigenvalue problem in parametrized form 

In this section let p < 00. Let L be given by (6.3.1) and define Lo(A) in Lp(a,  b )  by 

and 

(6.6.2) Lo(A)l7 = L ~ ( A ) v  ( q  E D ( L o ( 4 ) .  

As for first order systems considered in Section 3.4, the domain D(Lo(A) )  of 
Lo@) may depend on A and may be a non-dense subspace of Lp(a,  b) .  

Let p(Lo) := { A  E SZ : Lo(A) is bijective), o ( L o )  := R\p(Lo). 

THEOREM 6.6.1. Let L be the boundary eigenvalue operator function given by 
(6.3.1) and let Lo be its restriction in Lp(a,  b )  with homogeneous boundary condi- 
tions as given by (6.6.1) and (6.6.2). 
i) p(Lo) = p(L)  and L;'(A) f = L - ' ( A ) ( f , 0 )  for A E p(L)  and f E Lp(a,b).  I f  
A E p (Lo), then ~i ' ( A )  is continuous. 
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ii) Suppose that L~ is of the form (6.3.8) and let G be the GREEN'Sfinction given 
by (6.4.5). Then, for I E p(Lo) and f E Lp(a,b),  

Pro06 Up to some changes in notations and references, the proof coincides with 
the proof of Theorem 3.4.1. 

As in Section 3.4 we can prove 

PROPOSITION 6.6.2. For all I E R the operator L o ( I )  : Lp(a,  b )  + Lp(a,  b )  is 
closed. 

In the same way as Proposition 3.4.7 we prove 

PROPOSITION 6.6.3. Let M be the characteristic matrixfinction given by (6.3.5) 
and suppose that p ( M )  # 0. Let p E o ( M )  and r := nu1 M ( p ) .  Let { c ,  , . . . , c,) 
and { d l , .  . . , d,) be biorthogonal CSRF of M and M* at p. DeJine 

where ZL and UL are given by (6.3.2) and (6.3.3), respectively. Let m j  := v ( q j ) ,  
the multiplicity of the root function c j  . Then the operator finction 

is holomorphic at p. 

The adjoint LG(I)  is a linear relation in Lpl (a ,  b) defined by its graph 

G(LG(A)) = ( ~ ( - ~ o ( w ) ) ~ ,  

I. e., 

E D ( L W ) )  @ 3 w  E Lpl(a,b)Vy E D(L, ( I ) )  (L,(L)y,u) = ( ~ 1 4  

and 

L;(+ = {W E Lpl(a,b) : VY E D(L, ( I ) )  (L , ( I )y ,u)  = (y1w)). 

Here ( , ) is the canonical bilinear form on Lp(a,  b )  x Lpl(a,  b ) .  

In the same way as Theorem 3.4.3 we prove 

T H E O R E M  6.6.4. i) Let I E R and u E Lpl(a,  b) .  Then u E D(LG(I) )  ifand only 
if there is a vector d E C such that L*(A) (u ,d )  E Lp, (R) .  
ii) Let I E S2 and u E D(L: ( I ) ) .  Then 
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THEOREM 6.6.5. Let L~ be given by (6.3.8) and suppose that W (., A)ei belongs 
to (w;;' (a ,  b))" for i = 1,. . . ,n. 
i) Let A E Q and u E Lp,(a, b) .  Then u E D(L;(A))  ifand only if there is a vector 
d E Cn such that 

n-l n 

+ E E (- l)"-' ( ( W ( . , ~ ) ( " - ~ - ~ ) e , ) ~ ( a ) d 6 i ~ - ~ )  

belongs to Lpl (R) . 
ii) Let A E Q. Then L;(A) is a linear operator if W ( - , A )  = 0 or i f  for each 
d E Cn \ ( 0 )  one of the followingJive properties holds: 
There is an integer j E N, j j 2, such that w ( J ) ( A ) T ~  # 0; 
e , ~ W ( O ) ( j l ) ~ d  # 0; 
e , ~ w ( l ) ( A ) ~ d  # 0; 
There i s a  number i E ( 1 ,  ... , n -  1) such that 

ThereisanumberiE ( 1 ,  ..., n -  1 )  such that 

Pro06 i) is obvious because of Theorem 6.6.4 i), (6.5.2), (6.5.3), and Proposition 
2.6.5. 
ii) For d E Cn we have L*(A) (0 ,d )  = L ~ *  ( A ) d .  In case W (., A) = 0,  the property 
L ~ *  ( A ) d  E Lpl (a ,  b )  immediately implies L ~ *  (A)d  = 0 by Proposition 3.4.4. And 
if one of the other five conditions is satisfied, then it follows by part i) and Propo- 
sition 3.4.4 that ~ ~ * ( l ) d  $! Lpl(a,b) if d # 0. In both cases, Theorem 6.6.4 ii) 
yields L* ( A )  ( 0 )  = { 0 ) ,  i. e., L*(A)  is an operator. 
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COROLLARY 6.6.6. Let pi(., I )  t w:,,{~,~) (a ,  b )  for i = I , .  . . ,n - 1. Let L~ be 
given by (6.3.8), where the sum runs from 0 to k, k > 1, and W (., I ) e ,  belongs to 
(w;;' (a ,  b))" for i = 1,. . . , n. The set [a, b] \ {ao, . . . ,ak)  is the disjoint union of k 
open intervals 11, . . . , Ik . We set p, := 1  and define 

Then [ E D(LG(I) )  ifand only ifthere is a vector d E Cn such that 

Proot From Theorem 6.6.5 we infer that 

for [ E D(LG(I) )  and j = I , .  . . , k. Proposition 2.6.1 shows that [I,, E W; (1,) 

for j = 1,. . . , k. Therefore, in the following, we may suppose that [ E Lp, (a ,  b )  
satisfies this property. Note that 
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Therefore, by Theorem 6.6.5 and Proposition 2.6.5, u E D(LE(A)) if and only if 
there is a vector d E Cn such that 

where I j  =: (a j ,  Pi). In view of Proposition 3.4.4 this holds if and only if all the 

coefficients of 6dl) are zero for 1 = 0 , .  . . , n - 1 and j = 1 , .  . . , k. Let us consider 
I 

j = 0;  the cases j = 1 and j = 2,. . . , k are similar. So, for j = 0,  we have to satisfy 

for 1 = 0, .  . . , n - 1. Applying LEIBNIZ' rule to (pi  (., A )  ()('-'-') we obtain 

for 1 = 0, .  . . , n - 1, which shows that (6.6.3) is equivalent to 

Now let A E S;Z and suppose that the assumptions of Corollary 6.6.6 are ful- 
filled. Then A is an eigenvalue and the nonzero function 5 E Lp,(a, b) is an eigen- 
function of the adjoint boundary eigenvalue problem in parametrized form if and 
only if there is a vector d E @ such that, for j = I , .  . . , k ,  5 I l j  E W; (a ,  b). 

(6.6.4) 
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and the boundary conditions 

~ ~ ( ~ ) ( i ; ( ~ ) ( a + ) ) y z d  = w ( ' ) ( A ) T ~  

are satisfied. 

Analogously to Proposition 3.4.8 we obtain 
PROPOSITION 6.6.7. Suppose that p (L)  # 0 and let p E o ( L ) .  
i) Let q0 be an eigenvector of L at p. Then q0 E D(Lo(p) )  and LO(p)qO = 0. 
ii) Assume that L;(p)  is an operator. Let (uo,do) be an eigenvector of L* at p. 
Then uo E D(LG(p)) and LG(p)uo = 0. 

PROPOSITION 6.6.8. Suppose that L~ does not depend on A. 
i) Let p E o ( L )  and (qk)i=O be a CEAV of L at p. Then qk E D ( L o ( p ) )  for 
k=O,  . . . ,  h. 
ii) Suppose in addition that po E H(Q,  L,(a, b) ) ,  that the pi do not depend on A 
for i = I , .  . . , n - 1 ,  and that LG(A) is an operator for all A E Q. Let p E o ( L )  and 
(uk ,  dk)!=O be a CEAVof L* at p. Then uk E D(LG(p)) for k = 0 , .  . . , h. 

Pro08 The proof of part i) is similar to the proof of part i) in Proposition 3.4.9 
and therefore omitted. 
ii) For k = 0 , .  . . , h we obtain as in the proof of Proposition 3.4.9 and with the aid 
of (6.5.2) that 

The next example shows that the statement of Proposition 6.6.8 ii) is not nec- 
essarily true if one of the functions p i , .  . . ,pnTl  depends on A. 

EXAMPLE 6.6.9. We consider L ( A )  E L ( w ~ ( o ,  l) ,Lp(O, 1) x C 2 )  given by 
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Obviously, {eax - hxeax,xeax) is a fundamental system of L ~ ( A ) ~  = 0. The 
corresponding fundamental matrix is 

and fulfils Y (0 ,  A )  = 12. The characteristic determinant is given by 

From det M ( A )  = e2' - ea - ;lea - A2ea we infer p ( M )  # 0 and that det M has a 
zero of order 2 at 0. The vector function given by 

has a zero of order 2 at 0. Hence is a root function of M at 0 of multiplicity (:) 
2, and by Proposition 1.8.5 it is also a CSRF of M at 0. In the same way, 

shows that (-2;hBA) is a CSRF of M* at 0 of multiplicity 2. From 

where h,  and h2 are holomorphic functions on @, we see that the CSRFs are 
biorthogonal. It is easy to see that 
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Now 6.5.4 yields 

Hence 

According to Theorem 6.3.4, 

is a CEAV of L* at 0. In view of Theorem 6.5.1 we have 

From Proposition 2.6.5 we infer 

Thus we obtain for d = ( d l ,  d2)T E C2 

8 20 8 
=4+-6;+26;-  3 - 4 + - 6 ,  -d160+d16L+d161 -d26;.  

3 3 

Since for any choice of d l ,  d2 this distribution does not belong to L,,(a,b), it 

follows from Theorem 6.6.4 ii) that the first component - y x +  2x2 of the asso- 
ciated vector of L* at 0 does not belong to the domain of LG(0). 
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6.7. Two-point boundary eigenvalue problems i n  Lp(a, b) 

In this section let p < .o and 

for 1 E R and 77 E W;(a, b ) ,  where pi E H(R, w;,~~,~ , )  (a ,b ) )  ( 1  5 i s n -  1 )  

and wa, wb E H ( R ,  Mn(@)).  We suppose that rank(wa(A) ,  ~ ~ ( 1 ) )  = n for all 
?L ER. 

Apart from L~ we consider L ~ +  E H(Q, L(W; (a ,  b ) ,  L, (a ,  b ) ) )  defined by 

for a E i-2 and 11 E W$(a,b).  

PROPOSITION 6.7.1. Let 1 E N, v  E ~ i ( a , b )  and w E ~ i ( a , b ) .  Then 

Pro06 For I = 0 nothing has to be proved. Now let 1 = 1. In view of (2.3.1) and 
Proposition 2.1.5 i) we obtain 

b 

(v', w)  + (v, wl)  = (v'w + vw') dl = I (vw)' dl Ib  
Assume that the statement holds for some 1 > 1. Then 

( V ( l + l ) ,  w )  - (- l)l+l(V, w ( l + l ) )  1 (,,(l+l), w )  - (- l)l(,,/, w(4 )  

+ ( - l )1( (v1 ,  w@))  + (v, W ( l + l ) )  
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PROPOSITION 6.7.2. We set pn := 1 and 

where Hx(A) has been dejned in Corollary 6.6.6. Then H E H (R ,  M2,, (@)), H ( A )  
is invertible for all A E R ,  and 

holds for all A E C, q E W,"(a, b )  and < E W;(al b) .  

Equation (6.7.1) is called the LAGRANGE identity. We call H ( A )  the LA- 
GRANGE matrix of ~ ~ ( 1 ) .  

Proo$ Since pi E H ( R ,  ~ { ( a ,  b ) )  for i = 1,. . . , n, we have that hlm belongs to 
H (R,  W /  (a ,  b ) )  and hence hlm E H (R ,  C[a,  b ] )  by Proposition 2.1.7. This proves 
that hln, (x ,  .) is a holomorphic function for each x E [a, b]. Therefore H depends 
holomorphically on A. Since hl, = 0 if 1 + m  2 n, H,(A) is an upper left triangular 
matrix, and hl,n-l -l = (- l )n-l- l  p n - - (- I)"-'-' shows that the corresponding 
diagonal elements are nonzero. Hence Hx(A) is invertible for all A E R and all 
x E [a, b]. Thus also H ( A )  is invertible for all A E R .  For the proof of (6.7.1) we 
calculate with the aid of Proposition 6.7.1 

Because of (2.3.1) we can apply LEIBNIZ' rule to pic and obtain that 
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- - ( '"" ) T H x ( A ) (  "" ) .  
7+"-')(x) p- ') (x) 

For q E W," (a ,  b )  and 6 E W; (a ,  b )  we briefly write y : = ( q  , . . . , q ( " - ' ) ) T  and 

u := (C, .  . . , c'"-")~.  
We note that the LAGRANGE identity can be written as 

(6.7.2) 

for c E W$(a, b )  . Furthermore, (6.5.3) immediately yields that 

holds for d E Cn 

By Proposition 3.5.1 there is an invertible matrix Q ( A )  E M2n(C) which de- 
pends holomorphically on A  such that 

with suitable Al, B E H ( R ,  Mn(C)) .  
We define 

where the matrix on the left hand side is divided into n x n-block-matrices. 

The operator L ~ ( A )  in Lp, (a ,  b )  is defined by 

(6.7.6) D(L; ( A ) )  

c (a )  c ( b )  
: = { c ~ w ; ( a , b ) : f i a ( * ) (  Qn-l+Z) ) + f i b l A l (  p-l) ( b )  ) = o }  

C Lpl (a ,  b )  

and 

(6.7.7) L;(A)C := L ~ + ( A ) (  ( 5  E D ( L ~ ( A ) ) ) .  

By Theorem 6.6.5 ii), LG ( A )  is a linear operator. 
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THEOREM 6.7.3. We consider the families of operators Lo(A) and L$(A)  dejned 
by (6.6. l), (6.6.2) and (6.7.6), (6.7.7), respectively. For all A  E Q we have 
i) Lof(A) = Lc(A), 
ii) (L;(A))* = Lo(A) i f p  > 1. 

ProoJ: i) Let E D(Lo(A) )  and 6 E D(L;(A)) .  From Proposition 6.7.2 we infer 

From (6.7.5) and the definitions of D(Lo ( A ) )  and D ( L i  ( A ) )  we infer 

Thus 

( L o ( A ) v , O  = ( l l J J D + ( 1 ) 6 ) ,  
which proves 6 E D(Lc(A))  and Lc(A) c = L$ ( A )  6 .  

Conversely, let 6 E D(LG(A)). We have to prove that ( E D(L$(A)) .  Corol- 
lary 6.6.6 shows that 6 E W; (a ,  b )  and that there is a vector d E Cn such that 

(6.7.8) Ha(A)u(a) = W a ( A ) T d  and Hb(A)u(b) = - w b ( A ) ~ d .  

From (6.7.5) we infer 

which proves that 6 E D(Li(3L)). 
ii) Since Lp(a,  b )  is reflexive and Lo(A) is closed by Proposition 6.6.2, we have 
Lo(A)** = LO(A) ,  see [KA, Theorem 111.5.291. Therefore ii) follows from i). 
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DEFINITION 6.7.4. Let 77 E H ( R ,  Wp"(a, b ) )  and p E R. 77 is called a rootfinction 

of Lo at p if and only if 77 ( p )  # 0, (LDq)  ( p )  = 0 and w a ( p )  ( ~ ( ~ ) ( a ,  p))~;; + 
~ ~ ( p ) ( q ( ~ ) ( b , p ) ) : z d  = 0. The minimum of the orders of the zero of ~~q and 
wa(q( ' ) (a ,  .))::: + ~ ~ ( ~ ( ' 1  (b ,  .)):zd at p is called the multiplicity of q. 

From ~~q = ~ ~ ( q ( ~ ) ( a ,  .))Yzd + ~ ~ ( q ( ~ ) ( b ,  .)):id we obtain 

PROPOSITION 6.7.5. Let 17 E H(R,W;(a,b)), p E R and v E N Then 77 is a 
root function of Lo of multiplicity v at p i f  and only if 77 is a root finction of L of 
multiplicity v at p. 

Canonical systems of root functions of Lo are defined in the same way as for 
L. Hence a system of root functions is a canonical system of root functions of Lo 
at p if and only if it is a canonical system of root functions of L at p.  

The situation is different for Lof = LG and L*. 

PROPOSITION 6.7.6. Let ( 5 , d )  E H ( R ,  Lp,(a, b )  x @) be a rootfinction of L* 
of multiplicity v at p. We may assume that 6 is a polynomial of order 5 v - 1. 
Then 5 t H (R,  W$ (a,  b ) ) ,  c is a rootfinction of Lo+ of multiplicity 2 v at p, and 

d + eu(a ,  .) + &(b, .) has a zero of order 2 v at p. 

Pro05 By assumption 

where ci t L,,, (a ,  b)  ( i  = 0,. . . , v - 1). First we shall show that & belongs to 
W$ (a,  b) .  For this, define 

Since (<,d)  is a root function of L* of multiplicity v at p,  we have 

Since the restriction of LR* to g l ( a ,  b)  is zero, we obtain 

For i = 0, (6.7.9) yields (LD*(p)co) ,  = 0 and hence c0 E W$(a,b) by (6.5.2) 
and Proposition 2.6.1. Now, for i = 1, the right hand side of (6.7.9) belongs to 
Lp, (a ,  b ) ,  and Proposition 2.6.1 yields el E W; (a,  b) .  Repeating this procedure 
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we obtain 5, E W$ (a ,  b )  for i = 0 ,  1 ,  . . . , v - 1. As in the proof of Corollary 6.6.6 
we obtain that 

(6.7.10) H,u(a, .) - w a T d  and Hbu(b, .) + w b T d  

have a zero of order 2 v at p. From the representations (6.7.2) and (6.7.3) we 
infer that ~ ~ ' 5  has a zero of order > v at p. Hence 5 is a root function of L l  of 
order > v at p.  From (6.7.10) and the definition of H we obtain that 

has a zero of order 2 v at p.  Hence it follows in view of the invertibility of 

(;:: g) that &(a, .) + o u ( b ,  .) + d has a zero of order > v at p. 

PROPOSITION 6.7.7. Let 5 E H(Q,  Wp"(a,b)) be a rootfunction of L: of multi- 

plicity v at p. Set d := -&(a, .) - h ( b ,  .). Then ( 5 , d )  is a rootfunction of L* 
of multiplicity > v at p. 

Proo$ By assumption, Wau(a,  .) + Wbu(b,  .) has a zero of order 2 v at p . Hence 
the matrix function (6.7.1 1 )  has a zero of order > v at p.  Now the assertion is 
clear because of (6.7.2), (6.7.3), (6.7.5) and (6.5.2). 

A canonical system of eigenfunctions and associated functions of the family 
of operators LO(il) is defined by talung a canonical system of eigenfunctions and 
associated functions of the holomorphic boundary eigenvalue operator function L. 

THEOREM 6.7.8. We consider the families of operators Lo(il) and Lof(3L) defined 
by (6.6.1), (6.6.2) and (6.7.6), (6.7.7), respectively. Assume that p E o(Lo) and 
let {qi,h : I 5 i < r, 0 5 h < mi - 1 )  be a canonical system of eigenvectors and 
associated vectors of Lo at p. Then there is a canonical system of eigenvectors 
and associated vectors {[i,h : 1 5 i < r, 0 5 h < mi - 1) of L: at p such that the 
principal part of the GREEN'S function G(x,  5 ,  .) at p has the form 

If W a  and wb do not depend on il, then the biorthogonal relationships 

( 1  < h 5 m i ; O < m < m . - l ; i , j =  1 ,  ..., r )  hold, where 
J 
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Pro05 We set 
mi- 1 

q,(A) := E (A - p)hqi,h (i = 1,. . . , r). 
h=O 

{q l ,  . . . , q,.) is a CSFW of L at p by Propositions 1.6.2 and 6.7.5. By Theorem 
1.5.4 there are polynomials (6 ,  di) : C -+ Lp, (a ,  b) x G of degree < mi such that 

{ ( ~ l , d l ) , . . . , ( C r , d r ) )  isaCSFWofL* a t p ,  

is holomorphic at p and the biorthogonal relationships 

holdfor 1 < h < m i , O < m < m , - l , i , j =  1, ..., r, whereweusethenotation 
gih : = (. - P ) - ~ L ~ ~ .  By Proposition 6.7.6, C1, . . . ,Cr  are root functions of L: at 

p and di ( p )  = -C"(p)ui (a, p )  - 6(p)ui(b ,  p). Hence c1 (p) ,  . . . , &(p)  are lin- 
early independent as (cl, d l )  ( p )  , . . . , (C,, d,) (p) are linearly independent. Since 
the multiplicities of a CSRF of Lo+ at p cannot exceed the multiplicities of a CSRF 
of L* at p by Proposition 6.7.7, {Cl,. . . ,<,) is a CSRF of Lo+ at p. We set 

and infer that {Ci,h : 1 5 i 5 r, 0 < h 5 mi - 1) is a canonical system of eigenvectors 
and associated vectors of L: at p. By Theorem 6.6.1 i) and (6.7.14) the principal 
part of Lo1 at p is equal to the principal part of 

at p ,  and Theorem 6.6.1 ii) yields that the principal part of G(x, 4 ,  .) at p is 

If Wa and w b  are constant, then ~~q~ is a polynomial of degree 5 mi - 1 and 
hasazerooforder >rn ia tp .  ~ e n c e ~ ~ q ~ = ~ f o r i =  1, ..., r. T ~ U S ~ ~ ~ =  (eihlO), 
and (6.7.15) leads to (6.7.13). 
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6.8. Notes 

Mostly, the operators associated with boundary eigenvalue problems are con- 
sidered as operators from Lp(a ,  b )  to Lp(a ,  b ) .  In that case, it it sufficient to con- 
sider somewhat weaker conditions on the coefficients, see [NA2, Chapter V]. 
However, in general it is much more advantageous to have bounded operators, 
and we are therefore going to use the operator L : W i ( a ,  b) -i Lp(a ,  b) x Cn in 
subsequent chapters. An important advantage of this approach is the fact that 
the adjoint operator L'(1)  is defined on the whole space Lp,(a,  b) x Cn and is a 
bounded operator with values in some space of distributions. As a consequence, 
the associated adjoint boundary eigenvalue problem is defined without any re- 
strictions. This implies that the eigenvectors and associated vectors of the adjoint 
problem are always defined. The associated vectors may not belong to the do- 
main of the classical adjoint problem. This explains why in the classical approach 
problems containing associated vectors are mostly disallowed. 

Adjoint boundary conditions for two-point boundary eigenvalue problems 
were introduced by G. D. Birkhoff in [BI2]. G. FROBENIUS has shown in [FRO] 
that the adjoint differential expression A' of a differential expression of the form 
A = C r , o ~  ,DJ is uniquely determined by the identity vA (u )  - wll(v) = DA (u ,  v), 

where A(u, v) = Z; ,k( -  I ) ~  ( D J U )  Dk ( A ~ + ~ + ,  V )  . 



Chapter VII 

REGULAR BOUNDARY EIGENVALUE PROBLEMS 
FOR n-TH ORDER EQUATIONS 

This chapter deals with eigenfunction expansions for regular boundary eigenvalue 
problems for n-th order ordinary differential equations. The coefficients in the dif- 
ferential equation as well as in the boundary conditions depend polynomially on 
the eigenvalue parameter A. As in the fifth chapter, the boundary conditions are 
allowed to contain countably many interior points and also an integral term. For 
such boundary eigenvalue problems the notions Birkhoff regularity and Stone reg- 
ularity are defined in terms of the corresponding notions introduced in the fourth 
chapter for boundary eigenvalue problems for first order n x n differential systems 
with asymptotically linear parameter dependence (Definitions 7.3.1 and 7.6.1). To 
this end, in a first step the n-th order differential equation depending polynomi- 
ally on the eigenvalue parameter A is transformed to a first order n x n differential 
system which is asymptotically linear in A and has a leading matrix in diagonal 
form satisfying the specific assumptions in the fourth chapter (Theorem 7.2.4). 
In a second step, the boundary conditions, which depend polynomially on A,  are 
transformed to conditions which are asymptotically constant as A tends to infinity. 
An efficient method to check Birkhoff regularity of boundary eigenvalue problems 
for n-th order differential equations is presented (Theorems 7.3.2 and 7.3.3). 

Under the assumption that the endpoints of the underlying interval are no ac- 
cumulation points of the interior points of the boundary conditions it is shown 
for Birkhoff regular boundary eigenvalue problems in the case 1 < p < .. that 
functions in Lp(a, b) are expandable into series of corresponding eigenfunctions 
and associated functions. These series are Lp-convergent (Theorem 7.4.3). With 
respect to uniform convergence, i. e., if p = m, continuous functions which are of 
bounded variation and fulfil certain boundary conditions can be expanded (The- 
orem 7.4.4). Eigenfunction expansions are also established for Stone regular 
boundary eigenvalue problems. It is shown that for 1 < p 5 these expansions 
converge to the given function if this function is smooth enough, i. e., belongs to 
some Sobolev space of sufficiently high order, and fulfils certain boundary condi- 
tions (Theorems 7.6.5 and 7.6.6). These boundary conditions are defined by some 
iterative procedure in terms of the coefficients of the given differential equation 
and of the boundary conditions. The convergence proofs of these eigenfunction 
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expansions are based on the contour integral method and make use of convergence 
results from the fourth chapter concerning certain sequences of contour integrals 
of the resolvent of the transformed boundary eigenvalue problem. 

7.1. General assumptions 

Let - w < a  < b < w ,  1 < p < w ,   EN, n >  2 ,and le ta j  E [a,b] ( j E N )  such 
that a j  # a k  ( j #  k),ao = a ,  andal  = b. Let 

wherenn-,,, E L,(a,b) ( i=O ,..., n -  1, j = O  ,..., n-i). we assume^^-^,^-^ # O  
for some i E (0,.  . . , n - 1). Let wki (i, k = 1,. . . , n) be polynomials in I with 
coefficients in Ll (a, b) and WE) ( j  E N; i, k = 1,. . . , n) be polynomials in I with 
complex coefficents. Suppose that 

x sup lw;)(I)l < - 
j=0 IkIlr 

for all r > Oandi ,k= 1 ,..., n. 

For il E C and 77 E Wi(a, b) we consider the boundary eigenvalue problem 

The function n defined by 

is called the characteristic finction of the differential equation (7.1.2). Together 

with the boundary eigenvalue problem (7.1.2), (7.1.3) we consider the operators 
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where 3L E @ and E W:(a,b), and 

From Lemma 6.1.1 and Proposition 6.3.5 we infer 
PROPOSITION 7.1.1. L E H((C,L(Wi(a ,b) ,Lp(a ,  b )  x C n ) ) .  

Together with the n-th order differential equation (7.1.2) we consider the as- 
sociated first order system T ~ ( I L ) ~  = 0, where T~ is given by (6.1.3), (6.1.4). We 
shall assume that there are a matrix function C ( . , l )  E M,(w; (a ,  b ) )  depending 
polynomially on A. and a positive real number y such that 

(7.1.8) C(. ,  A.) is invertible in M,(W; (a ,  b ) )  if 11 I > y 

and such that the equation 

(7.1.9) ~ - ~ ( . , n ) ~ ~ ( n ) c ( . , n ) ~  = Y' - A ( . , A . ) ~  =: T D ( y y  
holds for 111 > yand y E (w; ( ~ , b ) ) ~ ,  where 

fulfils the assumptions made in Section 4.1. 

We shall also consider the following sharpened form of (7.1.10): For some 
K E N let 

K 

(7.1.11) A ( . , n )  = A . - ~ A - ~ + A . - ~ - ~ A ~ ( . , A )  (la1 y), 
j=- 1 

where 

(7.1.13) A - j ~ ~ n ( ~ ; - J ( a , b ) )  ( j = O  ,..., k ) ,  

(7.1.14) AK( . ,A)  E Mn(Lp(a,b))  for Ill > Y 
and is bounded in Mn(Lp(a,  b ) )  as L + 00. 

Condition (7.1.8) is fulfilled if for each x E [a, b] and lil I 2 y the matrix C(x ,  A )  
is invertible: Since C( . ,A)  is continuous in [a,b], C- ' ( - ,A )  E Mn(L,(a, b ) )  if 
I;LI > y .  Proposition 2.5.8 yields C 1 ( . , I )  E ~ , ( w , ' ( a , b ) )  for 1A.I > y .  
PROPOSITION 7.1.2. Suppose that CfuFls (7.1.8) and let r E N\ (0) such that C 
is a matrix polynomial with coeficients in Mn (Wi (a ,  6 ) ) .  Then we have 

d e t C 1 ( . ,  A )  = l"c0 + i c ,  ( . , A ) )  

for 1A.l > y, where ij E Z, co is an invertible element in Wi (a ,b ) ,  and c l  is an 
asymptotic polynomial in W i ( a ,  b )  of arbitrary ordel: There is a number ij E Z 
such that 

c-I ( . ,a)  = ako ( . , n ) ,  
where Co is an asymptotic polynomial in Mn(Wi(a,  b ) )  of arbitrary ordel: 
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Pro05 Since C is a polynomial with coefficients in M,(w,'(~, b)), there is a non- 
negative integer s such that 

for x E [a,b] and A E C, where yj E Wi(a,b) for j E {0 ,... , s )  and y, # 0. If 
y,(x) # 0 for all x E [a, b], then there exists a 6 > 0 such that Iy,(x)l > 6 for all 
x E [a, b] since y, is continuous. Then the NEUMANN series expansion 

holds if A is sufficiently large. From Proposition 2.5.8 we know that 7;' belongs 
to Wp'(a, b). Hence As(detc(., A))-' is an asymptotic polynomial in Wp'(a, b) of 
arbitrary order which tends to y;' as A + w. This proves the first assertion; the 
second assertion follows by CRAMER'S rule. 

Assume that y, has a zero in [a, b]. Since y, is continuous and not identically 
zero in [a, b], there is a sequence (x,); in (a, b) converging to some z E [a, b] such 
that y,(x,) # 0 (v  E N) and y,(z) = 0. Since detC(z, A) # 0 for sufficiently large 
A, there is a number jo E {0, . . . , s - I } such that l;, (z) # 0 and l ; (z)  = 0 for 
j E {jo+ 1, ..., s). Wedefine 

:= { max :xE[a ,b ] ,  jE{O, . . . , j o -  1) I yjo (4 I 
if jo = 0, 

and p := max{4jopo7 y, 1). Since yj(xv) + 0 as v -+ w for each j E {jo+ 1,. . . , s) 
and yjo (x,) i q0 (z) # 0 as v -+ m, there is an integer v E N such that 

From the definitions of po and p we infer that 

for [ A  I = p .  Hence ROUCHE'S theorem yields that det C(x,, A )  has exactly jo 
zeros in the open disk with centre 0 and radius p .  Since jo < s and y,(x,) # 0, 
there is at least one A with ) A ]  > p and detC(x,,A) = 0. This contradicts the 
assumption (7.1.8), which implies that C(x,, A )  is invertible for 1A 1 > p > y. 
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7.2. Asymptotic linearizations 

The most crucial assumption of those in Section 7.1 is that Al is a diagonal matrix 
fulfilling the conditions (4.1.3), (4.1.4) and (4.1.5). In the sequel we are looking 
for necessary and sufficient conditions in terms of the problem (7.1.2) to fulfil this 
assumption. First we look for an "asymptotic linearization" of A with respect to 
A. The easiest way to do so is by multiplying A with a diagonal matrix 

from the right and with its inverse from the left. We have 

Let degpj be the degree of the polynomial p j  with respect to A.  Then we must 
have 

(7.2.3) + l  1 and degpi+vj+,-vn< 1 

for i = I , .  . . ,n  - 1 and j = 0,.  . . ,n - 1. For j = 0,.  . . , n  - 1 we infer that 
n- 1 

(7.2.4) degpj < 1 + v, - v,+, = I + (vi+, - v,) < n - j. 
i= j+ 1 

This is the reason for assumption (7.1.1). 

PROPOSITION 7.2.1. Let n E N\ {0), b,, . . . , bn E @, 

and 

ak(p)  := det(p -Bk) ( k =  1, ..., n). 

We assert: 
i )Forp  E @ . a n d k = 2 ,  ..., nwehave 

a k ( ~ )  = pak-1 (P) + b k '  

ii) Forp  E @.and k =  1, ... ,n  we have 

Proot i) Let k E (2, . . . , n). Expanding ak(p)  with respect to the first column we 
obtain 

a k ( ~ )  =p d e t ( ~ 6 , , j  - 4,j-1 + 'i,nbn-j+l);j=n+2-k 

+ ( - l )k- lbkdet(~q- l , j  - 4-l,j-l):j=n+2-~ 

= P Q ~ - ~  (P) +bk. 

ii) For k = 1 we have 

a ,  (PI = P +b,.  
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Assume that the assertion holds for some k E ( 1 , .  . . , n - 1 ) .  With the aid of i) we 
obtain 

PROPOSITION 7.2.2. i) Assume that A( . ,A)  has an asymptotic linearization, i. e., 
that there is an invertible matrixfunction Co(A), [ A  I 2 y > 0, such that 

Then 

where 7~ is the characteristic function given by (7.1.4). 
ii) Additionally, let Cl be invertible in M ~ ( w ;  (a ,  b ) )  and set 

Then the matrixfunction A given by (7.1.9) satisfies 

where 

&, = ~ ( l )  in Mn(Lp(a, b ) )  as A -+ 03, and 

iii) Additionally to i) and ii) we suppose that Co and Al are diagonal matrices, 

where rl , . . . , rl are not identically zero. Then 

where no = n - 1. Furthermore, 1 2 1 ,  and r j (x )  # r,,,(x) for all j ,m E { I , .  . . ,1) 
and x E (a ,  b )  such that rj  ( x )  # 0, r,,,(x) # 0, and j # m. 
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ProoJ: i) By Proposition 7.2.1 we have 

On the other hand, (7.2.5) yields 

A-ndet(pA -A(.,A)) = det -A^+ 0 - ( (3) 

A 

For 3L -+ 00 we obtain det(p - A) = n(., p) .  
ii) In view of LEIBNIZ' rule (2.3.1) we have for y E (w; (a, b))" that 

whence the representation of A holds, and (7.2.9) follows from (7.2.6). 
iii) Obviously, by a suitable choice of C, , we can write Al in the form (7.2.10), 
where r l ,  . . . , r, are not identically zero. Then (7.2.1 1) follows from (7.2.9). Since 
we suppose that nn-i,n-i # 0 for some i E (1,. . . ,n), not all the r j  can be zero, 
i. e., we must have 1 2 1. In the matrix A given by (6.1.4), the (n - 1) x (n - 1) 
submatrix in the upper left comer is a triangular matrix with zeros in the diagonal. 
By (7.2.5) this also holds for Â  since we suppose that C o ( l )  is a diagonal matrix. 

A 

Therefore the (n - 1) x (n - 1) submatrix of p -A in the upper left corner is 
invertible for p # 0 since it is a triangular matrix with diagonal elements p .  Hence 
the rank of p -A^is at least n - 1 if p # 0. In view of (7.2.8) we infer that r , (r)  -A1 
has rank n - 1 whenever rj(x) # 0. 0 

PROPOSITION 7.2.3. Let no E (0,. . . , n - I), 1 := n - no, and suppose that 

where 

(7.2.13) 
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Suppose that for all x E [a, b] the roots of nl (x ,  p )  = 0 are simple and nonzero 
and that there is K E W\ (0) such that nl,l , .. . , nl,l E ~ ; ( a ,  b). Then there are 
r,, . . . , rl E WpK(a, b)  such that 

holds for all x E [a, b] and p E @ In addition, we have that ryl t WpK(a, b)  for 
j =  l , . . . , l .  

Pro05 For x E [a, b] let ax,1 , . . . , ax,l be the roots of rl (x ,  p )  = 0. We set 

and 

Then xl (x ,  p )  # 0 for all p E y, . Since y, is compact, there is a 6, > 0 such that 
n l ( ( , p )  #Oforall(  E [ ~ - 6 ~ , x + 6 ~ ] n [ a , b ]  andp E y,. 

LetxoE [a,b]. ForxE [ x o - 6 x o , ~ O + 6 x o ] ~ [ a , b ]  and j =  1 ,  ..., 1 wedefine 

The functions P x 0 ,  are continuous since the integrand depends continuously on x. 
Choosing Sxo sufficiently small we may assume that IPxo,,(x) - Pxo,,(xo)l < cx0 for 

infer 

The residue theorem yields 

for j =  1 ,..., 1 andxE [ x o - 6 x o r ~ O + 6 x o ] ~ [ a , b ] .  Forx=xoand j =  1 ,..., 1 we 
obtain p . (xo) = axe,, . From 

X 0 , J  

IPxo,j(x)I 2 I P x o , j ( ~ ~ ) I  - I P x o , j ( ~ ~ )  -Px0,;(x)I > 2~x0 > 0 

for j = 1,. . . , I  and x E [xo - ax0 ,xo + axe] n [a, b] and (7.2.16) we infer for each j E 
(1 , .  . . , I )  and x E [xo - 6x0 ,xO + 6Xo] n [a, b] that there is at least one k E { I , .  . . , I )  
such that laxc - axo,,l < E~~ . Since the disks { p  E C : lp - axo,,l < cx0} are 
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pairwise disjoint, we obtain {Px0,, ( x ) ,  . . . ,Px0,/ ( x ) )  = {ax,l , .. . , ax,1). Hence. for 

Let J1 , J2 C [a, b] be intervals, al , . . . , al E C ( J 1 )  and F l , .  . . , P1 E C(J2) .  As- 
sume that there is a c E JI r l  J2 such that, for all j = 1,. . . , 1 ,  a j ( c )  = &(c)  = ac, j ,  
T ( x , ~ , ( x ) )  = O ( X E  J1 ) ,  n1(x ,Pj(x) )  = O ( X E  J2),and a c , j # a c , k i f k =  1, . . . ,1 
and k # j. We set 

We shall prove that I = 0. Assume that I f l  [a, c] # 0. The case I n  [c, b] # 0 can 
be treated analogously. Because of the continuity of nl and the aj and P j ,  the 
set I and thus also the set I f l  [a,c) is an open subset of Jl fl J2.  Furthermore 
c $! I .  Hence xo := sup(I f l  [a, c ) )  $Z I. Since the roots of nl (xo, p )  = 0 are pairwise 
different, we obtain Pj(xo) = a j ( x o )  # ak(xo)  = Pk(xo) for j # k. Because of the 
continuity of the aj and P j  we obtain for all x E I f l  [a,xo), sufficiently close to 
x,, that Pj(x)  # a k ( x ) ,  a j ( x )  # a,(x), P,(x) # Pk(x) for j # k. Since the a j ( x )  
and P j  ( x )  are roots of nl (x ,  p ) ,  we obtain that the sets {a, (x )  , . . . , al ( x ) )  and 
{ P I  ( x ) ,  . . . , & ( x ) )  are contained in {ax,, , . . . , ax,[) .  Since each of these three sets 
consists of 1 elements, these sets are equal. Hence x $! 1. This is a contradiction, 
and I = 0 is proved. 

Thus there are a maximal subinterval J C [a, b] such that a E J and unique 
continuous functions r l , .  . . ,rl on J such that r j ( a )  = a,,, for j = 1, .  . . ,1  and 

I 
n,(x ,p)  = n ( p  - r,(x)). Let xo := supJ and choose c E J n  [xo - 6xo,xo]. Since 

j= 1 

we may choose the roots axe,,, . . . , aXoi in such a way that r,(c) = Pxo,j(c) for 
j = 1,. . . , l .  But then the above considerations yield that 

defines unique functions ?, E c ( [ a , x 0  + %] n [a, b ] )  satisfying ?,(a) = a,, and 
1 

n , (x ,p)  = n ( p  - Fj(x)) for x E [a,xo + 6xo] n [a, b].  This proves that [a, xo + 6xo] n 
;= 1 

[a, b] C J C [a, xo]. Hence xo = b and J = [a, b]. 
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We still have to prove r, E W:(a,b) and r;' E W:(a,b) for j = 1,. . . , l .  For 
this let xo E [a, b]. Set I := (xo - 6,,,x0 + 6x0) n (a ,  b) .  From Proposition 2.5.8 we 
infer for p E dKExo (r ,  (x,) ) that ir, (., p )  1;' E W,X(l). Since WF ( I )  is identified with 
a subspace of L(W:(I)) by Proposition 2.3.3 and since the inverse of an element in 
W,X(I) is the inverse of the corresponding multipication operator, xl (.,p)l;' also 
depends holomorphically on p in a neighbourhood of dKexo (r,(xo)) by Proposi- 

an l ap  tion 1.2.5. Therefore J-- is acontinuous mapping from dKExo (r,(xO)) to W:(I). 
*I 

In view of (7.2.15) this proves that r, belongs (locally) to W,K(a,b). Finally, we 
have that r j  is continuous and r,(x) # 0 for all x E [a,b]. This proves that ry l  is 
bounded. An application of Proposition 2.5.8 completes the proof. 

THEOREM 7.2.4. Let 1 E {I , .  .. , n }  be such that z ~ , ~  # 0 and z,,, = 0 for i = 

1 + 1,. . . , n. Suppose that z ~ , ~  E L,(a, b) .  Then there is a matrixfinction 

C(x ,  A )  = diag(AV1, . . . , AVn)Cl ( x )  

with V ,  , . . . , Vn E Z and Cl E M,(W; ( a ,  b ) )  such that A(., A) given by (7.1.9) has 
the form (7.1. lo) ,  where 

A ,  =diag(O , . . .  ,0,r , , . . . ,  r,) 

and r; E L,(a, b )  for j = 1,. . . , I .  ifand only ifthe following four conditions hold: 

i) 7~6' E Lm(a, b);  
I .  

ii) pi( . ,A) = L "'n-i,j ( i  = 0 , .  . . ,no - 1 ) ;  
j=o 

iii) z,,, E w;(a,b)  for i= 1 ,  ... ,1 
or 

rn-i+ 1 ,  I 1 = 1 and --- E w;(a,b) for i= 1, ..., n -  1; 
Z, , 

1 , l  

iv) The zeros of nl (x ,  p )  are simple and different from zero for all x E [a, b], where 
Z, is defined in (7.2.13). 
A. Ifi), ii) and iv) hold and i f 1  = 1 or xi,, E W; (a ,  b )  for i = 1 + 1,. . . , n, then we 
can choose vl  = . . . = vn0+, =0,  V,  = i - n o -  1 ( i = n o + 2  ,..., n )  and 
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where rl , . . . , r, E W; (a,  b)  are the roots of ?(., p )  = 0 according to Proposition 
7.2.3 if1 > 1. 
B. I f  i), ii) and iv) hold and i f  rr,,i E W; (a,  b) for i = 1 , .  . . ,1, then we can choose 
v1 = . . .=v , ,  o =0, v i= i -no  ( i = n o + l ,  . . . ,  n)and 

where rl , . . . , r, E W; (a ,  b)  are the roots of xi(.,  p )  = 0 according to Proposition 
7.2.3. Note that in case 1 = n the matrixfinction Cl ist just the lower right block. 

Pro08 Assume that we have an asymptotic linearization of the required form. 
I 

Then i) is clear since (7.2.1 1) yields xi,, = I7 ( - r j ) ,  where the function on the 
j= 1 

right-hand side is invertible in L,(a, b) .  
From # 0 we infer degpno = n - no. Hence (7.2.4) yields for j = no that 

n- 1 

1 +  C (v ,+~ - v,) = 1. 

Since vi+, - v, 5 I by (7.2.3), we obtain vi+l = vi + 1 for i = no + 1,. . . , n - 1. 
This proves that the matrix function Â  defined by (7.2.5) has the form 
(7.2.19) 
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where, for i = 1,. . . ,no, x = 1 if vitl = vi + 1 and ');: = 0 if vit1 5 vi. Furthermore, 
d e g ~ , - ~  5 l + v n - v i = : p i  f o r i =  1 , . . . , no  by(7.2.4). 

Now let no > 0. Again from n i l  E L,(a, b) we infer that the 1 x 1 submatrix 
n 

of A in the lower right comer has rank 1. But since Al has no zeros in its diagonal, 
rankA^ = rankA, = 1. Thus the first no columns of Â  are linear combinations of 
the other columns, and we obtain that the entries yl, . . . y -, in the matrix Â  are ' "0 

zero. This implies vno 5 vn0- 5 . . . 5 vl.  Hence pi 5 I + vn - vn0 for i = 1, . . . ,no. 

Since Â  has rank 1, its no-th row must be a linear combination of the last 1 rows. 
- Hence yno = 0 or yno # 0 and nn,p, = ..-  - nl+ 1 #no 

= 0. In the first case we 

obtain pi 5 1 + v,, - vn0+, , and the second case yields degpi-I < 1 + vn - vn0 = 
2 + v,, - vno+ for i = 1,. . . ,no. Hence, in both cases, degp,- 5 1 + v,, - vn0+] = 1 
for i = 1,. . . ,no. Thus ii) holds. 

L e t l >  lo rno#Oandyno=l .  L e t j ~ ( 1 ,  ..., I). WehaveA 1 e n + ' - r . e  - J no+,' 
Let q = no if no = 0 or y,o = 0 and q = no - I if no > 0 and xo = 1. Then 

n 

eiA = 0 for k = 1,. . . , q  and elA = e;+] for k = q + 1,. . . ,n  - 1. Hence, in view 

of CIA = A^c1, we obtain 

(7.2.20) r,e~Cleno+,=O for k = l ,  . . . , q  

and 

(7.2.21) r,e~Cleno+, = ei+lCleno+j for k = q + 1,. . . , n - 1. 

Since r, is invertible, (7.2.20) implies that e;Cleno+, = 0 for k = I , .  . . ,q. If 

elCl (x)en0+, = 0 for some x E [a, b], then (7.2.21) and r;' E Lw(a, b) would im- 
ply that the modulus of e;C,eno+, is smaller than a given positive number in a 
sufficiently small neighbourhood of x for all k E {q+ I , .  . . ,n). Then the conti- 
nuity of C1 would give eiCl (x)e, + . = 0 for these k. But this is impossible since 

0 J 

Cl ( x )  is invertible. Hence (e lc l  enOtj) -' E W; (a, b) by Proposition 2.5.8. From 
q 5 n - 2, (7.2.21) and Proposition 2.3.1 we infer 

The assumption nl,l E L,(a, b) implies 

These two properties of r, yield r, E W; (a, b) in view of Proposition 2.5.8. Be- 
cause of (7.2.1 1) and Proposition 2.3.1, this proves iii) if 1 > 1 or no # 0 and 
Yn,, = 1. 
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In case 1 = 1 it follows that no > 0 since n 2 2. Hence we still have to consider 
the case that 1 = 1, no # 0 and yn, = 0. We have seen in the proof of ii) that 
p. I - < I + vn - vn0+, = 1 for i =  1 ,  ..., n -  1(= no). Note that Al = rlenei and 
nl,, = -rl .  Let i E {I , . .  . ,n). If pi = 1, then 

If pi 5 0, then z~-~+, , ,  = 0. This completes the proof of iii). 
For the proof of iv) we observe that r;' E W; (a ,  b )  for j = 1,. . . ,1  implies that 

the zeros of n, (x ,  p )  are different from zero for all x E [a, b]. And from Proposition 
7.2.2 iii) we infer that the roots of n, ( x ,  p )  are simple for all x E [a, b]. 

Conversely, assume that the conditions i)-iv) are fulfilled. If r l ,  . . . , r, actually 
occur in the matrices (7.2.17) or (7.2.18), i. e., if 1 > 2, then Proposition 7.2.3 is 
applicable, and we choose rl , . . . , r, E W; (a ,  b )  such that (7.2.14) holds. Property 
iv) implies that r, - ri is invertible in L,(a, b )  if i # j .  By Proposition 7.2.3 we 
also have r ; ' ,  . . . , r r l  E w,' (a ,  b ) .  Note that at least one of the cases A or B is 
applicable. This proves C1 E Mn(W:(a,b)) for C, given by (7.2.17) or (7.2.18), 
respectively. Since the lower right 1 x 1 block of C1 is a Vandermonde matrix, we 
obtain that 

detC, = (r ,  - r,) 
l<i<j<l 

is invertible in L,(a, b) .  Hence C1 is invertible in L,(a, b )  by C R A M E R ' S  rule. 
Then Proposition 2.5.8 yields c;' E M,(W; (a ,  b ) ) .  Hence C(., A) = Co(A)Cl is 
invertible in Mn(Wj(a ,b))  if /A\  > 1, i. e. (7.1.8) is fulfilled. 

Next we shall show that 

(7.2.22) c,-'(A)A(., n)co(n) = an^+ o ( i )  in M,(L&, b ) ) .  

Indeed, in case A we infer from ii) and (7.2.2) (see also (7.2.18) that (7.2.22) holds 
with 
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And in case B we infer from vn = 1 and (7.2.2) that (7.2.22) holds with 

In both cases the representation (7.2.7) yields that (7.1.9) and (7.1.10) hold 
since the matrix function &(.,A) is a polynomial in A-l .  Also, (7.2.8) holds, 
1. e., 

Al = c;';iC1. 
We have to prove that 

In case A we obtain 

- - - rn-j+l,ienf rn-,+l,,en=O ( j = l ,  ..., no).  

In case B we have 

Let q := no in the case A or if no = 0 and let q := no - 1 in the case B for no # 0. 
Since Cl (x)en + - E ~ p a n { e ~ + ~ ,  . . . ,en) for j = 1 , .  . . , I  and x E [a, b], we obtain 

0 J 
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The definition of C1 immediately yields 
A 

(7.2.28) eiAClen + . = el+lC,eno+j = e:r,Clen0+, 0 J  

f o r k = q + l ,  . . . ,  n - 1  and j =  1 ,..., 1. Finally,nl(.,rj)=Oimplies 

The equations (7.2.25) to (7.2.29) prove that 

We still have to require that the functions rl , . . . , rl in the asymptotic lineariza- 
tion obtained in Theorem 7.2.4 satisfy the condition I) in Section 4.1 on page 13 1. 
By Proposition 4.1.1 we know that I) holds if and only if one of the conditions 11) 
or 111) defined in Section 4.1 holds. It is convenient to introduce the following two 
conditions: 

IV) There is a complex number a E @\ (0) such that for all x E [a, b] the roots of 
n (x ,  p )  := a-'rl (x ,  ap) = 0 are real, simple and different from 0. 

(a )  

V) There are a real-valued function r E W; (a ,  b )  such that r(x)  # 0 for all x E [a, b] 
and P j  E (C ( j  = 1,. . . , 1 )  with pl # 0 such that 

(7.2.30) n ( x )  = pjr(x)j  for all j = 1 ,..., n andx E (a ,b ) ,  J > J  
1 

(7.2.31) n(o) ( p )  := p1 + ;I: p jp l - j  = 0 has only simple roots. 
j= 1 

PROPOSITION 7.2.5. Let the assumptions of Proposition 7.2.3 be filjilled. Let 
r l ,  . . . , rl E W; (a ,  b )  be the roots of nl (., p )  = 0 and set ro := 0. Then 
i) 11) H IV), 
ii) 111) H V). 

Proot i) Let a E @\ (0). Then 

Since the roots of 3 (x ,  p )  = 0 are simple and different from zero by assumption, 
it is easy to see that 11) and IV) are equivalent. 
ii) III)+V): We have 
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Hence there are p, E @ ( j  = 1 , .  . . , I )  such that 

1 
We obtain pl = n (-a,) # 0 and X , , ~ ( X )  = r ( x ) j h  for j = 1,. . . ,l. Finally we 

j= 1 

infer that n ( p )  = -&xi (a,  pr(a)) = 0 has only simple roots. 
(0)  

V)+III): Let al , . . . , a, be the zeros of n From Pl # 0 we immediately infer 
(0) ' 

that al # 0,.  . . ,al # 0. Then we have for all x E [a, b] 

= p1 + ~ ' - j q , ~ ( x )  = q ( x ,  p ) .  
j= 1 

Hence, for a suitable choice of the indices, r, = a,r holds for v = 0, .  . . ,1, where 
a, = 0. Since the roots of nl (a,  p )  are simple and different from zero, we obtain 
a , # a , f o r v , p = O  ,..., l a n d v # p .  

COROLLARY 7.2.6. In Theorem 7.2.4 we have that Al satisfies condition I )  from 
Section 4.1 if and only if we replace condition iv) by 
iv') 1 > 1 and there is a number a E @\ ( 0 )  such that for all x E [a, b] the roots of 

are real, simple and diflerent from 0, 
or 
1 > I and there are a real-valuedfunction r E W; (a,  b)  such that r(x) # 0 for all 
x E [a, b] and pj E @ ( j  = 1 , .  . . , 1 )  with pl # 0 such that 

1 

z(~) ( p )  := p1 + E p,pl-j = 0 has only simple roots, 
j= 1 

or 
1 = 1 and there is a number a E (C\ ( 0 )  such that a-' nl is positive. 
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ProoJ: Let ro = 0. In case 1 = 1 the equivalence is obvious slnce r, = -nl , , .  In 

case 1 > 1 it follows from irl(x, p )  = alir( (x ,  :) and irl (x ,  p )  = r(x)'ir(,) ($J) 
a) 

that iv') implies iv). Hence the assumptions of Proposition 7.2.5 are satisfied, and 
the result follows from Propositions 7.2.5 and 4.1.1. 

7.3. Birkhoff regular problems 

Together with the boundary conditions (7.1.3) and a function C(x, A )  satisfying 
(7.1.8)-(7.1.10) we consider the matrix functions 

and set 

DEFINITION 7.3.1. The boundary eigenvalue problem (7.1.2), (7.1.3) is called 
BirkhofS regular if nnn # 0 and if there are matrix functions C(. ,A)  satisfying 
(7.1.8)-(7.1.10) and C2(A) satisfying (5.1.3)-(5.1.5) so that the associated bound- 
ary eigenvalue problem = 0, c , ( A ) - ' ~ ^ ~ ( A ) ~  = 0 is Birkhoff regular in 
the sense of Definition 4.1.2. 

We shall assume that C(. ,A)  = {AV1,. . . ,AVn)C1 , where C, and v l , .  . . , Vn are 
given as in Theorem 7.2.4 A or B. 

The condition nnn # 0 means that no = 0. Theorems 5.2.2 and 5.2.3 also hold 
in this case since the term AO(.,A) is irrelevant for Birkhoff regularity. For the . . 

convenience of the reader we restate these theorems in this section, where we also 
use Theorem 4.1.3. First let us note that the characteristic function (7.1.4) can be 
factorized as 

n 

according to Proposition 7.2.3. From Theorem 7.2.4 we know that the functions rv 
(V = 1,. . . , n)  are bounded away from zero and mutually different. Furthermore, 

for some cp,. As in Section 4.1 we set 

0 if %(Lei") < 0,  

1 if %(AeiVv) > 0,  
0 i f%(?ei")=0and3(AeiVv)>0, 

1 if %(Aei") = 0 and 3(Aei") < 0. 
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Forv= I ,  . . . ,  n wedefine 

A: = diag(6i, ..., 6,"), 

where 

6; := 
1 if cpp E [cpv 1 'Pv + 4 mod(2n),  
0 i f  cpp e [cpv, cpv + 4 m o d ( 2 4 .  

THEOREM 7.3.2. Suppose that the assumptions of Theorem 7.2.4 and property 
iv') in Corollary 7.2.6 are satisfied. Let nnn # 0. Assume that (7.1.2), (7.1.3) is a 
two-point boundary eigenvalue problem, i. e., that (7.1.3) has the form 

This problem is Birkhoff regular if and only i f  the following two properties hold: 
i )  There is a matrix polynomial C2 whose determinant is not identically zero so that 

where (w;'), w:')) is an n x 2n matrix of rank n. 
ii) For any matrix polynomial C2 fulfilling i )  the matrices 

are invertible. 

Note that it is not necessary to state that (wd0), w:')) has rank n since ii) 
implies this condition. 

THEOREM 7.3.3. Suppose that the assumptions of Theorem 7.2.4 andproperty iv') 
in Corollary 7.2.6 are satisfied. Let nn, # 0. The boundary eigenvalue problem 
(7.1.2), (7.1.3) is Birkhoff regular ifand only ifthe following three properties hold: 
i )  There is a matrix polynomial C2 whose determinant is not identically zero so that 

where (w:'), w:')) is an n x 2n-matrix of rank n. 
ii) For any matrix polynomial C2 fulfilling i )  the matrices 

w~''A: + w;') ( I ,  - A;) and w;') ( I ,  - A:) + w:')A: ( v  = 1 ,  . . . n)  

are invertible. 
iii) For any matrix polynomial C2 fuljilling i )  the estimates 

cil ( A ) W ( . , A )  = O(1)  in Mn(Ll(a ,b))  

and, for j E N, 
c ; ' (A )w(~) (A)  = o ( l )  in M,(C) 

hold, and the properties (5.1.4) and (5.1.5) are filjilled. I f  w ( J )  # 0 only for 
finitely many j, then (5.1.4) and (5.1.5) are automatically satisfied. 
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Since C2(I) and W (., I) are polynomials, property iii) implies that 

7.4. Expansion theorems for Birkhoff regular n-th order differential equa- 
tions 

In this section we shall suppose that 7c,,, # 0, which is equivalent to no = 0. We 
also suppose that the assumptions of Theorem 7.2.4 and property iv') in Corol- 
lary 7.2.6 are satisfied and that the boundary eigenvalue problem (7.1.2), (7.1.3) 
is Birkhoff regular, where we assume that the transformation C(., I) is as in The- 
orem 7.2.4. Choose the circles T, according to Theorem 4.3.9 and define 

where 4 : W;(a, b) t Lp(a, b) is the canonical embedding. Note that x n ,  belongs 
to L,(a, b) by the assumptions made in Theorem 7.2.4. Hence Q, is a continuous 
operator on Lp (a, b) . 

Let TD (I) be given by (7.1.9) and TR(a) = c2(I)-I fR(I). Since the bound- 
ary eigenvalue problem (7.1.2), (7.1.3) is Birkhoff regular, the boundary eigen- 
value problem TD(a)y = 0, TR(I)y = 0 is Birkhoff regular in the sense of Defi- 
nition 4.1.2. Together with F(I) = (TD(I), TR(I)) we consider the operators 

1 
pVf := -- f ~ T - ~ ( L ) ( A ~  f , ~ )  d l  (f E (Lp(a,b))", v t N), 

2x1 r, 
see Lemma 4.6.7 

PROPOSITION 7.4.1. For f E Lp(a, b) we have 

Pro08 We have seen in (6.4.12) that 

for fl E Lp(a,b), f2 E en, where T = (TD,TR) is given by (6.1.3), (6.1.4) and 
(6.2.1). We have 

whence 

(7.4.4) L-~(I)(~,,O) = ~TC(.,I)T-~(I)(C(.,I)-~~~~~,O) 
= T-' (a) (cr1enf1, 0). 
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From (7.2.19) we obtain that 

whence the proposition is proved if we set fl  = zn,n f and observe that vl - Vn = 
1 - n by Theorem 7.2.4. 

From (7.2.12) we infer that 

and condition (4.1.19) holds if we require in case p 5 that there is a number P 
such that < 2 - and 

(7.4.6) z , , i - j E ~ ! - j ( a 7 b ) f o r i = I  , . . ,  nand j=0 ,1 .  
P 

As multiplication by C1 and c;' is continuous in (Lp(a ,  b ) ) " ,  Theorem 4.6.9 gives 

LEMMA 7.4.2. Let 1 < p < CQ. Suppose that the boundary eigenvalue problem 
(7.1.2), (7.1.3) is Birkhoff regular. I f p  _< ;, then we require that (7.4.6) holds. 
Suppose that C(x ,  h )  is as in Theorem 7.2.4 and that Wo E Mn(Lq(a, b ) )  for some 
q > I ,  where Wo is given by (7.3.3). Assume that a and b are no accumulation 
points of the set {a ,  : j t N, w J ~ )  # 0).  Then lim Qv f = f for all f E Lp(a,  b). 

V--tm 

Since L is a Fredholm operator function, we can represent the principal parts 
of L-' in terms of eigen- and associated vectors of L and L*. Since an eigenvector 
or associated vector v of L* belongs to Ld (a ,  b )  x Cn ,  we can write v = (u ,  d )  with 
u E Lp, ( a ,  b )  and d E Cn.  For an eigenvalue A, of L let r(A,) := dim N ( L ( h K ) )  
and m . ( j  = 1,. . . , r,) be the partial multiplicities. 

K > J  

Lemma 7.4.2 and Theorem 1.6.7 lead to 

THEOREM 7.4.3. Let 1 < p < m. Suppose that the boundary eigenvalue problem 
(7.1.2), (7.1.3) is Birkhoflregular and choose the curves Tv ( V  E N) with radius p, 
according to Theorem 4.3.9. I f p  5 i, then we require that (7.4.6) holds. Suppose 
that C ( x , h )  is as in Theorem 7.2.4 and that Wo E Mn(Lq(a,b))  for some q > 1, 
where Wo is given by (7.3.3). Assume that a and b are no accumulation points of 
the set {a,  : j E N, w!J) # 0) .  Let &, hl , . . . be the eigenvalues of L and let 

and 

{ ( u ( J ) , ~ ( J ) )  ~ , l  ~ , l  : j =  17...,r(~,);1=0,...,mK,,- l }  
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be biorthogonal CSEAVs of L and L* at A,, respectively. Then 

in Lp (a ,  b)  holds for all f E Lp (a ,  b) .  

The analog of Lemma 7.4.2 for p = 00 is obtained if we use Theorem 4.7.5. 
For its formulation we observe that 

" ( J )  A w ( ) := ( ~ ~ ) ( ~ ) ) ; , ; = ~ ~ o ( ~ ) ,  

@ ( x , 4  := ( w , ; ( ~ , . 3 ) ) ; , = , ~ 0 ( ~ ) ,  

satisfy 

THEOREM 7.4.4. Let p = 00, suppose that the boundary eigenvalue problem given 
by (7.1.2), (7.1.3) is Birkhoff regular and choose the curves Tv (v E N )  with radius 
pv according to Theorem 4.3.9. Suppose that C(x ,  A )  is as in Theorem 7.2.4 and 
that Wo E Mn(L,(a,b)) for some q > 1 ,  where Wo is given by (7.3.3). Assume that 
a and b are no accumulation points of the set { a j  : j E N, w ~ J )  # 0). Let h, A,, . . . 
be the eigenvalues of L and let 

and 
{ ( u ( J ) , ~ ( ' ) )  : j= 1 , . . . ,  r(A,);1=0 ,... ,rnK,,- I} 

K K , I  

be biorthogonal CSEAVs of L and L* at A,, respectively. Then 

holds in C[a,  b] for all f E C[a, b] n BV [a, b] satisfying 
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Pro05 We only have to verify condition (4.7.2). Since n = 0,  that condition is 
T;c;'e,f = 0 by Remark 4.7.6. 

7.5. A n  example for a Birkhoff  regular problem with A-dependent bound- 
ary conditions 

The following example has been investigated by [HEIl], [SCHM], [TR2]. Con- 
sider the boundary eigenvalue problem 

where 

a ( A )  = $a3 + %a2 + +a,n + %, p ( A )  = &a2 + +Po, 
K ,  %, a,, %, a,, Po, p,, p2 are complex numbers, and # 0,  P2 # 0. 

If we replace A by A4, then the expansion theorems in Section 7.4 are appli- 
cable, and we obtain 

THEOREM 7.5.1. For 1 < p < m, every f E LP(a,  b )  is expandable into eigenfunc- 
tions and associatedfunctions of the eigenvalue problem (7.5. l) ,  (7.5.2) with A re- 
placed by A4, where the expansion converges in Lp(a,  b). I f  f E C[a, b] fl BV[a, b] 
and satisfies 

f ( 0 )  = f ( U  = o ,  
then f is expandable into eigenfunctions and associated functions of the eigen- 
value problem (7.5. I), (7.5.2) with A replaced by L4, where the expansion con- 
verges in C[a,  b]. 

Pro05 It is easy to check that the assumptions of Theorem 7.2.4 and Corollary 
7.2.6 are fulfilled. Here we have n4,4 = - 1 and, with r(x)  = 1, 

Then r j  = a j ,  where a,,. . . , a4 are the fourth unit roots. Hence 

The boundary matrices given by (7.3.1) are 
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and we immediately infer that we can choose C2(A) = diag(l, A, A2, A 1 2 ) .  Thus 
we obtain 

From Proposition 4.1.7 we infer that any hrkhoff matrix is, up to a permutation 
of the columns, of the form 

1 0  (i, mi2 o m p o p  0 "1 
0  a3 

where mi, # ui2 and mt # at. This shows that the Birkhoff matrices are invert- 
ible. Hence the problem is Birkhoff regular, and the result for p < 00 follows. For 
the uniform convergence the condition 

has to be satisfied. 

The result of Theorem 7.5.1 was obtained in [TR2] in the case of uniform 
convergence. A slightly weaker result was derived in [HEIl]. In [SCHM] an 
expansion theorem in L2(0, 1) was obtained, but only under some additional con- 
ditions on the functions which are to be expanded. 

7.6. Stone regular problems 

Let the notations be as at the beginning of Section 7.3. 

DEFINITION 7.6.1. The boundary value problem (7.1.2), (7.1.3) is called strongly 
s-regular if Xn,, # 0 and there are matrix functions C(. , i l )  satisfying (7.1.8)- 
(7.1.1 1 )  and C2(A) satisfying (5.1.3)-(5.1.5) such that the boundary-value prob- 

1 - R  lem T"D(A)y = 0,  C2(A)- T ( ) y  = 0 is strongly s-regular in the sense of Defini- 
tion 5.7.1. 

The Stone regularity gives an estimate for the resolvent T"-' of the asymptot- 
ically linear system associated with the given problem. Therefore, in view of the 
results in the proof of Proposition 7.4.1, this gives an estimate for L-'. As for 
systems, we define auxiliary functions in order to reduce the highest A-power in 
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the integral over the resolvent L-'(A), where we do not necessarily assume that 
n,,, # 0. To this end we define the differential operators for i = 0,.  . . ,1 by 

where 1 = n - no and 17 E W;(a, b). Assume that nn-k,i = 0 for k = 0, .  . . ,no - 1 
a n d i = l +  1, ..., n-k. Then 

PROPOSITION 7.6.2. Let K > 0 and m > n - 1 + 1. Additionally to the gen- 
eral assumptions of this chapter we also require that nn-k,i E w:+~-~+~ (a, b) for 
i=max{O,n-K-m+1)  ,..., 1- 1, k = O  ,..., min{n-i,n-11, E L,(a,b) 
for i = 1,. . . , I  - 1, E w:-~+'-'+"'+~ (a,b) (k=O ,..., n-l), n;'€L,(a,b). 

Let f E W:+"'(a, b). Then there are f[jl E wF-jtn'(a, b) ( j  = 0,.  . . , K + 1) such 

that f = f and 

Proot The statement is trivial for j = 0. Now assume that it holds for j = 0,.  . . , K' 
with K' < K.  hen f[*+'-'] E ~ ' -* - '~ '+" ' ( a ,b )  P for i =  1,. . . , m i n { ~ ' +  1,l).  The 
assumptions on the nn-k,i imply by Proposition 2.3.1 that 

i= 1 

Since q can be considered as a differential operator from Wp"'(a, b) to Lp(a, b), 

there is a solution f[*+'l E w;-'(a, b) of the differential equation 

If 1 = n, then is the multiplication by n.,,, and f[*+ll E w:-(*+')+~ (a, b) 

follows. If 1 < n, then n,,-,,, E (a, b), and Proposition 2.6.4 
yields f[*+l] E ~;-~'-n+l-  l+m+n-l ~-(d+l)+m (a, b) = Wp (a,b). 

REMARK 7.6.3. If m > n - 1 + 1, then we do not need that E L,(a,b). But 
since we shall apply Proposition 7.6.2 together with Theorem 7.2.4, this is no 
additional restriction in that case. 
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PROPOSITION 7.6.4. Let the assumptions be as in Proposition 7.6.2 and, addi- 
tionally, let m 2 n. Let the operators K1 ( A )  and K2(3L) be as dejned in (6.4.1) 
and (6.4.2). Then we have for f E Wi+"(a, b )  and K' = 0, .  . . , K that 

where thefinctions f[Jl are as in Proposition 7.6.2. 

Pro08 For j = 0,  . . . , K we have f [ j l  E W; (a,  b)  and 

From Proposition 7.6.2 we know that 

Hence we obtain for j = 0, .  . . , K that 

m=2 

For K' = 0,  (7.6.4) coincides with (7.6.5) for j = 0. Assume that (7.6.4) holds 
for some K' < K. Then we have with the aid of (7.6.4) and (7.6.5) that 



304 VII. Boundary eigenvalue problems for n-th,order equations 

THEOREM 7.6.5. Let 1 < p < 00 and s 2 1.  Additionally to the general as- 
sumptions of this chapter we require that irn-k,i E w;+'-' (a ,  b )  provided that 
i = max{0,2 - s},  . . . ,n - 1, k = 0, .  . . ,min{n - i, n - I},  xn,, E w;+~-~ (a1 b),  

nn;L E L,(a,b). If p 5 ;, we require that (7.4.6) holds. Suppose that the as- 
sumptions of Theorem 7.2.4 and condition iv') in Corollary 7.2.6 are satis$ed and 
that the boundary eigenvalue problem (7.1.2), (7.1.3) is strongly s-regular. Let 

where the f [ ~ l  are as in Proposition 7.6.2 and vl is as in Theorem 7.2.4. Let 
&,, All . .  . be the eigenvalues of L and let 

and 
{ ( u ( j ) , d ( ~ ) )  K,I K,I  : j = I , .  . . , r(A.,); 1 = o , . .  . ,mK,, - 1) 

be biorthogonal CSEAVs of L and L* at A,, respectively. Then 

holds for all f E F ,  where the series converges in L,(a, b). 
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Proot This proof essentially coincides with that of Theorem 5.7.3. The assump- 
tions of Proposition 7.6.2 are satisfied with 1 = n, K = s - 1, and m = n. Let 
JF : F -+ Lp(a,  b )  be the canonical inclusion of F into Lp(a,  b ) .  Then Proposition 
7.6.4 yield for f  E F that 

1 n-1- 
Q , J , ~  =, a',, a J ~ K I  ( l ) ~ , n f  d l  

Each of the integrals containing K1 is of the form 

with p > s. From (7.4.4) we know that 

Ln-'Kl = ~ : C ~ T - ' ( I ) ( C ; ~ ~ ~ ~ , O ) ,  
whence 

I a',, h"- ' - '~~   dl 1 c 1 1  ( n  
P r v  P 

as v -+w if g E w;(a,b) for p = s  andg E ~ ~ ( a , b )  f o r p  > S. Indeed, if p > s 
this follows from Theorem 4.4.1 1 i). And if p = s, then the estimate follows from 
(5.7.1) and estimates in the proof of Theorem 4.6.9. In particular this holds for all 
g = 4 f  [ J ]  if we require f  E W l f s  (a ,  b )  . In view of 

K2(h)c  = ~ : T - ' ( ~ ) ( o , c )  

= ~~c(.,I)T-'(A)(o,c~(L)-~c) 
= e : ~ ,  T- ' (A) (O,  A ~ ~ C ~ ( I Z ) - ~ C )  

for c E Cn and Theorem 4.4.11 i) we infer for f  E F that 

as v -+ w. The boundedness of {PvJF : v E N) fol1ows:from the above represen- 
tations as in the proof of Theorem 5.7.3. Here we have used that similarly to the 
proof of Theorem 5.7.3 we can choose f[jl such that f  H f [ ~ l  is a continuous map 
from W,"+s (a ,  b )  into w ~ + ~ - J  (a ,  b )  . The remaining parts of the proof concerning 
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the convergence are analogous to the corresponding parts in the proof of Theo- 
rem 5.7.3. The representation of the residues follows from Theorem 1.6.7, see 
Theorem 7.4.3. 

For uniform convergence we obtain as in Theorem 5.7.6: 

THEOREM 7.6.6. Let s > 1. Additionally to the general assumptions of this 
chapter we require that nn-k,i E wit'-' (a ,  b )  for i = max{0,2 - s} ,  . . . , n - 1, 
k = 0 , .  . . , min{n - i ,  n - I}, G,, E w$'-', x i ,  E L-(a, b )  for the remaining in- 

dices, and n;; E L,(a, b). Suppose that the assumptions of Theorem 7.2.4 and 
condition iv') in Corollary 7.2.6 are satisfied and that the boundary eigenvalue 
problem (7.1.2), (7.1.3) is strongly s-regular. Let 

where the f[Jl are as in Proposition 7.6.2 and v, is as in Theorem 7.2.4. Let 
&, A1, . . . be the eigenvalues of L, and let 

and 
{ ( u ( J ) , ~ ( J ) )  : j =  1 ,..., r (AK); l=O ,..., mK,,- 1) 

K , l  K , l  

be biorthogonal CSEAVs of L and L* at A,, respectively. Then 

holds for all f E F ,  where the series is uniformly convergent. 

In the two previous expansion theorems we had to require that f belongs to 
wn+s- 1 
P (a ,  b )  since the differential operator Xo occurs already in the very first 

iteration step. Since there are A-powers which are smaller than necessary, a sub- 
stitution for the asymptotically linear differential system would reduce the order 
of differentiation. However, boundary terms occur which still contain the high 
derivatives. Therefore, in the next theorems, we shall use an iteration with the 
asymptotically linear differential system. For this we note that 
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where Al = diag(rl , . . . , r,), 

Here x,,, : = 0 for m < 0. Let K > 0 and assume that xi, E w;+j-j (a, b) for all 
i =  1 ,..., n and j = O  ,..., i  for which ~ + j - i  > 0 (the remaining xi,j belong 
to Lp(a, b) by our general assumptions). From Proposition 7.2.3 we obtain that 
r, E W; (a, b) for i = 1, . . . , n. Therefore Cl , C; ' and A belong to Mn (W;(a, b)) . 
Now it follows that A_, E M,,(W;-'-~(~, b)) for v = 0,. . . , m i n { ~  - 1, n - 11, 
andA-,€Mn(Lp(a,b)) f o r v =  K ,..., n-1.  

For y E (Lp(a, b))n and c E we set 

PROPOSITION 7.6.7. Let the assumptions be as above. For f E W;(a, b) we set 

y[O] :=A;l~;'e,lr, ,~ f E (W;(a,b)) and 

for j =  1, ..., K. Then 

holds for K' = 0, .  . . , K -  1. 

ProoJ: By definition of y[O] we have R1 (A)c;lenxn,, f = R1 ( A ) A ~ ~ [ ~ ] .  Then we 
obtain for j = 0,.  . . , K - 1 that 

whence 
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This proves (7.6.6) for K' = 0. Now assume that (7.6.6) holds for some K' < K - 1. 
With the above equation for j = K' + 1 we infer 

n- 1 
- a-2-k' [k'+l] - Y I;: A-'-~-* R,  @)A-,Y [k'+l] + a-2-k' R ,  ( I ) A  ly[*+21 

i= 1 

min{k'+l,n-1) d+ 1 

+ I;: I - ~ - * R ,  ( L ) A - ~ ~ [ * + ~ - ~ I  + I;: a - j - l ~ ~ ( a ) T R ( a ) ~ [ ~ I  
i= 1 j=O 

k'+ 1 k'+1 n-1 
- - - I;: ~ - J - ~ ~ [ J I  - I;: I;: R~ ( I ) A - ~ ~ [ J ]  

j=O j=O i=d-j+2 

The definition of the y[jl is suitable for the proof of the extension theorems. 
However, to calculate the occurring auxiliary boundary conditions, it seems to be 
better to use the vector functions Cly[jl:  

PROPOSITION 7.6.8. Let the assumptions be as above. Set 

For f E W:(a,b) we set yLO] := - e l f  and 

- min{j- 1 ,n- I }  
~ I J ]  := A-1 - [ ~ - l ] '  - 

1 y I;: x;lx - I  , y[ j - i - l ]  E (~ : - ' (a ,  b))" 
i=O 

for j = 1,.  . . , K.   hen )7[f = C l y [ ~ l  for j = 0, .  . . , K. 

Pro05 For j = 0 this follows from (7.4.5), whereas a straightforward calculation 
p r o v e s i t f o r j = l ,  ..., K. 

We recall that 

and set E ( L )  = diag(l,A,. . . ,An-l).  

From the identity (7.6.6) for K = s + 1 we conclude similarly to Theorems 
5.7.3 and 5.7.6: 
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THEOREM 7.6.9. Let 1 < p < w and let s be a positive integer. Suppose that 
n. 1 , ~  . E ~ ~ + ' + j - ~ ( a , b )  P foralli= 1 ,  ..., nand j=O, ..., i forwhichs+l+j- i>O 
and that xi,, E Lp(a, b )  for the remaining indices. Suppose that the assumptions 
of Theorem 7.2.4 and condition iv') in Corollary 7.2.6 are satisjied and that the 
boundary eigenvalue problem (7.1.2), (7.1.3) is strongly s-regular. Let 

where the are dejined in Proposition 7.6.8. Let &,, A,, . . . be the eigenvalues 
of L and let 

{q$  : j = 1,. . . , r (AK);  1 = O , . .  . ,mK,j  - I }  

and 

{ ( u ( J ) , ~ ( J ) ) :  r,l r,l j =  l,...,r(AK);l=O,...,mK,,-I} 

be biorthogonal CSEAVs of L and L* at A,, respectively. Then 

holds for all f E F ,  where the series converges in Lp(ar b). 

THEOREM 7.6.10. Lets be a positive integer. Suppose that 4,j E ~:+'+j-'(a, b) 
foralli= 1 ,  ..., nandj '=O, ..., iforwhichs+l+j-i>Oandthatni,,belongs 
to L,(a, b) for the remaining indices. Suppose that the assumptions of Theorem 
7.2.4 and condition iv') in Corollary 7.2.6 are satisjied and that the boundary 
eigenvalue problem (7.1.2), (7.1.3) is strongly s-regular. Let 

where the Y[J]  are dejined in Proposition 7.6.8. Let A,,, AI , . . . be the eigenvalues 
of L and let 

{q$ : j =  I,...,r(IK);~=O1...,mK,,- I} 

and 

{ ( U ( J ) , ~ ( J ) ) :  K r,l j =  ~l...lr(IK);~=~l...lmK,j-~} 
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be biorthogonal CSEAVs of L and L* at A,, respectively. Then 

holds for all f E F ,  where the series converges in C(a ,  b) .  

7.7. Boundary eigenvalue problems for ql' + p1 q1 + poq = a2q 

We consider the boundary eigenvalue problem 

Here we suppose that the boundary conditions are linearly independent and that 
po, p1 E Lp (a ,  b ) .  This problem is well-known and was considered e. g. in Naimark 
[NA 11 and Locker [LO 11. 

First we want to characterize the Birkhoff regular problems. For this we note 
that in case a l d l  = b l c l  a suitable linear combination of the boundary conditions 
yields that we can take cl = d l  = 0. Therefore we shall always assume that cl = 
d l  = 0 holds if a l d l  = b l c l  . 

THEOREM 7.7.1. In the following three cases the problem is Birkhoff regular: 
CASE I: a l d l  # b l c l ,  
CASE 2: C ,  = d l  = 0, aldO + blco # 0 ,  
 CASE^: a l  = b l  = c l  = d l  = 0 .  

ProoJ: The differential equation is as considered in Example 4.2.2 with r1 = 1 and 

r2 = - 1. Hence C ( A )  = ( -la), and the boundary matrices given by (7.3.1) 

are 

We shall apply Theorem 7.3.2 to prove Birkhoff regularity. The matrix polynomial 
C2 will be different in the three cases under consideration. 
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CASE 1: Here we take C2(A) = AZ2 and obtain 

Note that the matrices A{ occuring in Theorem 4.1.3 are diag( 1,O) and diag(0.1) . 
Therefore, the Birkhoff matrices are 

which are invertible. Therefore Theorems 7.3.2 and 4.1.3 yield Birkhoff regular- 
ity. 
CASE 2: Here we take C2(A) = diag(A.1) and obtain 

The Birkhoff matrices are 

(2 -") do and [ ( " I  do - ' I ) .  co 

Hence the problem is Birkhoff regular by the assumption that aldo + blco # 0. 
CASE 3: Here we take C2(A) = Z2 and obtain 

The Birkhoff matrices are 

They are invertible since the boundary conditions are linearly independent. 

In view of our general asumptions, the considered cases can be written as 
follows: 
CASE 1: lal I + Ibl 1 > 0, Icl I + Idl 1 > 0, 
CASE 2: lal I + Ib, 1 > 0, Icl 1 + Idl 1 = 0, aldO + blco # 0, 
CASE 3: lal I + lbl 1 = 0, Icl I + Idl 1 = 0. 
Hence we still have to consider the case 

Next we consider a case where no expansion holds. 

THEOREM 7.7.2. The spectrum of the boundary eigenvalue problem is empty in 
CASE 4a: lal ( + Ibll > 0, cl  = dl  = 0, aldo + blco = 0, bo = 0, do = 0. 
CASE 4b: lal I + Ibll > 0, c ,  = dl  = 0, aldo + blco = 0, a. = 0, co = 0. 
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ProoJ: We only consider Case 4a; Case 4b is obtained by interchanging the end- 
points of the interval [0, 11. Under the assumptions of Case 4a we have blco = 0. 
Since co # 0, b, = 0 and a ,  # 0 follow. The second boundary condition reads 
cOq (0) = 0, and we thus may assume that a. = 0. Therefore the first boundary 
condition is a ,q l (0)  = 0. This is an initial value problem, which does not have 
nontrivial solutions. 

Therefore we still have to consider the case 

la,/ + Ibll > 0, c, = d l  = 0, a,do+blco = 01 (Ibol+ Idol)(laol+ Icol) > 0. 

Here we shall check for Stone regularity. For this we need additional conditions 
on the regularity of po and pl . We start with formal calculations assuming this 
regularity. Later on we shall state the precise conditions. 

According to Corollary 5.5.6 and Proposition 5.5.7 we have to check the co- 
efficients of the polynomial in A-' for K = 1,2: 

k 
det ( r =O A+"'~;)A; + $:)A;)) , 

1 where A; = diag(l,O), A: = diag(0, I ) ,  A: = I2 --A,., 

Here the transformation in the proof of Case 2 in Theorem 7.7.1 is taken. There- 
fore 

Z (J)  
Then we have Wo = w J ~ )  and for r > 0 

6:) = W ( ~ ) $ I ( ~  o ,) + ~ / j ) j 3 r - l ] ( ~ , ) .  
I 

From 

we infer in view of a ldo  + blco = 0 that 

d e t ( ~ J ~ ) g ~ l ( o ) A k  + W~')A:) = -2a1dogf!L(0) 
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where K' = 3 - K. In the same way we obtain 

Also 

From 

0 

we infer 

det (~/~))P7 '1(0)~:+ w;')A:) = (-l)K-1aodo(4?(0) + q J ( 0 ) )  

In the same way, 

From Example 4.2.2 we know that 

THEOREM 7.7.3. Suppose that p l  E W; (0 , l )  and that 
CASE 5: lal I + Ibl 1 > 0, c1 = dl  = 0, aldo + blco = 0, 

boco-aodo+ ;a ldo (~ I (~ )+~ l ( l ) )  #0.  
Then the problem is 1-regular. 

Proot The assumptions of Theorem 2.8.2 with respect to A. and A-1 are satisfied 
with k = 1. According to Definition 7.6.1, Corollary 5.5.6, and Proposition 5.5.7 
we must show that the coefficient alYK of in (7.7.1) for k = 1 is different from 
zero for K = 1'2. We have 

a,,, = det (wdO)i\: + Wdl)gll(l)A:) 

+ det(W;O)A: + W / ' ) A ~ )  

+ det(wdO)g'l(0)A: + wdl)A:) 

+ det(w/O)i\; + wdl)A:) 

= 2 a l d o ~ ~ ( l )  + ( - ~ ) ~ b ~ c ~  - 2aldoT?(0)  + (-l)K-laodo. 

From Proposition 5.5.7 we have 
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and it follows that 

THEOREM 7.7.4. Suppose that p, E wi(0, l), po E W; (0, l), and that 
CASE 6: lull + Ibll > 0, c1 = dl = 0, aldO + blco = 0, 

b 0 c 0 - a 0 d 0 + ~ a , d 0 ( p 1 ( 0 ) + p 1 ( 1 ) )  = O ,  a,  #O, do#O, 

po(1) -po(O) - i(p'l(1) -p'l(O)) + $ ( ~ , ( 0 ) ' - ~ 1 ( 1 ) ~ )  #O. 
Then the problem is 2-regulal: 

Proofi The proof is similar to that of the previous theorem. Here we have to 
consider the coefficient 4,, of h-' in (7.7.1). First we calculate 

Then we obtain 

' w(')g2](l)i\:) + det(wJ0)~: + ~ / ' ) ~ ' ~ ( l ) h : )  4 , K  =det(wo A,+ 0 

+ det ( W ~ O ) ~ ' ] ( O ) A :  + w~')A:) + det(~,(O)?~l(o)h; + wd1)l\:) 
+ det(~JO)g ' l (~) l \ :  + wJ1)g'l(l)l\:) + d e t ( ~ ~ ~ ) ~ ' l ( 0 ) 1 \ :  + w,(')A:) 

+det(wIO)l\; + ~ ~ ~ ) g ' ] ( l ) i \ : )  + det(wl(O)h: + WI(l)l\:) 

=2a1doTi ( l )  + ( - l ) K b o c o ( ~ $ ( l )  + c $ ( l ) )  

- 2a1d0gj?(0) + ( - 1 ) ~ - ' a ~ d ~ ( ~ ~ ( 0 )  +?:(o)) 
+ (- 1)K-12a1d0(~2(0)q$(1)  - 4!(0)4$(1)) 

+ ( - l ) K b o c o ( ~ ~ ( ~ )  +?Y(O)) + ( - l ) K - l a o d o ( ~ ~ ( l )  +?;(I)) 
=a ldo{2Ti( l )  - 2g:?(0) + ( - I ) ~ - ~ ~ ( ~ : ( O ) ? $ ( I )  - ~ ~ ( 0 ) ~ ~ ( 1 ) ) )  

+ ( - l ) " ' ( a O d O - b O c O ) ( ~ ~ ( 0 ) + ~ ~ ( O ) + ~ ~ ( l ) + ~ $ ( l ) )  

=a ldo{2T~l ( l )  - 2P?j?(0) + 2?,!(0)?i(l) - 2$?(0)g;$(l) 

1 + , ( - l )K- l (p l (o )+p l ( l ) )  ( q ; ( o ) + ~ ; ( o ) + q $ ( l ) + q $ ( l ) ) } .  
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In view of (7.7.2) it follows that 

Since Ao,,, = Ao,K'K' ,  we have in view of (5.5.12) and (7.7.2) that 

Therefore 

If po = p1 = 0 we take the fundamental system {cosh(Ax), sinh(Ax)). For 
the case not covered by Theorems 7.7.1-7.7.3 the coefficents satisfy cl = dl  = 0, 
aldo + blco = 0, and boco - aodo = 0. In this case, the characteristic determinant 
is -alto - bldo.  That means, the problem is not Stone regular since the spectrum 
is either empty or all of C. Therefore we obtain 

THEOREM 7.7.5. Suppose that po = p, = 0. Then the spectrum of the boundary 
eigenvalue problem is empty in 
CASE 4c: la, I + Ibll > 0, c ,  = dl  = 0, aldo + blco = 0, boco - aodo = 0, 

alto + bldo # 0, 
and the spectrum of the boundary eigenvalue problem is all of C in 
 CASE^^: ( a l l +  Ibll > 0, c ,  = d l  =0,  a ldo+blco =0,  boco-aodo =0,  

alto+ bldo = 0. 

Note that Case 4c contains Cases 4a and 4b. In particular, if po = p, = 0, 
then every s-regular problem with s 2 2 is 1-regular. However, in case of general 
po and p, it seems to be apparent that s-regular problems which are not (s - 1)- 
regular can occur for all s E N\ (0). 
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7.8. The Regge problem 

We consider the Regge problem 

qll - qq - a2q = 0, 

q(0)  = 0,  ~ ' ( 1 )  +AV( l )  = 0, 

where q is a given function. Regularity conditions on this function will be given 

later. By Example 4.2.2 we have C ( I )  = , the corresponding asymp- 

totically linear system is 

and the (asymptotically constant) boundary conditions are 

Therefore the Birkhoff matrices are 

Since the first matrix is not invertible, the problem is not Birkhoff regular. In the 
following, we suppose that the function q  is sufficiently smooth. According to 
Theorem 5.5.5, the problem is s-regular if the coefficient of A-S of 

is different from zero, where the P['] are the matrix functions from Theorem 2.8.2 
corresponding to the above system. Since 

the coefficients of A- ' ,  . . . , A-j are zero if ~ i $ ( l )  = 0  for r = 1,. . . , j. Hence, if 

the problem is s-regular, then ( 1 )  # 0  for some r E ( 1 ,  . . . , s). Conversely, if 

P $ ( I )  # 0, but PlrI(1) = 0  for r = 1,. . . , j - 1 ,  then the coefficient of I-j of the 
1 2. 

above determinant is 

(; P i (  1 )) . 

Therefore we have the following result: Suppose that ~ [ ~ ] ( 1 )  # 0  for some s E W. 
12 

Let s be minimal with this property. Then the problem is s-regular but not s - 1-  
regular. 



7.8. The Regge problem 

By (2.8.19) we have 

Since P/:] = 0,  it follows that P!:] = 0. In P!:] we have an additive constant which 

can be chosen such that P / ; ( I )  + P!; ( 1 )  # 0. Thus, for r = 1,2,. . . , p / F 1 l ( l )  

is a linear combination of q( ' - ' ) ( l ) ,  q(r-2) ( I ) ,  . . . , q ( l ) ,  where the coefficient of 
q( ' - ' ) ( l )  is different from zero. Therefore, suppose that q has a zero of order 
s - 2 at 1 .  Then the Regge problem is s-regular but not s - 1-regular. 

Now let us investigate the regularity conditions on q. Since we need Pi:, we 

have to take k = s in Theorem 2.8.2 whence q E w,S-' (a ,  b) .  As in Lemma 5.7.8 
we infer that the problem is strongly s-regular. In order to apply Theorem 7.6.9 we 
must have q = - z , ,~  E w,S-' ( a ,  b ) ,  i. e., we have the same condition as above. To 
find the iterates accordinh to Proposition 7.6.8 we note that the nonzero coefficient - 
matrices are A - - ( O  ') and d *  = (: :) . Therefore, ' -  1 0 

and we obtain 

if j is even and positive, 

if j is odd, 

if j is even, 

We have 

Then the asymptotic boundary conditions in Theorems 7.6.9 and 7.6.10 for the 
functions f which are expandable are given by 
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for j = 0 , .  . . , K ,  where K = s - 1 if p < w and K = s if p = w. Observing the 
above recursion formulas we immediately obtain that this is equivalent to 

for j = 0, .  . . , [f] and k = 0 , .  . . , [?I. It is easy to see that the latter two condi- 
tions are equivalent to f ( j ) ( l )  = 0 for j = 0, .  . . , K. However, the first condition 
cannot be expressed this easily. For j = 0 and j = 1 it is f (0 )  = 0 and fl '(0) = 0,  
respectively, but for j = 2 we obtain f (4) (0)  - 2q'(0) f ' ( 0 )  = 0. 

We can summarize the above conditions as follows: 

Let s > 2 and q E W~S-' (a,  b) .  Suppose that q has a zero of order s - 2 at 1.  
Then, for I < p < w, a function f E W;(a, b)  is expandable in an Lp-convergent 
series of eigenfunctions and associated functions of the Regge problem i f f  satis- 
fies the boundary conditions 

If p = 03, then the series converges uniformly for f E Cs(a,b) with f ( S )  E 
BV[a, b] satisfying 

(0 )  = 0 ( j  = 0,  . . . , 1 [3 ), 
f ( ' ) ( l )  = 0 ( j  = 0,  ..., s) .  

7.9. Almost Birkhoff regular problems 

In this section we consider the case no # 0 and shall always assume that the as- 
sumptions of Theorem 7.2.4 A are satisfied. 

DEFINITION 7.9.1. The boundary eigenvalue problem (7.1.2), (7.1.3) is called 
almost BirkhofS regular if the assumptions of Theorem 7.2.4 A are fulfilled and if 
there are matrix functions C(. ,  1) satisfying (7.1.8)-(7.1.10) and C2 (A) satisfying 
(5.1.3)-(5.1.5) such that the associated boundary eigenvalue problem ? D ( ~ ) y  = 0,  

1-R 1 C2(1 ) -  T ( )y = 0 is Birkhoff regular in the sense of Definition 4.1.2. 

Choose the circles Tv according to Theorem 4.3.9 and define 

where & : Wi(a,b) 7- Lp(a, b)  is the canonical embedding. In case no = 0 this 
definition coincides with (7.4.1). We again have Qv E L(Lp(a,b)).  Let Pv be as 
considered at the beginning of Section 7.4. 



7.10. Notes 

PROPOSITION 7.9.2. For f  E Lp(a,  b )  we have 

Q v f  = e;o+l C,  pvc;' eno+,f. 

ProoJ Let fl  E Lp(a,  b )  and fi E Cn.  In the proof of Theorem 6.4.1 we have seen 
that T-' ( A )  (en fl  , f2)  fulfils the assumptions of Proposition 6.1.3, whence 

(7.9.2) [ ~ - ' ( A ) ( f l  , f 2 ) ] ( "  = e J + l ~ - l ( A ) ( e n f l  , f 2 )  

for j = 0,. . . , n  - 1 by (6.4.12) and Proposition 6.1.3. As in (7.4.4) we obtain 

and 

whence the proposition is proved if we set fl =.xl and observe that vn0+, - vn = 
1 - 1 by Theorem 7.2.4 A. 

Now we obtain as in Lemma 7.4.2 that Pv f  -+ f  for all f  E Lp(a,  b )  if the un- 
derlying problem is almost Birkhoff regular. Therefore, every function in Lp(a,  b) 
is expandable into no-th derivatives of eigenfunctions Bnd associated functions of 
the eigenvalue problem. However, we want to expand into eigenfunctions and 
associated functions themselves. For this we consider two-point boundary value 
problems in case 1 < p < w. Starting with the classical adjoint problem and con- 
sidering the family of operators Qv ( v  E W) we obtain Qvv -+ v in Lp, (a ,  b) for all 
v E Lp, (a, b )  . Therefore, 

Q: f  -+ f  weakly in Lp (a, b)  for all f  E Lp(a,  b ) .  

But Theorem 6.7.8 immediately yields that this is an expansion into eigenfunc- 
tions and associated functions of the given problem. 

In order to obtain an expansion into eigenfunctions and associated functions 
which converges strongly, more use has to be made of the special structure of n-th 
order differential equations. This problem will be dealt with in the next chapter. 

7.10. Notes 

The statement of the expansion theorems can be simplified if L only depends 
on An. 

First expansion theorems for non-self-adjoint boundary eigenvalue problems 
defined by arbitrary n-th order differential equations were proved by BIRKHOFF 
[BI2] and TAMARKIN [TA3]. Those expansion theorems have been obtained for 
Birkhoff regular problems with respect to local uniform convergence in the inte- 
rior of the underlying compact interval. The generalization to Stone regular prob- 
lems appeared in [ST3]. In [HI2], [H13], E. HILB independently published some 
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remarkable eigenfunction expansion theorems for second order differential equa- 
tions, in the latter paper allowing the coefficients to have singularities. In a series 
of papers W. EBERHARD [EBlI-[EB6] and W. EBERHARD and G. FREILING 
[EFII-[EF4] extended the results of BIRKHOFF and TAMARKIN in various di- 
rections. In [EB ll-[EB3] EBERHARD investigated irregular boundary eigenvalue 
problems for n-th order differential equations with separated boundary conditions 
and in particular falsified an application of the general functional analytic results 
to such irregular problems by Keldysh in [KEl]; as a consequence, this special 
application was no longer considered in [KE2]. Lp-expansions have been inves- 
tigated by Benzinger [BE3], [BE6], [BE7]. Expansions for differential equations 
with a particular form of A-dependence have been considered by MOLLER and 
USCHOLD in [MU]. 



Chapter VIII 

THE DIFFERENTIAL EQUATION Kq = 3LHq 

This chapter is concerned with regular two-point boundary eigenvalue problems 
for n-th order A-linear differential equations of type Kq  = AHq, where K and 
H are differential operators such that K is of higher order than H. The boundary 
conditions are allowed to depend polynomially on the eigenvalue parameter A.  
The results on eigenfunction expansions from the foregoing chapter are applicable 
to boundary eigenvalue problems of this type only if H is a multiplication operator. 
In the present chapter expansion statements are established by a specific approach. 

To this end, first the proper structure of the asymptotic fundamental system 
of the differential equation K q  = AHq is determined from the asymptotic fun- 
damental matrix which has been constructed in the second chapter for asymptoti- 
cally A-linear first order differential systems (Theorems 8.2.1 and 8.2.4, Corollar- 
ies 8.3.1 and 8.3.2). This asymptotic fundamental system fully reflects the special 
structure of the differential equation Kq  = AH17 An asymptotic representation 
of the inverse of the corresponding fundamental matrix is deduced, which in turn 
yields an appropriate asymtotic fundamental system of the formally adjoint dif- 
ferential equation Kt[ = AH+[ (Theorems 8.4.1 and 8.4.2). 

These asymptotic fundamental matrices of the original differential equation 
and of its formally adjoint are most useful for efficient estimates of the GREEN'S 
function G(x, 5 ,  A) of the given boundary eigenvalue problem. The essential dif- 
ference between the estimates of the GREEN'S matrix in the fourth chapter, which 
have been used for the proofs of the expansion theorems in the previous chapter, 
and the estimation of the GREEN'S function in this chapter consists in the fact 
that, in the fourth chapter, the characteristic matrix has been estimated separately 
from the other terms in the GREEN'S matrix whereas here the asymptotic be- 
havior of the GREEN'S function is investigated as a whole. The condition of 
almost Birkhoff regularity imposed on the given boundary eigenvalue problem 
yields that there is no exponential growth of H+G(x, .,A) on the regularity cir- 
cles r, (v E H). The asymptotic boundary conditions are defined in such a way 
that those terms in the asymptotic representation of ~ , b  f (I;)H[G(x, {,A) d< van- 
ish which would prevent the convergence of the sequence of contour integrals over 

+G x, 5, A )  d5 along the regularity circles T,, . These asymptotic bound- ~ , b f ( 5 ) ~ ,  ( 
ary conditions are given in terms of the coefficients of the differential operators K 



322 VIII. The differential equation Kq = AHq 

and H as well as of the coefficients in the boundary conditions (Definition 8.5.3). 
In the special case that H is a multiplication operator, the asymptotic boundary 
conditions are determined by the coefficients of the boundary matrices only. In 
this case the notions Birkhoff regularity and almost Birkhoff regularity coincide. 

The expansion theorems state the expandability of sufficiently smooth func- 
tions which fulfil the asymptotic boundary conditions up to a certain order. The 
eigenfunction expansions converge in the topology of some function space CS[a, b] 
or W;(a,b), respectively, (Theorems 8.8.2 and 8.8.3). Some examples demon- 
strate the quality of the achieved results. A boundary eigenvalue problem for a 
simple fourth order differential equation shows that the asymptotic boundary con- 
ditions in general have to include the values of the coefficients of the differential 
equation at the endpoints of the underlying interval. 

8.1. The eigenvalue problem and general assumptions 

Let 1 i p < m a n d p l s u c h t h a t  l / p + l / p l =  1. L e t - m < a < b < c - a n d n ~ N ,  
n > 2. In this chapter we consider the differential equation 

where 

with 0 < no < n - 1 and k i ,h ,  E wj(o,b) .  We shall always assume that h,,,, > 0 

and that 11%' E Lm(a, b). In view of Proposition 2.5.8 we infer h;: E W; (a, b) if 

no > 0. If no = 0, we suppose that h ~ '  t W; (a, b). 

As usual, we associate the differential operator 

with the differential equation (8.1.1). Together with the differential equation 
(8.1.1) we consider two-point boundary conditions 

where the wi) are polynomials. For convenience, we define the boundary matrices 

(8.1.6) W ( J )  (A)  = ki  (a))" k,i= l ( J  = 0 , l ) .  

We shall always assume that the resolvent set of the operator 

(8.1.7) D R  L : =  (L , L  ) E H(@,L(W;(a,b),L,(a,b) x C")) 
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is nonempty. Let G denote the GREEN'S function defined in (6.4.5). 

The assumptions of Theorem 7.2.4 hold with substituted for p if we replace 
4 by A', where 1 = n - no. We have 

(8.1.8) rn-i,O = k i  ( i=O ,... , n -  1 )  and nnVi,' = -hi, ( i =  0 , . . . ,no) ,  

whence = -hnO and = 0 if i E { 1 ,  . . . , n )  and i # I .  According to Theorem 
7.2.4, case B,  we can take C(x,  A )  = Co(A)Cl ( x ) ,  where 

(8.1.9) Co(A) = diag(1,. . . , I ,  A, .  . . , A') ,  

and 

We define the formally adjoint H+ of H by 

"0 

H = ( - l ) i ( h i ) i  ( 9  E W?(a, b ) ) .  

LEMMA 8.1.1. Zf A E p (L ) ,  then 

is well-defined, and S E H ( p  ( L ) ,  L(L,,(a, b ) ,  w:-"o-' (a ,  b ) ) ) .  

Before proving this lemma let us state a consequence. 

THEOREM 8.1.2. We consider circles {yv : v E N) in p (L)  with centre 0 and 
radii tending to w as v -+ w. The radii will be specijied latel: For v E N and 
f E Lp(a,  b )  we define 

Then Qv E L ( L , ( ~ ,  b ) ,  w,"-"o-'(a, b ) ) .  
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The operator family {Qv : v E N) leads to the desired expansion theorems. 

Let T (A) be the system associated to L(A')  according to (6.1.3) and let Y (., A) 
be a fundamental matrix function of T ~ ( A ) ~  = 0. Let M ( A )  be the associated 
characteristic matrix given by 

In the following lemma, we sometimes omit the eigenvalue parameter A in order 
to shorten the formulas. 

LEMMA 8.1.3. We have y p l e n  E (W;(a,b))" and 

for j = 0 , .  . . ,n - 1 ,  where q j , , ( . , l )  E w"+"-j(a,b). The qj , ,  are inductively, 
P' 

with respect to j, given by 

q .  . = ( - 1 ) '  ( j = O ,  ..., n -  1 ) ,  J > J  

where 

Furthermore, the degree of q j , ,  as a polynomial in A does not exceed j - v, and 

qj,v is a polynomial in A'. 

Pro05 From (2.5.7) and with A given by (6.1.3) and (6.1.4) it follows that 

(8.1.16) (y- ' ) '  = - ~ - ~ y ' y - '  = - y - ' ~ ,  

which implies that 

(8.1.17) ( ~ - ' ) ' e  k - - - ~ - ~ e ~ - ~  +pk- 'y-len 



8.1. The eigenvalue problem and general assumptions 325 

for k = 2,. . . , n. Obviously, (8.1.15) is true if j = 0. Assume (8.1.15) holds for 
some j E ( 0 , .  . . , n - 2). Then ( Y P 1 e n ) ( j )  E (wll (a ,  b ) )n ,  and we can differentiate 
(8.1.15). In view of (8.1.17) this leads to 

whence (8.1.15) follows for j + 1. Finally, (Y-' en)("-') E w;, (a ,  b))" implies 

Y-'  en E W; (a ,  b) by Corollary 2.1.4. 

Proof of Lemma 8.1.1. By (3.2.6) the GREEN'S matrix of the differential operator 
T ( A )  is 

Y ( x , ~ ) M - ~ ( A ) ~ ~ ~ ~ ( A ~ ) Y ( ~ , ~ ) Y - ~ ( ~ , ~ )  
( a 5  5 5 x 5  b ) ,  

G T ( x , 5 , a )  = -~(~,a)~-l(a)w(~)(a~)~(b,a)~-l({,a) 
( a < x < {  s b ) .  

We have 

which shows that e; G,  ( x ,  5 ,  A)e j  is continuous in both variables x  and 5 if k # j. 
Since the GREEN'S function of L defined in (6.4.5) satisfies 

~ ( x , < , a ' )  = e:G,(x,<,a)en, 

we infer for k = 0 ,  . . . , n - no - 1 and j = 0 , .  . . ,no in view of Proposition 2.2.2, 
( e y ~ ( . , i ) ) ( ~ )  = e k l Y ( . , I ) ,  and Lemma 8.1.3 that 

Since H+ is an no-th order differential operator with coefficients in Lp,(a, b ) ,  

S ( A )  E L ( L ~ ( ~ ,  b ) ,  w;-"o-' (a ,  b ) )  follows. The holomorphy is an immediate con- 
sequence of the holomorphic dependence of G on A. 
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8.2. An asymptotic fundamental system for K q  = A ' H ~  

In order to obtain the desired estimate o f  the G R E E N ' S  function we need more 
information about an asymptotic fundamental system. In this section we suppose 
that hno = 1. 

T H E O R E M  8.2.1. Suppose that hno = 1, set 1 = n - no,  and let k E N. Suppose 
that k 2 max{l,no - 1 )  i fno > 0. Suppose that 
a )  k, E Lpl (a ,  b )  for j = 0 , .  . . ,n - 1 - k and kn-l-j E wk- j (a ,b )  for 

P' 
j=O ,..., m i n { k - l , n -  l ) i f n o = O ,  

P )  ho, . . . ,hno-l  E ~ ; ( a , b ) ,  ko , . . . , knoF1 E ~ j - ' ( a , b ) ,  andkn-I-j  E w k - j ( a ,  P' b )  

for j = O  ,..., 1 - 1  i fno>O.  L e t { r I  ,..., nno} c wFno(a,b)  beafundamentol 

system of H q  = 0. 
For suficiently large A the dlfSerentia1 equation K q  = A ' H ~  has a fundamental 
system { q ,  ( . , A ) ,  . . . , qn( . ,  A ) }  with the following properties: 
i )  There arefunctions nvr E wk,sno-" (a ,  b)  ( 1  5 v 5 no, 1 5 r 5 [3) such that 

P 

L I J  

(8.2.2) ( )  = ) + ~ " ~ t y )  + jo(~-k+'-no+l 1 }m 

2ni(j- I )  i i ) S e t k : = m i n { k , k + I - n o )  L e t w , = e ~ ~ { - ~ )  ( j =  1 ,  . . . ,  1). Thereare 

finctions ql. E wk+I-'(a, b) ,  r = 0 , .  . . , k, such that qo is the solution of the initial P' 
value problem 

and 

dP where [-] means that we omit those terms of the Leibniz expansion which con- 
tain afunction q ! ~ )  with j > - r. 
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Pro08 The regularity assumptions on the coefficients ki and hi might be partly 
weaker than the general assumptions ki, hi E ~ i ( a ,  b) made at the beginning of 
this chapter. This means that this theorem holds under the conditions stated here, 
but we shall only apply it if the general hypotheses of this chapter are satisfied. 

We denote the i-th unit vectors in (C", Cno, C' by ei, ti, E~ . For i E Z  \ { I , .  . . , n) 
or i E Z \  { I , .  . .,no) or i E Z \  (1,. . . , I )  we set ei := 0, ti := 0, Ei := 0, respectively. 

We can write the matrix A ( . ,  A') of the corresponding system given by (6.1.4) 
as 

according to the decomposition C" = Cno @ C1, where 

We set 

If we observe that 

we obtain that V is invertible with 
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Also, 

(8.2.14) &iTV = . ~ ~ Q f - l  ( i =  1, . . . ,  1) 

and 

(8.2.15) (J, + &/&:)V = VQ1. 

Then we have in view of (8.1.9) and (8.1.10) that 

and the matrix function A( . ,  A )  given by (7.1.11) has the form 

where 

and h,,,-l is understood to be zero in case no = 0. 

For the proof of the representation (8.2.17) of A( . ,  A )  we first define the aux- 
iliary matrices 

for which C ( A )  = C(,) (A)C(,) . Then 

c ( l ) ( A ) - l ~ ( . ~ A ) c ( ~ ) ( A )  = 

( J n ~  A E ~ ~ E : E ~ ( A ) V  
~ - l v - l ~ - l  -/ (A)&,a:(A) v - ' ~ ; ' ( A ) ( & ~ a ~  +J1 +A'E,E:)Z,(A)V 

From (8.2.13), (8.2.14) and (8.2.15) we obtain the identities 
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which yields the representation 

We already know from Theorem 7.2.4 that A l  has the representation (8.2.18), 
which can also be checked here easily. The representations (8.2.19)-(8.2.21) fol- 
low from 

definitions (8.2.5) and (8.2.6), and the identity (8.2.14). 
The assumptions a )  and p )  give A-j E M,(W;-~(U, b)) ( j  = 0,.  . . ,min{k, I } ) .  

According to (8.2.18)-(8.2.21) the coefficient matrix A(., A )  satisfies the assump- 
tions made in Section 2.8. From Theorem 2.8.2 we obtain that y' -A(., h)y = 0 
has a fundamental system 

if h is sufficiently large, where P['] E M, (W~+ ' -~(U,  b)) and 
P' 

E (n, h )  = diag(1, . . . , 1 , eLOl (x-a)  1 . " )  eLmi(x-a) ) 

We infer that 

is a fundamental matrix of T ~ ( A ) ~  = 0 if A is sufficiently large, where D is an 
invertible no x no matrix which will be appropriately chosen later. We set 
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and obtain that 

We set qv := qo,v . Then {ql  ( . , A ) ,  . . . , qn (., A)) is a fundamental system of 

K q  = A ' H ~  and q p )  = qp,v (v = 1 ,..., n; p = 0 , . . . ,  n -  1 )  by Lemma 6.1.5. 
We shall show that the qv have the properties stated in Theorem 8.2.1. 

By (8.2.24) and (8.2.22) we have 

k 

Q,,(.,A) = E + { ~ ( h - ~ ) } ~  (i, j = 1,2),  
r=O 

where the elements of Qi.1 belong to ~;$ ' - ' (a ,b ) .  We set Qk] := 0 for r < 0. 
' I  ' I  

We infer that (2.8.6)-(2.8.8) are equivalent to the following equations: 

I 
(8.2.27) Q[OI 1 1  - ( J  q, - fnOa:, )Q! = 0, Q! ( a )  = In,, , 

I - Q ,  - 

(8.2.31) 
1 k , - , - ,&&~~- l - j  lr - l - j l  - -&aT Q[~-'- ']  ( r  = 1,.  . . , k ) ,  

1 Q21 1 12 1 1  
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Indeed, (2.8.6) is equivalent to the second conditions in (8.2.27) and (8.2.28), 
(8.2.29) and that Q!; is a diagonal matrix function. In view of (8.2.29) we obtain 
that (2.8.7) and (2.8.8) for v = 0 are equivalent to the first condition in (8.2.27) and 
(8.2.30)-(8.2.33). Obviously, (2.8.8) for v = 1, . . . ,1 and (8.2.34) are equivalent. 
Since (2.8.6) implies that Q!; is diagonal, it remains to be shown that the diagonal 

elements of Q!! satisfy the differential equation 

We conclude this fact from the equation (8.2.33) for r = 1. For this purpose 
we have to observe that the diagonal elements of R1Q!j - QY~Q, are zero, that 

Q! = 0 by (8.2.29), and that the diagonal elements of Q,&&TR;' have the value 1. 

The QM and Q! are uniquely determined by (8.2.29). (8.2.31) and (8.2.32) 
(if the terms on the right-hand sides of (8.2.31) and (8.2.32) are considered to 
be given). But we are completely free to choose Q! (a) for r = 1,.  . . , k. The 
representation in part i) will only hold if we make a suitable choice. We require 

(8.2.35) Q!/(a) = O  ( r =  1, . . . ,  k). 

From (8.2.25) and (8.2.26) we infer that there are nVrp E wktl-'(a,b) for 
P' 

r = O  ,..., k; V =  1 ,..., n o a n d p = O  , . . . ,  no- 1 suchthat 

(V = 1,.  . .no; ,u = 0, .  . . ,no - I) .  
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From (8.2.29) it follows that 

T [OIL), ( n l m r . . . , i o m )  = f l Q l l  

and (8.2.27) yields that it is a fundamental system of Hq = 0. Since two funda- 
mental systems of Hq = 0 differ by multiplication from the right by an invertible 
no x no matrix, we can choose the matrix D such that 

( ~ 1 , . . . , % , )  = (n]m!"'7nnom)' 

By (8.2.25) and (8.2.26) we have 

(8.2.37) qrp = e;+, (Q!! + E ~ , & T Q ; ' Q ~ )  ev 

for p = 0,.  . . ,no - 1, v = 1,. . . ,no, and r = 0, .  . . , k. The relations (8.2.27), 
(8.2.29) and (8.2.30) imply that 

I 
r ~ Q 1  = E:+,Q~/ + C : + ~ ~ ~ & T R ; ' Q ~ !  

for p = 1,. . . ,no - 1 and r = 0 , .  . . , k. These equations and (8.2.37) show that 
n V r p = n ~ f o r p = 0  , . . ,  no-1; v =  I ,..., no; r = O  ,..., k. Since n v r n l  E 

1 0  

wk+ 1 -r 
P' 

(u,b), it follows that nvro E W ~ + ~ ~ - ~ ( U ,  b). From (8.2.25) and (8.2.26) we 
P' 

infer that there are nvrp E ~ ~ + " o - ~ - " ( a , b )  for v = 1,.  . . ,no; p = no,. . . , n -  1, 
P' 

a n d r = n o - p - 1 ,  . . . ,  k + n o - p -  1 suchthat 

According to the estimate (2.8.14) in Theorem 2.8.2 differentiation leads to 

(v  = 1,.  . .no; p = no,. . . ,n  - 1). 

Again by the estimate (2.8.14) in Theorem 2.8.2 we obtain 

from (8.2.36) for p = no - 1. From (8.2.38), (8.2.39) and (8.2.40) we deduce 
nvrp = 0 if r < 0, and nvrp = i f 0 2  rs k + n o - p -  1, wherep runsfrom 
no to n - 1. The last equation leads to 
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for V =  1 ,..., n O ; p = n O  ,..., n-  1 a n d r = O  , . . . ,  k + n o - p - 1 .  Thusparti)of 
Theorem 8.2.1 is proved if we show that nv,, = 0 for r = 1,.  . . ,k if r is not a 
multiple of 1. This is a consequence of the following proposition. 

PROPOSITION 8.2.2. Let Q/;i (a) = 0 for r = 1,. . . , k. We assert: 

i)Q!/ = O f o r r = l ,  ..., kifrisnotamultipleofl. 

ii) For r = 1,. . . , k there are $1 E MI,no ( W T l r ( a ,  b)) such that = Q:-req[rl. 

Proot The assertion immediately follows from (8.2.30) and (8.2.3 1) by induction, 
where we make use of (8.2.12) and the identity R;' = Il . 

Now we shall prove assertion ii) of Theorem 8.2.1. First let 61; and 61'1 
22 

( r  = 0, .  . . , k) be arbitrary solutions of (8.2.28), (8.2.29), (8.2.32), (8.2.33) and 
(8.2.34). We shall show that the matrix functions 

and 

nt= 1 

where r = 0, . . . , k, also satisfy (8.2.28), (8.2.29), (8.2.32), (8.2.33) and (8.2.34). 
The elements of Q!; and Q!; belong to ~ 7 ' - ' ( a , b )  because @; and @" have 

A 

this property. Q! = 0 implies Q Y ~  = 0. Since Gg satisfies the differential equa- 

tion in (8.2.28), also Q! satisfies it. And Q! (a) = Il follows from Gg (a) = Il and 

( J : + E ~ E ; ) ~ ~ - ~ & ~  =enr fo rm= 1 ,..., 1. Theidentity q = q - l w ; l  ( i = 2  ,..., 1) 
leads to 

for s E Z and further to 

(8.2.43) Q;(J: + E ~ E : ) ~ ~ - ~  = wit(J: + E ~ E : ) * ~ R ;  (S E Z; rn = 1,.  . . ,1) 

by induction with respect to m. Since 

Q;le1 = e l ,  Qj = I l ,  &,p;'+j = ~ ~ ~ ' E ~ Q ; ' - ~ ,  e T ( q  +el&:) = E ~ ,  

and because of (8.2.43) we obtain 
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for r = 1, .  . . , k. We conclude that the matrix functions Q!! and Q! satisfy (82.32) 
for r = 1, .  . . , k. In a similar way we obtain 

Q 1'1 - Q[']Q 
lQ22 22 1 

1 
= z { Q  (JT + E E ~ ) n ' - l ~ [ r l e  & T Q - l -  (J: + E & ~ ) ~ l - l G [ ~ l &  & T f i - r + l  

1 1  1 1  22 1 m  1  1 1  22 1  n ~  1  
m= 1  

1  

n1= 1  

1 

= 1 { ( J ;  + & l & ; ) n l - l G ~ ; l l ' E  1 &Tf i - '+ '  1 
nt= 1  

1 
- - (J: + & l & : ) n ' - l f i l E a ~  G[r-lIE & T x r + '  

1 I 1  12 1 " l  1  

1 - - , (hnO-, - k,t-l)(J: + e E~)~~-~R,EE~R;~G[;;-~~E,E;Q;~+~ 
1 '  



8.2. An asymptotic fundamental systems for Kq = L'Hq 335 

for r = 1,.  . . , k. Finally the relationships 

E:Q'E = a,,&:& = ~ , , E : Q ~ E ,  E,T~Q;~E,, = ~;~6,,,,, 

and again (8.2.43) yield 

r 1 1 
E: {Q!! - 5 ~ l ~ a ~ I  Q!! - (h .,- I - kn- 1 ) Q I & & ~ Q ;  1 Q22 [kl 

PROPOSITION 8.2.3. Let no > 2. For r = 0, .  . . ,no - 2 and i = I , .  . . ,no - r - 1 
we have c:Qr; = 0. For r = I , .  . . ,no - 1 we have ~ L - ~ Q [ ~ ] &  12 1 = E T Q [ ~ ] &  I 22 1' 

Proot The first assertion is clear for r = 0 by (8.2.29). Assume that it holds for 
0 5 r - 1 < no - 2. We have to prove the assertion for rand i = 1,. . . , no  - r - 1 
which is at most no - 2. From (8.2.32) and the induction hypothesis we obtain 

l:~[i z -c:Qr;']'Q;' + cr 1+1 Q[~-']Q-' 12 1 = 0. 

The second assertion holds for r = 1 since, by (8.2.32), 

Ill - TQ-1 [olfi-'& - & T  PIE . ~;0- lQ12&~-E 1 Q22 1 I -  lQ22 I 

Here we have used that Q! is a diagonal matrix function. Assume that the asser- 
tion holds for 1 5 r - 1 < no - 1. Then the first assertion and (8.2.32) yield 

Q [ ~ - I I Q - ~ &  - ET e&-rQ(1&1 =ck-r+I 12 1 1 - 1 Q 

Let no 2 2. Proposition 8.2.3 yields c y ~ r ;  = 0 for r = 0, .  . . ,no - 2. Hence, 

by (8.2.25) and (8.2.26), there are qvr E ~ ~ + ~ - ~ o - ~  (a,b) f o r v = n o + l ,  ..., nand 
P' 

r = O  ,..., k + 1 - n o s u c h t h a t , f o r v = n o + I  ,..., n, 

From (8.2.25) and (8.2.26) we immediately infer that this representation also holds 
for no = 1 and that, for no = 0 and v = 1,.  . . , n, 

where qvr E ~ 7 ' - ' ( a , b ) .  
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I f n o  > Oandno+ 15 v < n , O <  r < k + l  -no, then we have 

by (8.2.25), (8.2.26), (8.2.41), (8.2.42) and (8.2.43). If no = 0, 1 < v < n, and 
0 5 r < k ,  then we have by (8.2.25), (8.2.26), (8.2.42) and (8.2.14) that 

This leads to 

for v =no+ 1 ,..., n a n d r = O  ,..., k. Hence, for v = n o +  1 , . . . ,  n, 

where q r  := (Pno+l,r. 
If no = 0, then (8.2.45) yields 

If no = 1, then (8.2.44) yields 

qo ~ o =  'Pzo = "Q-I [Oln & = &TQ[OI, r Q22 1 1  I 2 2 1 .  

If no 2 2, then (8.2.44) and the second assertion of Proposition 8.2.3 yield 

From (8.2.28) we thus obtain qh - (hn0-, - kn- l)qo = 0 and qo(a)  = 1. 

If no = 0 or no = 1, then qr = qno+,, E  ha, b) for r = 0 , .  . . , k. Next 
we prove that this also holds if no > 2 and r = 0, .  . . , k + 1 - no. From (8.2.25) and 
(8.2.26) we infer for v = no + 1 ,  . . . , n and p = 0, . . . , no - 1 that 

where 
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forr=l-no ,..., k+1-no andqvd=qvr.  Forv=no+l  ,..., n , y =  1 , . . . , no -  1 
and r = 2 - no, . . . , k + 1 - no the equations (8.2.32) yield 

= a;-!no (-qk,r-1,p-1 + qv,r-l,p). 

We shall prove that (8.2.49) leads to 

forv=nO+l ,..., n,y=O , . . . ,  no- l ,andr=l-no ,..., k+1-no.Fory=no-1 
this is true because of (8.2.48). From (8.2.48) and (8.2.29) we infer qv,l -no,p = 0 
for y = 0, .  . . ,no - 2. Suppose that (8.2.50) holds for r - 1, where 1 - no < r < 
k + 1 - no. Then (8.2.49) yields qvrp E w:,+'-'-~ (a, b) for y = 0,.  . . ,no - 2. 

From (8.2.50) we obtain (p, = ( P , ~ + , , ~  E w?'-'(a,b). 
It remains to prove (8.2.4). The equations (8.2.25) and (8.2.26) yield 

for v = no + 1,. . . , n and y = no,. . . , n - 1 with qvrp E wkf '-'-"a, b). According 
r' 

to (8.2.4) we have to prove that 
(8.2.52) 

for v = no + 1,.  . . , n and y = 0,.  . . ,n - 1, where cp, := 0 for r < 0. This repre- 
sentation is true for y = 0 by (8.2.46). Suppose that it holds for some p < n - 1. 
Since the right-hand side of (8.2.52) is equal to the right-hand side of (8.2.46), 
(8.2.47) or (8.2.51), we infer from the estimate (2.8.14) in Theorem 2.8.2 that 
differentiation is allowed and leads to 

q ; ~ + l ) ( ~ ,  a)  
k-p- l P 

= { (aq-no)-r (7) $G"(x) + c ~ ( ~ - ~ ~ + ~ ) ~ p l } e " v - n o x  
r=-p j=O 
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Sometimes it is easier to have Theorem 8.2.1 in matricial form. 

THEOREM 8.2.4. Suppose that h,, = 1 ,  set 1 = n - no, and let k E N. Suppose 
that k >_ max{l, no - 1 )  i f  no > 0. Suppose that 
a )  k, E Lpf (a ,b )  for j = 0 , . . . ,  n - 1 - k and k,-,-, E w;-~(a ,b )  for 

j=O , . . . ,  m i n { k - l , n - l ) i f n o = O ,  
P )  h0 , . ,  hn,-, E ~ j ( a , b ) ,  ko ,..., kn,-, E W$-'(a,b) and kn_l-j  E w k - ~ ( a , b )  P' 

( j = 0 ,  . . . , I  - 1 )  i f  no > 0. Let @p/ E M,,, (WT' (a,  b )  ) be a fundamental matrix 
of H q  = 0. 
For suficiently large A the dgerential equation K q  = A ' H ~  has afundamental 
matrix function 

where 

E ( x ,  A) = diag(1,. . . , 1, e'Wl(x-a) 7 " ' )  eka,(x-a)) 

2ni(j- I )  and m, = e ~ ~ { - ~ )  ( j  = 1 , .  . . , I ) ,  with the following properties: 

i )  There are no x no matrixfunctions @I ( r  = 1,. . . , [!I) with r : + l ~ r /  belonging 
k+n,-lr-p 

to M~ ,no Wpf (a ,  b ) )  for r = 0 , .  . . , [ ! I  and p = 0 , .  . . ,no - 1 such that 

ii) There are 1 x no matrixfunctions @! ( r  = 0 ,  . . , [?I) with &:@I belonging 
k-lr-j+l 

to 4 ,no ( w p ~  (a ,  b ) )  for r = 0 , .  . . , [y] and j = 1,. . . , min{l, k - l r }  and 

E T @ [ ~  = 0 for r = 0 , .  . . , [?I and j = k - Lr + I , .  . . , n such that 
(8.2.55) 

r k - l i  

- 
iii) Set k := min{k, k + 1 - no). For r = 0 , .  . . ,l and p = 0 , .  . . ,n - 1 there are 
finctions up,  E ~ ~ + l - ~ ( a ,  b) ,  where upO = (pO is the solution of the initial value P' 
problem 
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such that, with 

for r = 0,.  . . , i ,  the representations 

(8.2.56) 
Q I 2 ( a 7  A )  = Eno (A) 

and 

(8.2.58) "j2(.,'01) =@,2(.,L)(Jl ( j  = 1,2) 

hold. We remind that Jr , Rl , Zr , V are defined in (8.2.7), (8.2.9), (8.2. lo), 
(8.2.1 1). 

Proofi The statements i) and ii) immediately follow from Theorem 8.2.1 if we 
observe that the differential equation Kq = AIHq depends on A' so that we can 
take the asymptotic representation for 0 5 argA < and extend it to arbitrary A 
by setting qj(.,A) = qj( . ,Lui)  for j=  1, . . .  ,no and suitable i(depending on A). 

For the proof of iii) we observe that (8.2.52) yields 

where the up, have the stated properties. To prove (8.2.56) and (8.2.57) we have 
to show that 

holds for p = 0 , .  . . , n - 1, v = no,. . . , n, and r = 0,.  . . , i .  But this follows imme- 
diately from 
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where 

Since the differential equation K q  = L ' H ~  depends on A', it is clear that the 
functions il, + ( . , I )  := qn0+' (., Lo,)  for j = 2, .  . . , I  are solutions of it. But since 

0 J 
A 

qno+j and qn + . only differ by o-terms in (8.2.4), the above statements also hold 
0 J 

if we suppose that 4, + . = q,o+j for j = 2 , .  . . , n. Then (8.2.58) immediately 
0 J 

follows. 

Talung only the leading terms, we obtain 

COROLLARY 8.2.5. Let the assumptions of Theorem 8.2.4 be satisfied. Let QY/ 
be a fundamental matrix of H q  = 0 if no > 0. Then, for su$ciently large A, 
K q  = A ' H ~  has afundamental matrix function of the form 

where qo is invertible. 

8.3. The asymptotic fundamental system in the general case 

In our investigations in Section 8.2 we have assumed that the coefficients of the 
highest derivatives of K and H are I .  In the following we shall suppose that the 
leading coefficients are bounded and bounded away from zero. Since we can di- 
vide the differential equation by the coefficient of the highest derivative of K ,  it is 
no restriction to suppose that this coefficient is 1. Now we suppose additionally 
that the coefficient of the highest derivative of H is the product of a nonzero com- 
plex number a and a positive function. Replacing the eigenvalue parameter L by 
La-'  we thus have the assumptions as required at the beginning of Section 8.1, 
where we impose the regularity conditions stated there; additionally, we require 
h,, E Cm[a, b] in order to avoid too complicated regularity considerations. 

Now let 

and p = u(b) .  We define the differential operator L, on [0, P ]  by 

(8.3.2) Luf  = [h ion i '~ ( f  u ) ]  0 up' ( f  E W;(O, P I ) ,  
where u-' is the inverse of u. Then 

(8.3.3) Lu = K u - A H u ,  
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where K,  is an n-th order differential operator and H, is an no-th order differential 
operator. Since 

( f  o u ) ( j )  = (u ' )  J f ( J )  o u + lower order derivatives in f 

and u' = h'l' , we infer that the coefficient of the highest derivative is 1 for both 
"0 

K and H .  Also, the coefficients of K ,  and H, have the same regularity properties 
as those of K and H. Hence L, satisfies the assumptions of Section 8.2. Then 
L, f = 0 has a fundamental matrix Y,(.,A) as stated in Theorem 8.2.1. Since 
L, f = 0 if and only if L( f o u)  = 0, we infer that e:Y,(., A )  o u is a fundamental 
system of L f = 0. Define Y (., A) by 

Then Y (., A )  is a fundamental matrix of K q  - AHq = 0, which satisfies the same 
asymptotic estimates as Y,(.,A) in view of Remark 2.8.10 since 

v 
(8.3.4) e:Y (., A )  = cvpeLY,(., A )  o u (V = I , .  . . ,n) .  

p=l 

The coefficients cvp are linear combinations of products of derivatives of u and 
thus belong to CW[a, b].  The elements cvv are powers of u' and thus are invertible. 

In this case (8.2.1) and (8.2.2) are also true if p = 0 since {nl , . . . , znO) is a 
fundamental system of H f = 0 if and only if { n ,  o u-' , . . . , nnO o u-' ) is a funda- 
mental system of H, f = 0. 

In part ii) of Theorem 8.2.1 some changes are necessary. First, the terms 

'Wv-t~(x-a) in (8.2.4) have to be replaced by ehv-"oU(') (note that a corresponds 
the left endpoint of the interval [0, f l ) .  Since the functions qhp)(., A )  have the 

same asymptotics as in (8.2.1) and (8.2.2), a term-by-term differentiation shows 
that these representations also hold here. And of course, cp, corresponds to cp,,, 0 u, 
where c ~ , , ~  is the solution of 

and h,,nD_, , k,,,-I are the corresponding coefficients of the differential equation 
L, f = 0. We can write down the corresponding differential equation for cpo in 
terms of the coefficients of the given differential equation. But since we do not 
need to know qo explicitly, we are not going to find this differential equation. 

Therefore, the results of Section 8.2 can be generalized to the case that hno is 
not necessarily 1. This will be summarized in the following three corollaries. 

COROLLARY 8.3.1. Suppose that hnO E CW[a, b], h,,, > 0, and hi: t L-(a, b) .  Set 
1 = n - no, let k E N, and suppose that k 2 max{l,no - 1) ifno > 0. Suppose that 
a )  k, E L,,(a,b) for j = 0 ,..., n - 1 - k and kn-l-j E w k - J ( a , b )  for 

P' 
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j=O ,..., m i n { k - l , n - 1 )  ifno=O, 

P )  ho7...7hn0-1 E w;(a,b), ko,...,kno-, E w j p l ( a , b )  andkn-l- j  E wk-'(a, P' b )  

( j  = 0 , .  . . ,l - 1 )  i fno > 0. Let {s,  , . . . , nn0} C W ? ~ O ( ~ ,  b )  be afundamental sys- 
tem of H q  = 0. 
For sufficiently large A the dflerential equation K q  = A ~ H V  has a fundamental 
system {ql  (. , A ) ,  . . . , qn (. , A ) )  with the following properties: 
i) There arefunctions nvr E wk+"o-" (a ,  b)  ( 1  5 v 5 no, 1 5 r 5 [ ! I )  such that 

P' 

r= 1 

( V  = 1,. . . ,no; p = 0 , .  . . ,no - I ) ,  

i i ) ~ e t l : = m i n { k , k + ~  -no}.  Let oj =exp{-} ( j =  1 ,  ..., 1 )  andletu be 

given by (8.3.1). For r = 0,. . . , P  there arefunctions q,. E ~ ? ' - " ( a ,  b )  such that 

E Lm(a, b )  and 
'Po 

dp where [=] means that we omit those terms of the Leibniz expansion which con- 
tain afunction q$J) with j > l - r. 
COROLLARY 8.3.2. Suppose that hno E Cm[a, b], h,+, > 0, and h&' E L,(a, b) .  Set 
1 = n - no, let k E N, and suppose that k > max{l,no - 1) ifno > 0. Suppose that 
a )  k j  E Ld(a ,b )  for j = 0 .  n - 1 - k and kn-l-j E ~ i ; ~ ( a , b )  for 

j = O  ,..., min{k- 1,n- 1) ifno=O, 
P )  ho, . . . , h n o  E W; (a ,  b) ,  k o ,  . . , kno-, E ~ j - ' ( a ,  b )  and kn-,- E W"J P' (a ,  b )  

( j  = 0 , .  . . , 1 -  I )  i fno > 0. Let E Mno(w;,+l ( a , b ) )  be afundamental matrix 
of H q  = 0. 
For sufficiently large A the dflerential equation K q  = A l ~ q  has a fundamental 
matrix function 
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where 
E (x ,  a )  = diag ( 1 ,  . . . , I ,  eLal . . . , e L W ~ U ( X ) ) ,  

2ni( j- 1 )  
W . = exp{ ) ( j  = 1 ,  . . . , l ) ,  and u is given by (8.3. l ) ,  with the following 

I 
properties: 
i )  There are no x no matrixfunctions a!/ ( r  = 0 , .  . . ,[!I) with belonging 

k+nO-lr-p 
to M l  ,no (Wp, (a ,  b ) )  for r = 0 , .  . . , [r] and p = 0 , .  . . ,no - 1 such that 

r Sl 
(8.3.9) a l l  ( . , a )  = a-lra! + { ~ ( a - ~ ) } ~ ,  a l l  (.,AWL) = al l  (., a ) .  

r=O 

ii) There are 1 x no rnatrixfunctions OF/ ( r  = 0 , .  . . , [?I) with belonging 
k-lr- j+ I 

to 4 ,no (Wpl 
( a ,b ) )  for r = 0 , .  . . , [y] and j = 1,. . . ,min{l,k - l r}  and 

E T @ [ ~ ]  = 0 for r = 0 , .  . . , [y] and j = k - lr + 1,. . . , n  such that 
I 21 

(8.3.10) 

r=O 
- - 

iii) Set k := min{k, k + 1 - no}. For r = 0 , .  . . , k and p = 0 , .  . . ,n - 1 there are 
functions up,  E ~;,+'-'(a,b), where t L-(a,b) and upO = h:/'um for p = 

PO 0 

0 , .  . . , n - 1 ,  such that, with 

- 
for r = 0 , .  . . , k, the representations 

and 

(8.3.13) Q j 2 ( . r 1 ~ )  = a j 2 ( . , a ) ( J 1  ( j =  1,2)  

hold. We recall that Jr , Q1 , Er , V are dejined in (8.2.7), (8.2.9), (8.2.1 O), (8.2.1 1) .  



344 VIII. The differential equation K q  = AHq 

COROLLARY 8.3.3. Let the assumptions of Corollary 8.3.2 be satisjied. Let Q! 
be a findamental matrix of H q  = 0 i f  no > 0. Then, for suficiently large A, 
K q  = A ' H ~  has a&ndamental matrix function of the form 

where cpo is invertible, 

2ni(j-1) 
w, = exp { } ( j = 1 ,  . . . , l ) ,  and u is given by (8.3.1). 

8.4. The inverse of the asymptotic fundamental matrix 

THEOREM 8.4.1. Suppose that h,, t Cm[a,b], hnO > 0. and h;: t Lm(a,b). Set 
1 = n - no, let k E N and suppose that k > max{l,no - 1) i fno > 0. Suppose that 
a )  k, t Lp,(a,b)  for j = 0 ,..., n -  1 - k  and kn-l- j  E wk- j (a ,b )  for 

P' 
j=O ,..., min{k- 1 ,n-  1) ifno=O, 

P )  ho,...,h,lo-l E ~ j ( a , b ) ,  ko,. . . ,knO-l t ~ $ - ' ( a , b )  and kn-l-j E wk- j (a ,b )  P' 
( j = 0 ,  . . . ,  1 - l ) i f n o  >O. 
Let Y (., A) be the fundamental matrixjimction of K q  = A ' H ~  given as in Corol- 
lary 8.3.2. We recall that Jr , , Pr  , V are deJined in (8.2.7), (8.2.9), (8.2. lo) ,  
(8.2.1 l), that E, is the j-th unit vector in 6, and e j  is the j-th unit vector in C'o. 
Then, for suficiently large A, 

where 
E (x ,  A )  = diag(1,. . . , I ,  eaW1 ' ( ' ) ,  . . . , eaW/U(X)) ,  

2xi ( j - I )  
0, = e ~ p { ~ }  ( j  = .I,. . . , I ) ,  u is given by (8.3. l), and the Y i j  have the 
following properties: 
i )  For r = 0 , .  . . , [l] there are Y/i/ t Mno,no ( ~ ~ ~ ' - " ( a ,  b ) )  such that 

ii) For r = 0 , .  . . , [ f ]  there are no x 1 matrixfunctions Y/l  with Y/i;&, belonging to 

( ~ F " ( ' + ~ ) + j ( a , b ) ) " o  for r = 0 , .  . . , [ f ]  and j = 1,. . . , I  such that 
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iii) For r = 0 , .  . . , k there are I! E MlXn ( ~ 7 ' - ' ( a ,  b ) )  such that 
0 

and 

'51(40,) = (J ;  + & l & ; ) y 2 1 ( . , a ) .  

iv) For r = 0 , .  . . , k there are E M, ( ~ ? + ' - ' ( a ,  b ) )  such that 
P 

k 

(8.4.5) ~ ~ ~ ( . , a )  = 

and 

y22( . ,aa1)  = ( J ;  + E ~ & ; ) Y ~ ~ ( . , A ) .  
v) I f  no > 0 then 

01 - h-l@[ol-lcnO. 
~ \ 2 4 - -  no 1 1  

vi) We have 
1 

y 1 -  22 = - 1  - ~ ~ O / l ~ - n o v - ~ -  
(Po h," z, (h;O1/'). 

ProoJ: First let us consider the differential operator L, defined in (8.3.2). Let 
E(., A )  be a fundamental matrix of Lu f = 0 as given by (8.2.22). According to 
Theorem 2.8.2 and the Neumann series expansion we have 

where E corresponds to the matrix function E considered in Section 8.2, 
k 

and the components of ?,[!I belong to w ~ ' - ' ( u ,  b). Also observe that ?;PI = 0 in 
' I  

view of (2.8.17). Writing 

we infer from (8.2.23) and (8.2.16) that 

y?, ( . , A )  = D - ~ ? ~ , ( . , A ) ,  

Yil  (., a )  = a1-non;no?21 ( . , a ) ,  
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In view of (8.3.4) the stated asymptotics and the regularity of the coefficients 
follow since Y (., A)- '  is obtained from Y, ( u ( . ) ,  A)- '  by multiplication from the 
right by a lower triangular matrix whose coefficients are in C m ( a ,  b) and do not 
depend on A .  

We still have to prove the particular shapes of the Yl']. In view of (8.3.9), 
' I  

(8.3.10), and (8.3.13) we have 

Hence 

For and QI2 we infer that the asymptotic polynomials are invariant under the 
transformation A ++ A ol. Hence the asymptotic polynomials are actually asymp- 
totic polynomials in A'. Since the highest possible A-power of Y 1 2 ( . , A )  is A-' 
by the representation given above, this completes the proof of parts i)-iv). 

In order to prove v) and vi) we first observe that ( . , A )  and @22(., A )  are 
invertible for sufficiently large A.  This follows immediately from Corollary 8.3.3. 
Using the Schur factorization (1.3.4), the corresponding factorization with indices 
1 and 2 interchanged, and the fact that a fundamental matrix is invertible, we also 
obtain that 

@22 - @21@111@12 and @ I  I - @12@T2'@21 

are invertible. Furthermore, taking the inverses in (1.3.4) and multiplying out 
yields 

Here we are interested in Y12 and Y22 . From Corollary 8.3.2 we infer 

Hence 
I 

Y2 , ( . ,A)  = [@!- ] , l n o ~ , ( A ) - I ,  

which proves vi) in view of Corollary 8.3.3. 
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We have 
1 

@ l l  ( . ,A)-1@12( . ,A)  = [@y/- ] w ~ o ~ n O ( ~ h ~ ~ ' ) [ V ] w ,  

which yields 

Y 1 2 ( . , A )  = - [ @ y / - l ] m ~ n O ( l h ! ! ' ) [ ~ Q ; n ~ ~ -  l]w~-noh;Ono/ls l (~h!i l ) - l  

With the aid of (8.2.13) and (8.2.12) we infer 

This implies 

whence 
1 

Y , , ( . , A ) E ~  = - a - l h ; - [ o Y /  %I ... 
This proves part v). 

Together with H and K we consider their formally adjoints H+ and K+, re- 
spectively, given by 

+ [  = ( - l ) i ( h i ) i  ([ t Wn;(a, b ) ) ,  
i=O P 

see (8.1.1 1). 

THEOREM 8.4.2. Suppose that hno E C" [a, b]. h,,O > 0, and hi: E Lm (a ,  b) .  Let 

k t W and suppose that k 2 max{l, no - I} if no > 0. Suppose that k, t WJ' (a ,  b )  
P 

for j = 0 ,  ..., n -  1 and that 
a )  k ,,,- , t wk- j (a ,b )  for j = 0 , .  . . , n  - 1 i fno = 0 and k 2 n, 

P' 
P )  ho,.. . ,hnO-, E ~ j ( a , b ) ,  ko , . . . ,  knoPl E w;-'(a,b). ~ n d k , - ~ - ~  t wk- j (a ,b )  P' 
( j = 0 ,  ..., 1 - 1 )  i fno>O. 
Let {q l  (., A ) ,  . . . , qn(., A ) )  be thefundamental system of ~q - A ' H ~  = 0 as con- 
sidered in Corollary 8.3.1, and let Y (., A) = ( q ; p - ' ) ( . ,  Set 

Then, for suficiently large A, {cl (., A ) ,  . . . , cn (., A ) )  is a fundamental system of 
the dflerential equation K+< - A'H+ { = 0 with the following properties: 
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i) There are a fundamental system { K ~ ,  . . . , K ~ , }  C WT' (a ,  b )  of H+< = 0 and 

functions K ~ ,  E w k f  '-"(a, b )  ( 1  < v 5 no, 1 5 r 5 [!I) such that 
P' 

f o r ~ = l ,  ..., n O a n d p = O  ,..., n - 1 .  
ii) For r = 0 , .  . . , k there are functions yr, E W? '- '(a, b )  such that y;' exists and 
is bounded, and 

for v = no+ 1 ,..., n and p = 0 , . . .  , n -  1, where u is given by (8.3.1) and [$I 
means that we omit those terms of the Leibniz expansion which contain a finction 

with j > k - r. 
Ifhno = 1 ,  then yo is the solution of the initial value problem 

Pro05 From (8.1.17) we immediately infer by recursive substitution that 

for i = 0 , .  . . ,n - 1.  If we observe that (8.1.17) also holds for k = 1 with eo = 0, 
then the above identity is also true for i = n, which shows that the <, (., A) satisfy 
the differential equation K+< - A'H+< = 0.  And if the <,(.,A) would be linearly 
dependent, then again (8.1.17) would yield that  el^ (., A)- ' ,  . . . , e,TY (., A)-' were 
linearly dependent which is impossible. Hence {<, ( . , A ) ,  . . . , <,(., A ) }  is a funda- 
mental system of the differential equation K+< - I'H+ < = 0. 
i) We know from Lemma (8.1.3) and Theorem 8.4.1 ii) that 
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for v = 1,.  . . ,no and p = 0, .  . . ,1- 1 with yvpr E wk,+-"-l* 
P (a ,b)  and Vvp(.,A) = 

{o(l)}, . Here we have used that the qP,i do not depend on A for p = 0 , .  . . , 1 -  1 
and belong to wF1-p(a ,  b). 

For p = 0, the representation (8.4.11) follows. Furthermore, since @y/ is a 
fundamental matrix of Hq = 0 by Corollary 8.3.2, it is also a fundamental matrix 
of L H ~  = 0. Then the same argument as at the beginning of this proof shows that 

h"O 
1 + 

{ e  e n  : v = 1 , .  . ,no) is a fundamental system of ('H) 5 = 0. Since 
h"O 

1 
K,, := yvm = -hi1e;@F- 6% by Theorem 8.4.1 v), it follows that {K,,  . . . , Kn0} 

0 

is a fundamental system of Hf < = 0. 
From the considerations at the beginning of the proof of Theorem 8.4.1 we 

infer that the yvP (., A) are linear combinations of products of polynomials in A-  ' 
and o-functions having the properties stated in Theorem 2.8.2. Thus not only 
qvP (.,A) = {0(1)}, but also i~JIh,(.,i) E {~( l )} , ,  holds. Hence differentiating 
and comparing coefficients we obtain 

k-p- I for 1 5 v 5 no, 0 5 p 5 1 - 2 , 0  < r 5 This proves i) for p = 0, .  . . ,1- 1. 
For v = 1,.  . . , no  and p = 1, .  .. ,n  - 1 we have in view of Lemma 8.1.3 and 

Theorem 8.4.1 that 

where yvp(. ,  A) = { ~ ( l ) } ,  and iy$, ( . ,  A) = { ~ ( l ) } ~ ,  . To verify the A-exponent 
in the asymptotic representation we have used the statement on the degree of qv,i 

in Lemma 8.1.3. Differentiation of 5:~) for p = no - 1,.  . . , n - 1 and comparison 
with the above representation of 5:~) completes the proof of part i). 
ii) This proof is similar to the proof of part i). First we consider v = no + 1. From 
Lemma 8.1.3 and Theorem 8.4.1 iv) we know that 
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f o r p = O  ,..., l - - l , w h e r e ~ ~ , ~ + ~ , ~ , ~  E wk+'-'(a, p, b). With the aid of Theorem 
8.4.1 iii) this asymptotic representation can be extended to p = I ,  . . . , n - 1. Pro- 
ceeding as in the proof of part i), the representation (8.4.12) for v = no + 1 follows. 

From Theorem 8.4.1 vi) and (8.2.13) we infer 

which completes the proof of part ii) for v = no + 1 in view of (8.2.3). 
Now let v E {no + 2,.  . . , n}. Then we infer from Theorem 8.4.1 iv) that 

From w,-J = a. ,+, we infer that 

for v E {no + 2,. . . ,n}. Since we have already shown that (8.4.12) holds for v = 
no + 1 , it therefore holds for all v = no + 1, . . . , n. Finally, (8.4.13) immediately 
follows from (8.4.15) and (8.2.3). 

REMARK 8.4.3. i) In general, it is not very useful to have estimates where the 
o-terms dominate all of the other terms. So (8.4.1 1) is most useful if - k  + p < 0, 
i. e., if p I: k (note that we suppose that k 2 1 if no > 0). 
ii) If we differentiate in (8.4.12) we obtain 

for v = no + I , .  . . , n  and p = 0, .  . . ,n  - 1, where I,,, t ~ 7 ' - ' ( a , b )  and '(4,0 = 

(-hAil)pyro. Since <,(.,I) is a solution of (Ki - I'H+) <,(-, A) = 0, it follows 
that (8.4.16) also holds in case p = n. 
iii) In Theorems 8.2.1, 8.2.4, 8.4.1, 8.4.2 and in Corollaries 8.3.1,8.3.2 the asymp- 
totic estimates {~(l-~)).. can be replaced with the estimates {o(A-~T~,(A))}.. 

or {o(L-~T..(A))}~, , where the latter estimate holds if k > 0 or p < 3. In case 

k = 0 and p 2 3, which can only occur if no = 0, we have knPl E W$ (a, b) since 
n > 2, and then the estimate (2.8.16) holds, see (6.4.10). This follows from the 
corresponding proofs if we take the estimates (2.8.12) or (2.8.13), respectively, 
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instead of (2.8.11). Also, these considerations apply to expressions [ . ]  consid- 
ered below, e. g. we can replace [c], by c + {O(rpl(L))),. Furthermore, in the 
estimates {o(.)), and {O(.)), , the functions considered are continuous (even in 
w;, (a ,  b)), so that these estimates hold at each point in the interval [a, b]. Finally, 

by using (2.8.14), we can differentiate [Lp) term by term if p 5 n - 1, where 
{ o ( i k ) } ,  has to be replaced by { ~ ( l - ~ ~ ' ) } ~ ~  . 

8.5. Almost Birkhoff regular boundary eigenvalue problems 

In order to define Birkhoff regular and almost Birkhoff regular problems we first 
introduce some notations. For v = 1,.  . . , n let 

(8.5.1) 1, = deg [e: (w(O)(h1)9 , (~) ,  w(')(I')L,(I))], 

where w(j)(A1) and X,(A) have been defined in (8.1.6) and (8.2.10). Then we 
have 

diag(l- 'I, .  . . , I - ~ ) W ( ~ ) ( A ' ) E , , ( ~ )  = wJJ) + O(L-') 

for j = 0 , l .  We suppose that 

If this condition should not hold, then it might be achieved by talung suitable 
linear combinations of the boundary conditions. This is similar to the method in 
Section 5.1. We leave the details to the reader. 

Let fv E (0,. . . ,1- 1) such that 

(8.5.2) l,=f,mod(l) ( v = l ,  . . . ,  n). 

We have 

(8.5.3) e : w ( j ) ( ~ ' ) 9 , , ( ~ )  = A ' v [ ~ T w ( ~ ) ]  v o 

for v = 1 , .  . . , n and j = 0 , l .  Since W(') and w(') depend on A', only those entries 
of e$ w~J):,+, are different from zero for which r = mod(1). We can write these 

r as z = 1, + tl for t = 0, .  . . , L where 

It might be that the r for t = L is already larger than n - 1. In this case, all terms 
corresponding to this t are tacitly understood to be zero. For v = 1,.  . . ,n  and 
j = 0 , l  let 

and 
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where a. := a and a ,  := b. 

F o r v =  1, . . . ,  nletq; bethedegreeofe$(~(O)(A),W(')(A)) asapolynomial 
in A. For v = 1,. . . , n there are integers q, 5 q; such that 

Here we can choose the exponent to be a multiple of 1 since Y (., A) (I, - Ao) is a 
function of A'. We can write 

for v = 1,. . . , n  and j = 1,.  . . ,no, where M(A) is the characteristic matrix given 
by (8.1.14). 

Now let 29 c (1,. . . ,n) .  Writing 29 = {29,, . . . , 29,) we shall use the notations 
6' := ( 1 , .  . . , n) \ 29 =: {29;, . . . , IY~;-,). Let sgn29 be the signum of the perrnuta- 
tion given by (291,. . . ,29;-,, f l l , .  . . , Oj). Also, let 

Let O ,,,, be the set of all subsets of (1, .  . . ,n} with m elements. We set 

I(') = max{Zt9 : i) E o,,~}, 
(8.5.10) I ( ' )  = rnax{l, : 29 E @,,,,+,} if no > 0, 

I ( ~ )  = max(1, : B E o ,,,-, }. 

For j = 0 , .  . . ,1 we define 

(8.5.1 1) b\.O) = sgn 29 ufl v0, 
*E@,. l  
1 -1(O) 
6 -  

where 
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From the definitions of q,, q:, and 1, it immediately follows that lq, 5 1, , 
whence 1* 5 la if rP i 8. Therefore 

(8.5.14) 1 5  ( 2 )  1(0) - < / ( I ) .  

DEFINITION 8.5.1. Let r = l ( ' )  - l(O) if no > 0. Suppose that bjo) # 0 for j = f if 
1 is even and for j = and j = if 1 is odd. 
i) If no = O or no > 0 and r = 0 ,  then the boundary eigenvalue problem (8.1. l ) ,  
(8.1.5) is called Birkhoff regular. 
ii) If no > 0 and r > 0 ,  then the boundary eigenvalue problem (8.1. I ) ,  (8.1.5) is 
called almost Birkhoff regular of order r. 
REMARK 8.5.2. In order to simplify the notations we shall call the problem 
(8.1. l ) ,  (8.1.5) almost Birkhoff regular of order zero if it is Birkhoff regular. 

Together with almost Birkhoff regular problems we have to consider some 
auxiliary boundary conditions. In order to define them, some further notations are 
needed. For K = 1,. . . , n we write 

where 0 5 t 5 L + 1 and 0 5 m 5 1 - 1 .  This representation of K in terms of 1 and 
m is unique. We shall consider numbers K given by this formula for 0 < t 5 L+ 1 
and 0 5 m 5 1 - 1.  Several of these numbers may lie outside the admissible set 
{ 1,. . . , n )  for K. But we shall avoid imposing unhandy restrictions on m and t .  
Rather, it is always to be silently understood that all numbers, functions, etc., 
considered for those t and m for which i, + tl - m + 1 $$ ( 1 , .  . . , n )  are zero. From 
the definition of 1, we infer the representation 

(8.5.16) a-1" e V w (  T 1 )  ( 11 )%(a)efv+ll-nl+l - = a (a::!, + o ( a l ) ) ,  
for v = 1 , .  . . , n, 1 = 0,1,  t and m as above, where aL:i E C. 

For j = 0 ,... , n -  1 and v = O  ,..., jdefines,,, = [?I and 6; = 1 if a is not 
a multiple of 1 and $ = 0 if a is a multiple of 1. Then qj,v,O E wftV-,(a, b )  is 
defined recursively with respect to j by 

q . , . ,  ( j = O  ,..., n -  1 ) ,  J J O  
- qj,j-I,O = qj-l,j-2,0 ( j  = 2,... , n -  I ) ,  

q j , , , ~  = 6j-vq~- l ,v ,0-qj - l ,v - I ,0  ( j = 3 , . . . , n -  1.; v = 1 ,..., j - 2 ) ,  
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For K = O  ,..., 1 - 1 andt = 1 , . . . ,  Lsuch that ~ + t l  5 n wedefine 

Furthermore, we set o, ,~  := 0 if j < 0. For m = 0 , .  . . ,1 - 1 ,  i = 0, .  . . ,m, and 
t = 0 , .  . . , L we define 

DEFINITION 8.5.3. For v = 1,. . . ,n the asymptotic boundary conditions are de- 
fined by 

(8.5.19) 
iv L Lv-i l v  L lv- i  

(0) yt " 1  yt (b)  f (') (b)  = 0. ' v f  := z x x avtnl ,,iv ( a ~ f ' ~ )  (a)  + z avtnl i,ivPm 
i=Ot=Om=O i=Ot=O nr=O 

In the above definition, f is a suitable function on [a, b]. The actual assump- 
tions on f will be formulated later. Also the regularity conditions on the co- 
efficients will be given later to ensure that all quantities considered above are 
well-defined. 

If hno = 1 then h!'-j) = 0 for i = no and i > j. Hence we obtain 

REMARK 8.5.4. If h,, = 1, then we have 

The asymptotic boundary conditions can be calculated explicitly. But this 
calculation with multiple sums and recursions is very involved. So we are going 
to consider some special cases in which these conditions are relatively easy. 

REMARK 8.5.5. i) In case L = 0, i. e., no = 0, the asymptotic boundary conditions 
are 

1,  Lv 

~ , f  = 1 do) . f i  (a )  + a f ( ' )  ( b )  = O 
v,0,lv-i i=O i=O ' 

f o r v =  1 ,  ..., n. 
ii) In case L = 1 ,  i. e.. 1 < no 5 f , we obtain $,o = f i , l  = hio for t = 0,1, $,, = 0. 
and, if 1 > 2, 

, I  = h t o ,  - n o  + ( 1  - no)hL,, . 
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iii) In case L = 1 and fv 5 1 we have 

i v  iv 
Uv f = E 6(O) f ('1 (a) + 65:) f ('I (b), 

Vl  
i=O i=O 

where 

a(& + a$$hno (a,) if i = iv, 

6;;' = a;:, + a!?, hno (a, ) 
+a!:b{h,, (a,) - hno(a,)kn-, (a,) + (1  - nO)h:,(aL)) 

A 

i f i=OandI ,=  1. 

Pro08 i) is clear by Definition 8.5.3. 
ii) All but the formula for y;,, immediately follows from Definition 8.5.3. For y;,, 
we calculate 

iii) This follows from part ii) and 

- ( 1 )  + a(,) y,l- ( a ) .  0 - v l n ~  t,lV-nl 
v -  n,=o 

REMARK 8.5.6. Here we suppose that hno = 1. 
i) In case L = 1, i. e., 1 < no 5 q , we obtain x:i = 1 for i = 0, .  . . , E  - 1 and, if 
1 2 2, 

1 - 
x,i+ 1 - hnO- 1 - kn- 1 

for i=O,  ..., 1-2. 
ii) If 1 > 3 (only in this case fv > 2 can occur) and no > 2, then we have 
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iii) In case L = 1, no 2, and f, 5 2,.the asymptoticboundary conditions are 

i" 1" 

Uv f = 6;:) f (') (a) + 6;:) f ('1 (b)  = 0, 
i=O i=O 

where 

Pro05 i) We calculate 

1 - n -1  
Y,,~+I = ono- l ,o - (-1) h n o - l q n o - ~ , n o - ~ , ~ +  ( - l ) n o q n o , n o - l . ~  

- 
- h n o - l  - kn- l  . 

ii) We have 

A recursive application of the formulz defining the qj,i,,l yields 

- j - 1 .  I J 
n o , n o - , ~  - (- 1 )  J 9 n o - j , n O - j - ~ , o  f ( - ' I )  4no-j,no-j-2,0 

for j = 0,. . . ,no - 2, where we have used 1 2 3. Another application of these 
formulas yields 

In the proof of part i) we have already calculated ot,o- ,o . Altogether we infer 



8.6. Estimates of the characteristic determinant 

iii) We have 

lv-i 
- - a + E a(')  7'. (a,) 

v,O,iv-i v l m  1,1,-n1 
n1=0 

Now the result follows from parts i) and ii). 

8.6. Estimates of the characteristic determinant 

In this section we suppose that the assumptions of Theorem 8.4.2 are satisfied 
and that additionally > 0 and 

Then the estimates [ . ]  which were obtained in the previous section can be replaced 
by . + o(A-'), where Corollary 8.3.2 has been used. 

The determinant of the characteristic matrix M(A) given by (8.1.14) is an 
exponential sum in the sense of Section A.2. Here we use the fundamental matrix 
Y (., A) as derived in Corollary 8.3.2. Let O be the set of all subsets of { I , .  . . , I )  
and set 

for 8 E O. We consider the set 

for which the set 2 of the vertices of the convex hull of & has been derived in 
Theorem A. 1.7. 

LEMMA 8.6.1. Suppose that b y )  # 0 for j = i if 1 is even and for j = and 
j =  L+! If 1 is odd, where b(P) is dejined in (8.5.11). Then there are a sequence 

J 
of circles rv (V E N) with centre 0 and radii tending to injinity, real numbers - 
XI < X 2 < . . . < X r + l  = x 1 + 2 n , c  , , . . . ,  c, ~ 8 , a n d y ~  ,..., y, EC\{O) suchthat 
the estimates 

m ( ( ~  - c ~ ) A )  5 o 
and 

d e t ~ ( i t ) - '  = n-''" e x p { - c j ~ } ~ y j  + o ( ~ , ( i t ) )  

holdfor j =  1, . . . ,  t andi t  E U Tv withXj Sargi t  <xi+, andfora l l c in the  
V E M  

convex hull of 8 ,  where T, is dejined in (A.3.1). 
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Proof We have 

where the coefficient functions b, (A) of M(A) are obtained in the following way: 
For 8 E O let 

where 8(j) =Oif j 6 8  and 8 ( j )  = 1 if j E 8.  Then 

b, (A) = det M, (A), 

where 

M,(A) = M(A)(l,, - Ao) + W ( ~ ) ( I ' ) P ( ~ , I ) A ~  + w(~)(I ' )P(~,A)A;  

and P(. ,  A )  = Y (., A)E(., A)-'. Note that A. = A! +At,. 
Together with 8 E O we shall consider eS E O given by BS = ( 8  + s) mod(1) 

for s E Z. Note that 

= A; 
0 (J; + 

for all 8 E O, s E Z and j = O,l. Then we infer in view of (8.3.9), (8.3.10), and 
(8.3.13) that 

(8.6.2) br(A) = (- ~ ) ( ' - ~ ) ~ b ~  (Am;'). 

From (8.5.3), (8.5.5), (8.5.6), and Corollary 8.3.3 it follows for v = 1, . . . , n, 
p = n , + l ,  . . . ,  n,and j = 0 , 1  that 

Therefore we obtain for j = 0, .  . . ,1 that 

where 8, = { j + I , .  . . , I ) .  From Theorem A. 1.7 we know that 8o E if and only 

i f 8 = 8 s f o r s ~ ~ a n d  J j = i i f l i s e v e n o r j =  ?or j = y i f l i s o d d .  Itfollows 

for Bw E C? that b,(A) = A"~'[~(BO)], where b(BO) # 0. An application of Theorem 
A.3.1 completes the proof. 

LEMMA 8.6.2. Let m and k be positive integers. Let M = (inl, . . . , mk) E Mk(C) 
be invertible and let A = (a, ,  . . . ,a,,) E Mk , (C). Then 

(det M)M-'A = (det M;~)>D;=, , 

where M $ ~  := (ml , .  . . ,m,-,,ap,m,+l ,... ,mk). 
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Pro08 It is well-known that 

where M,, := det(ml , . . . , m,- e,, mv+l, .  . . , mk).  Write A = (a,,):;=, . Then 

(det M)M- 'A  = (E (det MVj)aj,) 
j= 1 ,,,=I 

Now we consider Mvl  ( A )  ~ ( j )  ( A ' )  Y (a,, A ) .  In case no = 0 we have in view 
of Corollaries 8.3.2 and 8.3.3 that 

Y ( . , A )  = ~ ~ ( 1 )  (do] + { o ( A - I } , )  E ( . , A ) ,  

with invertible d o ] .  This is no longer possible if no > 0,  and a separate consid- 
eration of M-' ( A )  and W ( J )  (1')~ (a,, A )  as done in the previous chapters is not 
appropriate. 

We recall that the matrices A. and A(A),  A # 0, defined in Section 4.1 are 
given by 

where 
( 0  if 31(AeiWv) < 0 ,  

1 if 31(AeiWv) > 0,  s,(a) := 
0 if 31(AeiWv) = 0 and 3(AeiWv) > 0, 

1 if 31(AeiWv) = 0 and 3 (Aeimv ) < 0. 

LEMMA 8.6.3. Let the assumptions be as in Corollary 8.3.1 and suppose addi- 
tionally that (8.6.1) holds. 
i) If the boundary eigenvalue problem (8.1. l) ,  (8.1.5) is Birkhoff regular in the 
sense of Definition 8.5.1, then there are circles T, ( V  E N) with radii tending to 
infinity such that 

M ( A ) - ~ W ( J ) ( A ~ ) Y  ( ~ , , A ) E ( ~ , , A ) - '  

= ( ~ n  -A (A)  + E ( ~ , A ) - I A ( A ) )  (vo,,(A) + O ( T - ( ~ ) ) )  

on U r, for j = 0,1, where @ \ ( 0 )  is subdivided into finitely many sectors on 
VEM 

each of which V,,, is constant. 
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ii) I f  the boundary eigenvalue problem (8.1. l), (8.1.5) is almost Birkhoff regular 
of order r(> 0), then there are circles rv (v  E N )  with radii tending to in$nity 
such that 

M(A) - '  w(j)(n1)u (a,, A ) ( L  - 

= ( I , ~  - A @ )  + E ( ~ , A ) - ~ A ( A ) )  (v1,,(a) + o ( ~ ~ ( a ) ) ) ,  
A~M(A)-~W~~)(A')Y(~,,A)E(~,,~L)-~A~ 

= (1, - A(A)  + E ( b , a ) - ' ~ ( a ) )  (V,,,(A) +o(z-(n))) ,  
(I,  - A~)M(A)-'W(J)(A')Y(~~,A)E(~,,A)-~~ 

= Ar(Irl - A @ )  +E(b ,A) - lA(A) )  (v3,,(a) + O ( z m ( W ) ,  

on U rv for j = 0 ,  I, where @\ ( 0 )  is subdivided into finitely many sectors on 
veN 

each of which V l I j ,  V2, j ,  V3,j are constant. 

ProoJ: We shall prove ii) where also the cases r = 0 and no = 0 are included. Then 
i) is a special case of this. 

Write y( . ,A)E( . ,A)- '  = P(. ,A) .  Let j = 0 or j = 1 and 

We shall use Lemmas 8.6.1 and 8.6.2 to estimate c,,, . Also, A is always a complex 
number in U Tv .  

V E M  
If v 5 no and p < no ,  then cv,(A) has the same form as detM(A), i. e., the 

same exponential terms occur, and also the same asymptotics hold. Also note that . . 

we have exp{(c - c , ) A )  = 0 ( A - ' )  for c E & \  { c j )  and A in the corresponding 
sector. Hence 

(I,  -A~)M(A)-'W(J)(A')Y(~,~A)(I~ - Ao) = ?,,,(A) + 0 ( r w ( A ) )  

follows in view of Lemma 8.6.1, where Cl,, ( A )  is constant on sectors. 
If v > no but p < no, then the column containing the exponential terms 

e h ~ v - n o u ( a l )  for 1 = 0 , l  is substituted by a column without exponential terms. 

Thus, if we multiply cv,(A) with ehv-"oU("), then the exponentials occuring in 
this expressions still lie in the convex hull of & for i = 0,l. The maximal occuring 
A-power in this case is A''''. Since l(') < 1 ( O ) ,  we infer that ehwv~nou(a ' )dv , (~ )  = 

&,(A) + O ( r w ( A ) ) ,  where i is chosen such that e-i"-nou(al) is the V-th diagonal 
element of I,, - A(A)  + E (b ,  A)- lA(A)  and where d;,, ( A )  is constant on sectors. 
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In case v > no and p > no, again the exponential terms e"v-nou(a') do not 

occur. Here the maximal occuring A-power in cVp(A) is hi(0'. Hence 

e a ~ v - n o ~ ( a i )  
d v p ( 4  = d;p(A) + 0(7m(L)), 

where ai  is chosen as in the case p < no and Jvp (A) is constant on sectors. 
In case v < no and p > no, a column without exponential terms is substituted. 

Here the maximal occuring A-power in c v p ( l )  is h"'). 

LEMMA 8.6.4. Under the assumptions of Lemma 8.6.3 we obtain 

A0M(A)-' diag(hll ,. . . , aln) 

= ( ~ n  - 4 1 )  + ~ ( b ,  A)-'A@)) (v4(h) + o(zm(A))), 

(In - ~ ~ ) ~ ( A ) - ' d i a ~ ( A ~ l , .  . . , Aln) 

= A r ( L  - A(A) + E(~,A)- 'A(A))  (v5(A) + o ( T ~ ( A ) ) ) ,  

on U r v ,  where C\ (0) is subdivided intofinitely many sectors, on each of which 
V G M  

V, and V5 are constant. 

Pro08 The considerations are essentially the same as in Lemma 8.6.3. We only 
have to note that the case p > no in Lemma 8.6.3 has to be applied to all p in 
Corollary 8.6.4. 

8.7. Asymptotic estimates of the Green's function 

In this section we assume that the assumptions of Theorem 8.4.2 and (8.6.1) hold 
and that k 2 n if no # 0. Throughout this section we suppose that the boundary 
eigenvalue problem (8.1. l), (8.1.5) is almost Birkhoff regular of order r. 

The operators Qv defined in (8.1.13) can be written as 

where the rV are circles centred at 0 and the radius of yv is the 1-th power of the 
radius of r v .  We also have that 

f o r p  =0, ..., 1- 1, where 

in view of the derivatives obtained in the proof of Lemma 8,l. 1. 
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F o r j = 0 , 1  a n d p = O ,  ..., 1- 1 wedefine 

PROPOSITION 8.7.1. We have Gj,O,p (x, 5, A) = 0(A-'-I) unifDmly for j = 0,1, 
p=O ,..., 1 - l , x , <  ~ [ a , b ] , a n d A ~  U Tv .  

veil 

Pro05 Theorem 8.4.2 yields 

(ln - A ~ ) H + ( Y ( ~ , A ) - ' ~ , )  = { ~ ( a - ~ ~ ) ) ,  , 
and Corollary 8.3.2 yields 

Since 
E(.,A)(I, - A(A) + A ( A ) E ( ~ , ~ ) - ' )  = {O(l))m 

by Proposition 4.3.3 i),ii) and since 

by Lemma 8.6.3 ii), the statement of the proposition follows. 

To estimate Gi,l,p for j = 0 , l  and p = 0 , .  . . , I -  1 we define 

and 

where 
,?(x, A) = diag(eam~ '(x) > ' " )  eawlu(x)) 

and the (matrix) functions a 1 2 ,  @22, q,,, Sv, and u are defined in Corollary 8.3.2, 
Corollary 8.3.1, Theorem 8.4.2, and (8.3.1). 
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PROPOSITION 8.7.2. We have 

where 

and the q,,, are defined in Lemma 8.1.3. 

Proofi From Lemma 8.1.3 we know that 

If we additionally suppose that hi E W y s ( a ,  b)  for i = 0, .  . . ,no - 1 and s 5 I ,  
then the o, are in W;, (a ,  b).  Hence the following considerations make sense un- 
der this additional assumption. For j = 0,1, p = 0, .  . . ,1  - 1 ,  s = 0, .  . . ,1, and 
f E Wi(a ,  b)  let 

where 

Df := (h&'ll f) '  

We suppose that f E Wi(a,  b) .  For c,d E [a, b] integration by parts leads to 
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This yields 

PROPOSITION 8.7.3. Let j E ( 0 , .  . . , 1 }  and suppose that k 2 j and hi belongs to 
wj:jiI(a,b) for i = 0 , .  . . ,no - 1. Then 

where P,,, E W$ (a ,  b) .  

Pro05 From (8.4.16) we immediately infer that 

for y = 0 , .  . . , j. By Remark 8.4.3 we can differentiate term by term if y < j, and 
it follows that Pp,, = 0 if 1 5 y 5 j and r > 0. Finally, 

z ( ' , A )  = ( ( - ~ ) n ~ h n o ( ~ ~ v - n O ) l - l ~ ~ o , ~ ) ~ = n O + ~  + {0(A1-')}m 

= h:6'A'-"R 1 e V ~ , + { O ( A ' - ~ ) } ~  

gives the stated representation of 1,3,,~. 

PROPOSITION 8.7.4. Let j E ( 0 , .  . . , I }  and suppose that k 2 j and hi belongs 
to ~ ' : j + ' ( a ,  b )  for i = 0 , .  . . ,no - 1. Then it follows for y = 0 , .  . . ,n  - 1 that 

P 
yp (., A ) ~ - J - ~ Q - J - ~ ~ - ~ / ~ D J (  

1 "n 
z ( . ,  A )  f )  is the sum of a polynomial in A' and an 

asymptotic polynomial in A-'. The highest possible A-power has the exponent 
([?I - 111. 
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Pro06 From (8.3.13) and Theorem 8.4.1 we infer immediately that the above vec- 
tor function is invariant under the transformation it e Aol, which proves that it 
only depends on it1. Indeed, this is trivial if 1 = 1, and if 1 > 1, then 

and 
( J~  +&,&:)E^(.,L~)(J: = E(. ,A) 

shows that 

z ( . , i t q )  =&(.,h~/)(~+~~(~,~o~)):=n~+l 

= E ( . , i t q ) ~ + P ( ,  - ~ ~ o + ) Y ~ ~ ( . , ~ ~ o I ~ ) E ~  

= I?(., ICO~)H+P(., -LO+) (J: + E~E:)Y~~( . ,  

= (J: + E~&:)E^(., L)H+ &(., -h)Y22(., it)&l 

= (J: +E,E:)z(.,~~). 

Finally, (8.2.42) yields 

( J~  + &,&:)(itw 1 ) - j - l ~ - j - I ( ~ :  + & & T )  = n- j - l~- j - I  
1 1 1  1 

since 01m2 = 1. The remaining statements follow from Proposition 8.7.3. 

PROPOSITION 8.7.5. Let 1 5 s 5 1, k > s - 1, and suppose that k > 1 - 1 and 
hi E WFs(a,b) fori  =0 , .  . . ,no - 1. Then 

f o r p  = 0  ,..., 1- 1 and f E WpS(a,b). 

Pro06 The statement immediately follows from Proposition 8.7.4. 

Now let us consider the two remaining sums. First we have by Proposition 
8.7.4 that 

w ( ~ ) ( i t ~ ) ~ ( a l ,  i t ) i t -~ - l~ -~ - lh - l / l  
1 "0 (a l )~ ' (z ( . , i t ) f  )(at)  

( j = O ,  ..., s -  1 ; ~  =0,1)  isafunctionofitl. Ontheotherhand, 
(8.7.3) 

diag(l-'l,. . . ,it-1n)~(1)(it1)?(al,it)it-~-1~-~-1h~~~1(al)~~(z(~,it) I f ) ( a l )  

satisfies the estimate 0(I-j-') in view of (8.3.1 I), (8.3.12), the definition of 1, in 
(8.5.1), and (8.7.2). If we suppose that k 2 s, then the above considerations yield 

(8.7.4) 

diag(it-'1,. . . ,~-~~)~(')(it~)?(a~,h)it-j-~Q-~-~h-~/~ 1 "0 (a1 )D'(z(., 1)f )(a,)  
- - it-'-' (pjl)(it) + ~ ( n j - ~ ) ) ,  
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where P!') is a polynomial in A-I of order less than s - j. We write 
J 

Then P(') is a polynomial in A-I of order less than s. If s > r we obtain 

for p = 0,.  . . , min{s, 1 - I}, where we have used Lemma 8.6.4 and the fact that 
eT Y( . ,A)E( . ,A)- 'A~ = {0(A"}, and e;+,Y(.,A)(zn - A ~ )  = {~(l)}. .  in view P+l 
of Corollary 8.3.1. 

Hence the two remaining sums in (8.7.1) are of order 0(A-') if we require 

For later use we note that we can substitute 0 ( A - ' )  by 0(A-'-') if s > max{r, p } .  
Again from Proposition 8.7.4 and s 5 1 we infer that only those terms occur in 
A-jp!')(A) for which we take the highest possible A-power. For the element in 

J 

the v-th row this is a number -1, mod(l), i. e., -[, . That is, 

Of course, only terms with fv < s must be considered since eLPL(A) = 0 other- 
wise. 

PROPOSITION 8.7.6. Let 0 5 s  < 1, k >  n -  1 i fno=O, k >  n ifno > 0, and 
hi t w;:'(a,b) fori  = 0, .  . . , no  - 1 Forp = 0, .  . . ,min{s,l- I} and f E W;(a,b) 
we have 

iff satisfies the boundary conditions Uv f = 0 for v = 1,.  . . , n with 1, < s. 

To prove Proposition 8.7.6 we have to show that U, f = c:) + c t ) .  For this 
we need some preparations. 
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We see that c t )  is the coefficient of L'v-~v-' in 

To find this coefficient, we write (8.7.5) as the sum with respect to K = 1, .  . . , n of 
the products of the two terms 

and 

We have already obtained an asymptotic representation of (8.7.6) in (8.5.16), 
where K is written as in (8.5.15). To find the coefficient of A1v-'v-' in (8.7.5) we 
thus have to find the coefficient of L'V-'V-'+~ in (8.7.7) (note that we are looking 
for the term with the highest possible A-power in (8.7.5)). That means, we have 
to find the coefficient d t b  of A('-')' in 

Then we can write 

From Proposition 8.7.4 we infer that only m+ j 5 iv gives a contribution in (8.7.8). 
In this case, any number K E { I , .  . . ,n)  has a representation (8.5.15) with 1 5 L. 
So we have that 

Form=O ,..., 1-1 a n d t = O  ,..., L s u c h t h a t m + t l < n - 1  wedefine 

where f  is a dummy function. For m = 0,. . . ,1-  1, i = 0 , .  . . , m and t = 0, .  . . , L 
let Em be the coefficient of h('-')' f l i )  in K;,(.,L). Then 

Next we shall show that g,,, = f,,,. We extend the definition of f,,, to the 
c a s e s i = m + l  a n d i = - 1 .  L e t m ~ ( 0 ,  . . . ,  1-1).  F o r i = m + l ,  wetake 
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formally the same definition as in (8.7. l o ) ,  which gives f,,(., A )  = 0 ,  and we take 

. j - , ,  to be the coefficient of A('-')' in ynr+tl (., A)z ( . ,A ) .  

PROPOSITION 8.7.7. Form = 1 , .  . . , 1 -  1, i = 0 , .  . . , m, and t = 0 , .  . . , L such that 
m + t l L  n -  I we have 

Z,nr = (Z,nr-1)' + f - ~ , n r - ~  1 

where f,,-l = 0 i f m  = i. 

Proof We first note that P(., A )  = Y (., A ) E ( . ,  I)- '  (:) implies 

nr- 1 
Since the coefficient of A('-')' in Ki,-I (., A )  is 1 f ( ' ) ,  it follows that the 

i=O 
coefficient of A(")' f ( ' )  in (KAlpI ( . , A )  f ) '  + ynr-l+fl (., A)z( . ,  A )  f is the function 

( f ,n i - I ) '  + f - I , ~ ~ - I .  We calculate 

nr- I 
- ( . , A )  1 A - ~ - l ~ - ~ - l h - l / l  J 
- Ynr+rl I "0 

;=o 
D ( z ( 4 ) f )  

nr- 1 
(., 1) 1 A - J - ' Q - J - ~ D I + ~  

+Ym-l+tl 1 

= KAi(. ,h) - y n , l + t l ( , ) n r l Q ; n r - l h ~ ~ ~ l ~ n r ( z ( ~ , A )  f ) .  

Now the result follows if we observe that 

y n r l + t , ( , A )  = { o ( I ~ ~ ' ~ ) } ~  and Dnr(z ( . ,A)  f )  = { o ( I ' - ' ) } ~ .  

PROPOSITION 8.7.8. For 0 5 i 5 m 5 1 - 1 and t = 0 , .  . . , L with m + tl 5 n - 1 
we have 

ni-i- 1 i + z  

z=o 

Proof First let rn = 0.  In this case, $,o is the coefficient of A('-')' in 

Ytl ( ,  A)A-'Q;l h&ll'z(., A ) .  
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In view of (8.7.2) we have 

z(., A )  = I ' - ~ R , ~ : ! ' ~ [ E ] ,  

and from (8.3.7) we know that 

ytl (., 2 )  = A " h b o ~ [ ~ T l .  

Then (8.4.15) leads to 

%,o = h ~ q o & T h ~ ~ ' h ~ ~ ' ~ o e  

= h'+("-l)/llqoy - h' 
no 0 -  no' 

Now let rn > 1 and suppose that the statement holds for rn - I .  Then, if i 2 1, we 
infer from Proposition 8.7.7 

m-i- 1 i - l + z  m -  1 

+ z ( ) ( ~ - l , n l - l - i - r ) ( ~ )  + ( i -  I ]  ( h ~ ~ ) ( m - ; )  
2=0 

With obvious changes in the above calculation, the result also holds for i = 0. 

We immediately infer from Proposition 8.7.2 

PROPOSITION 8.7.9. For K = 0, .  . . , 1 -  1 and t = 0, .  . . , L such that 1 5 ~ + t l  5 n 
we have 

i f t  = 0 ,  
e : + t l ~ ~ + ( ~ - l e n )  = 

D n o - K - ( t - l ) ~  io if t  > 0. 

The qj,, defined in Lemma 8.1.3 are polynomials in A. Now we shall give 
an estimate for the order of the highest A-power and determine the "leading" 
coefficient. We do not require that the leading coefficient is different from zero. 
PROPOSITION 8.7.10. Let j E (0 , .  . . ,n - 1) and v E (0 , .  . . , j ) .  Let sj,,  and qj,v,o 
be definied as in Section 8.5. Then 

Pro05 For v = j the statement follows from the definition of q j t j  in Lemma 8.1.3. 
Now let 0 < j 5 n - 1 and suppose that the proposition holds for j - 1. Then the 
statement for 0 < v 5 j - 1 follows from the definition of qj,,. If v = 0 we first 
observe that p,-,-, ( . ,A)  = kn-;-, if i 5 1 - 2 and pn-,- ( . ,A)  = -A1[hn-,- ,] if 
i 2 I - 1. Now the statement for v = 0 easily follows. 
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PROPOSITION 8.7.1 1. For K = 0 , .  . . , I -  1 and t = 1, .  . . , L such that K + tl 5 n 
we have 

e ~ + l , ~ ( . l l ) ~ + ( ~ ( ~ , A ) - ' e n )  = A('-')' [ " n o - ~ - ( r - ~ ) i , ~ ] ~  

where the oi,o are defined in (8.5.16). 

Pro05 We have 

By Proposition 8.7.10, the largest 1-exponent is obtained for the largest j, and 
no-(no-K-(I-1)l) 

it is [ ~ - ( n ~ - K - ( l - l ) l )  
1 11 = t - 1. And since [ 1 ] 2 t - 1 if and only if 

j 2 no - K ,  an application of Proposition 8.7.9 and 8.7.10 completes the proof. 

PROPOSITION 8.7.12. i) For m = 0, .  . . ,1- 2 we have el,, = 0. 
ii) Form=O, ..., 1-2and 1 5  t 5 Lwehave 

Proof By definition, is the coefficient of A('-')' in y,+llz(., A). Since 
Y (., A )  (In - A ~ ) H + ( Y  (., A)-'en) = {0(1-~')), by Theorem 8.4.2 and Corollary 
8.3.2, j+"_,,, is the coefficient of A('-')' in en,+,+,,Y (., I ) H + ( Y  (., 1)-'en). Part i) 
now immediately follows from Proposition 8.7.9. And part ii) follows from Propo- 
sition 8.7.1 1. 

Proof of Proposition 8.7.6. From Propositions 8.7.8 and 8.7.12 we infer g,, = g,, 
f o r m = O  , . . . ,  1 - l , i = O  , . . . ,  m , a n d t = O  ,..., Lsuch tha tmf t l  I n - 1 .  Now 
the statement of Proposition 8.7.6 follows in view of (8.7.9) and (8.7.1 1). 

We write the two remaining integrals on the right hand side of (8.7.1) as in 
(4.4.4) and obtain 

where 
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PROPOSITION 8.7.13. Let 0 5 s 5 1. Suppose that hno E Cm[a,b], hno > 0 and 
hg' E L-(a,b), and that ki E ~ i , ( a , b )  for i = 0 ,..., n - 1. Ifno > 0, then we 

additionally suppose that ki E W? (a,  b )  for i = 0 , .  . . ,no - 1 ,  k, E wit1 (a,  b)  for 
P 

i=no  ,..., n -  1, andhi E W;(a,b) fori=O ,..., no- 1. 
i ) L e t l  < p < w .  Forf E WpS(a,b) andp=O, . . . ,  min{s , l -1)  weobtain 

ii) Here let p < m, i. e. p' > 1 if no = 0 and p = n - 1, and let p = m otherwise. 
For f E CS[a, b] with f ( S )  E BV[a, b] and p = 0, .  . . , min{s, 1 - 1 )  we have 

Pro05 The assumptions of Corollary 8.3.1 and Proposition 8.7.3 are satisfied with 
k = n - 1 if no = 0 and k = n if no > 0. Here we note that Proposition 8.7.3 also 
holds in case k = j - 1, where the o-term dominates. We have 

by Corollary 8.3.1 and 

by Proposition 8.7.3, where we have made use of Remark 8.4.3. If p < s < n or 
p < s - 1 and s = n, then the above representations and Proposition 4.3.3 yield 
Il,p,s(.,  f , I )  = { 0 ( I - ' ) I m ,  and the result follows. If p = s < n or p + 1 = s = n, 
the part coming from { 0 ( I - ' ) } ,  in I - p y p ( . , I )  can be estimated as above. 
Therefore we still have to estimate 
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- Y ( ~ ) ~ ( A ) E ^ ( ~ , A )  J b ~ ( i , , ~ ) - ~ ~ s ( ~ f ) ( t )  d5 

and 

where y" and z" are vector functions in suitable Sobolev spaces (in case s = n we 
have 2 = 0). Now the desired estimate of (8.7.12) follows from Propositions 4.6.5 
and 4.7.2, respectively, whereas the estimate of (8.7.13) follows from Propositions 
4.3.5 and 4.6.4. For part ii) we have to observe that {O(z, ,  ( A ) ) } ,  can be replaced 

by { 0 ( A - I ) ) ,  if p < k. In the remaining case, i. e. no = 0 and p = n - 1, we 
have p' > 1,  so that the above proof also holds here. 

PROPOSITION 8.7.14. Suppose that the assumptions of Proposition 8.7.13 are 
satisfied and that (8.6.1) holds. Suppose that the boundary eigenvalue problem 
(8.1. l), (8.1.5) is almost Birkhoff regular of order r < 1. 
ii) Let r < s 5 1. In case no = 0 we can even take s = r. Let 1 < p < m. For 
f E WpS(a, b )  and p = 0 , .  . . , min{s, 1 - 1) we obtain 

ii) Let r 5 s 5 1. For f E CS[a,  b] with f ( ' )  E BV[a, b] and p = 0,. . . , s we have 

Proof In view of Lemma 8.6.3 we have that 

where A-Syp (., A) and Ar-SeT Y (., A) are of the form v + {o(A-')},,  the co- 
P + I  

efficients of v belong to L,(a, b ) ,  and vp,,(A) and C ~ , ~ ( A )  are constant on sec- 
tors. Now the terms containing O ( z , ( A ) ) ,  if r < s, or { O ( z , , ( A ) ) } ,  (from 
Ds(z( . ,A) f ) )  and terms with p < s are easily estimated as in Proposition 8.7.13. 
Since terms with A'-S do not occur if no = 0,  we do not need any restriction with 
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respect to r in this case. The remaining terms coming from y p ( . , A )  are of the 
form a considered in Propositions 4.6.3 and 4.7.1, respectively. In part ii) we still 
have to estimate terms where the exponential terms in the variable x are missing. 
But this corresponds to x = a in the case with full exponential terms. Since the 
estimates in Proposition 4.7.1 are uniformly on [a, b] ,  they extend to this case. 

From Propositions 8.7.1, 8.7.5, 8.7.6, 8.7.13, and 8.7.14 we obtain 

L E M M A  8.7.15. Let the assumptions be as in Proposition 8.7.14. Suppose that the 
boundary eigenvalue problem (8.1. I),  (8.1.5) is almost Birkhoff regular of order 
r < l .  
i ) L e t l < p < ~ , s E { r  ,..., I - l ) i f n o = O , s ~ { r + l ,  ..., 1 - l ) i f n o > O , a n d  
let F be the Banach space 

F = { f  ~ W , i ( a , b ) : U , f = O ,  v = l ,  . . . ,  n,  i v < s ) .  

Then {QnlJF : m E N) is bounded in L(F, WpS(a, b ) ) ,  where JF is the canonical 
inclusion map from F into W;(a, b) .  
ii) Let s E {r, . . . , 1 - 1)  and let F be the Banach space 

F = { f E C S [ a , b ] :  f ( S ) E B V [ a , b ] , U v f = O ,  v = 1 ,  . . .  , n , & < s ) .  

Then {Q,,J~ : m E N) is bounded in L(F,CS[a,b]) ,  where JF is the canonical in- 
clusion map from F into Cs[a, b]. 

8.8. Expansion theorems 

P R O P O S I T I O N  8.8.1. Suppose that the assumptions of Proposition 8.7.14 are sat- 
isfied. Suppose that the boundary eigenvalue problem (8.1.1 ), (8.1.5) is almost 
Birkhoff regular of order r < 1. 
i ) L e t l  < p < ~ , s E { r  ,..., I - l ) i f n o = O ,  S E  { r + 1 ,  ... , 1 -1 )  i fno>O,and 
let H be the set 

~ = { f € ~ , i + ' ( a , b ) : ~ , , f = ~ ,  v = l ,  . . ,  n , i v < s )  

Then Q,, f -+ f in WpS(a, b )  as m -+ ..for all f E H .  
ii) Let s E {r , .  . . , I  - 1)  and let H be the set 

Then Q ,  f -+ f in CS[a,  b] as m + 00 for all f E H .  

Proof We use the representation of Q,, as obtained in Section 8.7 and follow the 
steps which were used to prove Lemma 8.7.15. Let f E w;+' (a ,  b )  with s as in i) 
or ii). Then we can iterate one step further in (8.7.1), i. e., we replace s by s + 1. 
Then Proposition 8.7.3 holds with s + 1 instead of s since i+s+ 1 5 n for i 5 no - 1 
shows that its assumptions are satisfied. Therefore we have for y = 0 , .  . . , s that 
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is the sum of the coefficient of I-' of the asymptotic polynomial 

and an o-term. In view of Proposition 8.7.4 the coefficient of A-' of (8.8.1) co- 
incides with the coefficient of A-' on the right-hand side of (8.7.10) with p = rn 
and t = 0. By definition of Tn, and the fact that fnI = Tm,  the above integral can 
be written as 

11 

Now we want to show that the integral over I-,, of the second and third sum- 
mands in (8.7.1) multiplied by A'-' (with s - 1 replaced by s) tends to 0 in Lp(a, b) 
as m -+ 00 for p = 1,.  . . , S, where p = 00 in part ii). In part ii) this immediately 
follows from Proposition 8.7.6 and the considerations preceding it since U,, f = 0 
for v = 1,.  . . ,n with 1^, 5 s. In part i), the coefficient of in p(O)(h) + p ( ' ) ( ~ )  
will be different from 0 in general, and therefore we still have to show that 

tends to 0 in L,(a, b) as m -+ 00 for p = 1,.  . . , s. In view of the assumption s > r 
in case no # 0 we infer from Lemma 8.6.4 and Y (., h)(In - Ao) = O(1) that only 
the integral 

Y (., h ) A o M 1  (A) diag(hll,. . . ,a1") dA 

has to be considered. From Corollary 8.3.2 we infer that 

This representation and Lemmas 8.6.4 and 2.7.2 ii) show that there is a constant 
C > 0 such that, for h E (Lpl(a, b))", 

where p, is the radius of I-,, . By LEB ESGUE' s dominated convergence theorem, 
the integral tends to 0 as m -+ w, and 

h - s - l e L + l ~  (x, I ) A ~ M - ~ ( ~ )  diag(hll,. . . , h i )  d l  1 i 0 
P 

as m -+ 00 is shown. 
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Finally, also the two remaining integrals are of the form { ~ ( l ) ) , .  To see this 
we observe that we know from the proof of Proposition 8.7.14 that 

on U I?, and that Lemma 2.7.2 gives 
nlEN 

Since the linear functionals Uv for v = 1,. . . ,n with 1, 5 s are continuous 
on the space F considered in Proposition 8.7.15 ii) and since it follows as in the 
proof of Theorem 4.7.5 that H considered in Proposition 8.8.1 ii) is dense in F 
defined in Lemma 8.7.15 ii), Lemma 8.7.15 ii), Proposition 8.8.1 ii) and Lemma 
4.6.8 yield 

THEOREM 8.8.2. Suppose that the boundary eigenvalue problem (8.1. l ) ,  (8.1.5) 
is almost Birkhoff regular of order r < 1. Let s E {r, . . . ,l - 1 )  and suppose that 
hno t Cm[a,b], h,, > 0, h; E Lm(a,b). and ki t W;(a,b) for i = 0 ,... , n  1. I f  

s = n - I ,  then we suppose that ki t ~ ; ( a ,  b )  for some p > 1 and i = 0 , .  . . , n - 1. 
I f  no > 0, then we additionally suppose that ki E W p ( a ,  b )  for i = 0,.  . . ,no - 1, 

ki E ~ ; ' ~ ] ( a , b )  for i=no , . . . ,  n -  1, andhi E W / ( a , b )  fori=O ,..., no-  1. Then 

Qnl f -+ f as m t in CS[a,  b] for each f E Cs[a, b] with f ( $ 1  E BV[a, b] which 
satisfies the boundary conditions U, f = 0 for v = 1,. . . , n with f, 5 s. 

Similarly, we obtain 

THEOREM 8.8.3. Suppose that the boundary eigenvaluepmblern (8.1.1), (8.1.5) 
is almost Birkhoff regular of order r < 1. Let 1 < p < m, s E {r, . . . , I  - 1) ifno = 0, 
s E  { r + 1 ,  . . . ,  1 - 1 )  i f n o > O ,  andsupposethath,,,,ECw[a,b], h,, > 0 ,  h<'E 

Lm(a, b) ,  and k, E W$ (a ,  b )  for i = 0 , .  . . , n - 1. I f  no > 0, then we additionally 

suppose that ki E W y  (a ,  b )  for i = 0 , .  . . ,no - 1, ki E w;?' (a ,  b) for i = no,. . . , n - 
P 

1 ,  andh i €  W;(a,b) fori=O, . . . ,  no- 1. ThenQnlf t f asm-+minW;(a,b)  for 
each f E W;(a, b )  which satisfies the boundary conditions U, f = 0 for v = 1,. . . , n 

with f, < s. 
REMARK 8.8.4. The convergence in the previous theorems can be written as the 
convergence of a series in eigenvectors and associated vectors as in Section 7.4. 
For this let L be the differential operator associated with the boundary eigenvalue 
problem (8.1. l), ( 8 . 1 3 ,  and let L* be its adjoint. Let &, A,, . . . be the eigenvalues 
of L and let 

: j = I , .  . . , r (AK);  h = 0, .  . . ,mK,j  - I }  
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and 
{(ut; ,d(J))  : j = I , .  . . ,T(L,); h = 0, .  . . ,mK,, - I}  

~ , h  

be biorthogonal CSEAVs of L and L* at A,, respectively. Then the statement 
Q,, f -+ f in the above theorems can be written as 

in Lp(a, b) for ,u = 0, .  . . , s for a suitable sequence of positive numbers p,, -+ w, 

where we have used the representation of the Green's function given in Theorem 
6.7.8. 

8.9. The differential equation q(4)  - aq"' = Aq" 

In this section we consider a boundary eigenvalue problem for a differential equa- 
tion of the form (8. l .  l )  with h,, = l where the boundary conditions which must be 
satisfied for the expansion theorems depend on the coefficients of the differential 
equation. For this we must have i, at least 1, i. e., 1 at least 2, and a corresponding 
a:; # 0. By (8.5.16) this means that e, must be defined, and we therefore need 
that n is at least 4. Here we consider a differential equation were these numbers 
are minimal, namely 

together with the boundary conditions 

q(1)  = 0, ql (0)  = 0, qI1(1) = 0, ql1I(O) = 0. 

Therefore Hq = ql', and a fundamental system of Hq = 0 is ( 1 , ~ ) .  Hence the 
fundamental matrix considered in Theorem 8.2.1 satisfies 

For the boundary matrices defined in (8.1.6) we infer 

According to the requirement (8.5.7) we can take 
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Also, we obviously have that the numbers defined in (8.5.1) are 

We infer 
l(O) = 5 ,  1 ( ' )  = 6 ,  

see (8.5.10). By Definition 8.5.1 the problem is almost Birkhoff regular of order 
1 if we show that u { , , ~ )  # 0 and v { ~ , ~ ) , ~  # 0 for the numbers defined in (8.5.12) 
and (8.5.13). By definition, u { , , ~ )  is the determinant of the matrix obtained by 
summing up the two matrices in (8.9.1) and talung their first two columns. So 
u { ~ , ~ )  # 0.  Also, by definition (note that wl = 1, a$ = - l ) ,  

where the a:) are defined in (8.5.6). Now aiO) = 0 and a!') = 0 since the third 
boundary condition only contains terms at 1 and the fourth boundary condition 
only contains terms at 0.  Obviously, 

which shows that u { ~ , ~ )  # 0 .  

Hence we can apply Theorem 8.8.2 for s = 1. For the numbers defined in 
(8.5.16) we have a{g = 1, a;$ = 1, ail/, = 1, a(') = 1, and all other a!:! are 

410 
zero. Hence, in view of Remark 8.5.6 iii), the boundary terms U ,  f = 0 are 

If a # 0 ,  we thus have the three asymptotic boundary conditions 

If a = 0 ,  we only have two asymptotic boundary conditions 

8.10. The differential equation q(4)  + K q  = A H q  

In this section we consider the differential equation 

with the boundary conditions 

q ( 0 )  = 0 ,  q l ( 0 )  = 0 ,  qI1(1)  = 0 ,  P ( A ) q l l l ( l )  + a ( A ) q ( 1 )  = 0 ,  
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where K is a function, 

with > 0 and p2 > 0, and 
A. H q = q ,  
B. H q = q l + G , q ,  
C. Hq = ql '+ G1ql+  G2q, 
with functions G, and G2. We suppose that the functions K, G,, G2 satisfy the 
assumptions of Theorems 8.8.2 or 8.8.3. A sufficient condition is that these three 
functions belong to w ~ ( o ,  1). The differential equation is of the form (8.1.1). 

Case A. Here no = 0 and 

By Definition 8.5.1 the problem is Birkhoff regular if v { , , ~ , ~ , ~ ) , ~  # 0, where this 

number is defined in (8.5.13). We have, if we observe that aLO) = 0 if v = 3,4 and 
ah1) = 0 if v = 1,2, 

= 2(i - l ) a j o ) a ~ ) a i ' ) a ~ ' )  

- 2(i - l)a(o) a(O) # 0 - 
100 200 300 400 

since 
a ( 0 )  = I ,  a(O) = I ,  a(') = I ,  =a,. 100 200 300 400 

For the boundary conditions we need further 

(0) = 0, = 0, a(') = 0. 
a20 1 30 1 302 

Hence we have 

U,f = f ( O ) ,  U2f = f l (0) ,  U,f = fI1(1), U4f = f (1) .  

Therefore the asymptotic boundary conditions are 

Which of these conditions are actually needed in the corresponding expansion 
theorems in Section 8.8 depends on s and p. Of course, this also holds for the 
cases B and C below. 
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Case B. Here no = 1 and 

Choosing q, = qb, we have 

Then 
l ( 0 )  = 12, / ( I )  = 12. 

Hence the problem is Birkhoff regular if 

b y )  # 0 and b r )  # 0. 

We have 
b(?) = -u 

J {1 ,2 ,3)  ' {1 ,2 ,3} , j  + U{2,3,4)v{2,3 ,4) , j  

Since the first two boundary conditions are taken at 0 and the last two at 1, we 
infer 

Also, 

U{1,2,3}  = ('1, ' {2 ,3 ,4 )  = n~ (O)' 
where n1 is a nontrivial solution of H q  = 0. Since Hq = 0 is a first order differ- 
ential equation, the nontrivial solution n1 does not have zeros, and 

' {1 ,2 ,3}  f and ' {2 ,3 ,4}  # O 

follows. So we must show that 

' {1 ,2 ,3) ,2  f and '{2,3,4),1 O' 

We have 

v{1,2 ,3) ,2  = 

a ( 0 )  
1 1 

0 

O 

o o w;ai1) 

2 ( 0 )  ( 0 )  ( 1 )  
= (9 - @ I ) y  > 
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where o l ,  02 ,  03 are the distinct third unit roots. In view of (8.5.6) we must show 
that 

a (&+a$b#~for  v = 1.2, j=Oand  v =  3,4, j=  1, 

where we have used that a;) = a$. We have 

a('') = 1,  = 1, 4 = 1, = % , i l b  = p2, 100 200 

and all the other a;;, are zero. Since ~ 1 3  and P2 are positive, the Birkhoff regular- 
ity of the problem follows. From Remark 8.5.5 iii) we infer 

6:' = 1, 

6;;) =o ,  ~ ( 0 )  = 1, 
21 

61;) = % + 8 7 

which implies 

U,f  = f(O), U2f = f l (0 ) ,  U4f = (a, +P2) f ( l ) .  

For the remaining boundary condition a direct calculation yields 

This leads to the asymptotic boundary conditions 

Case C. Here no = 2 and 

Choosing q, = qb, we have 

Then 
1(0) = 9, ~ ( 1 )  = 10, 

and 

= u{3,4}v{3,4},1 + '{2,3} '{2,3},1 = u{2,3}v{2,3},1 
since v { ~ , ~ } , ~  = 0 as the third and fourth boundary conditions do not contain terms 
at 0. First observe that 

where {al, n2) is a fundamental system of Hq = 0. Since the condition u { ~ , ~ }  # 0 
is independent of the choice of the fundamental system, we may choose n1 (0) = 0. 
Since a2 (0) # 0 in this case, u # 0 if and only if the boundary value problem 

{2,3} 
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has only the trivial solution. 
We have 

v 

since, in this case, 

1 ,  a g =  1 ,  a ( ' )  = I ,  a( ' )  =p2,aJAi =a,, 
310 410 

and all the other a$! are zero. Hence, if the boundary eigenvalue problem (8.10.1) 
has only the trivial solution, then the problem is almost Birkhoff regular of order 1 .  
From Remark 8.5.5 iii) we infer 

6;;' = 1 ,  

6;;) = 0 ,  ~ ( 0 '  = 1 ,  
21 

64;' = 1 ,  

6:;' = a, + p2c, ( 1 ) ,  6:;) = 8. 
It follows that 

U l f  = f ( O ) ,  U2f = f ' ( O ) ,  U3f = f ( l ) ,  U4f = (a, + P , G , ( l ) ) f ( l )  + P 2 f 1 ( 1 ) ,  

and the asymptotic boundary conditions are 

8.11. A boundary eigenvalue problem with associated functions at each 
eigenvalue 

Here we consider the boundary eigenvalue problem 

This is an example from [KF, p. 791. Kaufmann calculated the eigenvectors of 
the given problem and its adjoint. He realized that they are not biorthogonal and 
could not get an expansion theorem. According to our results, we immediately 
know that to every eigenfunction there must be an associated function. 

We shall investigate the regularity of the problem and calculate its eigenfunc- 
tions and associated functions as well as those of the adjoint problem. 

First let us consider regularity. We use the notations of Section 8.5. Obvi- 
ously, no = 2 and 
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This gives 
1(0) = 3, 1 ( ' )  = 4, 

and 
bl0) = u 

{3,4) V{3,4),l - '{2,4) '{2,4),1 ' 
As the third and the fourth boundary conditions only have terms at 1, v { ~ , ~ ) , ,  = 0. 
Also, { I  ,x) is a fundamental system of y" = 0 whence 

Finally, 

Hence the problem is almost Birkhoff regular of order 1. 
It is easy to see that 

and that all other aL:l are zero. By Remark 8.5.5 iii) we obtain 

Therefore the asymptotic boundary conditions are 

f (1) = 0, f l(0) = 0, f l ( l )  = 0. 

1n order to find the eigenfunctions and associated functions, it is convenient to 
introduce the new eigenvalue parameter p = -i&, %(p) 2 0, where we also note 
for later use that 3 = - &. Then a fundamental matrix of the given differential 
equation for A # 0 is 

1 x cos(px) sin (px) 
0 1 -psin(px) pcos(px) Y (x, a )  = 0 0 -p2cos(px) -p2sin(px) 
0 0 p3sin(px) - ~ ~ c o s ( p x )  

The characteristic matrix is 
(1 1 cosp sinp 1 

0 
-psinp pcosp 

o o -p2cosp -p2sinp 

and its determinant is 

-psinp p(cosp-1)  
= /  -p2cosp -p2sinp detM(h)= 

1 0 P 
1 -psinp pcosp 
0 -p2cosp -p2sinp 
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Clearly, M ( 0 )  is invertible if we take the fundamental system {l,x,2,a?) at 0. 
Hence the eigenvalues with respect to p are the numbers 2kn, k E Z \ (01, and the 
spectrum of the given problem consists of the numbers Ak = -4k2n2, k E N\ (0). 
Since p * 1 - cosp has a double zero at these numbers, the total multiplicity of 
each eigenvectors is 2. 

Now let us calculate the eigenvectors of M ( L k ) .  We have 

which has rank 3 .  Hence the dimension of the eigenspace is 1 ,  and there must be 
an associated vector. 

So each eigenvalue Lk of M has a root function ck  of order 1 .  To find it we 
have to solve 

Obviously, we can choose 

In view of Theorem 6.3.4 this means that an eigenfunction of the boundary eigen- 
value problem at Ak is given by 

With 

M I ( A ~ )  = -- 

0 0 -4kn -4k2n2 
we infer that cL(Ak) is found from 

This shows that we can take 
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Since eTYck is a root function of the eigenvalue problem at Ak, we have that 

is an associated function of the eigenvalue problem at Ak. We calculate 

1 + - ( 1 ,  x ,  cos ( 2 k n x ) ,  sin ( 2 k n x ) )  
4 k n  

Now we shall find the root functions of M* at Ak. We have 

We have 

and an associated vector % , I  is given by 
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Hence we can choose 

To establish biorthogonal root functions, we must find a # 0 and P such that, 
with 

dk(n) = ( a + P ( a  a(a -ak)4,1 
the relation 

d;(I)M(a)ck(n) = ( a  - (1 + o(n - 
holds, where 

A straightforward calculation 

a + --- 
32k3 n3 ( 1  - A ~ ) ~ ~ ~ c o s ~  

a 
+ ( a + P ( A - a k ) ) p ( l  - c ~ s p ) + ~ ( A - L ~ ) p ~ s i n ~ .  

8k n 
Using the Taylor expansions 

1 1 
ps inp = --(A-Ak)+--- 

2 32k2 n2 (a - ak)2+0((n - ak)3), 

p2c0sp = 4k2ir2 - ( a  - Lk) + O ( ( I  - Ik)'), 

3 
p2sinp = - k a ( I  - Lk) + -(I - I k ) 2  + 0 ( ( h  - h,)') 

16kn 
we infer 
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This yields a = - 16kn and P = 0, whence 

To find the eigenfunctions and associated functions of the adjoint problem we 
must calculate LRuL according to Theorem 6.3.4. In the definition (6.3.3) of UL 
we can replace the number a by any other element of the interval [a,b]. In our 
case, it is best to take this value to be 1, i. e. 

Then 

Repeating the differentiation we infer for j = 0,.  . . , 3  that 

Y(x,h) ~ X ~ ( r , A ) - 1 e 4  f (t) dt. (~,(A)f)( ' )(x) = ej+' 

Now all boundary terms at 1 are zero, and hence 

We calculate 

( ( ~ ~ ~ L ( A ) ) * d k ( l ) , f )  = ( d k ( A ) , L R ~ L ( 4 f )  

whence 
( ( ~ ~ u , ( a ) ) * d ~ ( n ) ) ( t )  = 16kne:~(0,1)~ ( t , ~ ) - ' e , .  

Since 
eiY(0,A) = ( 0 , 1 , 0 , ~ ) ,  

we must calculate e : ~  (t, A)-'e, and ~ , T Y  ( t ,  A)-'e, . From 

det Y (x, A )  = p5 

and CRAMER'S rule we obtain 

= p-2 e i ~  (x, A)-'  e, = P-5 

1 cos(px) sin(px) 
0 -p sin(px) p cos(px) 
0 -p2cos(px) -p2sin(px) 
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So we have 
( ( L ~ U ~ ( L ) ) * ~ , )  (t) = 16knp-~( l  - cos(pt)). 

From 

and 

1 
~ - ~ ( 1  - cos(pt)) = - 

4k2n2 
(1 - cos (2knt)) 

~ , T Y  (*,A)-'e, = p-5 

1 + --- 
161t' n4 

[l - cos(2knt) - knt sin(2knt)](A - Lk) + 0 ( ( A  - Lk)2) 

we infer 

1 x cos(px) 
0 1 -p sin(px) 
0 0 -p2cos(px) 

4 
( ( ~ ~ ~ , ( l ) ) * d , )  (t) = - (1 - cos(2knt)) 

kn 

= -p-3cos(px). 

1 + - [l - cos(2knt) - knt sin(2knt)](L - 4) + 0 ( ( A  - Lk). 
k3 n3 

Altogether we obtain from Theorem 6.3.4 that 

1 -x  
sin(2knx) + 2kn(l - x), - (cos(2knx) - 1) 

4kn 
1 

{$(cos(2knx) - I) ,  -(cos(2knx) - l + kmsin(2knx) 
k3 n3 

are biorthogonal canonical systems of eigenfunctions and associated functions of 
the given boundary eigenvalue problem and its formally adjoint at -4k2n2. 

From Theorem 6.7.8 and the definition of Q ,  we therefore obtain the expan- 
sion 

1 
[sin(2knx) + 2kn(l - x)] J t sin(2knt) f (t) dt 

k= 1 0 

1 + ( I  - x) (cos (2knx) - I )  1 cos (2knt) f (t) dt } , 
where f ~ ~ ' [ a , b ] s u c h t h a t  f l €BV[a,b]and f ( l ) = O ,  f l(0)=O, f 1 ( l ) = 0 , a n d  
the series converges in C' [a, b], see Theorem 8.8.2. 

8.12. Notes 

The results in this chapter are essentially due to TRETTER [TR2], [TR3]. 
Whereas TRETTER uses the classical asymptotic expansion of the fundamental 
system, we use first order systems and matrix representation as much as possible, 
which, in our opinion, shortens and clarifies proofs. Also, we have given special 
attention to the case hno # 1. Although it is in principle easy to transform this 
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problem to the case h,,, = 1, this transformation is cumbersome and timeconsum- 
ing, so that we feel that it is very helpful to have formulas which allow us to check 
directly for Birkhoff or almost Birkhoff regularity. 

Further results on boundary eigenvalue problems for the differential equa- 
tion K q  = AHq with A-independent boundary conditions, in particular concern- 
ing completeness, minimality and basisness of the corresponding eigenfunctions 
and associated functions can be found in the publications [SHTRI], [SHTR2] of 
SHKALIKOV and TRETTER. Only very recently Tretter succeeded to extend these 
results to the case of A-polynomial boundary conditions in [TR6], [TRIO]. As 
in the case of first order systems, see the notes in Section 5.8, the proofs of the 
minimality and basisness properties are based on TRETTER'S new linearization 
method in [TR7], TRETTER'S theory of linear pencils A - AB in [TR9] and sharp 
asymptotic estimates of the Green's function as published in [MM5] and newly 
presented in Section 8.7 of this monograph. 

KAMKE was the first who systematically studied boundary eigenvalue prob- 
lems for the differential equation Kq  = AHq with Azindependent boundary con- 
ditions in the self-adjoint case, see the monograph [KK2]. In a series of papers 
EBERHARD [EB4], [EB5], [EB6] and EBERHARD and FREILING [EF2], [EF3] 
treated the non-self-adjoint case for the differential eqaution Kq  = AHq together 
with A-polynomial boundary conditions. According to their expansion theorems, 
the class of the expandable functions is relatively small: apart from fulfilling the 
usual smoothness conditions these functions and their derivatives up to a certain 
order have to vanish at both endpoints of the underlying interval. 

The Orr-Sommerfeld equation is an important special case of a differential 
equation of type Kq  = AHq and will be paid a particular consideration in Chap- 
ter X. 
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n-TH ORDER DIFFERENTIAL EQUATIONS AND 
n-FOLD EXPANSIONS 

In general, for n-th order differential equations there are too many eigenvec- 
tors and associated vectors in the sense that expansions are not unique. This 
non-uniqueness is due to the fact that the eigenvalue parameter occurs nonlin- 
early. In this chapter we study boundary eigenvalue problems for n-th order 
scalar differential equations together with two-point boundary conditions, both 
with A-polynomial coefficients, which have been investigated by SHKALIKOV 
in [SH5]. Following his approach the corresponding operator function L(A) = 
(LD(A), LR(A)) is linearized with respect to A in a product of Sobolev spaces 
(Theorem 9.1.3). It is shown that an n-fold eigenfunction expansion holds if the 
original boundary eigenvalue problem is Birkhoff regular (Theorem 9.3.3). 

9.1. Shkalikov's linearization 

Let n E N, n > 2, and 1 5 p 5 m. Consider the differential operator 

where A E @, 

all the coefficient functions n,-,, belong to Lp(a, b), q ,  for i = 1,. . . , n  and n;: 
belong to L,(a,b), and 77 E Wi(a,b), see (7.6.1). With this differential equation, 
A-polynomial two-point boundary conditions are associated: 

Then 
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is a continuous operator and depends holomorphically on A. We write 

where 

e : ~ v l ~ q ( ~ )  = av,k , jq(~)(a)  + Pv j s ( j ) (b)  ( k  = 1,.  . . ,n) 
9 1 

with complex numbers a, and Pv,k, j .  > ,  
By the substitution 

we obtain the identity 

whence the equation L ~ ( A ) ~  = 0 becomes equivalent to 

where 

To make H D  a proper operator, we have to define its domain and range spaces. To 
this end let r, k E N and set 

Then H~ : W;>"(a, b) t W:ln(a, b) is a continuous operator and can be written in 
the matrix form 

The substitution also yields 
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whence 
rn 

where 

(9.1.8) u 0 -  - ( ~ 0 , o .  . . ~ 0 , " - 1  ~ 1 8 .  . . ~1 , " -2  7 " ' )  ~ n - l , O ) ,  

u .  J = ( 0 . .  . o u ~ ~ " - ~ , o . .  . o u J + ' ~ " - ~  , 0 ... 0,  ~ i + n -  1 ,O ) 

YT = (Y":,...,Y;), 

jj: = (y,, . . . ,yy-i)) ( j  = 1 , .  . . , n) .  

Here, in U, for j > 0, is applied to the function yk;l-k). 
Define the boundary operator 

and the operator 
d(a)  : Wil"(a ,b)  -+ W,O1"(a,b) @ @  

by 

PROPOSITION 9.1.1. The operator function 6 is globally equivalent to a canoni- 
cal extension of L. 

Proof Define the multiplication operator 6(a) : W;."(o,b) -+ W;ln(a,b) by 

Obviously, 5 is holomorphic, and D ( A )  is invertible for each A E @. Define 
F ( A )  : W;>'(a, b)  b @ -+ (L,,(a, b)  b Wi."-' (a,  b ) )  @ Cn by 
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where 

with the invertible (n - 1) x (n - 1) matrix 

and 

It is easy to see that Z; depends holomorphically on A and that E ( A )  is invertible 
for each 2. E @. With 

~ ( a )  = 
a n - 1  

we have 

and therefore 

= - (  o B(a) ( a ) )  1 

nn: f~D(4 G,;&,n-l 

Since 

we infer that 
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Therefore, in view of (9.1.4), (9.1.7), and (9.1.9), 

and it follows that 

If H R ( A )  is linear in A ,  then the above proposition yields a linearization of 
L. Otherwise we still have to linearize the boundary operator. In [LM] it was 
shown that a canonical extension of H R ( A )  is equivalent on C\ (0) to a colligation 
(linear system). Since we want equivalence on all of C, we have to modify the 
construction. Essentially, we have to introduce an additional permutation, which 
makes the result slightly more complicated than that in [LM]. 

nl 
For i = 1,. . . , n let vi be the degree of the operator polynomial e: AJuj. 

J=O 
Let 

Without loss of generality we may assume that v, 2 v2 >_ . . . >_ V, . Let q := 0 if 
v, = 0 and q := max{j : v, > 0) otherwise. Define 

and 

HRll : w;ln (a ,  b) -+ @ 
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Let A = diag(A('), . . . ,A(')), where ~ ( j )  is the v, x v, matrix 

j- I 
F o r j =  1 ,  . . . ,q+ 1 letk,:= v,.  LetGbethenxNmatrixwhoseentriesinthe 

1= 1 
j-th row and the k, + 1-th column are 1 for j = 1, .  . . , q and whose other entries 
are zero. Define 

and set 

Define an n + N dimensional permutation matrix J which permutes the rows 
of k R ( A )  as follows: For j = I ,  . . . , q, the j-th row becomes the n + kj + l -th row. 
The rows numbered n + k, + 1 to n -I- kj + v, - 1 are shifted one row down, and 
the n + k, + v,-th row becomes the j-th row. Then we have 
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where 

A 

and G is the n x N matrix whose entries in the j-th row and kj+l-th column are 1 
for j = 1,. . . , q and whose other entries are zero. Since IN - hAT is invertible for 
all h E C, we have 

PROPOSITION 9.1.2. The CN -extension of f iR is globally equivalent to fiR. 

Pro05 In view of the preceding observations it it sufficient to show that 

A 

For j > q we have eTG = 0 whence 
J 

For j < q we have 

where the last identity follows from (9.1.7) and (9.1.9). 
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We define 

by the block operator representation 

Let 7: Wiln (a ,  b)  Q d -+ YYd)>"(a, b )  Q Cn '1Q d be the canonical embedding. 
From Propositions 9. I. 1 and 9.1.2 we immediately infer 

THEOREM 9.1.3. The canonical WdJ"" (a ,  b )  €3 CN extension of L ( A )  is globally 

equivalent on C to 3 P  - AT 

Propositions 9.1.1 and 9.1.2 also give this equivalence explicitly. But the per- 
mutation matrix J makes the representation cumbersome. Therefore, we consider 
instead 

COROLLARY 9.1.4. Let 

be given by 

I 0 0 
AG^(lN - AAT)-I 

IN 

and D ( A )  : q , " ( a ,  b )  $ CN t q;" (a ,  b )  @ CN be given by 

where 6 ( A ) ,  Ell ( A )  and 4, ( A )  are given by (9.1.1 I), (9.1.12) and (9.1.15), re- 
spectively. Then 
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Pro08 In view of Propositions 9.1.1 and 9.1.2 and the representations (9.1.16), 
(9.1.19), and (9.1.20) this follows from 

and 

The linearization 2 - illessentially coincides with the linearization obtained 
in [SHS, p. 13211; Shkalikov considers a restriction of this operator to a domain 
of finite codimension, see Section 9.3. 

9.2. A first convergence result 

In this section let 1 < p < m. Furthermore, we suppose that the assumptions of 
Theorem 7.2.4 are satisfied, that K ~ , ~  E Lp, (a ,  b ) ,  l / p  + lip' = 1, and that one of 
the conditions 11), 111), IV) or V) considered in Proposition 7.2.5 holds. We set 

PROPOSITION 9.2.1. Suppose that the problem (9.1. l), (9.1.2), i. e. L ( A ) q  = 0, is 

Birkhoff regular. Let E ( W i  (a ,  b))) l@ CN . We write 

Suppose that 

/ n k - l  f n - 1 - 1  

Then there is a sequence ofpositive numbers (P,,),,,~ with p, -+ 0 as v + w such 
that, for rV = { A  : ) A  1 = pv), 



398 IX. n-fold expansions 

Proof From the definition of R in (9.1.21) it follows that 

with 

where I ^ :  W;."(a,  b) -+ Ti ln (o ,  b)  is the canonical embedding. In an analogous 
manner to formula (1.3.4) one can see that the inverse operator - 

& O ( n )  := ( g 0 ( a )  - G ( A  - I I , ) - ~ H ~ ~ ~ ) - ~  
exists for I E p  ( A )  f l  p  (R) . With the notation 

we obtain that 

for I E p ( A )  f l p ( 2 f ) .  With 

we first shall prove 

in (a ,  b)  as v -+ m. 

We shall use Z(I)-' to find a representation of @ ( I ) .  For this we write 
L - I  = ( K l ,  K 2 ) ,  see Section 6.4. Then 

With the aid of (9.2.4), (9.1.22) and Corollary 9.1.4, a straightforward calculation 
shows that 

(9.2.6) 
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Writing 
- 

(9.2.7) J - G O ( ~ )  = ( @ ( A )  * ( A ) )  

with z y ( i l )  : @ln(a,b) i q l 1 l ( a , b )  and q 2 ( a )  : ptN 7- ?'f$,lln(a,b) gives 

- 
&:(A) = ( ) ~ ~ ( i l )  ( I  i l ~ ( I , , ,  1 A A T ) ) J .  

an-1 

In view of 

a straightforward calculation yields 

Observe that we obtain similar to (7.4.4) that 

( ~ , ( i l ) h ) ( P )  = ;lP-"+leT p+1 C 1 i?;-'(A)(C;'enh,0) (p = 0,. . . ,n  - 1) 

for h E L,(a, b ) ,  where TI  is given by (7.4.3) and C, is as in Theorem 7.2.4. Here 
no = 0,  and in both cases (7.2.17) and (7.2.18) we have C, = (rL-'):k=l , where 
r l ,  . . . , rn are the zeros of the characteristic function (7.1.4). Since we assume 
that the problem (9.1.1), (9.1.2) is Birkhoff regular, the problem T ( A ) ~  = 0 is 
Birkhoff regular, see Definition 7.3.1. Let p, be the radii as assigned for these 
Birkhoff regular problems. Then 

(9.2.10) ( K ,  ( L ) ~ ( A ) ) ( ~ )  dil -+ 0 in L,(a,b) as v -t w 

follows for p = 0 , .  . . , n - 1 and h ( A )  = ~ ( i l " - ~ - p )  in Lp(a,  b )  as il -t w, see 
Theorem 4.4.11 ii). And for h E Lp(a,  b )  and p = 0,. . . , n - 1 we infer in view of 
(7.4.5) and Theorem 4.6.9 that 
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in L,(a, b )  as v -+ w. From (7.4.2) and (7.4.3) it follows that 

and Theorem 4.4.1 1 ii) yields that 

holds for p = 0 , .  . . , n - 1 and each vector function c  with coefficients in Cn such 
that C , ( A ) - ~ C ( A )  = ~ ( k - p - l ) .  

Fork=  1, ..., n -  1 we have 

and therefore 
n 

z ~ , ~ - ~  ( n ) ~ ( n ) - l e ,  = - x L J - ~ ; ~ ; .  
j=k 

Here and in the following, ek is the k-th unit vector in cn-' or CL, where it is clear 

from the context which space is taken. For f =: 

we obtain 

and 

For s + p 5 n - 1 and k = 1,. . . , n - 1 it follows from (9.2.10) that 

and 
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in Lp(a,  b )  as v -+ w. For h E Wp"(a, b )  we have 

KI (A)LD(A)h  = h - K2(A)LR(A)h 

by definition of Kl ( A )  and K2 ( A ) .  Therefore, for k = 1, . . . , n,  

Altogether, we obtain for s = 0 , .  . . ,n - 1 and p = 0 , .  . . ,n  - 1 - s in view of 
(9.2.6), (9.2.7), (9.2.8), (9.2.9), (9.2.16), (9.2.17), and (9.2.18) that 

17 "I 
-R A  C(O) ;1 

(P) 
+H ( ) ,, ( ) f l  + z Av~- 'e jc jr )  d l )  + ~ ( l )  

j=lr=l 

in Lp(a,  b )  as v -+ w. From (9.2.13) we infer that 

and therefore, in view of (9.1.7), (9.1.9), and (9.1.8), 

1 A - ~ L ~ ( A ) ~ :  f + d R ( A ) G l  ( A )  f l  

k= l 

n-l - 
A-k L~ A )  - 

= k= i: I ( ( j=k z H " ( A ) A J ~ , + , ) ~ ;  

rr k-l  
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Hence (9.2.5) follows in view of (9.2.1) and (9.2.12). 
In view of (9.2.4) this proves the convergence for the components belonging 

to %:."(a, b) in (9.2.2). Here we have to note that in (9.2.5) the operator function 

@ ( I )  can be replaced by @ ( A )  since el ( A )  depends polynomially on A. 
Since 

the proof of (9.2.2) will be complete if we show that 

tends to 0 as v -+ w for all satisfying (9.2.1). For this it is sufficient to prove 

for s E N that 

in 7Yl1~" ( a ,  b) as v -+ m. 

We have by (9.2.20) that 

On the other hand, 

where we have used that the definition of @ ( A )  immediately gives the identity - 
A-S-1 e,+ T &'(A) = e:-s@(h). From (9.2.5) we know that 
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in w;-(J-s)+~ ( a ,  b )  for j = s + 1 , .  . . , n - 1. Therefore we still have to show that 

~ - s - l e : + , @ ( ~ ) ~ ( { )  d~ i o 

in W,'-j(a, b )  as v -+ a for s E N and j = 0 , .  . . , min{n - 1,s) .  From (9.2.1) and 
an estimate as in (9.2.19) we infer for j = 1,. . . , min{n - I ,  s }  and p = 0 , .  . . , n - j 
that 

(9.2.22) (Av A - ~ - ' ~ ~ + ~ @ ( A ) F ( : )  d ~ ) " )  

- - (iv A - S ~ ~ ~ ( A ) T ( : )  d i )  ('I = o(1 )  

holds in Lp(a ,  b )  as v -+ =J. In the same way, the estimate 

(9.2.23) 6 ,  A ' ~ ~ @ ( A ) T ( { )  .A)(" = 011) 

in Lp(a ,  6 )  as v -+ 00 holds for p = 0 , .  . . , n  - 1. We still have to consider the latter 
integral for p = n. For this we note that 

where g ( A )  is a certain polynomial vector function in A. We have 

( ~ - I ( a ) ~ ( a ) ) ( ~ )  = ( ~ ~ ( 1 )  - ~ ~ ( a ) ) ~ - I ( a ) ~ ( a ) ,  
where 

Since g ( A )  depends polynomially on A, we infer that 

which is of the form o(1 )  in L,(a ,  b )  as v -+ by (9.2.22), (9.2.23) and n,,o E 
Lp,(a, b) .  This completes the proof of (9.2.21). 
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9.3. The expansion theorem 

In this section we shall show that the convergence holds for a larger class of func- 
tions than established in Proposition 9.2.1. For this we suppose that the con- 
ditions posed at the beginning of the previous section are satisfied. Addition- 
ally, we assume that the boundary conditions are normalized. Thus we can take 
C 2 ( 1 )  = diag(i/%, . . . ,A") ,  where x is the degree of the operator polynomial 

Then x = max{l + j : ~ T u J ) '  # 01, and therefore x = vi + n - 1 for i = I , .  . . , q 
and 

y , = m a x { l + j < n - l : e T U ~ - ' # o }  ( i = q + l ,  ..., n) .  

PROPOSITION 9.3.1. Assume that the boundary conditions are normalized. Then 
(9.2.1) is equivalent to 

Proof: For i = 1,. . . , q, the i-th component of the left-hand side in (9.2.1) satisfies 
the estimate O(1-" ) .  For i = q + 1 , .  . . , n, the i-th component of the left-hand side 
of (9.2.1) is 

Condition (9.2.1) means that for j = 1,. . . , n - 1 - yi the coefficient of A-X-J is 
zero. Finally, we replace k - j by k and observe that e:Uk1' = 0 if 1 > 3; - k.  

We define the operators 3, : W;ln (a ,  b )  $ CN :N W;ln (a ,  b)  @3 CN by 

where, in this case, 7 is the canonical embedding from W;ln(a,b) d d into 
(a ,  b )  $ Cn $ C N .  

PROPOSITION 9.3.2. Assume that the boundary conditions are normalized. Let 

Fo be the set of all E (W:(a, b))" $ CN satishing the conditions (9.3. l), and (3 
let F be the closure of Fo in %;I" (a ,  b )  $ C N .  Then {dvlF : v E N} is a bounded 

subset of L(F,  W;ln (a ,  b )  @ C N ) .  

Proof: Since the operators 3, are continuous, it is sufficient to show that {dvlFo) 

is a bounded subset of L(F,,%'O>"(a,b) @ C!), where Fo is equipped with the 
relative topology induced by " W , O l n  (a ,  6 )  $ C N .  
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In view of Theorem 4.4.1 1 ii) we have that the integrals (9.2.10) and (9.2.12) 
satisfy the estimates o(1)  in Lp(a,  b )  as v -t oa uniformly for h ( h )  = O ( A " - ~ - ~ )  
in Lp(a,  b )  as A + w and c2 ( A ) - 1  c ( A )  = ~ ( h - p - ' ) ,  respectively. Using Lemma 
4.6.7 in (9.2.1 l),  that integral satisfies O(1) lhlp . Redoing the proof of Proposition 
9.2.1 with these estimates completes the proof of Proposition 9.3.2. 

THEOREM 9.3.3. Let 1 < p < w. Consider the boundary eigenvalue problem 
(9.1.1 ), (9.1.2), and assume that it is Birkhoff regular and that the boundary con- 
ditions are normalized. For the coeficients of the differential equation (9.1.1) 
we suppose that they belong to Lp(a ,  b )  and that, additionally, ~t;,~ t W; (a ,  b )  for 

i =  1 , . ,  n. a;; t L,(a,b), a l o  t Lp,(a,b). l / p +  l / p l =  1. Let 

be the characteristic bnction of the differential equation (9.1.1) and assume that 
either 
i) there is a number a E C\ (0) such that for all x E [a, b] the roots of a ( x ,  a p )  = 0 
are real, simple and different from 0, 
or 
ii) there are a real-valuedfunction r E W; (a ,  b )  such that r (x)  # 0 for all x t [a, b] 
and E C ( j  = 1,. . . , n )  such that a,,,(x) = P,r(x)j for j = 1,. . . , n and x E (a ,  b )  

tI 

and pn + Pipn-J = 0 has only simple roots. 
j= l 

Let F be theJinite-codimensional closed subspace of ^W,O)" (a ,  b )  $ CN which con- 

sists of those elements (:) satisbing 

where 

Then 

= - lim (X - hfi-'7([) dA 
( c )  v + = i v  

for (;f ) t F ,  i. e., the elements are expandable into a series of eigenvectors (3 
and associated vectors of 3i" - hrwhich converges in %"')"(a, b )  $ CN. Here we 

have used the same symbol ?for the canonical embeddings from Wi1" ( a ,  b )  CB CN 
and W:ln (a ,  b )  $ CN into W:ln (a ,  b )  @ C" $ CN. 
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Pro05 From Propositions 9.3.2,9.3.1 and 9.2.1 and Lemma 4.6.8 the stated result 
follows for F as defined in Proposition 9.3.2. We still have to show that the space 
F as defined in Theorem 9.3.3 is the closure of Fo defined in Proposition 9.3.2. 
Fo c F is obvious, and F is closed since the linear functionals on the left-hand side 
of (9.3.2) are continuous on "WpO>"(a,b). To prove that Fo is dense in F let u be a 
continuous linear functional on F such that ul - 0. We must show that u = 0. Let 

Fo - 
v be a continuous linear extension of u to W'J"'a, b )  $CN and w the restriction of v 
to (W,"(a, b) )"  @ CN. Since wlFo = ulFo = 0, w is a linear combination of the linear 

functionals given by (9.3.2). Since (W," (a ,  b )  )" Q CN is dense in Wpo>" (a ,  b) 63 CN , 
also v can be written as this linear combination of the linear functionals given by 
(9.3.2). But this implies u = vIF = 0. 

Now let us compare our results with those of Shkalikov. He considers mini- 
mality, completeness and basis property for the eigenvectors and associated vec- 
tors for p = 2. A system of vectors in a Banach space E is said to be complete 
if their linear span is dense in E. Shkalikov only requires that the coefficients 
belong to L,  (a ,  b ) ,  but he always assumes that the are constant. In [SH5, The- 
orem 3.11, it is shown that the eigenvectors and associated vectors of the operator 
[SH5, (1.36), (1.37)) form a Riesz basis in parenthesis. The operator [SH5, (1.36)] 
is 

and its domain is the set of all E %$')"(a, b )  $ CN which satisfy (9.3.1) and (:> 
Of course, we can replace L~ by - L ~  without changing the problem under consid- 
eration. Then this operator coincides with a restriction of the operator 2f defined 
in (9.1.21). 

The space for which Shkalikov shows that the Riesz basis property holds co- 
incides with the space for which we obtained expandability in Theorem 9.3.3. 

We note that Shkalikov also proved the basis property in certain subspaces of 
%:"(a, b )  $CN for r > 0, where the coefficients have to be in W i ( a ,  b ) .  Since we 
did not consider expansions of this form in our general exposition, we shall not 
dwell on this. 

Finally, we are going to show that our expansion result in Theorem 9.3.3 
yields completeness and minimality. Expandability and completeness imply ba- 
sisness but not Riesz basisness. 

Let W J ~ " ( U ,  b) denote the set of all elements in W:'"(a, b )  satisfying the bound- 
P J J  

ary conditions (9.3.2), where j E N. 
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PROPOSITION 9.3.4. Assume that p ( X )  # 0 and let E W i ) " ( a ,  b )  @ CN be (9 
an eigenvector or associated vector of X - h l a t  p E o(%). Then f belongs to 
q ' :ca ,  b) .  

Proof In view of Proposition 1.10.2 we have 

where (:) is either zero or an eigenvector or associated vector of X - h l a t  p.  

Using a proof by induction, we may assume that g t Wi:(a ,  b) .  Then, by defini- 
tion of 2'P in (9.1.21), 

H D f  - p f  = g ,  

and therefore 

(9.3.5) A+, - p f ,  = g, 

for1 = 1, . . . ,  n -  1. FromeTG=Ofor i=q+l ,  ..., nweinfer 

", 

whichproves(9.3.2)fori=q+1, . . .  ,nand j + l . F o r j = 2  ,..., n - 1 - x w e u s e  
induction. Assume (9.3.2) holds for j - 1. Then (9.3.5) and g t W;;D(a,b) imply 

THEOREM 9.3.5. Let the assumptions of Theorem 9.3.3 be satisfied. Then ev- 

ery element ({) E T";D(a, b )  $ CN is expandable into a series of eigenvec- 
, , 

tors and associated vectors of the operator finction X - A 1  which converges 
in Ml;D (a ,  b) $ CN, and the ret of eigenvectors and associated vectors of X - hT 

is complete and minimal in Pol" (a ,  b )  $ cN. 
PJ  

Proof Since the problem is Birkhoff regular, we have p (%) # 0. From Theorem 

9.3.3 and Proposition 9.3.4 we know that every element t %$$(a, b )  $ CN (9 
is expandable into a series of eigenvectors and associated 'vectors of the operator 
function 2'P - i l l  which converges in Woln(a,  b )  @ CN since all the terms of the 

P>U 
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expansion belong to Wi)"(a,  b)  $ C N .  This also shows that the system of eigen- 
PLJ 

vectors and associated vectors of JYY - h 7  is complete in Wjc(a ,  b) $ CN.  We 
shall use Proposition 1.10.6 to show that the system of eigenvectors and associated 
vectors of 2f - Alis  minimal. The operator l i s  the product of the embeddings 
w:+' (a, b) r ~ p k  (a, b) (k = 0, . . . , n - I), which are compact by Theorem 2.4.2. 

Hence 7 is compact. Since the embedding Wp:c b) b CN :N i,Wpofl (a, b) d CN - 
is continuous, the system of eigenvectors and associated vectors of 2f - h I  is 
minimal in W:," (a, b) $ CN and therefore also in (a ,  b )  b @N . 

REMARK 9.3.6. From Theorem 9.3.5 and Proposition 9.3.4 it is immediately clear 

that (f) E %$Oln (a, b) b CN is expandable into a series of eigenvectors and associ- 
> ,  

ated vectors of the operator function X - hlwhich converges in %$>"(a, b) QCN 
if and only i f f  E M'c(a ,  b).  

9.4. Notes 

In this chapter we followed the linearization procedure y ,  = q ,  y2 = h q ,  . . . , 
- - A n - i  q .  This type of linearization has been frequently used in connection 

with the investigation of A-polynomial operator matrices, see e. g. GOHBERG and 
KREIN [GK, Section V.91, MARKUS [MA4, Chapter 21 and the references in the 
monographs. A different linearization method can be used for the differential 
operator L ~ ( A )  by simultaneously transforming this operator to a first order sys- 
tem and linearizing it with respect to A ,  see [KRI], [LMMI], [LMM2]. A rather 
particular type of linearization method was used in [LMMS] and [M05]. 
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APPLICATIONS 

In this chapter we apply our results to some spectral problems which have been 
considered in the literature. In particular, we investigate whether these problems 
are Birkhoff or Stone regular. Sections 10.1-10.4 deal with problems occurring in 
mechanics. In Section 10.5, a problem from meteorology is discussed. The well- 
known Orr-Sommerfeld equation is studied in Section 10.6. Finally, Sections 
10.7-10.9 deal with problems from hydrodynamics and magnetohydrodynamics. 

10.1. The clamped-free elastic bar 

HAUGER and LEONHARD [HLl, HL2] have investigated the equation of motion 
of a clamped-free elastic bar. Separation of variables leads to the eigenvalue prob- 
lem 

where K, R, y are constants and K > - 1, R > 0. The differential equation is of 
the form (8.1.1) with n = 4, no = 2, 

Hq = hn0q1/, and a fundamental system of Hq = 0 is {l ,x) .  By Theorem 8.2.1 
there is a fundamental matrix Y (. ,A) of (10.1.1) such that 

where & = diag(0,0,1,1). For the boundary matrices defined in (8.1.6) we obtain 
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According to the requirement (8.5.7) we can take 

Also, we obviously have that the numbers defined in (8.5.1) are 

We infer 
~ ( 0 )  = 5 ,  1 ( ' )  = 6, 

see (8.5.10). We have 

( 1 )  - 1 (0) = 1, a(') = 1, a( ' )  =o, c&=y- l ,  adlo- 7 

alOO 200 310 

see (8.5.16), and all the other are zero. Note that a$ = a:). We want to 
show that 

b(') = u 
1 {2,3}v{2,3),l  + L'{3,4]V{3,4),l # O7 

see (8.5.12) and (8.5.13) for the definition of these numbers. Then the problem 
is almost Birkhoff regular of order 1 by Definition 8.5.1. Here u ~ ~ , ~ )  and u { ~ , ~ )  
are the determinants of the matrices built by taking the rows number 1,4 and 1,2, 
respectively, of 

(" 0 y - 1  1. 
Hence 

~ { 2 , 3 )  = Y - 1 # 0, ~ { ~ , 4 )  = 1 # 0, 

and 

since a!') = a!') = 0. This shows that b!') # 0. 
To ialcula;e the boundary condition; U, f = 0 we use Remark 8.5.5 iii). We 

need only 6/,0), 6,$), 6;?, 6;;). 6$), 6:;). since 6:;) = 0 if v = 3,4 and a ( ' )  V I  = 0 
if v = 1,2. With 
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we infer 

Hence the boundary conditions U ,  f = 0 are given by 

which can be rewritten as 

By Theorem 8.8.2 we obtain an expansion into eigenfunctions and associated 
functions in the space C' [ O , 1 ]  of the problem (10.1.1), (10.1.2) for all f E C' [O,l] 
with f' E BV[O, 11 which satisfy these boundary conditions. This expansion theo- 
rem was obtained by TRETTER in [TR2], [TR3]. 

10.2. Control of beams 

In this section we consider one beam (N=l)  or N ( >  1 )  beams connected by joints, 
see [CDKP] for more details. The problem is governed by the partial differential 
equation 

initial conditions, and the boundary conditions 

d2Y 
-E I - (L ,  t )  = uoN ( t ) .  

a x 2  

Here the joints, if any, are at al  < a2 < . . < aN-, . For convenience, we have set 
a. := 0 and a, := L. In the control problem, the functions ul, (1 = 1,2, 1 < j < N) 
are connected with the unknown function. Here we consider the case 

JY J2Y 
u O i  ( t )  = kg- (a j , t ) ,  u l j ( t )  = kl .-(aj,t),  

dt J axat 
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where koj ,  kli are positive constants (for j = 1, .  . . , N - I we might also allow 
them to be zero). Using the separation of variables technique, 

Y ( x , ~ )  = w ( ~ ) v ( x ) ,  
this leads to the differential equations 

I y " + A 2 ~ = 0  

(10.2.1) E J . ~ . q ( ~ )  J - A2m,q = 0  on (aj- , ,ai)  for j = 1,. . . , N ,  

where L is the eigenvalue parameter coming from the separation. Talung the 
solution ~ ( t )  = ei" (the case ~ ( t )  = ePiA' is similar), the boundary conditions 
can be written as 

~ ( 0 )  = 0 ,  q 1 ( 0 )  = 0,  

s ( a J  = ~ ( a : ) ,  q l (a;)  = q 1 ( a 7 ) ,  

~ ~ l ~ q " ' ( a ~ )  - ~ ~ + ~ l ~ + ~ q " ' ( a : )  = koiiAq(ai), ( j  = I , . .  . , N  - I ) ,  

-[E,ljql'(a;) - E,+,I~+, q1'(aT)j = kli iLql(ai) ,  

E N I N q l " ( ~ )  = koNiAq(L),  

I 
- E N I N q l ' ( ~ )  = k lNiLq l (L) .  

Of course, in case N > 1, the solutions of the eigenvalue problem do not belong 
to ~ ~ ( 0 ,  L)  in general. But we can consider the differential equation on the inter- 
vals (a,-l, a,) separately. Therefore we arrive at a system of ordinary differential 
equations. In Section 10.3 we shall consider the case N = 1 and in Section 10.4 
the case N > 1. 

10.3. Control of one beam 

In [KR12] A. M. KRALL considered the case N = 1 .  He mentions that by results 
of COLE and LANGER an eigenfunction expansion holds. Here we shall show 
that this is indeed true by showing that the problem is Birkhoff regular. Replacing 
A by A2 we have according to Theorem 7.2.4 that the transformation matrix is 
C ( A )  = diag(1 ,A,A2,L3)v  where 

and p = v w .  Therefore, the boundary matrices defined in (7.3.1) are 
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and we obtain according to Theorem 7.3.2 that 

Altogether, there are 4 Birkhoff matrices, the first one being 

and the other ones are obtained by a cyclic permutations of the zeros and ones 
in the diagonals of the diagonal matrices in the previous formula, see Proposition 
4.1.7. The Birkhoff matrix (10.3.1) is invertible, 

and also the other three Birkhoff matrices are invertible. Therefore the problem 
is Birkhoff regular, and by Theorem 7.4.3 every function f E Lp(a, b) (1 < p < w) 

can be expanded into a series of eigenfunctions and associated functions of 
(10.2.1) for N = 1 with the corresponding boundary conditions. 

10.4. Control of multiple beams 

This problem has to be transformed to one for which our results apply. We define 

We abbreviate aj,, := (a, - aj-,)rEjIj. Then the differential equation (10.2.1) 
can be written as a system 

aj,4qj4) - a2rnjqj = 0 on (0 , l )  for j = 1,. . . , N ,  

and the boundary conditions are 
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where Z l j  = (a j  - aj-,)klj. 

We again replace A  by A2 and set P, := d a .  Defining V, as we defined 
1 ~ > 4  

V in Section 10.3 with P replaced by Pj it follows that 

transforms the differential equations into the first order systems 

Y> = AP,nyj> 

where = diag(1, i, - I ,  - i ) .  Therefore, the system of fourth order differential 
equations is transformed into a 4N x 4N system of first order differential equa- 
tions. The boundary matrices are, see (7.3.1), 

B jO) ( A )  

~ $ 1  ( A )  

where D is the 2 x 4 zero matrix, the matrices BP)(A) and B ~ ) ( A )  are 2 x 4 

matrices, and all the other matrices B ! ~ )  ( A )  are 4 x 4 matrices. The B(!) ( A )  are 
J J 

given by 
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0 0 
0 ( a j  - a j - , ) A  0 

B?)(A) = 0 0 aj,,13 V j  ( j = 2 ,  . . . ,  N ) ,  

0 aj,,h2 0 

Therefore we have 

where in case all k l j  are different from zero we have 
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As in the case of one beam we have four Birkhoff matrices. The first Birkhoff 
matrix is obtained by taking the first and second column from w!'), the third and 

fourth column from w;'), and so on. This matrix has the form 

where Ci0) and c;) are 2  x 2 matrices and the other c(') are 4 x 2 matrices. These 
J 

matrices are 

1 1 

J ( j = 2 ,  . . . ,  N ) ,  
0 0 

Since the matrices C / O )  and c:) are invertible if k lN  # 0, the problem is Birkhoff 

regular if and only if the matrices (c;') c;Yl) ( j  = 1 , .  . . , N - 1) are invertible. 

But 

since the kl,,  # 0, a,,3 and P j  are positive. 

The other Birkhoff matrices have-after a permutation of their columns-the 
same shape as the above one, where now the matrices C!k) are formed by different 

J 
rows of the ~ ( k ) .  In the same way as above we see that these Birkhoff matrices are 

J > O  
invertible. 

This shows that the first order system is Birkhoff regular if the constants kl , ,  
are nonzero for all j = 1, .  . . , N .  Also in case not all of the k,,, are zero it can be 
shown that the problem is Birkhoff regular. 



10.5. An example from meteorology 417 

Now it is easy to see that one can apply the methods of Section 7.4 to show 
that every function in Lp(O, L) (1 < p < 00) can be expanded into a series of eigen- 
functions and associated functions of (10.2.1) for N > 1 with the corresponding 
boundary conditions. 

10.5. An example from meteorology 

PROUD M A N  and DOODSON [PRD] investigated the effect of atmospheric con- 
ditions to the sea-level. This led to an eigenvalue problem. The corresponding 
expansion in eigenvectors and associated vectors has been discussed by PROUD- 
MAN [PR]. 

The boundary eigenvalue problem is given by 

where q is a real continuously differentiable function on (0,l) greater than a 
positive number, and a is a real nonzero constant. 

Proudman showed that there are numbers A, such that 

holds, where {v,) is the sequence of the eigenvectors. Furthermore, he proved an 
expansion 

for functions having Sturm-Liouville expansions. The proof is done by consider- 
ing the initial value problem 

(qV1)'+AV = 0, 

V(0) = 1,  ~ ' ( 0 )  = 0. 

and the homogeneous boundary eigenvalue problem 

Here we use a different approach to transform the problem into a homoge- 
neous one. For this we observe that we may consider the value - 1 on the right- 
hand side of the differential equation as a constant function (# 0); the special 
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value only means a normalization of the eigenfunction. Thus we can replace - 1 
by a function -y3 with yi  = 0. We set yl := v and y2 := qv'. Then the boundary 
value problem (10.5.1), (10.5.2) can be written as 

where the case y3 = 0 has to be excluded; indeed, below we shall show that y3 # 0 
for every nontrivial solution of this boundary eigenvalue problem. 

With y := PI y2 this boundary eigenvalue problem has the form 

In the following, we make the substitution il = p2 

We consider the transformation matrix 

which has the inverse 

- ) - i ~ - ~  
i ( p )  i ~ - ~  
0 0 - 2 ~ - ~  ) -  

Then we obtain the following differential system 



10.5. An example from meteorology 

We set 
p m  0 0 

Denoting the boundary operator given in (10.5.8) by ~ ~ ( 1 )  we obtain the follow- 
ing boundaty conditions: 

(10.5.10) R 2 
0 = c,-~(P)T (P )(c(.,P)Y) = 

Now we shall prove that the boundary value problem is Birkhoff regular in 
the sense of Definition 4.1.2. For this we calculate 

A 0 1 0  , 

1 1  0 

(: :: ar) 
O O a  

From pi0] = diag(q(0)til-i, q (0 ) :~ -1 ,  1). see (2.8.17), (2.8.18), we infer 
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Now the two matrices 
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(Ei O O a  ) ( 9  O O a  Y )  
are invertible which proves that the problem is Birkhoff regular. 

We are interested in expansions into eigenfunctions of the problem (10.5.1), 
(10.5.2). By construction, an eigenfunction of (10.5.1), (10.5.2) is the first com- 
ponent of an eigenfunction of (10.5.7), (10.5.8) whose third component is 1. We 
shall show that y3 # 0 for each eigenfunction y of (10.5.7), (10.5.8); hence, after 
normalization, the first component of each eigenfunction of (10.5.7), (10.5.8) is 

an eigenfunction of (10.5.1 ), (10.5.2). Indeed, assunie that ( )  is an eigen- 

function of (10.5.7), (10.5.8) for some eigenvalue A .  Using y i  + ayl = 0 and the 
boundary conditions, we infer 

Therefore, (::) is a solution of a first order system satisfying the initial condi- 

tions y, ( I )  = 0, y2(1) = 0, and y, = 0, y2 = 0 follows. 

Note that the eigenspaces are one-dimensional. Indeed, if there were two lin- 
early independent eigenfunctions of (10.5.1), (10.5.2) for some eigenvalue, then 
the problem (10.5.7), (10.5.8) would have the same property. Taking a suitable 
linear combination, we would obtain an eigenfunction of (10.5.7), (10.5.8) whose 
third component is zero. But this is impossible as we have seen in the previous 
paragraph. 

Also observe that 0 is no eigenvalue of (10.5. l), (10.5.2). Indeed, if 0 were an 

But since 17 > 0, this contradicts the boundary condition $ y, (x) dx = 0. 

We denote the eigenvalues of (10.5.9), (10.5.10) by pi ( j  E N) and the cor- 
responding chains of eigenfunctions and associated functions by w ~ , ~ ,  . . . , w j  ,.,-,. 

' I 

Here we multiply the last boundary condition in (10.5.10) by p4 in order to have 
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polynomial dependence on p .  Let P^ : C3 + C2 be the projection onto the first two 
components. Let 1 < p < m. From Theorem 5.3.2 we know that the expansion 

holds for all f, , f2 E L,(O, 1 ), where the series converges (in parenthesis) in the 
space (Lp(O, I ) ) ~ .  

Also, i f f , ,  f, E C[a,b] nBV[a,b] and fl(0) + f2(0) = 0, f , ( l )  = f2( l ) ,  then 
the expansion (10.5.1 1) holds in (~ , (a ,  b))2. This follows from Theorem 5.3.3. 
Here we have to verify the boundary conditions B(3L) ( f i ,  f2, 0) = 0. By Remark 
4.7.7 it is sufficient to consider Bo(A) (f, , f2, 0). Since pi0] is a diagonal matrix 

1 
function, it is easy to see that (I, - A~)P[O]- A. = 0. Hence the condition is 

and the above conditions follow. 

Finally let us note that 0 is an eigenvalue. A corresponding eigenfunction is 

(j;) . And there is also an associated function. 

Now we consider (10.5.7), (10.5.8). Let A, ( j  E N) be its eigenvalues. Ob- 
viously, {Aj : j E N} U {O} = {p: : j E N). Let p be a nonzero eigenvalue of 
(1 0.5.9), (1 0.5.10). Then we we have an eigenfunction 

where y2 is the (unique normalized) eigenfunction of (10.5.7), (10.5.8) corre- i:) . , 

sponding to the eigenvalue A = p2. Then 

is an eigenfunction of (10.5.9), (10.5.10) for the eigenvalue -p. This shows that 
to each eigenvalue A, there correspond two eigenvalues pk,pI . 
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Assuming that (10.5.7), (10.5.8) has no associated vectors, the expansion 
(10.5.1 1) can be written as 

where ) is an eigenfunction of (10.5.7), (10.5.8) for the eigenvalue k,. 

say 0 < arg fi < rr for definiteness, and w is the term corresponding to the 

eigenvalue 0 of (10.5.9), (10.5.10). 

We consider the contour integral leading to the above expansion. Let us de- 
note the operator associated with the problem (10.5.7), (10.5.8) by T ( i l ) ,  and the 
operator associated with (10.5.9), (10.5.10) by T"(p ) .  Since 

we can write (10.5.1 1) as 

where A is the coefficient of p in (10.5.9) and T,, is a circle with centre 0 and 
radius rv . We have 

If we set f2 = - f ,  and subtract the second component from the first one in the 
above expansion, then we obtain, with f := f  , , 

f = - 2  1 rv 1 0 2 ~ 1 2  ( (  ) dp. 
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If y, denotes the circle with centre 0 and radius 4, then we can write 

Hence we obtain 

It is easy to check that 
' 

JT f ( t )  dt dz 4: ?i;idt-L $T) 0 T-l(o)((i).o)=( .f(t)dt-a C i 
where 

Hence we obtain the expansion 

This holds for all f E L,(O, 1 )  if 1 < p < w. If p = =J, we have to impose the 
restriction f E C[a, b] n BV[a, b] and f ( 1 )  = 0. Since yl is an eigenfunction of 
(10.5.1), (10.5.2), we have y,,,(l) = 0. Therefore, for uhiform convergence, the 
above expansion splits into two parts: 

(10.5.12) 

and 

This is not the expansion with the coefficients as obtained by PROUDMAN. 
So let us consider a different transformation. We take the transformation matrix 

(10.5.14) 

Then 
- P 0 
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and we obtain the differential system 

We set 

(10.5.15) 
p m  0  0  

O P  

and obtain the following boundary conditions: 

Here 

and the two Birkhoff matrice are 

O O a  O O a  

Since they are invertible, also this problem is Birkhoff regular in the sense of 
Definition 4.1.2. 

Since the differential system is not holomorphic on C, we do not obtain an 
expansion in terms of eigenfunctions of this system. But we are not interested in 
eigenfunction expansions of this system, only in the first component of it. Most 
important is that the Birkhoff regularity yields as in the previous case that 
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with the same assumptions on f l ,  f2 as above, and where A is the coefficient of p 
in the differential system. We have 

If we set f2 = - fl  and subtract the second component from the first one in the 
above expansion, then we obtain, with f := f , ,  

If y,, denotes the circle with centre 0 and radius r;, then we can write 

Hence we obtain 

This holds for all f E Lp(O, 1 )  if 1 < p < w. If p = w, we have to impose the 
restriction f E C[a, b] n BV[a,  b] and f ( 1 )  = 0. This coincides with the first ex- 
pansion (10.5.12), but we do not obtain the identity (10.5.13) here. 

Now we shall use still another method. We consider the operator T associated 
with (10.5.7), (10.5.8). As we have done for Stone regular problems, we write for 
f E (Wd(0, 

where T ( h )  =: AT, +To. Now we are looking for flll E (w; ( 0 , ~ ) ) )  such that 

(10.5.17) Tof = T~ f " ] .  

That is, we have to satisfy 

and, for the boundary part, 

That means, we have to choose f3 to be constant. Since the third components of 
the eigenfunctions of T are constant, this is also necessary for an eigenfunction 
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expansion. Furthermore, we have to require that q f; = f2 E w ~ ( O ,  I )  and also 

( q  f;)'  = f; = f3 -fill E W; (0,  I ) ,  and, for the boundary part, fl (0 )  = f2(1) = 0. 

The last boundary condition can always be satisfied by a suitable choice of fill. 
Inserting (10.5.17) into (10.5.16) yields 

Integrating along y, as defined above we obtain 

With the second transformation, i. e., (10.5.14) and (10.5.15), we obtain 

Since p - ' ~ ( , , p )  = 0(1), C- ' ( . ,p)  = 0(1) , and C;l(p) = 0(1), we obtain in 
view of Theorem 4.4.9 ii) that 

1 
f = lim -# T - ~ ( I ) T ,  f d l  

v-r- 2ni yv 

holds in Lp(a, b) for f = ( f l ,  f2,  f3)T satisfying the above conditions. 
Now assume that the problem has only simple eigenvalues. Talung fl = fi = 0 

and f3 = 1 ,  we obtain the expansion (10.5.3), (10.5.4) of PROUDMAN. And talung 
f3 = 0, we obtain the expansion (10.5.5), (10.5.6) of PROUDMAN, albeit under the 
stronger assumption that ( q  f;)' E W; ( 0 , l )  and f,  (0 )  = f; ( 1 )  = 0. As we have 
seen for Stone regular problems in Section 5.7, the condition ( q  f;)' E W; ( 0 , l )  
might be weakened. 

The expansions obtained by PROUDMAN show that the coefficients of an ex- 
pansion in eigenvectors of the problem (10.5.1), (10.5.2) are not unique. Taking 
an "intermediate" substitution 

we obtain an operator 

As for first order systems of differential equations and n-th order scalar differential 
equations, the operator ?(A) is a Fredholm operator of index 0. Also, writing 
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? ( I )  = 8 + AG, we see that 8 is compact in view of Theorem 2.4.2. Since the 

eigenvalues of T^ are the eigenvalues of (10.5. I ) ,  (10.5.2), we infer that (?) # 0. 
Therefore, Proposition 1.10.6 shows that the coefficients of an expansion 

are unique for all f E Lp(O, 1 )  and c E C for which such an expansion holds. 

In the previous results we assumed for simplicity that there are no associ- 
ated functions. We have seen that this means that all eigenvalues are simple. Of 
course, our general results about the principal parts of inverses of Fredholm oper- 
ator functions immediately give expansion theorems in case there are associated 
functions. 

Let us show that associated functions can occur. Let c be a positive constant - 

and consider the case q = c. For A # 0 and cos J$ # 0. 

is the unique function satisfying (10.5.1) and the first two boundary conditions in 
(10.5.2). In order to satisfy the third boundary condition, we have to satisfy 

Then A is a double eigenvalue if it satisfies (10.5.18) and 

These two equations hold if and only if (10.5.18) and 

are satisfied. Setting t = fi the latter equation means that we are looking for a 
zero of 

5 2 
h( t )  = -tan t - 5 - tan t 

t 
with t # 0. In the interval (0,  $) we have h(t)  = +t2 + 0 ( t 4 )  near zero, i. e. h(t)  > 0 
for small positive t .  But h(t)  + -03 as t -+ $ , and so there must be a number 
to E ( O , $ )  such that h(to) = 0. With A = cti and a such that (10.5.18) is satisfied 
we obtain a multiple eigenvalue. Note that a > 0. 
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10.6. The Orr-Sommerfeld equation 

We consider the Orr-Sommerfeld equation 

on the interval [a, b] subject to the boundary conditions 

see [DRI, p. 1561. This differential equation results if one considers the pertur- 
bation of a given plane flow. Here the Reynolds number R and the wave number 
a are given nonzero real numbers and u is a given function describing an un- 
perturbed flow. Examples for u are the plane Couette flow where u(x) = x and 
the plane Poiseuille flow where u(x) = 1 - 2 on [- 1,1]. Expansion theorems 
for this problem where obtained by SCHENSTEDT [SSl] and DIPRIMA and HA- 
BETLER [DHl]. The differential equation is as considered in Chapter VIII. Here 
we have 1 = n - 1 = 2, and the numbers given by (8.5.1) and (8.5.7) are 1, = l2 = 0, 
13=14= l , q v = O ( v =  1, ..., 4). Therefore,l(O) = 1 ( ' ) = 2 .  Wehave 

where 

see (8.5.11), (8.5.12), and (8.5.13). Since H@ = -iRa(@ll - a 2 @ ) ,  a fundamen- 
tal system of H@ = 0 is given by {cosh(a(x - a)) ,  sinh(a(x - a))) .  In view of 
Theorem 8.2.1 and (8.5.8) it follows that 

('I" 
= (12 0) [M(a)] (2)  

u2,1 u2,2 
1 

= (cosh(a(b - a))  

and therefore uilP4) # 0. From (8.5.5) and (8.5.6) we infer a,$) = 1, a(') = 0, 
3 1 

( I )  = I, a( ' )  = 0, and thus a;') # 0, ail) # 0. Altogether, by) # 0, and hence 
a40 41 
the boundary eigenvalue problem is Birkhoff regular. 

Since a{:i = I ,  a(') = 1, do) = I ,  ail) = 1, and all the other a$! are zero, 
200 300 4% 

we obtain for the asymptotic boundary conditions by Remark 8.5.5 iii): 
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Then Theorems 8.8.2 and 8.8.3 yield that a function f  is expandable into a series 
of eigenfunctions and associated functions of the eigenvalue problem (10.6. l ) ,  
(10.6.2) if 
i) f  E C[a, b] n BV[a, b] such that f ( a )  = f ( b )  = 0, and the series converges in 
C[a,  bl, 
or 
ii) f  E C' [a, b] such that f' E BV [a, b] and f ( a )  = f l ( a )  = f  ( b )  = f ' (b)  = 0, and 
the series converges in C' [a, b],  
or 
iii) f  E L,(a, b ) ,  1 < p < m, and the series converges in Lp(a,  b ) ,  
or 
iii) f  E w,' (a ,  b ) ,  1 < p < .o, such that f  ( a )  = f  ( b )  = 0, and the series converges 
in w,' (a ,  6 ) .  

10.7. A system of differential equations in the theory of viscous fluids 

In the theory of viscous fluids, the following system of differential equations oc- 
curs, see [DR, p. 1551: 

{ D ~  - a2 - iaR(U - c ) )u  = RUW + iaRp,  

{ D ~  - a2 - iaR(U - c ) )w  = RDp, 

iau  + Dw = 0, 

where D = dldx ,  U and are given functions, c  is the eigenvalue parameter, u, w, 
p are the unknown functions, and a and R are nonzero real constants. Boundary 
conditions are given by 

Eliminating the unknowns u and p this leads to the Orr-Sommerfeld equation 
as considered in Section 10.6. Hence we obtain expansions in terms of the eigen- 
function components corresponding to w and u. For the w-component we obtain 
exactly the same expansions as in Section 10.6, whereas for the u-component the 
corresponding expansions in the spaces L,(a, b )  and C[a,  b] hold, where the func- 
tions f  which are expanded additionally satisfy S,b f ( x )  dx = 0. 

10.8. Heat-conducting viscous fluid 

After linearization and separation of variables, the differential equation of a heat- 
conducting viscous fluid leads to the differential equation 
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where D = dldx and R and P are the Rayleigh and the Prandtl number, respec- 
tively, and the boundary conditions 

q(c)  = ql(c) = 77(4) - (2a2 +s/p)qI1(c) = 0 (rigid boundary) 

q (c) = ql' (c) = q (4) (c) = 0 (free boundary) 

at the endpoints c = 0,1, see [DRl, p. 431. Here s is a certain "eigenvalue" pa- 
rameter, and a is a parameter occuring in the separation of variables. Therefore, 
we can also consider a as an eigenvalue parameter. Hence we shall investigate the 
expansion problem with respect to the eigenvalues s and a. Of course, this should 
be considered as a two-parameter problem, but we ask here what happens if we 
fix one of the parameters. We write the differential equation in the form 

where 

P4(a,s) = -{3a2 +s ( l  + IIP)) ,  

P2 (a, s) = a2 (a2 + s) + (2a2 + s) (a2 + SIP), 
Po(a,s) = -a2(a2 +s)(a2 +SIP) + a 2 ~ .  

Let us first take the eigenvalue parameter A = a. Then 

r2 ,2  = -3, n4,4 = 3, r6 ,6  = - 1 ,  

and njPj = 0 for j = 1,3,5. In this case we have no = 0. The characteristic function 
is 

6 p -3p4+3p2-  1 = (p2- q3. 
The roots are not simple, and hence our expansion theorems are not applicable. 

Now consider the eigenvalue parameter A2 = S. Then we obtain 

r 2 , 2  = - ( 1 + 1 /PI, r4,4 = 1 /p, 

and K , , ~  = 0 for j = 1,3,5,6. The results of Chapter VIII are not applicable since 
the differential equation contains two different powers of the eigenvalue pararne- 
ter. Therefore we shall transfornl the boundary eigenvalue problem into one for a 
first order system. We are going to consider three different transformations. 

Writing the differential equation in the usual way as a system for the vector 
function y = ( q ,  q l , .  . . , v ( ~ ) ) T ,  the transformation 
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yields a full linearization of the resulting system with the coefficient matrix of 1 
being diagonal: 

Here a is a free parameter. Note that this transformation even holds in case P = 1 
when 1 and - 1 are double roots of the characteristic equation. However, due 
to the fact that the transformation matrix is lower triangular, the last column of 
each boundary matrix is zero. Indeed, it is easy to see that for the asymptotic 
boundary matrices, the last three columns of the leading (A-independent) matrix 
are always zero. Then this also holds for the Birkhoff matrices, and therefore this 
A-linearized problem is not Birkhoff regular. 

Of course, one might ask for Stone regularity. We leave this to the interested 
reader. 

Now we are asking if the asymptotic linearizations in Theorem 7.2.4 lead 
to Birkhoff regular problems. Here we must suppose that P # 1. Taking first 
Theorem 7.2.4 A we obtain the transformation matrix 

With Theorem 7.2.4 B we have the transformation matrix 

In both cases, the coefficient matrix of A in the transformed system is the same as 
in the fully linearized system. For the transformed system with the transformation 
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(10.8.1) we obtain that the upper left-hand 2 x 2 block of the A-independent matrix 
is 

The fundamental matrix of yb = A0,,y which is the identity matrix at 0 is given 

by 

A straightforward calculation shows that the problem is Birkhoff regular only in 
the case when both boundaries are free. For the transformed system with the 
transformation (10.8.2) we obtain that the upper left-hand 2 x 2 block of the A- 
independent matrix is 

The fundamental matrix of yb = Ao,ooy which is the identity matrix at 0 is given 

by 

Here a straightforward calculation shows that the problem is Birkhoff regular with 
any combination of rigid and free boundaries. 

In case we use the transformation (10.8.1), the results of Section 7.9 are ap- 
plicable, and we obtain that every function in Lp(a, b) ( 1  5 p < m) is expandable 
into a series of second order derivatives of eigenfunctions and associated func- 
tions of the given eigenvalue problem-where the series converges in paranthesis 
in Lp(a, b)-if both boundaries are free. Also, one can show that the adjoint prob- 
lem is of the same form. Therefore, the eigenfunctions and associated functions 
of the given eigenvalue problem with free boundaries are complete in the reflexive 
space Lp (a, b) . 

In case we use the transformation (10.8.2), the results of Section 7.9 are not 
applicable. Therefore we use a modification which works in this case. We shall 
first prove an abstract result. 

Suppose that the general assumptions of Chapter VI are satisfied. For j = 
1, ..., n- 1 wedefine 

n-1-j 
L:(A)~ := f (n - j )  + P f i  (f E ~;-j(a, b)). 

i=O 

Note that 

~P(n)f = e : ~ ~ ( h )  (0,. . . , o,f,f1,. . . , f("-j-'))~. 
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Similarly, we define 

L ~ ( / Z )  f  = TR(A)(O,.  . . ,0, f ,  f ' ,  . . . , ~ ( " - J - ' ) ) T  ( f  E w,"-j(a,b)). 

PROPOSITION 10.8.1. Let j  E (1 , .  . . ,n - 1), A  E p(L),  fl E w;-J(a, b), and 
f2 E Cn. Then 

(10.8.3) [ ~ ~ ( ' ) ( ' P ( ' ) f l > f ,  f ' : ( ~ ) f l ) ] ( ~ )  = e l + l ~ - 1 ( ' ) ( e j f l , f 2 )  

fork=O . . . , j .  

Pmof Let y  := T-' (A) (e ,  f l ,  f2). Then TD(A)y  = e, f l ,  and it follows that 

Y i = Y .  [+I ( i =  1 ,..., n - l , i #  j ) ,  y ) = ~ ~ + ~ +  f l .  
Therefore 

(10.8.4) yi=y\i-l) ( i = 2 , , . . , j ) ,  ( i - j - l )  
1 fl ( i =  j + l ,  ..., n) .  

Hence the last component of TD(A)y  = ej f  leads to 

L D ( q y l  - L ? ( A ) ~ ,  = 0. 

Then 

f2 = TR(k) ) .  = LR(A)Yl - ~ : ( A ) f l ,  
which proves altogether 

( ~ y ( A ) f l  , f 2  + L ; ( A ) ~ ~ )  = L ( A ) Y ~ ,  
and with the aid of (10.8.4) it follows that 

( 4  - ( k )  - 
' ? ( ' ) f l ) ]  - y l  -Yk+l = e ~ + l r - 1 ( a ) ( e j f 1 , f 2 ) .  

Now we return to the transformation (10.8.2). In this case, the transformation 
Â  is given by (7.2.24), and thus A ê4 = e, since 5,, = 0. As in (7.9.4) this leads to 

and therefore, in view of Proposition 10.8.1 and with T as defined in Section 7.4, 

[ L - ' ( L ) ( L ~ ( )  f L ( )  f )  = l e : ~ , f - ' ( A ) ( A ~ ~ ; ~ e ~  f , ~ )  

for f  E w;(o, 1). This yields that 

as v t m in Lp(a,b) for all f  t w;(o, l ) ,  see Theorem 4.6.9. The left hand side 
can be expressed in terms of third derivatives of eigenfunctions and associated 
functions of the given problem and an additional residue at 0. In view of the 
structure of Â  it is impossible to avoid this additional residue, i. e., for c E Cn such 
that e:xc = 0  for i < j and e ~ x c  # 0  for i = j  where j  > 3 we have e:c # 0  for 

I 
some i > j. 
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Taking a = 0 we obtain that a fundamental system of the differential equation 
at I = 0 is given by the functions $ ( j  = 0 , .  . . , 5 ) ,  and with any combination 
of rigid and free boundary conditions, the characteristic matrix is different from 
zero. Since the boundary eigenvalue problem depends polynomially on a and 
R, it follows that the characteristic matrix depends holomorphically on a and R. 
Therefore it is nonzero for almost all a and R (which have a physical meaning). 

Therefore let us assume that 0 E p(L).  Then it follows that for each f  E 
W: ( 0 , l )  the function 

is expandable into a series of third order derivatives of eigenfunctions and associ- 
ated functions of the given eigenvalue problem. 

We want to determine those functions which have the representation (10.8.5). 
Obviously, 

f .+ f + [L-' (0 )  (~3D(0)f ,  ~ I : ( 0 ) f  
is a continuous operator from W: ( 0 , l )  to W; ( 0 , l ) .  In order to find an estimate 
for the defect of this operator we first consider the case a = 0. Let h E wJ(0 ,  1 ) .  
Above we have seen that the eigenvalue problem 

for c = 0,1, where t ,  = 1 if the boundary is rigid and c, = 2 if the boundary is 
free, has a (unique) solution g E w,~(o,  1 ) .  With f  = h - g(3)  E w;(o, 1 )  and 

v  := f  + [L-' (0 )  (L? (0)  f ,  L$ (0)  f ) ~ ( ~ )  - h 

it follows in view of LD(0)q = q ( 6 )  that 

since 
L: ( 0 ) f  = f ( 3 )  - 3a2f1 = f (3) .  

But 
2f(3) - h(3) = 2(h(3) - g ( 6 ) )  - h(3) = 0 

shows that d3)  = 0. With 

we have 
v =  f + g ( 3 ) + W ( 3 )  - h = W ( 3 ) ,  
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and therefore, for c  = 0,1, 

which gives altogether that v is constant. And since the third derivative does not 
occur in the boundary part in L(O), we do not know if we can find f  such that 
v = 0. This shows that for a  = 0  the operator given by (10.8.5) has defect at most 
1. Also the nullity is at most 1.  Indeed, if 

then we set 

g := L-' ( o ) ( ~ : ( o ) f , ~ f : ( o ) f )  
and obtain 

2 f ( 3 )  = f ( 3 )  + L ~ ( o )  f = f (3) + g(6)  = 0  

and 2 f l ( c )  = f i (c )  + g(4)  ( c )  = 0  for c = 0 , l .  Therefore f must be constant. Then 
we can find an extension of this operator which is at most one-dimensional in the 
domain and range spaces such that this extension is invertible. Since this operator 
depends holomorphically on a  and R (for which L(0) is invertible), it follows for 
almost all a  and R that each function f  which belong to a subspace of wj3)(0,  1 )  of 
codimension at most 1 can be expanded into a series of third order derivatives of 
eigenfunctions and associated functions of the given eigenvalue problem, which 
converges in Lp ( 0 , l ) .  

Of course, if both boundaries are free, the result which we obtained from the 
transformation (10.8.1) is better. However, we can improve the result consider- 
ably if one boundary is rigid (say at 0)  and the other boundary is free (say at 
I). An obvious generalization of Proposition 6.6.8 shows that all eigenfunctions 
and associated functions of the boundary eigenvalue problem satisfy those bound- 
ary conditions which are independent of the eigenvalue parameter. Therefore, 
for each function f  E ~ , 6 ( a ,  b )  which satisfies f  (0)  = 0,  f ' (0) = 0, and f i i ( l )  = 0  

such that f  ( 3 )  can be expanded into a series of third order derivatives of eigenfunc- 
tions and associated functions of the given eigenvalue problem which converges 
in Lp(O, I ) ,  it follows by repeated integration that f  can be expanded into a series 
of eigenfunctions and associated functions of the given eigenvalue problem which 
converges in w;(o, 1). Since these functions must also satisfy the boundary condi- 

tion f  ( I )  = 0,  the set of all f  ( 3 )  such that f  satisfies these four boundary conditions 
has codimension 1 in wj3) (0 ,  1 )  and must therefore coincide with the set for which 
we obtained the expansion into a series of third order derivatives of eigenfunctions 
and associated functions of the given eigenvalue problem. Hence we obtain that 
each function f  E Wp6(a, b)  which satisfies f  (0 )  = f  (1) = f l (0 )  = fU(1 )  = 0  can 
be expanded into a series of eigenfunctions and associated functions of the given 
eigenvalue problem which converges in W; ( 0 , l ) .  
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The expansions into second and third order derivatives is not really what we 
want. Even in the last case, we have to take the functions in Wp6(0,1) in order to 
obtain an expansion in w;(o, 1). Appropriate expansions theorems should be ob- 
tained by generalizing the results of Chapter VIII to the case when the differential 
equation depends polynomially on A.  

10.9. Motions of an incompressible magnetized plasma 

In [LI] LIFSCHITZ considered, among other problems, the Lundquist equa- 
tions describing motions of an incompressible magnetized plasma of unit density. 
After separation of variables, this leads to the following system of ordinary differ- 
ential equations 

where o is the eigenvalue parameter, a and P are real constants characterizing 
the relative magnitude of the velocity and magnetic field. The 2-vector functions 
T1,* are the horizontal components of T* = v * b, where v is the plasma velocity 
and b is the magnetic field. The angular variable y is the independent variable, 
and therefore the periodic boundary conditions 

have to be imposed. Finally, 

where p E (0,00) is the radial variable, which is fixed here, and 6 E [0, 1) is the 
ellipticity parameter of the elliptic flow. Lifschitz states that for la1 # IPI the 
spectrum is discrete but that the classical arguments of Birkhoff and Langer are 
not applicable to this problem since the eigenvalues are not asymptotically sim- 
ple. Hence the author was not able to prove completeness of the system of corre- 
sponding eigenfunctions. Here, as with any non-self-adjoint problem, associated 
functions can occur, and it is very difficult to show that the eigenvalues are al- 
gebraically simple or at least that the algebraic multiplicity coincides with the 
geometric multiplicity, which would guarantee that there are no associated func- 
tions. 
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However, we shall show that the system of eigenfunctions and associated 
functions is complete. To this end, we introduce the vector function 

a - P)?,,, 
= ( [ a  + P)Y1,-) ' 

and the eigenvalue problem becomes 

where 

and A. depends continuously on y. 

The matrices A(o) are of the form diag(12, 0) and diag(0, 12) if IP I > la1 and 
I, and 0 if Ip I < la/. Since WcO) = - W ( ~ X )  = 1, if writing the boundary conditions 
in the form W')~(O) + w ~ ~ ( ~ z )  = 0, it is immediately clear that all Birkhoff ma- 
trices are invertible. Hence this problem is Birkhoff regular, and it follows from 
Theorem 5.3.2 that every function in (L,(o,~z)), is expandable into eigenfunc- 
tions and associated functions of this problem. 

The above result shows that the system of eigenvectors and associated vectors 
is complete, and from Proposition 1.10.5 we know that it is also minimal. Hence 
the existence of at least one associated function would imply that the system of 
eigenvectors would not be complete. 

Now we are going to investigate the case of circular flow, i. e., 6 = 0, where a 
fundamental system and the eigenvalues can be calculated explicitly. Writing 

a straightforward calculation shows that 

p ( o ,  1 )  = det(oA, +Ao - A) = ( o a  + ~ ) ~ ( o b  + + c2(o(a + b) + 2 ~ ) ~ .  

The matrix oAl +Ao is similar to an upper triangular matrix, and therefore the 
fundamental matrix Y ( y) of (10.9.1) is similar to an upper triangular matrix with 
diagonal elements exp(A1 y) , . . . , exp(A4 y ) ,  where Lj = A, (o), j = 1 ,  . . . ,4, are 
the four zeros of p(o, A). Hence o is an eigenvalue of (10.9.1) if and only if 
A,(o) E iZ for some j, i. e., p ( o ,  ik) = 0 for at least one k E Z. 

We want to investigate if and when there exist eigenvalues with associated 
functions. So let o be an eigenvalue of (10.9.1). Then the above considerations 
shows that the geometric multiplicity of o ,  i. e., the defect of Y ( o ,  27c) - Y (o,O), 
is at least as large as the number of different integers k such that p ( o ,  ik) = 0. 
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On the other hand, the algebraic multiplicity of the eigenvalue cr is the multi- 
plicity of the zero of 

4 
det(Y(~', 27c) - Y('r,0)) - I - I ( e x p ( 2 ~ j ( , r ) ) -  1) 

j=l 

at 1 : -  a .  If exp(2zc2j(a))  - 1 for some j, then ~,j(o') - ik for some integer k, 
and thus 

Zj('c) - ik 1 
-~ ~-~ as ~--4 o'. 

e x p ( 2 n Z j ( v ) ) -  1 

This shows that the algebraic multiplicity of the eigenvalue cr equals the sum of 
the multiplicities of the zeros of 

4 
I - I  (~j("C) - ik) - p('c, ik) 
j=l 

at 1 : -  o-, the summation being over all integers k. 
Therefore, the geometric multiplicity of the eigenvalue o- equals its algebraic 

multiplicity if for any k for which p(cr, ik) - O, a is. a simple zero. In other 
words, if there exist associated functions for the problem (10.9.1), there must be 
an integer k and a complex number cr which is a multiple zero of p ( a ,  ik). 

Obviously, p ( a ,  ~) - 0 if and only if 

(10.9.2) ( a a + Z ) ( a b + Z ) -  i e ] c ( a ( a + b ) + 2 Z ) ,  e 1 - - 1 , 1 ,  

i. e., with X - ik, 

(10.9.3) a - - i  a + b ( k _  elc ) + i ? (  2ab ~ a - b)Z(k 2 - 2elCk ) + c2(a + b) 2. 

Hence p ( a ,  ik) has a multiple zero if and only if a satisfies (10.9.2) for e I - - 1  
and e 1 - 1 or if (a - b)2(k 2 - 2elck ) + c2(a + b) 2 - 0. 

The first case occurs if and only if both sides of (10.9.2) are zero, which is 
.k satisfied if and only if a - 0 and k - 0 or a - b and a - - t  a, k E Z. We observe 

that 

p(cr, O) -- aZb20 "4 + c20"2 (a + b) 2 

-- o-2(aZb2o-2 + c2(a + b)2). 

Hence, if a + b # 0, then cr - 0 is a double zero for k - 0. But 

1 0 " -12 A o _ _ ( ~  ~ ) _  ~ ( 1 2  
-12 ~ ) ( 0 0  2 j u  12 ) 

shows that A 0 is diagonalizable since ~A / is diagonalizable, and 0 is a double 
eigenvalue of A 0. Thus Y(2zc ) -  Y(0) for a -  0 and k -  0 has defect 2, and 
therefore a - 0 has no associated functions if a + b # 0. 
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If a + b = 0, then o = 0 has algebraic multiplicity 4, but Y (2n) - Y(0) is 
similar to 

which has geometric multiplicity 4 if c = i, i. e., p = a, and geometric multi- 
plicity 2 for all other p > 0. As a + b = 0 occurs if and only if a = 0, it follows 
that for a = 0 and p # there are associated functions. 

Now let a = b, i. e., p = 0. Then 

p ( o ,  ik) = ( o a  + ik)4 + 4c2(oa + ik)2 

= ( o a  + ik)2((oa + ik)2 + 4c2), 

i. e., cs = -i: is a double zero. But, for a = b, 

and it clearly follows that Y (2n) - Y (0) has defect (at least) 2. Hence the algebraic 
and geometric multiplicities coincide. 

If (a - b)2(k2 - 2&,ck) + c2(a + b)2 = 0, we have already covered the case 
1 a + b = O a n d k = O .  F o r a + b = O ,  itremains thecasek=2c1c, i .e . ,c= and 

k = Then 

Again, o = 0 is a double eigenvalue, and we have already seen above that in 
this case the geometric multiplicity is at least 2. Hence there are no associated 
functions in this case. 

Finally, for a + b # 0, (a - b)' (k2 - 2&, ck) + c2 (a + b)2 = 0 can only be sat- 
isfied if k = &, , i. e., 
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Since 0 < c  < 1, it is easy to see that this case occurs if and only if (PI > 1 a 1. From 
(10.9.3) we obtain that 0 = -is&, ( 1  - c ) ,  and therefore, after some straightfor- 
ward calculations, 

2c2 2c In case E ,  = 1 the four solutions A  of p ( o , A )  = 0 are i, i ( l  - =), i(l - =), 
i (2c - 1 ), and only one of them belongs to iZ (note that < c < 1 due to (10.9.4)). 
Hence o is an eigenvalue of algebraic multiplicity 2  and geometric multiplicity 1, 
and associated vectors occur. 

To summarize, we have shown that in case 6 = 0 there are associated func- 
tions if and only if la1 < 



Appendix A 

EXPONENTIAL SUMS 

A.1. The convex hull of sums of complex numbers 

Let n E N \ (0 ) .  We consider sets P I , .  . . , Pn c @ with the property that, for 
each j E { I , .  . . ,n) ,  0  E 9, and there is a number c, E Y j  such that c j  # 0 and 
- 

9, c 0,  c j  We set 

(A. I .  I )  

Let 9 be the convex hull of &. 
Obviously, there is a natural number m with 1 < m 5 n such that the points 

of 9,, . . . , Yn lie on m different lines gl , . . . ,gn, with 0 E g ,  ( j  = 1 , .  . . , m).  We 
have g, = IWelq~, where we may assume without loss of generality that 0 5 ql < 
q2 < . . .  < qni < K.  For 1 E Z\{0} and j E { I ,  . . . ,  m )  we set qlm+, := q,+11n 
and gin,+, := g j .  Then qk < qk+ and qk+,,, = qk + K hold for all k E Z .  For j E Z 
we set 

Then 

Since there is at least one k E (1 , .  . . , n )  with ck E g, \ {0 ) ,  we have a,+, # 0 or 
a # 0. Hence a ,+,, - a # 0. 

For j E Z we set 

Note that a,,,,, = a ,  and &ji' = & j  for all j E Z .  
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PROPOSITION A.1.1. For each j E Z we have &J c &, and the line segment 
a,,a,+,,, is the convex hull of 81. Let zk E G ( k  = 1 , .  . . , n; ck E g,) and 

2 4 = a,. 
k= 1 

Then 

(A. 1.2) 

Pro05 Let j E Z. The statement &j c & is obvious since 0 E Pk for all k E 
{ I , . .  . ,n} .  

From g, = ILWf" we immediately infer 

a .  = 
J ck E 8' and a,,, = 4 E &I 

k= 1 k= 1 

Hence a, ,  a;,,, is a subset of the convex hull of 8". 
NO; let z E &J. Then there are zk E Pk ( k  = 1,. . . , n; ck E g , )  such that 

For ck E R+ eiq1 we have e-'qlzk E [O, e-'qj ck] and for ck E R- eiqj = R+ eiqj+nt we 
have e-'qjzk E [e-'q1ck, 01 since Pk c G. Hence 

which proves z E aj, and z = a j  if and only if (A.1.2) holds. 

PROPOSITION A. 1.2. The convex hull 9 of & is 

Pro05 The definitions of & and &J immediately yield 

Hence 
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where cv denotes the convex hull. An application of Proposition A. 1.1 completes 
the proof. 

For j E Z we set 
j+m- l  

b j  := x a, E &. 
k= j 

Note that bj+l - b j  = aj+,,, - a j  # 0. The definition of the ak yields 

Sincec, €R+e'" holdsforsomekE {j, ..., j + m - l ) i f a n d o n l y i f a r g c v - c p , ~  
[O, x )  mod(2x), we obtain the representation 

(A. 1.3) 

THEOREM A. 1.3. i) 9 is a convex polygon with 2m vertices, the set of the vertices 
of 9 is - 

8 ' = { b j :  j=  1, ..., 2m}, 

and the boundary of 9 is 
2m 

iii) The representation of b, ( j  = 1,. . . ,2m) as an element of & is unique. 

Prooj For m = 1 we have & = & I ,  bl = a ,  and b2 = a2. In this case the assertion 
of Theorem A. 1.3 follows from Proposition A. 1.1. 

Now let m > 2. i) We set 

and 
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We assert that 

(A. 1.4) 9 = H  

and 

(A. 1.5) 

First we shall prove that 

(A. 1.6) 8 C Hi 

holds for j = 1 ,... ,2m. For this let j E ( 1  , . . .  ,2m) and z E 8. Then there are 
z k E g k ( k = l ,  ..., n)suchthat 

For 1 E Z we set 
n 

' keg /  

Then dl E &' and 

i f m -  1 
(A. 1.7) 

Since dl E a,,al,,l by Proposition A. 1.1, (dl - al)e-"+?+n~ 2 0. Hence 

j+m- 1 

(A. 1.8) ( ~ - b j ) ( b j + l  - b j )  = z ('1 -',)(a,+n -ai)  
l=j 

j f m -  1 
- - z Idl - al leio+nl laj+, - a .le-h+nl. 

l= j 
J 

From q+,, < q1+,,, < (Pj+,, + R for 1 = j + 1,. . . , j + m - 1 we infer that 
S ( ( z - -  b j ) ( b j t l  - b,)) 2 0 and 

This proves (A. 1.6). Thus we obtain 

since H, is a convex set for each j = 1,. . . ,2m. 
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Now we shall prove that 

Since H is closed, z E dH holds if and only if z E H and z E dHj for at least one 

j E  ( 1 ,  ... ,2m). From(A.1.10) w e i n f e r b , ~ H f o r  jEZ.Theconvex i tyofH 

implies b j ,  bj+, c H for j = 1,. . . ,2m. Since the boundary of Hj  is the straight 

line consisting of those complex numbers z for which 3 ((z - b,) (bj+l - b,)) = 0, 

we obtain b,, bj+ C dHj for j = 1 ,  . . . ,2m. This proves 

Conversely, let z E dH. Then there is a j E (1, .  . . ,2m) such that z E dH,. Since 
dH, is a straight line with bj7bj+,  E dHj,  there is a t  E R with z = ( 1  - t ) b j  + 
tbj+, . Then 

(z-bj+l)(bj+2-bj+l)  = ( 1 - t ) ( b j - b j + l ) ( b j + 2  - b j + l )  
- icp. 
- ( 1  a ,  - a , + e  1 la,+l - aj+ni+l le-'cpj+m+~, 

We have 0 < cpi+ - 9, < n because of m 2 2. Then 

qj - '?j+nl+l = -(%+I - 9,) - 
implies 

-27c < q, - q,+"i+l < -7C. 
We have a, # a,+, # aj+nl+I, and 3 ( ( 2 -  bj+l)(bj+z - b,+l)) 2 0 since z E 
H,, , . A comparison of the imaginary parts of the above equation yields I - t  > 0. 
~ h a l o ~ o u s l ~  we consider 

( 2  - b j ) ( b j  - b j P l )  = t(bj+l - b j ) ( b j  - b J -  . 1 ) 

= tla . - a . leiqj+n1 la,-l - a,+ni-l le-icpj+n~-~. J 

Because of 

('- b j ) ( b j  - b j - ~ )  = ( 2  - b j - ] ) ( b j  - b j p 1 )  - (b,  - b,-l)(b, - b j - l )  

since z E H,-,. From 0 < qj+,, - qj+,-, < n, a, # a,+, and # aj+,-, we 
infer t  > 0. Thus t  E [0, I ]  which implies z E b,, b,+l. This proves (A. 1.1 I ) .  
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Let r  := max{jbj( : j = 1, ..., 2m) and U := {z E C : /z/ > r } .  Since H I  
is a half-plane, we have U H I  and hence U @ H .  From (A. 1.1 1) we know 
U fl d H  = 0. Hence the set U f l  H  has no boundary point in U .  Since U is con- 
nected, U n H  = 0. This proves that H  is bounded and hence compact. 

Now we shall prove that 

Assume that (A. 1.12) is false. Then there is a number zo E H  \ 9. For t E R we 
set a ( t )  = tzo + ( 1 - t )cl .  Since a ( 0 )  = c,  E 9 and a(1) = zo 6 9, the convexity 
of 9 implies that 

On the other hand the compactness of H  implies 

Hence there is a t 2 1 with z := tzo + (1 - t)cl E d H .  According to (A. 1.13), 
z $2 9. This is a contradiction since (A. 1.1 1) yields d H  C 9. Now (A. 1. lo),  
(A . l . l l )  and (A.1.12) prove (A.1.4) and (A.1.5). 

Since 9 = H  is the intersection of 2m half-spaces, 9 is a convex polygon. 

The representation (A. 1.5) of the boundary of 9 immediately implies that 2 C 
{bj :  j=  1 ,..., 2m). For j E  {I  , . . . ,  2 m ) a n d k ~  { j + 2  ,..., j + m )  wehave 

The summand for 1 = j + 1 on the right hand side is . As aj+,,,+ , # a j+l ,  
we infer from (A. 1.9) that bk does not lie on the straight line through the points b j  

andbj+l .  F o r k €  { j + m + I ,  . . . , j +  2m- 1) wehave 

The summand for 1 = j + m - 1 on the right hand side is a,- . As a j- , # ,, 
we infer from (A.1.9) that bk does not lie on the straight line through the points 
bj  and bj+l .  We have proved that no three points of {bl , . . . , b2,) lie on a straight 
line. This proves that each b j  is a vertex of 9. 
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n 

ii) Let zk E 01 and z = E zk. Then, by (A. 1.9), z E b,, bj+l if and only if 
k= 1 

(A. 1.14) 

for 1 = j + 1,. . . , j + m - 1. The application of the last statement of Proposition 
(A. 1. I) completes the proof of ii). 
iii) If in ii) additionally z = b,, then (A. 1.8) and (A. 1.9) yield that (A. 1.14) also 

holds for 1 = j. Again by Proposition A. 1.1 we infer that all zk (k = 1, . . . , n)  are 
uniquely determined by z = b,. 

COROLLARY A. 1.4. For all j E { I , .  . . ,2m) we have 

bj,bj+I n & = b j - a j + G J .  

n 
Pro08 Let z E 8 .  Then we have the representation z = C zk ,  where zk E pk C 

k= 1 
G. From Theorem A. 1.3 ii) we infer that z E b j ,  bj+, n 8' if and only if 

From the definition of GJ we immediately infer that z E b,, bj+l fl8 if and only if 

z E bj  - a j  + GJ.  

REMARK A.1.5. Since bj+l - b .  = a .  
J j+nt - ' j  and bj+n~-l - bj+nl = aj -aj+nl for 

j = 1,. . . ,m, the line segments bj ,bi+l  and bj+,,bj+nl+l are parallel to g ,  and . . 
have the length (a ,+, - a j  1. 
PROPOSITION A. 1.6. Assume in addition that for each j E { 1 ,  . . . , n )  the points 
0 and c j  are no accumulation points of 9 , .  Then for each j E (1,. . . ,2m) the set 

G \ b,, bj+ has no accumulation point in b j ,  b ,+ 
Pro08 First we shall prove for each j E { I , .  . . , n )  that the point a j  is no accumu- 
lation point of Gj. For this let (z,),,, be a sequence in 8'' such that zk + a, as 
k + m. Then there are z ~ , ~  E PI such that 
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Since every term on the right hand side of 

is nonpositive, zk -+ a, as k -+ - implies zk,l -+ c1 if cl E R+e1qj and z,,~ -+ 0 if 

cl E R- eiTj as k -+ w. Since 0 and cl are no accumulation points of P I ,  we have 
zki = cl if cl E R+ ei% and z,,[ = 0 if cl E R- e i 6  for sufficiently large k. Hence 

zk = a, if k is sufficiently large. This proves that a ,  is an isolated point of &I. 
Now let (zk)kEN be a sequence in & such that z, -+ z as k -+ w for some 

z E b,, bj+l .  According to (A.1.7) we write 

Since 3 ((z - bj)(bj+l - b,)) = 0, we have 3 ((zk - bj)(b,+, - b,)) i 0 as k -+ w. 

Each term on the right hand side of (A.1.8) has a non-negative imaginary part. 
Thu~(A.1 .8 )y ie ldsd~ ,~  -+al f o r k - + w a n d l =  j + l ,  ..., j + m -  1. The firstpart 
of the proof gives dk,l = al  for 1 = j + 1,. . . , j + m - 1 if k is sufficiently large. 

Hence zk E b,, bjf l  if k is sufficiently large by Theorem A. 1.3 ii). This proves that 

& \ bj, bj+, has no accumulation point in b,, bj+l . 

Now we consider a special case. Let 

o, := e x p ( 2 a i G )  ( j  E Z ) ,  

C .  := a,, Y j  := (0 c .) ( j  = I , .  . . ,n) .  For a finite subset 8 of Z let 
I ' I  

Then 

& =  ( 8 0 :  8 c (1, ..., n)). 

6; := {j, j+ 1 , . . . ,  j + r -  1).  

F o r e c { l ,  . . . ,  n ) a n d 8 ~ Z w e w r i t e 8 ~ 8 i f # e = # 8 a n d i f f o r e a c h B ~ 8  
there is a 6 E 8 such that 6 - 19 E nZ. 
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THEOREM A.1.7. i) Let n be even. Then the set of the vertices of 9 is 

Z= {eju: j~ { I .  . . . ,  n ) )  
2 

Let 8 C { I , .  . . , n).  Then 8 0  E d 9  if and only if 8 N 8; for some numbers 
Y E { ; - l , ~ , ~ + l } a n d j ~ { l , . . . ,  n) .  
ii) Let n be odd. Then the set of the vertices of 9 is 

n-l n+l Let 0 c { I , .  . . ,n) .  Then 8 0  E d 9  ifand only i f 8  N 8; for some r E {T, 
and j E  ( 1 ,  . . . ,  n).  

Proof i) In this case, m = and q, = 2 n q  for j E Z .  Obviously, 

Since 

Theorem A. 1.3 yields the representation of 2. 
L e t e c { l ,  . . . ,  n ) a n d s e t l g k = l i f k ~ O a n d l g ~ = O i f k E { l  , . . . ,  n)\8. 

Then 
n 

According to Theorem A.1.3, 8 0  E dP if and only if there is a number j E 
(1, . . . ,  n )  suchthatforalll E { j + 1 ,  ..., j+m- 1 )  wehavefik= 1 i f kE1+2mZ 
and fik = 0 if k E 1 + m + 2mZ. This holds if and only if there is a set 6 C 

{j, ..., j+2m - I }  with 8;:: c 6 c 8;r+l and 8 w  = 8w.  This proves part i) 
because of 

0;+' - e! and e;+; - 8; . 
2 Z 2 - 2 

ii) In this case, m = n and 9, = n q  for j E Z. Obviously, 

a2j = O  ( j =  l , . . . , m ) ,  

and 

= {a,, 0 )  m+ 1 ( j =  1 7 " ' 1 T ) >  

nr- 1 
8" = { ~ , + q , ~ )  ( j =  l , . . . , ~ ) .  
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For j = 1,. . . ,m we have 

and 

Theorem A. 1.3 yields the representation of 2. 
By Corollary A.1.4 we have bj,b,+, n&= b , -a j+8J  for j E ( 1 ,  ..., 2m). 

Since #&j = 2, we obtain bj,bj+, n 8  = {b j ,b j t l ) .  Hence Ow E d B n &  for 
8  C { 1,. . . , n) if and only if 8 0  = bj  for some j E { 1 ,  . . . ,2m). Theorem A. 1.3 iii) 
and the above representation of b, complete the proof. 0 

A.2. Estimates of exponential sums 

Let R be an unbounded subset of @. Since we are interested in estimates for large 
A E R, we may assume for simplicity that 1jl1 > 1 for A E R. For ii : R -+ @ and 
a E @ we write as in Section 2.7 

&(A) = [a] 

if 
&(A) - a  -+ 0 as jl -+ m. 

For v E R and jl E @\ (0) let jl " = exp(v log A ) ,  where log is the principal value 
of the logarithm, i.e. the inverse of exp : R+ i ( -n,  n] + @\ (0 ) .  For v E N, A" 
is the v-th power of A. For A E @\ ( 0 )  we have 

Hence 

( -A)"  = (- l )"AV if argjl 5 0,  

(-A)" = ( -1 ) - "AV  if argjl > 0. 

Let JY be a countable set with at least two elements, c j  E @ be pairwise 
different and bj  : R -+ @ for j E N .  Suppose that 

We assume that for all j E JY there are aj  E @ and v j  E R such that 
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and 

( ~ . 2 . 4 )  a = a , &(a)  -+ o (a t w ) ,  
, E X  

where 

(A.2.5) &,(A)  := L-'jb,(L) - a ,  ( j  E J Y ) .  

The function D : R -+ C defined by 

is called an exponential sum. The estimate 

the boundedness of the set of the c ,  and the set of the v,, and the assumptions 
(A.2.3) and (A.2.4) prove that the exponential sum (A.2.6) is absolutely conver- 
gent. 

In this section we shall estimate exponential sums. We start with a special 
case and shall generalize it step by step. 

Let IK = R or IK = @. We equip IKk with the Euclidean norm. For x  E IKk and 
6 > 0, 

' K ; ( X )  := { y  E I@ : Iy - X I  (5 ,  6 )  

denotes the open (closed) ball with centre x  and radius 6 .  Then the boundary 
d K6 ( x )  of 'Rb ( x )  is given by 

For two subsets A  and B  of IKk we define 

d ( A ,  B )  := inf{Ix - yl : x  E A , y  E B ) ,  

where d ( A ,  B )  = w if A  = 0 or B  = 0. For A  = { x )  we write d ( x ,  B) instead of 

d ( { x ) , B ) .  

For a countable nonempty set JY let 

It is well-known that l1  ( J Y )  is a Banach space if it is equipped with the norm 
1x1, := C Ix,l < - ( x  = ( x , ) , ~ ~  E l , ( J Y ) ) .  

JEJ" 
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For B > 0 let 

We equip nB(A') with the product topology on eN. Since A is countable, this 
topology is metrizable, see e.g. [HO, p. 1181. For x = ( x , ) ~ , ~  E l l  ( J Y )  and 

y = ( y j )  E nB(A) the complex number 

is well-defined. 

PROPOSITION A.2.1. m : 1,  (A') x I I B ( A ' )  + C is continuous. 

Proof. Let x" ,x E I ,  (A'), y", y E nB(A') ( n  E N )  with lim X = x and lim y" = y. 
n-+m n - t m  

Let SJ2 C JY be finite and 4 := JY \ 4. The estimate 

yields 

From 
inf{ E /xi/  : 4 c A',A'\4 finite} = 0  

j ~ 4  

we infer lim m ( X ,  y") = m(x,  y) .  Since l1 (A') x llB(A') is metrizable as a prod- 
n-tm 

uct of metrizable spaces, the continuity of m is proved. 

PROPOSITION A.2.2. Let U C K be unbounded, A a countable nonempty set, 
f = (f,)j,Lr : U i I ,  (A') and g = (gj),,.+, : U i a)". Suppose that g satisfies 
sup{Igj(t) I : t E U ,  j E A )  < w and one of the following two conditions holds: 
i) there is an element f (w)  E l1 (A') such that f ( t )  -+ f (w)  in l1 (A) as It/ -+ w, 

and g j ( t )  -+ 0 as It1 -+ 00 for all j E A', 
ii) I f ( t ) / ,  +Oas It1 +a. 

Then 

Proot We set B := sup{Igj(t)I : t E U ,  j E A ) .  Then g ( t )  E I I B ( A )  for all t E U .  
If i) is fulfilled, then g( t )  -+ 0 as J t J  -+ w in I IB(A ' ) .  In this case, (A.2.8) follows 
from Proposition A.2.1. If ii) is fulfilled, then (A.2.8) follows from 
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PROPOSITION A.2.3. We consider the exponential sum (A.2.6) 

where c j  E B ( j  E A'). Assume that there are a,P E A' such that c, < 0, cp 2 0, 
c, < cj  < cp ( j  E A' \ { a , P ) ) ,  a, # 0, as # 0. Assume that there is a number 
d E II% such that vj = dcj for all j E A. Then there are numbers M > 0, KO > 0, 
andgo>OsuchthatforallA ERsatisfying > Koand I%(A)+dlogIAII 2 M 
the estimate 

holds. 

Pro06 The definition (A.2.5) of the E~ yields 

Applying Proposition A.2.2 i) to C laj 1 exp{(c, - c,)t) (t < 0) and Propo- 
j~J'\{a> 

sition A.2.2 ii) to C [&,(A) 1 exp{(cj - c,) (%(A) + d log la))) we obtain that 
J€J'\{~> 

there are numbers M ,  > 0 and K, 2 0 such that for all A E R with / A /  2 K, and 
%(A) +dlogliZI I -M, the estimate 

holds. This yields 

ID(A)I 2: la,l exp{c,(%(A) + dlog IAl)) (1 - la;la-"a exp(-caa)D(a) - 1 I )  
laa l 2 1 .  

We apply this result to 
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and obtain that there are M2 > 0 and K2 > 0 such that for all il E R with lill > K2 
and -%(A) - d log (1 1 5 -M2 the estimate 

holds. Then the statement of the proposition follows with M := max{M1,M2), 

KO := max{Kl,K2) andgo := min 

PROPOSITION A.2.4. Let S C C be compact and V be a compact topological 
space. Let f : S x V -+ C be continuous. Suppose that for all x E V the func- 
tion f ( . ,x)  is holomorphic in the interior $ of S and not identically zero in any 
nonempty open subset of i. For x E V and 6 > 0 we set 

Then for each 6 > 0 there are numbers go(6) > 0 and l ( 6 )  > 0 such that 
i) #N(x,  6 )  5 l ( 6 )  for all x E V ;  
ii) If (z ,x) 1 2 go(&) for all x E V and z E S(x, 6 ) .  

Pro08 i) Let 6 > 0 and set S : =  { z  E S : d(z,  dS) > 6 ) .  Let x E V .  The set 

G(x )  := { z E  S: f ( z , x )  = 0 )  

is a discrete subset of $ since f ( . ,x)  is holomorphic in $ and not identically zero 
in any nonempty open subset of $. Thus for each z E 5 c there is a number 
E~ > 0 such that R,(z) c $ and f ( 5 , ~ )  # 0 for all ( E Kg \ {z ) .  S is a closed 
subset of the compact set S and hence S i s  compact. Thus there is a finite number - 
of elements zl , . . . , z j  in S such that 

Since the sets 3%" (2,) aie compact, 

i j 

~ X ( Y )  := max I f  ( 2 , ~ )  - f (z,x)l : 2 E U dKEZ" ( z v )  (Y E V )  
v= l I 

defines a continuous function gx : V -+ R+. From g,(x) = 0 and f (z ,x) # 0 for 
all z E dKEZv (2,) ( V  = 1 , .  . . , j) we infer that there is a neighbourhood V, C V of x 
such that 
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for all y  E V,. ROUCH~'S theorem yields that for each v = 1,. . . , j the number of 
the zeros of f ( . , y )  in (z,,) counted according to their multiplicities does not 
depend on y. Hence there is a natural number n(x, 6 )  such that #N(y, 6 )  5 n(x,  6 )  
for all y  E V,. Since the set V is compact, it can be covered by a finite number of 
neighbourhoods Vxi (i = 1,. . . , s) having this property. Now i) holds with l ( 6 )  := 
max{n(xi,6) : i = 1 ..., s).  
ii) Let 6  > 0. Set 

S f  := U S(x ,6)  x  { x ) .  
XE v 

We are going to show that S  x  V \ S f  is an open subset of S  x  V .  Then S f  is a closed 
subset of the compact set S  x  V .  Hence Sf  is compact. Since f is continuous on 
S  x  V > Sg and nonzero on S6, the number 

is well-defined and positive if S f  # 0. 
To prove the openness of S  x V \ Sg choose some (z ,x)  E S  x V \ S f .  Then 

z $! S(x, 6 ) .  If d(z ,  dS) < 26, then 

holds for all (z l ,d)  E S  x  V such that lz' - zl < 26 - d(z ,  dS) .  Hence (z,x)  belongs 
to the interior of S  x  V \ S f  . 

If d(z ,dS)  > 26, then d(z ,N(x ,6 ) )  < 6 .  There exists zo E N(x,  6 )  such that 
z - z,l < 6 .  Let 0 < 6' < 6  - Iz - zo/. From d(z ,  dS) 2 26 we obtain Kf l ( zo )  c S 
and from i) we know that zo is an isolated zero off  ( . ,x) .  Hence there are numbers 
0 < 6 ,  < 6' and e > 0 such that 1 f (5,x)l > E holds for all 5 E dKfl  (2,). From 

the continuity of f and the compactness of dKfl  (2,) c S  we infer that there is a 

neighbourhood V, of x  in V such that 1 f ( 5 ,  y) - f ( 5 ,  x)  1 < E for all y  E V, and 
5 E dKf ,  (2,). R o u c ~ C ' s  theorem yields that for all y E V, the number of the 

zeros of j ( . , y )  in Kf,  ( 2 , )  counted according to their multiplicities, is equal to the 

number of the zeros off  ( . ,x)  in Kf (q,). Since f (zo,x) = 0, for each y  E Vx there 
1 

is a number zy E Kf,  (2,) such that f (zy,y) = 0. The estimate 

yields z y  E N(Y, 6 ) .  For ( c , y )  E Kf,-g I ( z )  x Vx we infer 

This proves ( K f I p f  ( z )  x V,) f l  S f  = 0. Hence (z,x)  belongs to the interior of 
1 

s x v \ s g .  
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COROLLARY A.2.5. Let M, M > 0, JY be a countable nonempty set, a j  E @I 

c j € I W ( j ~ N ) ,  1 J a j l < m ,  a , p ~ N , a , # O , a ~ # O ,  c a 5 0 ,  c p > O ,  
j€Jv 

Define f : S x V + C b y  

where (z,x) E S x V and x = ( x ~ ) ~ , ~ , .  Then there are a natural number 11, for 
each 6 > 0 a number go(6) > 0, and, for each x E V, I, balls in S with radius 6 
such that for all z E goutside of these balls the estimate 

(A.2.11) If (z,x)l 2 go(6) 

holds. 

Pro08 The sets S C C and, by TIHONOV'S theorem, V are compact, where V 
is endowed with the product topology. For each x E V, f (.,x) is the restriction 
to S of an exponential sum of the form (A.2.6). In this case, the exponential 
sum is an entire function since, on compact sets, it is the uniform limit of entire 
functions. Because of a, exp(ix,) # 0 and ap exp(ixp) # 0 this entire function 
is not identically zero by Proposition A.2.3. For j E JV we define the function 
g j  : S x V i C by gj(z,x) = exp(ix,) exp(cjz). Then the function g j  is continuous 
and Igj(z,x) 5 exp{max{cp,-c,)(M+ 1)) =: B. Thus g := (gj)jE.x : S x V i 
&(A') is continuous. Obviously, f(z,x) = m(a,g(z,x)), where m is given by 
(A.2.7) and a := (aj) The continuity of m proved in Proposition A.2.1 yields 
that f is continuous. Hence the assumptions of Proposition A.2.4 are fulfilled. 
Take I($) from Proposition A.2.4 and set ll  := 1 ( ; ) .  

Now let 0 < 6 5 i and x E V. Let N(x, 6) and S(n, 6) be given by (A.2.9) and 
(A.2.10). We assert 

For the proof of (A.2.12) let z E S(x, 6) n S .̂ The relation N(x, 6 )  > N(x, i )  
is obvious and d(z,N(x, 6 ) )  2 6 is clear from the definition of S(x, 6) .  Hence 
d(z,N(x, f ) )  > 6. Conversely let z E ?with d(z,N(x, i)) 2 6. From l%(z)l 5 M 
and 13 (2) 1 5 M we infer d(z, dS) > 1 > 26. For < E N(x, 6) \ N(x, i )  we have 
d (< ,  as) < 4 and hence Iz - < /  > d(z, dS) - d(< ,  dS) > f . This proves 

d(z,N(x, 6 ) )  = min{d(~,N(x, i ) ) , d ( z , ~ ( x ,  6 )  \N(x, i ) ) )  > 6 .  
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According to (A.2.12), S(x, 6 )  n Ŝ  is the complement in Ŝ  of at most I, balls 
with radius 6 since #N(x ,  $) 5 1, by definition of 1, and Propsition A.2.4. For 
6 5 the corollary now follows from Proposition A.2.4. For 6 > $ it obviously 
holds with go(6) = ,go(;). 

PROPOSITION A.2.6. We consider the exponential sum (A.2.6) 

where bj(il) = ilVj[aj] according to (A.2.2)-(A.2.5), vj E R, c j  E R ( j  E A'), 
a , p  E A', a, # 0, up # 0. 0 = c, < c, < cp ( j  E JV \ {a,P}).  Assume that 
there is a number d E R such that vj = dc, for all j E A'. Then there are a 
natural number 1, for each 6 > 0 numbers K(6) > 0 and g(6)  > 0, and for all 
R > K(6) there are 1 balls of radius 6 such that for all 3L E R with R 5 Iil / 5 R + 1 
outside of these balls the estimate 

holds. 

Proot From Proposition A.2.3 we know that there are numbers KO > 0, M > 0, 
and g, > 0 such that the estimate ID(3L)I > gl holds for il E R satisfying 13L 1 > KO 
and /%(A) +dloglilll 2 M .  

We set M := Idla+ 1 and define S, S? V,  and f as in Corollary A.2.5. Then 
the assumptions of Corollary A.2.5 are fulfilled. We take 1, from Corollary A.2.5 

and set 1 := 21, . Because of -- ( 1 0 g ( 2 r ) ) 2  i 0 ( r  i m) there is a number K, 2 KO such 
that for all R > K, the estimates 

and 

(A.2.14) R > 8 ( M  + 3 + /dl (log(2R) + z ) )  

hold. 
Now let 6 > 0 and choose go(;) according to Corollary A.2.5. Because of 

(A.2.4) there is a K(6) 2 max{Kl ,2} such that for all il E R with Iil) 2 K(8)  the 
estimate 

holds. We set g(6) := min{f go(;),g,} and 
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We shall show that for all R 2 K(6) there are at most 1 balls of radius 6 such that 
for all A in 

outside of these balls the estimate 

(A.2.16) lDo(A)l 2 go($) 

holds. Then for these A the estimates (A.2.15) and (A.2.16) imply that 

which proves the statement of the proposition. 
For the proof of (A.2.16) we set 

where o E { 1, - 1). Because of W = W; U W{ it is sufficient to prove that for all 
R 2 K(6)  and o E (1, - 1) there are at most 1, balls of radius 6 such that for all 
A E W; outside of these balls the estimate D o ( A )  2 go($) holds. We set 

wp := {A E S Z :  R -  1 5  la1 5 R+2,1%(A)+dloglAII I M +  I ,  03(a) 0). 

For A E C\ (0) we set 

and assert 

(A.2.17) hu(w;) c $ hu(wY) c S, 

(A.2.18) Wp C K R  (ioR), 
4 

(A.2.19) h" is injective on K R  - (ioR), 
4 

For the proof of (A.2.17) let A E WP ( r  = 0 , l ) .  From 

(A.2.21) l%(h"(A))l = 1%(A) +dloglAII 5 M + r  

and (A.2.13) we obtain 

( A )  = A -  \%(l)12 2 ( ~ - r ) ~ -  ( M + r + d l l o g ( R + r +  1))2 

= ( R - r -  ( 2 ~ - 2 r -  l - ( M + r + ~ d l l o ~ ( R + r + l ) ) ~ )  

1 ( R - r -  I ) ~ +  ( 2 ~ - 3 - ( M + r + 1 d l l o ~ ( ~ + 2 ) ) ~ )  

> ( R - r -  I)*. 
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This estimate, o 3 ( A )  > 0 and o3 (A) < [ A  I < R + r + 1 imply 

The estimates (A.2.21) and (A.2.22) prove (A.2.17). 
For the proof of (A.2.18) let A E WP. Then 

131(A)1 < 131(A)+dlog1A1I+Idllog1AI < M+l+IdI log(R+2)  

and, by (A.2.22), 
-2 < o 3 ( A )  - R <  2. 

These estimates and (A.2.14) yield 

R 
11-ioRl 5 M+3+ldllog(R+2) < - .  

4 

For the proof of (A.2.19) let & t K R  (ioR). The function A I+ A - & has 
5 

exactly one simple zero in K R  - (ioR). For A E d K R  (ioR) we obtain because of 
2 Z 

[ A [ ,  /Ao[ 2 $ 2 1, &(A) > 0, o 3 ( & )  > 0, and (A.2.14) that 

IdlogA-dlogAoI I ldl(IloglAl -logI&lI+n) 
R < Idl(log(2R) + n)  < - < 1A - ioRl - (& - ioRl 
4 

5 la -&I. 

According to ROUCH~'S  theorem, the mapping 

has exactly one zero in K R  (ioR). Hence there is exactly one A t K R  (ioR) such 
Z 2 

that 
ho(3L) = & + d l o g & - i o R =  ha(&). 

This proves (A.2.19). 
For the proof of (A.2.20) let z E S. The definition of S, M = ldln + 1 and 

(A.2.14) yield 

Hence the function A + A - z - ioR has exactly one zero in K R  - (ioR). For 
4 

A t d K R  (ioR) we obtain from 2R > /A1 > f > 1, (A.2.14), and (A.2.23) that 
4 
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An application of ROUCHE'S theorem yields an element A E KR - ( ioR) such that 
4 

h + d l o g h  - 2 - i o R =  0. Hence 

z =  h + d l o g I  - i o R =  h u ( I )  E ho(K,(ioR)).  
5 

This completes the proof of (A.2.17)-(A.2.20). 
By (A.2.19), the inverse function hy of h"lKR jioR, is well-defined. For j E A' 

4 
we define k, E Z by 

2 r k j  5 Rcjo  < 2n(kj  + 1). 

We set 
x . : = R c . o - 2 n k . ,  x : =  ( x . ) .  

J I J J JEJ" 

For I E W p  we obtain 

= a,exp(ix,) exp{c,ho(L)} 
,€A' 

= f (hU(I) ,x) l  

where f is the function defined in Corollary A.2.5. By Corollary A.2.5 there are 
1, balls K, - (2,) (4 E S; i = 1, .  . . ,1,) such that the estimate 1 f (z,x) 1 > holds 

2 

11 1, 
for z E Ŝ \ U K ,  (2,). Let I E W{ \ U K6(hy(zi)). Then I = hy ( h u ( I ) )  because 

i=l Z i= 1 

of (A.2.17) and (A.2.20), and (A.2.18) yields A E KR (ioR). Since S is convex, 
5 

we obtain for i = 1, .  . . , lI  with the aid of the mean value theorem, (A.2.20), and 
(A.2.14) that 

1 1 < SUP ~ - ~ l h u ( h ) - ~ i ~ ~ ~  2 jd  Iho(') -41 
5 E K ,  (iuR) hu1(5 ) I - -  

S R 

5 21h0(h) - zi( .  

Hence 
1 6 

lhu(;l) - z.1 > -11 - hy(zi)J 2 -. ' - 2  2 
'I 

From (A.2.17) we infer ho (h )  E Ŝ \ U K ,  (zi). Then Corollary A.2.5 yields 
i=l 7 

lDo(h)l = If (hu(n),x)l L go($). 
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DEFINITION A.2.7. We consider an exponential sum of the form (A.2.6) with the 
representation (A.2.2) of the bj. Let J/t', J/Z ~ C ~4/, where #J{ '  _> 2 and J4" is a 

finite subset of J/4'. The pair (~/ZZ, J{  '~) is called weakly regular if the following 
properties hold: 
i) there are a ,  fi C ~ such that for all j C J {  there is a number ": C [0, 1] such 
that cj - vca + (1 - ~')c/3, i.e., the line segment ca,c~ is the convex hull of the 

set { c j  " j E ~/~r 
ii) for all j C -//{ there are Jl, J2 C ,/~,,t and a number ~" C [0, 1] such that 

cj --  "CCjl + ( 1  - r)cj2 and vj <_ vvj~ + ( 1  - v)vj2; 

iii) if j C ~/4" for a triple {j, Jl, J2} which fulfils ii), then j C {Jl, J2}" 

If (~N', J/{ ~) is weakly regular, then condition i) implies that the convex hull 
of ./4' is a line segment whose endpoints belong to J4" by ii). 

Condition ii) says that those j C ~ which do not have a representation 

Cj -- qJCjl + ( 1  - ~')Cj2 with Jl, J2 C d/{', ": C (0, 1) and vj ~ "CVjl + ( 1  - q2)vj2 
must belong to ,N ' .  For in this case we have v = 0 or v - 1, and the only rep- 
resentation fulfilling ii) is the trivial one with cj - cj~ or cj - c h which implies 

J - J l  C - / / / / " o r j - j z E J Z / { " .  

REMARK A.2.8. For J, Jl,J2 C .//{ such that cj C cj, ,cj2 and j r {Jl,J2} the fol- 
lowing conditions are equivalent: 
i) There is a number v C (0, 1) such that 

Cj -- "CCjl + ( 1  - v)Cjz and vj < '~Vjl + ( 1  - v)vj2; 

V j - -  Vjl < Vj2 -- Vjl . 

v ; -  < Vja - V; 

iii) Icj - cj, I - Icj2 - cj[ " 

Proof  The equivalence of i) and ii) immediately follows from 

cj - "ccj, + ( 1  - "c)cj2 ,~  c j -  Cjl - (1 - ~:)(c h -Cj l  ) 

and 

vj ~ ~vj, + (1 - ~)vj2 ~=~ vj - ~Jl  ~ (1  - -  ~ ) ( V j 2  - -  Vjl ). 
In the same way, the equivalence of i) and iii) immediately follows from 

cj - rcj, + ( 1  - "c)cj2 r "c(c j -  cj, ) - (1 - r)(cj2 - c j )  

and 

vj <_ ~:vj, + (1 - "c)vj2 ~ "c(vj - vj,) <_ (1 - ":)(vj2 - vj). D 
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Now we deduce a method how to construct a set A' such that (&,A') 
is weakly regular. By Definition A.2.7 i) the existence of a,p E A such that 
{ c j  : j E 4) c c,,cS is necessary. We set yo := a and A. := A and assume 
that the set of real numbers 

has a maximum d. Further we assume that the set 

has a maximum t l .  Then there is a (unique) yl E A so that Icy, - c,I = t ,  IcS - c, 1 
and vyI - V ,  = dkyI - % I  . Obviously, each element j E A with Icj - c,l < 
Jcyl - c,l has a representation of the form ii) with j, = a and j2 = yl. If t ,  < 1, 
then we repeat this procedure with the set 

Al : = { j € A 0 :  cj-c,I ~ t l ~ c P - c a ) .  

Then we obtain an element y2 E A if the corresponding maxima exist. We 
proceed in this way and assume that we can construct y,, y2,. . . Further we assume 
that y, = p for some n E N. Then A' := {yo,. . . , yn} fulfils the conditions i) and 
ii). Furthermore, it is easy to see that iii) holds. For if ii) holds with { x l ,  x2, x3} C 

A' and i2 < i, < i3, we would have 

by Remark A.2.8. By the definition of x2+[ we have 

From lcx - cx2 I = Icxl - cx2+l 1 + Icx2+l - Caz I we then immediately infer 
1 

which Droves 

By induction we obtain 
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From Remark A.2.8 we infer 

which contradicts the definition of xl. 
One can show that the existence of the maxima and the finiteness of the pro- 

cedure are necessary for the existence of a weakly regular pair (A, &/). Further- 
more, A' is unique if it exists. Obviously, the above method is possible if & is 
finite. Hence we obtain 

REMARK A.2.9. Assume that A is finite and that the points { c j  : j E A )  lie on 
a straight line. Then there is a subset A' of & such that (&,A1) is weakly 
regular. 

REMARK A.2.10. Let D ( L )  be an exponential sum with the representation (A.2.2) 
of the b,. Let A c A' be such that the convex hull of A is a line segment, 
the endpoints of which we denote by c,  and c p .  Assume that on & the V, do 
not depend on j, i. e., there is a v E W such that vj  = v for all j E A .  Then 
(A, { a ,  p )) is weakly regular. 

Proof Since vj  = rv,, + ( I  - r)vj2 holds for all j, j , ,  j2 t A and z t [0, 11, we 
can take j, = a and j2 = p in the representation ii) of Definition A.2.7. 

PROPOSITION A.2.11. We consider the exponential sum (A.2.6) 

where b j ( l )  = LVj[aj] according to (A.2.2)-(A.2.5), vj E $ c j  E W+ ( j  E N ) ,  
cjo = 0, v , ~  = 0 for some jo E N .  Assume that there is afinite subset N' of J' 
such that ( N , N 1 )  is weakly regular and that a j  # 0 for all j E A". Then there 
are a natural number 1 > 0, for each 6 > 0 numbers K ( 6 )  > 0 and g ( 6 )  > 0, 
and for all R > K ( 6 )  there are 1 balls of radius 6 such that for all 1 t R with 
R 5 [A. 1 5 R + 1 outside of these balls we have the estimate 

Proof Since J" is finite, we may assume without loss of generality that there 
is some k E N\ ( 0 )  such that N' = ( 0 , .  . . , k) and 0 = co < c ,  < . . . < ck . For 
K =  1 ,  ..., kwese t  

" K  - VK-1 d, := 
C K  - CK-  I 

By condition iii) of Definition A.2.7 we obtain for each K = 1,. . . , k - 1 that there 
is a z E ( 0 , l )  such that 

C ,  = ZC,-, + ( 1  - z)c,+, and v, > zv,-, + ( 1  - z)v,+,. 
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Hence, by Remark A.2.8, 

The definition of d K  yields for K, ,  rc2 E (0,. . . , k }  such that K, < K2 that 

With the aid of (A.2.24) we infer for K ~ ,  K~ E (0,. . . , k) such that K, 5 K2 that 

L e t j € N \ N 1 .  Thenthereare K E { I  ,..., k),  K , , K ~ E { O  ,..., k) ,andz , t €  (0 , l )  
such that 

Here we may assume that K~ < K ~ .  Obviously, K, 5 K - 1 and K 5 K ~ .  We shall 
show that 

The number vj is unique since K and z are uniquely determined by cj. From 
(A.2.26) and (A.2.27) we infer 

- - ~ ( c K - c K ~ )  + (1 - ~ ) ( c K - c ~ )  
CK - cK- 1 

With the aid of (A.2.28), (A.2.25) and (A.2.24) we calculate 

- - zv,-, + (1 - z) v,. 

If vj < vj, then 
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For each j E A' we have the representation 

where a '  J = a .  J and E' J = &, if v, = v;, and a; = 0 and &;(A) = (a, +&,(A)) 
if v, < v;. The estimate (A.2.3) obviously remains true with a j  instead of a,. We 
have 

&'(A) := x l&;(A)l < 1 ([ai l+ I&,(A)l) < 
j€,4' J€-4' 

since 1 A V ~ - " :  = [A"-" :  < 1 for 111 2 I. Wesetx,(A) := ~ h ~ j - " :  if v < V; and 
x .(A) = 0 if v, = vj . Then x,(A) + 0 as 1 A1 + m for all j E A. Proposition 

J 
A.2.2 i) yields 

( A )  a , x , ( )  ( A )  + 0 as A -+ m. 

j€-4' j€Jv 

Hence we can suppose that v, = v;. 

If k  = 1, then the assumptions of Proposition A.2.6 hold with d = %. Thus. 
for k = 1, Proposition A.2.11 is an immediate consequence of Proposition A.2.6. 

Now let k 2 2. Let K E (1,. . . ,k} and j E JY such that c, E [cK-, ,cK], i. e., 
c .  = zcK-, + (1 - z)c, for some z E [0, I].  From v, = vj we infer 

J 

(A.2.30) V, - vK-, = dK(cj - cK-,) if cj  E [cK-,, c,]. 

ForK= 1, . . . ,  k - 1  w e c h ~ o s e t ~ ~ I W w i t h d ~ > t ~ > d ~ + ~  andset 

V ~ : = { A E R : I A ) ~ ~ , % ( A ) + ~ ~ ~ O ~ I A I > O }  ( ~ = l ,  . . . ,  k-1) ,  

V , - : = { A E R : ) A ~ ~ 1 , ~ ( A ) + t , l o g ) A ~ < 0 }  ( K = l ,  . . . ,  k-1) ,  

V, := v,-, 
+ VK:=vK-,nv;  ( K = 2  ,..., k -  I ) ,  
+ Vk := Vk-,. 

For K E  (1, . . . ,  k) let 

JY, := {j  E JY : < c, < c,), 

A[ := {j  E : c, < c,-,}, 

s/,' := {j  E JY : cj  > c,}. 

ForA E Rand jEJYKsuch that j$! { K , K -  I} orA @VKlet &:(A) :=&,(A). For 
A E VK we set 

(A)  := E ~ -  I (A) + 1 bj(A)A-"1-1 exp{cjA - cK-, A} 
jE-4;- 
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and 

&;(A) := &,(A) + bj(l)IZ-v~exp(cjl  - cKIZ}. 
j&NK+ 

We shall prove that for K = 1,. . . , k the functions DK : VK -+ @ defined by 

fulfil the assumptions of Proposition A.2.6. By (A.2.30), the equation vj - vK-, = 
dK(cj - c,-~) holds for each j E A K .  Since, by assumption, # 0 and a, # 0, 
we have to prove that 

which obviously holds if 

and 

1 Ib,(n)n-'~exp{c,k - c.I) -+ o (A E VK, A + m) 
]ENK+ 

are fulfilled. As, by (A.2.3)-(A.2.5), (bj(l)l- ' ,)  j,Ln;i -+ (aj) jebNKt in ll (N:) 
as 11 -+ w, this follows from Proposition A.2.2 i) and 

for those K = 2,. . . , k in (A.2.32) and K = 1 , .  . . ,k - I in (A.2.33), respectively, 
for which v:, or V; are unbounded. We have to prove (A.2.32) and (A.2.33). 

First we consider (A.2.32). Let j E 4-. Then there is a number K' 5 K - 1 
such that c j  E [cd-,,cd). From (A.2.30), the definition of dK-, , and (A.2.24) we 
infer 
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For j E JY; and il E VL1 we thus obtain 

lilvrv~-1 exp{cjil - ~ , - ~ i l ) l  = exp{(cj - C,-~)%(A) + (v, - v,-~) log lill} 

= exp{(c, -c,-I)(%(a)+t,-l 1ogILI))x 

x e x ~ { ( ( v ~ - ~ K - ~ ) - t K - l ( ~ ~ - ~ K - l ) ) ' ~ g l ' l ~  

I exp{(dK-l -t,-l)(cj-cK-l)logIaI). 

Since (d,- I - t,- l )  (c, - c,- l )  < 0, (A.2.32) is proved. 
Now we consider (A.2.33). Let j E 4+. Then there is a number K' > K such 

that C, E (c,,-~, c,,]. From (A.2.30), the definition of d, , and (A.2.24) we infer 

For j E SJ+ and il E V; we thus obtain 

Since (d,+l - t,)(cj - c,) < 0, (A.2.33) is proved. 
Hence we can apply Proposition A.2.6 to DK if V, is unbounded. For these 

K let l,, K,(6) > 1 and g,(6) be the numbers from the assertion of Proposition 
A.2.6 for DK. For K such that V, is bounded let 1, := 0, KK := sup{lill : A E V,) 
and g,(6) := 1.  We set 

Let 6 > 0 and R > K(6).  Then there are 1 balls of radius 6 such that for all 
K =  (1, ..., k )  and all il with R I  111 5 R+1 outside of these balls the 
estimate 
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ho1ds:Let A E R with R < [A1 5 R + 1 outside of these balls. Then 1A1 > 1 and 
one and only one of the following inequalities holds: 

%(A) 
l o g a l  < 

%(A) -t < - 
k-l  - ioglal ' 

Hence there is a unique K E (1,.  . . , k )  with A E VK . The definition (A.2.31) yields 

= ~ X ~ { - C , - ~ A ) D ( A ) .  

If K > 2 and j = 0, the estimate (A.2.34) yields 0 5 v,-I - d , - , ~ ~ - ~ .  Because of 
VK c V:, we conclude 

Hence I A V ~ - l  exp{cK- A) 1 2 1 holds since it is trivial in case K = 1 because of 
vo = co = 0. Finally the estimate (A.2.35) yields 

We now consider a general exponential sum (A.2.6) and set 

8 := {cj : j E A). 

Let 9 be the convex hull of 6. If 9 is a convex polygon, then there are a number 
S 

S and line segments P, (s = 1 , .  . . , S) such that d 9  = U Ps , where the endpoints 
s= 1 

of P, are the vertices of 9. Let 

DEFINITION A.2.12. The exponential sum (A.2.6) with the representation (A.2.2) 
of the b j  is called weakly regular if the following three conditions hold: 
i) 9 is a convex polygon; 
ii) for each s E { 1 , .  . . , S) there is a finite subset 4, of & such that (A, 4,) is 
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weakly regular in the sense of Definition A.2.7; 
iii) For all s E (1,. . . ,S) the set 

& : = { c , :  j ~ ~ \ ~ : v , > m i n { v , :  K E ~ , c , E P , ~ & ) )  

has no accumulation point in P,. 

We denote the set of the vertices of 9 by 8 and define 

and 
A 

(A.2.36) G := {c ,  : j E A ) .  

Since the endpoints of P, belong to A S ,  we have 2 C 2. 
REMARK A.2.13. Let D ( L )  be an exponential sum with the representation (A.2.2) 
of the b,. Assume that the v, do not depend on j ,  i. e., there is a number v E IR 
such that v, = v for all j E A'. 
Then the exponential sum is weakly regular if 9 is a convex polygon. In this case - 
& = 8. 

Proo$ We have to show that the conditions ii) and iii) of Definition A.2.12 are 
fulfilled. For each s E (1,.  . . , S) the line segment P, is the convex hull of A. The 
condition ii) of Definition A.2.12 is fulfilled in view of Remark A.2.10, where A, 
is the set of the endpoints of the line segment P,. The condition iii) of Definition 
A.2.12 holds trivially since the sets &, are empty. Finally, since the endpoints of 
the line segments P, are vertices of 9, we obtain 2 c 2. 
THEOREM A.2.14. On an unbounded subset SZ of @ we consider the exponential 
sum (A.2.6) 

D ( L )  = b j ( L ) e x p ( c j L )  ( L  E Q) 
JLN 

filjilling (A.2.1)-(A.23, where b j ( L )  = L v ~ [ a j ] ,  v, E R, a, E C C ,  E @ Assume 
that the exponential sum is weakly regular in the sense of Definition A.2.12 and 
that a, # 0 for all j E 4, i. e., a, # 0 if c, E 2. Then the following assertions 
hold: 
i) For all L E @. \ (0) there is a number c ( L )  E 2 such that for all c E 9 the 
estimate % ( ( c  - c ( L ) ) L )  5 0 holds. 
ii) There are a positive integer 1 and for each 6 > 0 numbers K ( 6 )  > 0 and 
g ( 6 )  > 0 satishing the following property: for each R > K ( 6 )  there are 1 balls of 
radius 6 such that for all L E SZ with R < < R + 1 outside of these balls the 
estimate 

~A-"( ' )D(A)  e x p { - c ( L ) ~ ) ~  > g ( 6 )  

holds, where v ( L )  := vj i f c ( L )  = c,. 
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- 
Proot For simplicity of notation we may assume that 8 = { c , ,  . . . , cs ) ,  where 
P, = c, -~,  C ,  ( S  = 1 , .  . . ,S;  c0 := cS) .  Note that in case 9 is a line segment, i. e., 
S = 2, the sets PI = C2,CI and P2 = C1,C2 coincide. For il E @\ (0) we set 

which exists since 9 is compact. Since 9 is the convex hull of the set of its 
vertices, there is a number s ( l )  E { 1 , .  . . , S )  such that R ( C , ( ~ ) A )  = d ( A ) .  Hence 
i) follows from (A.2.37) with c ( i l )  = c , ( ~ ,  . 

S 
ii) Let ( s ,  a )  E U { s )  x (P, n 2) =: Q. Then there are P(s ,  a ) ,  y(s, a )  E 2 and 

s= 1 

t ( s ,  a )  E { I ,  . . . , S )  \ { s )  such that P, = a ,  p ( s ,  a )  and P,(,,,) = a ,  y(s, a) .  Clearly, 

v,,, := { A  E @\ {O) : % ( a i l )  = d ( i l ) ,  % ( ( p  ( s ,  a )  - a)il) 1 % ( ( y ( s ,  a )  - a ) L ) ) .  

For ( s ,  a )  E Q and il E V,,, we assert 

(A.2.38) % ( ( c  - @ ) a )  I 0 ( C  E Ps), 

(A.2.39) % ( ( c -  a)il) < 0 ( C  E 9 \ P s ) .  

Let ( s ,  a )  E Q and A  E V,,,. For each c  E 9 we have % ( ( c  - a ) A )  5 0 by defi- 
nition of V,,, and d ( i l ) .  This proves (A.2.38). Now let c  E 9 \ P,. In this case, 
S > 2. Assume that (A.2.39) does not hold for this c. Then % ( ( c  - a)il) = 0. 
By (A.2.37), 9 lies on one side of the line through the points c  and a .  Hence - 
c,  a c d B ,  which proves c  E P, U P,(,,,). We infer c  E P,(,,,) \ { a }  because of 

c  E 9 \ P,. Then y(s, a )  lies on the line through c  and a ,  and % ( ( c  - a ) A )  = 0 
implies % ( ( y ( s ,  a )  - a)h)  = 0. Hence, by definition of V(,,,), 

This implies that a lies on the line through /3 ( s ,  a )  and y(s, a ) ,  which contradicts 
the fact that a is a vertex of 9. Here we have to note that p(s ,  a )  # y(s, a )  since 
S  > 2. Hence the assumption is false and (A.2.39) is proved. 

For ( s ,  a )  E Q we set 
Q,,, := R n v,,, . 

Let ( s ,  a )  E Q. Since a is an endpoint of Ps, there is a cp,,, E [0,2n) such that 
e ' q s . a ( ~ j - a )  >Ofor j € & \ { j ( s , a ) } ,  w h e r e a = c .  I(,>,). For j E & \ { j ( s , a ) )  

and z E W,,, := e8R.a .R,,, we set &?(z) := E ~ ( ~ ' ~ s . ~ z ) .  For z E W,,, we set 
J 

and 
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We assert that 

Since (a j  + ',(a)) jEN\bn: + (aj);e.h\.n: in 1, ( J  \&) as [I( -+ by (A.2.3) 
and (A.2.4), this will follow from Proposition A.2.2 if we show that 

and, for all j E A \ &, 

(A.2.42) l V j - V ~ ( ~ a )  exp{(cj - a ) I }  i 0 as I E R,,, and lhl -+ m. 

Since the function d given by (A.2.37) is continuous, the set {A E V,,, : III = 1) 
is compact. From condition iii) of Definition A.2.12 we infer that the closure 
of 6, is a compact subset of 9 \ P, . Hence (A.2.39) implies 

Set v := sup{v, : j E J). From (A.2.39) and (A.2.44) we infer that 

This proves (A.2.41). Finally, (A.2.43) implies 

for all j E JY \ & and 2. E V,,,, which proves (A.2.42). 
Hence all mappings D,,, ( ( s , a )  E Q) fulfil the assumptions of Proposition 

A.2.11 if R,,, is unbounded. For these (s, a )  choose the numbers 1 ,,,, Ks,,(6) 
and g,,, (6)  according to Proposition A.2.11. If a,,, is bounded, we set l,,, := 0, 
KS,,(6) := sup{lI1 : I E and g,,,(6) := I. We set 

K(6) := max{Ks,,(6) : (s, a )  E Q), 

g(6) := min{gs,,(6) : ( s , a )  E Q). 
Now let 6 > 0 and R > K(6).  Then for each (s, a )  E Q there are numbers 

1.r.a 
I z,,, , . . . , E @ so that for all z E W , ,  with R < lzl < R + 1 and min lz - z(, 1 2 6 

;= 1 
the estimate 

holds according to Proposition A.2.11. 
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Now letA t R w i t h R 5  I A  5 R + l  and IL-ei".az;,,l 2 6forall  ( s , a )  E Q 

and 1 5 j 5 I,,,. Let a = c(A). Then there are s ,  ,s2 E { I , .  . . ,S} and a,, E 
such that PSI = a, and Psz = a)a;?. We may assume that %((a ,  - a)A)  > 
% ( ( g  - a ) A )  and set s := s,  . Then P (s, a )  = a,, y(s, a )  = g ,  A E V ,,,, and 
a = c, or a = c,-, . Hence e-'qs.aA E WS,a, 

for j = 1,. . . ,1,,,, and 

D , , , ( ~ - ~ ~ ~ A )  = E (a, + ~ , ( a ) ) a ~ ~ - ~ ( ~  exp{(cj - ~ ( a ) ) a )  
j E - 4  

From (A.2.45) we infer 

THEOREM A.2.15. On an unbounded subset i-2 of C we consider the exponential 
sum (A.2.6) 

D(n)  = E b j ( l )  exp(c,A) (n E n) 
j E J v  

fuljilling (A.2.1)-(A.2.5), where b,(A) = AVj[aj], vj t R, a, E C, c j  E C Assume 
that the exponential sum is weakly regular in the sense of Dejinition A.2.12 and 
that a, # 0 for all j E A, i. e., a, # 0 if c j  t 2. Then there is an increasing 
sequence (p,);=, of positive real numbers with p, -+ oo as v -+ oo and a number 
E > 0 such that for all v E N and all A E !2 with IAI = pv there is a number 
c(A) E 2 such that 

and 
IA-" (~)D(A)  exp{-c(A)A)l > E ,  

where v(A) := V, ifc(A) = c,. 

Proo$ The assumptions of this theorem are the same as in Theorem A.2.14. 
Hence the assertion of Theorem A.2.14 holds. Take 1 from Theorem A.2.14, 
choose 6 > 0 such that 216 < 1 and take K(6) and g(6) > 0 from Theorem A.2.14. 
Let Rv = K(6) + v. Since 216 < 1, there is a number p, E (R,, RV + 1) such that 
{A E @ : [A1 = p,) does not intersect any of the 1 balls of radius 6 from the as- 
sertion of Theorem A.2.14. Hence the desired estimate follows from Theorem 
A.2.14 with E = g(6). 
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REMARK A.2.16. The two estimates in Theorem A.2.15 yield 

IA-"~(il)exp{-cA)I > E 

for all c E 9. where v := min{v, : j E A', c, E &). 

A.3. Improved estimates for exponential sums 

In this section we consider an exponential sum as in Section A.2 such that there is 
a number v such that V, = v for all j E X ,  and such that 

= O('p(')) 

for all j E 1, where 1 < p < w and r,, is a function of the form 

for some numbers 0 5 x1 < x2 < . . . < xt < 27c. Here the numbers t and xq might 
be different in different formulas. We also assume that 9 is a convex polygon, 
that the vertices of 9 ,  i. e., the elements of 2, are no accumulation points of 8, 
and that the points in d 9  are no accumulation points of G \ d 9 .  

Then, in Proposition A.2.3, d = 0, and we obtain the estimates 

(A.3.2) D(A)-I = (a;' + O(rp(A))) exp(-caA) if %(A) _< - M ,  

(a,' + O(rp(A))) exp(-cpA) if %(A) 2 M, 

for some M > 0. 

Indeed, as in the proof of Proposition A.2.3, we have 

la,' exp(-c,A)D(A) - 1 ( 

( c .  - c,) > 0. Also, from the proof of Proposition A.2.3 we since s u p j ~ L ~ \ ( , )  1 

know that this term is less or equal to if %(A) 5 -MI . Then the stated estimate 
follows for A with negative real part. The proof for A with positive real part is 
analogous. 

We can also substitute the estimate of D(A) in Proposition A.2.6 by the esti- 
mate 

for all A outside the balls as considered in Proposition A.2.6. In view of (A.3.2) it 
suffices to consider the values of A for which (%(A)( 5 M. Since D(A) exp(-c,A) 
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and D ( - I )  exp(cpI)  also satisfy the assumptions of Proposition A.2.6, we im- 
mediately infer 

D(h)- '  = O(l)exp(-c,I) and D(I)-I = O(1) exp(-cpI) 

outside the balls considered in ~ r o ~ o s i t i o n  A.2.6. And for I so that 1%(I) 1 5 M, 
the estimate O(1) can be written as O(z,(I)).  

In this case, Proposition A.2.11 is a special case of Proposition A.2.6. 

Now we are going to consider Theorem A.2.14. The set V,,, defined in the 
proof of that theorem is a sector. Since 

for z E W,,, and j E N\&, where E,,, > 0, we have & S l a  = o(1) and O(zp(il)) 
1(s,ff) 

in W,,, . Then D,,, defined in the proof of Theorem A.2.14 satisfies the assump- 
tions of Proposition A.2.11. Hence we infer 

on each sector R,,, . Thus we can formulate Theorem A.2.15 in the following 
way: 

THEOREM A.3.1. On an unbounded subset R of @ we consider the exponential 
sum (A.2.6) 

D ( I )  = b j ( I )  exp(c,I) ( I  E R )  
j€X 

fuljilling (A.2.1)-(A.2.5), where b j ( I )  = 3Lvo[aj], vo E R, a j  E C, c j  t C, and 
&,(A) = O(zp(jl)) for j E JY, where 1 < p 5 w. Assume that 9 is a convex 

polygon, that 2 is isolated in 8, that the points of d 9 are no accumulation points 
of & \ d P ,  and that a j  # 0 ifc, E 2. Then there are 0 5 XI < X2 < . . . < Xi+, = - x1 + 2n, y,, . . . , y, E @\ {0), c, , . . . , c, E 6, and an increasing sequence (p,);=, 
of positive real numbers with p, + w as v -+ w such that 

and 
o ( I ) - l  = I-". exp{-c,I) (yj + O(zp(I) ) )  

hold for all v E N and all I E R such that 111 = p, and xj 5 arga 5 Xj+, for 
j =  1, ..., t. - 

In the above theorem we have that {cl , . . . , c,) = 8 
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Notations 

@. the complex numbers the nonnegative integers 
R the real numbers % ( z )  the real part of z 
R+ the nonnegative real numbers 3 (2 )  the imaginary part of z 
IF- the nonpositive real numbers # the cardinality of a (finite) set 

the integers 

ei, E ~ ,  ei unit vectors in C, c', Cno 

AC''', 55 G j , ~ , ~ l  362 l,, 352 
a:), 351 A 

Gj,P,s*  363 352 
a$), 351 H, 322 1 ( ' ) ,  352 

a::!, 353 H+, 323 1 ( 2 ) ,  352 

H,, 115 A;, 135 
b(O), 352 

J H D ,  390 A:, 358 
BV[a,b], 175 

396 L ~ ,  280 
C, 53 A 

H R ,  394 L ( E ) ,  2 
c k ,  53 &', 302 L ( E , F ) ,  2 
c;, 54 H ( Q , E ) ,  6 L Y ,  54 
Cw, 53 H R ,  394 lV ,  351 

def T, 2 HR>O, 393 fv, 351 
A,, 134 HR1', 394 L p ,  54 
A ,  134 i?. 391 L ~ ,  280 

17, 163 
I:, 161 
I:, 166 
id,, 2 
f l ( E , F ) ,  4 
In, 88 
ind T, 2 

M,, 148 
M ,  148 
M,, 148 
M , ,  154 
M, ,  148 
6, 134 
mj, 14 

Mk,n (G) ,  

M n ( G ) ,  3 



Notations 

R , ( A ) ,  105 
R2(A) ,  105 
p1(T0), 110 
R ( T ) ,  2 
P ( T ) ?  7 

(f > u ) p , k .  61 
oj,o,  354 
C k ,  136 
o v ,  363 
S ( A ) ,  323 
spy 13 
Ss,v, 168 
supp f, 53 
supp u ,  54 
o ( T ) ,  7 

T 2 ,  122 
T*, 3 

Y,, 362 
Z ( L ) ,  103 
z L ( L ) ,  258 
--, 448 
@ , 3  
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absolutely continuous, 55 
abstract boundary eigenvalue operator func- 

tion, 47, 103, 258 
adjoint boundary eigenvalue problem, 108, 

110,262 
adjoint linear relation, 1 1  1 
adjoint operator, 3 
algebraic multiplicity, 14, 37 
almost Birkhoff regular, 318, 353, 360, 372, 

373, 375,377,381,382 
associated function, 38 1 
associated vector, 27 
asymptotic boundary conditions, 317, 354, 

377,378,380-382 
asymptotic fundamental matrix, 81 
asymptotic fundamental system, 326, 342 
asymptotic linearization, 284 
asymptotic polynomial, 210 
asymptotic polynomial of orders, 210 

Banach space, 2 
bilinear, 6 
biorthogonal, 18 
biorthogonal CSEAVs, 29, 30,42 
biorthogonal CSRFs, 23, 24, 38, 48, 104, 
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biorthogonal projections, 36 
Birkhoff matrix, 136, 139, 140, 142, 144 
Birkhoff regular, 135, 136, 138-140, 142, 

144, 145, 148, 153, 154, 157, 160, 182, 
187, 188, 192, 193, 199,206,208,21& 
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boundary eigenvalue operator function, 103, 
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boundary eigenvalue problem, 102,130,280, 
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canonical system of eigenvectors and associ- 
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canonical system of root functions, 15 
canonical systems of root functions, 124 
Cauchy sequence, 2 
CEAV, 27 
chain of an eigenvector and associated vec- 

tors, 27 
change of variables, 99 
characteristic determinant, 357 
characteristic function, 280 
characteristic matrix, 324 
characteristic matrix function, 47, 103, 115, 

154, 165,258,259,264 
classical adjoint boundary eigenvalue prob- 

lem, 1 11 
compact operator, 4,42, 67 
complete, 406,407,432 
continuous linear operator, 2 
contour, 167 
convergent sequence, 2 
convolution, 54 
CSRF, 15, 19 
curve. 167 

deficiency, 2 
degenerate operator, 9 
derivative, 4 
derivative in the sense of distributions, 55 
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Dirac distribution, 64 
distribution, 54 
dual space, 2 

eigenvector, 27 
equivalent boundary conditions, 139 
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expansion into eigenfunctions and associated 
functions, 213,214,242,245, 298-300, 
304,306,309,318,376,411,413,417, 
423,425,429,432,435,437 

exponential sum, 45 1 

factorization, 36,47 
finitely meromorphic operator function, 9 
Fredholm operator, 2 , 9  
fundamental matrix, 69, 71, 73, 83, 148, 253 
fundamental matrix function, 47,69, 103, 106, 

133,324,338,340,342,344 
fundamental system, 252,253,326,342,347 
fundamental system function, 252, 254, 258, 
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geometric multiplicity, 14 
globally equivalent, 48, 104, 395, 396 
Green's function, 261, 276 
Green's matrix, 106, 110, 125, 189 

Heaviside function, 115 
holomorphic, 18 
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index, 2 
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Lagrange identity, 121, 272 
Lagrange matrix, 272 
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meromorphic operator function, 9 
meromorphic vector function, 8 
minimal, 43,407 
multiplication operator, 65, 67 
multiplicity, 13, 275 
multiplicity of the zero, 37 
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normalized boundary conditions, 208 
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null space, 2 
nullity, 2 
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pole order, 8, 11, 32 
principal part, 8 

r, 47,48 
range, 2 
rank, 32 
rank of an eigenvector, 27 
reduced resolvent, 1 1, 34 
Regge problem, 3 16 
regular distribution, 55 
resolvent, 7 
resolvent set, 7 
Riemann-Lebesgue lemma, 78 
right inverse, 72, 103, 258 
right invertible, 46 
root function, 13, 124, 275 

s-regular, 160, 165, 168, 169, 221, 228, 230, 
23 1,238-240, 242,313,3 14,3 16 

Schur factorization, 10 
semi-simple eigenvalue, 3 1, 34, 44 
separated boundary conditions, 143, 145 
simple eigenvalue, 3 1 
Sobolev space, 55 
spectrum, 7 , 9  
Stone regular, 160, 221 
strongly s-regular, 241, 242, 245, 246, 301, 

304,306,309 
support, 53,54 

tensor product, 3 
test function, 54 
two-point boundary eigenvalue problem, 103, 
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uniform convergence, 306 
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